Science.gov

Sample records for high salinity environment

  1. Salinization and Saline Environments

    NASA Astrophysics Data System (ADS)

    Vengosh, A.

    2003-12-01

    One of the most conspicuous phenomena of water-quality degradation, particularly in arid and semi-arid zones, is salinization of water and soil resources. Salinization is a long-term phenomenon, and during the last century many aquifers and river basins have become unsuitable for human consumption owing to high levels of salinity. Future exploitation of thousands of wells in the Middle East and in many other water-scarce regions in the world depends, to a large extent, on the degree and rate of salinization. Moreover, every year a large fraction of agricultural land is salinized and becomes unusable.Salinization is a global environmental phenomenon that affects many different aspects of our life (Williams, 2001a, b): changing the chemical composition of natural water resources (lakes, rivers, and groundwater), degrading the quality of water supply to the domestic and agriculture sectors, contribution to loss of biodiversity, taxonomic replacement by halotolerant species ( Williams, 2001a, b), loss of fertile soil, collapse of agricultural and fishery industries, changing of local climatic conditions, and creating severe health problems (e.g., the Aral Basin). The damage due to salinity in the Colorado River Basin alone, for example, ranges between 500 and 750 million per year and could exceed 1 billion per year if the salinity in the Imperial Dam increases from 700 mg L-1 to 900 mg L-1 (Bureau of Reclamation, 2003, USA). In Australia, accelerating soil salinization has become a massive environmental and economic disaster. Western Australia is "losing an area equal to one football oval an hour" due to spreading salinity ( Murphy, 1999). The annual cost for dryland salinity in Australia is estimated as AU700 million for lost land and AU$130 million for lost production ( Williams et al., 2002). In short, the salinization process has become pervasive.Salinity in water is usually defined by the chloride content (mg L-1) or total dissolved solids content (TDS, mg L-1or g

  2. Involvement of Coat Proteins in Bacillus subtilis Spore Germination in High-Salinity Environments.

    PubMed

    Nagler, Katja; Setlow, Peter; Reineke, Kai; Driks, Adam; Moeller, Ralf

    2015-10-01

    The germination of spore-forming bacteria in high-salinity environments is of applied interest for food microbiology and soil ecology. It has previously been shown that high salt concentrations detrimentally affect Bacillus subtilis spore germination, rendering this process slower and less efficient. The mechanistic details of these salt effects, however, remained obscure. Since initiation of nutrient germination first requires germinant passage through the spores' protective integuments, the aim of this study was to elucidate the role of the proteinaceous spore coat in germination in high-salinity environments. Spores lacking major layers of the coat due to chemical decoating or mutation germinated much worse in the presence of NaCl than untreated wild-type spores at comparable salinities. However, the absence of the crust, the absence of some individual nonmorphogenetic proteins, and the absence of either CwlJ or SleB had no or little effect on germination in high-salinity environments. Although the germination of spores lacking GerP (which is assumed to facilitate germinant flow through the coat) was generally less efficient than the germination of wild-type spores, the presence of up to 2.4 M NaCl enhanced the germination of these mutant spores. Interestingly, nutrient-independent germination by high pressure was also inhibited by NaCl. Taken together, these results suggest that (i) the coat has a protective function during germination in high-salinity environments; (ii) germination inhibition by NaCl is probably not exerted at the level of cortex hydrolysis, germinant accessibility, or germinant-receptor binding; and (iii) the most likely germination processes to be inhibited by NaCl are ion, Ca(2+)-dipicolinic acid, and water fluxes.

  3. Germination of Spores of Astrobiologically Relevant Bacillus Species in High-Salinity Environments.

    PubMed

    Nagler, Katja; Julius, Christina; Moeller, Ralf

    2016-07-01

    In times of increasing space exploration and search for extraterrestrial life, new questions and challenges for planetary protection, aiming to avoid forward contamination of different planets or moons with terrestrial life, are emerging. Spore-forming bacteria such as Bacillus species have a high contamination potential due to their spores' extreme resistance, enabling them to withstand space conditions. Spores require liquid water for their conversion into a growing cell (i.e., spore germination and subsequent growth). If present, water on extraterrestrial planets or moons is likely to be closely associated with salts (e.g., in salty oceans or brines), thus constituting high-salinity environments. Spores of Bacillus subtilis can germinate despite very high salt concentrations, although salt stress does exert negative effects on this process. In this study, germination and metabolic reactivation ("outgrowth") of spores of five astrobiologically relevant Bacillus species (B. megaterium, B. pumilus SAFR-032, B. nealsonii, B. mojavensis, and B. vallismortis) in high salinity (≤3.6 M NaCl) were investigated. Spores of different species exhibited different germination and outgrowth capabilities in high salinity, which strongly depended on germination conditions, especially the exact composition of the medium. In this context, a new "universal" germination trigger for Bacillus spores, named KAGE (KCl, L-alanine, D-glucose, ectoine), was identified, which will be very useful for future comparative germination and outgrowth studies on different Bacillus species. Overall, this study yielded interesting new insights on salt stress effects on spore germination and points out the difficulty of predicting the potential of spores to contaminate salty environments on extraterrestrial celestial bodies. Bacillus species-Spores-Germination-High salinity-Salt stress-NaCl-Inhibition. Astrobiology 16, 500-512.

  4. Geophysical and geochemical characterization and delineation of a crude oil spill in a highly saline environment

    NASA Astrophysics Data System (ADS)

    Ross, Cameron Stuart

    Geophysical and geochemical methods were used at Grand Terre 1 (GT1) Island off the coast of Louisiana, an island that had been heavily contaminated with crude oil associated with the April 2010 BP Deepwater Horizon oil spill. Electrical methods and aqueous geochemistry have proven sensitive in the detection of contaminates, as well as the biological and chemical processes associated with the biodegradation of hydrocarbons in the subsurface. However, to the author's knowledge, all of these studies have dealt with mature (or aged) spills within a freshwater environment. The BP Deepwater Horizon oil spill therefor provided a unique opportunity to not only use traditional geophysical and geochemical methods to characterize and delineate fresh crude oil in a highly saline environment and to capture the early time biogeophysical signals resulting from the physical, chemical, and microbial transformation of crude oil in a highly saline environment. Electrical resistivity and electromagnetic methods were used. Barometric pressure, temperature, electrical conductivity, and water level values for the shallow groundwater were continuously logged. Geochemical analysis was performed on water samples collected from piezometers networks installed in the impacted, transitional, and background areas. Sediment cores were retrieved throughout the site and used for grain size analysis, magnetic susceptibility, total organic and inorganic carbon, and x-ray fluorescence. Soil samples were collected for microbial analyses from the impacted and background areas. Microcosms were set up to determine the microbial diversity analysis was used to determine microbial community composition, and biodegradation potential of indigenous populations. Based on the geochemical, microbial, and soil analysis, the relatively higher apparent resistivity anomaly observed between the depths of 0.20 m to 1.20 m bgs could be explained by two scenarios(1): elevated resistivity was caused by gas in the

  5. Germination of Spores of Astrobiologically Relevant Bacillus Species in High-Salinity Environments

    NASA Astrophysics Data System (ADS)

    Nagler, Katja; Julius, Christina; Moeller, Ralf

    2016-07-01

    In times of increasing space exploration and search for extraterrestrial life, new questions and challenges for planetary protection, aiming to avoid forward contamination of different planets or moons with terrestrial life, are emerging. Spore-forming bacteria such as Bacillus species have a high contamination potential due to their spores' extreme resistance, enabling them to withstand space conditions. Spores require liquid water for their conversion into a growing cell (i.e., spore germination and subsequent growth). If present, water on extraterrestrial planets or moons is likely to be closely associated with salts (e.g., in salty oceans or brines), thus constituting high-salinity environments. Spores of Bacillus subtilis can germinate despite very high salt concentrations, although salt stress does exert negative effects on this process. In this study, germination and metabolic reactivation ("outgrowth") of spores of five astrobiologically relevant Bacillus species (B. megaterium, B. pumilus SAFR-032, B. nealsonii, B. mojavensis, and B. vallismortis) in high salinity (≤3.6 M NaCl) were investigated. Spores of different species exhibited different germination and outgrowth capabilities in high salinity, which strongly depended on germination conditions, especially the exact composition of the medium. In this context, a new "universal" germination trigger for Bacillus spores, named KAGE (KCl, L-alanine, D-glucose, ectoine), was identified, which will be very useful for future comparative germination and outgrowth studies on different Bacillus species. Overall, this study yielded interesting new insights on salt stress effects on spore germination and points out the difficulty of predicting the potential of spores to contaminate salty environments on extraterrestrial celestial bodies.

  6. Microbial communities associated with the anthropogenic, highly alkaline environment of a saline soda lime, Poland.

    PubMed

    Kalwasińska, Agnieszka; Felföldi, Tamás; Szabó, Attila; Deja-Sikora, Edyta; Kosobucki, Przemysław; Walczak, Maciej

    2017-07-01

    Soda lime is a by-product of the Solvay soda process for the production of sodium carbonate from limestone and sodium chloride. Due to a high salt concentration and alkaline pH, the lime is considered as a potential habitat of haloalkaliphilic and haloalkalitolerant microbial communities. This artificial and unique environment is nutrient-poor and devoid of vegetation, due in part to semi-arid, saline and alkaline conditions. Samples taken from the surface layer of the lime and from the depth of 2 m (both having pH ~11 and ECe up to 423 dS m(-1)) were investigated using culture-based (culturing on alkaline medium) and culture-independent microbiological approaches (microscopic analyses and pyrosequencing). A surprisingly diverse bacterial community was discovered in this highly saline, alkaline and nutrient-poor environment, with the bacterial phyla Proteobacteria (representing 52.8% of the total bacterial community) and Firmicutes (16.6%) showing dominance. Compared to the surface layer, higher bacterial abundance and diversity values were detected in the deep zone, where more stable environmental conditions may occur. The surface layer was dominated by members of the genera Phenylobacterium, Chelativorans and Skermanella, while in the interior layer the genus Fictibacillus was dominant. The culturable aerobic, haloalkaliphilic bacteria strains isolated in this study belonged mostly to the genus Bacillus and were closely related to the species Bacillus pseudofirmus, B. cereus, B. plakortidis, B. thuringensis and B. pumilus.

  7. Systematic investigation of germination responses of Bacillus subtilis spores in different high-salinity environments.

    PubMed

    Nagler, Katja; Moeller, Ralf

    2015-05-01

    High-salinity environments play an increasingly important role in ecology regarding soil salinization due to human-induced processes, but also need to be considered in terms of natural soil desiccation and extreme habitats. It has been shown previously that spore germination of the ubiquitous soil bacterium Bacillus subtilis is detrimentally affected by the presence of high NaCl concentrations, but the underlying mechanisms and effects of other salts remained obscure. To address these two points, we performed a systematic analysis with 32 different salts using spectrophotometric and microscopic methods. It could be shown that inhibitory strength varies considerably among different salts. Although osmotic effects seem to play an important role, ionic composition and concentration (especially of the anion) as well as chemical properties seem to be decisive for the extent of germination inhibition. At the current state of knowledge, fluxes of ions, Ca(2+)-DPA and water are likely affected by all salts, whereas the exact inhibition mechanism of each salt might further depend on the respective properties of the involved ions. Hence, the observed inhibition likely is a result of several phenomena interacting with each other. Altogether this study highlights the complex impact of ionic environments on the life cycle of spore formers.

  8. Detection of Salmonella Senftenberg associated with high saline environments in mussel processing facilities.

    PubMed

    Martinez-Urtaza, Jaime; Peiteado, Jesus; Lozano-León, Antonio; Garcia-Martin, Oscar

    2004-02-01

    A contamination by Salmonella Senftenberg in frozen mussels was detected in 1998 during a routine analytical surveillance. From June 1998 to December 2001, a total of 3,410 samples of steamed frozen mussels and items related to their manufacture were analyzed for the presence of Salmonella. Salmonella Senftenberg was isolated in 573 (16.8%) samples, and no other serovar was detected. The contamination episodes extended for several months. Salmonella Senftenberg colonies from the first contamination events showed a rugose morphology on agar with a shiny crystalline layer and limited colony formation on microbiological media. These contaminations were mainly associated with brine (300 g of NaCl per liter), while the live molluscs that were being processed were free of Salmonella. When the brine contaminations were nearly controlled, new episodes were detected that were associated with live mussels. In the new episodes, colonies showed the typical characteristics of Salmonella and normal growth on agar. Salmonella Senftenberg presented a high resistance to unfavorable environments and showed a preference for clean environments. While Salmonella Senftenberg could be isolated from mussels after steam treatment, it could not survive after immersion in water at 80 degrees C for 1 min. This fact was used to develop a process to remove contamination from products, minimizing the health risk associated with frozen mussel consumption. The general incidence of Salmonella Senftenberg in facilities and mussels was reduced from 31.2% in 1998 to 2.5% in 2001. During this study, no cases of illness from consumption of frozen mussels were reported, indicating a possible lack of virulence of Salmonella Senftenberg in these contamination events.

  9. Stabilising nanofluids in saline environments.

    PubMed

    Al-Anssari, Sarmad; Arif, Muhammad; Wang, Shaobin; Barifcani, Ahmed; Iglauer, Stefan

    2017-12-15

    Nanofluids (i.e. nanoparticles dispersed in a fluid) have tremendous potential in a broad range of applications, including pharmacy, medicine, water treatment, soil decontamination, or oil recovery and CO2 geo-sequestration. In these applications nanofluid stability plays a key role, and typically robust stability is required. However, the fluids in these applications are saline, and no stability data is available for such salt-containing fluids. We thus measured and quantified nanofluid stability for a wide range of nanofluid formulations, as a function of salinity, nanoparticle content and various additives, and we investigated how this stability can be improved. Zeta sizer and dynamic light scattering (DLS) principles were used to investigate zeta potential and particle size distribution of nanoparticle-surfactant formulations. Also scanning electron microscopy was used to examine the physicochemical aspects of the suspension. We found that the salt drastically reduced nanofluid stability (because of the screening effect on the repulsive forces between the nanoparticles), while addition of anionic surfactant improved stability. Cationic surfactants again deteriorated stability. Mechanisms for the different behaviour of the different formulations were identified and are discussed here. We thus conclude that for achieving maximum nanofluid stability, anionic surfactant should be added. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Identification of Differentially Expressed Genes during Bacillus subtilis Spore Outgrowth in High-Salinity Environments Using RNA Sequencing

    PubMed Central

    Nagler, Katja; Krawczyk, Antonina O.; De Jong, Anne; Madela, Kazimierz; Hoffmann, Tamara; Laue, Michael; Kuipers, Oscar P.; Bremer, Erhard; Moeller, Ralf

    2016-01-01

    In its natural habitat, the soil bacterium Bacillus subtilis often has to cope with fluctuating osmolality and nutrient availability. Upon nutrient depletion it can form dormant spores, which can revive to form vegetative cells when nutrients become available again. While the effects of salt stress on spore germination have been analyzed previously, detailed knowledge on the salt stress response during the subsequent outgrowth phase is lacking. In this study, we investigated the changes in gene expression during B. subtilis outgrowth in the presence of 1.2 M NaCl using RNA sequencing. In total, 402 different genes were upregulated and 632 genes were downregulated during 90 min of outgrowth in the presence of salt. The salt stress response of outgrowing spores largely resembled the osmospecific response of vegetative cells exposed to sustained high salinity and included strong upregulation of genes involved in osmoprotectant uptake and compatible solute synthesis. The σB-dependent general stress response typically triggered by salt shocks was not induced, whereas the σW regulon appears to play an important role for osmoadaptation of outgrowing spores. Furthermore, high salinity induced many changes in the membrane protein and transporter transcriptome. Overall, salt stress seemed to slow down the complex molecular reorganization processes (“ripening”) of outgrowing spores by exerting detrimental effects on vegetative functions such as amino acid metabolism. PMID:27766092

  11. Assessment of Halophyte Growth in Saline Environments

    NASA Astrophysics Data System (ADS)

    Garrett, A.; Stracke, S.; Nowak, B.; Goehring, N.; Saito, L.; Verburg, P.

    2016-12-01

    Salinization of soil and water can pose a serious threat for irrigated agricultural lands in arid and semi-arid regions as high concentrations of salt negatively impacts crop production and, consequently, the agricultural economy. Highly salt-tolerant plants, or halophytes, may provide a viable option for saline areas, enabling economic production from previously unproductive land. Many halophytes can be used for human consumption, forage for livestock, or biofuel production. These plants may also remediate saline soils by taking up the salt from the soil, thereby improving conditions for conventional crop cultivation. This project aims to determine halophyte growth under different salt stresses. Two halophytic crops, AC Saltlander green wheatgrass (Elymus hoffmannii) and Rainbow quinoa (Chenopodium quinoa var. rainbow), were cultivated in a greenhouse with saline soil treatments (2, 4, 6, 8 and 12 dS/m) and saline irrigation treatments (1, 2, 4, and 6 dS/m), resulting in 20 different treatment combinations. Plant characteristics such as leaf area, number of tillers and branches, and leaf height were measured until harvest. A subset of harvested biomass (inflorescences, stems, leaves, and roots) and soil subsamples were analyzed for nutrient and salt content to determine relationships between salinity treatments, aboveground and belowground biomass, and nutrient content. Results from this experiment will be used to help parametrize models simulating different management scenarios for a variety of halophytic species.

  12. Structural Analysis of Proteins in Extreme Saline Environments

    DTIC Science & Technology

    1989-03-16

    for growth, obtain energy from amino acids, grow in media with high concentrations of protein hydrolysates , have very high intracellular salt...do )C/ ~(C N STRUCTURAL ANALYSIS OF PROTEINS IN EXTREME SALINE ENVIRONMENTS by 0 Dr. M. Shoham & Prof. 3. L. Sussman )IR5!Wcizmann Institute of...9 d) Charge Distribution on the Surface of the Protein ................................ 10 e) Adaptation to High Salt

  13. High tolerance to temperature and salinity change should enable scleractinian coral Platygyra acuta from marginal environments to persist under future climate change

    PubMed Central

    Chui, Apple Pui Yi; Ang, Put

    2017-01-01

    With projected changes in the marine environment under global climate change, the effects of single stressors on corals have been relatively well studied. However, more focus should be placed on the interactive effects of multiple stressors if their impacts upon corals are to be assessed more realistically. Elevation of sea surface temperature is projected under global climate change, and future increases in precipitation extremes related to the monsoon are also expected. Thus, the lowering of salinity could become a more common phenomenon and its impact on corals could be significant as extreme precipitation usually occurs during the coral spawning season. Here, we investigated the interactive effects of temperature [24, 27 (ambient), 30, 32°C] and salinity [33 psu (ambient), 30, 26, 22, 18, 14 psu] on larval settlement, post-settlement survival and early growth of the dominant coral Platygyra acuta from Hong Kong, a marginal environment for coral growth. The results indicate that elevated temperatures (+3°C and +5°C above ambient) did not have any significant effects on larval settlement success and post-settlement survival for up to 56 days of prolonged exposure. Such thermal tolerance was markedly higher than that reported in the literature for other coral species. Moreover, there was a positive effect of these elevated temperatures in reducing the negative effects of lowered salinity (26 psu) on settlement success. The enhanced settlement success brought about by elevated temperatures, together with the high post-settlement survival recorded up to 44 and 8 days of exposure under +3°C and +5°C ambient respectively, resulted in the overall positive effects of elevated temperatures on recruitment success. These results suggest that projected elevation in temperature over the next century should not pose any major problem for the recruitment success of P. acuta. The combined effects of higher temperatures and lowered salinity (26 psu) could even be beneficial

  14. High tolerance to temperature and salinity change should enable scleractinian coral Platygyra acuta from marginal environments to persist under future climate change.

    PubMed

    Chui, Apple Pui Yi; Ang, Put

    2017-01-01

    With projected changes in the marine environment under global climate change, the effects of single stressors on corals have been relatively well studied. However, more focus should be placed on the interactive effects of multiple stressors if their impacts upon corals are to be assessed more realistically. Elevation of sea surface temperature is projected under global climate change, and future increases in precipitation extremes related to the monsoon are also expected. Thus, the lowering of salinity could become a more common phenomenon and its impact on corals could be significant as extreme precipitation usually occurs during the coral spawning season. Here, we investigated the interactive effects of temperature [24, 27 (ambient), 30, 32°C] and salinity [33 psu (ambient), 30, 26, 22, 18, 14 psu] on larval settlement, post-settlement survival and early growth of the dominant coral Platygyra acuta from Hong Kong, a marginal environment for coral growth. The results indicate that elevated temperatures (+3°C and +5°C above ambient) did not have any significant effects on larval settlement success and post-settlement survival for up to 56 days of prolonged exposure. Such thermal tolerance was markedly higher than that reported in the literature for other coral species. Moreover, there was a positive effect of these elevated temperatures in reducing the negative effects of lowered salinity (26 psu) on settlement success. The enhanced settlement success brought about by elevated temperatures, together with the high post-settlement survival recorded up to 44 and 8 days of exposure under +3°C and +5°C ambient respectively, resulted in the overall positive effects of elevated temperatures on recruitment success. These results suggest that projected elevation in temperature over the next century should not pose any major problem for the recruitment success of P. acuta. The combined effects of higher temperatures and lowered salinity (26 psu) could even be beneficial

  15. Amoebae and Legionella pneumophila in saline environments.

    PubMed

    Gast, Rebecca J; Moran, Dawn M; Dennett, Mark R; Wurtsbaugh, Wayne A; Amaral-Zettler, Linda A

    2011-03-01

    Amoeboid protists that harbor bacterial pathogens are of significant interest as potential reservoirs of disease-causing organisms in the environment, but little is known about them in marine and other saline environments. We enriched amoeba cultures from sediments from four sites in the New England estuarine system of Mt. Hope Bay, Massachusetts and from sediments from six sites in the Great Salt Lake, Utah. Cultures of amoebae were enriched using both minimal- and non-nutrient agar plates, made with fresh water, brackish water or saltwater. Recovered amoeba cultures were assayed for the presence of Legionella species using nested polymerase chain reactions (PCR) and primers specific for the genus. Positive samples were then screened with nested amplification using primers specific for the macrophage infectivity potentiator surface protein (mip) gene from L. pneumophila. Forty-eight percent (185 out of 388) of isolated amoeba cultures were positive for the presence of Legionella species. Legionella pneumophila was detected by PCR in 4% of the amoeba cultures (17 out of 388), and most of these amoebae were growing on marine media. Our results show that amoebae capable of growing in saline environments may harbor not only a diverse collection of Legionella species, but also species potentially pathogenic to humans.

  16. Phreatophytes under stress: transpiration and stomatal conductance of saltcedar (Tamarix spp.) in a high-salinity environment

    USGS Publications Warehouse

    Glenn, Edward P.; Nagler, Pamela L.; Morino, Kiyomi; Hultine, Kevin

    2013-01-01

    Conclusions: Salts accumulated in the vadose zone at both sites so usable water was confined to the saturated capillary fringe above the aquifer. Existence of a saline aquifer imposes several types of constraints on phreatophyte EG, which need to be considered in models of plant water uptake. The heterogeneous nature of saltcedar EG over river terraces introduces potential errors into estimates of ET by wide-area methods.

  17. Production and characterization of ectoine by Marinococcus sp. ECT1 isolated from a high-salinity environment.

    PubMed

    Wei, Yu-Hong; Yuan, Fang-Wei; Chen, Wei-Chuan; Chen, Shan-Yu

    2011-03-01

    A halophilic bacterium isolated from a salt environment in southern Taiwan was identified as a Marinococcus sp. ECT1. This bacterium could synthesize and accumulate intracellular ectoine as a compatible solute capable of resisting osmotic stress in a hyper-osmotic environment. This study also developed a semi-synthesized medium (YAMS medium), capable of facilitating the growth of this Marinococcus sp. ECT1 with 600 mg/L crude ectoine production. Moreover, Marinococcus sp. ECT1 was grown on YAMS medium containing different initial yeast extract concentrations (C(YE)) (0 to 60 g/L) to demonstrate how C(YE) affects crude ectoine production. While the maximum cell concentration was increased by 23-fold when the C(YE) was 40 g/L, the maximum crude ectoine production reached 2.5 g/L when C(YE) was 40 g/L. In addition to demonstrating the success of the fermentation strategy of ectoine in increasing the production and production yield, experimental results further demonstrated that the fermentation medium of ectoine is highly promising for commercialization. Furthermore, the molecular weight and chemical structure of ectoine were identified and characterized by FAB-MS and (1)H-NMR.

  18. Extended Jarosite Lifetimes in High Salinity Fluids

    NASA Astrophysics Data System (ADS)

    Elwood Madden, M. E.; Madden, A. S.

    2008-12-01

    Particle lifetime calculations utilizing olivine (Olsen and Rimstidt, 2007; Stopar et al., 2006) and jarosite (Elwood Madden et al. 2008) dissolution rates have been used to constrain the duration of aqueous environments on the surface of Mars. Previous rate experiments have shown that jarosite dissolves relatively quickly in dilute aqueous solutions leading to short particle lifetimes. However, mineralogy and bulk chemistry of outcrops containing jarosite at Meridiani Planum suggest high salinity fluids were active in the region. The goal of this study is to determine the effects of high salinity (low activity of water) on jarosite dissolution rates. K-jarosite was synthesized using the methods of Baron and Palmer (1996) and characterized using powder X-ray diffraction, BET surface area analysis, transmission electron microscopy, and atomic force microcopy. Dissolution experiments were conducted by adding 0.5 g K- jarosite to 500 g ultrapure water at 293K. Samples were collected from the continuously-stirred batch reaction at predetermined intervals and filtered using 0.2 micron filters. K+ concentrations in the resulting supernatants were measured using atomic adsorption spectroscopy to determine the rate of jarosite dissolution. Jarosite dissolution experiments in halite saturated brine result in dissolution rates over one order of magnitude slower than similar experiments conducted in dilute solutions. Dissolution in ultrapure water proceeds at log k= -8.5. Jarosite dissolution in halite saturated brine is significantly slower: log k = -10. Using a shrinking sphere model to calculate particle lifetimes, the lifetime of a 10 micron diameter jarosite particle is extended from 1-2 years in dilute solutions to 100 years in high salinity brine. This suggests that while jarosite is an ephemeral phase in dilute solutions, it may persist for significantly longer time periods in high salinity waters, such as those interpreted at Meridiani Planum based on bulk chemistry

  19. Evaluation of micellar-polymer flood projects in a highly saline environment in the El Dorado field

    SciTech Connect

    Ferrell, H.H.; Easterly, R.A.; Murphy, T.B.; Kennedy, J.E.

    1987-12-01

    Two different micellar processes were conducted in the El Dorado Field in an effort to develop an EOR method for reducing the high oil saturation after waterflooding. Each process was field tested on adjacent 25 acre blocks of four 5-spot patterns. This report reviews the field performance, geology, formation evaluation, and laboratory support tests for the field tests. Both processes failed to recover additional oil, primarily because of unavoidable exposure to and mixing with divalent ions. An unusual oil saturation distribution also contributed to the failure. Unfortunately, these conditions could have been predicted from study of previous air, water, and steam injection projects in the field. 35 refs., 46 figs., 10 tabs.

  20. Mechanisms of high salinity tolerance in plants.

    PubMed

    Tuteja, Narendra

    2007-01-01

    Among abiotic stresses, high salinity stress is the most severe environmental stress, which impairs crop production on at least 20% of irrigated land worldwide. In response to high salinity stress, various genes get upregulated, the products of which are involved either directly or indirectly in plant protection. Some of the genes encoding osmolytes, ion channels, receptors, components of calcium signaling, and some other regulatory signaling factors or enzymes are able to confer salinity-tolerant phenotypes when transferred to sensitive plants. Overall, the susceptibility or tolerance to high salinity stress in plants is a coordinated action of multiple stress responsive genes, which also cross talk with other components of stress signal transduction pathways. High salinity exerts its negative impact mainly by disrupting the ionic and osmotic equilibrium of the cell. In saline soils, high levels of sodium ions lead to plant growth inhibition and even death; therefore, mechanisms of salinity tolerance involve sequestration of Na(+) and Cl(-) in vacuoles of the cells, blocking of Na(+) entry into the cell, Na(+) exclusion from the transpiration stream, and some other mechanisms that help in salinity tolerance. Understanding these mechanisms of stress tolerance, along with a plethora of genes involved in the stress signaling network, is important to improve high salinity stress tolerance in crops plants. This chapter first describes the adverse effect of salinity stress and general pathway for the plant stress response, followed by roles of various ion pumps, calcium, SOS pathways, ABA, transcription factors, mitogen-activated protein kinases, glycine betaine, proline, reactive oxygen species, and DEAD-box helicases in salinity stress tolerance. The cross-tolerance between stresses is also mentioned.

  1. Survival strategies of microorganisms in extreme saline environments

    NASA Astrophysics Data System (ADS)

    Imhoff, J. F.

    Halophilic representatives are found in all main lines of evolutionary descendence of microbes: in archaebacteria, Gram-negative and Gram-positive eubacteria, and also in eucaryotes. In principe all halophilic microorganisms have to adapt their surface and membrane structures to their highly ionic environments. Concerning their intracellular compartment two different strategies have been developed: Inorganic ions are largely excluded in some microorganisms while such ions are actively accumulated in others. In particular the second group of organisms has to adapt the whole metabolic machinery to the highly ionic conditions of several molar salts, whereas in the first group only the outer surface of the cytoplasmic membrane and the extracytoplasmic structures are in contact with high concentrations of inorganic ions. In this latter group, a variety of organic solutes is accumulated in response to increases of the salinity of the environment.

  2. Teleost chloride cell. II. Autoradiographic localization of gill Na,K- ATPase in killifish Fundulus heteroclitus adapted to low and high salinity environments

    PubMed Central

    1976-01-01

    The specific binding and inhibitory action of (3H)ouabain were employed to localize transport Na,K-ATPase in the euryhaline teleost gill, a NaCl-transporting osmoregulatory tissue in which both enzyme activity and transepithelial transport vary with environmental salinity. In killifish fully adapted to 10%, 100%, or 200% seawater, the gills were internally perfused and externally irrigated in situ. After suitable internal or external exposure to (3H)ouabain, individual gill arches were excised for Na,K-ATPase assay, measurement of radiolabel binding, or quantitative high-resolution autoradiography. Internal exposure to 50 muM ouabain resulted in essentially complete enzyme inhibition, and binding paralleled the increases in enzyme activity at higher salinities; in contrast, external exposure gave minimal and erratic results consistent with leakage of external ouabain into interstitial fluid. (3H)Ouabain autoradiographs demonstrated that, irrespective of exposure or salinity, most of the gill binding was associated with chloride cell. These cells increased in size and number with salinity and, at the subcellular level, the distribution pattern for bound ouabain was always identical to that for the amplified basal-lateral (tubular system) membrane. The combined physiologicmorphologic results constitute final direct proof that chloride cells are the primary site of gill Na,K-ATPase. More important, they provide convincing evidence for unexpected increases in basal-lateral enzyme at higher salinities and thus raise a fundamental objection to the long-postulated role of the Na pump in secretory NaCl transport. PMID:132451

  3. Effect of high salinity on yeast activated sludge reactor operation.

    PubMed

    Frigon, Matthew Dubois; Liu, Dongfang

    2016-11-01

    Yeast activated sludge was developed and operated at salinities of 0, 15, 30, 45, and 60 g/l NaCl. The kinetics of the various sludges degrading a wastewater with glycerol as the carbon source were determined. Inhibition due to salinity was analyzed and it was found that the limiting concentration of NaCl is 120 g/l. Salinity affects the maximum growth rate of the sludge. Reactors were exposed to shock salinity changes. Salt shocks affected maximum growth rate of the reactors but treatment was still effective. The effect of pH adjustment was investigated and it was determined that hourly adjustments of pH led to the most effective treatment outcomes. Finally, DNA of the reactors was investigated. Although Scheffersomyces spartinae (Debaryomycetaceae family) was clearly more suited to the high salinity environment than other yeast species, even at high salinity the number of species was diverse. This suggests the potential to use a number of yeast species for high salinity wastewater treatment.

  4. Potential of Unicellular Cyanobacteria from Saline Environments as Exopolysaccharide Producers

    PubMed Central

    De Philippis, Roberto; Margheri, Maria Cristina; Materassi, Riccardo; Vincenzini, Massimo

    1998-01-01

    Fifteen Cyanothece strains isolated from saline environments have been characterized with regard to exopolysaccharide (EPS) production. The polymers contained six to eight monosaccharides, with one or two acidic sugars. In some EPS samples, the additional presence of acetyl, pyruvyl, and/or sulfate groups was also detected. PMID:16349518

  5. Biogeography and Adaptive evolution of Streptomyces Strains from saline environments

    PubMed Central

    Zhao, Fei; Qin, Yu-Hua; Zheng, Xin; Zhao, Hong-Wei; Chai, Dong-Yan; Li, Wei; Pu, Ming-Xiang; Zuo, Xing-Sheng; Qian, Wen; Ni, Ping; Zhang, Yong; Mei, Han; He, Song-Tao

    2016-01-01

    The genus Streptomyces is a widespread genus within the phylum Actinobacteria and has been isolated from various environments worldwide. However, little is known about whether biogeography affects distributional pattern of Streptomyces in salty environments. Such information is essential for understanding the ecology of Streptomyces. Here we analyzed four house-keeping genes (16S rRNA, rpoB, recA and atpD) and salty-tolerance related genes (ectA-ectD) of 38 Streptomyces strains isolated from saline environments in Yunnan and Xinjiang Provinces of western China. The obtained Streptomyces strains were classified into three operational taxonomic units, each comprising habitat-specific geno- and ecotype STs. In combination with expressional variations of salty-tolerance related genes, the statistical analyses showed that spatial distance and environmental factors substantially influenced Streptomyces distribution in saline environments: the former had stronger influence at large spatial scales (>700 km), whereas the latter was influential at large (>700 km) and small spatial scales (<700 km). Plus, the quantitative analyses of salty-tolerence related genes (ectA-D) indicated that Streptomyces strains from salt lakes have higher expression of ectA-D genes and could accumulate larger quantities of ectoine and hydroxyectoine than strains from salt mines, which could help them resist to salinity in the hypersaline environments. PMID:27596681

  6. The low salinity effect at high temperatures

    DOE PAGES

    Xie, Quan; Brady, Patrick V.; Pooryousefy, Ehsan; ...

    2017-04-05

    The mechanism(s) of low salinity water flooding (LSWF) must be better understood at high temperatures and pressures if the method is to be applied in high T/P kaolinite-bearing sandstone reservoirs. We measured contact angles between a sandstone and an oil (acid number, AN = 3.98 mg KOH/g, base number, BN = 1.3 mg KOH/g) from a reservoir in the Tarim Field in western China in the presence of various water chemistries. We examined the effect of aqueous ionic solutions (formation brine, 100X diluted formation brine, and softened water), temperature (60, 100 and 140 °C) and pressure (20, 30, 40, andmore » 50 MPa) on the contact angle. We also measured the zeta potential of the oil/water and water/rock interfaces to calculate oil/brine/rock disjoining pressures. A surface complexation model was developed to interpret contact angle measurements and compared with DLVO theory predictions. Contact angles were greatest in formation water, followed by the softened water, and low salinity water at the same pressure and temperature. Contact angles increased slightly with temperature, whereas pressure had little effect. DLVO and surface complexation modelling predicted similar wettability trends and allow reasonably accurate interpretation of core-flood results. Water chemistry has a much larger impact on LSWF than reservoir temperature and pressure. As a result, low salinity water flooding should work in high temperature and high pressure kaolinite-bearing sandstone reservoirs.« less

  7. Influence of thermally activated paper sludge on the behaviour of blended cements subjected to saline and non-saline environments.

    PubMed

    García, Rosario; Rubio, Virginia; Vegas, Iñigo; Frías, Moisés

    2009-05-01

    One of the problems to affect Portland cement matrices is low resistance to aggressive agents, due principally to the presence of a high content of portlandite in the hydrated cements. Pozzolanic materials have played an important role in the improving the durability of cement-based materials for decades. This work studies the behaviour of cement mortar matrices blended with 10% calcined paper sludge (source for metakaolinite) and exposed to different environmental conditions (saline and non-saline environments) after 6 and 12 months of exposure. Two cements were studied: an ordinary Portland cement (CEM 1, 42.5R), acting as reference cement, and a blended cement formulated by mixing 90% (by mass) of CEM 1, 42.5R with 10% (by mass) of paper sludge calcined at 700 degrees C for 2 h. The specimens were exposed 1 year to saline and non-saline environments. All the mineralogy samples were studied through X-ray diffraction and scanning electron microscopy (SEM) equipped with an energy dispersive X-ray analyser. The in-depth study on ionic mobility was performed on samples subjected to natural exposure (coast and tableland) for 6 and 12 months. Portland cement was composed of quartz, calcite, calcium hydroxide and tobermorite gels. The pozzolanic cement (10% calcined paper sludge) is of the same composition but a high calcite concentration and barium carbonate. SEM analysis from coastline show deposits of variable composition. The deposits are identified on the surface of different mineral components. The minerals from tableland are much fractured, i.e. calcite and feldspars. Inside the fractures, the deposits and the ions are located and trapped superficially. SEM analysis of control cement Portland and 10% calcined paper sludge shows deposits on quartz and calcite with a very high concentration of Pb, Zn, Cl and barium sulphate. A very porous aspect is due to the presence of the different aggregate types. This porous configuration permits retention of the ion

  8. Capacitive Deionization of High-Salinity Solutions

    DOE PAGES

    Sharma, Ketki; Gabitto, Jorge; Mayes, Richard T.; ...

    2014-12-22

    Desalination of high salinity solutions has been studied using a novel experimental technique and a theoretical model. Neutron imaging has been employed to visualize lithium ions in mesoporous carbon materials, which are used as electrodes in capacitive deionization for water desalination. Experiments were conducted with a flow-through capacitive deionization cell designed for neutron imaging and with lithium chloride (6LiCl) as the electrolyte. Sequences of neutron images have been obtained at a relatively high concentration of lithium chloride (6LiCl) solution to provide information on the transport of ions within the electrodes. A new model that computes the individual ionic concentration profilesmore » inside mesoporous carbon electrodes has been used to simulate the capacitive deionization process. Modifications have also been introduced into the simulation model to calculate results at high electrolyte concentrations. Experimental data and simulation results provide insight into why capacitive deionization is not effective for desalination of high ionic-strength solutions. The combination of experimental information, obtained through neutron imaging, with the theoretical model will help in the design of capacitive deionization devices, which can improve the process for high ionic-strength solutions.« less

  9. Capacitive Deionization of High-Salinity Solutions

    SciTech Connect

    Sharma, Ketki; Gabitto, Jorge; Mayes, Richard T.; Yiacoumi, Sotira; Bilheux, Hassina Z.; Walker, Lakeisha M.H.; Dai, Sheng; Tsouris, Costas

    2014-12-22

    Desalination of high salinity solutions has been studied using a novel experimental technique and a theoretical model. Neutron imaging has been employed to visualize lithium ions in mesoporous carbon materials, which are used as electrodes in capacitive deionization for water desalination. Experiments were conducted with a flow-through capacitive deionization cell designed for neutron imaging and with lithium chloride (6LiCl) as the electrolyte. Sequences of neutron images have been obtained at a relatively high concentration of lithium chloride (6LiCl) solution to provide information on the transport of ions within the electrodes. A new model that computes the individual ionic concentration profiles inside mesoporous carbon electrodes has been used to simulate the capacitive deionization process. Modifications have also been introduced into the simulation model to calculate results at high electrolyte concentrations. Experimental data and simulation results provide insight into why capacitive deionization is not effective for desalination of high ionic-strength solutions. The combination of experimental information, obtained through neutron imaging, with the theoretical model will help in the design of capacitive deionization devices, which can improve the process for high ionic-strength solutions.

  10. Effect of salinity on the concentrations of radioisotopes in the aquatic environment of a hypersaline coastal lagoon.

    PubMed

    Ramadan, Khaled A; Seddeek, Mostafa K; Sharshar, Taher; Elnimr, Tarek; Badran, Hussein M

    2014-06-01

    Research of the effect of salinity on the fate of radionuclides has been focused on seas or estuarine systems while there is almost no information on marine environments with a salinity higher than that of sea water. The hypersaline Bardawil lagoon is a concentration basin, with evaporation exceeding precipitation. This study presents the characteristics of some environmental factors including salinity and their influence on the distribution of natural and artificial radionuclides in different compartments of the lagoon. The concentrations of (238)U, (234)Th, (228)Ra and (137)Cs in sediments show some degree of dependency on the water's salinity. Migration of these radionuclides in the lagoon's sediments must take place from high salinity to low-salinity regions. Cluster analysis revealed the data structure for sediment by separating (137)Cs and (40)K from (232)Th, (226)Ra, and (234)Th and for sand by separating (40)K from the other radioisotopes.

  11. The Effect of Changes in Acidity and Salinity on the Octanol Water Partition Coefficient of Monomethylmercuric Species Present in Aquatic Environments at High pE.

    DTIC Science & Technology

    1991-05-24

    environment by a variety of military activities. Mercury fulminates are the primers of choice when optimal sensitivity and brisance are required. Prior to...World War II fulminates of mercury were used as primer material in the majority of American-made ordnance (1). In addition, releases have been...7 Figure 3...................................................... 8 INTRODUCTION Mercury has been released to the

  12. Monitoring The Dynamics Of Hyper-Saline Environments With Polarimetric SAR: Death Valley, California Example

    NASA Astrophysics Data System (ADS)

    Lasne, Y.; McDonald, K.; Paillou, P.; Freeman, A.; Chapman, B.; Farr, T.; Ruffié, G.; Malézieux, J.

    2008-12-01

    Soil salinization in arid and semi-arid regions still remains one of the most important threats not only for socio-economical issues when dealing with water ressources management, but also for ecological matters such as: desertification, climate changes, and biomass reduction. Then, monitoring and mapping of soil salinity distribution represent today a key challenge in our understanding of such environmental processes. Being highly dependent on the dielectric properties of soils, synthetic aperture radar (SAR) appears to be an efficient tool for the remote sensing of hyper-saline environments. More precisely, the influence of saline deposits on SAR imagery lies in the solubility and ionic properties of the minerals which strongly influence both real and imaginary parts of the complex permittivity of such deposits, and thus the radar backscattering coefficient. Based on temporal series acquired with spaceborne SAR systems (ALOS/PALSAR, SIR-C) over the Death Valley (CA), we show that the copolarized backscattering ratio and phase difference derived from SAR data can be used as suitable indicators to monitor the dynamics of hyper-saline deposits. In particular, we propose these copolar parameters to follow the variations in the dielectric properties of moistened and salt-affected soils on a seasonal time scale because of the close relationship between the salinity (governed by the soil moisture content) and the complex permittivity of the soils. We also highlight a strong temporal correlation between the copolar parameters and weather data since precipitation events control the soil moisture and salinity. In order to allow for a better interpretation of the saline deposits signatures observed on SAR data, we also perform analytical simulations of the radar backscattering associated with saline deposits by means of the IEM scattering model. Using laboratory and in~ situ dielectric measurements as input parameters, we simulate the copolar ratio and phase difference as

  13. High-pressure saline washing of allografts reduces bacterial contamination.

    PubMed

    Hirn, M Y; Salmela, P M; Vuento, R E

    2001-02-01

    60 fresh-frozen bone allografts were contaminated on the operating room floor. No bacterial growth was detected in 5 of them after contamination. The remaining 55 grafts had positive bacterial cultures and were processed with three methods: soaking in saline, soaking in antibiotic solution or washing by high-pressure saline. After high-pressure lavage, the cultures were negative in three fourths of the contaminated allografts. The corresponding figures after soaking grafts in saline and antibiotic solution were one tenth and two tenths, respectively. High-pressure saline cleansing of allografts can be recommended because it improves safety by reducing the superficial bacterial bioburden.

  14. High salinity facilitates dolomite precipitation mediated by Haloferax volcanii DS52

    NASA Astrophysics Data System (ADS)

    Qiu, Xuan; Wang, Hongmei; Yao, Yanchen; Duan, Yong

    2017-08-01

    Although most modern dolomites occur in hypersaline environments, the effects of elevated salinity on the microbial mediation of dolomite precipitation have not been fully evaluated. Here we report results of dolomite precipitation in association with a batch culture of Haloferax volcanii DS52, a halophilic archaeon, under various salinities (from 120‰ to 360‰) and the impact of salinity on microbe-mediated dolomite formation. The mineral phases, morphology and atomic arrangement of the precipitates were analyzed by XRD, SEM and TEM, respectively. The amount of amino acids on the archaeal cell surface was quantified by HPLC/MS. The XRD analysis indicated that disordered dolomite formed successfully with the facilitation of cells harvested from cultures with relatively high salinities (200‰ and 280‰) but was not observed in association with cells harvested from cultures with lower salinity (120‰) or the lysates of cells harvested from extremely high salinity (360‰). The TEM analysis demonstrated that the crystals from cultures with a salinity of 200‰ closely matched that of dolomite. Importantly, we found that more carboxyl groups were presented on the cell surface under high salinity conditions to resist the high osmotic pressure, which may result in the subsequent promotion of dolomite formation. Our finding suggests a link between variations in the hydro-chemical conditions and the formation of dolomite via microbial metabolic activity and enhances our understanding about the mechanism of microbially mediated dolomite formation under high salinity conditions.

  15. Response of tomato (Lycopersicon esculentum Mill.) to salinity in the early growth stages for agricultural cultivation in saline environments.

    PubMed

    Akinci, Sermin; Yilmaz, Kadir; Akinci, Irfan Ersin

    2004-07-01

    Salinity is a serious environmental problem. Growing of plants like tomato can be solution for coping with soil salinity. For this purpose, response of tomato to salinity has been tested in the early growth stages. Characteristics of germination (percentage and period; length and fresh-dry weight of radicle and hypcotyl) and seedling (length and fresh-dry weight of root, shoot and whole plant; leaf number and area based on Relative Growth Rate); Na+ and K+ content of leaf; K+/Na+ rate of leaf has been studied at the 0, 50, 100 and 150 mM NaCl levels. Thus, it determined that tomato can be indicator for agricultural cultivation at the salinity environments at the early growth stages.

  16. Rhodococcus sp. RB1 grows in the presence of high nitrate and nitrite concentrations and assimilates nitrate in moderately saline environments.

    PubMed

    Blasco, R; Martínez-Luque, M; Madrid, M P; Castillo, F; Moreno-Vivián, C

    2001-06-01

    Rhodococcus sp. RB1 was able to thrive in media with up to 0.9 M NaCl or KCl and in the presence of high concentrations of nitrate (up to 0.9 M) and nitrite (up to 60 mM), but only under oxic conditions. An adaptation period was not required for salt tolerance, but a rapid extrusion of K+ and intake of Na+ was observed after addition of 0.5 M NaCl. Nitrate assimilation was limited by the carbon supply, but nitrite was not accumulated in the culture medium, even at nitrate concentrations as high as 0.8 M, thus suggesting that nitrite reduction does not limit nitrate assimilation. The presence of NaCl or KCl did not affect nitrate or nitrite uptake, which were completely inhibited by ammonium or glutamine. Rhodococcus sp. RB1 nitrate reductase had an apparent molecular mass of 142 kDa and used NADH and reduced bromophenol blue or viologens as electron donors, independently of the presence of salt. The enzyme was associated with an NADH-diaphorase activity and was induced by nitrate and repressed by ammonium or glutamine, thus showing typical biochemical and regulatory properties of bacterial assimilatory NADH-nitrate reductases. The enzyme was active in vitro in the presence of 3 M NaCl or KCI, but the maximal activity was observed at 0.5 M salt. Addition of 2 M NaCl increased the optimal temperature of the enzyme from 12 to 32 degrees C, but the optimal pH (10.3) was unaffected.

  17. Predictive models of spatial transcriptional response to high salinity.

    PubMed

    Uygun, Sahra; Seddon, Alexander E; Azodi, Christina B; Shiu, Shin-Han

    2017-04-03

    Plants are exposed to a variety of environmental conditions, and their ability to respond to environment variation depends on the proper regulation of gene expression in an organ, tissue, and cell type specific manner. Although our knowledge is accumulating on how stress responses are regulated, a genome-wide model of how plant transcription factors (TFs) and cis-regulatory elements (CREs) control spatially specific stress response has yet to emerge. Using Arabidopsis thaliana as a model, we identified a set of 1,894 putative CREs (pCREs) that are associated with high salinity (salt) up-regulated genes in the root or the shoot. These pCREs led to computational models that can better predict salt up-regulated genes in root and shoot compared to models based on known TF binding motifs. In addition, we incorporated TF binding sites identified via large-scale in vitro assays, chromatin accessibility, evolutionary conservation and pCRE combinatorial relations in machine learning models, and found that only consideration of pCRE combinations led to better performance in salt up-regulation prediction in root and shoot. Our results suggest that the plant organ transcriptional response to high salinity is regulated by a core set of pCREs and provide a genome-wide view on the cis-regulatory code of plant spatial transcriptional responses to environmental stress.

  18. The interactive effects of nutrient and salinity stress on corals from distinct environments on the Belize Barrier Reef System

    NASA Astrophysics Data System (ADS)

    Townsend, J. E.; Bove, C. B.; Baumann, J.; Davies, S. W.; Castillo, K.

    2016-02-01

    Global climate change has induced shifts in local weather patterns near many coral reef ecosystems, resulting in greater frequency and intensity of major rainfall events. These changes in precipitation, combined with land use changes, have resulted in greater nutrient loading and more severe seasonal decreases in seawater salinity surrounding coral reefs. In order to investigate how different populations of corals might respond to these stressors, we are quantifying the effects of salinity and nitrate (NO3-) concentrations on calcification across corals from nearshore and forereef environments. Colonies of Siderastrea siderea, a commonly found highly stress tolerant species in the southern portion of the Belize Barrier Reef System (BBRS) were collected, fragmented, and reared in four salinity/nutrient treatments that simulate natural seasonal conditions: 1) local average salinity (32 psu) and nutrient concentration ([NO3-] = 2.5 μmol), 2) low salinity (24 psu) with average nutrient concentration, 3) average salinity and increased nutrient concentration (([NO3-] = 5.5 μmol), and 4) low salinity and increased nutrient concentration. S. siderea were collected from nearshore, where nutrient loading and depressed salinity occur regularly during the rainy season , and the forereef, where corals are less commonly exposed to these stressors. Changes in coral calcification and symbiont density were monitored for 60 days in order to simulate the duration of one rainy season in southern Belize, which experiences 2-3 months of heavy rainfall each year. Understanding these interactive roles of nutrients and salinity, as well as the role that local environments play in coral survivorship, will be important considerations for the future of coral reefs in the face of climate change.

  19. Corrosion Behavior of Reverse-Pulse Electrodeposited Zn-Ni Alloys in Saline Environment

    NASA Astrophysics Data System (ADS)

    Boonyongmaneerat, Yuttanant; Saengkiettiyut, Kanokwan; Saenapitak, Sawalee; Sangsuk, Supin

    2014-01-01

    The study investigates the relationship of the reverse-pulse electrodeposited zinc-nickel alloy coatings' characteristics and their corrosion behaviors in a saline environment, using both anodic polarization and electrochemical impedance analysis. The introduction of anodic pulsation gives deposits of more refined grain sizes and increased nickel contents, resulting in improvement of the corrosion resistance. High anodic current densities employed in the reverse-pulse electrodeposition, however, modulate crystallographic orientations of the grains, introduce porosity to the structure, and hence adversely affect the corrosion resistance of the coating deposits.

  20. Stress Corrosion Cracking in Al-Zn-Mg-Cu Aluminum Alloys in Saline Environments

    NASA Astrophysics Data System (ADS)

    Holroyd, N. J. Henry; Scamans, G. M.

    2013-03-01

    80 to 85 kJ/mol, whereas for high-copper-containing alloys (>~0.8 wt pct), they are typically ranging from 20 to 40 kJ/mol for under- and peak-aged alloys, and based on limited data, around 85 kJ/mol for over-aged tempers. This means that crack propagation in saline environments is most likely to occur by a hydrogen-related process for low-copper-containing Al-Zn-Mg-Cu alloys in under-, peak- and over-aged tempers, and for high-copper alloys in under- and peak-aged tempers. For over-aged high-copper-containing alloys, cracking is most probably under anodic dissolution control. Future stress corrosion studies should focus on understanding the factors that control crack initiation, and insuring that the next generation of higher performance Al-Zn-Mg-Cu alloys has similar longer crack initiation times and crack propagation rates to those of the incumbent alloys in an over-aged condition where crack rates are less than 1 mm/month at a high stress intensity factor.

  1. High abundances of aerobic anoxygenic phototrophs in saline steppe lakes.

    PubMed

    Medová, Hana; Boldareva, Ekaterina N; Hrouzek, Pavel; Borzenko, Svetlana V; Namsaraev, Zorigto B; Gorlenko, Vladimir M; Namsaraev, Bair B; Koblížek, Michal

    2011-05-01

    We studied the distribution of anoxygenic phototrophs in 23 steppe lakes in the Transbaikal region (Russia), in Uzbekistan (Central Asia) and in the Crimean peninsula (Ukraine). The lakes varied in their mineral content and composition (salinities from 0.2 to 300 g L(-1) ). The Transbaikal lakes were alkaline (pH>9), with high amounts of soda. The Uzbek and Crimean lakes were more pH neutral, frequently with high amounts of sulfates. The presence of anoxygenic phototrophs was registered by infrared epifluorescence microscopy, infrared fluorometry and pigment analyses. In mostly shallow, fully oxic lakes, the anoxygenic phototrophs represented 7-65% of the total prokaryotes, with the maxima observed in Transbaikal soda lakes Gorbunka (32%), Khilganta (65%), Zanday (58%) and Zun-Kholvo (46%). Some of the lakes contained over 1 μg bacteriochlorophyll L(-1) . In contrast, only small amounts of anoxygenic phototrophs were present in highly mineralized lakes (>100 g total salts L(-1) ); Borzinskoe, Tsagan-Nur (Transbaikal), Staroe (Crimea) and in the residual part of the south-west Aral Sea (Uzbekistan). The oxic environment and the specific diurnal changes of bacteriochlorophyll concentration observed suggest that the phototrophic community was mostly composed of aerobic anoxygenic phototrophs. The high abundances and bacteriochlorophyll concentrations point to an important role of aerobic anoxygenic phototrophs in the habitats studied. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  2. Soil salinity mapping and hydrological drought indices assessment in arid environments based on remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Elhag, Mohamed; Bahrawi, Jarbou A.

    2017-03-01

    Vegetation indices are mostly described as crop water derivatives. The normalized difference vegetation index (NDVI) is one of the oldest remote sensing applications that is widely used to evaluate crop vigor directly and crop water relationships indirectly. Recently, several NDVI derivatives were exclusively used to assess crop water relationships. Four hydrological drought indices are examined in the current research study. The water supply vegetation index (WSVI), the soil-adjusted vegetation index (SAVI), the moisture stress index (MSI) and the normalized difference infrared index (NDII) are implemented in the current study as an indirect tool to map the effect of different soil salinity levels on crop water stress in arid environments. In arid environments, such as Saudi Arabia, water resources are under pressure, especially groundwater levels. Groundwater wells are rapidly depleted due to the heavy abstraction of the reserved water. Heavy abstractions of groundwater, which exceed crop water requirements in most of the cases, are powered by high evaporation rates in the designated study area because of the long days of extremely hot summer. Landsat 8 OLI data were extensively used in the current research to obtain several vegetation indices in response to soil salinity in Wadi ad-Dawasir. Principal component analyses (PCA) and artificial neural network (ANN) analyses are complementary tools used to understand the regression pattern of the hydrological drought indices in the designated study area.

  3. Modeling and Optimization of Printed Spiral Coils in Air, Saline, and Muscle Tissue Environments

    PubMed Central

    Jow, Uei-Ming

    2009-01-01

    Printed spiral coils (PSC) are viable candidates for near field wireless power transmission to the next generation of high performance neuroprosthetic devices with extreme size constraints, which will target intra-ocular and intracranial spaces. Optimizing the PSC geometries to maximize the power transfer efficiency of the wireless link is imperative to reduce the size of the external energy source, heating of the tissue, and interference with other devices. Implantable devices need to be hermetically sealed in biocompatible materials and placed in a conductive environment with high permittivity (tissue), which can affect the PSC characteristics. We have constructed a detailed model that includes the effects of the surrounding environment on the PSC parasitic components and eventually on the power transfer efficiency. We have combined this model with an iterative design method that starts with a set of realistic design constraints and ends with the optimal PSC geometries. We applied our design methodology to optimize the wireless link of a 1 cm2 implantable device example, operating at 13.56 MHz. Measurement results showed that optimized PSC pairs, coated with 0.3 mm of silicone, achieved 72.2%, 51.8%, and 30.8% efficiencies at a face to face relative distance of 10 mm, in air, saline, and muscle, respectively. The PSC which was optimized for air could only bear 40.8% and 21.8% efficiencies in saline and muscle, respectively, showing that including the PSC tissue environment in the design process can result in more than 9% improvement in the power transfer efficiency. PMID:19964693

  4. Modeling and Optimization of Printed Spiral Coils in Air, Saline, and Muscle Tissue Environments

    PubMed Central

    Jow, Uei-Ming; Ghovanloo, Maysam

    2010-01-01

    Printed spiral coils (PSCs) are viable candidates for near-field wireless power transmission to the next generation of high-performance neuroprosthetic devices with extreme size constraints, which will target intraocular and intracranial spaces. Optimizing the PSC geometries to maximize the power transfer efficiency of the wireless link is imperative to reduce the size of the external energy source, heating of the tissue, and interference with other devices. Implantable devices need to be hermetically sealed in biocompatible materials and placed in a conductive environment with high permittivity (tissue), which can affect the PSC characteristics. We have constructed a detailed model that includes the effects of the surrounding environment on the PSC parasitic components and eventually on the power transfer efficiency. We have combined this model with an iterative design method that starts with a set of realistic design constraints and ends with the optimal PSC geometries. We applied our design methodology to optimize the wireless link of a 1-cm2 implantable device example, operating at 13.56 MHz. Measurement results showed that optimized PSC pairs, coated with 0.3 mm of silicone, achieved 72.2%, 51.8%, and 30.8% efficiencies at a face-to-face relative distance of 10 mm in air, saline, and muscle, respectively. The PSC, which was optimized for air, could only bear 40.8% and 21.8% efficiencies in saline and muscle, respectively, showing that by including the PSC tissue environment in the design process the result can be more than a 9% improvement in the power transfer efficiency. PMID:20948991

  5. Treatment of high salinity brines by direct contact membrane distillation: Effect of membrane characteristics and salinity.

    PubMed

    Li, Jianfeng; Guan, Yunshan; Cheng, Fangqin; Liu, Yu

    2015-12-01

    Direct contact membrane distillation (DCMD) is one of the attractive technologies for high salinity brine treatment. In this study, four polytetrafluoroethylene (PTFE) membranes were examined in treating highly concentrated salt solutions. Results showed that non-supported membranes generally have a higher overall mass transfer coefficient but porosity seems to be the most important parameter controlling membrane flux and thermal efficiency. Supported membranes with large thickness had relatively higher thermal efficiency than small thickness. This can be attributed to their reduced heat loss through heat condition. In addition, KCl, NaCl and MgCl2 solutions showed distinct trends over flux decline at high salt concentrations (⩾2.0M). The difference in flux was largely due to the discrepancy in water activities of these solutions (KCl>NaCl>MgCl2). However, the effect of viscosity on permeate flux could not be neglected for MgCl2 at high salt concentrations as the suddenly increased viscosity could lead to serious temperature polarization. This study indicates that membrane distillation is a promising technology for high salinity brine treatment.

  6. Aquatic insects in a multistress environment: cross-tolerance to salinity and desiccation.

    PubMed

    Pallarés, Susana; Botella-Cruz, María; Arribas, Paula; Millán, Andrés; Velasco, Josefa

    2017-04-01

    Exposing organisms to a particular stressor may enhance tolerance to a subsequent stress, when protective mechanisms against the two stressors are shared. Such cross-tolerance is a common adaptive response in dynamic multivariate environments and often indicates potential co-evolution of stress traits. Many aquatic insects in inland saline waters from Mediterranean-climate regions are sequentially challenged with salinity and desiccation stress. Thus, cross-tolerance to these physiologically similar stressors could have been positively selected in insects of these regions. We used adults of the saline water beetles Enochrus jesusarribasi (Hydrophilidae) and Nebrioporus baeticus (Dytiscidae) to test cross-tolerance responses to desiccation and salinity. In independent laboratory experiments, we evaluated the effects of (i) salinity stress on the subsequent resistance to desiccation and (ii) desiccation stress (rapid and slow dehydration) on the subsequent tolerance to salinity. Survival, water loss and haemolymph osmolality were measured. Exposure to stressful salinity improved water control under subsequent desiccation stress in both species, with a clear cross-tolerance (enhanced performance) in N. baeticus In contrast, general negative effects on performance were found under the inverse stress sequence. The rapid and slow dehydration produced different water loss and haemolymph osmolality dynamics that were reflected in different survival patterns. Our finding of cross-tolerance to salinity and desiccation in ecologically similar species from distant lineages, together with parallel responses between salinity and thermal stress previously found in several aquatic taxa, highlights the central role of adaption to salinity and co-occurring stressors in arid inland waters, having important implications for the species' persistence under climate change.

  7. Transcriptional Homeostasis of a Mangrove Species, Ceriops tagal, in Saline Environments, as Revealed by Microarray Analysis

    PubMed Central

    Liang, Shan; Fang, Lu; Zhou, Renchao; Tang, Tian; Deng, Shulin; Dong, Suisui; Huang, Yelin; Zhong, Cairong; Shi, Suhua

    2012-01-01

    Background Differential responses to the environmental stresses at the level of transcription play a critical role in adaptation. Mangrove species compose a dominant community in intertidal zones and form dense forests at the sea-land interface, and although the anatomical and physiological features associated with their salt-tolerant lifestyles have been well characterized, little is known about the impact of transcriptional phenotypes on their adaptation to these saline environments. Methodology and Principal findings We report the time-course transcript profiles in the roots of a true mangrove species, Ceriops tagal, as revealed by a series of microarray experiments. The expression of a total of 432 transcripts changed significantly in the roots of C. tagal under salt shock, of which 83 had a more than 2-fold change and were further assembled into 59 unigenes. Global transcription was stable at the early stage of salt stress and then was gradually dysregulated with the increased duration of the stress. Importantly, a pair-wise comparison of predicted homologous gene pairs revealed that the transcriptional regulations of most of the differentially expressed genes were highly divergent in C. tagal from that in salt-sensitive species, Arabidopsis thaliana. Conclusions/Significance This work suggests that transcriptional homeostasis and specific transcriptional regulation are major events in the roots of C. tagal when subjected to salt shock, which could contribute to the establishment of adaptation to saline environments and, thus, facilitate the salt-tolerant lifestyle of this mangrove species. Furthermore, the candidate genes underlying the adaptation were identified through comparative analyses. This study provides a foundation for dissecting the genetic basis of the adaptation of mangroves to intertidal environments. PMID:22574172

  8. Evaluation of the functional roles of fungal endophytes of Phragmites australis from high saline and low saline habitats

    USGS Publications Warehouse

    Soares, Marcos Antonio; Li, Hai-Yan; Kowalski, Kurt P.; Bergen, Marshall; Torres, Monica S.; White, James F.

    2016-01-01

    Non-native Phragmites australis decreases biodiversity and produces dense stands in North America. We surveyed the endophyte communities in the stems, leaves and roots of collections of P. australis obtained from two sites with a low and high salt concentration to determine differences in endophyte composition and assess differences in functional roles of microbes in plants from both sites. We found differences in the abundance, richness and diversity of endophytes between the low saline collections (18 species distributed in phyla Ascomycota, Basidiomycota and Stramenopiles (Oomycota); from orders Dothideales, Pleosporales, Hypocreales, Eurotiales, Cantharellales and Pythiales; Shannon H = 2.639; Fisher alpha = 7.335) and high saline collections (15 species from phylum Ascomycota; belonging to orders Pleosporales, Hypocreales, Diaporthales, Xylariales and Dothideales; Shannon H = 2.289; Fisher alpha = 4.181). Peyronellaea glomerata, Phoma macrostoma and Alternaria tenuissima were species obtained from both sites. The high salt endophyte community showed higher resistance to zinc, mercury and salt stress compared to fungal species from the low salt site. These endophytes also showed a greater propensity for growth promotion of rice seedlings (a model species) under salt stress. The results of this study are consistent with the ‘habitat-adapted symbiosis hypothesis’ that holds that endophytic microbes may help plants adapt to extreme habitats. The capacity of P. australis to establish symbiotic relationships with diverse endophytic microbes that enhance its tolerance to abiotic stresses could be a factor that contributes to its invasiveness in saline environments. Targeting the symbiotic associates of P. australis could lead to more sustainable control of non-native P. australis.

  9. Colloid Transport in Porous Medium: Impact of High Salinity Solutions

    NASA Astrophysics Data System (ADS)

    Weisbrod, N.; Magal, E.; Yechieli, Y.; Yakirevich, A.

    2009-12-01

    We explored the transport of colloids suspended in natural saline solutions with a wide range of ionic strengths, up to Dead Sea brines. Migration of latex microspheres through saturated sand columns of different sizes was studied in lab experiments, and colloid transport was simulated with a mathematical model. We have found that latex microspheres were mobile even in the extremely saline brines of the Dead Sea (ionic strength = 100.9 M). At this high ionic strength, according to the common colloid transport theories, no energetic barrier to colloid attachment exists and colloid adsorption was expected to be a favorable process. Apparently, even in that high salinity, colloids adsorption is not complete and ~20% colloids are allowed to transport (through 30-cm long column). Colloid transport was found to be related to the solution salinity, as expected. After 2-3 pore volumes (PV) the relative concentration of colloids at the outlet of 30-cm long columns decreased as the solution ionic strength increased until some critical value (ionic strength greater than 10-1.8 M) and then remained constant as the solution salinity increased. To further explore the sorption of colloids on sand surfaces in Dead Sea brines, breakthrough curves (BTCs) were studied using 7-cm long columns, through which hundreds of PV were introduced. The observed BTCs exhibited a bi-modal shape that suggests different rates of colloid attachment. After initial breakthrough the relative concentration of colloids at the outlet rose to a value of 0.8 (after 1.5 PV), and it remained relatively constant until approximately 17 PV were flushed through the column. After a total flow of about 20 PV, the relative concentration reached a value of one. The colloid migration process was successfully modeled using the limited entrapment model (Pachepsky et al., 2006), assuming the colloid attachment rate is dependent on the concentration of attached colloids.

  10. Anammox Coupled With Nitrification Impacts a Saline, High Ammonia Groundwater

    NASA Astrophysics Data System (ADS)

    Figueroa, L. A.; Landkamer, L.; Peterson, D. M.; Metzler, D.

    2007-05-01

    High amounts of ammonia (130 to 2200 mg-N/l) in a saline environment (TDS = 10-20 g/l) are present in a groundwater plume adjacent to the Colorado River near Moab, Utah. Ammonia levels sufficient to affect aquatic life have been observed in limited sections of the river adjacent to the site, which has prompted interim treatment efforts. Microcosm studies were performed to assess the potential for microbial transformations of ammonia in the hyporheic zone sediment and the effect of ground/river-water mixing on transformations. Experiments were conducted using sub-riverbed sediment and mixtures of groundwater (290 mg-N/L ammonia) and river water (100%, 50% and 10% plume water) in anaerobic and aerobic environments. Aqueous NH4+, NO2-, NO3-, pH, dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) were monitored over 38 days. Interestingly, the ammonia concentration decreased in all microcosms (29% to 100%) with the highest removal occurring in the oxic microcosms. Total nitrogen removal ranged from 27% to 83%. Three lines of evidence suggest that anammox occurred in the anaerobic microcosms: 1) NH4+ concentrations decreased, 2) little change in DOC occurred and 3) DIC decreased. DIC should increase if denitrification were the dominant process. It is possible that small amounts of O2 diffused into the microcosms, driving some nitrification that supplied NO2- for anammox. In the aerobic microcosms, denitrification or anammox occurred in addition to nitrification because nitrate did not accumulate in general. Again, we believe anammox occurred because of DOC and DIC trends. In the aerobic 10% groundwater microcosm, NO3- accumulated once the ammonia concentration became low and the nitrate level stabilized after the ammonia was gone. This also indicated that anammox was the dominant process because denitrification should not stop due to ammonia depletion. The aerobic microcosms were only agitated twice per week, which would allow the sediments to become

  11. Contribution of water chemistry and fish condition to otolith chemistry: comparisons across salinity environments.

    PubMed

    Izzo, C; Doubleday, Z A; Schultz, A G; Woodcock, S H; Gillanders, B M

    2015-06-01

    This study quantified the per cent contribution of water chemistry to otolith chemistry using enriched stable isotopes of strontium ((86) Sr) and barium ((137) Ba). Euryhaline barramundi Lates calcarifer, were reared in marine (salinity 40), estuarine (salinity 20) and freshwater (salinity 0) under different temperature treatments. To calculate the contribution of water to Sr and Ba in otoliths, enriched isotopes in the tank water and otoliths were quantified and fitted to isotope mixing models. Fulton's K and RNA:DNA were also measured to explore the influence of fish condition on sources of element uptake. Water was the predominant source of otolith Sr (between 65 and 99%) and Ba (between 64 and 89%) in all treatments, but contributions varied with temperature (for Ba), or interactively with temperature and salinity (for Sr). Fish condition indices were affected independently by the experimental rearing conditions, as RNA:DNA differed significantly among salinity treatments and Fulton's K was significantly different between temperature treatments. Regression analyses did not detect relations between fish condition and per cent contribution values. General linear models indicated that contributions from water chemistry to otolith chemistry were primarily influenced by temperature and secondly by fish condition, with a relatively minor influence of salinity. These results further the understanding of factors that affect otolith element uptake, highlighting the necessity to consider the influence of environment and fish condition when interpreting otolith element data to reconstruct the environmental histories of fish.

  12. Plasticity in sunflower leaf and cell growth under high salinity.

    PubMed

    Céccoli, G; Bustos, D; Ortega, L I; Senn, M E; Vegetti, A; Taleisnik, E

    2015-01-01

    A group of sunflower lines that exhibit a range of leaf Na(+) concentrations under high salinity was used to explore whether the responses to the osmotic and ionic components of salinity can be distinguished in leaf expansion kinetics analysis. It was expected that at the initial stages of the salt treatment, leaf expansion kinetics changes would be dominated by responses to the osmotic component of salinity, and that later on, ion inclusion would impose further kinetics changes. It was also expected that differential leaf Na(+) accumulation would be reflected in specific changes in cell division and expansion rates. Plants of four sunflower lines were gradually treated with a relatively high (130 mm NaCl) salt treatment. Leaf expansion kinetics curves were compared in leaves that were formed before, during and after the initiation of the salt treatment. Leaf areas were smaller in salt-treated plants, but the analysis of growth curves did not reveal differences that could be attributed to differential Na(+) accumulation, since similar changes in leaf expansion kinetics were observed in lines with different magnitudes of salt accumulation. Nevertheless, in a high leaf Na(+) -including line, cell divisions were affected earlier, resulting in leaves with proportionally fewer cells than in a Na(+) -excluding line. A distinct change in leaf epidermal pavement shape caused by salinity is reported for the first time. Mature pavement cells in leaves of control plants exhibited typical lobed, jigsaw-puzzle shape, whereas in treated plants, they tended to retain closer-to-circular shapes and a lower number of lobes. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. How salinity and temperature combine to affect physiological state and performance in red knots with contrasting non-breeding environments.

    PubMed

    Gutiérrez, Jorge S; Soriano-Redondo, Andrea; Dekinga, Anne; Villegas, Auxiliadora; Masero, José A; Piersma, Theunis

    2015-08-01

    Migratory shorebirds inhabit environments that may yield contrasting salinity-temperature regimes-with widely varying osmoregulatory demands, even within a given species-and the question is: by which physiological means and at which organisational level do they show adjustments with respect to these demands? Red knots Calidris canutus winter in coastal areas over a range of latitudes. The nominal subspecies winters in salty areas in the tropics, whereas the subspecies Calidris canutus islandica winters in north-temperate regions of comparatively lower salinities and temperatures. In this study, both subspecies of red knot were acclimated to different salinity (28/40‰)-temperature (5/35 °C) combinations for 2-week periods. We then measured food/salt intakes, basal metabolic rate (BMR), body mass and temperature, fat and salt gland scores, gizzard mass, heat-shock proteins, heterophils/lymphocytes (H/L) ratio and plasma Na(+) to assess the responses of each taxon to osmoregulatory challenges. High salinity (HS)-warm-acclimated birds reduced food/salt intake, BMR, body mass, fat score and gizzard mass, showing that salt/heat loads constrained energy acquisition rates. Higher salt gland scores in saltier treatments indicated that its size was adjusted to higher osmoregulatory demands. Elevated plasma Na(+) and H/L ratio in high-salinity-warm-acclimated birds indicated that salt/heat loads might have a direct effect on the water-salt balance and stress responses of red knots. Subspecies had little or no effect on most measured parameters, suggesting that most adjustments reflect phenotypic flexibility rather than subspecific adaptations. Our results demonstrate how salinity and temperature affect various phenotypic traits in a migrant shorebird, highlighting the importance of considering these factors jointly when evaluating the environmental tolerances of air-breathing marine taxa.

  14. Mapping Porewater Salinity with Electromagnetic Methods in Shallow Coastal Environments: Tampa Bay, Florida

    NASA Astrophysics Data System (ADS)

    Greenwood, W. J.; Kruse, S. E.; Swarzenski, P. W.; Meunier, J. K.

    2004-05-01

    The feasibility of predicting porewater salinity based on surface electromagnetic and resistivity methods was assessed in the shallow coastal waters and wetlands of Tampa Bay, Florida. The most successful method combined an initial core or surface resistivity measurement with pore water samples in order to determine formation factors in the shallow marine sediment. Data were collected over broader areas of interest using Geonics, Inc. EM-31 and EM-34 electromagnetic instruments and the Advanced Geosciences, Inc. SuperSting R8 marine resistivity instrument. To map coastal porewater conductivities, the EM instruments were adapted for use in shallow marine waters (<1 meter). In such high-conductivity environments, interpretation of EM readings requires processing with layered models of terrain conductivity that include direct sampling data. Typically, nearby marine resistivity readings are necessary to distinguish between equivalent EM model solutions. Porewater conductivities estimated from the layered EM models and the resistivity-derived formation factors show very good agreement with measured pore water conductivities. The use of EM systems in very shallow waters has potential application in locating prospective submarine groundwater discharge in areas that are difficult to reach with conventional towed marine resistivity arrays. Electromagnetic and direct sampling data show that salt exclusion by mangroves significantly increases pore water conductivities, and hence terrain conductivity readings within 10m of a mangrove shoreline. Terrain conductivities fall off to background values within 15m of the mangrove shoreline. The marine EM-31 measurements were effective at sensing the magnitude and lateral extent of high and low salinity porewaters within wetlands and mangrove lined ditches and ponds, which may be useful for interdisciplinary studies of coastal ecosystems.

  15. Integration of herbicides with manual weeding for controlling the weeds in rice under saline environment.

    PubMed

    Hakim, M A; Juraimi, Abdul Shukor; Hanafi, M M; Rafii, Mohd Y; Ismail, Mohd Razi; Karim, S M Rezaul; Kausar, H

    2015-11-01

    The pot experiment was conducted to select appropriate integrated weed management method in rice under different salinity levels (0, 4 and 8 dS m(-1)). All the parameters including rice and weed measured were significantly influenced by weed control treatments at all salinity levels. Treatments including weed-free condition, Pretilachlor @0.375 kg ai ha(-1) + hand weeding, Propanil + Thiobencarb @ 0.9 kg ai ha(-1) and 1.8 kg ai ha(-1)+ hand weeding performed better under all salinity levels. Pretilachlor @ 0.375 kg ai ha(-1) with one round of hand weeding and propanil + thiobencarb 0.9 kg ai ha(-1) + 1.8 kg ai ha(-1) with one round of hand weeding were comparable to weed-free yields, and were superior to other treatments under salinity condition. Considering all the parameters, pretilachlor @ 0.375 kg ai ha(-1) + one round of hand weeding (at 65 DAT), propanil + thiobencarb 0.9 kg ai ha(-1) +1.8 kg ai ha(-1) + one round of hand weeding (at 65 DAT) gave the most effective control of weeds in rice under saline environments.

  16. Efficient molasses fermentation under high salinity by inocula of marine and terrestrial origin.

    PubMed

    Scoma, Alberto; Coma, Marta; Kerckhof, Frederiek-Maarten; Boon, Nico; Rabaey, Korneel

    2017-01-01

    Molasses is a dense and saline by-product of the sugar agroindustry. Its high organic content potentially fuels a myriad of renewable products of industrial interest. However, the biotechnological exploitation of molasses is mainly hampered by the high concentration of salts, an issue that is nowadays tackled through dilution. In the present study, the performance of microbial communities derived from marine sediment was compared to that of communities from a terrestrial environment (anaerobic digester sludge). The aim was to test whether adaptation to salinity represented an advantage for fermenting molasses into renewable chemicals such as volatile fatty acids (VFAs) although high sugar concentrations are uncommon to marine sediment, contrary to anaerobic digesters. Terrestrial and marine microbial communities were enriched in consecutive batches at different initial pH values (pHi; either 6 or 7) and molasses dilutions (equivalent to organic loading rates (OLRs) of 1 or 5 gCOD L(-1) d(-1)) to determine the best VFA production conditions. Marine communities were supplied with NaCl to maintain their native salinity. Due to molasses inherent salinity, terrestrial communities experienced conditions comparable to brackish or saline waters (20-47 mS cm(-1)), while marine conditions resembled brine waters (>47 mS cm(-1)). Enrichments at optimal conditions of OLR 5 gCOD L(-1) d(-1) and pHi 7 were transferred into packed-bed biofilm reactors operated continuously. The reactors were first operated at 5 gCOD L(-1) d(-1), which was later increased to OLR 10 gCOD L(-1) d(-1). Terrestrial and marine reactors had different gas production and community structures but identical, remarkably high VFA bioconversion yields (above 85%) which were obtained with conductivities up to 90 mS cm(-1). COD-to-VFA conversion rates were comparable to the highest reported in literature while processing other organic leftovers at much lower salinities. Although salinity represents

  17. Biogeochemical and hydrological controls in mobilizing Se in a saline wetland environment

    NASA Astrophysics Data System (ADS)

    Datta, S.; Hettiarachchi, G. M.; Crawford, M.; Karna, R.; Allmendinger, N. E.; Khatiwada, R.

    2010-12-01

    Selenium (Se) contamination in watersheds remains a challenge to water and land and wildlife managers throughout the west and mid west of US. In that sense, understanding the fundamentals of Se mobilization, fixation and bioconcentration is the current research endeavor. The challenge for Se research is developing watershed-geochemical models that are well founded in Se geochemical/biologcial principles that can be applied in a wide range of situations to inform decisions. Pariette Wetlands, a 9000 acre Bureau of Land Management controlled wetland system composed of 20 ponds located at the confluence of Pariette Draw and the Green River is the present location of this study. The agricultural and irrigation practices and the water-rock interactions leading to salinization can be associated with changes in Se chemistry in the rivers. Since its inception Pariette Wetlands has been home to a rich and diverse wetland ecosystem located in the arid Uintah Basin of Northeastern Utah. Detailed sampling of surficial sediments (0-1 m) from stream banks, channel beds and for water sampling have been undergone in 2 separate field trips throughout the entire reach of the wetland. To establish Pariette Draw’s contribution of Se to the Green river, water and sediments were also sampled from the Green River up and downstream of its confluence with Pariette Draw. In situ measurements of water parameters within the wetland suggest a clear trend of increased pH from upstream, 8, to downstream, 9.2 and combined with TDS suggest a pH controlled saline environment system. The headwaters near Flood Control Dam have an added input of Se from a possible irrigation source upstream in Pleasant Valley area while Se drastically decreases downstream towards the Red Head Pond. Se fractionation in sediments is being analyzed via a sequential extraction procedure to locate the labile fractions of mostly inorganic bound Se. Solid state speciation of Se via μ-XRF aided μ-XANES is being combined

  18. Effect of temperature and salinity on Vibrio (Beneckea) vulnificus occurrence in a Gulf Coast environment.

    PubMed

    Kelly, M T

    1982-10-01

    Vibrio (Beneckea) vulnificus is a recently recognized halophilic organism that may cause serious human infections. Patients infected with V. vulnificus often have a history of exposure to the sea, suggesting that the organism may be a common inhabitant of marine environments. Twenty-one inshore sites around Galveston Island in the Gulf of Mexico were cultured for V. vulnificus over a 12-month period. The organism was recovered from all but one of the sites at some time during the study. It was frequently isolated during the summer and fall from environments of relatively low salinity (7 to 16%). V. vulnificus was rarely isolated from any of the sites during the winter months, when water temperatures dropped below 20 degrees C. In vitro growth characteristics of environmental isolates of V. vulnificus demonstrated salinity optima of 1.0 to 2.0% NaCl and a temperature optimum of 37 degrees C. These growth characteristics may account for the seasonal and geographical variations in occurrence of the organism. Overall, the results of these studies indicate that V. vulnificus is commonly found in Gulf Coast environments and that the occurrence of the organism is favored by warm temperatures and relatively low salinity.

  19. Curing study of orthophtalic polyester resin: Effect on the degradation in saline environment

    NASA Astrophysics Data System (ADS)

    Sanchez Nacher, Lourdes

    Nowadays, composite materials based on a polymeric matrix are widely used in structural applications as engineering materials which offer high performances in advanced industrial sectors such as aerospace, aeronautical, transport, construction, etc. They can provide excellent mechanical and chemical properties, good chemical and weather resistance and low cost. Unsaturated polyester is one of the most used thermoset as a matrix for glass fibre reinforcements because of its good relationship properties/cost/quality, since it allows a more competitive cost. Due to the importance that this type of materials reach in some industrial sectors, it is important the mechanical behaviour evaluation as one of the priorities in practically any of their applications; also, it is important to keep in mind that most of industrial sectors that use this resin are subjected to extreme environmental conditions that can produce degradation in the material and therefore, chemical resistance of composites becomes a critical characteristic in those applications that require a contact with environmental agents that can induce some degradation processes and, consequently, a substantial change on general performance. The present study is focussed in the analysis of the effect of curing reaction of the thermosetting matrix of unsaturated orthophtalic polyester in the long term behaviour of materials made up of this type of matrix and glass fibre reinforcement. This is to determine the optimum processing conditions and its behaviour in an aggressive environment, concretely, marine environment. Considering this, crosslinking level of the resin is a decisive parameter, since we can expect lower saline water absorption for high crosslinking levels. The optimum processing conditions are those that permit to obtain the highest crosslinking level in the unsaturated polyester internal structure. Since the degradation effect is related to the crosslinking level of the internal structure, with the

  20. Indicators: Salinity

    EPA Pesticide Factsheets

    Salinity is the dissolved salt content of a body of water. Excess salinity, due to evaporation, water withdrawal, wastewater discharge, and other sources, is a chemical sterssor that can be toxic for aquatic environments.

  1. The role of floridoside in osmoadaptation of coral-associated algal endosymbionts to high-salinity conditions

    PubMed Central

    Ochsenkühn, Michael A.; Röthig, Till; D’Angelo, Cecilia; Wiedenmann, Jörg; Voolstra, Christian R.

    2017-01-01

    The endosymbiosis between Symbiodinium dinoflagellates and stony corals provides the foundation of coral reef ecosystems. The survival of these ecosystems is under threat at a global scale, and better knowledge is needed to conceive strategies for mitigating future reef loss. Environmental disturbance imposing temperature, salinity, and nutrient stress can lead to the loss of the Symbiodinium partner, causing so-called coral bleaching. Some of the most thermotolerant coral-Symbiodinium associations occur in the Persian/Arabian Gulf and the Red Sea, which also represent the most saline coral habitats. We studied whether Symbiodinium alter their metabolite content in response to high-salinity environments. We found that Symbiodinium cells exposed to high salinity produced high levels of the osmolyte 2-O-glycerol-α-d-galactopyranoside (floridoside), both in vitro and in their coral host animals, thereby increasing their capacity and, putatively, the capacity of the holobiont to cope with the effects of osmotic stress in extreme environments. Given that floridoside has been previously shown to also act as an antioxidant, this osmolyte may serve a dual function: first, to serve as a compatible organic osmolyte accumulated by Symbiodinium in response to elevated salinities and, second, to counter reactive oxygen species produced as a consequence of potential salinity and heat stress. PMID:28835914

  2. The role of floridoside in osmoadaptation of coral-associated algal endosymbionts to high-salinity conditions.

    PubMed

    Ochsenkühn, Michael A; Röthig, Till; D'Angelo, Cecilia; Wiedenmann, Jörg; Voolstra, Christian R

    2017-08-01

    The endosymbiosis between Symbiodinium dinoflagellates and stony corals provides the foundation of coral reef ecosystems. The survival of these ecosystems is under threat at a global scale, and better knowledge is needed to conceive strategies for mitigating future reef loss. Environmental disturbance imposing temperature, salinity, and nutrient stress can lead to the loss of the Symbiodinium partner, causing so-called coral bleaching. Some of the most thermotolerant coral-Symbiodinium associations occur in the Persian/Arabian Gulf and the Red Sea, which also represent the most saline coral habitats. We studied whether Symbiodinium alter their metabolite content in response to high-salinity environments. We found that Symbiodinium cells exposed to high salinity produced high levels of the osmolyte 2-O-glycerol-α-d-galactopyranoside (floridoside), both in vitro and in their coral host animals, thereby increasing their capacity and, putatively, the capacity of the holobiont to cope with the effects of osmotic stress in extreme environments. Given that floridoside has been previously shown to also act as an antioxidant, this osmolyte may serve a dual function: first, to serve as a compatible organic osmolyte accumulated by Symbiodinium in response to elevated salinities and, second, to counter reactive oxygen species produced as a consequence of potential salinity and heat stress.

  3. Growth and nitrogen fixation of legumes at increased salinity under field conditions: implications for the use of green manures in saline environments

    PubMed Central

    Bruning, Bas; van Logtestijn, Richard; Broekman, Rob; de Vos, Arjen; González, Andrés Parra; Rozema, Jelte

    2015-01-01

    The use of legumes as green manure can potentially increase crop productivity in saline environments and thus contribute to the sustainability of agricultural systems. Here, we present results from a field experiment conducted in the Netherlands that addressed the efficiency of nitrogen (N) fixation by a legume at varying salinities. We grew Melilotus officinalis in an agricultural field using drip irrigation with water salinity varying in electrical conductivity between 1.7 and 20 dS m−1. In the experiment, nearly 100 % of total plant N in M. officinalis was derived from symbiotic fixation at all but the highest salinity level (20 dS m−1). Our results indicated that this species derived substantial amounts of N via symbiotic fixation, the N becoming available in the soil (and thus available to crops) when cultivated legumes senesce and decompose. Based on the growth performance of M. officinalis and its ability to fix N at moderate soil salinity in our field experiments, we identified this species as a promising source for green manure in saline agriculture in temperate regions. PMID:25661201

  4. Novel green sulfur bacteria phylotypes detected in saline environments: ecophysiological characters versus phylogenetic taxonomy.

    PubMed

    Triadó-Margarit, Xavier; Vila, Xavier; Abella, Charles A

    2010-05-01

    The taxonomic significance of salt tolerance or requirements in green sulfur bacteria has been analyzed with environmental populations and enrichment cultures from several saline systems (inland and coastal water bodies) with different salinities (salt composition and concentration). Novel phylotypes of green sulfur bacteria have been found in hypersaline and brackish environments and 16S rRNA gene sequence analysis affiliated them into phylogenetic groups in which neither halotolerant nor halophilic species have been known to date. Therefore, salt tolerance does not seem to be restricted to members of any specific subgroup but is widespread among all the different phylogenetic branches of the green sulfur bacteria group, and closely-related phylotypes can have dissimilar salt tolerance capacities. Thus the phenotypic characteristics and phylogenetic structure of the green sulfur bacteria present some incongruities. Phenotypic traits should be studied further in order to determine the ecophysiological features of green sulfur bacteria phylotypes.

  5. High genetic diversity and novelty in planktonic protists inhabiting inland and coastal high salinity water bodies.

    PubMed

    Triadó-Margarit, Xavier; Casamayor, Emilio O

    2013-07-01

    We analyzed the genetic diversity (18S rRNA gene) of planktonic microbial eukaryotes in 34 different coastal and inland saline ponds. A wide range of environmental conditions was covered with up to 30-fold differences in salinity concentrations (12.5-384 g L(-1)), and in situ temperatures (1.3-37.5 °C), and three orders of magnitude in the trophic status (i.e. chlorophyll a < 0.1 to >50 mg L(-1)). Geographically distant sites were studied with contrasting salt origins, and different temporal patterns of wetting and drying. The genetic diversity was high, far beyond the few groups traditionally considered as high salinity-adapted, with sequences spread throughout eight high-rank taxonomic groups and 27 eukaryal classes. The novelty level was extremely high, with 10% of the whole dataset showing < 90% identity to any previously reported sequence in GenBank. Opisthokonta and Rhizaria contained the highest novelty and Chlorophyta and Alveolata the lowest. Low identity sequences were observed both in coastal and inland sites and at lower and at higher salinities, although the degree of novelty was higher in the hypersaline waters (> 6.5% salinity). Overall, this study shows important gaps in the current knowledge about protists inhabiting continental (hyper)saline water bodies, highlighting the need for future, more detailed investigations. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  6. Quantifying the degradation of TNT and RDX in a saline environment with and without UV-exposure.

    PubMed

    Sisco, Edward; Najarro, Marcela; Bridge, Candice; Aranda, Roman

    2015-06-01

    Terrorist attacks in a maritime setting, such as the bombing of the USS Cole in 2000, or the detection of underwater mines, require the development of proper protocols to collect and analyse explosive material from a marine environment. In addition to proper analysis of the explosive material, protocols must also consider the exposure of the material to potentially deleterious elements, such as UV light and salinity, time spent in the environment, and time between storage and analysis. To understand how traditional explosives would be affected by such conditions, saline solutions of explosives were exposed to natural and artificial sunlight. Degradation of the explosives over time was then quantified using negative chemical ionization gas chromatography mass spectrometry (GC/NCI-MS). Two explosives, trinitrotoluene (TNT) and cyclotrimethylenetrinitramine (RDX), were exposed to different aqueous environments and light exposures with salinities ranging from freshwater to twice the salinity of ocean water. Solutions were then aged for up to 6 months to simulate different conditions the explosives may be recovered from. Salinity was found to have a negligible impact on the degradation of both RDX and TNT. RDX was stable in solutions of all salinities while TNT solutions degraded regardless of salinity. Solutions of varying salinities were also exposed to UV light, where accelerated degradation was seen for both explosives. Potential degradation products of TNT were identified using electrospray ionization mass spectrometry (ESI-MS), and correspond to proposed degradation products discussed in previously published works [1].

  7. Salinity and High Temperature Tolerance in Mungbean [Vigna radiata (L.) Wilczek] from a Physiological Perspective

    PubMed Central

    HanumanthaRao, Bindumadhava; Nair, Ramakrishnan M.; Nayyar, Harsh

    2016-01-01

    Biotic and abiotic constraints seriously affect the productivity of agriculture worldwide. The broadly recognized benefits of legumes in cropping systems—biological nitrogen fixation, improving soil fertility and broadening cereal-based agro-ecologies, are desirable now more than ever. Legume production is affected by hostile environments, especially soil salinity and high temperatures (HTs). Among legumes, mungbean has acceptable intrinsic tolerance mechanisms, but many agro-physiological characteristics of the Vigna species remain to be explored. Mungbean has a distinct advantage of being short-duration and can grow in wide range of soils and environments (as mono or relay legume). This review focuses on salinity and HT stresses on mungbean grown as a fallow crop (mungbean-rice-wheat to replace fallow-rice-wheat) and/or a relay crop in cereal cropping systems. Salinity tolerance comprises multifaceted responses at the molecular, physiological and plant canopy levels. In HTs, adaptation of physiological and biochemical processes gradually may lead to improvement of heat tolerance in plants. At the field level, managing or manipulating cultural practices can mitigate adverse effects of salinity and HT. Greater understanding of physiological and biochemical mechanisms regulating these two stresses will contribute to an evolving profile of the genes, proteins, and metabolites responsible for mungbean survival. We focus on abiotic stresses in legumes in general and mungbean in particular, and highlight gaps that need to be bridged through future mungbean research. Recent findings largely from physiological and biochemical fronts are examined, along with a few agronomic and farm-based management strategies to mitigate stress under field conditions. PMID:27446183

  8. Salinity and High Temperature Tolerance in Mungbean [Vigna radiata (L.) Wilczek] from a Physiological Perspective.

    PubMed

    HanumanthaRao, Bindumadhava; Nair, Ramakrishnan M; Nayyar, Harsh

    2016-01-01

    Biotic and abiotic constraints seriously affect the productivity of agriculture worldwide. The broadly recognized benefits of legumes in cropping systems-biological nitrogen fixation, improving soil fertility and broadening cereal-based agro-ecologies, are desirable now more than ever. Legume production is affected by hostile environments, especially soil salinity and high temperatures (HTs). Among legumes, mungbean has acceptable intrinsic tolerance mechanisms, but many agro-physiological characteristics of the Vigna species remain to be explored. Mungbean has a distinct advantage of being short-duration and can grow in wide range of soils and environments (as mono or relay legume). This review focuses on salinity and HT stresses on mungbean grown as a fallow crop (mungbean-rice-wheat to replace fallow-rice-wheat) and/or a relay crop in cereal cropping systems. Salinity tolerance comprises multifaceted responses at the molecular, physiological and plant canopy levels. In HTs, adaptation of physiological and biochemical processes gradually may lead to improvement of heat tolerance in plants. At the field level, managing or manipulating cultural practices can mitigate adverse effects of salinity and HT. Greater understanding of physiological and biochemical mechanisms regulating these two stresses will contribute to an evolving profile of the genes, proteins, and metabolites responsible for mungbean survival. We focus on abiotic stresses in legumes in general and mungbean in particular, and highlight gaps that need to be bridged through future mungbean research. Recent findings largely from physiological and biochemical fronts are examined, along with a few agronomic and farm-based management strategies to mitigate stress under field conditions.

  9. Osmolality and δ 13C of Leaf Tissues of Mangrove Species from Environments of Contrasting Rainfall and Salinity

    NASA Astrophysics Data System (ADS)

    Medina, E.; Francisco, M.

    1997-09-01

    Neotropical species of the generaRhizophora, LagunculariaandAvicenniagrow in environments of variable salinity and flooding stress. Species ofRhizophorapredominate in riverine and low-energy coastal fringe environments with continuous water movement, whileLaguncularia racemosa, and particularlyAvicennia germinans, grow in areas with stagnating water.Avicennia germinansappears to have the largest range of salinity tolerance. The osmotic characteristics ofRhizophoraspp.,L. racemosaandA. germinansin riverine and coastal environments of north-eastern Venezuela are described and correlated with edaphic and climatic factors. Mature, fully-exposed leaves were collected in humid riverine sites (San Juan River Estuary, Monagas and Sucre States), and seasonally dry coastal fringe habitats (the Unare Coastal Lagoon, and the Chimana Islands off-shore Puerto de La Cruz, Anzoátegui State). Cleaned leaf samples were frozen until measurement of leaf dimensions, chlorophyll, phosphorus and nitrogen contents, δ13C, osmolality of cell sap, and cell sap content of Na, K and Cl. Results indicate: (1) in all species, leaf sap osmolality is highly and positively correlated with interstitial water salinity, and negatively correlated with leaf area; (2) nitrogen and phosphorus contents of leaves are generally lower in dry areas, but average values are not significantly different. Therefore, it appears that nutrient deficiency is not a main factor determining variations in community structure. Nitrogen content per unit dry weight is, in general, twice as high inA. germinanscompared toRhizophoraspecies andL. racemosa; (3) cell sap osmolality is mostly explained by the concentration of Na and Cl; (4) osmolality of riverine plants (957-1253 mmol kg-1) is lower than that of coastal plants (1558-1761 mmol kg-1); and (5) δ13C values are more negative in riverine (-27·4 to -28·1‰) than in coastal plants (-25·4 to -27·2‰), indicating a higher water-use efficiency in the latter. Coastal

  10. Vertical mixing of high salinity and low salinity in the Bay of Bengal: Results from a coupled high-resolution atmosphere-ocean-wave model.

    NASA Astrophysics Data System (ADS)

    Jensen, T. G.; Wijesekera, H. W.

    2016-02-01

    The Indian Peninsula is a barrier between two distinct water masses in the northern Indian Ocean: The high salinity waters in the Arabian Sea associated with the regional desert climate are separated from the low salinity waters in the moist tropical Bay of Bengal. The two water masses meet in the equatorial band south of Sri Lanka and the boundary between them moves west to east and vice versa as the annual cycle of the Asian monsoon changes from southwest monsoon to northeast monsoon. Vertical mixing in the interior of the Bay of Bengal is required to explain the observed salinity in water masses that leaves the bay. In this work we use a very high resolution fully coupled atmosphere-ocean-wave model, the US Navy's Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS). It is applied to the Bay of Bengal region has been run during both Northeast Monsoon (NE) (Dec 2014) and Southwest Monsoon (SW) conditions as part of the Office of Naval Research ASIRI (Air-Sea Interactions in the Northern Indian Ocean) project. Since May 1, 2015, the model has been updated daily to show the 10-m wind speed, currents, sea surface height, sea surface temperature, surface salinity, net surface heat flux into the ocean and significant height and direction of surface waves on a web-site available to ASIRI researchers. We find intrusions of high-salinity water Arabian Sea, that spreads out along isopycnals deeper than 75 m into the Bay of Bengal. The spiciness along isopycnals in the bay shows strong gradients in temperature and salinity in eddies, which indicates that mixing of low salinity water and high salinity water can occur in those regions. We also find that semi-diurnal internal waves generated by tides contribute to the mixing in the Bay of Bengal. We will show model results and observations that emphasize the role of mixing, and the regions where mixing between low and high salinity waters appears to take place.

  11. Salicylic Acid and Calcium Treatments Improves Wheat Vigor, Lipids and Phenolics Under High Salinity.

    PubMed

    Yücel Candan, Nilgün; Heybet Elif, Haklı

    2016-12-01

    Seed vigor is a complex physiological trait required to ensure the rapid and uniform emergence of plants in the field under different environmental conditions. Therefore, salicylic acid (SA, 0.5 mM) and calcium (Ca2+, 50 mM) priming were used as exogenous growth enhancers to stimulate wheat (Triticum durum Desf. cv. Yelken) seed vigor under high salinity. The main aim was to address whether priming of wheat with SA, Ca2+ and SA+Ca (SA, 0.5 mM + Ca2+, 50 mM; their combination) could bring about supplementary agronomic benefits particularly under stressful environments such as salinity. Exogenous application of SA or Ca2+ alone improved plant behavior in the presence of salinity stress. Nevertheless, the best results in terms of growth, seed vigor and total phenolic - flavonoids, chlorophyll - carotenoids contents and phenylalanine ammonia-lyase (PAL), ascorbic acide oxidase (AAO) activities and lipid peroxidation levels (LPO) were obtained in response to the combined SA+Ca treatment.

  12. Mineral formation during production of highly saline geothermal fluids

    NASA Astrophysics Data System (ADS)

    Regenspurg, S.; Naumann, R.; Feldbusch, E.; Wagner, S.; Saadat, A.

    2012-04-01

    Geothermal solutions produced from deep wells are often highly saline and of complex composition impeding exact predictions of fluid-mineral interactions. At constant (high) temperature and flow conditions during plant operation, only little precipitation would be expected. However, during the initial phase of the operation of a geothermal plant, the testing of equipment components such as pumps and valves prevents these constant fluid flow conditions. Moreover, fluid temperatures are still relatively low and vary strongly at this stage. These inhomogeneous conditions result in the precipitation of a wide range of minerals. The analysis of solutions composition as well as of the mineral precipitates during this initial testing phase represents a unique in-situ experiment allowing understanding the mineral formation from complex solutions under a wide range of temperatures. This experiment was possible at the geothermal in-situ laboratory in Groß Schönebeck (North German Basin). At this site, hot fluid (150 °C at 4400 m depth) is pumped out of a production well to the surface where it passes the above ground installation (e.g. 1 µm filter bags) before it would be re-injected into a second (injection) well. The temperature of the produced fluid varied between 10 and 100°C due to numerous turning on and shutdown phases. Fluid and filter residues have been analyzed during several cycles. In the solid phase, almost no minerals of the reservoir sandstone have been identified. Instead, several compunds have been found which precipitated directly from the solution. One group, dominated mainly by barite (BaSO4), formed as consequence of the cooling effect, which affects strongly the solubility product and results in mineral precipitation. The other group of minerals (such as magnetite or several lead minerals) form due to changes in redox conditions. These changes occur possibly in the region close to the production pump, where a strong magnetic field and highly

  13. Golden alga presence and abundance are inversely related to salinity in a high-salinity river ecosystem, Pecos River, USA

    USGS Publications Warehouse

    Israël, Natascha M.D.; VanLandeghem, Matthew M.; Denny, Shawn; Ingle, John; Patino, Reynaldo

    2014-01-01

    Prymnesium parvum (golden alga, GA) is a toxigenic harmful alga native to marine ecosystems that has also affected brackish inland waters. The first toxic bloom of GA in the western hemisphere occurred in the Pecos River, one of the saltiest rivers in North America. Environmental factors (water quality) associated with GA occurrence in this basin, however, have not been examined. Water quality and GA presence and abundance were determined at eight sites in the Pecos River basin with or without prior history of toxic blooms. Sampling was conducted monthly from January 2012 to July 2013. Specific conductance (salinity) varied spatiotemporally between 4408 and 73,786 mS/cm. Results of graphical, principal component (PCA), and zero-inflated Poisson (ZIP) regression analyses indicated that the incidence and abundance of GA are reduced as salinity increases spatiotemporally. LOWESS regression and correlation analyses of archived data for specific conductance and GA abundance at one of the study sites retrospectively confirmed the negative association between these variables. Results of PCA also suggested that at <15,000 mS/cm, GA was present at a relatively wide range of nutrient (nitrogen and phosphorus) concentrations whereas at higher salinity, GA was observed only at mid-to-high nutrient levels. Generally consistent with earlier studies, results of ZIP regression indicated that GA presence is positively associated with organic phosphorus and in samples where GA is present, GA abundance is positively associated with organic nitrogen and negatively associated with inorganic nitrogen. This is the first report of an inverse relation between salinity and GA presence and abundance in riverine waters and of interaction effects of salinity and nutrients in the field. These observations contribute to a more complete understanding of environmental conditions that influence GA distribution in inland waters.

  14. Proteomics of contrasting rice genotypes: Identification of potential targets for raising crops for saline environment.

    PubMed

    Lakra, Nita; Kaur, Charanpreet; Anwar, Khalid; Singla-Pareek, Sneh Lata; Pareek, Ashwani

    2017-03-24

    High salinity is one of the major problems in crop productivity, affecting seed germination as well as yield. In order to enhance tolerance of crops towards salinity, it is essential to understand the underlying physiological and molecular mechanisms. In this endeavor, study of contrasting genotypes of the same species differing in their response towards salinity stress can be very useful. In the present study, we have investigated temporal differences in morphological, physiological and proteome profiles of two contrasting genotypes of rice to understand the basis of salt-tolerance. When compared to IR64 rice, Pokkali, the salt-tolerant wild genotype, has enhanced capacity to cope with stress, has better growth rate, possess efficient antioxidant system, as well as better photosynthetic machinery. Our proteome studies revealed a higher and an early abundance of proteins involved in stress-tolerance and in photosynthesis in Pokkali in comparison with IR64, which in contrast, showed greater changes in metabolic machinery even during early stress duration. Our findings suggest important differences in physicochemical and proteome profiles of the two genotypes, which may be the basis of observed stress tolerance in the salt-tolerant Pokkali.

  15. Physiological and proteomic analyses of leaves from the halophyte Tangut Nitraria reveals diverse response pathways critical for high salinity tolerance

    PubMed Central

    Cheng, Tielong; Chen, Jinhui; Zhang, Jingbo; Shi, Shengqing; Zhou, Yanwei; Lu, Lu; Wang, Pengkai; Jiang, Zeping; Yang, Jinchang; Zhang, Shougong; Shi, Jisen

    2015-01-01

    Soil salinization poses a serious threat to the environment and agricultural productivity worldwide. Studies on the physiological and molecular mechanisms of salinity tolerance in halophytic plants provide valuable information to enhance their salt tolerance. Tangut Nitraria is a widely distributed halophyte in saline–alkali soil in the northern areas of China. In this study, we used a proteomic approach to investigate the molecular pathways of the high salt tolerance of T. Nitraria. We analyzed the changes in biomass, photosynthesis, and redox-related enzyme activities in T. Nitraria leaves from plant seedlings treated with high salt concentration. Comparative proteomic analysis of the leaves revealed that the expression of 71 proteins was significantly altered after salinity treatments of T. Nitraria. These salinity-responsive proteins were mainly involved in photosynthesis, redox homeostasis, stress/defense, carbohydrate and energy metabolism, protein metabolism, signal transduction, and membrane transport. Results showed that the reduction of photosynthesis under salt stress was attributed to the down-regulation of the enzymes and proteins involved in the light reaction and Calvin cycle. Protein–protein interaction analysis revealed that the proteins involved in redox homeostasis, photosynthesis, and energy metabolism constructed two types of response networks to high salt stress. T. Nitraria plants developed diverse mechanisms for scavenging reactive oxygen species (ROS) in their leaves to cope with stress induced by high salinity. This study provides important information regarding the salt tolerance of the halophyte T. Nitraria. PMID:25713577

  16. C:N:P Stoichiometry and Leaf Traits of Halophytes in an Arid Saline Environment, Northwest China

    PubMed Central

    Wang, Lilong; Zhao, Guanxiang; Li, Meng; Zhang, Mingting; Zhang, Lifang; Zhang, Xinfang; An, Lizhe; Xu, Shijian

    2015-01-01

    Salinization is an important and increasingly prevalent issue which has broad and profound effects on plant survival and distribution pattern. To understand the patterns and potential drivers of leaf traits in saline environments, we determined the soil properties, leaf morphological traits (specific leaf area, SLA, and leaf dry matter content, LDMC), leaf chemical traits (leaf carbon, C, nitrogen, N, and phosphorus, P, stoichiometry) based on 142 observations collected from 23 sites in an arid saline environment, which is a vulnerable ecosystem in northwest China. We also explored the relationships among leaf traits, the responses of leaf traits, and plant functional groups (herb, woody, and succulent woody) to various saline environments. The arid desert halophytes were characterized by lower leaf C and SLA levels, higher N, but stable P and N:P. The leaf morphological traits were correlated significantly with the C, N, and P contents across all observations, but they differed within each functional group. Succulent woody plants had the lowest leaf C and highest leaf N levels among the three functional groups. The growth of halophytes might be more limited by N rather than P in the study area. GLM analysis demonstrated that the soil available nutrients and plant functional groups, but not salinity, were potential drivers of leaf C:N:P stoichiometry in halophytes, whereas species differences accounted for the largest contributions to leaf morphological variations. Our study provides baseline information to facilitate the management and restoration of arid saline desert ecosystem. PMID:25798853

  17. Transcriptome Analysis of Ceriops tagal in Saline Environments Using RNA-Sequencing

    PubMed Central

    Feng, Shipeng; Zhou, Xi; Fu, Xiumei; Zang, Jian; Xiao, Yong; Niu, Xiaolei; Li, Chunxia; Chen, Yinhua

    2016-01-01

    Identification of genes involved in mangrove species’ adaptation to salt stress can provide valuable information for developing salt-tolerant crops and understanding the molecular evolution of salt tolerance in halophiles. Ceriops tagal is a salt-tolerant mangrove tree growing in mudflats and marshes in tropical and subtropical areas, without any prior genome information. In this study, we assessed the biochemical and transcriptional responses of C. tagal to high salt treatment (500 mmol/L NaCl) by hydroponic experiments and RNA-seq. In C. tagal root tissues under salt stress, proline accumulated strongly from 3 to 12 h of treatment; meanwhile, malondialdehyde content progressively increased from 0 to 9 h, then dropped to lower than control levels by 24 h. These implied that C. tagal plants could survive salt stress through biochemical modification. Using the Illumina sequencing platform, approximately 27.39 million RNA-seq reads were obtained from three salt-treated and control (untreated) root samples. These reads were assembled into 47,111 transcripts with an average length of 514 bp and an N50 of 632 bp. Approximately 78% of the transcripts were annotated, and a total of 437 genes were putative transcription factors. Digital gene expression analysis was conducted by comparing transcripts from the untreated control to the three salt treated samples, and 7,330 differentially expressed transcripts were identified. Using k-means clustering, these transcripts were divided into six clusters that differed in their expression patterns across four treatment time points. The genes identified as being up- or downregulated are involved in salt stress responses, signal transduction, and DNA repair. Our study shows the main adaptive pathway of C. tagal in saline environments, under short-term and long-term treatments of salt stress. This provides vital clues as to which genes may be candidates for breeding salt-tolerant crops and clarifying molecular mechanisms of salt

  18. Increased Deuterium Discrimination in Micronesian Mangroves Growing at High Salinity: Insights from Leaf and Xylem Water Isotopes

    NASA Astrophysics Data System (ADS)

    Ladd, N.; Sachs, J. P.

    2014-12-01

    Hydrogen isotope ratios of plant leaf waxes are increasingly used as a proxy for past hydrologic variability. However, a number of environmental variables influence the net fractionation between leaf waxes and the environmental water from which their hydrogen is ultimately derived. Salinity effects are of particular importance in coastal tropical and subtropical settings, where deuterium discrimination increases by 1.5‰ per salinity unit in the leaf wax n-alkanes of the grey mangrove, Avicennia marina. It is not possible to tell whether sedimentary n-alkanes are from mangrove plants, or from terrestrial plants that are not exposed to salt water. The salinity component of hydrogen isotope fractionation therefore complicates leaf wax hydrogen isotopes in most tropical coastal marine and lacustrine settings. However, a strong relationship between salinity and a more specific mangrove lipid biomarker could provide the basis for a paleosalinity and water isotope proxy in low-latitude coastal environments. Here we present results from a calibration study of Rhizophora spp. (red mangroves) growing on the Micronesian islands of Pohnpei and Palau, using taraxerol, a biomarker that is largely specific to this genus in these settings. We observed an increase in net deuterium discrimination between surface water and taraxerol of 1.2‰ per salinity unit. We investigated potential mechanisms for this increase at high salinity by measuring the hydrogen isotopic composition of leaf and xylem water from Rhizophora spp. Contrary to most terrestrial plants, xylem water in these trees is depleted relative to surface water, with greater relative depletion at higher salinities. This could be the result of increased deuterium discrimination during water uptake, as a greater percentage of salt is excluded by roots at higher salinity. Alternatively, it could indicate that some of the water in the xylem is from relatively depleted freshwater (rain and or dew) that enters the plant

  19. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions.

    PubMed

    Shaffer, Devin L; Arias Chavez, Laura H; Ben-Sasson, Moshe; Romero-Vargas Castrillón, Santiago; Yip, Ngai Yin; Elimelech, Menachem

    2013-09-03

    In the rapidly developing shale gas industry, managing produced water is a major challenge for maintaining the profitability of shale gas extraction while protecting public health and the environment. We review the current state of practice for produced water management across the United States and discuss the interrelated regulatory, infrastructure, and economic drivers for produced water reuse. Within this framework, we examine the Marcellus shale play, a region in the eastern United States where produced water is currently reused without desalination. In the Marcellus region, and in other shale plays worldwide with similar constraints, contraction of current reuse opportunities within the shale gas industry and growing restrictions on produced water disposal will provide strong incentives for produced water desalination for reuse outside the industry. The most challenging scenarios for the selection of desalination for reuse over other management strategies will be those involving high-salinity produced water, which must be desalinated with thermal separation processes. We explore desalination technologies for treatment of high-salinity shale gas produced water, and we critically review mechanical vapor compression (MVC), membrane distillation (MD), and forward osmosis (FO) as the technologies best suited for desalination of high-salinity produced water for reuse outside the shale gas industry. The advantages and challenges of applying MVC, MD, and FO technologies to produced water desalination are discussed, and directions for future research and development are identified. We find that desalination for reuse of produced water is technically feasible and can be economically relevant. However, because produced water management is primarily an economic decision, expanding desalination for reuse is dependent on process and material improvements to reduce capital and operating costs.

  20. Jarosite dissolution rates and maximum lifetimes in high salinity brines: Implications for Earth and Mars

    NASA Astrophysics Data System (ADS)

    Pritchett, B. N.; Elwood Madden, M. E.; Madden, A. S.

    2012-12-01

    Jarosite is a ferric sulfate salt ((K, H, Na)Fe3(SO4)2(OH)6) that forms in acidic, oxidizing environments on Earth and has also been observed in outcrops on Mars. High chloride concentrations within the outcrops at Meridiani Planum suggest that jarosite likely interacted with high salinity brines. This study examines jarosite dissolution in H2O-CaCl2, and H2O-NaCl brines (activity of water, aH2O=0.35 and 0.75 respectively) to determine the effects of high salinity brines and aH2O on jarosite dissolution rates. Within brines with aH2O=0.75 and 0.35, initial K-jarosite dissolution rates at 298 K decrease from log r=-9.9 to -11.6 mol m-2 s-1, and Na-jarosite rates decrease from log r=-10.6 to -11.2 mol m-2 s-1, respectively. In addition, K-jarosite dissolution in NaCl brine at 263 K yielded an average dissolution rate of log r=-11.6 mol m-2 s-1. Applying a shrinking sphere model to determine 1 mm jarosite particle lifetimes extends the maximum duration of fluid alteration from lifetimes of <500 years calculated for dilute solutions up to 30,000+ years in cold, high salinity conditions. While reduced activity of water in high salinity systems decreases the initial rate of jarosite dissolution, increased activity of chloride ions and water in solution due to sulfate precipitation effectively increased the jarosite dissolution rate over days to weeks. This suggests that jarosite dissolution rates increase with time within eutectic brines, perhaps due to Cl- attack on residual Fe3+ left on the surface of jarosite grains. If brines on Mars became highly concentrated in chlorine ions through sulfate precipitation, the dissolution rate of jarosite, and perhaps other minerals as well, could accelerate with time, shortening particle lifetimes and the inferred duration of aqueous diagenesis significantly.

  1. Bio-inspired anti-oil-fouling chitosan-coated mesh for oil/water separation suitable for broad pH range and hyper-saline environments.

    PubMed

    Zhang, Shiyan; Lu, Fei; Tao, Lei; Liu, Na; Gao, Changrui; Feng, Lin; Wei, Yen

    2013-11-27

    Here, we report a bio-inspired chitosan (CS)-based mesh with high separation efficiency, oil-fouling repellency, and stability in a complex liquid environment. The surface of the CS coating maintains underwater superoleophobicity and low oil adhesion (<1 μN) in pure water and hyper-saline solutions, and it can keep stable special wettability in broad pH range environments after the CS mesh is fully cross-linked with glutaraldehyde and then reduced by sodium borohydride to form a stable carbon-nitrogen single bond. The separation process is solely gravity-driven, and the mesh can separate a range of different oil/water mixtures with >99% separation efficiency in hyper-saline and broad pH range conditions. We envision that such a separation method will be useful in oil spill cleanup and industrial oily wastewater treatment in extreme environments.

  2. Novel sulfur-oxidizing streamers thriving in perennial cold saline springs of the Canadian high Arctic.

    PubMed

    Niederberger, Thomas D; Perreault, Nancy N; Lawrence, John R; Nadeau, Jay L; Mielke, Randall E; Greer, Charles W; Andersen, Dale T; Whyte, Lyle G

    2009-03-01

    The perennial springs at Gypsum Hill (GH) and Colour Peak (CP), situated at nearly 80 degrees N on Axel Heiberg Island in the Canadian high Arctic, are one of the few known examples of cold springs in thick permafrost on Earth. The springs emanate from deep saline aquifers and discharge cold anoxic brines rich in both sulfide and sulfate. Grey-coloured microbial streamers form during the winter months in snow-covered regions of the GH spring run-off channels (-1.3 degrees C to 6.9 degrees C, approximately 7.5% NaCl, 0-20 p.p.m. dissolved sulfide, 1 p.p.m. dissolved oxygen) but disappear during the Arctic summer. Culture- and molecular-based analyses of the 16S rRNA gene (FISH, DGGE and clone libraries) indicated that the streamers were uniquely dominated by chemolithoautotrophic sulfur-oxidizing Thiomicrospira species. The streamers oxidized both sulfide and thiosulfate and fixed CO(2) under in situ conditions and a Thiomicrospira strain isolated from the streamers also actively oxidized sulfide and thiosulfate and fixed CO(2) under cold, saline conditions. Overall, the snow-covered spring channels appear to represent a unique polar saline microhabitat that protects and allows Thiomicrospira streamers to form and flourish via chemolithoautrophic, phototrophic-independent metabolism in a high Arctic winter environment characterized by air temperatures commonly below -40 degrees C and with an annual average air temperature of -15 degrees C. These results broaden our knowledge of the physical and chemical boundaries that define life on Earth and have astrobiological implications for the possibility of life existing under similar Martian conditions.

  3. Evaluation of materials for systems using cooled, treated geothermal or high-saline brines

    SciTech Connect

    Suciu, D.F.; Wikoff, P.M.

    1982-09-01

    Lack of adequate quantities of clean surface water for use in wet (evaporative) cooling systems indicates the use of high-salinity waste waters, or cooled geothermal brines, for makeup purposes. High-chloride, aerated water represents an extremely corrosive environment. In order to determine metals suitable for use in such an environment, metal coupons were exposed to aerated, treated geothermal brine salted to a chloride concentration of 10,000 and 50,000 ppM (mg/L) for periods of up to 30 days. The exposed coupons were evaluated to determine the general, pitting, and crevice corrosion characteristics of the metals. The metals exhibiting corrosion resistance at 50,000 ppM chloride were then evaluated at 100,000 and 200,000 ppM chloride. Since these were screening tests to select materials for components to be used in a cooling system, with primary emphasis on condenser tubing, several materials were exposed for 4 to 10 months in pilot cooling tower test units with heat transfer for further corrosion evaluation. The results of the screening tests indicate that ferritic stainless steels (29-4-2 and SEA-CURE) exhibit excellent corrosion resistance at all levels of chloride concentration. Copper-nickel alloys (70/30 and Monel 400) exhibited excellent corrosion resistance in the high-saline water. The 70/30 copper-nickel alloy, which showed excellent resistance to general corrosion, exhibited mild pitting in the 30-day tests. This pitting was not apparent, however, after 6 months of exposure in the pilot cooling tower tests. The nickel-base alloys exhibited excellent corrosion resistance, but their high cost prevents their use unless no other material is found feasible. Other materials tested, although unsuitable for condenser tubing material, would be suitable as tube sheet material.

  4. Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis.

    PubMed

    Lee, Sangmin; Kim, Sang-Gyu; Park, Chung-Mo

    2010-10-01

    • Findings regarding the role of salicylic acid (SA) in seed germination are somewhat variable, depending on the plant genotypes and experimental conditions used, and thus the molecular mechanisms underlying SA regulation of germination are still unclear. Here, we report that physiological concentrations of SA promote germination under high salinity by modulating antioxidant activity in Arabidopsis. • Germination of SA induction deficient 2 (sid2) seeds was hypersensitive to high salinity. While the inhibitory effect of high salinity was exaggerated in the presence of higher concentrations of SA (> 100 μM), it was significantly reduced in the presence of lower concentrations of SA (< 50 μM). Under high salinity, the endogenous contents of H(2) O(2) were elevated in wild-type and sid2 seeds but reduced to original concentrations after treatment with 1 μM SA. • Germination of NahG transgenic plants was influenced to a lesser degree by high salinity (NahG is a bacterial gene encoding salicylate hydroxylase that converts salicylic acid to catechol). We found that catechol, an SA degradation product accumulated in the transgenic plants, acts as an antioxidant that compromises the inhibitory effects of high salinity. • Our observations indicate that, although SA is not essential for germination under normal growth conditions, it plays a promotive role in seed germination under high salinity by reducing oxidative damage.

  5. Nonmagnetotactic multicellular prokaryotes from low-saline, nonmarine aquatic environments and their unusual negative phototactic behavior.

    PubMed

    Lefèvre, Christopher T; Abreu, Fernanda; Lins, Ulysses; Bazylinski, Dennis A

    2010-05-01

    Magnetotactic multicellular prokaryotes (MMPs) are unique magnetotactic bacteria of the Deltaproteobacteria class and the first found to biomineralize the magnetic mineral greigite (Fe(3)S(4)). Thus far they have been reported only from marine habitats. We questioned whether MMPs exist in low-saline, nonmarine environments. MMPs were observed in samples from shallow springs in the Great Boiling Springs geothermal field and Pyramid Lake, both located in northwestern Nevada. The temperature at all sites was ambient, and salinities ranged from 5 to 11 ppt. These MMPs were not magnetotactic and did not contain magnetosomes (called nMMPs here). nMMPs ranged from 7 to 11 microm in diameter, were composed of about 40 to 60 Gram-negative cells, and were motile by numerous flagella that covered each cell on one side, characteristics similar to those of MMPs. 16S rRNA gene sequences of nMMPs show that they form a separate phylogenetic branch within the MMP group in the Deltaproteobacteria class, probably representing a single species. nMMPs exhibited a negative phototactic behavior to white light and to wavelengths of < or =480 nm (blue). We devised a "light racetrack" to exploit this behavior, which was used to photoconcentrate nMMPs for specific purposes (e.g., DNA extraction) even though their numbers were low in the sample. Our results show that the unique morphology of the MMP is not restricted to marine and magnetotactic prokaryotes. Discovery of nonmagnetotactic forms of the MMP might support the hypothesis that acquisition of the magnetosome genes involves horizontal gene transfer. To our knowledge, this is the first report of phototaxis in bacteria of the Deltaproteobacteria class.

  6. Salt-Tectonics Plays Major Role in Contributing High Seawater Salinity in Arabian/persian Gulf: a Constant Constrain on Seawater Desalination

    NASA Astrophysics Data System (ADS)

    Zaigham, N. A.; Aburizaiza, O. S.; Nayyar, Z. A.; Mahar, G. A.; Siddique, A.

    2012-12-01

    Literature research indicates that Arabian/Persian Gulf is the second smallest and saltiest marine body in the world. In general, it is believed that anomalously high salinity of the Gulf is due to low precipitation, high rate of evaporation and limited freshwater pouring from rivers of Iraq and Iran. But present research study has identified that the geotectonic setup and the associated resulting active salt-tectonic processes are mainly causing constant enhancement of salinity in Arabian/Persian Gulf. The results indicate presence of numerous penetrations of salt domes, plugs and other diapiric structures almost all over the bottom and surrounding coastline areas, particularly coastal-belt of Iran, Strait of Hormuz and coastal areas of Qatar and UAE, which are the main inherent contributors for high salinity in seawater of the Gulf. Other factors, like, low precipitation, high evaporation, poor freshwater pouring of Iraq and Iran rivers and discharging back of highly concentrated brines, etc., are further augmenting Gulf's high-salinity. From the assessed salinity environment, it is inferred that present level of salinity will be 'higher to highest' in future affecting considerably the desalination activities in time to come. As the level of seawater salinity plays an important role for the efficient and cost effective seawater desalination activities, the present priorities should be reevaluated for efficient and sustainable water from desalination of highly salted-water of Arabian/Persian Gulf.

  7. Testing of a technique for remotely measuring water salinity in an estuarine environment

    NASA Technical Reports Server (NTRS)

    Thomann, G. C.

    1975-01-01

    An aircraft experiment was flown on November 7, 1973 to test a technique for remote water salinity measurement. Apparent temperatures at 21 cm and 8-14 micron wavelengths were recorded on eight runs over a line along which the salinity varied from 5 to 30%. Boat measurements were used for calibration and accuracy calculations. Overall RMS accuracy over the complete range of salinities was 3.6%. Overall RMS accuracy for salinities greater than 10%, where the technique is more sensitive, was 2.6%. Much of this error is believed to be due to inability to exactly locate boat and aircraft positions. The standard deviation over the eight runs for salinities or = 10% is 1.4%; this error contains a component due to mislocation of the aircraft also. It is believed that operational use of the technique is possible with accuracies of 1-2%.

  8. Modulation of reactive oxygen species by salicylic acid in Arabidopsis seed germination under high salinity.

    PubMed

    Lee, Sangmin; Park, Chung-Mo

    2010-12-01

    Potential roles of salicylic acid (SA) on seed germination have been explored in many plant species. However, it is still controversial how SA regulates seed germination, mainly because the results have been somewhat variable, depending on plant genotypes used and experimental conditions employed. We found that SA promotes seed germination under high salinity in Arabidopsis. Seed germination of the sid2 mutant, which has a defect in SA biosynthesis, is hypersensitive to high salinity, but the inhibitory effects are reduced in the presence of physiological concentrations of SA. Abiotic stresses, including high salinity, impose oxidative stress on plants. Endogenous contents of H(2)O(2) are higher in the sid2 mutant seeds. However, exogenous application of SA reduces endogenous level of reactive oxygen species (ROS), indicating that SA is involved in plant responses to ROS-mediated damage under abiotic stress conditions. Gibberellic acid (GA), a plant hormone closely associated with seed germination, also reverses the inhibitory effects of high salinity on seed germination and seedling establishment. Under high salinity, GA stimulates SA biosynthesis by inducing the SID2 gene. Notably, SA also induces genes encoding GA biosynthetic enzymes. These observations indicate that SA promotes seed germination under high salinity by modulating antioxidant activity through signaling crosstalks with GA.

  9. [Ecophysiological adaptability of tropical water organisms to salinity changes].

    PubMed

    Chung, K S

    2001-03-01

    Physiological response of tropical organisms to salinity changes was studied for some marine, estuarine and freshwater fishes (Astyanax bimaculatus, Petenia karussii, Cyprinodon dearborni, and Oreochromis mossambicus), marine and freshwater crustaceans (Penaeus brasiliensis, Penaeus schmitti and Macrobrachium carcinus), and marine bivalves (Perna perna, Crassostrea rhizophorae, and Arca zebra) collected from Northeast Venezuela. They were acclimated for four weeks at various salinities, and (1) placed at high salinities to determine mean lethal salinity, (2) tested by increasing salinity 5@1000 per day to define upper lethal salinity tolerance limit, or (3) observed in a saline gradient tank to determine salinity preference. Acclimation level was the most significant factor. This phenomenon is important for tropical aquatic organisms in shallow waters, where they can adapt to high salinity during the dry season and cannot lose their acclimation level at low salinity during abrupt rain. For saline adaptation of tropical organisms, this behavior will contribute to their proliferation and distribution in fluctuating salinity environments.

  10. Natural protein engineering: a uniquely salt-tolerant, but not halophilic, alpha-type carbonic anhydrase from algae proliferating in low- to hyper-saline environments.

    PubMed

    Bageshwar, Umesh K; Premkumar, Lakshmanane; Gokhman, Irena; Savchenko, Tatyana; Sussman, Joel L; Zamir, Ada

    2004-02-01

    Dunaliella salina is a unicellular green alga thriving in environments ranging from fresh water to hyper-saline lakes, such as the Dead Sea. An unusual, internally duplicated, 60 kDa alpha-type carbonic anhydrase (dCA I), located on the surface of this alga, is expected to function over a broad range of salinities. It would therefore differ from other carbonic anhydrases that already lose activity at low salinities and also from halophilic proteins that require high salinities for conformational stability. Enzymatic analyses indeed indicated that dCA I retained activity at salt concentrations ranging from low salt to at least 1.5 M NaCl or KCl for CO(2) hydration, 2.0 M NaCl for esterase activity and 0.5 M for bicarbonate dehydration. Although measurements at higher salinities were constrained by the interference of salt in the respective assayed reactions, activity was noticeable even at 4.0 M NaCl. Comparisons of the internally duplicated dCA I to single-domain derivatives indicated that inter-domain interactions played a decisive role in the stability, activity, salt tolerance and pH responses of dCA I. Hence dCA I is a uniquely salt- tolerant protein, retaining an active conformation over a large range of salinities and, as a Zn metalloenzyme, largely immune to the specific inhibitory effects of anions. Its unique features make dCA I a useful model to understand the physico-chemical basis of halotolerance and protein-salt interactions in general.

  11. Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield.

    PubMed

    Sanan-Mishra, Neeti; Pham, Xuan Hoi; Sopory, Sudhir K; Tuteja, Narendra

    2005-01-11

    Salt tolerance is an important trait that is required to overcome salinity-induced reduction in plant productivity. We have reported previously the isolation of a pea DNA helicase 45 (PDH45) that exhibits striking homology with the eukaryotic translation initiation factor eIF-4A. Here, we report that PDH45 mRNA is induced in pea seedlings in response to high salt, and its overexpression driven by a constitutive cauliflower mosaic virus-(35)S promoter in tobacco plants confers salinity tolerance, thus suggesting a previously undescribed pathway for manipulating stress tolerance in crop plants. The T(0) transgenic plants showed high levels of PDH45 protein in normal and stress conditions, as compared with WT plants. The T(0) transgenics also showed tolerance to high salinity as tested by a leaf disk senescence assay. The T(1) transgenics were able to grow to maturity and set normal viable seeds under continuous salinity stress without any reduction in plant yield in terms of seed weight. Measurement of Na(+) ions in different parts of the plant showed higher accumulation in the old leaves and negligible accumulation in seeds of T(1) transgenic lines as compared with the WT plants. The possible mechanism of salinity tolerance is discussed. Overexpression of PDH45 provides a possible example of the exploitation of DNA/RNA unwinding pathways for engineering salinity tolerance without affecting yield in crop plants.

  12. Identification of mega-environments and rice genotypes for general and specific adaptation to saline and alkaline stresses in India.

    PubMed

    Krishnamurthy, S L; Sharma, P C; Sharma, D K; Ravikiran, K T; Singh, Y P; Mishra, V K; Burman, D; Maji, B; Mandal, S; Sarangi, S K; Gautam, R K; Singh, P K; Manohara, K K; Marandi, B C; Padmavathi, G; Vanve, P B; Patil, K D; Thirumeni, S; Verma, O P; Khan, A H; Tiwari, S; Geetha, S; Shakila, M; Gill, R; Yadav, V K; Roy, S K B; Prakash, M; Bonifacio, J; Ismail, Abdelbagi; Gregorio, G B; Singh, Rakesh Kumar

    2017-08-11

    In the present study, a total of 53 promising salt-tolerant genotypes were tested across 18 salt-affected diverse locations for three years. An attempt was made to identify ideal test locations and mega-environments using GGE biplot analysis. The CSSRI sodic environment was the most discriminating location in individual years as well as over the years and could be used to screen out unstable and salt-sensitive genotypes. Genotypes CSR36, CSR-2K-219, and CSR-2K-262 were found ideal across years. Overall, Genotypes CSR-2K-219, CSR-2K-262, and CSR-2K-242 were found superior and stable among all genotypes with higher mean yields. Different sets of genotypes emerged as winners in saline soils but not in sodic soils; however, Genotype CSR-2K-262 was the only genotype that was best under both saline and alkaline environments over the years. The lack of repeatable associations among locations and repeatable mega-environment groupings indicated the complexity of soil salinity. Hence, a multi-location and multi-year evaluation is indispensable for evaluating the test sites as well as identifying genotypes with consistently specific and wider adaptation to particular agro-climatic zones. The genotypes identified in the present study could be used for commercial cultivation across edaphically challenged areas for sustainable production.

  13. Calcium transport in gill cells of Ucides cordatus, a mangrove crab living in variable salinity environments.

    PubMed

    Leite, V P; Zanotto, F P

    2013-10-01

    Crustaceans show discontinuous growth and have been used as a model system for studying cellular mechanisms of calcium transport, which is the main mineral found in their exoskeleton. Ucides cordatus, a mangrove crab, is naturally exposed to fluctuations in calcium and salinity. To study calcium transport in this species during isosmotic conditions, dissociated gill cells were marked with fluo-3 and intracellular Ca(2+) change was followed by adding extracellular Ca(2+) as CaCl2 (0, 0.1, 0.25, 0.50, 1.0 and 5mM), together with different inhibitors. For control gill cells, Ca(2+) transport followed Michaelis-Menten kinetics with Vmax=0.137±0.001 ∆Ca(2+)i (μM×22.10(4)cells(-1)×180s(-1); N=4; r(2)=0.99); Km=0.989±0.027mM. The use of different inhibitors for gill cells showed that amiloride (Na(+)/Ca(2+) exchange inhibitor) inhibited 80% of Ca(2+) transport in gill cells (Vmax). KB-R, an inhibitor of Ca influx in vertebrates, similarly caused a decrease in Ca(2+) transport and verapamil (Ca(2+) channel inhibitor) had no effect on Ca(2+) transport, while nifedipine (another Ca(2+) channel inhibitor) caused a 20% decrease in Ca(2+) affinity compared to control values. Ouabain, on the other hand, caused no change in Ca(2+) transport, while vanadate increased the concentration of intracellular calcium through inhibition of Ca(2+) efflux probably through the plasma membrane Ca(2+)-ATPase. Results show that transport kinetics for Ca(2+) in these crabs under isosmotic conditions is lower compared to a hyper-regulator freshwater crab Dilocarcinus pagei studied earlier using fluorescent Ca(2+) probes. These kinds of studies will help understanding the comparative mechanisms underlying the evolution of Ca transport in crabs living in different environments.

  14. Optimization of Geological Environments for Carbon Dioxide Disposan in Saline Aquifers in the United States

    SciTech Connect

    Hovorka, Susan

    1999-02-01

    Recent research and applications have demonstrated technologically feasible methods, defined costs, and modeled processes needed to sequester carbon dioxide (CO{sub 2}) in saline-water-bearing formations (aquifers). One of the simplifying assumptions used in previous modeling efforts is the effect of real stratigraphic complexity on transport and trapping in saline aquifers. In this study we have developed and applied criteria for characterizing saline aquifers for very long-term sequestration of CO{sub 2}. The purpose of this pilot study is to demonstrate a methodology for optimizing matches between CO{sub 2} sources and nearby saline formations that can be used for sequestration. This project identified 14 geologic properties used to prospect for optimal locations for CO{sub 2} sequestration in saline-water-bearing formations. For this demonstration, we digitized maps showing properties of saline formations and used analytical tools in a geographic information system (GIS) to extract areas that meet variably specified prototype criteria for CO{sub 2} sequestration sites. Through geologic models, realistic aquifer properties such as discontinuous sand-body geometry are determined and can be used to add realistic hydrologic properties to future simulations. This approach facilitates refining the search for a best-fit saline host formation as our understanding of the most effective ways to implement sequestration proceeds. Formations where there has been significant drilling for oil and gas resources as well as extensive characterization of formations for deep-well injection and waste disposal sites can be described in detail. Information to describe formation properties can be inferred from poorly known saline formations using geologic models in a play approach. Resulting data sets are less detailed than in well-described examples but serve as an effective screening tool to identify prospects for more detailed work.

  15. Plant aquaporins: new perspectives on water and nutrient uptake in saline environment.

    PubMed

    del Martínez-Ballesta, M C; Silva, C; López-Berenguer, C; Cabañero, F J; Carvajal, M

    2006-09-01

    The mechanisms of salt stress and tolerance have been targets for genetic engineering, focusing on ion transport and compartmentation, synthesis of compatible solutes (osmolytes and osmoprotectants) and oxidative protection. In this review, we consider the integrated response to salinity with respect to water uptake, involving aquaporin functionality. Therefore, we have concentrated on how salinity can be alleviated, in part, if a perfect knowledge of water uptake and transport for each particular crop and set of conditions is available.

  16. High Salinity Relaying to Reduce Vibrio parahaemolyticus and Vibrio vulnificus in Chesapeake Bay Oysters (Crassostrea virginica).

    PubMed

    Parveen, Salina; Jahncke, Michael; Elmahdi, Sara; Crocker, Helen; Bowers, John; White, Chanelle; Gray, Stephanie; Morris, Amanda C; Brohawn, Kathy

    2017-02-01

    Cases of Vibrio infections in the United States have tripled from 1996 to 2009 and these infections are most often associated with the consumption of seafood, particularly oysters (Crassostrea virginica). Information is needed on how to reduce numbers of Vibrio parahaemolyticus and Vibrio vulnificus in bi-valve molluscan shellfish (for example, oysters). The purpose of this study was to evaluate the effectiveness of high salinity relaying or treatment in recirculating aquaculture systems (RASs) as methods to reduce the abundance of V. parahaemolyticus and V. vulnificus in oysters. For relaying field trials, oysters were collected from approved harvest waters, temperature abused outside under a tarp for 4 h, and then transferred to high (29 to 33 ppt.) and moderate (12 to 19 ppt.) salinities. For RAS treatment trial, oysters were transferred to 32 to 34 ppt. salinity at 15 °C. After 7, 14, 21, and in some instances 28 d, oysters were collected and analyzed for V. parahaemolyticus and V. vulnificus levels using multiplex real-time PCR. Initial levels of V. parahaemolyticus and V. vulnificus ranged from 3.70 to 5.64 log10 MPN/g, and were reduced by 2 to 5 logs after 21 to 28 d in high salinity water (29 to 34 ppt.). Oyster mortalities averaged 4% or less, and did not exceed 7%. Relaying of oysters to high salinity field sites or transfer to high salinity RAS tanks was more effective in reducing V. vulnificus compared with V. parahaemolyticus. These results suggest that high salinity relaying of oysters is more effective in reducing V. vulnificus than V. parahaemolyticus in the oyster species used in this study.

  17. Ky-2, a Histone Deacetylase Inhibitor, Enhances High-Salinity Stress Tolerance in Arabidopsis thaliana.

    PubMed

    Sako, Kaori; Kim, Jong-Myong; Matsui, Akihiro; Nakamura, Kotaro; Tanaka, Maho; Kobayashi, Makoto; Saito, Kazuki; Nishino, Norikazu; Kusano, Miyako; Taji, Teruaki; Yoshida, Minoru; Seki, Motoaki

    2016-04-01

    Adaptation to environmental stress requires genome-wide changes in gene expression. Histone modifications are involved in gene regulation, but the role of histone modifications under environmental stress is not well understood. To reveal the relationship between histone modification and environmental stress, we assessed the effects of inhibitors of histone modification enzymes during salinity stress. Treatment with Ky-2, a histone deacetylase inhibitor, enhanced high-salinity stress tolerance in Arabidopsis. We confirmed that Ky-2 possessed inhibition activity towards histone deacetylases by immunoblot analysis. To investigate how Ky-2 improved salt stress tolerance, we performed transcriptome and metabolome analysis. These data showed that the expression of salt-responsive genes and salt stress-related metabolites were increased by Ky-2 treatment under salinity stress. A mutant deficient in AtSOS1(Arabidopis thaliana SALT OVERLY SENSITIVE 1), which encodes an Na(+)/H(+)antiporter and was among the up-regulated genes, lost the salinity stress tolerance conferred by Ky-2. We confirmed that acetylation of histone H4 at AtSOS1 was increased by Ky-2 treatment. Moreover, Ky-2 treatment decreased the intracellular Na(+)accumulation under salinity stress, suggesting that enhancement of SOS1-dependent Na(+)efflux contributes to increased high-salinity stress tolerance caused by Ky-2 treatment.

  18. Stimulated growth rate by restriction of P availability at moderate salinity but insensitive to P availability at high salinity in Crithmum maritimum.

    PubMed

    Labidi, Nehla; Ammari, Manel; Snoussi, Sana; Messelini, Najoua; Gharbi, Fatma; Abdelly, C

    2011-09-01

    The halophyte Crithmum maritimum thrives in cracks of calcareous rocks or cliffs at seashores, a situation which associates limited phosphorus availability and high salinity. In order to understand the common patterns of colonization and zonation of this species, seedlings were cultivated for 34 d in inert sandy soil irrigated with a nutrient solution containing or not phosphorus at moderate (50 mM) or high (250 mM) NaCl level. Net assimilation rate and consequently relative growth rate increased in response to P deprivation at moderate saline level, but not at high salinity level. Parallelly, CO2 fixation rate, rubisco capacity, transpiration rate and stomatal conductance were diminished by P deprivation at moderate NaCl level. Intercellular CO2 concentration was therefore not affected. Chlororophyll fluorescence analysis revealed that photosynthetic systems were insensitive to change in P availability at moderate salinity level: neither pigment content, nor effective and maximum quantum yield, photochemical and non photochemical quenching, and electron transport rate were affected by P deprivation. On the contrary, at high salinity level when net photosynthesis, rubisco capacity and the quantum yields of PS2 were severely affected, P deprivation strongly augmented electron transport rate. Stomatal aperture and more modest increase in net photosynthesis, rubisco capacity, photosystem II effective quantum yield and photochemical quenching accompanied this response. This study shows the tolerance of C. maritimum to the phosphorus deprivation combined to moderate or to high saline level which may explain the common patterns of colonization and zonation of this species.

  19. White spot syndrome virus (WSSV) infection in shrimp (Litopenaeus vannamei) exposed to low and high salinity.

    PubMed

    Ramos-Carreño, Santiago; Valencia-Yáñez, Ricardo; Correa-Sandoval, Francisco; Ruíz-García, Noé; Díaz-Herrera, Fernando; Giffard-Mena, Ivone

    2014-09-01

    White spot syndrome virus (WSSV) has a worldwide distribution and is considered one of the most pathogenic and devastating viruses to the shrimp industry. A few studies have explored the effect of WSSV on shrimp acclimated to low (5 practical salinity units [psu]) or high ([40 psu) salinity conditions. In this work, we analysed the physiological response of WSSV-infected Litopenaeus vannamei juveniles that were acclimated to different salinities (5, 15, 28, 34 and 54 psu). We evaluated the osmotic response and survival of the shrimp at different times after infection (0 to 48 hours), and we followed the expression levels of a viral gene (vp664) in shrimp haemolymph using real-time PCR. Our results indicate that the susceptibility of the shrimp to the virus increased at extreme salinities (5 and 54 psu), with higher survival rates at 15 and 28 psu, which were closer to the iso-osmotic point (24.7 psu, 727.5 mOsmol/kg). Acute exposure to the virus made the haemolymph less hyperosmotic at 5 and 15 psu and less hypo-osmotic at higher salinities ([28 psu). The capacity of white shrimp to osmoregulate, and thus survive, significantly decreased following WSSV infection. According to our results, extreme salinities (5 or 54 psu) are more harmful than seawater.

  20. High salinity and UVR synergistically reduce the photosynthetic performance of an intertidal benthic diatom.

    PubMed

    Wu, Yaping; Zhu, Yanchen; Xu, Juntian

    2017-09-01

    The intertidal flat is an important intermediate ecosystem characterized by abrupt fluctuations of some environmental factors. As a major contributor to coastal primary productivity, benthic diatoms have to cope up with these fluctuating conditions, such as variations in salinity and light. In this study, we used a typical benthic diatom, Nitzschia sp., to investigate how the photosynthetic performance of a benthic species responded to coupled stresses of high salinity and simulated sunlight. Results showed that their responses were largely dependent on the spectra of light they received. Further, ultraviolet radiation (UVR) interacted with high salinity more effectively than photosynthetically active radiation (PAR), which synergistically reduced the photochemical performance of photosystem II (PSII). The different responses to PAR and UVR were mainly attributed to the repair processes of PSII. Under high salinity, particularly for cells exposed to UVR, the repair rate was significantly lower than those under the control treatment. The present work suggests that UVR, rather than PAR, could be more important in influencing the benthic diatom under high salinity conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Soil- and plant- water uptake in saline environments and their consequences to plant adaptation in fluctuating climates

    NASA Astrophysics Data System (ADS)

    Volpe, V.; Albertson, J. D.; Katul, G. G.; Marani, M.

    2010-12-01

    Ecological processes determining plant colonization are quite peculiar and competition among different species is governed by a set of unique adaptations to stress conditions caused by drought, hypoxic or hyper-saline conditions. These adaptations and possible positive feedbacks often lead to the formation of patterns of vegetation colonization and spatial heterogeneity (zonation), and play a primary role in the stabilization of sediments. It is these issues that frame the scope of this study. The main objective of this work is to track one of the fundamental pathways between plant adaptation (quantified in terms of physiological and ecological attributes such as leaf area or root density profile) and feedbacks (quantified by plant-mediated alterations to water availability and salinity levels): root water uptake. Because root-water uptake is the main conduit connecting transpiring leaves to reservoirs of soil water, the means by which salinity modifies the processes governing its two end-points and any two-way interactions between them serves as a logical starting point. Salinity effects on leaf transpiration and photosynthesis are first explored via stomatal optimization principles that maximize carbon gain at a given water loss for autonomous leaves. Salinity directly affects leaf physiological attributes such as mesophyll conductance and photosynthetic parameters and hence over-all conductance to transpiration as well as different strategies to cope with the high salinity (e.g. through salt seclusion, compartmentation and osmotic adjustments). A coupled model of subsurface flow based on a modified Richards’ equation that accounts for the effects of increasing salinity, anaerobic conditions, water stress and compensation factors is developed. Plant water uptake is considered as a soil moisture sink term with a potential rate dictated by the carbon demands of the leaves, and an actual rate that accounts for both - hydraulic and salinity limitations. Using this

  2. Ultrasonic Measurements of Unconsolidated Saline Sediments During Freeze/Thaw Cycles: The Seismic Properties of Cryopeg Environments

    NASA Astrophysics Data System (ADS)

    Dou, S.; Ajo Franklin, J. B.

    2013-12-01

    Saline permafrost and cryopegs (hypersaline unfrozen layers/zones within permafrost) are widespread in the Arctic coastal area as a result of marine transgression and regression in recent geological history. Owing to the freezing-point depression effect of soluble salts, they contain more unfrozen water than non-saline frozen sediments when subjected to the same permafrost temperatures (e.g., from 0 to -15 °C). Mapping subsurface cryopeg structure remains a challenging geophysical task due to the poor penetration of GPR in highly conductive fluids and related limitations for lower frequency EM techniques. Seismic profiling, particularly surface wave characterization, provides one possible approach to delineate the extent of cryopeg bodies. However, interpretation of such surveys is currently limited by the sparse database of measurements examining the seismic properties of unconsolidated materials saturated with saline fluids at sub-zero temperatures. We present the results of experiments examining seismic velocity in the ultrasonic range for both synthetic and natural permafrost sediments during freeze/thaw cycles; in these experiments, use of a range of brine salinities allows us to evaluate the properties of cryopeg sediments at in-situ conditions, a prerequisite for quantitative interpretation of seismic imaging results. Because of the abundant unfrozen water and less developed inter-granular ice structure, the seismic properties of saline permafrost typically falls between frozen and unfrozen soils. We conducted ultrasonic measurements of a freeze-thaw cycle on 20-30 Ottawa sand (grain size 590-840 μm) as well as natural mineral soils from the Barrow Environmental Observatory (BEO) saturated with brines of different salinities (0-2.5 M NaCl). For each salinity, seismic properties were measured using the ultrasonic (~1 MHz) pulse-transmission method in the temperature range from 20 to -30 °C. Similar to sediments saturated with low salinity fluids, seismic

  3. Salinity, pressure and heavy-metal stress response of moderately halophilic bacteria isolated from hydrothermal-vent environments

    NASA Astrophysics Data System (ADS)

    Kaye, J. Z.; Baross, J. A.

    2002-12-01

    Moderately halophilic bacteria comprised 0.01-10% of the total microbial community in low-temperature hydrothermal emissions and in the overlying water column. The presence of these microorganisms was initially thought to be linked to brines that are produced by super-critical phase separation beneath deep-sea mid-ocean ridges. While there is conclusive evidence that these brines exist at extremely hot (>400°C) temperatures, it is difficult to construct geochemical and fluid-flow models which would delineate extensive subseafloor brine environments in mesophilic to hyperthermophilic temperature ranges. An alternative hypothesis is that halotolerance is actually induced by an environmental stress other than salt. Pressure and heavy metals are likely candidates. Diffuse flow environments at Axial Seamount and the Endeavour Segment of the Juan de Fuca Ridge and along the Southern East Pacific Rise are both elevated in concentrations of heavy metals and under moderate pressure (150-270 atm; higher beneath the seafloor). From these fluids we isolated numerous strains of moderately halophilic bacteria belonging to the genera Halomonas and Marinobacter. At ambient pressure, isolates grew between -1 and 40°C, with up to 25% NaCl, and with 2.0-3.0 mM cadmium. The isolates displayed widely varying pressure maxima and cell yields as a function of temperature and salinity. High pressure and salt (and heavy metals?) may independently induce a stress response that enables these bacteria to cope with all of these stresses. Also in progress are molecular-phylogenetic analyses of moderately halophilic bacterial populations from diffuse flow sites along the Juan de Fuca Ridge. We expect that many of the organisms detected using our novel primers will have been cultured. With the knowledge of their physiologies and how their diversity changes in relation to fluid chemistry, these data may shed light on the dynamic subseafloor hydrothermal system that supports them.

  4. Removal of Soluble Strontium via Incorporation into Biogenic Carbonate Minerals by Halophilic Bacterium Bacillus sp. Strain TK2d in a Highly Saline Solution.

    PubMed

    Horiike, Takumi; Dotsuta, Yuma; Nakano, Yuriko; Ochiai, Asumi; Utsunomiya, Satoshi; Ohnuki, Toshihiko; Yamashita, Mitsuo

    2017-10-15

    Radioactive strontium ((90)Sr) leaked into saline environments, including the ocean, from the Fukushima Daiichi Nuclear Power Plant after a nuclear accident. Since the removal of (90)Sr using general adsorbents (e.g., zeolite) is not efficient at high salinity, a suitable alternative immobilization method is necessary. Therefore, we incorporated soluble Sr into biogenic carbonate minerals generated by urease-producing microorganisms from a saline solution. An isolate, Bacillus sp. strain TK2d, from marine sediment removed >99% of Sr after contact for 4 days in a saline solution (1.0 × 10(-3) mol liter(-1) of Sr, 10% marine broth, and 3% [wt/vol] NaCl). Transmission electron microscopy and energy-dispersive X-ray spectroscopy showed that Sr and Ca accumulated as phosphate minerals inside the cells and adsorbed at the cell surface at 2 days of cultivation, and then carbonate minerals containing Sr and Ca developed outside the cells after 2 days. Energy-dispersive spectroscopy revealed that Sr, but not Mg, was present in the carbonate minerals even after 8 days. X-ray absorption fine-structure analyses showed that a portion of the soluble Sr changed its chemical state to strontianite (SrCO3) in biogenic carbonate minerals. These results indicated that soluble Sr was selectively solidified into biogenic carbonate minerals by the TK2d strain in highly saline environments.IMPORTANCE Radioactive nuclides ((134)Cs, (137)Cs, and (90)Sr) leaked into saline environments, including the ocean, from the Fukushima Daiichi Nuclear Power Plant accident. Since the removal of (90)Sr using general adsorbents, such as zeolite, is not efficient at high salinity, a suitable alternative immobilization method is necessary. Utilizing the known concept that radioactive (90)Sr is incorporated into bones by biomineralization, we got the idea of removing (90)Sr via incorporation into biominerals. In this study, we revealed the ability of the isolated ureolytic bacterium to remove Sr under high-salinity

  5. Origin and mechanisms of high salinity in Hombolo Dam and groundwater in Dodoma municipality Tanzania, revealed

    NASA Astrophysics Data System (ADS)

    Shemsanga, Ceven; Muzuka, Alfred Nzibavuga Nyarubakula; Martz, Lawrance; Komakech, Hans Charles; Elisante, Eliapenda; Kisaka, Marry; Ntuza, Cosmas

    2017-05-01

    The Hombolo dam (HD), in central Tanzania, is a shallow reservoir characterized by high salinity that limits its use for human activities. The origin of the salinity, mechanisms of reaching and concentrating in the dam remain unclear. These were assessed using hydrogeochemical facies, water type evolutions and mapping. The source of HD salinity was identified to be shallow groundwater (SG) and runoff from a seasonal floodplain with NaCl-rich lithological materails, along Little Kinyasungwe River that feeds the dam. The NaCl-rich lithological units, about 5-7 km upstream of the dam, were highly concentrated with NaCl to the extent that the local community was commercially separating table salt from them. The physicochemical parameters from these NaCl-rich lithological materials were well represented in HD and nearby groundwater sources, which suggests active water interactions. Water type evolution and surface hydrology assessments clearly showed that SG in the salty-floodplain was influenced by evaporation (ET) and was periodically carried to the HD. Clearly; HD water had high chemical similarity with the nearby SG. This agrees with previous studies that HD is partly fed by the local aquifer. However, this is the first attempt at mapping its physical origin. The origin of HD salinity was further supported by the spatial distribution of electrical conductivity (EC), where very high EC (up to 21,230 μScm-1) was recorded in SG within the NaCl-rich lithological unit while water sources far away from the NaCl-rich materials had much lower EC values. Thus, the study disagrees with previous conclusions that HD salinity was sorely due to high dam surface ET but is primarily due to geological reasons. Comparisons of HD with a nearby Matumbulu dam (MD), another earthen dam in climatologically similar settings, reveals that MD water was less saline/mineralised. This further shows that HD high salinity is most likely a geologic phenomenon, but local climatic factors, namely

  6. Microorganisms associated with uranium bioremediation in a high-salinity subsurface sediment.

    PubMed

    Nevin, Kelly P; Finneran, Kevin T; Lovley, Derek R

    2003-06-01

    Although stimulation of dissimilatory metal reduction to promote the reductive precipitation of uranium has been shown to successfully remove uranium from some aquifer sediments, the organisms in the family Geobacteraceae that have been found to be associated with metal reduction in previous studies are not known to grow at the high salinities found in some uranium-contaminated groundwaters. Studies with a highly saline uranium-contaminated aquifer sediment demonstrated that the addition of acetate could stimulate the removal of U(VI) from the groundwater. This removal was associated with an enrichment in microorganisms most closely related to Pseudomonas and Desulfosporosinus species.

  7. Nitrogen fertilization enhances water-use efficiency in a saline environment.

    PubMed

    Martin, Katherine C; Bruhn, Dan; Lovelock, Catherine E; Feller, Ilka C; Evans, John R; Ball, Marilyn C

    2010-03-01

    Effects of salinity and nutrients on carbon gain in relation to water use were studied in the grey mangrove, Avicennia marina, growing along a natural salinity gradient in south-eastern Australia. Tall trees characterized areas of seawater salinities (fringe zone) and stunted trees dominated landward hypersaline areas (scrub zone). Trees were fertilized with nitrogen (+N) or phosphorus (+P) or unfertilized. There was no significant effect of +P on shoot growth, whereas +N enhanced canopy development, particularly in scrub trees. Scrub trees maintained greater CO(2) assimilation per unit water transpired (water-use efficiency, WUE) and had lower nitrogen-use efficiency (NUE; CO(2) assimilation rate per unit leaf nitrogen) than fringe trees. The CO(2) assimilation rates of +N trees were similar to those in other treatments, but were achieved at lower transpiration rates, stomatal conductance and intercellular CO(2) concentrations. Maintaining comparable assimilation rates at lower stomatal conductance requires greater ribulose 1.5-bisphosphate carboxylase/oxygenase activity, consistent with greater N content per unit leaf area in +N trees. Hence, +N enhanced WUE at the expense of NUE. Instantaneous WUE estimates were supported by less negative foliar delta(13)C values for +N trees and scrub control trees. Thus, nutrient enrichment may alter the structure and function of mangrove forests along salinity gradients.

  8. The Effect of Growth Environment and Salinity on Lipid Production and Composition of Salicornia virginica

    NASA Technical Reports Server (NTRS)

    Bomani, Bilal Mark McDowell; Link, Dirk; Kail, Brian; Morreale, Bryan; Lee, Eric S.; Gigante, Bethany M.; Hendricks, Robert C.

    2014-01-01

    Finding a viable and sustainable source of renewable energy is a global task. Biofuels as a renewable energy source can potentially be a viable option for sustaining long-term energy needs. Biodiesel from halophytes shows great promise due to their ability to serve not only as a fuel source, but a food source as well. Halophytes are one of the few biomass plant species that can tolerate a wide range of saline conditions. We investigate the feasibility of using the halophyte, Salicornia virginica as a biofuel source by conducting a series of experiments utilizing various growth and salinity conditions. The goal is to determine if the saline content of Salicornia virginica in our indoor growth vs outdoor growth conditions has an influence on lipid recovery and total biomass composition. We focused on using standard lipid extraction protocols and characterization methods to evaluate twelve Salicornia virginica samples under six saline values ranging from freshwater to seawater and two growth conditions. The overall goal is to develop an optimal lipid extraction protocol for Salicornia virginica and potentially apply this protocol to halophytes in general.

  9. Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping

    PubMed Central

    Al-Tamimi, Nadia; Brien, Chris; Oakey, Helena; Berger, Bettina; Saade, Stephanie; Ho, Yung Shwen; Schmöckel, Sandra M.; Tester, Mark; Negrão, Sónia

    2016-01-01

    High-throughput phenotyping produces multiple measurements over time, which require new methods of analyses that are flexible in their quantification of plant growth and transpiration, yet are computationally economic. Here we develop such analyses and apply this to a rice population genotyped with a 700k SNP high-density array. Two rice diversity panels, indica and aus, containing a total of 553 genotypes, are phenotyped in waterlogged conditions. Using cubic smoothing splines to estimate plant growth and transpiration, we identify four time intervals that characterize the early responses of rice to salinity. Relative growth rate, transpiration rate and transpiration use efficiency (TUE) are analysed using a new association model that takes into account the interaction between treatment (control and salt) and genetic marker. This model allows the identification of previously undetected loci affecting TUE on chromosome 11, providing insights into the early responses of rice to salinity, in particular into the effects of salinity on plant growth and transpiration. PMID:27853175

  10. Improved methane production from brown algae under high salinity by fed-batch acclimation.

    PubMed

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka

    2015-01-01

    Here, a methanogenic microbial community was developed from marine sediments to have improved methane productivity from brown algae under high salinity. Fed-batch cultivation was conducted by adding dry seaweed at 1wt% total solid (TS) based on the liquid weight of the NaCl-containing sediment per round of cultivation. The methane production rate and level of salinity increased 8-fold and 1.6-fold, respectively, at the 10th round of cultivation. Moreover, the rate of methane production remained high, even at the 10th round of cultivation, with accumulation of salts derived from 10wt% TS of seaweed. The salinity of the 10th-round culture was equivalent to 5% NaCl. The improved methane production was attributed to enhanced acetoclastic methanogenesis because acetate became rapidly converted to methane during cultivation. The family Fusobacteriaceae and the genus Methanosaeta, the acetoclastic methanogen, predominated in bacteria and archaea, respectively, after the cultivation.

  11. High Tolerance to Salinity and Herbivory Stresses May Explain the Expansion of Ipomoea Cairica to Salt Marshes

    PubMed Central

    Liu, Gang; Huang, Qiao-Qiao; Lin, Zhen-Guang; Huang, Fang-Fang; Liao, Hui-Xuan; Peng, Shao-Lin

    2012-01-01

    Background Invasive plants are often confronted with heterogeneous environments and various stress factors during their secondary phase of invasion into more stressful habitats. A high tolerance to stress factors may allow exotics to successfully invade stressful environments. Ipomoea cairica, a vigorous invader in South China, has recently been expanding into salt marshes. Methodology/Principal Findings To examine why this liana species is able to invade a stressful saline environment, we utilized I. cairica and 3 non-invasive species for a greenhouse experiment. The plants were subjected to three levels of salinity (i.e., watered with 0, 4 and 8 g L−1 NaCl solutions) and simulated herbivory (0, 25 and 50% of the leaf area excised) treatments. The relative growth rate (RGR) of I. cairica was significantly higher than the RGR of non-invasive species under both stress treatments. The growth performance of I. cairica was not significantly affected by either stress factor, while that of the non-invasive species was significantly inhibited. The leaf condensed tannin content was generally lower in I. cairica than in the non-invasive I. triloba and Paederia foetida. Ipomoea cairica exhibited a relatively low resistance to herbivory, however, its tolerance to stress factors was significantly higher than either of the non-invasive species. Conclusions/Significance This is the first study examining the expansion of I. cairica to salt marshes in its introduced range. Our results suggest that the high tolerance of I. cairica to key stress factors (e.g., salinity and herbivory) contributes to its invasion into salt marshes. For I. cairica, a trade-off in resource reallocation may allow increased resources to be allocated to tolerance and growth. This may contribute to a secondary invasion into stressful habitats. Finally, we suggest that I. cairica could spread further and successfully occupy salt marshes, and countermeasures based on herbivory could be ineffective for

  12. High tolerance to salinity and herbivory stresses may explain the expansion of Ipomoea cairica to salt marshes.

    PubMed

    Liu, Gang; Huang, Qiao-Qiao; Lin, Zhen-Guang; Huang, Fang-Fang; Liao, Hui-Xuan; Peng, Shao-Lin

    2012-01-01

    Invasive plants are often confronted with heterogeneous environments and various stress factors during their secondary phase of invasion into more stressful habitats. A high tolerance to stress factors may allow exotics to successfully invade stressful environments. Ipomoea cairica, a vigorous invader in South China, has recently been expanding into salt marshes. To examine why this liana species is able to invade a stressful saline environment, we utilized I. cairica and 3 non-invasive species for a greenhouse experiment. The plants were subjected to three levels of salinity (i.e., watered with 0, 4 and 8 g L(-1) NaCl solutions) and simulated herbivory (0, 25 and 50% of the leaf area excised) treatments. The relative growth rate (RGR) of I. cairica was significantly higher than the RGR of non-invasive species under both stress treatments. The growth performance of I. cairica was not significantly affected by either stress factor, while that of the non-invasive species was significantly inhibited. The leaf condensed tannin content was generally lower in I. cairica than in the non-invasive I. triloba and Paederia foetida. Ipomoea cairica exhibited a relatively low resistance to herbivory, however, its tolerance to stress factors was significantly higher than either of the non-invasive species. This is the first study examining the expansion of I. cairica to salt marshes in its introduced range. Our results suggest that the high tolerance of I. cairica to key stress factors (e.g., salinity and herbivory) contributes to its invasion into salt marshes. For I. cairica, a trade-off in resource reallocation may allow increased resources to be allocated to tolerance and growth. This may contribute to a secondary invasion into stressful habitats. Finally, we suggest that I. cairica could spread further and successfully occupy salt marshes, and countermeasures based on herbivory could be ineffective for controlling this invasion.

  13. The geomorphology of two hyper-saline springs in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Ward, M. K.; Pollard, W. H.

    2013-12-01

    On Axel Heiberg Island in the Canadian High Arctic a number of low temperature perennial saline springs occur despite being subject to a cold polar desert climate with a mean annual air temperature of -18°C. Associated with 2 groups of hyper-saline springs are distinctive landforms resulting from winter deposition of salt minerals. These deposits resemble tufas structurally but unlike true tufas which are composed of carbonate minerals, these landforms are formed mainly of salt. This study hypothesizes that the extreme cold winter air temperatures cools water temperatures triggering rapid precipitation of various salt minerals (mainly hydrohalite, NaCl*2H2O) which subsequently alters the flow hydrology by obstructing summer flow paths. The tufa-like appearance of these salt deposits reflects the interaction between changing water temperature, chemistry and flow. This research characterises the geomorphology and geochemistry of two hyper-saline springs on Axel Heiberg Island: the first is located at Wolf Diapir (79°07'23'N; 90°14'39'W), the deposit at this site resembles a large conical mound (2.5m tall x 3m diameter). The second is located at Stolz Diapir (79°04'30'N; 87°04'30'W), in this case a series of pool and barrage structures staircase down a narrow valley for approximately 300m (several pools are 10 m wide x 3 m deep). The springs have very different seasonal surface hydrologic regimes and topographic settings which influence the pattern of mineral precipitates. The accumulation of precipitates occurs during the winter and is dominated by the formation of hydrohalite. In the summer, the accumulated hydrohalite melts incongruently to form halite; spring water and snowmelt dissolves various parts of the accumulations, changing the morphology of the deposits. The aim of this poster is to present preliminary observations characterising the processes driving tufa formation in a permafrost environment, a process that has not been described in detail in

  14. Isolation of UV-B resistant bacteria from two high altitude Andean lakes (4,400 m) with saline and non saline conditions.

    PubMed

    Flores, María R; Ordoñez, Omar F; Maldonado, Marcos J; Farías, María E

    2009-12-01

    Laguna (L.) Negra and L. Verde are high altitude Andean lakes located at the 4,400 m altitude in the Andean desert (Puna) in the Argentine northwest. Both lakes are exposed to extreme weather conditions but differ in salinity contents (salinity 6.7% for L. Negra and 0.27% for L. Verde). The aim of this work was to isolate ultraviolet B fraction (UV-B) resistant bacteria under UV-stress in order to determine, a possible connection, between resistance to UV-B and tolerance to salinity. DNA damage was determined by measuring CPDs accumulation. Connection among pigmentation production and UV resistance was also studied. Water samples were exposed to artificial UV-B radiation for 24 h. Water aliquots were plated along the exposition on different media, with different salinity and carbon source content (Lake medium (LM) done with the lake water plus agar and LB). CFU were counted and DNA damage accumulation was determined. Isolated bacteria were identified by 16S rDNA sequence. Their salinity tolerance, were measured at 1, 5 and 10% NaCl and their pigment production in both media was determined. In general it was found that UV resistance and pigment production were the optimum in Lake Medium done with lake water which maintained similar salinity. The most resistant bacteria in L. Negra were different strains of Exiguobacterium sp. and, in L. Verde, Staphylococcus sp. and Stenotrophomonas maltophilia. These bacteria showed the production and increase of UV-Vis absorbing compounds under UV stress and in LM. Bacterial communities from both lakes were well adapted to high UV-B exposure under the experimental conditions, and in many cases UV-B even stimulated growth. The idea that resistance to UV-B could be related to adaptation to high salinity is still an open question that has to be answered with future experiments.

  15. Adaptability of Typha domingensis to high pH and salinity.

    PubMed

    Mufarrege, M M; Di Luca, G A; Hadad, H R; Maine, M A

    2011-03-01

    The aim of this work was to compare the adaptability of two different populations of Typha domingensis exposed to high pH and salinity. The plants were sampled from an uncontaminated natural wetland (NW) and a constructed wetland (CW) for the treatment of an industrial effluent with high pH and salinity. The plants from each population were exposed to the following combined treatments of salinity (mg l(-1)) and pH: 8,000/10 (values found in the CW); 8,000/7; 200/10 and 200/7 (typical values found in the NW). Chlorophyll concentration, relative growth rates (RGR) and root structure parameters (cross-sectional areas of root, stele and metaxylem vessels) were measured. Images of roots and leaves by scanning electronic microscopy (SEM) were obtained, and X-ray microanalysis in different tissues was carried out. In all treatments, the RGR and chlorophyll increase were significantly lower in the plants from the NW than in the plants from the CW. However, stress was observed when the plants from the CW were exposed to treatment 200/7. In treatment 8,000/10 the tissues of the plants from the NW showed severe damages. The root structure of plants from the CW was modified by salinity, while pH did not produce changes. In plants from the CW there were no differences between Na concentration in leaves of the treatments 8,000/10 and 200/7, indicating that Na was not transported to leaves. The CW population already possesses physiological and morphological adaptations due to the extreme conditions of pH and salinity. Because of its adaptive capacity, T. domingensis is an efficient species to treat wastewater of high pH and salinity.

  16. High resolution simulations of down-slope turbidity currents into stratified saline ambient

    NASA Astrophysics Data System (ADS)

    Ouillon, Raphael; Radhakrishnan, Senthil; Meiburg, Eckart; Sutherland, Bruce

    2016-11-01

    In this work we explore the properties of turbidity currents moving down a slope into a stratified saline ambient through highly resolved 3D Navier-Stokes simulations. Turbidity events are difficult to measure and to replicate experimentally for a wide range of parameters, but they play a key role in ocean, lake or river sediment transport. Our objectives are to improve on previous numerical studies, obtain quantitative data in a more controlled environment than current experimental set-ups, and combine results with analytical arguments to build physics-based scaling laws. We validate our results and propose a simple scaling law to predict the velocity of the front down a slope for any stratification. We also compute a time and space dependent entrainment of ambient fluid and highlight its strong variability. We then introduce a predictable scaling law for the intrusion depth that does not depend on an averaged entrainment and uses it as a verification tool instead. Finally, we show that the ratio of Stokes losses in the local flow around individual particles to dissipative losses of the large scale flow determines the ability of the flow to convert potential energy into kinetic energy. For different parameters, either mechanism can dominate the dynamics of the flow.

  17. Evidence for high salinity of Early Cretaceous sea water from the Chesapeake Bay crater

    USGS Publications Warehouse

    Sanford, Ward E.; Doughten, Michael W.; Coplen, Tyler B.; Hunt, Andrew G.; Bullen, Thomas D.

    2013-01-01

    High salinity groundwater more than 1000 metres deep in the Atlantic Coastal Plain of the United States has been documented in several locations1,2, most recently within the 35 million-year-old Chesapeake Bay impact crater3,4,5. Suggestions for the origin of increased salinity in the crater have included evaporite dissolution6, osmosis6, and evaporation from heating7 associated with the bolide impact. Here we present chemical, isotopic and physical evidence that together indicate that groundwater in the Chesapeake crater is remnant Early Cretaceous North Atlantic (ECNA) seawater. We find that the seawater is likely 100-145 million years old and that it has an average salinity of about 70 per mil, which is twice that of modern seawater and consistent with the nearly closed ECNA basin8. Previous evidence for temperature and salinity levels of ancient oceans have been estimated indirectly from geochemical, isotopic and paleontological analyses of solid materials in deep sediment cores. In contrast, our study identifies ancient seawater in situ and provides a direct estimate of its age and salinity. Moreover, we suggest that it is likely that remnants of ECNA seawater persist in deep sediments at many locations along the Atlantic margin.

  18. Evidence for high salinity of Early Cretaceous sea water from the Chesapeake Bay crater.

    PubMed

    Sanford, Ward E; Doughten, Michael W; Coplen, Tyler B; Hunt, Andrew G; Bullen, Thomas D

    2013-11-14

    High-salinity groundwater more than 1,000 metres deep in the Atlantic coastal plain of the USA has been documented in several locations, most recently within the 35-million-year-old Chesapeake Bay impact crater. Suggestions for the origin of increased salinity in the crater have included evaporite dissolution, osmosis and evaporation from heating associated with the bolide impact. Here we present chemical, isotopic and physical evidence that together indicate that groundwater in the Chesapeake crater is remnant Early Cretaceous North Atlantic (ECNA) sea water. We find that the sea water is probably 100-145 million years old and that it has an average salinity of about 70 per mil, which is twice that of modern sea water and consistent with the nearly closed ECNA basin. Previous evidence for temperature and salinity levels of ancient oceans have been estimated indirectly from geochemical, isotopic and palaeontological analyses of solid materials in deep sediment cores. In contrast, our study identifies ancient sea water in situ and provides a direct estimate of its age and salinity. Moreover, we suggest that it is likely that remnants of ECNA sea water persist in deep sediments at many locations along the Atlantic margin.

  19. Evidence for high salinity of Early Cretaceous sea water from the Chesapeake Bay crater

    NASA Astrophysics Data System (ADS)

    Sanford, Ward E.; Doughten, Michael W.; Coplen, Tyler B.; Hunt, Andrew G.; Bullen, Thomas D.

    2013-11-01

    High-salinity groundwater more than 1,000 metres deep in the Atlantic coastal plain of the USA has been documented in several locations, most recently within the 35-million-year-old Chesapeake Bay impact crater. Suggestions for the origin of increased salinity in the crater have included evaporite dissolution, osmosis and evaporation from heating associated with the bolide impact. Here we present chemical, isotopic and physical evidence that together indicate that groundwater in the Chesapeake crater is remnant Early Cretaceous North Atlantic (ECNA) sea water. We find that the sea water is probably 100-145 million years old and that it has an average salinity of about 70 per mil, which is twice that of modern sea water and consistent with the nearly closed ECNA basin. Previous evidence for temperature and salinity levels of ancient oceans have been estimated indirectly from geochemical, isotopic and palaeontological analyses of solid materials in deep sediment cores. In contrast, our study identifies ancient sea water in situ and provides a direct estimate of its age and salinity. Moreover, we suggest that it is likely that remnants of ECNA sea water persist in deep sediments at many locations along the Atlantic margin.

  20. A modified resistance equation for modeling underwater spark discharge with salinity and high pressure conditions

    SciTech Connect

    Zhao, Pengfei; Roy, Subrata

    2014-05-07

    This work investigates the performance of underwater spark discharge relating to bubble growth and decay under high pressure and with salinity conditions by introducing a modified form of the resistance equation. Here, we study salinity influence on circuit parameters by fitting the experimental data for which gap resistance is much larger in conductive water than in dielectric water. Accordingly, the resistance equation is modified by considering the influence of both plasma and its surrounding liquid. Thermal radiation effect of the bubble is also studied by comparing two different radiation models. Numerical results predict a larger bubble pressure for saline water but a reduced size and a smaller bubble cycle at a greater water depth. Such study may be useful in many saltwater applications, including that for deep sea conditions.

  1. Effects of high salinity from desalination brine on growth, photosynthesis, water relations and osmolyte concentrations of seagrass Posidonia australis.

    PubMed

    Cambridge, M L; Zavala-Perez, A; Cawthray, G R; Mondon, J; Kendrick, G A

    2017-02-15

    Highly saline brines from desalination plants expose seagrass communities to salt stress. We examined effects of raised salinity (46 and 54psu) compared with seawater controls (37psu) over 6weeks on the seagrass, Posidonia australis, growing in tanks with the aim of separating effects of salinity from other potentially deleterious components of brine and determining appropriate bioindicators. Plants survived exposures of 2-4weeks at 54psu, the maximum salinity of brine released from a nearby desalination plant. Salinity significantly reduced maximum quantum yield of PSII (chlorophyll a fluorescence emissions). Leaf water potential (Ψw) and osmotic potential (Ψπ) were more negative at increased salinity, while turgor pressure (Ψp) was unaffected. Leaf concentrations of K(+) and Ca(2+) decreased, whereas concentrations of sugars (mainly sucrose) and amino acids increased. We recommend leaf osmolarity, ion, sugar and amino acid concentrations as bioindicators for salinity effects, associated with brine released in desalination plant outfalls.

  2. Coping with naturally high levels of soil salinity and boron in the westside of central California

    USDA-ARS?s Scientific Manuscript database

    In the Westside of central California, over 200,000 ha exhibit naturally high levels of salinity and boron (B). The Coast Ranges of the west central California evolved from complex folding and faulting of sedimentary and igneous rocks of Mesozoic and Tertiary age. Cretaceous and Tertiary marine sedi...

  3. An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity.

    PubMed

    Seo, Pil Joon; Park, Jung-Min; Kang, Seok Ki; Kim, Sang-Gyu; Park, Chung-Mo

    2011-01-01

    The plasma membrane is an important cellular organ that perceives incoming developmental and environmental signals and integrates these signals into cellular regulatory mechanisms. It also acts as a barrier against unfavorable extracellular factors to maintain cell viability. Despite its importance for cell viability, molecular components determining cell viability and underlying mechanisms are largely unknown. Here, we show that a plasma membrane-localized MtN3 protein SAG29 regulates cell viability under high salinity in Arabidopsis. The SAG29 gene is expressed primarily in senescing plant tissues. It is induced by osmotic stresses via an abscisic acid-dependent pathway. Whereas the SAG29-overexpressing transgenic plants (35S:SAG29) exhibited an accelerated senescence and were hypersensitive to salt stress, the SAG29-deficient mutants were less sensitive to high salinity. Consistent with this, the 35S:SAG29 transgenic plants showed reduced cell viability in the roots under normal growth condition. In contrast, cell viability in the SAG29-deficient mutant roots was indistinguishable from that in the roots of control plants. Notably, the mutant roots exhibited enhanced cell viability under high salinity. Our observations indicate that the senescence-associated SAG29 protein is associated with cell viability under high salinity and other osmotic stress conditions. We propose that the SAG29 protein may serve as a molecular link that integrates environmental stress responses into senescing process.

  4. Biofilm formation and granule properties in anaerobic digestion at high salinity.

    PubMed

    Gagliano, M C; Ismail, S B; Stams, A J M; Plugge, C M; Temmink, H; Van Lier, J B

    2017-09-15

    For the anaerobic biological treatment of saline wastewater, Anaerobic Digestion (AD) is currently a possibility, even though elevated salt concentrations can be a major obstacle. Anaerobic consortia and especially methanogenic archaea are very sensitive to fluctuations in salinity. When working with Upflow Sludge Blanket Reactor (UASB) technology, in which the microorganisms are aggregated and retained in the system as a granular biofilm, high sodium concentration negatively affects aggregation and consequently process performances. In this research, we analysed the structure of the biofilm and granules formed during the anaerobic treatment of high salinity (at 10 and 20 g/L of sodium) synthetic wastewater at lab scale. The acclimated inoculum was able to accomplish high rates of organics removal at all the salinity levels tested. 16S rRNA gene clonal analysis and Fluorescence In Situ Hybridization (FISH) analyses identified the acetoclastic Methanosaeta harundinacea as the key player involved acetate degradation and microbial attachment/granulation. When additional calcium (1 g/L) was added to overcome the negative effect of sodium on microbial aggregation, during the biofilm formation process microbial attachment and acetate degradation decreased. The same result was observed on granules formation: while calcium had a positive effect on granules strength when added to UASB reactors, Methanosaeta filaments were not present and the degradation of the partially acidified substrate was negatively influenced. This research demonstrated the possibility to get granulation at high salinity, bringing to the forefront the importance of a selection towards Methanosaeta cells growing in filamentous form to obtain strong and healthy granules. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. High-dose diazepam facilitates core cooling during cold saline infusion in healthy volunteers.

    PubMed

    Hostler, David; Northington, William E; Callaway, Clifton W

    2009-08-01

    Studies have suggested that inducing mild hypothermia improves neurologic outcomes after traumatic brain injury, major stroke, cardiac arrest, or exertional heat illness. While infusion of cold normal saline is a simple and inexpensive method for reducing core temperature, human cold-defense mechanisms potentially make this route stressful or ineffective. We hypothesized that intravenous administration of diazepam during a rapid infusion of 30 mL.kg-1 of cold (4 degrees C) 0.9% saline to healthy subjects would be more comfortable and reduce core body temperature more than the administration of cold saline alone. Fifteen subjects received rapidly infused cold (4 degrees C) 0.9% saline. Subjects were randomly assigned to receive, intravenously, 20 mg diazepam (HIGH), 10 mg diazepam (LOW), or placebo (CON). Main outcomes were core temperature, skin temperature, and oxygen consumption. Data for the main outcomes were analyzed with generalized estimating equations to identify differences in group, time, or a group x time interaction. Core temperature decreased in all groups (CON, 1.0 +/- 0.2 degrees C; LOW, 1.4 +/- 0.2 degrees C; HIGH, 1.5 +/- 0.2 degrees C), while skin temperature was unchanged. Mean (95% CI) oxygen consumption was 315.3 (253.8, 376.9) mL.kg-1.min-1 in the CON group, 317.9 (275.5, 360.3) in the LOW group, and 226.1 (216.4, 235.9) in the HIGH group. Significant time and group x time interaction was observed for core temperature and oxygen consumption (p < 0.001). Administration of high-dose diazepam resulted in decreased oxygen consumption during cold saline infusion, suggesting that 20 mg of intravenous diazepam may reduce the shivering threshold without compromising respiratory or cardiovascular function.

  6. Measuring Salinity by Conductivity.

    ERIC Educational Resources Information Center

    Lapworth, C. J.

    1981-01-01

    Outlines procedures for constructing an instrument which uses an electrode and calibration methods to measure the salinity of waters in environments close to and affected by a saline estuary. (Author/DC)

  7. Measuring Salinity by Conductivity.

    ERIC Educational Resources Information Center

    Lapworth, C. J.

    1981-01-01

    Outlines procedures for constructing an instrument which uses an electrode and calibration methods to measure the salinity of waters in environments close to and affected by a saline estuary. (Author/DC)

  8. Estimation of genetic parameters and genotype-by-environment interactions related to acute ammonia stress in Pacific white shrimp (Litopenaeus vannamei) juveniles at two different salinity levels

    PubMed Central

    Lu, Xia; Luan, Sheng; Cao, Baoxiang; Meng, Xianhong; Sui, Juan; Dai, Ping; Luo, Kun; Shi, Xiaoli; Hao, Dengchun; Han, Guomin; Kong, Jie

    2017-01-01

    Regarding the practical farming of Litopenaeus vannamei, the deterioration of water quality from intensive culture systems and environmental pollution is a common but troublesome problem in the cultivation of this species. The toxicities that result from deteriorating water quality, such as that from ammonia stress, have lethal effects on juvenile shrimp and can increase their susceptibility to pathogens. The toxicity of ammonia plays an important role in the frequently high mortality during the early stage on shrimp farms. However, little information is available regarding the genetic parameters of the ammonia tolerance of juveniles in the early stage, but this information is necessary to understand the potential for the genetic improvement of this trait. Considering the euryhalinity of L. vannamei and the fact that low salinity can increase the toxicity of ammonia stress, we estimated the heritability of ammonia tolerance in juveniles in 30‰ (normal) and 5‰ (low) salinity in this study using the survival time (ST) at individual level and the survival status at the half-lethal time (SS50) at the family level. In the normal and low salinity conditions and for the merged data, the heritability estimates of the ST (0.784±0.070, 0.575±0.068, and 0.517±0.058, respectively) and SS50 (0.402±0.061, 0.216±0.050, and 0.264±0.050, respectively) were all significantly greater than zero, which indicates that the ammonia-tolerance of shrimp can be greatly improved. So it might provide an alternative method to reduce mortality, help to enhance resistance to pathogens and reduce the occurrence of infectious diseases. The significant positive genetic correlation between ST and body length suggested that ammonia is more toxic to shrimp in the early stage. The medium-strength genetic correlations of the ST and SS50 between the two environments (0.394±0.097 and 0.377±0.098, respectively) indicate a strong genotype-by-environment (G×E) interaction for ammonia tolerance

  9. Estimation of genetic parameters and genotype-by-environment interactions related to acute ammonia stress in Pacific white shrimp (Litopenaeus vannamei) juveniles at two different salinity levels.

    PubMed

    Lu, Xia; Luan, Sheng; Cao, Baoxiang; Meng, Xianhong; Sui, Juan; Dai, Ping; Luo, Kun; Shi, Xiaoli; Hao, Dengchun; Han, Guomin; Kong, Jie

    2017-01-01

    Regarding the practical farming of Litopenaeus vannamei, the deterioration of water quality from intensive culture systems and environmental pollution is a common but troublesome problem in the cultivation of this species. The toxicities that result from deteriorating water quality, such as that from ammonia stress, have lethal effects on juvenile shrimp and can increase their susceptibility to pathogens. The toxicity of ammonia plays an important role in the frequently high mortality during the early stage on shrimp farms. However, little information is available regarding the genetic parameters of the ammonia tolerance of juveniles in the early stage, but this information is necessary to understand the potential for the genetic improvement of this trait. Considering the euryhalinity of L. vannamei and the fact that low salinity can increase the toxicity of ammonia stress, we estimated the heritability of ammonia tolerance in juveniles in 30‰ (normal) and 5‰ (low) salinity in this study using the survival time (ST) at individual level and the survival status at the half-lethal time (SS50) at the family level. In the normal and low salinity conditions and for the merged data, the heritability estimates of the ST (0.784±0.070, 0.575±0.068, and 0.517±0.058, respectively) and SS50 (0.402±0.061, 0.216±0.050, and 0.264±0.050, respectively) were all significantly greater than zero, which indicates that the ammonia-tolerance of shrimp can be greatly improved. So it might provide an alternative method to reduce mortality, help to enhance resistance to pathogens and reduce the occurrence of infectious diseases. The significant positive genetic correlation between ST and body length suggested that ammonia is more toxic to shrimp in the early stage. The medium-strength genetic correlations of the ST and SS50 between the two environments (0.394±0.097 and 0.377±0.098, respectively) indicate a strong genotype-by-environment (G×E) interaction for ammonia tolerance

  10. Escherichia coli O157:H7 bacteriophage Φ241 isolated from an industrial cucumber fermentation at high acidity and salinity

    PubMed Central

    Lu, Zhongjing; Breidt, Fred

    2015-01-01

    A novel phage, Φ241, specific for Escherichia coli O157:H7 was isolated from an industrial cucumber fermentation where both acidity (pH ≤ 3.7) and salinity (≥5% NaCl) were high. The phage belongs to the Myoviridae family. Its latent period was 15 min and average burst size was 53 phage particles per infected cell. The phage was able to lyse 48 E. coli O157:H7 strains, but none of the 18 non-O157 strains (including E. coli O104:H7) or the 2 O antigen-negative mutants of O157:H7 strain, 43895Δper (also lacking H7 antigen) and F12 (still expressing H7 antigen). However, the phage was able to lyse a per-complemented strain (43895ΔperComp) which expresses O157 antigen. These results indicated that phage Φ241 is specific for O157 antigen, and E. coli strains lacking O157 antigen were resistant to the phage infection, regardless of the presence or absence of H7 antigen. SDS-PAGE profile revealed at least 13 structural proteins of the phage. The phage DNA was resistant to many commonly used restriction endonucleases, suggesting the presence of modified nucleotides in the phage genome. At the multiplicity of infection of 10, 3, or 0.3, the phage caused a rapid cell lysis within 1 or 2 h, resulting in 3.5- or 4.5-log-unit reduction in cell concentration. The high lytic activity, specificity and tolerance to low pH and high salinity make phage Φ241 a potentially ideal biocontrol agent of E. coli O157:H7 in various foods. To our knowledge, this is the first report on E. coli O157:H7 phage isolated from high acidity and salinity environment. PMID:25741324

  11. Escherichia coli O157:H7 bacteriophage Φ241 isolated from an industrial cucumber fermentation at high acidity and salinity.

    PubMed

    Lu, Zhongjing; Breidt, Fred

    2015-01-01

    A novel phage, Φ241, specific for Escherichia coli O157:H7 was isolated from an industrial cucumber fermentation where both acidity (pH ≤ 3.7) and salinity (≥5% NaCl) were high. The phage belongs to the Myoviridae family. Its latent period was 15 min and average burst size was 53 phage particles per infected cell. The phage was able to lyse 48 E. coli O157:H7 strains, but none of the 18 non-O157 strains (including E. coli O104:H7) or the 2 O antigen-negative mutants of O157:H7 strain, 43895Δper (also lacking H7 antigen) and F12 (still expressing H7 antigen). However, the phage was able to lyse a per-complemented strain (43895ΔperComp) which expresses O157 antigen. These results indicated that phage Φ241 is specific for O157 antigen, and E. coli strains lacking O157 antigen were resistant to the phage infection, regardless of the presence or absence of H7 antigen. SDS-PAGE profile revealed at least 13 structural proteins of the phage. The phage DNA was resistant to many commonly used restriction endonucleases, suggesting the presence of modified nucleotides in the phage genome. At the multiplicity of infection of 10, 3, or 0.3, the phage caused a rapid cell lysis within 1 or 2 h, resulting in 3.5- or 4.5-log-unit reduction in cell concentration. The high lytic activity, specificity and tolerance to low pH and high salinity make phage Φ241 a potentially ideal biocontrol agent of E. coli O157:H7 in various foods. To our knowledge, this is the first report on E. coli O157:H7 phage isolated from high acidity and salinity environment.

  12. Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora.

    PubMed

    Mateos-Naranjo, Enrique; Andrades-Moreno, Luis; Davy, Anthony J

    2013-02-01

    The non-essential element silicon is known to improve plant fitness by alleviating the effects of biotic and abiotic stresses, particularly in crops. However, its possible role in the exceptional tolerance of halophytes to salinity has not been investigated. This study reports the effect of Si supply on the salinity tolerance of the halophytic grass Spartina densiflora; plants were treated with NaCl (0-680 mM), with or without silicon addition of 500 μM, in a glasshouse experiment. Plant responses were examined using growth analysis, combined with measurements of gas exchange, chlorophyll fluorescence and photosynthetic pigment concentrations. In addition, tissue concentrations of aluminium, calcium, copper, iron, potassium, magnesium, sodium, phosphorus and silicon were determined. Although high salinity decreased growth, this effect was alleviated by treatment with Si. Improved growth was associated with higher net photosynthetic rate (A), and greater water-use efficiency (WUE). Enhanced A at high salinity could be explained by beneficial effects of Si on the photochemical apparatus, and on chlorophyll concentrations. Ameliorative effects of Si were correlated with reduced sodium uptake, which was unrelated to a reduction in the transpiration rate, since Si-supplemented plants had higher stomatal conductances (G(s)). These plants also had higher tissue concentrations of essential nutrients, suggesting that Si had a positive effect on the mineral nutrient balance in salt-stressed plants. Si appears to play a significant role in salinity tolerance even in a halophyte, which has other, specific salt-tolerance mechanisms, through diverse protective effects on the photosynthetic apparatus, water-use efficiency and mineral nutrient balance. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  13. A model of the formation of high-salinity shelf water on polar continental shelves

    NASA Technical Reports Server (NTRS)

    Grumbine, Robert W.

    1991-01-01

    This study presents a model of the flow and salinity fields forced by sea-surface salinity flux and wind stress curl and examines the processes that create High-Salinity Shelf Water (HSSW). To investigate the relative effects of wind stress and buoyancy forcing in HSSW production, the polynya freezing rate in the model is varied from 0.0 to 0.30 m/d, and the Ekman pumping derived from the wind stress curl is varied independently from 0.0 to 1.8 x 10 exp 6 m/s. The Ekman pumping was found to control the magnitude of the circulation, while the polynya freezing rate controlled the extent of salinization in the shelf water. The flux of HSSW increases linearly with increasing Ekman pumping above 0.3 x 10 exp -6 m/s. The modeled flux of HSSW and the flux of derived Botttom Water for the present estimates of the forcings (a peak freezing rate of 0.10 m/d and Ekman pumping of 0.2 x 10 exp -6 m/s) agree with the fluxes inferred from physical and chemical observations in the deep Weddel Sea by oceanographic field programs.

  14. Optimization of exopolysaccharide overproduction by Lactobacillus confusus in solid state fermentation under high salinity stress.

    PubMed

    Seesuriyachan, Phisit; Kuntiya, Ampin; Hanmoungjai, Prasert; Techapun, Charin; Chaiyaso, Thanongsak; Leksawasdi, Noppol

    2012-01-01

    It is believed that high concentrations of sodium chloride (NaCl) suppress the biosynthesis of exopolysaccharide (EPS) in lactic acid bacteria (LAB). Nevertheless, overproduction of EPSs due to high salinity stress in solid state fermentation performed on an agar surface was demonstrated in this study using a response surface methodology via a central composite design (CCD). Under optimized conditions with NaCl 4.97% and sucrose 136.5 g/L at 40.79 h of incubation, the EPS yield was 259% (86.36 g/L of EPS), higher than the maximum yield produced with the modified MRS medium containing only 120 g/L of sucrose without NaCl (33.4 g/L of EPS). Biosynthesis of EPS by Lactobacillus confusus TISTR 1498 was independent of biomass production. Our results indicated that high salinity stress can enhance EPS production in solid state fermentation.

  15. Development of a Rapid, Nondestructive Method to Measure Aqueous Carbonate in High Salinity Brines Using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    McGraw, L.; Phillips-Lander, C. M.; Elwood Madden, A. S.; Parnell, S.; Elwood Madden, M.

    2015-12-01

    Traditional methods of quantitative analysis are often ill-suited to determining the bulk chemistry of high salinity brines due to their corrosive and clogging properties. Such methods are also often difficult to apply remotely in planetary environments. However, Raman spectroscopy can be used remotely without physical contact with the fluid and is not affected by many ionic brines. Developing methods to study aqueous carbonates is vital to future study of brines on Mars and other planetary bodies, as they can reveal important information about modern and ancient near-surface aqueous processes. Both sodium carbonate standards and unknown samples from carbonate mineral dissolution experiments in high salinity brines were analyzed using a 532 nm laser coupled to an inVia Renishaw spectrometer to collect carbonate spectra from near-saturated sodium chloride and sodium sulfate brines. A calibration curve was determined by collecting spectra from solutions of known carbonate concentrations mixed with a pH 13 buffer and a near-saturated NaCl or Na2SO4 brine matrix. The spectra were processed and curve fitted to determine the height ratio of the carbonate peak at 1066 cm-1 to the 1640 cm-1 water peak. The calibration curve determined using the standards was then applied to the experimental data after accounting for dilutions. Concentrations determined based on Raman spectra were compared against traditional acid titration measurements. We found that the two techniques vary by less than one order of magnitude. Further work is ongoing to verify the method and apply similar techniques to measure aqueous carbonate concentrations in other high salinity brines.Traditional methods of quantitative analysis are often ill-suited to determining the bulk chemistry of high salinity brines due to their corrosive and clogging properties. Such methods are also often difficult to apply remotely in planetary environments. However, Raman spectroscopy can be used remotely without physical

  16. Formation and transportation of high-salinity water produced in polynyas south of the St. Lawrence Island

    NASA Astrophysics Data System (ADS)

    Fu, Hongli; Zhao, Jinping; Shi, Jiuxin; Jiao, Yutian

    2010-12-01

    The authors studied variations of temperature and salinity in seawater under sea ice using hydrologic data collected from polynyas south of the St. Lawrence Island during March of 2008 and 2009. The results indicate that the high-salinity water found during the cruises of 2008 and 2009 was due to the formation of polynyas. The salinity observed in 2008 was higher than that in 2009 as a result of higher salt production in 2008. The spatial distributions of high-salinity cores differed between the two cruises. In March 2008, a southeastward flow was formed under the persistent northerly wind in the observation region, which transported the high-salinity water produced by the polynyas to the southeast. The similar flow, however, did not exist in March 2009 because the northerly wind over the study area was interrupted by a southerly wind. Accordingly, the polynyas and the high-salinity water produced by them existed for a short time. As a result, the high-salinity water in 2009 did not spread very far, and stayed within the polynyas. In addition, during the 2009 cruise, two stages of observations in the polynyas showed the core of high-salinity water was shifted to the southwest of the St. Lawrence Island. This result suggested that a southwestward flow might have existed in the area at the onset of the northerly wind, which was consistent with the alongshore and/or offshore flows caused by the northerly wind.

  17. Physiological and morphological investigation of Arctic grayling (Thymallus arcticus) gill filaments with high salinity exposure and recovery

    PubMed Central

    Blair, Salvatore D.; Matheson, Derrick

    2017-01-01

    Abstract Freshwater environments are at risk of increasing salinity due to multiple anthropogenic forces including current oil and gas extraction practices that result in large volumes of hypersaline water. Unintentional releases of hypersaline water into freshwater environments act as an osmoregulatory stressor to many aquatic organisms including native salmonids like the Arctic grayling (Thymallus arcticus). Compared to more euryhaline salmonids, Arctic grayling have a reduced salinity tolerance and develop an elevated interlamellar cell mass (ILCM) in response to salinity exposure (17 ppt). In this study, we described the gill morphology and cell types characterizing the ICLM. Further, we investigated whether Arctic grayling could recover in freshwater following a short-term (<48 h) salinity exposure. Arctic grayling were exposed to 17 ppt saline water for 12, 24 and 48 h. Following the 24 and 48 h salinity exposure, Arctic grayling were returned to freshwater for 24 h to assess their ability to recover from, and reverse, the osmotic disturbances. Physiological serum [Na+], [Cl–] and total osmolality were significantly elevated and progressively increased at 12, 24 and 48 h salinity exposures. The 24 h post-exposure recovery period resulted in Arctic grayling serum ion concentrations and total osmolality returning to near normal levels. Similar recovery patterns were observed in the salinity-induced ILCM, which developed as early as 12 h of exposure to 17 ppt, and then reverted to control levels following 24 h in freshwater. Gill histology indicates an increased number of apically located mucous cells in the interlamellar space following salinity exposure of Arctic grayling. The scanning electron microscopy and transmission electron microscopy data show the presence of granule containing eosinophil-like cells infiltrating the ILCM suggesting a salinity-induced immune response by the Arctic grayling. PMID:28680637

  18. Modeling regional salinization of the Ogallala aquifer, Southern High Plains, TX, USA

    USGS Publications Warehouse

    Mehta, S.; Fryar, A.E.; Brady, R.M.; Morin, R.H.

    2000-01-01

    Two extensive plumes (combined area > 1000 km2) have been delineated within the Ogallala aquifer in the Southern High Plains, TX, USA. Salinity varies within the plumes spatially and increases with depth; Cl ranges from 50 to >500 mg 1-1. Variable-density flow modeling using SUTRA has identified three broad regions of upward cross-formational flow from the underlying evaporite units. The upward discharge within the modeled plume area is in the range of 10-4-10-5 m3 day-1, and the TDS concentrations are typically >3000 mg 1-1. Regions of increased salinity, identified within the Whitehorse Group (evaporite unit) underlying the Ogallala aquifer, are controlled by the structure and thickness variations relative to the recharge areas. Distinct flow paths, on the order of tens of km to >100 km in length, and varying flow velocities indicate that the salinization of the Ogallala aquifer has been a slow, ongoing process and may represent circulation of waters recharged during Pleistocene or earlier times. On-going pumping has had negligible impact on the salinity distribution in the Ogallala aquifer, although simulations indicate that the velocity distribution in the underlying units may have been affected to depths of 150 m after 30 years of pumping. Because the distribution of saline ground water in this region of the Ogallala aquifer is heterogeneous, careful areal and vertical characterization is warranted prior to any well-field development. (C) 2000 Elsevier Science B.V.Two extensive plumes (combined area >1000 km2) have been delineated within the Ogallala aquifer in the Southern High Plains, TX, USA. Salinity varies within the plumes spatially and increases with depth; Cl ranges from 50 to >500 mg l-1. Variable-density flow modeling using SUTRA has identified three broad regions of upward cross-formational flow from the underlying evaporite units. The upward discharge within the modeled plume area is in the range of 10-4-10-5 m3 day-1, and the TDS concentrations

  19. High salinity relay as a postharvest processing strategy to reduce vibrio vulnificus levels in Chesapeake Bay oysters (Crassostrea virginica).

    PubMed

    Audemard, Corinne; Kator, Howard I; Rhodes, Martha W; Gallivan, Thomas; Erskine, A J; Leggett, A Thomas; Reece, Kimberly S

    2011-11-01

    In 2009 the U.S. Food and Drug Administration (FDA) announced its intention to implement postharvest processing (PHP) methods to eliminate Vibrio vulnificus from oysters intended for the raw, half-shell market that are harvested from the Gulf of Mexico during warmer months. FDA-approved PHP methods can be expensive and may be associated with unfavorable responses from some consumers. A relatively unexplored PHP method that uses relaying to high salinity waters could be an alternative strategy, considering that high salinities appear to negatively affect the survival of V. vulnificus. During relay, however, oysters may be exposed to rapid and large salinity increases that could cause increased mortality. In this study, the effectiveness of high salinity relay to reduce V. vulnificus to <30 most probable number (MPN) per g and the impact on oyster mortality were assessed in the lower Chesapeake Bay. Two relay experiments were performed during the summer and fall of 2010. Oysters collected from three grow-out sites, a low salinity site (14 to 15 practical salinity units [psu]) and two moderate salinity sites (22 to 25 psu), were relayed directly to a high salinity site (≥30 psu) on Virginia's Eastern Shore. Oysters were assayed for V. vulnificus and Vibrio parahaemolyticus (another Vibrio species of concern) densities at time 0 prior to relay and after 7 and 14 days of relay, using the FDA MPN enrichment method combined with detection by real-time PCR. After 14 days, both V. vulnificus and V. parahaemolyticus densities were ≤0.8 MPN/g, and decreases of 2 to 3 log in V. vulnificus densities were observed. Oyster mortalities were low (≤4%) even for oysters from the low salinity harvest site, which experienced a salinity increase of approximately 15 psu. Results, although preliminary and requiring formal validation and economic analysis, suggest that high salinity relay could be an effective PHP method.

  20. Understanding the energetic costs of living in saline environments: effects of salinity on basal metabolic rate, body mass and daily energy consumption of a long-distance migratory shorebird.

    PubMed

    Gutiérrez, Jorge S; Masero, José A; Abad-Gómez, José M; Villegas, Auxiliadora; Sánchez-Guzmán, Juan M

    2011-03-01

    Many migratory vertebrates typically move between habitats with varying salinities during the annual cycle. These organisms clearly exhibit a remarkable phenotypic flexibility in their 'osmoregulatory machinery', but the metabolic consequences of salinity acclimatization are still not well understood. We investigated the effects of salinity on basal metabolic rate (BMR), body mass and daily energy consumption of a long-distance migratory shorebird, the dunlin (Calidris alpina), outside the breeding season. Mass-corrected BMR and daily energy consumption increased significantly by 17 and 20% between freshwater (0.3‰ NaCl) and saltwater (33.0-35.0‰ NaCl), respectively. Body mass in both captive and wild dunlins was lower (9-16%) in saline than in freshwater environments. These changes on BMR and body mass were quickly reversed by returning the birds to freshwater, suggesting that metabolic adjustment to saltwater and metabolic readjustment to freshwater are both processes that occur in a few days. Our findings support empirically that the processes of developing and maintaining an active osmoregulatory machinery are energetically expensive, and they could help to explain diet and/or habitat selection patterns along the flyway. Finally, we discuss whether body mass loss in saltwater may be a strategy to reduce maintenance cost in osmotically stressful conditions such as overwintering in marine habitats, and raise some methodological implications for studies of BMR-related outcomes using captive birds captured in saline environments.

  1. High temperature and vapor pressure deficit aggravate architectural effects but ameliorate non-architectural effects of salinity on dry mass production of tomato

    PubMed Central

    Chen, Tsu-Wei; Nguyen, Thi M. N.; Kahlen, Katrin; Stützel, Hartmut

    2015-01-01

    Tomato (Solanum lycopersicum L.) is an important vegetable crop and often cultivated in regions exposed to salinity and high temperatures (HT) which change plant architecture, decrease canopy light interception and disturb physiological functions. However, the long-term effects of salinity and HT combination (S+HT) on plant growth are still unclear. A dynamic functional-structural plant model (FSPM) of tomato was parameterized and evaluated for different levels of S+HT combinations. The evaluated model was used to quantify the contributions of morphological changes (architectural effects) and physiological disturbances (non-architectural effects) on the reduction of shoot dry mass under S+HT. The model predicted architectural variables with high accuracy (>85%), which ensured the reliability of the model analyses. HT enhanced architectural effects but reduced non-architectural effects of salinity on dry mass production. The stronger architectural effects of salinity under HT could not be counterbalanced by the smaller non-architectural effects. Therefore, long-term influences of HT on shoot dry mass under salinity were negative at the whole plant level. Our model analysis highlights the importance of plant architecture at canopy level in studying the plant responses to the environments and shows the merits of dynamic FSPMs as heuristic tools. PMID:26539203

  2. High temperature and vapor pressure deficit aggravate architectural effects but ameliorate non-architectural effects of salinity on dry mass production of tomato.

    PubMed

    Chen, Tsu-Wei; Nguyen, Thi M N; Kahlen, Katrin; Stützel, Hartmut

    2015-01-01

    Tomato (Solanum lycopersicum L.) is an important vegetable crop and often cultivated in regions exposed to salinity and high temperatures (HT) which change plant architecture, decrease canopy light interception and disturb physiological functions. However, the long-term effects of salinity and HT combination (S+HT) on plant growth are still unclear. A dynamic functional-structural plant model (FSPM) of tomato was parameterized and evaluated for different levels of S+HT combinations. The evaluated model was used to quantify the contributions of morphological changes (architectural effects) and physiological disturbances (non-architectural effects) on the reduction of shoot dry mass under S+HT. The model predicted architectural variables with high accuracy (>85%), which ensured the reliability of the model analyses. HT enhanced architectural effects but reduced non-architectural effects of salinity on dry mass production. The stronger architectural effects of salinity under HT could not be counterbalanced by the smaller non-architectural effects. Therefore, long-term influences of HT on shoot dry mass under salinity were negative at the whole plant level. Our model analysis highlights the importance of plant architecture at canopy level in studying the plant responses to the environments and shows the merits of dynamic FSPMs as heuristic tools.

  3. Exploration of the relationship between biogas production and microbial community under high salinity conditions.

    PubMed

    Wang, Shaojie; Hou, Xiaocong; Su, Haijia

    2017-04-25

    High salinity frequently causes inhibition and even failure in anaerobic digestion. To explore the impact of increasing NaCl concentrations on biogas production, and reveal the microbial community variations in response to high salinity stress, the Illumina high-throughput sequencing technology was employed. The results showed that a NaCl concentration of 20 g/L (H group) exhibited a similar level of VFAs and specific CO2 production rate with that in the blank group, thus indicating that the bacterial activity in acidogenesis might not be inhibited. However, the methanogenic activity in the H group was significantly affected compared with that in the blank group, causing a 42.2% decrease in CH4 production, a 37.12% reduction in the specific CH4 generation rate and a lower pH value. Illumina sequencing revealed that microbial communities between the blank and H groups were significantly different. Bacteroides, Clostridium and BA021 uncultured were the dominant species in the blank group while some halotolerant genera, such as Thermovirga, Soehngenia and Actinomyces, dominated and complemented the hydrolytic and acidogenetic abilities in the H group. Additionally, the most abundant archaeal species included Methanosaeta, Methanolinea, Methanospirillum and Methanoculleus in both groups, but hydrogenotrophic methanogens showed a lower resistance to high salinity than aceticlastic methanogens.

  4. High salinity effect on bioremediation of pretreated pesticide lixiviates from greenhouses.

    PubMed

    Micó, María M; González, Óscar; Bacardit, Jordi; Malfeito, Jorge; Sans, Carme

    2015-01-01

    Hydroponics culture greenhouses usually work in closed and semi-closed irrigation systems for nutrients and water-saving purposes. Photo-Fenton reaction has been revealed as an efficient way to depollute that kind of recycled effluents containing pesticides, even for high salinity concentrations. However, the inefficacy of organic matter chemical depletion imposes the use of a subsequent treatment. This work proposes the suitability of an integration of advanced oxidation process with a subsequent bioreactor to treat greenhouse lixiviates effluents at high or extremely high conductivity (salts concentration: up to 42 g L⁻¹). As a first step in this study, the performance of a series of sequencing batch reactors was monitored in order to check the biocompatibility of photo-Fenton pretreated effluents depending on their salinity content. In the second step, those same pretreated effluents were loaded to a biofiltration column filled with expanded clay. Finally, bacterial 16S rRNA gene sequencing was carried out to analyse microbial diversity of the biomass developed in the column. Results stated that the chemical-biological coupled system is effective for the treatment of water effluents containing pesticides. The integrated system is able to deplete more than 80% of the organic load, even under extremely high salinity.

  5. Microbial growth under a high-pressure CO2 environment

    NASA Astrophysics Data System (ADS)

    Thompson, J. R.; Hernandez, H. H.

    2009-12-01

    Carbon capture and storage (CCS) of CO2 has the potential to significantly reduce the emission of greenhouse gasses associated with fossil fuel combustion. The largest potential for storing captured CO2 in the United Sates is in deep geologic saline formations. Currently, little is known about the effects of CO2 storage on biologically active microbial communities found in the deep earth biosphere. Therefore, to investigate how deep earth microbial communities will be affected by the storage of CO2, we have built a high-pressure microbial growth system in which microbial samples are subjected to a supercritical CO2 (scCO2) environment. Recently we have isolated a microbial consortium that is capable of growth and extracellular matrix production in nutrient media under a supercritical CO2 headspace. This consortium was cultivated from hydrocarbon residues associated with saline formation waters and includes members of the gram-positive Bacillus genus. The cultivation of actively growing cells in an environment containing scCO2 is unexpected based on previous experimental evidence of microbial sterilization attributed to the acidic, desiccating, and solvent-like properties of scCO2. Such microbial consortia have potential for development as (i) biofilm barriers for geological carbon-dioxide sequestration, and as (ii) agents of biocatalysis in environmentally-friendly supercritical (sc) CO2 solvent systems. The discovery that microbes can remain biologically active, and grow, in these environments opens new frontiers for the use of self-regenerating biological systems in engineering applications.

  6. Virus-host interplay in high salt environments.

    PubMed

    Atanasova, Nina S; Bamford, Dennis H; Oksanen, Hanna M

    2016-08-01

    Interaction of viruses and cells has tremendous impact on cellular and viral evolution, nutrient cycling and decay of organic matter. Thus, viruses can indirectly affect complex processes such as climate change and microbial pathogenicity. During recent decades, studies on extreme environments have introduced us to archaeal viruses and viruses infecting extremophilic bacteria or eukaryotes. Hypersaline environments are known to contain strikingly high numbers of viruses (∼10(9) particles per ml). Halophilic archaea, bacteria and eukaryotes inhabiting hypersaline environments have only a few cellular predators, indicating that the role of viruses is highly important in these ecosystems. Viruses thriving in high salt are called haloviruses and to date more than 100 such viruses have been described. Virulent, temperate, and persistent halovirus life cycles have been observed among the known isolates including the recently described SNJ1-SNJ2 temperate virus pair which is the first example of an interplay between two haloviruses in one host cell. In addition to direct virus and cell isolations, metagenomics have provided a wealth of information about virus-host dynamics in hypersaline environments suggesting that halovirus populations and halophilic microorganisms are dynamic over time and spatially distributed around the highly saline environments on the Earth. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. High Salinity Induces Different Oxidative Stress and Antioxidant Responses in Maize Seedlings Organs

    PubMed Central

    AbdElgawad, Hamada; Zinta, Gaurav; Hegab, Momtaz M.; Pandey, Renu; Asard, Han; Abuelsoud, Walid

    2016-01-01

    Salinity negatively affects plant growth and causes significant crop yield losses world-wide. Maize is an economically important cereal crop affected by high salinity. In this study, maize seedlings were subjected to 75 mM and 150 mM NaCl, to emulate high soil salinity. Roots, mature leaves (basal leaf-pair 1,2) and young leaves (distal leaf-pair 3,4) were harvested after 3 weeks of sowing. Roots showed the highest reduction in biomass, followed by mature and young leaves in the salt-stressed plants. Concomitant with the pattern of growth reduction, roots accumulated the highest levels of Na+ followed by mature and young leaves. High salinity induced oxidative stress in the roots and mature leaves, but to a lesser extent in younger leaves. The younger leaves showed increased electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H2O2) concentrations only at 150 mM NaCl. Total antioxidant capacity (TAC) and polyphenol content increased with the increase in salinity levels in roots and mature leaves, but showed no changes in the young leaves. Under salinity stress, reduced ascorbate (ASC) and glutathione (GSH) content increased in roots, while total tocopherol levels increased specifically in the shoot tissues. Similarly, redox changes estimated by the ratio of redox couples (ASC/total ascorbate and GSH/total glutathione) showed significant decreases in the roots. Activities of enzymatic antioxidants, catalase (CAT, EC 1.11.1.6) and dehydroascorbate reductase (DHAR, EC 1.8.5.1), increased in all organs of salt-treated plants, while superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione-s-transferase (GST, EC 2.5.1.18) and glutathione reductase (GR, EC 1.6.4.2) increased specifically in the roots. Overall, these results suggest that Na+ is retained and detoxified mainly in roots, and less stress impact is observed in mature and younger leaves. This study also indicates a possible role of ROS in the systemic

  8. Multi-Scale Studies of Transport and Adsorption Phenomena of Cement-based Materials in Aqueous and Saline Environment

    NASA Astrophysics Data System (ADS)

    Yoon, Se Yoon

    The transport and adsorption phenomena in cement-based materials are the most important processes in the durability of concrete structures or nuclear waste containers, as they are precursors to a number of deterioration processes such as chloride-induced corrosion, sulfate attack, carbonation, etc. Despite this importance, our understanding of these processes remains limited because the pore structure and composition of concrete are complex. In addition, the range of the pore sizes, from nanometers to millimeters, requires the multi-scale modeling of the transport and adsorption processes. Among the various environments that cement-based materials are exposed to, aqueous and saline environments represent the most common types. Therefore, this dissertation investigates the adsorption and transport phenomena of cement-based materials exposed to an aqueous and saline environment from atomic to macro-scales using different arrays of novel spectroscopic techniques and simulation methods, such as scanning transmission X-ray microscopy (STXM), X-ray absorption near edge structure (XANES), molecular dynamics (MD), and finite element method (FEM). The structure and transport of water molecules through interlayer spacing of tobermorite was investigated using MD simulations because the interlayer water of calcium silicate hydrate (C-S-H) gel influences various material properties of concrete. The adsorption processes of cementitious phases interacting with sodium and chloride ions at the nano-scale were identified using STXM and XANES measurements. A mathematical model and FEM procedure were developed to identify the effect of surface treatments at macro-scale on ionic transport phenomena of surface-treated concrete. Finally, this dissertation introduced a new material, calcined layered double hydroxide (CLDH), to prevent chloride-induced deterioration.

  9. Multiple PLDs required for high salinity and water deficit tolerance in plants.

    PubMed

    Bargmann, Bastiaan O R; Laxalt, Ana M; ter Riet, Bas; van Schooten, Bas; Merquiol, Emmanuelle; Testerink, Christa; Haring, Michel A; Bartels, Dorothea; Munnik, Teun

    2009-01-01

    High salinity and drought have received much attention because they severely affect crop production worldwide. Analysis and comprehension of the plant's response to excessive salt and dehydration will aid in the development of stress-tolerant crop varieties. Signal transduction lies at the basis of the response to these stresses, and numerous signaling pathways have been implicated. Here, we provide further evidence for the involvement of phospholipase D (PLD) in the plant's response to high salinity and dehydration. A tomato (Lycopersicon esculentum) alpha-class PLD, LePLDalpha1, is transcriptionally up-regulated and activated in cell suspension cultures treated with salt. Gene silencing revealed that this PLD is indeed involved in the salt-induced phosphatidic acid production, but not exclusively. Genetically modified tomato plants with reduced LePLDalpha1 protein levels did not reveal altered salt tolerance. In Arabidopsis (Arabidopsis thaliana), both AtPLDalpha1 and AtPLDdelta were found to be activated in response to salt stress. Moreover, pldalpha1 and plddelta single and double knock-out mutants exhibited enhanced sensitivity to high salinity stress in a plate assay. Furthermore, we show that both PLDs are activated upon dehydration and the knock-out mutants are hypersensitive to hyperosmotic stress, displaying strongly reduced growth.

  10. High salinity leads to accumulation of soil organic carbon in mangrove soil.

    PubMed

    Kida, Morimaru; Tomotsune, Mitsutoshi; Iimura, Yasuo; Kinjo, Kazutoshi; Ohtsuka, Toshiyuki; Fujitake, Nobuhide

    2017-06-01

    Although mangrove forests are one of the most well-known soil organic carbon (SOC) sinks, the mechanism underlying SOC accumulation is relatively unknown. High net primary production (NPP) along with the typical bottom-heavy biomass allocation and low soil respiration (SR) have been considered to be responsible for SOC accumulation. However, an emerging paradigm postulates that SR is severely underestimated because of the leakage of dissolved inorganic carbon (DIC) in groundwater. Here we propose a simple yet unique mechanism for SOC accumulation in mangrove soils. We conducted sequential extraction of water extractable organic matter (WEOM) from mangrove soils using ultrapure water and artificial seawater, respectively. A sharp increase in humic substances (HS) concentration was observed only in the case of ultrapure water, along with a decline in salinity. Extracted WEOM was colloidal, and ≤70% of it re-precipitated by the addition of artificial seawater. These results strongly suggest that HS is selectively flocculated and maintained in the mangrove soils because of high salinity. Because sea salts are a characteristic of any mangrove forest, high salinity may be one of mechanisms underlying SOC accumulation in mangrove soils.

  11. Ternary cycle treatment of high saline wastewater from pesticide production using a salt-tolerant microorganism.

    PubMed

    Wu, Xiang; Du, Ya-guang; Qu, Yi; Du, Dong-yun

    2013-01-01

    The material of this study is provided by biological aerobic treatment of high saline wastewater from pesticide production. The microorganism used for biodegradation has been identified by gene-sequencing as a strain of Bacillus sp. SCUN. The best growth condition for the salt-tolerant microorganism has been studied by varying the pH, immobilized microorganism dosage and temperature conditions. The feasibility of pretreating wastewater in ethyl chloride production containing 4% NaCl has been discussed. It was found that under the pH range of 6.0-8.0, immobilized microorganism dosage of 1.5 g/L, temperature of 30 °C, and NaCl concentration of 0-3%, the microorganism achieves the best growth for biodegradation. After domestication, the strain can grow under 4% NaCl. This salt-tolerant microorganism is effective in the pretreated high saline wastewater. With a newly developed ternary cycle treatment, the chemical oxygen demand removal approaches 58.3%. The theoretical basis and a new method for biological treatments in biodegradation of high saline wastewater in ethyl chloride production are discussed.

  12. Isolation and characterization of a novel nitrobenzene-degrading bacterium with high salinity tolerance: Micrococcus luteus.

    PubMed

    Zheng, Chunli; Qu, Baocheng; Wang, Jing; Zhou, Jiti; Wang, Jing; Lu, Hong

    2009-06-15

    Strain Z3 was isolated from nitrobenzene-contaminated sludge. Strain Z3 was able to utilize nitrobenzene as a sole source of carbon, nitrogen and energy under aerobic condition. Based on the morphology, physiological biochemical characteristics, and 16S rDNA sequence, strain Z3 was identified as Micrococcus luteus. Strain Z3 completely degraded nitrobenzene with initial concentration of 100, 150, 200, and 250 mg L(-1) within 70, 96, 120 and 196 h, respectively. Kinetics of nitrobenzene degradation was described using the Andrews equation. The kinetic parameters were as follows: q(max)=1.19 h(-1), K(s)=29.11 mg L(-1), and K(i)=94.00 mg L(-1). Strain Z3 had a high salinity tolerance. It degraded 200 mg L(-1) nitrobenzene completely in 5% NaCl (w/w%). Strain Z3 therefore could be an excellent candidate for the bio-treatment of nitrobenzene industrial wastewaters with high salinity. This is the first report on the degradation of nitrobenzene by M. luteus and the degradation of nitrobenzene achieved in such a high salinity.

  13. Multiple PLDs Required for High Salinity and Water Deficit Tolerance in Plants

    PubMed Central

    Bargmann, Bastiaan O. R.; Laxalt, Ana M.; ter Riet, Bas; van Schooten, Bas; Merquiol, Emmanuelle; Testerink, Christa; Haring, Michel A.; Bartels, Dorothea; Munnik, Teun

    2009-01-01

    High salinity and drought have received much attention because they severely affect crop production worldwide. Analysis and comprehension of the plant's response to excessive salt and dehydration will aid in the development of stress-tolerant crop varieties. Signal transduction lies at the basis of the response to these stresses, and numerous signaling pathways have been implicated. Here, we provide further evidence for the involvement of phospholipase D (PLD) in the plant's response to high salinity and dehydration. A tomato (Lycopersicon esculentum) α-class PLD, LePLDα1, is transcriptionally up-regulated and activated in cell suspension cultures treated with salt. Gene silencing revealed that this PLD is indeed involved in the salt-induced phosphatidic acid production, but not exclusively. Genetically modified tomato plants with reduced LePLDα1 protein levels did not reveal altered salt tolerance. In Arabidopsis (Arabidopsis thaliana), both AtPLDα1 and AtPLDδ were found to be activated in response to salt stress. Moreover, pldα1 and pldδ single and double knock-out mutants exhibited enhanced sensitivity to high salinity stress in a plate assay. Furthermore, we show that both PLDs are activated upon dehydration and the knock-out mutants are hypersensitive to hyperosmotic stress, displaying strongly reduced growth. PMID:19017627

  14. High Performance Computer Programming Environments

    DTIC Science & Technology

    1988-09-30

    graphic debugging envi- ronment, Voyeur [Bailey, Socha & Notkin 88, Socha, Bailey &S Notkin 88] and two papers on parallel computer structures [Snyder 88...debugger was called Voyeur [Bailey, Socha & Notkin 88, Socha, Bailey & Notkin 88]. Though Voyeur was interfaced to the Poker environment, the intent was...to develop a facility that would be suitable for the more ambitious goals of Orca. Voyeur demonstrated its effectiveness by finding errors in a

  15. High genetic diversity and novelty in eukaryotic plankton assemblages inhabiting saline lakes in the Qaidam basin.

    PubMed

    Wang, Jiali; Wang, Fang; Chu, Limin; Wang, Hao; Zhong, Zhiping; Liu, Zhipei; Gao, Jianyong; Duan, Hairong

    2014-01-01

    Saline lakes are intriguing ecosystems harboring extremely productive microbial communities in spite of their extreme environmental conditions. We performed a comprehensive analysis of the genetic diversity (18S rRNA gene) of the planktonic microbial eukaryotes (nano- and picoeukaryotes) in six different inland saline lakes located in the Qaidam Basin. The novelty level are high, with about 11.23% of the whole dataset showing <90% identity to any previously reported sequence in GenBank. At least 4 operational taxonomic units (OTUs) in mesosaline lakes, while up to eighteen OTUs in hypersaline lakes show very low CCM and CEM scores, indicating that these sequences are highly distantly related to any existing sequence. Most of the 18S rRNA gene sequence reads obtained in investigated mesosaline lakes is closely related to Holozoa group (48.13%), whereas Stramenopiles (26.65%) and Alveolates (10.84%) are the next most common groups. Hypersaline lakes in the Qaidam Basin are also dominated by Holozoa group, accounting for 26.65% of the total number of sequence reads. Notably, Chlorophyta group are only found in high abundance in Lake Gasikule (28.00%), whereas less represented in other hypersaline lakes such as Gahai (0.50%) and Xiaochaidan (1.15%). Further analysis show that the compositions of planktonic eukaryotic assemblages are also most variable between different sampling sites in the same lake. Out of the parameters, four show significant correlation to this CCA: altitude, calcium, sodium and potassium concentrations. Overall, this study shows important gaps in the current knowledge about planktonic microbial eukaryotes inhabiting Qaidam Basin (hyper) saline water bodies. The identified diversity and novelty patterns among eukaryotic plankton assemblages in saline lake are of great importance for understanding and interpreting their ecology and evolution.

  16. High Genetic Diversity and Novelty in Eukaryotic Plankton Assemblages Inhabiting Saline Lakes in the Qaidam Basin

    PubMed Central

    Wang, Jiali; Wang, Fang; Chu, Limin; Wang, Hao; Zhong, Zhiping; Liu, Zhipei; Gao, Jianyong; Duan, Hairong

    2014-01-01

    Saline lakes are intriguing ecosystems harboring extremely productive microbial communities in spite of their extreme environmental conditions. We performed a comprehensive analysis of the genetic diversity (18S rRNA gene) of the planktonic microbial eukaryotes (nano- and picoeukaryotes) in six different inland saline lakes located in the Qaidam Basin. The novelty level are high, with about 11.23% of the whole dataset showing <90% identity to any previously reported sequence in GenBank. At least 4 operational taxonomic units (OTUs) in mesosaline lakes, while up to eighteen OTUs in hypersaline lakes show very low CCM and CEM scores, indicating that these sequences are highly distantly related to any existing sequence. Most of the 18S rRNA gene sequence reads obtained in investigated mesosaline lakes is closely related to Holozoa group (48.13%), whereas Stramenopiles (26.65%) and Alveolates (10.84%) are the next most common groups. Hypersaline lakes in the Qaidam Basin are also dominated by Holozoa group, accounting for 26.65% of the total number of sequence reads. Notably, Chlorophyta group are only found in high abundance in Lake Gasikule (28.00%), whereas less represented in other hypersaline lakes such as Gahai (0.50%) and Xiaochaidan (1.15%). Further analysis show that the compositions of planktonic eukaryotic assemblages are also most variable between different sampling sites in the same lake. Out of the parameters, four show significant correlation to this CCA: altitude, calcium, sodium and potassium concentrations. Overall, this study shows important gaps in the current knowledge about planktonic microbial eukaryotes inhabiting Qaidam Basin (hyper) saline water bodies. The identified diversity and novelty patterns among eukaryotic plankton assemblages in saline lake are of great importance for understanding and interpreting their ecology and evolution. PMID:25401703

  17. High-performance ionic diode membrane for salinity gradient power generation.

    PubMed

    Gao, Jun; Guo, Wei; Feng, Dan; Wang, Huanting; Zhao, Dongyuan; Jiang, Lei

    2014-09-03

    Salinity difference between seawater and river water is a sustainable energy resource that catches eyes of the public and the investors in the background of energy crisis. To capture this energy, interdisciplinary efforts from chemistry, materials science, environmental science, and nanotechnology have been made to create efficient and economically viable energy conversion methods and materials. Beyond conventional membrane-based processes, technological breakthroughs in harvesting salinity gradient power from natural waters are expected to emerge from the novel fluidic transport phenomena on the nanoscale. A major challenge toward real-world applications is to extrapolate existing single-channel devices to macroscopic materials. Here, we report a membrane-scale nanofluidic device with asymmetric structure, chemical composition, and surface charge polarity, termed ionic diode membrane (IDM), for harvesting electric power from salinity gradient. The IDM comprises heterojunctions between mesoporous carbon (pore size ∼7 nm, negatively charged) and macroporous alumina (pore size ∼80 nm, positively charged). The meso-/macroporous membrane rectifies the ionic current with distinctly high ratio of ca. 450 and keeps on rectifying in high-concentration electrolytes, even in saturated solution. The selective and rectified ion transport furthermore sheds light on salinity-gradient power generation. By mixing artificial seawater and river water through the IDM, substantially high power density of up to 3.46 W/m(2) is discovered, which largely outperforms some commercial ion-exchange membranes. A theoretical model based on coupled Poisson and Nernst-Planck equations is established to quantitatively explain the experimental observations and get insights into the underlying mechanism. The macroscopic and asymmetric nanofluidic structure anticipates wide potentials for sustainable power generation, water purification, and desalination.

  18. Nitrogen mineralization from sludge in an alkaline, saline coal gasification ash environment.

    PubMed

    Mbakwe, Ikenna; De Jager, Pieter C; Annandale, John G; Matema, Taurai

    2013-01-01

    Rehabilitating coal gasification ash dumps by amendment with waste-activated sludge has been shown to improve the physical and chemical properties of ash and to facilitate the establishment of vegetation. However, mineralization of organic N from sludge in such an alkaline and saline medium and the effect that ash weathering has on the process are poorly understood and need to be ascertained to make decisions regarding the suitability of this rehabilitation option. This study investigated the rate and pattern of N mineralization from sludge in a coal gasification ash medium to determine the prevalent inorganic N form in the system and assess the effect of ash weathering on N mineralization. An incubation experiment was performed in which fresh ash, weathered ash, and soil were amended with the equivalent of 90 Mg ha sludge, and N mineralization was evaluated over 63 d. More N (24%) was mineralized in fresh ash than in weathered ash and soil, both of which mineralized 15% of the initial organic N in sludge. More nitrification occurred in soil, and most of the N mineralized in ash was in the form of ammonium, indicating an inhibition of nitrifying organisms in the ash medium and suggesting that, at least initially, plants used for rehabilitation of coal gasification ash dumps will take up N mostly as ammonium. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Evaluation of marine sediments as microbial sources for methane production from brown algae under high salinity.

    PubMed

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka

    2014-10-01

    Various marine sediments were evaluated as promising microbial sources for methane fermentation of Saccharina japonica, a brown alga, at seawater salinity. All marine sediments tested produced mainly acetate among volatile fatty acids. One marine sediment completely converted the produced volatile fatty acids to methane in a short period. Archaeal community analysis revealed that acetoclastic methanogens belonging to the Methanosarcina genus dominated after cultivation. Measurement of the specific conversion rate at each step of methane production under saline conditions demonstrated that the marine sediments had higher conversion rates of butyrate and acetate than mesophilic methanogenic granules. These results clearly show that marine sediments can be used as microbial sources for methane production from algae under high-salt conditions without dilution.

  20. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination

    PubMed Central

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J.; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-01-01

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes. PMID:27545955

  1. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination

    NASA Astrophysics Data System (ADS)

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J.; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-08-01

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes.

  2. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination.

    PubMed

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-08-22

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes.

  3. Error attribution and validation of SMOS high-level salinity products with Argo data

    NASA Astrophysics Data System (ADS)

    Ballabrera, Joaquim

    2015-04-01

    available for December 2013. Valid observations in the top five meters have been 2600 and 235, respectively. Comparison between Argo data and SMOS illustrates some of the systematic deficiencies of the salinity retrieval approach. Among them, land-sea contamination and model deficiencies at low and high temperatures. Moreover, Argo data may illustrate some deficiencies one of the auxiliary fields, namely the Sea Surface Temperature, used in the retrieval approach. When the Argo and SMOS match-up pairs data are properly filtered, the mean and standard deviation of the differences in the latitudinal band of 60S-60N are (L3/OI/L4): -0.00/-0.01/-0.06 and 0.49/0.29/0.28. When match-up pairs are limited to the 30S-30N band the mean and standard deviation are -0.02/-0.03/-0.12 and 0.37/0.23/0.23. While these figures have been found to be robust when Argo observations are taken deeper than five meters, their differ when Argo data is restricted to the first four meters of the ocean. However, more upper-surface measurements are required to elucidate the robustness of these changes.

  4. Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism.

    PubMed

    Woodrow, Pasqualina; Ciarmiello, Loredana F; Annunziata, Maria Grazia; Pacifico, Severina; Iannuzzi, Federica; Mirto, Antonio; D'Amelia, Luisa; Dell'Aversana, Emilia; Piccolella, Simona; Fuggi, Amodio; Carillo, Petronia

    2017-03-01

    Durum wheat plants are extremely sensitive to drought and salinity during seedling and early development stages. Their responses to stresses have been extensively studied to provide new metabolic targets and improving the tolerance to adverse environments. Most of these studies have been performed in growth chambers under low light [300-350 µmol m(-2) s(-1) photosynthetically active radiation (PAR), LL]. However, in nature plants have to face frequent fluctuations of light intensities that often exceed their photosynthetic capacity (900-2000 µmol m(-2) s(-1) ). In this study we investigated the physiological and metabolic changes potentially involved in osmotic adjustment and antioxidant defense in durum wheat seedlings under high light (HL) and salinity. The combined application of the two stresses decreased the water potential and stomatal conductance without reducing the photosynthetic efficiency of the plants. Glycine betaine (GB) synthesis was inhibited, proline and glutamate content decreased, while γ-aminobutyric acid (GABA), amides and minor amino acids increased. The expression level and enzymatic activities of Δ1-pyrroline-5-carboxylate synthetase, asparagine synthetase and glutamate decarboxylase, as well as other enzymatic activities of nitrogen and carbon metabolism, were analyzed. Antioxidant enzymes and metabolites were also considered. The results showed that the complex interplay seen in durum wheat plants under salinity at LL was simplified: GB and antioxidants did not play a main role. On the contrary, the fine tuning of few specific primary metabolites (GABA, amides, minor amino acids and hexoses) remodeled metabolism and defense processes, playing a key role in the response to simultaneous stresses.

  5. Salt resistance genes revealed by functional metagenomics from brines and moderate-salinity rhizosphere within a hypersaline environment

    PubMed Central

    Mirete, Salvador; Mora-Ruiz, Merit R.; Lamprecht-Grandío, María; de Figueras, Carolina G.; Rosselló-Móra, Ramon; González-Pastor, José E.

    2015-01-01

    Hypersaline environments are considered one of the most extreme habitats on earth and microorganisms have developed diverse molecular mechanisms of adaptation to withstand these conditions. The present study was aimed at identifying novel genes from the microbial communities of a moderate-salinity rhizosphere and brine from the Es Trenc saltern (Mallorca, Spain), which could confer increased salt resistance to Escherichia coli. The microbial diversity assessed by pyrosequencing of 16S rRNA gene libraries revealed the presence of communities that are typical in such environments and the remarkable presence of three bacterial groups never revealed as major components of salt brines. Metagenomic libraries from brine and rhizosphere samples, were transferred to the osmosensitive strain E. coli MKH13, and screened for salt resistance. Eleven genes that conferred salt resistance were identified, some encoding for well-known proteins previously related to osmoadaptation such as a glycerol transporter and a proton pump, whereas others encoded proteins not previously related to this function in microorganisms such as DNA/RNA helicases, an endonuclease III (Nth) and hypothetical proteins of unknown function. Furthermore, four of the retrieved genes were cloned and expressed in Bacillus subtilis and they also conferred salt resistance to this bacterium, broadening the spectrum of bacterial species in which these genes can function. This is the first report of salt resistance genes recovered from metagenomes of a hypersaline environment. PMID:26528268

  6. Salt resistance genes revealed by functional metagenomics from brines and moderate-salinity rhizosphere within a hypersaline environment.

    PubMed

    Mirete, Salvador; Mora-Ruiz, Merit R; Lamprecht-Grandío, María; de Figueras, Carolina G; Rosselló-Móra, Ramon; González-Pastor, José E

    2015-01-01

    Hypersaline environments are considered one of the most extreme habitats on earth and microorganisms have developed diverse molecular mechanisms of adaptation to withstand these conditions. The present study was aimed at identifying novel genes from the microbial communities of a moderate-salinity rhizosphere and brine from the Es Trenc saltern (Mallorca, Spain), which could confer increased salt resistance to Escherichia coli. The microbial diversity assessed by pyrosequencing of 16S rRNA gene libraries revealed the presence of communities that are typical in such environments and the remarkable presence of three bacterial groups never revealed as major components of salt brines. Metagenomic libraries from brine and rhizosphere samples, were transferred to the osmosensitive strain E. coli MKH13, and screened for salt resistance. Eleven genes that conferred salt resistance were identified, some encoding for well-known proteins previously related to osmoadaptation such as a glycerol transporter and a proton pump, whereas others encoded proteins not previously related to this function in microorganisms such as DNA/RNA helicases, an endonuclease III (Nth) and hypothetical proteins of unknown function. Furthermore, four of the retrieved genes were cloned and expressed in Bacillus subtilis and they also conferred salt resistance to this bacterium, broadening the spectrum of bacterial species in which these genes can function. This is the first report of salt resistance genes recovered from metagenomes of a hypersaline environment.

  7. (p,ρ,T) properties of seawater: Extensions to high salinities

    NASA Astrophysics Data System (ADS)

    Safarov, J.; Berndt, S.; Millero, F.; Feistel, R.; Heintz, A.; Hassel, E.

    Measurements of (p,ρ,T) properties of seawater with absolute salinity SA=(31.684, 33.507, 37.372, 37.969, 40.164, 41.825, 44.811, 46.119, 48.600, 50.232, 52.449 and 55.529) g kg-1, temperature T=273.15-468.15 K and pressures, p, up to 140 MPa are reported with the reproducibility of the density measurements observed to be in the average percent deviation range Δρ/ρ=±0.01-0.03%. The measurements are made with a new set up vibration-tube densimeter which is calibrated using double-distilled water (Wagner and Pruß, 2002), methanol [(de Reuck and Craven, 1993), (Osada et al., 1999) and (Yokoyama and Uematsu, 2003)] and aqueous NaCl solutions [(Archer, 1992) and (Hilbert, 1979)]. Based on these measurements, an empirical expression for the density of seawater at high salinities has been developed as a function of salinity, pressure and temperature. The results can be used to extend the present equation of state of seawater to higher temperatures for pressure up to 140 MPa.

  8. In Vitro Assessment of Serum-Saline Ratios for Fluid Simulator Testing of Highly Modular Spinal Implants With Articulating Surfaces

    PubMed Central

    Khandha, Ashutosh; Malcolmson, George; Timm, JP

    2008-01-01

    and lower bounds of predictive implant debris generation modeling, where saline represents a worst-case scenario and as little as 20% serum masks all weight loss completely in highly modular articulating implants. Clinical Relevance Clinical Relevance = 5 (Oxford Centre for Evidence-based Medicine Levels of Evidence). Study findings are limited to a greater understanding of the science associated with predictive wear testing of articulating spinal implants. PMID:25802619

  9. Is the Taklimakan Desert Highway Shelterbelt Sustainable to Long-Term Drip Irrigation with High Saline Groundwater?

    PubMed

    Zhang, Jianguo; Xu, Xinwen; Li, Shengyu; Zhao, Ying; Zhang, Afeng; Zhang, Tibin; Jiang, Rui

    2016-01-01

    Freshwater resources are scarce in desert regions. Highly saline groundwater of different salinity is being used to drip irrigate the Taklimakan Desert Highway Shelterbelt with a double-branch-pipe system controlling the irrigation cycles. In this study, to evaluate the dynamics of soil moisture and salinity under the current irrigation system, soil samples were collected to a 2-m depth in the shelterbelt planted for different years and irrigated with different groundwater salinities, and soil moisture and salinity were analyzed. The results showed that both depletion of soil moisture and increase of topsoil salinity occurred simultaneously during one irrigation cycle. Soil moisture decreased from 27.4% to 2.4% for a 15-day irrigation cycle and from 26.4% to 2.7% for a 10-day-cycle, respectively. Topsoil electrical conductivity (EC) increased from 0.64 to 3.32 dS/m and 0.70 to 3.99 dS/m for these two irrigation cycles. With increased shelterbelt age, profiled average soil moisture (0-200 cm) reduced from 12.8% (1-year) to 7.1% (10-year); however, soil moisture in 0-20-cm increased, while topsoil salinity decreased. In addition, irrigation salinity mainly affected soil salinity in the 0-20-cm range. We conclude that water supply with the double-branch-pipe is a feasible irrigation method for the Taklimakan Desert Highway Shelterbelt, and our findings provide a model for shelterbelt construction and sustainable management when using highly saline water for irrigation in analogous habitats.

  10. Is the Taklimakan Desert Highway Shelterbelt Sustainable to Long-Term Drip Irrigation with High Saline Groundwater?

    PubMed Central

    Zhang, Jianguo; Xu, Xinwen; Li, Shengyu; Zhao, Ying; Zhang, Afeng; Zhang, Tibin; Jiang, Rui

    2016-01-01

    Freshwater resources are scarce in desert regions. Highly saline groundwater of different salinity is being used to drip irrigate the Taklimakan Desert Highway Shelterbelt with a double-branch-pipe system controlling the irrigation cycles. In this study, to evaluate the dynamics of soil moisture and salinity under the current irrigation system, soil samples were collected to a 2-m depth in the shelterbelt planted for different years and irrigated with different groundwater salinities, and soil moisture and salinity were analyzed. The results showed that both depletion of soil moisture and increase of topsoil salinity occurred simultaneously during one irrigation cycle. Soil moisture decreased from 27.4% to 2.4% for a 15-day irrigation cycle and from 26.4% to 2.7% for a 10-day-cycle, respectively. Topsoil electrical conductivity (EC) increased from 0.64 to 3.32 dS/m and 0.70 to 3.99 dS/m for these two irrigation cycles. With increased shelterbelt age, profiled average soil moisture (0–200 cm) reduced from 12.8% (1-year) to 7.1% (10-year); however, soil moisture in 0–20-cm increased, while topsoil salinity decreased. In addition, irrigation salinity mainly affected soil salinity in the 0–20-cm range. We conclude that water supply with the double-branch-pipe is a feasible irrigation method for the Taklimakan Desert Highway Shelterbelt, and our findings provide a model for shelterbelt construction and sustainable management when using highly saline water for irrigation in analogous habitats. PMID:27711244

  11. Geophysical, geochemical and hydrological analyses of water-resource vulnerability to salinization: case of the Uburu-Okposi salt lakes and environs, southeast Nigeria

    NASA Astrophysics Data System (ADS)

    Ukpai, S. N.; Okogbue, C. O.

    2017-06-01

    Until this study, the location and depth of the saline units in Uburu-Okposi salt lake areas and environs have been unknown. This study aimed at delineating the saline lithofacies and dispersal configurations to water bodies, using electrical geophysical methods such as constant separation traversing (CST) and vertical electrical sounding (VES). Results showed weathered zones that represent aquifers mostly at the fourth geoelectric layer: between upper layered aquitards and underlying aquitards at depths 30-140 m. Lateral distribution of resistivity variance was defined by the CST, whereas the VES tool, targeted at low-resistivity zones, detected isolated saline units with less than 10 ohm-m at depths generally >78 m. The saline lithofacies were suspected to link freshwater zones via shear zones, which steer saline water towards the salt lakes and influence the vulnerability of groundwater to salinization. The level of salinization was verified by water sampling and analysis, and results showed general alkaline water type with a mean pH of 7.66. Water pollution was indicated: mean total dissolved solids (TDS) 550 mg/l, electrical conductivity (EC) 510 μS/cm, salinity 1.1‰, Cl- 200 mg/l, N03 -35.5 mg/l, Na+ 19.6 mg/l and Ca2+ 79.3 mg/l. The salinity is controlled by NaCl salt, as deduced from correlation analysis using the software package Statistical Product for Service Solutions (SPSS). Generally, concentrations of dissolved ions in the water of the area are enhanced via mechanisms such as evaporation, dissociation of salts, precipitation run off and leaching of dissolved rock minerals.

  12. Implications of perennial saline springs for abnormally high fluid pressures and active thrusting in western California

    SciTech Connect

    Unruh, J.R.; Davisson, M.L.; Criss, R.E.; Moores, E.M. )

    1992-05-01

    Perennial saline springs in the Rumsey Hills area, southwestern Sacramento Valley, California, locally discharge at high elevations and near ridgetops. The springs are cold, are commonly associated with natural gas seeps, and typically emerge along west-vergent thrust faults. Stable isotope analyses indicate that the spring waters are similar to oil-field formation fluids and they have had a significant residence time in the subsurface at moderate temperatures. The nonmeteoric character of the springs demonstrates that they are not being fed by perched water tables. The authors propose that these subsurface formation waters are being forced to the surface by anomalously high porefluid pressures. The Rumsey Hills area is one of Quaternary uplift, thrusting, and crustal shortening, and prospect wells drilled there have encountered anomalously high fluid pressures at shallow depths. They attribute these high fluid pressures to active tectonic compression and shortening of Cretaceous marine sedimentary rocks. The widespread occurrence of anomalously high pore-fluid pressures and perennial saline springs in the Coast Ranges and western Great Valley suggests that much of western California may be characterized as a seismically active, overpressured thrust belt. The emergence of formation waters along thrust faults further suggests that patterns of subsurface fluid flow in western California may be similar to those in overpressured accretionary prisms, and that excess fluid pressures may also play a role in the distribution of seismicity.

  13. A Low T, High RH, and Potentially Life-Friendly Environment Within the Martian Salt-Rich Subsurface in Equatorial Regions

    NASA Astrophysics Data System (ADS)

    Wang, A.; Zheng, M. P.; Kong, F. J.; Ling, Z. C.; Kong, W. G.; Sobron, P.; Jolliff, B. L.

    2011-03-01

    Hydrated sulfates found in the subsurface at Gusev and at saline playa on the Tibet Plateau imply a high RH environment, supported by lab studies. A high-RH, salt-rich subsurface can accommodate organisms, e.g., halophiles in the Tibet saline playa.

  14. Copper toxicity across salinities from freshwater to seawater in the euryhaline fish Fundulus heteroclitus: is copper an ionoregulatory toxicant in high salinities?

    PubMed

    Blanchard, Jonathan; Grosell, Martin

    2006-11-16

    Two waterborne Cu exposures were performed to investigate if Cu is an ionoregulatory toxicant at all salinities in the killifish, Fundulus heteroclitus. A 30-day flow through exposure in 0 (FW), 5, 11, 22, and 28 ppt (SW) and three [Cu]'s (nominal 0, 30, and 150 microg Cu L(-1)) revealed no apparent Cu induced mortality at the intermediate salinities and high mortality in FW and SW. Fish were sampled at 4, 12, and 30 days after the start of the exposure and both Na+/K+ adenosine triphosphatase (Na+/K+ ATPase) and carbonic anhydrase (CA) activity in the gill and intestine as well as whole body [Na+], and [Cl-] were measured. At the high [Cu] a reduction of whole body [Na+] after 4 days of exposure in FW was the only physiological parameter influenced. A second static 24h Cu exposure was performed in FW, 5, 13, and 29 ppt (SW) and two [Cu]'s (nominal 0 and 110 microg Cu L(-1)). In addition to the parameters listed above, ammonia flux was measured at all salinities and Na+ flux was measured in FW fish. Cu affected ionoregulation in FW where decreased Na+ uptake associated with inhibition of Na+/K+ ATPase led to decreased whole body [Na+] after 24h. The only affected parameter in SW was net ammonia excretion suggesting that Cu is not an ionoregulatory toxicant in SW at the concentrations employed. We propose that physiology rather than chemistry explain much of the variation in Cu toxicity seen across salinities.

  15. Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought

    PubMed Central

    Mantri, Nitin L; Ford, Rebecca; Coram, Tristan E; Pang, Edwin CK

    2007-01-01

    Background Cultivated chickpea (Cicer arietinum) has a narrow genetic base making it difficult for breeders to produce new elite cultivars with durable resistance to major biotic and abiotic stresses. As an alternative to genome mapping, microarrays have recently been applied in crop species to identify and assess the function of putative genes thought to be involved in plant abiotic stress and defence responses. In the present study, a cDNA microarray approach was taken in order to determine if the transcription of genes, from a set of previously identified putative stress-responsive genes from chickpea and its close relative Lathyrus sativus, were altered in chickpea by the three abiotic stresses; drought, cold and high-salinity. For this, chickpea genotypes known to be tolerant and susceptible to each abiotic stress were challenged and gene expression in the leaf, root and/or flower tissues was studied. The transcripts that were differentially expressed among stressed and unstressed plants in response to the particular stress were analysed in the context of tolerant/susceptible genotypes. Results The transcriptional change of more than two fold was observed for 109, 210 and 386 genes after drought, cold and high-salinity treatments, respectively. Among these, two, 15 and 30 genes were consensually differentially expressed (DE) between tolerant and susceptible genotypes studied for drought, cold and high-salinity, respectively. The genes that were DE in tolerant and susceptible genotypes under abiotic stresses code for various functional and regulatory proteins. Significant differences in stress responses were observed within and between tolerant and susceptible genotypes highlighting the multiple gene control and complexity of abiotic stress response mechanism in chickpea. Conclusion The annotation of these genes suggests that they may have a role in abiotic stress response and are potential candidates for tolerance/susceptibility. PMID:17764573

  16. Laboratory corrosion studies in low- and high-salinity geobrines of the Imperial Valley, California

    SciTech Connect

    Cramer, S.D.; Carter, J.P.

    1980-01-01

    Corrosion research is being conducted by the Federal Bureau of Mines to determine suitable construction materials for geothermal resource recovery plants. As part of this research, the corrosion resistance of 31 iron-, nickel-, aluminum-, copper-, titanium-, and molybdenum-base alloys was characterized and evaluated in laboratory corrosion studies in low- and high-salinity geobrines representative of those found in the Imperial Valley, California. General, crevice, pitting, weld, and stress corrosion were measured at 105/sup 0/ and 232/sup 0/C in deaerated brines and brines containing dissolved O/sub 2/, CO/sub 2/, and CH/sub 4/.

  17. The floral repressor BROTHER OF FT AND TFL1 (BFT) modulates flowering initiation under high salinity in Arabidopsis.

    PubMed

    Ryu, Jae Yong; Park, Chung-Mo; Seo, Pil Joon

    2011-09-01

    Floral transition is coordinately regulated by both endogenous and exogenous cues to ensure reproductive success under fluctuating environmental conditions. Abiotic stress conditions, including drought and high salinity, also have considerable influence on this developmental process. However, the signaling components and molecular mechanisms underlying the regulation of floral transition by environmental factors have not yet been defined. In this work, we show that the Arabidopsis BROTHER OF FT AND TFL1 (BFT) gene, which encodes a member of the FLOWERING LOCUS T (FT)/TERMINAL FLOWER 1 (TFL1) family, regulates floral transition under conditions of high salinity. The BFT gene was transcriptionally induced by high salinity in an abscisic acid (ABA)-dependent manner. Transgenic plants overexpressing the BFT gene (35S:BFT) and BFT-deficient mutant (bft-2) plants were phenotypically indistinguishable from Col-0 plants in seed germination and seedling growth under high salinity. In contrast, although the floral transition was delayed significantly in Col-0 plants under high salinity, that of the bft-2 mutant was not affected by high salinity. We also observed that expression of the APETALA1 (AP1) gene was suppressed to a lesser degree in the bft-2 mutant than in Col-0 plants. Taken together, our observations suggest that BFT mediates salt stress-responsive flowering, providing an adaptive strategy that ensures reproductive success under unfavorable stress conditions.

  18. Analysis of bacterial diversity in two oil blocks from two low-permeability reservoirs with high salinities

    PubMed Central

    Xiao, Meng; Sun, Shan-Shan; Zhang, Zhong-Zhi; Wang, Jun-Ming; Qiu, Long-Wei; Sun, Hua-Yang; Song, Zhao-Zheng; Zhang, Bei-Yu; Gao, De-Li; Zhang, Guang-Qing; Wu, Wei-Min

    2016-01-01

    The community diversities of two oil reservoirs with low permeability of 1.81 × 10−3 and 2.29 × 10−3 μm2 in Changqing, China, were investigated using a high throughput sequencing technique to analyze the influence of biostimulation with a nutrient activator on the bacterial communities. These two blocks differed significantly in salinity (average 17,500 vs 40,900 mg/L). A core simulation test was used to evaluate the effectiveness of indigenous microbial-enhanced oil recovery (MEOR). The results indicated that in the two high salinity oil reservoirs, one reservoir having relatively lower salinity level and a narrow salinity range had higher bacterial and phylogenetic diversity. The addition of the nutrient activator increased the diversity of the bacterial community structure and the diversity differences between the two blocks. The results of the core simulation test showed that the bacterial community in the reservoir with a salinity level of 17,500 mg/L did not show significant higher MEOR efficiency compared with the reservoir with 40,900 mg/L i.e. MEOR efficiency of 8.12% vs 6.56% (test p = 0.291 > 0.05). Therefore, salinity levels affected the bacterial diversities in the two low permeability oil blocks remarkably. But the influence of salinity for the MEOR recovery was slightly. PMID:26786765

  19. Analysis of bacterial diversity in two oil blocks from two low-permeability reservoirs with high salinities

    NASA Astrophysics Data System (ADS)

    Xiao, Meng; Sun, Shan-Shan; Zhang, Zhong-Zhi; Wang, Jun-Ming; Qiu, Long-Wei; Sun, Hua-Yang; Song, Zhao-Zheng; Zhang, Bei-Yu; Gao, De-Li; Zhang, Guang-Qing; Wu, Wei-Min

    2016-01-01

    The community diversities of two oil reservoirs with low permeability of 1.81 × 10‑3 and 2.29 × 10‑3 μm2 in Changqing, China, were investigated using a high throughput sequencing technique to analyze the influence of biostimulation with a nutrient activator on the bacterial communities. These two blocks differed significantly in salinity (average 17,500 vs 40,900 mg/L). A core simulation test was used to evaluate the effectiveness of indigenous microbial-enhanced oil recovery (MEOR). The results indicated that in the two high salinity oil reservoirs, one reservoir having relatively lower salinity level and a narrow salinity range had higher bacterial and phylogenetic diversity. The addition of the nutrient activator increased the diversity of the bacterial community structure and the diversity differences between the two blocks. The results of the core simulation test showed that the bacterial community in the reservoir with a salinity level of 17,500 mg/L did not show significant higher MEOR efficiency compared with the reservoir with 40,900 mg/L i.e. MEOR efficiency of 8.12% vs 6.56% (test p = 0.291 > 0.05). Therefore, salinity levels affected the bacterial diversities in the two low permeability oil blocks remarkably. But the influence of salinity for the MEOR recovery was slightly.

  20. Analysis of bacterial diversity in two oil blocks from two low-permeability reservoirs with high salinities.

    PubMed

    Xiao, Meng; Sun, Shan-Shan; Zhang, Zhong-Zhi; Wang, Jun-Ming; Qiu, Long-Wei; Sun, Hua-Yang; Song, Zhao-Zheng; Zhang, Bei-Yu; Gao, De-Li; Zhang, Guang-Qing; Wu, Wei-Min

    2016-01-20

    The community diversities of two oil reservoirs with low permeability of 1.81 × 10(-3) and 2.29 × 10(-3) μm(2) in Changqing, China, were investigated using a high throughput sequencing technique to analyze the influence of biostimulation with a nutrient activator on the bacterial communities. These two blocks differed significantly in salinity (average 17,500 vs 40,900 mg/L). A core simulation test was used to evaluate the effectiveness of indigenous microbial-enhanced oil recovery (MEOR). The results indicated that in the two high salinity oil reservoirs, one reservoir having relatively lower salinity level and a narrow salinity range had higher bacterial and phylogenetic diversity. The addition of the nutrient activator increased the diversity of the bacterial community structure and the diversity differences between the two blocks. The results of the core simulation test showed that the bacterial community in the reservoir with a salinity level of 17,500 mg/L did not show significant higher MEOR efficiency compared with the reservoir with 40,900 mg/L i.e. MEOR efficiency of 8.12% vs 6.56% (test p = 0.291 > 0.05). Therefore, salinity levels affected the bacterial diversities in the two low permeability oil blocks remarkably. But the influence of salinity for the MEOR recovery was slightly.

  1. Using antibodies against ATPase and microarray immunoassays for the search for potential extraterrestrial life in saline environments on Mars.

    NASA Astrophysics Data System (ADS)

    Weigl, Andreas; Gruber, Claudia; Blanco-López, Yolanda; Rivas, Luis A.; Parro, Victor; Stan-Lotter, Helga

    2010-05-01

    For the search for extraterrestrial life it is proposed to use receptors such as labelled antibodies for the detection of organic biomarkers. One of these organic molecules to be tested is the universal enzyme ATP synthase which is present in highly conserved forms in all organisms on earth. Therefore it is necessary to evaluate antibodies against ATPase respectively ATP synthase and their subunits. As it is known, that there are halite deposits on Mars the experiments in this study have been carried out with regard to halophile microorganisms and saline environments. Standard F1F0 ATPase from Escherichia coli LE 392 and Bacillus megaterium as well as haloarchaeal A-ATPase from Halorubrum saccharovorum and Halobacterium salinarum NRC-1 were used. The cultivated cells, except Bacillus, were broken by passage through a French Pressure Cell. Separation of enzyme subunits was performed by polyacrylamide gel electrophoresis. Western Blotting with antisera produced in rabbit against A-ATPase subunits A (85 kD) and subunits B (60 kD) from Halorubrrum saccharovorum (1) showed positive reactions with the membrane fraction, which should be enriched with ATPase from Halorubrum saccharovorum, Halobacterium salinarum NRC-1 and Escherichia coli LE 392. Particular attention was given to the question if ATPase subunits can be detected in whole cells. Therefore whole cell preparations of all cells and spore suspensions from Geobacillus stearothermophilus were tested against the antiserum as well as against protein-A-purified antibody against A-ATPase subunit A from Halorubrum saccharovorum. A positive immuno reaction of all cell preparations with the antiserum as well as with the purified antibody was detected. The spores of Geobacillus stearothermophilus reacted positively with the antiserum against subunit A of the A-ATPase from Hrr. saccharovorum. A commercial antibody Rabbit Anti-V-ATPase subunit A polyclonal antibody from the GenScript Corporation reacted positively with

  2. NO, hydrogen sulfide does not come first during tomato response to high salinity.

    PubMed

    da-Silva, Cristiane J; Mollica, Débora C F; Vicente, Mateus H; Peres, Lázaro E P; Modolo, Luzia V

    2017-09-28

    High salinity greatly impacts agriculture, particularly in tomato (Solanum lycopersicum), a crop that is a model to study this abiotic stress. This work investigated whether hydrogen sulfide (H2S) acts upstream or downstream of nitric oxide (NO) in the signaling cascade during tomato response to salt stress. An NO-donor incremented H2S levels by 12-18.9% while an H2S-donor yielded 10% more NO in roots. The NO accumulated in roots one-hour after NaCl treatment while H2S accumulation started two-hour later. The NO stimulated H2S accumulation in roots/leaves, but not the opposite (i.e H2S was unable to stimulate NO accumulation) two-hour post NaCl treatment. Also, NO accumulation was accompanied by an increment of transcript levels of genes that encode for H2S-synthesizing enzymes. Our results indicate that H2S acts downstream of NO in the mitigation of oxidative stress, which helps tomato plants to tolerate high salinity. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Evaluating the main and side effects of high salinity on aerobic granular sludge.

    PubMed

    Pronk, M; Bassin, J P; de Kreuk, M K; Kleerebezem, R; van Loosdrecht, M C M

    2014-02-01

    Salinity can adversely affect the performance of most biological processes involved in wastewater treatment. The effect of salt on the main conversion processes in an aerobic granular sludge (AGS) process accomplishing simultaneous organic matter, nitrogen, and phosphate removal was evaluated in this work. Hereto, an AGS sequencing batch reactor was subjected to different salt concentrations (0.2 to 20 g Cl(-) l(-1)). Granular structure was stable throughout the whole experimental period, although granule size decreased and a significant effluent turbidity was observed at the highest salinity tested. A weaker gel structure at higher salt concentrations was hypothesised to be the cause of such turbidity. Ammonium oxidation was not affected at any of the salt concentrations applied. However, nitrite oxidation was severely affected, especially at 20 g Cl(-) l(-1), in which a complete inhibition was observed. Consequently, high nitrite accumulation occurred. Phosphate removal was also found to be inhibited at the highest salt concentration tested. Complementary experiments have shown that a cascade inhibition effect took place: first, the deterioration of nitrite oxidation resulted in high nitrite concentrations and this in turn resulted in a detrimental effect to polyphosphate-accumulating organisms. By preventing the occurrence of the nitrification process and therefore avoiding the nitrite accumulation, the effect of salt concentrations on the bio-P removal process was shown to be negligible up to 13 g Cl(-) l(-1). Salt concentrations equal to 20 g Cl(-) l(-1) or higher in absence of nitrite also significantly reduced phosphate removal efficiency in the system.

  4. THE HIGH INTENSITY SOLAR ENVIRONMENT TEST SYSTEM

    NASA Image and Video Library

    2016-01-15

    TODD SCHNEIDER LOOKS UP FROM WORK AT THE DOOR OF T HE HIGH INTENSITY SOLAR ENVIRONMENT TEST SYSTEM IN BUILDING 4605. SCHNEIDER IS A PHYSICIST IN THE MATERIALS AND PROCESSES DEPARTMENT AT MSFC AND IS PRINCIPAL INVESTIGATOR FOR HISET.

  5. High Magnetic Susceptibility in a Highly Saline Sulfate-Rich Aquifer Undergoing Biodegradation of Hydrocarbon Results from Sulfate Reduction.

    NASA Astrophysics Data System (ADS)

    Atekwana, E. A.; Enright, A.; Ntarlagiannis, D.; Slater, L. D.; Bernier, R.; Beaver, C. L.; Rossbach, S.

    2016-12-01

    We investigated the chemical and stable carbon isotope composition of groundwater in a highly saline aquifer contaminated with hydrocarbon. Our aim to evaluate hydrocarbon degradation and to constrain the geochemical conditions that generated high anomalous magnetic susceptibility (MS) signatures observed at the water table interface. The occurrence of high MS in the water table fluctuating zone has been attributed to microbial iron reduction, suggesting the use of MS as a proxy for iron cycling. The highly saline aquifer had total dissolved solids concentrations of 3.7 to 29.3 g/L and sulfate concentrations of 787 to 37,100 mg/L. We compared our results for groundwater locations with high hydrocarbon contamination (total petroleum hydrocarbon (TPH) >10 mg/L), at lightly contaminated (TPH <10 mg/L) and locations with no contaminations. Our results for the terminal electron acceptors (TEAs) dissolved oxygen (DO), nitrate (NO3-), dissolved iron (Fe2+) , dissolved manganese (Mn2+), sulfate (SO42-) and methane (CH4) suggest a chemically heterogeneous aquifer, probably controlled by heterogeneous distribution of TEAs and contamination (type of hydrocarbon, phase and age of contamination). The concentrations of dissolved inorganic carbon (DIC) ranged from 67 to 648 mg C/L and the stable carbon isotope (δ13CDIC) ranged from -30.0‰ to 1.0 ‰ and DIC-δ13CDIC modeling indicates that the carbon in the DIC is derived primarily from hydrocarbon degradation. The concentrations of Fe2+ in the aquifer ranged from 0.1 to 55.8 mg/L, but was mostly low, averaging 2.7+10.9 mg/L. Given the low Fe2+ [AE1] in the aqueous phase and the high MS at contaminated locations, we suggest that the high MS observed does not arise from iron reduction but rather from sulfate reduction. Sulfate reduction produces H2S which reacts with Fe2+ to produce ferrous sulfide (Fe2+S) or the mixed valence greigite (Fe2+Fe3+2S4). We conclude that in highly saline aquifers with high concentrations of sulfate

  6. Unusual very positive enrichment of 13C in carbonate sediments deposited in modern hypersaline environment, Lagoa Salgada, Brazil: Indicator of salinity controlled metabolic processes

    NASA Astrophysics Data System (ADS)

    McKenzie, J. A.; Bovier, C.; Bahniuk, A.; Andersen, M. B.; Vasconcelos, C.

    2016-12-01

    In the geologic record, prolonged intervals of intense δ13C enrichment (>10‰) in carbonate deposits occurred, in particular during the mid-Palaeoproterozoic (2.3-1.9 Ga) and mid-Neoproterozoic (0.8-0.6 Ga) [1]. These anomalously high δ13C values have been interpreted as a global effect due to enhanced burial of organic matter with depleted δ13C values [2]. An alternate interpretation has been proposed whereby the metabolic activity of specific microbial communities, such as methanogens, may have been the source of the strong carbon isotope fractionation [3]. Although such restricted shallow-water environments where methanogens dominate are not widespread today, a unique hypersaline coastal lagoon system, Lagoa Salgada, Brazil provides ideal conditions to study the modern microbial community and its impact on observed extreme δ13C enrichment (up to 20‰) recorded in both in situ stromatolites and carbonate sediments. Here we present our findings and correlations of geochemical data with changing environmental conditions during the last 2600 cal yr BP. This lagoonal system contains highly evaporated water with highest salinities occurring during the dry season. The positive δ13C anomaly shows high and stable values (>14‰) from about 2100 to 1400 cal yr BP. Similar high δ13C values were recorded for the same time period in stromatolite structures growing around the margin of Lagoa Salgada. We propose that the high salinities inhibit photosynthesis, respiration and nitrogen fixation by osmotic stress and, thus, result in increased methanogenesis. We conclude that the combination of methanogenic metabolisms and extreme evaporative conditions is the key factor promoting the production of very high δ13C values observed throughout the lagoonal system, as recorded in both marginal stromatolites and carbonate sediments deposited in the more distal regions of the lagoon. Such unusual environments may have been more widely distributed during the Proterozoic

  7. Could high salinity be used to control bullfrogs in small ponds?

    USGS Publications Warehouse

    Ward, David L.; Finch, Colton; Blasius, Heidi

    2015-01-01

    We examined survival of bullfrog (Rana catesbeiana) eggs and tadpoles at 3 ppt and 6 ppt salinity in the laboratory to determine if low-level salinity could be used to eradicate bullfrogs from small ponds that contain native fishes. Bullfrog eggs and tadpoles <10 days old experienced 100% mortality when held at 6 ppt salinity for 10 days. Bullfrog tadpoles 10–15 days old experienced significantly reduced survival when exposed to salinity of 6 ppt for 10 days. Older bullfrog tadpoles (>9 months old) appeared unaffected by 14 days of 6 ppt salinity. Salinity of 3 ppt did not impact survival of bullfrog tadpole eggs or tadpoles at any of the life stages we tested. Adding salt to ponds in the early spring to increase salinity to 6 ppt may be a cost effective way to eradicate bullfrogs from small ponds without harming native fishes.

  8. Effect of moderate salinity stress treatment on the stimulation of proline uptake and growth in Escherichia coli CSH4 and its mutants under high salinity.

    PubMed

    Nagata, Shinichi; Wang, Yaoqiang; Zhang, Hongyan; Sasaki, Hideaki; Oshima, Akinobu; Ishida, Akio

    2009-09-01

    Activity of proline uptake in Escherichia coli CSH4 was inhibited in the presence of 1 M NaCl, while it was recovered if the cells were incubated at 30 degrees C for 1 h in a moderate salinity stress (MSS) solution which consists of Davis minimal medium with 5 mM proline and 0.5 M NaCl. Then, an attempt was made to examine whether MSS treatment is also effective on the activity restoration of proline uptake and growth under high salinity for E. coli CSH4 mutants with different combinations of proP, putA, putP, and proU which are related to the transport and metabolization of proline. After MSS treatment, proline uptake was vigorously occurred for the mutants with proline transporter gene proP but not for its deficient ones. For the expression of proline uptake activities of these mutant strains after MSS treatment, PO(4)(3-) in MSS solution is more important than K(+). No growth of strain CSH4 and its mutants without MSS treatment was observed, when cultured in high osmotic medium G (0.8 M NaCl) consisting of 1 mM glycine betaine and Davis minimal medium without potassium phosphate supplemented. After MSS treatment, however, mutant strains lacking proP showed sufficient growth in medium G. Cell growth of proP(+) strains was recognized if MSS treatment was performed in the absence of proline. In conclusion, growth of mutant strains under high-salinity medium G depended on their amount of proline accumulated during MSS treatment, in which K(+) and PO(4)(3-) might play a key role to guarantee their sufficient growth.

  9. Partitions and vertical profiles of 9 endocrine disrupting chemicals in an estuarine environment: Effect of tide, particle size and salinity.

    PubMed

    Yang, Lihua; Cheng, Qiao; Lin, Li; Wang, Xiaowei; Chen, Baowei; Luan, Tiangang; Tam, Nora F Y

    2016-04-01

    Phenolic endocrine disrupting chemicals (EDCs) in an estuarine water column in a depth profile of five water layers (0.05 D, 0.20 D, 0.60 D, 0.80 D and 0.90 D, D = Depth, 10.7 ± 0.7 m) and their corresponding environmental parameters (tide, salinity and particle size) were investigated over a year. Water sample from each layer was further separated into three fractions, which were dissolved, coarse (SPM-D, Φ ≥ 2.7 μm) and fine (SPM-F, 2.7 μm > Φ ≥ 0.7 μm) suspended particulate matters. Most of EDCs in the water column were presented in the dissolved fraction. Vertical profiles of salinity fluctuations showed that the upper water layer was most influenced by upstream flow. Estriol (E3), mestranol (Mes) and 17α-ethynylestradiol (EE2) concentrations were significantly higher in ebb tide than in flood tide, indicating that EDCs mainly came from terrestrial source, the upstream flow. Dissolved EDCs also exhibited high levels in the surface layer (0.05 D) due to the upstream source and atmosphere deposition, followed by the bottom layer (0.90 D) owing to the re-suspension of EDCs-containing sediment. Compared to the dissolved phase, the contents of BPA, Mes and EE2 in the solid phase were affected by particle size and exhibited a trend of SPM-F > SPM-D > sediment. On the other hand, the concentrations of octylphenol (OP) and t-nonylphenol (NP), the degradation products from common nonionic surfactants, in sediment were higher than those in suspended particles, and NP concentration was higher in flood tide than that in ebb tide. For both SPM-D and SPM-F, their corresponding EDCs concentrations were negatively related to SPM concentrations due to particle concentration effect (PCE). Owing to the "salting-out effect", salinity pushed EDCs from dissolved fraction to particulate or sedimentary phase.

  10. Halophilic Microorganisms Are Responsible for the Rosy Discolouration of Saline Environments in Three Historical Buildings with Mural Paintings

    PubMed Central

    Ettenauer, Jörg D.; Jurado, Valme; Piñar, Guadalupe; Miller, Ana Z.; Santner, Markus; Saiz-Jimenez, Cesareo; Sterflinger, Katja

    2014-01-01

    A number of mural paintings and building materials from monuments located in central and south Europe are characterized by the presence of an intriguing rosy discolouration phenomenon. Although some similarities were observed among the bacterial and archaeal microbiota detected in these monuments, their origin and nature is still unknown. In order to get a complete overview of this biodeterioration process, we investigated the microbial communities in saline environments causing the rosy discolouration of mural paintings in three Austrian historical buildings using a combination of culture-dependent and -independent techniques as well as microscopic techniques. The bacterial communities were dominated by halophilic members of Actinobacteria, mainly of the genus Rubrobacter. Representatives of the Archaea were also detected with the predominating genera Halobacterium, Halococcus and Halalkalicoccus. Furthermore, halophilic bacterial strains, mainly of the phylum Firmicutes, could be retrieved from two monuments using special culture media. Inoculation of building materials (limestone and gypsum plaster) with selected isolates reproduced the unaesthetic rosy effect and biodeterioration in the laboratory. PMID:25084531

  11. Halopyrroles: a new group of highly toxic disinfection byproducts formed in chlorinated saline wastewater.

    PubMed

    Yang, Mengting; Zhang, Xiangru

    2014-10-21

    Utilizing seawater for toilet flushing is an effective way to conserve freshwater in coastal cities. During chlorination for disinfecting saline wastewater effluents, the high levels of bromide from seawater are oxidized to hypobromous acid which may then react with effluent organics to form brominated disinfection byproducts (DBPs). In this research, by applying a new precursor ion scan method, we detected and identified a group of halopyrroles in a chlorinated saline wastewater effluent, including tetrabromopyrrole, tribromochloropyrrole, tribromoiodopyrrole, and tribromopyrrole, with tetrabromopyrrole as the predominant species. It is the first time that this group of halopyrroles were identified as wastewater DBPs (though 2,3,5-tribromopyrrole has been found to be a DBP in drinking water before). Detection of halopyrroles was problematic as these compounds in the pretreated samples were found to convert to halonitropyrroles; the problem was successfully solved by diluting the pretreated samples. The formation, occurrence, precursor, and toxicity of tetrabromopyrrole were investigated. This DBP showed significantly higher developmental toxicity than any of the haloaliphatic and haloaromatic DBPs previously tested.

  12. Sequential anaerobic-aerobic treatment of pharmaceutical wastewater with high salinity.

    PubMed

    Shi, Xueqing; Lefebvre, Olivier; Ng, Kok Kwang; Ng, How Yong

    2014-02-01

    In this study, pharmaceutical wastewater with high total dissolved solids (TDSs) and chemical oxygen demand (COD) content was treated through a sequential anaerobic-aerobic treatment process. For the anaerobic process, an up-flow anaerobic sludge blanket (UASB) was applied, and a COD removal efficiency of 41.3±2.2% was achieved with an organic loading rate of 8.11±0.31gCOD/L/d and a hydraulic retention time of 48h. To evaluate the salinity effect on the anaerobic process, salts in the wastewater were removed by ion exchange resin, and adverse effect of salinity was observed with a TDS concentration above 14.92g/L. To improve the anaerobic effluent quality, the UASB effluent was further treated by a membrane bioreactor (MBR) and a sequencing batch reactor (SBR). Both the UASB+MBR and UASB+SBR systems achieved excellent organic removal efficiency, with respective COD removal of 94.7% and 91.8%. The UASB+MBR system showed better performance in both organic removal and nitrification.

  13. Determination of (210)Po and uranium in high salinity water samples.

    PubMed

    Grabowski, Paweł; Bem, Henryk

    A method for the determination of uranium and (210)Po in high salinity water samples has been elaborated. Both radionuclides are preconcentrated from 0.5 dm(3) saline media by co-precipitation with hydrated manganese dioxide, followed by dissolution of the precipitate in 200 mL of 1 M HCl. Uranium isotopes (235)U and (238)U can be directly determined by ICP MS method with a detection limit of 0.01 ppb for (238)U. Prior to a selective determination of (210)Po, the majority of other naturally occurring α-emitting radionuclides (uranium, thorium and protactinium) can be stripped from this solution by their extraction with a 50% solution of HDEHP in toluene. Finally, (210)Po is simply separated by direct transfer to an extractive scintillator containing 5% of trioctylphosphine oxide in Ultima Gold F cocktail and determined by an α/β separation liquid scintillation technique with detection limit below 0.1 mBq/dm(3).

  14. Field salinity profile development under drip irrigation with high-sulfate water

    SciTech Connect

    Papadopoulos, I.

    1988-03-01

    This field study investigated the buildup of soil salinity and distribution of salts as influenced by gypsum-saturated water applied through a drip-irrigation system and leaching that occurs by winter rains. Amounts of water applied were 50 and 60 L/plant per week in the first and second irrigation seasons, respectively. The soil was a Pellic Vertisol that contained no gypsum. Although highly soluble salts accumulated during the irrigation season, particularly in the soil surface at a lateral distance of 20 to 40 cm from the emitter, they decreased to their initial values after leaching by winter rains. Precipitation of Ca with SO/sub 4/ as gypsum during the irrigation season was greater than dissolution of gypsum and leaching of these ions deeper in the soil by the 390 mm of winter rains. This resulted in a soil profile saturated with gypsum with a uniform EC/sub e/ of 3 dS m/sup /minus/1/ and Ca and SO/sub 4/ concentration levels of about 30 mol /plus minus/ m/sup -3/ throughout the soil profile in the 0- to 120-cm depth. An increase in soil EC/sub e/ occurred throughout the wetting front, which must be considered the lowest starting salinity for the beginning of each irrigation season. The increase in sodium adsorption ratio (SAR) was not at a level to adversely affect the infiltration capacity of the soil.

  15. ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity.

    PubMed

    Osakabe, Yuriko; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo; Tran, Lam-Son Phan

    2014-04-01

    Plant growth and productivity are adversely affected by various abiotic stressors and plants develop a wide range of adaptive mechanisms to cope with these adverse conditions, including adjustment of growth and development brought about by changes in stomatal activity. Membrane ion transport systems are involved in the maintenance of cellular homeostasis during exposure to stress and ion transport activity is regulated by phosphorylation/dephosphorylation networks that respond to stress conditions. The phytohormone abscisic acid (ABA), which is produced rapidly in response to drought and salinity stress, plays a critical role in the regulation of stress responses and induces a series of signaling cascades. ABA signaling involves an ABA receptor complex, consisting of an ABA receptor family, phosphatases and kinases: these proteins play a central role in regulating a variety of diverse responses to drought stress, including the activities of membrane-localized factors, such as ion transporters. In this review, recent research on signal transduction networks that regulate the function ofmembrane transport systems in response to stress, especially water deficit and high salinity, is summarized and discussed. The signal transduction networks covered in this review have central roles in mitigating the effect of stress by maintaining plant homeostasis through the control of membrane transport systems.

  16. Trace metals supplementation in anaerobic membrane bioreactors treating highly saline phenolic wastewater.

    PubMed

    Muñoz Sierra, Julian David; Lafita, Carlos; Gabaldón, Carmen; Spanjers, Henri; van Lier, Jules B

    2017-06-01

    Biomass requires trace metals (TM) for maintaining its growth and activity. This study aimed to determine the effect of TM supplementation and partitioning on the specific methanogenic activity (SMA), with a focus on cobalt and tungsten, during the start-up of two lab-scale Anaerobic Membrane Bioreactors (AnMBRs) treating saline phenolic wastewater. The TM partitioning revealed a strong accumulation of sodium in the biomass matrix and a wash-out of the majority of TM in the reactors, which led to an SMA decrease and a low COD removal of about 30%. The SMA exhibits a maximum at about 6g Na(+) L(-1) and nearly complete inhibition at 34g Na(+) L(-1). The dose of 0.5mgL(-1) of tungsten increases the SMA by 17%, but no improvement was observed with the addition of cobalt. The results suggested that TM were not bioavailable at high salinity. Accordingly, an increased COD removal was achieved by doubling the supply of TM.

  17. New approach of a transient ICP-MS measurement method for samples with high salinity.

    PubMed

    Hein, Christina; Sander, Jonas Michael; Kautenburger, Ralf

    2017-03-01

    In the near future it is necessary to establish a disposal for high level nuclear waste (HLW) in deep and stable geological formations. In Germany typical host rocks are salt or claystone. Suitable clay formations exist in the south and in the north of Germany. The geochemical conditions of these clay formations show a strong difference. In the northern ionic strengths of the pore water up to 5M are observed. The determination of parameters like Kd values during sorption experiments of metal ions like uranium or europium as homologues for trivalent actinides onto clay stones are very important for long term safety analysis. The measurement of the low concentrated, not sorbed analytes commonly takes place by inductively coupled plasma mass spectrometry (ICP-MS). A direct measurement of high saline samples like seawater with more than 1% total dissolved salt content is not possible. Alternatives like sample clean up, preconcentration or strong dilution have more disadvantages than advantages for example more preparation steps or additional and expensive components. With a small modification of the ICP-MS sample introduction system and a home-made reprogramming of the autosampler a transient analysing method was developed which is suitable for measuring metal ions like europium and uranium in high saline sample matrices up to 5M (NaCl). Comparisons at low ionic strength between the default and the transient measurement show the latter performs similarly well to the default measurement. Additionally no time consuming sample clean-up or expensive online dilution or matrix removal systems are necessary and the analysation shows a high sensitivity due to the data processing based on the peak area.

  18. Biodiversity patterns of soil ciliates along salinity gradients.

    PubMed

    Zhao, Feng; Xu, Kuidong

    2016-04-01

    We evaluated ciliate diversity in saline soils with a salinity range from 6.5 to 65 psu by the morphological method of the Ludox-quantitative protargol stain (QPS) and the molecular techniques of ciliate-specific clone library and denaturing gradient gel electrophoresis. No active ciliates could be detected with the Ludox-QPS method, while high molecular diversity of ciliates was found. The highest ciliate molecular diversity was obtained from the soil at salinity of 8.9 psu, moderate diversity was found at salinity of 6.5 psu, and the diversity sharply decreased at salinity of 50.5 psu. By contrast, the number of ciliate classes clearly decreased with increasing soil salinity: six, five, four and two classes from sites with salinity of 6.5 psu, 8.9 psu, 29.5 psu and 50.5 psu, respectively. Ciliate diversity pattern is different from that of bacteria, whose diversity is also high in extremely saline environments. Meanwhile, the composition of ciliate community was significantly different along salinity gradient. Colpodea and Oligohymenophorea were diverse in soils at salinity less than 29.5 psu, while absent in soils with salinity above 50.5 psu. BIOENV analysis indicated soil salinity and water content were the main factors regulating the distribution of ciliates in saline soils.

  19. An enriched environment reduces the stress level and locomotor activity induced by acute morphine treatment and by saline after chronic morphine treatment in mice.

    PubMed

    Xu, Jia; Sun, Jinling; Xue, Zhaoxia; Li, Xinwang

    2014-06-18

    This study investigated the relationships among an enriched environment, stress levels, and drug addiction. Mice were divided randomly into four treatment groups (n=12 each): enriched environment without restraint stress (EN), standard environment without restraint stress (SN), enriched environment with restraint stress (ES), and standard environment with restraint stress (SS). Mice were reared in the respective environment for 45 days. Then, the ES and SS groups were subjected to restraint stress daily (2 h/day) for 14 days, whereas the EN and SN groups were not subjected to restraint stress during this stage. The stress levels of all mice were tested in the elevated plus maze immediately after exposure to restraint stress. After the 2-week stress testing period, mice were administered acute or chronic morphine (5 mg/kg) treatment for 7 days. Then, after a 7-day withdrawal period, the mice were injected with saline (1 ml/kg) or morphine (5 mg/kg) daily for 2 days to observe locomotor activity. The results indicated that the enriched environment reduced the stress and locomotor activity induced by acute morphine administration or saline after chronic morphine treatment. However, the enriched environment did not significantly inhibit locomotor activity induced by morphine challenge. In addition, the stress level did not mediate the effect of the enriched environment on drug-induced locomotor activity after acute or chronic morphine treatment.

  20. Bacterial biodiversity from anthropogenic extreme environments: a hyper-alkaline and hyper-saline industrial residue contaminated by chromium and iron.

    PubMed

    Brito, Elcia M S; Piñón-Castillo, Hilda A; Guyoneaud, Rémy; Caretta, César A; Gutiérrez-Corona, J Félix; Duran, Robert; Reyna-López, Georgina E; Nevárez-Moorillón, G Virginia; Fahy, Anne; Goñi-Urriza, Marisol

    2013-01-01

    Anthropogenic extreme environments are among the most interesting sites for the bioprospection of extremophiles since the selection pressures may favor the presence of microorganisms of great interest for taxonomical and astrobiological research as well as for bioremediation technologies and industrial applications. In this work, T-RFLP and 16S rRNA gene library analyses were carried out to describe the autochthonous bacterial populations from an industrial waste characterized as hyper-alkaline (pH between 9 and 14), hyper-saline (around 100 PSU) and highly contaminated with metals, mainly chromium (from 5 to 18 g kg(-1)) and iron (from 2 to 108 g kg(-1)). Due to matrix interference with DNA extraction, a protocol optimization step was required in order to carry out molecular analyses. The most abundant populations, as evaluated by both T-RFLP and 16S rRNA gene library analyses, were affiliated to Bacillus and Lysobacter genera. Lysobacter related sequences were present in the three samples: solid residue and lixiviate sediments from both dry and wet seasons. Sequences related to Thiobacillus were also found; although strains affiliated to this genus are known to have tolerance to metals, they have not previously been detected in alkaline environments. Together with Bacillus (already described as a metal reducer), such organisms could be of use in bioremediation technologies for reducing chromium, as well as for the prospection of enzymes of biotechnological interest.

  1. Stennis Space Center Salinity Drifter Project. A Collaborative Project with Hancock High School, Kiln, MS

    NASA Technical Reports Server (NTRS)

    Kalcic, Maria; Turowski, Mark; Hall, Callie

    2010-01-01

    Presentation topics include: importance of salinity of coastal waters, habitat switching algorithm, habitat switching module, salinity estimates from Landsat for Sabine Calcasieu Basin, percent of time inundated in 2006, salinity data, prototyping the system, system as packaged for field tests, salinity probe and casing, opening for water flow, cellular antenna used to transmit data, preparing to launch, system is launched in the Pearl River at Stennis Space Center, data are transmitted to Twitter by cell phone modem every 15 minutes, Google spreadsheet I used to import the data from the Twitter feed and to compute salinity (from conductivity) and display charts of salinity and temperature, results are uploaded to NASA's Applied Science and Technology Project Office Webpage.

  2. Scientific Visualization in High Speed Network Environments

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi; Kutler, Paul (Technical Monitor)

    1997-01-01

    In several cases, new visualization techniques have vastly increased the researcher's ability to analyze and comprehend data. Similarly, the role of networks in providing an efficient supercomputing environment have become more critical and continue to grow at a faster rate than the increase in the processing capabilities of supercomputers. A close relationship between scientific visualization and high-speed networks in providing an important link to support efficient supercomputing is identified. The two technologies are driven by the increasing complexities and volume of supercomputer data. The interaction of scientific visualization and high-speed networks in a Computational Fluid Dynamics simulation/visualization environment are given. Current capabilities supported by high speed networks, supercomputers, and high-performance graphics workstations at the Numerical Aerodynamic Simulation Facility (NAS) at NASA Ames Research Center are described. Applied research in providing a supercomputer visualization environment to support future computational requirements are summarized.

  3. High-salinity growth conditions promote Tat-independent secretion of Tat substrates in Bacillus subtilis.

    PubMed

    van der Ploeg, René; Monteferrante, Carmine G; Piersma, Sjouke; Barnett, James P; Kouwen, Thijs R H M; Robinson, Colin; van Dijl, Jan Maarten

    2012-11-01

    The Gram-positive bacterium Bacillus subtilis contains two Tat translocases, which can facilitate transport of folded proteins across the plasma membrane. Previous research has shown that Tat-dependent protein secretion in B. subtilis is a highly selective process and that heterologous proteins, such as the green fluorescent protein (GFP), are poor Tat substrates in this organism. Nevertheless, when expressed in Escherichia coli, both B. subtilis Tat translocases facilitated exclusively Tat-dependent export of folded GFP when the twin-arginine (RR) signal peptides of the E. coli AmiA, DmsA, or MdoD proteins were attached. Therefore, the present studies were aimed at determining whether the same RR signal peptide-GFP precursors would also be exported Tat dependently in B. subtilis. In addition, we investigated the secretion of GFP fused to the full-length YwbN protein, a strict Tat substrate in B. subtilis. Several investigated GFP fusion proteins were indeed secreted in B. subtilis, but this secretion was shown to be completely Tat independent. At high-salinity growth conditions, the Tat-independent secretion of GFP as directed by the RR signal peptides from the E. coli AmiA, DmsA, or MdoD proteins was significantly enhanced, and this effect was strongest in strains lacking the TatAy-TatCy translocase. This implies that high environmental salinity has a negative influence on the avoidance of Tat-independent secretion of AmiA-GFP, DmsA-GFP, and MdoD-GFP. We conclude that as-yet-unidentified control mechanisms reject the investigated GFP fusion proteins for translocation by the B. subtilis Tat machinery and, at the same time, set limits to their Tat-independent secretion, presumably via the Sec pathway.

  4. High School Students' Metaphorical Perceptions of Environment

    ERIC Educational Resources Information Center

    Çimen, Osman

    2014-01-01

    This study examines high school students' metaphorical perceptions in relation to the concept of environment. The study employs the phenomenological research design. The participants were 112 students studying at two different high schools in Ankara. As the data gathering tool, a survey form developed by the researcher was used in the study. The…

  5. High School Students' Metaphorical Perceptions of Environment

    ERIC Educational Resources Information Center

    Çimen, Osman

    2014-01-01

    This study examines high school students' metaphorical perceptions in relation to the concept of environment. The study employs the phenomenological research design. The participants were 112 students studying at two different high schools in Ankara. As the data gathering tool, a survey form developed by the researcher was used in the study. The…

  6. A rice jacalin-related mannose-binding lectin gene, OsJRL, enhances Escherichia coli viability under high salinity stress and improves salinity tolerance of rice.

    PubMed

    He, X; Li, L; Xu, H; Xi, J; Cao, X; Xu, H; Rong, S; Dong, Y; Wang, C; Chen, R; Xu, J; Gao, X; Xu, Z

    2017-03-01

    Salinity, which is one of the most common abiotic stresses, may severely affect plant productivity and quality. Although plant lectins are thought to play important roles in plant defense signaling during pathogen attack, little is known about the contribution of plant lectins to stress resistance. We cloned and functionally characterized a rice jacalin-related mannose-binding lectin gene, OsJRL, from rice 'Nipponbare'. We analyzed the expression patterns of OsJRL under various stress conditions in rice. Furthermore, we overexpressed OsJRL in Escherichia coli and rice. The cDNA of OsJRL contained a 438 bp open reading frame, which encodes a polypeptide of 145 amino acids. OsJRL was localized in the nucleus and cytoplasm. Real time PCR analyses revealed that OsJRL expression showed tissue specificity in rice and was upregulated under diverse stresses, namely salt, drought, cold, heat and abscisic acid treatments. Overexpression of OsJRL in E. coli enhanced cell viability and dramatically improved tolerance of high salinity. Overexpression of OsJRL in rice also enhanced salinity tolerance and increased the expression levels of a number of stress-related genes, including three LEA (late embryogenesis abundant proteins) genes (OsLEA19a, OsLEA23 and OsLEA24), three Na(+) transporter genes (OsHKT1;3, OsHKT1;4 and OsHKT1;5) and two DREB genes (OsDREB1A and OsDREB2B). Based on these results, we suggest that OsJRL plays an important role in cell protection and stress signal transduction.

  7. Comparison of SMOS measurements of sea surface salinity during SPURS using a high-resolution, vertical profiler

    NASA Astrophysics Data System (ADS)

    Walesby, Kieran; Sutherland, Graigory; Ten Doeschate, Anneke; Reverdin, Gilles; Font, Jordi; Ward, Brian

    2014-05-01

    The European Space Agency's Soil Moisture and Ocean Salinity (SMOS) satellite was launched in 2009 and, for the first time, provides measurements of sea surface salinity on a global scale. Ocean salinity is a key parameter for climate change, being closely associated with the global hydrological cycle and an important driver in determining overall ocean circulation. This makes the advent of satellite measurements of salinity a significant advance. During the Salinity Processes in the Upper Ocean Regional Study (SPURS) field experiments, in September 2012 and March 2013, a variety of in-situ platforms were deployed with the purpose of validating the salinity observations from SMOS. One of these platforms was the Air-Sea Interaction Profiler, a microstructure profiler which provides high-resolution profiles of salinity, temperature and turbulence right up to the surface. This last capability is crucial. Most oceanic microstructure profilers operate when travelling downwards, and are therefore unable to accurately observe the layer of the ocean immediately below the surface. It is this top layer, approximately 1 cm in thickness, which satellites observe. In contrast, ASIP is upwardly-rising, allowing it to sample the same part of the water column as satellites, such as SMOS. This is important since large thermal and haline stratifications can develop close to the surface, particularly under conditions of strong evaporation. Although sea surface salinity in the open ocean is largely determined by the balance between evaporation and precipitation, the effects of various vertical mixing processes also contribute. ASIP is extremely well-suited to understanding the impact of these on differences between ASIP and SMOS, and some results are also presented here which demonstrate the important effect of such processes.

  8. Effects of low and high salinity regimes on seasonal gametogenesis of the ribbed mussel Geukensia granosissima in coastal Louisiana, USA

    USGS Publications Warehouse

    Honig, Aaron; LaPeyre, Megan K.; Supan, John

    2014-01-01

    Benthic intertidal bivalves play an essential role in estuarine ecosystems by contributing to habitat provision, water filtration, and host vegetation productivity. As such, ecosystem level changes that impact population distributions and persistence of local bivalve populations may have large ecosystem level consequences, making it important to better understand the population ecology of native bivalves. In order to determine potential impacts of shifting salinity and temperature regimes along the northern Gulf of Mexico, the seasonal timing of gametogenesis in the Gulf estuarine ribbed mussel, Geukensia granossisima, was examined across a salinity gradient in southeastern Louisiana, from July 2011 through October 2012. Ten mussels were randomly sampled monthly from low (~ 5) and high (~25) salinity marsh sites in southeastern Louisiana, and histologically processed to determine the seasonal progression of gametogenesis. Peak ripeness occurred at both sites between April and September, was positively correlated with temperature, and coincided with seasonal shifts in salinity. Mussels located in lower salinity waters demonstrated a shorter period of gametogenesis, and lower rates of ripeness indicating that changes in salinity regimes may impact long-term population dynamics.

  9. Control of Sulfide Production in High Salinity Bakken Shale Oil Reservoirs by Halophilic Bacteria Reducing Nitrate to Nitrite.

    PubMed

    An, Biwen A; Shen, Yin; Voordouw, Gerrit

    2017-01-01

    Microbial communities in shale oil fields are still poorly known. We obtained samples of injection, produced and facility waters from a Bakken shale oil field in Saskatchewan, Canada with a resident temperature of 60°C. The injection water had a lower salinity (0.7 Meq of NaCl) than produced or facility waters (0.6-3.6 Meq of NaCl). Salinities of the latter decreased with time, likely due to injection of low salinity water, which had 15-30 mM sulfate. Batch cultures of field samples showed sulfate-reducing and nitrate-reducing bacteria activities at different salinities (0, 0.5, 0.75, 1.0, 1.5, and 2.5 M NaCl). Notably, at high salinity nitrite accumulated, which was not observed at low salinity, indicating potential for nitrate-mediated souring control at high salinity. Continuous culture chemostats were established in media with volatile fatty acids (a mixture of acetate, propionate and butyrate) or lactate as electron donor and nitrate or sulfate as electron acceptor at 0.5 to 2.5 M NaCl. Microbial community analyses of these cultures indicated high proportions of Halanaerobium, Desulfovermiculus, Halomonas, and Marinobacter in cultures at 2.5 M NaCl, whereas Desulfovibrio, Geoalkalibacter, and Dethiosulfatibacter were dominant at 0.5 M NaCl. Use of bioreactors to study the effect of nitrate injection on sulfate reduction showed that accumulation of nitrite inhibited SRB activity at 2.5 M but not at 0.5 M NaCl. High proportions of Halanaerobium and Desulfovermiculus were found at 2.5 M NaCl in the absence of nitrate, whereas high proportions of Halomonas and no SRB were found in the presence of nitrate. A diverse microbial community dominated by the SRB Desulfovibrio was observed at 0.5 M NaCl both in the presence and absence of nitrate. Our results suggest that nitrate injection can prevent souring provided that the salinity is maintained at a high level. Thus, reinjection of high salinity produced water amended with nitrate maybe be a cost effective method

  10. Control of Sulfide Production in High Salinity Bakken Shale Oil Reservoirs by Halophilic Bacteria Reducing Nitrate to Nitrite

    PubMed Central

    An, Biwen A.; Shen, Yin; Voordouw, Gerrit

    2017-01-01

    Microbial communities in shale oil fields are still poorly known. We obtained samples of injection, produced and facility waters from a Bakken shale oil field in Saskatchewan, Canada with a resident temperature of 60°C. The injection water had a lower salinity (0.7 Meq of NaCl) than produced or facility waters (0.6–3.6 Meq of NaCl). Salinities of the latter decreased with time, likely due to injection of low salinity water, which had 15–30 mM sulfate. Batch cultures of field samples showed sulfate-reducing and nitrate-reducing bacteria activities at different salinities (0, 0.5, 0.75, 1.0, 1.5, and 2.5 M NaCl). Notably, at high salinity nitrite accumulated, which was not observed at low salinity, indicating potential for nitrate-mediated souring control at high salinity. Continuous culture chemostats were established in media with volatile fatty acids (a mixture of acetate, propionate and butyrate) or lactate as electron donor and nitrate or sulfate as electron acceptor at 0.5 to 2.5 M NaCl. Microbial community analyses of these cultures indicated high proportions of Halanaerobium, Desulfovermiculus, Halomonas, and Marinobacter in cultures at 2.5 M NaCl, whereas Desulfovibrio, Geoalkalibacter, and Dethiosulfatibacter were dominant at 0.5 M NaCl. Use of bioreactors to study the effect of nitrate injection on sulfate reduction showed that accumulation of nitrite inhibited SRB activity at 2.5 M but not at 0.5 M NaCl. High proportions of Halanaerobium and Desulfovermiculus were found at 2.5 M NaCl in the absence of nitrate, whereas high proportions of Halomonas and no SRB were found in the presence of nitrate. A diverse microbial community dominated by the SRB Desulfovibrio was observed at 0.5 M NaCl both in the presence and absence of nitrate. Our results suggest that nitrate injection can prevent souring provided that the salinity is maintained at a high level. Thus, reinjection of high salinity produced water amended with nitrate maybe be a cost effective

  11. Nutritional Status as the Key Modulator of Antioxidant Responses Induced by High Environmental Ammonia and Salinity Stress in European Sea Bass (Dicentrarchus labrax)

    PubMed Central

    Zinta, Gaurav; Dasan, Antony Franklin; Rasoloniriana, Rindra; Asard, Han; Blust, Ronny; De Boeck, Gudrun

    2015-01-01

    glutathione reductase), ascorbate peroxidase (APX) activity and reduced ascorbate (ASC) content. On the contrary, fasted fish could not activate many of these protective systems and rely mainly on CAT and ASC dependent pathways as antioxidative sentinels. The present findings exemplify that in fed fish single factors and a combination of HEA exposure and reduced seawater salinities (upto 10 ppt) were insufficient to cause oxidative damage due to the highly competent antioxidant system compared to fasted fish. However, the impact of HEA exposure at a hypo-saline environment (2.5 ppt) also defied antioxidant defence system in fed fish, suggesting this combined factor is beyond the tolerance range for both feeding groups. Overall, our results indicate that the oxidative stress mediated by the experimental conditions were exacerbated during starvation, and also suggest that feed deprivation particularly at reduced seawater salinities can instigate fish more susceptible to ammonia toxicity. PMID:26241315

  12. Nutritional Status as the Key Modulator of Antioxidant Responses Induced by High Environmental Ammonia and Salinity Stress in European Sea Bass (Dicentrarchus labrax).

    PubMed

    Sinha, Amit Kumar; AbdElgawad, Hamada; Zinta, Gaurav; Dasan, Antony Franklin; Rasoloniriana, Rindra; Asard, Han; Blust, Ronny; De Boeck, Gudrun

    2015-01-01

    glutathione reductase), ascorbate peroxidase (APX) activity and reduced ascorbate (ASC) content. On the contrary, fasted fish could not activate many of these protective systems and rely mainly on CAT and ASC dependent pathways as antioxidative sentinels. The present findings exemplify that in fed fish single factors and a combination of HEA exposure and reduced seawater salinities (upto 10 ppt) were insufficient to cause oxidative damage due to the highly competent antioxidant system compared to fasted fish. However, the impact of HEA exposure at a hypo-saline environment (2.5 ppt) also defied antioxidant defence system in fed fish, suggesting this combined factor is beyond the tolerance range for both feeding groups. Overall, our results indicate that the oxidative stress mediated by the experimental conditions were exacerbated during starvation, and also suggest that feed deprivation particularly at reduced seawater salinities can instigate fish more susceptible to ammonia toxicity.

  13. Overexpression of Cotton RAV1 Gene in Arabidopsis Confers Transgenic Plants High Salinity and Drought Sensitivity

    PubMed Central

    Li, Xiao-Jie; Li, Mo; Zhou, Ying; Hu, Shan; Hu, Rong; Chen, Yun; Li, Xue-Bao

    2015-01-01

    RAV (related to ABI3/VP1) protein containing an AP2 domain in the N-terminal region and a B3 domain in the C-terminal region, which belongs to AP2 transcription factor family, is unique in higher plants. In this study, a gene (GhRAV1) encoding a RAV protein of 357 amino acids was identified in cotton (Gossypium hirsutum). Transient expression analysis of the eGFP:GhRAV1 fusion genes in tobacco (Nicotiana tabacum) epidermal cells revealed that GhRAV1 protein was localized in the cell nucleus. Quantitative RT-PCR analysis indicated that expression of GhRAV1 in cotton is induced by abscisic acid (ABA), NaCl and polyethylene glycol (PEG). Overexpression of GhRAV1 in Arabidopsis resulted in plant sensitive to ABA, NaCl and PEG. With abscisic acid (ABA) treatment, seed germination and green seedling rates of the GhRAV1 transgenic plants were remarkably lower than those of wild type. In the presence of NaCl, the seed germination and seedling growth of the GhRAV1 transgenic lines were inhibited greater than those of wild type. And chlorophyll content and maximum photochemical efficiency of the transgenic plants were significantly lower than those of wild type. Under drought stress, the GhRAV1 transgenic plants displayed more severe wilting than wild type. Furthermore, expressions of the stress-related genes were altered in the GhRAV1 transgenic Arabidopsis plants under high salinity and drought stresses. Collectively, our data suggested that GhRAV1 may be involved in response to high salinity and drought stresses through regulating expressions of the stress-related genes during cotton development. PMID:25710493

  14. Use of salinity mixing models to estimate the contribution of creek water fecal indicator bacteria to an estuarine environment: Newport Bay, California.

    PubMed

    McLaughlin, Karen; Ahn, Jong Ho; Litton, Rachel M; Grant, Stanley B

    2007-08-01

    The contribution of freshwater discharge to fecal indicator bacteria (FIB) impairment of an estuarine environment can be approximated from simple, two end-member mixing models using salinity as a tracer. We conducted a yearlong time series investigation of Newport Bay, a regionally important estuarine embayment in southern California, assessing the concentrations of FIB, specifically Escherichia coli and enterococci bacteria, and salinity. In total, eight within-bay stations and one offshore control site were sampled nearly once per week and the three tributaries draining into Newport Bay were sampled approximately daily. Using salinity as a conservative tracer for water mass mixing and determining the end-member values of FIB in both the creek sites and the offshore site, we created a linear, two end-member mixing model of FIB within Newport Bay. Deviations from the mixing model suggest either an additional source of FIB to the bay (e.g. bird feces, storm drain discharge) or regrowth and/or die-off of FIB within the bay. Our results indicate that salinity mixing models can be useful in predicting changes in FIB concentrations in the estuarine environments and can help narrow the search for sources of FIB to the bay and enhance our understanding of the fate of FIB within the bay.

  15. The geomorphology of two hyper-saline springs in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Ward, Melissa; Pollard, Wayne

    2015-04-01

    On Axel Heiberg Island in the Canadian High Arctic, many low temperature perennial saline springs occur despite cold polar desert climate conditions marked by a mean annual air temperature of -18°C. Associated with 2 groups of hyper-saline springs are distinctive landforms resulting from winter deposition of salt minerals. These deposits resemble tufas structurally, but unlike true tufas which are composed of carbonate minerals, these landforms are formed mainly of salt. This study hypothesizes that the extreme cold winter air temperatures cool water temperatures triggering rapid precipitation of various salt minerals [mainly hydrohalite (NaCl*2H2O)]. These newly formed salt minerals subsequently alter the flow hydrology by obstructing summer flow paths. The tufa-like appearance of these salt deposits reflects the interaction between changing water temperature, chemistry and flow.This research characterises the geomorphology and geochemistry of two hyper-saline springs on Axel Heiberg Island: the first is located at Wolf Diapir (79°07'23"N; 90°14'39"W), the deposit at this site resembles a large conical mound (2.5m tall x 3m diameter). The second is located at Stolz Diapir (79°04'30"N; 87°04'30"W). In this case a series of pool and barrage structures staircase down a narrow valley for approximately 300m (several pools are up to 10 m wide x 3 m deep). The springs have very different seasonal surface hydrologic regimes and topographic settings which influence the pattern of mineral precipitates. The accumulation of precipitates occurs during the winter and is dominated by the formation of hydrohalite. In the summer, the accumulated hydrohalite melts incongruently to form halite. In addition, spring water and snowmelt dissolve various parts of the accumulations, changing the morphology of the deposits. This presentation will focus on results from four periods of fieldwork (two in spring for winter conditions and two in summer) including results from time

  16. High-resolution model for estimating the economic and policy implications of agricultural soil salinization in California

    NASA Astrophysics Data System (ADS)

    Welle, Paul D.; Mauter, Meagan S.

    2017-09-01

    This work introduces a generalizable approach for estimating the field-scale agricultural yield losses due to soil salinization. When integrated with regional data on crop yields and prices, this model provides high-resolution estimates for revenue losses over large agricultural regions. These methods account for the uncertainty inherent in model inputs derived from satellites, experimental field data, and interpreted model results. We apply this method to estimate the effect of soil salinity on agricultural outputs in California, performing the analysis with both high-resolution (i.e. field scale) and low-resolution (i.e. county-scale) data sources to highlight the importance of spatial resolution in agricultural analysis. We estimate that soil salinity reduced agricultural revenues by 3.7 billion (1.7–7.0 billion) in 2014, amounting to 8.0 million tons of lost production relative to soil salinities below the crop-specific thresholds. When using low-resolution data sources, we find that the costs of salinization are underestimated by a factor of three. These results highlight the need for high-resolution data in agro-environmental assessment as well as the challenges associated with their integration.

  17. High Temperature and Salinity Enhance Soil Nitrogen Mineralization in a Tidal Freshwater Marsh

    PubMed Central

    Gao, Haifeng; Bai, Junhong; He, Xinhua; Zhao, Qingqing; Lu, Qiongqiong; Wang, Junjing

    2014-01-01

    Soil nitrogen (N) mineralization in wetlands is sensitive to various environmental factors. To compare the effects of salinity and temperature on N mineralization, wetland soils from a tidal freshwater marsh locating in the Yellow River Delta was incubated over a 48-d anaerobic incubation period under four salinity concentrations (0, 10, 20 and 35‰) and four temperature levels (10, 20, 30 and 40°C). The results suggested that accumulated ammonium nitrogen (NH4+-N) increased with increasing incubation time under all salinity concentrations. Higher temperatures and salinities significantly enhanced soil N mineralization except for a short-term (≈10 days) inhibiting effect found under 35‰ salinity. The incubation time, temperature, salinity and their interactions exhibited significant effects on N mineralization (P<0.001) except the interactive effect of salinity and temperature (P>0.05), while temperature exhibited the greatest effect (P<0.001). Meanwhile, N mineralization processes were simulated using both an effective accumulated temperature model and a one-pool model. Both models fit well with the simulation of soil N mineralization process in the coastal freshwater wetlands under a range of 30 to 40°C (R2 = 0.88–0.99, P<0.01). Our results indicated that an enhanced NH4+-N release with increasing temperature and salinity deriving from the projected global warming could have profound effects on nutrient cycling in coastal wetland ecosystems. PMID:24733366

  18. High temperature and salinity enhance soil nitrogen mineralization in a tidal freshwater marsh.

    PubMed

    Gao, Haifeng; Bai, Junhong; He, Xinhua; Zhao, Qingqing; Lu, Qiongqiong; Wang, Junjing

    2014-01-01

    Soil nitrogen (N) mineralization in wetlands is sensitive to various environmental factors. To compare the effects of salinity and temperature on N mineralization, wetland soils from a tidal freshwater marsh locating in the Yellow River Delta was incubated over a 48-d anaerobic incubation period under four salinity concentrations (0, 10, 20 and 35‰) and four temperature levels (10, 20, 30 and 40°C). The results suggested that accumulated ammonium nitrogen (NH4+-N) increased with increasing incubation time under all salinity concentrations. Higher temperatures and salinities significantly enhanced soil N mineralization except for a short-term (≈10 days) inhibiting effect found under 35‰ salinity. The incubation time, temperature, salinity and their interactions exhibited significant effects on N mineralization (P<0.001) except the interactive effect of salinity and temperature (P>0.05), while temperature exhibited the greatest effect (P<0.001). Meanwhile, N mineralization processes were simulated using both an effective accumulated temperature model and a one-pool model. Both models fit well with the simulation of soil N mineralization process in the coastal freshwater wetlands under a range of 30 to 40°C (R2 = 0.88-0.99, P<0.01). Our results indicated that an enhanced NH4+-N release with increasing temperature and salinity deriving from the projected global warming could have profound effects on nutrient cycling in coastal wetland ecosystems.

  19. Isolation of high salinity stress tolerant genes from Pisum sativum by random overexpression in Escherichia coli and their functional validation.

    PubMed

    Joshi, Amita; Dang, Hung Quang; Vaid, Neha; Tuteja, Narendra

    2009-05-01

    Salinity stress is one of the major factors which reduce crop plants growth and productivity resulting in significant economic losses worldwide. Therefore, it would be fruitful to isolate and functionally identify new salinity stress-induced genes for understanding the mechanism and developing salinity stress tolerant plants. Based on functional gene screening assay, we have isolated few salinity tolerant genes out of one million Escherichia coli (SOLR) transformants containing pea cDNAs. Sequence analysis of three of these genes revealed homology to Ribosomal-L30E (RPL30E), Chlorophyll-a/b-binding protein (Chla/bBP) and FIDDLEHEAD (FDH). The salinity tolerance of these genes in bacteria was further confirmed by using another strain of E. coli (DH5alpha) transformants. The homology based computational modeling of these proteins suggested the high degree of conservation with the conserved domains of their homologous partners. The reverse transcriptase polymerase chain reaction (RT-PCR) analysis showed that the expression of these cDNAs (except the FDH) was upregulated in pea plants in response to NaCl stress. We observed that there was no significant effect of Li(+) ion on the expression level of these genes, while an increase in response to K(+) ion was observed. Overall, this study provides an evidence for a novel function of these genes in high salinity stress tolerance. The PsFDH showed constitutive expression in planta suggesting that it can be used as constitutively expressed marker gene for salinity stress tolerance in plants. This study brings new direction in identifying novel function of unidentified genes in abiotic stress tolerance without previous knowledge of the genome sequence.

  20. Enhancement of acid phosphatase secretion and Pi acquisition in Suaeda fruticosa on calcareous soil by high saline level.

    PubMed

    Labidi, Nehla; Snoussi, Sana; Ammari, Manel; Metoui, Wissal; Ben Yousfi, N; Hamrouni, Lamia; Abdelly, C

    2010-12-01

    The aim of this study was to identify the relationship between the adaptive processes of Suaeda fruticosa for Pi acquisition and the physic-chemical and biological characteristics of two soil types under moderate and high saline conditions. Four treatments were established in pots: namely SS100, SS600, CS100 and CS600 where SS stood for sandy soil and CS for calcareous soil, and the indexes 100 and 600 were NaCl concentrations (mM) in irrigation distilled water. Assuming that Pi per g of plant biomass is an indicator of plant efficiency for P acquisition, the results showed that Pi acquisition was easiest on SS100 and was difficult on CS100. The differences in Pi acquisition between plants on SS100 and CS100 could be attributed to the low root surface area (-30%) and to the low alkaline phosphatases (Pases) activities (-50%) in calcareous rhizospheric soil. The high salinity level had no effect on the efficiency of P acquisition on SS but increased this parameter on CS (+50%). In the latter soil type, high acid phosphatase activities were observed in rhizospheric soil at high salinity level. Acid phosphatase seemed to be secreted from the roots. The higher secretion of acid phosphatase in this soil was related to the root lipid peroxidation in response to elevated salinity associated with the augmentation of unsaturated acids which might induce an oxidative damage of the root membrane. Thus we can conclude that in deficient soil such as calcareous, the efficiency of P acquisition in S. fruticosa which was difficult at moderate salinity level can be enhanced by high salinity level.

  1. Effects of salinity build-up on biomass characteristics and trace organic chemical removal: implications on the development of high retention membrane bioreactors.

    PubMed

    Luo, Wenhai; Hai, Faisal I; Kang, Jinguo; Price, William E; Guo, Wenshan; Ngo, Hao H; Yamamoto, Kazuo; Nghiem, Long D

    2015-02-01

    This study investigated the impact of salinity build-up on the performance of membrane bioreactor (MBR), specifically in terms of the removal and fate of trace organic chemicals (TrOCs), nutrient removal, and biomass characteristics. Stepwise increase of the influent salinity, simulating salinity build-up in high retention MBRs, adversely affected the metabolic activity in the bioreactor, thereby reducing organic and nutrient removal. The removal of hydrophilic TrOCs by MBR decreased due to salinity build-up. By contrast, with the exception of 17α-ethynylestradiol, the removal of all hydrophobic TrOCs was not affected at high salinity. Moreover, salinity build-up had negligible impact on the residual accumulation of TrOCs in the sludge phase except for a few hydrophilic compounds. Additionally, the response of the biomass to salinity stress also dramatically enhanced the release of both soluble microbial products (SMP) and extracellular polymeric substances (EPS), leading to severe membrane fouling.

  2. Characteristics of extracellular polymeric substances from sludge and biofilm in a simultaneous nitrification and denitrification system under high salinity stress.

    PubMed

    Zhao, Linting; She, Zonglian; Jin, Chunji; Yang, Shiying; Guo, Liang; Zhao, Yangguo; Gao, Mengchun

    2016-09-01

    The composition and distribution of extracellular polymeric substance (EPS) both from suspended sludge and attached biofilm were investigated in a simultaneous nitrification and denitrification (SND) system with the increase of the salinity from 1.0 to 3.0 %. Fourier-transform infrared (FTIR) spectroscopy and three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy were used to examine proteins (PN), polysaccharides (PS) and humic substances (HS) present in EPS. High total nitrogen removal (above 83.9 %) via SND was obtained in the salinity range of 1.0-2.5 %. Total EPS in the sludge increased from 150.2 to 200.6 mg/gVSS with the increase of salinity from 1.0 to 3.0 %, whereas the corresponding values in the biofilm achieved the maximum of 288.6 mg/g VSS at 2.0 % salinity. Dominant composition of EPS was detected as HS in both sludge and biofilm, having the percentages of 50.6-68.6 and 41.1-69.9 % in total EPS, respectively. Both PN and PS contents in soluble EPS (S-EPS), loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) of sludge and biofilm increased with the increased salinity. The FTIR spectrum and 3D-EEM fluorescence spectroscopy of S-EPS, LB-EPS and TB-EPS in the sludge and biofilm showed the changes of functional groups and conformations of the compositions in EPS with the increase of salinity. The results demonstrated that the characteristics of EPS varied from sludge to biofilm. The obtained results could provide a better understanding of the salinity effect on the EPS characteristics in a SND system.

  3. Salinity Adaptation and the Contribution of Parental Environmental Effects in Medicago truncatula

    PubMed Central

    Moriuchi, Ken S.; Friesen, Maren L.; Cordeiro, Matilde A.; Badri, Mounawer; Vu, Wendy T.; Main, Bradley J.; Aouani, Mohamed Elarbi; Nuzhdin, Sergey V.; Strauss, Sharon Y.; von Wettberg, Eric J. B.

    2016-01-01

    High soil salinity negatively influences plant growth and yield. Some taxa have evolved mechanisms for avoiding or tolerating elevated soil salinity, which can be modulated by the environment experienced by parents or offspring. We tested the contribution of the parental and offspring environments on salinity adaptation and their potential underlying mechanisms. In a two-generation greenhouse experiment, we factorially manipulated salinity concentrations for genotypes of Medicago truncatula that were originally collected from natural populations that differed in soil salinity. To compare population level adaptation to soil salinity and to test the potential mechanisms involved we measured two aspects of plant performance, reproduction and vegetative biomass, and phenological and physiological traits associated with salinity avoidance and tolerance. Saline-origin populations had greater biomass and reproduction under saline conditions than non-saline populations, consistent with local adaptation to saline soils. Additionally, parental environmental exposure to salt increased this difference in performance. In terms of environmental effects on mechanisms of salinity adaptation, parental exposure to salt spurred phenological differences that facilitated salt avoidance, while offspring exposure to salt resulted in traits associated with greater salt tolerance. Non-saline origin populations expressed traits associated with greater growth in the absence of salt while, for saline adapted populations, the ability to maintain greater performance in saline environments was also associated with lower growth potential in the absence of salt. Plastic responses induced by parental and offspring environments in phenology, leaf traits, and gas exchange contribute to salinity adaptation in M. truncatula. The ability of plants to tolerate environmental stress, such as high soil salinity, is likely modulated by a combination of parental effects and within-generation phenotypic

  4. Salinity Adaptation and the Contribution of Parental Environmental Effects in Medicago truncatula.

    PubMed

    Moriuchi, Ken S; Friesen, Maren L; Cordeiro, Matilde A; Badri, Mounawer; Vu, Wendy T; Main, Bradley J; Aouani, Mohamed Elarbi; Nuzhdin, Sergey V; Strauss, Sharon Y; von Wettberg, Eric J B

    2016-01-01

    High soil salinity negatively influences plant growth and yield. Some taxa have evolved mechanisms for avoiding or tolerating elevated soil salinity, which can be modulated by the environment experienced by parents or offspring. We tested the contribution of the parental and offspring environments on salinity adaptation and their potential underlying mechanisms. In a two-generation greenhouse experiment, we factorially manipulated salinity concentrations for genotypes of Medicago truncatula that were originally collected from natural populations that differed in soil salinity. To compare population level adaptation to soil salinity and to test the potential mechanisms involved we measured two aspects of plant performance, reproduction and vegetative biomass, and phenological and physiological traits associated with salinity avoidance and tolerance. Saline-origin populations had greater biomass and reproduction under saline conditions than non-saline populations, consistent with local adaptation to saline soils. Additionally, parental environmental exposure to salt increased this difference in performance. In terms of environmental effects on mechanisms of salinity adaptation, parental exposure to salt spurred phenological differences that facilitated salt avoidance, while offspring exposure to salt resulted in traits associated with greater salt tolerance. Non-saline origin populations expressed traits associated with greater growth in the absence of salt while, for saline adapted populations, the ability to maintain greater performance in saline environments was also associated with lower growth potential in the absence of salt. Plastic responses induced by parental and offspring environments in phenology, leaf traits, and gas exchange contribute to salinity adaptation in M. truncatula. The ability of plants to tolerate environmental stress, such as high soil salinity, is likely modulated by a combination of parental effects and within-generation phenotypic

  5. Dynamic secretion changes in the salt glands of the mangrove tree species Avicennia officinalis in response to a changing saline environment.

    PubMed

    Tan, Wee-Kee; Lin, Qingsong; Lim, Tit-Meng; Kumar, Prakash; Loh, Chiang-Shiong

    2013-08-01

    The specialized salt glands on the epidermis of halophytic plants secrete excess salts from tissues by a mechanism that is poorly understood. We examined the salt glands as putative salt and water bi-regulatory units that can respond swiftly to altering environmental cues. The tropical mangrove tree species (Avicennia officinalis) is able to grow under fluctuating salinities (0.7-50.0 dS m(-1)) at intertidal zones, and its salt glands offer an excellent platform to investigate their dynamic responses under rapidly changing salinities. Utilizing a novel epidermal peel system, secretion profiles of hundreds of individual salt glands examined revealed that these glands could secrete when exposed to varying salinities. Notably, rhythmic fluctuations observed in secretion rates were reversibly inhibited by water channel (aquaporin) blocker, and two aquaporin genes (PIP and TIP) preferentially expressed in the salt gland cells were rapidly induced in response to increasing salt concentration. We propose that aquaporins are involved and contribute to the re-absorption of water during salt removal in Avicennia officinalis salt glands. This constitutes an adaptive feature that contributes to salt balance of trees growing in saline environments where freshwater availability is limited. © 2013 John Wiley & Sons Ltd.

  6. Development of a point-electrode conductivity salinometer with high spatial resolution for use in very saline solutions

    SciTech Connect

    Grimmer, D.P.; Jones, G.F.; Tafoya, J.; Fitzgerald, T.J.

    1983-03-01

    A conductivity probe and circuit were developed to measure salinities in sodium chloride salt-gradient solar ponds. A point-electrode salinometer design was chosen to give a spatial resolution of approximately 1 mm (0.039 in.). (Such high spatial resolution was necessary to study the behavior of thermohaline columns in the vicinity of convective/conductive zone interfaces.) The point-electrode conductivity instrument was designed for use in up to 25 wt % salinities with immersion times of about 0.1 year or longer. Drift in the instrument, caused principally by changes in the surface condition of the platinum probe tip and reflected by changes in the probe cell constant, required periodic in situ calibration against the measured specific gravity of withdrawn fluid samples. Other methods of salinity/density measurement are discussed.

  7. Effects of high salinity wastewater discharges on unionid mussels in the Allegheny River, Pennsylvania

    USGS Publications Warehouse

    Kathleen Patnode,; Hittle, Elizabeth A.; Robert Anderson,; Lora Zimmerman,; Fulton, John W.

    2015-01-01

    We examined the effect of high salinity wastewater (brine) from oil and natural gas drilling on freshwater mussels in the Allegheny River, Pennsylvania, during 2012. Mussel cages (N = 5 per site) were deployed at two sites upstream and four sites downstream of a brine treatment facility on the Allegheny River. Each cage contained 20 juvenile northern riffleshell mussels Epioblasma torulosa rangiana). Continuous specific conductance and temperature data were recorded by water quality probes deployed at each site. To measure the amount of mixing throughout the entire study area, specific conductance surveys were completed two times during low-flow conditions along transects from bank to bank that targeted upstream (reference) reaches, a municipal wastewater treatment plant discharge upstream of the brine-facility discharge, the brine facility, and downstream reaches. Specific conductance data indicated that high specific conductance water from the brine facility (4,000–12,000 µS/cm; mean 7,846) compared to the reference reach (103–188 µS/cm; mean 151) is carried along the left descending bank of the river and that dilution of the discharge via mixing does not occur until 0.5 mi (805 m) downstream. Juvenile northern riffleshell mussel survival was severely impaired within the high specific conductance zone (2 and 34% at and downstream of the brine facility, respectively) and at the municipal wastewater treatment plant (21%) compared to background (84%). We surveyed native mussels (family Unionidae) at 10 transects: 3 upstream, 3 within, and 4 downstream of the high specific conductance zone. Unionid mussel abundance and diversity were lower for all transects within and downstream of the high conductivity zone compared to upstream. The results of this study clearly demonstrate in situ toxicity to juvenile northern riffleshell mussels, a federally endangered species, and to the native unionid mussel assemblage located downstream of a brine discharge to the

  8. Removing organic and nitrogen content from a highly saline municipal wastewater reverse osmosis concentrate by UV/H2O2-BAC treatment.

    PubMed

    Pradhan, Shovana; Fan, Linhua; Roddick, Felicity A

    2015-10-01

    Reverse osmosis (RO) concentrate (ROC) streams generated from RO-based municipal wastewater reclamation processes pose potential health and environmental risks on their disposal to confined water bodies such as bays. A UV/H2O2 advanced oxidation process followed by a biological activated carbon (BAC) treatment was evaluated at lab-scale for the removal of organic and nutrient content from a highly saline ROC (TDS 16 g L(-1), EC 23.5 mS cm(-1)) for its safe disposal to the receiving environment. Over the 230-day operation of the UV/H2O2-BAC process, the colour and UV absorbance (254 nm) of the ROC were reduced to well below those of the influent to the reclamation process. The concentrations of DOC and total nitrogen (TN) were reduced by approximately 60% at an empty bed contact time (EBCT) of 60 min. The reduction in ammonia nitrogen by the BAC remained high under all conditions tested (>90%). Further investigation confirmed that the presence of residual peroxide in the UV/H2O2 treated ROC was beneficial for DOC removal, but markedly inhibited the activities of the nitrifying bacteria (i.e., nitrite oxidising bacteria) in the BAC system and hence compromised total nitrogen removal. This work demonstrated that the BAC treatment could be acclimated to the very high salinity environment, and could be used as a robust method for the removal of organic matter and nitrogen from the pre-oxidised ROC under optimised conditions.

  9. Escherichia coli O157:H7 bacteriophage (phi)241 isolated from an industrial cucumber fermentation at high acidity and salinity

    USDA-ARS?s Scientific Manuscript database

    A novel phage, (phi)241, specific for Escherichia coli O157:H7 was isolated from an industrial cucumber fermentation where both acidity (pH less than or equal to 3.7) and salinity (greater than or equal to 5% NaCl) were high. The phage belongs to the Myoviridae family. Its latent period was 15 min a...

  10. High-Frequency Broadband Acoustic Scattering from Temperature and Salinity Microstructure: From Non-Linear Internal Waves to Estuarine Plumes

    DTIC Science & Technology

    2006-09-30

    salinity gradients while in profiling mode. Pitch , roll , and heading are also measured. The system has been calibrated in a sea-water tank and in...ISW were continuously sampled by means of an ADCP and a traditional 120 kHz hull-mounted echosounder. The high spatial resolution obtained with the

  11. The improved resistance to high salinity induced by trehalose is associated with ionic regulation and osmotic adjustment in Catharanthus roseus.

    PubMed

    Chang, Bowen; Yang, Lei; Cong, Weiwei; Zu, Yuangang; Tang, Zhonghua

    2014-04-01

    The effects of exogenous trehalose (Tre) on salt tolerance of pharmaceutical plant Catharanthus roseus and the physiological mechanisms were both investigated in this study. The results showed that the supplement of Tre in saline condition (250 mM NaCl) largely alleviated the inhibitory effects of salinity on plant growth, namely biomass accumulation and total leaf area per plant. In this saline condition, the decreased level of relative water content (RWC) and photosynthetic rate were also greatly rescued by exogenous Tre. This improved performance of plants under high salinity induced by Tre could be partly ascribed to its ability to decrease accumulation of sodium, and increase potassium in leaves. The exogenous Tre led to high levels of fructose, glucose, sucrose and Tre inside the salt-stressed plants during whole the three-week treatment. The major free amino acids such as proline, arginine, threonine and glutamate were also largely elevated in the first two-week course of treatment with Tre in saline solution. It was proposed here that Tre might act as signal to make the salt-stressed plants actively increase internal compatible solutes, including soluble sugars and free amino acids, to control water loss, leaf gas exchange and ionic flow at the onset of salt stress. The application of Tre in saline condition also promoted the accumulation of alkaloids. The regulatory role of Tre in improving salt tolerance was optimal with an exogenous concentration of 10 mM Tre. Larger concentrations of Tre were supra-optimum and adversely affected plant growth. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. Influence of high salinities on the degradation of diesel fuel by bacterial consortia.

    PubMed

    Riis, Volker; Kleinsteuber, Sabine; Babel, Wolfgang

    2003-11-01

    Microbial communities from three Argentinean saline soils were extracted and tested for their ability to degrade diesel fuel in liquid culture at salinities between 0% and 25%. In each case, the degradation process was continuously monitored by measuring oxygen consumption. Two communities (CR1 and CR2) showed nearly equal degrees of degradation across a salinity range of 0%-10% (the former degrading about 63% of the diesel fuel and the latter about 70% after 53 and 80 d, respectively). Furthermore, the degree of degradation was not significantly lower in the presence of 17.5% salt (58% and 65% degraded, respectively). A third community (El Zorro) showed a maximum turnover at 5% salt (79% diesel fuel degraded) and significant degradation (66%) at a salinity of 10%. However, the degree of degradation by this community clearly dropped at 0% and 15% salt. None of the communities were able to degrade diesel fuel in the presence of 25% salt, but the living cell counts showed that components of the microbial population survived the long-term exposure. The surviving portion is obviously sufficient to allow substantial restoration of the original community, as verified by the BIOLOG method. Isolates of the CR1 community were identified as members of the genera Cellulomonas, Bacillus, Dietzia, and Halomonas. In light of our investigations, the bioremediation of contaminated saline soils should be quite possible if the salinity of the soil water is lower than 15% or if it is reduced below this limit by the addition of water.

  13. Evaluating integrated strategies for robust treatment of high saline piggery wastewater.

    PubMed

    Kim, Hyun-Chul; Choi, Wook Jin; Chae, A Na; Park, Joonhong; Kim, Hyung Joo; Song, Kyung Guen

    2016-02-01

    In this study, we integrated physicochemical and biological strategies for the robust treatment of piggery effluent in which high levels of organic constituents, inorganic nutrients, color, and salts remained. Piggery effluent that was stabilized in an anaerobic digester was sequentially coagulated, micro-filtered, and air-stripped prior to biological treatment with mixotrophic algal species that showed tolerance to high salinity (up to 4.8% as Cl(-)). The algae treatment was conducted with continuous O2 supplementation instead of using the combination of high lighting and CO2 injection. The microalga Scenedesmus quadricauda employed as a bio-agent was capable of assimilating both nitrogen (222 mg N g cell(-1) d(-1)) and phosphorus (9.3 mg P g cell(-1) d(-1)) and utilizing dissolved organics (2053 mg COD g cell(-1) d(-1)) as a carbon source in a single treatment process under the heterotrophic growth conditions. The heterotrophic growth of S. quadricauda proceeded rapidly by directly incorporating organic substrate in the oxidative assimilation process, which coincided with the high productivity of algal biomass, accounting for 2.4 g cell L(-1) d(-1). The algae-treated wastewater was subsequently ozonated to comply with discharge permits that limit color in the effluent, which also resulted in improved biodegradability of residual organics. The integrated treatment scheme proposed in this study also achieved 89% removal of COD, 88% removal of TN, and 60% removal of TP. The advantage of using the hybrid configuration suggests that this would be a promising strategy in full-scale treatment facilities for piggery effluent.

  14. High resolution synoptic salinity mapping to identify groundwater--surface water discharges in lowland rivers.

    PubMed

    Pai, Henry; Villamizar, Sandra R; Harmon, Thomas C

    2015-04-21

    Quantifying distributed lateral groundwater contributions to surface water (GW-SW discharges) is a key aspect of tracking nonpoint-source pollution (NPSP) within a watershed. In this study, we characterized distributed GW-SW discharges and associated salt loading using elevated GW specific conductance (SC) as a tracer along a 38 km reach of the Lower Merced River in Central California. High resolution longitudinal surveys for multiple flows (1.3-150 m(3) s(-1)) revealed river SC gradients that mainly decreased with increasing flow, suggesting a dilution effect and/or reduced GW-SW discharges due to hydraulic gradient reductions. However, exceptions occurred (gradients increasing with increasing flow), pointing to complex spatiotemporal influences on GW-SW dynamics. The surveys revealed detailed variability in salinity gradients, from which we estimated distributed GW-SW discharge and salt loading using a simple mixing model. Modeled cumulative GW discharges for two surveys unaffected by ungauged SW discharges were comparable in magnitude to differential gauging-based discharge estimates and prior GW-SW studies along the same river reach. Ungauged lateral inlets and sparse GW data limited the study, and argue for enhancing monitoring efforts. Our approach provides a rapid and economical method for characterizing NPSP for gaining rivers in the context of integrated watershed modeling and management.

  15. Diversity of Bacteroidetes in high-altitude saline evaporitic basins in northern Chile

    NASA Astrophysics Data System (ADS)

    Dorador, Cristina; Meneses, Daniela; Urtuvia, Viviana; Demergasso, Cecilia; Vila, Irma; Witzel, Karl-Paul; Imhoff, Johannes F.

    2009-06-01

    The phylum Bacteroidetes represents one of the most abundant bacterial groups of marine and freshwater bacterioplankton. We investigated the diversity of Bacteroidetes in water and sediment samples from three evaporitic basins located in the highlands of northern Chile. We used both 16S rRNA gene clone libraries created with targeted Bacteroidetes-specific primers and separation of specifically amplified gene fragments by denaturing gradient gel electrophoresis (DGGE). DGGE analysis revealed a reduced richness of these organisms in samples from Salar de Huasco (two to four DGGE bands) increasing in Salar de Ascotán (two to seven DGGE bands) and Laguna Tebenquiche at Salar de Atacama (four to eight DGGE bands). Cluster analysis (WPGMA) of DGGE bands showed that bands from Salar de Huasco and Salar de Ascotán grouped together and samples from Salar de Atacama formed separate clusters in water and sediment samples, reflecting different Bacteroidetes communities between sites. Most of the sequences analyzed belonged to the family Flavobacteriaceae and clustered with the genera Psychroflexus, Gillisia, Maribacter, Muricauda, Flavobacterium, and Salegentibacter. The most abundant phylotype was highly related to Psychroflexus spp. and was recovered from all three study sites. The similarity of the analyzed sequences with their closest relatives in GenBank was typically <97% and notably lower when compared with type strains, demonstrating the unique character of these sequences. Culture efforts will be necessary to get a better description of the diversity of this group in saline evaporitic basins of northern Chile.

  16. Toxicity of high salinity tannery wastewater and effects on constructed wetland plants.

    PubMed

    Calheiros, Cristina S C; Silva, Gabriela; Quitério, Paula V B; Crispim, Luís F C; Brix, Hans; Moura, Sandra C; Castro, Paula M L

    2012-08-01

    The toxicity of high salinity tannery wastewater produced after an activated sludge secondary treatment on the germination and seedling growth of Trifolium pratense, a species used as indicator in toxicity tests, was evaluated. Growth was inhibited by wastewater concentrations >25% and undiluted effluent caused a complete germination inhibition. Constructed wetlands (CWs) with Arundo donax or Sarcocornia fruticosa were envisaged to further polish this wastewater. Selection of plant species to use in CWs for industrial wastewater treatment is an important issue, since for a successful establishment they have to tolerate the often harsh wastewater composition. For that, the effects of this wastewater on the growth of Arundo and Sarcocornia were assessed in pot assays. Plants were subject to different wastewater contents (0/50/100%), and both were resilient to the imposed conditions. Arundo had higher growth rates and biomass than Sarcocornia and may therefore be the preferred species for use in CWs treating tannery wastewater. CWs planted with the above mentioned plants significantly decreased the toxicity of the wastewater, as effluent from the CWs outlet stimulated the growth of Trifolium at concentrations <50%, and seed germination and growth even occurred in undiluted effluent.

  17. Anoxic oscillating MBR for photosynthetic bacteria harvesting and high salinity wastewater treatment.

    PubMed

    Qin, Lei; Liu, Qiuhua; Meng, Qin; Fan, Zheng; He, Jinzhe; Liu, Tao; Shen, Chong; Zhang, Guoliang

    2017-01-01

    In this study, photosynthetic bacteria (PSB) were first harvested by MBR with pendulum type oscillation (PTO) hollow fiber module in succession and on a large scale. Based on unique properties of PSB, PSB/MBR was successfully applied for high-salinity wastewater treatment. Compared with control PSB-MBR (CMBR), PSB/PTO-MBR exhibited more excellent organics removal, which was mainly attributed to much higher biomass production for utilization. Meanwhile, the influence of light irradiation and aeration on activity of PSB was investigated in detail. Results showed that PTO-MBR with 12h light irradiation proved to be a promising and economical alternative. The cycle of dark/light and anoxic had a positive effect on PSB cultivating. Moreover, PTO-MBR exhibited much higher flux than CMBR even if large amounts of biomass existed, which demonstrated that the strong shear stress on interface of liquid-membrane played important roles on membrane fouling reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A High-Resolution Global Lake Inventory with Classified Freshwater and Saline Types

    NASA Astrophysics Data System (ADS)

    Wang, J.; Sheng, Y.; Song, C.; Urano, T.; Satori, P. J.; Ford, S. J.

    2015-12-01

    Lakes are the largest surface water stock readily accessible to human need. Monitoring and understanding the distribution, change, and vulnerability of contemporary lakes remain as one of the top priorities in hydrological studies. Our recent project supported by the U.S. Geological Survey produced a high-resolution inventory of global lake extents (greater than 0.4 hectare) using circa 2000 Landsat TM and ETM+ imagery, which further enhanced human's vision on the precise physical distribution of contemporary surface water stock worldwide. Continuous advancement in understanding regional-to-global surface water stress demands expanded knowledge on not only water discharge in streams and rivers but also stock in freshwater lakes. Yet to our best knowledge, we are currently lacking detailed, reliable inventory of lake water types on a global scale. Here we represent a progressing world lake database with differentiated freshwater and saline categories by integrating hydrological analysis, climate data, and spectral remote sensing. This effort is a natural extension of our global lake mapping project and a prerequisite of our overarching goal to assess global lake vulnerability. The completed lake data will also benefit a wide spectrum of scientific disciplines and water resources management agencies.

  19. The Arabidopsis floral repressor BFT delays flowering by competing with FT for FD binding under high salinity.

    PubMed

    Ryu, Jae Yong; Lee, Hyo-Jun; Seo, Pil Joon; Jung, Jae-Hoon; Ahn, Ji Hoon; Park, Chung-Mo

    2014-02-01

    Soil salinity is one of the most serious agricultural problems that significantly reduce crop yields in the arid and semi-arid regions. It influences various phases of plant growth and developmental processes, such as seed germination, leaf and stem growth, and reproductive propagation. Salt stress delays the onset of flowering in many plant species. We have previously reported that the Arabidopsis BROTHER OF FT AND TFL1 (BFT) acts as a floral repressor under salt stress. However, the molecular mechanisms underlying the BFT function in the salt regulation of flowering induction is unknown. In this work, we found that BFT delays flowering under high salinity by competing with FLOWERING LOCUS T (FT) for binding to the FD transcription factor. The flowering time of FD-deficient fd-2 mutant was insensitive to high salinity. BFT interacts with FD in the nucleus via the C-terminal domain of FD, which is also required for the interaction of FD with FT, and interferes with the FT-FD interaction. These observations indicate that BFT constitutes a distinct salt stress signaling pathway that modulates the function of the FT-FD module and possibly provides an adaptation strategy that fine-tunes photoperiodic flowering under high salinity.

  20. Identification of QTLs with main, epistatic and QTL × environment interaction effects for salt tolerance in rice seedlings under different salinity conditions.

    PubMed

    Wang, Zhoufei; Cheng, Jinping; Chen, Zhiwei; Huang, Ji; Bao, Yongmei; Wang, Jianfei; Zhang, Hongsheng

    2012-08-01

    Salt tolerance of rice (Oryza sativa L.) at the seedling stage is one of the major determinants of its stable establishment in saline soil. One population of recombinant inbred lines (RILs, F (2:9)) derived from a cross between the salt-tolerant variety Jiucaiqing and the salt-sensitive variety IR26 was used to determine the genetic mechanism of four salt tolerance indices, seedling height (SH), dry shoot weight (DSW), dry root weight (DRW) and Na/K ratios (Na/K) in roots after 10 days in three salt concentrations (0.0, 0.5 and 0.7 % NaCl). The main effect QTLs (M-QTLs) and epistatic QTLs (E-QTLs) were detected by QTL IciMapping program using single environment phenotypic values. Eleven M-QTLs and 11 E-QTLs were identified for the salt tolerance indices. There were six M-QTLs and two E-QTLs identified for SH, three M-QTLs and five E-QTLs identified for DSW, two M-QTLs and one E-QTL identified for DRW, and three E-QTLs identified for Na/K. The phenotypic variation explained by each M-QTL and E-QTL ranged from 7.8 to 23.9 % and 13.3 to 73.7 %, respectively. The QTL-by-environment interactions were detected by QTLNetwork program in the joint analyses of multi-environment phenotypic values. Six M-QTLs and five E-QTLs were identified. The phenotypic variation explained by each QTL and QTL × environment interaction ranged from 0.95 to 6.90 % and 0.02 to 0.50 %, respectively. By comparing chromosomal positions of these M-QTLs with those previously identified, five M-QTLs qSH1.3, qSH12.1, qSH12.2, qDSW12.1 and qDRW11 might represent novel salt tolerance genes. Five selected RILs with high salt tolerance had six to eight positive alleles of the M-QTLs, indicating that pyramiding by marker-assisted selection (MAS) of M-QTLs can be applied in rice salt tolerance breeding programs.

  1. Evaluation of the halophyte Salsola soda as an alternative crop for saline soils high in selenium and boron.

    PubMed

    Centofanti, Tiziana; Bañuelos, Gary

    2015-07-01

    Urbanization, industrial development, and intensive agriculture have caused soil contamination and land degradation in many areas of the world. Salinization is one important factor contributing to land degradation and it affects agricultural production and environmental quality. When salinization is combined with soil pollution by trace elements, as it occurs in many arid and semi-arid regions around the world, strategies to phyto-manage pollutants and sustain crop production need to be implemented. In this study, we present the case of saline soils in the West side of Central California which contain naturally-occurring selenium (Se), boron (B), and other salts, such as NaCl, CaCl2, Na2SO4, and Na2SeO4. To sustain crop production on Se- and B-laden arid saline soils, we investigated the potential of the halophyte "agretti" (Salsola soda L.) as an alternative crop. The aim of our greenhouse study was to examine adaptability, B tolerance, and Se accumulation by S. soda grown on soils collected from a typical saline-laden field site located on the West side of the San Joaquin Valley (SJV). Our results showed that S. soda tolerates the saline (EC ∼ 10 dS m(-1)) and B-laden soils (10 mg B L(-1)) of the SJV even with the additional irrigation of saline and B rich water (EC ∼ 3 dS m(-1) and 4 mg B L(-1)). Under these growing conditions, the plant can accumulate high concentrations of Na (80 g Na kg(-1) DW), B (100 mg B kg(-1) DW), and Se (3-4 mg Se kg(-1) DW) without showing toxicity symptoms. Hence, S. soda showed promising potential as a plant species that can be grown in B-laden saline soils and accumulate and potentially manage excessive soluble Se and B in soil.

  2. Neptunium sorption and redox speciation at the illite surface under highly saline conditions

    NASA Astrophysics Data System (ADS)

    Banik, Nidhu Lal; Marsac, Rémi; Lützenkirchen, Johannes; Marquardt, Christian Michael; Dardenne, Kathy; Rothe, Joerg; Bender, Kerstin; Geckeis, Horst

    2017-10-01

    Neptunium (Np) uptake on illite is investigated in 1 and 3.2 molal (m) NaCl solutions under inert (Ar) atmosphere for 4 < pHm < 10 (pHm = -log mH+) and 5 × 10-8 < [Np(V)]tot < 3 × 10-4 M. In agreement with a previous study in 0.1 m NaCl solutions (Marsac et al., 2015a), Np(V) is the prevailing oxidation state in the aqueous solution, but Np uptake by illite is affected by surface induced reduction. The extent of Np(V) reduction to Np(IV) follows the measured redox potential (or the pe = -log ae-), which is influenced by the introduced Np(V) amount, because of the low redox capacity of the illite. The presence of Np(IV) on the solid phase is verified by X-ray Absorption Near Edge Spectroscopy (XANES). We can conclude that Np uptake by illite is not significantly affected by the variation of mNaCl from 0.1 to 3.2 m and thus is in agreement with reports on tetravalent actinide and Np(V) sorption to clays at high ionic strength. The combination of (i) the two site protolysis non-electrostatic surface complexation and cation exchange model, (ii) the specific ion interaction theory to calculate activity coefficients for dissolved species and (iii) by accounting for redox equilibria and the stability of surface Np species, the overall Np uptake by illite can be simulated as a function of pHm, pe and mNaCl using a single set of parameters. The present experimental and modeling results are particularly important in the context of deep geological nuclear waste disposal since many sedimentary rocks or clay formations that are deemed suitable for this purpose exhibit highly saline porewaters.

  3. A super high-rate sulfidogenic system for saline sewage treatment.

    PubMed

    Tsui, To-Hung; Chen, Lin; Hao, Tianwei; Chen, Guang-Hao

    2016-11-01

    This study proposes a novel approach to resolve the challenging issue of sludge bed clogging in a granular sulfate-reducing upflow sludge bed (GSRUSB) reactor by means of introducing intermittent gas sparging to advance it into a super high-rate anaerobic bioreactor. Over a 196-day lab-scale trial, the GSRUSB system was operated from nominal hydraulic retention time of 4-hr to 40-min and achieved the highest organic loading rate of 13.31 kg COD/m(3)·day which is substantially greater than the typical loading of 2.0-3.5 kg COD/m(3)·day in a conventional upflow anaerobic sludge bed reactor treating dilute organic strength wastewater. The average organic removal efficiency and total dissolved sulfide of this system were 90 ± 4.2% and 158 ± 28 mg S/L, while organics residual in the effluent was 34 ± 14 mg COD/L. The control stage (without gas sparging) revealed that the sludge bed clogging happened concomitantly with the significant drop in extracellular polymeric substance content of granular sludge, through relevant chemical measurements and confocal laser scanning microscopy analyses. On the other hand, compared with increasing the effluent recirculation ratio (from 1.4 to 5), the three-dimensional computational fluid dynamics modeling in combination with energy dissipation analysis demonstrated that the gas sparging (at a superficial gas velocity of 0.8 m s(-1)) can create a 23 times higher liquid shear as well as enhanced particle attrition. Overall, this study not only developed a super high-rate anaerobic bioreactor for saline sewage treatment, but also shed light on the role of intermittent gas sparging in control of sludge bed clogging for anaerobic bioreactors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Population differentiation for germination and early seedling root growth traits under saline conditions in the annual legume Medicago truncatula (Fabaceae).

    PubMed

    Cordeiro, Matilde A; Moriuchi, Ken S; Fotinos, Tonya D; Miller, Kelsey E; Nuzhdin, Sergey V; von Wettberg, Eric J; Cook, Douglas R

    2014-03-01

    Seedling establishment and survival are highly sensitive to soil salinity and plants that evolved in saline environments are likely to express traits that increase fitness in those environments. Such traits are of ecological interest and they may have practical value for improving salt tolerance in cultivated species. We examined responses to soil salinity and tested potential mechanisms of salt tolerance in Medicago truncatula, using genotypes that originated from natural populations occurring on saline and nonsaline soils. Germination and seedling responses were quantified and compared between saline and nonsaline origin genotypes. Germination treatments included a range of sodium chloride (NaCl) concentrations in both offspring and parental environments. Seedling treatments included NaCl, abscisic acid (ABA), and potassium chloride (KCl). Saline origin genotypes displayed greater salinity tolerance for germination and seedling traits relative to nonsaline origin genotypes. We observed population specific differences for the effects of salinity on time to germination and for the impact of parental environment on germination rates. ABA and NaCl treatments had similar negative effects on root growth, although relative sensitivities differed, with saline population less sensitive to NaCl and more sensitive to ABA compared to their nonsaline counterparts. We report population differentiation for germination and seedling growth traits under saline conditions among populations derived from saline and nonsaline environments. These observations are consistent with a syndrome of adaptations for salinity tolerance during early plant development, including traits that are common among saline environments and those that are idiosyncratic to local populations.

  5. High flow therapy versus hypertonic saline in bronchiolitis: randomised controlled trial.

    PubMed

    Bueno Campaña, Mercedes; Olivares Ortiz, Jorge; Notario Muñoz, Cristina; Rupérez Lucas, Marta; Fernández Rincón, Adelaida; Patiño Hernández, Olga; Calvo Rey, Cristina

    2014-06-01

    To demonstrate that heated humidified high-flow nasal cannula (HHHFNC) is superior to inhaled hypertonic saline solution (HSS) in improving respiratory distress in moderate bronchiolitis. In addition, it could improve comfort and reduce length of hospital stay (LOS) and admission to Paediatric Intensive Care Unit (PICU). Randomised Clinical Trial from 1 October 2010 to 31 December 2012. Two urban secondary (no PICU available) paediatric hospitalisation units. Hospitalised children aged up to 6 months with moderate acute bronchiolitis (Respiratory Distress Assessment Instrument, RDAI ≥4). Patients were randomised to HHHFNC or HSS. All of them received epinephrine as bronchodilator. Primary outcome was difference in mean Respiratory Assessment Change Score (RACS) between both groups measured in six previously defined consecutive moments. Secondary outcomes were difference in mean comfort scores in this period, LOS and rate of PICU admission. Seventy-five previously healthy patients were enrolled. Mean age was 2.4 months (95% CI 2.04 to 2.76). 43 were allocated to HSS group and 32 in HHHFNC. Data of 1 patient were lost, and 8 changed group over the study period. Intention-to-treat principle was applied. There were no significant differences in mean RACS and mean comfort scores between groups at the evaluation points. Median LOS or PICU admission rate were similar in both groups. No adverse events were observed. HHHFNC was not superior to HSS in treatment of moderate acute bronchiolitis with respect to severity and comfort scores, LOS or PICU admission rate. NCT01873144. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Impact of urbanization on high-salinity estuaries in the southeastern United States

    NASA Astrophysics Data System (ADS)

    John Vernberg, F.; Vernberg, W. B.; Blood, E.; Fortner, A.; Fulton, M.; McKellar, H.; Michener, W.; Scott, G.; Siewicki, T.; El Figi, K.

    To assess the impact of urbanization on small high-salinity estuaries, studies were initiated which had a broad temporal and spatial base. These studies utilize a geographic information system and a global positioning system technology, as well as new data collection and analytical techniques to characterize the relationship between land-use patterns, nutrient loading, water quality, chemical contaminants, bacteriology, toxicology, hydrodynamics, and primary and secondary production. Thirty monitoring stations at both an urbanized estuary (Murrells Inlet, South Carolina, U.S.A.) and a nearby, similar-sized, relatively pristine estuary (North Inlet, SC) were established. Results indicate the following trends. Polycyclic aromatic hydrocarbon (PAH) levels in seawater and oyster tissue were higher in Murrells Inlet, and the specific PAHs found in higher concentrations in seawater are similar to the PAH composition in urban air. Copper concentrations were higher in Murrells Inlet with the highest concentrations found in oysters located near human habitation. Although total coliform levels in surface waters at both estuaries were not different, faecal coliform levels in Murrells Inlet were generally higher, particularly in oysters. Nitrate and phosphate concentrations were higher in water from Murrells Inlet but, in contrast, ammonium concentrations when significantly different were higher at North Inlet landward stations. The variability in dissolved oxygen was much greater in North Inlet and may be due to the greater marsh/creek drainage in North Inlet. Chlorophyll a values tended to be higher and more variable for North Inlet water samples but no significant differences were observed between the two estuaries during the peak of the growing season. Lower biomass was observed in Murrells Inlet when similar creeks from the two estuaries were sampled by seines.

  7. Performance of a MBR pilot plant treating high strength wastewater subject to salinity increase: analysis of biomass activity and fouling behaviour.

    PubMed

    Di Bella, Gaetano; Di Trapani, Daniele; Torregrossa, Michele; Viviani, Gaspare

    2013-11-01

    Membrane bioreactors produce high quality effluents that could be suitable for reuse. However, when treating high strength wastewater subject to a salinity increase, a modification of biomass characteristics may occur. This circumstance is of importance, since it can have a significant impact in terms of biokinetic as well as fouling behaviour. The aim of the study was to evaluate the performance of a pilot plant MBR, in terms of biomass activity and membrane fouling, fed with high strength synthetic wastewater, when subject to a salinity increase. With normal salinity, the pilot plant showed high removal efficiencies and high biomass respiratory activity. On the other hand, the salinity increase significantly affected the removal efficiency as well as the SMP production. Furthermore, the salinity increase showed a strong effect on biomass activity, reducing in particular the respiration rates of autotrophic populations.

  8. Efficacy of silicon priming and fertigation to modulate seedling's vigor and ion homeostasis of wheat (Triticum aestivum L.) under saline environment.

    PubMed

    Azeem, Muhammad; Iqbal, Naeem; Kausar, Shakila; Javed, M Tariq; Akram, M Sohail; Sajid, M Asim

    2015-09-01

    Seed preconditioning, a short gun approach to modulate the effects of abiotic stresses on crop plants, has recently gained considerable attention of the researchers to induce salinity tolerance in agronomically important crops. The present study was conducted to explore the comparative efficacy of presowing seed priming with silicon (Si) and Si fertigation to modulate the wheat growth and ion dynamics. Seeds of wheat variety, PUNJAB-11, were sown in Petri plates having nutrient solutions with (120 mM) and without NaCl. Six levels of Si (0, 10, 20, 30, 40, or 50 mM), applied as sodium silicate (Na2SiO3), were tested either as a seed priming agent or as a supplement in the nutrient solution. Priming of seeds with Si mitigated the adverse effects of salinity stress on germination percentage, root as well as shoot length, dry and fresh weight. Application of Si either as preconditioning of seeds or addition in the growth medium resulted in reduced accumulation of sodium (Na(+)) in wheat seedlings under saline environment. Seedling's potassium (K(+)) contents either remained unaffected or decreased whereas calcium (Ca(2+)) contents decreased at all Si concentrations except at 30 mM when Si primed seeds were grown under salt stress. Addition of Si, under salt stress, in cultivation medium exerted a positive effect on seedling's K(+) and Ca(2+) contents. Silicon contribution to decontamination strategies was evaluated.

  9. Collection of High Energy Yielding Strains of Saline Microalgae from Southwestern States: Final Report Draft

    SciTech Connect

    Sommerfield, M. R.

    1986-01-01

    Approximately 1,400 individual isolates of microalgae were obtained from surface waters in the Southwest. Of the initial 23 algae screened for growth characteristics, the majority grew best at the lower salinities in both SERI Type I and Type II Media. Growth rates for selected strains approached three doublings per day.

  10. Tolerance of Venerupis philippinarum to salinity: osmotic and metabolic aspects.

    PubMed

    Carregosa, Vanessa; Figueira, Etelvina; Gil, Ana M; Pereira, Sara; Pinto, Joana; Soares, Amadeu M V M; Freitas, Rosa

    2014-05-01

    In the last few decades, attention has been focused on the impacts of contamination in marine benthic populations, while the responses of aquatic organisms to natural alterations, namely changes in salinity, have received little attention. In fact, salinity is one of the dominant environmental factors affecting marine bivalves. The ebb and flood of the tide, combined with fresh water inputs from rivers or heavy rainy events, and with extremely dry and hot seasons, can dramatically alter water salinity. Therefore, the salinity of a certain environment can restrict the spatial distribution of a given population, which is especially important when assessing the spread of an invasive species into a new environment. In the present study, the main objective was to understand how clam Venerupis philippinarum copes with salinity changes and, hence biochemical and metabolomic alterations, taking place in individuals submitted to a wide range of salinities were investigated. The results showed that V. philippinarum presented high mortality at lower salinities (0 and 7 g/L) but tolerated high salinities (35 and 42 g/L). The quantification of ionic content revealed that, clams had the capacity to maintain ionic homeostasis along the salinity gradient, mainly changing the concentration of Na, but also with the influence of Mg and Ca. The results showed a decrease in protein content at lower salinities (0 to 21 g/L). Glycogen and glucose increased with increasing salinity gradient. (1)H Nuclear Magnetic Resonance (NMR) spectra of clam aqueous extracts revealed different metabolite profiles at 7, 28 and 42 g/L salinities, thus enabling metabolite changes to be measured in relation to salinity.

  11. Transgenic Brassica chinensis plants expressing a bacterial codA gene exhibit enhanced tolerance to extreme temperature and high salinity.

    PubMed

    Wang, Qing-bin; Xu, Wen; Xue, Qing-zhong; Su, Wei-ai

    2010-11-01

    Transgenic Brassica compestris L. spp. chinensis plants expressing a choline oxidase (codA) gene from Arthrobacter globiformis were obtained through Agrobacterium tumefaciens-mediated transformation. In the transgenic plants, codA gene expression and its product transportation to chloroplasts were detected by the enzyme-linked immunosorbent assay (ELISA) examination, immunogold localization, and (1)H-nuclear magnetic resonance ((1)H-NMR). Stress tolerance was evaluated in the T(3) plants under extreme temperature and salinity conditions. The plants of transgenic line 1 (L1) showed significantly higher net photosynthetic rate (P(n)) and P(n) recovery rate under high (45 °C, 4 h) and low temperature (1 °C, 48 h) treatments, and higher photosynthetic rate under high salinity conditions (100, 200, and 300 mmol/L NaCl, respectively) than the wild-type plants. The enhanced tolerance to high temperature and high salinity stresses in transgenic plants is associated with the accumulation of betaine, which is not found in the wild-type plants. Our results indicate that the introduction of codA gene from Arthrobacter globiformis into Brassica compestris L. spp. chinensis could be a potential strategy for improving the plant tolerance to multiple stresses.

  12. Analysis of inorganic nitrogen and related anions in high salinity water using ion chromatography with tandem UV and conductivity detectors.

    PubMed

    Wilson, Brian; Gandhi, Jay; Zhang, Chunlong Carl

    2011-09-01

    Over 97% of the Earth's water is high salinity water in the form of gulfs, oceans, and salt lakes. There is an increasing concern for the quality of water in bays, gulfs, oceans, and other natural waters. These waters are affected by many different sources of contamination. The sources are, but not limited to, groundwater run-off of nitrogen containing fertilizer, pesticides, cleaning agents, solid wastes, industrial waters, and many more. The final destinations of these contaminants are rivers, lakes, and bayous that eventually will lead to bays, gulfs, and oceans. Many industries depend on the quality of these waters, such as the fishing industry. In addition to wild marine life, there are large aquariums and fish and shrimp farms that are required to know the quality of the water. However, the ability of these industries to monitor their processes is limited. Most analytical methods do not apply to the analysis of high salinity waters. They are dependent on wet chemistry techniques, spectrophotometers, and flow analyzers. These methods do not have the accuracy, precision, and sensitivity when compared to ion chromatography (IC). Since the inception of IC, it has become a standard practice for determining the content of many different water samples. Many IC methods are limited in the range of analytes that can be detected, as well as the numerous sample sources of which the methods are applicable. The main focus of current IC methods does not include high salinity waters. This research demonstrates an ion chromatographic method that has the ability to determine low level concentrations of inorganic nitrogen and related anions (nitrite-N, nitrate-N, phosphorous-P, sulfate, bromide, chloride, sulfide, fluoride, ammonia, calcium, and magnesium) in a single run using a combination of UV and conductivity detectors. This method is applicable to various waters, and uses both freshwater and high salinity water samples.

  13. Determination of UV active inorganic anions in potable and high salinity water by ion pair reversed phase liquid chromatography.

    PubMed

    Sadiq Khan, Sadaf; Riaz, M

    2014-05-01

    Reversed phase column was dynamically modified into anion exchange column using various types of tetraalkylammonium salts as ion pair reagents (IPRs) for the separation and quantification of toxic anions such as nitrite, bromate, bromide and nitrate in potable and high salinity water. Various chromatographic parameters such as types and concentration of IPRs, concentration of organic modifier, phosphate buffer and mobile phase pH were optimized for the base-line separation of anions. The lowest detection limits (LDLs) were 0.2 for nitrate and nitrite, 0.6 µg ml(-1)for bromate and bromide respectively for potable water samples. NaCl and Na₂SO₄ were incorporated in the mobile phase for the analysis of high salinity water samples to minimize matrix interferences. This has resulted in change in elution order of anions, better tolerance of matrix anions such as chloride and sulphate. The developed method was successfully utilized for analysis of anions in potable, high salinity and sea water samples.

  14. Hydrogenotrophic denitrification of highly saline aquaculture wastewater using hollow fiber membrane bioreactor.

    PubMed

    Visvanathan, C; Phong, D D; Jegatheesan, V

    2008-06-01

    A hydrogenotrophic denitrification system with a hollow fiber membrane was evaluated for treating and recycling synthetic aquaculture wastewater. Hollow fibers ensured bubble-less diffusion of hydrogen and subsequent removal of nitrate from the first bioreactor. The second aerobic reactor was used for biomass filtration and removal of organic matter. Nitrate and organic matter expressed as dissolved organic carbon were 50 mgl(-1) and 20 mgl(-1), respectively, in the inlet. Acclimatization of hydrogenotrophic bacteria to 10, 20 and 30 ppt of salinity was also observed. Optimum hydraulic retention time and denitrification rate corresponding to these salinities were 3, 5 and 6 h and 366.8, 226.2 and 193.2 gm(-3) day(-1), respectively.

  15. Process for producing modified microorganisms for oil treatment at high temperatures, pressures and salinity

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow

    1996-02-20

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. The processes are comprised of steps which successively limit the carbon sources and increase the temperature, pressure and salinity of the media. This is done until microbial strains are obtained that are capable of growing in essentially crude oil as a carbon source and at a temperature range from about 70.degree. C. to 90.degree. C., at a pressure range from about 2,000 to 2,500 psi and at a salinity range from about 1.3 to 35%.

  16. Process for producing modified microorganisms for oil treatment at high temperatures, pressures and salinity

    DOEpatents

    Premuzic, E.T.; Lin, M.

    1996-02-20

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. The processes are comprised of steps which successively limit the carbon sources and increase the temperature, pressure and salinity of the media. This is done until microbial strains are obtained that are capable of growing in essentially crude oil as a carbon source and at a temperature range from about 70 C to 90 C, at a pressure range from about 2,000 to 2,500 psi and at a salinity range from about 1.3 to 35%. 68 figs.

  17. The Aquarius Ocean Salinity Mission High Stability L-band Radiometer

    NASA Technical Reports Server (NTRS)

    Pellerano, Fernando A.; Piepmeier, Jeffrey; Triesky, Michael; Horgan, Kevin; Forgione, Joshua; Caldwell, James; Wilson, William J.; Yueh, Simon; Spencer, Michael; McWatters, Dalia; Freedman, Adam

    2006-01-01

    The NASA Earth Science System Pathfinder (ESSP) mission Aquarius, will measure global ocean surface salinity with approx.120 km spatial resolution every 7-days with an average monthly salinity accuracy of 0.2 psu (parts per thousand). This requires an L-band low-noise radiometer with the long-term calibration stability of less than or equal to 0.15 K over 7 days. The instrument utilizes a push-broom configuration which makes it impractical to use a traditional warm load and cold plate in front of the feedhorns. Therefore, to achieve the necessary performance Aquarius utilizes a Dicke radiometer with noise injection to perform a warm - hot calibration. The radiometer sequence between antenna, Dicke load, and noise diode has been optimized to maximize antenna observations and therefore minimize NEDT. This is possible due the ability to thermally control the radiometer electronics and front-end components to 0.1 Crms over 7 days.

  18. Potential of BAC combined with UVC/H2O2 for reducing organic matter from highly saline reverse osmosis concentrate produced from municipal wastewater reclamation.

    PubMed

    Lu, Jie; Fan, Linhua; Roddick, Felicity A

    2013-10-01

    The organic matter present in the concentrate streams generated from reverse osmosis (RO) based municipal wastewater reclamation processes poses environmental and health risks on its disposal to the receiving environment (e.g., estuaries, bays). The potential of a biological activated carbon (BAC) process combined with pre-oxidation using a UVC/H2O2 advanced oxidation process for treating a high salinity (TDS~10000 mg L(-1)) municipal wastewater RO concentrate (ROC) was evaluated at lab scale during 90 d of operation. The combined treatment reduced the UVA254 and colour of the ROC to below those for the influent of the RO process (i.e., biologically treated secondary effluent), and the reductions in DOC and COD were approximately 60% and 50%, respectively. UVC/H2O2 was demonstrated to be an effective means of converting the recalcitrant organic compounds in the ROC into biodegradable substances which were readily removed by the BAC process, leading to a synergistic effect of the combined treatment in degrading the organic matter. The tests using various BAC feed concentrations suggested that the biological treatment was robust and consistent for treating the high salinity ROC. Using Microtox analysis no toxicity was detected for the ROC after the combined treatment, and the trihalomethane formation potential was reduced from 3.5 to 2.8 mg L(-1).

  19. Highly saline fluids from a subducting slab as the source for fluid-rich diamonds.

    PubMed

    Weiss, Yaakov; McNeill, John; Pearson, D Graham; Nowell, Geoff M; Ottley, Chris J

    2015-08-20

    The infiltration of fluids into continental lithospheric mantle is a key mechanism for controlling abrupt changes in the chemical and physical properties of the lithospheric root, as well as diamond formation, yet the origin and composition of the fluids involved are still poorly constrained. Such fluids are trapped within diamonds when they form and so diamonds provide a unique means of directly characterizing the fluids that percolate through the deep continental lithospheric mantle. Here we show a clear chemical evolutionary trend, identifying saline fluids as parental to silicic and carbonatitic deep mantle melts, in diamonds from the Northwest Territories, Canada. Fluid-rock interaction along with in situ melting cause compositional transitions, as the saline fluids traverse mixed peridotite-eclogite lithosphere. Moreover, the chemistry of the parental saline fluids--especially their strontium isotopic compositions--and the timing of host diamond formation suggest that a subducting Mesozoic plate under western North America is the source of the fluids. Our results imply a strong association between subduction, mantle metasomatism and fluid-rich diamond formation, emphasizing the importance of subduction-derived fluids in affecting the composition of the deep lithospheric mantle.

  20. Reclamation of highly calcareous saline-sodic soil using low quality water and phosphogypsum

    NASA Astrophysics Data System (ADS)

    Gharaibeh, M. A.; Rusan, M. J.; Eltaif, N. I.; Shunnar, O. F.

    2014-09-01

    The efficiency of two amendments in reclaiming saline sodic soil using moderately saline (EC) and moderate sodium adsorption ratio (SAR) canal water was investigated. Phosphogypsum (PG) and reagent grade calcium chloride were applied to packed sandy loam soil columns and leached with canal water (SAR = 4, and EC = 2.16 dS m-1). Phosphogypsum was mixed with top soil prior to leaching at application rates of 5, 10, 15, 20, 25, 35, 40 Mg ha-1, whereas calcium chloride was dissolved directly in water at equivalent rates of 4.25, 8.5, 12.75, 17.0, 21.25, 29.75, and 34 Mg ha-1, respectively. Both amendments efficiently reduced soil salinity and sodicity. Calcium chloride removed 90 % of the total Na and soluble salts whereas PG removed 79 and 60 %, respectively. Exchangeable sodium percentage was reduced by 90 % in both amendments. Results indicated that during cation exchange reactions most of the sodium was removed when effluent SAR was at maximum. Phosphogypsum has lower total costs than calcium chloride and as an efficient amendment an application of 30 Mg ha-1 and leaching with 4 pore volume (PV) of canal water could be recommended to reclaim the studied soil.

  1. Development of a point-electrode conductivity salinometer with high spatial resolution for use in very saline solutions

    SciTech Connect

    Grimmer, D.P.; Jones, G.F.; Tafoya, J.; Fitzgerald, T.J.

    1983-12-01

    A conductivity probe and circuit were developed to measure salinities in sodium chloride salt-gradient solar ponds. A point-electrode salinometer design was chosen to give spatial resolution approximately 0.039 in. (1 mm). Such high spatial resolution was necessary to study the behavior of thermohaline columns in the vicinity of convective/conductive zone interfaces. The point-electrode conductivity instrument was designed for use in up to 25% (by weight) salinities with immersion times on the order of magnitude of 0.1 year or longer. Drift in the instrument, caused principally by changes in the surface condition of the platinum probe tip and reflected by changes in the probe cell constant, required periodic in situ calibration against the measured specific gravity of withdrawn fluid samples.

  2. Development of a point-electrode conductivity salinometer with high spatial resolution for use in very saline solutions

    SciTech Connect

    Jones, G.F.; Fitzgerald, T.J.; Grimmer, D.P.; Tafoya, J.

    1983-06-01

    A conductivity probe and circuit were developed to measure salinities in sodium chloride salt-gradient solar ponds. A point-electrode salinometer design was chosen to give a spatial resolution of approximately 1 mm (0.039 in.). Such high spatial resolution was necessary to study the behavior of thermohaline columns in the vicinity of convective/conductive zone boundaries. The point-electrode conductivity instrument was designed for use in up to 25 wt % salinities with immersion times of about 0.1 year or longer. Drift in the instrument, however, caused principally by changes in the surface condition of the platinum probe tip and reflected by changes in the probe cell constant, required periodic in situ calibration against the measured specific gravity of withdrawn fluid samples.

  3. Assessing the potential of a UV-based AOP for treating high-salinity municipal wastewater reverse osmosis concentrate.

    PubMed

    Umar, Muhammad; Roddick, Felicity; Fan, Linhua

    2013-01-01

    The UVC/H(2)O(2) process was studied at laboratory scale for the treatment of one moderate (conductivity ∼8 mS/cm) and two high salinity (∼23 mS/cm) municipal wastewater reverse osmosis concentrate (ROC) samples with varying organic and inorganic characteristics. The process efficiency was characterized in terms of reduction of dissolved organic carbon (DOC), chemical oxygen demand (COD), colour and absorbance at 254 nm (A(254)), and the improvement of biodegradability. The reduction of colour and A(254) was significantly greater than for DOC and COD for all samples due to the greater breakdown of humic compounds, as confirmed by fluorescence excitation-emission matrix spectra. Fairly small differences in the reduction of DOC (26-38%) and COD (25-37%) were observed for all samples, suggesting that the salinity of the ROC did not have a significant impact on the UVC/H(2)O(2) treatment under the test conditions. The biodegradability of the treated ROC samples improved markedly (approximately 2-fold) after 60 min UVC/H(2)O(2) treatment. This study indicates the potential of UVC/H(2)O(2) treatment followed by biological processes for treating high-salinity concentrate, and the robustness of the process where the characteristics of the secondary effluent (influent to RO) and thus resultant ROC vary significantly.

  4. Temperature effect on high salinity depuration of Vibrio vulnificus and V. parahaemolyticus from the Eastern oyster (Crassostrea virginica).

    PubMed

    Larsen, A M; Rikard, F S; Walton, W C; Arias, C R

    2015-01-02

    Vibrio vulnificus (Vv) and Vibrio parahaemolyticus (Vp) are opportunistic human pathogens naturally associated with the Eastern oyster Crassostrea virginica. The abundances of both pathogens in oysters are positively correlated with temperature, thus ingestion of raw oysters during the warm summer months is a risk factor for contracting illness from these bacteria. Current post-harvest processing (PHP) methods for elimination of these pathogens are expensive and kill the oyster, changing their organoleptic properties and making them less appealing to some consumers. High salinity has proven effective in reducing Vv numbers in the wild and our research aims at developing an indoor recirculating system to reduce pathogenic Vibrios while maintaining the taste and texture of live oysters. The goal of this study was to determine the influence of temperature on the efficacy of high salinity depuration. Vv was enumerated as most probable number (MPN) per gram of oyster tissue using the FDA-approved modified cellobiose polymyxin colistin (mCPC) protocol and with an alternative Vibrio specific media CHROMagar™ Vibrio (CaV). CaV was also used to quantify Vp. Oysters were held at 35 psu for 10 days at three temperatures: low (20°C), mid (22.5°C) and high (25°C). There was no difference in MPN/g of Vv between media; however more Vv isolates were obtained from mCPC than CaV. There was no significant effect of temperature on reduction of Vv or Vp throughout depuration but there was a tendency for low temperatures to be less effective than the higher ones. High salinity resulted in a significant decrease in Vv by day 3 and again by day 10, and a decrease in Vp by day 3. Oyster condition indices were maintained throughout depuration and mortality was low (4% across three trials). Overall these results support the use of mCPC for Vv enumeration and demonstrate the promise of high salinity depuration for PHP of the Eastern oyster. The trend for lower temperatures to be less

  5. Siderophore production in high iron environments

    NASA Astrophysics Data System (ADS)

    Bennett, S. A.; Hoffman, C. L.; Moffett, J. W.; Edwards, K. J.

    2010-12-01

    Up until recently, the geochemical cycling of Fe in deep sea hydrothermal plumes has assumed to be inorganically dominated, resulting in quantitative precipitation of all hydrothermally sourced Fe to the seafloor. Recent detection of organic Fe binding ligands within both the dissolved and particulate phase (Bennett et al., 2008; Toner et al., 2009), suggests that hydrothermally sourced Fe may be important on a global scale (Tagliabue et al., 2010). The source of these organic ligands is currently unknown; hypotheses include the possible entrainment of organic carbon from the biologically rich diffuse flow areas, or in-situ production from microbial processes. However, the microbial production of organic ligands is only expected when Fe is a limited micronutrient, which is not the case in the hydrothermal environment. The importance of Fe cycling microorganisms within hydrothermal systems was previously overlooked due to the poor energetics with regards to Fe oxidation and reduction. But their recent detection within the hydrothermal system, both around low temperature Fe rich mineral deposits and within hydrothermal plumes (Edwards et al., 2004; Sylvan et al., In prep) suggests that they may have an important role in the hydrothermal Fe cycle, potentially resulting in an interplay between Fe and organic carbon. Within the laboratory, we have carried out experiments to investigate an Fe oxidizing bacteria in a variety of high Fe environments. We have detected both the production of siderophores and an increase in reduced Fe when the Fe oxidizing bacteria is exposed to both Fe(III) and Fe(II) rich minerals. The role of these microbes in the mineral dissolution of Fe sulfides along the seafloor and within the hydrothermal plume, may have important implications on the speciation of Fe and the role of siderophores in the marine environment. Bennett, S.A. et al. 2008. EPSL, 270: 157-167. Edwards, K.J. et al. 2004. Geomicrobiology Journal, 21: 393-404. Sylvan, J.B. et al

  6. Evaluation of two hybrid poplar clones as constructed wetland plant species for treating saline water high in boron and selenium, or waters only high in boron

    USDA-ARS?s Scientific Manuscript database

    Wetland mesocosms were constructed to assess two salt- and B-tolerant hybrid poplar clones (Populus trichocarpa ×P. deltoides×P. nigra '345-1' and '347-14') for treating saline water high in boron (B) and selenium (Se). In addition, a hydroponic experiment was performed to test the B tolerance and B...

  7. The effect of salinity on experimental infections of a Hematodinium sp. in blue crabs, Callinectes sapidus.

    PubMed

    Coffey, Anna H; Li, Caiwen; Shields, Jeffrey D

    2012-06-01

    The parasitic dinoflagellate Hematodinium sp. parasitizes blue crabs along the Atlantic seaboard of the United States. Infections in blue crabs have only been reported from waters where salinity is >11 practical salinity units (psu). Blue crabs maintain a hyperosmotic internal concentration at low salinities (0-5 psu), roughly comparable to 24 psu, and should be capable of maintaining an infection in low-salinity waters even if Hematodinium spp. cells are intolerant of low salinities. We tested this notion by observing the effect of low salinity on the progression of disease in crabs experimentally infected with the parasite. Blue crabs were acclimated to 5 psu or 30 psu salinity treatments. They were inoculated with Hematodinium sp. and necropsied 3, 7, 10, and 15 days post-inoculation. The low-salinity treatment did not have an effect on the proliferation of Hematodinium sp. infections in blue crabs; moreover, a greater proportion of infections in crabs in the low-salinity treatment developed dinospore stages than did those in the high-salinity treatment, indicating that salinity may affect the development of the parasite. However, dinospores from in vitro cultures rapidly became inactive when held in salinities <15 psu. Our experiments indicate that Hematodinium spp. can develop in blue crabs at low salinities, but that the parasite is incapable of transmission in this environment, which explains the lack of natural infections in crabs at low salinities.

  8. Vertically integrated metal-clad/silicon dioxide-shell microtube arrays for high-spatial-resolution light stimuli in saline

    NASA Astrophysics Data System (ADS)

    Sakata, M.; Nakamura, T.; Matsuo, T.; Goryu, A.; Ishida, M.; Kawano, T.

    2014-04-01

    Microdevices composed of integrated microscale light source arrays are powerful tools in optogenetic applications. Herein, we prepared vertically aligned 3-μm inner diameter silicon dioxide (SiO2) tube-based optical light waveguide arrays. To increase the locality of the light stimuli through the tube, we also fabricated metal-cladded SiO2 tubes using iridium (Ir). After filling the tube with a saline solution, the saline-core/Ir-clad/SiO2-shell waveguide exhibited light stimuli without spreading. With a 532-nm wavelength, the half-power width of the light intensity measured 10 μm above the tube tip was 3 μm, while that of the saline/SiO2-shell waveguide was 9.6 μm, which was more than three times wider. Such high-spatial-resolution optical light stimuli will offer a new class of optogenetic applications, including light stimuli for specific regions of a neuron (e.g., axons or dendrites).

  9. Feasibility of Typha latifolia for high salinity effluent treatment in constructed wetlands for integration in resource management systems.

    PubMed

    Jesus, J M; Calheiros, C S C; Castro, P M L; Borges, M T

    2014-01-01

    High salinity wastewaters have limited treatment options due to the occurrence of salt inhibition in conventional biological treatments. Using recirculating marine aquaculture effluents as a case study, this work explored the use of Constructed Wetlands as a treatment option for nutrient and salt loads reduction. Three different substrates were tested for nutrient adsorption, of which expanded clay performed better. This substrate adsorbed 0.31 mg kg(-1) of NH4(+)-N and 5.60 mg kg(-1) of PO4(3-)-P and 6.9 mg kg(-1) dissolved salts after 7 days of contact. Microcosms with Typha latifolia planted in expanded clay and irrigated with aquaculture wastewater (salinity 2.4%, 7 days hydraulic retention time, for 4 weeks), were able to remove 94% NH(4+)-N (inlet 0.25 +/- 0.13 mg L(-1)), 78% NO2(-)-N (inlet 0.78 +/- 0.62 mg L(-1)), 46% NO3(-)-N (inlet 18.83 +/- 8.93 mg L(-1)) whereas PO4(3-)-P was not detected (inlet 1.41 +/- 0.21 mg L(-1)). Maximum salinity reductions of 52% were observed. Despite some growth inhibition, plants remained viable, with 94% survival rate. Daily treatment dynamics studies revealed rapid PO4(3-)-P adsorption, unbalancing the N:P ratio and possibly affecting plant development. An integrated treatment approach, coupled with biomass valorization, is suggested to provide optimal resource management possibilities.

  10. Modulation of superoxide dismutase (SOD) isozymes by organ development and high long-term salinity in the halophyte Cakile maritima.

    PubMed

    Houmani, Hayet; Rodríguez-Ruiz, Marta; Palma, José M; Abdelly, Chedly; Corpas, Francisco J

    2016-05-01

    Superoxide dismutase (SOD) activity catalyzes the disproportionation of superoxide radicals into hydrogen peroxide and oxygen. This enzyme is considered to be a first line of defense for controlling the production of reactive oxygen species (ROS). In this study, the number and type of SOD isozymes were identified in the principal organs (roots, stems, leaves, flowers, and seeds) of Cakile maritima. We also analyzed the way in which the activity of these SOD isozymes is modulated during development and under high long-term salinity (400 mM NaCl) stress conditions. The data indicate that this plant contains a total of ten SOD isozymes: two Mn-SODs, one Fe-SOD, and seven CuZn-SODs, with the Fe-SOD being the most prominent isozyme in the different organs analyzed. Moreover, the modulation of SOD isozymes, particularly CuZn-SODs, was only detected during development and under severe salinity stress conditions. These data suggest that, in C. maritima, the occurrence of these CuZn-SODs in roots and leaves plays an adaptive role since this CuZn-SOD isozyme might replace the diminished Fe-SOD activity under salinity stress to overcome this adverse environmental condition.

  11. Nature's patchwork: How water sources and soil salinity determine the distribution and structure of halophytic plant communities in arid environments of the Eastern Pamir

    PubMed Central

    Mętrak, Monika; Chachulski, Łukasz; Navruzshoev, Dovutsho; Pawlikowski, Paweł; Rojan, Elżbieta; Sulwiński, Marcin; Suska-Malawska, Małgorzata

    2017-01-01

    The eastern part of the Pamir Mountains, located in Central Asia, is characterized by great climatic continentality and aridity. Wetlands developed in this hostile region are restricted to spring areas, terraces of shallow lakes or floodplains along rivers, and provide diversified ecosystem services e.g. as water reservoirs, refugia for rare species and pastures for domestic cattle. These ecosystems are particularly susceptible to climate changes, that in the Pamir Mountains result in increased temperatures, intense permafrost/glacial melt and alterations of precipitation patterns. Climatic changes affect pasture management in the mountains, causing overutilization of sites located at lower elevations. Thus, both climate and man-induced disturbances may violate the existing ecological equilibrium in high-mountain wetlands of the Eastern Pamir, posing a serious risk to their biodiversity and to food security of the local population. In this context, we sought to assess how environmental drivers (with special focus on soil features and potential water sources) shape the distribution and diversity of halophytic plant communities developed in valleys in the Eastern Pamir. This task was completed by means of a vegetation survey and comprehensive analyses of habitat conditions. The lake terraces and floodplains studied were covered by a repetitive mosaic of plant communities determined by differences in soil moisture and salinity. On lower, wetter sites, this patchwork was formed by Blysmus rufus dominated salt marshes, saline small sedge meadows and saline meadows with Kobresia royleana and Primula pamirica; and on drier, elevated sites, by endemic grasslands with Hordeum brevisubulatum and Puccinellia species and patches of xerohalophytic vegetation. Continuous instability of water sources and summer droughts occurring in the Pamir Mountains may lead to significant structural and functional transformations of described wetland ecosystems. Species more tolerant to

  12. Nature's patchwork: How water sources and soil salinity determine the distribution and structure of halophytic plant communities in arid environments of the Eastern Pamir.

    PubMed

    Mętrak, Monika; Chachulski, Łukasz; Navruzshoev, Dovutsho; Pawlikowski, Paweł; Rojan, Elżbieta; Sulwiński, Marcin; Suska-Malawska, Małgorzata

    2017-01-01

    The eastern part of the Pamir Mountains, located in Central Asia, is characterized by great climatic continentality and aridity. Wetlands developed in this hostile region are restricted to spring areas, terraces of shallow lakes or floodplains along rivers, and provide diversified ecosystem services e.g. as water reservoirs, refugia for rare species and pastures for domestic cattle. These ecosystems are particularly susceptible to climate changes, that in the Pamir Mountains result in increased temperatures, intense permafrost/glacial melt and alterations of precipitation patterns. Climatic changes affect pasture management in the mountains, causing overutilization of sites located at lower elevations. Thus, both climate and man-induced disturbances may violate the existing ecological equilibrium in high-mountain wetlands of the Eastern Pamir, posing a serious risk to their biodiversity and to food security of the local population. In this context, we sought to assess how environmental drivers (with special focus on soil features and potential water sources) shape the distribution and diversity of halophytic plant communities developed in valleys in the Eastern Pamir. This task was completed by means of a vegetation survey and comprehensive analyses of habitat conditions. The lake terraces and floodplains studied were covered by a repetitive mosaic of plant communities determined by differences in soil moisture and salinity. On lower, wetter sites, this patchwork was formed by Blysmus rufus dominated salt marshes, saline small sedge meadows and saline meadows with Kobresia royleana and Primula pamirica; and on drier, elevated sites, by endemic grasslands with Hordeum brevisubulatum and Puccinellia species and patches of xerohalophytic vegetation. Continuous instability of water sources and summer droughts occurring in the Pamir Mountains may lead to significant structural and functional transformations of described wetland ecosystems. Species more tolerant to

  13. [Micirobial diversity and screening of antitumor activity of actinomycete strains from saline and alkaline environments in the Qinghai Province, P. R. China].

    PubMed

    Chen, Yi-Guang; Jiang, Yi; Li, Wen-Jun; Cui, Xiao-Long; Xu, Li-Hua

    2007-10-01

    Soil and sediment samples were collected from saline and alkaline soils or lakes in the Qinghai Province, northwestern China. 145 actinomycete strains were isolated using Glucose-Peptone-Yeast extract agar (GPY) and ISP medium 2 agar supplemented with 1.0 - 3.0 mol/L NaCl at pH 7.5 - 10. The antitumor activities in vitro of the fermentation broth extracts from the 145 test strains were detected in 6 human tumor cell lines (gastric cancer GXF251L, lung cancer LXFL529L, mammary cancer MAXF401NL, melanoma cancer MEXF462NL, renal cancer RXF486L and uterus cancer UXF1138L). Out of 145 test strains, 26 strains were positive in antitumor activities (17.9%), among them 19 strains belong to the genus Nocardiopsis, 7 strains belong to the genus Streptomyces. Then 8 antitumor-positive strains were submitted for 16S rRNA gene amplification and phylogenetic analysis after a comparison of antitumor activities, morphological, physiological characteristics and whole cell amino acids analysis. The results suggested that strain YIM 80139 is a member of a known Streptomyces species S. griseus, while strain YIM 80038 may represent a potential new Streptomyce species, and that the other 6 strains may represent 4 potential new species of the genus Nocardiopsis. The results presented above showed that actinomycetes isolated from saline and alkaline samples are important resources for bioactive compounds, and the abundant microbial diversity in the saline and alkaline environments in the Qinghai Province, Northwestern China is attractive for further investigation.

  14. Physiological mechanisms used by fish to cope with salinity stress.

    PubMed

    Kültz, Dietmar

    2015-06-01

    Salinity represents a critical environmental factor for all aquatic organisms, including fishes. Environments of stable salinity are inhabited by stenohaline fishes having narrow salinity tolerance ranges. Environments of variable salinity are inhabited by euryhaline fishes having wide salinity tolerance ranges. Euryhaline fishes harbor mechanisms that control dynamic changes in osmoregulatory strategy from active salt absorption to salt secretion and from water excretion to water retention. These mechanisms of dynamic control of osmoregulatory strategy include the ability to perceive changes in environmental salinity that perturb body water and salt homeostasis (osmosensing), signaling networks that encode information about the direction and magnitude of salinity change, and epithelial transport and permeability effectors. These mechanisms of euryhalinity likely arose by mosaic evolution involving ancestral and derived protein functions. Most proteins necessary for euryhalinity are also critical for other biological functions and are preserved even in stenohaline fish. Only a few proteins have evolved functions specific to euryhaline fish and they may vary in different fish taxa because of multiple independent phylogenetic origins of euryhalinity in fish. Moreover, proteins involved in combinatorial osmosensing are likely interchangeable. Most euryhaline fishes have an upper salinity tolerance limit of approximately 2× seawater (60 g kg(-1)). However, some species tolerate up to 130 g kg(-1) salinity and they may be able to do so by switching their adaptive strategy when the salinity exceeds 60 g kg(-1). The superior salinity stress tolerance of euryhaline fishes represents an evolutionary advantage favoring their expansion and adaptive radiation in a climate of rapidly changing and pulsatory fluctuating salinity. Because such a climate scenario has been predicted, it is intriguing to mechanistically understand euryhalinity and how this complex

  15. Remote sensing of salinity

    NASA Technical Reports Server (NTRS)

    Thomann, G. C.

    1975-01-01

    The complex dielectric constant of sea water is a function of salinity at 21 cm wavelength, and sea water salinity can be determined by a measurement of emissivity at 21 cm along with a measurement of thermodynamic temperature. Three aircraft and one helicopter experiments using two different 21 cm radiometers were conducted under different salinity and temperature conditions. Single or multiple ground truth measurements were used to calibrate the data in each experiment. It is inferred from these experiments that accuracies of 1 to 2%/OO are possible with a single surface calibration point necessary only every two hours if the following conditions are met--water temperatures above 20 C, salinities above 10%/OO, and level plane flight. More frequent calibration, constraint of the aircraft's orientation to the same as it was during calibration, and two point calibration (at a high and low salinity level) rather than single point calibration may give even better accuracies in some instances.

  16. Reduced salinity tolerance in the Arctic grayling (Thymallus arcticus) is associated with rapid development of a gill interlamellar cell mass: implications of high-saline spills on native freshwater salmonids

    PubMed Central

    Blair, Salvatore D.; Matheson, Derrick; He, Yuhe; Goss, Greg G.

    2016-01-01

    Arctic grayling (Thymallus arcticus) are salmonids that have a strict freshwater existence in post-glacial North America. Oil and gas development is associated with production of high volumes of hypersaline water. With planned industrial expansion into northern areas of Canada and the USA that directly overlap grayling habitat, the threat of accidental saline water release poses a significant risk. Despite this, we understand little about the responses of grayling to hypersaline waters. We compared the physiological responses and survivability of Arctic grayling and rainbow trout (Oncorhynchus mykiss) to tolerate an acute transfer to higher saline waters. Arctic grayling and rainbow trout were placed directly into 17 ppt salinity and sampled at 24 and 96 h along with control animals in freshwater at 24 h. Serum sodium, chloride and osmolality levels increased significantly in grayling at both 24 and 96 h time points, whereas trout were able to compensate for the osmoregulatory disturbance by 96 h. Sodium–potassium ATPase mRNA expression responses to salinity were also compared, demonstrating the inability of the grayling to up-regulate the seawater isoform nkaα1b. Our results demonstrated a substantially lower salinity tolerance in grayling. We also found a significant salinity-induced morphological gill remodelling by Arctic grayling, as demonstrated by the rapid growth of an interlamellar cell mass by 24 h that persisted at 96 h. We visualized and quantified the appearance of the interlamellar cell mass as a response to high salinity, although the functional significance remains to be understood fully. Compared with rainbow trout, which are used as an environmental regulatory species, Arctic grayling are unable to compensate for the osmotic stressors that would result from a highly saline produced water spill. Given these new data, collaboration between fisheries and the oil and gas industry will be vital in the long-term conservation strategies

  17. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment.

    PubMed

    Upadhyay, S K; Singh, D P

    2015-01-01

    Salt-tolerant plant growth-promoting rhizobacteria (ST-PGPR) significantly influence the growth and yield of wheat crops in saline soil. Wheat growth improved in pots with inoculation of all nine ST-PGPR (ECe = 4.3 dS·m(-1) ; greenhouse experiment), while maximum growth and dry biomass was observed in isolate SU18 Arthrobacter sp.; simultaneously, all ST-PGPR improved soil health in treated pot soil over controls. In the field experiment, maximum wheat root dry weight and shoot biomass was observed after inoculation with SU44 B. aquimaris, and SU8 B. aquimaris, respectively, after 60 and 90 days. Isolate SU8 B. aquimaris, induced significantly higher proline and total soluble sugar accumulation in wheat, while isolate SU44 B. aquimaris, resulted in higher accumulation of reducing sugars after 60 days. Percentage nitrogen (N), potassium (K) and phosphorus (P) in leaves of wheat increased significantly after inoculation with ST-PGPR, as compared to un-inoculated plants. Isolate SU47 B. subtilis showed maximum reduction of sodium (Na) content in wheat leaves of about 23% at both 60 and 90 days after sowing, and produced the best yield of around 17.8% more than the control. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Phytomonitoring the unique colonization of oil-contaminated saline environment by Limoniastrum monopetalum (L.) Boiss in Egypt.

    PubMed

    Hussein, Hussein S; Terry, Norman

    2002-04-01

    A site that covers over 20 acres of coastal saline depression in the western Mediterranean coastal desert of Egypt (El-Hammra station, the main crude oil pipeline terminal in Al-Alamein) is contaminated with crude oil spill as a result of activities from refineries, oilfield blowouts, tanker and pipeline break-ups. This area, prior to contamination, was dominated by different common halophytes. However, Limoniastrum monopetalum is now the only species found growing in the oil-contaminated soil. A specific question addressed in the present study was: what are the biochemical changes occurring in a desert plant growing in oil-contaminated soils? Major metabolites such as proline, betaine, free amino acids, fatty acid esters and mineral elements were studied. The plant samples were collected from the oil-contaminated, as well as noncontaminated, sites. The higher concentration in the selected organic metabolites in the plants growing in the contaminated site compared to those in noncontaminated site may be due to differences in a number of receptors. The sensitivity of such receptors for the environmental signal that cause differences in genetic expression leads to differences in physiological processes. The change in the landscape of the contaminated area and the elimination of the natural vegetation, except L. monopetalum, may explain the competitive balance toward the oil-resistant species.

  19. Evaluating abiotic influences on soil salinity of inland managed wetlands and agricultural croplands in a semi-arid environment

    USGS Publications Warehouse

    Fowler, D.; King, Sammy L.; Weindorf, David C.

    2014-01-01

    Agriculture and moist-soil management are important management techniques used on wildlife refuges to provide adequate energy for migrant waterbirds. In semi-arid systems, the accumulation of soluble salts throughout the soil profile can limit total production of wetland plants and agronomic crops and thus jeopardize meeting waterbird energy needs. This study evaluates the effect of distinct hydrologic regimes associated with moist-soil management and agricultural production on salt accumulation in a semi-arid floodplain. We hypothesized that the frequency of flooding and quantity of floodwater in a moist-soil management hydroperiod results in a less saline soil profile compared to profiles under traditional agricultural management. Findings showed that agricultural croplands differed (p-value < 0.001, df = 9) in quantities of total soluble salts (TSS) compared to moist-soil impoundments and contained greater concentrations (TSS range = 1,160-1,750 (mg kg-1)) at depth greater than 55 cm below the surface of the profile, while moist-soil impoundments contained lower concentrations (TSS range = 307-531 (mg kg-1)) at the same depths. Increased salts in agricultural may be attributed to the lack of leaching afforded by smaller summer irrigations while larger periodic flooding events in winter and summer flood irrigations in moist-soil impoundments may serve as leaching events.

  20. The Pepper Lipoxygenase CaLOX1 Plays a Role in Osmotic, Drought and High Salinity Stress Response.

    PubMed

    Lim, Chae Woo; Han, Sang-Wook; Hwang, In Sun; Kim, Dae Sung; Hwang, Byung Kook; Lee, Sung Chul

    2015-05-01

    In plants, lipoxygenases (LOXs) are involved in various physiological processes, including defense responses to biotic and abiotic stresses. Our previous study had shown that the pepper 9-LOX gene, CaLOX1, plays a crucial role in cell death due to pathogen infection. Here, the function of CaLOX1 in response to osmotic, drought and high salinity stress was examined using CaLOX1-overexpressing (CaLOX1-OX) Arabidopsis plants. Changes in the temporal expression pattern of the CaLOX1 gene were observed when pepper leaves were treated with drought and high salinity, but not when treated with ABA, the primary hormone in response to drought stress. During seed germination and seedling development, CaLOX1-OX plants were more tolerant to ABA, mannitol and high salinity than wild-type plants. In contrast, expression of the ABA-responsive marker genes RAB18 and RD29B was higher in CaLOX1-OX Arabidopsis plants than in wild-type plants. In response to high salinity, CaLOX1-OX plants exhibited enhanced tolerance, compared with the wild type, which was accompanied by decreased accumulation of H2O2 and high levels of RD20, RD29A, RD29B and P5CS gene expression. Similarly, CaLOX1-OX plants were also more tolerant than wild-type plants to severe drought stress. H2O2 production and the relative increase in lipid peroxidation were lower, and the expression of COR15A, DREB2A, RD20, RD29A and RD29B was higher in CaLOX1-OX plants, relative to wild-type plants. Taken together, our results indicate that CaLOX1 plays a crucial role in plant stress responses by modulating the expression of ABA- and stress-responsive marker genes, lipid peroxidation and H2O2 production. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Measurement of the Streaming Potential Coupling Coefficient in Sandstones Saturated with High Salinity Natural and Artificial Brines at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Vinogradov, J.; Jackson, M.

    2013-12-01

    Streaming potentials are generated by the flow of water through porous rock, and measurements of the streaming potential component of the self-potential (SP) have been proposed to monitor subsurface flow in a number of settings. Interpretation of SP measurements is made easier by an understanding of the coupling between the fluid flow and associated SP current sources, typically characterised using either the streaming potential coupling coefficient (C, in VPa-1) or the excess charge transported by the flow (Q, in Cm-3). Numerous studies report laboratory measurements of the streaming potential coupling coefficient in intact rock samples of various lithology and mineralogy at laboratory temperature. However, in many subsurface settings, such as deep saline aquifers, geothermal fields, and hydrocarbon reservoirs, temperatures are considerably higher. Yet published measurements of streaming potential at elevated temperature are sparse, and the temperature dependence of the streaming potential coupling coefficient and associated zeta potential exhibits contradictory and inconsistent behaviour. Moreover, the measurements were obtained using simple NaCl or KCl electrolytes at relatively low concentration (typically up to one tenth of seawater salinity) but natural brines are often significantly more saline and contain a wide variety of ionic species. We report measurements of the streaming potential on intact sandstone core samples saturated with high salinity natural and artificial brines at elevated temperatures. We measure streaming potential using an experimental set-up that incorporates in-situ measurements of saturated rock conductivity, brine temperature, pressure difference and voltage at temperatures up to 160oC. At temperatures below 100oC we also measure the brine pH and electrical conductivity. Using constant rate pumping we obtain the streaming potential coupling coefficient from the gradient of a linear relationship between pressure and voltage difference

  2. High Radiation Environment Nuclear Fragment Separator Magnet

    SciTech Connect

    Kahn, Stephen; Gupta, Ramesh

    2016-01-31

    Superconducting coils wound with HTS conductor can be used in magnets located in a high radiation environment. NbTi and Nb3Sn superconductors must operate at 4.5 K or below where removal of heat is less efficient. The HTS conductor can carry significant current at higher temperatures where the Carnot efficiency is significantly more favorable and where the coolant heat capacity is much larger. Using the HTS conductor the magnet can be operated at 40 K. This project examines the use of HTS conductor for the Michigan State University Facility For Rare Isotope Beams (FRIB) fragment separator dipole magnet which bends the beam by 30° and is located in a high radiation region that will not be easily accessible. Two of these magnets are needed to select the chosen isotope. There are a number of technical challenges to be addressed in the design of this magnet. The separator dipole is 2 m long and subtends a large angle. The magnet should keep a constant transverse field profile along its beam reference path. Winding coils with a curved inner segment is difficult as the conductor will tend to unwind during the process. In the Phase I project two approaches to winding the conductor were examined. The first was to wind the coils with curved sections on the inner and outer segments with the inner segment wound with negative curvature. The alternate approach was to use a straight segment on the inner segment to avoid negative curvature. In Phase I coils with a limited number of turns were successfully wound and tested at 77 K for both coil configurations. The Phase II program concentrated on the design, coil winding procedures, structural analysis, prototyping and testing of an HTS curved dipole coil at 40 K with a heat load representative of the radiation environment. One of the key criteria of the design of this magnet is to avoid the use of organic materials that would degrade rapidly in radiation. The Lorentz forces expected from the coils interacting with the

  3. The Cluster Environment of High Mass Protostars

    NASA Astrophysics Data System (ADS)

    Moriarty, John C.; Smith, H. A.; Campbell, M. F.; Hora, J. L.; Marengo, M.; Sridharan, T. K.; Pillai, T.; Robitaille, T. P.; Fazio, G. G.; Molinari, S.

    2010-01-01

    We present images and some initial results from Spitzer IRAC and MIPS observations of 49 candidate high mass protostellar objects (HMPOs) and their surrounding environments. These candidate HMPOs are objects in the lists assembled by Sridharan et al (2002) and Molinari et al (1996) that were not covered by the GLIMPSE, GLIMPSEII and MIPSGAL surveys, with a few additions. Our sample has the advantage of longer exposure times than the GLIMPSE and MIPSGAL surveys. The images were reduced and photometry was performed using IRACproc (Schuster et al 2006). Color-color and color-magnitude criteria adopted from Gutermuth et al (2009), were used to identify candidate class0/I and classII protostars around each of the HMPO candidates. We present IRAS09131-4723 as an example of this analysis. It revealed 22 class0/I and 59 classII protostars distributed around IRAS 09131-4723. We plan to search the library of models presented by Robitaille et al (2007) for each class0/I/II candidate found, and use the parameters taken from the best fitting models to test the classifications obtained from the color-color analysis. We also plan to study the clustering of low mass protostars around the HMPOs. Gutermuth, R. A., et al, 2009 ApJS, 184, 18; Molinari, S. et al 1996 A&A 308, 573; Robitaille, T. P., et al, ApJS, 169, 328; Schuster M. T., Marengo, M., Patten, B. M. 2006, SPIE, 6270, 627020; Sridharan, T. K., et al, ApJ, 566, 931

  4. Improved methylene blue two-phase titration method for determining cationic surfactant concentration in high-salinity brine.

    PubMed

    Cui, Leyu; Puerto, Maura; López-Salinas, José L; Biswal, Sibani L; Hirasaki, George J

    2014-11-18

    The methylene blue (MB) two-phase titration method is a rapid and efficient method for determining the concentrations of anionic surfactants. The point at which the aqueous and chloroform phases appear equally blue is called Epton's end point. However, many inorganic anions, e.g., Cl(-), NO3(-), Br(-), and I(-), can form ion pairs with MB(+) and interfere with Epton's end point, resulting in the failure of the MB two-phase titration in high-salinity brine. Here we present a method to extend the MB two-phase titration method for determining the concentration of various cationic surfactants in both deionized water and high-salinity brine (22% total dissolved solid). A colorless end point, at which the blue color is completely transferred from the aqueous phase to the chloroform phase, is proposed as titration end point. Light absorbance at the characteristic wavelength of MB is measured using a spectrophotometer. When the absorbance falls below a threshold value of 0.04, the aqueous phase is considered colorless, indicating that the end point has been reached. By using this improved method, the overall error for the titration of a permanent cationic surfactant, e.g., dodecyltrimethylammonium bromide, in deionized (DI) water and high-salinity brine is 1.274% and 1.322% with limits of detection (LOD) of 0.149 and 0.215 mM, respectively. Compared to the traditional acid-base titration method, the error of this improved method for a switchable cationic surfactant, e.g., tertiary amine surfactant (Ethomeen C12), is 2.22% in DI water and 0.106% with LOD of 0.369 and 0.439 mM, respectively.

  5. Sub-Surface Currents and High-Salinity Intrusions in the Southern Bay of Bengal during the Northeast Monsoon

    NASA Astrophysics Data System (ADS)

    Wijesekera, H. W.; Jarosz, E.; Teague, W. J.; Jensen, T. G.; Metzger, E. J.; Jinadasa, S. U. P.; Arulananthan, K.; Centurioni, L.; Fernando, H.

    2014-12-01

    Shipboard velocity and CTD profiles collected in December 2013 from the R/V Roger Revelle along with satellite and drifter observations, and HYCOM nowcasts and COAMPS simulations show movement of sub-surface high-salinity intrusions into the Bay of Bengal (BoB) during the northeast monsoon. These observations were made as part of the Naval Research Laboratory research program titled "The Effects of Bay of Bengal Freshwater Flux on Indian Ocean Monsoon (EBOB)" and the Office of Naval Research (ONR) DRI titled "The Air-Sea Interaction in the Northern Indian Ocean (ASIRI)". A major objective of ASIRI-EBOB program is to understand and to quantify dynamical processes and boundary transports that control fresh and salt water exchanges between the BoB and the Arabian Sea. The transects of currents collected from shipboard ADCPs in the southern BoB, southeast of Sri Lanka, along 5.25°N in December show a southeastward flowing, surface intensified boundary current (referred to as the East India Coastal Current (EICC)) in the upper 75 m with speeds as large as 1.6 m/s at 21 m depth. Outside the EICC, a sub-surface intensified, northward moving, 300 km wide current with strongest velocities as high as 1 m/s near 50-75 m depth was observed. The near surface currents derived from AVISO altimeter and drifter records show quantitatively similar flow patterns. Numerical models produce qualitatively similar flow fields. The combined observations and model results indicate that the EICC moves low-salinity water out of the BoB while the sub-surface current carries high-salinity water into the BoB.

  6. Coupled measurement of δ18O/δD in gypsum hydration water and salinity of fluid inclusions in gypsum: A novel tool for reconstructing parent water chemistry and depositional environment

    NASA Astrophysics Data System (ADS)

    Evans, Nick; Gázquez, Fernando; Turchyn, Alexandra; Chapman, Hazel; Hodell, David

    2015-04-01

    > 23.3o ; 11.3 > δ18OSO4 > 14.5o) and strontium isotopes (0.708942 > 87Sr/86Sr > 0.708971) that are similar to those measured in other Messinian evaporites of the Mediterranean. We suggest sulfate and strontium isotopes are relatively insensitive to freshwater influence because of the high concentrations of sulfate and strontium in seawater. The cyclic alternation of gypsum and marl in the Yesares Member has been interpreted as reflecting changing climate related to Earth's precession cycle, but to date direct evidence linking depositional environment and orbital forcing has been lacking. We demonstrate that the δ18O, δD and salinity of the parent brine increased from low values at the base of the cycle to a maximum in the massive gypsum palisade, and decreased again to lower values in the supercones at the top of the cycle. This pattern is consistent with precession-driven changes in climate with wetter conditions during precession minima (insolation maxima) associated with the interbedded marls and drier climate during gypsum precipitation with the driest conditions during the precession maxima (insolation minima) associated with gypsum palisade formation.

  7. Salinity Energy.

    ERIC Educational Resources Information Center

    Schmitt, Walter R.

    1987-01-01

    Discussed are the costs of deriving energy from the earth's natural reserves of salt. Argues that, as fossil fuel supplies become more depleted in the future, the environmental advantages of salinity power may prove to warrant its exploitation. (TW)

  8. Salinity Energy.

    ERIC Educational Resources Information Center

    Schmitt, Walter R.

    1987-01-01

    Discussed are the costs of deriving energy from the earth's natural reserves of salt. Argues that, as fossil fuel supplies become more depleted in the future, the environmental advantages of salinity power may prove to warrant its exploitation. (TW)

  9. Influence of high salinity on biofilm formation and benzoate assimilation by Pseudomonas aeruginosa.

    PubMed

    Bazire, Alexis; Diab, Farès; Jebbar, Mohamed; Haras, Dominique

    2007-01-01

    Pseudomonas species were used in bioremediation technologies. In situ conditions, such as marine salinity, could limit the degradation of hydrocarbons and aromatic compounds by the bacteria. Biofilm ability to tolerate environmental stress could be used to increase biorestoration. In this report, we used scanning confocal laser microscopy and microtiter dish assay to analyse the impact of hyperosmotic stress on biofilm formation by Pseudomonas aeruginosa. We used benzoate as the sole carbon source and the effect of the stress on its degradation was also studied. Hyperosmotic shock inhibited the biofilm development and decreased the degradation of benzoate. The osmoprotectant glycine betaine partially restored both the biofilm formation and benzoate degradation, suggesting that it could be used as a complement in bioremediation processes.

  10. Effect of CMC on the stability of ZnO nanofluid at high temperature and salinity

    NASA Astrophysics Data System (ADS)

    Adil, Muhammad; Zaid, Hasnah Mohd; Chuan, Lee Kean; Latiff, Noor Rasyada Ahmad

    2016-11-01

    In this research, the critical micellar concentration (CMC) of different anionic surfactants was determined by employing the UV-Vis spectroscopic technique. The CMC is crucial to evaluate the adsorption of anionic surfactant on a surface of charged metal oxide (i.e. zinc oxide), to prepare a stable nanofluid for different applications including enahced oil recovery (EOR). Three anionic surfactants (sodium dodecyl sulfate, sodium dodecylbenzenesulfonate and oleic acid) were studied in this research. The amount of CMC was determined in the deionized water and brine solution, using the values from the data extracted from the graph between absorbance and concentration of surfactants. A comparative study was also conducted based on CMC results that shows a good agreement between the present research and the literature. In addition, the effect of temperature on CMC value was also examined which provide a better stability of ZnO nanofluid in the high-temperature environment. The overall result reveals that with an addition of salt to the anionic surfactant, repulsive force increases which lead to a decrease in the CMC value. Whereas with the increase in temperature the free energy of the system is affected the result in an additional decline in CMC. However, this decrease is higher in a case of SDS and relatively lower in the case of SDBS and oleic acid. These results suggest that CMC play a significant role to tailor a stable dispersion, to match the conditions of the corresponding application.

  11. Endolithic Halophiles Found in Evaporite Salts on Tibet Plateau as a Potential Analog for Martian Life in Saline Environment

    NASA Astrophysics Data System (ADS)

    Kong, F. J.; Zheng, M. P.; Wang, A. L.; Ma, N. N.

    2009-03-01

    Mg-sulfates was found within salt deposits of the Da Langtan playa on Tibet plateau, similar as those found on Mars. Halophiles were isolated from the evaporative salts in the environment for analogs of the search for martian life in subsurface.

  12. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase.

    PubMed

    Ali, Shimaila; Charles, Trevor C; Glick, Bernard R

    2014-07-01

    Plant growth and productivity is negatively affected by soil salinity. However, it is predicted that plant growth-promoting bacterial (PGPB) endophytes that contain 1-aminocyclopropane-1-carboxylate (ACC) deaminase (E.C. 4.1.99.4) can facilitate plant growth and development in the presence of a number of different stresses. In present study, the ability of ACC deaminase containing PGPB endophytes Pseudomonas fluorescens YsS6, Pseudomonas migulae 8R6, and their ACC deaminase deficient mutants to promote tomato plant growth in the absence of salt and under two different levels of salt stress (165 mM and 185 mM) was assessed. It was evidence that wild-type bacterial endophytes (P. fluorescens YsS6 and P. migulae 8R6) promoted tomato plant growth significantly even in the absence of stress (salinity). Plants pretreated with wild-type ACC deaminase containing endophytic strains were healthier and grew to a much larger size under high salinity stress compared to plants pretreated with the ACC deaminase deficient mutants or no bacterial treatment (control). The plants pretreated with ACC deaminase containing bacterial endophytes exhibit higher fresh and dry biomass, higher chlorophyll contents, and a greater number of flowers and buds than the other treatments. Since the only difference between wild-type and mutant bacterial endophytes was ACC deaminase activity, it is concluded that this enzyme is directly responsible for the different behavior of tomato plants in response to salt stress. The use of PGPB endophytes with ACC deaminase activity has the potential to facilitate plant growth on land that is not normally suitable for the majority of crops due to their high salt contents.

  13. Processes influencing formation of low-salinity high-biomass lenses near the edge of the Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Li, Yizhen; McGillicuddy, Dennis J.; Dinniman, Michael S.; Klinck, John M.

    2017-02-01

    Both remotely sensed and in situ observations in austral summer of early 2012 in the Ross Sea suggest the presence of cold, low-salinity, and high-biomass eddies along the edge of the Ross Ice Shelf (RIS). Satellite measurements include sea surface temperature and ocean color, and shipboard data sets include hydrographic profiles, towed instrumentation, and underway acoustic Doppler current profilers. Idealized model simulations are utilized to examine the processes responsible for ice shelf eddy formation. 3-D model simulations produce similar cold and fresh eddies, although the simulated vertical lenses are quantitatively thinner than observed. Model sensitivity tests show that both basal melting underneath the ice shelf and irregularity of the ice shelf edge facilitate generation of cold and fresh eddies. 2-D model simulations further suggest that both basal melting and downwelling-favorable winds play crucial roles in forming a thick layer of low-salinity water observed along the edge of the RIS. These properties may have been entrained into the observed eddies, whereas that entrainment process was not captured in the specific eddy formation events studied in our 3-D model-which may explain the discrepancy between the simulated and observed eddies, at least in part. Additional sensitivity experiments imply that uncertainties associated with background stratification and wind stress may also explain why the model underestimates the thickness of the low-salinity lens in the eddy interiors. Our study highlights the importance of incorporating accurate wind forcing, basal melting, and ice shelf irregularity for simulating eddy formation near the RIS edge. The processes responsible for generating the high phytoplankton biomass inside these eddies remain to be elucidated.

  14. Efficiency influence of exogenous betaine on anaerobic sequencing batch biofilm reactor treating high salinity mustard tuber wastewater.

    PubMed

    He, Qiang; Kong, Xiang-Juan; Chai, Hong-Xiang; Fan, Ming-Yu; Du, Jun

    2012-01-01

    When treating a composite mustard tuber wastewater with high concentrations of salt (about 20 g Cl(-) L(-1)) and organics (about 8000 mg L(-1) COD) by an anaerobic sequencing batch biofilm reactor (ASBBR) in winter, both high salinity and low temperature will inhibit the activity of anaerobic microorganisms and lead to low treatment efficiency. To solve this problem, betaine was added to the influent to improve the activity of the anaerobic sludge, and an experimental study was carried to investigate the influence of betaine on treating high salinity mustard tuber wastewater by the ASBBR. The results show that, when using anaerobic acclimated sludge in the ASBBR, and controlling biofilm density at 50% and water temperature at 8-12 degrees C, the treatment efficiency of the reactor could be improved by adding the betaine at different concentrations. The efficiency reached the highest when the optimal dosage ofbetaine was 0.5 mmol L(-1). The average effluent COD, after stable acclimation, was 4461 mg L(-1). Relative to ASBBR without adding betaine, the activity of the sludge increased significantly. Meanwhile, the dehydrogenase activity of anaerobic microorganisms and the COD removal efficiency were increased by 18.6% and 18.1%, respectively.

  15. Changes in the bacterial populations of the highly alkaline saline soil of the former lake Texcoco (Mexico) following flooding.

    PubMed

    Valenzuela-Encinas, César; Neria-González, Isabel; Alcántara-Hernández, Rocio J; Estrada-Alvarado, Isabel; Zavala-Díaz de la Serna, Francisco Javier; Dendooven, Luc; Marsch, Rodolfo

    2009-07-01

    Flooding an extreme alkaline-saline soil decreased alkalinity and salinity, which will change the bacterial populations. Bacterial 16S rDNA libraries were generated of three soils with different electrolytic conductivity (EC), i.e. soil with EC 1.7 dS m(-1) and pH 7.80 (LOW soil), with EC 56 dS m(-1) and pH 10.11 (MEDIUM soil) and with EC 159 dS m(-1) and pH 10.02 (HIGH soil), using universal bacterial oligonucleotide primers, and 463 clone 16S rDNA sequences were analyzed phylogenetically. Library proportions and clone identification of the phyla Proteobacteria, Actinobacteria, Acidobacteria, Cyanobacteria, Bacteroidetes, Firmicutes and Cloroflexi showed that the bacterial communities were different. Species and genera of the Rhizobiales, Rhodobacterales and Xanthomonadales orders of the alpha- and gamma-subdivision of Proteobacteria were found at the three sites. Species and genera of the Rhodospirillales, Sphingobacteriales, Clostridiales, Oscillatoriales and Caldilineales were found only in the HIGH soil, Sphingomonadales, Burkholderiales and Pseudomonadales in the MEDIUM soil, Myxococcales in the LOW soil, and Actinomycetales in the MEDIUM and LOW soils. It was found that the largest diversity at the order and species level was found in the MEDIUM soil as bacteria of both the HIGH and LOW soils were found in it.

  16. NOvel Refractory Materials for High Alkali, High Temperature Environments

    SciTech Connect

    Hemrick, J.G.; Griffin, R.

    2011-08-30

    Refractory materials can be limited in their application by many factors including chemical reactions between the service environment and the refractory material, mechanical degradation of the refractory material by the service environment, temperature limitations on the use of a particular refractory material, and the inability to install or repair the refractory material in a cost effective manner or while the vessel was in service. The objective of this project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al2O3 spinel or other similar magnesia/alumina containing unshaped refractory composition (castables, gunnables, shotcretes, etc) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, highalkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. A research team was formed to carry out the proposed work led by Oak Ridge National Laboratory (ORNL) and was comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The two goals of this project were to produce novel refractory compositions which will allow for improved energy efficiency and to develop new refractory application techniques which would improve the speed of installation. Also methods of hot installation were sought which would allow for hot repairs and on-line maintenance leading to reduced process downtimes and eliminating the need to cool and reheat process vessels.

  17. Bulk Moisture and Salinity Sensor

    NASA Technical Reports Server (NTRS)

    Nurge, Mark; Monje, Oscar; Prenger, Jessica; Catechis, John

    2013-01-01

    Measurement and feedback control of nutrient solutions in plant root zones is critical to the development of healthy plants in both terrestrial and reduced-gravity environments. In addition to the water content, the amount of fertilizer in the nutrient solution is important to plant health. This typically requires a separate set of sensors to accomplish. A combination bulk moisture and salinity sensor has been designed, built, and tested with different nutrient solutions in several substrates. The substrates include glass beads, a clay-like substrate, and a nutrient-enriched substrate with the presence of plant roots. By measuring two key parameters, the sensor is able to monitor both the volumetric water content and salinity of the nutrient solution in bulk media. Many commercially available moisture sensors are point sensors, making localized measurements over a small volume at the point of insertion. Consequently, they are more prone to suffer from interferences with air bubbles, contact area of media, and root growth. This makes it difficult to get an accurate representation of true moisture content and distribution in the bulk media. Additionally, a network of point sensors is required, increasing the cabling, data acquisition, and calibration requirements. measure the dielectric properties of a material in the annular space of the vessel. Because the pore water in the media often has high salinity, a method to measure the media moisture content and salinity simultaneously was devised. Characterization of the frequency response for capacitance and conductance across the electrodes was completed for 2-mm glass bead media, 1- to 2-mm Turface (a clay like media), and 1- to 2-mm fertilized Turface with the presence of root mass. These measurements were then used to find empirical relationships among capacitance (C), the dissipation factor (D), the volumetric water content, and the pore water salinity.

  18. Characterization of the Prokaryotic Diversity in Cold Saline Perennial Springs of the Canadian High Arctic▿

    PubMed Central

    Perreault, Nancy N.; Andersen, Dale T.; Pollard, Wayne H.; Greer, Charles W.; Whyte, Lyle G.

    2007-01-01

    The springs at Gypsum Hill and Colour Peak on Axel Heiberg Island in the Canadian Arctic originate from deep salt aquifers and are among the few known examples of cold springs in thick permafrost on Earth. The springs discharge cold anoxic brines (7.5 to 15.8% salts), with a mean oxidoreduction potential of −325 mV, and contain high concentrations of sulfate and sulfide. We surveyed the microbial diversity in the sediments of seven springs by denaturing gradient gel electrophoresis (DGGE) and analyzing clone libraries of 16S rRNA genes amplified with Bacteria and Archaea-specific primers. Dendrogram analysis of the DGGE banding patterns divided the springs into two clusters based on their geographic origin. Bacterial 16S rRNA clone sequences from the Gypsum Hill library (spring GH-4) were classified into seven phyla (Actinobacteria, Bacteroidetes, Firmicutes, Gemmatimonadetes, Proteobacteria, Spirochaetes, and Verrucomicrobia); Deltaproteobacteria and Gammaproteobacteria sequences represented half of the clone library. Sequences related to Proteobacteria (82%), Firmicutes (9%), and Bacteroidetes (6%) constituted 97% of the bacterial clone library from Colour Peak (spring CP-1). Most GH-4 archaeal clone sequences (79%) were related to the Crenarchaeota while half of the CP-1 sequences were related to orders Halobacteriales and Methanosarcinales of the Euryarchaeota. Sequences related to the sulfur-oxidizing bacterium Thiomicrospira psychrophila dominated both the GH-4 (19%) and CP-1 (45%) bacterial libraries, and 56 to 76% of the bacterial sequences were from potential sulfur-metabolizing bacteria. These results suggest that the utilization and cycling of sulfur compounds may play a major role in the energy production and maintenance of microbial communities in these unique, cold environments. PMID:17220254

  19. Characterization of the prokaryotic diversity in cold saline perennial springs of the Canadian high Arctic.

    PubMed

    Perreault, Nancy N; Andersen, Dale T; Pollard, Wayne H; Greer, Charles W; Whyte, Lyle G

    2007-03-01

    The springs at Gypsum Hill and Colour Peak on Axel Heiberg Island in the Canadian Arctic originate from deep salt aquifers and are among the few known examples of cold springs in thick permafrost on Earth. The springs discharge cold anoxic brines (7.5 to 15.8% salts), with a mean oxidoreduction potential of -325 mV, and contain high concentrations of sulfate and sulfide. We surveyed the microbial diversity in the sediments of seven springs by denaturing gradient gel electrophoresis (DGGE) and analyzing clone libraries of 16S rRNA genes amplified with Bacteria and Archaea-specific primers. Dendrogram analysis of the DGGE banding patterns divided the springs into two clusters based on their geographic origin. Bacterial 16S rRNA clone sequences from the Gypsum Hill library (spring GH-4) were classified into seven phyla (Actinobacteria, Bacteroidetes, Firmicutes, Gemmatimonadetes, Proteobacteria, Spirochaetes, and Verrucomicrobia); Deltaproteobacteria and Gammaproteobacteria sequences represented half of the clone library. Sequences related to Proteobacteria (82%), Firmicutes (9%), and Bacteroidetes (6%) constituted 97% of the bacterial clone library from Colour Peak (spring CP-1). Most GH-4 archaeal clone sequences (79%) were related to the Crenarchaeota while half of the CP-1 sequences were related to orders Halobacteriales and Methanosarcinales of the Euryarchaeota. Sequences related to the sulfur-oxidizing bacterium Thiomicrospira psychrophila dominated both the GH-4 (19%) and CP-1 (45%) bacterial libraries, and 56 to 76% of the bacterial sequences were from potential sulfur-metabolizing bacteria. These results suggest that the utilization and cycling of sulfur compounds may play a major role in the energy production and maintenance of microbial communities in these unique, cold environments.

  20. Oxygen-limited autotrophic nitrification-denitrification (OLAND) in a rotating biological contactor treating high-salinity wastewater.

    PubMed

    Windey, Kim; De Bo, Inge; Verstraete, Willy

    2005-11-01

    A lab-scale rotating biological contactor (RBC) reactor operated under OLAND conditions was slowly adapted during 178 days to increasing salt concentrations going up to 30 g NaCl L(-1). The reactor performed well during this experimental period. However, the removal capacity of the reactor was lower under high-salinity conditions. A removal efficiency of 84% was achieved at a N loading rate of 725 mg N L(-1) d(-1) and a salt concentration of 30 g L(-1). The effect of salt shock loading and adaptation to 30 g NaCl L(-1) on the specific nitritation and anammox activity of the biomass was investigated in short-term batch experiments. A salt shock loading of 30 g L(-1) caused a 43% decrease in specific nitritation activity and 96% loss of specific anammox activity compared to reference biomass (not exposed to salt). The salt-adapted biomass (3-4 weeks) showed a specific nitritation activity that was 23% lower, and a specific anammox activity that was 58% lower, compared to the reference biomass. Overall, these results demonstrate that the OLAND process can have the potential to treat ammonium-rich brines after adaptation to high salinity.

  1. Assessment of desalination technologies for treatment of a highly saline brine from a potential CO2 storage site

    DOE PAGES

    Kaplan, Ruth; Mamrosh, Darryl; Salih, Hafiz H.; ...

    2016-11-12

    Brine extraction is a promising strategy for the management of increased reservoir pressure, resulting from carbon dioxide (CO2) injection in deep saline reservoirs. The extracted brines usually have high concentrations of total dissolved solids (TDS) and various contaminants, and require proper disposal or treatment. In this article, first by conducting a critical review, we evaluate the applicability, limits, and advantages or challenges of various commercially available and emerging desalination technologies that can potentially be employed to treat the highly saline brine (with TDS values >70.000 ppm) and those that are applicable to a ~200,000 ppm TDS brine extracted from themore » Mt. Simon Sandstone, a potential CO2 storage site in Illinois, USA. Based on the side-by-side comparison of technologies, evaporators are selected as the most suitable existing technology for treating Mt. Simon brine. Process simulations are then conducted for a conceptual design for desalination of 454 m3/h (2000 gpm) pretreated brine for near-zero liquid discharge by multi-effect evaporators. In conclusion, the thermal energy demand is estimated at 246kWh perm3 of recoveredwater, ofwhich 212kWh/m3 is required for multiple-effect evaporation and the remainder for salt drying. The process also requires additional electrical power of ~2 kWh/m3.« less

  2. Isolation and in silico analysis of promoter of a high salinity stress-regulated pea DNA helicase 45.

    PubMed

    Tajrishi, Marjan M; Tuteja, Narendra

    2011-10-01

    Helicases are motor proteins that can transiently catalyze the unwinding of energetically stable duplex DNA or RNA molecules by using ATP hydrolysis as the source of energy. Many helicases share a core region of highly conserved sequence motifs, and belong to the rapidly growing DEAD-box protein family. Pea DNA helicase 45 (PDH45), that exhibits striking homology with eukaryotic translation initiation factor 4A (eIF4A), contains ATP-dependent DNA and RNA helicase, DNA-dependent ATPase, and ATP-binding activities. The transcript of the PDH45 gene was reported to be upregulated in pea plant in response to high salinity, cold stress, abscisic acid (ABA), dehydration and early wounding. The first direct evidence that overexpression of PDH45 confers salinity stress tolerance without yield loss has also been reported. A promoter analysis of PDH45 gene has not been studied. The cis-regulatory elements present on promoter region of the gene act as binding sites for RNA polymerase and transcription factors and control the regulation of gene expression. Here we report the promoter of the PDH45 gene that contains stress-responsive cis-regulatory elements which may be responsible for regulating the expression of PDH45 under abiotic stress conditions.

  3. The efficiency of CO2 sequestration via carbonate mineralization with simulated wastewaters of high salinity.

    PubMed

    Mignardi, S; De Vito, C; Ferrini, V; Martin, R F

    2011-07-15

    Salinity generally strongly affects the solubility of carbon dioxide in aqueous solution. This would seem to involve a reduction of the efficiency of the carbonate mineralization process with the objective to sequester this greenhouse gas. On the contrary, we demonstrate here that with a more concentrated solution of magnesium chloride, the residence time of CO(2) is enhanced in the aqueous medium because of a reduced tendency to produce CO(2(g)). Experiments intended to simulate more closely the Mg-rich wastewaters that are industrially available have been carried out using solutions differing in Mg concentration (7, 16, 32 g L(-1) Mg). A comparison of the efficiency of the CO(2) mineralization process among sets of experiments shows that the reduction of the efficiency, to about 65%, was lower than that expected, as the low degree of CO(2) degassing results in the enhanced availability of carbonic ions to react with Mg ions to form stable carbonate minerals over a longer time. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Microbial degradation of phenol in high-salinity solutions in suspensions and hollow fiber membrane contactors.

    PubMed

    Juang, Ruey-Shin; Wu, Cheng-Ying

    2007-01-01

    A microporous polypropylene (PP) hollow fiber membrane contactor was used as a bioreactor to degrade phenol in aqueous solutions by Pseudomonas putida BCRC 14365 at 30 degrees C. The fibers were pre-wetted by ethanol to make them more hydrophilic. The initial cell density was fixed at 0.025 gl(-1). The effects of added NaCl concentration (0-1.78 M) and pH (3-8) in substrate solution on the biodegradation were studied. The experimental results by suspended cells were discussed. It was shown that the cells in microporous hollow fibers were unable to tolerate substrate solution pH to a larger range than those in suspensions. The suspended cells grew well on 100 mg l(-1) of phenol only at NaCl concentrations below 0.44 M. However, the cells in microporous hollow fibers could completely degrade 500 mg l(-1) of phenol in solutions containing NaCl concentration up to 1.52 M, which was due to the enhanced tolerance limit to salinity effect by the membrane-attached biofilms and the sufficiently slow mass transfer of NaCl through the membrane pores.

  5. Forsterite dissolution in saline water at elevated temperature and high CO2 pressure.

    PubMed

    Wang, Fei; Giammar, Daniel E

    2013-01-02

    The rates and mechanisms of magnesium silicate dissolution can control the aqueous chemistry in ways that influence carbonate mineral precipitation during geologic carbon sequestration (GCS). A series of batch experiments was performed with forsterite (Mg(1.81)Fe(0.19)SiO(4)) powder to determine the effects of pressure (10-100 bar CO(2)), temperature (25-100 °C), and salinity (0-50,000 mg/L NaCl) on its dissolution rate at conditions relevant to GCS. Dissolution rates and products were determined by analysis of the aqueous phase, equilibrium and reaction path modeling, and solid phase characterization by scanning electron microscopy and X-ray diffraction. After an initially rapid dissolution period, the dissolution rate declined significantly, an effect that is attributed to the formation of a silica-rich layer at the forsterite surface. The initial dissolution rate increased with increasing temperature and increasing CO(2) pressure; the effect of CO(2) was through its influence on the pH. The dissolution rate was enhanced by NaCl, which may have been due to its inhibition of the formation of a silica-rich surface layer. The experimental results provide information about magnesium silicate dissolution at conditions that will be encountered during GCS that can be used to predict the fate of CO(2) and the evolution of subsurface geochemistry following CO(2) injection.

  6. Increasing Gas Hydrate Formation Temperature for Desalination of High Salinity Produced Water with Secondary Guests

    SciTech Connect

    Cha, Jong-Ho; Seol, Yongkoo

    2013-10-07

    We suggest a new gas hydrate-based desalination process using water-immiscible hydrate formers; cyclopentane (CP) and cyclohexane (CH) as secondary hydrate guests to alleviate temperature requirements for hydrate formation. The hydrate formation reactions were carried out in an isobaric condition of 3.1 MPa to find the upper temperature limit of CO2 hydrate formation. Simulated produced water (8.95 wt % salinity) mixed with the hydrate formers shows an increased upper temperature limit from -2 °C for simple CO2 hydrate to 16 and 7 °C for double (CO2 + CP) and (CO2 + CH) hydrates, respectively. The resulting conversion rate to double hydrate turned out to be similar to that with simple CO2 hydrate at the upper temperature limit. Hydrate formation rates (Rf) for the double hydrates with CP and CH are shown to be 22 and 16 times higher, respectively, than that of the simple CO2 hydrate at the upper temperature limit. Such mild hydrate formation temperature and fast formation kinetics indicate increased energy efficiency of the double hydrate system for the desalination process. Dissociated water from the hydrates shows greater than 90% salt removal efficiency for the hydrates with the secondary guests, which is also improved from about 70% salt removal efficiency for the simple hydrates.

  7. Saline Infusion Test highly associated with the incidence of cardio- and cerebrovascular events in primary aldosteronism.

    PubMed

    Hayashi, Reiko; Tamada, Daisuke; Murata, Masahiko; Mukai, Kosuke; Kitamura, Tetsuhiro; Otsuki, Michio; Shimomura, Iichiro

    2017-03-18

    Primary aldosteronism (PA) is caused by excess secretion of aldosterone and is an independent risk factor for cardio-cerebro-vascular (CCV) events. The goal of treatment of PA should include prevention of CCV events. A definitive diagnosis of PA is established by confirmatory tests [saline infusion test (SIT), furosemide upright test (FUT) and captopril challenge test (CCT)]. However, there is no information on whether the hormone levels measured by these confirmatory tests are associated with CCV events. The aim of this retrospective study was to elucidate the relationship between the results of the above confirmatory tests and prevalence of CCV disease in patients with PA. The study subjects were 292 PA patients who were assessed for past history of CCV events at the time of diagnosis of PA. CCV events were significantly higher in patients with positive than negative SIT (12.8% vs. 3.3%, p=0.04). There were no differences in the incidences of CCV events between patients with positive and negative CCT and FUT (CCT: 11.0% vs. 3.9%, p=0.13, FUT: 6.1% vs. 5.7%, p=0.93). Our results demonstrated a higher incidence of CCV disease in PA SIT-positive patients compared to those with negative test. SIT is a potentially useful test not only for the diagnosis of PA but also assessment of the risk of CCV events.

  8. Start-up and microbial communities of a simultaneous nitrogen removal system for high salinity and high nitrogen organic wastewater via heterotrophic nitrification.

    PubMed

    Chen, Jiahao; Han, Yi; Wang, Yingmu; Gong, Benzhou; Zhou, Jian; Qing, Xiaoxia

    2016-09-01

    In this study, a simultaneous nitrogen removal system for high salinity and high nitrogen organic wastewater was developed in a pressurized biofilm reactor. The result showed that under the air supply rate of 200Lh(-1), salinity of 3.0±0.2%, organic load of 10kgCODm(-3)d(-1) and nitrogen loading of 0.185kgm(-3)d(-1), the reactor started up rapidly and performed stably after 30days operation. Meanwhile, a simultaneous COD and nitrogen removal was achieved in the single-stage reactor, with COD, NH4(+)-N and TN removal efficiency of 97%, 99% and 98%, respectively. Denaturing gradient gel electrophoresis profile demonstrated that simultaneous nitrogen removal could be achieved through heterotrophic nitrification-aerobic denitrification, and the pivotal microorganisms were Flavobacterium phragmitis and Paracoccus denitrificans. The microbial community of salt-tolerant halophilic microorganisms was developed successfully. This study can provide a more efficient and feasible solution to treat high salinity organic wastewater.

  9. Diamond based detectors for high temperature, high radiation environments

    NASA Astrophysics Data System (ADS)

    Metcalfe, A.; Fern, G. R.; Hobson, P. R.; Smith, D. R.; Lefeuvre, G.; Saenger, R.

    2017-01-01

    Single crystal CVD diamond has many desirable properties as a radiation detector; exceptional radiation hardness and physical hardness, chemical inertness, low Z (close to human tissue, good for dosimetry and transmission mode applications), wide bandgap (high temperature operation with low noise and solar blind), an intrinsic pathway to fast neutron detection through the 12C(n,α)9Be reaction. This combination of radiation hardness, temperature tolerance and ability to detect mixed radiation types with a single sensor makes diamond particularly attractive as a detector material for harsh environments such as nuclear power station monitoring (fission and fusion) and oil well logging. Effective exploitation of these properties requires the development of a metallisation scheme to give contacts that remain stable over extended periods at elevated temperatures (up to 250°C in this instance). Due to the cost of the primary detector material, computational modelling is essential to best utilise the available processing methods for optimising sensor response through geometry and conversion media configurations and to fully interpret experimental data. Monte Carlo simulations of our diamond based sensor have been developed, using MCNP6 and FLUKA2011, assessing the sensor performance in terms of spectral response and overall efficiency as a function of the detector and converter geometry. Sensors with varying metallisation schemes for high temperature operation have been fabricated at Brunel University London and by Micron Semiconductor Limited. These sensors have been tested under a varied set of conditions including irradiation with fast neutrons and alpha particles at high temperatures. The presented study indicates that viable metallisation schemes for high temperature contacts have been successfully developed and the modelling results, supported by preliminary experimental data from partners, indicate that the simulations provide a reasonable representation of

  10. Safety and Feasibility of High-pressure Transvenous Limb Perfusion With 0.9% Saline in Human Muscular Dystrophy

    PubMed Central

    Fan, Zheng; Kocis, Keith; Valley, Robert; Howard, James F; Chopra, Manisha; An, Hongyu; Lin, Weili; Muenzer, Joseph; Powers, William

    2012-01-01

    We evaluated safety and feasibility of the transvenous limb perfusion gene delivery method in muscular dystrophy. A dose escalation study of single limb perfusion with 0.9% saline starting with 5% of limb volume was carried out in adults with muscular dystrophies under intravenous analgesia/anesthesia. Cardiac, vascular, renal, muscle, and nerve functions were monitored. A tourniquet was placed above the knee with inflated pressure of 310 mm Hg. Infusion was carried out with a clinically approved infuser via an intravenous catheter inserted in the saphenous vein with a goal infusion rate of 80 ml/minute. Infusion volume was escalated stepwise to 20% limb volume in seven subjects. No subject complained of any post procedure pain other than due to needle punctures. Safety warning boundaries were exceeded only for transient depression of limb tissue oximetry and transient elevation of muscle compartment pressures; these were not associated with nerve, muscle, or vascular damage. Muscle magnetic resonant imaging (MRI) demonstrated fluid accumulation in muscles of the perfused lower extremity. High-pressure retrograde transvenous limb perfusion with saline up to 20% of limb volume at above infusion parameters is safe and feasible in adult human muscular dystrophy. This study will serve as a basis for future gene transfer clinical trials. PMID:21772257

  11. Evaluation of the low tension flood process for high-salinity reservoirs--laboratory investigation under reservoir conditions

    SciTech Connect

    Murtada, H.; Marx, C.

    1982-12-01

    In northwest Germany, oil reservoirs are characterized by high-salinity brines with up to 23% TDS. For such salinity conditions, fatty alcohol derivatives with 4.5 ethene oxide (EO) units were found to lower the interfacial tension (IFT) drastically and to mobilize residual oil almost completely. Intensive flood experiments under reservoir conditions with the use of sandpacks 2 m in length allowed optimizing the low-tension process for an oil field that was considered a possible candidate. A combination of surfactant slug followed by a tailored mobility buffer showed best results in terms of additional oil recovery and process duration. A preflush of low-concentration aqueous polymer solution brought a decisive further increase in additional oil recovery. Results obtained for the slug process indicated that variables such as IFT, surfactant concentration, flooding velocity, and pressure gradient influence the low-tension process in a combined manner. Oil produced in the oil bank showed alteration in properties, compared with the oil used to saturate the pore space.

  12. Rufibacter immobilis sp. nov., isolated from a high-altitude saline lake.

    PubMed

    Polkade, Ashish V; Ramana, V Venkata; Joshi, Amaraja; Pardesi, Larrisa; Shouche, Yogesh S

    2015-05-01

    Two pinkish-red, Gram-stain-negative, non-motile aerobic bacterial strains (MCC P1(T) and MCC P2), capable of growing at low temperatures (15 °C), were isolated from water of a saline lake located in the western Himalayas of India. The strains were capable of growth in the presence of 0-2.0% NaCl and at pH 6.5-9.0. Phylogenetic analysis based on 16S rRNA gene sequences revealed the closest similarity of 96.3% to the type strain of the only species of the genus Rufibacter , Rufibacter tibetensis CCTCC AB 208084(T). Strains MCC P1(T) and MCC P2 shared 99.0% 16S rRNA gene sequence similarity and 88.6% DNA-DNA relatedness. The major cellular fatty acids were iso-C15 : 0, C17 : 1ω6c, summed feature 3 (C16 : 1ω6c/C16 : 1ω7c) and summed feature 4 (anteiso-C17 : 1 B/iso-C17 : 1 I). Predominant polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The respiratory quinone was MK-7. The DNA G+C content of the strains was 52.6-52.8 mol%. Based on morphological, physiological, chemotaxonomical and molecular characteristics, strains MCC P1(T) and MCC P2 represent a novel species of the genus Rufibacter , for which the name Rufibacter immobilis sp. nov. is proposed. The type strain is MCC P1(T) ( =MCC 2268(T) =CCTCC AB 2013351(T)).

  13. Integrated analysis environment for high impact systems

    SciTech Connect

    Martinez, M.; Davis, J.; Scott, J.; Sztipanovits, J.; Karsai, G.

    1998-02-01

    Modeling and analysis of high consequence, high assurance systems requires special modeling considerations. System safety and reliability information must be captured in the models. Previously, high consequence systems were modeled using separate, disjoint models for safety, reliability, and security. The MultiGraph Architecture facilitates the implementation of a model integrated system for modeling and analysis of high assurance systems. Model integrated computing allows an integrated modeling technique to be applied to high consequence systems. Among the tools used for analyzing safety and reliability are a behavioral simulator and an automatic fault tree generation and analysis tool. Symbolic model checking techniques are used to efficiently investigate the system models. A method for converting finite state machine models to ordered binary decision diagrams allows the application of symbolic model checking routines to the integrated system models. This integrated approach to modeling and analysis of high consequence systems ensures consistency between the models and the different analysis tools.

  14. Effect of Loading History on Stress Corrosion Cracking of 7075-T651 Aluminum Alloy in Saline Aqueous Environment

    NASA Astrophysics Data System (ADS)

    Zhang, Jixi; Kalnaus, Sergiy; Behrooz, Majid; Jiang, Yanyao

    2011-02-01

    An experimental study of stress corrosion cracking (SCC) was conducted on 7075-T651 aluminum alloy in a chromate-inhibited, acidic 3.5 pct sodium chloride aqueous solution using compact tension specimens with a thickness of 3.8 mm under permanent immersion conditions. The effects of loading magnitude, overload, underload, and two-step high-low sequence loading on incubation time and crack growth behavior were investigated. The results show that the SCC process consists of three stages: incubation, transient crack growth, and stable crack growth. The incubation time is highly dependent on the load level. Tensile overload or compressive underload applied prior to SCC significantly altered the initiation time of corrosion cracking. Transition from a high to a low loading magnitude resulted in a second incubation but much shorter or disappearing transient stage. The stable crack growth rate is independent of stress intensity factor in the range of 10 to 22 MPa sqrt {{m}}.

  15. Electromagnetic exploration in high-salinity groundwater zones: case studies from volcanic and soft sedimentary sites in coastal Japan

    NASA Astrophysics Data System (ADS)

    Suzuki, Koichi; Kusano, Yukiko; Ochi, Ryota; Nishiyama, Nariaki; Tokunaga, Tomochika; Tanaka, Kazuhiro

    2017-01-01

    Estimating the spatial distribution of groundwater salinity in coastal plain regions is becoming increasingly important for site characterisation and the prediction of hydrogeological environmental conditions resulting from radioactive waste disposal and underground CO2 storage. In previous studies of the freshwater-saltwater interface, electromagnetic methods were used for sites characterised by unconsolidated deposits or Neocene soft sedimentary rocks. However, investigating the freshwater-saltwater interface in hard rock sites (e.g. igneous areas) is more complex, with the permeability of the rocks greatly influenced by fractures. In this study, we investigated the distribution of high-salinity groundwater at two volcanic rock sites and one sedimentary rock site, each characterised by different hydrogeological features. Our investigations included (1) applying the controlled source audio-frequency magnetotelluric (CSAMT) method and (2) conducting laboratory tests to measure the electrical properties of rock core samples. We interpreted the 2D resistivity sections by referring to previous data on geology and geochemistry of groundwater. At the Tokusa site, an area of inland volcanic rocks, low resistivity zones were detected along a fault running through volcanic rocks and shallow sediments. The results suggest that fluids rise through the Tokusa-Jifuku Fault to penetrate shallow sediments in a direction parallel to the river, and some fluids are diluted by rainwater. At the Oki site, a volcanic island on a continental shelf, four resistivity zones (in upward succession: low, high, low and high) were detected. The results suggest that these four zones were formed during a transgression-regression cycle caused by the last glacial period. At the Saijo site, located on a coastal plain composed of thick sediments, we observed a deep low resistivity zone, indicative of fossil seawater remnant from a transgression after the last glacial period. The current coastal

  16. Effects of salinity on leaf breakdown: Dryland salinity versus salinity from a coalmine.

    PubMed

    Sauer, Felix G; Bundschuh, Mirco; Zubrod, Jochen P; Schäfer, Ralf B; Thompson, Kristie; Kefford, Ben J

    2016-08-01

    Salinization of freshwater ecosystems as a result of human activities represents a global threat for ecosystems' integrity. Whether different sources of salinity with their differing ionic compositions lead to variable effects in ecosystem functioning is unknown. Therefore, the present study assessed the impact of dryland- (50μS/cm to 11,000μS/cm) and coalmine-induced (100μS/cm to 2400μS/cm) salinization on the leaf litter breakdown, with focus on microorganisms as main decomposer, in two catchments in New South Wales, Australia. The breakdown of Eucalyptus camaldulensis leaves decreased with increasing salinity by up to a factor of three. Coalmine salinity, which is characterised by a higher share of bicarbonates, had a slightly but consistently higher breakdown rate at a given salinity relative to dryland salinity, which is characterised by ionic proportions similar to sea water. Complementary laboratory experiments supported the stimulatory impact of sodium bicarbonates on leaf breakdown when compared to sodium chloride or artificial sea salt. Furthermore, microbial inoculum from a high salinity site (11,000μS/cm) yielded lower leaf breakdown at lower salinity relative to inoculum from a low salinity site (50μS/cm). Conversely, inoculum from the high salinity site was less sensitive towards increasing salinity levels relative to inoculum from the low salinity site. The effects of the different inoculum were the same regardless of salt source (sodium bicarbonate, sodium chloride and artificial sea salt). Finally, the microorganism-mediated leaf litter breakdown was most efficient at intermediate salinity levels (≈500μS/cm). The present study thus points to severe implications of increasing salinity intensities on the ecosystem function of leaf litter breakdown, while the underlying processes need further scrutiny.

  17. NOVEL REFRACTORY MATERIALS FOR HIGH ALKALI, HIGH TEMPERATURE ENVIRONMENTS

    SciTech Connect

    Hemrick, James Gordon; Smith, Jeffrey D; O'Hara, Kelley; Rodrigues-Schroer, Angela; Colavito,

    2012-08-01

    A project was led by Oak Ridge National Laboratory (ORNL) in collaboration with a research team comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al 2O3, MgAl2O4, or other similar spinel structured or alumina-based unshaped refractory compositions (castables, gunnables, shotcretes, etc.) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, high-alkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. Both practical refractory development experience and computer modeling techniques were used to aid in the design of this new family of materials. The newly developed materials were expected to offer alternative material choices for high-temperature, high-alkali environments that were capable of operating at higher temperatures (goal of increasing operating temperature by 100-200oC depending on process) or for longer periods of time (goal of twice the life span of current materials or next process determined service increment). This would lead to less process down time, greater energy efficiency for associated manufacturing processes (more heat kept in process), and materials that could be installed/repaired in a more efficient manner. The overall project goal was a 5% improvement in energy efficiency (brought about through a 20% improvement in thermal efficiency) resulting in a savings of 3.7 TBtu/yr (7.2 billion ft3 natural gas) by the year 2030. Additionally, new

  18. Corrosion Inhibition in High Temperature Environment

    DTIC Science & Technology

    1993-06-28

    resistant coatings is optional. Further 5 examples of high temperature corrosion-resistant coatings are the 6 " aluminides " and "silicides", which are...produced by diffusing 7 aluminum and silicon, respectively, into the surface of superalloys 8 or other substrates. Other metallic or ceramic coatings can... superalloys to form 9 nonprotective NaAlO 2 which causes catastrophic hot corrosion. High 10 temperature chromium-containing metals which rely on chromia

  19. Interannual variability of subsurface high salinity water in the northern tropical Atlantic and Caribbean: a climate-biogeochemistry teleconnection

    NASA Astrophysics Data System (ADS)

    Morell, J.; Corredor, J.

    2003-04-01

    A large fraction of the surface water of the tropical oceans is permanently underlain by a high salinity water mass (SUW) extending from the thermocline to ca. 250m. Variations in SUW subduction rate, physical properties and horizontal transport have been shown to exert significant influence on physical processes such as inter-hemispheric heat flux and subduction at higher latitudes. Observations at the Caribbean Time-series Station (CaTS) in the Northeastern Caribbean reveal a link between SUW formation in the subtropical gyre and nutrient availability and phytoplankton abundance in Western Tropical Atlantic and Caribbean waters. Climatology (Levitus 94) indicates southwestward flow of the North Atlantic version of this saline water mass from an area centered near 24N, 42W into the Caribbean. This intrusion results in subsurface nutrient depletion extending, at a depth of 150m, from its formation area to 80W and from 12 to 30N. Time series data from CaTS indicate that increases in SUW nitrate concentration coincide with lower temperatures and deepening of the core. Concurrent fluctuations in chlorophyll a are also observed. Climatological monthly means of SUW core properties at CaTS show seasonal minimum temperatures and maximum depth during the summer and minimum mean depths and maximum temperature during the first months of the year. Superimposed on the seasonal oscillation, variations of the SUW core depth and temperature yield significant correlations, r2=0.65 and r2=0.43 with the North Atlantic Oscillation index (NAO), at temporal offsets of 45 and 43 months respectively. Such temporal offset implies an average southwestward transport velocity of approximately 3 cm.sec-1 for the SUW, consistent with current transport estimates. A high NAO state, characterized by increased zonal winds in the North Atlantic SUW formation area, results in enhanced SUW subduction and increased thermocline and equilibrium depths. Spatial variability of temperature, salinity and

  20. Collection of High Energy Yielding Strains of Saline Microalgae from the Hawaiian Islands: Final Technical Report, Year 1

    SciTech Connect

    York, R. H.

    1986-01-01

    Microalgae were collected from 48 locations in the Hawaiian Islands in 1985. The sites were an aquaculture tank; a coral reef; bays; a geothermal steam vent; Hawaiian fish ponds; a Hawaiian salt punawai (well); the ocean; river mouths; saline lakes; saline pools; saline ponds; a saline swamp; and the ponds, drainage ditches and sumps of commercial shrimp farms. From 4,800 isolations, 100 of the most productive clones were selected to be maintained by periodic transfer to sterile medium. Five clones were tested for growth rate and production in a full-spectrum-transmitting solarium.

  1. Larval Tolerance to Salinity in Three Species of Australian Anuran: An Indication of Saline Specialisation in Litoria aurea

    PubMed Central

    Kearney, Brian D.; Byrne, Phillip G.; Reina, Richard D.

    2012-01-01

    Recent anthropogenic influences on freshwater habitats are forcing anuran populations to rapidly adapt to high magnitude changes in environmental conditions or face local extinction. We examined the effects of ecologically relevant elevated salinity levels on larval growth, metamorphosis and survival of three species of Australian anuran; the spotted marsh frog (Limnodynastes tasmaniensis), the painted burrowing frog (Neobatrachus sudelli) and the green and golden bell frog (Litoria aurea), in order to better understand the responses of these animals to environmental change. Elevated salinity (16% seawater) negatively impacted on the survival of L. tasmaniensis (35% survival) and N sudelli (0% survival), while reduced salinity had a negative impact on L. aurea. (16% seawater: 85% survival; 0.4% seawater: 35% survival). L. aurea tadpoles survived in salinities much higher than previously reported for this species, indicating the potential for inter-populations differences in salinity tolerance. In L. tasmaniensis and L. aurea, development to metamorphosis was fastest in low and high salinity treatments suggesting it is advantageous for tadpoles to invest energy in development in both highly favourable and developmentally challenging environments. We propose that this response might either maximise potential lifetime fecundity when tadpoles experience favourable environments, or, facilitate a more rapid escape from pond environments where there is a reduced probability of survival. PMID:22916260

  2. Effects of river discharge and high-tide stage on salinity intrusion in the Weeki Wachee, Crystal, and Withlacoochee River estuaries, southwest Florida

    USGS Publications Warehouse

    Yobbi, D.K.; Knochenmus, L.A.

    1989-01-01

    The Weeki Wachee, Crystal, and Withlacoochee Rivers are coastal streams flowing into the Gulf of Mexico that may be affected by either future surface water or groundwater withdrawals. Reduction of river discharge will affect the upstream extent of saltwater intrusion in the rivers; however, under certain reduced low-flow discharges, the estimated change in upstream extent of saltwater intrusion is on the order of several tenths of a mile and frequently is within the range of predicted error. Data on flow, tides, and salinity describe the physical characteristics of the Weeki Wachee, Crystal, and Withlacoochee River systems. Vertical and longitudinal salinity profiles indicate that salinity of the rivers increases downstream and varies substantially at any given location. The Weeki Wachee River system is the best mixed of the three. The Crystal River system exhibited the next best mixed system, and the Withlacoochee River system exhibited the most variation in its salinity regime. The daily maximum upstream extent of salinity intrusion is described by multiple linear-regression analysis based on daily mean streamflow of each river and high-tide stage of the gulf. The equations are used to show the effects of discharge on the daily maximum upstream extent of salinity intrusion in the rivers. (USGS)

  3. Efficient treatment of phenolic wastewater with high salinity using a novel integrated system of magnetically immobilized cells coupling with electrodes.

    PubMed

    Jiang, Bei; Shi, Shengnan; Song, Lun; Tan, Liang; Li, Meidi; Liu, Jiaxin; Xue, Lanlan

    2016-10-01

    A novel integrated system in which magnetically immobilized cells coupled with a pair of stainless iron meshes-graphite plate electrodes has been designed and operated to enhance the treatment performance of phenolic wastewater under high salinity. With NaCl concentration increased, phenol, o-cresol, m-cresol, p-cresol and COD removal rates by integrated system increased significantly, which were obviously higher than the sum of removal rates by single magnetically immobilized cells and electrode reaction. This integrated system exhibited higher removal rates for all the compounds than that by single magnetically immobilized cells during six cycles for reuse, and it still performed better, even when the voltage was cut off. These results indicated that there was a coupling effect between biodegradation and electrode reaction. The investigation of phenol hydroxylase activity and cells concentration confirmed that electrode reaction played an important role in this coupling effect.

  4. Using UCST Ionic Liquid as a Draw Solute in Forward Osmosis to Treat High-Salinity Water.

    PubMed

    Zhong, Yujiang; Feng, Xiaoshuang; Chen, Wei; Wang, Xinbo; Huang, Kuo-Wei; Gnanou, Yves; Lai, Zhiping

    2016-01-19

    The concept of using a thermoresponsive ionic liquid (IL) with an upper critical solution temperature (UCST) as a draw solute in forward osmosis (FO) was successfully demonstrated here experimentally. A 3.2 M solution of protonated betaine bis(trifluoromethylsulfonyl)imide ([Hbet][Tf2N]) was obtained by heating and maintaining the temperature above 56 °C. This solution successfully drew water from high-salinity water up to 3.0 M through FO. When the IL solution cooled to room temperature, it spontaneously separated into a water-rich phase and an IL-rich phase: the water-rich phase was the produced water that contained a low IL concentration, and the IL-rich phase could be used directly as the draw solution in the next cycle of the FO process. The thermal stability, thermal-responsive solubility, and UV-vis absorption spectra of the IL were also studied in detail.

  5. High-Throughput Non-destructive Phenotyping of Traits that Contribute to Salinity Tolerance in Arabidopsis thaliana

    PubMed Central

    Awlia, Mariam; Nigro, Arianna; Fajkus, Jiří; Schmoeckel, Sandra M.; Negrão, Sónia; Santelia, Diana; Trtílek, Martin; Tester, Mark; Julkowska, Magdalena M.; Panzarová, Klára

    2016-01-01

    Reproducible and efficient high-throughput phenotyping approaches, combined with advances in genome sequencing, are facilitating the discovery of genes affecting plant performance. Salinity tolerance is a desirable trait that can be achieved through breeding, where most have aimed at selecting for plants that perform effective ion exclusion from the shoots. To determine overall plant performance under salt stress, it is helpful to investigate several plant traits collectively in one experimental setup. Hence, we developed a quantitative phenotyping protocol using a high-throughput phenotyping system, with RGB and chlorophyll fluorescence (ChlF) imaging, which captures the growth, morphology, color and photosynthetic performance of Arabidopsis thaliana plants in response to salt stress. We optimized our salt treatment by controlling the soil-water content prior to introducing salt stress. We investigated these traits over time in two accessions in soil at 150, 100, or 50 mM NaCl to find that the plants subjected to 100 mM NaCl showed the most prominent responses in the absence of symptoms of severe stress. In these plants, salt stress induced significant changes in rosette area and morphology, but less prominent changes in rosette coloring and photosystem II efficiency. Clustering of ChlF traits with plant growth of nine accessions maintained at 100 mM NaCl revealed that in the early stage of salt stress, salinity tolerance correlated with non-photochemical quenching processes and during the later stage, plant performance correlated with quantum yield. This integrative approach allows the simultaneous analysis of several phenotypic traits. In combination with various genetic resources, the phenotyping protocol described here is expected to increase our understanding of plant performance and stress responses, ultimately identifying genes that improve plant performance in salt stress conditions. PMID:27733855

  6. High-Throughput Non-destructive Phenotyping of Traits that Contribute to Salinity Tolerance in Arabidopsis thaliana.

    PubMed

    Awlia, Mariam; Nigro, Arianna; Fajkus, Jiří; Schmoeckel, Sandra M; Negrão, Sónia; Santelia, Diana; Trtílek, Martin; Tester, Mark; Julkowska, Magdalena M; Panzarová, Klára

    2016-01-01

    Reproducible and efficient high-throughput phenotyping approaches, combined with advances in genome sequencing, are facilitating the discovery of genes affecting plant performance. Salinity tolerance is a desirable trait that can be achieved through breeding, where most have aimed at selecting for plants that perform effective ion exclusion from the shoots. To determine overall plant performance under salt stress, it is helpful to investigate several plant traits collectively in one experimental setup. Hence, we developed a quantitative phenotyping protocol using a high-throughput phenotyping system, with RGB and chlorophyll fluorescence (ChlF) imaging, which captures the growth, morphology, color and photosynthetic performance of Arabidopsis thaliana plants in response to salt stress. We optimized our salt treatment by controlling the soil-water content prior to introducing salt stress. We investigated these traits over time in two accessions in soil at 150, 100, or 50 mM NaCl to find that the plants subjected to 100 mM NaCl showed the most prominent responses in the absence of symptoms of severe stress. In these plants, salt stress induced significant changes in rosette area and morphology, but less prominent changes in rosette coloring and photosystem II efficiency. Clustering of ChlF traits with plant growth of nine accessions maintained at 100 mM NaCl revealed that in the early stage of salt stress, salinity tolerance correlated with non-photochemical quenching processes and during the later stage, plant performance correlated with quantum yield. This integrative approach allows the simultaneous analysis of several phenotypic traits. In combination with various genetic resources, the phenotyping protocol described here is expected to increase our understanding of plant performance and stress responses, ultimately identifying genes that improve plant performance in salt stress conditions.

  7. A Study on High School Students' Perceptions of "Geographical Environment"

    ERIC Educational Resources Information Center

    Nurettin, Bilgen

    2015-01-01

    This research investigates how high school students perceive the concept "environment". The research was conducted on 191 Social Science High School students from 9 to 12th grades in Istanbul and Denizli within 2012 to 2013 academic year. In the study, students were asked to draw a picture of the "environment". The research…

  8. A Study on High School Students' Perceptions of "Geographical Environment"

    ERIC Educational Resources Information Center

    Nurettin, Bilgen

    2015-01-01

    This research investigates how high school students perceive the concept "environment". The research was conducted on 191 Social Science High School students from 9 to 12th grades in Istanbul and Denizli within 2012 to 2013 academic year. In the study, students were asked to draw a picture of the "environment". The research…

  9. Geochemical controls of groundwaters upwelling in saline environments: Case study the discharge playa of Sidi El Hani (Sahel, Tunisia)

    NASA Astrophysics Data System (ADS)

    Tagorti, Mohamed Ali; Essefi, Elhoucine; Touir, Jamel; Guellala, Rihab; Yaich, Chokri

    2013-10-01

    Within the discharge playa of Sidi El Hani, the surrounding aquifers converge due to uprising underground waters. The Principal Component Analysis proves that the fluid density is inversely influenced by the rainfall and has a reciprocal effect with evaporation. This parameter is governed by uprising groundwaters and the convergence of waters and inflow in the sabkha result in a geochemical exceptionality. The fluid density maintains high values during the year, the modeling of which shows a third sinusoidal distribution. This model remains stable along a span of time because the surrounding aquifer feeds the discharge playa by a continuous salty water flow. In general, waters in the majority of drills surrounding the discharge playa have the same facies which is mainly made up of water charged with Na+ and Cl-. A sample from the northeast of discharge playa shows a geochemical similarity with two wells located in its vicinity.

  10. Evaluation of the halophyte Salsola soda as an alternative crop for saline soils high in selenium and boron

    USDA-ARS?s Scientific Manuscript database

    Salinization is one important factor contributing to land degradation, which affects agricultural production and environmental quality, especially in the West side of central California. When salinization is combined with a natural contamination of trace elements (i.e., Se and B) in arid and semi-ar...

  11. Ecophysiological adaptations to variable salinity environments in the crab Hemigrapsus crenulatus from the Southeastern Pacific coast: Sodium regulation, respiration and excretion.

    PubMed

    Urzúa, Ángel; Urbina, Mauricio A

    2017-08-01

    The estuarine crab Hemigrapsus crenulatus is a key benthic species of estuarine and intertidal ecosystems of the South Pacific, habitats that experience wide fluctuations in salinity. The physiological strategies that allow this crab to thrive under variable salinities, and how they change during the benthic stages of their life cycle, were evaluated under laboratory conditions. Oxygen consumption, ammonia excretion and the regulatory capacity of Na(+) through the normal range of environmental salinities (i.e. 5, 10, 15, 20, 25, 30) were evaluated in three size classes, ranging from juveniles to adults. In all sizes, the oxygen consumption, ammonia excretion and regulatory capacity of Na(+) decreased as salinity increased, with the highest values at 5 and the lowest values at 30 salinity. Bigger crabs showed a higher capacity to regulate Na(+), as well as higher respiration and excretion rates compared to smaller crabs, suggesting that they are better equipped to exploit areas of the estuary with low salinity. Regardless of its size, H. crenulatus is a strong hyper regulator in diluted media (i.e. 5-20) while a conformer at salinities higher than 20. The regulatory capacity of Na(+) was positively related with oxygen consumption and ammonia excretion rates. These relationships between sodium regulation, respiration and excretion are interpreted as adaptive physiological mechanisms that allow H. crenulatus to maintain the osmotic and bioenergetic balance over a wide range of environmental salinities. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Plant High-Affinity Potassium (HKT) Transporters involved in salinity tolerance: structural insights to probe differences in ion selectivity.

    PubMed

    Waters, Shane; Gilliham, Matthew; Hrmova, Maria

    2013-04-09

    High-affinity Potassium Transporters (HKTs) belong to an important class of integral membrane proteins (IMPs) that facilitate cation transport across the plasma membranes of plant cells. Some members of the HKT protein family have been shown to be critical for salinity tolerance in commercially important crop species, particularly in grains, through exclusion of Na+ ions from sensitive shoot tissues in plants. However, given the number of different HKT proteins expressed in plants, it is likely that different members of this protein family perform in a range of functions. Plant breeders and biotechnologists have attempted to manipulate HKT gene expression through genetic engineering and more conventional plant breeding methods to improve the salinity tolerance of commercially important crop plants. Successful manipulation of a biological trait is more likely to be effective after a thorough understanding of how the trait, genes and proteins are interconnected at the whole plant level. This article examines the current structural and functional knowledge relating to plant HKTs and how their structural features may explain their transport selectivity. We also highlight specific areas where new knowledge of plant HKT transporters is needed. Our goal is to present how knowledge of the structure of HKT proteins is helpful in understanding their function and how this understanding can be an invaluable experimental tool. As such, we assert that accurate structural information of plant IMPs will greatly inform functional studies and will lead to a deeper understanding of plant nutrition, signalling and stress tolerance, all of which represent factors that can be manipulated to improve agricultural productivity.

  13. Study of corrosion behavior of high strength low alloy steel reinforcing bars in industrial and marine environments

    SciTech Connect

    Singh, S.K.; Hocking, M.G.; Jha, R.; Chatterjee, A.; Mukherjee, T.

    1996-11-01

    Mild steel reinforcing bars embedded in concrete exposed to marine environment are prone to severe corrosion leading to serious damage to the structures. The various technologies developed and adopted to reduce the corrosion of steel reinforcement, have been discussed in this paper along with a new high strength low alloy (HSLA) steel reinforcing bar. The bare HSLA rebars have been tested extensively along with mild steel rebars for comparative study in saline and sulfurous electrolytes in the laboratory by Potentiodynamic tests as well as in natural marine and industrial environments. The HSLA and mild steel rebars embedded in concrete were also tested in saline water by alternate immersion test and by impressed anodic current methods. The bare HSLA rebars showed 2--3 and 1.5--1.9 times better corrosion resistance to mild steel rebars in laboratory and field exposure tests respectively. The HSLA rebars embedded in concrete and exposed to saline water with impressed anodic current of 200 {micro}A/sq. cm showed 2.5 times better corrosion resistance to mild steel rebars. The XRD analysis of the rust formed on the samples of field exposure tests conducted in marine and industrial environments, clearly showed the formation of compounds which reduce the corrosion rate of steel.

  14. Optical fibres for high radiation dose environments

    NASA Astrophysics Data System (ADS)

    Henschel, H.; Kohn, O.; Schmidt, H. U.; Bawirzanski, E.; Landers, A.

    1994-06-01

    A variety of modern single mode (SM) and graded index (GI) fibres as well as a new pure silica multimode step index (MMSI) fibre with high OH content were irradiated at a Co-60 gamma ray source with a dose rate of approximately = 1.5Gy/s up to a total dose of 10(exp 6)Gy. The radiation-induced loss of all fibres was measured continuously during and after irradiation at discrete wavelengths (approximately = 850, approximately = 1070, approximately = 1300, approximately = 1550nm). With one SM fibre type also the 'breaking stress' before and after irradiation was determined. Radiation-induced losses of approximately less than 5dB/50m (at approximately = 1300nm) were found with some of the SM fibres, whereas the MMSI fibre showed a final induced loss of only 0.5dB/50m at 1070nm wavelength. The breaking stress of the SM fibre increased by about 10%.

  15. Intergenerational continuity in high conflict family environments

    PubMed Central

    Rothenberg, W. Andrew; Hussong, Andrea M.; Chassin, Laurie

    2016-01-01

    In the current study, we examined continuity in conflict across generations and explored potential mediators and moderators that could explain this continuity. We followed 246 targets from adolescence to adulthood and examined family conflict as reported by multiple reporters in targets' family of origin and current families. Results showed that conflict in the current family was strongly correlated with that of the family of origin in women but not in men. Continuity in family conflict across generations was mediated by patterns of elevated adolescent externalizing behavior in members of the second generation (G2). Additionally, analyses revealed an interaction between both G2 partners' externalizing behavior such that if one partner in the G2 family demonstrated high levels of externalizing behavior, elevated levels of family conflict resulted. Potential explanations and implications of these findings are considered. PMID:26018605

  16. Continuous high PRF waveforms for challenging environments

    NASA Astrophysics Data System (ADS)

    Jaroszewski, Steven; Corbeil, Allan; Ryland, Robert; Sobota, David

    2017-05-01

    Current airborne radar systems segment the available time-on-target during each beam dwell into multiple Coherent Processing Intervals (CPIs) in order to eliminate range eclipsing, solve for unambiguous range, and increase the detection performance against larger Radar Cross Section (RCS) targets. As a consequence, these radars do not realize the full Signal-to-Noise Ratio (SNR) increase and detection performance improvement that is possible. Continuous High Pulse Repetition Frequency (HPRF) waveforms and processing enables the coherent integration of all available radar data over the full time-on-target. This can greatly increase the SNR for air targets at long range and/or with weak radar returns and significantly improve the detection performance against such targets. TSC worked with its partner KeyW to implement a Continuous HPRF waveform in their Sahara radar testbed and obtained measured radar data on both a ground vehicle target and an airborne target of opportunity. This experimental data was processed by TSC to validate the expected benefits of Continuous HPRF waveforms.

  17. Metabolomics for salinity research.

    PubMed

    Roessner, Ute; Beckles, Diane M

    2012-01-01

    Soil salinity devastates agriculture. It reduces crop yields and makes arable land unsuitable for later use. Many species have evolved highly efficient strategies to sense, transduce, and build up tolerance to high salinity and even sensitive species have endogenous mechanism for coping with this stress. These underlying physiological and metabolic mechanisms can be unraveled using metabolomics. Here we describe detailed protocols of how to extract polar metabolites for analysis using GC-MS and LC-MS. We also touch briefly on considerations that should be taken into account when designing the experiment and how the resulting data may be analyzed and visualized in a biological context.

  18. Using TOUGH2/ECO2H for modeling high-pressure and high-temperature CO2-enhanced geothermal energy extraction from saline systems

    NASA Astrophysics Data System (ADS)

    Borgia, A.; Pruess, K.; Kneafsey, T. J.; Oldenburg, C. M.

    2011-12-01

    Conventional geothermal energy uses water as the fluid to transport heat to the surface. This has a number of drawbacks principally related to strong water-rock chemical reactions, but also in terms of environmental impacts through overdraft of shallow aquifers with valuable water resources. Various authors have proposed the use of CO2 instead of water to transfer heat because such use may result in better rate of heat extraction, less fluid-rock reactivity, and less demand for scarce ground or surface water resources. TOUGH2/ECO2H was developed to study the behavior of high-pressure high-temperature H2O-CO2-NaCl geothermal systems. To demonstrate and test the code, we have modeled an idealized fractured geothermal system. Based on a five-spot well pattern and its inherent symmetry, we use a model grid of 1/8 of a square with sides of 1 km. In the model, CO2 is injected at the four corner-wells at 20 °C and constant pressure of 2.1*10^7 Pa into a variable salinity reservoir which is initially at 200 °C. The center well produces fluid at a constant pressure of 1.9*10^7 Pa. Initially, H2O + NaCl are produced, followed by a mixture of H2O + CO2 + NaCl and, finally only CO2. As soon as the injected CO2 reaches the production well, usually less than 2 months after injection begins, there is a drastic drop in heat production. This decrease occurs because of a reduced flow rate induced by reduction in effective permeability associated with two-phase flow (liquid + gas) in the reservoir. As the liquid phase dries out, the CO2 flow rate increases slowly over about 2-3 years and the heat production reaches a maximum rate that is about 40% larger than the initial rate of production with just water. Our modeling suggests that this same behavior occurs for highly saline geothermal reservoirs, even though the absolute rate of heat production is about 30% lower than the non-saline models. The decrease in production for saline systems is due to a marked reduction in permeability

  19. Nature of Mathematics Classroom Environments in Catholic High Schools

    ERIC Educational Resources Information Center

    Hall, Judith J.; Sink, Christopher A.

    2015-01-01

    In an attempt to reveal the various types of learning environments present in 30 mathematics classrooms in five Catholic high schools, this replication study examined student (N = 602) perceptions of their classrooms using the Classroom Environment Scale. Student attitudes toward mathematics were assessed by the Estes Attitude Scale. Extending…

  20. Science Laboratory Classroom Environments in Korean High Schools

    ERIC Educational Resources Information Center

    Fraser, Barry J.; Lee, Sunny S. U.

    2009-01-01

    In order to investigate the learning environment of senior high school science laboratory classrooms in Korea, the Science Laboratory Environment Inventory (SLEI) was translated into Korean and administered to 439 students (99 science-independent stream students, 195 science-oriented stream students and 145 humanities stream students). Data…

  1. Illinois High School Principals' Perceptions of Alternative Learning Environments

    ERIC Educational Resources Information Center

    Carlton, Lawrence W.

    2009-01-01

    This study examined Illinois high school principals' perceptions of the growth, quality, advantages and disadvantages of alternative learning environments. In this study, alternative learning environments involved the use of both synchronous and asynchronous modes of communication for course delivery. Synchronous modes of instructional delivery…

  2. High Pressure Oxidizer Turbopump (HPOTP) inducer dynamic design environment

    NASA Technical Reports Server (NTRS)

    Herda, D. A.; Gross, R. S.

    1995-01-01

    The dynamic environment must be known to evaluate high pressure oxidizer turbopump inducer fatigue life. This report sets the dynamic design loads for the alternate turbopump inducer as determined by water-flow rig testing. Also, guidelines are given for estimating the dynamic environment for other inducer and impeller applications.

  3. High resolution numerical investigation on the effect of convective instability on long term CO2 storage in saline aquifers

    NASA Astrophysics Data System (ADS)

    Lu, C.; Lichtner, P. C.

    2007-07-01

    CO2 sequestration (capture, separation, and long term storage) in various geologic media including depleted oil reservoirs, saline aquifers, and oceanic sediments is being considered as a possible solution to reduce green house gas emissions. Dissolution of supercritical CO2 in formation brines is considered an important storage mechanism to prevent possible leakage. Accurate prediction of the plume dissolution rate and migration is essential. Analytical analysis and numerical experiments have demonstrated that convective instability (Rayleigh instability) has a crucial effect on the dissolution behavior and subsequent mineralization reactions. Global stability analysis indicates that a certain grid resolution is needed to capture the features of density-driven fingering phenomena. For 3-D field scale simulations, high resolution leads to large numbers of grid nodes, unfeasible for a single workstation. In this study, we investigate the effects of convective instability on geologic sequestration of CO2 by taking advantage of parallel computing using the code PFLOTRAN, a massively parallel 3-D reservoir simulator for modeling subsurface multiphase, multicomponent reactive flow and transport based on continuum scale mass and energy conservation equations. The onset, development and long-term fate of a supercritical CO2 plume will be resolved with high resolution numerical simulations to investigate the rate of plume dissolution caused by fingering phenomena.

  4. Electrochemical characterization of microbial bioanodes formed on a collector/electrode system in a highly saline electrolyte.

    PubMed

    Rousseau, Raphaël; Rimboud, Mickaël; Délia, Marie-Line; Bergel, Alain; Basséguy, Régine

    2015-12-01

    Bioanodes were formed with electrodes made of carbon felt and equipped with a titanium electrical collector, as commonly used in microbial fuel cells. Electrochemical impedance spectroscopy (EIS) performed on the abiotic electrode system evidenced two time constants, one corresponding to the "collector/carbon felt" contact, the other to the "carbon felt/solution" interface. Such a two time constant system was characteristics of the two-material electrode, independent of biofilm presence. EIS was then performed during the bioanode formation around the constant applied potential of 0.1 V/SCE. The equivalent electrical model was similar to that of the abiotic system. Due to the high salinity of the electrolyte (45 g·L(-1) NaCl) the electrolyte resistance was always very low. The bioanode development induced kinetic heterogeneities that were taken into account by replacing the pure capacitance of the abiotic system by a constant phase element for the "carbon felt/solution" interface. The current increase from 0 to 20.6 A·m(-2) was correlated to the considerable decrease of the charge transfer resistance of the "carbon felt/solution" interface from 2.4 10(4) to 92 Ω·cm(2). Finally, EIS implemented at 0.4 V/SCE showed that the limitation observed at high potential values was not related to mass transfer but to a biofilm-linked kinetics.

  5. Bacterial community dynamics in horizontal flow constructed wetlands with different plants for high salinity industrial wastewater polishing.

    PubMed

    Calheiros, C S C; Teixeira, A; Pires, C; Franco, A R; Duque, A F; Crispim, L F C; Moura, S C; Castro, P M L

    2010-09-01

    This study is focused on the diversity of bacterial communities from two series of horizontal subsurface flow constructed wetlands (CW) polishing high salinity tannery wastewater. Each series was planted with Arundo donax or Sarcocornia sp. in a substrate composed by expanded clay and sand. Chemical and biochemical oxygen demand removal efficiencies were similar in each series, varying between 58 and 67% (inlet COD 218 ± 28 mg L(-1)) and 60 and 77% (inlet BOD(5) 37 ± 6 mg L(-1)), respectively. High numbers of culturable bacteria were obtained from substrate and root samples - 5.75 × 10(6)-3.95 × 10(8) CFU g(-1) recovered on marine agar and 1.72 × 10(7)-8.46 × 10(8) CFU g(-1) on nutrient agar. Fifty bacterial isolates were retrieved from the CW, related phylogenetically to Firmicutes, Actinobacteria, Bacteroidetes, α-, β-, and γ-Proteobacteria. Changes in the bacterial communities, from roots and substrate of each series, related to the plant species, hydraulic loading rates and along CW operation were examined using denaturating gradient gel electrophoresis (DGGE). The clustering analysis suggested that a diverse and distinct bacterial community inhabits each series, which was related to the type of plant present in each CW. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Stability of high-dose insulin in normal saline bags for treatment of calcium channel blocker and beta blocker overdose.

    PubMed

    Laskey, Dayne; Vadlapatla, Rajesh; Hart, Katherine

    2016-11-01

    High-dose insulin has become a first-line therapy for treating severe calcium channel blocker and beta blocker toxicity. Insulin infusions used to treat other conditions (e.g., diabetic ketoacidosis) may be used, but this may lead to pulmonary compromise due to fluid volume overload. An obvious solution would be to use a more concentrated insulin infusion; however, data describing the stability of insulin in polyvinyl chloride bags at concentrations >1 unit/mL are not readily available. To determine the stability of insulin at 16 units/mL in 0.9% saline solution. Eight-hundred units of regular insulin (8 mL from a stock vial containing 100 units/mL) were added to 42 mL of 0.9% saline solution in a polyvinyl chloride bag to make a final concentration of 16 units/mL. Two bags were stored at 4 °C (refrigerated) and two at 25 °C (room temperature). Samples were withdrawn and tested for insulin concentration periodically over 14 days. Concentrated regular insulin in a polyvinyl chloride bag remained within 90% of equilibrium concentration at all time points, indicating the 16 units/mL concentration was sufficiently stable both refrigerated and at room temperature for 14 days. Administration of high-dose insulin can cause fluid volume overload when using traditional insulin formulations. The 16 units/mL concentration allows for the treatment of a patient with severe calcium channel blocker or beta blocker toxicity for a reasonable period of time without administering excessive fluid. Insulin at a concentration of 16 units/mL is stable for 14 days, the maximum timeframe currently allowed under US Pharmacopeia rules for compounding of sterile preparations. This stability data will allow institutions to issue beyond-use dating for intravenous fluids containing concentrated insulin and used for treating beta blocker and calcium channel blocker toxicity.

  7. Involvement of the crustacean hyperglycemic hormone (CHH) in the physiological compensation of the freshwater crayfish Cherax quadricarinatus to low temperature and high salinity stress.

    PubMed

    Prymaczok, Natalia C; Pasqualino, Valeria M; Viau, Verónica E; Rodríguez, Enrique M; Medesani, Daniel A

    2016-02-01

    This study was aimed at determining the role of the crustacean hyperglycemic hormone (CHH) in the physiological compensation to both saline and thermal stress, in the freshwater crayfish Cherax quadricarinatus. By determining the expression of the CHH gene in the eyestalk of juvenile crayfish, we found that maximal induction of CHH was induced at high salinity (10 g/L) and low temperature (20 °C). In order to investigate the role of CHH in the physiological compensation to such stressful conditions, recombinant CHH was supplied to stressed animals. CHH-injected crayfish showed increased hemolymphatic levels of glucose, in accordance with a significant utilization of glycogen reserves from the hepatopancreas. Furthermore, CHH administration allowed stressed animals to regulate hemolymphatic sodium and potassium at more constant levels than controls. Taken together, these results suggest a relevant role of CHH in increasing the energy available intended for processes involved in the physiological compensation of C. quadricarinatus to both saline and thermal stress.

  8. Membrane fouling by sodium alginate in high salinity conditions to simulate biofouling during seawater desalination.

    PubMed

    Charfi, Amine; Jang, Hoseok; Kim, Jeonghwan

    2017-02-21

    This study aims to better understand biofouling by algal organic matters (AOM) during seawater pretreatment by microfiltration (MF). To simulate AOM biofouling, sodium alginate (SA) solutions with three different concentrations (2, 20 and 50ppm) were filtered in dead-end mode with MF membrane. A modelling approach with blocking laws was used to identify the fouling mechanisms behind flux decline with time. The effect of SA concentration and cations such as Na(+) (0.6M) and Ca(2+) (0.015M) addition to SA solution on fouling mechanisms was studied. While for low SA concentration (2ppm), fouling occurs within two phases: a pore constriction phase followed by cake formation phase, for high SA concentration (50ppm), fouling occurs within only one phase controlled by cake formation. The addition of Na(+) (0.6M) or Ca(2+) (0.015M) to SA solution mitigates membrane fouling, however, the addition of both cations enhances fouling by formation of dense cake layer on membrane.

  9. Intrinsic water use efficiency controls the adaptation to high salinity in a semi-arid adapted plant, henna (Lawsonia inermis L.).

    PubMed

    Fernández-García, Nieves; Olmos, Enrique; Bardisi, Enas; García-De la Garma, Jesús; López-Berenguer, Carmen; Rubio-Asensio, José Salvador

    2014-03-01

    Adaptation to salinity of a semi-arid inhabitant plant, henna, is studied. The salt tolerance mechanisms are evaluated in the belief that gas exchange (water vapor and CO2) should play a key role on its adaptation to salt stress because of the strong evaporation conditions and soil water deficit in its natural area of distribution. We grow henna plants hydroponically under controlled climate conditions and expose them to control (0mM NaCl), and two levels of salinity; medium (75mM NaCl) and high (150mM NaCl). Relative growth rate (RGR), biomass production, whole plant and leaf structure and ultrastructure adaptation, gas exchange, chlorophyll fluorescence, nutrients location in leaf tissue and its balance in the plant are studied. RGR and total biomass decreased as NaCl concentration increased in the nutrient solution. At 75mM NaCl root biomass was not affected by salinity and RGR reached similar values to control plants at the end of the experiment. At this salinity level henna plant responded to salinity decreasing shoot to root ratio, increasing leaf specific mass (LSM) and intrinsic water use efficiency (iWUE), and accumulating high concentrations of Na(+) and Cl(-) in leaves and root. At 150mM NaCl growth was severely reduced but plants reached the reproductive phase. At this salinity level, no further decrease in shoot to root ratio or increase in LSM was observed, but plants increased iWUE, maintaining water status and leaf and root Na(+) and Cl(-) concentrations were lower than expected. Moreover, plants at 150mM NaCl reallocated carbon to the root at the expense of the shoot. The effective PSII quantum yield [Y(II)] and the quantum yield of non-regulated energy dissipation [Y(NO)] were recovered over time of exposure to salinity. Overall, iWUE seems to be determinant in the adaptation of henna plant to high salinity level, when morphological adaptation fails.

  10. Analysis of radium-226 in high salinity wastewater from unconventional gas extraction by inductively coupled plasma-mass spectrometry.

    PubMed

    Zhang, Tieyuan; Bain, Daniel; Hammack, Richard; Vidic, Radisav D

    2015-03-03

    Elevated concentration of naturally occurring radioactive material (NORM) in wastewater generated from Marcellus Shale gas extraction is of great concern due to potential environmental and public health impacts. Development of a rapid and robust method for analysis of Ra-226, which is the major NORM component in this water, is critical for the selection of appropriate management approaches to properly address regulatory and public concerns. Traditional methods for Ra-226 determination require long sample holding time or long detection time. A novel method combining Inductively Coupled Mass Spectrometry (ICP-MS) with solid-phase extraction (SPE) to separate and purify radium isotopes from the matrix elements in high salinity solutions is developed in this study. This method reduces analysis time while maintaining requisite precision and detection limit. Radium separation is accomplished using a combination of a strong-acid cation exchange resin to separate barium and radium from other ions in the solution and a strontium-specific resin to isolate radium from barium and obtain a sample suitable for analysis by ICP-MS. Method optimization achieved high radium recovery (101 ± 6% for standard mode and 97 ± 7% for collision mode) for synthetic Marcellus Shale wastewater (MSW) samples with total dissolved solids as high as 171,000 mg/L. Ra-226 concentration in actual MSW samples with TDS as high as 415,000 mg/L measured using ICP-MS matched very well with the results from gamma spectrometry. The Ra-226 analysis method developed in this study requires several hours for sample preparation and several minutes for analysis with the detection limit of 100 pCi/L with RSD of 45% (standard mode) and 67% (collision mode). The RSD decreased to below 15% when Ra-226 concentration increased over 500 pCi/L.

  11. RNA-seq analysis of the response of the halophyte, Mesembryanthemum crystallinum (ice plant) to high salinity.

    PubMed

    Tsukagoshi, Hironaka; Suzuki, Takamasa; Nishikawa, Kouki; Agarie, Sakae; Ishiguro, Sumie; Higashiyama, Tetsuya

    2015-01-01

    Understanding the molecular mechanisms that convey salt tolerance in plants is a crucial issue for increasing crop yield. The ice plant (Mesembryanthemum crystallinum) is a halophyte that is capable of growing under high salt conditions. For example, the roots of ice plant seedlings continue to grow in 140 mM NaCl, a salt concentration that completely inhibits Arabidopsis thaliana root growth. Identifying the molecular mechanisms responsible for this high level of salt tolerance in a halophyte has the potential of revealing tolerance mechanisms that have been evolutionarily successful. In the present study, deep sequencing (RNAseq) was used to examine gene expression in ice plant roots treated with various concentrations of NaCl. Sequencing resulted in the identification of 53,516 contigs, 10,818 of which were orthologs of Arabidopsis genes. In addition to the expression analysis, a web-based ice plant database was constructed that allows broad public access to the data. The results obtained from an analysis of the RNAseq data were confirmed by RT-qPCR. Novel patterns of gene expression in response to high salinity within 24 hours were identified in the ice plant when the RNAseq data from the ice plant was compared to gene expression data obtained from Arabidopsis plants exposed to high salt. Although ABA responsive genes and a sodium transporter protein (HKT1), are up-regulated and down-regulated respectively in both Arabidopsis and the ice plant; peroxidase genes exhibit opposite responses. The results of this study provide an important first step towards analyzing environmental tolerance mechanisms in a non-model organism and provide a useful dataset for predicting novel gene functions.

  12. RNA-Seq Analysis of the Response of the Halophyte, Mesembryanthemum crystallinum (Ice Plant) to High Salinity

    PubMed Central

    Tsukagoshi, Hironaka; Suzuki, Takamasa; Nishikawa, Kouki; Agarie, Sakae; Ishiguro, Sumie; Higashiyama, Tetsuya

    2015-01-01

    Understanding the molecular mechanisms that convey salt tolerance in plants is a crucial issue for increasing crop yield. The ice plant (Mesembryanthemum crystallinum) is a halophyte that is capable of growing under high salt conditions. For example, the roots of ice plant seedlings continue to grow in 140 mM NaCl, a salt concentration that completely inhibits Arabidopsis thaliana root growth. Identifying the molecular mechanisms responsible for this high level of salt tolerance in a halophyte has the potential of revealing tolerance mechanisms that have been evolutionarily successful. In the present study, deep sequencing (RNAseq) was used to examine gene expression in ice plant roots treated with various concentrations of NaCl. Sequencing resulted in the identification of 53,516 contigs, 10,818 of which were orthologs of Arabidopsis genes. In addition to the expression analysis, a web-based ice plant database was constructed that allows broad public access to the data. The results obtained from an analysis of the RNAseq data were confirmed by RT-qPCR. Novel patterns of gene expression in response to high salinity within 24 hours were identified in the ice plant when the RNAseq data from the ice plant was compared to gene expression data obtained from Arabidopsis plants exposed to high salt. Although ABA responsive genes and a sodium transporter protein (HKT1), are up-regulated and down-regulated respectively in both Arabidopsis and the ice plant; peroxidase genes exhibit opposite responses. The results of this study provide an important first step towards analyzing environmental tolerance mechanisms in a non-model organism and provide a useful dataset for predicting novel gene functions. PMID:25706745

  13. The Arabidopsis Transcription Factor MYB112 Promotes Anthocyanin Formation during Salinity and under High Light Stress1[OPEN

    PubMed Central

    Lotkowska, Magda E.; Tohge, Takayuki; Fernie, Alisdair R.; Xue, Gang-Ping; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-01-01

    MYB transcription factors (TFs) are important regulators of flavonoid biosynthesis in plants. Here, we report MYB112 as a formerly unknown regulator of anthocyanin accumulation in Arabidopsis (Arabidopsis thaliana). Expression profiling after chemically induced overexpression of MYB112 identified 28 up- and 28 down-regulated genes 5 h after inducer treatment, including MYB7 and MYB32, which are both induced. In addition, upon extended induction, MYB112 also positively affects the expression of PRODUCTION OF ANTHOCYANIN PIGMENT1, a key TF of anthocyanin biosynthesis, but acts negatively toward MYB12 and MYB111, which both control flavonol biosynthesis. MYB112 binds to an 8-bp DNA fragment containing the core sequence (A/T/G)(A/C)CC(A/T)(A/G/T)(A/C)(T/C). By electrophoretic mobility shift assay and chromatin immunoprecipitation coupled to quantitative polymerase chain reaction, we show that MYB112 binds in vitro and in vivo to MYB7 and MYB32 promoters, revealing them as direct downstream target genes. We further show that MYB112 expression is up-regulated by salinity and high light stress, environmental parameters that both require the MYB112 TF for anthocyanin accumulation under these stresses. In contrast to several other MYB TFs affecting anthocyanin biosynthesis, MYB112 expression is not controlled by nitrogen limitation or an excess of carbon. Thus, MYB112 constitutes a regulator that promotes anthocyanin accumulation under abiotic stress conditions. PMID:26378103

  14. Effects of OLRs and HRTs on hydrogen production from high salinity substrate by halophilic hydrogen producing bacterium (HHPB).

    PubMed

    Zhang, Shan; Lee, Yunhee; Kim, Tae-Hyeong; Hwang, Sun-Jin

    2013-08-01

    The effects of hydraulic retention time (HRT) and organic loading rate (OLR) on hydrogen production were investigated with glucose medium containing 2% NaCl. Halophilic hydrogen producing bacterium (HHPB) Clostridium bifermentans 3AT-ma, which can survive under high salt conditions, was used. Sponge media were used as 20% of working volume. The OLR and HRT were varied in 10-60 g-glucose/L-reactor/day and 24-6h. With OLR of 20 g-glucose/L/day, shorter HRT resulted in higher hydrogen producing rate and yield. When the OLR was increased from 20 to 60 g-glucose/L-reactor/day at HRT 6h, the hydrogen production rate increased, while the hydrogen production yield decreased due to the increase and accumulation of volatile fatty acids. Biohydrogen production was possible from the salinity substrate using HHPB, and the maximum hydrogen production yield was 1.1 mol-H₂/mol-glucose with optimal conditions of OLR of 20 g-glucose/L/day and HRT of 12h.

  15. Direct determination of vanadium in high saline produced waters from offshore petroleum exploration by electrothermal atomic absorption spectrometry.

    PubMed

    Cassella, Ricardo J; Oliveira, Eliane P; Magalhães, Otto I B

    2006-03-15

    The present work reports the development of a methodology for the direct determination of vanadium in high saline waters derived from offshore petroleum exploration employing electrothermal atomic absorption spectrometry. Such waters, usually called produced waters, present complex composition containing various organic and inorganic substances. In order to attain best conditions (highest sensitivity besides lowest background) for the methodology, studies about the effects of several variables (evaluation of pyrolysis and atomization temperatures, type of chemical modifier, concentration of modifier and pyrolysis time) and the convenient calibration strategy were performed. Best conditions were reached with the addition of 10 microg of NH(4)H(2)PO(4) as chemical modifier employing pyrolysis (during 10s) and atomization temperatures of 1500 and 2700 degrees C, respectively. Obtained results indicated that, in this kind of sample, vanadium can be determined by standard addition method or employing an external calibration approach with standard solutions prepared in 0.8 mol l(-1) NaCl medium. In order to evaluate possible matrix interferences, a recovery test was performed with five spiked samples of produced waters. The limit of detection, limit of quantification and relative standard deviation in 0.8 mol l(-1) NaCl medium were also calculated and the derived values were 1.9 microg l(-1), 6.3 microg l(-1) and 5.6% (at 10 microg l(-1) level), respectively.

  16. High environmental salinity induces memory enhancement and increases levels of brain angiotensin-like peptides in the crab Chasmagnathus granulatus.

    PubMed

    Delorenzi, A; Dimant, B; Frenkel, L; Nahmod, V E; Nässel, D R; Maldonado, H

    2000-11-01

    Previous work on the brackish-water crab Chasmagnathus granulatus demonstrated that an endogenous peptide similar to angiotensin II plays a significant role in enhancing long-term memory that involves an association between context and an iterative danger stimulus (context-signal memory). The present results show that this memory enhancement could be produced by moving crabs from brackish water to sea water (33.0%) and keeping them there for at least 4 days. The possibility that such a facilitatory effect is due to osmotic stress is ruled out. Coincidentally, the level of angiotensin-II-like peptides in crab brain, measured by radioimmunoassay, increases with the length of exposure to sea water, reaching a significantly different level at the fourth day. The presence of angiotensin-II-like immunoreactive material in neural structures of the supraoesophageal and eyestalk ganglia was confirmed by immunohistochemical analysis. The results are interpreted as supporting the hypothesis that exposure to water of high salinity is an external cue triggering a process mediated by angiotensins that leads to enhanced memory in these crabs.

  17. Effects of small-volume infusion of 7.5% hypertonic saline/6% dextran-70 on the cardiovascular function of traumatic-hemorrhagic shock rats at high altitude.

    PubMed

    Mei, J M; Hui, S C; Xiao, N; Chen, H H; Tian, K L; Wang, H T

    1995-12-01

    This study was designed to evaluate the effects of small-volume infusion of 7.5% hypertonic saline/6% dextran-70 (HSD) on the cardiovascular function of traumatic-hemorrhagic shock rats at simulated high altitude. 32 rats were randomly divided into four groups: 1) normal saline (NS)-treated group, 2) .9% NaCl/6% dextran-70 (Dex)-treated group, 3) 7.5% hypertonic saline (HS)-treated group, and 4) 7.5% hypertonic saline/6% dextran-70 (HSD)-treated group. The rats were exposed to a simulated high altitude of 4,000 m in a hypobaric hypoxic chamber, and traumatic-hemorrhagic shock was inflicted through fracture of the shaft of the left femur and bleeding from femoral vein to reduce mean arterial pressure (MAP) to 6.00 +/- .67 kPa within 5 min. The MAP was kept at this level for 1 h, and then a bolus intravenous injection of 4 mL/kg NS, Dex, HS, or HSD were given to the rats, respectively. In the 5 h period after treatment, it was found that MAP, left ventricular systolic pressure, maximal rate of left ventricular pressure rise and drop (+/- dp/dtmax) were significantly higher in HSD group than in the NS, Dex and HS groups. It can be concluded that 1) HSD can improve the cardiovascular function and hemodynamics of traumatic-hemorrhagic shock rats at simulated high altitude and 2) HSD is more effective than HS.

  18. Plasma osmolality and oxygen consumption of perch Perca fluviatilis in response to different salinities and temperatures.

    PubMed

    Christensen, E A F; Svendsen, M B S; Steffensen, J F

    2017-03-01

    The present study determined the blood plasma osmolality and oxygen consumption of the perch Perca fluviatilis at different salinities (0, 10 and 15) and temperatures (5, 10 and 20° C). Blood plasma osmolality increased with salinity at all temperatures. Standard metabolic rate (SMR) increased with salinity at 10 and 20° C. Maximum metabolic rate (MMR) and aerobic scope was lowest at salinity of 15 at 5° C, yet at 20° C, they were lowest at a salinity of 0. A cost of osmoregulation (SMR at a salinity of 0 and 15 compared with SMR at a salinity of 10) could only be detected at a salinity of 15 at 20° C, where it was 28%. The results show that P. fluviatilis have capacity to osmoregulate in hyper-osmotic environments. This contradicts previous studies and indicates intraspecific variability in osmoregulatory capabilities among P. fluviatilis populations or habitat origins. An apparent cost of osmoregulation (28%) at a salinity of 15 at 20° C indicates that the cost of osmoregulation in P. fluviatilis increases with temperature under hyperosmotic conditions and a power analysis showed that the cost of osmoregulation could be lower than 12·5% under other environmental conditions. The effect of salinity on MMR is possibly due to a reduction in gill permeability, initiated to reduce osmotic stress. An interaction between salinity and temperature on aerobic scope shows that high salinity habitats are energetically beneficial during warm periods (summer), whereas low salinity habitats are energetically beneficial during cold periods (winter). It is suggested, therefore, that the seasonal migrations of P. fluviatilis between brackish and fresh water is to select an environment that is optimal for metabolism and aerobic scope.

  19. Influence of Exceptionally High Salinities, Marked Variations in Freshwater Discharge and Opening of Estuary Mouth on the Characteristics of the Ichthyofauna of a Normally-Closed Estuary

    NASA Astrophysics Data System (ADS)

    Young, G. C.; Potter, I. C.

    2002-08-01

    This study aimed to determine how the characteristics of the ichthyofauna of the normally-closed Wellstead Estuary on the south coast of Western Australia are influenced by the exceptionally high salinities attained during protracted periods of landlocking and, at other times, by atypically heavy freshwater discharge and consequently the opening of the estuary mouth. After 47 months of continuous closure, this estuary became open to the sea for 30 days in September/October 1997 and then closed again for a further six months. Nearshore, shallow and offshore, deeper waters of the lower, middle and upper regions of this estuary were sampled using seine and gill nets, respectively, in alternate months between July 1996 and May 1998. Mean monthly salinities in each region were >40 on all sampling occasions, except immediately preceding and following the opening of the estuary mouth and, in the lower estuary, they rose to a maximum of 112 in March 1997, before declining to a minimum of 14 in September 1997. The fish fauna of Wellstead Estuary was highly depauperate (20 species), presumably due mainly to the very limited opportunities for the immigration of marine species. However, appreciable numbers of two marine species ( Mugil cephalus and Aldrichetta forsteri) entered from the sea when the estuary was open in the period prior to October 1993 and were able to survive in the highly variable salinities found in this estuary when it was landlocked for the following 47 months. There was strong evidence that, as salinities rose to very high levels in 1997, all of the Leptatherina wallacei and Amoya bifrenatus found in the estuary died and some other species moved from the lower to upper reaches of the estuary where salinities did not rise to such high levels. The atherinid Atherinosoma elongata was the only species caught in March 1997 at the site in the lower estuary where the salinity reached 122. Subsequently, the number of species and overall density of fish in the

  20. Effects of oceanic salinity on body condition in sea snakes.

    PubMed

    Brischoux, François; Rolland, Virginie; Bonnet, Xavier; Caillaud, Matthieu; Shine, Richard

    2012-08-01

    Since the transition from terrestrial to marine environments poses strong osmoregulatory and energetic challenges, temporal and spatial fluctuations in oceanic salinity might influence salt and water balance (and hence, body condition) in marine tetrapods. We assessed the effects of salinity on three species of sea snakes studied by mark-recapture in coral-reef habitats in the Neo-Caledonian Lagoon. These three species include one fully aquatic hydrophiine (Emydocephalus annulatus), one primarily aquatic laticaudine (Laticauda laticaudata), and one frequently terrestrial laticaudine (Laticauda saintgironsi). We explored how oceanic salinity affected the snakes' body condition across various temporal and spatial scales relevant to each species' ecology, using linear mixed models and multimodel inference. Mean annual salinity exerted a consistent and negative effect on the body condition of all three snake species. The most terrestrial taxon (L. saintgironsi) was sensitive to salinity over a short temporal scale, corresponding to the duration of a typical marine foraging trip for this species. In contrast, links between oceanic salinity and body condition in the fully aquatic E. annulatus and the highly aquatic L. laticaudata were strongest at a long-term (annual) scale. The sophisticated salt-excreting systems of sea snakes allow them to exploit marine environments, but do not completely overcome the osmoregulatory challenges posed by oceanic conditions. Future studies could usefully explore such effects in other secondarily marine taxa such as seabirds, turtles, and marine mammals.

  1. Teamwork in high-risk environments analogous to space

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.

    1990-01-01

    Mountaineering expeditions combine a number of factors which make them potentially good analogs to the planetary exploration facet of long-duration space missions. A study of mountain climbing teams was conducted in order to evaluate the usefulness of the environment as a space analog and to specifically identify the factors and issues surrounding teamwork and 'successful' team performance in two mountaineering environments. This paper focuses on social/organizational factors, including team size and structure, leadership styles and authority structure which were found in the sample of 22 climb teams (122 individuals). The second major issue discussed is the construction of a valid performance measure in this high-risk environment.

  2. Experiences of Bereaved Secondary Students in the High School Environment

    ERIC Educational Resources Information Center

    Myers-Autrey, Roberta Lee

    2010-01-01

    Bereaved high school adolescents are often affected in a myriad of ways by the death of a loved one. The traumatic experience and bereavement process add complexity to high school adolescents' development and this phenomenon is not fully understood, in particular in regards to communication and relationships in the school environment. The…

  3. Indicating the Attitudes of High School Students to Environment

    ERIC Educational Resources Information Center

    Ozkan, Recep

    2013-01-01

    Within this work in which it has been aimed to indicate the attitudes of High School Students to environment, indication of the attitudes of high school students in Nigde has been regarded as the problem matter. This analysis has the qualification of survey model and techniques of questionnaire and observation have been used. The investigation has…

  4. Experiences of Bereaved Secondary Students in the High School Environment

    ERIC Educational Resources Information Center

    Myers-Autrey, Roberta Lee

    2010-01-01

    Bereaved high school adolescents are often affected in a myriad of ways by the death of a loved one. The traumatic experience and bereavement process add complexity to high school adolescents' development and this phenomenon is not fully understood, in particular in regards to communication and relationships in the school environment. The…

  5. Silicon carbide semiconductor technology for high temperature and radiation environments

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.

    1993-01-01

    Viewgraphs on silicon carbide semiconductor technology and its potential for enabling electronic devices to function in high temperature and high radiation environments are presented. Topics covered include silicon carbide; sublimation growth of 6H-SiC boules; SiC chemical vapor deposition reaction system; 6H silicon carbide p-n junction diode; silicon carbide MOSFET; and silicon carbide JFET radiation response.

  6. Indicating the Attitudes of High School Students to Environment

    ERIC Educational Resources Information Center

    Ozkan, Recep

    2013-01-01

    Within this work in which it has been aimed to indicate the attitudes of High School Students to environment, indication of the attitudes of high school students in Nigde has been regarded as the problem matter. This analysis has the qualification of survey model and techniques of questionnaire and observation have been used. The investigation has…

  7. The use of environmental tracers to determine focused recharge from a saline disposal basin and irrigation channels in a semiarid environment in Southeastern Australia

    NASA Astrophysics Data System (ADS)

    Robson, T. C.; Webb, J. A.

    2016-07-01

    Lake Tutchewop in southeastern Australia is a former ephemeral wetland that has been used as a saline disposal basin since 1968, forming part of the salinity management of the Murray River. The extent of saline focused recharge from Lake Tutchewop and fresh recharge from nearby unlined irrigation channels was determined using pore water and groundwater stable isotope and major ion chemistry, which were able to separate the influence of lake water, irrigation water and regional groundwater. In ∼45 years, saline water from Lake Tutchewop has infiltrated only up to 165 m from the lake edge in most directions, due to the underlying relatively impermeable clay-rich sediments, and a maximum of 700 m due to preferential groundwater flow along a sandy palaeochannel. The saline leakage has had limited, if any, impact on surrounding agricultural land use. Fresh water leakage from unlined irrigation channels extends up to 10 m deep, validating the current program to replace these channels with pipelines. This study demonstrates that focused recharge from different sources can be positively identified where the recharge waters have distinctive compositions, and that underlying clay-rich sediments restrict the extent of seepage. Therefore, management of focused recharge sources, particularly those that could decrease groundwater quality, requires a detailed knowledge of both the groundwater composition around the site and the underlying geology.

  8. Assessing sulfate reduction and methane cycling in a high salinity pore water system in the northern Gulf of Mexico

    USGS Publications Warehouse

    Pohlman, J.W.; Ruppel, C.; Hutchinson, D.R.; Downer, R.; Coffin, R.B.

    2008-01-01

    Pore waters extracted from 18 piston cores obtained on and near a salt-cored bathymetric high in Keathley Canyon lease block 151 in the northern Gulf of Mexico contain elevated concentrations of chloride (up to 838 mM) and have pore water chemical concentration profiles that exhibit extensive departures (concavity) from steady-state (linear) diffusive equilibrium with depth. Minimum ??13C dissolved inorganic carbon (DIC) values of -55.9??? to -64.8??? at the sulfate-methane transition (SMT) strongly suggest active anaerobic oxidation of methane (AOM) throughout the study region. However, the nonlinear pore water chemistry-depth profiles make it impossible to determine the vertical extent of active AOM or the potential role of alternate sulfate reduction pathways. Here we utilize the conservative (non-reactive) nature of dissolved chloride to differentiate the effects of biogeochemical activity (e.g., AOM and/or organoclastic sulfate reduction) relative to physical mixing in high salinity Keathley Canyon sediments. In most cases, the DIC and sulfate concentrations in pore waters are consistent with a conservative mixing model that uses chloride concentrations at the seafloor and the SMT as endmembers. Conservative mixing of pore water constituents implies that an undetermined physical process is primarily responsible for the nonlinearity of the pore water-depth profiles. In limited cases where the sulfate and DIC concentrations deviated from conservative mixing between the seafloor and SMT, the ??13C-DIC mixing diagrams suggest that the excess DIC is produced from a 13C-depleted source that could only be accounted for by microbial methane, the dominant form of methane identified during this study. We conclude that AOM is the most prevalent sink for sulfate and that it occurs primarily at the SMT at this Keathley Canyon site.

  9. Fractionation and Concentration of High-Salinity Textile Wastewater using an Ultra-Permeable Sulfonated Thin-film Composite.

    PubMed

    Li, Meng; Yao, Yujian; Zhang, Wen; Zheng, Junfeng; Zhang, Xuan; Wang, Lianjun

    2017-08-15

    A sulfonated thin-film composite (TFC) nanofiltration membrane was fabricated using 2,2'-benzidinedisulfonic acid (BDSA) and trimesoyl chloride (TMC) on a polyether sulfone substrate by conventional interfacial polymerization. Due to a nascent barrier layer with a loose architecture, the obtained TFC-BDSA-0.2 membrane showed an ultrahigh pure water permeability of 48.1 ± 2.1 L(-1) m(-2) h(-1) bar(-1), and a considerably low NaCl retention ability of <1.8% over a concentration range of 10-100 g L(-1). The membrane, which possesses a negatively charged surface, displayed an excellent rejection of over 99% toward Congo red (CR) and allowed the fast fractionation of high-salinity textile wastewater. The prepared membrane required only 3-fold water addition to accomplish the separation of multiple components, whereas the commercial NF270 (Dow) membrane required 4-fold water addition and almost double the length of time. Furthermore, the TFC-BDSA-0.2 membrane was subsequently tested for the dye concentration process. It maintained a high flux of 8.2 L(-1) m(-2) h(-1) bar(-1) and a negligible dye loss, even when the concentration factor reached ∼10. Finally, by using a 20% alcohol solution as a back-washing medium, a flux recovery ratio (FRR) of 95.6% was achieved with TFC-BDSA-0.2, and the CR rejection ability remained the same. These results prove the outstanding antifouling and solvent-resistant properties of the membrane.

  10. Ammonium removal from high-salinity oilfield-produced water: assessing the microbial community dynamics at increasing salt concentrations.

    PubMed

    Quartaroli, Larissa; Silva, Lívia C Fidélis; Silva, Claudio Mudadu; Lima, Helena Santiago; de Paula, Sergio Oliveira; de Oliveira, Valéria Maia; de Cássia S da Silva, Marliane; Kasuya, Maria Catarina M; de Sousa, Maíra Paula; Torres, Ana Paula R; Souza, Rodrigo Suhett; Bassin, João Paulo; da Silva, Cynthia Canêdo

    2017-01-01

    Water generated during oil exploration is chemically complex and contains high concentrations of ammonium and, in some cases, high salinity. The most common way to remove ammonium from effluent is a biological process, which can be performed by different routes and different groups of microorganisms. However, the presence of salts in the effluents could be an inhibiting factor for biological processes, interfering directly with treatment. This study aimed to evaluate changes in the profile of a microbial community involved in the process of ammonium removal when subjected to a gradual increase of salt (NaCl), in which the complete inhibition of the ammonium removal process occurred at 125 g L(-1) NaCl. During the sludge acclimatization process, samples were collected and submitted to denaturing gradient gel electrophoresis (DGGE) and massive sequencing of the 16S ribosomal RNA (rRNA) genes. As the salt concentration increased in the reactor, a change in the microbial community was observed by the DGGE band profiles. As a result, there was a reduction in the presence of bacterial populations, and an increase in archaeal populations was found. The sequencing data suggested that ammonium removal in the reactor was carried out by different metabolic routes by autotrophic nitrifying bacteria, such as Nitrosococcus, Nitrosomonas, Nitrosovibrio, Nitrospira, and Nitrococcus; ammonium-oxidizing archaea Candidatus nitrosoarchaeum; ANAMMOX microorganisms, such as Candidatus brocadia, Candidatus kuenenia, and Candidatus scalindua; and microorganisms with the potential to be heterotrophic nitrifying, such as Paracoccus spp., Pseudomonas spp., Bacillus spp., Marinobacter sp., and Alcaligenes spp.

  11. Evolutionary history influences the salinity preference of bacterial taxa in wetland soils

    PubMed Central

    Morrissey, Ember M.; Franklin, Rima B.

    2015-01-01

    Salinity is a major driver of bacterial community composition across the globe. Despite growing recognition that different bacterial species are present or active at different salinities, the mechanisms by which salinity structures community composition remain unclear. We tested the hypothesis that these patterns reflect ecological coherence in the salinity preferences of phylogenetic groups using a reciprocal transplant experiment of fresh- and saltwater wetland soils. The salinity of both the origin and host environments affected community composition (16S rRNA gene sequences) and activity (CO2 and CH4 production, and extracellular enzyme activity). These changes in community composition and activity rates were strongly correlated, which suggests the effect of environment on function could be mediated, at least in part, by microbial community composition. Based on their distribution across treatments, each phylotype was categorized as having a salinity preference (freshwater, saltwater, or none) and phylogenetic analyses revealed a significant influence of evolutionary history on these groupings. This finding was corroborated by examining the salinity preferences of high-level taxonomic groups. For instance, we found that the majority of α- and γ-proteobacteria in these wetland soils preferred saltwater, while many β-proteobacteria prefer freshwater. Overall, our results indicate the effect of salinity on bacterial community composition results from phylogenetically-clustered salinity preferences. PMID:26483764

  12. Radiation environment at high-mountains stations and onboard spacecraft

    SciTech Connect

    Spurny, Frantisek; Ploc, Ondrej; Jadrmickova, Iva

    2008-08-07

    Radiation environment has been studied at high-mountain observatories and onboard spacecraft. The most important contribution to this environment at high-mountain observatories represents cosmic radiation component. We have been studied this environment in two high-mountain observatories: one situated on the top of Lomnicky Stit, High Tatras, Slovakia, and another one close to the top of Moussala, Rila, Bulgaria (Basic Environment Observatory--BEO). The studies have been performed using: an energy deposition spectrometer with a Si-diode (MDU) developed at BAS, Sofia, permitting to estimate non-neutron as well as neutron component of the radiation field; other active equipment designated to measure natural radiation background, and thermoluminescent detectors as passive dosimeters. Basic dosimetry characteristics of these fields are presented, analyzed, and discussed; they are also compared with the estimation of cosmic radiation component as published in the Report of UNSCEAR 2000. Measuring instruments mentioned above, together with an LET spectrometer based on chemically etched track detectors have been also used to characterize radiation environment onboard spacecraft, particularly International Space Station. They have been exposed on the surface and/or inside a phantom. Some of results obtained are presented, and discussed.

  13. Cascading of high salinity bottom waters from the Arabian/Persian Gulf to the northern Arabian Sea

    NASA Astrophysics Data System (ADS)

    Shapiro, Georgy; Wobus, Fred; Solovyev, Vladimir; Francis, Xavier; Hyder, Patrick; Chen, Feng; Asif, Muhammad

    2017-04-01

    Cascading (aka shelf convection) is a specific type of buoyancy driven current in which dense water is formed over the continental shelf and then descends down the slope to a greater depth. The cascades of dense water down continental slopes provide a mechanism for shelf-ocean exchange in many parts of the world's oceans (Shapiro et al, 2003). Dense water is formed on the shelf by a number of processes, with high evaporation, limited river discharge and low precipitation being the major processes in warm climates (Ivanov et al, 2004). The formation and outflow of high salinity waters in the near-bottom layer of the Arabian/Persian Gulf is an example of dense water cascading (Bower et al 2000). Despite of its importance for the self-cleaning and the state of the marine ecosystem in the Arabian/Persian Gulf, the properties of the outflow have so far mainly been analysed using climatologically averaged data or observations of a limited set of parameters (mainly temperature), see (Bower et al 2000). In this paper we study the dynamics of the flow using a comprehensive set of observational data (temperature, salinity velocity and turbidity profiles) obtained during the GRASP (Gulf Reconnaissance And Selective Profiling) observational campaign in the Gulf of Oman, which are complemented by the results of numerical modelling of the area using a number of 3D ocean models, and some ARGO T/S profiles. The GRASP measurements were carried out using an Aqualog climbing moored profiler, which was equipped with a Seabird CTD sensor, a Nortek Aquadopp current meter and a Seapoint turbidity meter. The Ocean circulation models used in the study include PGM4 and IND12 (UK Met Office); and AS20 and AG60 (University of Plymouth). All models are based on NEMO (Nucleus for European Modelling of the Ocean) codebase with a resolution from 9 km down to 1.8 km. The models were calibrated and validated against ARGO float profiles in the area. The study revealed the mesoscale and sub

  14. Investigation of Lake Water Salinity by Using Four-Band Salinity Algorithm on WorldView-2 Satellite Image for a Saline Industrial Lake

    NASA Astrophysics Data System (ADS)

    Budakoǧlu, Murat; Karaman, Muhittin; Damla Uça Avcı, Z.; Kumral, Mustafa; Geredeli (Yılmaz), Serpil

    2014-05-01

    Salinity of a lake is an important characteristic since, these are potentially industrial lakes and the degree of salinity can significantly be used for determination of mineral resources and for the production management. In the literature, there are many studies of using satellite data for salinity related lake studies such as determination of salinity distribution and detection of potential freshwater sources in less salt concentrated regions. As the study area Lake Acigol, located in Denizli (Turkey) was selected. With it's saline environment, it's the major sodium sulphate production resource of Turkey. In this study, remote sensing data and data from a field study was used and correlated. Remote sensing is an efficient tool to monitor and analyze lake properties by using it complementary to field data. Worldview-2 satellite data was used in this study which consists of 8 bands. At the same time with the satellite data acquisition, a field study was conducted to collect the salinity values in 17 points of the laker with using YSI 556 Multiparametre for measurements. The values were measured as salinity amount in grams per kilogram solution and obtained as ppt unit. It was observed that the values vary from 34 ppt - 40.1 ppt and the average is 38.056 ppt. In Thalassic serie, the lake was in mixoeuhaline state in the time of issue. As a first step, ATCOR correction was performed on satellite image for atmospheric correction. There were some clouds on the lake field, hence it was decided to continue the study by using the 12 sampling points which were clear on the image. Then, for each sampling point, a spectral value was obtained by calculating the average at a 11*11 neighborhood. The relation between the spectral reflectance values and the salinity was investigated. The 4-band algorithm, which was used for determination of chlorophyll-a distribution in highly turbid coastal environment by Wei (2012) was applied. Salinity α (Λi-1 / Λj-1) * (Λk-1 / Λm-1) (i

  15. Diffuser/ejector system for a very high vacuum environment

    NASA Technical Reports Server (NTRS)

    Riggs, K. E.; Wojciechowski, C. J. (Inventor)

    1984-01-01

    Turbo jet engines are used to furnish the necessary high temperature, high volume, medium pressure gas to provide a high vacuum test environment at comparatively low cost for space engines at sea level. Moreover, the invention provides a unique way by use of the variable area ratio ejectors with a pair of meshing cones are used. The outer cone is arranged to translate fore and aft, and the inner cone is interchangeable with other cones having varying angles of taper.

  16. Pea lectin receptor-like kinase promotes high salinity stress tolerance in bacteria and expresses in response to stress in planta.

    PubMed

    Joshi, Amita; Dang, Hung Quang; Vaid, Neha; Tuteja, Narendra

    2010-01-01

    The plant lectin receptor-like kinases (LecRLKs) are involved in various signaling pathways but their role in salinity stress tolerance has not heretofore been well described. Salinity stress negatively affects plant growth/productivity and threatens food security worldwide. Based on functional gene-mining assay, we have isolated 34 salinity tolerant genes out of one million Escherichia coli (SOLR) transformants containing pea cDNAs grown in 0.8 M NaCl. Sequence analysis of one of these revealed homology to LecRLK, which possesses N-myristilation and N-glycosylation sites thus corroborating the protein to be a glycoconjugate. The homology based computational modeling of the kinase domain suggested high degree of conservation with the protein already known to be stress responsive in plants. The NaCl tolerance provided by PsLecRLK to the above bacteria was further confirmed in E. coli (DH5alpha). In planta studies showed that the expression of PsLecRLK cDNA was significantly upregulated in response to NaCl as compared to K(+) and Li(+) ions, suggesting the Na(+) ion specific response. Transcript of the PsLecRLK gene accumulates mainly in roots and shoots. The purified 47 kDa recombinant PsLecRLK-KD (kinase domain) protein has been shown to phosphorylate general substrates like MBP and casein. This study not only suggests the conservation of the cellular response to high salinity stress across prokaryotes and plant kingdom but also provides impetus to develop novel concepts for better understanding of mechanism of stress tolerance in bacteria and plants. It also opens up new avenues for studying practical aspects of plant salinity tolerance for enhanced agricultural productivity.

  17. High-density genetic map and identification of QTLs for responses to temperature and salinity stresses in the model brown alga Ectocarpus

    PubMed Central

    Avia, Komlan; Coelho, Susana M.; Montecinos, Gabriel J.; Cormier, Alexandre; Lerck, Fiona; Mauger, Stéphane; Faugeron, Sylvain; Valero, Myriam; Cock, J. Mark; Boudry, Pierre

    2017-01-01

    Deciphering the genetic architecture of adaptation of brown algae to environmental stresses such as temperature and salinity is of evolutionary as well as of practical interest. The filamentous brown alga Ectocarpus sp. is a model for the brown algae and its genome has been sequenced. As sessile organisms, brown algae need to be capable of resisting the various abiotic stressors that act in the intertidal zone (e.g. osmotic pressure, temperature, salinity, UV radiation) and previous studies have shown that an important proportion of the expressed genes is regulated in response to hyposaline, hypersaline or oxidative stress conditions. Using the double digest RAD sequencing method, we constructed a dense genetic map with 3,588 SNP markers and identified 39 QTLs for growth-related traits and their plasticity under different temperature and salinity conditions (tolerance to high temperature and low salinity). GO enrichment tests within QTL intervals highlighted membrane transport processes such as ion transporters. Our study represents a significant step towards deciphering the genetic basis of adaptation of Ectocarpus sp. to stress conditions and provides a substantial resource to the increasing list of tools generated for the species. PMID:28256542

  18. High-density genetic map and identification of QTLs for responses to temperature and salinity stresses in the model brown alga Ectocarpus.

    PubMed

    Avia, Komlan; Coelho, Susana M; Montecinos, Gabriel J; Cormier, Alexandre; Lerck, Fiona; Mauger, Stéphane; Faugeron, Sylvain; Valero, Myriam; Cock, J Mark; Boudry, Pierre

    2017-03-03

    Deciphering the genetic architecture of adaptation of brown algae to environmental stresses such as temperature and salinity is of evolutionary as well as of practical interest. The filamentous brown alga Ectocarpus sp. is a model for the brown algae and its genome has been sequenced. As sessile organisms, brown algae need to be capable of resisting the various abiotic stressors that act in the intertidal zone (e.g. osmotic pressure, temperature, salinity, UV radiation) and previous studies have shown that an important proportion of the expressed genes is regulated in response to hyposaline, hypersaline or oxidative stress conditions. Using the double digest RAD sequencing method, we constructed a dense genetic map with 3,588 SNP markers and identified 39 QTLs for growth-related traits and their plasticity under different temperature and salinity conditions (tolerance to high temperature and low salinity). GO enrichment tests within QTL intervals highlighted membrane transport processes such as ion transporters. Our study represents a significant step towards deciphering the genetic basis of adaptation of Ectocarpus sp. to stress conditions and provides a substantial resource to the increasing list of tools generated for the species.

  19. Discovery and analysis of microRNAs in Leymus chinensis under saline-alkali and drought stress using high-throughput sequencing.

    PubMed

    Zhai, Junfeng; Dong, Yuanyuan; Sun, Yepeng; Wang, Qi; Wang, Nan; Wang, Fawei; Liu, Weican; Li, Xiaowei; Chen, Huan; Yao, Na; Guan, Lili; Chen, Kai; Cui, Xiyan; Yang, Meiying; Li, Haiyan

    2014-01-01

    Leymus chinensis (Trin.) Tzvel. is a perennial rhizome grass of the Poaceae (also called Gramineae) family, which adapts well to drought, saline and alkaline conditions. However, little is known about the stress tolerance of L. chinensis at the molecular level. microRNAs (miRNAs) are known to play critical roles in nutrient homeostasis, developmental processes, pathogen responses, and abiotic stress in plants. In this study, we used Solexa sequencing technology to generate high-quality small RNA data from three L. chinensis groups: a control group, a saline-alkaline stress group (100 mM NaCl and 200 mM NaHCO3), and a drought stress group (20% polyethylene glycol 2000). From these data we identified 132 known miRNAs and 16 novel miRNAs candidates. For these miRNAs we also identified target genes that encode a broad range of proteins that may be correlated with abiotic stress regulation. This is the first study to demonstrate differentially expressed miRNAs in L. chinensis under saline-alkali and drought stress. These findings may help explain the saline-alkaline and drought stress responses in L. chinensis.

  20. Euchlorocystis gen. nov. and Densicystis gen. nov., Two New Genera of Oocystaceae Algae from High-altitude Semi-saline Habitat (Trebouxiophyceae, Chlorophyta).

    PubMed

    Liu, Xudong; Zhu, Huan; Song, Huiyin; Wang, Qinghua; Xiong, Xiong; Wu, Chenxi; Liu, Guoxiang; Hu, Zhengyu

    2017-08-09

    The Oocystaceae family is generally considered to contain common freshwater eukaryotic microalgae, and few are reported living in semi-saline habitats. Our latest ecological survey in Qinghai Lake and Angzicuo Lake, both large, closed, high-altitude, semi-saline lakes located on the Qinghai-Tibet plateau in China, revealed Oocystaceae species as a dominant group among plankton. Since limited knowledge exists about semi-saline species in the Oocystaceae family, a taxonomical study was carried out using morphological and phylogenetic methods. Using this approach, four new strains of Oocystaceae were identified and successfully cultured in the lab. Molecular results correlated with morphological characters and resolved these species into at least three genera. A new genus, Euchlorocystis, with type species Euchlorocystis subsalina, is described here as having the distinctive morphology of multiple pyrenoids per chloroplast among Oocystaceae, and an independent phylogenetic position at the base of the Oocystaceae. Similarly, the genus Densicystis, with type species Densicystis glomerata, is newly proposed here as having a unique colony morphology of dozens or hundreds of little cells tightly embedded in ellipsoid to round mucilage masses. Oocystis marina, originally described from the Baltic Sea, was also identified in Qinghai Lake and Angzicuo Lake and phylogenetically positioned in the semi-saline clade of the Oocystaceae. The result that a marine species was detected in the closed inland lakes implies a further need to reevaluate the origins of these species. © 2017 The Author(s) Journal of Eukaryotic Microbiology © 2017 International Society of Protistologists.

  1. Discovery and Analysis of MicroRNAs in Leymus chinensis under Saline-Alkali and Drought Stress Using High-Throughput Sequencing

    PubMed Central

    Wang, Qi; Wang, Nan; Wang, Fawei; Liu, Weican; Li, Xiaowei; Chen, Huan; Yao, Na; Guan, Lili; Chen, Kai; Cui, Xiyan; Yang, Meiying; Li, Haiyan

    2014-01-01

    Leymus chinensis (Trin.) Tzvel. is a perennial rhizome grass of the Poaceae (also called Gramineae) family, which adapts well to drought, saline and alkaline conditions. However, little is known about the stress tolerance of L. chinensis at the molecular level. microRNAs (miRNAs) are known to play critical roles in nutrient homeostasis, developmental processes, pathogen responses, and abiotic stress in plants. In this study, we used Solexa sequencing technology to generate high-quality small RNA data from three L. chinensis groups: a control group, a saline-alkaline stress group (100 mM NaCl and 200 mM NaHCO3), and a drought stress group (20% polyethylene glycol 2000). From these data we identified 132 known miRNAs and 16 novel miRNAs candidates. For these miRNAs we also identified target genes that encode a broad range of proteins that may be correlated with abiotic stress regulation. This is the first study to demonstrate differentially expressed miRNAs in L. chinensis under saline-alkali and drought stress. These findings may help explain the saline-alkaline and drought stress responses in L. chinensis. PMID:25369004

  2. Interactive effect of high environmental ammonia and nutritional status on ecophysiological performance of European sea bass (Dicentrarchus labrax) acclimated to reduced seawater salinities.

    PubMed

    Sinha, Amit Kumar; Rasoloniriana, Rindra; Dasan, Antony Franklin; Pipralia, Nitin; Blust, Ronny; De Boeck, Gudrun

    2015-03-01

    We investigated the interactive effect of ammonia toxicity, salinity challenge and nutritional status on the ecophysiological performance of European sea bass (Dicentrarchus labrax). Fish were progressively acclimated to normal seawater (32ppt), to brackish water (20ppt and 10ppt) and to hyposaline water (2.5ppt). Following acclimation to different salinities for two weeks, fish were exposed to high environmental ammonia (HEA, 20mg/L ∼1.18mM representing 50% of 96h LC50 value for ammonia) for 12h, 48h, 84h and 180h, and were either fed (2% body weight) or fasted (unfed for 7 days prior to HEA exposure). Biochemical responses such as ammonia (Jamm) and urea excretion rate, plasma ammonia, urea and lactate, plasma ions (Na(+), Cl(-) and K(+)) and osmolality, muscle water content (MWC) and liver and muscle energy budget (glycogen, lipid and protein), as well as branchial Na(+)/K(+)-ATPase (NKA) and H(+)-ATPase activity, and branchial mRNA expression of NKA and Na(+)/K(+)/2Cl(-) co-transporter (NKCC1) were investigated in order to understand metabolic and ion- osmoregulatory consequences of the experimental conditions. During HEA, Jamm was inhibited in fasted fish at 10ppt, while fed fish were still able to excrete efficiently. At 2.5ppt, both feeding groups subjected to HEA experienced severe reductions and eventually a reversion in Jamm. Overall, the build-up of plasma ammonia in HEA exposed fed fish was much lower than fasted ones. Unlike fasted fish, fed fish acclimated to lower salinities (10ppt-2.5ppt) could maintain plasma osmolality, [Na(+)], [Cl(-)] and MWC during HEA exposure. Thus fed fish were able to sustain ion-osmotic homeostasis which was associated with a more pronounced up-regulation in NKA expression and activity. At 2.5ppt both feeding groups activated H(+)-ATPase. The expression of NKCC1 was down-regulated at lower salinities in both fed and fasted fish, but was upregulated within each salinity after a few days of HEA exposure. Though an

  3. A combined microbial desalination cell and electrodialysis system for copper-containing wastewater treatment and high-salinity-water desalination.

    PubMed

    Dong, Yue; Liu, Junfeng; Sui, Mingrui; Qu, Youpeng; Ambuchi, John J; Wang, Haiman; Feng, Yujie

    2017-01-05

    A new concept for heavy metal removal by forming hydroxide precipitation using alkalinity produced by microbial desalination cell (MDC) was proposed. Four five-chamber MDCs were hydraulically connected to concurrently produce alkalinity to treat synthetic copper-containing wastewater and salt removal. There was nearly complete removal of copper, with a maximum removal rate of 5.07kg/(m(3)d) under the initial copper concentration of 5000mg/L (final pH of 7). The final copper concentration met the emission standard for electroplating of China (0.5mg/L, GB 21900-2008). XRD analysis indicated copper was precipitated as Cu2Cl(OH)3. The best performance of MDCs in terms of average power density, salt removal and COD removal rate achieved in stage 3 were 737.3±201.1mW/m(2), 53.6±0.8kg/(m(3)d), and 1.84±0.05 kgCOD/(m(3)d) respectively. For purposes of water recovery, an electrodialysis (ED) system was presented based on in-situ utilization of generated electricity by MDCs as post-desalination treatment for salt effluent after sedimentation. The maximum discharging voltage of 12.75±1.26V at switching time (Ts) of 15min using a capacitor-based circuit produced a maximum desalination efficiency of 30.4±2.6%. These results indicated that this combined system holds great promise for real-world treatment of copper-containing wastewater and deep desalination of high-salinity-water. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Johnson noise thermometer for high radiation and high temperature environments

    NASA Astrophysics Data System (ADS)

    Oakes, L. C.; Shepard, R. L.

    The purpose of development work on the Johnson noise power thermometer (JNPT) was to apply the work of Nyquist, who showed that the mean-squared noise voltage spectrum appearing across an unloaded resistor of value R is given by anti e sub n (2) = 4hfR (exp(hf/kT) - 1)) where anti e sub n (2) has the units volts squared per unit frequency, and h and k are the Planck and Boltzmann constants, respectively, f is the frequency in hertz (Hz) and T is the absolute temperature in Kelvins (K). J.B. Johnson showed that the noise was independent of the composition of the resistor. These discoveries gave rise to a temperature measurement technique using the Johnson noise voltage and Johnson noise current in a noise power mode, which essentially gives immunity to the decalibrating effects of radiation-induced transmutations of the temperature-sensing element. Experiments have been conducted in which temperature measurements were made in the range from 300 to 1200 K. Extrapolation of plots of these data pass through absolute zero, as expected. In-pile irradiation experiments show no perceptible decalibration after 4500 h in high neutron flux even though 80 percent of the original sensor material, rhenium, had been transmuted to osmium.

  5. Practically Saline

    PubMed Central

    Schroeder, Jonathan; O’Neal, Catherine; Jagneaux, Tonya

    2015-01-01

    Introduction. In December 2014, the Food and Drug Administration issued a recall of all Wallcur simulation products due to reports of their use in clinical practice. We present a case of septic shock and multiorgan failure after the accidental intravenous infusion of a nonsterile Wallcur simulation product. Case. The patient presented with symptoms of rigors and dyspnea occurring immediately after infusion of Wallcur Practi-0.9% saline. Initial laboratory evidence was consistent with severe septic shock and multiorgan dysfunction. His initial lactic acid level was 9 mmol/L (reference range = 0.5-2.2), and he had evidence of acute kidney injury and markers of disseminated intravascular coagulation. All 4 blood culture bottles isolated multidrug-resistant Empedobacter brevis. The patient recovered from his illness and was discharged with ciprofloxacin therapy per susceptibilities. Discussion. This patient represents the first described case of severe septic shock associated with the infusion of a Wallcur simulation product. Intravenous inoculation of a nonsterile fluid is rare and exposes the patient to unusual environmental organisms, toxins, or unsafe fluid characteristics such as tonicity. During course of treatment, we identified the possible culprit to be a multidrug-resistant isolate of Empedobacter brevis. We also discuss the systemic failures that led to this outbreak. PMID:26668812

  6. Saline Valley

    NASA Image and Video Library

    2001-10-22

    These images of the Saline Valley area, California, were acquired March 30, 2000 and cover a full ASTER scene (60 by 60 km). Each image displays data from a different spectral region, and illustrates the complementary nature of surface compositional information available as a function of wavelength. This image displays visible and near infrared bands 3, 2, and 1 in red, green, and blue (RGB). Vegetation appears red, snow and dry salt lakes are white, and exposed rocks are brown, gray, yellow and blue. Rock colors mainly reflect the presence of iron minerals, and variations in albedo. Figure 1 displays short wavelength infrared bands 4, 6, and 8 as RGB. In this wavelength region, clay, carbonate, and sulfate minerals have diagnostic absorption features, resulting in distinct colors on the image. For example, limestones are yellow-green, and purple areas are kaolinite-rich. Figure 2 displays thermal infrared bands 13, 12 and 10 as RGB. In this wavelength region, variations in quartz content appear as more or less red; carbonate rocks are green, and mafic volcanic rocks are purple. The image is located at 36.8 degrees north latitude and 117.7 degrees west longitude. http://photojournal.jpl.nasa.gov/catalog/PIA11164

  7. Saline Valley

    NASA Technical Reports Server (NTRS)

    2001-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1 Figure 2

    These images of the Saline Valley area, California, were acquired March 30, 2000 and cover a full ASTER scene (60 by 60 km). Each image displays data from a different spectral region, and illustrates the complementary nature of surface compositional information available as a function of wavelength. This image displays visible and near infrared bands 3, 2, and 1 in red, green, and blue (RGB). Vegetation appears red, snow and dry salt lakes are white, and exposed rocks are brown, gray, yellow and blue. Rock colors mainly reflect the presence of iron minerals, and variations in albedo. Figure 1 displays short wavelength infrared bands 4, 6, and 8 as RGB. In this wavelength region, clay, carbonate, and sulfate minerals have diagnostic absorption features, resulting in distinct colors on the image. For example, limestones are yellow-green, and purple areas are kaolinite-rich. Figure 2 displays thermal infrared bands 13, 12 and 10 as RGB. In this wavelength region, variations in quartz content appear as more or less red; carbonate rocks are green, and mafic volcanic rocks are purple. The image is located at 36.8 degrees north latitude and 117.7 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  8. Overexpression of VP, a vacuolar H+-pyrophosphatase gene in wheat (Triticum aestivum L.), improves tobacco plant growth under Pi and N deprivation, high salinity, and drought.

    PubMed

    Li, Xiaojuan; Guo, Chengjin; Gu, Juntao; Duan, Weiwei; Zhao, Miao; Ma, Chunying; Du, Xiaoming; Lu, Wenjing; Xiao, Kai

    2014-02-01

    Establishing crop cultivars with strong tolerance to P and N deprivation, high salinity, and drought is an effective way to improve crop yield and promote sustainable agriculture worldwide. A vacuolar H+-pyrophosphatase (V-H+-PPase) gene in wheat (TaVP) was functionally characterized in this study. TaVP cDNA is 2586-bp long and encodes a 775-amino-acid polypeptide that contains 10 conserved membrane-spanning domains. Transcription of TaVP was upregulated by inorganic phosphate (Pi) and N deprivation, high salinity, and drought. Transgene analysis revealed that TaVP overexpression improved plant growth under normal conditions and specifically under Pi and N deprivation stresses, high salinity, and drought. The improvement of growth of the transgenic plants was found to be closely related to elevated V-H+-PPase activities in their tonoplasts and enlarged root systems, which possibly resulted from elevated expression of auxin transport-associated genes. TaVP-overexpressing plants showed high dry mass, photosynthetic efficiencies, antioxidant enzyme activities, and P, N, and soluble carbohydrate concentrations under various growth conditions, particularly under the stress conditions. The transcription of phosphate and nitrate transporter genes was not altered in TaVP-overexpressing plants compared with the wild type, suggesting that high P and N concentrations regulated by TaVP were caused by increased root absorption area instead of alteration of Pi and NO3- acquisition kinetics. TaVP is important in the tolerance of multiple stresses and can serve as a useful genetic resource to improve plant P- and N-use efficiencies and to increase tolerance to high salinity and drought.

  9. Zooplankton Seasonal Abundance of South AmericanSaline Shallow Lakes

    NASA Astrophysics Data System (ADS)

    Echaniz, Santiago Andrés; Vignatti, Alicia María; José de Paggi, Susana; Paggi, Juan César; Pilati, Alberto

    2006-02-01

    The central provinces of Argentina are characterized by the presence of a high number of shallow lakes, located in endorheic basins, many of which have elevated salinities as well as eutrophic or hypereutrophic condition. The zooplankton of four saline shallow lakes of the province of La Pampa was studied on a monthly basis during a 2-year period to determine its temporal and spatial variation.The surface of these shallow lakes (<2.5 m depth) varied between 56.8 and 215.9 ha, and some have from 8.4 to 20.8 g . l-1. The more saline lakes have clear water and the less saline lakes turbid water. Fishes, Jenynsia multidentata , were present in only two lakes during the last two months of the studied period.The zooplankton was composed of 17 taxa of Rotifera, 5 taxa of Cladocera and 4 taxa of Copepoda. The low diversity and the faunistic composition are characteristic of saline environments. Although the studied lakes share 38% of the species, the faunistic similarity was higher between the two least saline lakes. The lowest diversity was found in the two most saline lakes.All four shallow lakes were characterized by their very high zooplankton density, especially in the least saline lakes (<80000 ind . l-1). The abundance is significantly correlated with the water transparency but not with salinity.The zooplankton temporal variation was characterized by the alternation of macro- and microzooplankton, probably regulated by competition and intrazooplanktonic predation. In each lake, the spatial abundance distribution of the macro- and microzooplankton was homogeneous. It was related to the shallow depht of the lakes and their polymictic condition.The Scheffer model on alternative states in shallow lakes acknowledges that it cannot be applied to saline lakes because Daphnia , the main responsible for the clear water state, is not tolerant to high salinity. Our study shows that the most saline lakes, where the halophylic Daphnia menucoensis is abundant, have also the

  10. High Temperature Electronics for Intelligent Harsh Environment Sensors

    NASA Technical Reports Server (NTRS)

    Evans, Laura J.

    2008-01-01

    The development of intelligent instrumentation systems is of high interest in both public and private sectors. In order to obtain this ideal in extreme environments (i.e., high temperature, extreme vibration, harsh chemical media, and high radiation), both sensors and electronics must be developed concurrently in order that the entire system will survive for extended periods of time. The semiconductor silicon carbide (SiC) has been studied for electronic and sensing applications in extreme environment that is beyond the capability of conventional semiconductors such as silicon. The advantages of SiC over conventional materials include its near inert chemistry, superior thermomechanical properties in harsh environments, and electronic properties that include high breakdown voltage and wide bandgap. An overview of SiC sensors and electronics work ongoing at NASA Glenn Research Center (NASA GRC) will be presented. The main focus will be two technologies currently being investigated: 1) harsh environment SiC pressure transducers and 2) high temperature SiC electronics. Work highlighted will include the design, fabrication, and application of SiC sensors and electronics, with recent advancements in state-of-the-art discussed as well. These combined technologies are studied for the goal of developing advanced capabilities for measurement and control of aeropropulsion systems, as well as enhancing tools for exploration systems.

  11. Environmental sensor networks and continuous data quality assurance to manage salinity within a highly regulated river basin

    SciTech Connect

    Quinn, N.W.T.; Ortega, R.; Holm, L.

    2010-01-05

    This paper describes a new approach to environmental decision support for salinity management in the San Joaquin Basin of California that focuses on web-based data sharing using YSI Econet technology and continuous data quality management using a novel software tool, Aquarius.

  12. Jerusalem artichoke (Helianthus tuberosus, L.) maintains high inulin, tuber yield, and antioxidant capacity under moderately-saline irrigation waters

    USDA-ARS?s Scientific Manuscript database

    The scarcity of good quality water in semiarid regions of the world is the main limiting factor for increased irrigated agriculture in those regions. Saline water is generally widely available in arid regions at reduced costs, and can be a viable alternative for crop irrigation. However, the literat...

  13. Changes of soluble proteins in leaf and thylakoid exposed in high saline condition of a mangrove taxa Bruguiera gymnorrhiza.

    PubMed

    Behera, Bishnupriya; Das, Anath Bandhu; Mohanty, Prasanna

    2009-01-01

    One-year-old seedlings of Bruguiera gymnorrhiza (L) Savingay were exposed to 500 mM NaCl for 6d under hydroponic culture condition to characterize the changes in leaf and thylakoid protein profiles in response to short-term salt exposures. Significant changes in leaf dry mass, chlorophylls and soluble leaf proteins were observed in short term of salt exposures, as it happens under tidal situations in nature. Chlorophyll a/b ratio showed decrease of light harvesting efficiency in salt treatment. Total soluble proteins in leaves were extracted from control and NaCl-treated plants at 2d intervals and were analyzed by SDS-PAGE. Intensity of several protein bands of different molecular mass of leaf protein profile ranging from 10 to 86 kDa (10, 16, 23, 33, 37, 42, 44, 50 and 86 kDa) were decreased due to high salt treatment. Out of these, 16, 23 and 33 kDa protein bands decreased dramatically from 1-3 fold but recovered in 7d growth, except the 33 kDa band. SDSPAGE profile of thylakoid protein revealed that both number and the intensity of several protein bands got altered by salt concentration. However, 33 kDa protein band of thylakoid reappeared in recovery that might not be of the same characteristics with same molecular mass as shown in total leaf protein profile. The numbers of major bands found in SDS-PAGE were reduced when analyzed in urea-SDS-PAGE to minimize protein aggregations by high salt. It was noted that 47 kDa disappeared while some proteins of apparent molecular mass like 23 kDa, 33 kDa, 37 kDa and 50 kDa degraded to minor bands. Partial restoration of protein bands occurred when the salt-treated plants were brought back to initial growth condition. These results clearly demonstrate that short term high salt concentration could cause major alterations to photosynthetic apparatus of a true non salt-secreting tree mangrove Bruguiera gymnorrhiza and adapted against fluctuation of salinity by altering leaf protein pool relatively more than the thylakoid

  14. Politics in evaluation: Politically responsive evaluation in high stakes environments.

    PubMed

    Azzam, Tarek; Levine, Bret

    2015-12-01

    The role of politics has often been discussed in evaluation theory and practice. The political influence of the situation can have major effects on the evaluation design, approach and methods. Politics also has the potential to influence the decisions made from the evaluation findings. The current study focuses on the influence of the political context on stakeholder decision making. Utilizing a simulation scenario, this study compares stakeholder decision making in high and low stakes evaluation contexts. Findings suggest that high stakes political environments are more likely than low stakes environments to lead to reduced reliance on technically appropriate measures and increased dependence on measures better reflect the broader political environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Salinity control in a clay soil beneath an orchard irrigated with treated waste water in the presence of a high water table: A numerical study

    NASA Astrophysics Data System (ADS)

    Russo, David; Laufer, Asher; Bardhan, Gopali; Levy, Guy J.

    2015-12-01

    A citrus orchard planted on a structured, clay soil associated with a high water table, irrigated by drip irrigation system using treated waste water (TWW) and local well water (LWW) was considered here. The scope of the present study was to analyze transport of mixed-ion, interacting salts in a combined vadose zone-groundwater flow system focusing on the following issues: (i) long-term effects of irrigation with TWW on the response of the flow system, identifying the main factors (e.g., soil salinity, soil sodicity) that control these effects, and (ii) salinity control aiming at improving both crop productivity and groundwater quality. To pursue this two-fold goal, 3-D numerical simulations of field-scale flow and transport were performed for an extended period of time, considering realistic features of the soil, water table, crop, weather and irrigation, and the coupling between the flow and the transport through the dependence of the soil hydraulic functions, K(ψ) and θ(ψ), on soil solution concentration C, and sodium adsorption ratio, SAR. Results of the analyses suggest that in the case studied, the long-term effect of irrigation with TWW on the response of the flow system is attributed to the enhanced salinity of the TWW, and not to the increase in soil sodicity. The latter findings are attributed to: (i) the negative effect of soil salinity on water uptake, and the tradeoff between water uptake and drainage flux, and, concurrently, solute discharge below the root zone; and, (ii) the tradeoff between the effects of C and SAR on K(ψ) and θ(ψ). Furthermore, it was demonstrated that a data-driven protocol for soil salinity control, based on alternating irrigation water quality between TWW and desalinized water, guided by the soil solution salinity at the centroid of the soil volume active in water uptake, may lead to a substantial increase in crop yield, and to a substantial decrease in the salinity load in the groundwater.

  16. Investigation and improvement of a novel double-working-electrode electrochemical system for organic matter treatment from high-salinity wastewater.

    PubMed

    Yu, Han; Zhao, Min; Zhang, Linus; Dong, Heng; Yu, Hongbing; Chen, Ze

    2017-02-03

    The novel double-working-electrode electrochemical system with air diffusion cathode (ADC) and Ti/SnO2-Sb anode (TSSA) has shown higher efficiency and lower energy consumption for the degradation of organic pollutant from high-salinity wastewater, compared to the traditional single anode system. To further investigate and improve this system, in this work, firstly the effect of vital factors of the double-working-electrode electrochemical system including initial methyl orange (MO) concentration, NaCl concentration and initial pH value of organic solution were investigated, using MO as the targeted organic pollutant, carbon black ADC (CBAC) as cathode and stainless steel mesh electrode (SSME) as control. Besides, for the further improvement of removal performance, a novel home-made activated carbon-ADC (ACAC) was studied as cathode with the same investigation process. The results showed that, in the experiments studying the effect of both initial MO and NaCl concentrations, the removal performance was in the order of TSSA-ACAC > TSSA-CBAC > TSSA-SSME in all conditions of initial MO and NaCl concentrations. However, with the pH value reduced from 6.0 to 3.0, the performances of three systems turned to be much closer to each other. Besides, ACAC played a synergistic role in MO removal by greatly improving the MO removal performance and enhancing its adaptability to the reactor parametric variation. ACAC created a weak acidic environment for accelerating the indirect electro-oxidation of MO on TSSA. The MO degradation pathways in the three systems were the same but the TSSA-ACAC system gave a higher degradation kinetics order.

  17. Transformations of the chemical compositions of high molecular weight DOM along a salinity transect: Using two dimensional correlation spectroscopy and principal component analysis approaches

    NASA Astrophysics Data System (ADS)

    Abdulla, Hussain A. N.; Minor, Elizabeth C.; Dias, Robert F.; Hatcher, Patrick G.

    2013-10-01

    In a study of chemical transformations of estuarine high-molecular-weight (HMW, >1000 Da) dissolved organic matter (DOM) collected over a period of two years along a transect through the Elizabeth River/Chesapeake Bay system to the coastal Atlantic Ocean off Virginia, USA, δ13C values, N/C ratios, and principal component analysis (PCA) of the solid-state 13C NMR (nuclear magnetic resonance) spectra of HMW-DOM show an abrupt change in both its sources and chemical structural composition occurring around salinity 20. HMW-DOM in the lower salinity region had lighter isotopic values, higher aromatic and lower carbohydrate contents relative to that in the higher salinity region. These changes around a salinity of 20 are possibly due to introduction of a significant amount of new carbon (autotrophic DOM) to the transect. PC-1 loadings plot shows that spatially differing DOM components are similar to previously reported 13C NMR spectra of heteropolysaccharides (HPS) and carboxyl-rich alicyclic molecules (CRAM). Applying two dimensional correlation spectroscopy techniques to 1H NMR spectra from the same samples reveals increases in the contribution of N-acetyl amino sugars, 6-deoxy sugars, and sulfated polysaccharides to HPS components along the salinity transect, which suggests a transition from plant derived carbohydrates to marine produced carbohydrates within the HMW-DOM pool. In contrast to what has been suggested previously, our combined results from 13C NMR, 1H NMR, and FTIR indicate that CRAM consists of at least two different classes of compounds (aliphatic polycarboxyl compounds and lignin-like compounds).

  18. High concentrations of Na+ and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress.

    PubMed

    Tavakkoli, Ehsan; Rengasamy, Pichu; McDonald, Glenn K

    2010-10-01

    Despite the fact that most plants accumulate both sodium (Na(+)) and chloride (Cl(-)) ions to high concentration in their shoot tissues when grown in saline soils, most research on salt tolerance in annual plants has focused on the toxic effects of Na(+) accumulation. There have also been some recent concerns about the ability of hydroponic systems to predict the responses of plants to salinity in soil. To address these two issues, an experiment was conducted to compare the responses to Na(+) and to Cl(-) separately in comparison with the response to NaCl in a soil-based system using two varieties of faba bean (Vicia faba), that differed in salinity tolerance. The variety Nura is a salt-sensitive variety that accumulates Na(+) and Cl(-) to high concentrations while the line 1487/7 is salt tolerant which accumulates lower concentrations of Na(+) and Cl(-). Soils were prepared which were treated with Na(+) or Cl(-) by using a combination of different Na(+) salts and Cl(-) salts, respectively, or with NaCl. While this method produced Na(+)-dominant and Cl(-)-dominant soils, it unavoidably led to changes in the availability of other anions and cations, but tissue analysis of the plants did not indicate any nutritional deficiencies or toxicities other than those targeted by the salt treatments. The growth, water use, ionic composition, photosynthesis, and chlorophyll fluorescence were measured. Both high Na(+) and high Cl(-) reduced growth of faba bean but plants were more sensitive to Cl(-) than to Na(+). The reductions in growth and photosynthesis were greater under NaCl stress and the effect was mainly additive. An important difference to previous hydroponic studies was that increasing the concentrations of NaCl in the soil increased the concentration of Cl(-) more than the concentration of Na(+). The data showed that salinity caused by high concentrations of NaCl can reduce growth by the accumulation of high concentrations of both Na(+) and Cl(-) simultaneously, but

  19. Highly robust thin-film composite pressure retarded osmosis (PRO) hollow fiber membranes with high power densities for renewable salinity-gradient energy generation.

    PubMed

    Han, Gang; Wang, Peng; Chung, Tai-Shung

    2013-07-16

    The practical application of pressure retarded osmosis (PRO) technology for renewable blue energy (i.e., osmotic power generation) from salinity gradient is being hindered by the absence of effective membranes. Compared to flat-sheet membranes, membranes with a hollow fiber configuration are of great interest due to their high packing density and spacer-free module fabrication. However, the development of PRO hollow fiber membranes is still in its infancy. This study aims to open up new perspectives and design strategies to molecularly construct highly robust thin film composite (TFC) PRO hollow fiber membranes with high power densities. The newly developed TFC PRO membranes consist of a selective polyamide skin formed on the lumen side of well-constructed Matrimid hollow fiber supports via interfacial polymerization. For the first time, laboratory PRO power generation tests demonstrate that the newly developed PRO hollow fiber membranes can withstand trans-membrane pressures up to 16 bar and exhibit a peak power density as high as 14 W/m(2) using seawater brine (1.0 M NaCl) as the draw solution and deionized water as the feed. We believe that the developed TFC PRO hollow fiber membranes have great potential for osmotic power harvesting.

  20. Nonflammable coating compositions. [for use in high oxygen environments

    NASA Technical Reports Server (NTRS)

    Krupnick, A. C.; Key, C. F.; Harwell, R. J. (Inventor)

    1974-01-01

    Nonflammable coating compositions are described for use in high-oxygen environments which include an aqueous suspension of synthetic mica, an alkali metal silicate gelant and a waterbase latex resin emulsion. Inorganic white and/or color pigments and additives such as glass microballoons are employed to provide a wide range of colors and optical properties.

  1. Advocacy for Child Wellness in High-Poverty Environments

    ERIC Educational Resources Information Center

    Mullen, Carol A.

    2014-01-01

    Child wellness needs to be understood holistically so that children and youth from high-poverty environments can succeed in schooling and life. Teachers who foster advocacy in themselves are well equipped to teach students to take ownership of their own well-being. Such advocacy can enrich the classroom curriculum and mitigate the negative effects…

  2. Student Perceptions of High-Security School Environments

    ERIC Educational Resources Information Center

    Bracy, Nicole L.

    2011-01-01

    Public schools have transformed significantly over the past several decades in response to concerns about rising school violence. Today, most public schools are high-security environments employing police officers, security cameras, and metal detectors, as well as strict discipline policies to keep students in line and maintain safe campuses.…

  3. Learning Environment, Motivation, and Achievement in High School Science.

    ERIC Educational Resources Information Center

    Nolen, Susan Bobbitt

    2003-01-01

    Examines the relationship between high school students' perceptions of their science learning environments and their motivation, learning strategies, and achievement. Discusses the focus of shared perceptions and instruction and indicates that shared perceptions focused on understanding and independent thinking positively predicted students'…

  4. Student Perceptions of High-Security School Environments

    ERIC Educational Resources Information Center

    Bracy, Nicole L.

    2011-01-01

    Public schools have transformed significantly over the past several decades in response to concerns about rising school violence. Today, most public schools are high-security environments employing police officers, security cameras, and metal detectors, as well as strict discipline policies to keep students in line and maintain safe campuses.…

  5. Specialty fiber optic applications for harsh and high radiation environments

    NASA Astrophysics Data System (ADS)

    Risch, Brian G.

    2015-05-01

    Since the first commercial introduction in the 1980s, optical fiber technology has undergone an almost exponential growth. Currently over 2 billion fiber kilometers are deployed globally with 2014 global optical fiber production exceeding 300 million fiber kilometers. 1 Along with the staggering growth in optical fiber production and deployment, an increase in optical fiber technologies and applications has also followed. Although the main use of optical fibers by far has been for traditional data transmission and communications, numerous new applications are introduced each year. Initially the practical application of optical fibers was limited by cost and sensitivity of the optical fibers to stress, radiation, and other environmental factors. Tremendous advances have taken place in optical fiber design and materials allowing optical fibers to be deployed in increasingly harsh environments with exposure to increased mechanical and environmental stresses while maintaining high reliability. With the increased reliability, lower cost, and greatly expanded range of optical fiber types now available, new optical fiber deployments in harsh and high radiation environments is seeing a tremendous increase for data, communications, and sensing applications. An overview of key optical fiber applications in data, communications, and sensing for harsh environments in industrial, energy exploration, energy generation, energy transmission, and high radiation applications will be presented. Specific recent advances in new radiation resistant optical fiber types, other specialty optical fibers, optical fiber coatings, and optical fiber cable materials will be discussed to illustrate long term reliability for deployment of optical fibers in harsh and high radiation environments.

  6. Investigating High School Teachers' Perceptions of School Environment.

    ERIC Educational Resources Information Center

    Huang, Shwu-yong L.

    This study examined public high school teachers' perceptions of school environment, focusing on satisfaction, collegiality, teacher-student relationships, discipline, principal leadership, equity, and teacher influence. It also investigated differences in attitudes by gender. Participating teachers from 8 schools in the Southern United States…

  7. Advocacy for Child Wellness in High-Poverty Environments

    ERIC Educational Resources Information Center

    Mullen, Carol A.

    2014-01-01

    Child wellness needs to be understood holistically so that children and youth from high-poverty environments can succeed in schooling and life. Teachers who foster advocacy in themselves are well equipped to teach students to take ownership of their own well-being. Such advocacy can enrich the classroom curriculum and mitigate the negative effects…

  8. Salinity tolerance and mycorrhizal responsiveness of native xeroriparian plants in semi-arid western USA

    USGS Publications Warehouse

    Beauchamp, Vanessa B.; Walz, C.; Shafroth, P.B.

    2009-01-01

    Restoration of salt-affected soils is a global concern. In the western United States, restoration of salinized land, particularly in river valleys, often involves control of Tamarix, an introduced species with high salinity tolerance. Revegetation of hydrologically disconnected floodplains and terraces after Tamarix removal is often difficult because of limited knowledge regarding the salinity tolerance of candidate native species for revegetation. Additionally, Tamarix appears to be non-mycorrhizal. Extended occupation of Tamarix may deplete arbuscular mycorrhizal fungi in the soil, further decreasing the success of revegetation efforts. To address these issues, we screened 42 species, races, or ecotypes native to southwestern U.S. for salinity tolerance and mycorrhizal responsiveness. As expected, the taxa tested showed a wide range of responses to salinity and mycorrhizal fungi. This variation also occurred between ecotypes or races of the same species, indicating that seed collected from high-salinity reference systems is likely better adapted to harsh conditions than seed originating from less saline environments. All species tested had a positive or neutral response to mycorrhizal inoculation. We found no clear evidence that mycorrhizae increased salinity tolerance, but some species were so dependent on mycorrhizal fungi that they grew poorly at all salinity levels in pasteurized soil. ?? 2009 Elsevier B.V.

  9. Low Cost, High Accuracy Positioning In Urban Environments

    NASA Astrophysics Data System (ADS)

    Hide, Chris; Moore, Terry; Hill, Chris; Park, David

    It is well known that GPS measurements are regularly obstructed in urban environments. Positioning accuracy in such environments is significantly degraded and in many areas, it is not possible to obtain a GPS position fix at all. There are currently two methods that can be used to improve availability in the urban environment. Firstly, GPS receivers can be augmented with dead reckoning sensors such as an INS. Alternatively, High Sensitivity GPS (HSGPS) receivers can be used which are able to acquire and track very weak signals. This paper assesses the performance obtained from a GPS and low cost INS integrated system and a HSGPS receiver in an urban environment in Nottingham, UK. The navigation systems are compared to a high accuracy integrated GPS/INS system which is used to provide a reference trajectory. It is demonstrated that the differential GPS and low cost INS system can provide horizontal positioning accuracy of better than 2·5 m RMS in real-time, and better than 1 m RMS in post-processing, whereas the non-differential HSGPS receiver provides a real-time performance of 5 m RMS. These results were obtained in an environment where, with conventional GPS receivers, a position solution is only available 48·4% of the time. Operational considerations such as initial alignment of the GPS and low cost INS are also discussed when comparing the two systems for urban positioning applications.

  10. Experimental laboratory system to generate high frequency test environments

    SciTech Connect

    Gregory, D.L.; Paez, T.L.

    1991-01-01

    This is an extension of two previous analytical studies to investigate a technique for generating high frequency, high amplitude vibration environments. These environments are created using a device attached to a common vibration exciter that permits multiple metal on metal impacts driving a test surface. These analytical studies predicted that test environments with an energy content exceeding 10 kHz could be achieved using sinusoidal and random shaker excitations. The analysis predicted that chaotic vibrations yielding random like test environments could be generated from sinusoidal inputs. In this study, a much simplified version of the proposed system was fabricated and tested in the laboratory. Experimental measurements demonstrate that even this simplified system, utilizing a single impacting object, can generate environments on the test surface with significant frequency content in excess of 40 kHz. Results for sinusoidal shaker inputs tuned to create chaotic impact response are shown along with the responses due to random vibration shaker inputs. The experiments and results are discussed. 4 refs., 5 figs.

  11. Ecophysiological constraints of two invasive plant species under a saline gradient: Halophytes versus glycophytes

    NASA Astrophysics Data System (ADS)

    Duarte, B.; Santos, D.; Marques, J. C.; Caçador, I.

    2015-12-01

    Salt marsh environments are harsh environments where salinity comprises one of the most important species distribution shaping factor, presenting sediment salinities from 0 to 855 mM (0-50 ppt). Invasive species have often a high colonizing potential, due to its high plasticity and adaptation ability. Spartina patens is an invasive species already spread along several Mediterranean countries, like France and Spain. Cyperus longus is typically a freshwater species that has been spreading across the Mediterranean. In order to evaluate the ecophysiological fitness of these species, mesocosmos trials were performed subjecting both species to increasing realistic salinity levels and their photochemical and biochemical feedback was evaluated. Both species presented very different behaviours. S. patens appears to be insensitive to salt stress, mostly due to elevated proline concentrations in its leaves allowing it to maintain its osmotic balance, and thus preventing the damaging of its photochemical mechanisms. C. longus, on the other hand, was highly affected by elevated salt levels mostly due to the lack of osmotic balance driven by an incapacity to counteract the elevated ionic strength of the external medium by osmocompatible solutes. S. patens is physiologically highly adapted to saline environments and thus is capable to colonize all the marsh saline environments, while C. longus appears to be an opportunistic invader colonizing the marsh during periods of lower salinities typical from rainy seasons.

  12. Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle

    PubMed Central

    Zhou, Junli; Wang, Xiangfeng; Jiao, Yuling; Qin, Yonghua; Liu, Xigang; He, Kun; Chen, Chen; Ma, Ligeng; Wang, Jian; Xiong, Lizhong; Zhang, Qifa; Fan, Liumin

    2007-01-01

    To elucidate genome-level responses to drought and high-salinity stress in rice, a 70mer oligomer microarray covering 36,926 unique genes or gene models was used to profile genome expression changes in rice shoot, flag leaf and panicle under drought or high-salinity conditions. While patterns of gene expression in response to drought or high-salinity stress within a particular organ type showed significant overlap, comparison of expression profiles among different organs showed largely organ-specific patterns of regulation. Moreover, both stresses appear to alter the expression patterns of a significant number of genes involved in transcription and cell signaling in a largely organ-specific manner. The promoter regions of genes induced by both stresses or induced by one stress in more than one organ types possess relative enrichment of two cis-elements (ABRE core and DRE core) known to be associated with water stress. An initial computational analysis indicated that novel promoter motifs are present in the promoters of genes involved in rehydration after drought. This analysis suggested that rice might possess a mechanism that actively detects rehydration and facilitates rapid recovery. Overall, our data supports a notion that organ-specific gene regulation in response to the two abiotic stresses may primarily be mediated by organ-specific transcription responses. Electronic supplementary material The online version of this article (doi:10.1007/s11103-006-9111-1) contains supplementary material, which is available to authorized users. PMID:17225073

  13. Effects of high combustion chamber pressure on rocket noise environment

    NASA Technical Reports Server (NTRS)

    Pao, S. P.

    1972-01-01

    The acoustical environment for a high combustion chamber pressure engine was examined in detail, using both conventional and advanced theoretical analysis. The influence of elevated chamber pressure on the rocket noise environment was established, based on increase in exit velocity and flame temperature, and changes in basic engine dimensions. Compared to large rocket engines, the overall sound power level is found to be 1.5 dB higher, if the thrust is the same. The peak Strouhal number shifted about one octave lower to a value near 0.01. Data on apparent sound source location and directivity patterns are also presented.

  14. Diffuser-ejector system for a very high vacuum environment

    SciTech Connect

    Riggs, K.E.

    1984-06-19

    A system for testing space engines at sea level under a very low pressure environment. The system includes a space simulation chamber connected to a diffuser, which has two variable area ratio ejectors connected to it in tandem. Each of the ejectors is driven by a jet engine, preferably a turbo jet. The system is capable of providing a low pressure environment of about three or four millimeters of mercury for testing of engines mounted in the space simulation chamber. The system also may be used for other purposes requiring very high vacuum, such as evaporation and dehydration of food products or drugs.

  15. The incidence of nerve root injury by high-speed drill can be reduced by chilled saline irrigation in a rabbit model.

    PubMed

    Tamai, K; Suzuki, A; Takahashi, S; Akhgar, J; Rahmani, M S; Hayashi, K; Ohyama, S; Nakamura, H

    2017-04-01

    We aimed to evaluate the temperature around the nerve root during drilling of the lamina and to determine whether irrigation during drilling can reduce the chance of nerve root injury. Lumbar nerve roots were exposed to frictional heat by high-speed drilling of the lamina in a live rabbit model, with saline (room temperature (RT) or chilled saline) or without saline (control) irrigation. We measured temperatures surrounding the nerve root and made histological evaluations. In the control group, the mean temperature around the nerve root was 52.0°C (38.0°C to 75.5°C) after 60 seconds of drilling, and nerve root injuries were found in one out of 13 (7.7%) immediately, three out of 14 (21.4%) at three days, and 11 out of 25 (44.0%) at seven days post-operatively. While the RT group showed a significantly lower temperature around the nerve root compared with the control group (mean 46.5°C; 34.5°C to 66.9°C, p < 0.001), RT saline failed to significantly reduce the incidence of nerve root injury (ten out of 26; 38.5%; odds ratio (OR) 0.96; 95% confidence interval (CI) 0.516 to 1.785; p = 0.563). However, chilled saline irrigation resulted in a significantly lower temperature than the control group (mean 39.0°C; 35.3°C to 52.3°C; p < 0.001) and a lower rate of nerve root injury (two out of 21; 9.5%, OR 0.13; 95% CI 0.02 to 0.703, p = 0.010). Frictional heat caused by a high-speed drill can cause histological nerve root injury. Chilled saline irrigation had a more prominent effect than RT in reducing the incidence of the thermal injury during extended drilling. Cite this article: Bone Joint J 2017;99-B:554-60. ©2017 The British Editorial Society of Bone & Joint Surgery.

  16. Characterization of CCTα and evaluating its expression in the mud crab Scylla paramamosain when challenged by low temperatures alone and in combination with high and low salinity.

    PubMed

    Yu, Kun; Gong, Jie; Huang, Chencui; Huang, Huiyang; Ye, Haihui; Wang, Guizhong; Zeng, Chaoshu

    2015-09-01

    demonstrated that at both 10 and 15 °C, the expression of SpCCTα under the high salinity of 35 was significantly lower than that at low salinity of 10, implying that the damages caused by low temperatures with high salinity were less than that under low salinity.

  17. A Compact L-band Radiometer for High Resolution sUAS-based Imaging of Soil Moisture and Surface Salinity Variations

    NASA Astrophysics Data System (ADS)

    Gasiewski, A. J.; Stachura, M.; Dai, E.; Elston, J.; McIntyre, E.; Leuski, V.

    2014-12-01

    Due to the long electrical wavelengths required along with practical aperture size limitations the scaling of passive microwave remote sensing of soil moisture and salinity from spaceborne low-resolution (~10-100 km) applications to high resolution (~10-1000 m) applications requires use of low flying aerial vehicles. This presentation summarizes the status of a project to develop a commercial small Unmanned Aerial System (sUAS) hosting a microwave radiometer for mapping of soil moisture in precision agriculture and sea surface salinity studies. The project is based on the Tempest electric-powered UAS and a compact L-band (1400-1427 MHz) radiometer developed specifically for extremely small and lightweight aerial platforms or man-portable, tractor, or tower-based applications. Notable in this combination are a highly integrated sUAS/radiometer antenna design and use of both the upwelling emitted signal from the surface and downwelling cold space signal for precise calibration using a unique lobe-differencing correlating radiometer architecture. The system achieves a spatial resolution comparable to the altitude of the UAS above the surface while referencing upwelling measurements to the constant and well-known background temperature of cold space. The radiometer has been tested using analog correlation detection, although future builds will include infrared, near-infrared, and visible (red) sensors for surface temperature and vegetation biomass correction and digital sampling for radio frequency interference mitigation. This NASA-sponsored project is being developed for commercial application in cropland water management (for example, high-value shallow root-zone crops), landslide risk assessment, NASA SMAP satellite validation, and NASA Aquarius salinity stratification studies. The system will ultimately be capable of observing salinity events caused by coastal glacier and estuary fresh water outflow plumes and open ocean rainfall events.

  18. High-precision Photogrammetric Surface Figure Measurements under Cryogenic Environment

    NASA Astrophysics Data System (ADS)

    Lou, Z.; Qian, Y.; Fan, S. H.; Liu, C. R.; Wang, H. R.; Zuo, Y. X.; Cheng, J. Q.; Yang, J.

    2016-01-01

    Limited by the working temperature of the measurement equipments, most of the high-precision surface figure measurement techniques cannot be applied under a cryogenic environment. This paper reports the first attempt to measure the surface figure of a high-precision terahertz reflector panel under low temperatures based on photogrammetry. The measurement employs a high resolution industrial camera sitting on an automatic experimental platform which enables photos been taken in an automatic fashion inside a climate chamber. A repeatable accuracy of 2.1 μm rms is achieved under the cryogenic environment. Furthermore, surface figure measured by a three-coordinate measuring machine under room temperature is used to calibrate the thickness variation of the paper targets. By this technique, the surface figure of an aluminum prototype panel of the 5 meter Dome A Terahertz Telescope (DATE5) is measured from room temperature down to -55°C.

  19. High Osmolarity Environments Activate the Mitochondrial Alternative Oxidase in Debaryomyces Hansenii

    PubMed Central

    Garcia-Neto, Wilson; Cabrera-Orefice, Alfredo; Uribe-Carvajal, Salvador; Kowaltowski, Alicia J.; Alberto Luévano-Martínez, Luis

    2017-01-01

    The oleaginous yeast Debaryomyces hansenii is a good model to understand molecular mechanisms involved in halotolerance because of its impressive ability to survive under a wide range of salt concentrations. Several cellular adaptations are implicated in this response, including the presence of a cyanide-insensitive ubiquinol oxidase (Aox). This protein, which is present in several taxonomical orders, has been related to different stress responses. However, little is known about its role in mitochondria during transitions from low to high saline environments. In this report, we analyze the effects of Aox in shifts from low to high salt concentrations in the culture media. At early stages of a salt insult, we observed that this protein prevents the overflow of electrons on the mitochondrial respiratory chain, thus, decreasing the production of reactive oxygen species. Interestingly, in the presence of high osmolite concentrations, Aox activity is able to sustain a stable membrane potential when coupled to complex I, despite a compromised cytochrome pathway. Taken together, our results suggest that under high osmolarity conditions Aox plays a critical role regulating mitochondrial physiology. PMID:28060946

  20. High Osmolarity Environments Activate the Mitochondrial Alternative Oxidase in Debaryomyces Hansenii.

    PubMed

    Garcia-Neto, Wilson; Cabrera-Orefice, Alfredo; Uribe-Carvajal, Salvador; Kowaltowski, Alicia J; Alberto Luévano-Martínez, Luis

    2017-01-01

    The oleaginous yeast Debaryomyces hansenii is a good model to understand molecular mechanisms involved in halotolerance because of its impressive ability to survive under a wide range of salt concentrations. Several cellular adaptations are implicated in this response, including the presence of a cyanide-insensitive ubiquinol oxidase (Aox). This protein, which is present in several taxonomical orders, has been related to different stress responses. However, little is known about its role in mitochondria during transitions from low to high saline environments. In this report, we analyze the effects of Aox in shifts from low to high salt concentrations in the culture media. At early stages of a salt insult, we observed that this protein prevents the overflow of electrons on the mitochondrial respiratory chain, thus, decreasing the production of reactive oxygen species. Interestingly, in the presence of high osmolite concentrations, Aox activity is able to sustain a stable membrane potential when coupled to complex I, despite a compromised cytochrome pathway. Taken together, our results suggest that under high osmolarity conditions Aox plays a critical role regulating mitochondrial physiology.

  1. A nominal set of high-altitude EMP environments

    SciTech Connect

    Longmire, C.L.; Hamilton, R.M.; Hahn, J.M.

    1987-02-01

    This report presents high-altitude EMP (HEMP) environments calculated by the CHAP code for a nominal large yield burst at 400 km over the central US. Nominal, unclassified weapon output parameters were used, along with unclassified EMP theory and calculational techniques. While the resulting environments do not represent upper bounds, they should be useful in developing understanding of the effect of HEMP on electrical and electronic systems. The calculated environments illustrate the wide variability of the HEMP from a single burst, depending on ground range and azimuth from ground zero. Analytic fits to the HEMP fields are provided to facilitate coupling calculations. The CHAP results are justified by a detailed examination of Compton currents, air conductivities, and the resulting fields. It is shown that both HEMP theory and the calculations conserve energy scrupulously.

  2. The 2GCHAS: A high productivity software development environment

    NASA Technical Reports Server (NTRS)

    Babb, Larry

    1986-01-01

    To the user, the most visible feature of the Transportable Applications Executive (TAE) is its very powerful user interface. To the programmer, TAE's user interface, proc concept, standardized interface definitions, and hierarchy search provide a set of tools for rapidly prototyping or developing production software. The 2GCHAS (Second Generation Comprehensive Helicopter Analysis System) project has extended and enhanced these mechanisms, creating a powerful and high productivity programming environment where the 2GCHAS development environment is 2GCHAS itself and where a sustained rate for certified, documented, and tested software above 30 delivered source instructions per programmer day has been achieved. The 2GCHAS environment is not limited to helicopter analysis, but is applicable to other disciplines where software development is important.

  3. Salinity-driven shifts in the activity, diversity, and abundance of anammox bacteria of estuarine and coastal wetlands

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaofen; Hou, Lijun; Zheng, Yanling; Liu, Min; Yin, Guoyu; Gao, Juan; Li, Xiaofei; Wang, Rong; Yu, Chendi; Lin, Xianbiao

    2017-02-01

    Anaerobic ammonium oxidation (anammox) plays a significant role in nitrogen removal in estuarine and coastal wetlands. However, the effects of changing salinity on anammox activity and anammox bacterial dynamics in these environments are not well understood. In this study, serial incubation experiments with a salinity gradient (0-40) were conducted to explore the responses of anammox bacterial activity, diversity and abundance to the changing salinity in the intertidal wetland of the Yangtze Estuary. Results show that activity and abundance of anammox bacteria firstly increased with the increase of salinity, but they were physiologically stressed by high-level salinity (>30) in a short-term incubation (<10 days). However, the treatment with salinity of 5 showed the maximal anammox activity and anammox bacterial abundance after a long-term incubation (60-120 days). In addition, Kuenenia (Kuenenia stuttgartiensis), Scalindua (Scalindua wagner, marina, and brodae), and three unknown anammox-like groups were observed, and anammox bacterial diversity increased along the salinity gradient. Anammox community structure varied slightly within the first 10-day incubation, but the dominant anammox bacterial group shifted from Kuenenia to Scalindua with increasing salinity after the long-term incubation. Overall, this study demonstrates the effects of salinity on anammox bacterial community and anammox activity, and suggests the importance of salinity in regulating the anammox process in estuarine and coastal wetlands with frequent salinity fluctuation.

  4. Changes in the salinity tolerance of sweet pepper plants as affected by nitrogen form and high CO2 concentration.

    PubMed

    Piñero, María C; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2016-08-01

    The assimilation and availability of nitrogen in its different forms can significantly affect the response of primary productivity under the current atmospheric alteration and soil degradation. An elevated CO2 concentration (e[CO2]) triggers changes in the efficiency and efficacy of photosynthetic processes, water use and product yield, the plant response to stress being altered with respect to ambient CO2 conditions (a[CO2]). Additionally, NH4(+) has been related to improved plant responses to stress, considering both energy efficiency in N-assimilation and the overcoming of the inhibition of photorespiration at e[CO2]. Therefore, the aim of this work was to determine the response of sweet pepper plants (Capsicum annuum L.) receiving an additional supply of NH4(+) (90/10 NO3(-)/NH4(+)) to salinity stress (60mM NaCl) under a[CO2] (400μmolmol(-1)) or e[CO2] (800μmolmol(-1)). Salt-stressed plants grown at e[CO2] showed DW accumulation similar to that of the non-stressed plants at a[CO2]. The supply of NH4(+) reduced growth at e[CO2] when salinity was imposed. Moreover, NH4(+) differentially affected the stomatal conductance and water use efficiency and the leaf Cl(-), K(+), and Na(+) concentrations, but the extent of the effects was influenced by the [CO2]. An antioxidant-related response was prompted by salinity, the total phenolics and proline concentrations being reduced by NH4(+) at e[CO2]. Our results show that the effect of NH4(+) on plant salinity tolerance should be globally re-evaluated as e[CO2] can significantly alter the response, when compared with previous studies at a[CO2]. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Anuran larval developmental plasticity and survival in response to variable salinity of ecologically relevant timing and magnitude.

    PubMed

    Kearney, Brian D; Pell, Rebecca J; Byrne, Phillip G; Reina, Richard D

    2014-12-01

    Salinity in affected freshwater ecosystems fluctuates with seasonal rainfall, tidal flux, rates of evaporation, chemical runoff and the influence of secondary salinization. Environmental stressors such as salinity can have lasting effects on anuran development, yet little is known about the effects of fluctuating salinity on tadpole ontogeny or the effects of differing magnitudes of salinity exposure, as would occur in natural wetland systems. We examined how salinity fluctuations affected survival, growth and development of Litoria ewingii by exposing tadpoles to a range of salinity concentrations (5.6-10.85 ppt) at three different stages of development (hind limb-bud formation; toe differentiation and forearm development). We also investigated the plasticity of tadpole growth rates in response to non-lethal, transient salinity influxes, specifically examining the capacity for compensatory growth and its relationship to the timing, magnitude or frequency of salinity exposure. Our results show that later-stage tadpoles are more tolerant to elevated salinity than those exposed at a younger age, and that exposure to high salinity later in life suppresses the potential for compensatory growth. Tadpoles exposed to transient low salinity lost less mass during metamorphosis than animals in constant salinity treatments, indicating a possible alternate to compensatory growth. Exposure to near-lethal salinities early in development did not alter tadpole responses to subsequent salinity stress. Our results provide some of the first evidence that both the timing and magnitude of transient environmental stressors can have an effect on anuran development and developmental trade-offs in a stressful environment.

  6. Implement and application of ultra-high pressures environment

    NASA Astrophysics Data System (ADS)

    Xian Zhang, Yu; Li, Nan; Liu, Bin Bin; Wang, Hong

    2017-09-01

    A hydraulic system was designed which was used to generate hydrostatic ultra-high pressure environment. The functions and roles of the main elements in the hydraulic system were introduced. Deformation theory based on ultrahigh pressure cylinder was analyzed. The principle and method about measuring ultra-high pressure cylinder radial and circumferential elastic line-strain by a dial indicator were illustrated. A practical example was given to illustrate the practicability and validity of this method. The measures to decrease the measurement error were pointed out. The described priciples and methods have a certain theoretical and practical significance in engineering research and application of ultra-high pressure.

  7. Effects of high salinity and constituent organic compounds on treatment of photo-processing waste by a sulfur-oxidizing bacteria/granular activated carbon sludge system.

    PubMed

    Lin, Bin-Le; Hosomi, Masaaki; Murakami, Akihiko

    2002-02-01

    To achieve practical treatment of photo-processing waste (PW) using our previously proposed sulfur-oxidizing bacteria (SOB)/granular activated carbon (GAC) sludge system, this paper elucidates why 3- to 5-X dilution of PW was required. That is, a series of experiments were carried out to show the effects of high salinity and constituent organic compounds in PW, respectively. Both an inorganic salts system and calcination PW system showed that SOB completely oxidizes S2O(3)2- -S to SO(4)2- -S even at 12.3 or 13.6% salinity, respectively; hence the dilution requirement is not attributable to high salinity. In experiments employing SOB and SOB/GAC systems to investigate the effects of 23 constituent compounds in PW, compounds were classified into Groups I, II, IIIa, and IIIb. Even with 10 g/l GAC, the nine compounds in Group IIIb still exhibited a toxic effect on SOB activity at 1- and 3-X dilutions; thus it is these compounds that are responsible for requiring dilution of PW. Accordingly, a reduction in their use within the photodeveloping and fix-stabilizing industry, and/or use of > 10g/l GAC, are new considerations for establishing a more practical PW treatment process.

  8. NASA's New High Intensity Solar Environment Test Capability

    NASA Technical Reports Server (NTRS)

    Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H.

    2012-01-01

    Across the world, new spaceflight missions are being designed and executed that will place spacecraft and instruments into challenging environments throughout the solar system. To aid in the successful completion of these new missions, NASA has developed a new flexible space environment test platform. The High Intensity Solar Environment Test (HISET) capability located at NASA fs Marshall Space Flight Center provides scientists and engineers with the means to test spacecraft materials and systems in a wide range of solar wind and solar photon environments. Featuring a solar simulator capable of delivering approximately 1 MW/m2 of broad spectrum radiation at maximum power, HISET provides a means to test systems or components that could explore the solar corona. The solar simulator consists of three high-power Xenon arc lamps that can be operated independently over a range of power to meet test requirements; i.e., the lamp power can be greatly reduced to simulate the solar intensity at several AU. Integral to the HISET capability are charged particle sources that can provide a solar wind (electron and proton) environment. Used individually or in combination, the charged particle sources can provide fluxes ranging from a few nA/cm2 to 100s of nA/cm2 over an energy range of 50 eV to 100 keV for electrons and 100 eV to 30 keV for protons. Anchored by a high vacuum facility equipped with a liquid nitrogen cold shroud for radiative cooling scenarios, HISET is able to accommodate samples as large as 1 meter in diameter. In this poster, details of the HISET capability will be presented, including the wide ]ranging configurability of the system.

  9. High-Rise Buildings versus Outdoor Thermal Environment in Chongqing

    PubMed Central

    Lu, Jun; Chen, Jin-hua; Tang, Ying; Feng, Yuan; Wang, Jin-sha

    2007-01-01

    This paper gives a brief description of the over quick urbanization since Chongqing, one of the biggest cities in China, has been a municipality directly under the Central Government in 1997, excessive development and exceeding increase of high-rise buildings because of its special geographical position which finally leads to the worsening of the urban outdoor thermal environment. Then, this paper makes a bright balance to the field measurement and simulated results of the wind speed field, temperature field of one multifunctional high-rise building in Chongqing university located in the city center, and the contrasted results validate the correctness of CFD in the outdoor thermal environmental simulation, expose the disadvantages of high-rise buildings on the aspects of blocking the wind field, decreasing wind speed which results in accumulation of the air-conditioning heat revolving around and periscian region where sunshine can not rip into. Finally, in order to improve the urban outdoor thermal environment near the high-rise buildings especially for the angle of natural ventilation, this paper simulates the wind environment in different architectural compositions and architectural layouts by CFD, and the simulated results show that freestyle and tower buildings which can guarantee the wind speed and take the air-conditioning heat away are much suitable and reasonable for the special Chongqing geography. These conclusions can also be used as a reference in other mountain cities, especially for the one with a great number of populations. PMID:28903222

  10. Spectroscopic gamma camera for use in high dose environments

    NASA Astrophysics Data System (ADS)

    Ueno, Yuichiro; Takahashi, Isao; Ishitsu, Takafumi; Tadokoro, Takahiro; Okada, Koichi; Nagumo, Yasushi; Fujishima, Yasutake; Kometani, Yutaka; Suzuki, Yasuhiko; Umegaki, Kikuo

    2016-06-01

    We developed a pinhole gamma camera to measure distributions of radioactive material contaminants and to identify radionuclides in extraordinarily high dose regions (1000 mSv/h). The developed gamma camera is characterized by: (1) tolerance for high dose rate environments; (2) high spatial and spectral resolution for identifying unknown contaminating sources; and (3) good usability for being carried on a robot and remotely controlled. These are achieved by using a compact pixelated detector module with CdTe semiconductors, efficient shielding, and a fine resolution pinhole collimator. The gamma camera weighs less than 100 kg, and its field of view is an 8 m square in the case of a distance of 10 m and its image is divided into 256 (16×16) pixels. From the laboratory test, we found the energy resolution at the 662 keV photopeak was 2.3% FWHM, which is enough to identify the radionuclides. We found that the count rate per background dose rate was 220 cps h/mSv and the maximum count rate was 300 kcps, so the maximum dose rate of the environment where the gamma camera can be operated was calculated as 1400 mSv/h. We investigated the reactor building of Unit 1 at the Fukushima Dai-ichi Nuclear Power Plant using the gamma camera and could identify the unknown contaminating source in the dose rate environment that was as high as 659 mSv/h.

  11. High Temperature Wireless Communication And Electronics For Harsh Environment Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Beheim, G. M.; Ponchak, G. E.; Chen, L.-Y

    2007-01-01

    In order for future aerospace propulsion systems to meet the increasing requirements for decreased maintenance, improved capability, and increased safety, the inclusion of intelligence into the propulsion system design and operation becomes necessary. These propulsion systems will have to incorporate technology that will monitor propulsion component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This implies the development of sensors, actuators, and electronics, with associated packaging, that will be able to operate under the harsh environments present in an engine. However, given the harsh environments inherent in propulsion systems, the development of engine-compatible electronics and sensors is not straightforward. The ability of a sensor system to operate in a given environment often depends as much on the technologies supporting the sensor element as the element itself. If the supporting technology cannot handle the application, then no matter how good the sensor is itself, the sensor system will fail. An example is high temperature environments where supporting technologies are often not capable of operation in engine conditions. Further, for every sensor going into an engine environment, i.e., for every new piece of hardware that improves the in-situ intelligence of the components, communication wires almost always must follow. The communication wires may be within or between parts, or from the engine to the controller. As more hardware is added, more wires, weight, complexity, and potential for unreliability is also introduced. Thus, wireless communication combined with in-situ processing of data would significantly improve the ability to include sensors into high temperature systems and thus lead toward more intelligent engine systems. NASA Glenn Research Center (GRC) is presently leading the development of electronics, communication systems, and sensors capable of prolonged stable

  12. Cryogenic Impinging Jets Subjected to High Frequency Transverse Acoustic Forcing in a High Pressure Environment

    DTIC Science & Technology

    2016-07-27

    Transverse Acoustic Forcing in a High Pressure Environment 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Mario... Acoustic Forcing in a High Pressure Environment Mario Roa, Sierra Lobo, Inc. Alex Schumaker, AFRL Doug Talley, AFRL 24-27 July 2016 Joint Propulsion...frequencies. • Study the response of the flow field when driven by acoustic speakers at low amplitude, high frequency standing wave in pressure anti-node

  13. Water-column cooling and sea surface salinity increase in the upwelling region off central-south Chile driven by a poleward displacement of the South Pacific High

    NASA Astrophysics Data System (ADS)

    Schneider, Wolfgang; Donoso, David; Garcés-Vargas, José; Escribano, Rubén

    2017-02-01

    Here we present results of direct observations of seawater temperature and salinity over the continental shelf off central-south Chile that shows an unprecedented cooling of the entire water column and an increase in upper layer salinity during 2002 to 2013. We provide evidence that this phenomenon is related to the intensification but mostly to a recent southward displacement of the South Pacific High over the same period, from 2007 on. This in turn has accelerated alongshore, equatorward, subtropical coastal upwelling favorable winds, particularly during winter, injecting colder water from below into the upper water column. Consequently, the environmental conditions on the shelf off central-south Chile shifted from a warmer (fresher) to a cooler (saltier) phase; water column temperature dropped from 11.7 °C (2003-2006) to 11.3 °C (2007-2012) and upper layer salinity rose by 0.25; water column stratification gradually decreased. The biological impacts of such abrupt cooling are apparently already happening in this coastal ecosystem, as recent evidence shows substantial changes in the plankton community and negative trends in zooplankton biomass over the same period.

  14. Effects of high-salinity seawater acclimation on the levels of D-alanine in the muscle and hepatopancreas of kuruma prawn, Marsupenaeus japonicus.

    PubMed

    Yoshikawa, Naoko; Yokoyama, Masahumi

    2015-12-10

    Changes in D- and L-alanine contents were determined in the muscle and hepatopancreas of kuruma prawn Marsupenaeus japonicus, during acclimation from seawater containing 100% salinity to artificial seawater containing 150% salinity. In the hepatopancreas, contents of both amino acids increased by approximately threefold. The activity of alanine racemase, which catalyzes the interconversion of D- and L-alanine, also increased in the high-salinity seawater. In addition, the expression of the gene encoding alanine racemase increased in the hepatopancreas with an increase in the alanine racemase activity. These data indicate that the biosynthesis of D- and L-alanine is controlled by the gene expression level of alanine racemase, and D-alanine in the hepatopancreas functions as a major osmolyte for isosmotic regulation. In contrast, the content of D-alanine and alanine racemase activity did not change in the muscle during hyper-osmotic acclimation. Therefore, we suggest that D-alanine, which exists in the several tissues of M. japonicus, is considered to be utilized in some different physiological phenomena in different tissues.

  15. Morpho-anatomical, physiological and biochemical adjustments in response to root zone salinity stress and high solar radiation in two Mediterranean evergreen shrubs, Myrtus communis and Pistacia lentiscus.

    PubMed

    Tattini, Massimiliano; Remorini, Damiano; Pinelli, Patrizia; Agati, Giovanni; Saracini, Erica; Traversi, Maria Laura; Massai, Rossano

    2006-01-01

    Salt- and light-induced changes in morpho-anatomical, physiological and biochemical traits were analysed in Myrtus communis and Pistacia lentiscus with a view to explaining their ecological distribution in the Mediterranean basin. In plants exposed to 20 or 100% solar radiation and supplied with 0 or 200 mm NaCl, measurements were conducted for ionic and water relations and photosynthetic performance, leaf morpho-anatomical and optical properties and tissue-specific accumulation of tannins and flavonoids. Net carbon gain and photosystem II (PSII) efficiency decreased less in P. lentiscus than in M. communis when exposed to salinity stress, the former having a superior ability to use Na(+) and Cl(-) for osmotic adjustment. Morpho-anatomical traits also allowed P. lentiscus to protect sensitive targets in the leaf from the combined action of salinity stress and high solar radiation to a greater degree than M. communis. Salt and light-induced increases in carbon allocated to polyphenols, particularly to flavonoids, were greater in M. communis than in P. lentiscus, and appeared to be related to leaf oxidative damage. Our data may conclusively explain the negligible distribution of M. communis in open Mediterranean areas suffering from salinity stress, and suggest a key antioxidant function of flavonoids in response to different stressful conditions.

  16. Diversity and food web structure of nematode communities under high soil salinity and alkaline pH.

    PubMed

    Salamún, Peter; Kucanová, Eva; Brázová, Tímea; Miklisová, Dana; Renčo, Marek; Hanzelová, Vladimíra

    2014-10-01

    A long-term and intensive magnesium (Mg) ore processing in Slovenské Magnezitové Závody a.s. in Jelšava has resulted in a high Mg content and alkaline pH of the soil environment, noticeable mainly in the close vicinity of the smelter. Nematode communities strongly reacted to the contamination mostly by a decrease in abundance of the sensitive groups. Nematodes from c-p 1 group and bacterivores, tolerant to pollution played a significant role in establishing the dominance at all sites. With increasing distance from the pollution source, the nematode communities were more structured and complex, with an increase in proportion of sensitive c-p 4 and 5 nematodes, composed mainly of carnivores and omnivores. Various ecological indices (e.g. MI2-5, SI, H') indicated similar improvement of farther soil ecosystems.

  17. Physiological Responses to Salinity Vary with Proximity to the Ocean in a Coastal Amphibian.

    PubMed

    Hopkins, Gareth R; Brodie, Edmund D; Neuman-Lee, Lorin A; Mohammadi, Shabnam; Brusch, George A; Hopkins, Zoë M; French, Susannah S

    2016-01-01

    Freshwater organisms are increasingly exposed to elevated salinity in their habitats, presenting physiological challenges to homeostasis. Amphibians are particularly vulnerable to osmotic stress and yet are often subject to high salinity in a variety of inland and coastal environments around the world. Here, we examine the physiological responses to elevated salinity of rough-skinned newts (Taricha granulosa) inhabiting a coastal stream on the Pacific coast of North America and compare the physiological responses to salinity stress of newts living in close proximity to the ocean with those of newts living farther upstream. Although elevated salinity significantly affected the osmotic (body weight, plasma osmolality), stress (corticosterone), and immune (bactericidal ability) responses of newts, animals found closer to the ocean were generally less reactive to salt stress than those found farther upstream. Our results provide possible evidence for some physiological tolerance in this species to elevated salinity in coastal environments. As freshwater environments become increasingly saline and more stressful, understanding the physiological tolerances of vulnerable groups such as amphibians will become increasingly important to our understanding of their abilities to respond, to adapt, and, ultimately, to survive.

  18. Climate and Geomorphic Risks in High-Mountain Environments

    NASA Astrophysics Data System (ADS)

    Huggel, Christian; Kääb, Andreas; Schneider, Jean

    2010-03-01

    Glacier Hazards, Permafrost Hazards, and Glacier Lake Outburst Floods in Mountain Areas: Processes, Assessment, Prevention, Mitigation; Vienna, Austria, 10-13 November 2009; Recent atmospheric warming is profoundly affecting high-mountain environments around the world. Glaciers are thinning and retreating, new and often unstable lakes are forming at glacier margins, other lakes are suddenly draining, and permafrost is degrading. These changes pose serious hazards to people and property in mountain valleys. Several tens of thousands of people were killed by landslides, floods, and debris flows from high-mountain regions during the twentieth century, and there is concern that such events will increase as temperatures warm through the 21st century.

  19. Using EPSAT to analyze high power systems in the space environment. [Environment Power System Analysis Tool

    NASA Technical Reports Server (NTRS)

    Kuharski, Robert A.; Jongeward, Gary A.; Wilcox, Katherine G.; Rankin, Tom R.; Roche, James C.

    1991-01-01

    The authors review the Environment Power System Analysis Tool (EPSAT) design and demonstrate its capabilities by using it to address some questions that arose in designing the SPEAR III experiment. It is shown that that the rocket body cannot be driven to large positive voltages under the constraints of this experiment. Hence, attempts to measure the effects of a highly positive rocket body in the plasma environment should not be made in this experiment. It is determined that a hollow cathode will need to draw only about 50 mA to ground the rocket body. It is shown that a relatively small amount of gas needs to be released to induce a bulk breakdown near the rocket body, and this gas release should not discharge the sphere. Therefore, the experiment provides an excellent opportunity to study the neutralization of a differential charge.

  20. Deglacial sea surface temperature and salinity increase in the western tropical Atlantic in synchrony with high latitude climate instabilities

    NASA Astrophysics Data System (ADS)

    Weldeab, S.; Schneider, R. R.; Kölling, M.

    2006-01-01

    A sediment core from the western tropical Atlantic covering the last 21,000 yr has been analysed for centennial scale reconstruction of sea surface temperature (SST) and ice volume-corrected oxygen isotopic composition of sea water ( δ18O ivc-sw) using Mg / Ca and δ18O of the shallow dwelling planktonic foraminifer Globigerinoides ruber (white). At a period between 15.5 and 17.5 kyr BP, the Mg / Ca SST and δ18O ivc-sw, a proxy for sea surface salinity (SSS), reveals a warming of around 2.5 °C along with an increase in salinity. A second period of pronounced warming and SSS increase occurred between 11.6 and 13.5 kyr BP. Within age model uncertainties, both warming intervals were synchronous with air temperature increase over Antarctica and ice retreat in the southern South Atlantic and terminated with abrupt centennial scale SSS decrease and slight SST cooling in conjunction with interglacial reactivation of the meridional overturning circulation (MOC). We suggest that during these warm intervals, production of saline and warm water of the North Brazil Current resulted in pronounced heat and salt accumulation, and was associated with warming in the southern Atlantic, southward displacement of the intertropical convergence zone and weakened MOC. At the termination of the Younger Dryas and Heinrich event 1, intensification of cross-equatorial heat and salt transport caused centennial scale cooling and freshening of the western tropical Atlantic surface water. This study shows that the western tropical Atlantic served as a heat and salt reservoir during deglaciation. The sudden release of accumulated heat and salt at the end of Younger Drays and Heinrich event 1 may have contributed to the rapid reinvigoration of the Atlantic MOC.

  1. Work environment characteristics of high-quality home health agencies.

    PubMed

    Tullai-McGuinness, Susan; Riggs, Jennifer S; Farag, Amany A

    2011-10-01

    This concurrent mixed-method study examines the nurse work environment of high-quality Medicare-certified home health agencies. High-quality (n=6) and low-quality (n=6) home health agencies were recruited using agency-level publicly reported patient outcomes. Direct care registered nurses (RNs) from each agency participated in a focus group and completed the Practice Environment Scale of the Nurse Work Index (PES-NWI). No significant differences were found in the PES-NWI results between nurses working in high- and low-quality agencies, though nurses in high-quality agencies scored higher on all subscales. Nurses working in all the high-quality agencies identified themes of adequate staffing, supportive managers, and team work. These themes were not consistently identified in low-quality agencies. Themes of supportive managers and team work are reflective of effective leadership at the manager level. Agencies struggling to improve quality of care might consider developing their managers' leadership skills.

  2. Thin Film Ceramic Strain Sensor Development for High Temperature Environments

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Gonzalez, Jose M.; Laster, Kimala L.

    2008-01-01

    The need for sensors to operate in harsh environments is illustrated by the need for measurements in the turbine engine hot section. The degradation and damage that develops over time in hot section components can lead to catastrophic failure. At present, the degradation processes that occur in the harsh hot section environment are poorly characterized, which hinders development of more durable components, and since it is so difficult to model turbine blade temperatures, strains, etc, actual measurements are needed. The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in harsh environments. The effort at the NASA Glenn Research Center (GRC) to develop high temperature thin film ceramic static strain gauges for application in turbine engines is described, first in the fan and compressor modules, and then in the hot section. The near-term goal of this research effort was to identify candidate thin film ceramic sensor materials and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. A thorough literature search was conducted for ceramics that have the potential for application as high temperature thin film strain gauges chemically and physically compatible with the NASA GRCs microfabrication procedures and substrate materials. Test results are given for tantalum, titanium and zirconium-based nitride and oxynitride ceramic films.

  3. High-Performance, Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog

  4. Gas physics environment of high altitude Jovian entry.

    NASA Technical Reports Server (NTRS)

    Lefferdo, J. M.; Edquist, C. T.; Steel, P. C.

    1972-01-01

    A description of the gas physics environment associated with high-altitude Jupiter entry is reported. Two aspects of environmental analysis are treated. First, limited discussion is devoted to prediction of the heating environment of the probe aeroshell. Prime emphasis is given to the second aspect of the analysis, a description of the gas particle probe interaction phenomena in the rarefied flow regime. Several molecular reemission models have been devised and exercised. Model selection was based upon the desire to bracket the expected reemission characteristics. Consideration was given to examining diffuse reflection as exemplified by the Maxwellian model and lobular, specular reflection as characterized by the Nocilla model. Variation of fundamental input parameters was investigated to determine particle-probe interaction sensitivity. Regardless of neutral species type, results show that the attenuation of the incoming flux of that species by reflected particles is approximately 15 per cent in the stagnation region at 200 km above the cloud tops.

  5. Java-based communication in a High Performance Computing environment

    NASA Astrophysics Data System (ADS)

    Fries, A.; de Mora, J. Portell I.; Sirvent, R.

    2011-02-01

    Java is one of the most widely used computer programming languages, however its use in High Performance Computing (HPC) is relatively low. A typical HPC environment consists of a number of multi-core computing nodes, while a typical application running in such an environment will normally contain CPU intensive code that can be executed in parallel. Such an application may require inter-node as well as intra-node communication. Message Passing Interface (MPI) is a language independent specification of an API to allow such communication. MPJExpress (Baker et al. 2006) and F-MPJ (Taboada et al. 2009) are Java-based implementations of MPI, designed with the efficient performance of data transfers as a main objective. In this paper we discuss the scalability of one approach of distributing data to compute nodes in HPC and we propose the design of an alternative data transfer system, building upon MPI.

  6. Effects of High Magneto-Gravitational Environment on Silkworm Embryogenesis

    NASA Astrophysics Data System (ADS)

    Tian, Zongcheng; Li, Muwang; Qian, Airong; Xu, Huiyun; Wang, Zhe; Di, Shengmeng; Yang, Pengfei; Hu, Lifang; Ding, Chong; Zhang, Wei; Luo, Mingzhi; Han, Jing; Gao, Xiang; Huang, Yongping; Shang, Peng

    2010-04-01

    The objective of this research was to observe whether silkworm embryos can survive in a high magneto-gravitational environment (HMGE) and what significant phenotype changes can be produced. The hatching rate, hatching time, life span, growth velocity and cocoon weight of silkworm were measured after silkworm embryos were exposed to HMGE (0 g, 12 T; 1 g, 16 T; and 2 g, 12 T) for a period of time. Compared with the control group, 0 g exposure resulted in a lower hatching rate and a shorter life span. Statistically insignificant morphological changes had been observed for larvae growth velocity, incidence of abnormal markings and weight of cocoons. These results suggest that the effect of HMGE on silkworm embryogenesis is not lethal. Bio-effects of silkworm embryogenesis at 0 g in a HMGE were similar with those of space flight. The hatching time, life span and hatching rates of silkworm may be potential phenotype markers related to exposure in a weightless environment.

  7. Using Highly Interactive Virtual Environments for Safeguards Activities

    SciTech Connect

    Weil, Bradley S; Alcala, Benjamin S; Alcala, Scott; Eipeldauer, Mary D; Weil, Logan B

    2010-01-01

    Highly interactive virtual environment (HIVE) is a term that refers to interactive educational simulations, serious games and virtual worlds. Studies indicate that learning with the aid of interactive environments produces better retention and depth of knowledge by promoting improved trainee engagement and understanding. Virtual reality or three dimensional (3D) visualization is often used to promote the understanding of something when personal observation, photographs, drawings, and/or sketches are not possible or available. Subjects and situations, either real or hypothetical, can be developed using a 3D model. Models can be tailored to the audience allowing safeguards and security features to be demonstrated for educational purposes in addition to engineering evaluation and performance analysis. Oak Ridge National Laboratory (ORNL) has begun evaluating the feasibility of HIVEs for improving safeguards activities such as training, mission planning, and evaluating worker task performance. This paper will discuss the development workflow of HIVEs and present some recent examples.

  8. Decision making in high-velocity environments: implications for healthcare.

    PubMed

    Stepanovich, P L; Uhrig, J D

    1999-01-01

    Healthcare can be considered a high-velocity environment and, as such, can benefit from research conducted in other industries regarding strategic decision making. Strategic planning is not only relevant to firms in high-velocity environments, but is also important for high performance and survival. Specifically, decision-making speed seems to be instrumental in differentiating between high and low performers; fast decision makers outperform slow decision makers. This article outlines the differences between fast and slow decision makers, identifies five paralyses that can slow decision making in healthcare, and outlines the role of a planning department in circumventing these paralyses. Executives can use the proposed planning structure to improve both the speed and quality of strategic decisions. The structure uses planning facilitators to avoid the following five paralyses: 1. Analysis. Decision makers can no longer afford the luxury of lengthy, detailed analysis but must develop real-time systems that provide appropriate, timely information. 2. Alternatives. Many alternatives (beyond the traditional two or three) need to be considered and the alternatives must be evaluated simultaneously. 3. Group Think. Decision makers must avoid limited mind-sets and autocratic leadership styles by seeking out independent, knowledgeable counselors. 4. Process. Decision makers need to resolve conflicts through "consensus with qualification," as opposed to waiting for everyone to come on board. 5. Separation. Successful implementation requires a structured process that cuts across disciplines and levels.

  9. Arbuscular mycorrhizas enhance nutrient uptake in different wheat genotypes at high salinity levels under field and greenhouse conditions.

    PubMed

    Mardukhi, Baran; Rejali, Farhad; Daei, Gudarz; Ardakani, Mohammad Reza; Malakouti, Mohammad Javad; Miransari, Mohammad

    2011-07-01

    Since most experiments regarding the symbiosis between arbuscular mycorrhizal (AM) fungi and their host plants under salinity stress have been performed only under greenhouse conditions, this research work was also conducted under field conditions. The effects of three AM species including Glomus mosseae, G. etunicatum and G. intraradices on the nutrient uptake of different wheat cultivars (including Roshan, Kavir and Tabasi) under field and greenhouse (including Chamran and Line 9) conditions were determined. At field harvest, the concentrations of N, Ca, Mg, Fe, Cu, and Mn, and at greenhouse harvest, plant growth, root colonization and concentrations of different nutrients including N, K, P, Ca, Mg, Mn, Cu, Fe, Zn, Na and Cl were determined. The effects of wheat cultivars on the concentrations of N, Ca, and Mn, and of all nutrients were significant at field and greenhouse conditions, respectively. In both experiments, AM fungi significantly enhanced the concentrations of all nutrients including N, K, P, Ca, Mg, Mn, Cu, Fe, Zn, Na and Cl. The synergistic and enhancing effects of co-inoculation of AM species on plant growth and the inhibiting effect of AM species on Na(+) rather than on Cl(-) uptake under salinity are also among the important findings of this research work. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  10. Zinc Excess Triggered Polyamines Accumulation in Lettuce Root Metabolome, As Compared to Osmotic Stress under High Salinity

    PubMed Central

    Rouphael, Youssef; Colla, Giuseppe; Bernardo, Letizia; Kane, David; Trevisan, Marco; Lucini, Luigi

    2016-01-01

    Abiotic stresses such as salinity and metal contaminations are the major environmental stresses that adversely affect crop productivity worldwide. Crop responses and tolerance to abiotic stress are complex processes for which “-omic” approaches such as metabolomics is giving us a newest view of biological systems. The aim of the current research was to assess metabolic changes in lettuce (Lactuca sativa L.), by specifically probing the root metabolome of plants exposed to elevated isomolar concentrations of NaCl and ZnSO4. Most of the metaboli