Sample records for high resolution wave

  1. Application of high-resolution linear Radon transform for Rayleigh-wave dispersive energy imaging and mode separating

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Miller, R.D.; Liu, J.; Xu, Y.; Liu, Q.

    2008-01-01

    Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we image Rayleigh-wave dispersive energy and separate multimodes from a multichannel record by high-resolution linear Radon transform (LRT). We first introduce Rayleigh-wave dispersive energy imaging by high-resolution LRT. We then show the process of Rayleigh-wave mode separation. Results of synthetic and real-world examples demonstrate that (1) compared with slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50% (2) high-resolution LRT can successfully separate multimode dispersive energy of Rayleigh waves with high resolution; and (3) multimode separation and reconstruction expand frequency ranges of higher mode dispersive energy, which not only increases the investigation depth but also provides a means to accurately determine cut-off frequencies.

  2. Rayleigh-wave mode separation by high-resolution linear radon transform

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.

    2009-01-01

    Multichannel analysis of surface waves (MASW) method is an effective tool for obtaining vertical shear wave profiles from a single non-invasive measurement. One key step of the MASW method is generation of a dispersion image and extraction of a reliable dispersion curve from raw multichannel shot records. Because different Rayleigh-wave modes normally interfere with each other in the time and space domain, it is necessary to perform mode separation and reconstruction to increase the accuracy of phase velocities determined from a dispersion image. In this paper, we demonstrate the effectiveness of high-resolution linear Radon transform (LRT) as a means of separating and reconstructing multimode, dispersive Rayleigh-wave energy. We first introduce high-resolution LRT methods and Rayleigh-wave mode separation using high-resolution LRT. Next, we use synthetic data and a real-world example to demonstrate the effectiveness of Rayleigh-wave mode separation using high-resolution LRT. Our synthetic and real-world results demonstrate that (1) high-resolution LRT successfully separates and reconstructs multimode dispersive Rayleigh-wave energy with high resolution allowing the multimode energy to be more accurately determined. The horizontal resolution of the Rayleigh-wave method can be increased by extraction of dispersion curves from a pair of traces in the mode-separated shot gather and (2) multimode separation and reconstruction expand the usable frequency range of higher mode dispersive energy, which increases the depth of investigation and provides a means for accurately determining cut-off frequencies. ?? 2009 The Authors Journal compilation ?? 2009 RAS.

  3. The influence of spatially and temporally high-resolution wind forcing on the power input to near-inertial waves in the ocean

    NASA Astrophysics Data System (ADS)

    Rimac, Antonija; von Storch, Jin-Song; Eden, Carsten

    2013-04-01

    The estimated power required to sustain global general circulation in the ocean is about 2 TW. This power is supplied with wind stress and tides. Energy spectrum shows pronounced maxima at near-inertial frequency. Near-inertial waves excited by high-frequency winds represent an important source for deep ocean mixing since they can propagate into the deep ocean and dissipate far away from the generation sites. The energy input by winds to near-inertial waves has been studied mostly using slab ocean models and wind stress forcing with coarse temporal resolution (e.g. 6-hourly). Slab ocean models lack the ability to reproduce fundamental aspects of kinetic energy balance and systematically overestimate the wind work. Also, slab ocean models do not account the energy used for the mixed layer deepening or the energy radiating downward into the deep ocean. Coarse temporal resolution of the wind forcing strongly underestimates the near-inertial energy. To overcome this difficulty we use an eddy permitting ocean model with high-frequency wind forcing. We establish the following model setup: We use the Max Planck Institute Ocean Model (MPIOM) on a tripolar grid with 45 km horizontal resolution and 40 vertical levels. We run the model with wind forcings that vary in horizontal and temporal resolution. We use high-resolution (1-hourly with 35 km horizontal resolution) and low-resolution winds (6-hourly with 250 km horizontal resolution). We address the following questions: Is the kinetic energy of near-inertial waves enhanced when high-resolution wind forcings are used? If so, is this due to higher level of overall wind variability or higher spatial or temporal resolution of wind forcing? How large is the power of near-inertial waves generated by winds? Our results show that near-inertial waves are enhanced and the near-inertial kinetic energy is two times higher (in the storm track regions 3.5 times higher) when high-resolution winds are used. Filtering high-resolution winds in space and time, the near-inertial kinetic energy reduces. The reduction is faster when a temporal filter is used suggesting that the high-frequency wind forcing is more efficient in generating near-inertial wave energy than the small-scale wind forcing. Using low-resolution wind forcing the wind generated power to near-inertial waves is 0.55 TW. When we use high-resolution wind forcing the result is 1.6 TW meaning that the result increases by 300%.

  4. Generation of a pseudo-2D shear-wave velocity section by inversion of a series of 1D dispersion curves

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Liu, J.; Xu, Y.; Liu, Q.

    2008-01-01

    Multichannel Analysis of Surface Waves utilizes a multichannel recording system to estimate near-surface shear (S)-wave velocities from high-frequency Rayleigh waves. A pseudo-2D S-wave velocity (vS) section is constructed by aligning 1D models at the midpoint of each receiver spread and using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. The receiver spread length sets the theoretical lower limit and any vS structure with its lateral dimension smaller than this length will not be properly resolved in the final vS section. A source interval smaller than the spread length will not improve the horizontal resolution because spatial smearing has already been introduced by the receiver spread. In this paper, we first analyze the horizontal resolution of a pair of synthetic traces. Resolution analysis shows that (1) a pair of traces with a smaller receiver spacing achieves higher horizontal resolution of inverted S-wave velocities but results in a larger relative error; (2) the relative error of the phase velocity at a high frequency is smaller than at a low frequency; and (3) a relative error of the inverted S-wave velocity is affected by the signal-to-noise ratio of data. These results provide us with a guideline to balance the trade-off between receiver spacing (horizontal resolution) and accuracy of the inverted S-wave velocity. We then present a scheme to generate a pseudo-2D S-wave velocity section with high horizontal resolution using multichannel records by inverting high-frequency surface-wave dispersion curves calculated through cross-correlation combined with a phase-shift scanning method. This method chooses only a pair of consecutive traces within a shot gather to calculate a dispersion curve. We finally invert surface-wave dispersion curves of synthetic and real-world data. Inversion results of both synthetic and real-world data demonstrate that inverting high-frequency surface-wave dispersion curves - by a pair of traces through cross-correlation with phase-shift scanning method and with the damped least-square method and the singular-value decomposition technique - can feasibly achieve a reliable pseudo-2D S-wave velocity section with relatively high horizontal resolution. ?? 2008 Elsevier B.V. All rights reserved.

  5. Rayleigh-wave dispersive energy imaging using a high-resolution linear radon transform

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.

    2008-01-01

    Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we propose to image Rayleigh-wave dispersive energy by high-resolution linear Radon transform (LRT). The shot gather is first transformed along the time direction to the frequency domain and then the Rayleigh-wave dispersive energy can be imaged by high-resolution LRT using a weighted preconditioned conjugate gradient algorithm. Synthetic data with a set of linear events are presented to show the process of generating dispersive energy. Results of synthetic and real-world examples demonstrate that, compared with the slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50%. ?? Birkhaueser 2008.

  6. Wave Dissipation over Nearshore Beach Morphology: Insights from High-Resolution LIDAR Observations and the SWASH Wave Model

    NASA Astrophysics Data System (ADS)

    Mulligan, R. P.; Gomes, E.; McNinch, J.; Brodie, K. L.

    2016-02-01

    Numerical modelling of the nearshore zone can be computationally intensive due to the complexity of wave breaking, and the need for high temporal and spatial resolution. In this study we apply the SWASH non-hydrostatic wave-flow model that phase-resolves the free surface and fluid motions in the water column at high resolution. The model is forced using observed directional energy spectra, and results are compared to wave observations during moderate storm events. Observations are collected outside the surf zone using acoustic wave and currents sensors, and inside the surf zone over a 100 m transect using high-resolution LIDAR measurements of the sea surface from a sensor mounted on a tower on the beach dune at the Field Research Facility in Duck, NC. The model is applied to four cases with different wave conditions and bathymetry, and used to predict the spatial variability in wave breaking, and correlation between energy dissipation and morphologic features. Model results compare well with observations of spectral evolution outside the surf zone, and with the remotely sensed observations of wave transformation inside the surf zone. The results indicate the importance of nearshore bars, rip-channels, and larger features (major scour depression under the pier following large waves from Hurricane Irene) on the location of wave breaking and alongshore variability in wave energy dissipation.

  7. High Resolution Measurements of Nonlinear Internal Waves and Mixing on the Washington Continental Shelf

    DTIC Science & Technology

    2015-09-30

    hour tidally -resolving transects showing the generation conditions leading to wave formation 6. Nine synthetic aperture images collected during...High resolution measurements of nonlinear internal waves and mixing on the Washington continental...email: jmickett@apl.washington.edu Grant Number: N00014-13-1-0390 LONG-TERM GOALS We are interested in the general problems of internal waves and

  8. Improved Visualization of Gastrointestinal Slow Wave Propagation Using a Novel Wavefront-Orientation Interpolation Technique.

    PubMed

    Mayne, Terence P; Paskaranandavadivel, Niranchan; Erickson, Jonathan C; OGrady, Gregory; Cheng, Leo K; Angeli, Timothy R

    2018-02-01

    High-resolution mapping of gastrointestinal (GI) slow waves is a valuable technique for research and clinical applications. Interpretation of high-resolution GI mapping data relies on animations of slow wave propagation, but current methods remain as rudimentary, pixelated electrode activation animations. This study aimed to develop improved methods of visualizing high-resolution slow wave recordings that increases ease of interpretation. The novel method of "wavefront-orientation" interpolation was created to account for the planar movement of the slow wave wavefront, negate any need for distance calculations, remain robust in atypical wavefronts (i.e., dysrhythmias), and produce an appropriate interpolation boundary. The wavefront-orientation method determines the orthogonal wavefront direction and calculates interpolated values as the mean slow wave activation-time (AT) of the pair of linearly adjacent electrodes along that direction. Stairstep upsampling increased smoothness and clarity. Animation accuracy of 17 human high-resolution slow wave recordings (64-256 electrodes) was verified by visual comparison to the prior method showing a clear improvement in wave smoothness that enabled more accurate interpretation of propagation, as confirmed by an assessment of clinical applicability performed by eight GI clinicians. Quantitatively, the new method produced accurate interpolation values compared to experimental data (mean difference 0.02 ± 0.05 s) and was accurate when applied solely to dysrhythmic data (0.02 ± 0.06 s), both within the error in manual AT marking (mean 0.2 s). Mean interpolation processing time was 6.0 s per wave. These novel methods provide a validated visualization platform that will improve analysis of high-resolution GI mapping in research and clinical translation.

  9. High-frequency Rayleigh-wave method

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  10. Secondary Gravity Waves in the Winter Mesosphere: Results From a High-Resolution Global Circulation Model

    NASA Astrophysics Data System (ADS)

    Becker, Erich; Vadas, Sharon L.

    2018-03-01

    This study analyzes a new high-resolution general circulation model with regard to secondary gravity waves in the mesosphere during austral winter. The model resolves gravity waves down to horizontal and vertical wavelengths of 165 and 1.5 km, respectively. The resolved mean wave drag agrees well with that from a conventional model with parameterized gravity waves up to the midmesosphere in winter and up to the upper mesosphere in summer. About half of the zonal-mean vertical flux of westward momentum in the southern winter stratosphere is due to orographic gravity waves. The high intermittency of the primary orographic gravity waves gives rise to secondary waves that result in a substantial eastward drag in the winter mesopause region. This induces an additional eastward maximum of the mean zonal wind at z ˜ 100 km. Radar and lidar measurements at polar latitudes and results from other high-resolution global models are consistent with this finding. Hence, secondary gravity waves may play a significant role in the general circulation of the winter mesopause region.

  11. Advanced radiometric and interferometric milimeter-wave scene simulations

    NASA Technical Reports Server (NTRS)

    Hauss, B. I.; Moffa, P. J.; Steele, W. G.; Agravante, H.; Davidheiser, R.; Samec, T.; Young, S. K.

    1993-01-01

    Smart munitions and weapons utilize various imaging sensors (including passive IR, active and passive millimeter-wave, and visible wavebands) to detect/identify targets at short standoff ranges and in varied terrain backgrounds. In order to design and evaluate these sensors under a variety of conditions, a high-fidelity scene simulation capability is necessary. Such a capability for passive millimeter-wave scene simulation exists at TRW. TRW's Advanced Radiometric Millimeter-Wave Scene Simulation (ARMSS) code is a rigorous, benchmarked, end-to-end passive millimeter-wave scene simulation code for interpreting millimeter-wave data, establishing scene signatures and evaluating sensor performance. In passive millimeter-wave imaging, resolution is limited due to wavelength and aperture size. Where high resolution is required, the utility of passive millimeter-wave imaging is confined to short ranges. Recent developments in interferometry have made possible high resolution applications on military platforms. Interferometry or synthetic aperture radiometry allows the creation of a high resolution image with a sparsely filled aperture. Borrowing from research work in radio astronomy, we have developed and tested at TRW scene reconstruction algorithms that allow the recovery of the scene from a relatively small number of spatial frequency components. In this paper, the TRW modeling capability is described and numerical results are presented.

  12. Spread-Spectrum Beamforming and Clutter Filtering for Plane-Wave Color Doppler Imaging.

    PubMed

    Mansour, Omar; Poepping, Tamie L; Lacefield, James C

    2016-07-21

    Plane-wave imaging is desirable for its ability to achieve high frame rates, allowing the capture of fast dynamic events and continuous Doppler data. In most implementations of plane-wave imaging, multiple low-resolution images from different plane wave tilt angles are compounded to form a single high-resolution image, thereby reducing the frame rate. Compounding improves the lateral beam profile in the high-resolution image, but it also acts as a low-pass filter in slow time that causes attenuation and aliasing of signals with high Doppler shifts. This paper introduces a spread-spectrum color Doppler imaging method that produces high-resolution images without the use of compounding, thereby eliminating the tradeoff between beam quality, maximum unaliased Doppler frequency, and frame rate. The method uses a long, random sequence of transmit angles rather than a linear sweep of plane wave directions. The random angle sequence randomizes the phase of off-focus (clutter) signals, thereby spreading the clutter power in the Doppler spectrum, while keeping the spectrum of the in-focus signal intact. The ensemble of randomly tilted low-resolution frames also acts as the Doppler ensemble, so it can be much longer than a conventional linear sweep, thereby improving beam formation while also making the slow-time Doppler sampling frequency equal to the pulse repetition frequency. Experiments performed using a carotid artery phantom with constant flow demonstrate that the spread-spectrum method more accurately measures the parabolic flow profile of the vessel and outperforms conventional plane-wave Doppler in both contrast resolution and estimation of high flow velocities. The spread-spectrum method is expected to be valuable for Doppler applications that require measurement of high velocities at high frame rates.

  13. High resolution electron energy loss spectroscopy of spin waves in ultra-thin film - The return of the adiabatic approximation?

    NASA Astrophysics Data System (ADS)

    Ibach, Harald

    2014-12-01

    The paper reports on recent considerable improvements in electron energy loss spectroscopy (EELS) of spin waves in ultra-thin films. Spin wave spectra with 4 meV resolution are shown. The high energy resolution enables the observation of standing modes in ultra-thin films in the wave vector range of 0.15 Å- 1 < q|| < 0.3 Å- 1. In this range, Landau damping is comparatively small and standing spin wave modes are well-defined Lorentzians for which the adiabatic approximation is well suited, an approximation which was rightly dismissed by Mills and collaborators for spin waves near the Brillouin zone boundary. With the help of published exchange coupling constants, the Heisenberg model, and a simple model for the spectral response function, experimental spectra for Co-films on Cu(100) as well as for Co films capped with further copper layers are successfully simulated. It is shown that, depending on the wave vector and film thickness, the most prominent contribution to the spin wave spectrum may come from the first standing mode, not from the so-called surface mode. In general, the peak position of a low-resolution spin wave spectrum does not correspond to a single mode. A discussion of spin waves based on the "dispersion" of the peak positions in low resolution spectra is therefore subject to errors.

  14. Research and application of spectral inversion technique in frequency domain to improve resolution of converted PS-wave

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; He, Zhen-Hua; Li, Ya-Lin; Li, Rui; He, Guamg-Ming; Li, Zhong

    2017-06-01

    Multi-wave exploration is an effective means for improving precision in the exploration and development of complex oil and gas reservoirs that are dense and have low permeability. However, converted wave data is characterized by a low signal-to-noise ratio and low resolution, because the conventional deconvolution technology is easily affected by the frequency range limits, and there is limited scope for improving its resolution. The spectral inversion techniques is used to identify λ/8 thin layers and its breakthrough regarding band range limits has greatly improved the seismic resolution. The difficulty associated with this technology is how to use the stable inversion algorithm to obtain a high-precision reflection coefficient, and then to use this reflection coefficient to reconstruct broadband data for processing. In this paper, we focus on how to improve the vertical resolution of the converted PS-wave for multi-wave data processing. Based on previous research, we propose a least squares inversion algorithm with a total variation constraint, in which we uses the total variance as a priori information to solve under-determined problems, thereby improving the accuracy and stability of the inversion. Here, we simulate the Gaussian fitting amplitude spectrum to obtain broadband wavelet data, which we then process to obtain a higher resolution converted wave. We successfully apply the proposed inversion technology in the processing of high-resolution data from the Penglai region to obtain higher resolution converted wave data, which we then verify in a theoretical test. Improving the resolution of converted PS-wave data will provide more accurate data for subsequent velocity inversion and the extraction of reservoir reflection information.

  15. Dipping-interface mapping using mode-separated Rayleigh waves

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.; Miller, R.D.; Liu, Q.

    2009-01-01

    Multichannel analysis of surface waves (MASW) method is a non-invasive geophysical technique that uses the dispersive characteristic of Rayleigh waves to estimate a vertical shear (S)-wave velocity profile. A pseudo-2D S-wave velocity section is constructed by aligning 1D S-wave velocity profiles at the midpoint of each receiver spread that are contoured using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. Based on the assumption that a dipping-layer model can be regarded as stepped flat layers, high-resolution linear Radon transform (LRT) has been proposed to image Rayleigh-wave dispersive energy and separate modes of Rayleigh waves from a multichannel record. With the mode-separation technique, therefore, a dispersion curve that possesses satisfactory accuracy can be calculated using a pair of consecutive traces within a mode-separated shot gather. In this study, using synthetic models containing a dipping layer with a slope of 5, 10, 15, 20, or 30 degrees and a real-world example, we assess the ability of using high-resolution LRT to image and separate fundamental-mode Rayleigh waves from raw surface-wave data and accuracy of dispersion curves generated by a pair of consecutive traces within a mode-separated shot gather. Results of synthetic and real-world examples demonstrate that a dipping interface with a slope smaller than 15 degrees can be successfully mapped by separated fundamental waves using high-resolution LRT. ?? Birkh??user Verlag, Basel 2009.

  16. Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations

    NASA Astrophysics Data System (ADS)

    Meyer, Catrin I.; Ern, Manfred; Hoffmann, Lars; Trinh, Quang Thai; Alexander, M. Joan

    2018-01-01

    We investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite and the High Resolution Dynamics Limb Sounder (HIRDLS) aboard NASA's Aura satellite. AIRS operational temperature retrievals are typically not used for studies of gravity waves, because their vertical and horizontal resolution is rather limited. This study uses data of a high-resolution retrieval which provides stratospheric temperature profiles for each individual satellite footprint. Therefore the horizontal sampling of the high-resolution retrieval is 9 times better than that of the operational retrieval. HIRDLS provides 2-D spectral information of observed gravity waves in terms of along-track and vertical wavelengths. AIRS as a nadir sounder is more sensitive to short-horizontal-wavelength gravity waves, and HIRDLS as a limb sounder is more sensitive to short-vertical-wavelength gravity waves. Therefore HIRDLS is ideally suited to complement AIRS observations. A calculated momentum flux factor indicates that the waves seen by AIRS contribute significantly to momentum flux, even if the AIRS temperature variance may be small compared to HIRDLS. The stratospheric wave structures observed by AIRS and HIRDLS often agree very well. Case studies of a mountain wave event and a non-orographic wave event demonstrate that the observed phase structures of AIRS and HIRDLS are also similar. AIRS has a coarser vertical resolution, which results in an attenuation of the amplitude and coarser vertical wavelengths than for HIRDLS. However, AIRS has a much higher horizontal resolution, and the propagation direction of the waves can be clearly identified in geographical maps. The horizontal orientation of the phase fronts can be deduced from AIRS 3-D temperature fields. This is a restricting factor for gravity wave analyses of limb measurements. Additionally, temperature variances with respect to stratospheric gravity wave activity are compared on a statistical basis. The complete HIRDLS measurement period from January 2005 to March 2008 is covered. The seasonal and latitudinal distributions of gravity wave activity as observed by AIRS and HIRDLS agree well. A strong annual cycle at mid- and high latitudes is found in time series of gravity wave variances at 42 km, which has its maxima during wintertime and its minima during summertime. The variability is largest during austral wintertime at 60° S. Variations in the zonal winds at 2.5 hPa are associated with large variability in gravity wave variances. Altogether, gravity wave variances of AIRS and HIRDLS are complementary to each other. Large parts of the gravity wave spectrum are covered by joint observations. This opens up fascinating vistas for future gravity wave research.

  17. Ultrasound-aided high-resolution biophotonic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Lihong V.

    2003-10-01

    We develop novel biophotonic imaging for early-cancer detection, a grand challenge in cancer research, using nonionizing electromagnetic and ultrasonic waves. Unlike ionizing x-ray radiation, nonionizing electromagnetic waves such as optical waves are safe for biomedical applications and reveal new contrast mechanisms and functional information. For example, our spectroscopic oblique-incidence reflectometry can detect skin cancers based on functional hemoglobin parameters and cell nuclear size with 95% accuracy. Unfortunately, electromagnetic waves in the nonionizing spectral region do not penetrate biological tissue in straight paths as do x-rays. Consequently, high-resolution tomography based on nonionizing electromagnetic waves alone, as demonstrated by our Mueller optical coherence tomography, is limited to superficial tissue imaging. Ultrasonic imaging, on the contrary, furnishes good imaging resolution but has poor contrast in early-stage tumors and has strong speckle artifacts as well. We developed ultrasound-mediated imaging modalities by combining electromagnetic and ultrasonic waves synergistically. The hybrid modalities yield speckle-free electromagnetic-contrast at ultrasonic resolution in relatively large biological tissue. In ultrasound-modulated (acousto)-optical tomography, a focused ultrasonic wave encodes diffuse laser light in scattering biological tissue. In photo-acoustic (thermo-acoustic) tomography, a low-energy laser (RF) pulse induces ultrasonic waves in biological tissue due to thermoelastic expansion.

  18. Improving the analysis of biogeochemical patterns associated with internal waves in the strait of Gibraltar using remote sensing images

    NASA Astrophysics Data System (ADS)

    Navarro, Gabriel; Vicent, Jorge; Caballero, Isabel; Gómez-Enri, Jesús; Morris, Edward P.; Sabater, Neus; Macías, Diego; Bolado-Penagos, Marina; Gomiz, Juan Jesús; Bruno, Miguel; Caldeira, Rui; Vázquez, Águeda

    2018-05-01

    High Amplitude Internal Waves (HAIWs) are physical processes observed in the Strait of Gibraltar (the narrow channel between the Atlantic Ocean and the Mediterranean Sea). These internal waves are generated over the Camarinal Sill (western side of the strait) during the tidal outflow (toward the Atlantic Ocean) when critical hydraulic conditions are established. HAIWs remain over the sill for up to 4 h until the outflow slackens, being then released (mostly) towards the Mediterranean Sea. These have been previously observed using Synthetic Aperture Radar (SAR), which captures variations in surface water roughness. However, in this work we use high resolution optical remote sensing, with the aim of examining the influence of HAIWs on biogeochemical processes. We used hyperspectral images from the Hyperspectral Imager for the Coastal Ocean (HICO) and high spatial resolution (10 m) images from the MultiSpectral Instrument (MSI) onboard the Sentinel-2A satellite. This work represents the first attempt to examine the relation between internal wave generation and the water constituents of the Camarinal Sill using hyperspectral and high spatial resolution remote sensing images. This enhanced spatial and spectral resolution revealed the detailed biogeochemical patterns associated with the internal waves and suggests local enhancements of productivity associated with internal waves trains.

  19. High resolution wavenumber analysis for investigation of arterial pulse wave propagation

    NASA Astrophysics Data System (ADS)

    Hasegawa, Hideyuki; Sato, Masakazu; Irie, Takasuke

    2016-07-01

    The propagation of the pulse wave along the artery is relatively fast (several m/s), and a high-temporal resolution is required to measure pulse wave velocity (PWV) in a regional segment of the artery. High-frame-rate ultrasound enables the measurement of the regional PWV. In analyses of wave propagation phenomena, the direction and propagation speed are generally identified in the frequency-wavenumber space using the two-dimensional Fourier transform. However, the wavelength of the pulse wave is very long (1 m at a propagation velocity of 10 m/s and a temporal frequency of 10 Hz) compared with a typical lateral field of view of 40 mm in ultrasound imaging. Therefore, PWV cannot be identified in the frequency-wavenumber space owing to the low resolution of the two-dimensional Fourier transform. In the present study, PWV was visualized in the wavenumber domain using phases of arterial wall acceleration waveforms measured by high-frame-rate ultrasound.

  20. Correlation between the radiological observation of isolated tertiary waves on an esophagram and findings on high-resolution esophageal manometry.

    PubMed

    Halland, M; Ravi, K; Barlow, J; Arora, A

    2016-01-01

    Barium esophagrams are a frequently performed test, and radiological observations about potential abnormal esophageal motility, such as tertiary contractions, are commonly reported. We sought to assess the correlation between tertiary waves, and in particular isolated tertiary waves, on esophagrams and findings on non-synchronous high-resolution esophageal manometry. We retrospectively reviewed reports of esophagrams performed at a tertiary referral center and identified patients in whom tertiary waves were observed and a high-resolution esophageal manometry had been performed. We defined two groups; group 1 was defined as patients with isolated tertiary waves, whereas group 2 had tertiary waves and evidence of achalasia or an obstructing structural abnormality on the esophagram. We collected data on demographics, dysphagia score, associated findings on esophagram, and need for intervention. We reviewed the reports of 2100 esophagrams of which tertiary waves were noted as an isolated abnormality in 92, and in association with achalasia or a structural obstruction in 61. High-resolution manometry was performed in 17 patients in group 1, and five had evidence of a significant esophageal motility disorder and 4 required any intervention. Twenty-one patients in group 2 underwent manometry, and 18 had a significant esophageal motility disorder. An isolated finding of tertiary waves on an esophagram is rarely associated with a significant esophageal motility disorder that requires intervention. All patients with isolated tertiary waves who required intervention had a dysphagia to liquids. Tertiary contractions, in the absence of dysphagia to liquids, indicate no significant esophageal motility disorder. © 2014 International Society for Diseases of the Esophagus.

  1. A Comparison Between Gravity Wave Momentum Fluxes in Observations and Climate Models

    NASA Technical Reports Server (NTRS)

    Geller, Marvin A.; Alexadner, M. Joan; Love, Peter T.; Bacmeister, Julio; Ern, Manfred; Hertzog, Albert; Manzini, Elisa; Preusse, Peter; Sato, Kaoru; Scaife, Adam A.; hide

    2013-01-01

    For the first time, a formal comparison is made between gravity wave momentum fluxes in models and those derived from observations. Although gravity waves occur over a wide range of spatial and temporal scales, the focus of this paper is on scales that are being parameterized in present climate models, sub-1000-km scales. Only observational methods that permit derivation of gravity wave momentum fluxes over large geographical areas are discussed, and these are from satellite temperature measurements, constant-density long-duration balloons, and high-vertical-resolution radiosonde data. The models discussed include two high-resolution models in which gravity waves are explicitly modeled, Kanto and the Community Atmosphere Model, version 5 (CAM5), and three climate models containing gravity wave parameterizations,MAECHAM5, Hadley Centre Global Environmental Model 3 (HadGEM3), and the Goddard Institute for Space Studies (GISS) model. Measurements generally show similar flux magnitudes as in models, except that the fluxes derived from satellite measurements fall off more rapidly with height. This is likely due to limitations on the observable range of wavelengths, although other factors may contribute. When one accounts for this more rapid fall off, the geographical distribution of the fluxes from observations and models compare reasonably well, except for certain features that depend on the specification of the nonorographic gravity wave source functions in the climate models. For instance, both the observed fluxes and those in the high-resolution models are very small at summer high latitudes, but this is not the case for some of the climate models. This comparison between gravity wave fluxes from climate models, high-resolution models, and fluxes derived from observations indicates that such efforts offer a promising path toward improving specifications of gravity wave sources in climate models.

  2. High resolution data acquisition

    DOEpatents

    Thornton, G.W.; Fuller, K.R.

    1993-04-06

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock, pulse train, and analog circuitry for generating a triangular wave synchronously with the pulse train (as seen in diagram on patent). The triangular wave has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter counts the clock pulse train during the interval to form a gross event interval time. A computer then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  3. High resolution data acquisition

    DOEpatents

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  4. Near-inertial Wave Studies Using Historical Mooring Records and a High-Resolution General Circulation Model

    DTIC Science & Technology

    2009-09-30

    Mooring Records and a High- Resolution General Circulation Model Harper Simmons School of Fisheries and Ocean Sciences 903 Koyukuk Drive Fairbanks AK...oceanographic community has been to develop a global internal wave prediction system analogous to those already in place for surface waves. Early steps have... Fisheries and Ocean Sciences,903 Koyukuk Drive,Fairbanks,AK,99775 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND

  5. Tropical Waves and the Quasi-Biennial Oscillation in a 7-km Global Climate Simulation

    NASA Technical Reports Server (NTRS)

    Holt, Laura A.; Alexander, M. Joan; Coy, Lawrence; Molod, Andrea; Putman, William; Pawson, Steven

    2016-01-01

    This study investigates tropical waves and their role in driving a quasi-biennial oscillation (QBO)-like signal in stratospheric winds in a global 7-km-horizontal-resolution atmospheric general circulation model. The Nature Run (NR) is a 2-year global mesoscale simulation of the Goddard Earth Observing System Model, version 5 (GEOS-5). In the tropics, there is evidence that the NR supports a broad range of convectively generated waves. The NR precipitation spectrum resembles the observed spectrum in many aspects, including the preference for westward-propagating waves. However, even with very high horizontal resolution and a healthy population of resolved waves, the zonal force provided by the resolved waves is still too low in the QBO region and parameterized gravity wave drag is the main driver of the NR QBO-like oscillation (NRQBO). The authors suggest that causes include coarse vertical resolution and excessive dissipation. Nevertheless, the very-high-resolution NR provides an opportunity to analyze the resolved wave forcing of the NR-QBO. In agreement with previous studies, large-scale Kelvin and small-scale waves contribute to the NRQBO driving in eastward shear zones and small-scale waves dominate the NR-QBO driving in westward shear zones. Waves with zonal wavelength,1000 km account for up to half of the small-scale (,3300 km) resolved wave forcing in eastward shear zones and up to 70% of the small-scale resolved wave forcing in westward shear zones of the NR-QBO.

  6. The PMC-Turbo Balloon Mission to Study Gravity Waves and Turbulence through High-Resolution Imaging of Polar Mesospheric Clouds

    NASA Astrophysics Data System (ADS)

    Williams, B. P.; Kjellstrand, B.; Jones, G.; Reimuller, J. D.; Fritts, D. C.; Miller, A.; Geach, C.; Limon, M.; Hanany, S.; Kaifler, B.; Wang, L.; Taylor, M. J.

    2017-12-01

    PMC-Turbo is a NASA long-duration, high-altitude balloon mission that will deploy 7 high-resolution cameras to image polar mesospheric clouds (PMC) and measure gravity wave breakdown and turbulence. The mission has been enhanced by the addition of the DLR Balloon Lidar Experiment (BOLIDE) and an OH imager from Utah State University. This instrument suite will provide high horizontal and vertical resolution of the wave-modified PMC structure along a several thousand kilometer flight track. We have requested a flight from Kiruna, Sweden to Canada in June 2017 or McMurdo Base, Antarctica in Dec 2017. Three of the PMC camera systems were deployed on an aircraft and two tomographic ground sites for the High Level campaign in Canada in June/July 2017. On several nights the cameras observed PMC's with strong gravity wave breaking signatures. One PMC camera will piggyback on the Super Tiger mission scheduled to be launched in Dec 2017 from McMurdo, so we will obtain PMC images and wave/turbulence data from both the northern and southern hemispheres.

  7. Does Explosive Nuclear Burning Occur in Tidal Disruption Events of White Dwarfs by Intermediate-mass Black Holes?

    NASA Astrophysics Data System (ADS)

    Tanikawa, Ataru; Sato, Yushi; Nomoto, Ken'ichi; Maeda, Keiichi; Nakasato, Naohito; Hachisu, Izumi

    2017-04-01

    We investigate nucleosynthesis in tidal disruption events (TDEs) of white dwarfs (WDs) by intermediate-mass black holes. We consider various types of WDs with different masses and compositions by means of three-dimensional (3D) smoothed particle hydrodynamics (SPH) simulations. We model these WDs with different numbers of SPH particles, N, from a few 104 to a few 107 in order to check mass resolution convergence, where SPH simulations with N > 107 (or a space resolution of several 106 cm) have unprecedentedly high resolution in this kind of simulation. We find that nuclear reactions become less active with increasing N and that these nuclear reactions are excited by spurious heating due to low resolution. Moreover, we find no shock wave generation. In order to investigate the reason for the absence of a shock wave, we additionally perform one-dimensional (1D) SPH and mesh-based simulations with a space resolution ranging from 104 to 107 cm, using a characteristic flow structure extracted from the 3D SPH simulations. We find shock waves in these 1D high-resolution simulations, one of which triggers a detonation wave. However, we must be careful of the fact that, if the shock wave emerged in an outer region, it could not trigger the detonation wave due to low density. Note that the 1D initial conditions lack accuracy to precisely determine where a shock wave emerges. We need to perform 3D simulations with ≲106 cm space resolution in order to conclude that WD TDEs become optical transients powered by radioactive nuclei.

  8. Shear wave modelling of high resolution OBS data in a gas hydrate environment in the Danube deep-sea fan, Black Sea

    NASA Astrophysics Data System (ADS)

    Dannowski, A.; Bialas, J.; Zander, T.; Klaeschen, D.

    2016-12-01

    The Danube deep-sea fan, with his ancient channel-levee systems, hosts multiple bottom-simulating reflections (BSRs) observed in high-resolution reflection seismic data, indicating the occurrence of gas hydrates and free gas. To image the distribution of submarine gas hydrates and the occurrence of free gas in a channel-levee system, high-resolution 2D and 3D multichannel seismic reflection data were collected and fifteen ocean bottom seismometers (OBS) were deployed. The OBS data in particular reveal information about seismic P- and S-wave velocities of the subsurface. They record wave fields of a wide range of incidence angles. Both, P- and S-wave traveltime modelling cover a depth down to 1.5 km below the seafloor; thus, providing seismic velocity information far below the BSR. The seismic P-wave velocities increase with depth from 1600 m/s beneath the seafloor up to 2400 m/s at 1.5 km depth. The frequencies of the S-waves are much lower than the P-wave reflection signals. This is characteristic for shear waves in unconsolidated sediments where the S-wave attenuation is high. However, they travel much slower than P-waves and thus, show a higher resolution. The first S-wave appears at 0.7 s after the direct wave. Some of the S-phases can be traced up to 3.5 km in offset to the station. The seismic S-wave velocities increase from 240 m/s beneath the seafloor up to 1100 m/s at a depth of 1.5 km below the seafloor. From these observations, the P-to-S ratio can be derived. The P-to-S ratio might help to estimate the thickness of the zones with gas hydrates and free gas, while there will be a limited capability to constrain their concentrations.

  9. The influence of spatially and temporally high-resolution wind forcing on the power input to near-inertial waves in the ocean

    NASA Astrophysics Data System (ADS)

    Rimac, A.; Eden, C.; von Storch, J.

    2012-12-01

    Coexistence of stable stratification, the meridional overturning circulation and meso-scale eddies and their influence on the ocean's circulation still raise complex questions concerning the ocean energetics. Oceanic general circulation is mainly forced by the wind field and deep water tides. Its essential energetics are the conversion of kinetic energy of the winds and tides into oceanic potential and kinetic energy. Energy needed for the circulation is bound to internal wave fields. Direct internal wave generation by the wind at the sea surface is one of the sources of this energy. Previous studies using mixed-layer type of models and low frequency wind forcings (six-hourly and daily) left room for improvement. Using mixed-layer models it is not possible to assess the distribution of near-inertial energy into the deep ocean. Also, coarse temporal resolution of wind forcing strongly underestimates the near-inertial wave energy. To overcome this difficulty we use a high resolution ocean model with high frequency wind forcings. We establish the following model setup: We use the Max Planck Institute Ocean Model (MPIOM) on a tripolar grid with 45km horizontal resolution and 40 vertical levels. We run the model with wind forcings that vary in horizontal (250km versus 40km) and temporal resolution (six versus one-hourly). In our study we answer the following questions: How big is the wind kinetic energy input to the near-inertial waves? Is the kinetic energy of the near-inertial waves enhanced when high-frequency wind forcings are used? If so, by how much and why, due to higher level of temporal wind variability or due to better spatial representation of the near-inertial waves? How big is the total power of near-inertial waves generated by the wind at the surface of the ocean? We run the model for one year. Our model results show that the near-inertial waves are excited both using wind forcings of high and low horizontal and temporal resolution. Near-inertial energy is almost two times higher when we force the model with high frequency wind forcings. The influence on the energy mostly depends on the time difference between two forcing fields while the spatial difference has little influence.

  10. Morphobathymetric analysis of the large fine-grained sediment waves over the Gulf of Valencia continental slope (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Ribó, Marta; Puig, Pere; Muñoz, Araceli; Lo Iacono, Claudio; Masqué, Pere; Palanques, Albert; Acosta, Juan; Guillén, Jorge; Gómez Ballesteros, María

    2016-01-01

    Detailed analysis of recently acquired swath bathymetry, together with high-resolution seismic profiles and bottom sediment samples, revealed the presence of large-scale fine-grained sediment waves over the Gulf of Valencia continental slope. As many other deep-water sediment waves, these features were previously attributed to gravitational slope failure, related to creep-like deformation, and are here reinterpreted as sediment wave fields extending from 250 m depth to the continental rise, at 850 m depth. Geometric parameters were computed from the high-resolution multibeam dataset. Sediment wave lengths range between 500 and 1000 m, and maximum wave heights of up to 50 m are found on the upper slope, decreasing downslope to minimum values of 2 m high. Sediment waves on the lower part of the slope are quasi-stationary vertically accreting, whereas they show an upslope migrating pattern from the mid-slope to the upper part of the continental slope. High-resolution seismic profiles show continuous internal reflectors, with sediment waves merging down-section and sediment wave packages decreasing in thickness downslope. These sediment packages are thicker on the crest of each individual sediment wave and thinner on the downslope flank. 210Pb analyses conducted on sediment cores collected over the sediment wave fields also indicate slightly higher sediment accumulation rates on the wave crests. Sediment wave formation processes have been inferred from contemporary hydrodynamic observations, which reveal the presence of near-inertial internal waves interacting with the Gulf of Valencia continental slope. Internal wave activity is suggested to be the preferential mechanism for the transport and deposition of sediment, and the maintenance of the observed sediment wave fields.

  11. Imaging ultrasonic dispersive guided wave energy in long bones using linear radon transform.

    PubMed

    Tran, Tho N H T; Nguyen, Kim-Cuong T; Sacchi, Mauricio D; Le, Lawrence H

    2014-11-01

    Multichannel analysis of dispersive ultrasonic energy requires a reliable mapping of the data from the time-distance (t-x) domain to the frequency-wavenumber (f-k) or frequency-phase velocity (f-c) domain. The mapping is usually performed with the classic 2-D Fourier transform (FT) with a subsequent substitution and interpolation via c = 2πf/k. The extracted dispersion trajectories of the guided modes lack the resolution in the transformed plane to discriminate wave modes. The resolving power associated with the FT is closely linked to the aperture of the recorded data. Here, we present a linear Radon transform (RT) to image the dispersive energies of the recorded ultrasound wave fields. The RT is posed as an inverse problem, which allows implementation of the regularization strategy to enhance the focusing power. We choose a Cauchy regularization for the high-resolution RT. Three forms of Radon transform: adjoint, damped least-squares, and high-resolution are described, and are compared with respect to robustness using simulated and cervine bone data. The RT also depends on the data aperture, but not as severely as does the FT. With the RT, the resolution of the dispersion panel could be improved up to around 300% over that of the FT. Among the Radon solutions, the high-resolution RT delineated the guided wave energy with much better imaging resolution (at least 110%) than the other two forms. The Radon operator can also accommodate unevenly spaced records. The results of the study suggest that the high-resolution RT is a valuable imaging tool to extract dispersive guided wave energies under limited aperture. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. Atmospheric gravity waves with small vertical-to-horizotal wavelength ratios

    NASA Astrophysics Data System (ADS)

    Song, I. S.; Jee, G.; Kim, Y. H.; Chun, H. Y.

    2017-12-01

    Gravity wave modes with small vertical-to-horizontal wavelength ratios of an order of 10-3 are investigated through the systematic scale analysis of governing equations for gravity wave perturbations embedded in the quasi-geostrophic large-scale flow. These waves can be categorized as acoustic gravity wave modes because their total energy is given by the sum of kinetic, potential, and elastic parts. It is found that these waves can be forced by density fluctuations multiplied by the horizontal gradients of the large-scale pressure (geopotential) fields. These theoretical findings are evaluated using the results of a high-resolution global model (Specified Chemistry WACCM with horizontal resolution of 25 km and vertical resolution of 600 m) by computing the density-related gravity-wave forcing terms from the modeling results.

  13. Wave equation datuming applied to S-wave reflection seismic data

    NASA Astrophysics Data System (ADS)

    Tinivella, U.; Giustiniani, M.; Nicolich, R.

    2018-05-01

    S-wave high-resolution reflection seismic data was processed using Wave Equation Datuming technique in order to improve signal/noise ratio, attenuating coherent noise, and seismic resolution and to solve static corrections problems. The application of this algorithm allowed obtaining a good image of the shallow subsurface geological features. Wave Equation Datuming moves shots and receivers from a surface to another datum (the datum plane), removing time shifts originated by elevation variation and/or velocity changes in the shallow subsoil. This algorithm has been developed and currently applied to P wave, but it reveals the capacity to highlight S-waves images when used to resolve thin layers in high-resolution prospecting. A good S-wave image facilitates correlation with well stratigraphies, optimizing cost/benefit ratio of any drilling. The application of Wave Equation Datuming requires a reliable velocity field, so refraction tomography was adopted. The new seismic image highlights the details of the subsoil reflectors and allows an easier integration with borehole information and geological surveys than the seismic section obtained by conventional CMP reflection processing. In conclusion, the analysis of S-wave let to characterize the shallow subsurface recognizing levels with limited thickness once we have clearly attenuated ground roll, wind and environmental noise.

  14. Near-inertial Wave Studies using Historical Mooring Records and a High-Resolution General Circulation Model

    DTIC Science & Technology

    2009-01-01

    Mooring Records and a High- Resolution General Circulation Model Harper Simmons School of Fisheries and Ocean Sciences 903 Koyukuk Drive Fairbanks AK...oceanographic community has been to develop a global internal wave prediction system analogous to those already in place for surface waves. Early steps have...AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) School of Fisheries and Ocean

  15. A Parallel, Multi-Scale Watershed-Hydrologic-Inundation Model with Adaptively Switching Mesh for Capturing Flooding and Lake Dynamics

    NASA Astrophysics Data System (ADS)

    Ji, X.; Shen, C.

    2017-12-01

    Flood inundation presents substantial societal hazards and also changes biogeochemistry for systems like the Amazon. It is often expensive to simulate high-resolution flood inundation and propagation in a long-term watershed-scale model. Due to the Courant-Friedrichs-Lewy (CFL) restriction, high resolution and large local flow velocity both demand prohibitively small time steps even for parallel codes. Here we develop a parallel surface-subsurface process-based model enhanced by multi-resolution meshes that are adaptively switched on or off. The high-resolution overland flow meshes are enabled only when the flood wave invades to floodplains. This model applies semi-implicit, semi-Lagrangian (SISL) scheme in solving dynamic wave equations, and with the assistant of the multi-mesh method, it also adaptively chooses the dynamic wave equation only in the area of deep inundation. Therefore, the model achieves a balance between accuracy and computational cost.

  16. Does Explosive Nuclear Burning Occur in Tidal Disruption Events of White Dwarfs by Intermediate-mass Black Holes?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanikawa, Ataru; Sato, Yushi; Hachisu, Izumi

    We investigate nucleosynthesis in tidal disruption events (TDEs) of white dwarfs (WDs) by intermediate-mass black holes. We consider various types of WDs with different masses and compositions by means of three-dimensional (3D) smoothed particle hydrodynamics (SPH) simulations. We model these WDs with different numbers of SPH particles, N , from a few 10{sup 4} to a few 10{sup 7} in order to check mass resolution convergence, where SPH simulations with N > 10{sup 7} (or a space resolution of several 10{sup 6} cm) have unprecedentedly high resolution in this kind of simulation. We find that nuclear reactions become less activemore » with increasing N and that these nuclear reactions are excited by spurious heating due to low resolution. Moreover, we find no shock wave generation. In order to investigate the reason for the absence of a shock wave, we additionally perform one-dimensional (1D) SPH and mesh-based simulations with a space resolution ranging from 10{sup 4} to 10{sup 7} cm, using a characteristic flow structure extracted from the 3D SPH simulations. We find shock waves in these 1D high-resolution simulations, one of which triggers a detonation wave. However, we must be careful of the fact that, if the shock wave emerged in an outer region, it could not trigger the detonation wave due to low density. Note that the 1D initial conditions lack accuracy to precisely determine where a shock wave emerges. We need to perform 3D simulations with ≲10{sup 6} cm space resolution in order to conclude that WD TDEs become optical transients powered by radioactive nuclei.« less

  17. Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture

    NASA Astrophysics Data System (ADS)

    Ishihara, Kunihiko; Ohashi, Keishi; Ikari, Tomofumi; Minamide, Hiroaki; Yokoyama, Hiroyuki; Shikata, Jun-ichi; Ito, Hiromasa

    2006-11-01

    We demonstrate the terahertz-wave near-field imaging with subwavelength resolution using a bow-tie shaped aperture surrounded by concentric periodic structures in a metal film. A subwavelength aperture with concentric periodic grooves, which are known as a bull's eye structure, shows extremely large enhanced transmission beyond the diffraction limit caused by the resonant excitation of surface waves. Additionally, a bow-tie aperture exhibits extraordinary field enhancement at the sharp tips of the metal, which enhances the transmission and the subwavelength spatial resolution. We introduced a bow-tie aperture to the bull's eye structure and achieved high spatial resolution (˜λ/17) in the near-field region. The terahertz-wave near-field image of the subwavelength metal pattern (pattern width=20μm) was obtained for the wavelength of 207μm.

  18. Inversion of high frequency surface waves with fundamental and higher modes

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Park, C.B.; Tian, G.

    2003-01-01

    The phase velocity of Rayleigh-waves of a layered earth model is a function of frequency and four groups of earth parameters: compressional (P)-wave velocity, shear (S)-wave velocity, density, and thickness of layers. For the fundamental mode of Rayleigh waves, analysis of the Jacobian matrix for high frequencies (2-40 Hz) provides a measure of dispersion curve sensitivity to earth model parameters. S-wave velocities are the dominant influence of the four earth model parameters. This thesis is true for higher modes of high frequency Rayleigh waves as well. Our numerical modeling by analysis of the Jacobian matrix supports at least two quite exciting higher mode properties. First, for fundamental and higher mode Rayleigh wave data with the same wavelength, higher modes can "see" deeper than the fundamental mode. Second, higher mode data can increase the resolution of the inverted S-wave velocities. Real world examples show that the inversion process can be stabilized and resolution of the S-wave velocity model can be improved when simultaneously inverting the fundamental and higher mode data. ?? 2002 Elsevier Science B.V. All rights reserved.

  19. Impact of tropical cyclones on modeled extreme wind-wave climate

    DOE PAGES

    Timmermans, Ben; Stone, Daithi; Wehner, Michael; ...

    2017-02-16

    Here, the effect of forcing wind resolution on the extremes of global wind-wave climate are investigated in numerical simulations. Forcing winds from the Community Atmosphere Model at horizontal resolutions of ~1.0° and ~0.25° are used to drive Wavewatch III. Differences in extreme wave height are found to manifest most strongly in tropical cyclone (TC) regions, emphasizing the need for high-resolution forcing in those areas. Comparison with observations typically show improvement in performance with increased forcing resolution, with a strong influence in the tail of the distribution, although simulated extremes can exceed observations. A simulation for the end of the 21stmore » century under a RCP 8.5 type emission scenario suggests further increases in extreme wave height in TC regions.« less

  20. Impact of tropical cyclones on modeled extreme wind-wave climate

    NASA Astrophysics Data System (ADS)

    Timmermans, Ben; Stone, Dáithí; Wehner, Michael; Krishnan, Harinarayan

    2017-02-01

    The effect of forcing wind resolution on the extremes of global wind-wave climate are investigated in numerical simulations. Forcing winds from the Community Atmosphere Model at horizontal resolutions of ˜1.0° and ˜0.25° are used to drive Wavewatch III. Differences in extreme wave height are found to manifest most strongly in tropical cyclone (TC) regions, emphasizing the need for high-resolution forcing in those areas. Comparison with observations typically show improvement in performance with increased forcing resolution, with a strong influence in the tail of the distribution, although simulated extremes can exceed observations. A simulation for the end of the 21st century under a RCP 8.5 type emission scenario suggests further increases in extreme wave height in TC regions.

  1. Identification of Stratospheric Waves in Ozone in the Tropics from OMI High Spectral Resolution Measurements

    NASA Technical Reports Server (NTRS)

    Ziemke, J. R.; Liu, X.; Bhartia, P. K.

    2007-01-01

    Previous studies using Total Ozone Mapping Spectrometer (TOMS) measurements have identified several types of tropical waves in the stratosphere. These waves include Kelvin waves, mixed Rossby-gravity waves, equatorial Rossby waves, and global normal modes. All of these detected waves occur when their zonal phase speeds are opposite the zonal winds in the low-mid stratosphere associated with the Quasi-biennial Oscillation (QBO). Peak-to-peak amplitudes in all cases are typically 5 DU. While total ozone data from TOMS is sensitive in detecting these tropical waves, they provide each day only a single horizontal cross-sectional map. The high spatial and spectral resolution of the Aura Ozone Monitoring Instrument (OMI) provides a unique means to evaluate 3D structure in these waves including their propagation characteristics. Ozone profiles retrieved from OMI radiances for wavelengths 270-310 nm are utilized to examine the nature of these wave disturbances extending from the lower to upper stratosphere.

  2. Solar tomography adaptive optics.

    PubMed

    Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Dou, Jiangpei; Zhao, Gang

    2014-03-10

    Conventional solar adaptive optics uses one deformable mirror (DM) and one guide star for wave-front sensing, which seriously limits high-resolution imaging over a large field of view (FOV). Recent progress toward multiconjugate adaptive optics indicates that atmosphere turbulence induced wave-front distortion at different altitudes can be reconstructed by using multiple guide stars. To maximize the performance over a large FOV, we propose a solar tomography adaptive optics (TAO) system that uses tomographic wave-front information and uses one DM. We show that by fully taking advantage of the knowledge of three-dimensional wave-front distribution, a classical solar adaptive optics with one DM can provide an extra performance gain for high-resolution imaging over a large FOV in the near infrared. The TAO will allow existing one-deformable-mirror solar adaptive optics to deliver better performance over a large FOV for high-resolution magnetic field investigation, where solar activities occur in a two-dimensional field up to 60'', and where the near infrared is superior to the visible in terms of magnetic field sensitivity.

  3. Data-resolution matrix and model-resolution matrix for Rayleigh-wave inversion using a damped least-squares method

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Xu, Y.

    2008-01-01

    Inversion of multimode surface-wave data is of increasing interest in the near-surface geophysics community. For a given near-surface geophysical problem, it is essential to understand how well the data, calculated according to a layered-earth model, might match the observed data. A data-resolution matrix is a function of the data kernel (determined by a geophysical model and a priori information applied to the problem), not the data. A data-resolution matrix of high-frequency (>2 Hz) Rayleigh-wave phase velocities, therefore, offers a quantitative tool for designing field surveys and predicting the match between calculated and observed data. We employed a data-resolution matrix to select data that would be well predicted and we find that there are advantages of incorporating higher modes in inversion. The resulting discussion using the data-resolution matrix provides insight into the process of inverting Rayleigh-wave phase velocities with higher-mode data to estimate S-wave velocity structure. Discussion also suggested that each near-surface geophysical target can only be resolved using Rayleigh-wave phase velocities within specific frequency ranges, and higher-mode data are normally more accurately predicted than fundamental-mode data because of restrictions on the data kernel for the inversion system. We used synthetic and real-world examples to demonstrate that selected data with the data-resolution matrix can provide better inversion results and to explain with the data-resolution matrix why incorporating higher-mode data in inversion can provide better results. We also calculated model-resolution matrices in these examples to show the potential of increasing model resolution with selected surface-wave data. ?? Birkhaueser 2008.

  4. 40 MHz high-frequency ultrafast ultrasound imaging.

    PubMed

    Huang, Chih-Chung; Chen, Pei-Yu; Peng, Po-Hsun; Lee, Po-Yang

    2017-06-01

    Ultrafast high-frame-rate ultrasound imaging based on coherent-plane-wave compounding has been developed for many biomedical applications. Most coherent-plane-wave compounding systems typically operate at 3-15 MHz, and the image resolution for this frequency range is not sufficient for visualizing microstructure tissues. Therefore, the purpose of this study was to implement a high-frequency ultrafast ultrasound imaging operating at 40 MHz. The plane-wave compounding imaging and conventional multifocus B-mode imaging were performed using the Field II toolbox of MATLAB in simulation study. In experiments, plane-wave compounding images were obtained from a 256 channel ultrasound research platform with a 40 MHz array transducer. All images were produced by point-spread functions and cyst phantoms. The in vivo experiment was performed from zebrafish. Since high-frequency ultrasound exhibits a lower penetration, chirp excitation was applied to increase the imaging depth in simulation. The simulation results showed that a lateral resolution of up to 66.93 μm and a contrast of up to 56.41 dB were achieved when using 75-angles plane waves in compounding imaging. The experimental results showed that a lateral resolution of up to 74.83 μm and a contrast of up to 44.62 dB were achieved when using 75-angles plane waves in compounding imaging. The dead zone and compounding noise are about 1.2 mm and 2.0 mm in depth for experimental compounding imaging, respectively. The structure of zebrafish heart was observed clearly using plane-wave compounding imaging. The use of fewer than 23 angles for compounding allowed a frame rate higher than 1000 frames per second. However, the compounding imaging exhibits a similar lateral resolution of about 72 μm as the angle of plane wave is higher than 10 angles. This study shows the highest operational frequency for ultrafast high-frame-rate ultrasound imaging. © 2017 American Association of Physicists in Medicine.

  5. High-resolution multiphoton microscopy with a low-power continuous wave laser pump.

    PubMed

    Chen, Xiang-Dong; Li, Shen; Du, Bo; Dong, Yang; Wang, Ze-Hao; Guo, Guang-Can; Sun, Fang-Wen

    2018-02-15

    Multiphoton microscopy (MPM) has been widely used for three-dimensional biological imaging. Here, based on the photon-induced charge state conversion process, we demonstrated a low-power high-resolution MPM with a nitrogen vacancy (NV) center in diamond. Continuous wave green and orange lasers were used to pump and detect the two-photon charge state conversion, respectively. The power of the laser for multiphoton excitation was 40 μW. Both the axial and lateral resolutions were improved approximately 1.5 times compared with confocal microscopy. The results can be used to improve the resolution of the NV center-based quantum sensing and biological imaging.

  6. Properties of Langmuir wave bursts associated with magnetic holes

    NASA Technical Reports Server (NTRS)

    MacDowall, R. J.; Lin, N.; Kellogg, P. J.; Phillips, J. L.; Neugebauer, M.; Balogh, A.; Forsyth, R. J.

    1995-01-01

    The radio and plasma wave receivers on the Ulysses spacecraft have detected thousands of short-duration bursts of waves at approximately the electron plasma frequency. These wave events believed to be Langmuir waves are usually less than approximately 5 minutes in duration. They occur in or at the boundaries of depletions in the magnetic field amplitude known as magnetic holes. Using the 16 sec time resolution provided by the plasma frequency receiver, it is possible to examine the density structure inside of magnetic holes. Even higher time resolutions are sometimes available from the radio receiver data. The Ulysses observations show that these wave bursts occur more frequently at high heliographic latitudes; the occurrence rates depend on both latitude and distance from the Sun. We review the statistics for the wave events, compare them to magnetic and plasma parameters, and review the reasons for the more frequent occurrence at high heliographic latitudes.

  7. Non-Hydrostatic Modelling of Waves and Currents over Subtle Bathymetric Features

    NASA Astrophysics Data System (ADS)

    Gomes, E.; Mulligan, R. P.; McNinch, J.

    2014-12-01

    Localized areas with high rates of shoreline erosion on beaches, referred to as erosional hotspots, can occur near clusters of relict shore-oblique sandbars. Wave transformation and wave-driven currents over these morphological features could provide an understanding of the hydrodynamic-morphologic coupling mechanism that connects them to the occurrence of erosional hotspots. To investigate this, we use the non-hydrostatic SWASH model that phase-resolves the free surface and fluid motions throughout the water column, allowing for high resolution of wave propagation and breaking processes. In this study we apply a coupled system of nested models including SWAN over a large domain of the North Carolina shelf with smaller nested SWASH domains in areas of interest to determine the hydrodynamic processes occurring over shore oblique bars. In this presentation we focus on a high resolution grid (10 vertical layers, 10 m horizontal resolution) applied to the Duck region with model validation from acoustic wave and current data, and observations from the Coastal Lidar And Radar Imaging System (CLARIS). By altering the bathymetry input for each model run based on bathymetric surveys and comparing the predicted and observed wave heights and current profiles, the effects of subtle bathymetric perturbations have on wave refraction, wave breaking, surf zone currents and vorticity are investigated. The ability to predict wave breaking and hydrodynamics with a non-hydrostatic model may improve our understanding of surf zone dynamics in relation to morphologic conditions.

  8. Thirty-four years of Hawaii wave hindcast from downscaling of climate forecast system reanalysis

    NASA Astrophysics Data System (ADS)

    Li, Ning; Cheung, Kwok Fai; Stopa, Justin E.; Hsiao, Feng; Chen, Yi-Leng; Vega, Luis; Cross, Patrick

    2016-04-01

    The complex wave climate of Hawaii includes a mix of seasonal swells and wind waves from all directions across the Pacific. Numerical hindcasting from surface winds provides essential space-time information to complement buoy and satellite observations for studies of the marine environment. We utilize WAVEWATCH III and SWAN (Simulating WAves Nearshore) in a nested grid system to model basin-wide processes as well as high-resolution wave conditions around the Hawaiian Islands from 1979 to 2013. The wind forcing includes the Climate Forecast System Reanalysis (CFSR) for the globe and downscaled regional winds from the Weather Research and Forecasting (WRF) model. Long-term in-situ buoy measurements and remotely-sensed wind speeds and wave heights allow thorough assessment of the modeling approach and data products for practical application. The high-resolution WRF winds, which include orographic and land-surface effects, are validated with QuickSCAT observations from 2000 to 2009. The wave hindcast reproduces the spatial patterns of swell and wind wave events detected by altimeters on multiple platforms between 1991 and 2009 as well as the seasonal variations recorded at 16 offshore and nearshore buoys around the Hawaiian Islands from 1979 to 2013. The hindcast captures heightened seas in interisland channels and around prominent headlands, but tends to overestimate the heights of approaching northwest swells and give lower estimates in sheltered areas. The validated high-resolution hindcast sets a baseline for future improvement of spectral wave models.

  9. A high-resolution OGCM simulation of the Tropical Pacific Ocean during the 1985-1994 TOGA period. Part I: Long equatorial waves

    NASA Technical Reports Server (NTRS)

    Boulanger, J. P.; Delecluse, F.; Maes, C.; Levy, C.

    1995-01-01

    A high resolution oceanic general circulation model of the three topical oceans is used to investigate long equatorial wave activity in the Pacific Ocean during the 1985-1994 TOGA period. Zonal wind stress forcing and simulated dynamic height are interpreted using techniques previously applied to data. Kelvin and first Rossby waves are observed propagating during all the period. A seasonal cycle and interannual anomalies are computed for each long equatorial wave. The east Pacific basin is mainly dominated by seasonal cycle variations while strong interannual anomalies are observed west of the dateline. Long wave interannual anomalies are then compared to wave coefficients simulated by a simple wind-forced model. Our results outline the major role played by wind forcing on interannual time scales in generating long equatorial waves. However, near both eastern and western boundaries, some differences can be attributed to long wave reflections. A comparison to wave coefficients calculated from GEOSAT sea-level data gives some insight of the model behavior.

  10. Nonlinear ultrasonic imaging with X wave

    NASA Astrophysics Data System (ADS)

    Du, Hongwei; Lu, Wei; Feng, Huanqing

    2009-10-01

    X wave has a large depth of field and may have important application in ultrasonic imaging to provide high frame rate (HFR). However, the HFR system suffers from lower spatial resolution. In this paper, a study of nonlinear imaging with X wave is presented to improve the resolution. A theoretical description of realizable nonlinear X wave is reported. The nonlinear field is simulated by solving the KZK nonlinear wave equation with a time-domain difference method. The results show that the second harmonic field of X wave has narrower mainlobe and lower sidelobes than the fundamental field. In order to evaluate the imaging effect with X wave, an imaging model involving numerical calculation of the KZK equation, Rayleigh-Sommerfeld integral, band-pass filtering and envelope detection is constructed to obtain 2D fundamental and second harmonic images of scatters in tissue-like medium. The results indicate that if X wave is used, the harmonic image has higher spatial resolution throughout the entire imaging region than the fundamental image, but higher sidelobes occur as compared to conventional focus imaging. A HFR imaging method with higher spatial resolution is thus feasible provided an apodization method is used to suppress sidelobes.

  11. THz holography in reflection using a high resolution microbolometer array.

    PubMed

    Zolliker, Peter; Hack, Erwin

    2015-05-04

    We demonstrate a digital holographic setup for Terahertz imaging of surfaces in reflection. The set-up is based on a high-power continuous wave (CW) THz laser and a high-resolution (640 × 480 pixel) bolometer detector array. Wave propagation to non-parallel planes is used to reconstruct the object surface that is rotated relative to the detector plane. In addition we implement synthetic aperture methods for resolution enhancement and compare Fourier transform phase retrieval to phase stepping methods. A lateral resolution of 200 μm and a relative phase sensitivity of about 0.4 rad corresponding to a depth resolution of 6 μm are estimated from reconstructed images of two specially prepared test targets, respectively. We highlight the use of digital THz holography for surface profilometry as well as its potential for video-rate imaging.

  12. Two-Dimensional Standing Wave Total Internal Reflection Fluorescence Microscopy: Superresolution Imaging of Single Molecular and Biological Specimens

    PubMed Central

    Chung, Euiheon; Kim, Daekeun; Cui, Yan; Kim, Yang-Hyo; So, Peter T. C.

    2007-01-01

    The development of high resolution, high speed imaging techniques allows the study of dynamical processes in biological systems. Lateral resolution improvement of up to a factor of 2 has been achieved using structured illumination. In a total internal reflection fluorescence microscope, an evanescence excitation field is formed as light is total internally reflected at an interface between a high and a low index medium. The <100 nm penetration depth of evanescence field ensures a thin excitation region resulting in low background fluorescence. We present even higher resolution wide-field biological imaging by use of standing wave total internal reflection fluorescence (SW-TIRF). Evanescent standing wave (SW) illumination is used to generate a sinusoidal high spatial frequency fringe pattern on specimen for lateral resolution enhancement. To prevent thermal drift of the SW, novel detection and estimation of the SW phase with real-time feedback control is devised for the stabilization and control of the fringe phase. SW-TIRF is a wide-field superresolution technique with resolution better than a fifth of emission wavelength or ∼100 nm lateral resolution. We demonstrate the performance of the SW-TIRF microscopy using one- and two-directional SW illumination with a biological sample of cellular actin cytoskeleton of mouse fibroblast cells as well as single semiconductor nanocrystal molecules. The results confirm the superior resolution of SW-TIRF in addition to the merit of a high signal/background ratio from TIRF microscopy. PMID:17483188

  13. High-resolution modelling of waves, currents and sediment transport in the Catalan Sea.

    NASA Astrophysics Data System (ADS)

    Sánchez-Arcilla, Agustín; Grifoll, Manel; Pallares, Elena; Espino, Manuel

    2013-04-01

    In order to investigate coastal shelf dynamics, a sequence of high resolution multi-scale models have been implemented for the Catalan shelf (North-western Mediterranean Sea). The suite consists of a set of increasing-resolution nested models, based on the circulation model ROMS (Regional Ocean Modelling System), the wave model SWAN (Simulation Waves Nearshore) and the sediment transport model CSTM (Community Sediment Transport Model), covering different ranges of spatial (from ~1 km at shelf-slope regions to ~40 m around river mouth or local beaches) and temporal scales (from storms events to seasonal variability). Contributions in the understanding of local processes such as along-shelf dynamics in the inner-shelf, sediment dispersal from the river discharge or bi-directional wave-current interactions under different synoptic conditions and resolution have been obtained using the Catalan Coast as a pilot site. Numerical results have been compared with "ad-hoc" intensive field campaigns, data from observational models and remote sensing products. The results exhibit acceptable agreement with observations and the investigation has allowed developing generic knowledge and more efficient (process-based) strategies for the coastal and shelf management.

  14. Comparison of Two Grid Refinement Approaches for High Resolution Regional Climate Modeling: MPAS vs WRF

    NASA Astrophysics Data System (ADS)

    Leung, L.; Hagos, S. M.; Rauscher, S.; Ringler, T.

    2012-12-01

    This study compares two grid refinement approaches using global variable resolution model and nesting for high-resolution regional climate modeling. The global variable resolution model, Model for Prediction Across Scales (MPAS), and the limited area model, Weather Research and Forecasting (WRF) model, are compared in an idealized aqua-planet context with a focus on the spatial and temporal characteristics of tropical precipitation simulated by the models using the same physics package from the Community Atmosphere Model (CAM4). For MPAS, simulations have been performed with a quasi-uniform resolution global domain at coarse (1 degree) and high (0.25 degree) resolution, and a variable resolution domain with a high-resolution region at 0.25 degree configured inside a coarse resolution global domain at 1 degree resolution. Similarly, WRF has been configured to run on a coarse (1 degree) and high (0.25 degree) resolution tropical channel domain as well as a nested domain with a high-resolution region at 0.25 degree nested two-way inside the coarse resolution (1 degree) tropical channel. The variable resolution or nested simulations are compared against the high-resolution simulations that serve as virtual reality. Both MPAS and WRF simulate 20-day Kelvin waves propagating through the high-resolution domains fairly unaffected by the change in resolution. In addition, both models respond to increased resolution with enhanced precipitation. Grid refinement induces zonal asymmetry in precipitation (heating), accompanied by zonal anomalous Walker like circulations and standing Rossby wave signals. However, there are important differences between the anomalous patterns in MPAS and WRF due to differences in the grid refinement approaches and sensitivity of model physics to grid resolution. This study highlights the need for "scale aware" parameterizations in variable resolution and nested regional models.

  15. Analysis and numerical study of inertia-gravity waves generated by convection in the tropics

    NASA Astrophysics Data System (ADS)

    Evan, Stephanie

    2011-12-01

    Gravity waves transport momentum and energy upward from the troposphere and by dissipation affect the large-scale structure of the middle atmosphere. An accurate representation of these waves in climate models is important for climate studies, but is still a challenge for most global and climate models. In the tropics, several studies have shown that mesoscale gravity waves and intermediate scale inertia-gravity waves play an important role in the dynamics of the upper atmosphere. Despite observational evidence for the importance of forcing of the tropical circulation by inertia-gravity waves, their exact properties and forcing of the tropical stratospheric circulation are not fully understood. In this thesis, properties of tropical inertia-gravity waves are investigated using radiosonde data from the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE), the European Centre for Medium-Range Weather Forecasts (ECMWF) dataset and high-resolution numerical experiments. Few studies have characterized inertia-gravity wave properties using radiosonde profiles collected on a campaign basis. We first examine the properties of intermediate-scale inertia-gravity waves observed during the 2006 TWP-ICE campaign in Australia. We show that the total vertical flux of horizontal momentum associated with the waves is of the same order of magnitude as previous observations of Kelvin waves. This constitutes evidence for the importance of the forcing of the tropical circulation by intermediate-scale inertia-gravity waves. Then, we focus on the representation of inertia-gravity waves in analysis data. The wave event observed during TWP-ICE is also present in the ECMWF data. A comparison between the characteristics of the inertia-gravity wave derived with the ECMWF data to the properties of the wave derived with the radiosonde data shows that the ECMWF data capture similar structure for this wave event but with a larger vertical wavelength. The Weather Research and Forecasting (WRF) modeling system is used to understand the representation of the wave event in the ECMWF data. The model is configured as a tropical channel with a high top at 1 hPa. WRF is used with the same horizontal resolution (˜ 40 km) as the operational ECMWF in 2006 while using a finer vertical grid-spacing than ECMWF. Different experiments are performed to determine the sensitivity of the wave structure to cumulus schemes, initial conditions and vertical resolution. We demonstrate that high vertical resolution would be required for ECMWF to accurately resolve the vertical structure of inertia-gravity waves and their effect on the middle atmosphere circulation. Lastly we perform WRF simulations in January 2006 and 2007 to assess gravity wave forcing of the tropical stratospheric circulation. In these simulations a large part of the gravity wave spectrum is explicitly simulated. The WRF model is able to reproduce the evolution of the mean tropical stratospheric zonal wind when compared to observational data and the ECMWF reanalysis. It is shown that gravity waves account for 60% up to 80% of the total wave forcing of the tropical stratospheric circulation. We also compute wave forcing associated with intermediate-scale inertiagravity waves. In the WRF simulations this wave type represents ˜ 30% of the total gravity wave forcing. This suggests that intermediate-scale inertia-gravity waves can play an important role in the tropical middle-atmospheric circulation. In addition, the WRF high-resolution simulations are used to provide some guidance for constraining gravity wave parameterizations in coarse-grid climate models.

  16. The effect of bathymetric filtering on nearshore process model results

    USGS Publications Warehouse

    Plant, N.G.; Edwards, K.L.; Kaihatu, J.M.; Veeramony, J.; Hsu, L.; Holland, K.T.

    2009-01-01

    Nearshore wave and flow model results are shown to exhibit a strong sensitivity to the resolution of the input bathymetry. In this analysis, bathymetric resolution was varied by applying smoothing filters to high-resolution survey data to produce a number of bathymetric grid surfaces. We demonstrate that the sensitivity of model-predicted wave height and flow to variations in bathymetric resolution had different characteristics. Wave height predictions were most sensitive to resolution of cross-shore variability associated with the structure of nearshore sandbars. Flow predictions were most sensitive to the resolution of intermediate scale alongshore variability associated with the prominent sandbar rhythmicity. Flow sensitivity increased in cases where a sandbar was closer to shore and shallower. Perhaps the most surprising implication of these results is that the interpolation and smoothing of bathymetric data could be optimized differently for the wave and flow models. We show that errors between observed and modeled flow and wave heights are well predicted by comparing model simulation results using progressively filtered bathymetry to results from the highest resolution simulation. The damage done by over smoothing or inadequate sampling can therefore be estimated using model simulations. We conclude that the ability to quantify prediction errors will be useful for supporting future data assimilation efforts that require this information.

  17. High-resolution shear-wave reflection profiling to image offset in unconsolidated near-surface sediments

    NASA Astrophysics Data System (ADS)

    Bailey, Bevin L.

    S-wave reflection profiling has many theoretical advantages, when compared to P-wave profiling, such as high-resolution potential, greater sensitivities to lithologic changes and insensitivity to the water table and pore fluids, and could be particularly useful in near-surface settings. However, S-wave surveys can be plagued by processing pitfalls unique to near-surface studies such as interference of Love waves with reflections, and the stacking of Love waves as coherent noise, leading to possible misinterpretations of the subsurface. Two lines of S-wave data are processed and used to locate previously unknown faults in Quaternary sediments in a region where earthquake activity poses a threat to surface structures. This study provides clear examples of processing pitfalls such as Love waves with hyperbolic appearances on shot gathers, and a CMP section with coherent noise that is easily misinterpreted as reflections. This study demonstrates pros and cons of using SH reflection data in the near surface.

  18. Wide-Bandwidth, Wide-Beamwidth, High-Resolution, Millimeter-Wave Imaging for Concealed Weapon Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheen, David M.; Fernandes, Justin L.; Tedeschi, Jonathan R.

    2013-06-12

    Active millimeter-wave imaging is currently being used for personnel screening at airports and other high-security facilities. The lateral resolution, depth resolution, clothing penetration, and image illumination quality obtained from next-generation systems can be significantly enhanced through the selection the aperture size, antenna beamwidth, center frequency, and bandwidth. In this paper, the results of an extensive imaging trade study are presented using both planar and cylindrical three-dimensional imaging techniques at frequency ranges of 10-20 GHz, 10 – 40 GHz, 40 – 60 GHz, and 75 – 105 GHz

  19. High speed all optical shear wave imaging optical coherence elastography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; O'Donnell, Matthew; Wang, Ruikang K.

    2016-03-01

    Optical Coherence Elastography (OCE) is a non-invasive testing modality that maps the mechanical property of soft tissues with high sensitivity and spatial resolution using phase-sensitive optical coherence tomography (PhS-OCT). Shear wave OCE (SW-OCE) is a leading technique that relies on the speed of propagating shear waves to provide a quantitative elastography. Previous shear wave imaging OCT techniques are based on repeated M-B scans, which have several drawbacks such as long acquisition time and repeated wave stimulations. Recent developments of Fourier domain mode-locked high-speed swept-source OCT system has enabled enough speed to perform KHz B-scan rate OCT imaging. Here we propose ultra-high speed, single shot shear wave imaging to capture single-shot transient shear wave propagation to perform SW-OCE. The frame rate of shear wave imaging is 16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of high-frequency shear wave of up to 8 kHz. The shear wave is generated photothermal-acoustically, by ultra-violet pulsed laser, which requires no contact to OCE subjects, while launching high frequency shear waves that carries rich localized elasticity information. The image acquisition and processing can be performed at video-rate, which enables real-time 3D elastography. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine ocular tissue. This approach opens up the feasibility to perform real-time 3D SW-OCE in clinical applications, to obtain high-resolution localized quantitative measurement of tissue biomechanical property.

  20. Equatorial waves in a stratospheric GCM: Effects of vertical resolution. [GCM (general circulation model)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boville, B.A.; Randel, W.J.

    1992-05-01

    Equatorially trapped wave modes, such as Kelvin and mixed Rossby-gravity waves, are believed to play a crucial role in forcing the quasi-biennial oscillation (QBO) of the lower tropical stratosphere. This study examines the ability of a general circulation model (GCM) to simulate these waves and investigates the changes in the wave properties as a function of the vertical resolution of the model. The simulations produce a stratopause-level semiannual oscillation but not a QBO. An unfortunate property of the equatorially trapped waves is that they tend to have small vertical wavelengths ([le] 15 km). Some of the waves, believed to bemore » important in forcing the QBO, have wavelengths as short as 4 km. The short vertical wavelengths pose a stringent computational requirement for numerical models whose vertical grid spacing is typically chosen based on the requirements for simulating extratropical Rossby waves (which have much longer vertical wavelengths). This study examines the dependence of the equatorial wave simulation of vertical resolution using three experiments with vertical grid spacings of approximately 2.8, 1.4, and 0.7 km. Several Kelvin, mixed Rossby-gravity, and 0.7 km. Several Kelvin, mixed Rossby-gravity, and inertio-gravity waves are identified in the simulations. At high vertical resolution, the simulated waves are shown to correspond fairly well to the available observations. The properties of the relatively slow (and vertically short) waves believed to play a role in the QBO vary significantly with vertical resolution. Vertical grid spacings of about 1 km or less appear to be required to represent these waves adequately. The simulated wave amplitudes are at least as large as observed, and the waves are absorbed in the lower stratosphere, as required in order to force the QBO. However, the EP flux divergence associated with the waves is not sufficient to explain the zonal flow accelerations found in the QBO. 39 refs., 17 figs., 1 tab.« less

  1. Sideband-Separating, Millimeter-Wave Heterodyne Receiver

    NASA Technical Reports Server (NTRS)

    Ward, John S.; Bumble, Bruce; Lee, Karen A.; Kawamura, Jonathan H.; Chattopadhyay, Goutam; Stek, paul; Stek, Paul

    2010-01-01

    Researchers have demonstrated a submillimeter-wave spectrometer that combines extremely broad bandwidth with extremely high sensitivity and spectral resolution to enable future spacecraft to measure the composition of the Earth s troposphere in three dimensions many times per day at spatial resolutions as high as a few kilometers. Microwave limb sounding is a proven remote-sensing technique that measures thermal emission spectra from molecular gases along limb views of the Earth s atmosphere against a cold space background.

  2. A trade-off between model resolution and variance with selected Rayleigh-wave data

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Xu, Y.

    2008-01-01

    Inversion of multimode surface-wave data is of increasing interest in the near-surface geophysics community. For a given near-surface geophysical problem, it is essential to understand how well the data, calculated according to a layered-earth model, might match the observed data. A data-resolution matrix is a function of the data kernel (determined by a geophysical model and a priori information applied to the problem), not the data. A data-resolution matrix of high-frequency (??? 2 Hz) Rayleigh-wave phase velocities, therefore, offers a quantitative tool for designing field surveys and predicting the match between calculated and observed data. First, we employed a data-resolution matrix to select data that would be well predicted and to explain advantages of incorporating higher modes in inversion. The resulting discussion using the data-resolution matrix provides insight into the process of inverting Rayleigh-wave phase velocities with higher mode data to estimate S-wave velocity structure. Discussion also suggested that each near-surface geophysical target can only be resolved using Rayleigh-wave phase velocities within specific frequency ranges, and higher mode data are normally more accurately predicted than fundamental mode data because of restrictions on the data kernel for the inversion system. Second, we obtained an optimal damping vector in a vicinity of an inverted model by the singular value decomposition of a trade-off function of model resolution and variance. In the end of the paper, we used a real-world example to demonstrate that selected data with the data-resolution matrix can provide better inversion results and to explain with the data-resolution matrix why incorporating higher mode data in inversion can provide better results. We also calculated model-resolution matrices of these examples to show the potential of increasing model resolution with selected surface-wave data. With the optimal damping vector, we can improve and assess an inverted model obtained by a damped least-square method.

  3. High resolution SAW elastography for ex-vivo porcine skin specimen

    NASA Astrophysics Data System (ADS)

    Zhou, Kanheng; Feng, Kairui; Wang, Mingkai; Jamera, Tanatswa; Li, Chunhui; Huang, Zhihong

    2018-02-01

    Surface acoustic wave (SAW) elastography has been proven to be a non-invasive, non-destructive method for accurately characterizing tissue elastic properties. Current SAW elastography technique tracks generated surface acoustic wave impulse point by point which are a few millimeters away. Thus, reconstructed elastography has low lateral resolution. To improve the lateral resolution of current SAW elastography, a new method was proposed in this research. A M-B scan mode, high spatial resolution phase sensitive optical coherence tomography (PhS-OCT) system was employed to track the ultrasonically induced SAW impulse. Ex-vivo porcine skin specimen was tested using this proposed method. A 2D fast Fourier transform based algorithm was applied to process the acquired data for estimating the surface acoustic wave dispersion curve and its corresponding penetration depth. Then, the ex-vivo porcine skin elastogram was established by relating the surface acoustic wave dispersion curve and its corresponding penetration depth. The result from the proposed method shows higher lateral resolution than that from current SAW elastography technique, and the approximated skin elastogram could also distinguish the different layers in the skin specimen, i.e. epidermis, dermis and fat layer. This proposed SAW elastography technique may have a large potential to be widely applied in clinical use for skin disease diagnosis and treatment monitoring.

  4. What Do High-Resolution EIT Waves Tell Us About CMEs?

    NASA Technical Reports Server (NTRS)

    Thompson, Barbara

    2010-01-01

    Although many studies have demonstrated that some coronal waves are not generated by corona) mass ejections, we have learned a great deal about the ability of corona) mass ejections to drive large-scale corona) waves, also called "EIT waves." We present new results based on EIT wave amplitude, timing, speed, and direction of propagation, with respect to their correlation with CME-related dimmings, speeds, locations and widths. Furthermore, we demonstrate the ability to correlate different aspects of EIT waves with some of the observed structure of CMEs observed in coronagraph data. Finally, we expand on the discussion of the types of wave modes that can be generated by a corona) mass ejection, and how these observations can serve as a diagnostic of the type of impulse a CME can deliver to the surrounding corona. These diagnostics are obtained by examining the motion of individual field lines, requiring high-resolution observations like those provided by TRACE and SDO/AIA.

  5. Wide-aperture aspherical lens for high-resolution terahertz imaging

    NASA Astrophysics Data System (ADS)

    Chernomyrdin, Nikita V.; Frolov, Maxim E.; Lebedev, Sergey P.; Reshetov, Igor V.; Spektor, Igor E.; Tolstoguzov, Viktor L.; Karasik, Valeriy E.; Khorokhorov, Alexei M.; Koshelev, Kirill I.; Schadko, Aleksander O.; Yurchenko, Stanislav O.; Zaytsev, Kirill I.

    2017-01-01

    In this paper, we introduce wide-aperture aspherical lens for high-resolution terahertz (THz) imaging. The lens has been designed and analyzed by numerical methods of geometrical optics and electrodynamics. It has been made of high-density polyethylene by shaping at computer-controlled lathe and characterized using a continuous-wave THz imaging setup based on a backward-wave oscillator and Golay detector. The concept of image contrast has been implemented to estimate image quality. According to the experimental data, the lens allows resolving two points spaced at 0.95λ distance with a contrast of 15%. To highlight high resolution in the THz images, the wide-aperture lens has been employed for studying printed electronic circuit board containing sub-wavelength-scale elements. The observed results justify the high efficiency of the proposed lens design.

  6. Changes in Pacific Northwest Heat Waves and Associated Synoptic/Mesoscale Drivers Under Anthropogenic Global Warming

    NASA Astrophysics Data System (ADS)

    Brewer, M.; Mass, C.

    2014-12-01

    Though western Oregon and Washington summers are typically mild due to the influence of the nearby Pacific Ocean, this region occasionally experiences heat waves with temperatures in excess of 35ºC. These heat waves can have a substantial impact on this highly populated region, particularly since the population is unaccustomed to and generally unprepared for such conditions. A comprehensive evaluation is needed of past and future heat wave trends in frequency, intensity, and duration. Furthermore, it is important to understand the physical mechanisms of Northwest heat waves and how such mechanisms might change under anthropogenic global warming. Lower-tropospheric heat waves over the west coast of North America are the result of both synoptic and mesoscale factors, the latter requiring high-resolution models (roughly 12-15 km grid spacing) to simulate. Synoptic factors include large-scale warming due to horizontal advection and subsidence, as well as reductions in large-scale cloudiness. An important mesoscale factor is the occurrence of offshore (easterly) flow, resulting in an adiabatically warmed continental air mass spreading over the western lowlands rather than the more usual cool, marine air influence. To fully understand how heat waves will change under AGW, it is necessary to determine the combined impacts of both synoptic and mesoscale effects in a warming world. General Circulation Models (GCM) are generally are too coarse to simulate mesoscale effects realistically and thus may provide unreliable estimates of the frequency and magnitudes of West Coast heat waves. Therefore, to determine the regional implications of global warming, this work made use of long-term, high-resolution WRF simulations, at 36- and 12-km resolution, produced by dynamically downscaling GCM grids. This talk will examine the predicted trends in Pacific Northwest heat wave intensity, duration, and frequency during the 21st century (through 2100). The spatial distribution in the trends in heat waves, and the variability of these trends at different resolutions and among different models will also be described. Finally, changes in the synoptic and mesoscale configurations that drive Pacific Northwest heat waves and the modulating effects of local terrain and land/water contrast will be discussed.

  7. A study on the prenatal zone of ultrasonic guided waves in plates

    NASA Astrophysics Data System (ADS)

    Thomas, Tibin; Balasubramaniam, Krishnan

    2017-02-01

    Low frequency guided wave based inspection is an extensively used method for asset management with the advantage of wide area coverage from a single location at the cost of spatial resolution. With the advent of high frequency guided waves, short range inspections with high spatial resolution for monitoring corrosion under pipe supports and tank annular plates has gained widespread interest and acceptance. One of the major challenges in the application of high frequency guided waves in a short range inspection is to attain the desired modal displacements with respect to the application. In this paper, an investigation on the generation and formation of fundamental S0 mode is carried out through numerical simulation and experiments to establish a prenatal zone for guided waves. The effect of frequency, thickness of the plate and frequency-thickness (f*d) is studied. The investigation reveals the existence of a rudimentary form with similar modal features to the fully developed mode. This study helps in the design and development of a high frequency guided wave generator for particular applications which demands waves with very less sensitivity to the surface and loading during the initial phase which immediately evolves to a more sensitive wave towards the surface on propagation for the detection of shallow defects.

  8. Hi-C and AIA observations of transverse magnetohydrodynamic waves in active regions

    NASA Astrophysics Data System (ADS)

    Morton, R. J.; McLaughlin, J. A.

    2013-05-01

    The recent launch of the High resolution Coronal imager (Hi-C) provided a unique opportunity of studying the EUV corona with unprecedented spatial resolution. We utilize these observations to investigate the properties of low-frequency (50-200 s) active region transverse waves, whose omnipresence had been suggested previously. The five-fold improvement in spatial resolution over SDO/AIA reveals coronal loops with widths 150-310 km and that these loops support transverse waves with displacement amplitudes <50 km. However, the results suggest that wave activity in the coronal loops is of low energy, with typical velocity amplitudes <3 km s-1. An extended time-series of SDO data suggests that low-energy wave behaviour is typical of the coronal structures both before and after the Hi-C observations. Appendix A and five movies associated to Figs. A.2-A.6 are available in electronic form at http://www.aanda.org

  9. Terahertz imaging with sub-wavelength resolution by femtosecond laser filament in air

    PubMed Central

    Zhao, Jiayu; Chu, Wei; Guo, Lanjun; Wang, Zhi; Yang, Jing; Liu, Weiwei; Cheng, Ya; Xu, Zhizhan

    2014-01-01

    Terahertz (THz) imaging provides cutting edge technique in biology, medical sciences and non-destructive evaluation. However, due to the long wavelength of the THz wave, the obtained resolution of THz imaging is normally a few hundred microns and is much lower than that of the traditional optical imaging. We introduce a sub-wavelength resolution THz imaging technique which uses the THz radiation generated by a femtosecond laser filament in air as the probe. This method is based on the fact that the femtosecond laser filament forms a waveguide for the THz wave in air. The diameter of the THz beam, which propagates inside the filament, varies from 20 μm to 50 μm, which is significantly smaller than the wavelength of the THz wave. Using this highly spatially confined THz beam as the probe, THz imaging with resolution as high as 20 μm (~λ/38 at 0.4 THz) can be realized. PMID:24457525

  10. Evanescent-Wave Filtering in Images Using Remote Terahertz Structured Illumination

    NASA Astrophysics Data System (ADS)

    Flammini, M.; Pontecorvo, E.; Giliberti, V.; Rizza, C.; Ciattoni, A.; Ortolani, M.; DelRe, E.

    2017-11-01

    Imaging with structured illumination allows for the retrieval of subwavelength features of an object by conversion of evanescent waves into propagating waves. In conditions in which the object plane and the structured-illumination plane do not coincide, this conversion process is subject to progressive filtering of the components with high spatial frequency when the distance between the two planes increases, until the diffraction-limited lateral resolution is restored when the distance exceeds the extension of evanescent waves. We study the progressive filtering of evanescent waves by developing a remote super-resolution terahertz imaging system operating at a wavelength λ =1.00 mm , based on a freestanding knife edge and a reflective confocal terahertz microscope. In the images recorded with increasing knife-edge-to-object-plane distance, we observe the transition from a super-resolution of λ /17 ≃60 μ m to the diffraction-limited lateral resolution of Δ x ≃λ expected for our confocal microscope. The extreme nonparaxial conditions are analyzed in detail, exploiting the fact that, in the terahertz frequency range, the knife edge can be positioned at a variable subwavelength distance from the object plane. Electromagnetic simulations of radiation scattering by the knife edge reproduce the experimental super-resolution achieved.

  11. Unraveling the martian water cycle with high-resolution global climate simulations

    NASA Astrophysics Data System (ADS)

    Pottier, Alizée; Forget, François; Montmessin, Franck; Navarro, Thomas; Spiga, Aymeric; Millour, Ehouarn; Szantai, André; Madeleine, Jean-Baptiste

    2017-07-01

    Global climate modeling of the Mars water cycle is usually performed at relatively coarse resolution (200 - 300km), which may not be sufficient to properly represent the impact of waves, fronts, topography effects on the detailed structure of clouds and surface ice deposits. Here, we present new numerical simulations of the annual water cycle performed at a resolution of 1° × 1° (∼ 60 km in latitude). The model includes the radiative effects of clouds, whose influence on the thermal structure and atmospheric dynamics is significant, thus we also examine simulations with inactive clouds to distinguish the direct impact of resolution on circulation and winds from the indirect impact of resolution via water ice clouds. To first order, we find that the high resolution does not dramatically change the behavior of the system, and that simulations performed at ∼ 200 km resolution capture well the behavior of the simulated water cycle and Mars climate. Nevertheless, a detailed comparison between high and low resolution simulations, with reference to observations, reveal several significant changes that impact our understanding of the water cycle active today on Mars. The key northern cap edge dynamics are affected by an increase in baroclinic wave strength, with a complication of northern summer dynamics. South polar frost deposition is modified, with a westward longitudinal shift, since southern dynamics are also influenced. Baroclinic wave mode transitions are observed. New transient phenomena appear, like spiral and streak clouds, already documented in the observations. Atmospheric circulation cells in the polar region exhibit a large variability and are fine structured, with slope winds. Most modeled phenomena affected by high resolution give a picture of a more turbulent planet, inducing further variability. This is challenging for long-period climate studies.

  12. Momentum Flux Estimates for South Georgia Island Mountain Waves in the Stratosphere Observed via Satellite

    NASA Technical Reports Server (NTRS)

    Alexander, M. Joan; Eckermann, Stephen D.; Broutman, Dave; Ma, Jun

    2009-01-01

    We show high-resolution satellite observations of mountain wave events in the stratosphere above South Georgia Island in the remote southern Atlantic Ocean and compute the wave momentum fluxes for these events. The fluxes are large, and they imply important drag forces on the circulation. Small island orography is generally neglected in mountain wave parameterizations used in global climate models because limited model resolution treats the grid cell containing the island as ocean rather than land. Our results show that satellite observations can be used to quantitatively constrain mountain wave momentum fluxes, and they suggest that mountain waves from island topography may be an important missing source of drag on the atmospheric circulation.

  13. Submesoscale features and their interaction with fronts and internal tides in a high-resolution coupled atmosphere-ocean-wave model of the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Jensen, Tommy G.; Shulman, Igor; Wijesekera, Hemantha W.; Anderson, Stephanie; Ladner, Sherwin

    2018-03-01

    Large freshwater fluxes into the Bay of Bengal by rainfall and river discharges result in strong salinity fronts in the bay. In this study, a high-resolution coupled atmosphere-ocean-wave model with comprehensive physics is used to model the weather, ocean circulation, and wave field in the Bay of Bengal. Our objective is to explore the submesoscale activity that occurs in a realistic coupled model that resolves mesoscales and allows part of the submesoscale field. Horizontal resolution in the atmosphere varies from 2 to 6 km and is 13 km for surface waves, while the ocean model is submesoscale permitting with resolutions as high as 1.5 km and a vertical resolution of 0.5 m in the upper 10 m. In this paper, three different cases of oceanic submesoscale features are discussed. In the first case, heavy rainfall and intense downdrafts produced by atmospheric convection are found to force submesoscale currents, temperature, and salinity anomalies in the oceanic mixed layer and impact the mesoscale flow. In a second case, strong solitary-like waves are generated by semidiurnal tides in the Andaman Sea and interact with mesoscale flows and fronts and affect submesoscale features generated along fronts. A third source of submesoscale variability is found further north in the Bay of Bengal where river outflows help maintain strong salinity gradients throughout the year. For that case, a comparison with satellite observations of sea surface height anomalies, sea surface temperature, and chlorophyll shows that the model captures the observed mesoscale eddy features of the flow field, but in addition, submesoscale upwelling and downwelling patterns associated with ageostrophic secondary circulations along density fronts are also captured by the model.

  14. Homogenization of Electromagnetic and Seismic Wavefields for Joint Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Newman, G. A.; Commer, M.; Petrov, P.; Um, E. S.

    2011-12-01

    A significant obstacle in developing a robust joint imaging technology exploiting seismic and electromagnetic (EM) wave fields is the resolution at which these different geophysical measurements sense the subsurface. Imaging of seismic reflection data is an order of magnitude finer in resolution and scale compared to images produced with EM data. A consistent joint image of the subsurface geophysical attributes (velocity, electrical conductivity) requires/demands the different geophysical data types be similar in their resolution of the subsurface. The superior resolution of seismic data results from the fact that the energy propagates as a wave, while propagation of EM energy is diffusive and attenuates with distance. On the other hand, the complexity of the seismic wave field can be a significant problem due to high reflectivity of the subsurface and the generation of multiple scattering events. While seismic wave fields have been very useful in mapping the subsurface for energy resources, too much scattering and too many reflections can lead to difficulties in imaging and interpreting seismic data. To overcome these obstacles a formulation for joint imaging of seismic and EM wave fields is introduced, where each data type is matched in resolution. In order to accomplish this, seismic data are first transformed into the Laplace-Fourier Domain, which changes the modeling of the seismic wave field from wave propagation to diffusion. Though high frequency information (reflectivity) is lost with this transformation, several benefits follow: (1) seismic and EM data can be easily matched in resolution, governed by the same physics of diffusion, (2) standard least squares inversion works well with diffusive type problems including both transformed seismic and EM, (3) joint imaging of seismic and EM data may produce better starting velocity models critical for successful reverse time migration or full waveform imaging of seismic data (non transformed) and (4) possibilities to image across multiple scale lengths, incorporating different types of geophysical data and attributes in the process. Important numerical details of 3D seismic wave field simulation in the Laplace-Fourier domain for both acoustic and elastic cases will also be discussed.

  15. The Galileo plasma wave investigation

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Kurth, W. S.; Shaw, R. R.; Roux, A.; Gendrin, R.; Kennel, C. F.; Scarf, F. L.; Shawhan, S. D.

    1992-01-01

    The purpose of the Galileo plasma wave investigation is to study plasma waves and radio emissions in the magnetosphere of Jupiter. The plasma wave instrument uses an electric dipole antenna to detect electric fields, and two search coil magnetic antennas to detect magnetic fields. The frequency range covered is 5 Hz to 5.6 MHz for electric fields and 5 Hz to 160 kHz for magnetic fields. Low time-resolution survey spectrums are provided by three on-board spectrum analyzers. In the normal mode of operation the frequency resolution is about 10 percent, and the time resolution for a complete set of electric and magnetic field measurements is 37.33 s. High time-resolution spectrums are provided by a wideband receiver. The wideband receiver provides waveform measurements over bandwidths of 1, 10, and 80 kHz. Compared to previous measurements at Jupiter this instrument has several new capabilities. These new capabilities include (1) both electric and magnetic field measurements to distinguish electrostatic and electromagnetic waves, (2) direction finding measurements to determine source locations, and (3) increased bandwidth for the wideband measurements.

  16. Combined dispersive/interference spectroscopy for producing a vector spectrum

    DOEpatents

    Erskine, David J.

    2002-01-01

    A method of measuring the spectral properties of broadband waves that combines interferometry with a wavelength disperser having many spectral channels to produce a fringing spectrum. Spectral mapping, Doppler shifts, metrology of angles, distances and secondary effects such as temperature, pressure, and acceleration which change an interferometer cavity length can be measured accurately by a compact instrument using broadband illumination. Broadband illumination avoids the fringe skip ambiguities of monochromatic waves. The interferometer provides arbitrarily high spectral resolution, simple instrument response, compactness, low cost, high field of view and high efficiency. The inclusion of a disperser increases fringe visibility and signal to noise ratio over an interferometer used alone for broadband waves. The fringing spectrum is represented as a wavelength dependent 2-d vector, which describes the fringe amplitude and phase. Vector mathematics such as generalized dot products rapidly computes average broadband phase shifts to high accuracy. A Moire effect between the interferometer's sinusoidal transmission and the illumination heterodynes high resolution spectral detail to low spectral detail, allowing the use of a low resolution disperser. Multiple parallel interferometer cavities of fixed delay allow the instantaneous mapping of a spectrum, with an instrument more compact for the same spectral resolution than a conventional dispersive spectrometer, and not requiring a scanning delay.

  17. Advanced Multivariate Inversion Techniques for High Resolution 3D Geophysical Modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Maceira, M.; Zhang, H.; Rowe, C. A.

    2009-12-01

    We focus on the development and application of advanced multivariate inversion techniques to generate a realistic, comprehensive, and high-resolution 3D model of the seismic structure of the crust and upper mantle that satisfies several independent geophysical datasets. Building on previous efforts of joint invesion using surface wave dispersion measurements, gravity data, and receiver functions, we have added a fourth dataset, seismic body wave P and S travel times, to the simultaneous joint inversion method. We present a 3D seismic velocity model of the crust and upper mantle of northwest China resulting from the simultaneous, joint inversion of these four data types. Surface wave dispersion measurements are primarily sensitive to seismic shear-wave velocities, but at shallow depths it is difficult to obtain high-resolution velocities and to constrain the structure due to the depth-averaging of the more easily-modeled, longer-period surface waves. Gravity inversions have the greatest resolving power at shallow depths, and they provide constraints on rock density variations. Moreover, while surface wave dispersion measurements are primarily sensitive to vertical shear-wave velocity averages, body wave receiver functions are sensitive to shear-wave velocity contrasts and vertical travel-times. Addition of the fourth dataset, consisting of seismic travel-time data, helps to constrain the shear wave velocities both vertically and horizontally in the model cells crossed by the ray paths. Incorporation of both P and S body wave travel times allows us to invert for both P and S velocity structure, capitalizing on empirical relationships between both wave types’ seismic velocities with rock densities, thus eliminating the need for ad hoc assumptions regarding the Poisson ratios. Our new tomography algorithm is a modification of the Maceira and Ammon joint inversion code, in combination with the Zhang and Thurber TomoDD (double-difference tomography) program.

  18. Measurements of the power spectrum and dispersion relation of self-excited dust acoustic waves

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Zhdanov, S. K.; Kim, S.-H.; Heinrich, J.; Merlino, R. L.; Morfill, G. E.

    2009-12-01

    The spectrum of spontaneously excited dust acoustic waves was measured. The waves were observed with high temporal resolution using a fast video camera operating at 1000 frames per second. The experimental system was a suspension of micron-size kaolin particles in the anode region of a dc discharge in argon. Wave activity was found at frequencies as high as 450 Hz. At high wave numbers, the wave dispersion relation was acoustic-like (frequency proportional to wave number). At low wave numbers, the wave frequency did not tend to zero, but reached a cutoff frequency instead. The cutoff value declined with distance from the anode. We ascribe the observed cutoff to the particle confinement in this region.

  19. Direct Numerical Simulations of Small-Scale Gravity Wave Instability Dynamics in Variable Stratification and Shear

    NASA Astrophysics Data System (ADS)

    Mixa, T.; Fritts, D. C.; Laughman, B.; Wang, L.; Kantha, L. H.

    2015-12-01

    Multiple observations provide compelling evidence that gravity wave dissipation events often occur in multi-scale environments having highly-structured wind and stability profiles extending from the stable boundary layer into the mesosphere and lower thermosphere. Such events tend to be highly localized and thus yield local energy and momentum deposition and efficient secondary gravity wave generation expected to have strong influences at higher altitudes [e.g., Fritts et al., 2013; Baumgarten and Fritts, 2014]. Lidars, radars, and airglow imagers typically cannot achieve the spatial resolution needed to fully quantify these small-scale instability dynamics. Hence, we employ high-resolution modeling to explore these dynamics in representative environments. Specifically, we describe numerical studies of gravity wave packets impinging on a sheet of high stratification and shear and the resulting instabilities and impacts on the gravity wave amplitude and momentum flux for various flow and gravity wave parameters. References: Baumgarten, Gerd, and David C. Fritts (2014). Quantifying Kelvin-Helmholtz instability dynamics observed in noctilucent clouds: 1. Methods and observations. Journal of Geophysical Research: Atmospheres, 119.15, 9324-9337. Fritts, D. C., Wang, L., & Werne, J. A. (2013). Gravity wave-fine structure interactions. Part I: Influences of fine structure form and orientation on flow evolution and instability. Journal of the Atmospheric Sciences, 70(12), 3710-3734.

  20. Comparison of Focused and Near-Field Imaging of Spray on Foam Insulation (SOFI) at Millimeter Wave Frequencies

    NASA Technical Reports Server (NTRS)

    Kharkovshy, S.; Zoughi, R.; Hepburn, F. L.

    2007-01-01

    Millimeter wave imaging techniques can provide high spatial-resolution images of various composites. Lens antennas may be incorporated into the imaging system to provide a small incident beam footprint. Another approach may involve the use of horn antennas, which if operating in their near-fields, images with reasonably high spatial-resolutions may also be obtained. This paper gives a comparison between such near-field and focused far-field imaging of the Space Shuttle Spray on Foam Insulation (SOFI) used in its external fuel tank at millimeter wave frequencies. Small horn antennas and lens antennas with relatively long depth of focus were used in this investigation.

  1. 3D Imaging Millimeter Wave Circular Synthetic Aperture Radar

    PubMed Central

    Zhang, Renyuan; Cao, Siyang

    2017-01-01

    In this paper, a new millimeter wave 3D imaging radar is proposed. The user just needs to move the radar along a circular track, and high resolution 3D imaging can be generated. The proposed radar uses the movement of itself to synthesize a large aperture in both the azimuth and elevation directions. It can utilize inverse Radon transform to resolve 3D imaging. To improve the sensing result, the compressed sensing approach is further investigated. The simulation and experimental result further illustrated the design. Because a single transceiver circuit is needed, a light, affordable and high resolution 3D mmWave imaging radar is illustrated in the paper. PMID:28629140

  2. Rayleigh wave nonlinear inversion based on the Firefly algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Teng-Fei; Peng, Geng-Xin; Hu, Tian-Yue; Duan, Wen-Sheng; Yao, Feng-Chang; Liu, Yi-Mou

    2014-06-01

    Rayleigh waves have high amplitude, low frequency, and low velocity, which are treated as strong noise to be attenuated in reflected seismic surveys. This study addresses how to identify useful shear wave velocity profile and stratigraphic information from Rayleigh waves. We choose the Firefly algorithm for inversion of surface waves. The Firefly algorithm, a new type of particle swarm optimization, has the advantages of being robust, highly effective, and allows global searching. This algorithm is feasible and has advantages for use in Rayleigh wave inversion with both synthetic models and field data. The results show that the Firefly algorithm, which is a robust and practical method, can achieve nonlinear inversion of surface waves with high resolution.

  3. Ultrafast Ultrasound Imaging of Ocular Anatomy and Blood Flow

    PubMed Central

    Urs, Raksha; Ketterling, Jeffrey A.; Silverman, Ronald H.

    2016-01-01

    Purpose Ophthalmic ultrasound imaging is currently performed with mechanically scanned single-element probes. These probes have limited capabilities overall and lack the ability to image blood flow. Linear-array systems are able to detect blood flow, but these systems exceed ophthalmic acoustic intensity safety guidelines. Our aim was to implement and evaluate a new linear-array–based technology, compound coherent plane-wave ultrasound, which offers ultrafast imaging and depiction of blood flow at safe acoustic intensity levels. Methods We compared acoustic intensity generated by a 128-element, 18-MHz linear array operated in conventionally focused and plane-wave modes and characterized signal-to-noise ratio (SNR) and lateral resolution. We developed plane-wave B-mode, real-time color-flow, and high-resolution depiction of slow flow in postprocessed data collected continuously at a rate of 20,000 frames/s. We acquired in vivo images of the posterior pole of the eye by compounding plane-wave images acquired over ±10° and produced images depicting orbital and choroidal blood flow. Results With the array operated conventionally, Doppler modes exceeded Food and Drug Administration safety guidelines, but plane-wave modalities were well within guidelines. Plane-wave data allowed generation of high-quality compound B-mode images, with SNR increasing with the number of compounded frames. Real-time color-flow Doppler readily visualized orbital blood flow. Postprocessing of continuously acquired data blocks of 1.6-second duration allowed high-resolution depiction of orbital and choroidal flow over the cardiac cycle. Conclusions Newly developed high-frequency linear arrays in combination with plane-wave techniques present opportunities for the evaluation of ocular anatomy and blood flow, as well as visualization and analysis of other transient phenomena such as vessel wall motion over the cardiac cycle and saccade-induced vitreous motion. PMID:27428169

  4. A Census of Plasma Waves and Structures Associated With an Injection Front in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Malaspina, David M.; Ukhorskiy, Aleksandr; Chu, Xiangning; Wygant, John

    2018-04-01

    Now that observations have conclusively established that the inner magnetosphere is abundantly populated with kinetic electric field structures and nonlinear waves, attention has turned to quantifying the ability of these structures and waves to scatter and accelerate inner magnetospheric plasma populations. A necessary step in that quantification is determining the distribution of observed structure and wave properties (e.g., occurrence rates, amplitudes, and spatial scales). Kinetic structures and nonlinear waves have broadband signatures in frequency space, and consequently, high-resolution time domain electric and magnetic field data are required to uniquely identify such structures and waves as well as determine their properties. However, most high-resolution fields data are collected with a strong bias toward high-amplitude signals in a preselected frequency range, strongly biasing observations of structure and wave properties. In this study, an ˜45 min unbroken interval of 16,384 samples/s field burst data, encompassing an electron injection event, is examined. This data set enables an unbiased census of the kinetic structures and nonlinear waves driven by this electron injection, as well as determination of their "typical" properties. It is found that the properties determined using this unbiased burst data are considerably different than those inferred from amplitude-biased burst data, with significant implications for wave-particle interactions due to kinetic structures and nonlinear waves in the inner magnetosphere.

  5. Sensitivity of The High-resolution Wam Model With Respect To Time Step

    NASA Astrophysics Data System (ADS)

    Kasemets, K.; Soomere, T.

    The northern part of the Baltic Proper and its subbasins (Bothnian Sea, the Gulf of Finland, Moonsund) serve as a challenge for wave modellers. In difference from the southern and the eastern parts of the Baltic Sea, their coasts are highly irregular and contain many peculiarities with the characteristic horizontal scale of the order of a few kilometres. For example, the northern coast of the Gulf of Finland is extremely ragged and contains a huge number of small islands. Its southern coast is more or less regular but has up to 50m high cliff that is frequently covered by high forests. The area also contains numerous banks that have water depth a couple of meters and that may essentially modify wave properties near the banks owing to topographical effects. This feature suggests that a high-resolution wave model should be applied for the region in question, with a horizontal resolution of an order of 1 km or even less. According to the Courant-Friedrich-Lewy criterion, the integration time step for such models must be of the order of a few tens of seconds. A high-resolution WAM model turns out to be fairly sensitive with respect to the particular choice of the time step. In our experiments, a medium-resolution model for the whole Baltic Sea was used, with the horizontal resolution 3 miles (3' along latitudes and 6' along longitudes) and the angular resolution 12 directions. The model was run with steady wind blowing 20 m/s from different directions and with two time steps (1 and 3 minutes). For most of the wind directions, the rms. difference of significant wave heights calculated with differ- ent time steps did not exceed 10 cm and typically was of the order of a few per cents. The difference arose within a few tens of minutes and generally did not increase in further computations. However, in the case of the north wind, the difference increased nearly monotonously and reached 25-35 cm (10-15%) within three hours of integra- tion whereas mean of significant wave heights over the whole Baltic Sea was 2.4 m (1 minute) and 2.04 m (3 minutes), respectively. The most probable reason of such difference is that the WAM model with a relatively large time step poorly describes wave field evolution in the Aland area with extremely ragged bottom topography and coastal line. In earlier studies, it has been reported that the WAM model frequently underestimates wave heights in the northern Baltic Proper by 20-30% in the case of strong north storms (Tuomi et al, Report series of the Finnish Institute of Marine Re- search, 1999). The described results suggest that a part of this underestimation may be removed through a proper choice of the time step.

  6. Modeling High-Resolution Coastal Ocean Dynamics with COAMPS: System Overview, Applications and Future Directions

    NASA Astrophysics Data System (ADS)

    Allard, R. A.; Campbell, T. J.; Edwards, K. L.; Smith, T.; Martin, P.; Hebert, D. A.; Rogers, W.; Dykes, J. D.; Jacobs, G. A.; Spence, P. L.; Bartels, B.

    2014-12-01

    The Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS®) is an atmosphere-ocean-wave modeling system developed by the Naval Research Laboratory which can be configured to cycle regional forecasts/analysis models in single-model (atmosphere, ocean, and wave) or coupled-model (atmosphere-ocean, ocean-wave, and atmosphere-ocean-wave) modes. The model coupling is performed using the Earth System Modeling Framework (ESMF). The ocean component is the Navy Coastal Ocean Model (NCOM), and the wave components include Simulating WAves Nearshore (SWAN) and WaveWatch-III. NCOM has been modified to include wetting and drying, the effects of Stokes drift current, wave radiation stresses due to horizontal gradients of the momentum flux of surface waves, enhancement of bottom drag in shallow water, and enhanced vertical mixing due to Langmuir turbulence. An overview of the modeling system including ocean data assimilation and specification of boundary conditions will be presented. Results from a high-resolution (10-250m) modeling study from the Surfzone Coastal Oil Pathways Experiment (SCOPE) near Ft. Walton Beach, Florida in December 2013 will be presented. ®COAMPS is a registered trademark of the Naval Research Laboratory

  7. Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing.

    PubMed

    Grassani, Davide; Simbula, Angelica; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele

    2016-04-01

    Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs.

  8. Imaging Gravity Waves in Lower Stratospheric AMSU-A Radiances. Part 1: Simple Forward Model

    DTIC Science & Technology

    2006-08-14

    brightening” of microwave radiances acquired from purely vertical background temperature profiles by cross- track scanners. Waves propagating along track...three-dimensional wave fields. For example, some limb sensors return high- resolution vertical temperature profiles with wave oscilla- tions...provide only ver- tical profiles of wave oscillations, similar to radiosonde and rocketsonde data. Similarly, limb-tracking measurements from the

  9. Electron precipitation response to geomagnetic pulsations: Riometer revelation

    NASA Astrophysics Data System (ADS)

    Honary, Farideh; Kavanagh, Andrew

    Electron precipitation modulations by geomagnetic pulsation have been observed in cosmic noise absorption (CNA) as early as 1965 by widebeam riometers (Barcus and Rosenberg, 1965). The first observation of pulsation with high m-number was reported by Kikuchi et al.(1988) em-ploying a scanning narrow-beam riometer to investigate the spatial structure in one dimension with a high resolution. However, the advances in high spatial resolution imaging riometers has provided the ability to observe pulsating cosmic noise absorption with azimuthal wave numbers as high as 380 as well as providing the capability of mapping their structures. These waves are commonly observed during the morning and early afternoon and exhibit eastward propagation. In this presentation a complete generating mechanism for these high m-number waves is dis-cussed as a five step process, beginning with the solar wind as a source for the excitation of dayside magnetospheric cavity modes, mode conversion, energisation of drift-bounce protons by Landau damping, followed by inverse Landau damping as a driving mechanism for the high m number secondary waves that ultimately modulate the electron precipitation. This modulation is observed as pulsations in cosmic noise absorption.

  10. Very high resolution observations of waves in the OH airglow at low latitudes.

    NASA Astrophysics Data System (ADS)

    Franzen, Christoph; Espy, Patrick J.; Hibbins, Robert E.; Djupvik, Amanda A.

    2017-04-01

    Vibrationally excited hydroxyl (OH) is produced in the mesosphere by the reaction of atomic hydrogen and ozone. This excited OH radiates a strong, near-infrared airglow emission in a thin ( 8 km thick) layer near 87 km. In the past, remote sensing of perturbations in the OH Meinel airglow has often been used to observe gravity, tidal and planetary waves travelling through this region. However, information on the highest frequency gravity waves is often limited by the temporal and spatial resolution of the available observations. In an effort to expand the wave scales present near the mesopause, we present a series of observations of the OH Meinel (9,7) transition that were executed with the Nordic Optical Telescope on La Palma (18°W, 29°N). These measurements are taken with a 10 s integration time (24 s repetition rate), and the spatial resolution at 87 km is as small as 10 m, allowing us to quantify the transition between the gravity and acoustic wave domains in the mesosphere.

  11. High lateral resolution exploration using surface waves from noise records

    NASA Astrophysics Data System (ADS)

    Chávez-García, Francisco José Yokoi, Toshiaki

    2016-04-01

    Determination of the shear-wave velocity structure at shallow depths is a constant necessity in engineering or environmental projects. Given the sensitivity of Rayleigh waves to shear-wave velocity, subsoil structure exploration using surface waves is frequently used. Methods such as the spectral analysis of surface waves (SASW) or multi-channel analysis of surface waves (MASW) determine phase velocity dispersion from surface waves generated by an active source recorded on a line of geophones. Using MASW, it is important that the receiver array be as long as possible to increase the precision at low frequencies. However, this implies that possible lateral variations are discarded. Hayashi and Suzuki (2004) proposed a different way of stacking shot gathers to increase lateral resolution. They combined strategies used in MASW with the common mid-point (CMP) summation currently used in reflection seismology. In their common mid-point with cross-correlation method (CMPCC), they cross-correlate traces sharing CMP locations before determining phase velocity dispersion. Another recent approach to subsoil structure exploration is based on seismic interferometry. It has been shown that cross-correlation of a diffuse field, such as seismic noise, allows the estimation of the Green's Function between two receivers. Thus, a virtual-source seismic section may be constructed from the cross-correlation of seismic noise records obtained in a line of receivers. In this paper, we use the seismic interferometry method to process seismic noise records obtained in seismic refraction lines of 24 geophones, and analyse the results using CMPCC to increase the lateral resolution of the results. Cross-correlation of the noise records allows reconstructing seismic sections with virtual sources at each receiver location. The Rayleigh wave component of the Green's Functions is obtained with a high signal-to-noise ratio. Using CMPCC analysis of the virtual-source seismic lines, we are able to identify lateral variations of phase velocity inside the seismic line, and increase the lateral resolution compared with results of conventional analysis.

  12. Wave Phenomena Associated with Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Golla, T.; MacDowall, R. J.

    2016-12-01

    Although laboratory and space-based experiments were used for the last several decades to study the collisionless shocks, several questions remain less than fully understood. These include: (1) what type of wave-particle energy dissipation is responsible for the shock formation, (2) what type of in-situ waves occur in the upstream, transition and downstream regions, and (3) which physical processes are responsible for the excitation of the fundamental and second harmonic solar type II radio emissions. In this study, we will address these issues using (1) the in situ and radio wave data obtained by the WAVES experiments of the STEREO A and B, and WIND spacecraft, especially the high time resolution data from the time domain samplers (TDS) of these WAVES experiments and (2) the Fourier, wavelet and higher order spectral analysis techniques. Using the in situ wave data, especially the high time resolution data observed during the local type II bursts, we will identify the nonlinear processes associated with these solar radio emissions. Comparing the estimated radio intensities by the known emission mechanisms for the observed peak Langmuir wave intensities with the observed peak radio intensities of type II bursts, we will identify the emission mechanisms.

  13. Using Kinect to Measure Wave Spectrum

    NASA Astrophysics Data System (ADS)

    Fong, J.; Loose, B.; Lovely, A.

    2012-12-01

    Gas exchange at the air-sea interface is enhanced by aqueous turbulence generated by capillary-gravity waves, affecting the absorption of atmospheric carbon dioxide by the ocean. The mean squared wave slope of these waves correlates strongly with the gas transfer velocity. To measure the energy in capillary-gravity waves, this project aims to use the Microsoft Xbox Kinect to measure the short period wave spectrum. Kinect is an input device for the Xbox 360 with an infrared laser and camera that can be used to map objects at high frequency and spatial resolution, similar to a LiDAR sensor. For air-sea gas exchange, we are interested in the short period gravity waves with a wavenumber of 40 to 100 radians per meter. We have successfully recorded data from Kinect at a sample rate of 30 Hz with 640x480 pixel resolution, consistent with the manufacturer specifications for its scanning capabilities. At 0.5 m distance from the surface, this yields a nominal resolution of approximately 0.7 mm with a theoretical vertical precision of 0.24 mm and a practical 1 σ noise level of 0.91 mm. We have found that Kinect has some limitations in its ability to detect the air-water interface. Clean water proved to be a weaker reflector for the Kinect IR source, whereas a relatively strong signal can be received for liquids with a high concentration of suspended solids. Colloids such as milk and Ca(OH)2 in water proved more suitable media from which height and wave spectra were detectable. Moreover, we will show results from monochromatic as well as wind-wave laboratory studies. With the wave field measurements from Kinect, gas transfer velocities at the air-sea interface can be determined.

  14. Jupiter Data Analysis Program: Analysis of Voyager wideband plasma wave observations

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.

    1983-01-01

    Voyager plasma wave wideband frames from the Jovian encounters are analyzed. The 511 frames which were analyzed were chosen on the basis of low-rate spectrum analyzer data from the plasma wave receiver. These frames were obtained in regions and during times of various types of plasma or radio wave activity as determined by the low-rate, low-resolution data and were processed in order to provide high resolution measurements of the plasma wave spectrum for use in the study of a number of outstanding problems. Chorus emissions at Jupiter were analyzed. The detailed temporal and spectral form of the very complex chorus emissions near L = 8 on the Voyager 1 inbound passage was compared to both terrestrial chorus emissions as well as to the theory which was developed to explain the terrestrial waves.

  15. Ultra-High Resolution Ion Mobility Separations Utilizing Traveling Waves in a 13 m Serpentine Path Length Structures for Lossless Ion Manipulations Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Liulin; Ibrahim, Yehia M.; Hamid, Ahmed M.

    We report the development and initial evaluation of a 13-m path length Structures for Lossless Manipulations (SLIM) module for achieving high resolution separations using traveling waves (TW) with ion mobility (IM) spectrometry. The TW SLIM module was fabricated using two mirror-image printed circuit boards with appropriately configured RF, DC and TW electrodes and positioned with a 2.75-mm inter-surface gap. Ions were effective confined between the surfaces by RF-generated pseudopotential fields and moved losslessly through a serpentine path including 44 “U” turns using TWs. The ion mobility resolution was characterized at different pressures, gaps between the SLIM surfaces, TW and RFmore » parameters. After initial optimization the SLIM IM-MS module provided about 5-fold higher resolution separations than present commercially available drift tube or traveling wave IM-MS platforms. Peak capacity and peak generation rates achieved were 246 and 370 s-1, respectively, at a TW speed of 148 m/s. The high resolution achieved in the TW SLIM IM-MS enabled e.g., isomeric sugars (Lacto-N-fucopentaose I and Lacto-N-fucopentaose II) to be baseline resolved, and peptides from a albumin tryptic digest much better resolved than with existing commercial IM-MS platforms. The present work also provides a foundation for the development of much higher resolution SLIM devices based upon both considerably longer path lengths and multi-pass designs.« less

  16. Rayleigh-wave dispersive energy imaging and mode separating by high-resolution linear Radon transform

    USGS Publications Warehouse

    Luo, Y.; Xu, Y.; Liu, Q.; Xia, J.

    2008-01-01

    In recent years, multichannel analysis of surface waves (MASW) has been increasingly used for obtaining vertical shear-wave velocity profiles within near-surface materials. MASW uses a multichannel recording approach to capture the time-variant, full-seismic wavefield where dispersive surface waves can be used to estimate near-surface S-wave velocity. The technique consists of (1) acquisition of broadband, high-frequency ground roll using a multichannel recording system; (2) efficient and accurate algorithms that allow the extraction and analysis of 1D Rayleigh-wave dispersion curves; (3) stable and efficient inversion algorithms for estimating S-wave velocity profiles; and (4) construction of the 2D S-wave velocity field map.

  17. A seismic reflection image for the base of a tectonic plate.

    PubMed

    Stern, T A; Henrys, S A; Okaya, D; Louie, J N; Savage, M K; Lamb, S; Sato, H; Sutherland, R; Iwasaki, T

    2015-02-05

    Plate tectonics successfully describes the surface of Earth as a mosaic of moving lithospheric plates. But it is not clear what happens at the base of the plates, the lithosphere-asthenosphere boundary (LAB). The LAB has been well imaged with converted teleseismic waves, whose 10-40-kilometre wavelength controls the structural resolution. Here we use explosion-generated seismic waves (of about 0.5-kilometre wavelength) to form a high-resolution image for the base of an oceanic plate that is subducting beneath North Island, New Zealand. Our 80-kilometre-wide image is based on P-wave reflections and shows an approximately 15° dipping, abrupt, seismic wave-speed transition (less than 1 kilometre thick) at a depth of about 100 kilometres. The boundary is parallel to the top of the plate and seismic attributes indicate a P-wave speed decrease of at least 8 ± 3 per cent across it. A parallel reflection event approximately 10 kilometres deeper shows that the decrease in P-wave speed is confined to a channel at the base of the plate, which we interpret as a sheared zone of ponded partial melts or volatiles. This is independent, high-resolution evidence for a low-viscosity channel at the LAB that decouples plates from mantle flow beneath, and allows plate tectonics to work.

  18. Miniature high-resolution guided-wave spectrometer for atmospheric remote sensing

    NASA Astrophysics Data System (ADS)

    Sloan, James; Kruzelecky, Roman; Wong, Brian; Zou, Jing; Jamroz, Wes; Haddad, Emile; Poirier, Michel

    This paper describes the design and application of an innovative spectrometer in which a guided-wave integrated optical spectrometer (IOSPEC) has been coupled with a Fabry-Perot (FP) interferometer. This miniature spectrometer has a net mass under 3 kg, but is capable of broadband operation at spectral resolutions below 0.03 nm full width half maximum (FWHM). The tuneable FP filter provides very high spectral resolution combined with a large input aper-ture. The solid state guided-wave spectrometer is currently configured for a 512-channel array detector, which provides sub-nm coarse resolution. The ultimate resolution is determined by the FP filter, which is tuned across the desired spectral bands, thereby providing a signal-to-noise ratio (SNR) advantage over scanned spectrometer systems of the square root of the number of detector channels. The guided-wave optics provides robust, long-term optical alignment, while minimising the mechanical complexity. The miniaturisation of the FP-IOSPEC spectrometer allows multiple spectrometers to be accommodated on a single MicroSat. Each of these can be optimised for selected measurement tasks and views, thereby enabling more flexible data acquisition strategies with enhanced information content, while minimizing the mission cost. The application of this innovative technology in the proposed Miniature Earth Observation Satellite (MEOS) mission will also be discussed. The MEOS mission, which is designed for the investigation of the carbon and water cycles, relies on multiple IO-SPEC instruments for the simultaneous measurement of a range of atmospheric and surface properties important to climate change.

  19. High spatial resolution imaging for structural health monitoring based on virtual time reversal

    NASA Astrophysics Data System (ADS)

    Cai, Jian; Shi, Lihua; Yuan, Shenfang; Shao, Zhixue

    2011-05-01

    Lamb waves are widely used in structural health monitoring (SHM) of plate-like structures. Due to the dispersion effect, Lamb wavepackets will be elongated and the resolution for damage identification will be strongly affected. This effect can be automatically compensated by the time reversal process (TRP). However, the time information of the compensated waves is also removed at the same time. To improve the spatial resolution of Lamb wave detection, virtual time reversal (VTR) is presented in this paper. In VTR, a changing-element excitation and reception mechanism (CERM) rather than the traditional fixed excitation and reception mechanism (FERM) is adopted for time information conservation. Furthermore, the complicated TRP procedure is replaced by simple signal operations which can make savings in the hardware cost for recording and generating the time-reversed Lamb waves. After the effects of VTR for dispersive damage scattered signals are theoretically analyzed, the realization of VTR involving the acquisition of the transfer functions of damage detecting paths under step pulse excitation is discussed. Then, a VTR-based imaging method is developed to improve the spatial resolution of the delay-and-sum imaging with a sparse piezoelectric (PZT) wafer array. Experimental validation indicates that the damage scattered wavepackets of A0 mode in an aluminum plate are partly recompressed and focalized with their time information preserved by VTR. Both the single damage and the dual adjacent damages in the plate can be clearly displayed with high spatial resolution by the proposed VTR-based imaging method.

  20. Observation of frequency cutoff for self-excited dust acoustic waves

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Zhdanov, S. K.; Morfill, G. E.; Kim, S.-H.; Heinrich, J.; Merlino, R. L.

    2009-11-01

    Complex (dusty) plasmas consist of fine solid particles suspended in a weakly ionized gas. Complex plasmas are excellent model systems to study wave phenomena down to the level of individual ``atoms''. Spontaneously excited dust acoustic waves were observed with high temporal resolution in a suspension of micron-size kaolin particles in a dc discharge in argon. Wave activity was found at frequencies as high as 400 Hz. At high wave numbers, the wave dispersion relation was acoustic-like (frequency proportional to wave number). At low wave numbers, the wave frequency did not tend to zero, but reached a cutoff frequency fc instead. The value of fc declined with distance from the anode. We propose a simple model that explains the observed cutoff by particle confinement in plasma. The existence of a cutoff frequency is very important for the propagation of waves: the waves excited above fc are propagating, and those below fc are evanescent.

  1. High-resolution angle-resolved photoemission study of electronic structure and charge-density wave formation in HoTe3

    NASA Astrophysics Data System (ADS)

    Liu, Guodong; Wang, Chenlu; Zhang, Yan; Hu, Bingfeng; Mou, Daixiang; Yu, Li; Zhao, Lin; Zhou, Xingjiang; Wang, Nanlin; Chen, Chuangtian; Xu, Zuyan

    We performed high-resolution angle-resolved photoemission spectroscopy (ARPES) measurement on high quality crystal of HoTe3, an intriguing quasi-two-dimensional rare-earth-element tritelluride charge-density-wave (CDW) compound. The main features of the electronic structure in this compound are established by employing a quasi-CW laser (7eV) and a helium discharging lamp (21.22 eV) as excitation light sources. It reveals many bands back folded according to the CDW periodicity and two incommensurate CDW gaps created by perpendicular Fermi surface (FS) nesting vectors. A large gap is found to open in well nested regions of the Fermi surface sheets, whereas other Fermi surface sections with poor nesting remain ungapped. In particular, some peculiar features are identified by using our ultra-high resolution and bulk sensitive laser-ARPES.

  2. Numerical Modeling of Poroelastic-Fluid Systems Using High-Resolution Finite Volume Methods

    NASA Astrophysics Data System (ADS)

    Lemoine, Grady

    Poroelasticity theory models the mechanics of porous, fluid-saturated, deformable solids. It was originally developed by Maurice Biot to model geophysical problems, such as seismic waves in oil reservoirs, but has also been applied to modeling living bone and other porous media. Poroelastic media often interact with fluids, such as in ocean bottom acoustics or propagation of waves from soft tissue into bone. This thesis describes the development and testing of high-resolution finite volume numerical methods, and simulation codes implementing these methods, for modeling systems of poroelastic media and fluids in two and three dimensions. These methods operate on both rectilinear grids and logically rectangular mapped grids. To allow the use of these methods, Biot's equations of poroelasticity are formulated as a first-order hyperbolic system with a source term; this source term is incorporated using operator splitting. Some modifications are required to the classical high-resolution finite volume method. Obtaining correct solutions at interfaces between poroelastic media and fluids requires a novel transverse propagation scheme and the removal of the classical second-order correction term at the interface, and in three dimensions a new wave limiting algorithm is also needed to correctly limit shear waves. The accuracy and convergence rates of the methods of this thesis are examined for a variety of analytical solutions, including simple plane waves, reflection and transmission of waves at an interface between different media, and scattering of acoustic waves by a poroelastic cylinder. Solutions are also computed for a variety of test problems from the computational poroelasticity literature, as well as some original test problems designed to mimic possible applications for the simulation code.

  3. Non-contact rapid optical coherence elastography by high-speed 4D imaging of elastic waves

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Yoon, Soon Joon; Ambroziński, Łukasz; Pelivanov, Ivan; Li, David; Gao, Liang; Shen, Tueng T.; O'Donnell, Matthew; Wang, Ruikang K.

    2017-02-01

    Shear wave OCE (SW-OCE) uses an OCT system to track propagating mechanical waves, providing the information needed to map the elasticity of the target sample. In this study we demonstrate high speed, 4D imaging to capture transient mechanical wave propagation. Using a high-speed Fourier domain mode-locked (FDML) swept-source OCT (SS-OCT) system operating at 1.62 MHz A-line rate, the equivalent volume rate of mechanical wave imaging is 16 kvps (kilo-volumes per second), and total imaging time for a 6 x 6 x 3 mm volume is only 0.32 s. With a displacement sensitivity of 10 nanometers, the proposed 4D imaging technique provides sufficient temporal and spatial resolution for real-time optical coherence elastography (OCE). Combined with a new air-coupled, high-frequency focused ultrasound stimulator requiring no contact or coupling media, this near real-time system can provide quantitative information on localized viscoelastic properties. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine cornea under various intra-ocular pressures. In addition, elasticity anisotropy in the cornea is observed. Images of the mechanical wave group velocity, which correlates with tissue elasticity, show velocities ranging from 4-20 m/s depending on pressure and propagation direction. These initial results strong suggest that 4D imaging for real-time OCE may enable high-resolution quantitative mapping of tissue biomechanical properties in clinical applications.

  4. High-resolution spectroscopy of jet-cooled CH5+: Progress

    NASA Astrophysics Data System (ADS)

    Savage, C.; Dong, F.; Nesbitt, D. J.

    2015-01-01

    Protonated methane (CH5+) is thought to be a highly abundant molecular ion in interstellar medium, as well as a potentially bright μwave- mm wave emitter that could serve as a tracer for methane. This paper describes progress and first successful efforts to obtain a high resolution, supersonically cooled spectrum of CH5+ in the 2900-3100 cm-1 region, formed in a slit supersonic discharge at low jet temperatures and with sub-Doppler resolution. Short term precision in frequency measurement (< 5 MHz on an hour time scale) is obtained from a thermally controlled optical transfer cavity servoloop locked onto a frequency stabilized HeNe laser. Long term precision (< 20 MHz day-to-day) due to pressure, temperature and humidity dependent index of refraction effects in the optical transfer cavity is also present and discussed.

  5. Polarized Kink Waves in Magnetic Elements: Evidence for Chromospheric Helical Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stangalini, M.; Giannattasio, F.; Erdélyi, R.

    In recent years, new high spatial resolution observations of the Sun's atmosphere have revealed the presence of a plethora of small-scale magnetic elements down to the resolution limit of the current cohort of solar telescopes (∼100–120 km on the solar photosphere). These small magnetic field concentrations, due to the granular buffeting, can support and guide several magnetohydrodynamic wave modes that would eventually contribute to the energy budget of the upper layers of the atmosphere. In this work, exploiting the high spatial and temporal resolution chromospheric data acquired with the Swedish 1 m Solar Telescope, and applying the empirical mode decompositionmore » technique to the tracking of the solar magnetic features, we analyze the perturbations of the horizontal velocity vector of a set of chromospheric magnetic elements. We find observational evidence that suggests a phase relation between the two components of the velocity vector itself, resulting in its helical motion.« less

  6. An analysis of short pulse and dual frequency radar techniques for measuring ocean wave spectra from satellites

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.

    1980-01-01

    Scanning beam microwave radars were used to measure ocean wave directional spectra from satellites. In principle, surface wave spectral resolution in wave number can be obtained using either short pulse (SP) or dual frequency (DF) techniques; in either case, directional resolution obtains naturally as a consequence of a Bragg-like wave front matching. A four frequency moment characterization of backscatter from the near vertical using physical optics in the high frequency limit was applied to an analysis of the SP and DF measurement techniques. The intrinsic electromagnetic modulation spectrum was to the first order in wave steepness proportional to the large wave directional slope spectrum. Harmonic distortion was small and was a minimum near 10 deg incidence. NonGaussian wave statistics can have an effect comparable to that in the second order of scattering from a normally distributed sea surface. The SP technique is superior to the DF technique in terms of measurement signal to noise ratio and contrast ratio.

  7. Microwave and Millimeter Wave Imaging of the Space Shuttle External Fuel Tank Spray on Foam Insulation (SOFI) Using Synthetic Aperture Focusing Techniques (SAFT)

    NASA Technical Reports Server (NTRS)

    Case, J. T.; Robbins, J.; Kharkovshy, S.; Hepburn, F. L.; Zoughi, R.

    2005-01-01

    The Space Shuttle Columbia's catastrophic failure is thought to have been caused by a dislodged piece of external tank SOFI (Spray On Foam Insulation) striking the left wing of the orbiter causing significant damage to some of the reinforced carbodcarbon leading edge wing panels. Microwave and millimeter wave nondestructive evaluation methods, have shown great potential for inspecting the SOFI for the purpose of detecting anomalies such as small voids that may cause separation of the foam from the external tank during the launch. These methods are capable of producing relatively high-resolution images of the interior of SOH particularly when advanced imaging algorithms are incorporated into the overall system. To this end, synthetic aperture focusing techniques are being deveioped for this purpose. These iechniqiies pradiice high-resolution images that are independent of the distance of the imaging probe to the SOFI with spatial resolution in the order of the half size of imaging probe aperture. At microwave and millimeter wave frequencies these apertures are inherently small resulting in high-resolution images. This paper provides the results of this investigation using 2D and 3D SAF based methods and holography. The attributes of these methods and a full discussion of the results will also be provided.

  8. Influence of seismic diffraction for high-resolution imaging: applications in offshore Malaysia

    NASA Astrophysics Data System (ADS)

    Bashir, Yasir; Ghosh, Deva Prasad; Sum, Chow Weng

    2018-04-01

    Small-scale geological discontinuities are not easy to detect and image in seismic data, as these features represent themselves as diffracted rather than reflected waves. However, the combined reflected and diffracted image contains full wave information and is of great value to an interpreter, for instance enabling the identification of faults, fractures, and surfaces in built-up carbonate. Although diffraction imaging has a resolution below the typical seismic wavelength, if the wavelength is much smaller than the width of the discontinuity then interference effects can be ignored, as they would not play a role in generating the seismic diffractions. In this paper, by means of synthetic examples and real data, the potential of diffraction separation for high-resolution seismic imaging is revealed and choosing the best method for preserving diffraction are discussed. We illustrate the accuracy of separating diffractions using the plane-wave destruction (PWD) and dip frequency filtering (DFF) techniques on data from the Sarawak Basin, a carbonate field. PWD is able to preserve the diffraction more intelligently than DFF, which is proven in the results by the model and real data. The final results illustrate the effectiveness of diffraction separation and possible imaging for high-resolution seismic data of small but significant geological features.

  9. Sea state indices for a coastal strait

    NASA Astrophysics Data System (ADS)

    Gemmrich, Johannes; Dewey, Richard

    2017-04-01

    The Strait of Georgia at the west coast of Canada is an enclosed coastal strait, about 250km long and 25 to 50 km wide, with great socio-economic importance. Regular freighter traffic, ferry services, commercial and sport fisheries, and recreational boating, makes the area one of the busiest marine areas in the world. Waves in SoG are generally small, with the median value of the significant wave height Hs=0.3m. However, strong outflows off the mountainous terrain can generate significant wave heights Hs > 2.5m, with high spatial and temporal variability. In addition, strong tidal currents and the Fraser River outflow generate localized regions of steep and breaking waves that are of particular concern. We have implemented the Wavewatch III model at 500m-resolution, forced by Environment Canada's high resolution atmospheric model winds and currents from the UBC NEMO implementation of the Salish Sea. The final output combines GIS layers of the predicted wave field (Hs, dominant wave length and direction), the modeled wind field and currents, observed currents from a set of CODAR systems, and a sea state index that highlights regions of potentially steep and dangerous waves.

  10. Shear wave elasticity imaging based on acoustic radiation force and optical detection.

    PubMed

    Cheng, Yi; Li, Rui; Li, Sinan; Dunsby, Christopher; Eckersley, Robert J; Elson, Daniel S; Tang, Meng-Xing

    2012-09-01

    Tissue elasticity is closely related to the velocity of shear waves within biologic tissue. Shear waves can be generated by an acoustic radiation force and tracked by, e.g., ultrasound or magnetic resonance imaging (MRI) measurements. This has been shown to be able to noninvasively map tissue elasticity in depth and has great potential in a wide range of clinical applications including cancer and cardiovascular diseases. In this study, a highly sensitive optical measurement technique is proposed as an alternative way to track shear waves generated by the acoustic radiation force. A charge coupled device (CCD) camera was used to capture diffuse photons from tissue mimicking phantoms illuminated by a laser source at 532 nm. CCD images were recorded at different delays after the transmission of an ultrasound burst and were processed to obtain the time of flight for the shear wave. A differential measurement scheme involving generation of shear waves at two different positions was used to improve the accuracy and spatial resolution of the system. The results from measurements on both homogeneous and heterogeneous phantoms were compared with measurements from other instruments and demonstrate the feasibility and accuracy of the technique for imaging and quantifying elasticity. The relative error in estimation of shear wave velocity can be as low as 3.3% with a spatial resolution of 2 mm, and increases to 8.8% with a spatial resolution of 1 mm for the medium stiffness phantom. The system is shown to be highly sensitive and is able to track shear waves propagating over several centimetres given the ultrasound excitation amplitude and the phantom material used in this study. It was also found that the reflection of shear waves from boundaries between regions with different elastic properties can cause significant bias in the estimation of elasticity, which also applies to other shear wave tracking techniques. This bias can be reduced at the expense of reduced spatial resolution. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies.

    PubMed

    Balal, Nezah; Pinhasi, Gad A; Pinhasi, Yosef

    2016-05-23

    The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide "chirped" Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution.

  12. Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies

    PubMed Central

    Balal, Nezah; Pinhasi, Gad A.; Pinhasi, Yosef

    2016-01-01

    The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide “chirped” Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution. PMID:27223286

  13. Study of Plasma Waves Observed onboard Rosetta in the 67P/ChuryumovGerasimenko Comet Environment Using High Time Resolution Density Data Inferred from RPC-MIP and RPC-LAP Cross-calibration

    NASA Astrophysics Data System (ADS)

    Breuillard, H.; Henri, P.; Vallières, X.; Eriksson, A. I.; Odelstad, E.; Johansson, F. L.; Richter, I.; Goetz, C.; Wattieaux, G.; Tsurutani, B.; Hajra, R.; Le Contel, O.

    2017-12-01

    During two years, the groundbreaking ESA/Rosetta mission was able to escort comet 67P where previous cometary missions were only limited to flybys. This enabled for the first time to make in-situ measurements of the evolution of a comet's plasma environment. The density and temperature measured by Rosetta are derived from RPC-Mutual Impedance Probe (MIP) and RPC-Langmuir Probe (LAP). On one hand, low time resolution electron density are calculated using the plasma frequency extracted from the MIP mutual impedance spectra. On the other hand, high time resolution density fluctuations are estimated from the spacecraft potential measured by LAP. In this study, using a simple spacecraft charging model, we perform a cross-calibration of MIP plasma density and LAP spacecraft potential variations to obtain high time resolution measurements of the electron density. These results are also used to constrain the electron temperature. Then we make use of these new dataset, together with RPC-MAG magnetic field measurements, to investigate for the first time the compressibility and the correlations between plasma and magnetic field variations, for both singing comet waves and steepened waves observed, respectively during low and high cometary outgassing activity, in the plasma environment of comet 67P.

  14. Validating high-resolution California coastal flood modeling with Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR)

    NASA Astrophysics Data System (ADS)

    O'Neill, A.

    2015-12-01

    The Coastal Storm Modeling System (CoSMoS) is a numerical modeling scheme used to predict coastal flooding due to sea level rise and storms influenced by climate change, currently in use in central California and in development for Southern California (Pt. Conception to the Mexican border). Using a framework of circulation, wave, analytical, and Bayesian models at different geographic scales, high-resolution results are translated as relevant hazards projections at the local scale that include flooding, wave heights, coastal erosion, shoreline change, and cliff failures. Ready access to accurate, high-resolution coastal flooding data is critical for further validation and refinement of CoSMoS and improved coastal hazard projections. High-resolution Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) provides an exceptional data source as appropriately-timed flights during extreme tides or storms provide a geographically-extensive method for determining areas of inundation and flooding extent along expanses of complex and varying coastline. Landward flood extents are numerically identified via edge-detection in imagery from single flights, and can also be ascertained via change detection using additional flights and imagery collected during average wave/tide conditions. The extracted flooding positions are compared against CoSMoS results for similar tide, water level, and storm-intensity conditions, allowing for robust testing and validation of CoSMoS and providing essential feedback for supporting regional and local model improvement.

  15. Downscaling wind and wavefields for 21st century coastal flood hazard projections in a region of complex terrain

    USGS Publications Warehouse

    O'Neill, Andrea; Erikson, Li; Barnard, Patrick

    2017-01-01

    While global climate models (GCMs) provide useful projections of near-surface wind vectors into the 21st century, resolution is not sufficient enough for use in regional wave modeling. Statistically downscaled GCM projections from Multivariate Adaptive Constructed Analogues provide daily averaged near-surface winds at an appropriate spatial resolution for wave modeling within the orographically complex region of San Francisco Bay, but greater resolution in time is needed to capture the peak of storm events. Short-duration high wind speeds, on the order of hours, are usually excluded in statistically downscaled climate models and are of key importance in wave and subsequent coastal flood modeling. Here we present a temporal downscaling approach, similar to constructed analogues, for near-surface winds suitable for use in local wave models and evaluate changes in wind and wave conditions for the 21st century. Reconstructed hindcast winds (1975–2004) recreate important extreme wind values within San Francisco Bay. A computationally efficient method for simulating wave heights over long time periods was used to screen for extreme events. Wave hindcasts show resultant maximum wave heights of 2.2 m possible within the Bay. Changes in extreme over-water wind speeds suggest contrasting trends within the different regions of San Francisco Bay, but 21th century projections show little change in the overall magnitude of extreme winds and locally generated waves.

  16. Fast focus-scanning head in two-photon photoacoustic microscopy with electrically controlled liquid lens

    NASA Astrophysics Data System (ADS)

    Yamaoka, Yoshihisa; Kimura, Yuka; Harada, Yoshinori; Takamatsu, Tetsuro; Takahashi, Eiji

    2018-02-01

    Conventional one-photon photoacoustic microscopy (PAM) utilizes high-frequency components of generated photoacoustic waves to improve the depth resolution. However, to obtain optically-high resolution in PAM in the depth direction, the use of high-frequency ultrasonic waves is to be avoided. It is because that the propagation distance is shortened as the frequency of ultrasonic waves becomes high. To overcome this drawback, we have proposed and developed two-photon photoacoustic microscopy (TP-PAM). Two-photon absorption occurs only at the focus point. TPPAM does not need to use the high-frequency components of photoacoustic waves. Thus, TP-PAM can improve the penetration depth while preserving the spatial resolution. However, the image acquisition time of TP-PAM is longer than that of conventional PAM, because TP-PAM needs to scan the laser spot both in the depth and transverse directions to obtain cross-sectional images. In this paper, we have introduced a focus-tunable electrically-controlled liquid lens in TP-PAM. Instead of a mechanical stepping-motor stage, we employed electrically-controlled liquid lens so that the depth of the focus spot can be quickly changed. In our system, the imaging speed of TP-PAM using the liquid lens and one-axis stepping-motor stage was 10 times faster than that using a two-axis stepping-motor stage only. TP-PAM with focus-scanning head consisting of the liquid lens and stepping-motor stage will be a promising method to investigate the inside of living tissues.

  17. Estimation of time resolution for DOI-PET detector using diameter 0.2 mm WLS fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, A.; Ito, H.; Han, S.

    We are developing the whole-body PET detector with high position resolution (1 mm) and low cost (1 M dollars). Scintillator plates, Wave Length Sifting Fibers and SiPMs are used. In this work, time resolution of our PET detector is estimated. Our detector may also have good time resolution such as a few ps. (authors)

  18. High-resolution submillimeter-wave radiometry of supersonic flow

    NASA Technical Reports Server (NTRS)

    Dionne, G. F.; Weiss, J. A.; Fitzgerald, J. F.; Fetterman, H. R.; Litvak, M. M.

    1983-01-01

    The recent development of a high-resolution submillimeter-wave heterodyne radiometer has made possible the first measurements of H2O molecule rotational line excitation temperatures and detailed profiles in supersonic flow. Absorption signals were measured across the flow for the 2/11/ from 2//02/ (752 GHz) para-H2O rotational transition against a hot background. These signals decrease downstream owing to the volume expansion of the gas away from the sonic nozle exit in the high-vacuum chamber. Radiative transfer calculations based on the large-velocity-gradient approximation and multilevel statistical equilibrium agree with these results and with the measured spectral line shapes. The data reveal nearly isentropic gas expansion and cooling. These studies have shown that submillimeter-wave heterodyne radiometry can be useful for remote sensing of supersonic flow with low mass flux, provided the signal transmission is through a dry or thin atmosphere.

  19. High-resolution 3-D S-wave Tomography of upper crust structures in Yilan Plain from Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Chen, Kai-Xun; Chen, Po-Fei; Liang, Wen-Tzong; Chen, Li-Wei; Gung, YuanCheng

    2015-04-01

    The Yilan Plain (YP) in NE Taiwan locates on the western YP of the Okinawa Trough and displays high geothermal gradients with abundant hot springs, likely resulting from magmatism associated with the back-arc spreading as attested by the offshore volcanic island (Kueishantao). YP features NS distinctive characteristics that the South YP exhibits thin top sedimentary layer, high on-land seismicity and significant SE movements, relative those of the northern counterpart. A dense network (~2.5 km station interval) of 89 Texan instruments was deployed in Aug. 2014, covering most of the YP and its vicinity. The ray path coverage density of each 0.015 degree cells are greater than 150 km that could provide the robustness assessment of tomographic results. We analyze ambient noise signals to invert a high-resolution 3D S-wave model for shallow velocity structures in and around YP. The aim is to investigate the velocity anomalies corresponding to geothermal resources and the NS geological distinctions aforementioned. We apply the Welch's method to generate empirical Rayleigh wave Green's functions between two stations records of continuous vertical components. The group velocities of thus derived functions are then obtained by the multiple-filter analysis technique measured at the frequency range between 0.25 and 1 Hz. Finally, we implement a wavelet-based multi-scale parameterization technique to construct 3D model of S-wave velocity. Our first month results exhibit low velocity in the plain, corresponding existing sediments, those of whole YP show low velocity offshore YP and those of high-resolution south YP reveal stark velocity contrast across the Sanshin fault. Key words: ambient seismic noises, Welch's method, S-wave, Yilan Plain

  20. Initial results from SKiYMET meteor radar at Thumba (8.5°N, 77°E): 2. Gravity wave observations in the MLT region

    NASA Astrophysics Data System (ADS)

    Kumar, Karanam Kishore; Antonita, T. Maria; Shelbi, S. T.

    2007-12-01

    In the present communication, allSKy interferometric METeor (SKiYMET) radar observations of gravity wave activity in the mesosphere lower thermosphere (MLT) region over Thumba (8.5°N, 77°E) are presented. The present meteor radar system provides hourly zonal and meridional winds in the MLT region, which can be readily used for studying the tides, planetary waves, gravity waves of periods 2-6 hours, and other long period oscillations in this region. However, these hourly winds are not sufficient for studying short period gravity waves having periods less than an hour, which demand high temporal resolution measurements. Even though the winds are estimated on an hourly basis, information such as zenith angle, azimuth angle, and radial velocity of each detected meteor are archived. Using these details of the meteor, an algorithm is developed to obtain the 15-min temporal resolution wind data. The output of the algorithm is compared with hourly wind data, and it showed a good agreement during the high meteor shower periods. Most of the times high meteor counts are observed during late night and early morning hours (local) over this latitude. Continuous wind measurements during the high meteor shower periods are used for studying the gravity wave activity in the MLT region. As the wave activity is intermittent and nonstationary, wavelet analysis has been used for delineating the wave features. The results showed the upward propagating intermittent gravity waves with periods 1-2 and 4-5 hours. The new aspect of the present communication is the usage of meteor radar for gravity wave studies for the first time over this latitude and studying their seasonal variability.

  1. An integrated and highly sensitive ultrafast acoustoelectric imaging system for biomedical applications

    NASA Astrophysics Data System (ADS)

    Berthon, Beatrice; Dansette, Pierre-Marc; Tanter, Mickaël; Pernot, Mathieu; Provost, Jean

    2017-07-01

    Direct imaging of the electrical activation of the heart is crucial to better understand and diagnose diseases linked to arrhythmias. This work presents an ultrafast acoustoelectric imaging (UAI) system for direct and non-invasive ultrafast mapping of propagating current densities using the acoustoelectric effect. Acoustoelectric imaging is based on the acoustoelectric effect, the modulation of the medium’s electrical impedance by a propagating ultrasonic wave. UAI triggers this effect with plane wave emissions to image current densities. An ultrasound research platform was fitted with electrodes connected to high common-mode rejection ratio amplifiers and sampled by up to 128 independent channels. The sequences developed allow for both real-time display of acoustoelectric maps and long ultrafast acquisition with fast off-line processing. The system was evaluated by injecting controlled currents into a saline pool via copper wire electrodes. Sensitivity to low current and low acoustic pressure were measured independently. Contrast and spatial resolution were measured for varying numbers of plane waves and compared to line per line acoustoelectric imaging with focused beams at equivalent peak pressure. Temporal resolution was assessed by measuring time-varying current densities associated with sinusoidal currents. Complex intensity distributions were also imaged in 3D. Electrical current densities were detected for injected currents as low as 0.56 mA. UAI outperformed conventional focused acoustoelectric imaging in terms of contrast and spatial resolution when using 3 and 13 plane waves or more, respectively. Neighboring sinusoidal currents with opposed phases were accurately imaged and separated. Time-varying currents were mapped and their frequency accurately measured for imaging frame rates up to 500 Hz. Finally, a 3D image of a complex intensity distribution was obtained. The results demonstrated the high sensitivity of the UAI system proposed. The plane wave based approach provides a highly flexible trade-off between frame rate, resolution and contrast. In conclusion, the UAI system shows promise for non-invasive, direct and accurate real-time imaging of electrical activation in vivo.

  2. Accelerated damage visualization using binary search with fixed pitch-catch distance laser ultrasonic scanning

    NASA Astrophysics Data System (ADS)

    Park, Byeongjin; Sohn, Hoon

    2017-07-01

    Laser ultrasonic scanning, especially full-field wave propagation imaging, is attractive for damage visualization thanks to its noncontact nature, sensitivity to local damage, and high spatial resolution. However, its practicality is limited because scanning at a high spatial resolution demands a prohibitively long scanning time. Inspired by binary search, an accelerated damage visualization technique is developed to visualize damage with a reduced scanning time. The pitch-catch distance between the excitation point and the sensing point is also fixed during scanning to maintain a high signal-to-noise ratio (SNR) of measured ultrasonic responses. The approximate damage boundary is identified by examining the interactions between ultrasonic waves and damage observed at the scanning points that are sparsely selected by a binary search algorithm. Here, a time-domain laser ultrasonic response is transformed into a spatial ultrasonic domain response using a basis pursuit approach so that the interactions between ultrasonic waves and damage, such as reflections and transmissions, can be better identified in the spatial ultrasonic domain. Then, the area inside the identified damage boundary is visualized as damage. The performance of the proposed damage visualization technique is validated excusing a numerical simulation performed on an aluminum plate with a notch and experiments performed on an aluminum plate with a crack and a wind turbine blade with delamination. The proposed damage visualization technique accelerates the damage visualization process in three aspects: (1) the number of measurements that is necessary for damage visualization is dramatically reduced by a binary search algorithm; (2) the number of averaging that is necessary to achieve a high SNR is reduced by maintaining the wave propagation distance short; and (3) with the proposed technique, the same damage can be identified with a lower spatial resolution than the spatial resolution required by full-field wave propagation imaging.

  3. High-resolution observations of small-scale gravity waves and turbulence features in the OH airglow layer

    NASA Astrophysics Data System (ADS)

    Sedlak, René; Hannawald, Patrick; Schmidt, Carsten; Wüst, Sabine; Bittner, Michael

    2016-12-01

    A new version of the Fast Airglow Imager (FAIM) for the detection of atmospheric waves in the OH airglow layer has been set up at the German Remote Sensing Data Center (DFD) of the German Aerospace Center (DLR) at Oberpfaffenhofen (48.09° N, 11.28° E), Germany. The spatial resolution of the instrument is 17 m pixel-1 in zenith direction with a field of view (FOV) of 11.1 km × 9.0 km at the OH layer height of ca. 87 km. Since November 2015, the system has been in operation in two different setups (zenith angles 46 and 0°) with a temporal resolution of 2.5 to 2.8 s. In a first case study we present observations of two small wave-like features that might be attributed to gravity wave instabilities. In order to spectrally analyse harmonic structures even on small spatial scales down to 550 m horizontal wavelength, we made use of the maximum entropy method (MEM) since this method exhibits an excellent wavelength resolution. MEM further allows analysing relatively short data series, which considerably helps to reduce problems such as stationarity of the underlying data series from a statistical point of view. We present an observation of the subsequent decay of well-organized wave fronts into eddies, which we tentatively interpret in terms of an indication for the onset of turbulence. Another remarkable event which demonstrates the technical capabilities of the instrument was observed during the night of 4-5 April 2016. It reveals the disintegration of a rather homogenous brightness variation into several filaments moving in different directions and with different speeds. It resembles the formation of a vortex with a horizontal axis of rotation likely related to a vertical wind shear. This case shows a notable similarity to what is expected from theoretical modelling of Kelvin-Helmholtz instabilities (KHIs). The comparatively high spatial resolution of the presented new version of the FAIM provides new insights into the structure of atmospheric wave instability and turbulent processes. Infrared imaging of wave dynamics on the sub-kilometre scale in the airglow layer supports the findings of theoretical simulations and modellings.

  4. Analysis and measurement of the modulation transfer function of harmonic shear wave induced phase encoding imaging.

    PubMed

    McAleavey, Stephen A

    2014-05-01

    Shear wave induced phase encoding (SWIPE) imaging generates ultrasound backscatter images of tissue-like elastic materials by using traveling shear waves to encode the lateral position of the scatters in the phase of the received echo. In contrast to conventional ultrasound B-scan imaging, SWIPE offers the potential advantages of image formation without beam focusing or steering from a single transducer element, lateral resolution independent of aperture size, and the potential to achieve relatively high lateral resolution with low frequency ultrasound. Here a Fourier series description of the phase modulated echo signal is developed, demonstrating that echo harmonics at multiples of the shear wave frequency reveal target k-space data at identical multiples of the shear wavenumber. Modulation transfer functions of SWIPE imaging systems are calculated for maximum shear wave acceleration and maximum shear constraints, and compared with a conventionally focused aperture. The relative signal-to-noise ratio of the SWIPE method versus a conventionally focused aperture is found through these calculations. Reconstructions of wire targets in a gelatin phantom using 1 and 3.5 MHz ultrasound and a cylindrical shear wave source are presented, generated from the fundamental and second harmonic of the shear wave modulation frequency, demonstrating weak dependence of lateral resolution with ultrasound frequency.

  5. NRL Fact Book

    DTIC Science & Technology

    2008-01-01

    Distributed network-based battle management High performance computing supporting uniform and nonuniform memory access with single and multithreaded...pallet Airborne EO/IR and radar sensors VNIR through SWIR hyperspectral systems VNIR, MWIR, and LWIR high-resolution sys- tems Wideband SAR systems...meteorological sensors Hyperspectral sensor systems (PHILLS) Mid-wave infrared (MWIR) Indium Antimonide (InSb) imaging system Long-wave infrared ( LWIR

  6. Steepened magnetosonic waves in the high beta plasma surrounding Comet Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Tsurutani, B. T.; Smith, E. J.; Thorne, R. M.; Gosling, J. T.; Matsumoto, H.

    1986-01-01

    Studies of intense hydromagnetic waves at Giacobini-Zinner are extended to investigate the mode and direction of wave propagation. Simultaneous high-resolution measurements of electron density fluctuations demonstrate that long period waves propagate in the magnetosonic mode. Principal axis analyses of the long period waves and accompanying partial rotations show that the sum of the wave phase rotations is 360 deg, indicating that both are parts of the same wave oscillation. The time sequence of the steepened waveforms observed by ICE shows that the waves must propagate towards the Sun with Cph less than Vsw. Observations are consistent with wave generation by resonant ion ring or ion beam instability which predicts right-hand polarized waves propagating in the ion beam (solar) direction. The large amplitudes and small scale sizes of the cometary waves suggest that rapid pitch-angle scattering and energy transfer with energetic ions should occur. Since the waves are highly compressive, first-order Fermi acceleration is forecast.

  7. Ozone-induced dissociation on a traveling wave high-resolution mass spectrometer for determination of double-bond position in lipids.

    PubMed

    Vu, Ngoc; Brown, Jeffery; Giles, Kevin; Zhang, Qibin

    2017-09-15

    The position of C=C within fatty acyl chains affects the biological function of lipids. Ozone-induced dissociation mass spectrometry (OzID-MS) has great potential in determination of lipid double-bond position, but has generally been implemented on low-resolution ion trap mass spectrometers. In addition, most of the OzID-MS experiments carried out so far were focused on the sodiated adducts of lipids; fragmentation of the most commonly observed protonated ions generated in LC/MS-based lipidomics workflow has been less explored. Ozone generated in line from an ozone generator was connected to the trap and transfer gas supply line of a Synapt G2 high-resolution mass spectrometer. Protonated ions of different phosphatidylcholines (PC) were generated by electrospray ionization through direct infusion. Different parameters, including traveling wave height and velocity, trap entrance and DC potential, were adjusted to maximize the OzID efficiency. sn-positional isomers and cis/trans isomers of lipids were compared for their reactivity with ozone. Traveling wave height and velocity were tuned to prolong the encounter time between lipid ions and ozone, and resulted in improved OzID efficiency, as did increasing trapping region DC and entrance potential. Under optimized settings, at least 1000 times enhancement in OzID efficiency was achieved compared to that under default settings for monounsaturated PC standards. Monounsaturated C=C in the sn-2 PC isomer reacted faster with ozone than the sn-1 isomer. Similarly, the C=C in trans PC reacted faster than in cis PC. This is the first implementation of OzID in the trap and transfer region of a traveling wave enabled high-resolution mass spectrometer. The OzID reaction efficiency is significantly improved by slowing down ions in the trap region for their prolonged interaction with ozone. This will facilitate application of high-resolution OzID-MS in lipidomics. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Observations of Seasonal Morphological Evolution at a Moderately Energetic Beach in Rincón, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Rivera Nieves, A.; Loubriel, M.; Rodriguez-Abudo, S.; Canals, M.; Salgado-Domínguez, G.

    2016-02-01

    Seasonal variations in the wave climate near Rincón, Puerto Rico include high winter swells associated with meteorological disturbances in the north and mid Atlantic, short period waves resulting from local storms, and the occasional south swell. The resulting beach morphology is therefore a complex function of the wave climate, wave-induced currents, and local and remote meteorology, among others. Over the past 75 years, this particular stretch of beach has suffered severe erosion problems, losing as much as 100 meters of beach width at particular locations. The purpose of this study is to develop a high-resolution time series of beach morphology to examine in more detail the seasonal variations at the site. Beach profiles will be collected on a weekly basis using an RTK GPS system at three permanent stations spanning 2 km of coast. Sediment samples will be collected along the profiles to identify sediment properties associated with distinct morphological features, while digital photographs will provide a qualitative sense of beach width. The resulting morphological changes will be assessed in light of the Rincon's directional Waverider buoy data and CariCOOS' SWAN high-resolution wave model. This study will provide quantifiable insights into seasonal erosion/accretion trends at a highly touristic stretch of coast in the US Caribbean.

  9. Estimation of pseudo-2D shear-velocity section by inversion of high frequency surface waves

    USGS Publications Warehouse

    Luo, Y.; Liu, J.; Xia, J.; Xu, Y.; Liu, Q.

    2006-01-01

    A scheme to generate pseudo-2D shear-velocity sections with high horizontal resolution and low field cost by inversion of high frequency surface waves is presented. It contains six steps. The key step is the joint method of crossed correlation and phase shift scanning. This joint method chooses only two traces to generate image of dispersion curve. For Rayleigh-wave dispersion is most important for estimation of near-surface shear-wave velocity, it can effectively obtain reliable images of dispersion curves with a couple of traces. The result of a synthetic example shows the feasibility of this scheme. ?? 2005 Society of Exploration Geophysicists.

  10. Satellite Spots Turbulence Producing Mountain Waves in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Britt, Robert Roy

    2002-01-01

    When masses of air flow over massive mountains, invisible waves often roil high into the stratosphere, affecting weather and mixing the chemicals that contribute to ozone depletion. The waves also create turbulence that can be a danger to high-altitude research missions by NASA's lightweight ER-2 aircraft, as well as shuttle flights upon reentry. In Friday's issue of the journal Science, researchers report for the first time a technique that allows them to see temperature signatures from these invisible mountain waves. The method, involving high-resolution, satellite-based measurement of adjacent pockets of the atmosphere, is expected to aid in spotting turbulence and, one day, improve weather forecasts.

  11. High-resolution electrical mapping of porcine gastric slow-wave propagation from the mucosal surface.

    PubMed

    Angeli, T R; Du, P; Paskaranandavadivel, N; Sathar, S; Hall, A; Asirvatham, S J; Farrugia, G; Windsor, J A; Cheng, L K; O'Grady, G

    2017-05-01

    Gastric motility is coordinated by bioelectrical slow waves, and gastric dysrhythmias are reported in motility disorders. High-resolution (HR) mapping has advanced the accurate assessment of gastric dysrhythmias, offering promise as a diagnostic technique. However, HR mapping has been restricted to invasive surgical serosal access. This study investigates the feasibility of HR mapping from the gastric mucosal surface. Experiments were conducted in vivo in 14 weaner pigs. Reference serosal recordings were performed with flexible-printed-circuit (FPC) arrays (128-192 electrodes). Mucosal recordings were performed by two methods: (i) FPC array aligned directly opposite the serosal array, and (ii) cardiac mapping catheter modified for gastric mucosal recordings. Slow-wave propagation and morphology characteristics were quantified and compared between simultaneous serosal and mucosal recordings. Slow-wave activity was consistently recorded from the mucosal surface from both electrode arrays. Mucosally recorded slow-wave propagation was consistent with reference serosal activation pattern, frequency (P≥.3), and velocity (P≥.4). However, mucosally recorded slow-wave morphology exhibited reduced amplitude (65-72% reduced, P<.001) and wider downstroke width (18-31% wider, P≤.02), compared to serosal data. Dysrhythmias were successfully mapped and classified from the mucosal surface, accorded with serosal data, and were consistent with known dysrhythmic mechanisms in the porcine model. High-resolution gastric electrical mapping was achieved from the mucosal surface, and demonstrated consistent propagation characteristics with serosal data. However, mucosal signal morphology was attenuated, demonstrating necessity for optimized electrode designs and analytical algorithms. This study demonstrates feasibility of endoscopic HR mapping, providing a foundation for advancement of minimally invasive spatiotemporal gastric mapping as a clinical and scientific tool. © 2016 John Wiley & Sons Ltd.

  12. Acoustic waves in the solar atmosphere at high spatial resolution. II. Measurement in the Fe I 5434 Å line

    NASA Astrophysics Data System (ADS)

    Bello González, N.; Flores Soriano, M.; Kneer, F.; Okunev, O.; Shchukina, N.

    2010-11-01

    Aims: We investigate the energy supply of the solar chromosphere by acoustic waves. Methods: A time sequence with high spatial and temporal resolution from the quiet Sun disc centre in Fe i 5434 Å (Landé factor g = 0) is analysed. We used models from a numerical simulation of granular convection and apply NLTE spectral line transfer to determine the height of formation. For estimates of acoustic energy flux, we adopted wave propagation with inclinations of the wave vector with respect to the vertical of 0°, 30°, and 45°. For a granular and an intergranular model, the transmissions of the atmosphere to high-frequency waves were determined for the three inclination angles. Wavelet and Fourier analyses were performed and the resulting power spectra were corrected for atmospheric transmission. Results: We find waves with periods down to ~40 s. They occur intermittently in space and time. The velocity signal is formed at a height of 500 km in the granular model and at 620 km in the intergranule. At periods shorter than the acoustic cutoff (~190 s), ~40% of the waves occur above granules and ~60% above intergranules. By adopting vertical propagation, we estimate total fluxes above granules of 2750-3360 W m-2, and of 910-1 000 W m-2 above intergranules. The weighted average is 1730-2 060 W m-2. The estimates of the total fluxes increase by 15% when inclined wave propagation of 45° is assumed.

  13. Variability of Kelvin wave momentum flux from high-resolution radiosonde and radio occultation data

    NASA Astrophysics Data System (ADS)

    Sjoberg, J. P.; Zeng, Z.; Ho, S. P.; Birner, T.; Anthes, R. A.; Johnson, R. H.

    2017-12-01

    Direct measurement of momentum flux from Kelvin waves in the stratosphere remains challenging. Constraining this flux from observations is an important step towards constraining the flux from models. Here we present results from analyses using linear theory to estimate the Kelvin wave amplitudes and momentum fluxes from both high-resolution radiosondes and from radio occultation (RO) data. These radiosonde data are from a contiguous 11-year span of soundings performed at two Department of Energy Atmospheric Radiation Measurement sites, while the RO data span 14 years from multiple satellite missions. Daily time series of the flux from both sources are found to be in quantitative agreement with previous studies. Climatological analyses of these data reveal the expected seasonal cycle and variability associated with the quasi-biennial oscillation. Though both data sets provide measurements on distinct spatial and temporal scales, the estimated flux from each provides insight into separate but complimentary aspects of how the Kelvin waves affect the stratosphere. Namely, flux derived from radiosonde sites provide details on the regional Kelvin wave variability, while the flux from RO data are zonal mean estimates.

  14. Simple equations guide high-frequency surface-wave investigation techniques

    USGS Publications Warehouse

    Xia, J.; Xu, Y.; Chen, C.; Kaufmann, R.D.; Luo, Y.

    2006-01-01

    We discuss five useful equations related to high-frequency surface-wave techniques and their implications in practice. These equations are theoretical results from published literature regarding source selection, data-acquisition parameters, resolution of a dispersion curve image in the frequency-velocity domain, and the cut-off frequency of high modes. The first equation suggests Rayleigh waves appear in the shortest offset when a source is located on the ground surface, which supports our observations that surface impact sources are the best source for surface-wave techniques. The second and third equations, based on the layered earth model, reveal a relationship between the optimal nearest offset in Rayleigh-wave data acquisition and seismic setting - the observed maximum and minimum phase velocities, and the maximum wavelength. Comparison among data acquired with different offsets at one test site confirms the better data were acquired with the suggested optimal nearest offset. The fourth equation illustrates that resolution of a dispersion curve image at a given frequency is directly proportional to the product of a length of a geophone array and the frequency. We used real-world data to verify the fourth equation. The last equation shows that the cut-off frequency of high modes of Love waves for a two-layer model is determined by shear-wave velocities and the thickness of the top layer. We applied this equation to Rayleigh waves and multi-layer models with the average velocity and obtained encouraging results. This equation not only endows with a criterion to distinguish high modes from numerical artifacts but also provides a straightforward means to resolve the depth to the half space of a layered earth model. ?? 2005 Elsevier Ltd. All rights reserved.

  15. Ultra high resolution molecular beam cars spectroscopy with application to planetary atmospheric molecules

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1982-01-01

    The measurement of high resolution pulsed and continuous wave (CW) coherent anti-Stokes Raman spectroscopy (CARS) measurements in pulsed and steady state supersonic expansions were demonstrated. Pulsed molecular beam sources were characterized, and saturation of a Raman transition and, for the first time, the Raman spectrum of a complex molecular cluster were observed. The observation of CW CARS spectra in a molecular expansion and the effects of transit time broadening is described. Supersonic expansion is established as a viable technique for high resolution Raman spectroscopy of cold molecules with resolutions of 100 MH2.

  16. Observations and Modelling of Winds and Waves during the Surface Wave Dynamics Experiment. Report 1. Intensive Observation Period IOP-1, 20-31 October 1990

    DTIC Science & Technology

    1993-04-01

    wave buoy provided by SEATEX, Norway (Figure 3). The modified Mills-cross array was designed to provide spatial estimates of the variation in wave, wind... designed for SWADE to examine the wave physics at different spatial and temporal scales, and the usefulness of a nested system. Each grid is supposed to...field specification. SWADE Model This high-resolution grid was designed to simulate the small scale wave physics and to improve and verify the source

  17. The High-Resolution Wave-Propagation Method Applied to Meso- and Micro-Scale Flows

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.

    2012-01-01

    The high-resolution wave-propagation method for computing the nonhydrostatic atmospheric flows on meso- and micro-scales is described. The design and implementation of the Riemann solver used for computing the Godunov fluxes is discussed in detail. The method uses a flux-based wave decomposition in which the flux differences are written directly as the linear combination of the right eigenvectors of the hyperbolic system. The two advantages of the technique are: 1) the need for an explicit definition of the Roe matrix is eliminated and, 2) the inclusion of source term due to gravity does not result in discretization errors. The resulting flow solver is conservative and able to resolve regions of large gradients without introducing dispersion errors. The methodology is validated against exact analytical solutions and benchmark cases for non-hydrostatic atmospheric flows.

  18. In-Situ Wave Observations in the High Resolution Air-Sea Interaction DRI

    DTIC Science & Technology

    2008-09-30

    Program ( CDIP ) Harvest buoy located in 204 m depth off Point Conception. The initial sea surface is assumed Gaussian and homogeneous, with spectral...of simulated sea surface elevation. Right panels: corresponding observed frequency-directional wave spectra (source: CDIP ). Upper panels: Typical

  19. Dynamics of Internal Tides Over a Shallow Ridge Investigated With a High-Resolution Downscaling Regional Ocean Model

    NASA Astrophysics Data System (ADS)

    Masunaga, Eiji; Uchiyama, Yusuke; Suzue, Yota; Yamazaki, Hidekatsu

    2018-04-01

    This study investigates the dynamics of tidally induced internal waves over a shallow ridge, the Izu-Ogasawara Ridge off the Japanese mainland, using a downscaled high-resolution regional ocean numerical model. Both the Kuroshio and tides contribute to the field of currents in the study area. The model results show strong internal tidal energy fluxes over the ridge, exceeding 3.5 kW m-1, which are higher than the fluxes along the Japanese mainland. The flux in the upstream side of the Kuroshio is enhanced by an interaction of internal waves and currents. The tidal forcing induces 92% of the total internal wave energy flux, exhibiting the considerable dominance of tides in internal waves. The tidal forcing enhances the kinetic energy, particularly in the northern area of the ridge where the Kuroshio Current is not a direct influence. The tidal forcing contributes to roughly 30% of the total kinetic energy in the study area.

  20. High-Resolution Observations of a Meteo-Tsunami

    NASA Astrophysics Data System (ADS)

    Assink, J. D.; Evers, L. G.; Smink, M.; Apituley, A.

    2017-12-01

    In the early morning of 29 May 2017, unusually large waves of over 2 m height hit the west coast of the Netherlands, leading to some property damage. The waves were due to a meteo-tsunami, which is a tsunami of meteorological origin, unlike seismogenic tsunamis. This particular event was caused by a rapidly moving cold front which featured a sharp squall line that moved towards the coast. Associated was a large perturbation in air pressure of 5 hPa which, along with Proudman resonance effects and the upsloping seabottom lead to the tidal surge. While the meteorological conditions leading up to such an event are relatively common, the more extreme events appear to happen under specific conditions only. As a result of the meteo-tsunami, gravity waves were observed all over the Netherlands with a variety of meteorlogical instruments, including weather radar, ceilometers and a network of microbarometers that are typically used for the detection of infrasound. In this presentation, these high-resolution observations of gravity waves are compared with mesoscale weather models.

  1. The Properties of Lion Roars and Electron Dynamics in Mirror Mode Waves Observed by the Magnetospheric MultiScale Mission

    NASA Astrophysics Data System (ADS)

    Breuillard, H.; Le Contel, O.; Chust, T.; Berthomier, M.; Retino, A.; Turner, D. L.; Nakamura, R.; Baumjohann, W.; Cozzani, G.; Catapano, F.; Alexandrova, A.; Mirioni, L.; Graham, D. B.; Argall, M. R.; Fischer, D.; Wilder, F. D.; Gershman, D. J.; Varsani, A.; Lindqvist, P.-A.; Khotyaintsev, Yu. V.; Marklund, G.; Ergun, R. E.; Goodrich, K. A.; Ahmadi, N.; Burch, J. L.; Torbert, R. B.; Needell, G.; Chutter, M.; Rau, D.; Dors, I.; Russell, C. T.; Magnes, W.; Strangeway, R. J.; Bromund, K. R.; Wei, H.; Plaschke, F.; Anderson, B. J.; Le, G.; Moore, T. E.; Giles, B. L.; Paterson, W. R.; Pollock, C. J.; Dorelli, J. C.; Avanov, L. A.; Saito, Y.; Lavraud, B.; Fuselier, S. A.; Mauk, B. H.; Cohen, I. J.; Fennell, J. F.

    2018-01-01

    Mirror mode waves are ubiquitous in the Earth's magnetosheath, in particular behind the quasi-perpendicular shock. Embedded in these nonlinear structures, intense lion roars are often observed. Lion roars are characterized by whistler wave packets at a frequency ˜100 Hz, which are thought to be generated in the magnetic field minima. In this study, we make use of the high time resolution instruments on board the Magnetospheric MultiScale mission to investigate these waves and the associated electron dynamics in the quasi-perpendicular magnetosheath on 22 January 2016. We show that despite a core electron parallel anisotropy, lion roars can be generated locally in the range 0.05-0.2fce by the perpendicular anisotropy of electrons in a particular energy range. We also show that intense lion roars can be observed up to higher frequencies due to the sharp nonlinear peaks of the signal, which appear as sharp spikes in the dynamic spectra. As a result, a high sampling rate is needed to estimate correctly their amplitude, and the latter might have been underestimated in previous studies using lower time resolution instruments. We also present for the first-time 3-D high time resolution electron velocity distribution functions in mirror modes. We demonstrate that the dynamics of electrons trapped in the mirror mode structures are consistent with the Kivelson and Southwood (1996) model. However, these electrons can also interact with the embedded lion roars: first signatures of electron quasi-linear pitch angle diffusion and possible signatures of nonlinear interaction with high-amplitude wave packets are presented. These processes can lead to electron untrapping from mirror modes.

  2. WAVE-E: The WAter Vapour European-Explorer Mission

    NASA Astrophysics Data System (ADS)

    Jimenez-LLuva, David; Deiml, Michael; Pavesi, Sara

    2017-04-01

    In the last decade, stratosphere-troposphere coupling processes in the Upper Troposphere Lower Stratosphere (UTLS) have been increasingly recognized to severely impact surface climate and high-impact weather phenomena. Weakened stratospheric circumpolar jets have been linked to worldwide extreme temperature and high-precipitation events, while anomalously strong stratospheric jets can lead to an increase in surface winds and tropical cyclone intensity. Moreover, stratospheric water vapor has been identified as an important forcing for global decadal surface climate change. In the past years, operational weather forecast and climate models have adapted a high vertical resolution in the UTLS region in order to capture the dynamical processes occurring in this highly stratified region. However, there is an evident lack of available measurements in the UTLS region to consistently support these models and further improve process understanding. Consequently, both the IPCC fifth assessment report and the ESA-GEWEX report 'Earth Observation and Water Cycle Science Priorities' have identified an urgent need for long-term observations and improved process understanding in the UTLS region. To close this gap, the authors propose the 'WAter Vapour European - Explorer' (WAVE-E) space mission, whose primary goal is to monitor water vapor in the UTLS at 1 km vertical, 25 km horizontal and sub-daily temporal resolution. WAVE-E consists of three quasi-identical small ( 500 kg) satellites (WAVE-E 1-3) in a constellation of Sun-Synchronous Low Earth Orbits, each carrying a limb sounding and cross-track scanning mid-infrared passive spectrometer (824 cm-1 to 829 cm-1). The core of the instruments builds a monolithic, field-widened type of Michelson interferometer without any moving parts, rendering it rigid and fault tolerant. Synergistic use of WAVE-E and MetOp-NG operational satellites is identified, such that a data fusion algorithm could provide water vapour profiles from the surface to the lower stratosphere. The mission strategy involves a pioneering launch of WAVE-E 1 followed by a joint launch of WAVE-E 2 and 3, minimizing both costs and risks as well as naturally offering a descoping option only affecting the temporal resolution of the mission. Assuming a nominal lifetime of five years for each satellite, the rough order of costs estimate amounts to 600M€ for the overall mission, while numerous cost reduction potentials remain open due to the early stage of instrument and mission design. The space mission concept 'WAVE-E' was developed by a team of 15 students with the support of two tutors at the Alpbach Summer School 2016, a ten-day design challenge organised by FFG and ESA and devoted to 'Satellite Observations of the Global Water Cycle'. The concept won the 'best science case' and 'best presentation' awards.

  3. Mobile seismic exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dräbenstedt, A., E-mail: a.draebenstedt@polytec.de, E-mail: rembe@iei.tu-clausthal.de, E-mail: ulrich.polom@liag-hannover.de; Seyfried, V.; Cao, X.

    2016-06-28

    Laser-Doppler-Vibrometry (LDV) is an established technique to measure vibrations in technical systems with picometer vibration-amplitude resolution. Especially good sensitivity and resolution can be achieved at an infrared wavelength of 1550 nm. High-resolution vibration measurements are possible over more than 100 m distance. This advancement of the LDV technique enables new applications. The detection of seismic waves is an application which has not been investigated so far because seismic waves outside laboratory scales are usually analyzed at low frequencies between approximately 1 Hz and 250 Hz and require velocity resolutions in the range below 1 nm/s/√Hz. Thermal displacements and air turbulence have critical influences to LDVmore » measurements at this low-frequency range leading to noise levels of several 100 nm/√Hz. Commonly seismic waves are measured with highly sensitive inertial sensors (geophones or Micro Electro-Mechanical Sensors (MEMS)). Approaching a laser geophone based on LDV technique is the topic of this paper. We have assembled an actively vibration-isolated optical table in a minivan which provides a hole in its underbody. The laser-beam of an infrared LDV assembled on the optical table impinges the ground below the car through the hole. A reference geophone has detected remaining vibrations on the table. We present the results from the first successful experimental demonstration of contactless detection of seismic waves from a movable vehicle with a LDV as laser geophone.« less

  4. A wave model test bed study for wave energy resource characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Neary, Vincent S.; Wang, Taiping

    This paper presents a test bed study conducted to evaluate best practices in wave modeling to characterize energy resources. The model test bed off the central Oregon Coast was selected because of the high wave energy and available measured data at the site. Two third-generation spectral wave models, SWAN and WWIII, were evaluated. A four-level nested-grid approach—from global to test bed scale—was employed. Model skills were assessed using a set of model performance metrics based on comparing six simulated wave resource parameters to observations from a wave buoy inside the test bed. Both WWIII and SWAN performed well at themore » test bed site and exhibited similar modeling skills. The ST4 package with WWIII, which represents better physics for wave growth and dissipation, out-performed ST2 physics and improved wave power density and significant wave height predictions. However, ST4 physics tended to overpredict the wave energy period. The newly developed ST6 physics did not improve the overall model skill for predicting the six wave resource parameters. Sensitivity analysis using different wave frequencies and direction resolutions indicated the model results were not sensitive to spectral resolutions at the test bed site, likely due to the absence of complex bathymetric and geometric features.« less

  5. A fiber air-gap Fabry-Pérot temperature sensor demodulated by using frequency modulated continuous wave

    NASA Astrophysics Data System (ADS)

    Zheng, Wanfu; Xie, Jianglei; Li, Yi; Xu, Ben; Kang, Juan; Shen, Changyu; Wang, Jianfeng; Jin, Yongxing; Liu, Honglin; Ni, Kai; Dong, Xinyong; Zhao, Chunliu; Jin, Shangzhong

    In this study, a fiber in-line air-gap Fabry-Pérot interferometer (FPI) is fabricated by HF acid etching. For a low-cost and higher precise measurement, a demodulation system based on frequency modulated continuous wave (FMCW) technique is build up and demonstrated in this air-gap FPI. In temperature measurements, the temperature sensitivity is about 1.75 rad/°C by phase shift detection. We also test the long term performance of the system and the RMS error is about 0.04 rad, which corresponds to the temperature resolution of ~0.02 °C. It is much higher than the measurement resolution by using the traditional wavelength shift detection method. Our experiments show that the FMCW can provide a low-cost, high resolution and high speed interrogation solution to the fiber FPIs.

  6. Miniature all-optical probe for photoacoustic and ultrasound dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Li, Guangyao; Guo, Zhendong; Chen, Sung-Liang

    2018-02-01

    Photoacoustic (PA) imaging forms an image based on optical absorption contrasts with ultrasound (US) resolution. In contrast, US imaging is based on acoustic backscattering to provide structural information. In this study, we develop a miniature all-optical probe for high-resolution PA-US dual-modality imaging over a large imaging depth range. The probe employs three individual optical fibers (F1-F3) to achieve optical generation and detection of acoustic waves for both PA and US modalities. To offer wide-angle laser illumination, fiber F1 with a large numerical aperture (NA) is used for PA excitation. On the other hand, wide-angle US waves are generated by laser illumination on an optically absorbing composite film which is coated on the end face of fiber F2. Both the excited PA and backscattered US waves are detected by a Fabry-Pérot cavity on the tip of fiber F3 for wide-angle acoustic detection. The wide angular features of the three optical fibers make large-NA synthetic aperture focusing technique possible and thus high-resolution PA and US imaging. The probe diameter is less than 2 mm. Over a depth range of 4 mm, lateral resolutions of PA and US imaging are 104-154 μm and 64-112 μm, respectively, and axial resolutions of PA and US imaging are 72-117 μm and 31-67 μm, respectively. To show the imaging capability of the probe, phantom imaging with both PA and US contrasts is demonstrated. The results show that the probe has potential for endoscopic and intravascular imaging applications that require PA and US contrast with high resolution.

  7. High-Resolution Ultrasound-Switchable Fluorescence Imaging in Centimeter-Deep Tissue Phantoms with High Signal-To-Noise Ratio and High Sensitivity via Novel Contrast Agents

    PubMed Central

    Cheng, Bingbing; Bandi, Venugopal; Wei, Ming-Yuan; Pei, Yanbo; D’Souza, Francis; Nguyen, Kytai T.; Hong, Yi; Yuan, Baohong

    2016-01-01

    For many years, investigators have sought after high-resolution fluorescence imaging in centimeter-deep tissue because many interesting in vivo phenomena—such as the presence of immune system cells, tumor angiogenesis, and metastasis—may be located deep in tissue. Previously, we developed a new imaging technique to achieve high spatial resolution in sub-centimeter deep tissue phantoms named continuous-wave ultrasound-switchable fluorescence (CW-USF). The principle is to use a focused ultrasound wave to externally and locally switch on and off the fluorophore emission from a small volume (close to ultrasound focal volume). By making improvements in three aspects of this technique: excellent near-infrared USF contrast agents, a sensitive frequency-domain USF imaging system, and an effective signal processing algorithm, for the first time this study has achieved high spatial resolution (~ 900 μm) in 3-centimeter-deep tissue phantoms with high signal-to-noise ratio (SNR) and high sensitivity (3.4 picomoles of fluorophore in a volume of 68 nanoliters can be detected). We have achieved these results in both tissue-mimic phantoms and porcine muscle tissues. We have also demonstrated multi-color USF to image and distinguish two fluorophores with different wavelengths, which might be very useful for simultaneously imaging of multiple targets and observing their interactions in the future. This work has opened the door for future studies of high-resolution centimeter-deep tissue fluorescence imaging. PMID:27829050

  8. High-Resolution Ultrasound-Switchable Fluorescence Imaging in Centimeter-Deep Tissue Phantoms with High Signal-To-Noise Ratio and High Sensitivity via Novel Contrast Agents.

    PubMed

    Cheng, Bingbing; Bandi, Venugopal; Wei, Ming-Yuan; Pei, Yanbo; D'Souza, Francis; Nguyen, Kytai T; Hong, Yi; Yuan, Baohong

    2016-01-01

    For many years, investigators have sought after high-resolution fluorescence imaging in centimeter-deep tissue because many interesting in vivo phenomena-such as the presence of immune system cells, tumor angiogenesis, and metastasis-may be located deep in tissue. Previously, we developed a new imaging technique to achieve high spatial resolution in sub-centimeter deep tissue phantoms named continuous-wave ultrasound-switchable fluorescence (CW-USF). The principle is to use a focused ultrasound wave to externally and locally switch on and off the fluorophore emission from a small volume (close to ultrasound focal volume). By making improvements in three aspects of this technique: excellent near-infrared USF contrast agents, a sensitive frequency-domain USF imaging system, and an effective signal processing algorithm, for the first time this study has achieved high spatial resolution (~ 900 μm) in 3-centimeter-deep tissue phantoms with high signal-to-noise ratio (SNR) and high sensitivity (3.4 picomoles of fluorophore in a volume of 68 nanoliters can be detected). We have achieved these results in both tissue-mimic phantoms and porcine muscle tissues. We have also demonstrated multi-color USF to image and distinguish two fluorophores with different wavelengths, which might be very useful for simultaneously imaging of multiple targets and observing their interactions in the future. This work has opened the door for future studies of high-resolution centimeter-deep tissue fluorescence imaging.

  9. A thin wideband high-spatial-resolution focusing metasurface for near-field passive millimeter-wave imaging

    NASA Astrophysics Data System (ADS)

    Chu, Hongjun; Qi, Jiaran; Xiao, Shanshan; Qiu, Jinghui

    2018-04-01

    In this paper, we present a flat transmission-type focusing metasurface for the near-field passive millimeter-wave (PMMW) imaging systems. Considering the non-uniform wavefront of the actual feeding horn, the metasurface is configured by unit cells consisting of coaxial annular apertures and is optimized to achieve broadband, high spatial resolution, and polarization insensitive properties important for PMMW imaging applications in the frequency range from 33 GHz to 37 GHz, with the focal spot as small as 0.43λ0 (@35 GHz). A prototype of the proposed metasurface is fabricated, and the measurement results fairly agree with the simulation ones. Furthermore, an experimental single-sensor PMMW imaging system is constructed based on the metasurface and a Ka-band direct detection radiometer. The experimental results show that the azimuth resolution of the system can reach approximately 4 mm (≈0.47λ0). It is shown that the proposed metasurface can potentially replace the bulky dielectric-lens or reflector antenna to achieve possibly more compact PMMW imaging systems with high spatial resolution approaching the diffraction-limit.

  10. Integration of P- and SH-wave high-resolution seismic reflection and micro-gravity techniques to improve interpretation of shallow subsurface structure: New Madrid seismic zone

    USGS Publications Warehouse

    Bexfield, C.E.; McBride, J.H.; Pugin, Andre J.M.; Ravat, D.; Biswas, S.; Nelson, W.J.; Larson, T.H.; Sargent, S.L.; Fillerup, M.A.; Tingey, B.E.; Wald, L.; Northcott, M.L.; South, J.V.; Okure, M.S.; Chandler, M.R.

    2006-01-01

    Shallow high-resolution seismic reflection surveys have traditionally been restricted to either compressional (P) or horizontally polarized shear (SH) waves in order to produce 2-D images of subsurface structure. The northernmost Mississippi embayment and coincident New Madrid seismic zone (NMSZ) provide an ideal laboratory to study the experimental use of integrating P- and SH-wave seismic profiles, integrated, where practicable, with micro-gravity data. In this area, the relation between "deeper" deformation of Paleozoic bedrock associated with the formation of the Reelfoot rift and NMSZ seismicity and "shallower" deformation of overlying sediments has remained elusive, but could be revealed using integrated P- and SH-wave reflection. Surface expressions of deformation are almost non-existent in this region, which makes seismic reflection surveying the only means of detecting structures that are possibly pertinent to seismic hazard assessment. Since P- and SH-waves respond differently to the rock and fluid properties and travel at dissimilar speeds, the resulting seismic profiles provide complementary views of the subsurface based on different levels of resolution and imaging capability. P-wave profiles acquired in southwestern Illinois and western Kentucky (USA) detect faulting of deep, Paleozoic bedrock and Cretaceous reflectors while coincident SH-wave surveys show that this deformation propagates higher into overlying Tertiary and Quaternary strata. Forward modeling of micro-gravity data acquired along one of the seismic profiles further supports an interpretation of faulting of bedrock and Cretaceous strata. The integration of the two seismic and the micro-gravity methods therefore increases the scope for investigating the relation between the older and younger deformation in an area of critical seismic hazard. ?? 2006 Elsevier B.V. All rights reserved.

  11. A method to improve the range resolution in stepped frequency continuous wave radar

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Paweł

    2018-04-01

    In the paper one of high range resolution methods - Aperture Sampling - was analysed. Unlike MUSIC based techniques it proved to be very efficient in terms of achieving unambiguous synthetic range profile for ultra-wideband stepped frequency continuous wave radar. Assuming that minimal distance required to separate two targets in depth (distance) corresponds to -3 dB width of received echo, AS provided a 30,8 % improvement in range resolution in analysed scenario, when compared to results of applying IFFT. Output data is far superior in terms of both improved range resolution and reduced side lobe level than used typically in this area Inverse Fourier Transform. Furthermore it does not require prior knowledge or an estimate of number of targets to be detected in a given scan.

  12. Real-time high-resolution heterodyne-based measurements of spectral dynamics in fibre lasers

    PubMed Central

    Sugavanam, Srikanth; Fabbri, Simon; Le, Son Thai; Lobach, Ivan; Kablukov, Sergey; Khorev, Serge; Churkin, Dmitry

    2016-01-01

    Conventional tools for measurement of laser spectra (e.g. optical spectrum analysers) capture data averaged over a considerable time period. However, the generation spectrum of many laser types may involve spectral dynamics whose relatively fast time scale is determined by their cavity round trip period, calling for instrumentation featuring both high temporal and spectral resolution. Such real-time spectral characterisation becomes particularly challenging if the laser pulses are long, or they have continuous or quasi-continuous wave radiation components. Here we combine optical heterodyning with a technique of spatio-temporal intensity measurements that allows the characterisation of such complex sources. Fast, round-trip-resolved spectral dynamics of cavity-based systems in real-time are obtained, with temporal resolution of one cavity round trip and frequency resolution defined by its inverse (85 ns and 24 MHz respectively are demonstrated). We also show how under certain conditions for quasi-continuous wave sources, the spectral resolution could be further increased by a factor of 100 by direct extraction of phase information from the heterodyned dynamics or by using double time scales within the spectrogram approach. PMID:26984634

  13. Sources and pathways of the upscale effects on the Southern Hemisphere jet in MPAS-CAM4 variable-resolution simulations

    DOE PAGES

    Sakaguchi, Koichi; Lu, Jian; Leung, L. Ruby; ...

    2016-10-22

    Impacts of regional grid refinement on large-scale circulations (“upscale effects”) were detected in a previous study that used the Model for Prediction Across Scales-Atmosphere coupled to the physics parameterizations of the Community Atmosphere Model version 4. The strongest upscale effect was identified in the Southern Hemisphere jet during austral winter. This study examines the detailed underlying processes by comparing two simulations at quasi-uniform resolutions of 30 and 120 km to three variable-resolution simulations in which the horizontal grids are regionally refined to 30 km in North America, South America, or Asia from 120 km elsewhere. In all the variable-resolution simulations,more » precipitation increases in convective areas inside the high-resolution domains, as in the reference quasi-uniform high-resolution simulation. With grid refinement encompassing the tropical Americas, the increased condensational heating expands the local divergent circulations (Hadley cell) meridionally such that their descending branch is shifted poleward, which also pushes the baroclinically unstable regions, momentum flux convergence, and the eddy-driven jet poleward. This teleconnection pathway is not found in the reference high-resolution simulation due to a strong resolution sensitivity of cloud radiative forcing that dominates the aforementioned teleconnection signals. The regional refinement over Asia enhances Rossby wave sources and strengthens the upper level southerly flow, both facilitating the cross-equatorial propagation of stationary waves. Evidence indicates that this teleconnection pathway is also found in the reference high-resolution simulation. Lastly, the result underlines the intricate diagnoses needed to understand the upscale effects in global variable-resolution simulations, with implications for science investigations using the computationally efficient modeling framework.« less

  14. Sources and pathways of the upscale effects on the Southern Hemisphere jet in MPAS-CAM4 variable-resolution simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaguchi, Koichi; Lu, Jian; Leung, L. Ruby

    Impacts of regional grid refinement on large-scale circulations (“upscale effects”) were detected in a previous study that used the Model for Prediction Across Scales-Atmosphere coupled to the physics parameterizations of the Community Atmosphere Model version 4. The strongest upscale effect was identified in the Southern Hemisphere jet during austral winter. This study examines the detailed underlying processes by comparing two simulations at quasi-uniform resolutions of 30 and 120 km to three variable-resolution simulations in which the horizontal grids are regionally refined to 30 km in North America, South America, or Asia from 120 km elsewhere. In all the variable-resolution simulations,more » precipitation increases in convective areas inside the high-resolution domains, as in the reference quasi-uniform high-resolution simulation. With grid refinement encompassing the tropical Americas, the increased condensational heating expands the local divergent circulations (Hadley cell) meridionally such that their descending branch is shifted poleward, which also pushes the baroclinically unstable regions, momentum flux convergence, and the eddy-driven jet poleward. This teleconnection pathway is not found in the reference high-resolution simulation due to a strong resolution sensitivity of cloud radiative forcing that dominates the aforementioned teleconnection signals. The regional refinement over Asia enhances Rossby wave sources and strengthens the upper level southerly flow, both facilitating the cross-equatorial propagation of stationary waves. Evidence indicates that this teleconnection pathway is also found in the reference high-resolution simulation. Lastly, the result underlines the intricate diagnoses needed to understand the upscale effects in global variable-resolution simulations, with implications for science investigations using the computationally efficient modeling framework.« less

  15. Combined illumination cylindrical millimeter-wave imaging technique for concealed weapon detection

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.

    2000-07-01

    A novel millimeter-wave imaging technique has been developed for personnel surveillance applications, including the detection of concealed weapons, explosives, drugs, and other contraband material. Millimeter-waves are high-frequency radio waves in the frequency band of 30 - 300 GHz, and pose no health threat to humans at moderate power levels. These waves readily penetrate common clothing materials, and are reflected by the human body and by concealed items. The combined illumination cylindrical imaging concept consists of a vertical, high-resolution, millimeter-wave array of antennas which is scanned in a cylindrical manner about the person under surveillance. Using a computer, the data from this scan is mathematically reconstructed into a series of focused 3D images of the person. After reconstruction, the images are combined into a single high-resolution 3D image of the person under surveillance. This combined image is then rendered using 3D computer graphics techniques. The combined cylindrical illumination is critical as it allows the display of information from all angles. This is necessary because millimeter-waves do not penetrate the body. Ultimately, the images displayed to the operate will be icon-based to protect the privacy of the person being screened. Novel aspects of this technique include the cylindrical scanning concept and the image reconstruction algorithm, which was developed specifically for this imaging system. An engineering prototype based on this cylindrical imaging technique has been fabricated and tested. This work has been sponsored by the Federal Aviation Administration.

  16. A long-term nearshore wave hindcast for Ireland: Atlantic and Irish Sea coasts (1979-2012). Present wave climate and energy resource assessment

    NASA Astrophysics Data System (ADS)

    Gallagher, Sarah; Tiron, Roxana; Dias, Frédéric

    2014-08-01

    The Northeast Atlantic possesses some of the highest wave energy levels in the world. The recent years have witnessed a renewed interest in harnessing this vast energy potential. Due to the complicated geomorphology of the Irish coast, there can be a significant variation in both the wave and wind climate. Long-term hindcasts with high spatial resolution, properly calibrated against available measurements, provide vital information for future deployments of ocean renewable energy installations. These can aid in the selection of adequate locations for potential deployment and for the planning and design of those marine operations. A 34-year (from 1979 to 2012), high-resolution wave hindcast was performed for Ireland including both the Atlantic and Irish Sea coasts, with a particular focus on the wave energy resource. The wave climate was estimated using the third-generation spectral wave model WAVEWATCH III®; version 4.11, the unstructured grid formulation. The wave model was forced with directional wave spectral data and 10-m winds from the European Centre for Medium Range Weather Forecasts (ECMWF) ERA-Interim reanalysis, which is available from 1979 to the present. The model was validated against available observed satellite altimeter and buoy data, particularly in the nearshore, and was found to be excellent. A strong spatial and seasonal variability was found for both significant wave heights, and the wave energy flux, particularly on the north and west coasts. A strong correlation between the North Atlantic Oscillation (NAO) teleconnection pattern and wave heights, wave periods, and peak direction in winter and also, to a lesser extent, in spring was identified.

  17. Impact of high resolution land surface initialization in Indian summer monsoon simulation using a regional climate model

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, C. K.; Rajeevan, M.; Rao, S. Vijaya Bhaskara

    2016-06-01

    The direct impact of high resolution land surface initialization on the forecast bias in a regional climate model in recent years over Indian summer monsoon region is investigated. Two sets of regional climate model simulations are performed, one with a coarse resolution land surface initial conditions and second one used a high resolution land surface data for initial condition. The results show that all monsoon years respond differently to the high resolution land surface initialization. The drought monsoon year 2009 and extended break periods were more sensitive to the high resolution land surface initialization. These results suggest that the drought monsoon year predictions can be improved with high resolution land surface initialization. Result also shows that there are differences in the response to the land surface initialization within the monsoon season. Case studies of heat wave and a monsoon depression simulation show that, the model biases were also improved with high resolution land surface initialization. These results show the need for a better land surface initialization strategy in high resolution regional models for monsoon forecasting.

  18. Thin polymer etalon arrays for high-resolution photoacoustic imaging

    PubMed Central

    Hou, Yang; Huang, Sheng-Wen; Ashkenazi, Shai; Witte, Russell; O’Donnell, Matthew

    2009-01-01

    Thin polymer etalons are demonstrated as high-frequency ultrasound sensors for three-dimensional (3-D) high-resolution photoacoustic imaging. The etalon, a Fabry-Perot optical resonator, consists of a thin polymer slab sandwiched between two gold layers. It is probed with a scanning continuous-wave (CW) laser for ultrasound array detection. Detection bandwidth of a 20-μm-diam array element exceeds 50 MHz, and the ultrasound sensitivity is comparable to polyvinylidene fluoride (PVDF) equivalents of similar size. In a typical photoacoustic imaging setup, a pulsed laser beam illuminates the imaging target, where optical energy is absorbed and acoustic waves are generated through the thermoelastic effect. An ultrasound detection array is formed by scanning the probing laser beam on the etalon surface in either a 1-D or a 2-D configuration, which produces 2-D or 3-D images, respectively. Axial and lateral resolutions have been demonstrated to be better than 20 μm. Detailed characterizations of the optical and acoustical properties of the etalon, as well as photoacoustic imaging results, suggest that thin polymer etalon arrays can be used as ultrasound detectors for 3-D high-resolution photoacoustic imaging applications. PMID:19123679

  19. In-Situ Wave Observations in the High Resolution Air-Sea Interaction DRI

    DTIC Science & Technology

    2007-09-30

    directional spectra extracted from the Coastal Data Information Program ( CDIP ) Harvest buoy located in 204 m depth off Point Conception. The initial sea...frequency-directional wave spectra (source: CDIP ). Upper panels: Typical summer-time South swell in the presence of a light North-West wind sea

  20. Experimental study of microwave-induced thermoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Jacobs, Ryan T.

    Microwave-Induced Thermoacoustic Imaging (TAI) is a noninvasive hybrid modality which improves contrast by using thermoelastic wave generation induced by microwave absorption. Ultrasonography is widely used in medical practice as a low-cost alternative and supplement to magnetic resonance imaging (MRI). Although ultrasonography has relatively high image resolution (depending on the ultrasonic wavelength at diagnostic frequencies), it suffers from low image contrast of soft tissues. In this work samples are irradiated with sub-microsecond electromagnetic pulses inducing acoustic waves in the sample that are then detected with an unfocused transducer. The advantage of this hybrid modality is the ability to take advantage of the microwave absorption coefficients which provide high contrast in tissue samples. This in combination with the superior spatial resolution of ultrasound waves is important to providing a low-cost alternative to MRI and early breast cancer detection methods. This work describes the implementation of a thermoacoustic experiment using a 5 kW peak power microwave source.

  1. Overview of Microwave and Millimeter Wave Testing Activities for the Inspection of the Space Shuttle SOH and Heat Tiles

    NASA Technical Reports Server (NTRS)

    Zoughi, R.

    2005-01-01

    Microwave and millimeter wave nondestructive testing and evaluation methods, have shown great potential for inspecting the Space Shuttle s external tank spray on foam insulation (SOFI) and acreage heat tiles. These methods are capable of producing high-resolution images of et interior of these structures. To this end, several different microwave and millimeter wave nondestructive testing methods have been investigated for this purpose. These methods have included near-field as well as focused approaches ranging in frequency from 10 GHz to beyond 100 GHz. Additionally, synthetic aperture focusing methods have also been developed in this regime for obtaining high-resolution images of the interior of these critical structures. These methods possess the potential for producing 3D images of these structures in a relatively short amount of time. This paper presents a summary of these activities in addition to providing examples of images produced using these diverse methods.

  2. Direct observation and imaging of a spin-wave soliton with p-like symmetry

    NASA Astrophysics Data System (ADS)

    Bonetti, S.; Kukreja, R.; Chen, Z.; Macià, F.; Hernàndez, J. M.; Eklund, A.; Backes, D.; Frisch, J.; Katine, J.; Malm, G.; Urazhdin, S.; Kent, A. D.; Stöhr, J.; Ohldag, H.; Dürr, H. A.

    2015-11-01

    Spin waves, the collective excitations of spins, can emerge as nonlinear solitons at the nanoscale when excited by an electrical current from a nanocontact. These solitons are expected to have essentially cylindrical symmetry (that is, s-like), but no direct experimental observation exists to confirm this picture. Using a high-sensitivity time-resolved magnetic X-ray microscopy with 50 ps temporal resolution and 35 nm spatial resolution, we are able to create a real-space spin-wave movie and observe the emergence of a localized soliton with a nodal line, that is, with p-like symmetry. Micromagnetic simulations explain the measurements and reveal that the symmetry of the soliton can be controlled by magnetic fields. Our results broaden the understanding of spin-wave dynamics at the nanoscale, with implications for the design of magnetic nanodevices.

  3. Preface: MHD wave phenomena in the solar interior and atmosphere

    NASA Astrophysics Data System (ADS)

    Fedun, Viktor; Srivastava, A. K.

    2018-01-01

    The Sun is our nearest star and this star produces various plasma wave processes and energetic events. These phenomena strongly influence interplanetary plasma dynamics and contribute to space-weather. The understanding of solar atmospheric dynamics requires hi-resolution modern observations which, in turn, further advances theoretical models of physical processes in the solar interior and atmosphere. In particular, it is essential to connect the magnetohydrodynamic (MHD) wave processes with the small and large-scale solar phenomena vis-a-vis transport of energy and mass. With the advent of currently available and upcoming high-resolution space (e.g., IRIS, SDO, Hinode, Aditya-L1, Solar-C, Solar Orbiter), and ground-based (e.g., SST, ROSA, NLST, Hi-C, DKIST, EST, COSMO) observations, solar physicists are able to explore exclusive wave processes in various solar magnetic structures at different spatio-temporal scales.

  4. Air-Sea Momentum and Enthalpy Exchange in Coupled Atmosphere-Wave-Ocean Modeling of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Curcic, M.; Chen, S. S.

    2016-02-01

    The atmosphere and ocean are coupled through momentum, enthalpy, and mass fluxes. Accurate representation of these fluxes in a wide range of weather and climate conditions is one of major challenges in prediction models. Their current parameterizations are based on sparse observations in low-to-moderate winds and are not suited for high wind conditions such as tropical cyclones (TCs) and winter storms. In this study, we use the Unified Wave INterface - Coupled Model (UWIN-CM), a high resolution, fully-coupled atmosphere-wave-ocean model, to better understand the role of ocean surface waves in mediating air-sea momentum and enthalpy exchange in TCs. In particular, we focus on the explicit treatment of wave growth and dissipation for calculating atmospheric and oceanic stress, and its role in upper ocean mixing and surface cooling in the wake of the storm. Wind-wave misalignment and local wave disequilibrium result in difference between atmospheric and oceanic stress being largest on the left side of the storm. We find that explicit wave calculation in the coupled model reduces momentum transfer into the ocean by more than 10% on average, resulting in reduced cooling in TC's wake and subsequent weakening of the storm. We also investigate the impacts of sea surface temperature and upper ocean parameterization on air-sea enthalpy fluxes in the fully coupled model. High-resolution UWIN-CM simulations of TCs with various intensities and structure are conducted in this study to better understand the complex TC-ocean interaction and improve the representation of air-sea coupling processes in coupled prediction models.

  5. High-Resolution Near Real-Time Drought Monitoring in South Asia

    NASA Astrophysics Data System (ADS)

    Aadhar, S.; Mishra, V.

    2017-12-01

    Drought in South Asia affect food and water security and pose challenges for millions of people. For policy-making, planning and management of water resources at the sub-basin or administrative levels, high-resolution datasets of precipitation and air temperature are required in near-real time. Here we develop a high resolution (0.05 degree) bias-corrected precipitation and temperature data that can be used to monitor near real-time drought conditions over South Asia. Moreover, the dataset can be used to monitor climatic extremes (heat waves, cold waves, dry and wet anomalies) in South Asia. A distribution mapping method was applied to correct bias in precipitation and air temperature (maximum and minimum), which performed well compared to the other bias correction method based on linear scaling. Bias-corrected precipitation and temperature data were used to estimate Standardized precipitation index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) to assess the historical and current drought conditions in South Asia. We evaluated drought severity and extent against the satellite-based Normalized Difference Vegetation Index (NDVI) anomalies and satellite-driven Drought Severity Index (DSI) at 0.05˚. We find that the bias-corrected high-resolution data can effectively capture observed drought conditions as shown by the satellite-based drought estimates. High resolution near real-time dataset can provide valuable information for decision-making at district and sub- basin levels.

  6. GOW2.0: A global wave hindcast of high resolution

    NASA Astrophysics Data System (ADS)

    Menendez, Melisa; Perez, Jorge; Losada, Inigo

    2016-04-01

    The information provided by reconstructions of historical wind generated waves is of paramount importance for a variety of coastal and offshore purposes (e.g. risk assessment, design of costal structures and coastal management). Here, a new global wave hindcast (GOW2.0) is presented. This hindcast is an update of GOW1.0 (Reguero et al. 2012) motivated by the emergence of new settings and atmospheric information from reanalysis during recent years. GOW2.0 is based on version 4.18 of WaveWatch III numerical model (Tolman, 2014). Main features of the model set-up are the analysis and selection of recent source terms concerning wave generation and dissipation (Ardhuin et al. 2010, Zieger et al., 2015) and the implementation of obstruction grids to improve the modeling of wave shadowing effects in line with the approach described in Chawla and Tolman (2007). This has been complemented by a multigrid system and the use of the hourly wind and ice coverage from the Climate Forecast System Reanalysis, CFSR (30km spatial resolution approximately). The multigrid scheme consists of a series of "two-way" nested domains covering the whole ocean basins at a 0.5° spatial resolution and continental shelfs worldwide at a 0.25° spatial resolution. In addition, a technique to reconstruct wave 3D spectra for any grid-point is implemented from spectral partitioning information. A validation analysis of GOW2.0 outcomes has been undertaken considering wave spectral information from surface buoy stations and multi-mission satellite data for a spatial validation. GOW2.0 shows a substantial improvement over its predecessor for all the analyzed variables. In summary, GOW2.0 reconstructs historical wave spectral data and climate information from 1979 to present at hourly resolution providing higher spatial resolution over regions where local generated wind seas, bimodal-spectral behaviour and relevant swell transformations across the continental shelf are important. Ardhuin F, Rogers E, Babanin AV, et al (2010). Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation. J Phys Oceanogr. 2010;40(9):1917-1941. doi:10.1175/2010JPO4324.1. Chawla A, Tolman HL. Obstruction grids for spectral wave models. Ocean Model. 2008;22(1-2):12-25. doi:10.1016/j.ocemod.2008.01.003. Reguero BG, Menendez M, Mendez FJ, Minguez R, Losada IJ (2012). A Global Ocean Wave (GOW) calibrated reanalysis from 1948 onwards. Coastal Engineering, 65, 38-55. Tolman HL (2014). User manual and system documentation of WAVEWATCH III version 4.18. NOAA / NWS / NCEP / MMAB Tech Note. Zieger S, Babanin AV, Rogers WE, Young IR (2015). Observation-based source terms in the third-generation wave model WAVEWATCH. Ocean Modelling, 96, 2-25.

  7. Surface structure of imidazolium-based ionic liquids: Quantitative comparison between simulations and high-resolution RBS measurements.

    PubMed

    Nakajima, Kaoru; Nakanishi, Shunto; Lísal, Martin; Kimura, Kenji

    2016-03-21

    Elemental depth profiles of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([CnMIM][TFSI], n = 4, 6, 8) are measured using high-resolution Rutherford backscattering spectroscopy (HRBS). The profiles are compared with the results of molecular dynamics (MD) simulations. Both MD simulations and HRBS measurements show that the depth profiles deviate from the uniform stoichiometric composition in the surface region, showing preferential orientations of ions at the surface. The MD simulations qualitatively reproduce the observed HRBS profiles but the agreement is not satisfactory. The observed discrepancy is ascribed to the capillary waves. By taking account of the surface roughness induced by the capillary waves, the agreement becomes almost perfect.

  8. Surface structure of imidazolium-based ionic liquids: Quantitative comparison between simulations and high-resolution RBS measurements

    NASA Astrophysics Data System (ADS)

    Nakajima, Kaoru; Nakanishi, Shunto; Lísal, Martin; Kimura, Kenji

    2016-03-01

    Elemental depth profiles of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([CnMIM][TFSI], n = 4, 6, 8) are measured using high-resolution Rutherford backscattering spectroscopy (HRBS). The profiles are compared with the results of molecular dynamics (MD) simulations. Both MD simulations and HRBS measurements show that the depth profiles deviate from the uniform stoichiometric composition in the surface region, showing preferential orientations of ions at the surface. The MD simulations qualitatively reproduce the observed HRBS profiles but the agreement is not satisfactory. The observed discrepancy is ascribed to the capillary waves. By taking account of the surface roughness induced by the capillary waves, the agreement becomes almost perfect.

  9. Processing and interpretation of experiments in the microwave interferometry of shock waves in a weakly ionized plasma

    NASA Astrophysics Data System (ADS)

    Ershov, A. P.; Klishin, S. V.; Kuzovnikov, S. V.; Ponomareva, S. E.; Pyt'ev, Iu. P.

    1990-12-01

    The reduction method is applied to the microwave interferometry of shock waves in a weakly ionized plasma, making it possible to improve the spatial resolution of the instrument. It is shown experimentally that the structure of the shock wave electron component in a high-frequency discharge plasma in atomic and molecular gases is characterized by the presence of a precursor in the form of a rarefaction wave. The origin of the precursor is examined.

  10. Development of a Spot-Application Tool for Rapid, High-Resolution Simulation of Wave-Driven Nearshore Hydrodynamics

    DTIC Science & Technology

    2013-09-30

    flow models, such as Delft3D, with our developed Boussinesq -type model. The vision of this project is to develop an operational tool for the...situ measurements or large-scale wave models. This information will be used to drive the offshore wave boundary condition. • Execute the Boussinesq ...model to match with the Boussinesq -type theory would be one which can simulate sheared and stratified currents due to large-scale (non-wave) forcings

  11. Near-surface mapping using SH-wave and P-wave seismic land-streamer data acquisition in Illinois, U.S

    USGS Publications Warehouse

    Pugin, Andre J.M.; Larson, T.H.; Sargent, S.L.; McBride, J.H.; Bexfield, C.E.

    2004-01-01

    SH-wave and P-wave high-resolution seismic reflection combined with land-streamer technology provide 3D regional maps of geologic formations that can be associated with aquifers and aquitards. Examples for three study areas are considered to demonstrate this. In these areas, reflection profiling detected near-surface faulting and mapped a buried glacial valley and its aquifers in two settings. The resulting seismic data can be used directly to constrain hydrogeologic modeling of shallow aquifers.

  12. The Effects of Better Environmental Inputs in Estimating Sea Clutter

    DTIC Science & Technology

    1988-01-01

    3.2 A Spectral Ocean Wave Model: DWAVE 11 3.3 Limitations of DWAVE 11 4. HYBRID MODEL DEVELOPMENT 12 4.1 Overall Plan 12 4.2 High Resolution...intensive. 10 3.2 A Spectral Ocean Wave Model: DWAVE Most of the spectral ocean wave models give essentially the same type of outputs, for example, the...sea clutter estimation. A deep ocean wave model DWAVE by Offshore & Coastal Technologies, Inc. (OCTI) has been chosen because it can be run on a

  13. Deep-towed high resolution seismic imaging II: Determination of P-wave velocity distribution

    NASA Astrophysics Data System (ADS)

    Marsset, B.; Ker, S.; Thomas, Y.; Colin, F.

    2018-02-01

    The acquisition of high resolution seismic data in deep waters requires the development of deep towed seismic sources and receivers able to deal with the high hydrostatic pressure environment. The low frequency piezoelectric transducer of the SYSIF (SYstème Sismique Fond) deep towed seismic device comply with the former requirement taking advantage of the coupling of a mechanical resonance (Janus driver) and a fluid resonance (Helmholtz cavity) to produce a large frequency bandwidth acoustic signal (220-1050 Hz). The ability to perform deep towed multichannel seismic imaging with SYSIF was demonstrated in 2014, yet, the ability to determine P-wave velocity distribution wasn't achieved. P-wave velocity analysis relies on the ratio between the source-receiver offset range and the depth of the seismic reflectors, thus towing the seismic source and receivers closer to the sea bed will provide a better geometry for P-wave velocity determination. Yet, technical issues, related to the acoustic source directivity, arise for this approach in the particular framework of piezoelectric sources. A signal processing sequence is therefore added to the initial processing flow. Data acquisition took place during the GHASS (Gas Hydrates, fluid Activities and Sediment deformations in the western Black Sea) cruise in the Romanian waters of the Black Sea. The results of the imaging processing are presented for two seismic data sets acquired over gas hydrates and gas bearing sediments. The improvement in the final seismic resolution demonstrates the validity of the velocity model.

  14. All-optical optoacoustic microscopy system based on probe beam deflection technique

    NASA Astrophysics Data System (ADS)

    Maswadi, Saher M.; Tsyboulskic, Dmitri; Roth, Caleb C.; Glickman, Randolph D.; Beier, Hope T.; Oraevsky, Alexander A.; Ibey, Bennett L.

    2016-03-01

    It is difficult to achieve sub-micron resolution in backward mode OA microscopy using conventional piezoelectric detectors, because of wavefront distortions caused by components placed in the optical path, between the sample and the objective lens, that are required to separate the acoustic wave from the optical beam. As an alternate approach, an optoacoustic microscope (OAM) was constructed using the probe beam deflection technique (PBDT) to detect laserinduced acoustic signals. The all-optical OAM detects laser-generated pressure waves using a probe beam passing through a coupling medium, such as water, filling the space between the microscope objective lens and sample. The acoustic waves generated in the sample propagate through the coupling medium, causing transient changes in the refractive index that deflect the probe beam. These deflections are measured with a high-speed, balanced photodiode position detector. The deflection amplitude is directly proportional to the magnitude of the acoustic pressure wave, and provides the data required for image reconstruction. The sensitivity of the PBDT detector expressed as noise equivalent pressure was 12 Pa, comparable to that of existing high-performance ultrasound detectors. Because of the unimpeded working distance, a high numerical aperture objective lens, i.e. NA = 1, was employed in the OAM to achieve near diffraction-limited lateral resolution of 0.5 μm at 532nm. The all-optical OAM provides several benefits over current piezoelectric detector-based systems, such as increased lateral and axial resolution, higher sensitivity, robustness, and potentially more compatibility with multimodal instruments.

  15. High resolution observations of small-scale gravity waves and turbulence features in the OH airglow layer

    NASA Astrophysics Data System (ADS)

    Sedlak, René; Hannawald, Patrick; Schmidt, Carsten; Wüst, Sabine; Bittner, Michael

    2017-04-01

    A new version of the Fast Airglow Imager (FAIM) for the detection of atmospheric waves in the OH airglow layer has been set up at the German Remote Sensing Data Centre (DFD) of the German Aerospace Centre (DLR) at Oberpfaffenhofen (48.09 ° N, 11.28 ° E), Germany. The spatial resolution of the instrument is 17 m/pixel in zenith direction with a field of view (FOV) of 11.1 km x 9.0 km at the OH layer height of ca. 87 km. Since November 2015, the system has been in operation in two different setups (zenith angles 46 ° and 0 °) with a temporal resolution of 2.5 to 2.8 s. In a first case study we present observations of two small wave-like features that might be attributed to gravity wave instabilities. In order to spectrally analyse harmonic structures even on small spatial scales down to 550 m horizontal wavelength, we made use of the Maximum Entropy Method (MEM) since this method exhibits an excellent wavelength resolution. MEM further allows analysing relatively short data series, which considerably helps to reduce problems such as stationarity of the underlying data series from a statistical point of view. We present an observation of the subsequent decay of well-organized wave fronts into eddies, which we tentatively interpret in terms of an indication for the onset of turbulence. Another remarkable event which demonstrates the technical capabilities of the instrument was observed during the night of 4th to 5th April 2016. It reveals the disintegration of a rather homogenous brightness variation into several filaments moving in different directions and with different speeds. It resembles the formation of a vortex with a horizontal axis of rotation likely related to a vertical wind shear. This case shows a notable similarity to what is expected from theoretical modelling of Kelvin-Helmholtz instabilities (KHIs). The comparatively high spatial resolution of the presented new version of the FAIM airglow imager provides new insights into the structure of atmospheric wave instability and turbulent processes. Infrared imaging of wave dynamics on the sub-kilometre scale in the airglow layer supports the findings of theoretical simulations and modellings. Parts of this research received funding from the Bavarian State Ministry of the Environment and Consumer Protection.

  16. Survey of Ionospheric Pc3-5 ULF Wave Signatures in SuperDARN High Time Resolution Data

    NASA Astrophysics Data System (ADS)

    Shi, X.; Ruohoniemi, J. M.; Baker, J. B. H.; Lin, D.; Bland, E. C.; Hartinger, M. D.; Scales, W. A.

    2018-05-01

    Ionospheric signatures of ultralow frequency (ULF) wave in the Pc3-5 band (1.7-40.0 mHz) were surveyed using ˜6-s resolution data from Super Dual Auroral Radar Network (SuperDARN) radars in the Northern Hemisphere from 2010 to 2016. Numerical experiments were conducted to derive wave period-dependent thresholds for automated detection of ULF waves using the Lomb-Scargle periodogram technique. The spatial occurrence distribution, frequency characteristics, seasonal effects, solar wind condition, and geomagnetic activity level dependence have been studied. Pc5 wave events were found to dominate at high and polar latitudes with a most probable frequency of 2.08 ± 0.07 mHz, while Pc3-4 waves were relatively more common at midlatitudes on the nightside with a most probable frequency of 11.39 ± 0.14 mHz. At high latitudes, the occurrence rate of Pc4-5 waves maximizes in the dusk sector and during winter. These events tend to occur during low geomagnetic activity and northward interplanetary magnetic field. For the category of radially bounded but longitudinally extended Pc4 events in the duskside ionosphere, an internal driving source is suggested. At midlatitudes, the poloidal Pc3-4 occurrence rate maximizes premidnight and during equinox. This tendency becomes more prominent with increasing auroral electrojet (AE) index and during southward interplanetary magnetic field, which suggests that many of these events are Pi2 and Pc3-4 pulsations associated with magnetotail dynamics during active geomagnetic intervals. The overall occurrence rate of Pc3-5 wave events is lowest in summer, which suggests that the ionospheric conductivity plays a role in controlling ULF wave occurrence.

  17. Chorus Waves Modulation of Langmuir Waves in the Radiation Belts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jinxing; Bortnik, Jacob; An, Xin

    Using high-resolution waveforms measured by the Van Allen Probes, we report a novel observation in the radiation belts. Namely, we show that multiband, discrete, rising-tone whistler-mode chorus emissions exhibit a one-to-one correlation with Langmuir wave bursts. Moreover, the periodic Langmuir wave bursts are generally observed at the phase location where the chorus wave E || component is oriented opposite to its propagation direction. The electron measurements show a beam in phase space density at the particle velocity that matches the parallel phase velocity of the chorus waves. Based on this evidence, we conclude that the chorus waves accelerate the suprathermalmore » electrons via Landau resonance, and generate a localized electron beam in phase space density. Consequently, the Langmuir waves are excited locally and are modulated by the chorus wave phase. As a result, this microscale interaction between chorus waves and high frequency electrostatic waves provides a new insight into the nonlinear wave-particle interaction process.« less

  18. Chorus Waves Modulation of Langmuir Waves in the Radiation Belts

    DOE PAGES

    Li, Jinxing; Bortnik, Jacob; An, Xin; ...

    2017-11-20

    Using high-resolution waveforms measured by the Van Allen Probes, we report a novel observation in the radiation belts. Namely, we show that multiband, discrete, rising-tone whistler-mode chorus emissions exhibit a one-to-one correlation with Langmuir wave bursts. Moreover, the periodic Langmuir wave bursts are generally observed at the phase location where the chorus wave E || component is oriented opposite to its propagation direction. The electron measurements show a beam in phase space density at the particle velocity that matches the parallel phase velocity of the chorus waves. Based on this evidence, we conclude that the chorus waves accelerate the suprathermalmore » electrons via Landau resonance, and generate a localized electron beam in phase space density. Consequently, the Langmuir waves are excited locally and are modulated by the chorus wave phase. As a result, this microscale interaction between chorus waves and high frequency electrostatic waves provides a new insight into the nonlinear wave-particle interaction process.« less

  19. Turbulent Structure Under Short Fetch Wind Waves

    DTIC Science & Technology

    2015-12-01

    1970) developed the LFT utilizing the concurrent measurement of sea surface elevation (η) and the near surface velocities to isolate the wave...Layers and Air-Sea Transfer program by making very high spatial resolution profile measurements of the 3-D velocity field into the crest-trough...distribution is unlimited TURBULENT STRUCTURE UNDER SHORT FETCH WIND WAVES Michael J. Papa Lieutenant Commander, United States Navy B.S., United States Naval

  20. Wave equation datuming applied to marine OBS data and to land high resolution seismic profiling

    NASA Astrophysics Data System (ADS)

    Barison, Erika; Brancatelli, Giuseppe; Nicolich, Rinaldo; Accaino, Flavio; Giustiniani, Michela; Tinivella, Umberta

    2011-03-01

    One key step in seismic data processing flows is the computation of static corrections, which relocate shots and receivers at the same datum plane and remove near surface weathering effects. We applied a standard static correction and a wave equation datuming and compared the obtained results in two case studies: 1) a sparse ocean bottom seismometers dataset for deep crustal prospecting; 2) a high resolution land reflection dataset for hydrogeological investigation. In both cases, a detailed velocity field, obtained by tomographic inversion of the first breaks, was adopted to relocate shots and receivers to the datum plane. The results emphasize the importance of wave equation datuming to properly handle complex near surface conditions. In the first dataset, the deployed ocean bottom seismometers were relocated to the sea level (shot positions) and a standard processing sequence was subsequently applied to the output. In the second dataset, the application of wave equation datuming allowed us to remove the coherent noise, such as ground roll, and to improve the image quality with respect to the application of static correction. The comparison of the two approaches evidences that the main reflecting markers are better resolved when the wave equation datuming procedure is adopted.

  1. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes

    2005-09-01

    The objective of this research project is to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data to observe changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansasmore » City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 18 months of seismic monitoring, one baseline and six monitor surveys clearly imaged changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators.« less

  2. Kinetic energy spectra, vertical resolution and dissipation in high-resolution atmospheric simulations.

    NASA Astrophysics Data System (ADS)

    Skamarock, W. C.

    2017-12-01

    We have performed week-long full-physics simulations with the MPAS global model at 15 km cell spacing using vertical mesh spacings of 800, 400, 200 and 100 meters in the mid-troposphere through the mid-stratosphere. We find that the horizontal kinetic energy spectra in the upper troposphere and stratosphere does not converge with increasing vertical resolution until we reach 200 meter level spacing. Examination of the solutions indicates that significant inertia-gravity waves are not vertically resolved at the lower vertical resolutions. Diagnostics from the simulations indicate that the primary kinetic energy dissipation results from the vertical mixing within the PBL parameterization and from the gravity-wave drag parameterization, with smaller but significant contributions from damping in the vertical transport scheme and from the horizontal filters in the dynamical core. Most of the kinetic energy dissipation in the free atmosphere occurs within breaking mid-latitude baroclinic waves. We will briefly review these results and their implications for atmospheric model configuration and for atmospheric dynamics, specifically that related to the dynamics associated with the mesoscale kinetic energy spectrum.

  3. High-resolution Hydrodynamic Simulation of Tidal Detonation of a Helium White Dwarf by an Intermediate Mass Black Hole

    NASA Astrophysics Data System (ADS)

    Tanikawa, Ataru

    2018-05-01

    We demonstrate tidal detonation during a tidal disruption event (TDE) of a helium (He) white dwarf (WD) with 0.45 M ⊙ by an intermediate mass black hole using extremely high-resolution simulations. Tanikawa et al. have shown tidal detonation in results of previous studies from unphysical heating due to low-resolution simulations, and such unphysical heating occurs in three-dimensional (3D) smoothed particle hydrodynamics (SPH) simulations even with 10 million SPH particles. In order to avoid such unphysical heating, we perform 3D SPH simulations up to 300 million SPH particles, and 1D mesh simulations using flow structure in the 3D SPH simulations for 1D initial conditions. The 1D mesh simulations have higher resolutions than the 3D SPH simulations. We show that tidal detonation occurs and confirm that this result is perfectly converged with different space resolution in both 3D SPH and 1D mesh simulations. We find that detonation waves independently arise in leading parts of the WD, and yield large amounts of 56Ni. Although detonation waves are not generated in trailing parts of the WD, the trailing parts would receive detonation waves generated in the leading parts and would leave large amounts of Si group elements. Eventually, this He WD TDE would synthesize 56Ni of 0.30 M ⊙ and Si group elements of 0.08 M ⊙, and could be observed as a luminous thermonuclear transient comparable to SNe Ia.

  4. Diffraction-limited real-time terahertz imaging by optical frequency up-conversion in a DAST crystal.

    PubMed

    Fan, Shuzhen; Qi, Feng; Notake, Takashi; Nawata, Kouji; Takida, Yuma; Matsukawa, Takeshi; Minamide, Hiroaki

    2015-03-23

    Real-time terahertz (THz) wave imaging has wide applications in areas such as security, industry, biology, medicine, pharmacy, and the arts. This report describes real-time room-temperature THz imaging by nonlinear optical frequency up-conversion in an organic 4-dimethylamino-N'-methyl-4'-stilbazolium tosylate (DAST) crystal, with high resolution reaching the diffraction limit. THz-wave images were converted to the near infrared region and then captured using an InGaAs camera in a tandem imaging system. The resolution of the imaging system was analyzed. Diffraction and interference of THz wave were observed in the experiments. Videos are supplied to show the interference pattern variation that occurs with sample moving and tilting.

  5. Effects of wave-induced forcing on a circulation model of the North Sea

    NASA Astrophysics Data System (ADS)

    Staneva, Joanna; Alari, Victor; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian

    2017-04-01

    The effect of wind waves on water level and currents during two storms in the North Sea is investigated using a high-resolution NEMO model forced with fluxes and fields from a high-resolution wave model. The additional terms accounting for wave-current interaction that are considered in this study are the Stokes-Coriolis force and the sea-state dependent energy and momentum fluxes. The individual and collective role of these processes is quantified and the results are compared with a control run without wave effects as well as against current and water level measurements from coastal stations. We find a better agreement with observations when the circulation model is forced by sea-state dependent fluxes, especially in extreme events. The two extreme events, the storm Christian (25-27 October 2013), and about a month later, the storm Xaver (5-7 December 2013), induce different wave and surge conditions over the North Sea. Including the wave effects in the circulation model for the storm Xaver raises the modelled surge by more than 40 cm compared with the control run in the German Bight area. For the storm Christian, a difference of 20-30 cm in the surge level between the wave-forced and the stand-alone ocean model is found over the whole southern part of the North Sea. Moreover, the modelled vertical velocity profile fits the observations very well when the wave forcing is accounted for. The contribution of wave-induced forcing has been quantified indicating that this represents an important mechanism for improving water level and current predictions.

  6. Effects of wave-induced forcing on a circulation model of the North Sea

    NASA Astrophysics Data System (ADS)

    Staneva, Joanna; Alari, Victor; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian

    2017-01-01

    The effect of wind waves on water level and currents during two storms in the North Sea is investigated using a high-resolution Nucleus for European Modelling of the Ocean (NEMO) model forced with fluxes and fields from a high-resolution wave model. The additional terms accounting for wave-current interaction that are considered in this study are the Stokes-Coriolis force, the sea-state-dependent energy and momentum fluxes. The individual and collective role of these processes is quantified and the results are compared with a control run without wave effects as well as against current and water-level measurements from coastal stations. We find a better agreement with observations when the circulation model is forced by sea-state-dependent fluxes, especially in extreme events. The two extreme events, the storm Christian (25-27 October 2013), and about a month later, the storm Xaver (5-7 December 2013), induce different wave and surge conditions over the North Sea. Including the wave effects in the circulation model for the storm Xaver raises the modelled surge by more than 40 cm compared with the control run in the German Bight area. For the storm Christian, a difference of 20-30 cm in the surge level between the wave-forced and the stand-alone ocean model is found over the whole southern part of the North Sea. Moreover, the modelled vertical velocity profile fits the observations very well when the wave forcing is accounted for. The contribution of wave-induced forcing has been quantified indicating that this represents an important mechanism for improving water-level and current predictions.

  7. A High-Resolution Study of Quasiperiodic Radio Emissions Observed by the Galileo Plasma Wave Instrument

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Christopher, I.; Granroth, L. J.

    2001-01-01

    We have conducted a study of quasiperiodic emission observed by the plasma wave instrument on board the Galileo spacecraft. These emissions appear as broadband bursts with dominant periods ranging from 10 min to over 40 min. For these emissions we have explicitly analyzed the high-resolution (waveform) data to determine the presence of impulsive, solitary signatures. Our investigations have indicated that the broadband bursts, as well as the background more narrowband continuum emission, are composed of a highly turbulent spectrum. Within the broadband burst, however, there are higher-frequency components present, but no impulsive electrostatic signatures. Also significantly, the broadband bursts show no low-frequency dispersion. We conclude that the bursts are consistent with a distant, electromagnetic source, probably in the near-Jupiter vicinity.

  8. Longitudinal Plasmoid in High-Speed Vortex Gas Flow Created by Capacity HF Discharge

    DTIC Science & Technology

    2010-10-28

    interferometer with high space resolution, PIV method, FTIR spectrometer, optical spectrometer, pressure sensors with high time resolution, IR pyrometer and...of strong LP-vortex interaction. Intensive acoustic waves are created by CHFD in swirl flow in this regime. 38. Study of control of a longitudinal...quartz tube, 4- HF ball electrode, 5- Tesla’s transformer, 6- microwave interferometer, 7- video camera, 8-optical pyrometer , 9-pressure sensor, 10

  9. A long-time, high spatiotemporal resolution optical recording system for membrane potential activity via real-time writing to the hard disk.

    PubMed

    Hirota, Akihiko; Ito, Shin-ichi

    2006-06-01

    Using real-time hard disk recording, we have developed an optical system for the long-duration detection of changes in membrane potential from 1,020 sites with a high temporal resolution. The signal-to-noise ratio was sufficient for analyzing the spreading pattern of excitatory waves in frog atria in a single sweep.

  10. High-resolution imaging of the low velocity layer in Alaskan subduction zone with scattered waves and interferometry

    NASA Astrophysics Data System (ADS)

    Kim, D.; Keranen, K. M.; Abers, G. A.; Kim, Y.; Li, J.; Shillington, D. J.; Brown, L. D.

    2017-12-01

    The physical factors that control the rupture process of great earthquakes at convergent plate boundaries remain incompletely understood. While recent developments in imaging using the teleseismic wavefield have led to marked advances at wavelengths of a couple kilometers to tens of kilometers, higher resolution imaging of the rupture zone would improve the resolution of imaging and thus provide improved parameter estimation, as the teleseismic wavefield is fundamentally limited by its low frequency content. This study compares and evaluates two seismic imaging techniques using the high-frequency signals from teleseismic coda versus earthquake scattered waves to image the subducting Yakutat oceanic plateau in the Alaska subduction zone. We use earthquakes recorded by the MOOS PASSCAL broadband deployment in southern Alaska. In our first method, we select local earthquakes that lie directly beneath and laterally near the recording array for imaging, and extract body wave information via a simple autocorrelation and stacking. Profiles analogous to seismic reflection profile are constructed using the near-vertically travelling waves. In our second method, we compute teleseismic receiver functions within the 0.02-1.0 Hz frequency band. Both results image interfaces that we associate with the subducting oceanic plate in Alaska-Aleutian system, with greater resolution than commonly used methods with teleseismic sources. Structural details from our results can further our understanding of the conditions and materials that characterize the subduction megathrusts, and the techniques can be employed in other regions along the Alaska-Aleutian system and at other convergent margins with suitable seismic arrays.

  11. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, E.S.

    1980-05-09

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  12. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, Edward S.

    1982-01-01

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  13. The Seismic Attenuation Structure of the East Pacific Rise

    DTIC Science & Technology

    1992-02-27

    Kanamori, R. W. Clayton, Three- dimensional attenuation structure of Kilauea -East rift zone, Hawaii , J. Geophys. Res., submitted, 1990. Holt, M., Underwater...and J. J. Zucca, Active high-resolution seismic tomography of compressional wave velocity and attenuation at Medicine Lake volcano , northern California...zones of anomalously high S-wave attenuation in the upper crust near Ruapehu and Ngauruhoe volcanoes , New Zealand, J. Volcanol. Geotherm. Res., 10, 125

  14. Influence of Gridded Standoff Measurement Resolution on Numerical Bathymetric Inversion

    NASA Astrophysics Data System (ADS)

    Hesser, T.; Farthing, M. W.; Brodie, K.

    2016-02-01

    The bathymetry from the surfzone to the shoreline incurs frequent, active movement due to wave energy interacting with the seafloor. Methodologies to measure bathymetry range from point-source in-situ instruments, vessel-mounted single-beam or multi-beam sonar surveys, airborne bathymetric lidar, as well as inversion techniques from standoff measurements of wave processes from video or radar imagery. Each type of measurement has unique sources of error and spatial and temporal resolution and availability. Numerical bathymetry estimation frameworks can use these disparate data types in combination with model-based inversion techniques to produce a "best-estimate of bathymetry" at a given time. Understanding how the sources of error and varying spatial or temporal resolution of each data type affect the end result is critical for determining best practices and in turn increase the accuracy of bathymetry estimation techniques. In this work, we consider an initial step in the development of a complete framework for estimating bathymetry in the nearshore by focusing on gridded standoff measurements and in-situ point observations in model-based inversion at the U.S. Army Corps of Engineers Field Research Facility in Duck, NC. The standoff measurement methods return wave parameters computed using linear wave theory from the direct measurements. These gridded datasets can range in temporal and spatial resolution that do not match the desired model parameters and therefore could lead to a reduction in the accuracy of these methods. Specifically, we investigate the affect of numerical resolution on the accuracy of an Ensemble Kalman Filter bathymetric inversion technique in relation to the spatial and temporal resolution of the gridded standoff measurements. The accuracies of the bathymetric estimates are compared with both high-resolution Real Time Kinematic (RTK) single-beam surveys as well as alternative direct in-situ measurements using sonic altimeters.

  15. Subnanosecond measurements of detonation fronts in solid high explosives

    NASA Astrophysics Data System (ADS)

    Sheffield, S. A.; Bloomquist, D. D.; Tarver, C. M.

    1984-04-01

    Detonation fronts in solid high explosives have been examined through measurements of particle velocity histories resulting from the interaction of a detonation wave with a thin metal foil backed by a water window. Using a high time resolution velocity-interferometer system, experiments were conducted on three explosives—a TATB (1,3,5-triamino-trinitrobenzene)-based explosive called PBX-9502, TNT (2,4,6-Trinitrotoluene), and CP (2-{5-cyanotetrazolato} pentaamminecobalt {III} perchlorate). In all cases, detonation-front rise times were found to be less than the 300 ps resolution of the interferometer system. The thermodynamic state in the front of the detonation wave was estimated to be near the unreacted state determined from an extrapolation of low-pressure unreacted Hugoniot data for both TNT and PBX-9502 explosives. Computer calculations based on an ignition and growth model of a Zeldovich-von Neumann-Doering (ZND) detonation wave show good agreement with the measurements. By using the unreacted Hugoniot and a JWL equation of state for the reaction products, we estimated the initial reaction rate in the high explosive after the detonation wave front interacted with the foil to be 40 μs-1 for CP, 60 μs-1 for TNT, and 80 μs-1 for PBX-9502. The shape of the profiles indicates the reaction rate decreases as reaction proceeds.

  16. Lake St. Clair: Storm Wave and Water Level Modeling

    DTIC Science & Technology

    2013-06-01

    R. A. Luettich, C. Dawson, V. J. Cardone , A. T. Cox, M. D. Powell, H. J. Westerink, and H. J. Roberts. 2010. A high resolution coupled riverine flow...Storm Wave and Water Level Modeling 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Tyler J. Hesser

  17. Kelvin waves: a comparison study between SABER and normal mode analysis of ECMWF data

    NASA Astrophysics Data System (ADS)

    Blaauw, Marten; Garcia, Rolando; Zagar, Nedjeljka; Tribbia, Joe

    2014-05-01

    Equatorial Kelvin waves spectra are sensitive to the multi-scale variability of their source of tropical convective forcing. Moreover, Kelvin wave spectra are modified upward by changes in the background winds and stability. Recent high resolution data from observations as well as analyses are capable of resolving the slower Kelvin waves with shorter vertical wavelength near the tropical tropopause. In this presentation, results from a quantitive comparison study of stratospheric Kelvin waves in satellite data (SABER) and analysis data from the ECMWF operational archive will be shown. Temperature data from SABER is extracted over a six year period (2007-2012) with an effective vertical resolution of 2 km. Spectral power of stratospheric Kelvin waves in SABER data is isolated by selecting symmetric and eastward spectral components in the 8-20 days range. Global data from ECMWF operational analysis is extracted for the same six years on 91 model levels (top level at 0.01 hPa) and 25 km horizontal resolution. Using three-dimensional orthogonal normal-mode expansions, the input mass and wind data from ECMWF is projected onto balanced rotational modes and unbalanced inertia-gravity modes, including spectral data for pure Kelvin waves. The results show good agreement between Kelvin waves in SABER and ECMWF analyses data for: (i) the frequency shift of Kelvin wave variance with height and (ii) vertical wavelengths. Variability with respect to QBO will also be discussed. In a previous study, discrepancies in the upper stratosphere were found to be 60% and are found here to be 10% (8-20 day averaged value), which can be explained by the better stratosphere representation in the 91 model level version of the ECMWF operational model. New discrepancies in Kelvin wave variance are found in the lower stratosphere at 20 km. Averaged spectral power over the 8-20 day range is found to be 35% higher in ECMWF compared to SABER data. We compared results at 20 km with additional satellite data from HIRDLS (1 km eff. resolution) and conclude preliminary that SABER data does not represent the shortest 20 day Kelvin waves as well as HIRDLS and ECMWF operational analysis.

  18. Plasma Waves Observed in the Cusp Turbulent Boundary Layer: An Analysis of High Time Resolution Wave and Particle Measurements from the Polar Spacecraft

    NASA Technical Reports Server (NTRS)

    Pickett, J. S.; Franz, J. R.; Scudder, J. D.; Menietti, J. D.; Gurnett, D. A.; Hospodarsky, G. B.; Braunger, R. M.; Kintner, P. M.; Kurth, W. S.

    2001-01-01

    The boundary layer located in the cusp and adjacent to the magnetopause is a region that is quite turbulent and abundant with waves. The Polar spacecraft's orbit and sophisticated instrumentation are ideal for studying this region of space. Our analysis of the waveform data obtained in this turbulent boundary layer shows broadband magnetic noise extending up to a few kilohertz (but less than the electron cyclotron frequency); sinusoidal bursts (a few tenths of a second) of whistler mode waves at around a few tens of hertz, a few hundreds of hertz, and just below the electron cyclotron frequency; and bipolar pulses, interpreted as electron phase-space holes. In addition, bursts of electron cyclotron harmonic waves are occasionally observed with magnetic components. We show evidence of broadband electrostatic bursts covering a range of approx. 3 to approx. 25 kHz (near but less than the plasma frequency) occurring in packets modulated at the frequency of some of the whistler mode waves. On the basis of high time resolution particle data from the Polar HYDRA instrument, we show that these bursts are consistent with generation by the resistive medium instability. The most likely source of the whistler mode waves is the magnetic reconnection site closest to the spacecraft, since the waves are observed propagating both toward and away from the Earth, are bursty, which is often the case with reconnection, and do not fit on the theoretical cold plasma dispersion relation curve.

  19. High resolution frequency to time domain transformations applied to the stepped carrier MRIS measurements

    NASA Technical Reports Server (NTRS)

    Ardalan, Sasan H.

    1992-01-01

    Two narrow-band radar systems are developed for high resolution target range estimation in inhomogeneous media. They are reformulations of two presently existing systems such that high resolution target range estimates may be achieved despite the use of narrow bandwidth radar pulses. A double sideband suppressed carrier radar technique originally derived in 1962, and later abandoned due to its inability to accurately measure target range in the presence of an interfering reflection, is rederived to incorporate the presence of an interfering reflection. The new derivation shows that the interfering reflection causes a period perturbation in the measured phase response. A high resolution spectral estimation technique is used to extract the period of this perturbation leading to accurate target range estimates independent of the signal-to-interference ratio. A non-linear optimal signal processing algorithm is derived for a frequency-stepped continuous wave radar system. The resolution enhancement offered by optimal signal processing of the data over the conventional Fourier Transform technique is clearly demonstrated using measured radar data. A method for modeling plane wave propagation in inhomogeneous media based on transmission line theory is derived and studied. Several simulation results including measurement of non-uniform electron plasma densities that develop near the heat tiles of a space re-entry vehicle are presented which verify the validity of the model.

  20. High-Resolution Genuinely Multidimensional Solution of Conservation Laws by the Space-Time Conservation Element and Solution Element Method

    NASA Technical Reports Server (NTRS)

    Himansu, Ananda; Chang, Sin-Chung; Yu, Sheng-Tao; Wang, Xiao-Yen; Loh, Ching-Yuen; Jorgenson, Philip C. E.

    1999-01-01

    In this overview paper, we review the basic principles of the method of space-time conservation element and solution element for solving the conservation laws in one and two spatial dimensions. The present method is developed on the basis of local and global flux conservation in a space-time domain, in which space and time are treated in a unified manner. In contrast to the modern upwind schemes, the approach here does not use the Riemann solver and the reconstruction procedure as the building blocks. The drawbacks of the upwind approach, such as the difficulty of rationally extending the 1D scalar approach to systems of equations and particularly to multiple dimensions is here contrasted with the uniformity and ease of generalization of the Conservation Element and Solution Element (CE/SE) 1D scalar schemes to systems of equations and to multiple spatial dimensions. The assured compatibility with the simplest type of unstructured meshes, and the uniquely simple nonreflecting boundary conditions of the present method are also discussed. The present approach has yielded high-resolution shocks, rarefaction waves, acoustic waves, vortices, ZND detonation waves, and shock/acoustic waves/vortices interactions. Moreover, since no directional splitting is employed, numerical resolution of two-dimensional calculations is comparable to that of the one-dimensional calculations. Some sample applications displaying the strengths and broad applicability of the CE/SE method are reviewed.

  1. Direct observation and imaging of a spin-wave soliton with p-like symmetry

    DOE PAGES

    Bonetti, S.; Kukreja, R.; Chen, Z.; ...

    2015-11-16

    Spin waves, the collective excitations of spins, can emerge as nonlinear solitons at the nanoscale when excited by an electrical current from a nanocontact. These solitons are expected to have essentially cylindrical symmetry (that is, s-like), but no direct experimental observation exists to confirm this picture. Using a high-sensitivity time-resolved magnetic X-ray microscopy with 50 ps temporal resolution and 35 nm spatial resolution, we are able to create a real-space spin-wave movie and observe the emergence of a localized soliton with a nodal line, that is, with p-like symmetry. Moreover, micromagnetic simulations explain the measurements and reveal that the symmetrymore » of the soliton can be controlled by magnetic fields. Our results broaden the understanding of spin-wave dynamics at the nanoscale, with implications for the design of magnetic nanodevices.« less

  2. Techniques for studying gravity waves and turbulence: Vertical wind speed power spectra from the troposphere and stratosphere obtained under light wind conditions

    NASA Technical Reports Server (NTRS)

    Ecklund, W. L.; Balsley, B. B.; Crochet, M.; Carter, D. A.; Riddle, A. C.; Garello, R.

    1983-01-01

    A joint France/U.S. experiment was conducted near the mouth of the Rhone river in southern France as part of the ALPEX program. This experiment used 3 vertically directed 50 MHz radars separated by 4 to 6 km. The main purpose of this experiment was to study the spatial characteristics of gravity waves. The good height resolution (750 meters) and time resolution (1 minute) and the continuous operation over many weeks have yielded high resolution vertical wind speed power spectra under a variety of synoptic conditions. Vertical spectra obtained during very quiet (low wind) conditions in the troposphere and lower stratosphere from a single site are presented.

  3. Liquid Crystal on Silicon Wavefront Corrector

    NASA Technical Reports Server (NTRS)

    Pouch, John; Miranda, Felix; Wang, Xinghua; Bos, Philip, J.

    2004-01-01

    A low cost, high resolution, liquid crystal on silicon, spatial light modulator has been developed for the correction of huge aberrations in an optical system where the polarization dependence and the chromatic nature are tolerated. However, the overall system performance suggests that this device is also suitable for real time correction of aberration in human eyes. This device has a resolution of 1024 x 768, and is driven by an XGA display driver. The effective stroke length of the device is 700 nm and 2000 nm for the visible and IR regions of the device, respectively. The response speeds are 50 Hz and 5 Hz, respectively, which are fast enough for real time adaptive optics for aberrations in human eyes. By modulating a wavefront of 2 pi, this device can correct for arbitrary high order wavefront aberrations since the 2-D pixel array is independently controlled by the driver. The high resolution and high accuracy of the device allow for diffraction limited correction of the tip and tilt or defocus without an additional correction loop. We have shown that for every wave of aberration, an 8 step blazed grating is required to achieve high diffraction efficiency around 80%. In light of this, up to 125 waves peak to valley of tip and tilt can be corrected if we choose the simplest aberration. Corrections of 34 waves of aberration, including high order Zernicke terms in a high magnification telescope, to diffraction limited performance (residual wavefront aberration less than 1/30 lambda at 632.8 nm) have been observed at high efficiency.

  4. High Resolution Measurements In U-Channel Technique And Implications For Sedimentological Purposes

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Cagatay, Namık; Sarı, Erol; Eris, Kadir; Biltekin, Demet; Akcer, Sena; Meydan Gokdere, Feray; Makaroglu, Ozlem; Bulkan, Ozlem; Arslan, Tugce; Albut, Gulum; Yalamaz, Burak; Yakupoglu, Nurettin; Sabuncu, Asen; Fillikci, Betul; Yıldız, Guliz

    2016-04-01

    Mechanical features in-stu drilling for sediment cores and vacuum forces that affect while obtaining the sediments to the core tube are formed concave shaped deformations. Even in the half sections, concave deformation form still appears. During MCSL measurements, Laminae which forms concave shaped deformation, show interference thus, values indicate overall results for several laminae instead of single lamina. These interferenced data is not appropriate for paleoceanography studies which require extend accuracy and high frequency data set to describe geochemical and climatological effects in high resolution. U-Channel technique provides accurate location and isolated values for each lamina. In EMCOL Laboratories, U-channel provide well saturated and air-free environment for samples and, by using these technique U-channels are prepared with modificated MCSL for data acquisition. Even below millimeter scale sampling rate provides the separation of each lamina and, physical properties of every each lamina. Cover of u-channel is made by homogenous plastic in shape of rectangular prism geometry. Thus, during measurement, MSCL sensors may harm the sediment; however u-channel covers the sediment from this unwanted deformation from MSCL itself. U-channel technique can present micro scale angular changes in the laminae. Measurements that have been taken from U-channel are compared with the traditional half core measurements. Interestingly, accuracy of the positions for each lamina is much more detailed and, the resolution is progressively higher. Results from P Wave and Gamma ray density provide removed interference effects on each lamina. In this technique, it is high recommended that U-channel widens the resolution of core logging and generates more cleansed measurements in MCSL. For P- Wave Used Synthetic seismograms that modelled by MSCL data set which created from U-channel technique dictates each anomalies related with climatological and geological changes. Keywords: u channel , P-Wave, Gamma Ray Density, High resolution measurements, Data accuracy

  5. High-Resolution Seismic Velocity and Attenuation Models of the Caucasus-Caspian Region

    DTIC Science & Technology

    2009-09-30

    region is part of the Alpine-Himalayan collision belt and is an area of complex structure accompanied by large variations in seismic wave velocities...velocity structure is developed using teleseismic receiver functions and surface waves. Joint inversion of surface wave group dispersion curves...Caucasus and the thinnest is in the Arabian Plate. Thin crust is also observed near the Caspian. The lithospheric mantle in the Greater Caucasus and the

  6. The relevance of the whitecapping term in wave forecasting. An analysis for the wave period of the Catalan coast.

    NASA Astrophysics Data System (ADS)

    Pallares, Elena; Espino, Manuel; Sánchez-Arcilla, Agustín

    2013-04-01

    The Catalan Coast is located in the North Western Mediterranean Sea. It is a region with highly heterogeneous wind and wave conditions, characterized by a microtidal environment, and economically very dependent from the sea and the coastal zone activities. Because some of the main coastal conflicts and management problems occur within a few kilometers of the land-ocean boundary, the level of resolution and accuracy from meteo-oceanographic predictions required is not currently available. The current work is focused on improving high resolution wave forecasting very near the coast. The SWAN wave model is used to simulate the waves in the area, and various buoy data and field campaigns are used to validate the results. The simulations are structured in four different domains covering all the North Western Mediterranean Sea, with a grid resolution from 9 km to 250 meters in coastal areas. Previous results show that the significant wave height is almost always underpredicted in this area, and the underprediction is higher during storm events. However, the error in the peak period and the mean period is almost always constantly under predicted with a bias between one and two seconds, plus some residual error. This systematic error represents 40% of the total error. To improve the initial results, the whiteccaping dissipation term is studied and modified. In the SWAN model, the whitecapping is mainly controlled by the steepness of the waves. Although the by default parameter is not depending on the wave number, there is a new formulation in the last SWAN version (40.81) to include it in the calculations. Previous investigations show that adjusting the dependence for the wave number improved the predictions for the wave energy at lower frequencies, solving the underprediction of the period mentioned before. In the present work different simulations are developed to calibrate the new formulation, obtaining important improvements in the results. For the significant wave height, the results are only modified during the storm events, when the wave height is higher. The main improvement is shown in the period, with a reduction of the bias mentioned before from -1.45 to 0.19 seconds on average for the more coastal locations.

  7. High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser [Invited].

    PubMed

    Hayashi, Shin'ichiro; Nawata, Koji; Sakai, Hiroshi; Taira, Takunori; Minamide, Hiroaki; Kawase, Kodo

    2012-01-30

    We report on the development of a high-peak-power, single-longitudinal-mode and tunable injection-seeded terahertz-wave parametric generator using MgO:LiNbO3, which operates at room temperature. The high peak power (> 120 W) is enough to allow easy detection by commercial and calibrated pyroelectric detectors, and the spectral resolution (< 10 GHz) is the Fourier transform limit of the sub-nanosecond terahertz-wave pulse. The tunability (1.2-2.8 THz) and the small footprint size (A3 paper, 29.7 × 42 cm) are suitable for a variety of applications.

  8. Quantitative 3D high resolution transmission ultrasound tomography: creating clinically relevant images (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wiskin, James; Klock, John; Iuanow, Elaine; Borup, Dave T.; Terry, Robin; Malik, Bilal H.; Lenox, Mark

    2017-03-01

    There has been a great deal of research into ultrasound tomography for breast imaging over the past 35 years. Few successful attempts have been made to reconstruct high-resolution images using transmission ultrasound. To this end, advances have been made in 2D and 3D algorithms that utilize either time of arrival or full wave data to reconstruct images with high spatial and contrast resolution suitable for clinical interpretation. The highest resolution and quantitative accuracy result from inverse scattering applied to full wave data in 3D. However, this has been prohibitively computationally expensive, meaning that full inverse scattering ultrasound tomography has not been considered clinically viable. Here we show the results of applying a nonlinear inverse scattering algorithm to 3D data in a clinically useful time frame. This method yields Quantitative Transmission (QT) ultrasound images with high spatial and contrast resolution. We reconstruct sound speeds for various 2D and 3D phantoms and verify these values with independent measurements. The data are fully 3D as is the reconstruction algorithm, with no 2D approximations. We show that 2D reconstruction algorithms can introduce artifacts into the QT breast image which are avoided by using a full 3D algorithm and data. We show high resolution gross and microscopic anatomic correlations comparing cadaveric breast QT images with MRI to establish imaging capability and accuracy. Finally, we show reconstructions of data from volunteers, as well as an objective visual grading analysis to confirm clinical imaging capability and accuracy.

  9. Experimental investigation on aero-optical aberration of shock wave/boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Ding, Haolin; Yi, Shihe; Fu, Jia; He, Lin

    2016-10-01

    After streaming through the flow field which including the expansion, shock wave, boundary, etc., the optical wave would be distorted by fluctuations in the density field. Interactions between laminar/turbulent boundary layer and shock wave contain large number complex flow structures, which offer a condition for studying the influences that different flow structures of the complex flow field have on the aero-optical aberrations. Interactions between laminar/turbulent boundary layer and shock wave are investigated in a Mach 3.0 supersonic wind tunnel, based on nanoparticle-tracer planar laser scattering (NPLS) system. Boundary layer separation/attachment, induced suppression waves, induced shock wave, expansion fan and boundary layer are presented by NPLS images. Its spatial resolution is 44.15 μm/pixel. Time resolution is 6ns. Based on the NPLS images, the density fields with high spatial-temporal resolution are obtained by the flow image calibration, and then the optical path difference (OPD) fluctuations of the original 532nm planar wavefront are calculated using Ray-tracing theory. According to the different flow structures in the flow field, four parts are selected, (1) Y=692 600pixel; (2) Y=600 400pixel; (3) Y=400 268pixel; (4) Y=268 0pixel. The aerooptical effects of different flow structures are quantitatively analyzed, the results indicate that: the compressive waves such as incident shock wave, induced shock wave, etc. rise the density, and then uplift the OPD curve, but this kind of shock are fixed in space position and intensity, the aero-optics induced by it can be regarded as constant; The induced shock waves are induced by the coherent structure of large size vortex in the interaction between turbulent boundary layer, its unsteady characteristic decides the induced waves unsteady characteristic; The space position and intensity of the induced shock wave are fixed in the interaction between turbulent boundary layer; The boundary layer aero-optics are induced by the coherent structure of large size vortex, which result in the fluctuation of OPD.

  10. Crustal seismic structure beneath the southwest Yunnan region from joint inversion of body-wave and surface wave data

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Thurber, C. H.; Zeng, X.; Zhang, L.

    2016-12-01

    Data from 71 broadband stations of a dense transportable array deployed in southwest Yunnan makes it possible to improve the resolution of the seismic model in this region. Continuous waveforms from 12 permanent stations of the China National Seismic Network were also used in this study. We utilized one-year continuous vertical component records to compute ambient noise cross-correlation functions (NCF). More than 3,000 NCFs were obtained and used to measure group velocities between 5 and 25 seconds with the frequency-time analysis method. This frequency band is most sensitive to crustal seismic structure, especially the upper and middle crust. The group velocity at short-period shows a clear azimuthal anisotropy with a north-south fast direction. The fast direction is consistent with previous seismic results revealed from shear wave splitting. More than 2,000 group velocity measurements were employed to invert the surface wave dispersion data for group velocity maps. We applied a finite difference forward modeling algorithm with an iterative inversion. A new body-wave and surface wave joint inversion algorithm (Fang et al., 2016) was utilized to improve the resolution of both P and S models. About 60,000 P wave and S wave arrivals from 1,780 local earthquakes, which occurred from May 2011 to December 2013 with magnitudes larger than 2.0, were manually picked. The new high-resolution seismic structure shows good consistency with local geological features, e.g. Tengchong Volcano. The earthquake locations also were refined with our new velocity model.

  11. Modeling long period swell in Southern California: Practical boundary conditions from buoy observations and global wave model predictions

    NASA Astrophysics Data System (ADS)

    Crosby, S. C.; O'Reilly, W. C.; Guza, R. T.

    2016-02-01

    Accurate, unbiased, high-resolution (in space and time) nearshore wave predictions are needed to drive models of beach erosion, coastal flooding, and alongshore transport of sediment, biota and pollutants. On highly sheltered shorelines, wave predictions are sensitive to the directions of onshore propagating waves, and nearshore model prediction error is often dominated by uncertainty in offshore boundary conditions. Offshore islands and shoals, and coastline curvature, create complex sheltering patterns over the 250km span of southern California (SC) shoreline. Here, regional wave model skill in SC was compared for different offshore boundary conditions created using offshore buoy observations and global wave model hindcasts (National Oceanographic and Atmospheric Administration Wave Watch 3, WW3). Spectral ray-tracing methods were used to transform incident offshore swell (0.04-0.09Hz) energy at high directional resolution (1-deg). Model skill is assessed for predictions (wave height, direction, and alongshore radiation stress) at 16 nearshore buoy sites between 2000 and 2009. Model skill using buoy-derived boundary conditions is higher than with WW3-derived boundary conditions. Buoy-driven nearshore model results are similar with various assumptions about the true offshore directional distribution (maximum entropy, Bayesian direct, and 2nd derivative smoothness). Two methods combining offshore buoy observations with WW3 predictions in the offshore boundary condition did not improve nearshore skill above buoy-only methods. A case example at Oceanside harbor shows strong sensitivity of alongshore sediment transport predictions to different offshore boundary conditions. Despite this uncertainty in alongshore transport magnitude, alongshore gradients in transport (e.g. the location of model accretion and erosion zones) are determined by the local bathymetry, and are similar for all predictions.

  12. Intraseasonal to interannual variability of Kelvin wave momentum fluxes as derived from high-resolution radiosonde data

    DOE PAGES

    Sjoberg, Jeremiah P.; Birner, Thomas; Johnson, Richard H.

    2017-07-26

    Observational estimates of Kelvin wave momentum fluxes in the tropical lower stratosphere remain challenging. Here we extend a method based on linear wave theory to estimate daily time series of these momentum fluxes from high-resolution radiosonde data. Daily time series are produced for sounding sites operated by the US Department of Energy (DOE) and from the recent Dynamics of the Madden–Julian Oscillation (DYNAMO) field campaign. Our momentum flux estimates are found to be robust to different data sources and processing and in quantitative agreement with estimates from prior studies. Testing the sensitivity to vertical resolution, our estimated momentum fluxes aremore » found to be most sensitive to vertical resolution greater than 1 km, largely due to overestimation of the vertical wavelength. Climatological analysis is performed over a selected 11-year span of data from DOE Atmospheric Radiation Measurement (ARM) radiosonde sites. Analyses of this 11-year span of data reveal the expected seasonal cycle of momentum flux maxima in boreal winter and minima in boreal summer, and variability associated with the quasi-biennial oscillation of maxima during easterly phase and minima during westerly phase. Comparison between periods with active convection that is either strongly or weakly associated with the Madden–Julian Oscillation (MJO) suggests that the MJO provides a nontrivial increase in the lowermost stratospheric momentum fluxes.« less

  13. Numerical modeling of landslide-generated tsunami using adaptive unstructured meshes

    NASA Astrophysics Data System (ADS)

    Wilson, Cian; Collins, Gareth; Desousa Costa, Patrick; Piggott, Matthew

    2010-05-01

    Landslides impacting into or occurring under water generate waves, which can have devastating environmental consequences. Depending on the characteristics of the landslide the waves can have significant amplitude and potentially propagate over large distances. Linear models of classical earthquake-generated tsunamis cannot reproduce the highly nonlinear generation mechanisms required to accurately predict the consequences of landslide-generated tsunamis. Also, laboratory-scale experimental investigation is limited to simple geometries and short time-scales before wave reflections contaminate the data. Computational fluid dynamics models based on the nonlinear Navier-Stokes equations can simulate landslide-tsunami generation at realistic scales. However, traditional chessboard-like structured meshes introduce superfluous resolution and hence the computing power required for such a simulation can be prohibitively high, especially in three dimensions. Unstructured meshes allow the grid spacing to vary rapidly from high resolution in the vicinity of small scale features to much coarser, lower resolution in other areas. Combining this variable resolution with dynamic mesh adaptivity allows such high resolution zones to follow features like the interface between the landslide and the water whilst minimising the computational costs. Unstructured meshes are also better suited to representing complex geometries and bathymetries allowing more realistic domains to be simulated. Modelling multiple materials, like water, air and a landslide, on an unstructured adaptive mesh poses significant numerical challenges. Novel methods of interface preservation must be considered and coupled to a flow model in such a way that ensures conservation of the different materials. Furthermore this conservation property must be maintained during successive stages of mesh optimisation and interpolation. In this paper we validate a new multi-material adaptive unstructured fluid dynamics model against the well-known Lituya Bay landslide-generated wave experiment and case study [1]. In addition, we explore the effect of physical parameters, such as the shape, velocity and viscosity of the landslide, on wave amplitude and run-up, to quantify their influence on the landslide-tsunami hazard. As well as reproducing the experimental results, the model is shown to have excellent conservation and bounding properties. It also requires fewer nodes than an equivalent resolution fixed mesh simulation, therefore minimising at least one aspect of the computational cost. These computational savings are directly transferable to higher dimensions and some initial three dimensional results are also presented. These reproduce the experiments of DiRisio et al. [2], where an 80cm long landslide analogue was released from the side of an 8.9m diameter conical island in a 50 × 30m tank of water. The resulting impact between the landslide and the water generated waves with an amplitude of 1cm at wave gauges around the island. The range of scales that must be considered in any attempt to numerically reproduce this experiment makes it an ideal case study for our multi-material adaptive unstructured fluid dynamics model. [1] FRITZ, H. M., MOHAMMED, F., & YOO, J. 2009. Lituya Bay Landslide Impact Generated Mega-Tsunami 50th Anniversary. Pure and Applied Geophysics, 166(1), 153-175. [2] DIRISIO, M., DEGIROLAMO, P., BELLOTTI, G., PANIZZO, A., ARISTODEMO, F.,

  14. A refraction-corrected tomographic algorithm for immersion laser-ultrasonic imaging of solids with piecewise linear surface profile

    NASA Astrophysics Data System (ADS)

    Zarubin, V.; Bychkov, A.; Simonova, V.; Zhigarkov, V.; Karabutov, A.; Cherepetskaya, E.

    2018-05-01

    In this paper, a technique for reflection mode immersion 2D laser-ultrasound tomography of solid objects with piecewise linear 2D surface profiles is presented. Pulsed laser radiation was used for generation of short ultrasonic probe pulses, providing high spatial resolution. A piezofilm sensor array was used for detection of the waves reflected by the surface and internal inhomogeneities of the object. The original ultrasonic image reconstruction algorithm accounting for refraction of acoustic waves at the liquid-solid interface provided longitudinal resolution better than 100 μm in the polymethyl methacrylate sample object.

  15. Spectral decomposition of internal gravity wave sea surface height in global models

    NASA Astrophysics Data System (ADS)

    Savage, Anna C.; Arbic, Brian K.; Alford, Matthew H.; Ansong, Joseph K.; Farrar, J. Thomas; Menemenlis, Dimitris; O'Rourke, Amanda K.; Richman, James G.; Shriver, Jay F.; Voet, Gunnar; Wallcraft, Alan J.; Zamudio, Luis

    2017-10-01

    Two global ocean models ranging in horizontal resolution from 1/12° to 1/48° are used to study the space and time scales of sea surface height (SSH) signals associated with internal gravity waves (IGWs). Frequency-horizontal wavenumber SSH spectral densities are computed over seven regions of the world ocean from two simulations of the HYbrid Coordinate Ocean Model (HYCOM) and three simulations of the Massachusetts Institute of Technology general circulation model (MITgcm). High wavenumber, high-frequency SSH variance follows the predicted IGW linear dispersion curves. The realism of high-frequency motions (>0.87 cpd) in the models is tested through comparison of the frequency spectral density of dynamic height variance computed from the highest-resolution runs of each model (1/25° HYCOM and 1/48° MITgcm) with dynamic height variance frequency spectral density computed from nine in situ profiling instruments. These high-frequency motions are of particular interest because of their contributions to the small-scale SSH variability that will be observed on a global scale in the upcoming Surface Water and Ocean Topography (SWOT) satellite altimetry mission. The variance at supertidal frequencies can be comparable to the tidal and low-frequency variance for high wavenumbers (length scales smaller than ˜50 km), especially in the higher-resolution simulations. In the highest-resolution simulations, the high-frequency variance can be greater than the low-frequency variance at these scales.

  16. CrIS High Resolution Hyperspectral Radiances

    NASA Astrophysics Data System (ADS)

    Hepplewhite, C. L.; Strow, L. L.; Motteler, H.; Desouza-Machado, S. G.; Tobin, D. C.; Martin, G.; Gumley, L.

    2014-12-01

    The CrIS hyperspectral sounder flying on Suomi-NPPpresently has reduced spectral resolution in the mid-wave andshort-wave spectral bands due to truncation of the interferograms inorbit. CrIS has occasionally downlinked full interferograms for thesebands (0.8 cm max path, or 0.625 cm-1 point spacing) for a feworbits up to a full day. Starting Oct.1, 2014 CrIS will be commandedto download full interferograms continuously for the remainder of themission, although NOAA will not immediately produce high-spectralresolution Sensor Data Records (SDRs). Although the originalmotivation for operating in high-resolution mode was improved spectralcalibration, these new data will also improve (1) vertical sensitivityto water vapor, and (2) greatly increase the CrIS sensitivity tocarbon monoxide. This should improve (1) NWP data assimilation ofwater vapor and (2) provide long-term continuity of carbon monoxideretrievals begun with MOPITT on EOS-TERRA and AIRS on EOS-AQUA. Wehave developed a SDR algorithm to produce calibrated high-spectralresolution radiances which includes several improvements to theexisting CrIS SDR algorithm, and will present validation of thesehigh-spectral resolution radiances using a variety of techniques,including bias evaluation versus NWP model data and inter-comparisonsto AIRS and IASI using simultaneous nadir overpasses (SNOs). Theauthors are presently working to implement this algorithm for NASASuomi NPP Program production of Earth System Data Records.

  17. On Electron-Scale Whistler Turbulence in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Narita, Y.; Nakamura, R.; Baumjohann, W.; Glassmeier, K.-H.; Motschmann, U.; Giles, B.; Magnes, W.; Fischer, D.; Torbert, R. B.; Russell, C. T.

    2016-01-01

    For the first time, the dispersion relation for turbulence magnetic field fluctuations in the solar wind is determined directly on small scales of the order of the electron inertial length, using four-point magnetometer observations from the Magnetospheric Multiscale mission. The data are analyzed using the high-resolution adaptive wave telescope technique. Small-scale solar wind turbulence is primarily composed of highly obliquely propagating waves, with dispersion consistent with that of the whistler mode.

  18. The wind sea and swell waves climate in the Nordic seas

    NASA Astrophysics Data System (ADS)

    Semedo, Alvaro; Vettor, Roberto; Breivik, Øyvind; Sterl, Andreas; Reistad, Magnar; Soares, Carlos Guedes; Lima, Daniela

    2015-02-01

    A detailed climatology of wind sea and swell waves in the Nordic Seas (North Sea, Norwegian Sea, and Barents Sea), based on the high-resolution reanalysis NORA10, developed by the Norwegian Meteorological Institute, is presented. The higher resolution of the wind forcing fields, and the wave model (10 km in both cases), along with the inclusion of the bottom effect, allowed a better description of the wind sea and swell features, compared to previous global studies. The spatial patterns of the swell-dominated regional wave fields are shown to be different from the open ocean, due to coastal geometry, fetch dimensions, and island sheltering. Nevertheless, swell waves are still more prevalent and carry more energy in the Nordic Seas, with the exception of the North Sea. The influence of the North Atlantic Oscillation on the winter regional wind sea and swell patterns is also presented. The analysis of the decadal trends of wind sea and swell heights during the NORA10 period (1958-2001) shows that the long-term trends of the total significant wave height (SWH) in the Nordic Seas are mostly due to swell and to the wave propagation effect.

  19. Accelerated defect visualization of microelectronic systems using binary search with fixed pitch-catch distance laser ultrasonic scanning

    NASA Astrophysics Data System (ADS)

    Park, Byeongjin; Sohn, Hoon

    2018-04-01

    The practicality of laser ultrasonic scanning is limited because scanning at a high spatial resolution demands a prohibitively long scanning time. Inspired by binary search, an accelerated defect visualization technique is developed to visualize defect with a reduced scanning time. The pitch-catch distance between the excitation point and the sensing point is also fixed during scanning to maintain a high signal-to-noise ratio of measured ultrasonic responses. The approximate defect boundary is identified by examining the interactions between ultrasonic waves and defect observed at the scanning points that are sparsely selected by a binary search algorithm. Here, a time-domain laser ultrasonic response is transformed into a spatial ultrasonic domain response using a basis pursuit approach so that the interactions between ultrasonic waves and defect can be better identified in the spatial ultrasonic domain. Then, the area inside the identified defect boundary is visualized as defect. The performance of the proposed defect visualization technique is validated through an experiment on a semiconductor chip. The proposed defect visualization technique accelerates the defect visualization process in three aspects: (1) The number of measurements that is necessary for defect visualization is dramatically reduced by a binary search algorithm; (2) The number of averaging that is necessary to achieve a high signal-to-noise ratio is reduced by maintaining the wave propagation distance short; and (3) With the proposed technique, defect can be identified with a lower spatial resolution than the spatial resolution required by full-field wave propagation imaging.

  20. Study of beach cusps via high resolution TLS acquisitions on the pocket beach of Porsmilin (Brittany)

    NASA Astrophysics Data System (ADS)

    Chabrol, C.; Jaud, M.; Delacourt, C.; Allemand, P.; Augereau, E.; Cuq, V.

    2011-12-01

    Beach cusps are rhythmic shoreline features made up of series of horns and embayments. Their build-up occurs in specific conditions (steep beachface, low-energy wave conditions...). These features can notably be characterized by the cusp spacing λ and their prominence ɛ (difference in beachface gradient between embayment and horn). At present, two main theories confront to explain the formation of such features on natural beaches : standing edge waves (special class of waves propagating longshore) and self-organisation hypothesis. - Standing edge wave theory proposes that the superimposition of incident waves and standing edge waves generates longshore variations of swash height linked with the position of edge wave nodes and anti-nodes. These variations of swash height result in regular zones of erosion. Depending on the context, different types of edge-waves may occur. The predicted beach cusp spacing is : λ = (g T^2 tanβ) / π for a sub-harmonic edge wave model λ = (g T^2 tanβ) / 2π for a synchronous edge wave model with : λ : beach cusp spacing (m) g : gravitational acceleration (9.81 m/s) T : incident wave period (s) tanβ : beach gradient - Self-organisation theory suggests that a combination of interactions and feedbacks between swash flow and beach topography leads to the growth of morphologic irregularities of a given wavelength (because of flow divergence or convergence), resulting in beach cusp formation and maintaining. The predicted beach cusp spacing is then : λ = f S with : λ : beach cusp spacing (m) S : horizontal extent of the swash flow (m) f : empirical constant (~1.5) Three multitemporal Terrestrial Laser Scan acquisitions have been carried out for three consecutive days on the sandy beach of Porsmilin (Brittany, France) with a spatial resolution varying from few centimetres to few metres. Moreover the hydrodynamic conditions have been obtained thanks to the Previmer project website (http://www.previmer.org/), notably based on WaveWatch3 and MARS-2D models. This study proposes to profit from the high resolution and accuracy of Terrestrial Laser data to measure the geometry and the spacing of beach cusps, to compare the measured parameters to the predicted ones (with both theories) and thus to attempt to identify the hydrodynamic process which sparks off their formation.

  1. Crust and Mantle Deformation Revealed from High-Resolution Radially Anisotropic Velocity Models

    NASA Astrophysics Data System (ADS)

    Li, A.; Dave, R.; Yao, Y.

    2017-12-01

    Love wave tomography, which can achieve a similar model resolution as Rayleigh wave, so far has limited applications to the USArray data. Recently, we have developed high-resolution Love wave phase velocity maps in the Wyoming craton and Texas using data at the Transportable Array stations. 3-D, radially anisotropic velocity models are obtained by jointly inverting Love and Rayleigh wave phase velocities. A high-velocity anomaly extending to about 200 km depth beneath central Wyoming correlates with negative radial anisotropy (Vsv>Vsh), suggesting that mantle downwelling develops under the cratonic lithosphere. Surprisingly, the significantly low velocity beneath the Yellowstone hotspot, which has been interpreted as partial melting and asthenospheric upwelling, is associated with the largest radial anisotropy (Vsh>Vsv) in the area. This observation does not support mantle upwelling. Instead, it indicates that the upper mantle beneath the hotspot has experienced strong shear deformation probably by the plate motion and large-scale mantle flow. In Texas, positive radial anisotropy in the lower crust extends from the coast to the Ouachita belt, which is characterized by high velocity and negative radial anisotropy. In the upper mantle, large variations of velocity and anisotropy exit under the coastal plain. A common feature in these anisotropic models is that high-velocity anomalies in the upper mantle often correlate with negative anisotropy (Vsv>Vsh) while low-velocity anomalies are associated with positive anisotropy (Vsh>Vsv). The manifestation of mantle downweling as negative radial anisotropy is largely due to the relatively high viscosity of the high-velocity mantle block, which is less affected by the surrounding large-scale horizontal flow. However, mantle upwelling, which is often associated with low-velocity anomalies, presumably low-viscosity mantle blocks, is invisible in radial anisotropy models. Such upwelling may happen too quickly to make last effects or too slow to alter the dominant shear deformation in the asthenosphere.

  2. Tailored pump compensation for Brillouin optical time-domain analysis with distributed Brillouin amplification.

    PubMed

    Kim, Young Hoon; Song, Kwang Yong

    2017-06-26

    A Brillouin optical time domain analysis (BOTDA) system utilizing tailored compensation for the propagation loss of the pump pulse is demonstrated for long-range and high-resolution distributed sensing. A continuous pump wave for distributed Brillouin amplification (DBA pump) of the pump pulse co-propagates with the probe wave, where gradual variation of the spectral width is additionally introduced to the DBA pump to obtain a uniform Brillouin gain along the position. In the experimental confirmation, a distributed strain measurement along a 51.2 km fiber under test is presented with a spatial resolution of 20 cm, in which the measurement error (σ) of less than 1.45 MHz and the near-constant Brillouin gain of the probe wave are maintained throughout the fiber.

  3. Performance modeling of terahertz (THz) and millimeter waves (mmW) pupil plane imaging

    NASA Astrophysics Data System (ADS)

    Mohammadian, Nafiseh; Furxhi, Orges; Zhang, Lei; Offermans, Peter; Ghazi, Galia; Driggers, Ronald

    2018-05-01

    Terahertz- (THz) and millimeter-wave sensors are becoming more important in industrial, security, medical, and defense applications. A major problem in these sensing areas is the resolution, sensitivity, and visual acuity of the imaging systems. There are different fundamental parameters in designing a system that have significant effects on the imaging performance. The performance of THz systems can be discussed in terms of two characteristics: sensitivity and spatial resolution. New approaches for design and manufacturing of THz imagers are a vital basis for developing future applications. Photonics solutions have been at the technological forefront in THz band applications. A single scan antenna does not provide reasonable resolution, sensitivity, and speed. An effective approach to imaging is placing a high-performance antenna in a two-dimensional antenna array to achieve higher radiation efficiency and higher resolution in the imaging systems. Here, we present the performance modeling of a pupil plane imaging system to find the resolution and sensitivity efficiency of the imaging system.

  4. Improving the wave forecast in the Catalan Coast

    NASA Astrophysics Data System (ADS)

    Pallares, Elena; Sanchez-Arcilla, Agustin; Espino, Manuel

    2014-05-01

    This study has been motivated by the limited accuracy of wave models under short-duration, fetch-limited conditions. This applies particularly to the wave period, and can be illustrated by the case of semi-enclosed domains with highly variable wind patterns such as the Catalan coast in the Spanish Mediterranean. The wave model SWAN version 40.91A is used here in three nested grids covering all the North-western Mediterranean Sea with resolution from 9 to 1 km, forced with high resolution wind patterns from BSC (Barcelona Supercomputing Center) for two study periods, the winter 2010 and the spring 2011. The results are validated in eight locations with different types of instrumentation. In order to improve the results, a modification of the whitecapping well-known formulation of Hasselmann (1974) has been considered. The delta coefficient is increased to adapt the dissipation to the growth rates actually observed in the region. This correction introduces a dependence on the squared wave number, improving the prediction of the energy spectra at lower frequencies. However, one may note that an over-prediction will occur for waves with longer fetch and/or duration. The results obtained show a clear improvement of the mean and peak wave periods for the study area, decreasing considerably the negative bias observed previously, while almost no change is observed in wave height due to the proposed modifications. These results can be generalized to the Spanish Mediterranean coast and could be exported to similar environments, characterized by young/moderate sea wave conditions due to limited fetch and transient wind driving. References: - Hasselmann, K., 1974. On the spectral dissipation of ocean waves due to whitecapping. Boundary-layer Meteorology,6,107-127.

  5. High-Resolution Large-Field-of-View Ultrasound Breast Imager

    DTIC Science & Technology

    2012-06-01

    plane waves all having the same wave vector magnitude 0k but propagating in different directions . This observation forms the mathematical basis of the...origin of the object Fourier space and is oriented opposite the propagation direction of the probing plane wave field. Moreover, the 43 radius of...in water. Each element was electrically tuned to match to the 50-Ohm impedance of an RF Amplifier powered by a 4.0 MHz electrical signal from a

  6. Coherence Volume of an Optical Wave Field with Broad Frequency and Angular Spectra

    NASA Astrophysics Data System (ADS)

    Lyakin, D. V.; Mysina, N. Yu.; Ryabukho, V. P.

    2018-03-01

    We consider the sizes of a region in a three-dimensional space in which an optical wave field excites mutually coherent perturbations. We discuss the conditions under which the length of this region along the direction of propagation of the wave field and, correspondingly, its volume are determined either by the width of the frequency spectrum of the field or by the width of its angular spectrum, or by the parameters of these spectra simultaneously. We obtain expressions for estimating extremely small values of the coherence volume of the fields with a broad frequency spectrum and an extremely broad angular spectrum. Using the notion of instantaneous speckle-modulation of the wave field, we give a physical interpretation to the occurrence of a limited coherence volume of the field. The length of the spatiotemporal coherence region in which mutually coherent perturbations occur at different times is determined. The coherence volume of a wave field that illuminates an object in high-resolution microscopy with frequency broadband light is considered. The conditions for the dominant influence of the angular or frequency spectra on the longitudinal length of the coherence region are given, and the conditions for the influence of the frequency spectrum width on the transverse coherence of the wave field are examined. We show that, when using fields with broad and ultrabroad spectra in high-resolution microscopy, this influence should be taken into account.

  7. Assessment of proximal pulmonary arterial stiffness using magnetic resonance imaging: effects of technique, age and exercise

    PubMed Central

    Kamalasanan, Anu; Cassidy, Deidre B; Struthers, Allan D; Lipworth, Brian J; Houston, J Graeme

    2016-01-01

    Introduction To compare the reproducibility of pulmonary pulse wave velocity (PWV) techniques, and the effects of age and exercise on these. Methods 10 young healthy volunteers (YHV) and 20 older healthy volunteers (OHV) with no cardiac or lung condition were recruited. High temporal resolution phase contrast sequences were performed through the main pulmonary arteries (MPAs), right pulmonary arteries (RPAs) and left pulmonary arteries (LPAs), while high spatial resolution sequences were obtained through the MPA. YHV underwent 2 MRIs 6 months apart with the sequences repeated during exercise. OHV underwent an MRI scan with on-table repetition. PWV was calculated using the transit time (TT) and flow area techniques (QA). 3 methods for calculating QA PWV were compared. Results PWV did not differ between the two age groups (YHV 2.4±0.3/ms, OHV 2.9±0.2/ms, p=0.1). Using a high temporal resolution sequence through the RPA using the QA accounting for wave reflections yielded consistently better within-scan, interscan, intraobserver and interobserver reproducibility. Exercise did not result in a change in either TT PWV (mean (95% CI) of the differences: −0.42 (−1.2 to 0.4), p=0.24) or QA PWV (mean (95% CI) of the differences: 0.10 (−0.5 to 0.9), p=0.49) despite a significant rise in heart rate (65±2 to 87±3, p<0.0001), blood pressure (113/68 to 130/84, p<0.0001) and cardiac output (5.4±0.4 to 6.7±0.6 L/min, p=0.004). Conclusions QA PWV performed through the RPA using a high temporal resolution sequence accounting for wave reflections yields the most reproducible measurements of pulmonary PWV. PMID:27843548

  8. Software-type Wave-Particle Interaction Analyzer on board the ARASE satellite

    NASA Astrophysics Data System (ADS)

    Katoh, Y.; Kojima, H.; Hikishima, M.; Takashima, T.; Asamura, K.; Miyoshi, Y.; Kasahara, Y.; Kasahara, S.; Mitani, T.; Higashio, N.; Matsuoka, A.; Ozaki, M.; Yagitani, S.; Yokota, S.; Matsuda, S.; Kitahara, M.; Shinohara, I.

    2017-12-01

    Wave-Particle Interaction Analyzer (WPIA) is a new type of instrumentation recently proposed by Fukuhara et al. (2009) for direct and quantitative measurements of wave-particle interactions. WPIA computes an inner product W(ti) = qE(ti)·vi, where ti is the detection timing of the i-th particle, E(ti) is the wave electric field vector at ti, and q and vi is the charge and the velocity vector of the i-th particle, respectively. Since W(ti) is the gain or the loss of the kinetic energy of the i-th particle, by accumulating W for detected particles, we obtain the net amount of the energy exchange in the region of interest. Software-type WPIA (S-WPIA) is installed in the ARASE satellite as a software function running on the mission data processor. S-WPIA on board the ARASE satellite uses electromagnetic field waveform measured by Waveform Capture (WFC) of Plasma Wave Experiment (PWE) and velocity vectors detected by Medium-Energy Particle Experiments - Electron Analyzer (MEP-e), High-Energy Electron Experiments (HEP), and Extremely High-Energy Electron Experiment (XEP). The prime target of S-WPIA is the measurement of the energy exchange between whistler-mode chorus emissions and energetic electrons in the inner magnetosphere. It is essential for S-WPIA to synchronize instruments in the time resolution better than the time scale of wave-particle interactions. Since the typical frequency of chorus emissions is a few kHz in the inner magnetosphere, the time resolution better than 10 micro-sec should be realized so as to measure the relative phase angle between wave and velocity vectors with the accuracy enough to detect the sign of W correctly. In the ARASE satellite, a dedicated system has been developed in order to realize the required time resolution for the inter-instruments communications. In this presentation, we show the principle of the WPIA and its significance as well as the implementation of S-WPIA on the ARASE satellite.

  9. An Off-Grid Turbo Channel Estimation Algorithm for Millimeter Wave Communications.

    PubMed

    Han, Lingyi; Peng, Yuexing; Wang, Peng; Li, Yonghui

    2016-09-22

    The bandwidth shortage has motivated the exploration of the millimeter wave (mmWave) frequency spectrum for future communication networks. To compensate for the severe propagation attenuation in the mmWave band, massive antenna arrays can be adopted at both the transmitter and receiver to provide large array gains via directional beamforming. To achieve such array gains, channel estimation (CE) with high resolution and low latency is of great importance for mmWave communications. However, classic super-resolution subspace CE methods such as multiple signal classification (MUSIC) and estimation of signal parameters via rotation invariant technique (ESPRIT) cannot be applied here due to RF chain constraints. In this paper, an enhanced CE algorithm is developed for the off-grid problem when quantizing the angles of mmWave channel in the spatial domain where off-grid problem refers to the scenario that angles do not lie on the quantization grids with high probability, and it results in power leakage and severe reduction of the CE performance. A new model is first proposed to formulate the off-grid problem. The new model divides the continuously-distributed angle into a quantized discrete grid part, referred to as the integral grid angle, and an offset part, termed fractional off-grid angle. Accordingly, an iterative off-grid turbo CE (IOTCE) algorithm is proposed to renew and upgrade the CE between the integral grid part and the fractional off-grid part under the Turbo principle. By fully exploiting the sparse structure of mmWave channels, the integral grid part is estimated by a soft-decoding based compressed sensing (CS) method called improved turbo compressed channel sensing (ITCCS). It iteratively updates the soft information between the linear minimum mean square error (LMMSE) estimator and the sparsity combiner. Monte Carlo simulations are presented to evaluate the performance of the proposed method, and the results show that it enhances the angle detection resolution greatly.

  10. Daily communication, conflict resolution, and marital quality in Chinese marriage: A three-wave, cross-lagged analysis.

    PubMed

    Li, Xiaomin; Cao, Hongjian; Zhou, Nan; Ju, Xiaoyan; Lan, Jing; Zhu, Qinyi; Fang, Xiaoyi

    2018-05-17

    Based on three annual waves of data obtained from 268 Chinese couples in the early years of marriage and using a three-wave, cross-lagged approach, the present study examined the associations among daily marital communication, marital conflict resolution, and marital quality. Results indicated unidirectional associations linking daily marital communication or marital conflict resolution to marital quality (instead of reciprocal associations); and when considered simultaneously in a single model, daily marital communication and marital conflict resolution explained variance in marital quality above and beyond each other. Furthermore, the authors also found a significant longitudinal, indirect association linking husbands' daily marital communication at Wave 1 to husbands' marital quality at Wave 3 via husbands' marital conflict resolution at Wave 2. Taken altogether, the current study adds to an emerging body of research aimed at clarifying: (a) the directionality of the associations between couple interactive processes and marital well-being; (b) the unique roles of daily marital communication and marital conflict resolution in predicting marital outcomes; and (c) how daily marital communication and marital conflict resolution may operate in conjunction with each other to shape the development of couple relationship well-being. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  11. Multiplane wave imaging increases signal-to-noise ratio in ultrafast ultrasound imaging.

    PubMed

    Tiran, Elodie; Deffieux, Thomas; Correia, Mafalda; Maresca, David; Osmanski, Bruno-Felix; Sieu, Lim-Anna; Bergel, Antoine; Cohen, Ivan; Pernot, Mathieu; Tanter, Mickael

    2015-11-07

    Ultrafast imaging using plane or diverging waves has recently enabled new ultrasound imaging modes with improved sensitivity and very high frame rates. Some of these new imaging modalities include shear wave elastography, ultrafast Doppler, ultrafast contrast-enhanced imaging and functional ultrasound imaging. Even though ultrafast imaging already encounters clinical success, increasing even more its penetration depth and signal-to-noise ratio for dedicated applications would be valuable. Ultrafast imaging relies on the coherent compounding of backscattered echoes resulting from successive tilted plane waves emissions; this produces high-resolution ultrasound images with a trade-off between final frame rate, contrast and resolution. In this work, we introduce multiplane wave imaging, a new method that strongly improves ultrafast images signal-to-noise ratio by virtually increasing the emission signal amplitude without compromising the frame rate. This method relies on the successive transmissions of multiple plane waves with differently coded amplitudes and emission angles in a single transmit event. Data from each single plane wave of increased amplitude can then be obtained, by recombining the received data of successive events with the proper coefficients. The benefits of multiplane wave for B-mode, shear wave elastography and ultrafast Doppler imaging are experimentally demonstrated. Multiplane wave with 4 plane waves emissions yields a 5.8  ±  0.5 dB increase in signal-to-noise ratio and approximately 10 mm in penetration in a calibrated ultrasound phantom (0.7 d MHz(-1) cm(-1)). In shear wave elastography, the same multiplane wave configuration yields a 2.07  ±  0.05 fold reduction of the particle velocity standard deviation and a two-fold reduction of the shear wave velocity maps standard deviation. In functional ultrasound imaging, the mapping of cerebral blood volume results in a 3 to 6 dB increase of the contrast-to-noise ratio in deep structures of the rodent brain.

  12. Experimental and Automated Analysis Techniques for High-resolution Electrical Mapping of Small Intestine Slow Wave Activity

    PubMed Central

    Angeli, Timothy R; O'Grady, Gregory; Paskaranandavadivel, Niranchan; Erickson, Jonathan C; Du, Peng; Pullan, Andrew J; Bissett, Ian P

    2013-01-01

    Background/Aims Small intestine motility is governed by an electrical slow wave activity, and abnormal slow wave events have been associated with intestinal dysmotility. High-resolution (HR) techniques are necessary to analyze slow wave propagation, but progress has been limited by few available electrode options and laborious manual analysis. This study presents novel methods for in vivo HR mapping of small intestine slow wave activity. Methods Recordings were obtained from along the porcine small intestine using flexible printed circuit board arrays (256 electrodes; 4 mm spacing). Filtering options were compared, and analysis was automated through adaptations of the falling-edge variable-threshold (FEVT) algorithm and graphical visualization tools. Results A Savitzky-Golay filter was chosen with polynomial-order 9 and window size 1.7 seconds, which maintained 94% of slow wave amplitude, 57% of gradient and achieved a noise correction ratio of 0.083. Optimized FEVT parameters achieved 87% sensitivity and 90% positive-predictive value. Automated activation mapping and animation successfully revealed slow wave propagation patterns, and frequency, velocity, and amplitude were calculated and compared at 5 locations along the intestine (16.4 ± 0.3 cpm, 13.4 ± 1.7 mm/sec, and 43 ± 6 µV, respectively, in the proximal jejunum). Conclusions The methods developed and validated here will greatly assist small intestine HR mapping, and will enable experimental and translational work to evaluate small intestine motility in health and disease. PMID:23667749

  13. Acoustic waves in the solar atmosphere at high spatial resolution

    NASA Astrophysics Data System (ADS)

    Bello González, N.; Flores Soriano, M.; Kneer, F.; Okunev, O.

    2009-12-01

    Aims. The energy supply for the radiative losses of the quiet solar chromosphere is studied. On the basis of high spatial resolution data, we investigate the amount of energy flux carried by acoustic waves in the solar photosphere. Methods: Time sequences from quiet Sun disc centre were obtained with the “Göttingen” Fabry-Perot spectrometer at the Vacuum Tower Telescope, Observatorio del Teide/Tenerife, in the non-magnetic Fe i 5576 Å line. The data were reconstructed with speckle methods. The velocity and intensity fluctuations at line minimum were subjected to Fourier and wavelet analyses. The energy fluxes at frequencies higher than the acoustic cutoff frequency (period U ≈ 190 s) were corrected for the transmission of the solar atmosphere, which reduces the signal from short-period waves. Results: Both Fourier and wavelet analysis give an amount of energy flux of ~3000 W m-2 at a height h = 250 km. Approximately 2/3 of it is carried by waves in the 5-10 mHz range, and 1/3 in the 10-20 mHz band. Extrapolation of the flux spectra gives an energy flux of 230-400 W m-2 at frequencies ν > 20 mHz. We find that the waves occur predominantly above inter-granular areas. Conclusions: We conclude that the acoustic flux in waves with periods shorter than the acoustic cutoff period can contribute to the basal heating of the solar chromosphere, in addition to the atmospheric gravity waves found recently.

  14. Estimation of near-surface shear-wave velocities and quality factors using multichannel analysis of surface-wave methods

    NASA Astrophysics Data System (ADS)

    Xia, Jianghai

    2014-04-01

    This overview article gives a picture of multichannel analysis of high-frequency surface (Rayleigh and Love) waves developed mainly by research scientists at the Kansas Geological Survey, the University of Kansas and China University of Geosciences (Wuhan) during the last eighteen years by discussing dispersion imaging techniques, inversion systems, and real-world examples. Shear (S)-wave velocities of near-surface materials can be derived from inverting the dispersive phase velocities of high-frequency surface waves. Multichannel analysis of surface waves—MASW used phase information of high-frequency Rayleigh waves recorded on vertical component geophones to determine near-surface S-wave velocities. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that inversion with higher modes and the fundamental mode simultaneously can increase model resolution and an investigation depth. Multichannel analysis of Love waves—MALW used phase information of high-frequency Love waves recorded on horizontal (perpendicular to the direction of wave propagation) component geophones to determine S-wave velocities of shallow materials. Because of independence of compressional (P)-wave velocity, the MALW method has some attractive advantages, such as 1) Love-wave dispersion curves are simpler than Rayleigh wave's; 2) dispersion images of Love-wave energy have a higher signal to noise ratio and more focused than those generated from Rayleigh waves; and 3) inversion of Love-wave dispersion curves is less dependent on initial models and more stable than Rayleigh waves.

  15. Generation of Fine Scale Wind and Wave Climatologies

    NASA Astrophysics Data System (ADS)

    Vandenberghe, F. C.; Filipot, J.; Mouche, A.

    2013-12-01

    A tool to generate 'on demand' large databases of atmospheric parameters at high resolution has been developed for defense applications. The approach takes advantage of the zooming and relocation capabilities of the embedded domains that can be found in regional models like the community Weather Research and Forecast model (WRF). The WRF model is applied to dynamically downscale NNRP, CFSR and ERA40 global analyses and to generate long records, up to 30 years, of hourly gridded data over 200km2 domains at 3km grid increment. To insure accuracy, observational data from the NCAR ADP historical database are used in combination with the Four-Dimensional Data Assimilation (FDDA) techniques to constantly nudge the model analysis toward observations. The atmospheric model is coupled to secondary applications such as the NOAA's Wave Watch III model the Navy's APM Electromagnetic Propagation model, allowing the creation of high-resolution climatologies of surface winds, waves and electromagnetic propagation parameters. The system was applied at several coastal locations of the Mediterranean Sea where SAR wind and wave observations were available during the entire year of 2008. Statistical comparisons between the model output and SAR observations are presented. Issues related to the global input data, and the model drift, as well as the impact of the wind biases on wave simulations will be discussed.

  16. A system and method for online high-resolution mapping of gastric slow-wave activity.

    PubMed

    Bull, Simon H; O'Grady, Gregory; Du, Peng; Cheng, Leo K

    2014-11-01

    High-resolution (HR) mapping employs multielectrode arrays to achieve spatially detailed analyses of propagating bioelectrical events. A major current limitation is that spatial analyses must currently be performed "off-line" (after experiments), compromising timely recording feedback and restricting experimental interventions. These problems motivated development of a system and method for "online" HR mapping. HR gastric recordings were acquired and streamed to a novel software client. Algorithms were devised to filter data, identify slow-wave events, eliminate corrupt channels, and cluster activation events. A graphical user interface animated data and plotted electrograms and maps. Results were compared against off-line methods. The online system analyzed 256-channel serosal recordings with no unexpected system terminations with a mean delay 18 s. Activation time marking sensitivity was 0.92; positive predictive value was 0.93. Abnormal slow-wave patterns including conduction blocks, ectopic pacemaking, and colliding wave fronts were reliably identified. Compared to traditional analysis methods, online mapping had comparable results with equivalent coverage of 90% of electrodes, average RMS errors of less than 1 s, and CC of activation maps of 0.99. Accurate slow-wave mapping was achieved in near real-time, enabling monitoring of recording quality and experimental interventions targeted to dysrhythmic onset. This work also advances the translation of HR mapping toward real-time clinical application.

  17. Sensitive sub-Doppler nonlinear spectroscopy for hyperfine-structure analysis using simple atomizers

    NASA Astrophysics Data System (ADS)

    Mickadeit, Fritz K.; Kemp, Helen; Schafer, Julia; Tong, William M.

    1998-05-01

    Laser wave-mixing spectroscopy is presented as a sub-Doppler method that offers not only high spectral resolution, but also excellent detection sensitivity. It offers spectral resolution suitable for hyperfine structure analysis and isotope ratio measurements. In a non-planar backward- scattering four-wave mixing optical configuration, two of the three input beams counter propagate and the Doppler broadening is minimized, and hence, spectral resolution is enhanced. Since the signal is a coherent beam, optical collection is efficient and signal detection is convenient. This simple multi-photon nonlinear laser method offers un usually sensitive detection limits that are suitable for trace-concentration isotope analysis using a few different types of simple analytical atomizers. Reliable measurement of hyperfine structures allows effective determination of isotope ratios for chemical analysis.

  18. Wide-bandwidth, wide-beamwidth, high-resolution, millimeter-wave imaging for concealed weapon detection

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Fernandes, Justin L.; Tedeschi, Jonathan R.; McMakin, Douglas L.; Jones, A. Mark; Lechelt, Wayne M.; Severtsen, Ronald H.

    2013-05-01

    Active millimeter-wave imaging is currently being used for personnel screening at airports and other high-security facilities. The cylindrical imaging techniques used in the deployed systems are based on licensed technology developed at the Pacific Northwest National Laboratory. The cylindrical and a related planar imaging technique form three-dimensional images by scanning a diverging beam swept frequency transceiver over a two-dimensional aperture and mathematically focusing or reconstructing the data into three-dimensional images of the person being screened. The resolution, clothing penetration, and image illumination quality obtained with these techniques can be significantly enhanced through the selection of the aperture size, antenna beamwidth, center frequency, and bandwidth. The lateral resolution can be improved by increasing the center frequency, or it can be increased with a larger antenna beamwidth. The wide beamwidth approach can significantly improve illumination quality relative to a higher frequency system. Additionally, a wide antenna beamwidth allows for operation at a lower center frequency resulting in less scattering and attenuation from the clothing. The depth resolution of the system can be improved by increasing the bandwidth. Utilization of extremely wide bandwidths of up to 30 GHz can result in depth resolution as fine as 5 mm. This wider bandwidth operation may allow for improved detection techniques based on high range resolution. In this paper, the results of an extensive imaging study that explored the advantages of using extremely wide beamwidth and bandwidth are presented, primarily for 10-40 GHz frequency band.

  19. High-resolution broadband terahertz spectroscopy via electronic heterodyne detection of photonically generated terahertz frequency comb.

    PubMed

    Pavelyev, D G; Skryl, A S; Bakunov, M I

    2014-10-01

    We report an alternative approach to the terahertz frequency-comb spectroscopy (TFCS) based on nonlinear mixing of a photonically generated terahertz pulse train with a continuous wave signal from an electronic synthesizer. A superlattice is used as a nonlinear mixer. Unlike the standard TFCS technique, this approach does not require a complex double-laser system but retains the advantages of TFCS-high spectral resolution and wide bandwidth.

  20. Air-Sea Interaction in the Somali Current Region

    NASA Astrophysics Data System (ADS)

    Jensen, T. G.; Rydbeck, A.

    2017-12-01

    The western Indian Ocean is an area of high eddy-kinetic energy generated by local wind-stress curl, instability of boundary currents as well as Rossby waves from the west coast of India and the equatorial wave guide as they reflect off the African coast. The presence of meso-scale eddies and coastal upwelling during the Southwest Monsoon affects the air-sea interaction on those scales. The U.S. Navy's Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) is used to understand and quantify the surface flux, effects on surface waves and the role of Sea Surface Temperature anomalies on ocean-atmosphere coupling in that area. The COAMPS atmosphere model component with 9 km resolution is fully coupled to the Navy Coastal Ocean Model (NCOM) with 3.5 km resolution and the Simulating WAves Nearshore (SWAN) wave model with 10 km resolution. Data assimilation using a 3D-variational approach is included in hindcast runs performed daily since June 1, 2015. An interesting result is that a westward jet associated with downwelling equatorial Rossy waves initiated the reversal from the southward Somali Current found during the northeast monsoon to a northward flow in March 2016 more than a month before the beginning of the southwest monsoon. It is also found that warm SST anomalies in the Somali Current eddies, locally increase surface wind speed due to an increase in the atmospheric boundary layer height. This results in an increase in significant wave height and also an increase in heat flux to the atmosphere. Cold SST anomalies over upwelling filaments have the opposite impacts on air-sea fluxes.

  1. Model validation and error estimation of tsunami runup using high resolution data in Sadeng Port, Gunungkidul, Yogyakarta

    NASA Astrophysics Data System (ADS)

    Basith, Abdul; Prakoso, Yudhono; Kongko, Widjo

    2017-07-01

    A tsunami model using high resolution geometric data is indispensable in efforts to tsunami mitigation, especially in tsunami prone areas. It is one of the factors that affect the accuracy results of numerical modeling of tsunami. Sadeng Port is a new infrastructure in the Southern Coast of Java which could potentially hit by massive tsunami from seismic gap. This paper discusses validation and error estimation of tsunami model created using high resolution geometric data in Sadeng Port. Tsunami model validation uses the height wave of Tsunami Pangandaran 2006 recorded by Tide Gauge of Sadeng. Tsunami model will be used to accommodate the tsunami numerical modeling involves the parameters of earthquake-tsunami which is derived from the seismic gap. The validation results using t-test (student) shows that the height of the tsunami modeling results and observation in Tide Gauge of Sadeng are considered statistically equal at 95% confidence level and the value of the RMSE and NRMSE are 0.428 m and 22.12%, while the differences of tsunami wave travel time is 12 minutes.

  2. FY16 NRL DoD High Performance Computing Modernization Program

    DTIC Science & Technology

    2017-09-15

    explored both wind and wave forcing in the numerical wave tank. The model uses high spatial and temporal resolution and a multi-phase formulation to...Results: The ADVED_NS code was used to predict the effect of the standoff distance between micron- diameter wires and flow frequency on the total...contours for a flow over 3D wire mesh. Figure 2 shows verifications comparing computed and theoretical drag forces for the flow over two cylinders in an

  3. Spatial resolution study and power calibration of the high-k scattering system on NSTX.

    PubMed

    Lee, W; Park, H K; Cho, M H; Namkung, W; Smith, D R; Domier, C W; Luhmann, N C

    2008-10-01

    NSTX high-k scattering system has been extensively utilized in studying the microturbulence and coherent waves. An absolute calibration of the scattering system was performed employing a new millimeter-wave source and calibrated attenuators. One of the key parameters essential for the calibration of the multichannel scattering system is the interaction length. This interaction length is significantly different from the conventional one due to the curvature and magnetic shear effect.

  4. Rayleigh-wave diffractions due to a void in the layered half space

    USGS Publications Warehouse

    Xia, J.; Xu, Y.; Miller, R.D.; Nyquist, Jonathan E.

    2006-01-01

    Void detection is challenging due to the complexity of near-surface materials and the limited resolution of geophysical methods. Although multichannel, high-frequency, surface-wave techniques can provide reliable shear (S)-wave velocities in different geological settings, they are not suitable for detecting voids directly based on anomalies of the S-wave velocity because of limitations on the resolution of S-wave velocity profiles inverted from surface-wave phase velocities. Xia et al. (2006a) derived a Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space. Encouraging results of directly detecting a void from Rayleigh-wave diffractions were presented (Xia et al., 2006a). In this paper we used four two-dimensional square voids in the layered half space to demonstrate the feasibility of detecting a void with Rayleigh-wave diffractions. Rayleigh-wave diffractions were recognizable for all these models after removing direct surface waves by F-K filtering. We evaluate the feasibility of applying the Rayleigh-wave diffraction traveltime equation to a void in the layered earth model. The phase velocity of diffracted Rayleigh waves is predominately determined by surrounding materials of a void. The modeling results demonstrate that the Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space can be applied to the case of a void in the layered half space. In practice, only two diffraction times are necessary to define the depth to the top of a void and the average velocity of diffracted Rayleigh waves. ?? 2005 Society of Exploration Geophysicists.

  5. Pulse wave imaging using coherent compounding in a phantom and in vivo

    NASA Astrophysics Data System (ADS)

    Zacharias Apostolakis, Iason; McGarry, Matthew D. J.; Bunting, Ethan A.; Konofagou, Elisa E.

    2017-03-01

    Pulse wave velocity (PWV) is a surrogate marker of arterial stiffness linked to cardiovascular morbidity. Pulse wave imaging (PWI) is a technique developed by our group for imaging the pulse wave propagation in vivo. PWI requires high temporal and spatial resolution, which conventional ultrasonic imaging is unable to simultaneously provide. Coherent compounding is known to address this tradeoff and provides full aperture images at high frame rates. This study aims to implement PWI using coherent compounding within a GPU-accelerated framework. The results of the implemented method were validated using a silicone phantom against static mechanical testing. Reproducibility of the measured PWVs was assessed in the right common carotid of six healthy subjects (n  =  6) approximately 10-15 mm before the bifurcation during two cardiac cycles over the course of 1-3 d. Good agreement of the measured PWVs (3.97  ±  1.21 m s-1, 4.08  ±  1.15 m s-1, p  =  0.74) was obtained. The effects of frame rate, transmission angle and number of compounded plane waves on PWI performance were investigated in the six healthy volunteers. Performance metrics such as the reproducibility of the PWVs, the coefficient of determination (r 2), the SNR of the PWI axial wall velocities (\\text{SN}{{\\text{R}}{{\\text{v}_{\\text{PWI}}}}} ) and the percentage of lateral positions where the pulse wave appears to arrive at the same time-point, indicating inadequacy of the temporal resolution (i.e. temporal resolution misses) were used to evaluate the effect of each parameter. Compounding plane waves transmitted at 1° increments with a linear array yielded optimal performance, generating significantly higher r 2 and \\text{SN}{{\\text{R}}{{\\text{v}_{\\text{PWI}}}}} values (p  ⩽  0.05). Higher frame rates (⩾1667 Hz) produced improvements with significant gains in the r 2 coefficient (p  ⩽  0.05) and significant increase in both r 2 and \\text{SN}{{\\text{R}}{{\\text{v}_{\\text{PWI}}}}} from single plane wave imaging to 3-plane wave compounding (p  ⩽  0.05). Optimal performance was established at 2778 Hz with 3 plane waves and at 1667 Hz with 5 plane waves.

  6. Megahertz-resolution programmable microwave shaper.

    PubMed

    Li, Jilong; Dai, Yitang; Yin, Feifei; Li, Wei; Li, Ming; Chen, Hongwei; Xu, Kun

    2018-04-15

    A novel microwave shaper is proposed and demonstrated, of which the microwave spectral transfer function could be fully programmable with high resolution. We achieve this by bandwidth-compressed mapping a programmable optical wave-shaper, which has a lower frequency resolution of tens of gigahertz, to a microwave one with resolution of tens of megahertz. This is based on a novel technology of "bandwidth scaling," which employs bandwidth-stretched electronic-to-optical conversion and bandwidth-compressed optical-to-electronic conversion. We demonstrate the high resolution and full reconfigurability experimentally. Furthermore, we show the group delay variation could be greatly enlarged after mapping; this is then verified by the experiment with an enlargement of 194 times. The resolution improvement and group delay magnification significantly distinguish our proposal from previous optics-to-microwave spectrum mapping.

  7. Whistler Waves Driven by Anisotropic Strahl Velocity Distributions: Cluster Observations

    NASA Technical Reports Server (NTRS)

    Vinas, A.F.; Gurgiolo, C.; Nieves-Chinchilla, T.; Gary, S. P.; Goldstein, M. L.

    2010-01-01

    Observed properties of the strahl using high resolution 3D electron velocity distribution data obtained from the Cluster/PEACE experiment are used to investigate its linear stability. An automated method to isolate the strahl is used to allow its moments to be computed independent of the solar wind core+halo. Results show that the strahl can have a high temperature anisotropy (T(perpindicular)/T(parallell) approximately > 2). This anisotropy is shown to be an important free energy source for the excitation of high frequency whistler waves. The analysis suggests that the resultant whistler waves are strong enough to regulate the electron velocity distributions in the solar wind through pitch-angle scattering

  8. Characterization of the Vajont landslide (North-Eastern Italy) by means of reflection and surface wave seismics

    NASA Astrophysics Data System (ADS)

    Petronio, Lorenzo; Boaga, Jacopo; Cassiani, Giorgio

    2016-05-01

    The mechanisms of the disastrous Vajont rockslide (North-Eastern Italy, October 9, 1963) have been studied in great detail over the past five decades. Nevertheless, the reconstruction of the rockslide dynamics still presents several uncertainties, including those related to the accurate estimation of the actual landslide mass. This work presents the results of a geophysical characterization of the Vajont landslide body in terms of material properties and buried geometry. Both aspects add new information to the existing dataset and will help a better understanding of the rockslide failure mechanisms and dynamics. In addition, some general considerations concerning the intricacies of landslide characterization can be drawn, with due attention to potential pitfalls. The employed techniques are: (i) high resolution P-wave reflection, (ii) high resolution SH-wave reflection, (iii) controlled source surface wave analysis. We adopted as a seismic source a vibrator both for P waves and SH waves, using vertical and horizontal geophones respectively. For the surface wave seismic survey we used a heavy drop-weight source and low frequency receivers. Despite the high noise level caused by the fractured conditions of the large rock body, a common situation in landslide studies, we managed to achieve a satisfying imaging quality of the landslide structure thanks to the large number of active channels, the short receiver interval and the test of appropriate seismic sources. The joint use of different seismic techniques help focus the investigation on the rock mass mechanical properties. Results are in good agreement with the available borehole data, the geological sections and the mechanical properties of the rockmass estimated by other studies. In general the proposed approach is likely to be applicable successfully to similar situations where scattering and other noise sources are a typical bottleneck to geophysical data acquisition on landslide bodies.

  9. High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Pǎvǎlaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Antares Collaboration

    2016-06-01

    We present the high-energy-neutrino follow-up observations of the first gravitational wave transient GW150914 observed by the Advanced LIGO detectors on September 14, 2015. We search for coincident neutrino candidates within the data recorded by the IceCube and Antares neutrino detectors. A possible joint detection could be used in targeted electromagnetic follow-up observations, given the significantly better angular resolution of neutrino events compared to gravitational waves. We find no neutrino candidates in both temporal and spatial coincidence with the gravitational wave event. Within ±500 s of the gravitational wave event, the number of neutrino candidates detected by IceCube and Antares were three and zero, respectively. This is consistent with the expected atmospheric background, and none of the neutrino candidates were directionally coincident with GW150914. We use this nondetection to constrain neutrino emission from the gravitational-wave event.

  10. Broad-band High-Frequency Sound Interaction With the Seafloor

    DTIC Science & Technology

    1998-01-01

    interface, propagation within and scattering from the seafloor. OBJECTIVES Resolution of modeling issues through experimental measurement of acoustic ...approximation, particularly the roughness scattering mechanism for propagating and evanescent waves, offer alternative models of the observed acoustic ...applicability of each model and it’s relative merits. The candidate models of acoustic penetration include: 1. Biot slow wave 2. Scattering of in-water

  11. Martian atmospheric gravity waves simulated by a high-resolution general circulation model

    NASA Astrophysics Data System (ADS)

    Kuroda, Takeshi; Yiǧit, Erdal; Medvedev, Alexander S.; Hartogh, Paul

    2016-07-01

    Gravity waves (GWs) significantly affect temperature and wind fields in the Martian middle and upper atmosphere. They are also one of the observational targets of the MAVEN mission. We report on the first simulations with a high-resolution general circulation model (GCM) and present a global distributions of small-scale GWs in the Martian atmosphere. The simulated GW-induced temperature variances are in a good agreement with available radio occultation data in the lower atmosphere between 10 and 30 km. For the northern winter solstice, the model reveals a latitudinal asymmetry with stronger wave generation in the winter hemisphere and two distinctive sources of GWs: mountainous regions and the meandering winter polar jet. Orographic GWs are filtered upon propagating upward, and the mesosphere is primarily dominated by harmonics with faster horizontal phase velocities. Wave fluxes are directed mainly against the local wind. GW dissipation in the upper mesosphere generates a body force per unit mass of tens of m s^{-1} per Martian solar day (sol^{-1}), which tends to close the simulated jets. The results represent a realistic surrogate for missing observations, which can be used for constraining GW parameterizations and validating GCMs.

  12. Chirped-Pulse Millimeter-Wave Spectroscopy of Rydberg-Rydberg Transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prozument, Kirill; Colombo, Anthony P.; Zhou Yan

    2011-09-30

    Transitions between Rydberg states of Ca atoms, in a pulsed, supersonic atomic beam, are directly detected by chirped-pulse millimeter-wave spectroscopy. Broadband, high-resolution spectra with accurate relative intensities are recorded instantly. Free induction decay (FID) of atoms, polarized by the chirped pulse, at their Rydberg-Rydberg transition frequencies, is heterodyne detected, averaged in the time domain, and Fourier transformed into the frequency domain. Millimeter-wave transient nutations are observed, and the possibility of FID evolving to superradiance is discussed.

  13. Super-resolution in a defocused plenoptic camera: a wave-optics-based approach.

    PubMed

    Sahin, Erdem; Katkovnik, Vladimir; Gotchev, Atanas

    2016-03-01

    Plenoptic cameras enable the capture of a light field with a single device. However, with traditional light field rendering procedures, they can provide only low-resolution two-dimensional images. Super-resolution is considered to overcome this drawback. In this study, we present a super-resolution method for the defocused plenoptic camera (Plenoptic 1.0), where the imaging system is modeled using wave optics principles and utilizing low-resolution depth information of the scene. We are particularly interested in super-resolution of in-focus and near in-focus scene regions, which constitute the most challenging cases. The simulation results show that the employed wave-optics model makes super-resolution possible for such regions as long as sufficiently accurate depth information is available.

  14. Miscellaneous High-Resolution Seismic Imaging Investigations in Salt Lake and Utah Valleys for Earthquake Hazards

    USGS Publications Warehouse

    Stephenson, W.J.; Williams, R.A.; Odum, J.K.; Worley, D.M.

    2007-01-01

    Introduction In support of earthquake hazards and ground motion studies by researchers at the Utah Geological Survey, University of Utah, Utah State University, Brigham Young University, and San Diego State University, the U.S. Geological Survey Geologic Hazards Team Intermountain West Project conducted three high-resolution seismic imaging investigations along the Wasatch Front between September 2003 and September 2005. These three investigations include: (1) a proof-of-concept P-wave minivib reflection imaging profile in south-central Salt Lake Valley, (2) a series of seven deep (as deep as 400 m) S-wave reflection/refraction soundings using an S-wave minivib in both Salt Lake and Utah Valleys, and (3) an S-wave (and P-wave) investigation to 30 m at four sites in Utah Valley and at two previously investigated S-wave (Vs) minivib sites. In addition, we present results from a previously unpublished downhole S-wave investigation conducted at four sites in Utah Valley. The locations for each of these investigations are shown in figure 1. Coordinates for the investigation sites are listed in Table 1. With the exception of the P-wave common mid-point (CMP) reflection profile, whose end points are listed, these coordinates are for the midpoint of each velocity sounding. Vs30 and Vs100, also shown in Table 1, are defined as the average shear-wave velocities to depths of 30 and 100 m, respectively, and details of their calculation can be found in Stephenson and others (2005). The information from these studies will be incorporated into components of the urban hazards maps along the Wasatch Front being developed by the U.S. Geological Survey, Utah Geological Survey, and numerous collaborating research institutions.

  15. Hydrodynamic modeling of tsunamis from the Currituck landslide

    USGS Publications Warehouse

    Geist, E.L.; Lynett, P.J.; Chaytor, J.D.

    2009-01-01

    Tsunami generation from the Currituck landslide offshore North Carolina and propagation of waves toward the U.S. coastline are modeled based on recent geotechnical analysis of slide movement. A long and intermediate wave modeling package (COULWAVE) based on the non-linear Boussinesq equations are used to simulate the tsunami. This model includes procedures to incorporate bottom friction, wave breaking, and overland flow during runup. Potential tsunamis generated from the Currituck landslide are analyzed using four approaches: (1) tsunami wave history is calculated from several different scenarios indicated by geotechnical stability and mobility analyses; (2) a sensitivity analysis is conducted to determine the effects of both landslide failure duration during generation and bottom friction along the continental shelf during propagation; (3) wave history is calculated over a regional area to determine the propagation of energy oblique to the slide axis; and (4) a high-resolution 1D model is developed to accurately model wave breaking and the combined influence of nonlinearity and dispersion during nearshore propagation and runup. The primary source parameter that affects tsunami severity for this case study is landslide volume, with failure duration having a secondary influence. Bottom friction during propagation across the continental shelf has a strong influence on the attenuation of the tsunami during propagation. The high-resolution 1D model also indicates that the tsunami undergoes nonlinear fission prior to wave breaking, generating independent, short-period waves. Wave breaking occurs approximately 40-50??km offshore where a tsunami bore is formed that persists during runup. These analyses illustrate the complex nature of landslide tsunamis, necessitating the use of detailed landslide stability/mobility models and higher-order hydrodynamic models to determine their hazard.

  16. A study of phase explosion of metal using high power Nd:YAG laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoh, Jack J.; Lee, H. H.; Choi, J. H.

    2007-12-12

    The interaction of high-power pulsed-laser beam with metal targets in air from 1.06 {mu}m, 5 ns, 3 J/pulse max, Nd:YAG pulsed laser is investigated together with hydrodynamic theories of laser-supported detonation (LSD) wave and multi-material reactive Euler equations. The high speed blast wave generated by the laser ablation of metal reaches maximum velocity of several thousand meters per second. The apparently similar flow conditions to those of reactive shock wave allow one to apply the equations of motion for energetic materials and to understand the explosive behavior of metal vaporization upon laser ablation. The characteristic time at which planar tomore » spherical wave transition occurs is confirmed at low (20 mJ/pulse) to higher (200 mJ/pulse) beam intensities. The flow structure behind the leading shock wave during the early planar shock state is confirmed by the high-resolution multi-material hydrocode originally developed for shock compression of condensed matter.« less

  17. Quantitative subsurface analysis using frequency modulated thermal wave imaging

    NASA Astrophysics Data System (ADS)

    Subhani, S. K.; Suresh, B.; Ghali, V. S.

    2018-01-01

    Quantitative depth analysis of the anomaly with an enhanced depth resolution is a challenging task towards the estimation of depth of the subsurface anomaly using thermography. Frequency modulated thermal wave imaging introduced earlier provides a complete depth scanning of the object by stimulating it with a suitable band of frequencies and further analyzing the subsequent thermal response using a suitable post processing approach to resolve subsurface details. But conventional Fourier transform based methods used for post processing unscramble the frequencies with a limited frequency resolution and contribute for a finite depth resolution. Spectral zooming provided by chirp z transform facilitates enhanced frequency resolution which can further improves the depth resolution to axially explore finest subsurface features. Quantitative depth analysis with this augmented depth resolution is proposed to provide a closest estimate to the actual depth of subsurface anomaly. This manuscript experimentally validates this enhanced depth resolution using non stationary thermal wave imaging and offers an ever first and unique solution for quantitative depth estimation in frequency modulated thermal wave imaging.

  18. ngVLA Key Science Goal 5: Understanding the Formation and Evolution of Stellar and Supermassive Black Holes in the Era of Multi-Messenger Astronomy

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph W.; Maccarone, Thomas J.; Chomiuk, Laura; ngVLA Science Working Group 2, ngVLA Science Working Group 4

    2018-01-01

    The ngVLA will be a powerful telescope for finding and studying black holes, surveying everything from the remnants of massive stars to the supermassive black holes that lurk in the centers of galaxies. High-resolution imaging abilities will allow the separation of low-luminosity black holes in the local Universe from background sources, thereby providing critical constraints on the formation and growth of black holes of all sizes. Its combination of sensitivity and angular resolution will provide new constraints on the physics of black hole accretion and jet formation. Combined with facilities across the spectrum and gravitational wave observatories, the ngVLA will provide crucial constraints on the interaction of supermassive black holes with their environments, with implications for the evolution of galaxies and the emission of gravitational waves from in-spiraling supermassive black holes. The ngVLA will identify the radio counterparts to transient sources discovered by gravitational wave, neutrino, and optical observatories, and its high-resolution, fast-mapping capabilities will make it the preferred instrument to pinpoint electromagnetic counterparts to events such as supermassive black hole mergers.Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  19. Investigation of skin structures based on infrared wave parameter indirect microscopic imaging

    NASA Astrophysics Data System (ADS)

    Zhao, Jun; Liu, Xuefeng; Xiong, Jichuan; Zhou, Lijuan

    2017-02-01

    Detailed imaging and analysis of skin structures are becoming increasingly important in modern healthcare and clinic diagnosis. Nanometer resolution imaging techniques such as SEM and AFM can cause harmful damage to the sample and cannot measure the whole skin structure from the very surface through epidermis, dermis to subcutaneous. Conventional optical microscopy has the highest imaging efficiency, flexibility in onsite applications and lowest cost in manufacturing and usage, but its image resolution is too low to be accepted for biomedical analysis. Infrared parameter indirect microscopic imaging (PIMI) uses an infrared laser as the light source due to its high transmission in skins. The polarization of optical wave through the skin sample was modulated while the variation of the optical field was observed at the imaging plane. The intensity variation curve of each pixel was fitted to extract the near field polarization parameters to form indirect images. During the through-skin light modulation and image retrieving process, the curve fitting removes the blurring scattering from neighboring pixels and keeps only the field variations related to local skin structures. By using the infrared PIMI, we can break the diffraction limit, bring the wide field optical image resolution to sub-200nm, in the meantime of taking advantage of high transmission of infrared waves in skin structures.

  20. Evidence for Highly Inhomogeneous mm-Wave Sources During the Impulsive Flare of May 9, 1991

    NASA Technical Reports Server (NTRS)

    Hermann, R.; Magun, A.; Kaufmann, P.; Correia, E.; Costa, J. E. R.; Machado, M. E.; Fishman, G.

    1997-01-01

    In this paper multiwavelength observations of an impulsive flare of May 9, 1991 are presented. This event was observed with the 48 GHz multibeam focal array used at the Itapetinga radio telescope, the microwave patrol telescopes at Bem and the BATSE high time resolution hard X-ray spectrometer on board CGRO. While spatially unresolved low sensitivity observations show two major impulsive peaks, the mm-wave observations with the ability of spatially high resolved tracking of the emission centroids suggest a primarily bipolar source configuration. For the first time two mm-wave sources with a spacing below the HPBW could be separated with the multibeam technique. The general features of the observations are explained as emission of partially trapped electrons. Furthermore we present evidence for highly inhomogeneous substructures within one of the two mm-wave sources for which the positional scatter of the emission center, within 2s, is less than 2".

  1. NRL Fact Book 2010

    DTIC Science & Technology

    2010-01-01

    service) High assurance software Distributed network-based battle management High performance computing supporting uniform and nonuniform memory...VNIR, MWIR, and LWIR high-resolution systems Wideband SAR systems RF and laser data links High-speed, high-power photodetector characteriza- tion...Antimonide (InSb) imaging system Long-wave infrared ( LWIR ) quantum well IR photodetector (QWIP) imaging system Research and Development Services

  2. High-resolution wave-theory-based ultrasound reflection imaging using the split-step fourier and globally optimized fourier finite-difference methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lianjie

    Methods for enhancing ultrasonic reflection imaging are taught utilizing a split-step Fourier propagator in which the reconstruction is based on recursive inward continuation of ultrasonic wavefields in the frequency-space and frequency-wave number domains. The inward continuation within each extrapolation interval consists of two steps. In the first step, a phase-shift term is applied to the data in the frequency-wave number domain for propagation in a reference medium. The second step consists of applying another phase-shift term to data in the frequency-space domain to approximately compensate for ultrasonic scattering effects of heterogeneities within the tissue being imaged (e.g., breast tissue). Resultsmore » from various data input to the method indicate significant improvements are provided in both image quality and resolution.« less

  3. Breaking Gravity Waves Over Large-Scale Topography

    NASA Astrophysics Data System (ADS)

    Doyle, J. D.; Shapiro, M. A.

    2002-12-01

    The importance of mountain waves is underscored by the numerous studies that document the impact on the atmospheric momentum balance, turbulence generation, and the creation of severe downslope winds. As stably stratified air is forced to rise over topography, large amplitude internal gravity waves may be generated that propagate vertically, amplify and breakdown in the upper troposphere and lower stratosphere. Many of the numerical studies reported on in the literature have used two- and three-dimensional models with simple, idealized initial states to examine gravity wave breaking. In spite of the extensive previous work, many questions remain regarding gravity wave breaking in the real atmosphere. Outstanding issues that are potentially important include: turbulent mixing and wave overturning processes, mountain wave drag, downstream effects, and the mesoscale predictability of wave breaking. The current limit in our knowledge of gravity wave breaking can be partially attributed to lack of observations. During the Fronts and Atlantic Storm-Track Experiment (FASTEX), a large amplitude gravity wave was observed in the lee of Greenland on 29 January 1997. Observations taken collected during FASTEX presented a unique opportunity to study topographically forced gravity wave breaking and to assess the ability of high-resolution numerical models to predict the structure and evolution of such phenomena. Measurements from the NOAA G-4 research aircraft and high-resolution numerical simulations are used to study the evolution and dynamics of the large-amplitude gravity wave event that took place during the FASTEX. Vertical cross section analysis of dropwindsonde data, with 50-km horizontal spacing, indicates the presence of a large amplitude breaking gravity wave that extends from above the 150-hPa level to 500 hPa. Flight-level data indicate a horizontal shear of over 10-3 s-1 across the breaking wave with 25 K potential temperature perturbations. This breaking wave may have important implications for momentum flux parameterization in mesoscale models, stratospheric-tropospheric exchange dynamics as well as the dynamic sources and sinks of the ozone budget. Additionally, frequent breaking waves over Greenland are a known commercial and military aviation hazard. NRL's nonhydrostatic COAMPS^{TM}$ model is used with four nested grids with horizontal resolutions of 45 km, 15 km, 5 km and 1.67 km and 65 vertical levels to simulate the gravity wave event. The model simulation captures the temporal evolution and horizontal structure of the wave. However, the model underestimates the vertical amplitude of the wave. The model simulation suggests that the breaking wave may be triggered as a consequence of vertically propagating internal gravity waves emanating from katabatic flow near the extreme slopes of eastern Greenland. Additionally, a number of simulations that make use of a horizontally homogeneous initial state and both idealized and actual Greenland topography are performed. These simulations highlight the sensitivity of gravity wave amplification and breaking to the planetary rotation, slope of the Greenland topography, representation of turbulent mixing, and surface processes.

  4. Strong and highly variable push of ocean waves on Southern Ocean sea ice.

    PubMed

    Stopa, Justin E; Sutherland, Peter; Ardhuin, Fabrice

    2018-06-05

    Sea ice in the Southern Ocean has expanded over most of the past 20 y, but the decline in sea ice since 2016 has taken experts by surprise. This recent evolution highlights the poor performance of numerical models for predicting extent and thickness, which is due to our poor understanding of ice dynamics. Ocean waves are known to play an important role in ice break-up and formation. In addition, as ocean waves decay, they cause a stress that pushes the ice in the direction of wave propagation. This wave stress could not previously be quantified due to insufficient observations at large scales. Sentinel-1 synthetic aperture radars (SARs) provide high-resolution imagery from which wave height is measured year round encompassing Antarctica since 2014. Our estimates give an average wave stress that is comparable to the average wind stress acting over 50 km of sea ice. We further reveal highly variable half-decay distances ranging from 400 m to 700 km, and wave stresses from 0.01 to 1 Pa. We expect that this variability is related to ice properties and possibly different floe sizes and ice thicknesses. A strong feedback of waves on sea ice, via break-up and rafting, may be the cause of highly variable sea-ice properties.

  5. Ionospheric disturbances detected by high-resolution GPS-TEC observations after an earthquake and a tornado

    NASA Astrophysics Data System (ADS)

    Tsugawa, Takuya; Otsuka, Yuichi; Saito, Akinori; Ishii, Mamoru; Nishioka, Michi

    Ionospheric disturbances following the 2011 Tohoku earthquake and the 2013 Moore tornado were observed by high-resolution GPS total electron content (TEC) observations using dense GPS receiver networks. After the 2011 Tohoku earthquake, concentric waves with short propagation distance propagated in the radial direction in the propagation velocity of 3,457, 783, 423 m/s for the first, second, third peak, respectively. Following these waves, concentric waves with long propagation distance appeared to propagate at the velocity of 138-288 m/s. In the vicinity of the epicenter, sudden TEC depletions and short-period oscillations with a period of approximately 4 minutes were also observed. The center of these ionospheric variations, termed the "ionospheric epicenter", corresponded to the tsunami source. Comparing to the results of a numerical simulation using non-hydrostatic compressible atmosphere-ionosphere model, the first peak of circular wave would be caused by the acoustic waves generated from the propagating Rayleigh wave. The second and third waves would be caused by atmospheric gravity waves excited in the lower ionosphere due to the acoustic wave propagations from the tsunami source. The fourth and following waves are considered to be caused by the atmospheric gravity waves induced by the wavefronts of traveling tsunami. After the EF5 tornado hit Moore, Oklahoma, USA, on 20 May 2013, clear concentric waves and short-period oscillations were observed. These concentric waves were non-dispersive waves with a horizontal wavelength of approximately 120 km and a period of approximately 13 minutes. They were observed for more than seven hours throughout North America. TEC oscillations with a period of approximately 4 minutes were also observed in the south of Moore for more than eight hours. Comparison between the GPS-TEC observations and the infrared cloud images from the GOES satellite indicates that the concentric waves and the short-period oscillations would be caused by supercell-induced atmospheric gravity waves and acoustic resonances, respectively. In this presentation, we will introduce the observational results of these ionospheric disturbances and discuss about the mechanism of concentric waves and short-period oscillations observed in both events.

  6. Effects of whispering gallery mode in microsphere super-resolution imaging

    NASA Astrophysics Data System (ADS)

    Zhou, Song; Deng, Yongbo; Zhou, Wenchao; Yu, Muxin; Urbach, H. P.; Wu, Yihui

    2017-09-01

    Whispering Gallery modes have been presented in microscopic glass spheres or toruses with many applications. In this paper, the possible approaches to enhance the imaging resolution by Whispering Gallery modes are discussed, including evanescent waves coupling, transformed and illustration by Whispering Gallery modes. It shows that the high-order scattering modes play the dominant role in the reconstructed virtual image when the Whispering Gallery modes exist. Furthermore, we find that the high image resolution of electric dipoles can be achieved, when the out-of-phase components exist from the illustration of Whispering Gallery modes. Those results of our simulation could contribute to the knowledge of microsphere-assisted super-resolution imaging and its potential applications.

  7. STEREO observations of insitu waves in the vicinity of interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Golla, T.; MacDowall, R. J.

    2017-12-01

    We present the high time resolution observations of the in situ waves obtained by the time domain sampler (TDS) of the WAVES experiment on the STEREO spacecraft in the vicinity of typical quasi-perpendicular super-critical interplanetary shocks. We show that often Langmuir waves occur as coherent one dimensional magnetic field aligned wave packets in the upstream regions and persist over large distances. The characteristics of these wave packets are consistent with those of Langmuir solitons formed as a result of oscillatting two stream instability (OTSI). Very intense high frequency waves which are completely different from Langmuir waves occur in the transition regions. These waves occur as very incoherent emissions and exhibit broad fundamental and second harmonic spectral peaks. We identify these waves as electron acoustic waves excited by the electron beams in the transition regions. We also show that very intense low frequency ion sound waves occur in the downstream regions. We discuss the implications of these observations on the theories of (1) strong Langmuir turbulence, (2) beam stabilization, (3) emission mechanisms of solar type II radio bursts, (4) wave-particle interactions responsible for collisionless dissipation, and (5) heating of the downstream plasmas.

  8. TerraSAR-X Measurements of Wind Fields, Ocean Waves and Currents

    NASA Astrophysics Data System (ADS)

    Lehner, S.; Schulz-Stellenfleth, J.; Brusch, S.

    2008-01-01

    TerraSAR-X is a new german X-band radar satellite launched on June 15, 2007. In this mission an operational spaceborne synthetic aperture radar (SAR) system with very high spatial resolution is set up producing remote sensing products for commercial and scientific use. TerraSAR-X is a scientific and technological continuation of the successful Space Shuttle missions SIR-C/X and SRTM.The spacecraft is equipped with a phased array X-band SAR, which can operate in different polarisations and has furthermore beam stearing capabilities. In addition the system has a split antenna mode, which is able to provide along track interferometric information. The instrument is designed for multiple imaging modes like Stripmap, Spotlight and ScanSAR.Due to its polarimetric and interferometric capabilities as well as the high spatial resolution of up to 1 m, the TerraSAR-X sensor is a very interesting tool for oceanography. The presentation will give an overview of several applications, which are of both scientific and commercial interest, like e.g. current and ocean wave measurements, monitoring of morphodynamical processes or high resolution wind field retrieval. The potential as well as limitations of the instrument will be summarized and compared with existing sensors. Necessary steps to translate existing C-band SAR inversion algorithms for wind and wave measurements to X-band will be discussed. A strategy will be outlined to achieve this by a combination of theoretical investigations and the use of existing experimental data acquired by both airborne and groundbased X-band radar. First results on the adaption of existing C-band wind retrieval algorithms will be presented. Wind and ocean wave parameter retrievals will be presented, e.g., based on TerraSAR-X scenes taken over the English channel.

  9. Imaging the slab structure in the Alpine region by high-resolution P-wave tomography

    NASA Astrophysics Data System (ADS)

    Guillot, Stéphane; Zhao, Liang; Paul, Anne; Malusà, Marco G.; Xu, Xiaobing; Zheng, Tianyu; Solarino, stefano; Schwartz, Stéphane; Dumont, Thierry; Salimbeni, Simone; Aubert, Coralie; Pondrelli, Silvia; Wang, Qingchen; Zhu, Rixiang

    2017-04-01

    Based upon a finite-frequency inversion of traveltimes, we computed a new high-resolution tomography model using P-wave data from 527 broadband seismic stations, both from permanent networks and temporary experiments (Zhao et al., 2016). This model provides an improved image of the slab structure in the Alpine region, and fundamental pin-points for the analysis of Cenozoic magmatism, (U)HP metamorphism and Alpine topography. Our results document the lateral continuity of the European slab from the Western to the Central Alps, and the down-dip slab continuity beneath the Central Alps, ruling out the hypothesis of slab breakoff to explain Cenozoic Alpine magmatism. A low velocity anomaly is observed in the upper mantle beneath the core of the Western Alps, pointing to dynamic topography effects (Malusà et al., this meeting). A NE-dipping Adriatic slab, consistent with Dinaric subduction, is possibly observed beneath the Eastern Alps, whereas the laterally continuous Adriatic slab of the Northern Apennines shows major gaps at the boundary with the Southern Apennines, and becomes near vertical in the Alps-Apennines transition zone. Tear faults accommodating opposite-dipping subductions during Alpine convergence may represent reactivated lithospheric faults inherited from Tethyan extension. Our results suggest that the interpretations of previous tomography results that include successive slab breakoffs along the Alpine-Zagros-Himalaya orogenic belt might be proficiently reconsidered. Malusà M.G. et alii (2017) On the potential asthenospheric linkage between Apenninic slab rollback and Alpine topographic uplift: insights from P wave tomography and seismic anisotropy analysis. EGU 2017. Zhao L. et alii (2016), Continuity of the Alpine slab unraveled by high-resolution P wave tomography. J. Geophys. Res., doi:10.1002/2016JB013310.

  10. Electromagnetic Ion Cyclotron Waves in the High Altitude Cusp: Polar Observations

    NASA Technical Reports Server (NTRS)

    Le, Guan; Blanco-Cano, X.; Russell, C. T.; Zhou, X.-W.; Mozer, F.; Trattner, K. J.; Fuselier, S. A.; Anderson, B. J.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    High-resolution magnetic field data from the Polar Magnetic Field Experiment (MFE) show that narrow band waves at frequencies approximately 0.2 to 3 Hz are a permanent feature in the vicinity of the polar cusp. The waves have been found in the magnetosphere adjacent to the cusp (both poleward and equatorward of the cusp) and in the cusp itself. The occurrence of waves is coincident with depression of magnetic field strength associated with enhanced plasma density, indicating the entry of magnetosheath plasma into the cusp region. The wave frequencies are generally scaled by the local proton cyclotron frequency, and vary between 0.2 and 1.7 times local proton cyclotron frequency. This suggests that the waves are generated in the cusp region by the precipitating magnetosheath plasma. The properties of the waves are highly variable. The waves exhibit both lefthanded and right-handed polarization in the spacecraft frame. The propagation angles vary from nearly parallel to nearly perpendicular to the magnetic field. We find no correlation among wave frequency, propagation angle and polarization. Combined magnetic field and electric field data for the waves indicate that the energy flux of the waves is guided by the background magnetic field and points downward toward the ionosphere.

  11. Electromagnetic Ion Cyclotron Waves in the High-Altitude Cusp: Polar Observations

    NASA Technical Reports Server (NTRS)

    Le, G.; Blanco-Cano, X.; Russell, C. T.; Zhou, X.-W.; Mozer, F.; Trattner, K. J.; Fuselier, S. A.; Anderson, B. J.

    2005-01-01

    High-resolution magnetic field data from the Polar Magnetic Field Experiment (MFE) show that narrow-band waves at frequencies approx. 0.2-3 Hz are a permanent feature in the vicinity of the polar cusp. The waves have been found in the magnetosphere adjacent to the cusp (both poleward and equatorward of the cusp) and in the cusp itself. The occurrence of waves is coincident with depression of magnetic field strength associated with enhanced plasma density, indicating the entry of magnetosheath plasma into the cusp region. The wave frequencies are generally scaled by the local proton cyclotron frequency and vary between 0.2 and 1.7 times local proton cyclotron frequency. This suggests that the waves are generated in the cusp region by the precipitating magnetosheath plasma. The properties of the waves are highly variable. The waves exhibit both left-handed and right-handed polarization in the spacecraft frame. The propagation angles vary from nearly parallel to nearly perpendicular to the magnetic field. We find no correlation among wave frequency, propagation angle, and polarization. Combined magnetic field and electric field data for the waves indicate that the energy flux of the waves is guided by the background magnetic field and points downward toward the ionosphere.

  12. Modeling and Experimental Validation for 3D mm-wave Radar Imaging

    NASA Astrophysics Data System (ADS)

    Ghazi, Galia

    As the problem of identifying suicide bombers wearing explosives concealed under clothing becomes increasingly important, it becomes essential to detect suspicious individuals at a distance. Systems which employ multiple sensors to determine the presence of explosives on people are being developed. Their functions include observing and following individuals with intelligent video, identifying explosives residues or heat signatures on the outer surface of their clothing, and characterizing explosives using penetrating X-rays, terahertz waves, neutron analysis, or nuclear quadrupole resonance. At present, mm-wave radar is the only modality that can both penetrate and sense beneath clothing at a distance of 2 to 50 meters without causing physical harm. Unfortunately, current mm-wave radar systems capable of performing high-resolution, real-time imaging require using arrays with a large number of transmitting and receiving modules; therefore, these systems present undesired large size, weight and power consumption, as well as extremely complex hardware architecture. The overarching goal of this thesis is the development and experimental validation of a next generation inexpensive, high-resolution radar system that can distinguish security threats hidden on individuals located at 2-10 meters range. In pursuit of this goal, this thesis proposes the following contributions: (1) Development and experimental validation of a new current-based, high-frequency computational method to model large scattering problems (hundreds of wavelengths) involving lossy, penetrable and multi-layered dielectric and conductive structures, which is needed for an accurate characterization of the wave-matter interaction and EM scattering in the target region; (2) Development of combined Norm-1, Norm-2 regularized imaging algorithms, which are needed for enhancing the resolution of the images while using a minimum number of transmitting and receiving antennas; (3) Implementation and experimental validation of new calibration techniques, which are needed for coherent imaging with multistatic configurations; and (4) Investigation of novel compressive antennas, which spatially modulate the wavefield in order to enhance the information transfer efficiency between sampling and imaging regions and use of Compressive Sensing algorithms.

  13. The Olmsted fault zone, southernmost Illinois: A key to understanding seismic hazard in the northern new Madrid seismic zone

    USGS Publications Warehouse

    Bexfield, C.E.; McBride, J.H.; Pugin, Andre J.M.; Nelson, W.J.; Larson, T.H.; Sargent, S.L.

    2005-01-01

    Geological deformation in the northern New Madrid seismic zone, near Olmsted, Illinois (USA), is analyzed using integrated compressional-wave (P) and horizontally polarized-wave (SH) seismic reflection and regional and dedicated borehole information. Seismic hazards are of special concern because of strategic facilities (e.g., lock and dam sites and chemical plants on the Ohio River near its confluence with the Mississippi River) and because of alluvial soils subject to high amplification of earthquake shock. We use an integrated approach starting with lower resolution, but deeper penetration, P-wave reflection profiles to identify displacement of Paleozoic bedrock. Higher resolution, but shallower penetration, SH-wave images show deformation that has propagated upward from bedrock faults into Pleistocene loess. We have mapped an intricate zone more than 8 km wide of high-angle faults in Mississippi embayment sediments localized over Paleozoic bedrock faults that trend north to northeast, parallel to the Ohio River. These faults align with the pattern of epicenters in the New Madrid seismic zone. Normal and reverse offsets along with positive flower structures imply a component of strike-slip; the current stress regime favors right-lateral slip on northeast-trending faults. The largest fault, the Olmsted fault, underwent principal displacement near the end of the Cretaceous Period 65 to 70 million years ago. Strata of this age (dated via fossil pollen) thicken greatly on the downthrown side of the Olmsted fault into a locally subsiding basin. Small offsets of Tertiary and Quaternary strata are evident on high-resolution SH-wave seismic profiles. Our results imply recent reactivation and possible future seismic activity in a critical area of the New Madrid seismic zone. This integrated approach provides a strategy for evaluating shallow seismic hazard-related targets for engineering concerns. ?? 2005 Elsevier B.V. All rights reserved.

  14. Variation of Rayleigh and Love Wave Fundamental Mode Group Velocity Dispersion Across India and Surrounding Regions

    NASA Astrophysics Data System (ADS)

    Acton, C. E.; Priestley, K.; Mitra, S.; Gaur, V. K.; Rai, S. S.

    2007-12-01

    We present group velocity dispersion results from a study of regional fundamental mode Rayleigh and Love waves propagating across India and surrounding regions. Data used in this study comes from broadband stations operated in India by us in addition to data from seismograms in the region whose data is archived at the IRIS Data Management Centre. The large amount of new and available data allows an improved path coverage and accordingly increased lateral resolution than in previous similar global and regional studies. 1D path- averaged dispersion measurements have been made using multiple filter analyis for source-receiver paths and are combined to produce tomographic group velocity maps for periods between 10 and 60 s. Preliminary Rayleigh wave group velocity maps have been produced using ~2500 paths and checkerboard tests indicate an average resolution of 5 degrees with substantially higher resolution achieved over the more densely sampled Himalayan regions. Short period velocity maps correlate well with surface geology resolving low velocity regions (2.0-2.4 km/s) corresponding to the Ganges and Brahmaputra river deltas, the Indo-Gangetic plains, the Katawaz Basin in Pakhistan, the Tarim Basin in China and the Turan Depression. The Tibetan Plateau is well defined as a high velocity region (2.9-3.2 km/s) at 10 s period, but for periods greater than 20 s it becomes a low velocity region which remains a distinct feature at 60 s and is consistent with the increased crustal thickness. The southern Indian shield is characterized by high crustal group velocities (3.0-3.4 km/s) and at short periods of 10 and 15 s it is possible to make some distinction between the Singhbhum, Dharwar and Aravali cratons. Initial Love wave group velocity maps from 500 dispersion measurements show similarly low velocities at short periods across regions with high sedimentation but higher velocities compared to Rayleigh waves across the Indian shield.

  15. Tides and tsunamis

    NASA Technical Reports Server (NTRS)

    Zetler, B. D.

    1972-01-01

    Although tides and tsunamis are both shallow water waves, it does not follow that they are equally amenable to an observational program using an orbiting altimeter on a satellite. A numerical feasibility investigation using a hypothetical satellite orbit, real tide observations, and sequentially increased levels of white noise has been conducted to study the degradation of the tidal harmonic constants caused by adding noise to the tide data. Tsunami waves, possibly a foot high and one hundred miles long, must be measured in individual orbits, thus requiring high relative resolution.

  16. FY16 NRL DoD High Performance Computing Modernization Program Annual Reports

    DTIC Science & Technology

    2017-09-15

    explored both wind and wave forcing in the numerical wave tank. The model uses high spatial and temporal resolution and a multi-phase formulation to...Results: The ADVED_NS code was used to predict the effect of the standoff distance between micron- diameter wires and flow frequency on the total...contours for a flow over 3D wire mesh. Figure 2 shows verifications comparing computed and theoretical drag forces for the flow over two cylinders in an

  17. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes

    2007-06-30

    The objective of this research project was to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in the hopes of observing changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE No.DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestonesmore » of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data. Attribute analysis was a very useful tool in enhancing changes in seismic character present, but difficult to interpret on time amplitude slices. Lessons learned from and tools/techniques developed during this project will allow high-resolution seismic imaging to be routinely applied to many CO{sub 2} injection programs in a large percentage of shallow carbonate oil fields in the midcontinent.« less

  18. High Resolution Shear-Wave Velocity Structure of Greenland from Surface Wave Analysis

    NASA Astrophysics Data System (ADS)

    Pourpoint, M.; Anandakrishnan, S.; Ammon, C. J.

    2016-12-01

    We present a high resolution seismic tomography model of Greenland's lithosphere from the analysis of fundamental mode Rayleigh-wave group velocity dispersion measurements. Regional and teleseismic events recorded by the GLISN, GSN and CN seismic networks over the last 20 years were used. In order to better constrain the crustal structure of Greenland, we also collected and processed several years of ambient noise data. We developed a new group velocity correction method that helps to alleviate the limitations of the sparse Greenland station network and the relatively few local events. The global dispersion model GDM52 from Ekström [2011] was used to calculate group delays from the earthquake to the boundaries of our study area. An iterative reweighted generalized least-square approach was used to invert for the group velocity maps between periods of 5 s and 180 s. A Markov chain Monte Carlo technique was then applied to invert for a 3-D shear wave velocity model of Greenland up to a depth of 200 km and estimate the uncertainties in the model. Our method results in relatively uniform azimuthal coverage and high resolution length ( 200 to 400 km) in west and east Greenland. We detect a deep high velocity zone extending from northwestern to southwestern Greenland and a low velocity zone (LVZ) between central-eastern and northeastern Greenland. The location of the LVZ correlates well with a previously measured high geothermal heat flux and could provide valuable information about its source. We expect the results of the ambient noise tomography to cross-validate the earthquake tomography results and give us a better estimate of the spatial extent and amplitude of the LVZ at shallow depths. A refined regional model of Greenland's lithospheric structure should eventually help better understand how underlying geological and geophysical processes may impact the dynamics of the ice sheet and influence its potential contribution to future sea level changes.

  19. In-Service Monitoring of Steam Pipe Systems at High Temperatures

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Scott, James S.; Blosiu, Julian O.; Widholm, Scott E.

    2011-01-01

    An effective, in-service health monitoring system is needed to track water condensation in real time through the walls of steam pipes. The system is required to measure the height of the condensed water from outside the pipe, while operating at temperatures that are as high as 250 C. The system needs to account for the effects of water flow and cavitation. In addition, it is desired that the system does not require perforating the pipes and thereby reducing the structural integrity. Generally, steam pipes are used as part of the district heating system carrying steam from central power stations under the streets to heat, cool, or supply power to high-rise buildings and businesses. This system uses ultrasonic waves in pulse-echo and acquires reflected signal data. Via autocorrelation, it determines the water height while eliminating the effect of noise and multiple reflections from the wall of the pipe. The system performs nondestructive monitoring through the walls of steam pipes, and automatically measures the height of condensed water while operating at the high-temperature conditions of 250 C. For this purpose, the ultrasonic pulse-echo method is used where the time-of-flight of the wave reflections inside the water are measured, and it is multiplied by the wave velocity to determine the height. The pulse-echo test consists of emitting ultrasonic wave pulses from a piezoelectric transducer and receiving the reflections from the top and bottom of the condensed water. A single transducer is used as a transmitter as well as the receiver of the ultrasonic waves. To obtain high resolution, a broadband transducer is used and the frequency can be in the range of 2.25 to 10 MHz, providing sharp pulses in the time domain allowing for higher resolution in identifying the individual reflections.

  20. Increasing circular synthetic aperture sonar resolution via adapted wave atoms deconvolution.

    PubMed

    Pailhas, Yan; Petillot, Yvan; Mulgrew, Bernard

    2017-04-01

    Circular Synthetic Aperture Sonar (CSAS) processing computes coherently Synthetic Aperture Sonar (SAS) data acquired along a circular trajectory. This approach has a number of advantages, in particular it maximises the aperture length of a SAS system, producing very high resolution sonar images. CSAS image reconstruction using back-projection algorithms, however, introduces a dissymmetry in the impulse response, as the imaged point moves away from the centre of the acquisition circle. This paper proposes a sampling scheme for the CSAS image reconstruction which allows every point, within the full field of view of the system, to be considered as the centre of a virtual CSAS acquisition scheme. As a direct consequence of using the proposed resampling scheme, the point spread function (PSF) is uniform for the full CSAS image. Closed form solutions for the CSAS PSF are derived analytically, both in the image and the Fourier domain. The thorough knowledge of the PSF leads naturally to the proposed adapted atom waves basis for CSAS image decomposition. The atom wave deconvolution is successfully applied to simulated data, increasing the image resolution by reducing the PSF energy leakage.

  1. Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy

    PubMed Central

    Brooker, Gary; Siegel, Nisan; Wang, Victor; Rosen, Joseph

    2011-01-01

    Fresnel Incoherent Correlation Holography (FINCH) enables holograms and 3D images to be created from incoherent light with just a camera and spatial light modulator (SLM). We previously described its application to microscopic incoherent fluorescence wherein one complex hologram contains all the 3D information in the microscope field, obviating the need for scanning or serial sectioning. We now report experiments which have led to the optimal optical, electro-optic, and computational conditions necessary to produce holograms which yield high quality 3D images from fluorescent microscopic specimens. An important improvement from our previous FINCH configurations capitalizes on the polarization sensitivity of the SLM so that the same SLM pixels which create the spherical wave simulating the microscope tube lens, also pass the plane waves from the infinity corrected microscope objective, so that interference between the two wave types at the camera creates a hologram. This advance dramatically improves the resolution of the FINCH system. Results from imaging a fluorescent USAF pattern and a pollen grain slide reveal resolution which approaches the Rayleigh limit by this simple method for 3D fluorescent microscopic imaging. PMID:21445140

  2. Dynamical response of the summer MLT to tropospheric global warming: Results from a mechanistic GCM with resolved gravity waves

    NASA Astrophysics Data System (ADS)

    Becker, E.

    2009-04-01

    The sensitivity of the mesosphere and lower thermosphere (MLT) to climate variability of the troposphere is largely controlled by the generation, propagation, and dissipation of gravity waves (GWs). Conventional climate models cannot fully describe this sensitivity since GWs must be parameterized by invoking strong assumptions. Since the Eliassen-Palm flux (EPF) of low-frequency inertia GWs is negligible, the main contribution to the EPF divergence at high latitudes of the MLT is due to mid- and high-frequency GWs with periods of a few hours or less. In order to resolve at least a good portion of these waves in a GCM, a high spatial resolution from the boundary layer to the lower thermosphere is required. Furthermore, both the generation and dissipation of resolved GWs is expected to depend strongly on the details of the parameterization of turbulence. The present study proposes a new formulation of the Kuehlungsborn mechanistic general circulation model (KMCM) with high spatial resolution and Smagorinsky-type horizontal and vertical diffusion coefficients that are both scaled by the Richardson criterion. This model version allows for an explicit and self-consistent simulation of the gravity-wave drag in the MLT. A sensitivity experiment is conducted in which the main changes associated with tropospheric global warming are imposed by the differential heating, i.e., reduced static stability in the lower troposphere along with a reduced equator-to-pole temperature difference and enhanced latent heating in the intertropical convergence zone. These changes result in both a stronger Lorenz energy cycle and enhanced gravity-wave activity in the upper troposphere at middle latitudes. The altered gravity-wave sources result in the following remote effects in the summer MLT: downward shift of the residual circulation, as well as lower temperatures and reduced easterlies below the mesopause. These changes are consistent with enhanced turbulent diffusion and dissipation below the mesopause due to larger gravity-wave amplitudes.

  3. Robust estimation of pulse wave transit time using group delay.

    PubMed

    Meloni, Antonella; Zymeski, Heather; Pepe, Alessia; Lombardi, Massimo; Wood, John C

    2014-03-01

    To evaluate the efficiency of a novel transit time (Δt) estimation method from cardiovascular magnetic resonance flow curves. Flow curves were estimated from phase contrast images of 30 patients. Our method (TT-GD: transit time group delay) operates in the frequency domain and models the ascending aortic waveform as an input passing through a discrete-component "filter," producing the observed descending aortic waveform. The GD of the filter represents the average time delay (Δt) across individual frequency bands of the input. This method was compared with two previously described time-domain methods: TT-point using the half-maximum of the curves and TT-wave using cross-correlation. High temporal resolution flow images were studied at multiple downsampling rates to study the impact of differences in temporal resolution. Mean Δts obtained with the three methods were comparable. The TT-GD method was the most robust to reduced temporal resolution. While the TT-GD and the TT-wave produced comparable results for velocity and flow waveforms, the TT-point resulted in significant shorter Δts when calculated from velocity waveforms (difference: 1.8±2.7 msec; coefficient of variability: 8.7%). The TT-GD method was the most reproducible, with an intraobserver variability of 3.4% and an interobserver variability of 3.7%. Compared to the traditional TT-point and TT-wave methods, the TT-GD approach was more robust to the choice of temporal resolution, waveform type, and observer. Copyright © 2013 Wiley Periodicals, Inc.

  4. The Gravity Wave Response Above Deep Convection in a Squall Line Simulation

    NASA Technical Reports Server (NTRS)

    Alexander, M. J.; Holton, J. R.; Durran, D. R.

    1995-01-01

    High-frequency gravity waves generated by convective storms likely play an important role in the general circulation of the middle atmosphere. Yet little is known about waves from this source. This work utilizes a fully compressible, nonlinear, numerical, two-dimensional simulation of a midlatitude squall line to study vertically propagating waves generated by deep convection. The model includes a deep stratosphere layer with high enough resolution to characterize the wave motions at these altitudes. A spectral analysis of the stratospheric waves provides an understanding of the necessary characteristics of the spectrum for future studies of their effects on the middle atmosphere in realistic mean wind scenarios. The wave spectrum also displays specific characteristics that point to the physical mechanisms within the storm responsible for their forcing. Understanding these forcing mechanisms and the properties of the storm and atmosphere that control them are crucial first steps toward developing a parameterization of waves from this source. The simulation also provides a description of some observable signatures of convectively generated waves, which may promote observational verification of these results and help tie any such observations to their convective source.

  5. Alfvén Wave Turbulence as a Coronal Heating Mechanism: Simultaneously Predicting the Heating Rate and the Wave-induced Emission Line Broadening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oran, R.; Landi, E.; Holst, B. van der

    We test the predictions of the Alfvén Wave Solar Model (AWSoM), a global wave-driven magnetohydrodynamic (MHD) model of the solar atmosphere, against high-resolution spectra emitted by the quiescent off-disk solar corona. AWSoM incorporates Alfvén wave propagation and dissipation in both closed and open magnetic field lines; turbulent dissipation is the only heating mechanism. We examine whether this mechanism is consistent with observations of coronal EUV emission by combining model results with the CHIANTI atomic database to create synthetic line-of-sight spectra, where spectral line widths depend on thermal and wave-related ion motions. This is the first time wave-induced line broadening ismore » calculated from a global model with a realistic magnetic field. We used high-resolution SUMER observations above the solar west limb between 1.04 and 1.34 R {sub ⊙} at the equator, taken in 1996 November. We obtained an AWSoM steady-state solution for the corresponding period using a synoptic magnetogram. The 3D solution revealed a pseudo-streamer structure transversing the SUMER line of sight, which contributes significantly to the emission; the modeled electron temperature and density in the pseudo-streamer are consistent with those observed. The synthetic line widths and the total line fluxes are consistent with the observations for five different ions. Further, line widths that include the contribution from the wave-induced ion motions improve the correspondence with observed spectra for all ions. We conclude that the turbulent dissipation assumed in the AWSoM model is a viable candidate for explaining coronal heating, as it is consistent with several independent measured quantities.« less

  6. A System and Method for Online High-Resolution Mapping of Gastric Slow-Wave Activity

    PubMed Central

    Bull, Simon H.; O’Grady, Gregory; Du, Peng

    2015-01-01

    High-resolution (HR) mapping employs multielectrode arrays to achieve spatially detailed analyses of propagating bioelectrical events. A major current limitation is that spatial analyses must currently be performed “off-line” (after experiments), compromising timely recording feedback and restricting experimental interventions. These problems motivated development of a system and method for “online” HR mapping. HR gastric recordings were acquired and streamed to a novel software client. Algorithms were devised to filter data, identify slow-wave events, eliminate corrupt channels, and cluster activation events. A graphical user interface animated data and plotted electrograms and maps. Results were compared against off-line methods. The online system analyzed 256-channel serosal recordings with no unexpected system terminations with a mean delay 18 s. Activation time marking sensitivity was 0.92; positive predictive value was 0.93. Abnormal slow-wave patterns including conduction blocks, ectopic pacemaking, and colliding wave fronts were reliably identified. Compared to traditional analysis methods, online mapping had comparable results with equivalent coverage of 90% of electrodes, average RMS errors of less than 1 s, and CC of activation maps of 0.99. Accurate slow-wave mapping was achieved in near real-time, enabling monitoring of recording quality and experimental interventions targeted to dysrhythmic onset. This work also advances the translation of HR mapping toward real-time clinical application. PMID:24860024

  7. Digital holographic interferometry for characterizing deformable mirrors in aero-optics

    NASA Astrophysics Data System (ADS)

    Trolinger, James D.; Hess, Cecil F.; Razavi, Payam; Furlong, Cosme

    2016-08-01

    Measuring and understanding the transient behavior of a surface with high spatial and temporal resolution are required in many areas of science. This paper describes the development and application of a high-speed, high-dynamic range, digital holographic interferometer for high-speed surface contouring with fractional wavelength precision and high-spatial resolution. The specific application under investigation here is to characterize deformable mirrors (DM) employed in aero-optics. The developed instrument was shown capable of contouring a deformable mirror with extremely high-resolution at frequencies exceeding 40 kHz. We demonstrated two different procedures for characterizing the mechanical response of a surface to a wide variety of input forces, one that employs a high-speed digital camera and a second that employs a low-speed, low-cost digital camera. The latter is achieved by cycling the DM actuators with a step input, producing a transient that typically lasts up to a millisecond before reaching equilibrium. Recordings are made at increasing times after the DM initiation from zero to equilibrium to analyze the transient. Because the wave functions are stored and reconstructable, they can be compared with each other to produce contours including absolute, difference, and velocity. High-speed digital cameras recorded the wave functions during a single transient at rates exceeding 40 kHz. We concluded that either method is fully capable of characterizing a typical DM to the extent required by aero-optical engineers.

  8. Observations of the 5-day wave in the mesosphere and lower thermosphere

    NASA Technical Reports Server (NTRS)

    Wu, D. L.; Hays, P. B.; Skinner, W. R.

    1994-01-01

    The 5-day planetary wave has been detected in the winds measured by the High Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) in the mesosphere and lower thermosphere (50-110 km). The appearances of the 5-day wave are transient, with a lifetime of 10-20 days in the two-year data set. The structures of selected 5-day wave events are in generally good agreement with the (1,1) Rossby normal mode for both zonal and meridional components. A climatology of the 5-day wave is presented for an altitude of 95 km and latitudes mainly between 40 deg S and 40 deg N.

  9. Mountain Building in Central and Western Tien Shan Orogen: Insight from Joint Inversion of Surface Wave Phase Velocities and Body Wave Travel Times

    NASA Astrophysics Data System (ADS)

    Wu, S.; Yang, Y.; Wang, K.

    2017-12-01

    The Tien Shan orogeny, situated in central Asia about 2000 km away from the collision boundary between Indian plate and Eurasian plate, is one of the highest, youngest, and most active intracontinental mountain belts on the earth. It first formed during the Paleozoic times and became reactivated at about 20Ma. Although many studies on the dynamic processes of the Tien Shan orogeny have been carried out before, its tectonic rejuvenation and uplift mechanism are still being debated. A high-resolution model of crust and mantle beneath Tien Shan is critical to discern among competing models for the mountain building. In this study, we collect and process seismic data recorded by several seismic arrays in the central and western Tien Shan region to generate surface wave dispersion curves at 6-140 s period using ambient noise tomography (ANT) and two-plane surface wave tomography (TPWT) methods. Using these dispersion curves, we construct a high-resolution 3-D image of shear wave velocity (Vs) in the crust and upper mantle up to 300 km depth. Our current model constrained only by surface waves shows that, under the Tien Shan orogenic belt, a strong low S-wave velocity anomaly exists in the uppermost mantle down to the depth of 200km, supporting the model that the hot upper mantle is upwelling under the Tien Shan orogenic belt, which may be responsible for the mountain building. To the west of central Tien Shan across the Talas-Fergana fault, low S-wave velocity anomalies in the upper mantle become much weaker and finally disappear beneath the Fergana basin. Because surface waves are insensitive to the structures below 300 km, body wave arrival times will be included for a joint inversion with surface waves to generate S-wave velocity structure from the surface down to the mantle transition zone. The joint inversion of both body and surface waves provide complementary constraints on structures at different depths and helps to achieve a more realistic model compared with body wave or surface wave tomography alone. The joint inversion model will be presented.

  10. Attenuation tomography of the main volcanic regions of the Campanian Plain.

    NASA Astrophysics Data System (ADS)

    de Siena, Luca; Del Pezzo, Edoardo; Bianco, Francesca

    2010-05-01

    Passive, high resolution attenuation tomography is used to image the geological structure in the first upper 4 km of shallow crust beneath the Campanian Plain. Images were produced by two separate attenuation tomography studies of the main volcanic regions of the Campanian Plain, Southern Italy, Mt. Vesuvius volcano and Campi Flegrei caldera. The three-dimensional S wave attenuation tomography of Mt. Vesuvius has been obtained with multiple measurements of coda-normalized S-wave spectra of local small magnitude earthquakes. P-wave attenuation tomography was performed using classical spectral methods. The images were obtained inverting the spectral data with a multiple resolution approach expressively designed for attenuation tomography. This allowed to obtain a robust attenuation image of the volumes under the central cone at a maximum resolution of 300 m. The same approach was applied to a data set recorded in the Campi Flegrei area during the 1982-1984 seismic crisis. Inversion ensures a minimum cell size resolution of 500 meters in the zones with sufficient ray coverage, and 1000 meters outside these zones. The study of the resolution matrix as well as the synthetic tests guarantee an optimal reproduction of the input anomalies in the center of the caldera, between 0 and 3.5 km in depth. Results allowed an unprecedented view of several features of the medium, like the residual part of solidified magma from the last eruption, under the central cone of Mt. Vesuvius, and the feeding systems and top of the carbonate basement, 3 km depth below both volcanic areas. Vertical Q contrast image important fault zones, such as the La Starza fault, as well as high attenuation structures that correspond to gas or fluid reservoirs, and reveal the upper part of gas bearing conduits connecting these high attenuation volumes with the magma sill revealed at about 7 km in depth by passive travel-time tomography under the whole Campanian Plain.

  11. High resolution extensometer based on optical encoder for measurement of small landslide displacements

    NASA Astrophysics Data System (ADS)

    Afandi, M. I.; Adinanta, H.; Setiono, A.; Qomaruddin; Widiyatmoko, B.

    2018-03-01

    There are many ways to measure landslide displacement using sensors such as multi-turn potentiometer, fiber optic strain sensor, GPS, geodetic measurement, ground penetrating radar, etc. The proposed way is to use an optical encoder that produces pulse signal with high stability of measurement resolution despite voltage source instability. The landslide measurement using extensometer based on optical encoder has the ability of high resolution for wide range measurement and for a long period of time. The type of incremental optical encoder provides information about the pulse and direction of a rotating shaft by producing quadrature square wave cycle per increment of shaft movement. The result of measurement using 2,000 pulses per resolution of optical encoder has been obtained. Resolution of extensometer is 36 μm with speed limit of about 3.6 cm/s. System test in hazard landslide area has been carried out with good reliability for small landslide displacement monitoring.

  12. Investigation of mesoscale trace gas distributions across an Arctic tropopause fold affected by gravity wave activity

    NASA Astrophysics Data System (ADS)

    Woiwode, Wolfgang; Oelhaf, Hermann; Dörnbrack, Andreas; Bramberger, Martina; Diekmann, Christopher; Friedl-Vallon, Felix; Höpfner, Michael; Hoor, Peter; Johansson, Sören; Krause, Jens; Kunkel, Daniel; Orphal, Johannes; Preusse, Peter; Ruhnke, Roland; Schlage, Romy; Schröter, Jennifer; Sinnhuber, Björn-Martin; Ungermann, Jörn; Zahn, Andreas

    2017-04-01

    Tropopause folds are known of enabling efficient exchange of trace constituents between the stratosphere and troposphere. In particular, the modification of the vertical distributions of radiatively important H2O and other reactive trace gases associated with tropopause folds is relevant for accurate model simulations of the upper troposphere and lower stratosphere composition. During the POLSTRACC/GW-LCYCLE/SALSA flight on 12 January 2016, the HALO (High Altitude LOng range) aircraft crossed twice an extended tropopause fold in the vicinity of the Arctic polar vortex. At the same time, the ECMWF operational analysis shows that the meteorological scenario probed above Italy was accompanied by wide-spread gravity wave activity induced by north-westerly winds. Using high spectral resolution limb-observations by the GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) spectrometer aboard HALO and associated observations, we investigate the vertical distributions of H2O, O3, temperature, and associated parameters across the tropopause fold. In combination with a high-resolution simulation by the ICON-ART (ICOsahedral Nonhydrostatic- Aerosol and Reactive Trace gases) model, we search for indications for irreversible trace gas exchange between the stratosphere and troposphere and the potential influence of gravity waves.

  13. First results from the Magnetospheric Multiscale mission

    NASA Astrophysics Data System (ADS)

    Lavraud, B.

    2017-12-01

    Since its launch in March 2015, NASA's Magnetospheric Multiscale mission (MMS) provides a wealth of unprecedented high resolution measurements of space plasma properties and dynamics in the near-Earth environment. MMS was designed in the first place to study the fundamental process of collision-less magnetic reconnection. The two first results reviewed here pertain to this topic and highlight how the extremely high resolution MMS data (electrons, in particular, with full three dimensional measurements at 30 ms in burst mode) have permitted to tackle electron dynamics in unprecedented details. The first result demonstrates how electrons become demagnetized and scattered near the magnetic reconnection X line as a result of increased magnetic field curvature, together with a decrease in its magnitude. The second result demonstrates that electrons form crescent-shaped, agyrotropic distribution functions very near the X line, suggestive of the existence of a perpendicular current aligned with the local electric field and consistent with the energy conversion expected in magnetic reconnection (such that J\\cdot E > 0). Aside from magnetic reconnection, we show how MMS contributes to topics such as wave properties and their interaction with particles. Thanks again to extremely high resolution measurements, the lossless and periodical energy exchange between wave electromagnetic fields and particles, as expected in the case of kinetic Alfvén waves, was confirmed. Although not discussed, MMS has the potential to solve many other outstanding issues in collision-less plasma physics, for example regarding shock or turbulence acceleration, with obvious broader impacts in astrophysics in general.

  14. ASTER Waves

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The pattern on the right half of this image of the Bay of Bengal is the result of two opposing wave trains colliding. This ASTER sub-scene, acquired on March 29, 2000, covers an area 18 kilometers (13 miles) wide and 15 kilometers (9 miles) long in three bands of the reflected visible and infrared wavelength region. The visible and near-infrared bands highlight surface waves due to specular reflection of sunlight off of the wave faces.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils and geology; and measuring surface heat balance.

  15. The Relationship between Membrane Potential and Calcium Dynamics in Glucose-Stimulated Beta Cell Syncytium in Acute Mouse Pancreas Tissue Slices

    PubMed Central

    Miller, Evan W.; Slak Rupnik, Marjan

    2013-01-01

    Oscillatory electrical activity is regarded as a hallmark of the pancreatic beta cell glucose-dependent excitability pattern. Electrophysiologically recorded membrane potential oscillations in beta cells are associated with in-phase oscillatory cytosolic calcium activity ([Ca2+]i) measured with fluorescent probes. Recent high spatial and temporal resolution confocal imaging revealed that glucose stimulation of beta cells in intact islets within acute tissue slices produces a [Ca2+]i change with initial transient phase followed by a plateau phase with highly synchronized [Ca2+]i oscillations. Here, we aimed to correlate the plateau [Ca2+]i oscillations with the oscillations of membrane potential using patch-clamp and for the first time high resolution voltage-sensitive dye based confocal imaging. Our results demonstrated that the glucose-evoked membrane potential oscillations spread over the islet in a wave-like manner, their durations and wave velocities being comparable to the ones for [Ca2+]i oscillations and waves. High temporal resolution simultaneous records of membrane potential and [Ca2+]i confirmed tight but nevertheless limited coupling of the two processes, with membrane depolarization preceding the [Ca2+]i increase. The potassium channel blocker tetraethylammonium increased the velocity at which oscillations advanced over the islet by several-fold while, at the same time, emphasized differences in kinetics of the membrane potential and the [Ca2+]i. The combination of both imaging techniques provides a powerful tool that will help us attain deeper knowledge of the beta cell network. PMID:24324777

  16. Relationship between the upper mantle high velocity seismic lid and the continental lithosphere

    NASA Astrophysics Data System (ADS)

    Priestley, Keith; Tilmann, Frederik

    2009-04-01

    The lithosphere-asthenosphere boundary corresponds to the base of the "rigid" plates - the depth at which heat transport changes from advection in the convecting deeper upper mantle to conduction in the shallow upper mantle. Although this boundary is a fundamental feature of the Earth, mapping it has been difficult because it does not correspond to a sharp change in temperature or composition. Various definitions of the lithosphere and asthenosphere are based on the analysis of different types of geophysical and geological observations. The depth to the lithosphere-asthenosphere boundary determined from these different observations often shows little agreement when they are applied to the same region because the geophysical and geological observations (i.e., seismic velocity, strain rate, electrical resistivity, chemical depletion, etc.) are proxies for the change in rheological properties rather than a direct measure of the rheological properties. In this paper, we focus on the seismic mapping of the upper mantle high velocity lid and low velocity zone and its relationship to the lithosphere and asthenosphere. We have two goals: (a) to examine the differences in how teleseismic body-wave travel-time tomography and surface-wave tomography image upper mantle seismic structure; and (b) to summarise how upper mantle seismic velocity structure can be related to the structure of the lithosphere and asthenosphere. Surface-wave tomography provides reasonably good depth resolution, especially when higher modes are included in the analysis, but lateral resolution is limited by the horizontal wavelength of the long-period surface waves used to constrain upper mantle velocity structure. Teleseismic body-wave tomography has poor depth resolution in the upper mantle, particularly when no strong lateral contrasts are present. If station terms are used, features with large lateral extent and gradual boundaries are attenuated in the tomographic image. Body-wave models are not useful in mapping the thickness of the high velocity upper mantle lid because this type of analysis often determines wave speed perturbations from an unknown horizontal average and not absolute velocities. Thus, any feature which extends laterally across the whole region beneath a seismic network becomes invisible in the teleseismic body-wave tomographic image. We compare surface-wave and body-wave tomographic results using southern Africa as an example. Surface-wave tomographic images for southern Africa show a strong, high velocity upper mantle lid confined to depths shallower than ~ 200 km, whereas body-wave tomographic images show weak high velocity in the upper mantle extending to depths of ~ 300 km or more. However, synthetic tests show that these results are not contradictory. The absolute seismic velocity structure of the upper mantle provided by surface wave analysis can be used to map the thermal lithosphere. Priestley and McKenzie (Priestley, K., McKenzie, D., 2006. The thermal structure of the lithosphere from shear wave velocities. Earth and Planetary Science Letters 244, 285-301.) derive an empirical relationship between shear wave velocity and temperature. This relationship is used to obtain temperature profiles from the surface-wave tomographic models of the continental mantle. The base of the lithosphere is shown by a change in the gradient of the temperature profiles indicative of the depth where the mode of heat transport changes from conduction to advection. Comparisons of the geotherms determined from the conversion of surface-wave wave speeds to temperatures with upper mantle nodule-derived geotherms demonstrate that estimates of lithospheric thickness from Vs and from the nodule mineralogy agree to within about 25 km. The lithospheric thickness map for Africa derived from the surface-wave tomographic results shows that thick lithosphere underlies most of the Archean crust in Africa. The distribution of diamondiferous kimberlites provides an independent estimate of where thick lithosphere exists. Diamondiferous kimberlites generally occur where the lower part of the thermal lithosphere as indicated by seismology is in the diamond stability field.

  17. The high-resolution infrared spectrum of the ν3 +ν5 combination band of jet-cooled propyne

    NASA Astrophysics Data System (ADS)

    Doney, K. D.; Zhao, D.; Bouwman, J.; Linnartz, H.

    2017-09-01

    We present the first detection of the high-resolution ro-vibrational spectrum of the ν3 +ν5 combination band of propyne around 3070 cm-1. The fully resolved spectrum is recorded for supersonically jet-cooled propyne using continuous wave cavity ring-down spectroscopy (cw-CRDS). The assignments are supported with the help of accurate ab initio vibration-rotation interaction constants (αi) and anharmonic frequencies. A detailed analysis of the rotationally cold spectrum is given.

  18. High Resolution ECG for Evaluation of Heart Function During Exposure to Subacute Hypobaric Hypoxia

    NASA Technical Reports Server (NTRS)

    Zupet, Petra; Finderle, Zarko; Schlegel, Todd T.; Princi, Tanja; Starc, Vito

    2010-01-01

    High altitude climbing presents a wide spectrum of health risks, including exposure to hypobaric hypoxia. Risks are also typically exacerbated by the difficulty in appropriately monitoring for early signs of organ dysfunction in remote areas. We investigated whether high resolution advanced ECG analysis might be helpful as a non-invasive and easy-to-use tool (e.g., instead of Doppler echocardiography) for evaluating early signs of heart overload in hypobaric hypoxia. Nine non-acclimatized healthy trained alpine rescuers (age 43.7 plus or minus 7.3 years) climbed in four days to the altitude of 4,200 m on Mount Ararat. Five-minute high-resolution 12-lead electrocardiograms (ECGs) were recorded (Cardiosoft) in each subject at rest in the supine position on different days but at the same time of day at four different altitudes: 400 m (reference altitude), 1,700 m, 3,200 m and 4,200 m. Changes in conventional and advanced resting ECG parameters, including in beat-to-beat QT and RR variability, waveform complexity, signal-averaged, high-frequency and spatial/spatiotemporal ECG was estimated by calculation of the regression coefficients in independent linear regression models. A p-value of less than 0.05 was adopted as statistically significant. As expected, the RR interval and its variability both decreased with increasing altitude, with trends k = -96 ms/1000 m with p = 0.000 and k = -9 ms/1000 m with p = 0.001, respectively. Significant changes were found in P-wave amplitude, which nearly doubled from the lowest to the highest altitude (k = 41.6 microvolt/1000 m with p = 0.000), and nearly significant changes in P-wave duration (k = 2.9 ms/1000 m with p = 0.059). Changes were less significant or non-significant in other studied parameters including those of waveform complexity, signal-averaged, high-frequency and spatial/spatiotemporal ECG. High resolution ECG analysis, particularly of the P wave, shows promise as a tool for monitoring early changes in heart function due to exposure to high altitude.

  19. Oblique propagation of monsoon gravity waves during the northern hemisphere 2007 summer

    NASA Astrophysics Data System (ADS)

    Thurairajah, Brentha; Siskind, David E.; Bailey, Scott M.; Carstens, Justin N.; Russell, James M.; Mlynczak, Martin G.

    2017-05-01

    We present a combination of satellite observation and high-resolution model output to understand monsoon convection as a source of high-latitude mesospheric gravity waves (GWs). The GWs generated over the Northern Hemisphere (NH) monsoon region during the 2007 summer and the role of the winds in focusing these GWs toward the high-latitude middle atmosphere are analyzed using the Sounding of the Atmosphere using Broadband Emission Radiometry/Thermosphere Ionosphere Mesosphere Energetics and Dynamics (SABER/TIMED) satellite temperature data and the high-resolution Navy Operational Global Atmospheric Prediction System-Advanced Level Physics High Altitude (NOGAPS/ALPHA) model results. In the NH, above the stratosphere, the monsoon GW Momentum Flux (GWMF) exhibits a poleward tilt that follows the slanted structure of the easterly jet. The correlation coefficients (>0.5) between the time series of NH tropical stratospheric GWMF and the global winds also have a slanted structure that coincide with the easterly jet, confirming the modeling theory that stratospheric monsoon GWs are refracted into the summer easterly jet and can reach the high-latitude mesosphere. Since Polar Mesospheric Clouds (PMCs) are sensitive indicators of changes in the polar summer mesosphere, we compared the time series of tropical stratospheric GWMF to the PMC occurrence frequency (OF) obtained from the Cloud Imaging and Particle Size/Aeronomy of Ice in the Mesosphere satellite data to assess the influence of this wave focusing in the mesosphere. There is a significant positive correlation between the high-latitude PMC OF and the tropical stratospheric GWMF suggesting a definite influence of monsoon GWs on the high-latitude mesosphere. The disagreement in correlation at the end of the PMC season is attributed to the enhancement of the quasi 5 day planetary wave dominating over the influence of monsoon GWs on PMCs.

  20. Long-distance super-resolution imaging assisted by enhanced spatial Fourier transform.

    PubMed

    Tang, Heng-He; Liu, Pu-Kun

    2015-09-07

    A new gradient-index (GRIN) lens that can realize enhanced spatial Fourier transform (FT) over optically long distances is demonstrated. By using an anisotropic GRIN metamaterial with hyperbolic dispersion, evanescent wave in free space can be transformed into propagating wave in the metamaterial and then focused outside due to negative-refraction. Both the results based on the ray tracing and the finite element simulation show that the spatial frequency bandwidth of the spatial FT can be extended to 2.7k(0) (k(0) is the wave vector in free space). Furthermore, assisted by the enhanced spatial FT, a new long-distance (in the optical far-field region) super-resolution imaging scheme is also proposed and the super resolved capability of λ/5 (λ is the wavelength in free space) is verified. The work may provide technical support for designing new-type high-speed microscopes with long working distances.

  1. Source parameters and effects of bandwidth and local geology on high- frequency ground motions observed for aftershocks of the northeastern Ohio earthquake of 31 January 1986

    USGS Publications Warehouse

    Glassmoyer, G.; Borcherdt, R.D.

    1990-01-01

    A 10-station array (GEOS) yielded recordings of exceptional bandwidth (400 sps) and resolution (up to 96 dB) for the aftershocks of the moderate (mb???4.9) earthquake that occurred on 31 January 1986 near Painesville, Ohio. Nine aftershocks were recorded with seismic moments ranging between 9 ?? 1016 and 3 ?? 1019 dyne-cm (MW: 0.6 to 2.3). The aftershock recordings at a site underlain by ???8m of lakeshore sediments show significant levels of high-frequency soil amplification of vertical motion at frequencies near 8, 20 and 70 Hz. Viscoelastic models for P and SV waves incident at the base of the sediments yield estimates of vertical P-wave response consistent with the observed high-frequency site resonances, but suggest additional detailed shear-wave logs are needed to account for observed S-wave response. -from Authors

  2. Nano-antenna in a photoconductive photomixer for highly efficient continuous wave terahertz emission

    PubMed Central

    Tanoto, H.; Teng, J. H.; Wu, Q. Y.; Sun, M.; Chen, Z. N.; Maier, S. A.; Wang, B.; Chum, C. C.; Si, G. Y.; Danner, A. J.; Chua, S. J.

    2013-01-01

    We report highly efficient continuous-wave terahertz (THz) photoconductive antenna based photomixer employing nano-gap electrodes in the active region. The tip-to-tip nano-gap electrode structure provides strong THz field enhancement and acts as a nano-antenna to radiate the THz wave generated in the active region of the photomixer. In addition, it provides good impedance matching to the THz planar antenna and exhibits a lower RC time constant, allowing more efficient radiation especially at the higher part of the THz spectrum. As a result, the output intensity of the photomixer with the new nano-gap electrode structure in the active region is two orders of magnitude higher than that of a photomixer with typical interdigitated electrodes. Significant improvement in the THz emission bandwidth was also observed. An efficient continuous wave THz source will greatly benefit compact THz system development for high resolution THz spectroscopy and imaging applications. PMID:24100840

  3. Steepening of Waves at the Duskside Magnetopause

    NASA Technical Reports Server (NTRS)

    Plaschke, F.; Kahr, N.; Fischer, D.; Nakamura, R.; Baumjohann, W.; Magnes, W.; Burch, J. L.; Torbert, R.; Russell, C. T.; Giles, B. L.; hide

    2016-01-01

    Surface waves at the magnetopause flanks typically feature steeper, i.e., more inclined leading (antisunward facing) than trailing (sunward facing) edges. This is expected for Kelvin-Helmholtz instability (KHI) amplified waves. Very rarely, during northward interplanetary magnetic field (IMF) conditions, anomalous inverse steepening has been observed. The small-scale tetrahedral configuration of the Magnetospheric Multiscale spacecraft and their high time resolution measurements enable us to routinely ascertain magnetopause boundary inclinations during surface wave passage with high accuracy by four-spacecraft timing analysis. At the dusk flank magnetopause, 77%/23% of the analyzed wave intervals exhibit regular inverse steepening. Inverse steepening happens during northward IMF conditions, as previously reported and, in addition, during intervals of dominant equatorial IMF. Inverse steepening observed under the latter conditions may be due to the absence of KHI or due to instabilities arising from the alignment of flow and magnetic fields in the magnetosheath.

  4. Initial report of the High Frequency Analyzer (HFA) onboard the ARASE (ERG) Satellite: Observations of the plasmasphere evolution and auroral kilometric radiation from the both hemisphere

    NASA Astrophysics Data System (ADS)

    Kumamoto, A.; Tsuchiya, F.; Kasahara, Y.; Kasaba, Y.; Kojima, H.; Yagitani, S.; Ishisaka, K.; Imachi, T.; Ozaki, M.; Matsuda, S.; Shoji, M.; Matsuoka, A.; Katoh, Y.; Miyoshi, Y.; Shinohara, I.; Obara, T.

    2017-12-01

    High Frequency Analyzer (HFA) is a subsystem of the Plasma Wave Experiment (PWE) onboard the ARASE (ERG, Exploration of energization and Radiation in Geospace) spacecraft for observation of radio and plasma waves in a frequency range from 0.01 to 10 MHz. In ARASE mission, HFA is expected to perform the following observations: (1) Upper hybrid resonance (UHR) waves in order to determine the electron number density around the spacecraft. (2) Magnetic field component of the chorus waves in a frequency range from 20 kHz to 100 kHz. (3) Radio and plasma waves excited via wave particle interactions and mode conversion processes in storm-time magnetosphere.HFA is operated in the following three observation modes: EE-mode, EB-mode, and PP-mode. In far-Earth region, HFA is operated in EE-mode. Spectrogram of two orthogonal or right and left-handed components of electric field in perpendicular directions to the spin axis of the spacecraft are obtained. In the near-Earth region, HFA is operated in EB-mode. Spectrogram of one components of electric field in perpendicular direction to the spin plane, and one component of the magnetic field in parallel direction to the spin axis are obtained. In EE and EB-modes, the frequency range from 0.01 to 10 MHz are covered with 480 frequency steps. The time resolution is 8 sec. We also prepared PP mode to measure the locations and structures of the plasmapause at higher resolution. In PP-mode, spectrogram of one electric field component in a frequency range from 0.01-0.4 MHz (PP1) or 0.1-1 MHz (PP2) can be obtained at time resolution of 1 sec.After the successful deployment of the wire antenna and search coils mast and initial checks, we could start routine observations and detect various radio and plasma wave phenomena such as upper hybrid resonance (UHR) waves, electrostatic electron cyclotron harmonic (ESCH) waves, auroral kilometric radiation (AKR), kilometric continuum (KC) and Type-III solar radio bursts. In the presentation, we will report the initial results based on the datasets obtained since January 2017 focusing on the analyses of plasmasphere evolution by semi-automatic identification of UHR frequency, and AKR from the both hemisphere based on polarization measurement.

  5. Multichannel analysis of surface waves (MASW) - Active and passive methods

    USGS Publications Warehouse

    Park, C.B.; Miller, R.D.; Xia, J.; Ivanov, J.

    2007-01-01

    The conventional seismic approaches for near-surface investigation have usually been either high-resolution reflection or refraction surveys that deal with a depth range of a few tens to hundreds meters. Seismic signals from these surveys consist of wavelets with frequencies higher than 50 Hz. The multichannel analysis of surface waves (MASW) method deals with surface waves in the lower frequencies (e.g., 1-30 Hz) and uses a much shallower depth range of investigation (e.g., a few to a few tens of meters). ?? 2007 Society of Exploration Geophysicists.

  6. Measurement of wave-front aberration in a small telescope remote imaging system using scene-based wave-front sensing

    DOEpatents

    Poyneer, Lisa A; Bauman, Brian J

    2015-03-31

    Reference-free compensated imaging makes an estimation of the Fourier phase of a series of images of a target. The Fourier magnitude of the series of images is obtained by dividing the power spectral density of the series of images by an estimate of the power spectral density of atmospheric turbulence from a series of scene based wave front sensor (SBWFS) measurements of the target. A high-resolution image of the target is recovered from the Fourier phase and the Fourier magnitude.

  7. The Polar Plasma Wave Instrument

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Persoon, A. M.; Randall, R. F.; Odem, D. L.; Remington, S. L.; Averkamp, T. F.; Debower, M. M.; Hospodarsky, G. B.; Huff, R. L.; Kirchner, D. L.

    1995-01-01

    The Plasma Wave Instrument on the Polar spacecraft is designed to provide measurements of plasma waves in the Earth's polar regions over the frequency range from 0.1 Hz to 800 kHz. Three orthogonal electric dipole antennas are used to detect electric fields, two in the spin plane and one aligned along the spacecraft spin axis. A magnetic loop antenna and a triaxial magnetic search coil antenna are used to detect magnetic fields. Signals from these antennas are processed by five receiver systems: a wideband receiver, a high-frequency waveform receiver, a low-frequency waveform receiver, two multichannel analyzers; and a pair of sweep frequency receivers. Compared to previous plasma wave instruments, the Polar plasma wave instrument has several new capabilities. These include (1) an expanded frequency range to improve coverage of both low- and high-frequency wave phenomena, (2) the ability to simultaneously capture signals from six orthogonal electric and magnetic field sensors, and (3) a digital wideband receiver with up to 8-bit resolution and sample rates as high as 249k samples s(exp -1).

  8. Wave-current interaction study in the Gulf of Alaska for detection of eddies by synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Peng, Chich Y.; Schumacher, James D.

    1994-01-01

    High resolution Esa Remote Sensing Satellite-1 (ERS-1) Synthetic Aperture Radar (SAR) images are used to detect a mesoscale eddy. Such features limit dispersal of pollock larvae and therefore likely influence recruitment of fish in the Gulf of Alaska. During high sea states and high winds, the direct surface signature of the eddy was not clearly visible, but the wave refraction in the eddy area was observed. The rays of the wave field are traced out directly from the SAR image. The ray pattern gives information on the refraction pattern and on the relative variation of the wave energy along a ray through wave current interaction. These observations are simulated by a ray-tracing model which incorporates a surface current field associated with the eddy. The numerical results of the model show that the waves are refracted and diverge in the eddy field with energy density decreasing. The model-data comparison for each ray shows the model predictions are in good agreement with the SAR data.

  9. Comparison of femtosecond laser ablation of aluminum in water and in air by time-resolved optical diagnosis.

    PubMed

    Hu, Haofeng; Liu, Tiegen; Zhai, Hongchen

    2015-01-26

    The dynamic process of material ejection and shock wave evolution during one single femtosecond laser pulse ablation of aluminum target in water and air is experimentally investigated by employing pump-probe technique. Shadowgraphs and digital holograms with high temporal resolution are recorded, which intuitively reveal the characteristics of femtosecond laser ablation in the water-confined environment. The experimental result indicates that the liquid significantly restrict the diffusion of the ejected material, and it has a considerable effect on the attenuation of the shock wave. In addition, the expansion Mach wave generated by the ultrasonic expansion of the shock wave is observed.

  10. Pseudospectral modeling and dispersion analysis of Rayleigh waves in viscoelastic media

    USGS Publications Warehouse

    Zhang, K.; Luo, Y.; Xia, J.; Chen, C.

    2011-01-01

    Multichannel Analysis of Surface Waves (MASW) is one of the most widely used techniques in environmental and engineering geophysics to determine shear-wave velocities and dynamic properties, which is based on the elastic layered system theory. Wave propagation in the Earth, however, has been recognized as viscoelastic and the propagation of Rayleigh waves presents substantial differences in viscoelastic media as compared with elastic media. Therefore, it is necessary to carry out numerical simulation and dispersion analysis of Rayleigh waves in viscoelastic media to better understand Rayleigh-wave behaviors in the real world. We apply a pseudospectral method to the calculation of the spatial derivatives using a Chebyshev difference operator in the vertical direction and a Fourier difference operator in the horizontal direction based on the velocity-stress elastodynamic equations and relations of linear viscoelastic solids. This approach stretches the spatial discrete grid to have a minimum grid size near the free surface so that high accuracy and resolution are achieved at the free surface, which allows an effective incorporation of the free surface boundary conditions since the Chebyshev method is nonperiodic. We first use an elastic homogeneous half-space model to demonstrate the accuracy of the pseudospectral method comparing with the analytical solution, and verify the correctness of the numerical modeling results for a viscoelastic half-space comparing the phase velocities of Rayleigh wave between the theoretical values and the dispersive image generated by high-resolution linear Radon transform. We then simulate three types of two-layer models to analyze dispersive-energy characteristics for near-surface applications. Results demonstrate that the phase velocity of Rayleigh waves in viscoelastic media is relatively higher than in elastic media and the fundamental mode increases by 10-16% when the frequency is above 10. Hz due to the velocity dispersion of P and S waves. ?? 2011 Elsevier Ltd.

  11. Wave ensemble forecast system for tropical cyclones in the Australian region

    NASA Astrophysics Data System (ADS)

    Zieger, Stefan; Greenslade, Diana; Kepert, Jeffrey D.

    2018-05-01

    Forecasting of waves under extreme conditions such as tropical cyclones is vitally important for many offshore industries, but there remain many challenges. For Northwest Western Australia (NW WA), wave forecasts issued by the Australian Bureau of Meteorology have previously been limited to products from deterministic operational wave models forced by deterministic atmospheric models. The wave models are run over global (resolution 1/4∘) and regional (resolution 1/10∘) domains with forecast ranges of + 7 and + 3 day respectively. Because of this relatively coarse resolution (both in the wave models and in the forcing fields), the accuracy of these products is limited under tropical cyclone conditions. Given this limited accuracy, a new ensemble-based wave forecasting system for the NW WA region has been developed. To achieve this, a new dedicated 8-km resolution grid was nested in the global wave model. Over this grid, the wave model is forced with winds from a bias-corrected European Centre for Medium Range Weather Forecast atmospheric ensemble that comprises 51 ensemble members to take into account the uncertainties in location, intensity and structure of a tropical cyclone system. A unique technique is used to select restart files for each wave ensemble member. The system is designed to operate in real time during the cyclone season providing + 10-day forecasts. This paper will describe the wave forecast components of this system and present the verification metrics and skill for specific events.

  12. Toward a better understanding of nearshore meteotsunami evolution, and effective meteotsunami early-warning systems

    NASA Astrophysics Data System (ADS)

    Sheremet, A.; Li, C.; Shrira, V. I.

    2017-12-01

    We present high-resolution observations collected in 2008 on the Atcahfalaya shelf that capture the shoaling evolution of a meteotsunami (MT), including the disintegration into the train of solitons (solibore). One of the intriguing elements of this process is a spectacular 1.5-m solitary-wave (soliton), that precedes the arrival of the MT solibore by approximately 5 min, reaching the observation site propagating through a background of nearly-calm waters (20-cm height wind waves). Solitons, products of the MT disintegration process, are observed at all experiment sites, covering approx. 200 km shoreline. We interpret observations employing numerical simulations of a simplified hydrodynamic model based on the variable coefficient KdV equation. The analysis shows that observed wide-spread soliton presence and the soliton/solibore formation are the result of a complicated evolution process involving refraction, collision, and nonlinear interaction of multiple meteotsunami waves.Our results highlight the substantial lack of detail of the current picture of the nonlinear transformation of a MT from generation to its shoreline manifestation. A realistic reconstruction of MT evolution is at present almost impossible based on the current poor spatial and temporal resolution MT observations, overwhelmingly confined to the shoreline. Since the MTs tend to disintegrate into very short (down to 10s) pulses, even modern tidal gauges (1 min resolution) fail to capture essential features of its evolution. We also briefly discuss an ongoing field experiment that carries further the effort to collect high-resolution MT measurements, and that will investigate and test methodologies for early warning systems.

  13. Precision Targeting With a Tracking Adaptive Optics Scanning Laser Ophthalmoscope

    DTIC Science & Technology

    2006-01-01

    automatic high- resolution mosaic generation, and automatic blink detection and tracking re-lock were also tested. The system has the potential to become an...structures can lead to earlier detection of retinal diseases such as age-related macular degeneration (AMD) and diabetic retinopathy (DR). Combined...optics systems sense perturbations in the detected wave-front and apply corrections to an optical element that flatten the wave-front and allow near

  14. Ship Wakes Generated in a Diffuse Internal Layer

    DTIC Science & Technology

    2015-01-01

    can enhance wake detectability by increasing the surface flows. One example is the reflection of natural waves from a ship hull. A wave carries...be observed using satellite borne optical sensors and high resolution radar. Their existence implies the presence of significant internal layers. The...The principal factors associated with the ship appear to be its principal dimensions (length, beam and draft), its block coefficient and its speed

  15. European Science Notes Information Bulletin. Report on Current European and Middle Eastern Science

    DTIC Science & Technology

    1992-10-01

    oceanographers. This has occurred at a time of current radar systems . The independent develop- rapidly increasing government interest in and fund...over each area in which surface current is ment of the waves (some motions caused by wave determined (for HF systems , averaging time spans action and...Ocean Observing System ; high-resolution model capabilities; ocean- atmosphere interface; Surface Density Depression Pool; forecasting INTRODUCTION tion

  16. Coastal circulation and sediment dynamics in Hanalei Bay, Kauai. Part I: Measurements of waves, currents, temperature, salinity and turbidity : June - August, 2005

    USGS Publications Warehouse

    Storlazzi, Curt D.; Presto, M. Kathy; Logan, Joshua B.; Field, Michael E.

    2006-01-01

    Introduction: High-resolution measurements of waves, currents, water levels, temperature, salinity and turbidity were made in Hanalei Bay, northern Kauai, Hawaii, during the summer of 2005 to better understand coastal circulation and sediment dynamics in coral reef habitats. A series of bottom-mounted instrument packages were deployed in water depths of 10 m or less to collect long-term, high-resolution measurements of waves, currents, water levels, temperature, salinity and turbidity. These data were supplemented with a series of vertical instrument casts to characterize the vertical and spatial variability in water column properties within the bay. The purpose of these measurements was to collect hydrographic data to learn how waves, currents and water column properties vary spatially and temporally in an embayment that hosts a nearshore coral reef ecosystem adjacent to a major river drainage. These measurements support the ongoing process studies being conducted as part of the U.S. Geological Survey (USGS) Coastal and Marine Geology Program's Coral Reef Project; the ultimate goal is to better understand the transport mechanisms of sediment, larvae, pollutants and other particles in coral reef settings. This report, the first part in a series, describes data acquisition, processing and analysis.

  17. Naval Research Laboratory Fact Book 2012

    DTIC Science & Technology

    2012-11-01

    Distributed network-based battle management High performance computing supporting uniform and nonuniform memory access with single and multithreaded...hyperspectral systems VNIR, MWIR, and LWIR high-resolution systems Wideband SAR systems RF and laser data links High-speed, high-power...hyperspectral imaging system Long-wave infrared ( LWIR ) quantum well IR photodetector (QWIP) imaging system Research and Development Services Divi- sion

  18. On the Simulation of Sea States with High Significant Wave Height for the Validation of Parameter Retrieval Algorithms for Future Altimetry Missions

    NASA Astrophysics Data System (ADS)

    Kuschenerus, Mieke; Cullen, Robert

    2016-08-01

    To ensure reliability and precision of wave height estimates for future satellite altimetry missions such as Sentinel 6, reliable parameter retrieval algorithms that can extract significant wave heights up to 20 m have to be established. The retrieved parameters, i.e. the retrieval methods need to be validated extensively on a wide range of possible significant wave heights. Although current missions require wave height retrievals up to 20 m, there is little evidence of systematic validation of parameter retrieval methods for sea states with wave heights above 10 m. This paper provides a definition of a set of simulated sea states with significant wave height up to 20 m, that allow simulation of radar altimeter response echoes for extreme sea states in SAR and low resolution mode. The simulated radar responses are used to derive significant wave height estimates, which can be compared with the initial models, allowing precision estimations of the applied parameter retrieval methods. Thus we establish a validation method for significant wave height retrieval for sea states causing high significant wave heights, to allow improved understanding and planning of future satellite altimetry mission validation.

  19. Wave modelling south of the Danube Delta in the Black Sea

    NASA Astrophysics Data System (ADS)

    Rusu, Eugen; Butunoiu, Dorin

    2015-04-01

    A multilevel wave modelling system, based on SWAN (Simulating Waves Nearshore) spectral model, was implemented in the Black Sea and focused on the western coast. Model simulations have been performed for a 10-year time interval (1999-2008). Validations have been carried out against both satellite data and in situ measurements. A high resolution SWAN computational domain (100m x100m), which is focused on the coastal environment south of the Danube Delta, was also implemented. This coastal area includes Sacalin, which is a newly formed island in the Black Sea, south of the Saint George branch of the Danube. Initially, this was an island system, which consisted of two smaller islands, Greater Sacalin and Lesser Sacalin. In time, due to the enhanced sedimentary processes, the two islands merged into a single continuous landmass. The island has become the habitat of a great variety of rare species and for this reason it was declared an ecological reserve. In the high resolution computational domain, focused on the Sacalin Island, the effect of the currents induced by the Danube River outflow was also accounted in the model, together with some other processes specific to the coastal environment as diffraction, triad wave-wave interactions and wave induced set up. Considering the results of the ten-year SWAN model simulations with the modelling system covering the entire sea basin, the most relevant configurations of the environmental matrix, characteristic to this side of the sea, were defined. On this basis, by performing SWAN simulations in the high resolution coastal domain, the wave propagation patterns in the nearshore, together with some parameters related to the shoreline conditions, were evaluated. A great number of possible situations were analyzed. The most relevant correspond to different directions of the incoming waves (N, NE, E and SE, respectively) and significant wave energy conditions. The results provided by the modelling system indicate two different processes. The first is dominant and it can be considered as a constructive process. This corresponds to the most common wave propagation pattern in the target area (waves coming from the northeast). In this case, the alluvial river input combines with the longshore sediment transport. This process determined the generation of the Sacalin Island and controls now its southern extension. The second is in fact a destructive process. This corresponds to the situations of very strong storms with waves coming from the southeast (and also in some cases from the east). Such cases of strong storm waves coming from the southeast are not very common in the target area. Nevertheless, such conditions may be encountered and moreover, they really occurred in the winter of 2013 leading to a strong penetration of the waves through the Sacalin Island that changed the coastal configuration and affected the local habitat. Various scenarios have been analyzed and the model results help in a better understanding of the coastal dynamics in this area. Keywords: Black Sea, waves, SWAN, Sacalin island, coastal dynamics. ACKNOWLEDGEMENT: This work was supported by a grant of the Romanian Ministry of National Education, CNCS - UEFISCDI, project number PN-II-ID-PCE-2012-4-0089 (project DAMWAVE).

  20. Two-Dimensional Imaging Velocimetry of Heterogeneous Flow and Brittle Failure in Diamond

    NASA Astrophysics Data System (ADS)

    Ali, S. J.; Smith, R.; Erskine, D.; Eggert, J.; Celliers, P. M.; Collins, G. W.; Jeanloz, R.

    2014-12-01

    Understanding the nature and dynamics of heterogeneous flow in diamond subjected to shock compression is important for many fields of research, from inertial confinement fusion to the study of carbon rich planets. Waves propagating through a shocked material can be significantly altered by the various deformation mechanisms present in shocked materials, including anisotropic sound speeds, phase transformations, plastic/inelastic flow and brittle failure. Quantifying the spatial and temporal effects of these deformation mechanisms has been limited by a lack of diagnostics capable of obtaining simultaneous micron resolution spatial measurements and nanosecond resolution time measurements. We have utilized the 2D Janus High Resolution Velocimeter at LLNL to study the time and space dependence of fracture in shock-compressed diamond above the Hugoniot elastic limit. Previous work on the OMEGA laser facility (Rochester) has shown that the free-surface reflectivity of μm-grained diamond samples drops linearly with increasing sample pressure, whereas under the same conditions the reflectivity of nm-grained samples remains unaffected. These disparate observations can be understood by way of better documenting fracture in high-strain compression of diamond. To this end, we have imaged the development and evolution of elastic-wave propagation, plastic-wave propagation and fracture networks in the three primary orientations of single-crystal diamond, as well as in microcrystalline and nanocrystalline diamond, and find that the deformation behavior depends sensitively on the orientation and crystallinity of the diamonds.

  1. Acoustic Gravity Waves in the Ionosphere and Thermosphere During the 2017 Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Lin, C. Y. T.; Deng, Y.

    2017-12-01

    During the 2017 solar eclipse, as the sudden cavity of solar radiation created by the lunar shadow moves across the United States on August 21, 2017, decreases in local IT temperature and density are expected. The average velocity of the total solar eclipse across the United States is 700 m/s. The forefront and wake of the lunar shadow are expected to induce acoustic gravity waves according to previous studies of atmosphere waves induced by traveling wave packets moving at different velocities. Meanwhile, moving toward the cross-track direction of the obscuration footprint, weaker transitions will likely create mesoscale to large-scale traveling disturbances. We will use the Global Ionosphere Thermosphere Model, a global circulation model solving for non-hydrostatic equations, with high-resolution settings to investigate the IT responses related to the acoustic-gravity wave perturbations during the 2017 solar eclipse. The simulation will be performed with a sub-degree resolution in longitude and latitude for 3 hours when the atmosphere of the North America sector is mostly obscured. The observable differences between the eclipsed and non-eclipsed scenarios will be examined in detail and be interpreted as consequences from the solar eclipse. We will investigate the evolution of waves during the event and establish a theoretical baseline for further comparisons with observations.

  2. Theoretical and lidar studies of the density response of the mesospheric sodium layer to gravity wave perturbations

    NASA Technical Reports Server (NTRS)

    Shelton, J. D.; Gardner, C. S.

    1981-01-01

    The density response of atmospheric layers to gravity waves is developed in two forms, an exact solution and a perturbation series solution. The degree of nonlinearity in the layer density response is described by the series solution whereas the exact solution gives insight into the nature of the responses. Density perturbation in an atmospheric layer are shown to be substantially greater than the atmospheric density perturbation associated with the propagation of a gravity wave. Because of the density gradients present in atmospheric layers, interesting effects were observed such as a phase reversal in the linear layer response which occurs near the layer peak. Once the layer response is understood, the sodium layer can be used as a tracer of atmospheric wave motions. A two dimensional digital signal processing technique was developed. Both spatial and temporal filtering are utilized to enhance the resolution by decreasing shot noise by more han 10 dB. Many of the features associated with a layer density response to gravity waves were observed in high resolution density profiles of the mesospheric sodium layer. These include nonlinearities as well as the phase reversal in the linear layer response.

  3. High-efficiency control of spin-wave propagation in ultra-thin yttrium iron garnet by the spin-orbit torque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evelt, M.; Demidov, V. E., E-mail: demidov@uni-muenster.de; Bessonov, V.

    2016-04-25

    We study experimentally with submicrometer spatial resolution the propagation of spin waves in microscopic waveguides based on the nanometer-thick yttrium iron garnet and Pt layers. We demonstrate that by using the spin-orbit torque, the propagation length of the spin waves in such systems can be increased by nearly a factor of 10, which corresponds to the increase in the spin-wave intensity at the output of a 10 μm long transmission line by three orders of magnitude. We also show that, in the regime, where the magnetic damping is completely compensated by the spin-orbit torque, the spin-wave amplification is suppressed by themore » nonlinear scattering of the coherent spin waves from current-induced excitations.« less

  4. Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Mai; Arnal, Bastien; Song, Shaozhen; Huang, Zhihong; Wang, Ruikang K.; O'Donnell, Matthew

    2015-01-01

    Investigating the elasticity of ocular tissue (cornea and intraocular lens) could help the understanding and management of pathologies related to biomechanical deficiency. In previous studies, we introduced a setup based on optical coherence tomography for shear wave elastography (SWE) with high resolution and high sensitivity. SWE determines tissue stiffness from the propagation speed of shear waves launched within tissue. We proposed acoustic radiation force to remotely induce shear waves by focusing an ultrasound (US) beam in tissue, similar to several elastography techniques. Minimizing the maximum US pressure is essential in ophthalmology for safety reasons. For this purpose, we propose a pulse compression approach. It utilizes coded US emissions to generate shear waves where the energy is spread over a long emission, and then numerically compressed into a short, localized, and high-energy pulse. We used a 7.5-MHz single-element focused transducer driven by coded excitations where the amplitude is modulated by a linear frequency-swept square wave (1 to 7 kHz). An inverse filter approach was used for compression. We demonstrate the feasibility of performing shear wave elastography measurements in tissue-mimicking phantoms at low US pressures (mechanical index <0.6).

  5. Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography

    PubMed Central

    Nguyen, Thu-Mai; Arnal, Bastien; Song, Shaozhen; Huang, Zhihong; Wang, Ruikang K.; O’Donnell, Matthew

    2015-01-01

    Abstract. Investigating the elasticity of ocular tissue (cornea and intraocular lens) could help the understanding and management of pathologies related to biomechanical deficiency. In previous studies, we introduced a setup based on optical coherence tomography for shear wave elastography (SWE) with high resolution and high sensitivity. SWE determines tissue stiffness from the propagation speed of shear waves launched within tissue. We proposed acoustic radiation force to remotely induce shear waves by focusing an ultrasound (US) beam in tissue, similar to several elastography techniques. Minimizing the maximum US pressure is essential in ophthalmology for safety reasons. For this purpose, we propose a pulse compression approach. It utilizes coded US emissions to generate shear waves where the energy is spread over a long emission, and then numerically compressed into a short, localized, and high-energy pulse. We used a 7.5-MHz single-element focused transducer driven by coded excitations where the amplitude is modulated by a linear frequency-swept square wave (1 to 7 kHz). An inverse filter approach was used for compression. We demonstrate the feasibility of performing shear wave elastography measurements in tissue-mimicking phantoms at low US pressures (mechanical index <0.6). PMID:25554970

  6. Anisotropic S-wave velocity structure from joint inversion of surface wave group velocity dispersion: A case study from India

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Dey, S.; Siddartha, G.; Bhattacharya, S.

    2016-12-01

    We estimate 1-dimensional path average fundamental mode group velocity dispersion curves from regional Rayleigh and Love waves sampling the Indian subcontinent. The path average measurements are combined through a tomographic inversion to obtain 2-dimensional group velocity variation maps between periods of 10 and 80 s. The region of study is parametrised as triangular grids with 1° sides for the tomographic inversion. Rayleigh and Love wave dispersion curves from each node point is subsequently extracted and jointly inverted to obtain a radially anisotropic shear wave velocity model through global optimisation using Genetic Algorithm. The parametrization of the model space is done using three crustal layers and four mantle layers over a half-space with varying VpH , VsV and VsH. The anisotropic parameter (η) is calculated from empirical relations and the density of the layers are taken from PREM. Misfit for the model is calculated as a sum of error-weighted average dispersion curves. The 1-dimensional anisotropic shear wave velocity at each node point is combined using linear interpolation to obtain 3-dimensional structure beneath the region. Synthetic tests are performed to estimate the resolution of the tomographic maps which will be presented with our results. We envision to extend this to a larger dataset in near future to obtain high resolution anisotrpic shear wave velocity structure beneath India, Himalaya and Tibet.

  7. Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave

    PubMed Central

    Gershman, Daniel J.; F-Viñas, Adolfo; Dorelli, John C.; Boardsen, Scott A.; Avanov, Levon A.; Bellan, Paul M.; Schwartz, Steven J.; Lavraud, Benoit; Coffey, Victoria N.; Chandler, Michael O.; Saito, Yoshifumi; Paterson, William R.; Fuselier, Stephen A.; Ergun, Robert E.; Strangeway, Robert J.; Russell, Christopher T.; Giles, Barbara L.; Pollock, Craig J.; Torbert, Roy B.; Burch, James L.

    2017-01-01

    Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA's Magnetospheric Multiscale (MMS) mission, we utilize Earth's magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations. PMID:28361881

  8. Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave.

    PubMed

    Gershman, Daniel J; F-Viñas, Adolfo; Dorelli, John C; Boardsen, Scott A; Avanov, Levon A; Bellan, Paul M; Schwartz, Steven J; Lavraud, Benoit; Coffey, Victoria N; Chandler, Michael O; Saito, Yoshifumi; Paterson, William R; Fuselier, Stephen A; Ergun, Robert E; Strangeway, Robert J; Russell, Christopher T; Giles, Barbara L; Pollock, Craig J; Torbert, Roy B; Burch, James L

    2017-03-31

    Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA's Magnetospheric Multiscale (MMS) mission, we utilize Earth's magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.

  9. Wave-Particle Energy Exchange Directly Observed in a Kinetic Alfven-Branch Wave

    NASA Technical Reports Server (NTRS)

    Gershman, Daniel J.; F-Vinas, Adolfo; Dorelli, John C.; Boardsen, Scott A. (Inventor); Avanov, Levon A.; Bellan, Paul M.; Schwartz, Steven J.; Lavraud, Benoit; Coffey, Victoria N.; Chandler, Michael O.; hide

    2017-01-01

    Alfven waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres, and astrophysical systems, but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASAs Magnetospheric Multiscale (MMS) mission, we utilize Earths magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfven wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via non-linear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.

  10. GDP: A new source for shallow high-resolution seismic exploration

    NASA Astrophysics Data System (ADS)

    Rashed, Mohamed A.

    2009-06-01

    Gas-Driven Piston (GDP) is a new source for shallow seismic exploration. This source works by igniting a small amount of gas inside a closed chamber connected to a vertical steel cylinder. The gas explosion drives a steel piston, mounted inside the cylinder, downward so that the piston's thick head hits a steel base at the end of the cylinder generating a strong shock wave into the ground. Experimental field tests conducted near Ismailia, Egypt, prove that the portable, inexpensive and environmentally benign GDP generates stronger seismic waves than the sledgehammer that is commonly used in shallow seismic exploration. Tests also show that GDP is a highly repeatable and controllable and that its seismic waves contain a good amount of high frequencies which makes the GDP an excellent source for shallow seismic exploration.

  11. A climatology of gravity wave parameters based on satellite limb soundings

    NASA Astrophysics Data System (ADS)

    Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Riese, Martin

    2017-04-01

    Gravity waves are one of the main drivers of atmospheric dynamics. The resolution of most global circulation models (GCMs) and chemistry climate models (CCMs), however, is too coarse to properly resolve the small scales of gravity waves. Horizontal scales of gravity waves are in the range of tens to a few thousand kilometers. Gravity wave source processes involve even smaller scales. Therefore GCMs/CCMs usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified, and comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. In our study, we present a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). We provide various gravity wave parameters (for example, gravity variances, potential energies and absolute momentum fluxes). This comprehensive climatological data set can serve for comparison with other instruments (ground based, airborne, or other satellite instruments), as well as for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The purpose of providing various different parameters is to make our data set useful for a large number of potential users and to overcome limitations of other observation techniques, or of models, that may be able to provide only one of those parameters. We present a climatology of typical average global distributions and of zonal averages, as well as their natural range of variations. In addition, we discuss seasonal variations of the global distribution of gravity waves, as well as limitations of our method of deriving gravity wave parameters from satellite data.

  12. Annular flow in rod-bundle: Effect of spacer on disturbance waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Son H.; Kunugi, Tomoaki

    2016-08-01

    A high-speed camera technique is used to study the effect of spacers on the disturbance waves present in annular two-phase flow within a rod-bundle geometry. Images obtained using a backlight configuration to visualize the spacer-wave interactions at the micro-scale resolution (in time and space) are discussed. This paper also presents additional images obtained using a reflected light configuration which provides new observations of the disturbance waves. These images show the separation effect caused by the spacer on the liquid film in which the size of generated liquid droplets can be controlled by the gas superficial velocity. Furthermore, the data confirmmore » that the spacer breaks the circumferential coherent structures of the waves.« less

  13. [Techniques and applications of noninvasive high-resolution ultrasound imaging].

    PubMed

    Grégoire, J-M; Serrière, S; Georgesco, G; Jamet, F; Bleuzen, A; Ossant, F; Levassort, F; Tranquart, F; Patat, F

    2006-12-01

    Today manufacturers propose echographic systems with a resolution ranging from 100 microm down to 30 microm. This requires ultrasonic frequencies ranging from 20 to 60 MHz. However, when associated with an increase in the attenuation of the wave in the media this limits the applications to superficial exploration. High frequencies also bring special technological limitations mainly in the fields of transducers, electronics, and acoustic coupling. Although high-resolution echography has long remained marginal and been used for the exploration of the skin or the anterior chamber of the eye, new powerful and easy-to-use devices have recently appeared on the market. With these new products, new applications have also appeared such as the exploration of the oral cavity or small laboratory animals (mice).

  14. Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhinefrank, Kenneth E; Haller, Merrick C; Ozkan-Haller, H Tuba

    2013-01-26

    This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array ofmore » newly developed Buoys' that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate high-resolution (fine scale, very near-field) fluid/structure interaction simulations of buoy motions, as well as array-scale, phase-resolving wave scattering simulations. These modeling efforts will utilize state-of-the-art research quality models, which have not yet been brought to bear on this complex problem of large array wave/structure interaction problem.« less

  15. A coupling modulation model of capillary waves from gravity waves: Theoretical analysis and experimental validation

    NASA Astrophysics Data System (ADS)

    Chen, Pengzhen; Wang, Xiaoqing; Liu, Li; Chong, Jinsong

    2016-06-01

    According to Bragg theory, capillary waves are the predominant scatterers of high-frequency band (such as Ka-band) microwave radiation from the surface of the ocean. Therefore, understanding the modulation mechanism of capillary waves is an important foundation for interpreting high-frequency microwave remote sensing images of the surface of the sea. In our experiments, we discovered that modulations of capillary waves are significantly larger than the values predicted by the classical theory. Further, analysis shows that the difference in restoring force results in an inflection point while the phase velocity changes from gravity waves region to capillary waves region, and this results in the capillary waves being able to resonate with gravity waves when the phase velocity of the gravity waves is equal to the group velocity of the capillary waves. Consequently, we propose a coupling modulation model in which the current modulates the capillary wave indirectly by modulating the resonant gravity waves, and the modulation of the former is approximated by that of the latter. This model very effectively explains the results discovered in our experiments. Further, based on Bragg scattering theory and this coupling modulation model, we simulate the modulation of normalized radar cross section (NRCS) of typical internal waves and show that the high-frequency bands are superior to the low-frequency bands because of their greater modulation of NRCS and better radiometric resolution. This result provides new support for choice of radar band for observation of wave-current modulation oceanic phenomena such as internal waves, fronts, and shears.

  16. Tight-binding analysis of Si and GaAs ultrathin bodies with subatomic wave-function resolution

    NASA Astrophysics Data System (ADS)

    Tan, Yaohua P.; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy B.; Klimeck, Gerhard

    2015-08-01

    Empirical tight-binding (ETB) methods are widely used in atomistic device simulations. Traditional ways of generating the ETB parameters rely on direct fitting to bulk experiments or theoretical electronic bands. However, ETB calculations based on existing parameters lead to unphysical results in ultrasmall structures like the As-terminated GaAs ultrathin bodies (UTBs). In this work, it is shown that more transferable ETB parameters with a short interaction range can be obtained by a process of mapping ab initio bands and wave functions to ETB models. This process enables the calibration of not only the ETB energy bands but also the ETB wave functions with corresponding ab initio calculations. Based on the mapping process, ETB models of Si and GaAs are parameterized with respect to hybrid functional calculations. Highly localized ETB basis functions are obtained. Both the ETB energy bands and wave functions with subatomic resolution of UTBs show good agreement with the corresponding hybrid functional calculations. The ETB methods can then be used to explain realistically extended devices in nonequilibrium that cannot be tackled with ab initio methods.

  17. A Millimetre-Wave Cuboid Solid Immersion Lens with Intensity-Enhanced Amplitude Mask Apodization

    NASA Astrophysics Data System (ADS)

    Yue, Liyang; Yan, Bing; Monks, James N.; Dhama, Rakesh; Wang, Zengbo; Minin, Oleg V.; Minin, Igor V.

    2018-06-01

    Photonic jet is a narrow, highly intensive, weak-diverging beam propagating into a background medium and can be produced by a cuboid solid immersion lens (SIL) in both transmission and reflection modes. Amplitude mask apodization is an optical method to further improve the spatial resolution of a SIL imaging system via reduction of waist size of photonic jet, but always leading to intensity loss due to central masking of the incoming plane wave. In this letter, we report a particularly sized millimetre-wave cuboid SIL with the intensity-enhanced amplitude mask apodization for the first time. It is able to simultaneously deliver extra intensity enhancement and waist narrowing to the produced photonic jet. Both numerical simulation and experimental verification of the intensity-enhanced apodization effect are demonstrated using a copper-masked Teflon cuboid SIL with 22-mm side length under radiation of a plane wave with 8-mm wavelength. Peak intensity enhancement and the lateral resolution of the optical system increase by about 36.0% and 36.4% in this approach, respectively.

  18. Coarse, Intermediate and High Resolution Numerical Simulations of the Transition of a Tropical Wave Critical Layer to a Tropical Storm

    NASA Technical Reports Server (NTRS)

    Montgomery, M. T.; Dunkerton, T. J.; Wang, Z.

    2010-01-01

    Recent work has hypothesized that tropical cyclones in the deep Atlantic and eastern Pacific basins develop from within the cyclonic Kelvin cat's eye of a tropical easterly wave critical layer located equatorward of the easterly jet axis. The cyclonic critical layer is thought to be important to tropical cyclogenesis because its cat's eye provides (i) a region of cyclonic vorticity and weak deformation by the resolved flow, (ii) containment of moisture entrained by the developing flow and/or lofted by deep convection therein, (iii) confinement of mesoscale vortex aggregation, (iv) a predominantly convective type of heating profile, and (v) maintenance or enhancement of the parent wave until the developing proto-vortex becomes a self-sustaining entity and emerges from the wave as a tropical depression. This genesis sequence and the overarching framework for describing how such hybrid wave-vortex structures become tropical depressions/storms is likened to the development of a marsupial infant in its mother's pouch, and for this reason has been dubbed the "marsupial paradigm". Here we conduct the first multi-scale test of the marsupial paradigm in an idealized setting by revisiting the Kurihara and Tuleya problem examining the transformation of an easterly wave-like disturbance into a tropical storm vortex using the WRF model. An analysis of the evolving winds, equivalent potential temperature, and relative vertical vorticity is presented from coarse (28 km), intermediate (9 km) and high resolution (3.1 km) simulations. The results are found to support key elements of the marsupial paradigm by demonstrating the existence of rotationally dominant region with minimal strain/shear deformation near the center of the critical layer pouch that contains strong cyclonic vorticity and high saturation fraction. This localized region within the pouch serves as the "attractor" for an upscale "bottom up" development process while the wave pouch and proto-vortex move together.

  19. High-resolution studies of the HF ionospheric modification interaction region

    NASA Technical Reports Server (NTRS)

    Duncan, L. M.; Sheerin, J. P.

    1985-01-01

    The use of the pulse edge analysis technique to explain ionospheric modifications caused by high-power HF radio waves is discussed. The technique, implemented at the Arecibo Observatory, uses long radar pulses and very rapid data sampling. A comparison of the pulse leading and trailing edge characteristics is obtained and the comparison is used to estimate the relative changes in the interaction region height and layer width; an example utilizing this technique is provided. Main plasma line overshoot and miniovershoot were studied from the pulse edge observations; the observations at various HF pulsings and radar resolutions are graphically presented. From the pulse edge data the development and the occurrence of main plasma line overshoot and miniovershoot are explained. The theories of soliton formation and collapse, wave ducting, profile modification, and parametric instabilities are examined as a means of explaining main plasma line overshoots and miniovershoots.

  20. Transfer and dissipation of energy during wave group propagation on a gentle beach slope

    NASA Astrophysics Data System (ADS)

    Padilla, Enrique M.; Alsina, José M.

    2017-08-01

    The propagation of bichromatic wave groups over a constant 1:100 beach slope and the influence of the group modulation is presented. The modulation is controlled by varying the group frequency, fg, which is shown to remarkably affect the energy transfer to high and low frequency components. The growth of the high frequency (hf) wave skewness increases when fg decreases. This is explained by nonlinear coupling between the primary frequencies, which results in a larger growth of hf components as fg decreases, causing the hf waves to break earlier. Due to high spatial resolution, wave tracking has provided an accurate measurement of the varying breakpoint. These breaking locations are very well described (R2>0.91) by the wave-height to effective-depth ratio (γ). However, for any given Iribarren number, this γ is shown to increase with fg. Therefore, a modified Iribarren number is proposed to include the grouping structure, leading to a considerable improvement in reproducing the measured γ-values. Within the surf zone, the behavior of the Incident Long Wave also depends on the group modulation. For low fg conditions, the lf wave decays only slightly by transferring energy back to the hf wave components. However, for high fg wave conditions, strong dissipation of low frequency (lf) components occurs close to the shoreline associated with lf wave breaking. This mechanism is explained by the growth of the lf wave height, induced partly by the self-self interaction of fg, and partly by the nonlinear coupling between the primary frequencies and fg.

  1. Interaction between spiral and paced waves in cardiac tissue

    PubMed Central

    Agladze, Konstantin; Kay, Matthew W.; Krinsky, Valentin; Sarvazyan, Narine

    2010-01-01

    For prevention of lethal arrhythmias, patients at risk receive implantable cardioverter-defibrillators, which use high-frequency antitachycardia pacing (ATP) to convert tachycardias to a normal rhythm. One of the suggested ATP mechanisms involves paced-induced drift of rotating waves followed by their collision with the boundary of excitable tissue. This study provides direct experimental evidence of this mechanism. In monolayers of neonatal rat cardiomyocytes in which rotating waves of activity were initiated by premature stimuli, we used the Ca2+-sensitive indicator fluo 4 to observe propagating wave patterns. The interaction of the spiral tip with a paced wave was then monitored at a high spatial resolution. In the course of the experiments, we observed spiral wave pinning to local heterogeneities within the myocyte layer. High-frequency pacing led, in a majority of cases, to successful termination of spiral activity. Our data show that 1) stable spiral waves in cardiac monolayers tend to be pinned to local heterogeneities or areas of altered conduction, 2) overdrive pacing can shift a rotating wave from its original site, and 3) the wave break, formed as a result of interaction between the spiral tip and a paced wave front, moves by a paced-induced drift mechanism to an area where it may become unstable or collide with a boundary. The data were complemented by numerical simulations, which was used to further analyze experimentally observed behavior. PMID:17384124

  2. Jet formation of SF6 bubble induced by incident and reflected shock waves

    NASA Astrophysics Data System (ADS)

    Zhu, Yuejin; Yu, Lei; Pan, Jianfeng; Pan, Zhenhua; Zhang, Penggang

    2017-12-01

    The computational results of two different cases on the evolution of the shock-SF6 heavy bubble interaction are presented. The shock focusing processes and jet formation mechanisms are analyzed by using the high resolution of computation schemes, and the influence of reflected shock waves is also investigated. It is concluded that there are two steps in the shock focusing process behind the incident shock wave, and the density and pressure values increase distinctly when the shock focusing process is completed. The local high pressure and vorticities in the vicinity of the downstream pole can propel the formation of the jet behind the incident shock wave. In addition, the gas is with the rightward velocity before the reflected shock wave impinges on the bubble; therefore, the evolutions of the waves and the bubble are more complicated when the reflected shock wave impinges on the SF6 bubble. Furthermore, the different end wall distances would affect the deformation degree of the bubble before the interaction of the reflected shock wave; therefore, the different left jet formation processes are found after the impingement of reflected shock waves when L = 27 mm. The local high pressure zones in the vicinity of the left bubble interface and the impingement of different shock waves can induce the local gas to shift the rightward velocity to the leftward velocity, which can further promote the formation of jets.

  3. Rogue run-up events at the North Sea coast

    NASA Astrophysics Data System (ADS)

    Didenkulova, Ira; Blossier, Brice; Daly, Christopher; Herbst, Gabriel; Senichev, Dmitry; Winter, Christian

    2015-04-01

    On the 1st of January, 1995, the Statoil-operated "Draupner" platform located in the North Sea recorded the so-called "New Year wave". Since then, rogue waves have been the topic of active scientific discussions and investigations. Waves of extreme height appearing randomly at the sea surface have been measured in both deep and shallow waters and have been involved in a number of ship accidents. Nowadays rogue waves are frequently recorded all over the world with several different instruments (range finders installed on offshore platforms, deployed buoys, radars including SAR, etc.). Rogue wave also occur at the coast, where they appear as either sudden flooding of coastal areas or high splashes over steep banks or sea walls. These waves are especially dangerous for beach users and lead regularly to human injuries and fatalities. Despite numerous reports of human accidents, coastal rogue waves have not yet been recorded experimentally. In this paper we discuss the recording of rogue wave events at German North Sea coasts by using high-resolution beach cameras. The recorded rogue waves are observed during different tide levels and different weather conditions. Possible mechanisms of their generation are discussed.

  4. Morphodynamic Impacts of Hurricane Sandy on the Inner-shelf (Invited)

    NASA Astrophysics Data System (ADS)

    Trembanis, A. C.; Beaudoin, J. D.; DuVal, C.; Schmidt, V. E.; Mayer, L. A.

    2013-12-01

    Through the careful execution of precision high-resolution acoustic sonar surveys over the period of October 2012 through July 2013, we have obtained a unique set of high-resolution before and after storm measurements of seabed morphology and in situ hydrodynamic conditions (waves and currents) capturing the impact of the storm at an inner continental shelf field site known as the 'Redbird reef' (Raineault et al., 2013). Understanding the signature of this storm event is important for identifying the impacts of such events and for understanding the role that such events have in the transport of sediment and marine debris on the inner continental shelf. In order to understand and characterize the ripple dynamics and scour processes in an energetic, heterogeneous inner-shelf setting, a series of high-resolution geoacoustic surveys were conducted before and after Hurricane Sandy. Our overall goal is to improve our understanding of bedform dynamics and spatio-temporal length scales and defect densities through the application of a recently developed fingerprint algorithm technique (Skarke and Trembanis, 2011). Utilizing high-resolution swath sonar collected by an AUV and from surface vessel multibeam sonar, our study focuses both on bedforms in the vicinity of manmade seabed objects (e.g. shipwrecks and subway cars) and dynamic natural ripples on the inner-shelf in energetic coastal settings with application to critical military operations such as mine countermeasures. Seafloor mapping surveys were conducted both with a ship-mounted multibeam echosounder (200 kHz and 400 kHz) and an Autonomous Underwater Vehicle (AUV) configured with high-resolution side-scan sonar (900 and 1800 kHz) and a phase measuring bathymetric sonar (500 kHz). These geoacoustic surveys were further augmented with data collected by in situ instruments placed on the seabed that recorded measurements of waves and currents at the site before, during, and after the storm. Multibeam echosounder map of the Redbird reef site after Hurricane Sandy. Image resolution is 25 cm/pixel.

  5. Theoretical and numerical studies on physics and dynamics of orographic precipitation associated with tropical cyclones over mesoscale mountains

    NASA Astrophysics Data System (ADS)

    Sever, Gokhan

    A series of systematic two/three-dimensional (2D/3D) idealized numerical experiments were conducted to investigate the combined effects of dynamical and physical processes on orographic precipitation (OP) with varying incoming basic flow speed (U) and CAPE in a conditionally unstable uniform flow. The three moist flow regimes identified by Chu and Lin are reproduced using the CM1 model in low resolution (Deltax = 1 km) 2D simulations. A new flow regime, namely Regime IV (U > 36 m s-1) is characterized by gravity waves, heavy precipitation, lack of upper-level wave breaking and turbulence over the lee slope. The regime transition from III to IV at about 36 m s -1 can be explained by the transition from upward propagating gravity waves to evanescent flow, which can be predicted using a moist mountain wave theory. Although the basic features are captured well in low grid resolutions, high resolution (Deltax = 100 m) 2D/3D simulations are required to resolve precipitation distribution and intensity at higher basic winds (U > 30 m s -1). These findings may be applied to examine the performance of moist and turbulence parameterization schemes. Based on 3D simulations, gravity wave-induced severe downslope winds and turbulent mixing within hydraulic jump reduce OP in Regime III. Then in Regime IV, precipitation amount and spatial extent are intensified as the upper-level wave breaking vanishes and updrafts strengthen. Similar experiments were performed with a low CAPE sounding to assess the evolution of OP in an environment similar to that observed in tropical cyclones. These low CAPE simulations show that precipitation is nearly doubled at high wind speeds compared to high CAPE results. Based on a microphysics budget analysis, two factors are identified to explain this difference: 1) warm-rain formation processes (auto-conversion and accretion), which are more effective in low CAPE environment, and 2) even though rain production (via graupel and snow melting) is intense in high CAPE, strong downdrafts and advection induced evaporation tend to deplete precipitation before reaching the ground. Overall, both in 2D/3D high wind speed simulations, the pattern of the precipitation distribution resembles to the bell-shaped mountain profile with maximum located over the mountain peak. This result has a potential to simplify the parameterization of OP in terms of two control parameters and might applicable to global weather and climate modeling.

  6. Detailed Characterization of Nearshore Processes During NCEX

    NASA Astrophysics Data System (ADS)

    Holland, K.; Kaihatu, J. M.; Plant, N.

    2004-12-01

    Recent technology advances have allowed the coupling of remote sensing methods with advanced wave and circulation models to yield detailed characterizations of nearshore processes. This methodology was demonstrated as part of the Nearshore Canyon EXperiment (NCEX) in La Jolla, CA during Fall 2003. An array of high-resolution, color digital cameras was installed to monitor an alongshore distance of nearly 2 km out to depths of 25 m. This digital imagery was analyzed over the three-month period through an automated process to produce hourly estimates of wave period, wave direction, breaker height, shoreline position, sandbar location, and bathymetry at numerous locations during daylight hours. Interesting wave propagation patterns in the vicinity of the canyons were observed. In addition, directional wave spectra and swash / surf flow velocities were estimated using more computationally intensive methods. These measurements were used to provide forcing and boundary conditions for the Delft3D wave and circulation model, giving additional estimates of nearshore processes such as dissipation and rip currents. An optimal approach for coupling these remotely sensed observations to the numerical model was selected to yield accurate, but also timely characterizations. This involved assimilation of directional spectral estimates near the offshore boundary to mimic forcing conditions achieved under traditional approaches involving nested domains. Measurements of breaker heights and flow speeds were also used to adaptively tune model parameters to provide enhanced accuracy. Comparisons of model predictions and video observations show significant correlation. As compared to nesting within larger-scale and coarser resolution models, the advantages of providing boundary conditions data using remote sensing is much improved resolution and fidelity. For example, rip current development was both modeled and observed. These results indicate that this approach to data-model coupling is tenable and may be useful in near-real-time characterizations required by many applied scenarios.

  7. Rayleigh-Wave Group-Velocity Tomography of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Tang, Zheng; Mai, P. Martin; Chang, Sung-Joon; Zahran, Hani

    2017-04-01

    We use surface-wave tomography to investigate the lithospheric structure of the Arabian plate, which is traditionally divided into the Arabian shield in the west and the Arabian platform in the east. The Arabian shield is a complicated mélange of crustal material, composed of several Proterozoic terrains separated by ophiolite-bearing suture zones and dotted by outcropping Cenozoic volcanic rocks. The Arabian platform is primarily covered by very thick Paleozoic, Mesozoic and Cenozoic sediments. We develop high-resolution tomographic images from fundamental-mode Rayleigh-wave group-velocities across Saudi Arabia, utilizing the teleseismic data recorded by the permanent Saudi National Seismic Network (SNSN). Our study extends previous efforts on surface wave work by increasing ray path density and improving spatial resolution. Good quality dispersion measurements for roughly 3000 Rayleigh-wave paths have been obtained and utilized for the group-velocity tomography. We have applied the Fast Marching Surface Tomography (FMST) scheme of Rawlinson (2005) to obtain Rayleigh-wave group-velocity images for periods from 8 s to 40 s on a 0.8° 0.8° grid and at resolutions approaching 2.5° based on the checkerboard tests. Our results indicate that short-period group-velocity maps (8-15 s) correlate well with surface geology, with slow velocities delineating the main sedimentary features including the Arabian platform, the Persian Gulf and Mesopotamia. For longer periods (20-40 s), the velocity contrast is due to the differences in crustal thickness and subduction/collision zones. The lower velocities are sensitive to the thicker continental crust beneath the eastern Arabia and the subduction/collision zones between the Arabian and Eurasian plate, while the higher velocities in the west infer mantle velocity.

  8. High-resolution surface wave tomography of the European crust and uppermost mantle from ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Lu, Yang; Stehly, Laurent; Paul, Anne; AlpArray Working Group

    2018-05-01

    Taking advantage of the large number of seismic stations installed in Europe, in particular in the greater Alpine region with the AlpArray experiment, we derive a new high-resolution 3-D shear-wave velocity model of the European crust and uppermost mantle from ambient noise tomography. The correlation of up to four years of continuous vertical-component seismic recordings from 1293 broadband stations (10° W-35° E, 30° N-75° N) provides Rayleigh wave group velocity dispersion data in the period band 5-150 s at more than 0.8 million virtual source-receiver pairs. Two-dimensional Rayleigh wave group velocity maps are estimated using adaptive parameterization to accommodate the strong heterogeneity of path coverage. A probabilistic 3-D shear-wave velocity model, including probability densities for the depth of layer boundaries and S-wave velocity values, is obtained by non-linear Bayesian inversion. A weighted average of the probabilistic model is then used as starting model for the linear inversion step, providing the final Vs model. The resulting S-wave velocity model and Moho depth are validated by comparison with previous geophysical studies. Although surface-wave tomography is weakly sensitive to layer boundaries, vertical cross-sections through our Vs model and the associated probability of presence of interfaces display striking similarities with reference controlled-source (CSS) and receiver-function sections across the Alpine belt. Our model even provides new structural information such as a ˜8 km Moho jump along the CSS ECORS-CROP profile that was not imaged by reflection data due to poor penetration across a heterogeneous upper crust. Our probabilistic and final shear wave velocity models have the potential to become new reference models of the European crust, both for crustal structure probing and geophysical studies including waveform modeling or full waveform inversion.

  9. Seismic tomography of Basse-Terre volcanic island, Guadeloupe, Lesser Antilles, using earthquake travel times and noise correlations

    NASA Astrophysics Data System (ADS)

    Barnoud, Anne; Coutant, Olivier; Bouligand, Claire; Massin, Frédérick; Stehly, Laurent

    2015-04-01

    We image the volcanic island of Basse-Terre, Guadeloupe, Lesser Antilles, using both earthquake travel times and noise correlations. (1) A new earthquake catalog was recently compiled for the Lesser Antilles by the CDSA/OVSG/IPGP (Massin et al., EGU General Assembly 2014) and allows us to perform classical travel time tomography to obtain smooth 3D body wave velocity models. The geometrical configuration of the volcanic arc controls the resolution of the model in our zone of interest. (2) Surface wave tomography using noise correlations was successfully applied to volcanoes (Brenguier et al., Geophys. Res. Lett. 2007). We use seismic noise recorded at 16 broad-band stations and 9 short-period stations from Basse-Terre over a period of six years (2007-2012). For each station pair, we extract a dispersion curve from the noise correlation to get surface wave velocity models. The inversion of the dispersion curves produces a 3D S-wave velocity model of the island. The spatial distribution of seismic stations accross the island is highly heterogeneous, leading to higher resolution near the dome of the Soufrière of Guadeloupe volcano. Resulting velocity models are compared with densities obtained by 3D inversion of gravimetric data (Barnoud et al., AGU Fall Meeting 2013). Further work should include simultaneous inversion of seismic and gravimetric datasets to overcome resolution limitations.

  10. Enhanced truncated-correlation photothermal coherence tomography with application to deep subsurface defect imaging and 3-dimensional reconstructions

    NASA Astrophysics Data System (ADS)

    Tavakolian, Pantea; Sivagurunathan, Koneswaran; Mandelis, Andreas

    2017-07-01

    Photothermal diffusion-wave imaging is a promising technique for non-destructive evaluation and medical applications. Several diffusion-wave techniques have been developed to produce depth-resolved planar images of solids and to overcome imaging depth and image blurring limitations imposed by the physics of parabolic diffusion waves. Truncated-Correlation Photothermal Coherence Tomography (TC-PCT) is the most successful class of these methodologies to-date providing 3-D subsurface visualization with maximum depth penetration and high axial and lateral resolution. To extend the depth range and axial and lateral resolution, an in-depth analysis of TC-PCT, a novel imaging system with improved instrumentation, and an optimized reconstruction algorithm over the original TC-PCT technique is developed. Thermal waves produced by a laser chirped pulsed heat source in a finite thickness solid and the image reconstruction algorithm are investigated from the theoretical point of view. 3-D visualization of subsurface defects utilizing the new TC-PCT system is reported. The results demonstrate that this method is able to detect subsurface defects at the depth range of ˜4 mm in a steel sample, which exhibits dynamic range improvement by a factor of 2.6 compared to the original TC-PCT. This depth does not represent the upper limit of the enhanced TC-PCT. Lateral resolution in the steel sample was measured to be ˜31 μm.

  11. THOR Fields and Wave Processor - FWP

    NASA Astrophysics Data System (ADS)

    Soucek, Jan; Rothkaehl, Hanna; Ahlen, Lennart; Balikhin, Michael; Carr, Christopher; Dekkali, Moustapha; Khotyaintsev, Yuri; Lan, Radek; Magnes, Werner; Morawski, Marek; Nakamura, Rumi; Uhlir, Ludek; Yearby, Keith; Winkler, Marek; Zaslavsky, Arnaud

    2017-04-01

    If selected, Turbulence Heating ObserveR (THOR) will become the first spacecraft mission dedicated to the study of plasma turbulence. The Fields and Waves Processor (FWP) is an integrated electronics unit for all electromagnetic field measurements performed by THOR. FWP will interface with all THOR fields sensors: electric field antennas of the EFI instrument, the MAG fluxgate magnetometer, and search-coil magnetometer (SCM), and perform signal digitization and on-board data processing. FWP box will house multiple data acquisition sub-units and signal analyzers all sharing a common power supply and data processing unit and thus a single data and power interface to the spacecraft. Integrating all the electromagnetic field measurements in a single unit will improve the consistency of field measurement and accuracy of time synchronization. The scientific value of highly sensitive electric and magnetic field measurements in space has been demonstrated by Cluster (among other spacecraft) and THOR instrumentation will further improve on this heritage. Large dynamic range of the instruments will be complemented by a thorough electromagnetic cleanliness program, which will prevent perturbation of field measurements by interference from payload and platform subsystems. Taking advantage of the capabilities of modern electronics and the large telemetry bandwidth of THOR, FWP will provide multi-component electromagnetic field waveforms and spectral data products at a high time resolution. Fully synchronized sampling of many signals will allow to resolve wave phase information and estimate wavelength via interferometric correlations between EFI probes. FWP will also implement a plasma resonance sounder and a digital plasma quasi-thermal noise analyzer designed to provide high cadence measurements of plasma density and temperature complementary to data from particle instruments. FWP will rapidly transmit information about magnetic field vector and spacecraft potential to the particle instrument data processing unit (PPU) via a dedicated digital link. This information will help particle instruments to optimize energy and angular sweeps and calculate on-board moments. FWP will also coordinate the acquisition of high resolution waveform snapshots with very high time resolution electron data from the TEA instrument. This combined wave/particle measurement will provide the ultimate dataset for investigation of wave-particle interactions on electron scales. The FWP instrument shall be designed and built by an international consortium of scientific institutes from Czech Republic, Poland, France, UK, Sweden and Austria.

  12. Operational Forecasting and Warning systems for Coastal hazards in Korea

    NASA Astrophysics Data System (ADS)

    Park, Kwang-Soon; Kwon, Jae-Il; Kim, Jin-Ah; Heo, Ki-Young; Jun, Kicheon

    2017-04-01

    Coastal hazards caused by both Mother Nature and humans cost tremendous social, economic and environmental damages. To mitigate these damages many countries have been running the operational forecasting or warning systems. Since 2009 Korea Operational Oceanographic System (KOOS) has been developed by the leading of Korea Institute of Ocean Science and Technology (KIOST) in Korea and KOOS has been operated in 2012. KOOS is consists of several operational modules of numerical models and real-time observations and produces the basic forecasting variables such as winds, tides, waves, currents, temperature and salinity and so on. In practical application systems include storm surges, oil spills, and search and rescue prediction models. In particular, abnormal high waves (swell-like high-height waves) have occurred in the East coast of Korea peninsula during winter season owing to the local meteorological condition over the East Sea, causing property damages and the loss of human lives. In order to improve wave forecast accuracy even very local wave characteristics, numerical wave modeling system using SWAN is established with data assimilation module using 4D-EnKF and sensitivity test has been conducted. During the typhoon period for the prediction of sever waves and the decision making support system for evacuation of the ships, a high-resolution wave forecasting system has been established and calibrated.

  13. Crustal tomography of the 2016 Kumamoto earthquake area in West Japan using P and PmP data

    NASA Astrophysics Data System (ADS)

    Wang, Haibo; Zhao, Dapeng; Huang, Zhouchuan; Xu, Mingjie; Wang, Liangshu; Nishizono, Yukihisa; Inakura, Hirohito

    2018-05-01

    A high-resolution model of three-dimensional (3-D) P-wave velocity (Vp) tomography of the crust in the source area of the 2016 Kumamoto earthquake (M 7.3) in West Japan is determined using a large number of arrival times of first P-waves and reflected P-waves from the Moho discontinuity (PmP). The PmP data are collected from original seismograms of the Kumamoto aftershocks and other local crustal events in Kyushu. Detailed resolution tests show that the addition of the PmP data can significantly improve the resolution of the crustal tomography, especially that of the lower crust. Our results show that significant low-velocity (low-V) anomalies exist in the entire crust beneath the active arc volcanoes, which may reflect the pathway of arc magmas. The 2016 Kumamoto earthquake occurred at the edge of a small low-V zone in the upper crust. A significant low-V anomaly is revealed in the lower crust beneath the source zone, which may reflect the arc magma and fluids ascending from the mantle wedge. These results suggest that the rupture nucleation of the 2016 Kumamoto earthquake was affected by fluids and arc magma.

  14. On the use of adaptive multiresolution method with time-varying tolerance for compressible fluid flows

    NASA Astrophysics Data System (ADS)

    Soni, V.; Hadjadj, A.; Roussel, O.

    2017-12-01

    In this paper, a fully adaptive multiresolution (MR) finite difference scheme with a time-varying tolerance is developed to study compressible fluid flows containing shock waves in interaction with solid obstacles. To ensure adequate resolution near rigid bodies, the MR algorithm is combined with an immersed boundary method based on a direct-forcing approach in which the solid object is represented by a continuous solid-volume fraction. The resulting algorithm forms an efficient tool capable of solving linear and nonlinear waves on arbitrary geometries. Through a one-dimensional scalar wave equation, the accuracy of the MR computation is, as expected, seen to decrease in time when using a constant MR tolerance considering the accumulation of error. To overcome this problem, a variable tolerance formulation is proposed, which is assessed through a new quality criterion, to ensure a time-convergence solution for a suitable quality resolution. The newly developed algorithm coupled with high-resolution spatial and temporal approximations is successfully applied to shock-bluff body and shock-diffraction problems solving Euler and Navier-Stokes equations. Results show excellent agreement with the available numerical and experimental data, thereby demonstrating the efficiency and the performance of the proposed method.

  15. GLASS daytime all-wave net radiation product: Algorithm development and preliminary validation

    DOE PAGES

    Jiang, Bo; Liang, Shunlin; Ma, Han; ...

    2016-03-09

    Mapping surface all-wave net radiation (R n) is critically needed for various applications. Several existing R n products from numerical models and satellite observations have coarse spatial resolutions and their accuracies may not meet the requirements of land applications. In this study, we develop the Global LAnd Surface Satellite (GLASS) daytime R n product at a 5 km spatial resolution. Its algorithm for converting shortwave radiation to all-wave net radiation using the Multivariate Adaptive Regression Splines (MARS) model is determined after comparison with three other algorithms. The validation of the GLASS R n product based on high-quality in situ measurementsmore » in the United States shows a coefficient of determination value of 0.879, an average root mean square error value of 31.61 Wm -2, and an average bias of 17.59 Wm -2. Furthermore, we also compare our product/algorithm with another satellite product (CERES-SYN) and two reanalysis products (MERRA and JRA55), and find that the accuracy of the much higher spatial resolution GLASS R n product is satisfactory. The GLASS R n product from 2000 to the present is operational and freely available to the public.« less

  16. High-spatial-resolution sub-surface imaging using a laser-based acoustic microscopy technique.

    PubMed

    Balogun, Oluwaseyi; Cole, Garrett D; Huber, Robert; Chinn, Diane; Murray, Todd W; Spicer, James B

    2011-01-01

    Scanning acoustic microscopy techniques operating at frequencies in the gigahertz range are suitable for the elastic characterization and interior imaging of solid media with micrometer-scale spatial resolution. Acoustic wave propagation at these frequencies is strongly limited by energy losses, particularly from attenuation in the coupling media used to transmit ultrasound to a specimen, leading to a decrease in the depth in a specimen that can be interrogated. In this work, a laser-based acoustic microscopy technique is presented that uses a pulsed laser source for the generation of broadband acoustic waves and an optical interferometer for detection. The use of a 900-ps microchip pulsed laser facilitates the generation of acoustic waves with frequencies extending up to 1 GHz which allows for the resolution of micrometer-scale features in a specimen. Furthermore, the combination of optical generation and detection approaches eliminates the use of an ultrasonic coupling medium, and allows for elastic characterization and interior imaging at penetration depths on the order of several hundred micrometers. Experimental results illustrating the use of the laser-based acoustic microscopy technique for imaging micrometer-scale subsurface geometrical features in a 70-μm-thick single-crystal silicon wafer with a (100) orientation are presented.

  17. GLASS daytime all-wave net radiation product: Algorithm development and preliminary validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Bo; Liang, Shunlin; Ma, Han

    Mapping surface all-wave net radiation (R n) is critically needed for various applications. Several existing R n products from numerical models and satellite observations have coarse spatial resolutions and their accuracies may not meet the requirements of land applications. In this study, we develop the Global LAnd Surface Satellite (GLASS) daytime R n product at a 5 km spatial resolution. Its algorithm for converting shortwave radiation to all-wave net radiation using the Multivariate Adaptive Regression Splines (MARS) model is determined after comparison with three other algorithms. The validation of the GLASS R n product based on high-quality in situ measurementsmore » in the United States shows a coefficient of determination value of 0.879, an average root mean square error value of 31.61 Wm -2, and an average bias of 17.59 Wm -2. Furthermore, we also compare our product/algorithm with another satellite product (CERES-SYN) and two reanalysis products (MERRA and JRA55), and find that the accuracy of the much higher spatial resolution GLASS R n product is satisfactory. The GLASS R n product from 2000 to the present is operational and freely available to the public.« less

  18. Novel Atmospheric and Sea State Modeling in Ocean Energy Applications

    NASA Astrophysics Data System (ADS)

    Kallos, George; Galanis, George; Kalogeri, Christina; Larsen, Xiaoli Guo

    2013-04-01

    The rapidly increasing use of renewable energy sources poses new challenges for the research and technological community today. The integration of the, usually, highly variable wind and wave energy amounts into the general grid, the optimization of energy transition and the forecast of extreme values that could lead to instabilities and failures of the system can be listed among them. In the present work, novel methodologies based on state of the art numerical wind/wave simulation systems and advanced statistical techniques addressing such type of problems are discussed. In particular, extremely high resolution modeling systems simulating the atmospheric and sea state conditions with spatial resolution of 100 meters or less and temporal discretization of a few seconds are utilized in order to simulate in the most detailed way the combined wind-wave energy potential at offshore sites. In addition, a statistical analysis based on a variety of mean and variation measures as well as univariate and bivariate probability distributions is used for the estimation of the variability of the power potential revealing the advantages of the use of combined forms of energy by offshore platforms able to produce wind and wave power simultaneously. The estimation and prediction of extreme wind/wave conditions - a critical issue both for site assessment and infrastructure maintenance - is also studied by means of the 50-year return period over areas with increased power potential. This work has been carried out within the framework of the FP7 project MARINA Platform (http://www.marina-platform.info/index.aspx).

  19. High Resolution X-Ray Phase Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement

    DTIC Science & Technology

    2005-06-01

    Ultrasonics Symp 1319 (1999). 17. Sarvazyan, A. P. Shear Wave Elasticity Imaging: A New Ultrasonic Technology of Medical Diagnostics. Ultrasound in...samples using acoustically modulated X-ray phase contrast imaging. 15. SUBJECT TERMS x-ray, ultrasound, phase contrast, imaging, elastography 16...x-rays, phase contrast imaging is based on phase changes as x-rays traverse a body resulting in wave interference that result in intensity changes in

  20. s-wave threshold in electron attachment - Results in 2-C4F6 and CFCl3 at ultra-low electron energies

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Alajajian, S. H.; Ajello, J. M.; Orient, O. J.

    1984-01-01

    Electron attachment lineshapes and cross sections are reported for the processes 2-C4F6(-)/2-C4F6 and Cl(-)/CFCl3 at electron energies of 0-120 and 0-140 meV, and at resolutions of 6 and 7 meV (FWHM), respectively. As in previous measurements in CCl4 and SF6, the results show resolution-limited narrow structure in the cross section at electron energies below 15 meV. This structure arises from the divergence of the s-wave cross section in the limit of zero electron energy. Comparisons are given with swarm-measured results, and with collisional ionization (high-Rydberg attachment) data in this energy range.

  1. GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings

    NASA Astrophysics Data System (ADS)

    Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Gille, John C.; Mlynczak, Martin G.; Russell, James M., III; Riese, Martin

    2018-04-01

    Gravity waves are one of the main drivers of atmospheric dynamics. The spatial resolution of most global atmospheric models, however, is too coarse to properly resolve the small scales of gravity waves, which range from tens to a few thousand kilometers horizontally, and from below 1 km to tens of kilometers vertically. Gravity wave source processes involve even smaller scales. Therefore, general circulation models (GCMs) and chemistry climate models (CCMs) usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified. For this reason, comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. We present a gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE). GRACILE is a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). Typical distributions (zonal averages and global maps) of gravity wave vertical wavelengths and along-track horizontal wavenumbers are provided, as well as gravity wave temperature variances, potential energies and absolute momentum fluxes. This global data set captures the typical seasonal variations of these parameters, as well as their spatial variations. The GRACILE data set is suitable for scientific studies, and it can serve for comparison with other instruments (ground-based, airborne, or other satellite instruments) and for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The GRACILE data set is available as supplementary data at https://doi.org/10.1594/PANGAEA.879658.

  2. High-resolution reconstruction for terahertz imaging.

    PubMed

    Xu, Li-Min; Fan, Wen-Hui; Liu, Jia

    2014-11-20

    We present a high-resolution (HR) reconstruction model and algorithms for terahertz imaging, taking advantage of super-resolution methodology and algorithms. The algorithms used include projection onto a convex sets approach, iterative backprojection approach, Lucy-Richardson iteration, and 2D wavelet decomposition reconstruction. Using the first two HR reconstruction methods, we successfully obtain HR terahertz images with improved definition and lower noise from four low-resolution (LR) 22×24 terahertz images taken from our homemade THz-TDS system at the same experimental conditions with 1.0 mm pixel. Using the last two HR reconstruction methods, we transform one relatively LR terahertz image to a HR terahertz image with decreased noise. This indicates potential application of HR reconstruction methods in terahertz imaging with pulsed and continuous wave terahertz sources.

  3. Regional Community Climate Simulations with variable resolution meshes in the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Zarzycki, C. M.; Gettelman, A.; Callaghan, P.

    2017-12-01

    Accurately predicting weather extremes such as precipitation (floods and droughts) and temperature (heat waves) requires high resolution to resolve mesoscale dynamics and topography at horizontal scales of 10-30km. Simulating such resolutions globally for climate scales (years to decades) remains computationally impractical. Simulating only a small region of the planet is more tractable at these scales for climate applications. This work describes global simulations using variable-resolution static meshes with multiple dynamical cores that target the continental United States using developmental versions of the Community Earth System Model version 2 (CESM2). CESM2 is tested in idealized, aquaplanet and full physics configurations to evaluate variable mesh simulations against uniform high and uniform low resolution simulations at resolutions down to 15km. Different physical parameterization suites are also evaluated to gauge their sensitivity to resolution. Idealized variable-resolution mesh cases compare well to high resolution tests. More recent versions of the atmospheric physics, including cloud schemes for CESM2, are more stable with respect to changes in horizontal resolution. Most of the sensitivity is due to sensitivity to timestep and interactions between deep convection and large scale condensation, expected from the closure methods. The resulting full physics model produces a comparable climate to the global low resolution mesh and similar high frequency statistics in the high resolution region. Some biases are reduced (orographic precipitation in the western United States), but biases do not necessarily go away at high resolution (e.g. summertime JJA surface Temp). The simulations are able to reproduce uniform high resolution results, making them an effective tool for regional climate studies and are available in CESM2.

  4. Image fusion based on millimeter-wave for concealed weapon detection

    NASA Astrophysics Data System (ADS)

    Zhu, Weiwen; Zhao, Yuejin; Deng, Chao; Zhang, Cunlin; Zhang, Yalin; Zhang, Jingshui

    2010-11-01

    This paper describes a novel multi sensors image fusion technology which is presented for concealed weapon detection (CWD). It is known to all, because of the good transparency of the clothes at millimeter wave band, a millimeter wave radiometer can be used to image and distinguish concealed contraband beneath clothes, for example guns, knives, detonator and so on. As a result, we adopt the passive millimeter wave (PMMW) imaging technology for airport security. However, in consideration of the wavelength of millimeter wave and the single channel mechanical scanning, the millimeter wave image has law optical resolution, which can't meet the need of practical application. Therefore, visible image (VI), which has higher resolution, is proposed for the image fusion with the millimeter wave image to enhance the readability. Before the image fusion, a novel image pre-processing which specifics to the fusion of millimeter wave imaging and visible image is adopted. And in the process of image fusion, multi resolution analysis (MRA) based on Wavelet Transform (WT) is adopted. In this way, the experiment result shows that this method has advantages in concealed weapon detection and has practical significance.

  5. Internal Ocean Waves

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Internal waves are waves that travel within the interior of a fluid. The waves propagate at the interface or boundary between two layers with sharp density differences, such as temperature. They occur wherever strong tides or currents and stratification occur in the neighborhood of irregular topography. They can propagate for several hundred kilometers. The ASTER false-color VNIR image off the island of Tsushima in the Korea Strait shows the signatures of several internal wave packets, indicating a northern propagation direction.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 60 by 120 kilometers (37.2 by 74.4 miles) Location: 34.6 degrees North latitude, 129.5 degrees East longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1 Original Data Resolution: 90 meters (295 feet) Dates Acquired: July 4, 2000

  6. The investigation of using 5G millimeter-wave communications links for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Han, Congzheng

    2017-04-01

    There has been significantly increasing recognition that millimeter waves from 30 GHz to 300 GHz as carriers for future 5G cellular networks. This is good for high speed, line-of-sight communication, potentially using very densely deployed infrastructure involving many small cells. High resolution, continuous and accurate monitoring of environmental conditions, such as rainfall and water vapor are of great important to meteorology, hydrology (e.g. flood warning), agriculture, environmental policy (e.g. pollution regulation) and weather forecasting. We have built a 28GHz measurement link at our research institute in central Beijing, China. This work will study the potential of using millimeter wave based wireless links to monitor environmental conditions including rainfall and water vapor.

  7. Transverse ion energization and low-frequency plasma waves in the mid-altitude auroral zone - A case study

    NASA Technical Reports Server (NTRS)

    Peterson, W. K.; Shelley, E. G.; Boardsen, S. A.; Gurnett, D. A.; Ledley, B. G.; Sugiura, M.; Moore, T. E.

    1988-01-01

    Evidence of transverse ion energization at altitudes of several earth radii in the auroral zone was reexamined using several hundred hours of high-sensitivity and high-resolution plasma data obtained by the Dynamics Explorer 1 satellite. The data on particle environment encountered at midaltitudes in the auroral zone disclosed rapid variations in the values of total density, thermal structure, and composition of the plasma in the interval measured; the modes of low-frequency plasma waves also varied rapidly. It was not possible to unambiguously identify in these data particle and wave signature of local transverse ion energization; however, many intervals were found where local transverse ion heating was consistent with the observations.

  8. Stability characteristics of the mesopause region above the Andes

    NASA Astrophysics Data System (ADS)

    Yang, F.; Liu, A. Z.

    2017-12-01

    The structure and seasonal variations of static and dynamic (shear) instabilities in the upper atmosphere (80 to 110 km) are examined using 3-year high-resolution wind and temperature data obtained with the Na Lidar at Andes Lidar Observatory (30S,71W). The stabilities are primarily determined by background temperature and wind, but strongly affected by tidal and gravity wave variations. Gravity waves perturb the atmosphere, causing intermittent unstable layers. The stabilities are characterized by their vertical and seasonal distributions of probability of instabilities. As have been found in previous studies, there is a correlation between high static stability (large N2) and strong vertical wind shear. The mechanism for this relationship is investigated in the context of gravity waves interacting with varying background.

  9. Optoacoustic Monitoring of Physiologic Variables

    PubMed Central

    Esenaliev, Rinat O.

    2017-01-01

    Optoacoustic (photoacoustic) technique is a novel diagnostic platform that can be used for noninvasive measurements of physiologic variables, functional imaging, and hemodynamic monitoring. This technique is based on generation and time-resolved detection of optoacoustic (thermoelastic) waves generated in tissue by short optical pulses. This provides probing of tissues and individual blood vessels with high optical contrast and ultrasound spatial resolution. Because the optoacoustic waves carry information on tissue optical and thermophysical properties, detection, and analysis of the optoacoustic waves allow for measurements of physiologic variables with high accuracy and specificity. We proposed to use the optoacoustic technique for monitoring of a number of important physiologic variables including temperature, thermal coagulation, freezing, concentration of molecular dyes, nanoparticles, oxygenation, and hemoglobin concentration. In this review we present origin of contrast and high spatial resolution in these measurements performed with optoacoustic systems developed and built by our group. We summarize data obtained in vitro, in experimental animals, and in humans on monitoring of these physiologic variables. Our data indicate that the optoacoustic technology may be used for monitoring of cerebral blood oxygenation in patients with traumatic brain injury and in neonatal patients, central venous oxygenation monitoring, total hemoglobin concentration monitoring, hematoma detection and characterization, monitoring of temperature, and coagulation and freezing boundaries during thermotherapy. PMID:29311964

  10. Optoacoustic Monitoring of Physiologic Variables.

    PubMed

    Esenaliev, Rinat O

    2017-01-01

    Optoacoustic (photoacoustic) technique is a novel diagnostic platform that can be used for noninvasive measurements of physiologic variables, functional imaging, and hemodynamic monitoring. This technique is based on generation and time-resolved detection of optoacoustic (thermoelastic) waves generated in tissue by short optical pulses. This provides probing of tissues and individual blood vessels with high optical contrast and ultrasound spatial resolution. Because the optoacoustic waves carry information on tissue optical and thermophysical properties, detection, and analysis of the optoacoustic waves allow for measurements of physiologic variables with high accuracy and specificity. We proposed to use the optoacoustic technique for monitoring of a number of important physiologic variables including temperature, thermal coagulation, freezing, concentration of molecular dyes, nanoparticles, oxygenation, and hemoglobin concentration. In this review we present origin of contrast and high spatial resolution in these measurements performed with optoacoustic systems developed and built by our group. We summarize data obtained in vitro , in experimental animals, and in humans on monitoring of these physiologic variables. Our data indicate that the optoacoustic technology may be used for monitoring of cerebral blood oxygenation in patients with traumatic brain injury and in neonatal patients, central venous oxygenation monitoring, total hemoglobin concentration monitoring, hematoma detection and characterization, monitoring of temperature, and coagulation and freezing boundaries during thermotherapy.

  11. Intraluminal pressure patterns in the human colon assessed by high-resolution manometry

    PubMed Central

    Chen, Ji-Hong; Yu, Yuanjie; Yang, Zixian; Yu, Wen-Zhen; Chen, Wu Lan; Yu, Hui; Kim, Marie Jeong-Min; Huang, Min; Tan, Shiyun; Luo, Hesheng; Chen, Jianfeng; Chen, Jiande D. Z.; Huizinga, Jan D.

    2017-01-01

    Assessment of colonic motor dysfunction is rarely done because of inadequate methodology and lack of knowledge about normal motor patterns. Here we report on elucidation of intraluminal pressure patterns using High Resolution Colonic Manometry during a baseline period and in response to a meal, in 15 patients with constipation, chronically dependent on laxatives, 5 healthy volunteers and 9 patients with minor, transient, IBS-like symptoms but no sign of constipation. Simultaneous pressure waves (SPWs) were the most prominent propulsive motor pattern, associated with gas expulsion and anal sphincter relaxation, inferred to be associated with fast propagating contractions. Isolated pressure transients occurred in most sensors, ranging in amplitude from 5–230 mmHg. Rhythmic haustral boundary pressure transients occurred at sensors about 4–5 cm apart. Synchronized haustral pressure waves, covering 3–5 cm of the colon occurred to create a characteristic intrahaustral cyclic motor pattern at 3–6 cycles/min, propagating in mixed direction. This activity abruptly alternated with erratic patterns resembling the segmentation motor pattern of the small intestine. High amplitude propagating pressure waves (HAPWs) were too rare to contribute to function assessment in most subjects. Most patients, dependent on laxatives for defecation, were able to generate normal motor patterns in response to a meal. PMID:28216670

  12. Blast-wave density measurements

    NASA Astrophysics Data System (ADS)

    Ritzel, D. V.

    Applications of a densitometer to obtain time-resolved data on the total density in blast-wave flows are described. A beta-source (promethium-147) is separated by a gap from a scintillator and a photomultiplier tube (PMT). Attenuation of the radiation beam by the passing blast wave is due to the total density in the gap volume during the wave passage. Signal conditioning and filtering methods permit the system to output linearized data. Results are provided from use of the system to monitor blast waves emitted by detonation of a 10.7 m diameter fiberglass sphere containing 609 tons of ammonium nitrate/fuel oil at a 50.6 m height. Blast wave density data are provided for peak overpressure levels of 245, 172 and 70 kPa and distances of 183, 201 and 314 m from ground zero. Data resolution was of high enough quality to encourage efforts to discriminate dust and gasdynamic phenomena within passing blast waves.

  13. PECULIAR STATIONARY EUV WAVE FRONTS IN THE ERUPTION ON 2011 MAY 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandra, R.; Fulara, A.; Chen, P. F.

    We present and interpret the observations of extreme ultraviolet (EUV) waves associated with a filament eruption on 2011 May 11. The filament eruption also produces a small B-class two ribbon flare and a coronal mass ejection. The event is observed by the Solar Dynamic Observatory with high spatio-temporal resolution data recorded by the Atmospheric Imaging Assembly. As the filament erupts, we observe two types of EUV waves (slow and fast) propagating outwards. The faster EUV wave has a propagation velocity of ∼500 km s{sup −1} and the slower EUV wave has an initial velocity of ∼120 km s{sup −1}. Wemore » report, for the first time, that not only does the slower EUV wave stop at a magnetic separatrix to form bright stationary fronts, but also the faster EUV wave transits a magnetic separatrix, leaving another stationary EUV front behind.« less

  14. Experimental observation of steady inertial wave turbulence in deep rotating flows

    NASA Astrophysics Data System (ADS)

    Yarom, Ehud; Sharon, Eran

    2015-11-01

    We present experimental evidence of inertial wave turbulence in deep rotating fluid. Experiments were performed in a rotating cylindrical water tank, where previous work showed statistics similar to 2D turbulence (specifically an inverse energy cascade). Using Fourier analysis of high resolution data in both space (3D) and time we show that most of the energy of a steady state flow is contained around the inertial wave dispersion relation. The nonlinear interaction between the waves is manifested by the widening of the time spectrum around the dispersion relation. We show that as the Rossby number increases so does the spectrum width, with a strong dependence on wave number. Our results suggest that in some parameters range, rotating turbulence velocity field can be represented as a field of interacting waves (wave turbulence). Such formalism may provide a better understanding of the flow statistics. This work was supported by the Israel Science Foundation, Grant No. 81/12.

  15. Gravity Wave Interactions with Fine Structures in the Mesosphere and Lower Thermosphere

    NASA Astrophysics Data System (ADS)

    Mixa, Tyler; Fritts, David; Bossert, Katrina; Laughman, Brian; Wang, Ling; Lund, Thomas; Kantha, Lakshmi

    2017-04-01

    An anelastic numerical model is used to probe the influences of fine layering structures on gravity wave propagation in the Mesosphere and Lower Thermosphere (MLT). Recent lidar observations confirm the presence of persistent layered structures in the MLT that have sharp stratification and vertical scales below 1km. Gravity waves propagating through finely layered environments can excite and modulate the evolution of small scale instabilities that redefine the layering structure in these regions. Such layers in turn filter the outgoing wave spectra, promote ducting or reflection, hasten the onset of self-acceleration dynamics, and encourage wave/mean-flow interactions via energy and momentum transport. Using high resolution simulations of a localized gravity wave packet in a deep atmosphere, we identify the relative impacts of various wave and mean flow parameters to improve our understanding of these dynamics and complement recent state-of-the-art observations.

  16. DualSPHysics: A numerical tool to simulate real breakwaters

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Crespo, Alejandro; Altomare, Corrado; Domínguez, José; Marzeddu, Andrea; Shang, Shao-ping; Gómez-Gesteira, Moncho

    2018-02-01

    The open-source code DualSPHysics is used in this work to compute the wave run-up in an existing dike in the Chinese coast using realistic dimensions, bathymetry and wave conditions. The GPU computing power of the DualSPHysics allows simulating real-engineering problems that involve complex geometries with a high resolution in a reasonable computational time. The code is first validated by comparing the numerical free-surface elevation, the wave orbital velocities and the time series of the run-up with physical data in a wave flume. Those experiments include a smooth dike and an armored dike with two layers of cubic blocks. After validation, the code is applied to a real case to obtain the wave run-up under different incident wave conditions. In order to simulate the real open sea, the spurious reflections from the wavemaker are removed by using an active wave absorption technique.

  17. Spatial control of recollision wave packets with attosecond precision.

    PubMed

    Kitzler, Markus; Lezius, Matthias

    2005-12-16

    We propose orthogonally polarized two-color laser pulses to steer tunneling electrons with attosecond precision around the ion core. We numerically demonstrate that the angles of birth and recollision, the recollision energy, and the temporal structure of the recolliding wave packet can be controlled without stabilization of the carrier-envelope phase of the laser, and that the wave packet's properties can be described by classical relations for a point charge. This establishes unique mapping between parameters of the laser field and attributes of the recolliding wave packet. The method is capable of probing ionic wave packet dynamics with attosecond resolution from an adjustable direction and might be used as an alternative to aligning molecules. Shaping the properties of the recollision wave packet by controlling the laser field may also provide new routes for improvement of attosecond pulse generation via high harmonic radiation.

  18. Statistical properties of nonlinear one-dimensional wave fields

    NASA Astrophysics Data System (ADS)

    Chalikov, D.

    2005-06-01

    A numerical model for long-term simulation of gravity surface waves is described. The model is designed as a component of a coupled Wave Boundary Layer/Sea Waves model, for investigation of small-scale dynamic and thermodynamic interactions between the ocean and atmosphere. Statistical properties of nonlinear wave fields are investigated on a basis of direct hydrodynamical modeling of 1-D potential periodic surface waves. The method is based on a nonstationary conformal surface-following coordinate transformation; this approach reduces the principal equations of potential waves to two simple evolutionary equations for the elevation and the velocity potential on the surface. The numerical scheme is based on a Fourier transform method. High accuracy was confirmed by validation of the nonstationary model against known solutions, and by comparison between the results obtained with different resolutions in the horizontal. The scheme allows reproduction of the propagation of steep Stokes waves for thousands of periods with very high accuracy. The method here developed is applied to simulation of the evolution of wave fields with large number of modes for many periods of dominant waves. The statistical characteristics of nonlinear wave fields for waves of different steepness were investigated: spectra, curtosis and skewness, dispersion relation, life time. The prime result is that wave field may be presented as a superposition of linear waves is valid only for small amplitudes. It is shown as well, that nonlinear wave fields are rather a superposition of Stokes waves not linear waves. Potential flow, free surface, conformal mapping, numerical modeling of waves, gravity waves, Stokes waves, breaking waves, freak waves, wind-wave interaction.

  19. Autonomous bed-sediment imaging-systems for revealing temporal variability of grain size

    USGS Publications Warehouse

    Buscombe, Daniel; Rubin, David M.; Lacy, Jessica R.; Storlazzi, Curt D.; Hatcher, Gerald; Chezar, Henry; Wyland, Robert; Sherwood, Christopher R.

    2014-01-01

    We describe a remotely operated video microscope system, designed to provide high-resolution images of seabed sediments. Two versions were developed, which differ in how they raise the camera from the seabed. The first used hydraulics and the second used the energy associated with wave orbital motion. Images were analyzed using automated frequency-domain methods, which following a rigorous partially supervised quality control procedure, yielded estimates to within 20% of the true size as determined by on-screen manual measurements of grains. Long-term grain-size variability at a sandy inner shelf site offshore of Santa Cruz, California, USA, was investigated using the hydraulic system. Eighteen months of high frequency (min to h), high-resolution (μm) images were collected, and grain size distributions compiled. The data constitutes the longest known high-frequency record of seabed-grain size at this sample frequency, at any location. Short-term grain-size variability of sand in an energetic surf zone at Praa Sands, Cornwall, UK was investigated using the ‘wave-powered’ system. The data are the first high-frequency record of grain size at a single location of a highly mobile and evolving bed in a natural surf zone. Using this technology, it is now possible to measure bed-sediment-grain size at a time-scale comparable with flow conditions. Results suggest models of sediment transport at sandy, wave-dominated, nearshore locations should allow for substantial changes in grain-size distribution over time-scales as short as a few hours.

  20. Improving the resolution for Lamb wave testing via a smoothed Capon algorithm

    NASA Astrophysics Data System (ADS)

    Cao, Xuwei; Zeng, Liang; Lin, Jing; Hua, Jiadong

    2018-04-01

    Lamb wave testing is promising for damage detection and evaluation in large-area structures. The dispersion of Lamb waves is often unavoidable, restricting testing resolution and making the signal hard to interpret. A smoothed Capon algorithm is proposed in this paper to estimate the accurate path length of each wave packet. In the algorithm, frequency domain whitening is firstly used to obtain the transfer function in the bandwidth of the excitation pulse. Subsequently, wavenumber domain smoothing is employed to reduce the correlation between wave packets. Finally, the path lengths are determined by distance domain searching based on the Capon algorithm. Simulations are applied to optimize the number of smoothing times. Experiments are performed on an aluminum plate consisting of two simulated defects. The results demonstrate that spatial resolution is improved significantly by the proposed algorithm.

  1. A probabilistic method for constructing wave time-series at inshore locations using model scenarios

    USGS Publications Warehouse

    Long, Joseph W.; Plant, Nathaniel G.; Dalyander, P. Soupy; Thompson, David M.

    2014-01-01

    Continuous time-series of wave characteristics (height, period, and direction) are constructed using a base set of model scenarios and simple probabilistic methods. This approach utilizes an archive of computationally intensive, highly spatially resolved numerical wave model output to develop time-series of historical or future wave conditions without performing additional, continuous numerical simulations. The archive of model output contains wave simulations from a set of model scenarios derived from an offshore wave climatology. Time-series of wave height, period, direction, and associated uncertainties are constructed at locations included in the numerical model domain. The confidence limits are derived using statistical variability of oceanographic parameters contained in the wave model scenarios. The method was applied to a region in the northern Gulf of Mexico and assessed using wave observations at 12 m and 30 m water depths. Prediction skill for significant wave height is 0.58 and 0.67 at the 12 m and 30 m locations, respectively, with similar performance for wave period and direction. The skill of this simplified, probabilistic time-series construction method is comparable to existing large-scale, high-fidelity operational wave models but provides higher spatial resolution output at low computational expense. The constructed time-series can be developed to support a variety of applications including climate studies and other situations where a comprehensive survey of wave impacts on the coastal area is of interest.

  2. High Order Finite Difference Methods with Subcell Resolution for 2D Detonation Waves

    NASA Technical Reports Server (NTRS)

    Wang, W.; Shu, C. W.; Yee, H. C.; Sjogreen, B.

    2012-01-01

    In simulating hyperbolic conservation laws in conjunction with an inhomogeneous stiff source term, if the solution is discontinuous, spurious numerical results may be produced due to different time scales of the transport part and the source term. This numerical issue often arises in combustion and high speed chemical reacting flows.

  3. Integrating field research, modeling and remote sensing to quantify morphodynamics in a high-energy coastal setting, ocean beach, San Francisco, California

    USGS Publications Warehouse

    Barnard, P.L.; Hanes, D.M.

    2006-01-01

    Wave and coastal circulation modeling are combined with multibeam bathymetry, high-resolution beach surveys, cross-shore Personal Water Craft surveys, digital bed sediment camera surveys, and real-time video monitoring to quantify morphological change and nearshore processes at Ocean Beach, San Francisco. Initial SWAN (Simulating Waves Nearshore) wave modeling results show a focusing of wave energy at the location of an erosion hot spot on the southern end of Ocean Beach during prevailing northwest swell conditions. During El Nin??o winters, swell out of the west and southwest dominates the region, and although the wave energy is focused further to the north on Ocean Beach, the oblique wave approach sets up a strong northerly littoral drift, thereby starving the southern end of sediment, leaving it increasingly vulnerable to wave attack when the persistent northwest swell returns. An accurate assessment of the interaction between wave and tidal processes is crucial for evaluating coastal management options in an area that includes the annual dredging and disposal of ship channel sediment and an erosion hot spot that is posing a threat to local infrastructure. Copyright ASCE 2006.

  4. Shock wave and flame front induced detonation in a rapid compression machine

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Qi, Y.; Xiang, S.; Mével, R.; Wang, Z.

    2018-05-01

    The present study focuses on one mode of detonation initiation observed in a rapid compression machine (RCM). This mode is referred to as shock wave and flame front-induced detonation (SWFID). Experimental high-speed imaging and two-dimensional numerical simulations with skeletal chemistry are combined to unravel the dominant steps of detonation initiation under SWFID conditions. It is shown that the interaction between the shock wave generated by the end-gas auto-ignition and the spherical flame creates a region of high pressure and temperature which enables the acceleration of the flame front and the detonation onset. The experimental observation lacks adequate spatial and temporal resolution despite good reproducibility of the detonation onset. Based on the numerical results, phenomenological interpretation of the event within the framework of shock wave refraction indicates that the formation of a free-precursor shock wave at the transition between regular and irregular refraction may be responsible for detonation onset. The present results along with previous findings on shock wave reflection-induced detonation in the RCM indicate that super-knock occurs after the interaction of the shock wave generated by end-gas auto-ignition with the RCM walls, preignition flame, or another shock wave.

  5. High-speed Continuous-wave Stimulated Brillouin Scattering Spectrometer for Material Analysis.

    PubMed

    Remer, Itay; Cohen, Lear; Bilenca, Alberto

    2017-09-22

    Recent years have witnessed a significant increase in the use of spontaneous Brillouin spectrometers for non-contact analysis of soft matter, such as aqueous solutions and biomaterials, with fast acquisition times. Here, we discuss the assembly and operation of a Brillouin spectrometer that uses stimulated Brillouin scattering (SBS) to measure stimulated Brillouin gain (SBG) spectra of water and lipid emulsion-based tissue-like samples in transmission mode with <10 MHz spectral-resolution and <35 MHz Brillouin-shift measurement precision at <100 ms. The spectrometer consists of two nearly counter-propagating continuous-wave (CW) narrow-linewidth lasers at 780 nm whose frequency detuning is scanned through the material Brillouin shift. By using an ultra-narrowband hot rubidium-85 vapor notch filter and a phase-sensitive detector, the signal-to-noise-ratio of the SBG signal is significantly enhanced compared to that obtained with existing CW-SBS spectrometers. This improvement enables measurement of SBG spectra with up to 100-fold faster acquisition times, thereby facilitating high spectral-resolution and high-precision Brillouin analysis of soft materials at high speed.

  6. Annual variation of gravity-wave activity at middle and high latitudes in a high-resolution GCM

    NASA Astrophysics Data System (ADS)

    Becker, E.

    2017-12-01

    A high-resolution version of the Kuehlungsborn Mechanistic general Circulation Model (KMCM) with resolved gravity waves (GWs) is employed to analyze the annual variation of GW activity in both hemispheres at middle and high latitudes. The geographical distributions of GW hotspots in the winter stratosphere are consistent with existing satellite data. Vertical profiles up to the lower thermosphere agree with ground-based measurements for both season. The model confirms the semi-annual variation of GW energy in the upper mesosphere that was found previously in radar-measurements in the northern hemisphere Furthermore, the GW potential energy per unit mass during winter shows two maxima, one around 50-70 km and one around 80-100 km. We interpret the upper maximum as a result of secondary GWs that are generated in the stratopause region due to the intermittent body forces of primary GWs. In a recent study we showed that these secondary GWs produce a significant eastward drag in the mesopause region during austral winter. This mechanism is found to be important in the northern winter as well.

  7. On the modeling of wave-enhanced turbulence nearshore

    NASA Astrophysics Data System (ADS)

    Moghimi, Saeed; Thomson, Jim; Özkan-Haller, Tuba; Umlauf, Lars; Zippel, Seth

    2016-07-01

    A high resolution k-ω two-equation turbulence closure model, including surface wave forcing was employed to fully resolve turbulence dissipation rate profiles close to the ocean surface. Model results were compared with observations from Surface Wave Instrument Floats with Tracking (SWIFTs) in the nearshore region at New River Inlet, North Carolina USA, in June 2012. A sensitivity analysis for different physical parameters and wave and turbulence formulations was performed. The flux of turbulent kinetic energy (TKE) prescribed by wave dissipation from a numerical wave model was compared with the conventional prescription using the wind friction velocity. A surface roughness length of 0.6 times the significant wave height was proposed, and the flux of TKE was applied at a distance below the mean sea surface that is half of this roughness length. The wave enhanced layer had a total depth that is almost three times the significant wave height. In this layer the non-dimensionalized Terray scaling with power of - 1.8 (instead of - 2) was applicable.

  8. Gravity wave and tidal structures between 60 and 140 km inferred from space shuttle reentry data

    NASA Technical Reports Server (NTRS)

    Fritts, David C.; Wang, Ding-Yi; Blanchard, Robert C.

    1993-01-01

    This study presents an analysis of density measurements made using high-resolution accelerometers aboard several space shuttles at altitudes from 60 to 140 km during reentry into the earth's atmosphere. The observed density fluctuations are interpreted in terms of gravity waves and tides and provide evidence of the importance of such motions well into the thermosphere. Height profiles of fractional density variance reveal that wave amplitudes increase at a rate consistent with observations at lower levels up to about 90 km. The rate of amplitude growth decreases at greater heights, however, and appears to cease above about 110 km. Wave amplitudes are nevertheless large at these heights and suggest that gravity waves may play an important role in forcing of the lower thermosphere.

  9. Invertible propagator for plane wave illumination of forward-scattering structures.

    PubMed

    Samelsohn, Gregory

    2017-05-10

    Propagation of directed waves in forward-scattering media is considered. It is assumed that the evolution of the wave field is governed by the standard parabolic wave equation. An efficient one-step momentum-space propagator, suitable for a tilted plane wave illumination of extended objects, is derived. It is expressed in terms of a propagation operator that transforms (the complex exponential of) a linogram of the illuminated object into a set of its diffraction patterns. The invertibility of the propagator is demonstrated, which permits a multiple-shot scatter correction to be performed, and makes the solution especially attractive for either projective or tomographic imaging. As an example, high-resolution tomograms are obtained in numerical simulations implemented for a synthetic phantom, with both refractive and absorptive inclusions.

  10. A study of the coherence length of ULF waves in the earth's foreshock

    NASA Technical Reports Server (NTRS)

    Le, G.; Russell, C. T.

    1990-01-01

    High-time-resolution magnetic-field data for different separations of ISEE 1 and 2 in the earth's ion foreshock region are examined to study the coherence length of upstream ULF waves. Examining the correlation coefficients of the low-frequency waves as a function of separation distance shows that the correlation coefficient depends mainly on the separation distance of ISEE 1 and 2 transverse to the solar-wind flow. It drops to about 0.5 when the transverse separation is about 1 earth radius, a distance much larger than the proton thermal gyroradius in the solar wind. Thus the coherence length of the low-frequency waves is about one earth radius, which is of the order of the wavelength, and is consistent with that estimated from the bandwidth of the waves.

  11. High Resolution X-ray-Induced Acoustic Tomography

    PubMed Central

    Xiang, Liangzhong; Tang, Shanshan; Ahmad, Moiz; Xing, Lei

    2016-01-01

    Absorption based CT imaging has been an invaluable tool in medical diagnosis, biology, and materials science. However, CT requires a large set of projection data and high radiation dose to achieve superior image quality. In this letter, we report a new imaging modality, X-ray Induced Acoustic Tomography (XACT), which takes advantages of high sensitivity to X-ray absorption and high ultrasonic resolution in a single modality. A single projection X-ray exposure is sufficient to generate acoustic signals in 3D space because the X-ray generated acoustic waves are of a spherical nature and propagate in all directions from their point of generation. We demonstrate the successful reconstruction of gold fiducial markers with a spatial resolution of about 350 μm. XACT reveals a new imaging mechanism and provides uncharted opportunities for structural determination with X-ray. PMID:27189746

  12. Daily hydro- and morphodynamic simulations at Duck, NC, USA using Delft3D

    NASA Astrophysics Data System (ADS)

    Penko, Allison; Veeramony, Jay; Palmsten, Margaret; Bak, Spicer; Brodie, Katherine; Hesser, Tyler

    2017-04-01

    Operational forecasting of the coastal nearshore has wide ranging societal and humanitarian benefits, specifically for the prediction of natural hazards due to extreme storm events. However, understanding the model limitations and uncertainty is as equally important as the predictions themselves. By comparing and contrasting the predictions of multiple high-resolution models in a location with near real-time collection of observations, we are able to perform a vigorous analysis of the model results in order to achieve more robust and certain predictions. In collaboration with the U.S. Army Corps of Engineers Field Research Facility (USACE FRF) as part of the Coastal Model Test Bed (CMTB) project, we have set up Delft3D at Duck, NC, USA to run in near-real time, driven by measured wave data at the boundary. The CMTB at the USACE FRF allows for the unique integration of operational wave, circulation, and morphology models with real-time observations. The FRF has an extensive array of in-situ and remotely sensed oceanographic, bathymetric, and meteorological data that is broadcast in near-real time onto a publically accessible server. Wave, current, and bed elevation instruments are permanently installed across the model domain including 2 waverider buoys in 17-m and 26-m water depths at 3.5-km and 17-km offshore, respectively, that record directional wave data every 30-min. Here, we present the workflow and output of the Delft3D hydro- and morphodynamic simulations at Duck, and show the tactical benefits and operational potential of such a system. A nested Delft3D simulation runs a parent grid that extends 12-km in the along-shore and 3.5-km in the cross-shore with 50-m resolution and a maximum depth of approximately 17-m. The bathymetry for the parent grid was obtained from a regional digital elevation model (DEM) generated by the Federal Emergency Management Agency (FEMA). The inner nested grid extends 1.8-km in the along-shore and 1-km in the cross-shore with 5-m resolution and a maximum depth of approximately 8-m. The inner nested grid initial model bathymetry is set to either the predicted bathymetry from the previous day's simulation or a survey, whichever is more recent. Delft3D-WAVE runs in the parent grid and is driven with the real-time spectral wave measurements from the waverider buoy in 17-m depth. The spectral output from Delft3D-WAVE in the parent grid is then used as the boundary condition for the inner nested high-resolution grid, in which the coupled Delft3D wave-flow-morphology model is run. The model results are then compared to the wave, current, and bathymetry observations collected at the FRF as well as other models that are run in the CMTB.

  13. Motion effects in multistatic millimeter-wave imaging systems

    NASA Astrophysics Data System (ADS)

    Schiessl, Andreas; Ahmed, Sherif Sayed; Schmidt, Lorenz-Peter

    2013-10-01

    At airport security checkpoints, authorities are demanding improved personnel screening devices for increased security. Active mm-wave imaging systems deliver the high quality images needed for reliable automatic detection of hidden threats. As mm-wave imaging systems assume static scenarios, motion effects caused by movement of persons during the screening procedure can degrade image quality, so very short measurement time is required. Multistatic imaging array designs and fully electronic scanning in combination with digital beamforming offer short measurement time together with high resolution and high image dynamic range, which are critical parameters for imaging systems used for passenger screening. In this paper, operational principles of such systems are explained, and the performance of the imaging systems with respect to motion within the scenarios is demonstrated using mm-wave images of different test objects and standing as well as moving persons. Electronic microwave imaging systems using multistatic sparse arrays are suitable for next generation screening systems, which will support on the move screening of passengers.

  14. High resolution, wide field of view, real time 340GHz 3D imaging radar for security screening

    NASA Astrophysics Data System (ADS)

    Robertson, Duncan A.; Macfarlane, David G.; Hunter, Robert I.; Cassidy, Scott L.; Llombart, Nuria; Gandini, Erio; Bryllert, Tomas; Ferndahl, Mattias; Lindström, Hannu; Tenhunen, Jussi; Vasama, Hannu; Huopana, Jouni; Selkälä, Timo; Vuotikka, Antti-Jussi

    2017-05-01

    The EU FP7 project CONSORTIS (Concealed Object Stand-Off Real-Time Imaging for Security) is developing a demonstrator system for next generation airport security screening which will combine passive and active submillimeter wave imaging sensors. We report on the development of the 340 GHz 3D imaging radar which achieves high volumetric resolution over a wide field of view with high dynamic range and a high frame rate. A sparse array of 16 radar transceivers is coupled with high speed mechanical beam scanning to achieve a field of view of 1 x 1 x 1 m3 and a 10 Hz frame rate.

  15. Large depth high-precision FMCW tomography using a distributed feedback laser array

    NASA Astrophysics Data System (ADS)

    DiLazaro, Thomas; Nehmetallah, George

    2018-02-01

    Swept-source optical coherence tomography (SS-OCT) has been widely employed in the medical industry for the high resolution imaging of subsurface biological structures. SS-OCT typically exhibits axial resolutions on the order of tens of microns at speeds of hundreds of kilohertz. Using the same coherent heterodyne detection technique, frequency modulated continuous wave (FMCW) ladar has been used for highly precise ranging for distances up to kilometers. Distributed feedback lasers (DFBs) have been used as a simple and inexpensive source for FMCW ranging. Here, we use a bandwidth-combined DFB array for sub-surface volume imaging at a 27 μm axial resolution over meters of distance. 2D and 3D tomographic images of several semi-transparent and diffuse objects at distances up to 10 m will be presented.

  16. Turbulence imaging and applications using beam emission spectroscopy on DIII-D (invited)

    NASA Astrophysics Data System (ADS)

    McKee, G. R.; Fenzi, C.; Fonck, R. J.; Jakubowski, M.

    2003-03-01

    Two-dimensional measurements of density fluctuations are obtained in the radial and poloidal plane of the DIII-D tokamak with the Beam Emission Spectroscopy (BES) diagnostic system. The goals are to visualize the spatial structure and time evolution of turbulent eddies, as well as to obtain the 2D statistical properties of turbulence. The measurements are obtained with an array of localized BES spatial channels configured to image a midplane region of the plasma. 32 channels have been deployed, each with a spatial resolution of about 1 cm in the radial and poloidal directions, thus providing measurements of turbulence in the wave number range 0

  17. Delay-Encoded Harmonic Imaging (DE-HI) in Multiplane-Wave Compounding.

    PubMed

    Gong, Ping; Song, Pengfei; Chen, Shigao

    2017-04-01

    The development of ultrafast ultrasound imaging brings great opportunities to improve imaging technologies such as shear wave elastography and ultrafast Doppler imaging. In ultrafast imaging, several tilted plane or diverging wave images are coherently combined to form a compounded image, leading to trade-offs among image signal-to-noise ratio (SNR), resolution, and post-compounded frame rate. Multiplane wave (MW) imaging is proposed to solve this trade-off by encoding multiple plane waves with Hadamard matrix during one transmission event (i.e. pulse-echo event), to improve image SNR without sacrificing the resolution or frame rate. However, it suffers from stronger reverberation artifacts in B-mode images compared to standard plane wave compounding due to longer transmitted pulses. If harmonic imaging can be combined with MW imaging, the reverberation artifacts and other clutter noises such as sidelobes and multipath scattering clutters should be suppressed. The challenge, however, is that the Hadamard codes used in MW imaging cannot encode the 2 nd harmonic component by inversing the pulse polarity. In this paper, we propose a delay-encoded harmonic imaging (DE-HI) technique to encode the 2 nd harmonic with a one quarter period delay calculated at the transmit center frequency, rather than reversing the pulse polarity during multiplane wave emissions. Received DE-HI signals can then be decoded in the frequency domain to recover the signals as in single plane wave emissions, but mainly with improved SNR at the 2 nd harmonic component instead of the fundamental component. DE-HI was tested experimentally with a point target, a B-mode imaging phantom, and in-vivo human liver imaging. Improvements in image contrast-to-noise ratio (CNR), spatial resolution, and lesion-signal-to-noise ratio ( l SNR) have been achieved compared to standard plane wave compounding, MW imaging, and standard harmonic imaging (maximal improvement of 116% on CNR and 115% on l SNR as compared to standard HI around 55 mm depth in the B-mode imaging phantom study). The potential high frame rate and the stability of encoding and decoding processes of DE-HI were also demonstrated, which made DE-HI promising for a wide spectrum of imaging applications.

  18. An operational coupled wave-current forecasting system for the northern Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Russo, A.; Coluccelli, A.; Deserti, M.; Valentini, A.; Benetazzo, A.; Carniel, S.

    2012-04-01

    Since 2005 an Adriatic implementation of the Regional Ocean Modeling System (AdriaROMS) is being producing operational short-term forecasts (72 hours) of some hydrodynamic properties (currents, sea level, temperature, salinity) of the Adriatic Sea at 2 km horizontal resolution and 20 vertical s-levels, on a daily basis. The main objective of AdriaROMS, which is managed by the Hydro-Meteo-Clima Service (SIMC) of ARPA Emilia Romagna, is to provide useful products for civil protection purposes (sea level forecasts, outputs to run other forecasting models as for saline wedge, oil spills and coastal erosion). In order to improve the forecasts in the coastal area, where most of the attention is focused, a higher resolution model (0.5 km, again with 20 vertical s-levels) has been implemented for the northern Adriatic domain. The new implementation is based on the Coupled-Ocean-Atmosphere-Wave-Sediment Transport Modeling System (COAWST)and adopts ROMS for the hydrodynamic and Simulating WAve Nearshore (SWAN) for the wave module, respectively. Air-sea fluxes are computed using forecasts produced by the COSMO-I7 operational atmospheric model. At the open boundary of the high resolution model, temperature, salinity and velocity fields are provided by AdriaROMS while the wave characteristics are provided by an operational SWAN implementation (also managed by SIMC). Main tidal components are imposed as well, derived from a tidal model. Work in progress is oriented now on the validation of model results by means of extensive comparisons with acquired hydrographic measurements (such as CTDs or XBTs from sea-truth campaigns), currents and waves acquired at observational sites (including those of SIMC, CNR-ISMAR network and its oceanographic tower, located off the Venice littoral) and satellite-derived wave-heights data. Preliminary results on the forecast waves denote how, especially during intense storms, the effect of coupling can lead to significant variations in the wave heights. Part of the activity has been funded by the EU FP VII program (project "MICORE", contract n. 202798) and by the Regione Veneto regional law 15/2007 (Progetto "MARINA").

  19. Statistics of multiply scattered broadband terahertz pulses.

    PubMed

    Pearce, Jeremy; Jian, Zhongping; Mittleman, Daniel M

    2003-07-25

    We describe the first measurements of the diffusion of broadband single-cycle optical pulses through a highly scattering medium. Using terahertz time-domain spectroscopy, we measure the electric field of a multiply scattered wave with a time resolution shorter than one optical cycle. This time-domain measurement provides information on the statistics of both the amplitude and phase distributions of the diffusive wave. We develop a theoretical description, suitable for broadband radiation, which adequately describes the experimental results.

  20. High Resolution WENO Simulation of 3D Detonation Waves

    DTIC Science & Technology

    2012-02-27

    pocket behind the detonation front was not observed in their results because the rotating transverse detonation completely consumed the unburned gas. Dou...three-dimensional detonations We add source terms (functions of x, y, z and t) to the PDE system so that the following functions are exact solutions to... detonation rotates counter-clockwise, opposite to that in [48]. It can be seen that, the triple lines and transverse waves collide with the walls, and strong

  1. Acoustic and gravity waves in the neutral atmosphere and the ionosphere, generated by severe storms

    NASA Technical Reports Server (NTRS)

    Balachandran, N. K.

    1983-01-01

    Gravity waves in the neutral atmosphere and their propagation in the ionosphere and the study of infrasonic signals from thunder were investigated. Doppler shifts of the order of 0.1 Hz are determined and they provide high-resolution measurements of the movements in the ionosphere. By using an array of transmitters with different frequencies and at different locations, the horizontal and vertical propagation vectors of disturbances propagating through the ionosphere are determined.

  2. Genesis of Pre-Hurricane Felix (2007). Part I: The Role of the Easterly Wave Critical Layer

    DTIC Science & Technology

    2010-06-01

    the boundary layer does not overcome the positive entropy flux from the ocean surface. As suggested by Montgomery et al. (2006), cold pools of...Weather Research and Forecasting (WRF) model with a high-resolution nested grid configuration that permits the representation of cloud system processes...from the jet level to the top of the atmospheric boundary layer. The region of a quasi-closed Lagrangian circulation within the wave pouch provides a

  3. Millimeter Wave Holographical Inspection of Honeycomb Composites

    NASA Technical Reports Server (NTRS)

    Case, J. T.; Kharkovsky, S.; Zoughi, R.; Stefes, G.; Hepburn, Frank L.; Hepburn, Frank L.

    2007-01-01

    Multi-layered composite structures manufactured with honeycomb, foam or balsa wood cores are finding increasing utility in a variety of aerospace, transportation, and infrastructure applications. Due to the low conductivity and inhomogeneity associated with these composites standard nondestructive testing (NDT) methods are not always capable of inspecting their interior for various defects caused during the manufacturing process or as a result of in-service loading. On the contrary, microwave and millimeter wave NDT methods are well-suited for inspecting these structures since signals at these frequencies readily penetrate through these structures and reflect from different interior boundaries revealing the presence of a wide range of defects such as disbond, delamination, moisture and oil intrusion, impact damage, etc. Millimeter wave frequency spectrum spans 30 GHz - 300 GHz with corresponding wavelengths of 10 - 1 mm. Due to the inherent short wavelengths at these frequencies, one can produce high spatial resolution images of these composites either using real-antenna focused or synthetic-aperture focused methods. In addition, incorporation of swept-frequency in the latter method (i.e., holography) results in high-resolution three-dimensional images. This paper presents the basic steps behind producing such images at millimeter wave frequencies and the results of two honeycomb composite panels are demonstrated at Q-band (33-50 GHz). In addition, these results are compared to previous results using X-ray computed tomography.

  4. Evaluation of thin discontinuities in planar conducting materials using the diffraction of electromagnetic field

    NASA Astrophysics Data System (ADS)

    Savin, A.; Novy, F.; Fintova, S.; Steigmann, R.

    2017-08-01

    The current stage of nondestructive evaluation techniques imposes the development of new electromagnetic (EM) methods that are based on high spatial resolution and increased sensitivity. In order to achieve high performance, the work frequencies must be either radifrequencies or microwaves. At these frequencies, at the dielectric/conductor interface, plasmon polaritons can appear, propagating between conductive regions as evanescent waves. In order to use the evanescent wave that can appear even if the slits width is much smaller that the wavwelength of incident EM wave, a sensor with metamaterial (MM) is used. The study of the EM field diffraction against the edge of long thin discontinuity placed under the inspected surface of a conductive plate has been performed using the geometrical optics principles. This type of sensor having the reception coils shielded by a conductive screen with a circular aperture placed in the front of reception coil of emission reception sensor has been developed and “transported” information for obtaining of magnified image of the conductive structures inspected. This work presents a sensor, using MM conical Swiss roll type that allows the propagation of evanescent waves and the electromagnetic images are magnified. The test method can be successfully applied in a variety of applications of maxim importance such as defect/damage detection in materials used in automotive and aviation technologies. Applying this testing method, spatial resolution can be improved.

  5. Explicit Global Simulation of Gravity Waves up to the Lower Thermosphere

    NASA Astrophysics Data System (ADS)

    Becker, E.

    2016-12-01

    At least for short-term simulations, middle atmosphere general circulation models (GCMs) can be run with sufficiently high resolution in order to describe a good part of the gravity wave spectrum explicitly. Nevertheless, the parameterization of unresolved dynamical scales remains an issue, especially when the scales of parameterized gravity waves (GWs) and resolved GWs become comparable. In addition, turbulent diffusion must always be parameterized along with other subgrid-scale dynamics. A practical solution to the combined closure problem for GWs and turbulent diffusion is to dispense with a parameterization of GWs, apply a high spatial resolution, and to represent the unresolved scales by a macro-turbulent diffusion scheme that gives rise to wave damping in a self-consistent fashion. This is the approach of a few GCMs that extend from the surface to the lower thermosphere and simulate a realistic GW drag and summer-to-winter-pole residual circulation in the upper mesosphere. In this study we describe a new version of the Kuehlungsborn Mechanistic general Circulation Model (KMCM), which includes explicit (though idealized) computations of radiative transfer and the tropospheric moisture cycle. Particular emphasis is spent on 1) the turbulent diffusion scheme, 2) the attenuation of resolved GWs at critical levels, 3) the generation of GWs in the middle atmosphere from body forces, and 4) GW-tidal interactions (including the energy deposition of GWs and tides).

  6. Millimeter Wave Holographical Inspection of Honeycomb Composites

    NASA Astrophysics Data System (ADS)

    Case, J. T.; Kharkovsky, S.; Zoughi, R.; Steffes, G.; Hepburn, F. L.

    2008-02-01

    Multi-layered composite structures manufactured with honeycomb, foam, or balsa wood cores are finding increasing utility in a variety of aerospace, transportation, and infrastructure applications. Due to the low conductivity and inhomogeneity associated with these composites, standard nondestructive testing (NDT) methods are not always capable of inspecting their interior for various defects caused during the manufacturing process or as a result of in-service loading. On the contrary, microwave and millimeter wave NDT methods are well-suited for inspecting these structures since signals at these frequencies readily penetrate through these structures and reflect from different interior boundaries revealing the presence of a wide range of defects such as isband, delamination, moisture and oil intrusion, impact damage, etc. Millimeter wave frequency spectrum spans 30 GHz-300 GHz with corresponding wavelengths of 10-1 mm. Due to the inherent short wavelengths at these frequencies, one can produce high spatial resolution images of these composites either using real-antenna focused or synthetic-aperture focused methods. In addition, incorporation of swept-frequency in the latter method (i.e., holography) results in high-resolution three-dimensional images. This paper presents the basic steps behind producing such images at millimeter wave frequencies and the results of two honeycomb composite panels are demonstrated at Q-band (33-50 GHz). In addition, these results are compared to previous results using X-ray computed tomography.

  7. Turbulence sources, character, and effects in the stable boundary layer: Insights from multi-scale direct numerical simulations and new, high-resolution measurements

    NASA Astrophysics Data System (ADS)

    Fritts, Dave; Wang, Ling; Balsley, Ben; Lawrence, Dale

    2013-04-01

    A number of sources contribute to intermittent small-scale turbulence in the stable boundary layer (SBL). These include Kelvin-Helmholtz instability (KHI), gravity wave (GW) breaking, and fluid intrusions, among others. Indeed, such sources arise naturally in response to even very simple "multi-scale" superpositions of larger-scale GWs and smaller-scale GWs, mean flows, or fine structure (FS) throughout the atmosphere and the oceans. We describe here results of two direct numerical simulations (DNS) of these GW-FS interactions performed at high resolution and high Reynolds number that allow exploration of these turbulence sources and the character and effects of the turbulence that arises in these flows. Results include episodic turbulence generation, a broad range of turbulence scales and intensities, PDFs of dissipation fields exhibiting quasi-log-normal and more complex behavior, local turbulent mixing, and "sheet and layer" structures in potential temperature that closely resemble high-resolution measurements. Importantly, such multi-scale dynamics differ from their larger-scale, quasi-monochromatic gravity wave or quasi-horizontally homogeneous shear flow instabilities in significant ways. The ability to quantify such multi-scale dynamics with new, very high-resolution measurements is also advancing rapidly. New in-situ sensors on small, unmanned aerial vehicles (UAVs), balloons, or tethered systems are enabling definition of SBL (and deeper) environments and turbulence structure and dissipation fields with high spatial and temporal resolution and precision. These new measurement and modeling capabilities promise significant advances in understanding small-scale instability and turbulence dynamics, in quantifying their roles in mixing, transport, and evolution of the SBL environment, and in contributing to improved parameterizations of these dynamics in mesoscale, numerical weather prediction, climate, and general circulation models. We expect such measurement and modeling capabilities to also aid in the design of new and more comprehensive future SBL measurement programs.

  8. Hydro and morphodynamic simulations for probabilistic estimates of munitions mobility

    NASA Astrophysics Data System (ADS)

    Palmsten, M.; Penko, A.

    2017-12-01

    Probabilistic estimates of waves, currents, and sediment transport at underwater munitions remediation sites are necessary to constrain probabilistic predictions of munitions exposure, burial, and migration. To address this need, we produced ensemble simulations of hydrodynamic flow and morphologic change with Delft3D, a coupled system of wave, circulation, and sediment transport models. We have set up the Delft3D model simulations at the Army Corps of Engineers Field Research Facility (FRF) in Duck, NC, USA. The FRF is the prototype site for the near-field munitions mobility model, which integrates far-field and near-field field munitions mobility simulations. An extensive array of in-situ and remotely sensed oceanographic, bathymetric, and meteorological data are available at the FRF, as well as existing observations of munitions mobility for model testing. Here, we present results of ensemble Delft3D hydro- and morphodynamic simulations at Duck. A nested Delft3D simulation runs an outer grid that extends 12-km in the along-shore and 3.7-km in the cross-shore with 50-m resolution and a maximum depth of approximately 17-m. The inner nested grid extends 3.2-km in the along-shore and 1.2-km in the cross-shore with 5-m resolution and a maximum depth of approximately 11-m. The inner nested grid initial model bathymetry is defined as the most recent survey or remotely sensed estimate of water depth. Delft3D-WAVE and FLOW is driven with spectral wave measurements from a Waverider buoy in 17-m depth located on the offshore boundary of the outer grid. The spectral wave output and the water levels from the outer grid are used to define the boundary conditions for the inner nested high-resolution grid, in which the coupled Delft3D WAVE-FLOW-MORPHOLOGY model is run. The ensemble results are compared to the wave, current, and bathymetry observations collected at the FRF.

  9. Poisson's ratio model derived from P- and S-wave reflection seismic data at the CO2CRC Otway Project pilot site, Australia

    NASA Astrophysics Data System (ADS)

    Beilecke, Thies; Krawczyk, Charlotte M.; Tanner, David C.; Ziesch, Jennifer; Research Group Protect

    2014-05-01

    Compressional wave (P-wave) reflection seismic field measurements are a standard tool for subsurface exploration. 2-D seismic measurements are often used for overview measurements, but also as near-surface supplement to fill gaps that often exist in 3-D seismic data sets. Such supplementing 2-D measurements are typically simple with respect to field layout. This is an opportunity for the use of shear waves (S-waves). Within the last years, S-waves have become more and more important. One reason is that P- and S-waves are differently sensitive to fluids and pore fill so that the additional S-wave information can be used to enhance lithological studies. Another reason is that S-waves have the advantage of higher spatial resolution. Within the same signal bandwidth they typically have about half the wavelength of P-waves. In near-surface unconsolidated sediments they can even enhance the structural resolution by one order of magnitude. We make use of these capabilities within the PROTECT project. In addition to already existing 2-D P-wave data, we carried out a near surface 2-D S-wave field survey at the CO2CRC Otway Project pilot site, close to Warrnambool, Australia in November 2013. The combined analysis of P-wave and S-wave data is used to construct a Poisson's Ratio 2-D model down to roughly 600 m depth. The Poisson's ratio values along a 1 km long profile at the site are surprisingly high, ranging from 0.47 in the carbonate-dominated near surface to 0.4 at depth. In the literature, average lab measurements of 0.22 for unfissured carbonates and 0.37 for fissured examples have been reported. The high values that we found may indicate areas of rather unconsolidated or fractured material, or enhanced fluid contents, and will be subject of further studies. This work is integrated in a larger workflow towards prediction of CO2 leakage and monitoring strategies for subsurface storage in general. Acknowledgement: This work was sponsored in part by the Australian Commonwealth Government through the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC). PROTECT is funded through the Geotechnologien research programme in Germany (grant 03G0797).

  10. Earthquake- and tsunami-induced ionospheric disturbances detected by GPS total electron content observation

    NASA Astrophysics Data System (ADS)

    Tsugawa, T.; Nishioka, M.; Matsumura, M.; Shinagawa, H.; Maruyama, T.; Ogawa, T.; Saito, A.; Otsuka, Y.; Nagatsuma, T.; Murata, T.

    2012-12-01

    Ionospheric disturbances induced by the 2011 Tohoku earthquake and tsunami were studied by the high-resolution GPS total electron content (TEC) observation in Japan and in the world. The initial ionospheric disturbance appeared as sudden depletions by about 6 TEC unit (20%) about seven minutes after the earthquake onset, near the epicenter. From 06:00UT to 06:15UT, circular waves with short propagation distance propagated in the radial direction in the propagation velocity of 3,457, 783, 423 m/s for the first, second, third peak, respectively. Following these waves, concentric waves with long propagation distance appeared to propagate at the velocity of 138-288 m/s. In the vicinity of the epicenter, shortperiod oscillations with period of about 4 minutes were observed after 06:00 UT for 3 hours or more. We focus on the the circular and concentric waves in this paper. The circular or concentric structures indicate that these ionospheric disturbances had a point source. The center of these structures, termed as "ionospheric epicenter", was located around 37.5 deg N of latitude and 144.0 deg E of longitude, 170 km far from the epicenter to the southeast direction, and corresponded to the tsunami source. Comparing to the results of a numerical simulation using non-hydrostatic compressible atmosphere-ionosphere model, the first peak of circular wave would be caused by the acoustic waves generated from the propagating Rayleigh wave. The second and third waves would be caused by atmospheric gravity waves excited in the lower ionosphere due to the acoustic wave propagations from the tsunami source. The fourth and following waves are considered to be caused by the atmospheric gravity waves induced by the wavefronts of traveling tsunami. Long-propagation of these TEC disturbances were studied also using high-resolution GPS-TEC data in North America and Europe. Medium-scale wave structures with wavelengths of several 100 km appeared in the west part of North America at the almost same time as the tsunami arrival. On the other hand, no remarkable wave structure was observed in Europe. We will introduce these observational results and discuss about the generation and propagation mechanisms of the ionospheric disturbances induced by the earthquake and tsunami.

  11. Diabatic modification of potential vorticity in extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Chagnon, J.

    2012-12-01

    Representation of diabatic processes and their impact on extratropical cyclones is a likely source of skill degradation in operational numerical weather prediction systems. This investigation examines the source, structure, and magnitude of diabatic potential vorticity (PV) anomalies generated by small-scale and parameterized processes in both mesoscale and global model simulations of extratropical cyclones in the North Atlantic. Simulations of several cold season extratropical storms have been performed using the Met Office Unified Model. Several cases simulated were drawn from the DIAbatic influences on Mesoscale structures in ExTratropical cyclones (DIAMET) observational campaign during which the National Environmental Research Council (NERC) Facility for Airborne Atmospheric Measurement (FAAM) BAE-146 aircraft was deployed. The influence of specific modelled processes was quantified using a set of tracers, each of which represents a history of the PV contributed by a specific segment of the model (e.g., boundary-layer scheme, cloud microphysics, convection scheme , radiation, etc.). This presentation will highlight several differences and similarities in high and low resolution simulations. For example, in high resolution simulations, tropopause folds are sharpened by a tripolar PV anomaly arising from the convection, boundary-layer, and microphysics schemes; this structure is not present in coarser global model simulations. However, a dipole of PV straddling the tropopause is diagnosed in both coarse- and fine-resolution simulations. The PV dipole, which is strongly influenced by long-wave radiative cooling, increases the gradient of PV near the tropopause and therefore modifies the characteristics Rossby wave propagation and moist baroclinic wave growth.

  12. Cenozoic volcanism in the Bohemian Massif in the context of P- and S-velocity high-resolution teleseismic tomography of the upper mantle

    NASA Astrophysics Data System (ADS)

    Plomerová, Jaroslava; Munzarová, Helena; Vecsey, Luděk.; Kissling, Eduard; Achauer, Ulrich; Babuška, Vladislav

    2016-08-01

    New high-resolution tomographic models of P- and S-wave isotropic-velocity perturbations for the Bohemian upper mantle are estimated from carefully preprocessed travel-time residuals of teleseismic P, PKP and S waves recorded during the BOHEMA passive seismic experiment. The new data resolve anomalies with scale lengths 30-50 km. The models address whether a small mantle plume in the western Bohemian Massif is responsible for this geodynamically active region in central Europe, as expressed in recurrent earthquake swarms. Velocity-perturbations of the P- and S-wave models show similar features, though their resolutions are different. No model resolves a narrow subvertical low-velocity anomaly, which would validate the "baby-plume" concept. The new tomographic inferences complement previous studies of the upper mantle beneath the Bohemian Massif, in a broader context of the European Cenozoic Rift System (ECRIS) and of other Variscan Massifs in Europe. The low-velocity perturbations beneath the Eger Rift, observed in about 200km-broad zone, agree with shear-velocity models from full-waveform inversion, which also did not identify a mantle plume beneath the ECRIS. Boundaries between mantle domains of three tectonic units that comprise the region, determined from studies of seismic anisotropy, represent weak zones in the otherwise rigid continental mantle lithosphere. In the past, such zones could have channeled upwelling of hot mantle material, which on its way could have modified the mantle domain boundaries and locally thinned the lithosphere.

  13. In Situ Detection of Strong Langmuir Turbulence Processes in Solar Type III Radio Bursts

    NASA Technical Reports Server (NTRS)

    Golla, Thejappa; Macdowall, Robert J.; Bergamo, M.

    2012-01-01

    The high time resolution observations obtained by the WAVES experiment of the STEREO spacecraft in solar type III radio bursts show that Langmuir waves often occur as intense localized wave packets. These wave packets are characterized by short durations of only a few ms and peak intensities, which well exceed the supersonic modulational instability (MI) thresholds. These timescales and peak intensities satisfy the criterion of the solitons collapsed to spatial scales of a few hundred Debye lengths. The spectra of these wave packets consist of primary spectral peaks corresponding to beam-resonant Langmuir waves, two or more sidebands corresponding to down-shifted and up-shifted daughter Langmuir waves, and low frequency enhancements below a few hundred Hz corresponding to daughter ion sound waves. The frequencies and wave numbers of these spectral components satisfy the resonance conditions of the modulational instability (MI). Moreover, the tricoherences, computed using trispectral analysis techniques show that these spectral components are coupled to each other with a high degree of coherency as expected of the MI type of four wave interactions. The high intensities, short scale lengths, sideband spectral structures and low frequency spectral enhancements and, high levels of tricoherences amongst the spectral components of these wave packets provide unambiguous evidence for the supersonic MI and related strong turbulence processes in type III radio bursts. The implication of these observations include: (1) the MI and related strong turbulence processes often occur in type III source regions, (2) the strong turbulence processes probably play very important roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation at the fundamental and second harmonic of the electron plasma frequency, fpe, and (3) the Langmuir collapse probably follows the route of MI in type III radio bursts.

  14. Projections of wind-waves in South China Sea for the 21st century

    NASA Astrophysics Data System (ADS)

    Mohammed, Aboobacker; Dykyi, Pavlo; Zheleznyak, Mark; Tkalich, Pavel

    2013-04-01

    IPCC-coordinated work has been completed within Fourth Assessment Report (AR4) to project climate and ocean variables for the 21st century using coupled atmospheric-ocean General Circulation Models (GCMs). GCMs are not having a wind-wave variable due to a poor grid resolution; therefore, dynamical downscaling of wind-waves to the regional scale is advisable using well established models, such as Wave Watch III (WWIII) and SWAN. Rectilinear-coordinates WWIII model is adapted for the far field comprising the part of Pacific and Indian Oceans centered at the South China Sea and Sunda Shelf (90 °E-130 °E, 10 °S - 26.83 °N) with a resolution of 10' (about 18 km). Near-field unstructured-mesh SWAN model covers Sunda Shelf and centered on Singapore Strait, while reading lateral boundary values from WWIII model. The unstructured grid has the coarsest resolution in the South China Sea (6 to 10 km), medium resolution in the Malacca Strait (1 to 2 km), and the finest resolution in the Singapore Strait (400 m) and along the Singapore coastline (up to 100 m). Following IPCC methodology, the model chain is validated climatologically for the past period 1961-1990 against Voluntary Observing Ship (VOS) data; additionally, the models are validated using recent high-resolution satellite data. The calibrated model chain is used to project waves to 21st century using WRF-downscaled wind speed output of CCSM GCM run for A1FI climate change scenario. To comply with IPCC methodology the entire modeling period is split into three 30-years periods for which statistical parameters are computed individually. Time series of significant wave height at key points near Singapore and on ship sea routes in the SCS are statistically analysed to get probability distribution functions (PDFs) of extreme values. Climatological maps of mean and maximum significant wave height (SWH) values, and mean wave period are built for Singapore region for each 30-yrs period. Linear trends of mean SWH values for northeast (NE) and southwest (SW) monsoons have been derived. The maximum values of predicted 100 year return period (YRP) SWH are obtained for the 1st 30-yrs period (2011-2040). In the deep eastern part of the Singapore, 100yrp SWH are 2.4 - 2.8 m, whereas those at the shallow nearshore areas are 1.7-2.3 m. On the ship routes at Sunda Shelf the 100 YRP SWHs are 1.1 - 3.2 m, and those at the SCS routes are 3.6 - 10.4 m. The biggest changes in future against hindcasted SWH is in first 30-yrs, where extreme 100 YRP SWH will grow up in the range from 36%-120% at points near Singapore and to 39%-108% at ship sea routes.

  15. High-resolution seismic measurements at loamy dikes for monitoring high-water influences

    NASA Astrophysics Data System (ADS)

    Jaksch, Katrin; Giese, Rüdiger

    2010-05-01

    For the risk management of high-water events it is important to know how secure river dikes are. Even the structures of dikes are often unknown. Methods for the exploration of existing dikes and of their underground, for an evaluation of failure potential and strengthening requirements are needed. In the presented work, the potential of a high-resolution seismics to monitor the moisture penetration of dikes during flood periods was analyzed. To identify the extent of moisture penetration and to determine the structures of a loamy dike body would enable to determine the probability of a dike failure. Dikes made of loam show a different behavior of moisture penetration under high-water influence. The distribution and penetration of water is moderate compared to sandy dikes and resist longer high-water events. The water expands slowly in the dike body in all directions known as fingering. It should be analyzed how the moisture penetration from a dike can be displayed with seismic methods. The aim was to identify on the basis of seismic measurements the areas of moisture penetration within a dike during a flood and out of it to determine the probability of collapse of the dike. For that purpose the structures in the dike body should be determined in reference to the materials and his soil parameters like water content and porosity. A test facility was built for dikes including a regulation for the water level. This allowed the simulation of flood scenarios at dikes. Two dikes with different loam content were built in order to determine the failure mechanism of dikes. With a width of 8 meters at the basis they had nearly the dimension of river dikes. Seismic instrumentation was installed on both dike models. The seismic survey consists of three parallel receiver lines on the dike which recorded seismic signals emitted along the same lines, resulting in a 3D-seismic data set. The receivers were 3-component-geophones fixed in spikes, at the flooded side of the dike were taken water-proof geophones. In order to achieve a high resolution a magnetostricitve actuator was used as seismic source. The actuator generated sweeps within a frequency range from 100 up to 6100 Hz. The measurements show a complex wave field, which is dominated by direct P-waves, surface waves as well as refracted waves at the boundaries of the model. The frequencies of the direct P-waves are up to 3000 Hz at small offsets and beyond it declines to about 700 to 900 Hz. Close to the source the entire sweep energy for all frequencies is transmitted in the dike. Surface waves show frequencies from 300 to 400 Hz. A comparison of seismic data at not flooded conditions and at high flood mark shows clearly that the seismic waves were attenuated due to strong moisture penetration of the dike, surface waves were not observed after flooding the dike. Also, travel times and wave field differ in their characteristics. With increasing moisture content in the dike body the P-wave velocity decreases continuously over 30 percent from 290 m/s at not flooded conditions to 200 m/s at the highest flood. The first breaks at longer distances of the measured data stem from refractions at the dike underground which is made of concrete. Calculated travel time tomography's of different saturation states of the dike show the water content in the dike body on the basis of a correlation with the P-wave velocity. Structural heterogeneities in the dike were also visualized by the travel time tomography's.

  16. Research on Integrated Geophysics Detect Potential Ground Fissure in City

    NASA Astrophysics Data System (ADS)

    Qian, R.

    2017-12-01

    North China confined aquifer lied 70 to 200 meters below the earth's surface has been exploited for several decades, which resulted in confined water table declining and has generated a mass of ground fissure. Some of them has reached the surface and the other is developing. As it is very difficult to stop the ground fissure coming into being, measures of avoiding are often taken. It brings great potential risk to urban architecture and municipal engineering. It is very important to find out specific distribution and characteristic of potential ground fissure in city with high resolution. The ground fissure is concealed, therefor, geophysical method is an important technology to detecting concealed ground fissure. However, it is very difficult to detect the characteristics of the superficial part of ground fissure directly, as it lies dozens of meters below and has only scores of centimeters fault displacement. This paper studies applied ground penetration radar, surface wave and shallow refleciton seismic to detect ground fissure. It sets up model of surface by taking advantage of high resolution of ground penetrating radar data, constrains Reilay wave inversion and improves its resolution. The high resolution reflection seismic is good at detecting the geology structure. The data processing and interpretation technique is developmented to avoid the pitfall and improve the aliability of the rusult. The experiment has been conducted in Shunyi District, Beijing in 2016. 5 lines were settled to collect data of integrated geophysical method. Development zone of concealed ground fissure was found and its ultra shallow layer location was detected by ground penetrating radar. A trial trench of 6 meters in depth was dug and obvious ground fissure development was found. Its upper end was 1.5 meters beneath the earth's surface with displacement of 0.3 meters. The favorable effect of this detection has provided a new way for detecting ground fissure in cities of China, such as Beijing and Xi'an etc. Keyword: Ground Fissure, GPR, Surface Wave; Shallow Reflection Seismic

  17. TopoSCALE v.1.0: downscaling gridded climate data in complex terrain

    NASA Astrophysics Data System (ADS)

    Fiddes, J.; Gruber, S.

    2014-02-01

    Simulation of land surface processes is problematic in heterogeneous terrain due to the the high resolution required of model grids to capture strong lateral variability caused by, for example, topography, and the lack of accurate meteorological forcing data at the site or scale it is required. Gridded data products produced by atmospheric models can fill this gap, however, often not at an appropriate spatial resolution to drive land-surface simulations. In this study we describe a method that uses the well-resolved description of the atmospheric column provided by climate models, together with high-resolution digital elevation models (DEMs), to downscale coarse-grid climate variables to a fine-scale subgrid. The main aim of this approach is to provide high-resolution driving data for a land-surface model (LSM). The method makes use of an interpolation of pressure-level data according to topographic height of the subgrid. An elevation and topography correction is used to downscale short-wave radiation. Long-wave radiation is downscaled by deriving a cloud-component of all-sky emissivity at grid level and using downscaled temperature and relative humidity fields to describe variability with elevation. Precipitation is downscaled with a simple non-linear lapse and optionally disaggregated using a climatology approach. We test the method in comparison with unscaled grid-level data and a set of reference methods, against a large evaluation dataset (up to 210 stations per variable) in the Swiss Alps. We demonstrate that the method can be used to derive meteorological inputs in complex terrain, with most significant improvements (with respect to reference methods) seen in variables derived from pressure levels: air temperature, relative humidity, wind speed and incoming long-wave radiation. This method may be of use in improving inputs to numerical simulations in heterogeneous and/or remote terrain, especially when statistical methods are not possible, due to lack of observations (i.e. remote areas or future periods).

  18. Diagnosis of boreal summer intraseasonal oscillation in high resolution NCEP climate forecast system

    NASA Astrophysics Data System (ADS)

    Abhik, S.; Mukhopadhyay, P.; Krishna, R. P. M.; Salunke, Kiran D.; Dhakate, Ashish R.; Rao, Suryachandra A.

    2016-05-01

    The present study examines the ability of high resolution (T382) National Centers for Environmental Prediction coupled atmosphere-ocean climate forecast system version 2 (CFS T382) in simulating the salient spatio-temporal characteristics of the boreal summertime mean climate and the intraseasonal variability. The shortcomings of the model are identified based on the observation and compared with earlier reported biases of the coarser resolution of CFS (CFS T126). It is found that the CFS T382 reasonably mimics the observed features of basic state climate during boreal summer. But some prominent biases are noted in simulating the precipitation, tropospheric temperature (TT) and sea surface temperature (SST) over the global tropics. Although CFS T382 primarily reproduces the observed distribution of the intraseasonal variability over the Indian summer monsoon region, some difficulty remains in simulating the boreal summer intraseasonal oscillation (BSISO) characteristics. The simulated eastward propagation of BSISO decays rapidly across the Maritime Continent, while the northward propagation appears to be slightly slower than observation. However, the northward propagating BSISO convection propagates smoothly from the equatorial region to the northern latitudes with observed magnitude. Moreover, the observed northwest-southeast tilted rain band is not well reproduced in CFS T382. The warm mean SST bias and inadequate simulation of high frequency modes appear to be responsible for the weak simulation of eastward propagating BSISO. Unlike CFS T126, the simulated mean SST and TT exhibit warm biases, although the mean precipitation and simulated BSISO characteristics are largely similar in both the resolutions of CFS. Further analysis of the convectively coupled equatorial waves (CCEWs) indicates that model overestimates the gravest equatorial Rossby waves and underestimates the Kelvin and mixed Rossby-gravity waves. Based on analysis of CCEWs, the study further explains the possible reasons behind the realistic simulation of northward propagating BSISO in CFS T382, even though the model shows substantial biases in simulating mean state and other BSISO modes.

  19. Extracting transient Rayleigh wave and its application in detecting quality of highway roadbed

    USGS Publications Warehouse

    Liu, J.; Xia, J.; Luo, Y.; Li, X.; Xu, S.; ,

    2004-01-01

    This paper first explains the tau-p mapping method of extracting Rayleigh waves (LR waves) from field shot gathers. It also explains a mathematical model of physical character parameters of quality of high-grade roads. This paper then discusses an algorithm of computing dispersion curves using adjacent channels. Shear velocity and physical character parameters are obtained by inversion of dispersion curves. The algorithm using adjacent channels to calculating dispersion curves eliminates average effects that exist by using multi-channels to obtain dispersion curves so that it improves longitudinal and transverse resolution of LR waves and precision of non-invasive detection, and also broadens its application fields. By analysis of modeling results of detached computation of the ground roll and real examples of detecting density and pressure strength of a high-grade roadbed, and by comparison of shallow seismic image method with borehole cores, we concluded that: 1 the abnormal scale and configuration obtained by LR waves are mostly the same as the result of shallow seismic image method; 2 an average relative error of density obtained from LR waves inversion is 1.6% comparing with borehole coring; 3 transient LR waves in detecting density and pressure strength of a high-grade roadbed is feasible and effective.

  20. Wave optics theory and 3-D deconvolution for the light field microscope

    PubMed Central

    Broxton, Michael; Grosenick, Logan; Yang, Samuel; Cohen, Noy; Andalman, Aaron; Deisseroth, Karl; Levoy, Marc

    2013-01-01

    Light field microscopy is a new technique for high-speed volumetric imaging of weakly scattering or fluorescent specimens. It employs an array of microlenses to trade off spatial resolution against angular resolution, thereby allowing a 4-D light field to be captured using a single photographic exposure without the need for scanning. The recorded light field can then be used to computationally reconstruct a full volume. In this paper, we present an optical model for light field microscopy based on wave optics, instead of previously reported ray optics models. We also present a 3-D deconvolution method for light field microscopy that is able to reconstruct volumes at higher spatial resolution, and with better optical sectioning, than previously reported. To accomplish this, we take advantage of the dense spatio-angular sampling provided by a microlens array at axial positions away from the native object plane. This dense sampling permits us to decode aliasing present in the light field to reconstruct high-frequency information. We formulate our method as an inverse problem for reconstructing the 3-D volume, which we solve using a GPU-accelerated iterative algorithm. Theoretical limits on the depth-dependent lateral resolution of the reconstructed volumes are derived. We show that these limits are in good agreement with experimental results on a standard USAF 1951 resolution target. Finally, we present 3-D reconstructions of pollen grains that demonstrate the improvements in fidelity made possible by our method. PMID:24150383

  1. Dynamics of Debris Supply and Removal from Coastal Cliffs

    NASA Astrophysics Data System (ADS)

    Dickson, M. E.; Vann Jones, E. C.; Payo, A.; Matsumoto, H.

    2016-12-01

    Progress in obtaining a morphodynamic understanding of rocky shores has been limited by slow rates of change and lack of preserved evidence of erosion processes. As a result we do not have a detailed understanding of the relative contributions of failure events across the magnitude-frequency spectrum. This talk describes field experiments, supported by simple stock-flow modelling, on a coastal cliff-face in eastern New Zealand. Key features of this site are that it is composed of near-homogenous rapidly eroding mudstone, and it is fronted by a wide intertidal rock platform that results in the cliff toe being exposed to waves every high tide. Several techniques were used to measure the cliff debris supply-removal system. Sediment traps at the cliff toe directly recorded rates of debris supply from the cliff-face at five discrete locations. Repeated high-resolution terrestrial laser scans over several consecutive low-tide stages documented changes in cliff-toe talus volumes along 50m of shoreline. Optical back-scatter sensors located on the rock shore platform in front of the cliff toe constrained the timing of talus-debris resuspension during tidal inundation of the cliff toe. Wave pressure gauges were used to characterise the wave field acting on the cliff. Results demonstrate that high-resolution (<5mm) laser scanning can meaningfully characterise rates of coastal cliff erosion at the very high-frequency low-magnitude end of the erosion spectrum. We find that rates of debris supply from the cliff face are dependent on the subaerial weathering system, in particular wetting and drying and associated expansion and contraction of clay minerals within the cliff rock. Rates of debris removal from the cliff toe depend on tide and wave conditions: even under low wave-energy conditions, waves at infragravity frequencies can access the cliff toe at high tide leading to sediment suspension. We explore the basic feedback structure of cliff, talus and debris removal using a simple stock-flow model, and discuss implications for progressive (ongoing) cliff erosion in the presence of an ever-widening shore platform.

  2. Observations and modelling of a meteotsunami across the English Channel on 23rd June 2016

    NASA Astrophysics Data System (ADS)

    Williams, David; Horsburgh, Kevin; Schultz, David; Hughes, Chris

    2017-04-01

    Meteotsunami are shallow water waves in the tsunami frequency band, which are generated by sub-mesoscale pressure and wind velocity fluctuations. Whilst documented meteotsunami on the north-western European shelf have not been hazardous, around the world they have caused fatalities and significant economic losses. Previous observational studies suggest that across Western Europe strongly convective storms are meteotsunami-generating. We give evidence for a meteotsunami on 23rd June 2016 along the northern coastline of France, following strongly convective storms. This includes 1-minute temporal resolution tide gauge data, in situ pressure and wind velocities, and infrared satellite images. With an estimated wave height of 0.8 m at Boulogne, this meteotsunami is particularly large compared to previous observations in Western Europe. The tsunami travel times have been estimated using the wavefront method, showing that a single, instantaneous source for the waves is highly unlikely. Using the ocean model Telemac2D, idealised models of pressure and wind have been used to simulate the meteotsunami. The model supports that across the English Channel thunderstorms with north-easterly tracks, moving at the shallow water wave speed, can generate wave amplification through Proudman resonance. The Weather Research and Forecasting (WRF) model has been used to produce numerically simulated thunderstorms, which have been used to force the Telemac2D ocean model with idealised bathymetries. The WRF-Telemac2D model results also support meteotsunami generation by thunderstorms. To the author's knowledge this is the first time a thunderstorm simulation has been used to produce a meteotsunami-like wave, and indicates that non-hydrostatic, convective atmospheric processes are important for meteotsunami generation. This suggests that with combined high resolution observations and modelling, a meteotsunami forecasting system may become possible in Western Europe.

  3. Polarization analysis of VLF/ELF waves observed at subauroral latitudes during the VLF-CHAIN campaign

    NASA Astrophysics Data System (ADS)

    Martinez-Calderon, Claudia; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Ozaki, Mitsunori; Schofield, Ian; Connors, Martin

    2015-02-01

    Chorus wave emissions are one of the most intense naturally occurring phenomena in the very low (VLF) and extremely low frequency (ELF) ranges. They are believed to be one of the major contributors to acceleration and loss of electrons in the radiation belts. During the VLF Campaign observation with High-resolution Aurora Imaging Network (VLF-CHAIN) from 17 to 25 February 2012, several types of VLF/ELF emissions, including chorus, were observed at subauroral latitudes in Athabasca, Canada. To our knowledge, there has not been any comprehensive study of the physical properties of such emissions at these latitudes. In this study, we calculate spectral and polarization parameters of VLF/ELF waves with high temporal resolution. We found that the polarization angle of several emissions depended on both frequency and time. We suggest that the frequency-dependent events, which usually last several tens of minutes, might be the consequence of the broadening of the ray path that the waves follow from their generation region to the ground. Furthermore, time-dependent events, also lasting tens of minutes, have a polarization angle that changes from negative to positive values (or vice versa) every few minutes. We suggest that this could be due to variations of the wave duct, either near the generation region or along the wave propagation path. Using another ground station in Fort Vermillion, Canada, about 450 km northwest of Athabasca, we tracked the movements of the ionospheric exit point of three chorus emissions observed simultaneously at both stations. Although we found that movement of the ionospheric exit point does not follow a general direction, it is subject to hovering motion, suggesting that the exit point can be affected by small-scale plasma processes.

  4. The P-wave boundary of the Large-Low Shear Velocity Province beneath the Pacific

    NASA Astrophysics Data System (ADS)

    Frost, Daniel A.; Rost, Sebastian

    2014-10-01

    The Large Low Shear Velocity Provinces (LLSVPs) in the lower mantle represent volumetrically significant thermal or chemical or thermo-chemical heterogeneities. Their structure and boundaries have been widely studied, mainly using S-waves, but much less is known about their signature in the P-wavefield. We use an extensive dataset recorded at USArray to create, for the first time, a high-resolution map of the location, shape, sharpness, and extent of the boundary of the Pacific LLSVP using P (Pdiff)-waves. We find that the northern edge of the Pacific LLSVP is shallow dipping (26° relative to the horizontal) and diffuse (∼120 km wide transition zone) whereas the eastern edge is steeper dipping (70°) and apparently sharp (∼40 km wide). We trace the LLSVP boundary up to ∼500 km above the CMB in most areas, and 700 km between 120° and 90°W at the eastern extent of the boundary. Apparent P-wave velocity drops are ∼1-3% relative to PREM, indicating a strong influence of LLSVPs on P-wave velocity, at least in the high-frequency wavefield, in contrast to previous studies. A localised patch with a greater velocity drop of ∼15-25% is detected, defined by large magnitude gradients of the travel-time residuals. We identify this as a likely location of an Ultra-Low Velocity Zone (ULVZ), matching the location of a previously detected ULVZ in this area. The boundary of a separate low velocity anomaly, of a similar height to the LLSVP, is detected in the north-west Pacific, matching tomographic images. This outlier appears to be connected to the main LLSVP through a narrow channel close to the CMB and may be in the process of joining or splitting from the main LLSVP. We also see strong velocity increases in the lower mantle to the east of the LLSVP, likely detecting subducted material beneath central America. The LLSVP P-wave boundary is similar to that determined in high-resolution S-wave studies and follows the -0.4% ΔVS iso-velocity contour in the S40RTS tomography model. Additionally, the LLSVP boundary roughly matches the shape of the -0.4% ΔVP iso-velocity contour of the P-wave model GyPSuM but defines an area more similar to that defined by the 0.0% VP iso-velocity contour. High resolution P-wave velocity determination allows for estimation of the ratio of P- and S-wave velocity anomalies (RS,P) which can be used to indicate dominantly thermal or chemical control of seismic velocities. Although the RS,P is found here to be approximately 2.4, which is indicative of a thermo-chemical anomaly. However, this result contains a large amount of uncertainty and the implications for the origin of LLSVPs likely remain inconclusive. Nonetheless, other observations of the Pacific LLSVP are consistent with a thermo-chemical anomaly whose shape and boundary sharpness are controlled by proximity to active and past subduction.

  5. Comparison of HF radar measurements with Eulerian and Lagrangian surface currents

    NASA Astrophysics Data System (ADS)

    Röhrs, Johannes; Sperrevik, Ann Kristin; Christensen, Kai Håkon; Broström, Göran; Breivik, Øyvind

    2015-05-01

    High-frequency (HF) radar-derived ocean currents are compared with in situ measurements to conclude if the radar observations include effects of surface waves that are of second order in the wave amplitude. Eulerian current measurements from a high-resolution acoustic Doppler current profiler and Lagrangian measurements from surface drifters are used as references. Directional wave spectra are obtained from a combination of pressure sensor data and a wave model. Our analysis shows that the wave-induced Stokes drift is not included in the HF radar-derived currents, that is, HF radars measure the Eulerian current. A disputed nonlinear correction to the phase velocity of surface gravity waves, which may affect HF radar signals, has a magnitude of about half the Stokes drift at the surface. In our case, this contribution by nonlinear dispersion would be smaller than the accuracy of the HF radar currents, hence no conclusion can be made. Finally, the analysis confirms that the HF radar data represent an exponentially weighted vertical average where the decay scale is proportional to the wavelength of the transmitted signal.

  6. Projected changes of the southwest Australian wave climate under two atmospheric greenhouse gas concentration pathways

    NASA Astrophysics Data System (ADS)

    Wandres, Moritz; Pattiaratchi, Charitha; Hemer, Mark A.

    2017-09-01

    Incident wave energy flux is responsible for sediment transport and coastal erosion in wave-dominated regions such as the southwestern Australian (SWA) coastal zone. To evaluate future wave climates under increased greenhouse gas concentration scenarios, past studies have forced global wave simulations with wind data sourced from global climate model (GCM) simulations. However, due to the generally coarse spatial resolution of global climate and wave simulations, the effects of changing offshore wave conditions and sea level rise on the nearshore wave climate are still relatively unknown. To address this gap of knowledge, we investigated the projected SWA offshore, shelf, and nearshore wave climate under two potential future greenhouse gas concentration trajectories (representative concentration pathways RCP4.5 and RCP8.5). This was achieved by downscaling an ensemble of global wave simulations, forced with winds from GCMs participating in the Coupled Model Inter-comparison Project (CMIP5), into two regional domains, using the Simulating WAves Nearshore (SWAN) wave model. The wave climate is modeled for a historical 20-year time slice (1986-2005) and a projected future 20-year time-slice (2081-2100) for both scenarios. Furthermore, we compare these scenarios to the effects of considering sea-level rise (SLR) alone (stationary wave climate), and to the effects of combined SLR and projected wind-wave change. Results indicated that the SWA shelf and nearshore wave climate is more sensitive to changes in offshore mean wave direction than offshore wave heights. Nearshore, wave energy flux was projected to increase by ∼10% in exposed areas and decrease by ∼10% in sheltered areas under both climate scenarios due to a change in wave directions, compared to an overall increase of 2-4% in offshore wave heights. With SLR, the annual mean wave energy flux was projected to increase by up to 20% in shallow water (< 30 m) as a result of decreased wave dissipation. In winter months, the longshore wave energy flux, which is responsible for littoral drift, is expected to increase by up to 39% (62%) under the RCP4.5 (RCP8.5) greenhouse gas concentration pathway with SLR. The study highlights the importance of using high-resolution wave simulations to evaluate future regional wave climates, since the coastal wave climate is more responsive to changes in wave direction and sea level than offshore wave heights.

  7. SUPER-RESOLUTION ULTRASOUND TOMOGRAPHY: A PRELIMINARY STUDY WITH A RING ARRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HUANG, LIANJIE; SIMONETTI, FRANCESCO; DURIC, NEBOJSA

    2007-01-18

    Ultrasound tomography attempts to retrieve the structure of an objective by exploiting the interaction of acoustic waves with the object. A fundamental limit of ultrasound tomography is that features cannot be resolved if they are spaced less than {lambda}/2 apart, where {lambda} is wavelength of the probing wave, regardless of the degree of accuracy of the measurements. Therefore, since the attenuation of the probing wave with propagation distance increases as {lambda} decreases, resolution has to be traded against imaging depth. Recently, it has been shown that the {lambda}/2 limit is a consequence of the Born approximation (implicit in the imagingmore » algorithms currently employed) which neglects the distortion of the probing wavefield as it travels through the medium to be imaged. On the other hand, such a distortion, which is due to the multiple scattering phenomenon, can encode unlimited resolution in the radiating component of the scattered field. Previously, a resolution better than {lambda}/3 has been reported in these proceedings [F. Simonetti, pp. 126 (2006)] in the case of elastic wave probing. In this paper, they demonstrate experimentally a resolution better than {lambda}/4 for objects immersed in a water bth probed by means of a ring array which excites and detects pressure waves in a full view configuration.« less

  8. Predictability of the European heat and cold waves

    NASA Astrophysics Data System (ADS)

    Lavaysse, Christophe; Naumann, Gustavo; Alfieri, Lorenzo; Salamon, Peter; Vogt, Jürgen

    2018-06-01

    Heat and cold waves may have considerable human and economic impacts in Europe. Recent events, like the heat waves observed in France in 2003 and Russia in 2010, illustrated the major consequences to be expected. Reliable Early Warning Systems for extreme temperatures would, therefore, be of high value for decision makers. However, they require a clear definition and robust forecasts of these events. This study analyzes the predictability of heat and cold waves over Europe, defined as at least three consecutive days of {T}_{min} and {T}_{max} above the quantile Q90 (under Q10), using the extended ensemble system of ECMWF. The results show significant predictability for events within a 2-week lead time, but with a strong decrease of the predictability during the first week of forecasts (from 80 to 40% of observed events correctly forecasted). The scores show a higher predictive skill for the cold waves (in winter) than for the heat waves (in summer). The uncertainties and the sensitivities of the predictability are discussed on the basis of tests conducted with different spatial and temporal resolutions. Results demonstrate the negligible effect of the temporal resolution (very few errors due to bad timing of the forecasts), and a better predictability of large-scale events. The onset and the end of the waves are slightly less predictable with an average of about 35% (30%) of observed heat (cold) waves onsets or ends correctly forecasted with a 5-day lead time. Finally, the forecasted intensities show a correlation of about 0.65 with those observed, revealing the challenge to predict this important characteristic.

  9. Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows

    NASA Technical Reports Server (NTRS)

    Sjoegreen, Bjoern; Yee, Helen C.; Mansour, Nagi (Technical Monitor)

    2002-01-01

    Accurate numerical simulations of complex multiscale compressible viscous flows, especially high speed turbulence combustion and acoustics, demand high order schemes with adaptive numerical dissipation controls. Standard high resolution shock-capturing methods are too dissipative to capture the small scales and/or long-time wave propagations without extreme grid refinements and small time steps. An integrated approach for the control of numerical dissipation in high order schemes for the compressible Euler and Navier-Stokes equations has been developed and verified by the authors and collaborators. These schemes are suitable for the problems in question. Basically, the scheme consists of sixth-order or higher non-dissipative spatial difference operators as the base scheme. To control the amount of numerical dissipation, multiresolution wavelets are used as sensors to adaptively limit the amount and to aid the selection and/or blending of the appropriate types of numerical dissipation to be used. Magnetohydrodynamics (MHD) waves play a key role in drag reduction in highly maneuverable high speed combat aircraft, in space weather forecasting, and in the understanding of the dynamics of the evolution of our solar system and the main sequence stars. Although there exist a few well-studied second and third-order high-resolution shock-capturing schemes for the MHD in the literature, these schemes are too diffusive and not practical for turbulence/combustion MHD flows. On the other hand, extension of higher than third-order high-resolution schemes to the MHD system of equations is not straightforward. Unlike the hydrodynamic equations, the inviscid MHD system is non-strictly hyperbolic with non-convex fluxes. The wave structures and shock types are different from their hydrodynamic counterparts. Many of the non-traditional hydrodynamic shocks are not fully understood. Consequently, reliable and highly accurate numerical schemes for multiscale MHD equations pose a great challenge to algorithm development. In addition, controlling the numerical error of the divergence free condition of the magnetic fields for high order methods has been a stumbling block. Lower order methods are not practical for the astrophysical problems in question. We propose to extend our hydrodynamics schemes to the MHD equations with several desired properties over commonly used MHD schemes.

  10. SAR imaging of ocean waves - Theory

    NASA Technical Reports Server (NTRS)

    Jain, A.

    1981-01-01

    A SAR imaging integral for a rough surface is derived. Aspects of distributed target imaging and questions of ocean-wave imaging are considered. A description is presented of the results of analyses which are performed on aircraft and a spacecraft data in order to gain an understanding of the SAR imaging of ocean waves. The analyzed data illustrate the effect of radar resolution on the images of azimuthally traveling waves, the dependence of image distortion on the angle which the waves make with the radar flight path, and the dependence of the focusing parameter of the radar matched filter on the ocean wave period for azimuthally traveling waves. A dependence of ocean-wave modulation on significant wave height is also observed. The observed dependence of the modulations of azimuth waves on radar resolution is in contradiction to the hypothesis that these modulations are caused mainly by velocity bunching.

  11. Submillimeter heterodyne spectroscopy of star forming regions

    NASA Astrophysics Data System (ADS)

    Groppi, Christopher Emil

    The sub-mm wave portion of the electromagnetic spectrum is on the frontier of both scientific and technical research in astrophysics. Being a relatively young field, scientific advancement is driven by advancements in detector technology. In this thesis, I discuss the design, construction, testing and deployment of two sub-mm wave heterodyne array receivers. Polestar is a 4 pixel (2 x 2) heterodyne array built for operation in the 810 GHz atmospheric window. It is in operation at the AST/RO telescope at the South Pole. This receiver has increased imaging speed in this band at AST/RO by a factor of ˜20 compared to previous receiver systems. DesertStar is a 7 pixel, hexagonally close packed heterodyne array receiver built to operate in the 345 GHz atmospheric window at the Heinrich Hertz Telescope in Arizona. This system will be a facility instrument at the telescope, and will increase mapping speed over the existing dual polarization single beam receiver at the telescope now by a factor of ˜16. Both these receiver systems enable scientific projects requiring large area imaging that were previously impossible. I also discuss two scientific applications of sub-mm wave receiver systems. We have used multiple telescopes to observe several mm, sub-mm transitions and continuum emission towards the R CrA molecular cloud core. Originally thought to be associated with high mass star formation, we find that the driving source behind the mm-wave emission is a low mass protostar. The close proximity of R CrA allows us to achieve high spatial resolution even with single dish mm-wave and sub-mm wave telescopes. With this resolution, we are able to disentangle the effects of infall, rotation and outflow motions. We also use vibrationally excited HCN emission to probe the protostellar accretion disk in a sample of nearby high and low mass protostars of varying ages. While these observations are difficult with single dish telescopes, we show the promise of the technique, and report results on 4 sources.

  12. Identification of wind fields for wave modeling near Qatar

    NASA Astrophysics Data System (ADS)

    Nayak, Sashikant; Balan Sobhana, Sandeepan; Panchang, Vijay

    2016-04-01

    Due to the development of coastal and offshore infrastructure in and around the Arabian Gulf, a large semi-enclosed sea, knowledge of met-ocean factors like prevailing wind systems, wind generated waves, and currents etc. are of great importance. Primarily it is important to identify the wind fields that are used as forcing functions for wave and circulation models for hindcasting and forecasting purposes. The present study investigates the effects of using two sources of wind-fields on the modeling of wind-waves in the Arabian Gulf, in particular near the coastal regions of Qatar. Two wind sources are considered here, those obtained from ECMWF and those generated by us using the WRF model. The wave model SWAN was first forced with the 6 hourly ERA Interim daily winds (from ECMWF) having spatial resolution of 0.125°. For the second option, wind fields were generated by us using the mesoscale wind model (WRF) with a high spatial resolution (0.1°) at every 30 minute intervals. The simulations were carried out for a period of two months (7th October-7th December, 2015) during which measurements were available from two moored buoys (deployed and operated by the Qatar Meteorological Department), one in the north of Qatar ("Qatar North", in water depth of 58.7 m) and other in the south ("Shiraouh Island", in water depth of 16.64 m). This period included a high-sea event on 11-12th of October, recorded by the two buoys where the significant wave heights (Hs) reached as high as 2.9 m (i.e. max wave height H ~ 5.22 m) and 1.9 (max wave height H ~ 3.4 m) respectively. Model results were compared with the data for this period. The scatter index (SI) of the Hs simulated using the WRF wind fields and the observed Hs was found to be about 30% and 32% for the two buoys (total period). The observed Hs were generally reproduced but there was consistent underestimation. (Maximum 27% for the high-sea event). For the Hs obtained with ERA interim wind fields, the underestimation was of the order of 50% (on average) for the entire duration. The study therefore suggests the use of a mesoscale weather forecasting model such as WRF, for deriving the wind fields for a large but marginal semi-enclosed sea where small scale phenomena dominate, and when used as forcing in the wave model, it provides wave-climate predictions with less error.

  13. Ocean Wave Studies with Applications to Ocean Modeling and Improvement of Satellite Altimeter Measurements

    NASA Technical Reports Server (NTRS)

    Glazman, Roman E.

    1999-01-01

    Combining analysis of satellite data (altimeter, scatterometer, high-resolution visible and infrared images, etc.) with mathematical modeling of non-linear wave processes, we investigate various ocean wave fields (on scales from capillary to planetary), their role in ocean dynamics and turbulent transport (of heat and biogeochemical quantities), and their effects on satellite altimeter measuring accuracy. In 1998 my attention was focused on long internal gravity waves (10 to 1000 km), known also as baroclinic inertia-gravity (BIG) waves. We found these waves to be a major factor of altimeter measurements "noise," resulting in a greater uncertainty [up to 10 cm in terms of sea surface height (SSH) amplitude] in the measured SSH signal than that caused by the sea state bias variations (up to 5 cm or so). This effect still remains largely overlooked by the satellite altimeter community. Our studies of BIG waves address not only their influence on altimeter measurements but also their role in global ocean dynamics and in transport and turbulent diffusion of biogeochemical quantities. In particular, in collaboration with Prof Peter Weichman, Caltech, we developed a theory of turbulent diffusion caused by wave motions of most general nature. Applied to the problem of horizontal turbulent diffusion in the ocean, the theory yielded the effective diffusion coefficient as a function of BIG wave parameters obtainable from satellite altimeter data. This effort, begun in 1997, has been successfully completed in 1998. We also developed a theory that relates spatial fluctuations of scalar fields (such as sea surface temperature, chlorophyll concentration, drifting ice concentration, etc.) to statistical characteristics of BIG waves obtainable from altimeter measurements. A manuscript is in the final stages of preparation. In order to verify the theoretical predictions and apply them to observations, we are now analyzing Sea-viewing Wide Field of view Sensor (SeaWiFS) and Field of view Sensor (SeaWiFS) and Advanced Very High-Resolution Radiometer (AVHRR) data on sea surface temperature (SST) and chlorophyll concentration jointly with TOPEX/POSEIDON data on SSH variations.

  14. Para-hydrogen raser delivers sub-millihertz resolution in nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Suefke, Martin; Lehmkuhl, Sören; Liebisch, Alexander; Blümich, Bernhard; Appelt, Stephan

    2017-06-01

    The precision of nuclear magnetic resonance spectroscopy (NMR) is limited by the signal-to-noise ratio, the measurement time Tm and the linewidth Δν = 1/(πT2). Overcoming the T 2 limit is possible if the nuclear spins of a molecule emit continuous radio waves. Lasers and masers are self-organized systems which emit coherent radiation in the optical and micro-wave regime. Both are based on creating a population inversion of specific energy states. Here we show continuous oscillations of proton spins of organic molecules in the radiofrequency regime (raser). We achieve this by coupling a population inversion created through signal amplification by reversible exchange (SABRE) to a high-quality-factor resonator. For the case of 15N labelled molecules, we observe multi-mode raser activity, which reports different spin quantum states. The corresponding 1H-15N J-coupled NMR spectra exhibit unprecedented sub-millihertz resolution and can be explained assuming two-spin ordered quantum states. Our findings demonstrate a substantial improvement in the frequency resolution of NMR.

  15. Efficient Computation of Atmospheric Flows with Tempest: Development of Next-Generation Climate and Weather Prediction Algorithms at Non-Hydrostatic Scales

    NASA Astrophysics Data System (ADS)

    Guerra, J. E.; Ullrich, P. A.

    2015-12-01

    Tempest is a next-generation global climate and weather simulation platform designed to allow experimentation with numerical methods at very high spatial resolutions. The atmospheric fluid equations are discretized by continuous / discontinuous finite elements in the horizontal and by a staggered nodal finite element method (SNFEM) in the vertical, coupled with implicit/explicit time integration. At global horizontal resolutions below 10km, many important questions remain on optimal techniques for solving the fluid equations. We present results from a suite of meso-scale test cases to validate the performance of the SNFEM applied in the vertical. Internal gravity wave, mountain wave, convective, and Cartesian baroclinic instability tests will be shown at various vertical orders of accuracy and compared with known results.

  16. Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave

    DOE PAGES

    Gershman, Daniel J.; F-Viñas, Adolfo; Dorelli, John C.; ...

    2017-03-31

    Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA’s Magnetospheric Multiscale (MMS) mission, we utilize Earth’s magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electronsmore » confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. As a result, the investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.« less

  17. Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gershman, Daniel J.; F-Viñas, Adolfo; Dorelli, John C.

    Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA’s Magnetospheric Multiscale (MMS) mission, we utilize Earth’s magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electronsmore » confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. As a result, the investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.« less

  18. High-resolution in situ observations of electron precipitation-causing EMIC waves

    DOE PAGES

    Rodger, Craig J.; Hendry, Aaron T.; Clilverd, Mark A.; ...

    2015-11-21

    Electromagnetic ion cyclotron (EMIC) waves are thought to be important drivers of energetic electron losses from the outer radiation belt through precipitation into the atmosphere. While the theoretical possibility of pitch angle scattering-driven losses from these waves has been recognized for more than four decades, there have been limited experimental precipitation observations to support this concept. We have combined satellite-based observations of the characteristics of EMIC waves, with satellite and ground-based observations of the EMIC-induced electron precipitation. In a detailed case study, supplemented by an additional four examples, we are able to constrain for the first time the location, size,more » and energy range of EMIC-induced electron precipitation inferred from coincident precipitation data and relate them to the EMIC wave frequency, wave power, and ion band of the wave as measured in situ by the Van Allen Probes. As a result, these observations will better constrain modeling into the importance of EMIC wave-particle interactions.« less

  19. A simple approach to the joint inversion of seismic body and surface waves applied to the southwest U.S.

    NASA Astrophysics Data System (ADS)

    West, Michael; Gao, Wei; Grand, Stephen

    2004-08-01

    Body and surface wave tomography have complementary strengths when applied to regional-scale studies of the upper mantle. We present a straight-forward technique for their joint inversion which hinges on treating surface waves as horizontally-propagating rays with deep sensitivity kernels. This formulation allows surface wave phase or group measurements to be integrated directly into existing body wave tomography inversions with modest effort. We apply the joint inversion to a synthetic case and to data from the RISTRA project in the southwest U.S. The data variance reductions demonstrate that the joint inversion produces a better fit to the combined dataset, not merely a compromise. For large arrays, this method offers an improvement over augmenting body wave tomography with a one-dimensional model. The joint inversion combines the absolute velocity of a surface wave model with the high resolution afforded by body waves-both qualities that are required to understand regional-scale mantle phenomena.

  20. The impact of sea surface currents in wave power potential modeling

    NASA Astrophysics Data System (ADS)

    Zodiatis, George; Galanis, George; Kallos, George; Nikolaidis, Andreas; Kalogeri, Christina; Liakatas, Aristotelis; Stylianou, Stavros

    2015-11-01

    The impact of sea surface currents to the estimation and modeling of wave energy potential over an area of increased economic interest, the Eastern Mediterranean Sea, is investigated in this work. High-resolution atmospheric, wave, and circulation models, the latter downscaled from the regional Mediterranean Forecasting System (MFS) of the Copernicus marine service (former MyOcean regional MFS system), are utilized towards this goal. The modeled data are analyzed by means of a variety of statistical tools measuring the potential changes not only in the main wave characteristics, but also in the general distribution of the wave energy and the wave parameters that mainly affect it, when using sea surface currents as a forcing to the wave models. The obtained results prove that the impact of the sea surface currents is quite significant in wave energy-related modeling, as well as temporally and spatially dependent. These facts are revealing the necessity of the utilization of the sea surface currents characteristics in renewable energy studies in conjunction with their meteo-ocean forecasting counterparts.

  1. The effects of the theoretical formalism and data selection on mantle models derived from waveform tomography

    NASA Astrophysics Data System (ADS)

    Mégnin, Charles; Romanowicz, Barbara

    1999-08-01

    Most global tomographic models to date are derived using a combination of surface wave (or normal-mode) data and body wave traveltime data. The traveltime approach limits the number of phases available for inversion by requiring them to be isolated on the seismogram. This may ultimately result in limiting the resolution of 3-D structure, at least in some depth ranges in the mantle. In a previous study, we successfully derived a degree 12 whole-mantle SH-velocity tomographic model (SAW12D) using exclusively waveform data. In that inversion, a normal-mode formalism suitable for body waveforms, the non-linear asymptotic coupling theory (NACT), was combined with a body wave windowing scheme, referred to as the `individual wavepacket' (IW) technique, which allows one to assign individual weights to different body wave energy packets. We here compare the relative merits of this choice of theoretical formalism and windowing scheme at different depth ranges in the mantle. Choosing as the reference a model obtained using 7500 transverse-component body wave and 8000 surface wave seismograms and the NACT and IW approaches, we discuss the relative performance of the path average approximation (PAVA), a zeroth-order theoretical approximation appropriate for single-mode surface waves, relative to NACT, and compare the IW windowing scheme with a more standard `full window' (FW) approach, in which a single time window is considered from the first body wave arrival to the fundamental-mode surface waves. The combination PAVA/FW is often used in global tomography to supplement the traveltime data. We show that although the quality of the image derived under the PAVA/FW formalism is very similar to that derived under NACT/IW in the first 300 km of the upper mantle, where the resolution is dominated by surface waves, it deteriorates at greater depths. Images of the lower mantle are shown to be strongly sensitive to the theoretical formalism. In contrast, the resolution of structure near the core-mantle boundary depends mostly on the windowing scheme. This is because this resolution is controlled by low-amplitude phases such as S_diff, which are downweighted in the FW scheme. Whilst the image obtained in D'' using the combination NACT/IW is in good agreement with images obtained by other authors using both waveforms and traveltimes, we show that, when using FW, uppermost mantle structure can be mapped into D''. This result is confirmed by synthetic tests performed on a composite of the upper-mantle geodynamic model 3SMAC. We also show, based on synthetic tests, that for structures in the upper mantle with sharp boundaries, differences are observed between NACT and PAVA. Whilst a combination of traveltimes and surface wave data is adequate for resolving relatively smooth features in the mantle, our results show that by potentially increasing the achievable sampling, the waveform approach shows great promise for future high-resolution tomographic modelling of mantle structure, if cast in an appropriate theoretical framework.

  2. Comparison of numerical hindcasted severe waves with Doppler radar measurements in the North Sea

    NASA Astrophysics Data System (ADS)

    Ponce de León, Sonia; Bettencourt, João H.; Dias, Frederic

    2017-01-01

    Severe sea states in the North Sea present a challenge to wave forecasting systems and a threat to offshore installations such as oil and gas platforms and offshore wind farms. Here, we study the ability of a third-generation spectral wave model to reproduce winter sea states in the North Sea. Measured and modeled time series of integral wave parameters and directional wave spectra are compared for a 12-day period in the winter of 2013-2014 when successive severe storms moved across the North Atlantic and the North Sea. Records were obtained from a Doppler radar and wave buoys. The hindcast was performed with the WAVEWATCH III model (Tolman 2014) with high spectral resolution both in frequency and direction. A good general agreement was obtained for integrated parameters, but discrepancies were found to occur in spectral shapes.

  3. Analyzing Tropical Waves Using the Parallel Ensemble Empirical Model Decomposition Method: Preliminary Results from Hurricane Sandy

    NASA Technical Reports Server (NTRS)

    Shen, Bo-Wen; Cheung, Samson; Li, Jui-Lin F.; Wu, Yu-ling

    2013-01-01

    In this study, we discuss the performance of the parallel ensemble empirical mode decomposition (EMD) in the analysis of tropical waves that are associated with tropical cyclone (TC) formation. To efficiently analyze high-resolution, global, multiple-dimensional data sets, we first implement multilevel parallelism into the ensemble EMD (EEMD) and obtain a parallel speedup of 720 using 200 eight-core processors. We then apply the parallel EEMD (PEEMD) to extract the intrinsic mode functions (IMFs) from preselected data sets that represent (1) idealized tropical waves and (2) large-scale environmental flows associated with Hurricane Sandy (2012). Results indicate that the PEEMD is efficient and effective in revealing the major wave characteristics of the data, such as wavelengths and periods, by sifting out the dominant (wave) components. This approach has a potential for hurricane climate study by examining the statistical relationship between tropical waves and TC formation.

  4. Deep Roots of Cratons From Surface-wave Tomography

    NASA Astrophysics Data System (ADS)

    Cara, M.; Debayle, E.; Lévêque, J. J.

    Thanks to the application of multimode waveform inversion techniques to various sets of surface wave seismograms recorded on global networks of broad-band seismome- ters, either permanent (IRIS, Geoscope) or temporary (PASSCAL, INSU), unprece- dented lateral- and depth-resolution can be achieved in upper-mantle surface-wave tomography. With a depth-resolution around 50 km and a lateral resolution around 250 km in the upper mantle, Sv velocity models beneath Australia, South-America, Eurasia and East-Africa show fast velocity anomalies associated with shield generally confined to the uppermost 200 km of the mantle. We show on cross-sections taken across different continents that there is no evidence so far for "thermal and/or com- positional" lithospheric roots extending deeper than 300 km in the continental regions we have investigated. In addition, surface wave azimuthal anisotropy can be used as an indicator of the me- chanical thickness of the lithosphere when a clear change in the pattern of anisotropic directions is observed with depth. The fast moving Australian plate shows the clear- est example of such a change occuring at relatively shallow depths (150 km) within the high seismic velocity lid. This suggests that seismic anisotropy defines a "me- chanical" lithosphere that does not coincide with the "thermal and/or compositional" lithosphere probably imaged by velocity anomalies. However, beneath other slowly moving plates, such a change in pattern is less clear and there is a tendency of seismic anisotropy to disappear at the bottom of the lid.

  5. Estimating hydrodynamic roughness in a wave-dominated environment with a high-resolution acoustic Doppler profiler

    USGS Publications Warehouse

    Lacy, J.R.; Sherwood, C.R.; Wilson, D.J.; Chisholm, T.A.; Gelfenbaum, G.R.

    2005-01-01

    Hydrodynamic roughness is a critical parameter for characterizing bottom drag in boundary layers, and it varies both spatially and temporally due to variation in grain size, bedforms, and saltating sediment. In this paper we investigate temporal variability in hydrodynamic roughness using velocity profiles in the bottom boundary layer measured with a high-resolution acoustic Doppler profiler (PCADP). The data were collected on the ebb-tidal delta off Grays Harbor, Washington, in a mean water depth of 9 m. Significant wave height ranged from 0.5 to 3 m. Bottom roughness has rarely been determined from hydrodynamic measurements under conditions such as these, where energetic waves and medium-to-fine sand produce small bedforms. Friction velocity due to current u*c and apparent bottom roughness z0a were determined from the PCADP burst mean velocity profiles using the law of the wall. Bottom roughness kB was estimated by applying the Grant-Madsen model for wave-current interaction iteratively until the model u*c converged with values determined from the data. The resulting kB values ranged over 3 orders of magnitude (10-1 to 10-4 m) and varied inversely with wave orbital diameter. This range of kB influences predicted bottom shear stress considerably, suggesting that the use of time-varying bottom roughness could significantly improve the accuracy of sediment transport models. Bedform height was estimated from kB and is consistent with both ripple heights predicted by empirical models and bedforms in sonar images collected during the experiment. Copyright 2005 by the American Geophysical Union.

  6. Thermodynamical effects and high resolution methods for compressible fluid flows

    NASA Astrophysics Data System (ADS)

    Li, Jiequan; Wang, Yue

    2017-08-01

    One of the fundamental differences of compressible fluid flows from incompressible fluid flows is the involvement of thermodynamics. This difference should be manifested in the design of numerical schemes. Unfortunately, the role of entropy, expressing irreversibility, is often neglected even though the entropy inequality, as a conceptual derivative, is verified for some first order schemes. In this paper, we refine the GRP solver to illustrate how the thermodynamical variation is integrated into the design of high resolution methods for compressible fluid flows and demonstrate numerically the importance of thermodynamic effects in the resolution of strong waves. As a by-product, we show that the GRP solver works for generic equations of state, and is independent of technical arguments.

  7. Plumes Provide New Insight Into the Physis of Mars' Atmosphere.

    NASA Astrophysics Data System (ADS)

    Andersson, L.; Ergun, R.; Malaspina, D.; Thayer, F.; Yelle, R. V.; Merkel, A. W.; Stevens, M.; Mitchell, D. L.; McFadden, J. P.; Horanyi, M.; Jakosky, B. M.; Fowler, C. M.; Pilinski, M.

    2017-12-01

    Low-resolution time series data measured by the Langmuir Probe and Waves (LPW) instrument on the Mars Atmosphere and Volatile EvolutioN spacecraft suggest the existence of a low-density dayside `dust' cloud stretching into the night side. At the poles, along the sunlit-shadow line, plumes of high concentration (1 #/m3) `dust particles' are observed. During one periapsis, the LPW instrument operated in a high-resolution dust mode to verify that the observed plumes in the low-resolution data are indeed created by dust particles impacting the spacecraft. This presentation will describe the observations and propose the cause of the plumes. These observations suggest that we do not yet fully understand the dust environment of Mars' atmosphere.

  8. Circumferential and functional re-entry of in vivo slow-wave activity in the porcine small intestine.

    PubMed

    Angeli, T R; O'Grady, G; Du, P; Paskaranandavadivel, N; Pullan, A J; Bissett, I P; Cheng, L K

    2013-05-01

    Slow-waves modulate the pattern of small intestine contractions. However, the large-scale spatial organization of intestinal slow-wave pacesetting remains uncertain because most previous studies have had limited resolution. This study applied high-resolution (HR) mapping to evaluate intestinal pacesetting mechanisms and propagation patterns in vivo. HR serosal mapping was performed in anesthetized pigs using flexible arrays (256 electrodes; 32 × 8; 4 mm spacing), applied along the jejunum. Slow-wave propagation patterns, frequencies, and velocities were calculated. Slow-wave initiation sources were identified and analyzed by animation and isochronal activation mapping. Analysis comprised 32 recordings from nine pigs (mean duration 5.1 ± 3.9 min). Slow-wave propagation was analyzed, and a total of 26 sources of slow-wave initiation were observed and classified as focal pacemakers (31%), sites of functional re-entry (23%) and circumferential re-entry (35%), or indeterminate sources (11%). The mean frequencies of circumferential and functional re-entry were similar (17.0 ± 0.3 vs 17.2 ± 0.4 cycle min(-1) ; P = 0.5), and greater than that of focal pacemakers (12.7 ± 0.8 cycle min(-1) ; P < 0.001). Velocity was anisotropic (12.9 ± 0.7 mm s(-1) circumferential vs 9.0 ± 0.7 mm s(-1) longitudinal; P < 0.05), contributing to the onset and maintenance of re-entry. This study has shown multiple patterns of slow-wave initiation in the jejunum of anesthetized pigs. These results constitute the first description and analysis of circumferential re-entry in the gastrointestinal tract and functional re-entry in the in vivo small intestine. Re-entry can control the direction, pattern, and frequency of slow-wave propagation, and its occurrence and functional significance merit further investigation. © 2013 Blackwell Publishing Ltd.

  9. Advanced Multivariate Inversion Techniques for High Resolution 3D Geophysical Modeling

    DTIC Science & Technology

    2011-09-01

    of seismic ambient noise – has been used to image crustal Vs variation with a lateral resolution upward of 100 km either on regional or on sub...to East Africa, we solve for velocity structure in an area with less lateral heterogeneity but great tectonic complexity. To increase the...demonstrate correlation with crustal geology. Figure 1 shows the 3D S-wave velocity model obtained from the joint inversion. The low-velocity anomaly

  10. Tracking stormwater discharge plumes and water quality of the Tijuana River with multispectral aerial imagery

    NASA Astrophysics Data System (ADS)

    Svejkovsky, Jan; Nezlin, Nikolay P.; Mustain, Neomi M.; Kum, Jamie B.

    2010-04-01

    Spatial-temporal characteristics and environmental factors regulating the behavior of stormwater runoff from the Tijuana River in southern California were analyzed utilizing very high resolution aerial imagery, and time-coincident environmental and bacterial sampling data. Thirty nine multispectral aerial images with 2.1-m spatial resolution were collected after major rainstorms during 2003-2008. Utilizing differences in color reflectance characteristics, the ocean surface was classified into non-plume waters and three components of the runoff plume reflecting differences in age and suspended sediment concentrations. Tijuana River discharge rate was the primary factor regulating the size of the freshest plume component and its shorelong extensions to the north and south. Wave direction was found to affect the shorelong distribution of the shoreline-connected fresh plume components much more strongly than wind direction. Wave-driven sediment resuspension also significantly contributed to the size of the oldest plume component. Surf zone bacterial samples collected near the time of each image acquisition were used to evaluate the contamination characteristics of each plume component. The bacterial contamination of the freshest plume waters was very high (100% of surf zone samples exceeded California standards), but the oldest plume areas were heterogeneous, including both polluted and clean waters. The aerial imagery archive allowed study of river runoff characteristics on a plume component level, not previously done with coarser satellite images. Our findings suggest that high resolution imaging can quickly identify the spatial extents of the most polluted runoff but cannot be relied upon to always identify the entire polluted area. Our results also indicate that wave-driven transport is important in distributing the most contaminated plume areas along the shoreline.

  11. Scanning evanescent electro-magnetic microscope

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen; Schultz, Peter G.; Wei, Tao

    2003-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  12. Scanning evanescent electro-magnetic microscope

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen

    2001-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  13. An Evaluation of a High-Resolution Operational Wave Forecasting System in the Adriatic Sea

    DTIC Science & Technology

    2009-01-01

    work of Martina Tudor. We thank APAT for sharing RON wave buoy data. We thank Jacopo Chiggiato and Servizio Idro-Meteo-Clima ARPA-SIMC of Emilia...influences on the Adriatic sirocco wind. Ann. Geophys. 25.1263-1267. Pasaric. Z., BeluSic, D.. Chiggiato . J.. 2009. Orographic effects on meteorological...Southern California Bight. Coastal Eng. 54(1). 1-15. Signell. R.P.S.. Camiel. S., Cavaleri. L. Chiggiato . J.. Doyle. J.D.. Pullen. J„ Scavo. M

  14. Impact of Parameterized Lee Wave Drag on the Energy Budget of an Eddying Global Ocean Model

    DTIC Science & Technology

    2013-08-26

    Teixeira, J., Peng, M., Hogan, T.F., Pauley, R., 2002. Navy Operational Global Atmospheric Prediction System (NOGAPS): Forcing for ocean models...Impact of parameterized lee wave drag on the energy budget of an eddying global ocean model David S. Trossman a,⇑, Brian K. Arbic a, Stephen T...input and output terms in the total mechanical energy budget of a hybrid coordinate high-resolution global ocean general circulation model forced by winds

  15. Lake Michigan Storm: Wave and Water Level Modeling

    DTIC Science & Technology

    2012-11-01

    does appear the ice implementation does well to replicate either iced (flagged for ice coverage), or for a low wave energy environment. Granted there...Jensen, D.T. Resio, R.A. Luettich, C. Dawson, V.J. Cardone , A.T. Cox, M.D. Powell, H.J. Westerink, and H.J. Roberts. (2010). “A high resolution coupled...coast,” In Preparation, US Army Engineer Research and Development Center, Vicksburg, MS. ERDC/CHL TR-12-26 310 Jensen, R.E., V.J. Cardone , and A.T

  16. Intrinsic Resolution of Molecular Electronic Wave Functions and Energies in Terms of Quasi-atoms and Their Interactions.

    PubMed

    West, Aaron C; Schmidt, Michael W; Gordon, Mark S; Ruedenberg, Klaus

    2017-02-09

    A general intrinsic energy resolution has been formulated for strongly correlated wave functions in the full molecular valence space and its subspaces. The information regarding the quasi-atomic organization of the molecular electronic structure is extracted from the molecular wave function without introducing any additional postulated model state wave functions. To this end, the molecular wave function is expressed in terms of quasi-atomic molecular orbitals, which maximize the overlap between subspaces of the molecular orbital space and the free-atom orbital spaces. As a result, the molecular wave function becomes the superposition of a wave function representing the juxtaposed nonbonded quasi-atoms and a wave function describing the interatomic electron migrations that create bonds through electron sharing. The juxtaposed nonbonded quasi-atoms are shown to consist of entangled quasi-atomic states from different atoms. The binding energy is resolved as a sum of contributions that are due to quasi-atom formation, quasiclassical electrostatic interactions, and interatomic interferences caused by electron sharing. The contributions are further resolved according to orbital interactions. The various transformations that generate the analysis are determined by criteria that are independent of the working orbital basis used for calculating the molecular wave function. The theoretical formulation of the resolution is quantitatively validated by an application to the C 2 molecule.

  17. Can cellulite be treated with low-energy extracorporeal shock wave therapy?

    PubMed Central

    Angehrn, Fiorenzo; Kuhn, Christoph; Voss, Axel

    2007-01-01

    The present study investigates the effects of low-energy defocused extracorporeal generated shock waves on collagen structure of cellulite afflicted skin. Cellulite measurement using high-resolution ultrasound technology was performed before and after low-energy defocused extracorporeal shock wave therapy (ESWT) in 21 female subjects. ESWT was applied onto the skin at the lateral thigh twice a week for a period of six weeks. Results provide evidence that low-energy defocused ESWT caused remodeling of the collagen within the dermis of the tested region. Improving device-parameters and therapy regimes will be essential for future development of a scientific based approach to cellulite treatment. PMID:18225463

  18. STS-41G earth observations

    NASA Image and Video Library

    1984-10-12

    41G-34-098 (5-13 Oct 1984) --- Strait of Gibraltar and western Mediterranean photographed sunglint. Sun reflection on water delineates surface texture, which corresponds to the ocean's dynamics. The large group of waves connecting Gibraltar with the Moroccan coast is the response of the ocean to a tidal pulse moving into the Mediterranean. The low level wing shear line extending out from the Moroccan coastline into the Mediterranean for approximately 40 miles is the southern extremity of the wind funneling through the strait. This is the first high resolution photograph ever taken of this phenomenon permitting detailed delineation of individual waves which comprise the wave packet.

  19. Parametric Analysis of Airland Combat Model in High Resolution

    DTIC Science & Technology

    1988-09-01

    continue Fprint MOE, UTILITY matrix figure 10. Flow chart of the advanced model 22 WAVE2 = numeric value (1. 2. or 12) which is supposed to be given by the...model user" if WAVE2 = 1. it will bc a BATTLE I case. and all Red forccs on Av’enue-2 attack to nodc-2S ; if \\VAVE2= 2. it will also be a BATTLE I case...but all Red forces on Aenue-2 attack to node-27 ; if WAVE2 = 12. it will be a BATTLE2 case. These outputs will be analyzed in more detail in the next

  20. Dynamics of ionization processes in high-pressure nitrogen, air, and SF{sub 6} during a subnanosecond breakdown initiated by runaway electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasenko, V. F., E-mail: vft@loi.hcei.tsc.ru; Beloplotov, D. V.; Lomaev, M. I.

    2015-10-15

    The dynamics of ionization processes in high-pressure nitrogen, air, and SF{sub 6} during breakdown of a gap with a nonuniform distribution of the electric field by nanosecond high-voltage pulses was studied experimentally. Measurements of the amplitude and temporal characteristics of a diffuse discharge and its radiation with a subnanosecond time resolution have shown that, at any polarity of the electrode with a small curvature radius, breakdown of the gap occurs via two ionization waves, the first of which is initiated by runaway electrons. For a voltage pulse with an ∼500-ps front, UV radiation from different zones of a diffuse dischargemore » is measured with a subnanosecond time resolution. It is shown that the propagation velocity of the first ionization wave increases after its front has passed one-half of the gap, as well as when the pressure in the discharge chamber is reduced and/or when SF{sub 6} is replaced with air or nitrogen. It is found that, at nitrogen pressures of 0.4 and 0.7 MPa and the positive polarity of the high-voltage electrode with a small curvature radius, the ionization wave forms with a larger (∼30 ps) time delay with respect to applying the voltage pulse to the gap than at the negative polarity. The velocity of the second ionization wave propagating from the plane electrode is measured. In a discharge in nitrogen at a pressure of 0.7 MPa, this velocity is found to be ∼10 cm/ns. It is shown that, as the nitrogen pressure increases to 0.7 MPa, the propagation velocity of the front of the first ionization wave at the positive polarity of the electrode with a small curvature radius becomes lower than that at the negative polarity.« less

  1. High-resolution threshold photoionization of N2O

    NASA Technical Reports Server (NTRS)

    Wiedmann, R. T.; Grant, E. R.; Tonkyn, R. G.; White, M. G.

    1991-01-01

    Pulsed field ionization (PFI) has been used in conjunction with a coherent VUV source to obtain high-resolution threshold photoelectron spectra for the (000), (010), (020), and (100) vibrational states of the N2O(+) cation. Simulations for the rotational profiles of each vibronic level were obtained by fitting the Buckingham-Orr-Sichel equations using accurate spectroscopic constants for the ground states of the neutral and the ion. The relative branch intensities are interpreted in terms of the partial waves of the outgoing photoelectron to which the ionic core is coupled and in terms of the angular momentum transferred to the core.

  2. Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy.

    PubMed

    Kuse, Naoya; Ozawa, Akira; Kobayashi, Yohei

    2013-05-06

    We demonstrate a fiber Bragg grating (FBG) strain sensor with optical frequency combs. To precisely characterize the optical response of the FBG when strain is applied, dual-comb spectroscopy is used. Highly sensitive dual-comb spectroscopy of the FBG enabled strain measurements with a resolution of 34 nε. The optical spectral bandwidth of the measurement exceeds 1 THz. Compared with conventional FBG strain sensor using a continuous-wave laser that requires rather slow frequency scanning with a limited range, the dynamic range and multiplexing capability are significantly improved by using broadband dual-comb spectroscopy.

  3. Electron attachment in F2 - Conclusive demonstration of nonresonant, s-wave coupling in the limit of zero electron energy

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Alajajian, S. H.

    1987-01-01

    Dissociative electron attachment to F2 has been observed in the energy range 0-140 meV, at a resolution of 6 meV (full width at half maximum). Results show conclusively a sharp, resolution-limited threshold behavior consistent with an s-wave cross section varying as sq rt of epsilon. Two accurate theoretical calculations predict only p-wave behavior varying as the sq rt of epsilon. Several nonadiabatic coupling effects leading to s-wave behavior are outlined.

  4. High-resolution modeling of local air-sea interaction within the Marine Continent using COAMPS

    NASA Astrophysics Data System (ADS)

    Jensen, T. G.; Chen, S.; Flatau, M. K.; Smith, T.; Rydbeck, A.

    2016-12-01

    The Maritime Continent (MC) is a region of intense deep atmospheric convection that serves as an important source of forcing for the Hadley and Walker circulations. The convective activity in the MC region spans multiple scales from local mesoscales to regional scales, and impacts equatorial wave propagation, coupled air-sea interaction and intra seasonal oscillations. The complex distribution of islands, shallow seas with fairly small heat storage and deep seas with large heat capacity is challenging to model. Diurnal convection over land-sea is part of a land-sea breeze system on a small scale, and is highly influenced by large variations in orography over land and marginal seas. Daytime solar insolation, run-off from the Archipelago and nighttime rainfall tends to stabilize the water column, while mixing by tidal currents and locally forced winds promote vertical mixing. The runoff from land and rivers and high net precipitation result in fresh water lenses that enhance vertical stability in the water column and help maintain high SST. We use the fully coupled atmosphere-ocean-wave version of the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) developed at NRL with resolution of a few kilometers to investigate the air-sea interaction associated with the land-sea breeze system in the MC under active and inactive phases of the Madden-Julian Oscillation. The high resolution enables simulation of strong SST gradients associated with local upwelling in deeper waters and strong salinity gradients near rivers and from heavy precipitation.

  5. Regional downscaling of temporal resolution in near-surface wind from statistically downscaled Global Climate Models (GCMs) for use in San Francisco Bay coastal flood modeling

    NASA Astrophysics Data System (ADS)

    O'Neill, A.; Erikson, L. H.; Barnard, P.

    2013-12-01

    While Global Climate Models (GCMs) provide useful projections of near-surface wind vectors into the 21st century, resolution is not sufficient enough for use in regional wave modeling. Statistically downscaled GCM projections from Multivariate Adaptive Constructed Analogues (MACA) provide daily near-surface winds at an appropriate spatial resolution for wave modeling within San Francisco Bay. Using 30 years (1975-2004) of climatological data from four representative stations around San Francisco Bay, a library of example daily wind conditions for four corresponding over-water sub-regions is constructed. Empirical cumulative distribution functions (ECDFs) of station conditions are compared to MACA GFDL hindcasts to create correction factors, which are then applied to 21st century MACA wind projections. For each projection day, a best match example is identified via least squares error among all stations from the library. The best match's daily variation in velocity components (u/v) is used as an analogue of representative wind variation and is applied at 3-hour increments about the corresponding sub-region's projected u/v values. High temporal resolution reconstructions using this methodology on hindcast MACA fields from 1975-2004 accurately recreate extreme wind values within the San Francisco Bay, and because these extremes in wind forcing are of key importance in wave and subsequent coastal flood modeling, this represents a valuable method of generating near-surface wind vectors for use in coastal flood modeling.

  6. Explosive Products EOS: Adjustment for detonation speed and energy release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2014-09-05

    Propagating detonation waves exhibit a curvature effect in which the detonation speed decreases with increasing front curvature. The curvature effect is due to the width of the wave profile. Numerically, the wave profile depends on resolution. With coarse resolution, the wave width is too large and results in a curvature effect that is too large. Consequently, the detonation speed decreases as the cell size is increased. We propose a modification to the products equation of state (EOS) to compensate for the effect of numerical resolution; i.e., to increase the CJ pressure in order that a simulation propagates a detonation wavemore » with a speed that is on average correct. The EOS modification also adjusts the release isentrope to correct the energy release.« less

  7. Statistical analysis of dispersion relations in turbulent solar wind fluctuations using Cluster data

    NASA Astrophysics Data System (ADS)

    Perschke, C.; Narita, Y.

    2012-12-01

    Multi-spacecraft measurements enable us to resolve three-dimensional spatial structures without assuming Taylor's frozen-in-flow hypothesis. This is very useful to study frequency-wave vector diagram in solar wind turbulence through direct determination of three-dimensional wave vectors. The existence and evolution of dispersion relation and its role in fully-developed plasma turbulence have been drawing attention of physicists, in particular, if solar wind turbulence represents kinetic Alfvén or whistler mode as the carrier of spectral energy among different scales through wave-wave interactions. We investigate solar wind intervals of Cluster data for various flow velocities with a high-resolution wave vector analysis method, Multi-point Signal Resonator technique, at the tetrahedral separation about 100 km. Magnetic field data and ion data are used to determine the frequency- wave vector diagrams in the co-moving frame of the solar wind. We find primarily perpendicular wave vectors in solar wind turbulence which justify the earlier discussions about kinetic Alfvén or whistler wave. The frequency- wave vector diagrams confirm (a) wave vector anisotropy and (b) scattering in frequencies.

  8. Continuous-wave Submillimeter-wave Gyrotrons

    PubMed Central

    Han, Seong-Tae; Griffin, Robert G.; Hu, Kan-Nian; Joo, Chan-Gyu; Joye, Colin D.; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Torrezan, Antonio C.; Woskov, Paul P.

    2007-01-01

    Recently, dynamic nuclear polarization enhanced nuclear magnetic resonance (DNP/NMR) has emerged as a powerful technique to obtain significant enhancements in spin spectra from biological samples. For DNP in modern NMR systems, a high power continuous-wave source in the submillimeter wavelength range is necessary. Gyrotrons can deliver tens of watts of CW power at submillimeter wavelengths and are well suited for use in DNP/NMR spectrometers. To date, 140 GHz and 250 GHz gyrotrons are being employed in DNP spectrometer experiments at 200 MHz and 380 MHz at MIT. A 460 GHz gyrotron, which has operated with 8 W of CW output power, will soon be installed in a 700 MHz NMR spectrometer. High power radiation with good spectral and spatial resolution from these gyrotrons should provide NMR spectrometers with high signal enhancement through DNP. Also, these tubes operating at submillimeter wavelengths should have important applications in research in physics, chemistry, biology, materials science and medicine. PMID:17404605

  9. Feasibility of detecting near-surface feature with Rayleigh-wave diffraction

    USGS Publications Warehouse

    Xia, J.; Nyquist, Jonathan E.; Xu, Y.; Roth, M.J.S.; Miller, R.D.

    2007-01-01

    Detection of near-surfaces features such as voids and faults is challenging due to the complexity of near-surface materials and the limited resolution of geophysical methods. Although multichannel, high-frequency, surface-wave techniques can provide reliable shear (S)-wave velocities in different geological settings, they are not suitable for detecting voids directly based on anomalies of the S-wave velocity because of limitations on the resolution of S-wave velocity profiles inverted from surface-wave phase velocities. Therefore, we studied the feasibility of directly detecting near-surfaces features with surface-wave diffractions. Based on the properties of surface waves, we have derived a Rayleigh-wave diffraction traveltime equation. We also have solved the equation for the depth to the top of a void and an average velocity of Rayleigh waves. Using these equations, the depth to the top of a void/fault can be determined based on traveltime data from a diffraction curve. In practice, only two diffraction times are necessary to define the depth to the top of a void/fault and the average Rayleigh-wave velocity that generates the diffraction curve. We used four two-dimensional square voids to demonstrate the feasibility of detecting a void with Rayleigh-wave diffractions: a 2??m by 2??m with a depth to the top of the void of 2??m, 4??m by 4??m with a depth to the top of the void of 7??m, and 6??m by 6??m with depths to the top of the void 12??m and 17??m. We also modeled surface waves due to a vertical fault. Rayleigh-wave diffractions were recognizable for all these models after FK filtering was applied to the synthetic data. The Rayleigh-wave diffraction traveltime equation was verified by the modeled data. Modeling results suggested that FK filtering is critical to enhance diffracted surface waves. A real-world example is presented to show how to utilize the derived equation of surface-wave diffractions. ?? 2006 Elsevier B.V. All rights reserved.

  10. A Self-Organizing Maps approach to assess the wave climate of the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Barbariol, Francesco; Marcello Falcieri, Francesco; Scotton, Carlotta; Benetazzo, Alvise; Bergamasco, Andrea; Bergamasco, Filippo; Bonaldo, Davide; Carniel, Sandro; Sclavo, Mauro

    2015-04-01

    The assessment of wave conditions at sea is fruitful for many research fields in marine and atmospheric sciences and for the human activities in the marine environment. To this end, in the last decades the observational network, that mostly relies on buoys, satellites and other probes from fixed platforms, has been integrated with numerical models outputs, which allow to compute the parameters of sea states (e.g. the significant wave height, the mean and peak wave periods, the mean and peak wave directions) over wider regions. Apart from the collection of wave parameters observed at specific sites or modeled on arbitrary domains, the data processing performed to infer the wave climate at those sites is a crucial step in order to provide high quality data and information to the community. In this context, several statistical techniques has been used to model the randomness of wave parameters. While univariate and bivariate probability distribution functions (pdf) are routinely used, multivariate pdfs that model the probability structure of more than two wave parameters are hardly managed. Recently, the Self-Organizing Maps (SOM) technique has been successfully applied to represent the multivariate random wave climate at sites around the Iberian peninsula and the South America continent. Indeed, the visualization properties offered by this technique allow to get the dependencies between the different parameters by visual inspection. In this study, carried out in the frame of the Italian National Flagship Project "RITMARE", we take advantage of the SOM technique to assess the multivariate wave climate over the Adriatic Sea, a semi-enclosed basin in the north-eastern Mediterranean Sea, where winds from North-East (called "Bora") and South-East (called "Sirocco") mainly blow causing sea storms. By means of the SOM techniques we can observe the multivariate character of the typical Bora and Sirocco wave features in the Adriatic Sea. To this end, we used both observed and modeled wave parameters. The "Acqua Alta" oceanographic tower in the northern Adriatic Sea (ISMAR-CNR) and the Italian Data Buoy Network (RON, managed by ISPRA) off the western Adriatic coasts furnished the wave parameters at specific sites of interest. Widespread wave parameters were obtained by means of a numerical SWAN wave model that was implemented on the whole Adriatic Sea with a 6x6 km2 resolution and forced by the high resolution COSMO-I7 atmospheric model for the period 2007-2013.

  11. Averaging scheme for atomic resolution off-axis electron holograms.

    PubMed

    Niermann, T; Lehmann, M

    2014-08-01

    All micrographs are limited by shot-noise, which is intrinsic to the detection process of electrons. For beam insensitive specimen this limitation can in principle easily be circumvented by prolonged exposure times. However, in the high-resolution regime several instrumental instabilities limit the applicable exposure time. Particularly in the case of off-axis holography the holograms are highly sensitive to the position and voltage of the electron-optical biprism. We present a novel reconstruction algorithm to average series of off-axis holograms while compensating for specimen drift, biprism drift, drift of biprism voltage, and drift of defocus, which all might cause problematic changes from exposure to exposure. We show an application of the algorithm utilizing also the possibilities of double biprism holography, which results in a high quality exit-wave reconstruction with 75 pm resolution at a very high signal-to-noise ratio. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. In-situ changes in the elastic wave velocity of rock with increasing temperature using high-resolution coda wave interferometry

    NASA Astrophysics Data System (ADS)

    Griffiths, Luke; Heap, Michael; Lengliné, Olivier; Schmittbuhl, Jean; Baud, Patrick

    2017-04-01

    Rock undergoes fluctuations in temperature in various settings in Earth's crust, including areas of volcanic or geothermal activity, or industrial environments such as hydrocarbon or geothermal reservoirs. Changes in temperature can cause thermal stresses that can result in the formation of microcracks, which affect the mechanical, physical, and transport properties of rocks. Of the affected physical properties, the elastic wave velocity of rock is particularly sensitive to microcracking. Monitoring the evolution of elastic wave velocity during the thermal stressing of rock therefore provides valuable insight into thermal cracking processes. One monitoring technique is Coda Wave Interferometry (CWI), which infers high-resolution changes in the medium from changes in multiple-scattered elastic waves. We have designed a new experimental setup to perform CWI whilst cyclically heating and cooling samples of granite (cylinders of 20 mm diameter and 40 mm length). In our setup, the samples are held between two pistons within a tube furnace and are heated and cooled at a rate of 1 °C/min to temperatures of up to 300 °C. Two high temperature piezo-transducers are each in contact with an opposing face of the rock sample. The servo-controlled uniaxial press compensates for the thermal expansion and contraction of the pistons and the sample, keeping the coupling between the transducers and the sample, and the axial force acting on the sample, constant throughout. Our setup is designed for simultaneous acoustic emission monitoring (AE is commonly used as a proxy for microcracking), and so we can follow thermal microcracking precisely by combining the AE and CWI techniques. We find that during the first heating/cooling cycle, the onset of thermal microcracking occurs at a relatively low temperature of around 65 °C. The CWI shows that elastic wave velocity decreases with increasing temperature and increases during cooling. Upon cooling, back to room temperature, there is an irreversible relative decrease in velocity of several percent associated with the presence of new thermal microcracks. Our data suggest that few new microcracks were formed when the same sample was subject to subsequent identical heating/cooling cycles as changes in the elastic wave velocity are near-reversible. Our results shed light on the temperature conditions required for thermal microcracking and the influence of temperature on elastic wave velocity with applications to a wide variety of geoscientific disciplines.

  13. High speed video shooting with continuous-wave laser illumination in laboratory modeling of wind - wave interaction

    NASA Astrophysics Data System (ADS)

    Kandaurov, Alexander; Troitskaya, Yuliya; Caulliez, Guillemette; Sergeev, Daniil; Vdovin, Maxim

    2014-05-01

    Three examples of usage of high-speed video filming in investigation of wind-wave interaction in laboratory conditions is described. Experiments were carried out at the Wind - wave stratified flume of IAP RAS (length 10 m, cross section of air channel 0.4 x 0.4 m, wind velocity up to 24 m/s) and at the Large Air-Sea Interaction Facility (LASIF) - MIO/Luminy (length 40 m, cross section of air channel 3.2 x 1.6 m, wind velocity up to 10 m/s). A combination of PIV-measurements, optical measurements of water surface form and wave gages were used for detailed investigation of the characteristics of the wind flow over the water surface. The modified PIV-method is based on the use of continuous-wave (CW) laser illumination of the airflow seeded by particles and high-speed video. During the experiments on the Wind - wave stratified flume of IAP RAS Green (532 nm) CW laser with 1.5 Wt output power was used as a source for light sheet. High speed digital camera Videosprint (VS-Fast) was used for taking visualized air flow images with the frame rate 2000 Hz. Velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave profile. The mean wind velocity profiles were retrieved using conditional in phase averaging like in [1]. In the experiments on the LASIF more powerful Argon laser (4 Wt, CW) was used as well as high-speed camera with higher sensitivity and resolution: Optronics Camrecord CR3000x2, frame rate 3571 Hz, frame size 259×1696 px. In both series of experiments spherical 0.02 mm polyamide particles with inertial time 7 ms were used for seeding airflow. New particle seeding system based on utilization of air pressure is capable of injecting 2 g of particles per second for 1.3 - 2.4 s without flow disturbance. Used in LASIF this system provided high particle density on PIV-images. In combination with high-resolution camera it allowed us to obtain momentum fluxes directly from measured air velocity fluctuations. This data was then compared to values retrieved from wind speed profiles [2]. Visualization of water surface structure and droplets under strong wind conditions was carried out at the Wind - wave stratified flume of IAP RAS with high-speed camera NAC Memrecam HX-3 having a record-breaking performance at the moment. Shooting was performed at frame rates over 4500 Hz in 1080p resolution (1920 x 1080 px). Experimental study of droplets under strong winds has discovered a "bag breakup" droplet-production mechanism (observed previously in technical devices for liquid disintegration [3]). The investigation on this mechanism in the laboratory can improve the parameterization of heat fluxes in the models of hurricanes and intense sea storms. This work was supported by RFBR grants (project code 13-05-00865, 13-05-12093, 12-05-01064, 14-08-31740, 14-05-31415), President Grant for young scientists MK-3550.2014.5 and grant of the Government of the Russian Federation designed to support scientific research project implemented under the supervision of leading scientists at Russian institutions of higher learning (project code 11.G34.31.0048). References 1. Troitskaya Yu., D. Sergeev, O. Ermakova, G. Balandina (2011), Statistical Parameters of the Air Turbulent Boundary Layer over Steep Water Waves Measured by the PIV Technique, J. Phys. Oceanogr., 41, 1421-1454 2. Troitskaya, Y. I., D. A. Sergeev, A. A. Kandaurov, G. A. Baidakov, M. A. Vdovin, and V. I. Kazakov "Laboratory and theoretical modeling of air-sea momentum transfer under severe wind conditions" J. Geophys. Res., 117, C00J21, 2012. 3. Villermaux, E. (2007), Fragmentation, Ann. Review Fluid Mech., 39,419-446, doi:10.1146/annurev.fluid.39.050905.110214.

  14. Wave Processes in Arctic Seas, Observed from TerraSAR-X

    DTIC Science & Technology

    2015-09-30

    Susanne Lehner German Aerospace Center Maritime Safety and Security Lab Henrich-Focke-Str. 4 28199 Bremen Germany phone: 0049 421/ 24420...of high resolution sea state forecast models in the German Bight, The International Archives of the Photogrammetry, Remote Sensing and Spatial

  15. Stochastic Convection Parameterizations

    NASA Technical Reports Server (NTRS)

    Teixeira, Joao; Reynolds, Carolyn; Suselj, Kay; Matheou, Georgios

    2012-01-01

    computational fluid dynamics, radiation, clouds, turbulence, convection, gravity waves, surface interaction, radiation interaction, cloud and aerosol microphysics, complexity (vegetation, biogeochemistry, radiation versus turbulence/convection stochastic approach, non-linearities, Monte Carlo, high resolutions, large-Eddy Simulations, cloud structure, plumes, saturation in tropics, forecasting, parameterizations, stochastic, radiation-clod interaction, hurricane forecasts

  16. Inference of physical/biological dynamics from synthetic ocean colour images

    NASA Technical Reports Server (NTRS)

    Eert, J.; Holloway, G.; Gower, J. F. R.; Denman, K.; Abbott, M.

    1987-01-01

    High resolution numerical experiments with well resolved eddies are performed including advection of a biologically active plankton field. Shelf wave propagation and bottom topographic features are included. The resulting synthetic ocean color fields are examined for sensitivity to the (known) underlying physical dynamics.

  17. African Easterly Waves in 30-day High-Resolution Global Simulations: A Case Study During the 2006 NAMMA Period

    NASA Technical Reports Server (NTRS)

    Shen, Bo-Wen; Tao, Wei-Kuo; Wu, Man-Li C.

    2010-01-01

    In this study, extended -range (30 -day) high-resolution simulations with the NASA global mesoscale model are conducted to simulate the initiation and propagation of six consecutive African easterly waves (AEWs) from late August to September 2006 and their association with hurricane formation. It is shown that the statistical characteristics of individual AEWs are realistically simulated with larger errors in the 5th and 6th AEWs. Remarkable simulations of a mean African easterly jet (AEJ) are also obtained. Nine additional 30 -day experiments suggest that although land surface processes might contribute to the predictability of the AEJ and AEWs, the initiation and detailed evolution of AEWs still depend on the accurate representation of dynamic and land surface initial conditions and their time -varying nonlinear interactions. Of interest is the potential to extend the lead time for predicting hurricane formation (e.g., a lead time of up to 22 days) as the 4th AEW is realistically simulated.

  18. A non-contact technique for measuring eccrine sweat gland activity using passive thermal imaging.

    PubMed

    Krzywicki, Alan T; Berntson, Gary G; O'Kane, Barbara L

    2014-10-01

    An approach for monitoring eccrine sweat gland activity using high resolution Mid-Wave Infrared (MWIR) imaging (3-5 μm wave band) is described. This technique is non-contact, passive, and provides high temporal and spatial resolution. Pore activity was monitored on the face and on the volar surfaces of the distal and medial phalanges of the index and middle fingers while participants performed a series of six deep inhalation and exhalation exercises. Two metrics called the Pore Activation Index (PAI) and Pore Count (PC) were defined as size-weighted and unweighted measures of active sweat gland counts respectively. PAI transient responses on the finger tips were found to be positively correlated to Skin Conductance Responses (SCRs). PAI responses were also observed on the face, although the finger sites appeared to be more responsive. Results indicate that thermal imaging of the pore response may provide a useful, non-contact, correlate measure for electrodermal responses recorded from related sites. Published by Elsevier B.V.

  19. A single-phase elastic hyperbolic metamaterial with anisotropic mass density.

    PubMed

    Zhu, R; Chen, Y Y; Wang, Y S; Hu, G K; Huang, G L

    2016-06-01

    Wave propagation can be manipulated at a deep subwavelength scale through the locally resonant metamaterial that possesses unusual effective material properties. Hyperlens due to metamaterial's anomalous anisotropy can lead to superior-resolution imaging. In this paper, a single-phase elastic metamaterial with strongly anisotropic effective mass density has been designed. The proposed metamaterial utilizes the independently adjustable locally resonant motions of the subwavelength-scale microstructures along the two principal directions. High anisotropy in the effective mass densities obtained by the numerical-based effective medium theory can be found and even have opposite signs. For practical applications, shunted piezoelectric elements are introduced into the microstructure to tailor the effective mass density in a broad frequency range. Finally, to validate the design, an elastic hyperlens made of the single-phase hyperbolic metamaterial is proposed with subwavelength longitudinal wave imaging illustrated numerically. The proposed single-phase hyperbolic metamaterial has many promising applications for high resolution damage imaging in nondestructive evaluation and structural health monitoring.

  20. High-resolution imaging of a shock front in plastic by phase contrast imaging at LCLS

    NASA Astrophysics Data System (ADS)

    Beckwith, M.; Jiang, S.; Zhao, Y.; Schropp, A.; Fernandez-Panella, A.; Rinderknecht, H. G.; Wilks, S.; Fournier, K.; Galtier, E.; Xing, Z.; Granados, E.; Gamboa, E.; Glenzer, S. H.; Heimann, P.; Zastrau, U.; Cho, B. I.; Eggert, J. H.; Collins, G. W.; Ping, Y.

    2017-10-01

    Understanding the propagation of shock waves is important for many areas of high energy density physics, including inertial confinement fusion (ICF) and shock compression science. In order to probe the shock front structures in detail, a diagnostic capable of detecting both the small spatial and temporal changes in the material is required. Here we show the experiment using hard X-ray phase contrast imaging (PCI) to probe the shock wave propagation in polyimide with submicron spatial resolution. The experiment was performed at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Lightsource (LCLS). PCI together with the femtosecond time scales of x-ray free electron lasers enables the imaging of optically opaque materials that undergo rapid temporal and spatial changes. The result reveals the evolution of the density profile with time. Work performed under DOE Contract No. DE-AC52-07NA27344 with support from OFES Early Career and LLNL LDRD program.

  1. A class of high resolution explicit and implicit shock-capturing methods

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    1989-01-01

    An attempt is made to give a unified and generalized formulation of a class of high resolution, explicit and implicit shock capturing methods, and to illustrate their versatility in various steady and unsteady complex shock wave computations. Included is a systematic review of the basic design principle of the various related numerical methods. Special emphasis is on the construction of the basis nonlinear, spatially second and third order schemes for nonlinear scalar hyperbolic conservation laws and the methods of extending these nonlinear scalar schemes to nonlinear systems via the approximate Riemann solvers and the flux vector splitting approaches. Generalization of these methods to efficiently include equilibrium real gases and large systems of nonequilibrium flows are discussed. Some issues concerning the applicability of these methods that were designed for homogeneous hyperbolic conservation laws to problems containing stiff source terms and shock waves are also included. The performance of some of these schemes is illustrated by numerical examples for 1-, 2- and 3-dimensional gas dynamics problems.

  2. Remote sensing of mesospheric winds with the High-Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.; Abreu, V. J.; Burrage, M. D.; Gell, D. A.; Grassi, H. J.; Marshall, A. R.; Morton, Y. T.; Ortland, D. A.; Skinner, W. R.; Wu, D. L.

    1992-01-01

    Observations of the winds in the upper atmosphere obtained with the High-Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) are discussed. This instrument is a very stable high-resolution triple-etalon Fabry-Perot interferometer, which is used to observe the slight Doppler shifts of absorption and emission lines in the O2 Atmospheric bands induced by atmospheric motions. Preliminary observations indicate that the winds in the mesosphere and lower thermosphere are a mixture of migrating and non-migrating tides, and planetary-scale waves. The mean meridional winds are dominated by the 1,1 diurnal tide which is easily extracted from the daily zonal means of the satellite observations. The daily mean zonal winds are a mixture of the diurnal tide and a zonal flow which is consistent with theoretical expectations.

  3. Simulations of kinetic electrostatic electron nonlinear (KEEN) waves with variable velocity resolution grids and high-order time-splitting

    NASA Astrophysics Data System (ADS)

    Afeyan, Bedros; Casas, Fernando; Crouseilles, Nicolas; Dodhy, Adila; Faou, Erwan; Mehrenberger, Michel; Sonnendrücker, Eric

    2014-10-01

    KEEN waves are non-stationary, nonlinear, self-organized asymptotic states in Vlasov plasmas. They lie outside the precepts of linear theory or perturbative analysis, unlike electron plasma waves or ion acoustic waves. Steady state, nonlinear constructs such as BGK modes also do not apply. The range in velocity that is strongly perturbed by KEEN waves depends on the amplitude and duration of the ponderomotive force generated by two crossing laser beams, for instance, used to drive them. Smaller amplitude drives manage to devolve into multiple highly-localized vorticlets, after the drive is turned off, and may eventually succeed to coalesce into KEEN waves. Fragmentation once the drive stops, and potential eventual remerger, is a hallmark of the weakly driven cases. A fully formed (more strongly driven) KEEN wave has one dominant vortical core. But it also involves fine scale complex dynamics due to shedding and merging of smaller vortical structures with the main one. Shedding and merging of vorticlets are involved in either case, but at different rates and with different relative importance. The narrow velocity range in which one must maintain sufficient resolution in the weakly driven cases, challenges fixed velocity grid numerical schemes. What is needed is the capability of resolving locally in velocity while maintaining a coarse grid outside the highly perturbed region of phase space. We here report on a new Semi-Lagrangian Vlasov-Poisson solver based on conservative non-uniform cubic splines in velocity that tackles this problem head on. An additional feature of our approach is the use of a new high-order time-splitting scheme which allows much longer simulations per computational effort. This is needed for low amplitude runs. There, global coherent structures take a long time to set up, such as KEEN waves, if they do so at all. The new code's performance is compared to uniform grid simulations and the advantages are quantified. The birth pains associated with weakly driven KEEN waves are captured in these simulations. Canonical KEEN waves with ample drive are also treated using these advanced techniques. They will allow the efficient simulation of KEEN waves in multiple dimensions, which will be tackled next, as well as generalizations to Vlasov-Maxwell codes. These are essential for pursuing the impact of KEEN waves in high energy density plasmas and in inertial confinement fusion applications. More generally, one needs a fully-adaptive grid-in-phase-space method which could handle all small vorticlet dynamics whether pealing off or remerging. Such fully adaptive grids would have to be computed sparsely in order to be viable. This two-velocity grid method is a concrete and fruitful step in that direction. Contribution to the Topical Issue "Theory and Applications of the Vlasov Equation", edited by Francesco Pegoraro, Francesco Califano, Giovanni Manfredi and Philip J. Morrison.

  4. Feasibility of waveform inversion of Rayleigh waves for shallow shear-wave velocity using a genetic algorithm

    USGS Publications Warehouse

    Zeng, C.; Xia, J.; Miller, R.D.; Tsoflias, G.P.

    2011-01-01

    Conventional surface wave inversion for shallow shear (S)-wave velocity relies on the generation of dispersion curves of Rayleigh waves. This constrains the method to only laterally homogeneous (or very smooth laterally heterogeneous) earth models. Waveform inversion directly fits waveforms on seismograms, hence, does not have such a limitation. Waveforms of Rayleigh waves are highly related to S-wave velocities. By inverting the waveforms of Rayleigh waves on a near-surface seismogram, shallow S-wave velocities can be estimated for earth models with strong lateral heterogeneity. We employ genetic algorithm (GA) to perform waveform inversion of Rayleigh waves for S-wave velocities. The forward problem is solved by finite-difference modeling in the time domain. The model space is updated by generating offspring models using GA. Final solutions can be found through an iterative waveform-fitting scheme. Inversions based on synthetic records show that the S-wave velocities can be recovered successfully with errors no more than 10% for several typical near-surface earth models. For layered earth models, the proposed method can generate one-dimensional S-wave velocity profiles without the knowledge of initial models. For earth models containing lateral heterogeneity in which case conventional dispersion-curve-based inversion methods are challenging, it is feasible to produce high-resolution S-wave velocity sections by GA waveform inversion with appropriate priori information. The synthetic tests indicate that the GA waveform inversion of Rayleigh waves has the great potential for shallow S-wave velocity imaging with the existence of strong lateral heterogeneity. ?? 2011 Elsevier B.V.

  5. Reflective type objective based spectral-domain phase-sensitive optical coherence tomography for high-sensitive structural and functional imaging of cochlear microstructures through intact bone of an excised guinea pig cochlea

    NASA Astrophysics Data System (ADS)

    Subhash, Hrebesh M.; Wang, Ruikang K.; Chen, Fangyi; Nuttall, Alfred L.

    2013-03-01

    Most of the optical coherence tomographic (OCT) systems for high resolution imaging of biological specimens are based on refractive type microscope objectives, which are optimized for specific wave length of the optical source. In this study, we present the feasibility of using commercially available reflective type objective for high sensitive and high resolution structural and functional imaging of cochlear microstructures of an excised guinea pig through intact temporal bone. Unlike conventional refractive type microscopic objective, reflective objective are free from chromatic aberrations due to their all-reflecting nature and can support a broadband of spectrum with very high light collection efficiency.

  6. Transmission experiment of elastic waves with short wavelengths through a highly porous sand soil during water injection

    NASA Astrophysics Data System (ADS)

    Nakayama, M.; Kawakata, H.; Hirano, S.; Doi, I.; Takahashi, N.

    2016-12-01

    Transmitted waves at high frequencies attenuate strongly through highly porous media such as shallow ground, although the waves enable us to investigate physical properties of the media with high-spatial resolutions. Nakayama et al. (2015, AGU) tried to investigate the spatio-temporal variations in physical properties of a highly porous sand soil during water injection in laboratory. Accelerometers installed in the sand soil received only the signals of no higher than 0.5 kHz, although they used rectangular waveforms as input signals. The wavelength corresponding to 0.5 kHz is about 400 mm because the measured wave velocity is about 200 m/s. The wavelength is comparable to the path lengths of the transmitted waves, so that it cannot be discussed how the temporal variations in physical properties depend on the paths. In this study, we try to transmit waves with wavelengths much shorter than a sand soil and path lengths through a highly porous sand soil. We make a sand soil (750 mm long, 300 mm wide, and 300 mm high) with porosity about 40%. We install a shaker as a wave source at a deep part in the sand soil. In addition, we install accelerometers, pore pressure gauges, and electrodes at different depths. We inject tap water into the sand soil from the bottom, and record transmitted waves together with pore pressure and electrode voltage until the sand soil becomes saturated. Note that we adopt sweep signals (0.1-10 kHz) as the source so that the shaker can generate high frequency waves more strongly than rectangular signals. Accelerometers receive the signals at least up to 5 kHz during the experiment (Figure 1). The wavelength corresponding to 5 kHz is about 40 mm. In conclusion, we succeed in detecting transmitted waves propagating through the highly porous sand soil whose path lengths are about ten times their wave lengths. Acknowledgment: We are grateful to Takayoshi Kishida for supporting the experiment. This work is supported by JSPS KAKENHI Grant Numbers JP15H02996 and 26750135.

  7. Fluid-structure interaction simulation of floating structures interacting with complex, large-scale ocean waves and atmospheric turbulence with application to floating offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Calderer, Antoni; Guo, Xin; Shen, Lian; Sotiropoulos, Fotis

    2018-02-01

    We develop a numerical method for simulating coupled interactions of complex floating structures with large-scale ocean waves and atmospheric turbulence. We employ an efficient large-scale model to develop offshore wind and wave environmental conditions, which are then incorporated into a high resolution two-phase flow solver with fluid-structure interaction (FSI). The large-scale wind-wave interaction model is based on a two-fluid dynamically-coupled approach that employs a high-order spectral method for simulating the water motion and a viscous solver with undulatory boundaries for the air motion. The two-phase flow FSI solver is based on the level set method and is capable of simulating the coupled dynamic interaction of arbitrarily complex bodies with airflow and waves. The large-scale wave field solver is coupled with the near-field FSI solver with a one-way coupling approach by feeding into the latter waves via a pressure-forcing method combined with the level set method. We validate the model for both simple wave trains and three-dimensional directional waves and compare the results with experimental and theoretical solutions. Finally, we demonstrate the capabilities of the new computational framework by carrying out large-eddy simulation of a floating offshore wind turbine interacting with realistic ocean wind and waves.

  8. Intermediate and high resolution numerical simulations of the transition of a tropical wave critical layer to a tropical storm

    NASA Astrophysics Data System (ADS)

    Montgomery, M. T.; Wang, Z.; Dunkerton, T. J.

    2009-12-01

    Recent work has hypothesized that tropical cyclones in the deep Atlantic and eastern Pacific basins develop from the cyclonic Kelvin cat's eye of a tropical easterly wave critical layer located equatorward of the easterly jet axis that typifies the trade wind belt. The cyclonic critical layer is thought to be important to tropical cyclogenesis because its cat's eye provides (i) a region of cyclonic vorticity and weak deformation by the resolved flow, (ii) containment of moisture entrained by the developing flow and/or lofted by deep convection therein, (iii) confinement of mesoscale vortex aggregation, (iv) a predominantly convective type of heating profile, and (v) maintenance or enhancement of the parent wave until the developing proto-vortex becomes a self-sustaining entity and emerges from the wave as a tropical depression. This genesis sequence and the overarching framework for describing how such hybrid wave-vortex structures become tropical depressions/storms is likened to the development of a marsupial infant in its mother's pouch, and for this reason has been dubbed the "marsupial paradigm". Here we conduct the first multi-scale test of the marsupial paradigm in an idealized setting by revisiting the problem of the transformation of an easterly wave-like disturbance into a tropical storm vortex using the WRF model. An analysis of the evolving winds, equivalent potential temperature, and relative vertical vorticity is presented from coarse (28 km) and high resolution (3.1 km) simulations. The results are found to support key elements of the marsupial paradigm by demonstrating the existence of a vorticity dominant region with minimal strain/shear deformation within the critical layer pouch that contains strong cyclonic vorticity and high saturation fraction. This localized region within the pouch serves as the "attractor" for an upscale "bottom up" development process while the wave pouch and proto-vortex move together. Implications of these findings are discussed in relation to an upcoming field experiment for the most active period of the Atlantic hurricane season in 2010 that is to be conducted collaboratively between the National Oceanic and Atmospheric Administration (NOAA), the National Science Foundation (NSF), and the National Aeronautics and Space Adminstration (NASA).

  9. Potentials of the acousto-optical spectral data processing on a basis of a novel algorithm of the collinear wave heterodyning in a large-aperture KRS-5 crystalline cell

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Maximov, Jewgemij; Sanchez Lucero, Daniel

    2010-02-01

    Recently proposed modern technique of a precise spectrum analysis within an algorithm of the collinear wave heterodyning implies a two-stage integrated processing, namely, the wave heterodyning of a signal in a square-law nonlinear medium and then the optical processing in the same cell. Technical advantage of this approach is in providing a direct processing of ultra-high-frequency radio-wave signals with essentially improved frequency resolution. This algorithm can be realized on a basis of various physical principles, and we consider an opportunity of involving the potentials of modern acousto-optics for these purposes. From this viewpoint, one needs a large-aperture effective acousto-optical cell, which operates in the Bragg regime and performs the ultra-high-frequency co-directional collinear acoustic wave heterodyning. The technique under consideration imposes specific requirements on the cell's material, namely, a high optical quality of large-size crystalline boules, high-efficient acousto-optical and acoustic interactions, and low group velocity of acoustic waves together with square-low dispersive acoustic losses. We focus our attention on the solid solutions of thallium chalcogenides and take the TlBr-TlI (thallium bromine - thallium iodine) solution, which forms KRS-5 cubic-symmetry crystals with the mass-ratio 58% of TlBr to 42% of TlI. Analysis shows that the acousto-optical cell made of a KRS-5 crystal oriented along the [111] -axis and the corresponding longitudinal elastic mode for producing the dynamic diffractive grating in that crystal can be exploited. With the acoustic velocity of about 1.92 mm/μs and attenuation of approximately 10 dB/(cm GHz2), similar cell is capable to provide an optical aperture of 50 mm and one of the highest figures of acousto-optical merit in solid states in the visible range. Such a cell is rather desirable for applications to direct parallel multi-channel optical spectrum analysis with substantially improved frequency resolution.

  10. Body Wave and Ambient Noise Tomography of Makushin Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Lanza, F.; Thurber, C. H.; Syracuse, E. M.; Ghosh, A.; LI, B.; Power, J. A.

    2017-12-01

    Located in the eastern portion of the Alaska-Aleutian subduction zone, Makushin Volcano is among the most active volcanoes in the United States and has been classified as high threat based on eruptive history and proximity to the City of Unalaska and international air routes. In 2015, five individual seismic stations and three mini seismic arrays of 15 stations each were deployed on Unalaska island to supplement the Alaska Volcano Observatory (AVO) permanent seismic network. This temporary array was operational for one year. Taking advantage of the increased azimuthal coverage and the array's increased earthquake detection capability, we developed body-wave Vp and Vp/Vs seismic images of the velocity structure beneath the volcano. Body-wave tomography results show a complex structure with the upper 5 km of the crust dominated by both positive and negative Vp anomalies. The shallow high-Vp features possibly delineate remnant magma pathways or conduits. Low-Vp regions are found east of the caldera at approximately 6-9 km depth. This is in agreement with previous tomographic work and geodetic models, obtained using InSAR data, which had identified this region as a possible long-term source of magma. We also observe a high Vp/Vs feature extending between 7 and 12 km depth below the caldera, possibly indicating partial melting, although the resolution is diminished at these depths. The distributed stations allow us to further complement body-wave tomography with ambient noise imaging and to obtain higher quality of Vs images. Our data processing includes single station data preparation and station-pair cross-correlation steps (Bensen et al., 2007), and the use of the phase weighted stacking method (Schimmel and Gallart, 2007) to improve the signal-to-noise ratio of the cross-correlations. We will show surface-wave dispersion curves, group velocity maps, and ultimately a 3D Vs image. By performing both body wave and ambient noise tomography, we provide a high-resolution tomographic image of Makushin Volcano as well as better-constrained earthquake locations, thus enhancing AVO's monitoring and forecasting efforts.

  11. Sensitivity of mesoscale-model forecast skill to some initial-data characteristics, data density, data position, analysis procedure and measurement error

    NASA Technical Reports Server (NTRS)

    Warner, Thomas T.; Key, Lawrence E.; Lario, Annette M.

    1989-01-01

    The effects of horizontal and vertical data resolution, data density, data location, different objective analysis algorithms, and measurement error on mesoscale-forecast accuracy are studied with observing-system simulation experiments. Domain-averaged errors are shown to generally decrease with time. It is found that the vertical distribution of error growth depends on the initial vertical distribution of the error itself. Larger gravity-inertia wave noise is produced in forecasts with coarser vertical data resolution. The use of a low vertical resolution observing system with three data levels leads to more forecast errors than moderate and high vertical resolution observing systems with 8 and 14 data levels. Also, with poor vertical resolution in soundings, the initial and forecast errors are not affected by the horizontal data resolution.

  12. NEOCE: a new external occulting coronagraph experiment for ultimate observations of the chromosphere, corona and interface

    NASA Astrophysics Data System (ADS)

    Damé, Luc; Fineschi, Silvano; Kuzin, Sergey; Von Fay-Siebenburgen, Erdélyi Robert

    Several ground facilities and space missions are currently dedicated to the study of the Sun at high resolution and of the solar corona in particular. However, and despite significant progress with the advent of space missions and UV, EUV and XUV direct observations of the hot chromosphere and million-degrees coronal plasma, much is yet to be achieved in the understanding of these high temperatures, fine dynamic dissipative structures and of the coronal heating in general. Recent missions have shown the definite role of a wide range of waves and of the magnetic field deep in the inner corona, at the chromosphere-corona interface, where dramatic and physically fundamental changes occur. The dynamics of the chromosphere and corona is controlled and governed by the emerging magnetic field. Accordingly, the direct measurement of the chromospheric and coronal magnetic fields is of prime importance. The solar corona consists of many localised loop-like structures or threads with the plasmas brightening and fading independently. The plasma evolution in each thread is believed to be related to the formation of filaments, each one being dynamic, in a non-equilibrium state. The mechanism sustaining this dynamics, oscillations or waves (Alfvén or other magneto-plasma waves), requires both very high-cadence, multi-spectral observations, and high resolution and coronal magnetometry. This is foreseen in the future Space Mission NEOCE (New External Occulting Coronagraph Experiment), the ultimate new generation high-resolution coronagraphic heliospheric mission, to be proposed for ESA M4. NEOCE, an evolution of the HiRISE mission, is ideally placed at the L5 Lagrangian point (for a better follow-up of CMEs), and provides FUV imaging and spectro-imaging, EUV and XUV imaging and spectroscopy, and ultimate coronagraphy by a remote external occulter (two satellites in formation flying 375 m apart minimizing scattered light) allowing to characterize temperature, densities and velocities up to the solar upper chromosphere, transition zone and inner corona with, in particular, 2D very high resolution multi-spectral imaging-spectroscopy and direct coronal magnetic field measurement: a unique set of tools to understand the structuration and onset of coronal heating. We give a detailed account of the proposed mission profile, and its major scientific objectives and model payload (in particular of the SuperASPIICS package of visible, NIR and UV, Lyman-Alpha and OVI, coronagraphs).

  13. Pore Fluid Extraction by Reactive Solitary Waves in 3-D

    NASA Astrophysics Data System (ADS)

    Omlin, Samuel; Malvoisin, Benjamin; Podladchikov, Yury Y.

    2017-09-01

    In the lower crust, viscous compaction is known to produce solitary porosity and fluid pressure waves. Metamorphic (de)volatilization reactions can also induce porosity changes in response to the propagating fluid pressure anomalies. Here we present results from high-resolution simulations using Graphic Processing Unit parallel processing with a model that includes both viscous (de)compaction and reaction-induced porosity changes. Reactive porosity waves propagate in a manner similar to viscous porosity waves, but through a different mechanism involving fluid release and trap in the solid by reaction. These waves self-generate from red noise or an ellipsoidal porosity anomaly with the same characteristic size and abandon their source region to propagate at constant velocity. Two waves traveling at different velocities pass through each other in a soliton-like fashion. Reactive porosity waves thus provide an additional mechanism for fluid extraction at shallow depths with implications for ore formation, diagenesis, metamorphic veins formation, and fluid extraction from subduction zones.

  14. The sinking of the El Faro: predicting real world rogue waves during Hurricane Joaquin.

    PubMed

    Fedele, Francesco; Lugni, Claudio; Chawla, Arun

    2017-09-11

    We present a study on the prediction of rogue waves during the 1-hour sea state of Hurricane Joaquin when the Merchant Vessel El Faro sank east of the Bahamas on October 1, 2015. High-resolution hindcast of hurricane-generated sea states and wave simulations are combined with novel probabilistic models to quantify the likelihood of rogue wave conditions. The data suggests that the El Faro vessel was drifting at an average speed of approximately 2.5 m/s prior to its sinking. As a result, we estimated that the probability that El Faro encounters a rogue wave whose crest height exceeds 14 meters while drifting over a time interval of 10 (50) minutes is ~1/400 (1/130). The largest simulated wave is generated by the constructive interference of elementary spectral components (linear dispersive focusing) enhanced by bound nonlinearities. Not surprisingly then, its characteristics are quite similar to those displayed by the Andrea, Draupner and Killard rogue waves.

  15. Electromagnetically-induced-absorption resonance with high contrast and narrow width in the Hanle configuration

    NASA Astrophysics Data System (ADS)

    Brazhnikov, D. V.; Taichenachev, A. V.; Tumaikin, A. M.; Yudin, V. I.

    2014-12-01

    The method for observing the high-contrast and narrow-width resonances of electromagnetically induced absorption (EIA) in the Hanle configuration under counter-propagating pump and probe light waves is proposed. Here, as an example, we study a ‘dark’ type of atomic dipole transition {{F}\\text{g}}={1}\\to {{F}\\text{e}}={1} in D1 line of 87Rb, where usually the electromagnetically induced transparency can be observed. To obtain the EIA signal one should properly choose the polarizations of light waves and intensities. In contrast to regular schemes for observing EIA signals (under a single traveling light wave in the Hanle configuration or under a bichromatic light field consisting of two traveling waves), the proposed scheme allows one to use buffer gas for significantly improving the properties of the resonance. Also the dramatic influence of atomic transition openness on the contrast of the resonance is revealed, which is advantageous in comparison with cyclic atomic transitions. The nonlinear resonances in a probe-wave transmitted signal with contrast close to 100% and sub-kHz widths can be obtained. The results are interesting in high-resolution spectroscopy, nonlinear and magneto-optics.

  16. Fly Eye radar: detection through high scattered media

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo; Gorwara, Ashok

    2017-05-01

    Longer radio frequency waves better penetrating through high scattered media than millimeter waves, but imaging resolution limited by diffraction at longer wavelength. Same time frequency and amplitudes of diffracted waves (frequency domain measurement) provides information of object. Phase shift of diffracted waves (phase front in time domain) consists information about shape of object and can be applied for reconstruction of object shape or even image by recording of multi-frequency digital hologram. Spectrum signature or refracted waves allows identify the object content. Application of monopulse method with overlap closely spaced antenna patterns provides high accuracy measurement of amplitude, phase, and direction to signal source. Digitizing of received signals separately in each antenna relative to processor time provides phase/frequency independence. Fly eye non-scanning multi-frequency radar system provides simultaneous continuous observation of multiple targets and wide possibilities for stepped frequency, simultaneous frequency, chaotic frequency sweeping waveform (CFS), polarization modulation for reliable object detection. Proposed c-band fly eye radar demonstrated human detection through 40 cm concrete brick wall with human and wall material spectrum signatures and can be applied for through wall human detection, landmines, improvised explosive devices detection, underground or camouflaged object imaging.

  17. Theoretical considerations for mapping activation in human cardiac fibrillation

    NASA Astrophysics Data System (ADS)

    Rappel, Wouter-Jan; Narayan, Sanjiv M.

    2013-06-01

    Defining mechanisms for cardiac fibrillation is challenging because, in contrast to other arrhythmias, fibrillation exhibits complex non-repeatability in spatiotemporal activation but paradoxically exhibits conserved spatial gradients in rate, dominant frequency, and electrical propagation. Unlike animal models, in which fibrillation can be mapped at high spatial and temporal resolution using optical dyes or arrays of contact electrodes, mapping of cardiac fibrillation in patients is constrained practically to lower resolutions or smaller fields-of-view. In many animal models, atrial fibrillation is maintained by localized electrical rotors and focal sources. However, until recently, few studies had revealed localized sources in human fibrillation, so that the impact of mapping constraints on the ability to identify rotors or focal sources in humans was not described. Here, we determine the minimum spatial and temporal resolutions theoretically required to detect rigidly rotating spiral waves and focal sources, then extend these requirements for spiral waves in computer simulations. Finally, we apply our results to clinical data acquired during human atrial fibrillation using a novel technique termed focal impulse and rotor mapping (FIRM). Our results provide theoretical justification and clinical demonstration that FIRM meets the spatio-temporal resolution requirements to reliably identify rotors and focal sources for human atrial fibrillation.

  18. The 4th order GISS model of the global atmosphere

    NASA Technical Reports Server (NTRS)

    Kalnay-Rivas, E.; Bayliss, A.; Storch, J.

    1977-01-01

    The new GISS 4th order model of the global atmosphere is described. It is based on 4th order quadratically conservative differences with the periodic application of a 16th order filter on the sea level pressure and potential temperature equations, a combination which is approximately enstrophy conserving. Several short range forecasts indicate a significant improvement over 2nd order forecasts with the same resolution (approximately 400 km). However the 4th order forecasts are somewhat inferior to 2nd order forecasts with double resolution. This is probably due to the presence of short waves in the range between 1000 km and 2000 km, which are computed more accurately by the 2nd order high resolution model. An operation count of the schemes indicates that with similar code optimization, the 4th order model will require approximately the same amount of computer time as the 2nd order model with the same resolution. It is estimated that the 4th order model with a grid size of 200 km provides enough accuracy to make horizontal truncation errors negligible over a period of a week for all synoptic scales (waves longer than 1000 km).

  19. Magnetoacoustic microscopic imaging of conductive objects and nanoparticles distribution

    NASA Astrophysics Data System (ADS)

    Liu, Siyu; Zhang, Ruochong; Luo, Yunqi; Zheng, Yuanjin

    2017-09-01

    Magnetoacoustic tomography has been demonstrated as a powerful and low-cost multi-wave imaging modality. However, due to limited spatial resolution and detection efficiency of magnetoacoustic signal, full potential of the magnetoacoustic imaging remains to be tapped. Here we report a high-resolution magnetoacoustic microscopy method, where magnetic stimulation is provided by a compact solenoid resonance coil connected with a matching network, and acoustic reception is realized by using a high-frequency focused ultrasound transducer. Scanning the magnetoacoustic microscopy system perpendicularly to the acoustic axis of the focused transducer would generate a two-dimensional microscopic image with acoustically determined lateral resolution. It is analyzed theoretically and demonstrated experimentally that magnetoacoustic generation in this microscopic system depends on the conductivity profile of conductive objects and localized distribution of superparamagnetic iron magnetic nanoparticles, based on two different but related implementations. The lateral resolution is characterized. Directional nature of magnetoacoustic vibration and imaging sensitivity for mapping magnetic nanoparticles are also discussed. The proposed microscopy system offers a high-resolution method that could potentially map intrinsic conductivity distribution in biological tissue and extraneous magnetic nanoparticles.

  20. SOMAR-LES: A framework for multi-scale modeling of turbulent stratified oceanic flows

    NASA Astrophysics Data System (ADS)

    Chalamalla, Vamsi K.; Santilli, Edward; Scotti, Alberto; Jalali, Masoud; Sarkar, Sutanu

    2017-12-01

    A new multi-scale modeling technique, SOMAR-LES, is presented in this paper. Localized grid refinement gives SOMAR (the Stratified Ocean Model with Adaptive Resolution) access to small scales of the flow which are normally inaccessible to general circulation models (GCMs). SOMAR-LES drives a LES (Large Eddy Simulation) on SOMAR's finest grids, forced with large scale forcing from the coarser grids. Three-dimensional simulations of internal tide generation, propagation and scattering are performed to demonstrate this multi-scale modeling technique. In the case of internal tide generation at a two-dimensional bathymetry, SOMAR-LES is able to balance the baroclinic energy budget and accurately model turbulence losses at only 10% of the computational cost required by a non-adaptive solver running at SOMAR-LES's fine grid resolution. This relative cost is significantly reduced in situations with intermittent turbulence or where the location of the turbulence is not known a priori because SOMAR-LES does not require persistent, global, high resolution. To illustrate this point, we consider a three-dimensional bathymetry with grids adaptively refined along the tidally generated internal waves to capture remote mixing in regions of wave focusing. The computational cost in this case is found to be nearly 25 times smaller than that of a non-adaptive solver at comparable resolution. In the final test case, we consider the scattering of a mode-1 internal wave at an isolated two-dimensional and three-dimensional topography, and we compare the results with Legg (2014) numerical experiments. We find good agreement with theoretical estimates. SOMAR-LES is less dissipative than the closure scheme employed by Legg (2014) near the bathymetry. Depending on the flow configuration and resolution employed, a reduction of more than an order of magnitude in computational costs is expected, relative to traditional existing solvers.

Top