Science.gov

Sample records for high salinity environment

  1. Salinization and Saline Environments

    NASA Astrophysics Data System (ADS)

    Vengosh, A.

    2003-12-01

    One of the most conspicuous phenomena of water-quality degradation, particularly in arid and semi-arid zones, is salinization of water and soil resources. Salinization is a long-term phenomenon, and during the last century many aquifers and river basins have become unsuitable for human consumption owing to high levels of salinity. Future exploitation of thousands of wells in the Middle East and in many other water-scarce regions in the world depends, to a large extent, on the degree and rate of salinization. Moreover, every year a large fraction of agricultural land is salinized and becomes unusable.Salinization is a global environmental phenomenon that affects many different aspects of our life (Williams, 2001a, b): changing the chemical composition of natural water resources (lakes, rivers, and groundwater), degrading the quality of water supply to the domestic and agriculture sectors, contribution to loss of biodiversity, taxonomic replacement by halotolerant species ( Williams, 2001a, b), loss of fertile soil, collapse of agricultural and fishery industries, changing of local climatic conditions, and creating severe health problems (e.g., the Aral Basin). The damage due to salinity in the Colorado River Basin alone, for example, ranges between 500 and 750 million per year and could exceed 1 billion per year if the salinity in the Imperial Dam increases from 700 mg L-1 to 900 mg L-1 (Bureau of Reclamation, 2003, USA). In Australia, accelerating soil salinization has become a massive environmental and economic disaster. Western Australia is "losing an area equal to one football oval an hour" due to spreading salinity ( Murphy, 1999). The annual cost for dryland salinity in Australia is estimated as AU700 million for lost land and AU$130 million for lost production ( Williams et al., 2002). In short, the salinization process has become pervasive.Salinity in water is usually defined by the chloride content (mg L-1) or total dissolved solids content (TDS, mg L-1or g

  2. Salinization and Saline Environments

    NASA Astrophysics Data System (ADS)

    Vengosh, A.

    2003-12-01

    One of the most conspicuous phenomena of water-quality degradation, particularly in arid and semi-arid zones, is salinization of water and soil resources. Salinization is a long-term phenomenon, and during the last century many aquifers and river basins have become unsuitable for human consumption owing to high levels of salinity. Future exploitation of thousands of wells in the Middle East and in many other water-scarce regions in the world depends, to a large extent, on the degree and rate of salinization. Moreover, every year a large fraction of agricultural land is salinized and becomes unusable.Salinization is a global environmental phenomenon that affects many different aspects of our life (Williams, 2001a, b): changing the chemical composition of natural water resources (lakes, rivers, and groundwater), degrading the quality of water supply to the domestic and agriculture sectors, contribution to loss of biodiversity, taxonomic replacement by halotolerant species ( Williams, 2001a, b), loss of fertile soil, collapse of agricultural and fishery industries, changing of local climatic conditions, and creating severe health problems (e.g., the Aral Basin). The damage due to salinity in the Colorado River Basin alone, for example, ranges between 500 and 750 million per year and could exceed 1 billion per year if the salinity in the Imperial Dam increases from 700 mg L-1 to 900 mg L-1 (Bureau of Reclamation, 2003, USA). In Australia, accelerating soil salinization has become a massive environmental and economic disaster. Western Australia is "losing an area equal to one football oval an hour" due to spreading salinity ( Murphy, 1999). The annual cost for dryland salinity in Australia is estimated as AU700 million for lost land and AU$130 million for lost production ( Williams et al., 2002). In short, the salinization process has become pervasive.Salinity in water is usually defined by the chloride content (mg L-1) or total dissolved solids content (TDS, mg L-1or g

  3. Involvement of Coat Proteins in Bacillus subtilis Spore Germination in High-Salinity Environments

    PubMed Central

    Nagler, Katja; Setlow, Peter; Reineke, Kai; Driks, Adam

    2015-01-01

    The germination of spore-forming bacteria in high-salinity environments is of applied interest for food microbiology and soil ecology. It has previously been shown that high salt concentrations detrimentally affect Bacillus subtilis spore germination, rendering this process slower and less efficient. The mechanistic details of these salt effects, however, remained obscure. Since initiation of nutrient germination first requires germinant passage through the spores' protective integuments, the aim of this study was to elucidate the role of the proteinaceous spore coat in germination in high-salinity environments. Spores lacking major layers of the coat due to chemical decoating or mutation germinated much worse in the presence of NaCl than untreated wild-type spores at comparable salinities. However, the absence of the crust, the absence of some individual nonmorphogenetic proteins, and the absence of either CwlJ or SleB had no or little effect on germination in high-salinity environments. Although the germination of spores lacking GerP (which is assumed to facilitate germinant flow through the coat) was generally less efficient than the germination of wild-type spores, the presence of up to 2.4 M NaCl enhanced the germination of these mutant spores. Interestingly, nutrient-independent germination by high pressure was also inhibited by NaCl. Taken together, these results suggest that (i) the coat has a protective function during germination in high-salinity environments; (ii) germination inhibition by NaCl is probably not exerted at the level of cortex hydrolysis, germinant accessibility, or germinant-receptor binding; and (iii) the most likely germination processes to be inhibited by NaCl are ion, Ca2+-dipicolinic acid, and water fluxes. PMID:26187959

  4. Involvement of Coat Proteins in Bacillus subtilis Spore Germination in High-Salinity Environments.

    PubMed

    Nagler, Katja; Setlow, Peter; Reineke, Kai; Driks, Adam; Moeller, Ralf

    2015-10-01

    The germination of spore-forming bacteria in high-salinity environments is of applied interest for food microbiology and soil ecology. It has previously been shown that high salt concentrations detrimentally affect Bacillus subtilis spore germination, rendering this process slower and less efficient. The mechanistic details of these salt effects, however, remained obscure. Since initiation of nutrient germination first requires germinant passage through the spores' protective integuments, the aim of this study was to elucidate the role of the proteinaceous spore coat in germination in high-salinity environments. Spores lacking major layers of the coat due to chemical decoating or mutation germinated much worse in the presence of NaCl than untreated wild-type spores at comparable salinities. However, the absence of the crust, the absence of some individual nonmorphogenetic proteins, and the absence of either CwlJ or SleB had no or little effect on germination in high-salinity environments. Although the germination of spores lacking GerP (which is assumed to facilitate germinant flow through the coat) was generally less efficient than the germination of wild-type spores, the presence of up to 2.4 M NaCl enhanced the germination of these mutant spores. Interestingly, nutrient-independent germination by high pressure was also inhibited by NaCl. Taken together, these results suggest that (i) the coat has a protective function during germination in high-salinity environments; (ii) germination inhibition by NaCl is probably not exerted at the level of cortex hydrolysis, germinant accessibility, or germinant-receptor binding; and (iii) the most likely germination processes to be inhibited by NaCl are ion, Ca(2+)-dipicolinic acid, and water fluxes. PMID:26187959

  5. Germination of Spores of Astrobiologically Relevant Bacillus Species in High-Salinity Environments

    NASA Astrophysics Data System (ADS)

    Nagler, Katja; Julius, Christina; Moeller, Ralf

    2016-07-01

    In times of increasing space exploration and search for extraterrestrial life, new questions and challenges for planetary protection, aiming to avoid forward contamination of different planets or moons with terrestrial life, are emerging. Spore-forming bacteria such as Bacillus species have a high contamination potential due to their spores' extreme resistance, enabling them to withstand space conditions. Spores require liquid water for their conversion into a growing cell (i.e., spore germination and subsequent growth). If present, water on extraterrestrial planets or moons is likely to be closely associated with salts (e.g., in salty oceans or brines), thus constituting high-salinity environments. Spores of Bacillus subtilis can germinate despite very high salt concentrations, although salt stress does exert negative effects on this process. In this study, germination and metabolic reactivation ("outgrowth") of spores of five astrobiologically relevant Bacillus species (B. megaterium, B. pumilus SAFR-032, B. nealsonii, B. mojavensis, and B. vallismortis) in high salinity (≤3.6 M NaCl) were investigated. Spores of different species exhibited different germination and outgrowth capabilities in high salinity, which strongly depended on germination conditions, especially the exact composition of the medium. In this context, a new "universal" germination trigger for Bacillus spores, named KAGE (KCl, L-alanine, D-glucose, ectoine), was identified, which will be very useful for future comparative germination and outgrowth studies on different Bacillus species. Overall, this study yielded interesting new insights on salt stress effects on spore germination and points out the difficulty of predicting the potential of spores to contaminate salty environments on extraterrestrial celestial bodies.

  6. Geophysical and geochemical characterization and delineation of a crude oil spill in a highly saline environment

    NASA Astrophysics Data System (ADS)

    Ross, Cameron Stuart

    Geophysical and geochemical methods were used at Grand Terre 1 (GT1) Island off the coast of Louisiana, an island that had been heavily contaminated with crude oil associated with the April 2010 BP Deepwater Horizon oil spill. Electrical methods and aqueous geochemistry have proven sensitive in the detection of contaminates, as well as the biological and chemical processes associated with the biodegradation of hydrocarbons in the subsurface. However, to the author's knowledge, all of these studies have dealt with mature (or aged) spills within a freshwater environment. The BP Deepwater Horizon oil spill therefor provided a unique opportunity to not only use traditional geophysical and geochemical methods to characterize and delineate fresh crude oil in a highly saline environment and to capture the early time biogeophysical signals resulting from the physical, chemical, and microbial transformation of crude oil in a highly saline environment. Electrical resistivity and electromagnetic methods were used. Barometric pressure, temperature, electrical conductivity, and water level values for the shallow groundwater were continuously logged. Geochemical analysis was performed on water samples collected from piezometers networks installed in the impacted, transitional, and background areas. Sediment cores were retrieved throughout the site and used for grain size analysis, magnetic susceptibility, total organic and inorganic carbon, and x-ray fluorescence. Soil samples were collected for microbial analyses from the impacted and background areas. Microcosms were set up to determine the microbial diversity analysis was used to determine microbial community composition, and biodegradation potential of indigenous populations. Based on the geochemical, microbial, and soil analysis, the relatively higher apparent resistivity anomaly observed between the depths of 0.20 m to 1.20 m bgs could be explained by two scenarios(1): elevated resistivity was caused by gas in the

  7. Systematic investigation of germination responses of Bacillus subtilis spores in different high-salinity environments.

    PubMed

    Nagler, Katja; Moeller, Ralf

    2015-05-01

    High-salinity environments play an increasingly important role in ecology regarding soil salinization due to human-induced processes, but also need to be considered in terms of natural soil desiccation and extreme habitats. It has been shown previously that spore germination of the ubiquitous soil bacterium Bacillus subtilis is detrimentally affected by the presence of high NaCl concentrations, but the underlying mechanisms and effects of other salts remained obscure. To address these two points, we performed a systematic analysis with 32 different salts using spectrophotometric and microscopic methods. It could be shown that inhibitory strength varies considerably among different salts. Although osmotic effects seem to play an important role, ionic composition and concentration (especially of the anion) as well as chemical properties seem to be decisive for the extent of germination inhibition. At the current state of knowledge, fluxes of ions, Ca(2+)-DPA and water are likely affected by all salts, whereas the exact inhibition mechanism of each salt might further depend on the respective properties of the involved ions. Hence, the observed inhibition likely is a result of several phenomena interacting with each other. Altogether this study highlights the complex impact of ionic environments on the life cycle of spore formers. PMID:25764471

  8. Systematic investigation of germination responses of Bacillus subtilis spores in different high-salinity environments.

    PubMed

    Nagler, Katja; Moeller, Ralf

    2015-05-01

    High-salinity environments play an increasingly important role in ecology regarding soil salinization due to human-induced processes, but also need to be considered in terms of natural soil desiccation and extreme habitats. It has been shown previously that spore germination of the ubiquitous soil bacterium Bacillus subtilis is detrimentally affected by the presence of high NaCl concentrations, but the underlying mechanisms and effects of other salts remained obscure. To address these two points, we performed a systematic analysis with 32 different salts using spectrophotometric and microscopic methods. It could be shown that inhibitory strength varies considerably among different salts. Although osmotic effects seem to play an important role, ionic composition and concentration (especially of the anion) as well as chemical properties seem to be decisive for the extent of germination inhibition. At the current state of knowledge, fluxes of ions, Ca(2+)-DPA and water are likely affected by all salts, whereas the exact inhibition mechanism of each salt might further depend on the respective properties of the involved ions. Hence, the observed inhibition likely is a result of several phenomena interacting with each other. Altogether this study highlights the complex impact of ionic environments on the life cycle of spore formers.

  9. Hydrogeochemistry of thermal springs in saline salar-like environments in the High Andes

    NASA Astrophysics Data System (ADS)

    Lagos Durán, L. V.; Reich, M.; Achurra, L.; Morata, D.

    2014-12-01

    Evaporitic deposits and precipitates represent significant sinks of mobile cations (Li, As, B) and halides (Cl, I) in salar-like basin environments along the Andean volcanic belt in northern Chile. Li and B are particularly interesting because of their high concentrations in evaporitic minerals and geothermal waters in the region. Although these compositional features have been previously recognized in high-altitude salt lakes in northern Chile, the nature and extent of mixing processes between true evaporitic and geothermal endmembers in such environments is poorly understood. In a context where geothermal targeting methods need to be increasingly precise, a clearer understanding of what controls the localization of concealed geothermal resources is a prerequisite for more efficient exploration. Therefore, it is necessary to constrain surface saline inputs that can mask the deep imprints of the geothermal reservoir. On this basis, northern Chile offers a unique opportunity to test these features due to the large number of evaporitic closed basins containing thermal springs. To date, only a very limited number of studies have reported trace element concentrations and B, Li and Sr isotopes in salar-like waters aimed at differentiating the relative contributions of both members. In this study, we sampled water from high-altitude lakes with and without surficial thermal activity. This was complemented with geothermal water analyses from northern Chile and previously published data. In addition, we report preliminary dissolution experiments of evaporite minerals (e.g. ulexite, halite, gypsum, aragonite) to pure distilled water. These minerals were taken from two selected hydrological domains, located in the southern and northern part of the Chilean Central Volcanic Zone. Geochemical analyses of water run products from the aforementioned experiments at different temperatures (25 and 87°C, 500 hours of interaction each), confirmed that selected common elements (Cl, Li

  10. Detection of Salmonella Senftenberg associated with high saline environments in mussel processing facilities.

    PubMed

    Martinez-Urtaza, Jaime; Peiteado, Jesus; Lozano-León, Antonio; Garcia-Martin, Oscar

    2004-02-01

    A contamination by Salmonella Senftenberg in frozen mussels was detected in 1998 during a routine analytical surveillance. From June 1998 to December 2001, a total of 3,410 samples of steamed frozen mussels and items related to their manufacture were analyzed for the presence of Salmonella. Salmonella Senftenberg was isolated in 573 (16.8%) samples, and no other serovar was detected. The contamination episodes extended for several months. Salmonella Senftenberg colonies from the first contamination events showed a rugose morphology on agar with a shiny crystalline layer and limited colony formation on microbiological media. These contaminations were mainly associated with brine (300 g of NaCl per liter), while the live molluscs that were being processed were free of Salmonella. When the brine contaminations were nearly controlled, new episodes were detected that were associated with live mussels. In the new episodes, colonies showed the typical characteristics of Salmonella and normal growth on agar. Salmonella Senftenberg presented a high resistance to unfavorable environments and showed a preference for clean environments. While Salmonella Senftenberg could be isolated from mussels after steam treatment, it could not survive after immersion in water at 80 degrees C for 1 min. This fact was used to develop a process to remove contamination from products, minimizing the health risk associated with frozen mussel consumption. The general incidence of Salmonella Senftenberg in facilities and mussels was reduced from 31.2% in 1998 to 2.5% in 2001. During this study, no cases of illness from consumption of frozen mussels were reported, indicating a possible lack of virulence of Salmonella Senftenberg in these contamination events.

  11. Identification of Differentially Expressed Genes during Bacillus subtilis Spore Outgrowth in High-Salinity Environments Using RNA Sequencing

    PubMed Central

    Nagler, Katja; Krawczyk, Antonina O.; De Jong, Anne; Madela, Kazimierz; Hoffmann, Tamara; Laue, Michael; Kuipers, Oscar P.; Bremer, Erhard; Moeller, Ralf

    2016-01-01

    In its natural habitat, the soil bacterium Bacillus subtilis often has to cope with fluctuating osmolality and nutrient availability. Upon nutrient depletion it can form dormant spores, which can revive to form vegetative cells when nutrients become available again. While the effects of salt stress on spore germination have been analyzed previously, detailed knowledge on the salt stress response during the subsequent outgrowth phase is lacking. In this study, we investigated the changes in gene expression during B. subtilis outgrowth in the presence of 1.2 M NaCl using RNA sequencing. In total, 402 different genes were upregulated and 632 genes were downregulated during 90 min of outgrowth in the presence of salt. The salt stress response of outgrowing spores largely resembled the osmospecific response of vegetative cells exposed to sustained high salinity and included strong upregulation of genes involved in osmoprotectant uptake and compatible solute synthesis. The σB-dependent general stress response typically triggered by salt shocks was not induced, whereas the σW regulon appears to play an important role for osmoadaptation of outgrowing spores. Furthermore, high salinity induced many changes in the membrane protein and transporter transcriptome. Overall, salt stress seemed to slow down the complex molecular reorganization processes (“ripening”) of outgrowing spores by exerting detrimental effects on vegetative functions such as amino acid metabolism. PMID:27766092

  12. Polymer tensiometers in a saline environment.

    NASA Astrophysics Data System (ADS)

    van der Ploeg, Martine; Gooren, H. P. A.; Bakker, G.; Russell, W.; Hoogendam, C. W.; Huiskes, C.; Shouse, P.; de Rooij, G. H.

    2010-05-01

    It is estimated that 20% of all cultivated land and nearly half of the irrigated land is salt-affected, which pose major economic and environmental problems. Salinity may be the result of two processes; dryland and irrigation salinity. Dryland salinity is caused by a rise in the groundwater table, which occurs as a result of the replacement of deep-rooted, perennial native vegetation by shallow-rooted annual species meant for production. Irrigation salinity may occur as a result of poor water quality, poor drainage, or inefficient use of water. Consequently, new strategies to enhance crop yield stability on saline soils represent a major research priority (Botella et al. 2005). At the same time, native vegetation is capable of thriving under saline and/or dry conditions. The plant physiology of such vegetation has been investigated thoroughly, but the relation with in situ soil properties (soil moisture and salinity) may be more difficult to unravel as soil moisture sensors are less sensitive in dry soil, and the signal of most soil moisture content sensors is strongly attenuated by soil salinity. Recently, polymer tensiometer were developed that are able to measure matric potentials (closely related to a soil's moisture status) in dry soils. Polymer tensiometers consist of a solid ceramic, a stainless steel cup and a pressure transducer. The ceramic consist of a support layer and a membrane with 2 nm pore-size to prevent polymer leakage. Between the ceramic membrane and the pressure transducer a tiny chamber is located, which contains the polymer solution. The polymer's osmotic potential strongly reduces the total water potential inside the polymer tensiometer, which causes build-up of osmotic pressure. Polymer tensiometers would thus be an ideal instrument to measure in dry soil, if the polymer inside the tensiometer is not affected by the salts in the soil solution. We will address some key issues regarding the use of POTs in saline environments by showing

  13. Amoebae and Legionella pneumophila in saline environments.

    PubMed

    Gast, Rebecca J; Moran, Dawn M; Dennett, Mark R; Wurtsbaugh, Wayne A; Amaral-Zettler, Linda A

    2011-03-01

    Amoeboid protists that harbor bacterial pathogens are of significant interest as potential reservoirs of disease-causing organisms in the environment, but little is known about them in marine and other saline environments. We enriched amoeba cultures from sediments from four sites in the New England estuarine system of Mt. Hope Bay, Massachusetts and from sediments from six sites in the Great Salt Lake, Utah. Cultures of amoebae were enriched using both minimal- and non-nutrient agar plates, made with fresh water, brackish water or saltwater. Recovered amoeba cultures were assayed for the presence of Legionella species using nested polymerase chain reactions (PCR) and primers specific for the genus. Positive samples were then screened with nested amplification using primers specific for the macrophage infectivity potentiator surface protein (mip) gene from L. pneumophila. Forty-eight percent (185 out of 388) of isolated amoeba cultures were positive for the presence of Legionella species. Legionella pneumophila was detected by PCR in 4% of the amoeba cultures (17 out of 388), and most of these amoebae were growing on marine media. Our results show that amoebae capable of growing in saline environments may harbor not only a diverse collection of Legionella species, but also species potentially pathogenic to humans.

  14. Phreatophytes under stress: transpiration and stomatal conductance of saltcedar (Tamarix spp.) in a high-salinity environment

    USGS Publications Warehouse

    Glenn, Edward P.; Nagler, Pamela L.; Morino, Kiyomi; Hultine, Kevin

    2013-01-01

    Conclusions: Salts accumulated in the vadose zone at both sites so usable water was confined to the saturated capillary fringe above the aquifer. Existence of a saline aquifer imposes several types of constraints on phreatophyte EG, which need to be considered in models of plant water uptake. The heterogeneous nature of saltcedar EG over river terraces introduces potential errors into estimates of ET by wide-area methods.

  15. Production and characterization of ectoine by Marinococcus sp. ECT1 isolated from a high-salinity environment.

    PubMed

    Wei, Yu-Hong; Yuan, Fang-Wei; Chen, Wei-Chuan; Chen, Shan-Yu

    2011-03-01

    A halophilic bacterium isolated from a salt environment in southern Taiwan was identified as a Marinococcus sp. ECT1. This bacterium could synthesize and accumulate intracellular ectoine as a compatible solute capable of resisting osmotic stress in a hyper-osmotic environment. This study also developed a semi-synthesized medium (YAMS medium), capable of facilitating the growth of this Marinococcus sp. ECT1 with 600 mg/L crude ectoine production. Moreover, Marinococcus sp. ECT1 was grown on YAMS medium containing different initial yeast extract concentrations (C(YE)) (0 to 60 g/L) to demonstrate how C(YE) affects crude ectoine production. While the maximum cell concentration was increased by 23-fold when the C(YE) was 40 g/L, the maximum crude ectoine production reached 2.5 g/L when C(YE) was 40 g/L. In addition to demonstrating the success of the fermentation strategy of ectoine in increasing the production and production yield, experimental results further demonstrated that the fermentation medium of ectoine is highly promising for commercialization. Furthermore, the molecular weight and chemical structure of ectoine were identified and characterized by FAB-MS and (1)H-NMR.

  16. Salinity discrimination in harbour seals: a sensory basis for spatial orientation in the marine environment?

    PubMed

    Sticken, J; Dehnhardt, G

    2000-11-01

    Salinity variations can be considered as a potential source of information for orientation in the marine environment. To use this kind of environmental information marine animals must be able to detect these salinity differences. Therefore we determined salinity-difference thresholds of two harbour seals for the discrimination of seawater solutions as a function of the salinity level (15-35@1000) and compared them with the thresholds of human subjects. Whereas in humans thresholds increased with increasing salinity level, thresholds of seals decreased with increasing salinity level. Both seals achieved best sensitivity at 30/1000 salinity, where they detected a salinity difference < or = 4%. These data indicate that the ability of seals to detect salinity differences of seawater is well tuned to the natural occurrence of this environmental information. Their high gustatory resolving power for differences in seawater salinity is suggested to meet the basic requirements for chemosensory orientation of seals in the marine habitat.

  17. Extended Jarosite Lifetimes in High Salinity Fluids

    NASA Astrophysics Data System (ADS)

    Elwood Madden, M. E.; Madden, A. S.

    2008-12-01

    Particle lifetime calculations utilizing olivine (Olsen and Rimstidt, 2007; Stopar et al., 2006) and jarosite (Elwood Madden et al. 2008) dissolution rates have been used to constrain the duration of aqueous environments on the surface of Mars. Previous rate experiments have shown that jarosite dissolves relatively quickly in dilute aqueous solutions leading to short particle lifetimes. However, mineralogy and bulk chemistry of outcrops containing jarosite at Meridiani Planum suggest high salinity fluids were active in the region. The goal of this study is to determine the effects of high salinity (low activity of water) on jarosite dissolution rates. K-jarosite was synthesized using the methods of Baron and Palmer (1996) and characterized using powder X-ray diffraction, BET surface area analysis, transmission electron microscopy, and atomic force microcopy. Dissolution experiments were conducted by adding 0.5 g K- jarosite to 500 g ultrapure water at 293K. Samples were collected from the continuously-stirred batch reaction at predetermined intervals and filtered using 0.2 micron filters. K+ concentrations in the resulting supernatants were measured using atomic adsorption spectroscopy to determine the rate of jarosite dissolution. Jarosite dissolution experiments in halite saturated brine result in dissolution rates over one order of magnitude slower than similar experiments conducted in dilute solutions. Dissolution in ultrapure water proceeds at log k= -8.5. Jarosite dissolution in halite saturated brine is significantly slower: log k = -10. Using a shrinking sphere model to calculate particle lifetimes, the lifetime of a 10 micron diameter jarosite particle is extended from 1-2 years in dilute solutions to 100 years in high salinity brine. This suggests that while jarosite is an ephemeral phase in dilute solutions, it may persist for significantly longer time periods in high salinity waters, such as those interpreted at Meridiani Planum based on bulk chemistry

  18. A coupled water chemistry and corrosion model for high salinity-high CO2 environments with application to wellbore integrity in CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Han, J.; Carey, J. W.; Zhang, J.

    2009-12-01

    Industrial wellbore systems are designed to isolate fluids in the subsurface and are typically planned for a 30-50 year service life. In the geologic sequestration of CO2 in depleted oil and gas reservoirs, wellbores will have to perform for 100’s of years. As a consequence, one of the key questions in the viability of sequestration is whether long-term wellbore integrity is feasible in high-salinity, high-CO2 fluids likely to be present in CO2 storage reservoirs. Isolation in wellbores is usually accomplished by a combination of Portland cement and steel. In this study, we focus on predicting the corrosion rate of steel under typical CO2 sequestration conditions. We have developed a mechanistic model for predicting corrosion rates of mild steel present in most wellbore systems. The model includes a water chemistry and an electrochemistry module. The water chemistry module uses a Pitzer model for activity coefficients and Duan and Sun’s 2006 model for CO2 solubility. The electrochemical module accounts for mass transfer processes and electrochemical kinetics. The electrochemistry includes the primary oxidation reaction (the dissolution of iron) and the primary reduction reactions (the formation of H2 gas from carbonic acid, bicarbonate ion, hydrogen ion, and/or water). At high CO2 pressures, the dominant corrosion reaction is Fe + 2H2CO3 = Fe2+ + 2HCO3- + H2(g) and is driven by CO2 solubility rather than solution acidity. This result shows that typical buffering reactions between dissolved CO2 and minerals (e.g., carbonates) will not reduce corrosion rates significantly in contrast to many mineral reaction rates that are strongly dependent on pH. For similar reasons, high salinity solutions reduce corrosion rates significantly mainly due to the “salting-out” effect of reduced CO2 solubility. For example, an increase in salinity from 5 to 20 wt% salt results in a 50% reduction in corrosion rate as observed in our experiments. We are extending the uniform

  19. Survival strategies of microorganisms in extreme saline environments

    NASA Astrophysics Data System (ADS)

    Imhoff, J. F.

    Halophilic representatives are found in all main lines of evolutionary descendence of microbes: in archaebacteria, Gram-negative and Gram-positive eubacteria, and also in eucaryotes. In principe all halophilic microorganisms have to adapt their surface and membrane structures to their highly ionic environments. Concerning their intracellular compartment two different strategies have been developed: Inorganic ions are largely excluded in some microorganisms while such ions are actively accumulated in others. In particular the second group of organisms has to adapt the whole metabolic machinery to the highly ionic conditions of several molar salts, whereas in the first group only the outer surface of the cytoplasmic membrane and the extracytoplasmic structures are in contact with high concentrations of inorganic ions. In this latter group, a variety of organic solutes is accumulated in response to increases of the salinity of the environment.

  20. Biogeography and Adaptive evolution of Streptomyces Strains from saline environments.

    PubMed

    Zhao, Fei; Qin, Yu-Hua; Zheng, Xin; Zhao, Hong-Wei; Chai, Dong-Yan; Li, Wei; Pu, Ming-Xiang; Zuo, Xing-Sheng; Qian, Wen; Ni, Ping; Zhang, Yong; Mei, Han; He, Song-Tao

    2016-01-01

    The genus Streptomyces is a widespread genus within the phylum Actinobacteria and has been isolated from various environments worldwide. However, little is known about whether biogeography affects distributional pattern of Streptomyces in salty environments. Such information is essential for understanding the ecology of Streptomyces. Here we analyzed four house-keeping genes (16S rRNA, rpoB, recA and atpD) and salty-tolerance related genes (ectA-ectD) of 38 Streptomyces strains isolated from saline environments in Yunnan and Xinjiang Provinces of western China. The obtained Streptomyces strains were classified into three operational taxonomic units, each comprising habitat-specific geno- and ecotype STs. In combination with expressional variations of salty-tolerance related genes, the statistical analyses showed that spatial distance and environmental factors substantially influenced Streptomyces distribution in saline environments: the former had stronger influence at large spatial scales (>700 km), whereas the latter was influential at large (>700 km) and small spatial scales (<700 km). Plus, the quantitative analyses of salty-tolerence related genes (ectA-D) indicated that Streptomyces strains from salt lakes have higher expression of ectA-D genes and could accumulate larger quantities of ectoine and hydroxyectoine than strains from salt mines, which could help them resist to salinity in the hypersaline environments. PMID:27596681

  1. Biogeography and Adaptive evolution of Streptomyces Strains from saline environments

    PubMed Central

    Zhao, Fei; Qin, Yu-Hua; Zheng, Xin; Zhao, Hong-Wei; Chai, Dong-Yan; Li, Wei; Pu, Ming-Xiang; Zuo, Xing-Sheng; Qian, Wen; Ni, Ping; Zhang, Yong; Mei, Han; He, Song-Tao

    2016-01-01

    The genus Streptomyces is a widespread genus within the phylum Actinobacteria and has been isolated from various environments worldwide. However, little is known about whether biogeography affects distributional pattern of Streptomyces in salty environments. Such information is essential for understanding the ecology of Streptomyces. Here we analyzed four house-keeping genes (16S rRNA, rpoB, recA and atpD) and salty-tolerance related genes (ectA-ectD) of 38 Streptomyces strains isolated from saline environments in Yunnan and Xinjiang Provinces of western China. The obtained Streptomyces strains were classified into three operational taxonomic units, each comprising habitat-specific geno- and ecotype STs. In combination with expressional variations of salty-tolerance related genes, the statistical analyses showed that spatial distance and environmental factors substantially influenced Streptomyces distribution in saline environments: the former had stronger influence at large spatial scales (>700 km), whereas the latter was influential at large (>700 km) and small spatial scales (<700 km). Plus, the quantitative analyses of salty-tolerence related genes (ectA-D) indicated that Streptomyces strains from salt lakes have higher expression of ectA-D genes and could accumulate larger quantities of ectoine and hydroxyectoine than strains from salt mines, which could help them resist to salinity in the hypersaline environments. PMID:27596681

  2. Capacitive Deionization of High-Salinity Solutions

    SciTech Connect

    Sharma, Ketki; Gabitto, Jorge; Mayes, Richard T.; Yiacoumi, Sotira; Bilheux, Hassina Z.; Walker, Lakeisha M.H.; Dai, Sheng; Tsouris, Costas

    2014-12-22

    Desalination of high salinity solutions has been studied using a novel experimental technique and a theoretical model. Neutron imaging has been employed to visualize lithium ions in mesoporous carbon materials, which are used as electrodes in capacitive deionization for water desalination. Experiments were conducted with a flow-through capacitive deionization cell designed for neutron imaging and with lithium chloride (6LiCl) as the electrolyte. Sequences of neutron images have been obtained at a relatively high concentration of lithium chloride (6LiCl) solution to provide information on the transport of ions within the electrodes. A new model that computes the individual ionic concentration profiles inside mesoporous carbon electrodes has been used to simulate the capacitive deionization process. Modifications have also been introduced into the simulation model to calculate results at high electrolyte concentrations. Experimental data and simulation results provide insight into why capacitive deionization is not effective for desalination of high ionic-strength solutions. The combination of experimental information, obtained through neutron imaging, with the theoretical model will help in the design of capacitive deionization devices, which can improve the process for high ionic-strength solutions.

  3. Capacitive Deionization of High-Salinity Solutions

    DOE PAGES

    Sharma, Ketki; Gabitto, Jorge; Mayes, Richard T.; Yiacoumi, Sotira; Bilheux, Hassina Z.; Walker, Lakeisha M.H.; Dai, Sheng; Tsouris, Costas

    2014-12-22

    Desalination of high salinity solutions has been studied using a novel experimental technique and a theoretical model. Neutron imaging has been employed to visualize lithium ions in mesoporous carbon materials, which are used as electrodes in capacitive deionization for water desalination. Experiments were conducted with a flow-through capacitive deionization cell designed for neutron imaging and with lithium chloride (6LiCl) as the electrolyte. Sequences of neutron images have been obtained at a relatively high concentration of lithium chloride (6LiCl) solution to provide information on the transport of ions within the electrodes. A new model that computes the individual ionic concentration profilesmore » inside mesoporous carbon electrodes has been used to simulate the capacitive deionization process. Modifications have also been introduced into the simulation model to calculate results at high electrolyte concentrations. Experimental data and simulation results provide insight into why capacitive deionization is not effective for desalination of high ionic-strength solutions. The combination of experimental information, obtained through neutron imaging, with the theoretical model will help in the design of capacitive deionization devices, which can improve the process for high ionic-strength solutions.« less

  4. Monitoring The Dynamics Of Hyper-Saline Environments With Polarimetric SAR: Death Valley, California Example

    NASA Astrophysics Data System (ADS)

    Lasne, Y.; McDonald, K.; Paillou, P.; Freeman, A.; Chapman, B.; Farr, T.; Ruffié, G.; Malézieux, J.

    2008-12-01

    Soil salinization in arid and semi-arid regions still remains one of the most important threats not only for socio-economical issues when dealing with water ressources management, but also for ecological matters such as: desertification, climate changes, and biomass reduction. Then, monitoring and mapping of soil salinity distribution represent today a key challenge in our understanding of such environmental processes. Being highly dependent on the dielectric properties of soils, synthetic aperture radar (SAR) appears to be an efficient tool for the remote sensing of hyper-saline environments. More precisely, the influence of saline deposits on SAR imagery lies in the solubility and ionic properties of the minerals which strongly influence both real and imaginary parts of the complex permittivity of such deposits, and thus the radar backscattering coefficient. Based on temporal series acquired with spaceborne SAR systems (ALOS/PALSAR, SIR-C) over the Death Valley (CA), we show that the copolarized backscattering ratio and phase difference derived from SAR data can be used as suitable indicators to monitor the dynamics of hyper-saline deposits. In particular, we propose these copolar parameters to follow the variations in the dielectric properties of moistened and salt-affected soils on a seasonal time scale because of the close relationship between the salinity (governed by the soil moisture content) and the complex permittivity of the soils. We also highlight a strong temporal correlation between the copolar parameters and weather data since precipitation events control the soil moisture and salinity. In order to allow for a better interpretation of the saline deposits signatures observed on SAR data, we also perform analytical simulations of the radar backscattering associated with saline deposits by means of the IEM scattering model. Using laboratory and in~ situ dielectric measurements as input parameters, we simulate the copolar ratio and phase difference as

  5. Modern and Ancient Extremely Acid Saline Deposits: Terrestrial Analogs for Martian Environments?

    NASA Astrophysics Data System (ADS)

    Benison, Kathleen C.; LaClair, Deidre A.

    2003-11-01

    Extremely acid (pH <1) saline lakes and groundwaters existed in the mid-Permian of the mid-continent of North America. Modern counterparts have been found in acid saline lake systems throughout southern Australia. We compare and contrast the Permian Opeche Shale of North Dakota and Nippewalla Group of Kansas to modern Australian salt lakes in southern Western Australia and in northwest Victoria. With the exception of some minor variations in pH, evaporite mineralogy, and water geochemistry, the Permian and modern systems are similar and characterized by: (1) ephemeral saline continental playas hosted by red siliciclastic sediments, (2) evaporite minerals, including abundant sulfates, (3) Al-Fe-Si-rich waters with low pH values, (4) acidophilic microbes, and (5) paucity of carbonates. The composition of these terrestrial systems is strikingly similar to compositional data returned from the martian surface. Specifically, both Earth and martian systems have high amounts of iron oxides and sulfates, and little, if any, carbonates. We propose that the modern and ancient terrestrial acid saline environments may be good analogs for possible environments on Mars.

  6. Modeling of broadband airborne electromagnetic responses from saline environments

    SciTech Connect

    Buselli, G.; Williamson, D.R.

    1996-11-01

    The removal of vegetation for the development of nonirrigated agriculture and the associated increase in groundwater recharge and discharge has caused significant areas of salinization of surface soil and water resources in Australia. At least three types of salt profiles are known to indicate the relative magnitude of recharge. These profiles may be differentiated by their resistivity structure. Since a broadband airborne electromagnetic (AEM) method offers the possibility of readily obtaining resistivity soundings, modeling was carried out to investigate the ability of a broadband AEM system to distinguish different salt profile types. Salt profile types may be represented by a four-layer resistivity model. The use of a broadband AEM system to distinguish the relative magnitude of the resistivity of a layer of high salt accumulation and the underlying layer forms the basis for efficiently identifying areas of high or low recharge. Where the resistivity of the underlying layer is greater than that of the salt accumulation, high recharge is indicated, and a lower resistivity of this layer implies low recharge. The response of each of the salt profile models was calculated in the frequency domain and then inverted back to a layered model. With noise added to the calculated responses, the inversion results show that the depth, thickness, and resistivity of a layer of high salt accumulation can be resolved by AEM measurements. Furthermore, the resistivity of this layer can be distinguished from the resistivity of the underlying layer.

  7. High volume normal saline alone is as effective as nebulized salbutamol-normal saline, epinephrine-normal saline, and 3% saline in mild bronchiolitis.

    PubMed

    Anil, Ayse Berna; Anil, Murat; Saglam, Ayse Bircan; Cetin, Nevin; Bal, Alkan; Aksu, Nejat

    2010-01-01

    The objective of this study was to investigate the effectivenesses of nebulized salbutamol, epinephrin, 3% saline, and normal saline (0.9% NaCl) in the treatment of mildly affected infants with acute bronchiolitis. We enrolled 186 children (mean age 9.5 +/- 5.3 months, range 1.5-24 months, 65.1% male) with a first episode of wheezing diagnosed as mild bronchiolitis in emergency department. Patients were randomized in a double-blind fashion to receive 4 ml dose either of 1.5 mg epinephrine plus normal saline (group 1; n = 38) or 1.5 mg epinephrine plus 3% saline (group 2; n = 39) or 2.5 mg salbutamol plus normal saline (group 3; n = 36) or 2.5 mg salbutamol plus 3% saline (group 4; n = 36) or normal saline alone (group 5; n = 37) at 0 and 30 min. Thus, all treatment modalities included high amount of NaCl (72-240 mg). Clinical score, oxygen saturation and heart rate were assessed at 0, 30, 60, and 120 min. After discharge, patients were reassessed by telephone contact at 48 hr and 6 months. The baseline characteristics were similar in all groups (P > 0.05). The outcome of patients at 120 min was found significantly better than the baseline values (P < 0.05). There were no significant differences between the outcome variables of the groups (P > 0.05). No adverse effects attributable to nebulized therapy were seen. In conclusion, all treatment modalities used in this study, including a total of 8 ml normal saline inhalation at 30-min interval showed clinically significant and swift improvement in mildly affected ambulatory infants with acute bronchiolitis.

  8. Corrosion Behavior of Reverse-Pulse Electrodeposited Zn-Ni Alloys in Saline Environment

    NASA Astrophysics Data System (ADS)

    Boonyongmaneerat, Yuttanant; Saengkiettiyut, Kanokwan; Saenapitak, Sawalee; Sangsuk, Supin

    2014-01-01

    The study investigates the relationship of the reverse-pulse electrodeposited zinc-nickel alloy coatings' characteristics and their corrosion behaviors in a saline environment, using both anodic polarization and electrochemical impedance analysis. The introduction of anodic pulsation gives deposits of more refined grain sizes and increased nickel contents, resulting in improvement of the corrosion resistance. High anodic current densities employed in the reverse-pulse electrodeposition, however, modulate crystallographic orientations of the grains, introduce porosity to the structure, and hence adversely affect the corrosion resistance of the coating deposits.

  9. Stress Corrosion Cracking in Al-Zn-Mg-Cu Aluminum Alloys in Saline Environments

    NASA Astrophysics Data System (ADS)

    Holroyd, N. J. Henry; Scamans, G. M.

    2013-03-01

    80 to 85 kJ/mol, whereas for high-copper-containing alloys (>~0.8 wt pct), they are typically ranging from 20 to 40 kJ/mol for under- and peak-aged alloys, and based on limited data, around 85 kJ/mol for over-aged tempers. This means that crack propagation in saline environments is most likely to occur by a hydrogen-related process for low-copper-containing Al-Zn-Mg-Cu alloys in under-, peak- and over-aged tempers, and for high-copper alloys in under- and peak-aged tempers. For over-aged high-copper-containing alloys, cracking is most probably under anodic dissolution control. Future stress corrosion studies should focus on understanding the factors that control crack initiation, and insuring that the next generation of higher performance Al-Zn-Mg-Cu alloys has similar longer crack initiation times and crack propagation rates to those of the incumbent alloys in an over-aged condition where crack rates are less than 1 mm/month at a high stress intensity factor.

  10. Proteomic analysis of the response to high-salinity stress in Physcomitrella patens.

    PubMed

    Wang, Xiaoqin; Yang, Pingfang; Gao, Qian; Liu, Xianglin; Kuang, Tingyun; Shen, Shihua; He, Yikun

    2008-06-01

    Physcomitrella patens is well known because of its importance in the study of plant systematics and evolution. The tolerance of P. patens for high-salinity environments also makes it an ideal candidate for studying the molecular mechanisms by which plants respond to salinity stresses. We measured changes in the proteome of P. patens gametophores that were exposed to high-salinity (250, 300, and 350 mM NaCl) using two-dimensional gel electrophoresis (2-DE) via liquid chromatography-tandem mass spectrometry (LC-MS/MS). Sixty-five protein spots were significantly altered by exposure to the high-salinity environment. Among them, 16 protein spots were down-regulated and 49 protein spots were up-regulated. These proteins were associated with a variety of functions, including energy and material metabolism, protein synthesis and degradation, cell defense, cell growth/division, transport, signal transduction, and transposons. Specifically, the up-regulated proteins were primarily involved in defense, protein folding, and ionic homeostasis. In summary, we outline several novel insights into the response of P. patens to high-salinity; (1) HSP70 is likely to play a significant role in protecting proteins from denaturation and degradation during salinity stress, (2) signaling proteins, such as 14-3-3 and phototropin, may work cooperatively to regulate plasma membrane H(+)-ATPase and maintain ion homeostasis, (3) an increase in photosynthetic activity may contribute to salinity tolerance, and (4) ROS scavengers were up-regulated suggesting that the antioxidative system may play a crucial role in protecting cells from oxidative damage following exposure to salinity stress in P. patens.

  11. In situ bioremediation under high saline conditions

    SciTech Connect

    Bosshard, B.; Raumin, J.; Saurohan, B.

    1995-12-31

    An in situ bioremediation treatability study is in progress at the Salton Sea Test Base (SSTB) under the NAVY CLEAN 2 contract. The site is located in the vicinity of the Salon Sea with expected groundwater saline levels of up to 50,000 ppm. The site is contaminated with diesel, gasoline and fuel oils. The treatability study is assessing the use of indigenous heterotrophic bacteria to remediate petroleum hydrocarbons. Low levels of significant macro nutrients indicate that nutrient addition of metabolic nitrogen and Orthophosphate are necessary to promote the process, requiring unique nutrient addition schemes. Groundwater major ion chemistry indicates that precipitation of calcium phosphorus compounds may be stimulated by air-sparging operations and nutrient addition, which has mandated the remedial system to include pneumatic fracturing as an option. This presentation is tailored at an introductory level to in situ bioremediation technologies, with some emphasize on innovations in sparge air delivery, dissolved oxygen uptake rates, nutrient delivery, and pneumatic fracturing that should keep the expert`s interest.

  12. Genotype-by-environment interaction for salinity tolerance in the freshwater-invading copepod Eurytemora affinis.

    PubMed

    Lee, Carol Eunmi; Petersen, Christine H

    2002-01-01

    This study examined the extent of phenotypic plasticity for salinity tolerance and genetic variation in plasticity in the invasive copepod Eurytemora affinis. Euryemora affinis is a species complex inhabiting brackish to hypersaline environments but has invaded freshwater lakes and reservoirs within the past century. Reaction norm experiments were performed on a relatively euryhaline population collected from a brackish lake with fluctuating salinity. Life history traits (hatching rate, survival, and development time) were measured for 20 full-sib clutches that were split and reared at four salinities (fresh, 5, 10, and 27 practical salinity units [PSU]). On average, higher salinities (10 and 27 PSU) were more favorable for larval growth, yielding greater survival and faster development rate. Clutches differed significantly in their response to salinity, with a significant genotype-by-environment interaction for development time. In addition, genetic (clutch) effects were evident in response to low salinity, given that survival in fresh (lake) water was significantly positively correlated with survival at 5 PSU for individual clutches. Clutches raised in fresh water could not survive beyond metamorphosis, suggesting that acclimation to fresh water could not occur in a single generation. Results suggest the importance of natural selection during freshwater invasion events, given the inability of plasticity to generate a freshwater phenotype, and the presence of genetic variation for plasticity upon which natural selection could act. PMID:12324889

  13. Treatment of high salinity brines by direct contact membrane distillation: Effect of membrane characteristics and salinity.

    PubMed

    Li, Jianfeng; Guan, Yunshan; Cheng, Fangqin; Liu, Yu

    2015-12-01

    Direct contact membrane distillation (DCMD) is one of the attractive technologies for high salinity brine treatment. In this study, four polytetrafluoroethylene (PTFE) membranes were examined in treating highly concentrated salt solutions. Results showed that non-supported membranes generally have a higher overall mass transfer coefficient but porosity seems to be the most important parameter controlling membrane flux and thermal efficiency. Supported membranes with large thickness had relatively higher thermal efficiency than small thickness. This can be attributed to their reduced heat loss through heat condition. In addition, KCl, NaCl and MgCl2 solutions showed distinct trends over flux decline at high salt concentrations (⩾2.0M). The difference in flux was largely due to the discrepancy in water activities of these solutions (KCl>NaCl>MgCl2). However, the effect of viscosity on permeate flux could not be neglected for MgCl2 at high salt concentrations as the suddenly increased viscosity could lead to serious temperature polarization. This study indicates that membrane distillation is a promising technology for high salinity brine treatment. PMID:25563165

  14. Treatment of high salinity brines by direct contact membrane distillation: Effect of membrane characteristics and salinity.

    PubMed

    Li, Jianfeng; Guan, Yunshan; Cheng, Fangqin; Liu, Yu

    2015-12-01

    Direct contact membrane distillation (DCMD) is one of the attractive technologies for high salinity brine treatment. In this study, four polytetrafluoroethylene (PTFE) membranes were examined in treating highly concentrated salt solutions. Results showed that non-supported membranes generally have a higher overall mass transfer coefficient but porosity seems to be the most important parameter controlling membrane flux and thermal efficiency. Supported membranes with large thickness had relatively higher thermal efficiency than small thickness. This can be attributed to their reduced heat loss through heat condition. In addition, KCl, NaCl and MgCl2 solutions showed distinct trends over flux decline at high salt concentrations (⩾2.0M). The difference in flux was largely due to the discrepancy in water activities of these solutions (KCl>NaCl>MgCl2). However, the effect of viscosity on permeate flux could not be neglected for MgCl2 at high salt concentrations as the suddenly increased viscosity could lead to serious temperature polarization. This study indicates that membrane distillation is a promising technology for high salinity brine treatment.

  15. Materials corrosion tests applicable to a cooling system using areated treated geothermal brine or the high saline waters associated with geothermal areas

    SciTech Connect

    Suciu, Dan F.; Wikoff, Penny M.

    1982-10-08

    The results of an investigation conducted to determine the corrosion characteristics of a number of alloys in a high saline environment are discussed. The ferritic stainless steels and several copper/nickel alloys exhibited good corrosion resistance in these high saline geothermal environments.

  16. Elemental composition of arbuscular mycorrhizal fungi at high salinity.

    PubMed

    Hammer, Edith C; Nasr, Hafedh; Pallon, Jan; Olsson, Pål Axel; Wallander, Håkan

    2011-02-01

    We investigated the elemental composition of spores and hyphae of arbuscular mycorrhizal fungi (AMF) collected from two saline sites at the desert border in Tunisia, and of Glomus intraradices grown in vitro with or without addition of NaCl to the medium, by proton-induced X-ray emission. We compared the elemental composition of the field AMF to those of the soil and the associated plants. The spores and hyphae from the saline soils showed strongly elevated levels of Ca, Cl, Mg, Fe, Si, and K compared to their growth environment. In contrast, the spores of both the field-derived AMF and the in vitro grown G. intraradices contained lower or not elevated Na levels compared to their growth environment. This resulted in higher K:Na and Ca:Na ratios in spores than in soil, but lower than in the associated plants for the field AMF. The K:Na and Ca:Na ratios of G. intraradices grown in monoxenic cultures were also in the same range as those of the field AMF and did not change even when those ratios in the growth medium were lowered several orders of magnitude by adding NaCl. These results indicate that AMF can selectively take up elements such as K and Ca, which act as osmotic equivalents while they avoid uptake of toxic Na. This could make them important in the alleviation of salinity stress in their plant hosts.

  17. Materials of construction for high-salinity geothermal brines. Rept. of investigations/1992

    SciTech Connect

    Carter, J.P.; Cramer, S.D.

    1991-05-06

    The high-temperature, high-salinity geothermal brines in the Salton Sea Known Geothermal Resources Area (KGRA) are a valuable source of energy and mineral values. The brine and steam produced from them are corrosive and cause early failure of many common materials of construction. Mass-loss and electrochemical corrosion measurements were conducted on over 60 metal alloys in brine and steam environments produced from geothermal well Magmamax No. 1, located at the Salton Sea KGRA, at temperatures from 180 to 215 C, and in synthetic Magmamax brine at 105 and 232 C. General corrosion, crevice and pitting corrosion, and stress corrosion were examined along with the effects of dissolved gases. The alloys with the most acceptable corrosion performance in high-temperature, high-salinity geothermal environments were the high-chromium ferritic stainless steels, the Inconels and Hastelloys, and the titanium alloys.

  18. Regulation of sodium in the shore crab Carcinus maenas, adapted to environments of constant and changing salinities

    NASA Astrophysics Data System (ADS)

    Siebers, D.; Winkler, A.; Leweck, K.; Madian, A.

    1983-09-01

    The activity of Na-K-ATPase was determined in the posterior gills of the shore crab Carcinus maenas during a period following transfer from 35 to 10 ‰ salinity and vice versa at 15 °C. After transfer from high to low salinity, Na-K-ATPase activity increased from 3.2 to 7.0 μmoles Pi mg protein-1 h-1 within a period of 2 to 3 weeks. Transfer of crabs from low to high salinity resulted in reduction of activity from 7.4 to 4.5 μmoles Pi mg protein-1 h-1 within about the same period. The relatively slow response following salinity change indicates that the amounts of Na-K-ATPase in the gills may play a role in hyperionic Na regulation in relatively constant brackish-water environments. Instant responses to salinity result from activation and inhibition of Na-K-ATPase activity by Na. Gill Na-K-ATPase is activated by the Na concentration of the incubation medium to attain a steep maximum at about 75 mM Na, which corresponds to the lowest environmental Na levels tolerated by C. maenas equivalent to a salinity of ca 6 ‰. Activity greatly decreased towards higher Na levels, equivalent to the salinity of normal sea water, at which hyperregulation no longer occurs. Selective addition of either Na or Cl to brackish water of 9 ‰ S resulted in effective hyperregulation of the non-increased ion, and passive distribution between medium and blood of the increased ion. These data indicate that under appropriate conditions the normally coupled transport of Na and Cl may be uncoupled and take place independently of each other.

  19. Evaluation of the functional roles of fungal endophytes of Phragmites australis from high saline and low saline habitats

    USGS Publications Warehouse

    Soares, Marcos Antonio; Li, Hai-Yan; Kowalski, Kurt P.; Bergen, Marshall; Torres, Monica S.; White, James F.

    2016-01-01

    Non-native Phragmites australis decreases biodiversity and produces dense stands in North America. We surveyed the endophyte communities in the stems, leaves and roots of collections of P. australis obtained from two sites with a low and high salt concentration to determine differences in endophyte composition and assess differences in functional roles of microbes in plants from both sites. We found differences in the abundance, richness and diversity of endophytes between the low saline collections (18 species distributed in phyla Ascomycota, Basidiomycota and Stramenopiles (Oomycota); from orders Dothideales, Pleosporales, Hypocreales, Eurotiales, Cantharellales and Pythiales; Shannon H = 2.639; Fisher alpha = 7.335) and high saline collections (15 species from phylum Ascomycota; belonging to orders Pleosporales, Hypocreales, Diaporthales, Xylariales and Dothideales; Shannon H = 2.289; Fisher alpha = 4.181). Peyronellaea glomerata, Phoma macrostoma and Alternaria tenuissima were species obtained from both sites. The high salt endophyte community showed higher resistance to zinc, mercury and salt stress compared to fungal species from the low salt site. These endophytes also showed a greater propensity for growth promotion of rice seedlings (a model species) under salt stress. The results of this study are consistent with the ‘habitat-adapted symbiosis hypothesis’ that holds that endophytic microbes may help plants adapt to extreme habitats. The capacity of P. australis to establish symbiotic relationships with diverse endophytic microbes that enhance its tolerance to abiotic stresses could be a factor that contributes to its invasiveness in saline environments. Targeting the symbiotic associates of P. australis could lead to more sustainable control of non-native P. australis.

  20. Anammox Coupled With Nitrification Impacts a Saline, High Ammonia Groundwater

    NASA Astrophysics Data System (ADS)

    Figueroa, L. A.; Landkamer, L.; Peterson, D. M.; Metzler, D.

    2007-05-01

    High amounts of ammonia (130 to 2200 mg-N/l) in a saline environment (TDS = 10-20 g/l) are present in a groundwater plume adjacent to the Colorado River near Moab, Utah. Ammonia levels sufficient to affect aquatic life have been observed in limited sections of the river adjacent to the site, which has prompted interim treatment efforts. Microcosm studies were performed to assess the potential for microbial transformations of ammonia in the hyporheic zone sediment and the effect of ground/river-water mixing on transformations. Experiments were conducted using sub-riverbed sediment and mixtures of groundwater (290 mg-N/L ammonia) and river water (100%, 50% and 10% plume water) in anaerobic and aerobic environments. Aqueous NH4+, NO2-, NO3-, pH, dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) were monitored over 38 days. Interestingly, the ammonia concentration decreased in all microcosms (29% to 100%) with the highest removal occurring in the oxic microcosms. Total nitrogen removal ranged from 27% to 83%. Three lines of evidence suggest that anammox occurred in the anaerobic microcosms: 1) NH4+ concentrations decreased, 2) little change in DOC occurred and 3) DIC decreased. DIC should increase if denitrification were the dominant process. It is possible that small amounts of O2 diffused into the microcosms, driving some nitrification that supplied NO2- for anammox. In the aerobic microcosms, denitrification or anammox occurred in addition to nitrification because nitrate did not accumulate in general. Again, we believe anammox occurred because of DOC and DIC trends. In the aerobic 10% groundwater microcosm, NO3- accumulated once the ammonia concentration became low and the nitrate level stabilized after the ammonia was gone. This also indicated that anammox was the dominant process because denitrification should not stop due to ammonia depletion. The aerobic microcosms were only agitated twice per week, which would allow the sediments to become

  1. Contribution of water chemistry and fish condition to otolith chemistry: comparisons across salinity environments.

    PubMed

    Izzo, C; Doubleday, Z A; Schultz, A G; Woodcock, S H; Gillanders, B M

    2015-06-01

    This study quantified the per cent contribution of water chemistry to otolith chemistry using enriched stable isotopes of strontium ((86) Sr) and barium ((137) Ba). Euryhaline barramundi Lates calcarifer, were reared in marine (salinity 40), estuarine (salinity 20) and freshwater (salinity 0) under different temperature treatments. To calculate the contribution of water to Sr and Ba in otoliths, enriched isotopes in the tank water and otoliths were quantified and fitted to isotope mixing models. Fulton's K and RNA:DNA were also measured to explore the influence of fish condition on sources of element uptake. Water was the predominant source of otolith Sr (between 65 and 99%) and Ba (between 64 and 89%) in all treatments, but contributions varied with temperature (for Ba), or interactively with temperature and salinity (for Sr). Fish condition indices were affected independently by the experimental rearing conditions, as RNA:DNA differed significantly among salinity treatments and Fulton's K was significantly different between temperature treatments. Regression analyses did not detect relations between fish condition and per cent contribution values. General linear models indicated that contributions from water chemistry to otolith chemistry were primarily influenced by temperature and secondly by fish condition, with a relatively minor influence of salinity. These results further the understanding of factors that affect otolith element uptake, highlighting the necessity to consider the influence of environment and fish condition when interpreting otolith element data to reconstruct the environmental histories of fish. PMID:26033292

  2. Contribution of water chemistry and fish condition to otolith chemistry: comparisons across salinity environments.

    PubMed

    Izzo, C; Doubleday, Z A; Schultz, A G; Woodcock, S H; Gillanders, B M

    2015-06-01

    This study quantified the per cent contribution of water chemistry to otolith chemistry using enriched stable isotopes of strontium ((86) Sr) and barium ((137) Ba). Euryhaline barramundi Lates calcarifer, were reared in marine (salinity 40), estuarine (salinity 20) and freshwater (salinity 0) under different temperature treatments. To calculate the contribution of water to Sr and Ba in otoliths, enriched isotopes in the tank water and otoliths were quantified and fitted to isotope mixing models. Fulton's K and RNA:DNA were also measured to explore the influence of fish condition on sources of element uptake. Water was the predominant source of otolith Sr (between 65 and 99%) and Ba (between 64 and 89%) in all treatments, but contributions varied with temperature (for Ba), or interactively with temperature and salinity (for Sr). Fish condition indices were affected independently by the experimental rearing conditions, as RNA:DNA differed significantly among salinity treatments and Fulton's K was significantly different between temperature treatments. Regression analyses did not detect relations between fish condition and per cent contribution values. General linear models indicated that contributions from water chemistry to otolith chemistry were primarily influenced by temperature and secondly by fish condition, with a relatively minor influence of salinity. These results further the understanding of factors that affect otolith element uptake, highlighting the necessity to consider the influence of environment and fish condition when interpreting otolith element data to reconstruct the environmental histories of fish.

  3. How salinity and temperature combine to affect physiological state and performance in red knots with contrasting non-breeding environments.

    PubMed

    Gutiérrez, Jorge S; Soriano-Redondo, Andrea; Dekinga, Anne; Villegas, Auxiliadora; Masero, José A; Piersma, Theunis

    2015-08-01

    Migratory shorebirds inhabit environments that may yield contrasting salinity-temperature regimes-with widely varying osmoregulatory demands, even within a given species-and the question is: by which physiological means and at which organisational level do they show adjustments with respect to these demands? Red knots Calidris canutus winter in coastal areas over a range of latitudes. The nominal subspecies winters in salty areas in the tropics, whereas the subspecies Calidris canutus islandica winters in north-temperate regions of comparatively lower salinities and temperatures. In this study, both subspecies of red knot were acclimated to different salinity (28/40‰)-temperature (5/35 °C) combinations for 2-week periods. We then measured food/salt intakes, basal metabolic rate (BMR), body mass and temperature, fat and salt gland scores, gizzard mass, heat-shock proteins, heterophils/lymphocytes (H/L) ratio and plasma Na(+) to assess the responses of each taxon to osmoregulatory challenges. High salinity (HS)-warm-acclimated birds reduced food/salt intake, BMR, body mass, fat score and gizzard mass, showing that salt/heat loads constrained energy acquisition rates. Higher salt gland scores in saltier treatments indicated that its size was adjusted to higher osmoregulatory demands. Elevated plasma Na(+) and H/L ratio in high-salinity-warm-acclimated birds indicated that salt/heat loads might have a direct effect on the water-salt balance and stress responses of red knots. Subspecies had little or no effect on most measured parameters, suggesting that most adjustments reflect phenotypic flexibility rather than subspecific adaptations. Our results demonstrate how salinity and temperature affect various phenotypic traits in a migrant shorebird, highlighting the importance of considering these factors jointly when evaluating the environmental tolerances of air-breathing marine taxa. PMID:25851406

  4. Plasticity in sunflower leaf and cell growth under high salinity.

    PubMed

    Céccoli, G; Bustos, D; Ortega, L I; Senn, M E; Vegetti, A; Taleisnik, E

    2015-01-01

    A group of sunflower lines that exhibit a range of leaf Na(+) concentrations under high salinity was used to explore whether the responses to the osmotic and ionic components of salinity can be distinguished in leaf expansion kinetics analysis. It was expected that at the initial stages of the salt treatment, leaf expansion kinetics changes would be dominated by responses to the osmotic component of salinity, and that later on, ion inclusion would impose further kinetics changes. It was also expected that differential leaf Na(+) accumulation would be reflected in specific changes in cell division and expansion rates. Plants of four sunflower lines were gradually treated with a relatively high (130 mm NaCl) salt treatment. Leaf expansion kinetics curves were compared in leaves that were formed before, during and after the initiation of the salt treatment. Leaf areas were smaller in salt-treated plants, but the analysis of growth curves did not reveal differences that could be attributed to differential Na(+) accumulation, since similar changes in leaf expansion kinetics were observed in lines with different magnitudes of salt accumulation. Nevertheless, in a high leaf Na(+) -including line, cell divisions were affected earlier, resulting in leaves with proportionally fewer cells than in a Na(+) -excluding line. A distinct change in leaf epidermal pavement shape caused by salinity is reported for the first time. Mature pavement cells in leaves of control plants exhibited typical lobed, jigsaw-puzzle shape, whereas in treated plants, they tended to retain closer-to-circular shapes and a lower number of lobes. PMID:24942979

  5. [Relationship between the ionic composition of blood and urine and the salinity of the external environment of the crab Hemigrapsus sanguineus].

    PubMed

    Busev, V M; Semen'kov, P G; Mishchenko, T Ia

    1977-01-01

    Studies have been made on the dependence of sodium, potassium, magnesium and calcium concentrations of the blood and urine on the salinity of the external milieu in the crab H. sanguineus. Effective regulation of sodium and potasssium balance at low salinities was found. Within the salinity range investigated, magnesium level in the blood is maintained at lower level as compared to that in the environment. At low salinities, regulation of potassium and sodium concentrations in the blood is monitored by extrarenal mechanisms. Uber high salinity conditions, regulation of magnesium and potassium concentrations in the blood is accomplished at the expense of the activity of antennal glands. Calcium concentration in the blood is regulated by extra-renal mechanisms. The antennal glands affect regulation of calcium balance.

  6. Integration of herbicides with manual weeding for controlling the weeds in rice under saline environment.

    PubMed

    Hakim, M A; Juraimi, Abdul Shukor; Hanafi, M M; Rafii, Mohd Y; Ismail, Mohd Razi; Karim, S M Rezaul; Kausar, H

    2015-11-01

    The pot experiment was conducted to select appropriate integrated weed management method in rice under different salinity levels (0, 4 and 8 dS m(-1)). All the parameters including rice and weed measured were significantly influenced by weed control treatments at all salinity levels. Treatments including weed-free condition, Pretilachlor @0.375 kg ai ha(-1) + hand weeding, Propanil + Thiobencarb @ 0.9 kg ai ha(-1) and 1.8 kg ai ha(-1)+ hand weeding performed better under all salinity levels. Pretilachlor @ 0.375 kg ai ha(-1) with one round of hand weeding and propanil + thiobencarb 0.9 kg ai ha(-1) + 1.8 kg ai ha(-1) with one round of hand weeding were comparable to weed-free yields, and were superior to other treatments under salinity condition. Considering all the parameters, pretilachlor @ 0.375 kg ai ha(-1) + one round of hand weeding (at 65 DAT), propanil + thiobencarb 0.9 kg ai ha(-1) +1.8 kg ai ha(-1) + one round of hand weeding (at 65 DAT) gave the most effective control of weeds in rice under saline environments.

  7. Integration of herbicides with manual weeding for controlling the weeds in rice under saline environment.

    PubMed

    Hakim, M A; Juraimi, Abdul Shukor; Hanafi, M M; Rafii, Mohd Y; Ismail, Mohd Razi; Karim, S M Rezaul; Kausar, H

    2015-11-01

    The pot experiment was conducted to select appropriate integrated weed management method in rice under different salinity levels (0, 4 and 8 dS m(-1)). All the parameters including rice and weed measured were significantly influenced by weed control treatments at all salinity levels. Treatments including weed-free condition, Pretilachlor @0.375 kg ai ha(-1) + hand weeding, Propanil + Thiobencarb @ 0.9 kg ai ha(-1) and 1.8 kg ai ha(-1)+ hand weeding performed better under all salinity levels. Pretilachlor @ 0.375 kg ai ha(-1) with one round of hand weeding and propanil + thiobencarb 0.9 kg ai ha(-1) + 1.8 kg ai ha(-1) with one round of hand weeding were comparable to weed-free yields, and were superior to other treatments under salinity condition. Considering all the parameters, pretilachlor @ 0.375 kg ai ha(-1) + one round of hand weeding (at 65 DAT), propanil + thiobencarb 0.9 kg ai ha(-1) +1.8 kg ai ha(-1) + one round of hand weeding (at 65 DAT) gave the most effective control of weeds in rice under saline environments. PMID:26688966

  8. Soil salinity as affected by high-sulfate water

    SciTech Connect

    Papadopoulos, I.

    1985-11-01

    In a laboratory experiment, the author investigated both salt buildup in three soils irrigated with various amounts of water high in sulfates and also the good-quality water needed for reclaiming such soils. Salt buildup followed in two distinct stages. The first stage was marked by a sharp increase in soil salinity as ions of both high and low solubility contributed to it. Salt buildup in the second stage was substantially slower and linearly related to the concentration of highly soluble ions. The SAR measured in soils taken from the pots at the end of salinization increased with every volume of sulfate water applied. There was initially also an increase in saturated hydraulic conductivity, followed thereafter by a sharp decrease. As with salt buildup the rate of leaching of salts followed two stages. First soluble salts were readily leached. Sharp decrease of both soil solution EC and SAR occurred at this stage. Thereafter, a steady state was reached, and decrease in soil solution EC was gradual and strongly dependent on gypsum dissolution.

  9. Biogeochemical and hydrological controls in mobilizing Se in a saline wetland environment

    NASA Astrophysics Data System (ADS)

    Datta, S.; Hettiarachchi, G. M.; Crawford, M.; Karna, R.; Allmendinger, N. E.; Khatiwada, R.

    2010-12-01

    Selenium (Se) contamination in watersheds remains a challenge to water and land and wildlife managers throughout the west and mid west of US. In that sense, understanding the fundamentals of Se mobilization, fixation and bioconcentration is the current research endeavor. The challenge for Se research is developing watershed-geochemical models that are well founded in Se geochemical/biologcial principles that can be applied in a wide range of situations to inform decisions. Pariette Wetlands, a 9000 acre Bureau of Land Management controlled wetland system composed of 20 ponds located at the confluence of Pariette Draw and the Green River is the present location of this study. The agricultural and irrigation practices and the water-rock interactions leading to salinization can be associated with changes in Se chemistry in the rivers. Since its inception Pariette Wetlands has been home to a rich and diverse wetland ecosystem located in the arid Uintah Basin of Northeastern Utah. Detailed sampling of surficial sediments (0-1 m) from stream banks, channel beds and for water sampling have been undergone in 2 separate field trips throughout the entire reach of the wetland. To establish Pariette Draw’s contribution of Se to the Green river, water and sediments were also sampled from the Green River up and downstream of its confluence with Pariette Draw. In situ measurements of water parameters within the wetland suggest a clear trend of increased pH from upstream, 8, to downstream, 9.2 and combined with TDS suggest a pH controlled saline environment system. The headwaters near Flood Control Dam have an added input of Se from a possible irrigation source upstream in Pleasant Valley area while Se drastically decreases downstream towards the Red Head Pond. Se fractionation in sediments is being analyzed via a sequential extraction procedure to locate the labile fractions of mostly inorganic bound Se. Solid state speciation of Se via μ-XRF aided μ-XANES is being combined

  10. Zwitterionic Antifouling Coatings for the Purification of High-Salinity Shale Gas Produced Water.

    PubMed

    Yang, Rong; Goktekin, Esma; Gleason, Karen K

    2015-11-01

    Fouling refers to the undesirable attachment of organic molecules and microorganisms to submerged surfaces. It is an obstacle to the purification of shale gas produced water and is currently without an effective solution due to the highly contaminated nature of produced water. Here, we demonstrate the direct vapor application of a robust zwitterionic coating to a variety of substrates. The coating remains unprecedentedly hydrophilic, smooth, and effectively antifouling in extremely high salinity solutions (with salt concentration of 200,000 ppm). The fouling resistance is assessed rapidly and quantitatively with a molecular force spectroscopy-based method and corroborated using quartz crystal microbalance system with dissipation monitoring. Grazing angle attenuated total reflectance Fourier transform infrared is used in combination with X-ray photoelectron spectroscopy, atomic force microscope, and in situ spectroscopic ellipsometry to lend insight into the underlying mechanism for the exceptional stability and effectiveness of the zwitterionic coating under high-salinity conditions. A unique coating architecture, where the surface is concentrated with mobile zwitterionic moieties while the bulk is cross-linked to enhance coating durability, was discovered to be the origin of its stable fouling resistance under high salinity. Combined with previously reported exceptional stability in highly oxidative environments and strong fouling resistance to oil and grease, the zwitterionic surface here has the potential to enable low-cost, membrane-based techniques for the purification of produced water and to eventually balance the favorable economics and the concerning environmental impacts of the hydraulic fracturing industry.

  11. Zwitterionic Antifouling Coatings for the Purification of High-Salinity Shale Gas Produced Water.

    PubMed

    Yang, Rong; Goktekin, Esma; Gleason, Karen K

    2015-11-01

    Fouling refers to the undesirable attachment of organic molecules and microorganisms to submerged surfaces. It is an obstacle to the purification of shale gas produced water and is currently without an effective solution due to the highly contaminated nature of produced water. Here, we demonstrate the direct vapor application of a robust zwitterionic coating to a variety of substrates. The coating remains unprecedentedly hydrophilic, smooth, and effectively antifouling in extremely high salinity solutions (with salt concentration of 200,000 ppm). The fouling resistance is assessed rapidly and quantitatively with a molecular force spectroscopy-based method and corroborated using quartz crystal microbalance system with dissipation monitoring. Grazing angle attenuated total reflectance Fourier transform infrared is used in combination with X-ray photoelectron spectroscopy, atomic force microscope, and in situ spectroscopic ellipsometry to lend insight into the underlying mechanism for the exceptional stability and effectiveness of the zwitterionic coating under high-salinity conditions. A unique coating architecture, where the surface is concentrated with mobile zwitterionic moieties while the bulk is cross-linked to enhance coating durability, was discovered to be the origin of its stable fouling resistance under high salinity. Combined with previously reported exceptional stability in highly oxidative environments and strong fouling resistance to oil and grease, the zwitterionic surface here has the potential to enable low-cost, membrane-based techniques for the purification of produced water and to eventually balance the favorable economics and the concerning environmental impacts of the hydraulic fracturing industry. PMID:26449686

  12. Growth and nitrogen fixation of legumes at increased salinity under field conditions: implications for the use of green manures in saline environments

    PubMed Central

    Bruning, Bas; van Logtestijn, Richard; Broekman, Rob; de Vos, Arjen; González, Andrés Parra; Rozema, Jelte

    2015-01-01

    The use of legumes as green manure can potentially increase crop productivity in saline environments and thus contribute to the sustainability of agricultural systems. Here, we present results from a field experiment conducted in the Netherlands that addressed the efficiency of nitrogen (N) fixation by a legume at varying salinities. We grew Melilotus officinalis in an agricultural field using drip irrigation with water salinity varying in electrical conductivity between 1.7 and 20 dS m−1. In the experiment, nearly 100 % of total plant N in M. officinalis was derived from symbiotic fixation at all but the highest salinity level (20 dS m−1). Our results indicated that this species derived substantial amounts of N via symbiotic fixation, the N becoming available in the soil (and thus available to crops) when cultivated legumes senesce and decompose. Based on the growth performance of M. officinalis and its ability to fix N at moderate soil salinity in our field experiments, we identified this species as a promising source for green manure in saline agriculture in temperate regions. PMID:25661201

  13. Plant response to the soil environment: An analytical model integrating yield, water, soil type, and salinity

    NASA Astrophysics Data System (ADS)

    Shani, Uri; Ben-Gal, Alon; Tripler, Effi; Dudley, Lynn M.

    2007-08-01

    An accessible solution capable of reliably predicting plant-environmental interrelationships for variable species, climates, soils, and management options is a necessary tool for creating sustainable agriculture and environmental preservation. A mechanism-based analytical solution, the first of its kind that considers multiple environmental variables and their combined effects on plant response, was developed and tested. Water uptake by plants, water and salt leakage below the roots, and yield are calculated by solving for transpiration in a single mathematical expression according to limitations imposed by root zone salinity and water status. Input variables include the quantity and salinity of applied water, terms for plant sensitivity to salinity and to water stress, potential evapotranspiration, and soil hydraulic parameters. Where water was not limiting, regression of predicted versus measured data resulted in r2 = 0.96 with slope of 0.937 and intercept of 0.033 (not different from 1 and 0 at 99% confidence), where irrigation varied and salinity was not limiting the r2 = 0.94 with slope of 0.906 and intercept of 0.044 (not different from 1 and 0 at 99% confidence), where both salinity and water levels varied r2 = 0.94 with slope of 0.966 and intercept of 0.033 (not different from 1 and 0 at 99% confidence). Application of the model for agricultural and environmental management and economic analysis is discussed. For example, a farmer in the Arava in Israel where irrigation water salinity is high (electrical conductivity of 3 dS m-1) cannot expect to reach greater than 70% of the potential yield for a pepper crop with any amount of irrigation. By choosing melon, the farmer can achieve 90% of potential yield with the same quality and quantity of water.

  14. High genetic diversity and novelty in planktonic protists inhabiting inland and coastal high salinity water bodies.

    PubMed

    Triadó-Margarit, Xavier; Casamayor, Emilio O

    2013-07-01

    We analyzed the genetic diversity (18S rRNA gene) of planktonic microbial eukaryotes in 34 different coastal and inland saline ponds. A wide range of environmental conditions was covered with up to 30-fold differences in salinity concentrations (12.5-384 g L(-1)), and in situ temperatures (1.3-37.5 °C), and three orders of magnitude in the trophic status (i.e. chlorophyll a < 0.1 to >50 mg L(-1)). Geographically distant sites were studied with contrasting salt origins, and different temporal patterns of wetting and drying. The genetic diversity was high, far beyond the few groups traditionally considered as high salinity-adapted, with sequences spread throughout eight high-rank taxonomic groups and 27 eukaryal classes. The novelty level was extremely high, with 10% of the whole dataset showing < 90% identity to any previously reported sequence in GenBank. Opisthokonta and Rhizaria contained the highest novelty and Chlorophyta and Alveolata the lowest. Low identity sequences were observed both in coastal and inland sites and at lower and at higher salinities, although the degree of novelty was higher in the hypersaline waters (> 6.5% salinity). Overall, this study shows important gaps in the current knowledge about protists inhabiting continental (hyper)saline water bodies, highlighting the need for future, more detailed investigations.

  15. Strategies for Adaptation of Suaeda physophora, Haloxylon ammodendron and Haloxylon persicum to a Saline Environment During Seed-Germination Stage

    PubMed Central

    SONG, JIE; FENG, GU; TIAN, CHANGYAN; ZHANG, FUSUO

    2005-01-01

    • Background and Aims Germination is very important for plant establishment in arid regions. The strategies taken by halophytes during the seed germination stage to adapt to saline environments in an arid zone were investigated in Suaeda physophora (euhalophyte), Haloxylon ammodendron (xero-halophyte) and Haloxylon persicum (xerophyte). • Methods Seeds of S. physophora, H. ammodendron and H. persicum were exposed to a range of iso-osmotic NaCl and PEG solutions. Seed germination in, and recovery germination from, high NaCl were recorded. The effects of iso-osmotic NaCl and PEG on seed water uptake and changes in ion content were measured. In addition, the structure of seeds and Na+ distribution in the seed coat and embryos of dry seeds were investigated. • Key Results The relative increase in fresh weight of germinating seeds was markedly reduced in −2·24 MPa PEG compared with that in −2·24 MPa NaCl, while the opposite trend was found in concentration of K+ during the initial 9 h for all species. Haloxylon ammodendron and S. physophora had a higher recovery germination from −3·13 MPa NaCl compared with H. persicum. Seeds of all species had no endosperm. More Na+ was compartmentalized in the seed coats of the two halophytic species compared with that in the xerophyte H. persicum. • Conclusions The effect of NaCl on seed germination was due to both osmotic stress and ion toxicity for the three species. High soil salinity and a high content of Na+ in seeds may induce more seeds to remain ungerminated in S. physophora and H. ammodendron. Morphological structure and adaptation to salinity during seed germination may determine the geographical distribution of H. ammodendron and S. physophora in certain saline regions. PMID:16002418

  16. Quantifying the degradation of TNT and RDX in a saline environment with and without UV-exposure.

    PubMed

    Sisco, Edward; Najarro, Marcela; Bridge, Candice; Aranda, Roman

    2015-06-01

    Terrorist attacks in a maritime setting, such as the bombing of the USS Cole in 2000, or the detection of underwater mines, require the development of proper protocols to collect and analyse explosive material from a marine environment. In addition to proper analysis of the explosive material, protocols must also consider the exposure of the material to potentially deleterious elements, such as UV light and salinity, time spent in the environment, and time between storage and analysis. To understand how traditional explosives would be affected by such conditions, saline solutions of explosives were exposed to natural and artificial sunlight. Degradation of the explosives over time was then quantified using negative chemical ionization gas chromatography mass spectrometry (GC/NCI-MS). Two explosives, trinitrotoluene (TNT) and cyclotrimethylenetrinitramine (RDX), were exposed to different aqueous environments and light exposures with salinities ranging from freshwater to twice the salinity of ocean water. Solutions were then aged for up to 6 months to simulate different conditions the explosives may be recovered from. Salinity was found to have a negligible impact on the degradation of both RDX and TNT. RDX was stable in solutions of all salinities while TNT solutions degraded regardless of salinity. Solutions of varying salinities were also exposed to UV light, where accelerated degradation was seen for both explosives. Potential degradation products of TNT were identified using electrospray ionization mass spectrometry (ESI-MS), and correspond to proposed degradation products discussed in previously published works [1].

  17. Coupled flow and salinity transport modelling in semi-arid environments: The Shashe River Valley, Botswana

    NASA Astrophysics Data System (ADS)

    Bauer, Peter; Held, Rudolf J.; Zimmermann, Stephanie; Linn, Flenner; Kinzelbach, Wolfgang

    2006-01-01

    Numerical groundwater modelling is used as the base for sound aquifer system analysis and water resources assessment. In many cases, particularly in semi-arid and arid regions, groundwater flow is intricately linked to salinity transport. A case in point is the Shashe River Valley in Botswana. A freshwater aquifer located around an ephemeral stream is depleted by the combined effect of transpiration and pumping. Quantitative system analysis reveals that the amount of water taken by transpiration is far more than the quantities pumped for water supply. Furthermore, the salinity distribution in and around Shashe River Valley as well as its temporal dynamics can be satisfactorily reproduced if the transpiration is modelled as a function of groundwater salinity. The location and dynamics of the saltwater-freshwater interface are highly sensitive to the parameterization of evaporative and transpirative salt enrichment. An existing numerical code for coupled flow/transport simulations (SEAWAT) was adapted to this situation. Model results were checked against a large set of field data including water levels, water chemistry, isotope data and ground and airborne geophysical data. The resulting groundwater model was able to reproduce the long-term development of the freshwater lens located in Shashe River Valley as well as the decline in piezometric heads observed over the last decade. Furthermore, the old age of the saline water surrounding the central freshwater lens could be explained.

  18. Salinity and High Temperature Tolerance in Mungbean [Vigna radiata (L.) Wilczek] from a Physiological Perspective

    PubMed Central

    HanumanthaRao, Bindumadhava; Nair, Ramakrishnan M.; Nayyar, Harsh

    2016-01-01

    Biotic and abiotic constraints seriously affect the productivity of agriculture worldwide. The broadly recognized benefits of legumes in cropping systems—biological nitrogen fixation, improving soil fertility and broadening cereal-based agro-ecologies, are desirable now more than ever. Legume production is affected by hostile environments, especially soil salinity and high temperatures (HTs). Among legumes, mungbean has acceptable intrinsic tolerance mechanisms, but many agro-physiological characteristics of the Vigna species remain to be explored. Mungbean has a distinct advantage of being short-duration and can grow in wide range of soils and environments (as mono or relay legume). This review focuses on salinity and HT stresses on mungbean grown as a fallow crop (mungbean-rice-wheat to replace fallow-rice-wheat) and/or a relay crop in cereal cropping systems. Salinity tolerance comprises multifaceted responses at the molecular, physiological and plant canopy levels. In HTs, adaptation of physiological and biochemical processes gradually may lead to improvement of heat tolerance in plants. At the field level, managing or manipulating cultural practices can mitigate adverse effects of salinity and HT. Greater understanding of physiological and biochemical mechanisms regulating these two stresses will contribute to an evolving profile of the genes, proteins, and metabolites responsible for mungbean survival. We focus on abiotic stresses in legumes in general and mungbean in particular, and highlight gaps that need to be bridged through future mungbean research. Recent findings largely from physiological and biochemical fronts are examined, along with a few agronomic and farm-based management strategies to mitigate stress under field conditions. PMID:27446183

  19. Salinity and High Temperature Tolerance in Mungbean [Vigna radiata (L.) Wilczek] from a Physiological Perspective.

    PubMed

    HanumanthaRao, Bindumadhava; Nair, Ramakrishnan M; Nayyar, Harsh

    2016-01-01

    Biotic and abiotic constraints seriously affect the productivity of agriculture worldwide. The broadly recognized benefits of legumes in cropping systems-biological nitrogen fixation, improving soil fertility and broadening cereal-based agro-ecologies, are desirable now more than ever. Legume production is affected by hostile environments, especially soil salinity and high temperatures (HTs). Among legumes, mungbean has acceptable intrinsic tolerance mechanisms, but many agro-physiological characteristics of the Vigna species remain to be explored. Mungbean has a distinct advantage of being short-duration and can grow in wide range of soils and environments (as mono or relay legume). This review focuses on salinity and HT stresses on mungbean grown as a fallow crop (mungbean-rice-wheat to replace fallow-rice-wheat) and/or a relay crop in cereal cropping systems. Salinity tolerance comprises multifaceted responses at the molecular, physiological and plant canopy levels. In HTs, adaptation of physiological and biochemical processes gradually may lead to improvement of heat tolerance in plants. At the field level, managing or manipulating cultural practices can mitigate adverse effects of salinity and HT. Greater understanding of physiological and biochemical mechanisms regulating these two stresses will contribute to an evolving profile of the genes, proteins, and metabolites responsible for mungbean survival. We focus on abiotic stresses in legumes in general and mungbean in particular, and highlight gaps that need to be bridged through future mungbean research. Recent findings largely from physiological and biochemical fronts are examined, along with a few agronomic and farm-based management strategies to mitigate stress under field conditions. PMID:27446183

  20. Long-term surveillance of sulfate-reducing bacteria in highly saline industrial wastewater evaporation ponds

    PubMed Central

    Ben-Dov, Eitan; Kushmaro, Ariel; Brenner, Asher

    2009-01-01

    Abundance and seasonal dynamics of sulfate-reducing bacteria (SRB), in general, and of extreme halophilic SRB (belonging to Desulfocella halophila) in particular, were examined in highly saline industrial wastewater evaporation ponds over a forty one month period. Industrial wastewater was sampled and the presence of SRB was determined by quantitative real-time PCR (qPCR) with a set of primers designed to amplify the dissimilatory sulfite reductase (dsrA) gene. SRB displayed higher abundance during the summer (106–108 targets ml-1) and lower abundance from the autumn-spring (103–105 targets ml-1). However, addition of concentrated dissolved organic matter into the evaporation ponds during winter immediately resulted in a proliferation of SRB, despite the lower wastewater temperature (12–14°C). These results indicate that the qPCR approach can be used for rapid measurement of SRB to provide valuable information about the abundance of SRB in harsh environments, such as highly saline industrial wastewaters. Low level of H2S has been maintained over five years, which indicates a possible inhibition of SRB activity, following artificial salination (≈16% w/v of NaCl) of wastewater evaporation ponds, despite SRB reproduction being detected by qPCR. PMID:19226456

  1. Physiological and proteomic analyses of leaves from the halophyte Tangut Nitraria reveals diverse response pathways critical for high salinity tolerance

    PubMed Central

    Cheng, Tielong; Chen, Jinhui; Zhang, Jingbo; Shi, Shengqing; Zhou, Yanwei; Lu, Lu; Wang, Pengkai; Jiang, Zeping; Yang, Jinchang; Zhang, Shougong; Shi, Jisen

    2015-01-01

    Soil salinization poses a serious threat to the environment and agricultural productivity worldwide. Studies on the physiological and molecular mechanisms of salinity tolerance in halophytic plants provide valuable information to enhance their salt tolerance. Tangut Nitraria is a widely distributed halophyte in saline–alkali soil in the northern areas of China. In this study, we used a proteomic approach to investigate the molecular pathways of the high salt tolerance of T. Nitraria. We analyzed the changes in biomass, photosynthesis, and redox-related enzyme activities in T. Nitraria leaves from plant seedlings treated with high salt concentration. Comparative proteomic analysis of the leaves revealed that the expression of 71 proteins was significantly altered after salinity treatments of T. Nitraria. These salinity-responsive proteins were mainly involved in photosynthesis, redox homeostasis, stress/defense, carbohydrate and energy metabolism, protein metabolism, signal transduction, and membrane transport. Results showed that the reduction of photosynthesis under salt stress was attributed to the down-regulation of the enzymes and proteins involved in the light reaction and Calvin cycle. Protein–protein interaction analysis revealed that the proteins involved in redox homeostasis, photosynthesis, and energy metabolism constructed two types of response networks to high salt stress. T. Nitraria plants developed diverse mechanisms for scavenging reactive oxygen species (ROS) in their leaves to cope with stress induced by high salinity. This study provides important information regarding the salt tolerance of the halophyte T. Nitraria. PMID:25713577

  2. Golden alga presence and abundance are inversely related to salinity in a high-salinity river ecosystem, Pecos River, USA

    USGS Publications Warehouse

    Israël, Natascha M.D.; VanLandeghem, Matthew M.; Denny, Shawn; Ingle, John; Patino, Reynaldo

    2014-01-01

    Prymnesium parvum (golden alga, GA) is a toxigenic harmful alga native to marine ecosystems that has also affected brackish inland waters. The first toxic bloom of GA in the western hemisphere occurred in the Pecos River, one of the saltiest rivers in North America. Environmental factors (water quality) associated with GA occurrence in this basin, however, have not been examined. Water quality and GA presence and abundance were determined at eight sites in the Pecos River basin with or without prior history of toxic blooms. Sampling was conducted monthly from January 2012 to July 2013. Specific conductance (salinity) varied spatiotemporally between 4408 and 73,786 mS/cm. Results of graphical, principal component (PCA), and zero-inflated Poisson (ZIP) regression analyses indicated that the incidence and abundance of GA are reduced as salinity increases spatiotemporally. LOWESS regression and correlation analyses of archived data for specific conductance and GA abundance at one of the study sites retrospectively confirmed the negative association between these variables. Results of PCA also suggested that at <15,000 mS/cm, GA was present at a relatively wide range of nutrient (nitrogen and phosphorus) concentrations whereas at higher salinity, GA was observed only at mid-to-high nutrient levels. Generally consistent with earlier studies, results of ZIP regression indicated that GA presence is positively associated with organic phosphorus and in samples where GA is present, GA abundance is positively associated with organic nitrogen and negatively associated with inorganic nitrogen. This is the first report of an inverse relation between salinity and GA presence and abundance in riverine waters and of interaction effects of salinity and nutrients in the field. These observations contribute to a more complete understanding of environmental conditions that influence GA distribution in inland waters.

  3. High Salinity Alters the Germination Behavior of Bacillus subtilis Spores with Nutrient and Nonnutrient Germinants

    PubMed Central

    Nagler, Katja; Setlow, Peter; Li, Yong-Qing

    2014-01-01

    The effect of high NaCl concentrations on nutrient and nonnutrient germination of Bacillus subtilis spores was systematically investigated. Under all conditions, increasing NaCl concentrations caused increasing, albeit reversible, inhibition of germination. High salinity delayed and increased the heterogeneity of germination initiation, slowed the germination kinetics of individual spores and the whole spore population, and decreased the overall germination efficiency, as observed by a variety of different analytical techniques. Germination triggered by nutrients which interact with different germinant receptors (GRs) was affected differently by NaCl, suggesting that GRs are targets of NaCl inhibition. However, NaCl also inhibited GR-independent germination, suggesting that there is at least one additional target for NaCl inhibition. Strikingly, a portion of the spore population could initiate germination with l-alanine even at NaCl concentrations near saturation (∼5.4 M), suggesting that spores lack a salt-sensing system preventing them from germinating in a hostile high-salinity environment. Spores that initiated germination at very high NaCl concentrations excreted their large depot of Ca2+-pyridine-2,6-dicarboxylic acid and lost their heat resistance, but they remained in a phase-gray state in the phase-contrast microscope, suggesting that there was incomplete germination. However, some metabolic activity could be detected at up to 4.8 M NaCl. Overall, high salinity seems to exert complex effects on spore germination and outgrowth whose detailed elucidation in future investigations could give valuable insights on these processes in general. PMID:24317076

  4. Organohalogen emissions from saline environments - spatial extrapolation using remote sensing as most promising tool

    NASA Astrophysics Data System (ADS)

    Kotte, K.; Löw, F.; Huber, S. G.; Krause, T.; Mulder, I.; Schöler, H. F.

    2012-03-01

    Due to their negative water budget most recent semi-/arid regions are characterized by vast evaporates (salt lakes and salty soils). We recently identified those hyper-saline environments as additional sources for a multitude of volatile halogenated organohalogens (VOX). These compounds can affect the ozone layer of the stratosphere and play a key role in the production of aerosols. A remote sensing based analysis was performed in the Southern Aral Sea basin, providing information of major soil types as well as their extent and spatial and temporal evolution. VOX production has been determined in dry and moist soil samples after 24 h. Several C1- and C2 organohalogens have been found in hyper-saline topsoil profiles, including CH3Cl, CH3Br, CHBr3 and CHCl3. The range of organohalogens also includes trans-1,2-dichloroethene (DCE), which is reported here to be produced naturally for the first time. Using MODIS time series and supervised image classification a daily production rate for DCE has been calculated for the 15 000 km2 ranging research area in the southern Aralkum. The applied laboratory setup simulates a short-term change in climatic conditions, starting from dried-out saline soil that is instantly humidified during rain events or flooding. It describes the general VOX production potential, but allows only for a rough estimation of resulting emission loads. VOX emissions are expected to increase in the future since the area of salt affected soils is expanding due to the regressing Aral Sea. Opportunities, limits and requirements of satellite based rapid change detection and salt classification are discussed.

  5. C:N:P stoichiometry and leaf traits of halophytes in an arid saline environment, northwest China.

    PubMed

    Wang, Lilong; Zhao, Guanxiang; Li, Meng; Zhang, Mingting; Zhang, Lifang; Zhang, Xinfang; An, Lizhe; Xu, Shijian

    2015-01-01

    Salinization is an important and increasingly prevalent issue which has broad and profound effects on plant survival and distribution pattern. To understand the patterns and potential drivers of leaf traits in saline environments, we determined the soil properties, leaf morphological traits (specific leaf area, SLA, and leaf dry matter content, LDMC), leaf chemical traits (leaf carbon, C, nitrogen, N, and phosphorus, P, stoichiometry) based on 142 observations collected from 23 sites in an arid saline environment, which is a vulnerable ecosystem in northwest China. We also explored the relationships among leaf traits, the responses of leaf traits, and plant functional groups (herb, woody, and succulent woody) to various saline environments. The arid desert halophytes were characterized by lower leaf C and SLA levels, higher N, but stable P and N:P. The leaf morphological traits were correlated significantly with the C, N, and P contents across all observations, but they differed within each functional group. Succulent woody plants had the lowest leaf C and highest leaf N levels among the three functional groups. The growth of halophytes might be more limited by N rather than P in the study area. GLM analysis demonstrated that the soil available nutrients and plant functional groups, but not salinity, were potential drivers of leaf C:N:P stoichiometry in halophytes, whereas species differences accounted for the largest contributions to leaf morphological variations. Our study provides baseline information to facilitate the management and restoration of arid saline desert ecosystem.

  6. C:N:P Stoichiometry and Leaf Traits of Halophytes in an Arid Saline Environment, Northwest China

    PubMed Central

    Wang, Lilong; Zhao, Guanxiang; Li, Meng; Zhang, Mingting; Zhang, Lifang; Zhang, Xinfang; An, Lizhe; Xu, Shijian

    2015-01-01

    Salinization is an important and increasingly prevalent issue which has broad and profound effects on plant survival and distribution pattern. To understand the patterns and potential drivers of leaf traits in saline environments, we determined the soil properties, leaf morphological traits (specific leaf area, SLA, and leaf dry matter content, LDMC), leaf chemical traits (leaf carbon, C, nitrogen, N, and phosphorus, P, stoichiometry) based on 142 observations collected from 23 sites in an arid saline environment, which is a vulnerable ecosystem in northwest China. We also explored the relationships among leaf traits, the responses of leaf traits, and plant functional groups (herb, woody, and succulent woody) to various saline environments. The arid desert halophytes were characterized by lower leaf C and SLA levels, higher N, but stable P and N:P. The leaf morphological traits were correlated significantly with the C, N, and P contents across all observations, but they differed within each functional group. Succulent woody plants had the lowest leaf C and highest leaf N levels among the three functional groups. The growth of halophytes might be more limited by N rather than P in the study area. GLM analysis demonstrated that the soil available nutrients and plant functional groups, but not salinity, were potential drivers of leaf C:N:P stoichiometry in halophytes, whereas species differences accounted for the largest contributions to leaf morphological variations. Our study provides baseline information to facilitate the management and restoration of arid saline desert ecosystem. PMID:25798853

  7. Increased Deuterium Discrimination in Micronesian Mangroves Growing at High Salinity: Insights from Leaf and Xylem Water Isotopes

    NASA Astrophysics Data System (ADS)

    Ladd, N.; Sachs, J. P.

    2014-12-01

    Hydrogen isotope ratios of plant leaf waxes are increasingly used as a proxy for past hydrologic variability. However, a number of environmental variables influence the net fractionation between leaf waxes and the environmental water from which their hydrogen is ultimately derived. Salinity effects are of particular importance in coastal tropical and subtropical settings, where deuterium discrimination increases by 1.5‰ per salinity unit in the leaf wax n-alkanes of the grey mangrove, Avicennia marina. It is not possible to tell whether sedimentary n-alkanes are from mangrove plants, or from terrestrial plants that are not exposed to salt water. The salinity component of hydrogen isotope fractionation therefore complicates leaf wax hydrogen isotopes in most tropical coastal marine and lacustrine settings. However, a strong relationship between salinity and a more specific mangrove lipid biomarker could provide the basis for a paleosalinity and water isotope proxy in low-latitude coastal environments. Here we present results from a calibration study of Rhizophora spp. (red mangroves) growing on the Micronesian islands of Pohnpei and Palau, using taraxerol, a biomarker that is largely specific to this genus in these settings. We observed an increase in net deuterium discrimination between surface water and taraxerol of 1.2‰ per salinity unit. We investigated potential mechanisms for this increase at high salinity by measuring the hydrogen isotopic composition of leaf and xylem water from Rhizophora spp. Contrary to most terrestrial plants, xylem water in these trees is depleted relative to surface water, with greater relative depletion at higher salinities. This could be the result of increased deuterium discrimination during water uptake, as a greater percentage of salt is excluded by roots at higher salinity. Alternatively, it could indicate that some of the water in the xylem is from relatively depleted freshwater (rain and or dew) that enters the plant

  8. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions.

    PubMed

    Shaffer, Devin L; Arias Chavez, Laura H; Ben-Sasson, Moshe; Romero-Vargas Castrillón, Santiago; Yip, Ngai Yin; Elimelech, Menachem

    2013-09-01

    In the rapidly developing shale gas industry, managing produced water is a major challenge for maintaining the profitability of shale gas extraction while protecting public health and the environment. We review the current state of practice for produced water management across the United States and discuss the interrelated regulatory, infrastructure, and economic drivers for produced water reuse. Within this framework, we examine the Marcellus shale play, a region in the eastern United States where produced water is currently reused without desalination. In the Marcellus region, and in other shale plays worldwide with similar constraints, contraction of current reuse opportunities within the shale gas industry and growing restrictions on produced water disposal will provide strong incentives for produced water desalination for reuse outside the industry. The most challenging scenarios for the selection of desalination for reuse over other management strategies will be those involving high-salinity produced water, which must be desalinated with thermal separation processes. We explore desalination technologies for treatment of high-salinity shale gas produced water, and we critically review mechanical vapor compression (MVC), membrane distillation (MD), and forward osmosis (FO) as the technologies best suited for desalination of high-salinity produced water for reuse outside the shale gas industry. The advantages and challenges of applying MVC, MD, and FO technologies to produced water desalination are discussed, and directions for future research and development are identified. We find that desalination for reuse of produced water is technically feasible and can be economically relevant. However, because produced water management is primarily an economic decision, expanding desalination for reuse is dependent on process and material improvements to reduce capital and operating costs. PMID:23885720

  9. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions.

    PubMed

    Shaffer, Devin L; Arias Chavez, Laura H; Ben-Sasson, Moshe; Romero-Vargas Castrillón, Santiago; Yip, Ngai Yin; Elimelech, Menachem

    2013-09-01

    In the rapidly developing shale gas industry, managing produced water is a major challenge for maintaining the profitability of shale gas extraction while protecting public health and the environment. We review the current state of practice for produced water management across the United States and discuss the interrelated regulatory, infrastructure, and economic drivers for produced water reuse. Within this framework, we examine the Marcellus shale play, a region in the eastern United States where produced water is currently reused without desalination. In the Marcellus region, and in other shale plays worldwide with similar constraints, contraction of current reuse opportunities within the shale gas industry and growing restrictions on produced water disposal will provide strong incentives for produced water desalination for reuse outside the industry. The most challenging scenarios for the selection of desalination for reuse over other management strategies will be those involving high-salinity produced water, which must be desalinated with thermal separation processes. We explore desalination technologies for treatment of high-salinity shale gas produced water, and we critically review mechanical vapor compression (MVC), membrane distillation (MD), and forward osmosis (FO) as the technologies best suited for desalination of high-salinity produced water for reuse outside the shale gas industry. The advantages and challenges of applying MVC, MD, and FO technologies to produced water desalination are discussed, and directions for future research and development are identified. We find that desalination for reuse of produced water is technically feasible and can be economically relevant. However, because produced water management is primarily an economic decision, expanding desalination for reuse is dependent on process and material improvements to reduce capital and operating costs.

  10. Evaluation of materials for systems using cooled, treated geothermal or high-saline brines

    SciTech Connect

    Suciu, D.F.; Wikoff, P.M.

    1982-09-01

    Lack of adequate quantities of clean surface water for use in wet (evaporative) cooling systems indicates the use of high-salinity waste waters, or cooled geothermal brines, for makeup purposes. High-chloride, aerated water represents an extremely corrosive environment. In order to determine metals suitable for use in such an environment, metal coupons were exposed to aerated, treated geothermal brine salted to a chloride concentration of 10,000 and 50,000 ppM (mg/L) for periods of up to 30 days. The exposed coupons were evaluated to determine the general, pitting, and crevice corrosion characteristics of the metals. The metals exhibiting corrosion resistance at 50,000 ppM chloride were then evaluated at 100,000 and 200,000 ppM chloride. Since these were screening tests to select materials for components to be used in a cooling system, with primary emphasis on condenser tubing, several materials were exposed for 4 to 10 months in pilot cooling tower test units with heat transfer for further corrosion evaluation. The results of the screening tests indicate that ferritic stainless steels (29-4-2 and SEA-CURE) exhibit excellent corrosion resistance at all levels of chloride concentration. Copper-nickel alloys (70/30 and Monel 400) exhibited excellent corrosion resistance in the high-saline water. The 70/30 copper-nickel alloy, which showed excellent resistance to general corrosion, exhibited mild pitting in the 30-day tests. This pitting was not apparent, however, after 6 months of exposure in the pilot cooling tower tests. The nickel-base alloys exhibited excellent corrosion resistance, but their high cost prevents their use unless no other material is found feasible. Other materials tested, although unsuitable for condenser tubing material, would be suitable as tube sheet material.

  11. Salt-Tectonics Plays Major Role in Contributing High Seawater Salinity in Arabian/persian Gulf: a Constant Constrain on Seawater Desalination

    NASA Astrophysics Data System (ADS)

    Zaigham, N. A.; Aburizaiza, O. S.; Nayyar, Z. A.; Mahar, G. A.; Siddique, A.

    2012-12-01

    Literature research indicates that Arabian/Persian Gulf is the second smallest and saltiest marine body in the world. In general, it is believed that anomalously high salinity of the Gulf is due to low precipitation, high rate of evaporation and limited freshwater pouring from rivers of Iraq and Iran. But present research study has identified that the geotectonic setup and the associated resulting active salt-tectonic processes are mainly causing constant enhancement of salinity in Arabian/Persian Gulf. The results indicate presence of numerous penetrations of salt domes, plugs and other diapiric structures almost all over the bottom and surrounding coastline areas, particularly coastal-belt of Iran, Strait of Hormuz and coastal areas of Qatar and UAE, which are the main inherent contributors for high salinity in seawater of the Gulf. Other factors, like, low precipitation, high evaporation, poor freshwater pouring of Iraq and Iran rivers and discharging back of highly concentrated brines, etc., are further augmenting Gulf's high-salinity. From the assessed salinity environment, it is inferred that present level of salinity will be 'higher to highest' in future affecting considerably the desalination activities in time to come. As the level of seawater salinity plays an important role for the efficient and cost effective seawater desalination activities, the present priorities should be reevaluated for efficient and sustainable water from desalination of highly salted-water of Arabian/Persian Gulf.

  12. Nonmagnetotactic multicellular prokaryotes from low-saline, nonmarine aquatic environments and their unusual negative phototactic behavior.

    PubMed

    Lefèvre, Christopher T; Abreu, Fernanda; Lins, Ulysses; Bazylinski, Dennis A

    2010-05-01

    Magnetotactic multicellular prokaryotes (MMPs) are unique magnetotactic bacteria of the Deltaproteobacteria class and the first found to biomineralize the magnetic mineral greigite (Fe(3)S(4)). Thus far they have been reported only from marine habitats. We questioned whether MMPs exist in low-saline, nonmarine environments. MMPs were observed in samples from shallow springs in the Great Boiling Springs geothermal field and Pyramid Lake, both located in northwestern Nevada. The temperature at all sites was ambient, and salinities ranged from 5 to 11 ppt. These MMPs were not magnetotactic and did not contain magnetosomes (called nMMPs here). nMMPs ranged from 7 to 11 microm in diameter, were composed of about 40 to 60 Gram-negative cells, and were motile by numerous flagella that covered each cell on one side, characteristics similar to those of MMPs. 16S rRNA gene sequences of nMMPs show that they form a separate phylogenetic branch within the MMP group in the Deltaproteobacteria class, probably representing a single species. nMMPs exhibited a negative phototactic behavior to white light and to wavelengths of < or =480 nm (blue). We devised a "light racetrack" to exploit this behavior, which was used to photoconcentrate nMMPs for specific purposes (e.g., DNA extraction) even though their numbers were low in the sample. Our results show that the unique morphology of the MMP is not restricted to marine and magnetotactic prokaryotes. Discovery of nonmagnetotactic forms of the MMP might support the hypothesis that acquisition of the magnetosome genes involves horizontal gene transfer. To our knowledge, this is the first report of phototaxis in bacteria of the Deltaproteobacteria class.

  13. [Ecophysiological adaptability of tropical water organisms to salinity changes].

    PubMed

    Chung, K S

    2001-03-01

    Physiological response of tropical organisms to salinity changes was studied for some marine, estuarine and freshwater fishes (Astyanax bimaculatus, Petenia karussii, Cyprinodon dearborni, and Oreochromis mossambicus), marine and freshwater crustaceans (Penaeus brasiliensis, Penaeus schmitti and Macrobrachium carcinus), and marine bivalves (Perna perna, Crassostrea rhizophorae, and Arca zebra) collected from Northeast Venezuela. They were acclimated for four weeks at various salinities, and (1) placed at high salinities to determine mean lethal salinity, (2) tested by increasing salinity 5@1000 per day to define upper lethal salinity tolerance limit, or (3) observed in a saline gradient tank to determine salinity preference. Acclimation level was the most significant factor. This phenomenon is important for tropical aquatic organisms in shallow waters, where they can adapt to high salinity during the dry season and cannot lose their acclimation level at low salinity during abrupt rain. For saline adaptation of tropical organisms, this behavior will contribute to their proliferation and distribution in fluctuating salinity environments.

  14. [Ecophysiological adaptability of tropical water organisms to salinity changes].

    PubMed

    Chung, K S

    2001-03-01

    Physiological response of tropical organisms to salinity changes was studied for some marine, estuarine and freshwater fishes (Astyanax bimaculatus, Petenia karussii, Cyprinodon dearborni, and Oreochromis mossambicus), marine and freshwater crustaceans (Penaeus brasiliensis, Penaeus schmitti and Macrobrachium carcinus), and marine bivalves (Perna perna, Crassostrea rhizophorae, and Arca zebra) collected from Northeast Venezuela. They were acclimated for four weeks at various salinities, and (1) placed at high salinities to determine mean lethal salinity, (2) tested by increasing salinity 5@1000 per day to define upper lethal salinity tolerance limit, or (3) observed in a saline gradient tank to determine salinity preference. Acclimation level was the most significant factor. This phenomenon is important for tropical aquatic organisms in shallow waters, where they can adapt to high salinity during the dry season and cannot lose their acclimation level at low salinity during abrupt rain. For saline adaptation of tropical organisms, this behavior will contribute to their proliferation and distribution in fluctuating salinity environments. PMID:11795174

  15. Salinity drives archaeal distribution patterns in high altitude lake sediments on the Tibetan Plateau.

    PubMed

    Liu, Yongqin; Priscu, John C; Xiong, Jinbo; Conrad, Ralf; Vick-Majors, Trista; Chu, Haiyan; Hou, Juzhi

    2016-03-01

    Archaeal communities and the factors regulating their diversity in high altitude lakes are poorly understood. Here, we provide the first high-throughput sequencing study of Archaea from Tibetan Plateau lake sediments. We analyzed twenty lake sediments from the world's highest and largest plateau and found diverse archaeal assemblages that clustered into groups dominated by methanogenic Euryarchaeota, Crenarchaeota and Halobacteria/mixed euryarchaeal phylotypes. Statistical analysis inferred that salinity was the major driver of community composition, and that archaeal diversity increased with salinity. Sediments with the highest salinities were mostly dominated by Halobacteria. Crenarchaeota dominated at intermediate salinities, and methanogens were present in all lake sediments, albeit most abundant at low salinities. The distribution patterns of the three functional types of methanogens (hydrogenotrophic, acetotrophic and methylotrophic) were also related to changes in salinity. Our results show that salinity is a key factor controlling archaeal community diversity and composition in lake sediments on a spatial scale that spans nearly 2000 km on the Tibetan Plateau.

  16. Salinity drives archaeal distribution patterns in high altitude lake sediments on the Tibetan Plateau.

    PubMed

    Liu, Yongqin; Priscu, John C; Xiong, Jinbo; Conrad, Ralf; Vick-Majors, Trista; Chu, Haiyan; Hou, Juzhi

    2016-03-01

    Archaeal communities and the factors regulating their diversity in high altitude lakes are poorly understood. Here, we provide the first high-throughput sequencing study of Archaea from Tibetan Plateau lake sediments. We analyzed twenty lake sediments from the world's highest and largest plateau and found diverse archaeal assemblages that clustered into groups dominated by methanogenic Euryarchaeota, Crenarchaeota and Halobacteria/mixed euryarchaeal phylotypes. Statistical analysis inferred that salinity was the major driver of community composition, and that archaeal diversity increased with salinity. Sediments with the highest salinities were mostly dominated by Halobacteria. Crenarchaeota dominated at intermediate salinities, and methanogens were present in all lake sediments, albeit most abundant at low salinities. The distribution patterns of the three functional types of methanogens (hydrogenotrophic, acetotrophic and methylotrophic) were also related to changes in salinity. Our results show that salinity is a key factor controlling archaeal community diversity and composition in lake sediments on a spatial scale that spans nearly 2000 km on the Tibetan Plateau. PMID:26887660

  17. Testing of a technique for remotely measuring water salinity in an estuarine environment

    NASA Technical Reports Server (NTRS)

    Thomann, G. C.

    1975-01-01

    An aircraft experiment was flown on November 7, 1973 to test a technique for remote water salinity measurement. Apparent temperatures at 21 cm and 8-14 micron wavelengths were recorded on eight runs over a line along which the salinity varied from 5 to 30%. Boat measurements were used for calibration and accuracy calculations. Overall RMS accuracy over the complete range of salinities was 3.6%. Overall RMS accuracy for salinities greater than 10%, where the technique is more sensitive, was 2.6%. Much of this error is believed to be due to inability to exactly locate boat and aircraft positions. The standard deviation over the eight runs for salinities or = 10% is 1.4%; this error contains a component due to mislocation of the aircraft also. It is believed that operational use of the technique is possible with accuracies of 1-2%.

  18. Optimization of Geological Environments for Carbon Dioxide Disposan in Saline Aquifers in the United States

    SciTech Connect

    Hovorka, Susan

    1999-02-01

    Recent research and applications have demonstrated technologically feasible methods, defined costs, and modeled processes needed to sequester carbon dioxide (CO{sub 2}) in saline-water-bearing formations (aquifers). One of the simplifying assumptions used in previous modeling efforts is the effect of real stratigraphic complexity on transport and trapping in saline aquifers. In this study we have developed and applied criteria for characterizing saline aquifers for very long-term sequestration of CO{sub 2}. The purpose of this pilot study is to demonstrate a methodology for optimizing matches between CO{sub 2} sources and nearby saline formations that can be used for sequestration. This project identified 14 geologic properties used to prospect for optimal locations for CO{sub 2} sequestration in saline-water-bearing formations. For this demonstration, we digitized maps showing properties of saline formations and used analytical tools in a geographic information system (GIS) to extract areas that meet variably specified prototype criteria for CO{sub 2} sequestration sites. Through geologic models, realistic aquifer properties such as discontinuous sand-body geometry are determined and can be used to add realistic hydrologic properties to future simulations. This approach facilitates refining the search for a best-fit saline host formation as our understanding of the most effective ways to implement sequestration proceeds. Formations where there has been significant drilling for oil and gas resources as well as extensive characterization of formations for deep-well injection and waste disposal sites can be described in detail. Information to describe formation properties can be inferred from poorly known saline formations using geologic models in a play approach. Resulting data sets are less detailed than in well-described examples but serve as an effective screening tool to identify prospects for more detailed work.

  19. Calcium transport in gill cells of Ucides cordatus, a mangrove crab living in variable salinity environments.

    PubMed

    Leite, V P; Zanotto, F P

    2013-10-01

    Crustaceans show discontinuous growth and have been used as a model system for studying cellular mechanisms of calcium transport, which is the main mineral found in their exoskeleton. Ucides cordatus, a mangrove crab, is naturally exposed to fluctuations in calcium and salinity. To study calcium transport in this species during isosmotic conditions, dissociated gill cells were marked with fluo-3 and intracellular Ca(2+) change was followed by adding extracellular Ca(2+) as CaCl2 (0, 0.1, 0.25, 0.50, 1.0 and 5mM), together with different inhibitors. For control gill cells, Ca(2+) transport followed Michaelis-Menten kinetics with Vmax=0.137±0.001 ∆Ca(2+)i (μM×22.10(4)cells(-1)×180s(-1); N=4; r(2)=0.99); Km=0.989±0.027mM. The use of different inhibitors for gill cells showed that amiloride (Na(+)/Ca(2+) exchange inhibitor) inhibited 80% of Ca(2+) transport in gill cells (Vmax). KB-R, an inhibitor of Ca influx in vertebrates, similarly caused a decrease in Ca(2+) transport and verapamil (Ca(2+) channel inhibitor) had no effect on Ca(2+) transport, while nifedipine (another Ca(2+) channel inhibitor) caused a 20% decrease in Ca(2+) affinity compared to control values. Ouabain, on the other hand, caused no change in Ca(2+) transport, while vanadate increased the concentration of intracellular calcium through inhibition of Ca(2+) efflux probably through the plasma membrane Ca(2+)-ATPase. Results show that transport kinetics for Ca(2+) in these crabs under isosmotic conditions is lower compared to a hyper-regulator freshwater crab Dilocarcinus pagei studied earlier using fluorescent Ca(2+) probes. These kinds of studies will help understanding the comparative mechanisms underlying the evolution of Ca transport in crabs living in different environments. PMID:23867752

  20. Geologic CO2 sequestration in saline aquifers accounting for dual permeability/porosity environments.

    NASA Astrophysics Data System (ADS)

    Randolph, J. B.; Saar, M. O.

    2008-12-01

    The State of Minnesota, like many regions of the United States and beyond, has mandated significant reductions in CO2 emissions by mid-century, and geologic CO2 sequestration is recognized as one means by which to meet emissions goals. Unfortunately, the state, like many other regions, does not contain sedimentary basins that meet the currently established criteria for CO2 sequestration in deep saline aquifers. That is, existing basins, though expansive, are shallower (e.g., the Mount Simon aquifer in Minnesota) or less permeable (e.g., the Midcontinental Rift System) than sedimentary units that are typically considered for sequestration. The field of karst hydrogeology recognizes the importance of multiple permeability/porosity systems in groundwater transport and storage. High permeability fracture networks permit rapid groundwater transport while the large, lower permeability matrix allows for significant storage. With this motivation, we develop a geologic CO2 sequestration model, using TOUGH2 and TOUGHREACT, which accounts for the presence of multiple permeability/porosity structures. Capillary forces play an important role in these multiphase, multi-permeability and porosity systems. Our preliminary models investigate whether the Midcontinental Rift System could prove a viable candidate for geologic CO2 sequestration, should suitable fracture networks (among other criteria) be located there.

  1. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp.

    PubMed

    Liu, Chunshuang; Zhao, Dongfeng; Ma, Wenjuan; Guo, Yadong; Wang, Aijie; Wang, Qilin; Lee, Duu-Jong

    2016-02-01

    Biological conversion of sulfide, acetate, and nitrate to, respectively, elemental sulfur (S(0)), carbon dioxide, and nitrogen-containing gas (such as N2) at NaCl concentration of 35-70 g/L was achieved in an expanded granular sludge bed (EGSB) reactor. A C/N ratio of 1:1 was noted to achieve high sulfide removal and S(0) conversion rate at high salinity. The extracellular polymeric substance (EPS) quantities were increased with NaCl concentration, being 11.4-mg/g volatile-suspended solids at 70 mg/L NaCl. The denitrifying sulfide removal (DSR) consortium incorporated Thauera sp. and Halomonas sp. as the heterotrophs and Azoarcus sp. being the autotrophs at high salinity condition. Halomonas sp. correlates with the enhanced DSR performance at high salinity. PMID:26454867

  2. Comparative transcriptome analysis of Yersinia pestis in response to hyperosmotic and high-salinity stress.

    PubMed

    Han, Yanping; Zhou, Dongsheng; Pang, Xin; Zhang, Ling; Song, Yajun; Tong, Zongzhong; Bao, Jingyue; Dai, Erhei; Wang, Jin; Guo, Zhaobiao; Zhai, Junhui; Du, Zongmin; Wang, Xiaoyi; Wang, Jian; Huang, Peitang; Yang, Ruifu

    2005-04-01

    DNA microarray was used as a tool to investigate genome-wide transcriptional responses of Yersinia pestis to hyperosmotic and high-salinity stress. Hyperosmotic stress specifically upregulated genes responsible for ABC-type transport and the cytoplasmic accumulation of certain polysaccharides, while high-salinity stress induced the transcription of genes encoding partition proteins and several global transcriptional regulators. Genes whose transcription was enhanced by both kinds of stress comprised those encoding osmoprotectant transport systems and a set of virulence determinants. The number of genes downregulated by the two kinds of stress was much lower than that of upregulated genes, suggesting that neither kind of stress severely depresses cellular processes in general. Many differentially regulated genes still exist whose functions remain unknown. Y. pestis recognized high-salinity and hyperosmotic stress as different kinds of environmental stimuli, and different mechanisms enabled acclimation to these two kinds of stress, although Y. pestis still executed common mechanisms to accommodate both types of stress.

  3. Soil- and plant- water uptake in saline environments and their consequences to plant adaptation in fluctuating climates

    NASA Astrophysics Data System (ADS)

    Volpe, V.; Albertson, J. D.; Katul, G. G.; Marani, M.

    2010-12-01

    Ecological processes determining plant colonization are quite peculiar and competition among different species is governed by a set of unique adaptations to stress conditions caused by drought, hypoxic or hyper-saline conditions. These adaptations and possible positive feedbacks often lead to the formation of patterns of vegetation colonization and spatial heterogeneity (zonation), and play a primary role in the stabilization of sediments. It is these issues that frame the scope of this study. The main objective of this work is to track one of the fundamental pathways between plant adaptation (quantified in terms of physiological and ecological attributes such as leaf area or root density profile) and feedbacks (quantified by plant-mediated alterations to water availability and salinity levels): root water uptake. Because root-water uptake is the main conduit connecting transpiring leaves to reservoirs of soil water, the means by which salinity modifies the processes governing its two end-points and any two-way interactions between them serves as a logical starting point. Salinity effects on leaf transpiration and photosynthesis are first explored via stomatal optimization principles that maximize carbon gain at a given water loss for autonomous leaves. Salinity directly affects leaf physiological attributes such as mesophyll conductance and photosynthetic parameters and hence over-all conductance to transpiration as well as different strategies to cope with the high salinity (e.g. through salt seclusion, compartmentation and osmotic adjustments). A coupled model of subsurface flow based on a modified Richards’ equation that accounts for the effects of increasing salinity, anaerobic conditions, water stress and compensation factors is developed. Plant water uptake is considered as a soil moisture sink term with a potential rate dictated by the carbon demands of the leaves, and an actual rate that accounts for both - hydraulic and salinity limitations. Using this

  4. Ultrasonic Measurements of Unconsolidated Saline Sediments During Freeze/Thaw Cycles: The Seismic Properties of Cryopeg Environments

    NASA Astrophysics Data System (ADS)

    Dou, S.; Ajo Franklin, J. B.

    2013-12-01

    Saline permafrost and cryopegs (hypersaline unfrozen layers/zones within permafrost) are widespread in the Arctic coastal area as a result of marine transgression and regression in recent geological history. Owing to the freezing-point depression effect of soluble salts, they contain more unfrozen water than non-saline frozen sediments when subjected to the same permafrost temperatures (e.g., from 0 to -15 °C). Mapping subsurface cryopeg structure remains a challenging geophysical task due to the poor penetration of GPR in highly conductive fluids and related limitations for lower frequency EM techniques. Seismic profiling, particularly surface wave characterization, provides one possible approach to delineate the extent of cryopeg bodies. However, interpretation of such surveys is currently limited by the sparse database of measurements examining the seismic properties of unconsolidated materials saturated with saline fluids at sub-zero temperatures. We present the results of experiments examining seismic velocity in the ultrasonic range for both synthetic and natural permafrost sediments during freeze/thaw cycles; in these experiments, use of a range of brine salinities allows us to evaluate the properties of cryopeg sediments at in-situ conditions, a prerequisite for quantitative interpretation of seismic imaging results. Because of the abundant unfrozen water and less developed inter-granular ice structure, the seismic properties of saline permafrost typically falls between frozen and unfrozen soils. We conducted ultrasonic measurements of a freeze-thaw cycle on 20-30 Ottawa sand (grain size 590-840 μm) as well as natural mineral soils from the Barrow Environmental Observatory (BEO) saturated with brines of different salinities (0-2.5 M NaCl). For each salinity, seismic properties were measured using the ultrasonic (~1 MHz) pulse-transmission method in the temperature range from 20 to -30 °C. Similar to sediments saturated with low salinity fluids, seismic

  5. The high reutilization value potential of high-salinity anchovy fishmeal wastewater through microbial degradation.

    PubMed

    Figueroa, Juan Gerardo Santoyo; Jung, Hyun Yi; Jeong, Gwi-Taek; Kim, Joong Kyun

    2015-10-01

    To provide an option for the reutilization of high-salinity anchovy fishmeal wastewater (FMW), generated during the anchovy fishmeal manufacturing processes, its potential for biodegradation was assessed in 1-l five-neck flasks using a halotolerant and proteolytic microbial consortium. During the first 41 h of biodegradation, the pH, DO, ORP, and dry-sludge weight decreased as the total cell number of the microbial consortium increased steadily; the COD(Cr)/TN ratios remained between 4.0 and 5.5, respectively, indicating the stable metabolic degradation of organic matter. The ORP tended to increase after 41 h, and the unpleasant fishy smell disappeared once positive ORP values were achieved. The removal percentages of COD(Cr) and TN were 59.0 and 54.4%, respectively, and the dry-sludge weight decreased from 115.5 to 68.0 g, with a degradation rate of 0.59 g h(-1), during the 80 h experiment. The supernatant from the culture of the anchovy FMW at 70 h (culture supernatant) was phytotoxin-free, and the level of total amino acids was 8.04 g 100 g(-1), comparable to that of commercial fertilizers. In hydroponic cultures containing red bean and barley, the culture supernatant demonstrated a good fertilizing ability. The culture supernatant also exhibited a high degree of antioxidant activity, with a 52.3% hydroxyl radical-scavenging activity and 0.16 reducing power (at OD 700 nm). Moreover, the culture supernatant inhibited DNA damage from hydroxyl radicals, enhancing the reutilization value of anchovy FMW. This report presents the first description of high-salinity anchovy FMW possessing a high reutilization value potential both for agriculture and medicine.

  6. The high reutilization value potential of high-salinity anchovy fishmeal wastewater through microbial degradation.

    PubMed

    Figueroa, Juan Gerardo Santoyo; Jung, Hyun Yi; Jeong, Gwi-Taek; Kim, Joong Kyun

    2015-10-01

    To provide an option for the reutilization of high-salinity anchovy fishmeal wastewater (FMW), generated during the anchovy fishmeal manufacturing processes, its potential for biodegradation was assessed in 1-l five-neck flasks using a halotolerant and proteolytic microbial consortium. During the first 41 h of biodegradation, the pH, DO, ORP, and dry-sludge weight decreased as the total cell number of the microbial consortium increased steadily; the COD(Cr)/TN ratios remained between 4.0 and 5.5, respectively, indicating the stable metabolic degradation of organic matter. The ORP tended to increase after 41 h, and the unpleasant fishy smell disappeared once positive ORP values were achieved. The removal percentages of COD(Cr) and TN were 59.0 and 54.4%, respectively, and the dry-sludge weight decreased from 115.5 to 68.0 g, with a degradation rate of 0.59 g h(-1), during the 80 h experiment. The supernatant from the culture of the anchovy FMW at 70 h (culture supernatant) was phytotoxin-free, and the level of total amino acids was 8.04 g 100 g(-1), comparable to that of commercial fertilizers. In hydroponic cultures containing red bean and barley, the culture supernatant demonstrated a good fertilizing ability. The culture supernatant also exhibited a high degree of antioxidant activity, with a 52.3% hydroxyl radical-scavenging activity and 0.16 reducing power (at OD 700 nm). Moreover, the culture supernatant inhibited DNA damage from hydroxyl radicals, enhancing the reutilization value of anchovy FMW. This report presents the first description of high-salinity anchovy FMW possessing a high reutilization value potential both for agriculture and medicine. PMID:26201424

  7. Improved methane production from brown algae under high salinity by fed-batch acclimation.

    PubMed

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka

    2015-01-01

    Here, a methanogenic microbial community was developed from marine sediments to have improved methane productivity from brown algae under high salinity. Fed-batch cultivation was conducted by adding dry seaweed at 1wt% total solid (TS) based on the liquid weight of the NaCl-containing sediment per round of cultivation. The methane production rate and level of salinity increased 8-fold and 1.6-fold, respectively, at the 10th round of cultivation. Moreover, the rate of methane production remained high, even at the 10th round of cultivation, with accumulation of salts derived from 10wt% TS of seaweed. The salinity of the 10th-round culture was equivalent to 5% NaCl. The improved methane production was attributed to enhanced acetoclastic methanogenesis because acetate became rapidly converted to methane during cultivation. The family Fusobacteriaceae and the genus Methanosaeta, the acetoclastic methanogen, predominated in bacteria and archaea, respectively, after the cultivation.

  8. The Effect of Growth Environment and Salinity on Lipid Production and Composition of Salicornia virginica

    NASA Technical Reports Server (NTRS)

    Bomani, Bilal Mark McDowell; Link, Dirk; Kail, Brian; Morreale, Bryan; Lee, Eric S.; Gigante, Bethany M.; Hendricks, Robert C.

    2014-01-01

    Finding a viable and sustainable source of renewable energy is a global task. Biofuels as a renewable energy source can potentially be a viable option for sustaining long-term energy needs. Biodiesel from halophytes shows great promise due to their ability to serve not only as a fuel source, but a food source as well. Halophytes are one of the few biomass plant species that can tolerate a wide range of saline conditions. We investigate the feasibility of using the halophyte, Salicornia virginica as a biofuel source by conducting a series of experiments utilizing various growth and salinity conditions. The goal is to determine if the saline content of Salicornia virginica in our indoor growth vs outdoor growth conditions has an influence on lipid recovery and total biomass composition. We focused on using standard lipid extraction protocols and characterization methods to evaluate twelve Salicornia virginica samples under six saline values ranging from freshwater to seawater and two growth conditions. The overall goal is to develop an optimal lipid extraction protocol for Salicornia virginica and potentially apply this protocol to halophytes in general.

  9. Isolation of UV-B resistant bacteria from two high altitude Andean lakes (4,400 m) with saline and non saline conditions.

    PubMed

    Flores, María R; Ordoñez, Omar F; Maldonado, Marcos J; Farías, María E

    2009-12-01

    Laguna (L.) Negra and L. Verde are high altitude Andean lakes located at the 4,400 m altitude in the Andean desert (Puna) in the Argentine northwest. Both lakes are exposed to extreme weather conditions but differ in salinity contents (salinity 6.7% for L. Negra and 0.27% for L. Verde). The aim of this work was to isolate ultraviolet B fraction (UV-B) resistant bacteria under UV-stress in order to determine, a possible connection, between resistance to UV-B and tolerance to salinity. DNA damage was determined by measuring CPDs accumulation. Connection among pigmentation production and UV resistance was also studied. Water samples were exposed to artificial UV-B radiation for 24 h. Water aliquots were plated along the exposition on different media, with different salinity and carbon source content (Lake medium (LM) done with the lake water plus agar and LB). CFU were counted and DNA damage accumulation was determined. Isolated bacteria were identified by 16S rDNA sequence. Their salinity tolerance, were measured at 1, 5 and 10% NaCl and their pigment production in both media was determined. In general it was found that UV resistance and pigment production were the optimum in Lake Medium done with lake water which maintained similar salinity. The most resistant bacteria in L. Negra were different strains of Exiguobacterium sp. and, in L. Verde, Staphylococcus sp. and Stenotrophomonas maltophilia. These bacteria showed the production and increase of UV-Vis absorbing compounds under UV stress and in LM. Bacterial communities from both lakes were well adapted to high UV-B exposure under the experimental conditions, and in many cases UV-B even stimulated growth. The idea that resistance to UV-B could be related to adaptation to high salinity is still an open question that has to be answered with future experiments. PMID:20118609

  10. High salinity volatile phases in magmatic Ni-Cu-platinum group element deposits

    NASA Astrophysics Data System (ADS)

    Hanley, J. J.; Mungall, J. E.

    2004-12-01

    The role of "deuteric" fluids (exsolved magmatic volatile phases) in the development of Ni-Cu-PGE (platinum group element) deposits in mafic-ultramafic igneous systems is poorly understood. Although considerable field evidence demonstrates unambiguously that fluids modified most large primary Ni-Cu-PGE concentrations, models which hypothesize that fluids alone were largely responsible for the economic concentration of the base and precious metals are not widely accepted. Determination of the trace element composition of magmatic volatile phases in such ore-forming systems can offer considerable insight into the origin of potentially mineralizing fluids in such igneous environments. Laser ablation ICP-MS microanalysis allows researchers to confirm the original metal budget of magmatic volatile phases and quantify the behavior of trace ore metals in the fluid phase in the absence of well-constrained theoretical or experimental predictions of ore metal solubility. In this study, we present new evidence from major deposits (Sudbury, Ontario, Canada; Stillwater Complex, Montana, U.S.A.) that compositionally distinct magmatic brines and halide melt phases were exsolved from crystallizing residual silicate melt and trapped within high-T fluid conduits now comprised of evolved rock compositions (albite-quartz graphic granite, orthoclase-quartz granophyre). Petrographic evidence demonstrates that brines and halide melts coexisted with immiscible carbonic phases at the time of entrapment (light aliphatic hydrocarbons, CO2). Brine and halide melt inclusions are rich in Na, Fe, Mn, K, Pb, Zn, Ba, Sr, Al and Cl, and homogenize by either halite dissolution at high T ( ˜450-700° C) or by melting of the salt phase (700-800° C). LA-ICPMS analyses of single inclusions demonstrate that high salinity volatile phases contained abundant base metals (Cu, Fe, Sn, Bi) and precious metals (Pt, Pd, Au, Ag) at the time of entrapment. Notably, precious metal concentrations in the inclusions

  11. Evidence for high salinity of Early Cretaceous sea water from the Chesapeake Bay crater.

    PubMed

    Sanford, Ward E; Doughten, Michael W; Coplen, Tyler B; Hunt, Andrew G; Bullen, Thomas D

    2013-11-14

    High-salinity groundwater more than 1,000 metres deep in the Atlantic coastal plain of the USA has been documented in several locations, most recently within the 35-million-year-old Chesapeake Bay impact crater. Suggestions for the origin of increased salinity in the crater have included evaporite dissolution, osmosis and evaporation from heating associated with the bolide impact. Here we present chemical, isotopic and physical evidence that together indicate that groundwater in the Chesapeake crater is remnant Early Cretaceous North Atlantic (ECNA) sea water. We find that the sea water is probably 100-145 million years old and that it has an average salinity of about 70 per mil, which is twice that of modern sea water and consistent with the nearly closed ECNA basin. Previous evidence for temperature and salinity levels of ancient oceans have been estimated indirectly from geochemical, isotopic and palaeontological analyses of solid materials in deep sediment cores. In contrast, our study identifies ancient sea water in situ and provides a direct estimate of its age and salinity. Moreover, we suggest that it is likely that remnants of ECNA sea water persist in deep sediments at many locations along the Atlantic margin.

  12. Evidence for high salinity of Early Cretaceous sea water from the Chesapeake Bay crater

    USGS Publications Warehouse

    Sanford, Ward E.; Doughten, Michael W.; Coplen, Tyler B.; Hunt, Andrew G.; Bullen, Thomas D.

    2013-01-01

    High salinity groundwater more than 1000 metres deep in the Atlantic Coastal Plain of the United States has been documented in several locations1,2, most recently within the 35 million-year-old Chesapeake Bay impact crater3,4,5. Suggestions for the origin of increased salinity in the crater have included evaporite dissolution6, osmosis6, and evaporation from heating7 associated with the bolide impact. Here we present chemical, isotopic and physical evidence that together indicate that groundwater in the Chesapeake crater is remnant Early Cretaceous North Atlantic (ECNA) seawater. We find that the seawater is likely 100-145 million years old and that it has an average salinity of about 70 per mil, which is twice that of modern seawater and consistent with the nearly closed ECNA basin8. Previous evidence for temperature and salinity levels of ancient oceans have been estimated indirectly from geochemical, isotopic and paleontological analyses of solid materials in deep sediment cores. In contrast, our study identifies ancient seawater in situ and provides a direct estimate of its age and salinity. Moreover, we suggest that it is likely that remnants of ECNA seawater persist in deep sediments at many locations along the Atlantic margin.

  13. High salinity in molasses wastewaters shifts anaerobic digestion to carboxylate production.

    PubMed

    De Vrieze, Jo; Coma, Marta; Debeuckelaere, Matthias; Van der Meeren, Paul; Rabaey, Korneel

    2016-07-01

    Biorefinery wastewaters are often treated by means of anaerobic digestion to produce biogas. Alternatively, these wastewaters can be fermented, leading to the formation of carboxylates. Here, we investigated how lab-scale upflow anaerobic sludge blanket reactors could be shifted to fermentation by changing organic loading rate, hydraulic retention time, pH, and salinity. A strong increase in volatile fatty acid concentration up to 40 g COD L(-1) was achieved through increasing salinity above 30 mS cm(-1), as well as a decrease in methane production by more than 90%, which could not be obtained by adjusting the other parameters, thus, indicating a clear shift from methane to carboxylate production. Microbial community analysis revealed a shift in bacterial community to lower evenness and richness values, following the increased salinity and VFA concentration during the fermentation process. A selective enrichment of the hydrogenotrophic Methanomicrobiales took place upon the shift to fermentation, despite a severe decrease in methane production. Particle size distribution revealed a strong degranulation of the sludge in the reactor, related to the high salinity, which resulted in a wash-out of the biomass. This research shows that salinity is a key parameter enabling a shift from methane to carboxylate production in a stable fermentation process. PMID:27110885

  14. A modified resistance equation for modeling underwater spark discharge with salinity and high pressure conditions

    SciTech Connect

    Zhao, Pengfei; Roy, Subrata

    2014-05-07

    This work investigates the performance of underwater spark discharge relating to bubble growth and decay under high pressure and with salinity conditions by introducing a modified form of the resistance equation. Here, we study salinity influence on circuit parameters by fitting the experimental data for which gap resistance is much larger in conductive water than in dielectric water. Accordingly, the resistance equation is modified by considering the influence of both plasma and its surrounding liquid. Thermal radiation effect of the bubble is also studied by comparing two different radiation models. Numerical results predict a larger bubble pressure for saline water but a reduced size and a smaller bubble cycle at a greater water depth. Such study may be useful in many saltwater applications, including that for deep sea conditions.

  15. Coping with naturally high levels of soil salinity and boron in the westside of central California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Westside of central California, over 200,000 ha exhibit naturally high levels of salinity and boron (B). The Coast Ranges of the west central California evolved from complex folding and faulting of sedimentary and igneous rocks of Mesozoic and Tertiary age. Cretaceous and Tertiary marine sedi...

  16. Measuring Salinity by Conductivity.

    ERIC Educational Resources Information Center

    Lapworth, C. J.

    1981-01-01

    Outlines procedures for constructing an instrument which uses an electrode and calibration methods to measure the salinity of waters in environments close to and affected by a saline estuary. (Author/DC)

  17. Escherichia coli O157:H7 bacteriophage Φ241 isolated from an industrial cucumber fermentation at high acidity and salinity

    PubMed Central

    Lu, Zhongjing; Breidt, Fred

    2015-01-01

    A novel phage, Φ241, specific for Escherichia coli O157:H7 was isolated from an industrial cucumber fermentation where both acidity (pH ≤ 3.7) and salinity (≥5% NaCl) were high. The phage belongs to the Myoviridae family. Its latent period was 15 min and average burst size was 53 phage particles per infected cell. The phage was able to lyse 48 E. coli O157:H7 strains, but none of the 18 non-O157 strains (including E. coli O104:H7) or the 2 O antigen-negative mutants of O157:H7 strain, 43895Δper (also lacking H7 antigen) and F12 (still expressing H7 antigen). However, the phage was able to lyse a per-complemented strain (43895ΔperComp) which expresses O157 antigen. These results indicated that phage Φ241 is specific for O157 antigen, and E. coli strains lacking O157 antigen were resistant to the phage infection, regardless of the presence or absence of H7 antigen. SDS-PAGE profile revealed at least 13 structural proteins of the phage. The phage DNA was resistant to many commonly used restriction endonucleases, suggesting the presence of modified nucleotides in the phage genome. At the multiplicity of infection of 10, 3, or 0.3, the phage caused a rapid cell lysis within 1 or 2 h, resulting in 3.5- or 4.5-log-unit reduction in cell concentration. The high lytic activity, specificity and tolerance to low pH and high salinity make phage Φ241 a potentially ideal biocontrol agent of E. coli O157:H7 in various foods. To our knowledge, this is the first report on E. coli O157:H7 phage isolated from high acidity and salinity environment. PMID:25741324

  18. Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora.

    PubMed

    Mateos-Naranjo, Enrique; Andrades-Moreno, Luis; Davy, Anthony J

    2013-02-01

    The non-essential element silicon is known to improve plant fitness by alleviating the effects of biotic and abiotic stresses, particularly in crops. However, its possible role in the exceptional tolerance of halophytes to salinity has not been investigated. This study reports the effect of Si supply on the salinity tolerance of the halophytic grass Spartina densiflora; plants were treated with NaCl (0-680 mM), with or without silicon addition of 500 μM, in a glasshouse experiment. Plant responses were examined using growth analysis, combined with measurements of gas exchange, chlorophyll fluorescence and photosynthetic pigment concentrations. In addition, tissue concentrations of aluminium, calcium, copper, iron, potassium, magnesium, sodium, phosphorus and silicon were determined. Although high salinity decreased growth, this effect was alleviated by treatment with Si. Improved growth was associated with higher net photosynthetic rate (A), and greater water-use efficiency (WUE). Enhanced A at high salinity could be explained by beneficial effects of Si on the photochemical apparatus, and on chlorophyll concentrations. Ameliorative effects of Si were correlated with reduced sodium uptake, which was unrelated to a reduction in the transpiration rate, since Si-supplemented plants had higher stomatal conductances (G(s)). These plants also had higher tissue concentrations of essential nutrients, suggesting that Si had a positive effect on the mineral nutrient balance in salt-stressed plants. Si appears to play a significant role in salinity tolerance even in a halophyte, which has other, specific salt-tolerance mechanisms, through diverse protective effects on the photosynthetic apparatus, water-use efficiency and mineral nutrient balance. PMID:23257076

  19. A model of the formation of high-salinity shelf water on polar continental shelves

    NASA Technical Reports Server (NTRS)

    Grumbine, Robert W.

    1991-01-01

    This study presents a model of the flow and salinity fields forced by sea-surface salinity flux and wind stress curl and examines the processes that create High-Salinity Shelf Water (HSSW). To investigate the relative effects of wind stress and buoyancy forcing in HSSW production, the polynya freezing rate in the model is varied from 0.0 to 0.30 m/d, and the Ekman pumping derived from the wind stress curl is varied independently from 0.0 to 1.8 x 10 exp 6 m/s. The Ekman pumping was found to control the magnitude of the circulation, while the polynya freezing rate controlled the extent of salinization in the shelf water. The flux of HSSW increases linearly with increasing Ekman pumping above 0.3 x 10 exp -6 m/s. The modeled flux of HSSW and the flux of derived Botttom Water for the present estimates of the forcings (a peak freezing rate of 0.10 m/d and Ekman pumping of 0.2 x 10 exp -6 m/s) agree with the fluxes inferred from physical and chemical observations in the deep Weddel Sea by oceanographic field programs.

  20. Total arsenic and selenium analysis in Marcellus shale, high-salinity water, and hydrofracture flowback wastewater.

    PubMed

    Balaba, Ronald S; Smart, Ronald B

    2012-11-01

    Trace levels of arsenic and selenium can be toxic to living organisms yet their quantitation in high ionic strength or high salinity aqueous media is difficult due to the matrix interferences which can either suppress or enhance the analyte signal. A modified thiol cotton fiber (TCF) method employing lower flow rates and centrifugation has been used to remove the analyte from complex aqueous media and minimize the matrix interferences. This method has been tested using a USGS (SGR-1b) certified reference shale. It has been used to analyze Marcellus shale samples following microwave digestion as well as spiked samples of high salinity water (HSW) and flow back wastewater (WRF6) obtained from an actual gas well drilling operation. Quantitation of arsenic and selenium is carried out by graphite furnace atomic spectroscopy (GFAAS). Extraction of arsenic and selenium from Marcellus shale exposed to HSW and WRF6 for varying lengths of time is also reported.

  1. Development of a Rapid, Nondestructive Method to Measure Aqueous Carbonate in High Salinity Brines Using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    McGraw, L.; Phillips-Lander, C. M.; Elwood Madden, A. S.; Parnell, S.; Elwood Madden, M.

    2015-12-01

    Traditional methods of quantitative analysis are often ill-suited to determining the bulk chemistry of high salinity brines due to their corrosive and clogging properties. Such methods are also often difficult to apply remotely in planetary environments. However, Raman spectroscopy can be used remotely without physical contact with the fluid and is not affected by many ionic brines. Developing methods to study aqueous carbonates is vital to future study of brines on Mars and other planetary bodies, as they can reveal important information about modern and ancient near-surface aqueous processes. Both sodium carbonate standards and unknown samples from carbonate mineral dissolution experiments in high salinity brines were analyzed using a 532 nm laser coupled to an inVia Renishaw spectrometer to collect carbonate spectra from near-saturated sodium chloride and sodium sulfate brines. A calibration curve was determined by collecting spectra from solutions of known carbonate concentrations mixed with a pH 13 buffer and a near-saturated NaCl or Na2SO4 brine matrix. The spectra were processed and curve fitted to determine the height ratio of the carbonate peak at 1066 cm-1 to the 1640 cm-1 water peak. The calibration curve determined using the standards was then applied to the experimental data after accounting for dilutions. Concentrations determined based on Raman spectra were compared against traditional acid titration measurements. We found that the two techniques vary by less than one order of magnitude. Further work is ongoing to verify the method and apply similar techniques to measure aqueous carbonate concentrations in other high salinity brines.Traditional methods of quantitative analysis are often ill-suited to determining the bulk chemistry of high salinity brines due to their corrosive and clogging properties. Such methods are also often difficult to apply remotely in planetary environments. However, Raman spectroscopy can be used remotely without physical

  2. High salinity relay as a postharvest processing strategy to reduce vibrio vulnificus levels in Chesapeake Bay oysters (Crassostrea virginica).

    PubMed

    Audemard, Corinne; Kator, Howard I; Rhodes, Martha W; Gallivan, Thomas; Erskine, A J; Leggett, A Thomas; Reece, Kimberly S

    2011-11-01

    In 2009 the U.S. Food and Drug Administration (FDA) announced its intention to implement postharvest processing (PHP) methods to eliminate Vibrio vulnificus from oysters intended for the raw, half-shell market that are harvested from the Gulf of Mexico during warmer months. FDA-approved PHP methods can be expensive and may be associated with unfavorable responses from some consumers. A relatively unexplored PHP method that uses relaying to high salinity waters could be an alternative strategy, considering that high salinities appear to negatively affect the survival of V. vulnificus. During relay, however, oysters may be exposed to rapid and large salinity increases that could cause increased mortality. In this study, the effectiveness of high salinity relay to reduce V. vulnificus to <30 most probable number (MPN) per g and the impact on oyster mortality were assessed in the lower Chesapeake Bay. Two relay experiments were performed during the summer and fall of 2010. Oysters collected from three grow-out sites, a low salinity site (14 to 15 practical salinity units [psu]) and two moderate salinity sites (22 to 25 psu), were relayed directly to a high salinity site (≥30 psu) on Virginia's Eastern Shore. Oysters were assayed for V. vulnificus and Vibrio parahaemolyticus (another Vibrio species of concern) densities at time 0 prior to relay and after 7 and 14 days of relay, using the FDA MPN enrichment method combined with detection by real-time PCR. After 14 days, both V. vulnificus and V. parahaemolyticus densities were ≤0.8 MPN/g, and decreases of 2 to 3 log in V. vulnificus densities were observed. Oyster mortalities were low (≤4%) even for oysters from the low salinity harvest site, which experienced a salinity increase of approximately 15 psu. Results, although preliminary and requiring formal validation and economic analysis, suggest that high salinity relay could be an effective PHP method.

  3. Response of performance and ammonia oxidizing bacteria community to high salinity stress in membrane bioreactor with elevated ammonia loading.

    PubMed

    Wang, Zhu; Luo, Gan; Li, Jun; Chen, Shi-Yu; Li, Yan; Li, Wen-Tao; Li, Ai-Min

    2016-09-01

    Effect of elevated ammonia loading rate (ALR) and increasing salinity on the operation of membrane bioreactor (MBR) and the response of microbial community were investigated. Results showed that MBR started up with 1% NaCl stress achieved amazing nitrification performance at high salinity up to 4% when treating wastewater containing 1000mg/L NH(+)4-N. Further increasing salinity to 7% led to failure of MBR unrecoverably. Steep decline of sludge activity contributed to the extremely worse performance. High-throughput sequencing analysis showed that both ALR and salinity had selective effects on the microbial community structure. In genus level, Methyloversatilis and Maribacter were enriched during the operation. Survival of salt-resistant microbes contributed to the rising of richness and diversity at 2% and 4% NaCl stress. Analysis of amoA-gene-based cloning revealed Nitrosomonas marina are chiefly responsible for catalyzing ammonia oxidation in high ALR at high salinity stress. PMID:27290667

  4. Modeling regional salinization of the Ogallala aquifer, Southern High Plains, TX, USA

    USGS Publications Warehouse

    Mehta, S.; Fryar, A.E.; Brady, R.M.; Morin, R.H.

    2000-01-01

    Two extensive plumes (combined area > 1000 km2) have been delineated within the Ogallala aquifer in the Southern High Plains, TX, USA. Salinity varies within the plumes spatially and increases with depth; Cl ranges from 50 to >500 mg 1-1. Variable-density flow modeling using SUTRA has identified three broad regions of upward cross-formational flow from the underlying evaporite units. The upward discharge within the modeled plume area is in the range of 10-4-10-5 m3 day-1, and the TDS concentrations are typically >3000 mg 1-1. Regions of increased salinity, identified within the Whitehorse Group (evaporite unit) underlying the Ogallala aquifer, are controlled by the structure and thickness variations relative to the recharge areas. Distinct flow paths, on the order of tens of km to >100 km in length, and varying flow velocities indicate that the salinization of the Ogallala aquifer has been a slow, ongoing process and may represent circulation of waters recharged during Pleistocene or earlier times. On-going pumping has had negligible impact on the salinity distribution in the Ogallala aquifer, although simulations indicate that the velocity distribution in the underlying units may have been affected to depths of 150 m after 30 years of pumping. Because the distribution of saline ground water in this region of the Ogallala aquifer is heterogeneous, careful areal and vertical characterization is warranted prior to any well-field development. (C) 2000 Elsevier Science B.V.Two extensive plumes (combined area >1000 km2) have been delineated within the Ogallala aquifer in the Southern High Plains, TX, USA. Salinity varies within the plumes spatially and increases with depth; Cl ranges from 50 to >500 mg l-1. Variable-density flow modeling using SUTRA has identified three broad regions of upward cross-formational flow from the underlying evaporite units. The upward discharge within the modeled plume area is in the range of 10-4-10-5 m3 day-1, and the TDS concentrations

  5. High temperature and vapor pressure deficit aggravate architectural effects but ameliorate non-architectural effects of salinity on dry mass production of tomato

    PubMed Central

    Chen, Tsu-Wei; Nguyen, Thi M. N.; Kahlen, Katrin; Stützel, Hartmut

    2015-01-01

    Tomato (Solanum lycopersicum L.) is an important vegetable crop and often cultivated in regions exposed to salinity and high temperatures (HT) which change plant architecture, decrease canopy light interception and disturb physiological functions. However, the long-term effects of salinity and HT combination (S+HT) on plant growth are still unclear. A dynamic functional-structural plant model (FSPM) of tomato was parameterized and evaluated for different levels of S+HT combinations. The evaluated model was used to quantify the contributions of morphological changes (architectural effects) and physiological disturbances (non-architectural effects) on the reduction of shoot dry mass under S+HT. The model predicted architectural variables with high accuracy (>85%), which ensured the reliability of the model analyses. HT enhanced architectural effects but reduced non-architectural effects of salinity on dry mass production. The stronger architectural effects of salinity under HT could not be counterbalanced by the smaller non-architectural effects. Therefore, long-term influences of HT on shoot dry mass under salinity were negative at the whole plant level. Our model analysis highlights the importance of plant architecture at canopy level in studying the plant responses to the environments and shows the merits of dynamic FSPMs as heuristic tools. PMID:26539203

  6. High temperature and vapor pressure deficit aggravate architectural effects but ameliorate non-architectural effects of salinity on dry mass production of tomato.

    PubMed

    Chen, Tsu-Wei; Nguyen, Thi M N; Kahlen, Katrin; Stützel, Hartmut

    2015-01-01

    Tomato (Solanum lycopersicum L.) is an important vegetable crop and often cultivated in regions exposed to salinity and high temperatures (HT) which change plant architecture, decrease canopy light interception and disturb physiological functions. However, the long-term effects of salinity and HT combination (S+HT) on plant growth are still unclear. A dynamic functional-structural plant model (FSPM) of tomato was parameterized and evaluated for different levels of S+HT combinations. The evaluated model was used to quantify the contributions of morphological changes (architectural effects) and physiological disturbances (non-architectural effects) on the reduction of shoot dry mass under S+HT. The model predicted architectural variables with high accuracy (>85%), which ensured the reliability of the model analyses. HT enhanced architectural effects but reduced non-architectural effects of salinity on dry mass production. The stronger architectural effects of salinity under HT could not be counterbalanced by the smaller non-architectural effects. Therefore, long-term influences of HT on shoot dry mass under salinity were negative at the whole plant level. Our model analysis highlights the importance of plant architecture at canopy level in studying the plant responses to the environments and shows the merits of dynamic FSPMs as heuristic tools. PMID:26539203

  7. High salinity effect on bioremediation of pretreated pesticide lixiviates from greenhouses.

    PubMed

    Micó, María M; González, Óscar; Bacardit, Jordi; Malfeito, Jorge; Sans, Carme

    2015-01-01

    Hydroponics culture greenhouses usually work in closed and semi-closed irrigation systems for nutrients and water-saving purposes. Photo-Fenton reaction has been revealed as an efficient way to depollute that kind of recycled effluents containing pesticides, even for high salinity concentrations. However, the inefficacy of organic matter chemical depletion imposes the use of a subsequent treatment. This work proposes the suitability of an integration of advanced oxidation process with a subsequent bioreactor to treat greenhouse lixiviates effluents at high or extremely high conductivity (salts concentration: up to 42 g L⁻¹). As a first step in this study, the performance of a series of sequencing batch reactors was monitored in order to check the biocompatibility of photo-Fenton pretreated effluents depending on their salinity content. In the second step, those same pretreated effluents were loaded to a biofiltration column filled with expanded clay. Finally, bacterial 16S rRNA gene sequencing was carried out to analyse microbial diversity of the biomass developed in the column. Results stated that the chemical-biological coupled system is effective for the treatment of water effluents containing pesticides. The integrated system is able to deplete more than 80% of the organic load, even under extremely high salinity. PMID:26041507

  8. High salinity effect on bioremediation of pretreated pesticide lixiviates from greenhouses.

    PubMed

    Micó, María M; González, Óscar; Bacardit, Jordi; Malfeito, Jorge; Sans, Carme

    2015-01-01

    Hydroponics culture greenhouses usually work in closed and semi-closed irrigation systems for nutrients and water-saving purposes. Photo-Fenton reaction has been revealed as an efficient way to depollute that kind of recycled effluents containing pesticides, even for high salinity concentrations. However, the inefficacy of organic matter chemical depletion imposes the use of a subsequent treatment. This work proposes the suitability of an integration of advanced oxidation process with a subsequent bioreactor to treat greenhouse lixiviates effluents at high or extremely high conductivity (salts concentration: up to 42 g L⁻¹). As a first step in this study, the performance of a series of sequencing batch reactors was monitored in order to check the biocompatibility of photo-Fenton pretreated effluents depending on their salinity content. In the second step, those same pretreated effluents were loaded to a biofiltration column filled with expanded clay. Finally, bacterial 16S rRNA gene sequencing was carried out to analyse microbial diversity of the biomass developed in the column. Results stated that the chemical-biological coupled system is effective for the treatment of water effluents containing pesticides. The integrated system is able to deplete more than 80% of the organic load, even under extremely high salinity.

  9. High Salinity Induces Different Oxidative Stress and Antioxidant Responses in Maize Seedlings Organs

    PubMed Central

    AbdElgawad, Hamada; Zinta, Gaurav; Hegab, Momtaz M.; Pandey, Renu; Asard, Han; Abuelsoud, Walid

    2016-01-01

    Salinity negatively affects plant growth and causes significant crop yield losses world-wide. Maize is an economically important cereal crop affected by high salinity. In this study, maize seedlings were subjected to 75 mM and 150 mM NaCl, to emulate high soil salinity. Roots, mature leaves (basal leaf-pair 1,2) and young leaves (distal leaf-pair 3,4) were harvested after 3 weeks of sowing. Roots showed the highest reduction in biomass, followed by mature and young leaves in the salt-stressed plants. Concomitant with the pattern of growth reduction, roots accumulated the highest levels of Na+ followed by mature and young leaves. High salinity induced oxidative stress in the roots and mature leaves, but to a lesser extent in younger leaves. The younger leaves showed increased electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H2O2) concentrations only at 150 mM NaCl. Total antioxidant capacity (TAC) and polyphenol content increased with the increase in salinity levels in roots and mature leaves, but showed no changes in the young leaves. Under salinity stress, reduced ascorbate (ASC) and glutathione (GSH) content increased in roots, while total tocopherol levels increased specifically in the shoot tissues. Similarly, redox changes estimated by the ratio of redox couples (ASC/total ascorbate and GSH/total glutathione) showed significant decreases in the roots. Activities of enzymatic antioxidants, catalase (CAT, EC 1.11.1.6) and dehydroascorbate reductase (DHAR, EC 1.8.5.1), increased in all organs of salt-treated plants, while superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione-s-transferase (GST, EC 2.5.1.18) and glutathione reductase (GR, EC 1.6.4.2) increased specifically in the roots. Overall, these results suggest that Na+ is retained and detoxified mainly in roots, and less stress impact is observed in mature and younger leaves. This study also indicates a possible role of ROS in the systemic

  10. Multiple PLDs required for high salinity and water deficit tolerance in plants.

    PubMed

    Bargmann, Bastiaan O R; Laxalt, Ana M; ter Riet, Bas; van Schooten, Bas; Merquiol, Emmanuelle; Testerink, Christa; Haring, Michel A; Bartels, Dorothea; Munnik, Teun

    2009-01-01

    High salinity and drought have received much attention because they severely affect crop production worldwide. Analysis and comprehension of the plant's response to excessive salt and dehydration will aid in the development of stress-tolerant crop varieties. Signal transduction lies at the basis of the response to these stresses, and numerous signaling pathways have been implicated. Here, we provide further evidence for the involvement of phospholipase D (PLD) in the plant's response to high salinity and dehydration. A tomato (Lycopersicon esculentum) alpha-class PLD, LePLDalpha1, is transcriptionally up-regulated and activated in cell suspension cultures treated with salt. Gene silencing revealed that this PLD is indeed involved in the salt-induced phosphatidic acid production, but not exclusively. Genetically modified tomato plants with reduced LePLDalpha1 protein levels did not reveal altered salt tolerance. In Arabidopsis (Arabidopsis thaliana), both AtPLDalpha1 and AtPLDdelta were found to be activated in response to salt stress. Moreover, pldalpha1 and plddelta single and double knock-out mutants exhibited enhanced sensitivity to high salinity stress in a plate assay. Furthermore, we show that both PLDs are activated upon dehydration and the knock-out mutants are hypersensitive to hyperosmotic stress, displaying strongly reduced growth.

  11. High genetic diversity and novelty in eukaryotic plankton assemblages inhabiting saline lakes in the Qaidam basin.

    PubMed

    Wang, Jiali; Wang, Fang; Chu, Limin; Wang, Hao; Zhong, Zhiping; Liu, Zhipei; Gao, Jianyong; Duan, Hairong

    2014-01-01

    Saline lakes are intriguing ecosystems harboring extremely productive microbial communities in spite of their extreme environmental conditions. We performed a comprehensive analysis of the genetic diversity (18S rRNA gene) of the planktonic microbial eukaryotes (nano- and picoeukaryotes) in six different inland saline lakes located in the Qaidam Basin. The novelty level are high, with about 11.23% of the whole dataset showing <90% identity to any previously reported sequence in GenBank. At least 4 operational taxonomic units (OTUs) in mesosaline lakes, while up to eighteen OTUs in hypersaline lakes show very low CCM and CEM scores, indicating that these sequences are highly distantly related to any existing sequence. Most of the 18S rRNA gene sequence reads obtained in investigated mesosaline lakes is closely related to Holozoa group (48.13%), whereas Stramenopiles (26.65%) and Alveolates (10.84%) are the next most common groups. Hypersaline lakes in the Qaidam Basin are also dominated by Holozoa group, accounting for 26.65% of the total number of sequence reads. Notably, Chlorophyta group are only found in high abundance in Lake Gasikule (28.00%), whereas less represented in other hypersaline lakes such as Gahai (0.50%) and Xiaochaidan (1.15%). Further analysis show that the compositions of planktonic eukaryotic assemblages are also most variable between different sampling sites in the same lake. Out of the parameters, four show significant correlation to this CCA: altitude, calcium, sodium and potassium concentrations. Overall, this study shows important gaps in the current knowledge about planktonic microbial eukaryotes inhabiting Qaidam Basin (hyper) saline water bodies. The identified diversity and novelty patterns among eukaryotic plankton assemblages in saline lake are of great importance for understanding and interpreting their ecology and evolution.

  12. High Genetic Diversity and Novelty in Eukaryotic Plankton Assemblages Inhabiting Saline Lakes in the Qaidam Basin

    PubMed Central

    Wang, Jiali; Wang, Fang; Chu, Limin; Wang, Hao; Zhong, Zhiping; Liu, Zhipei; Gao, Jianyong; Duan, Hairong

    2014-01-01

    Saline lakes are intriguing ecosystems harboring extremely productive microbial communities in spite of their extreme environmental conditions. We performed a comprehensive analysis of the genetic diversity (18S rRNA gene) of the planktonic microbial eukaryotes (nano- and picoeukaryotes) in six different inland saline lakes located in the Qaidam Basin. The novelty level are high, with about 11.23% of the whole dataset showing <90% identity to any previously reported sequence in GenBank. At least 4 operational taxonomic units (OTUs) in mesosaline lakes, while up to eighteen OTUs in hypersaline lakes show very low CCM and CEM scores, indicating that these sequences are highly distantly related to any existing sequence. Most of the 18S rRNA gene sequence reads obtained in investigated mesosaline lakes is closely related to Holozoa group (48.13%), whereas Stramenopiles (26.65%) and Alveolates (10.84%) are the next most common groups. Hypersaline lakes in the Qaidam Basin are also dominated by Holozoa group, accounting for 26.65% of the total number of sequence reads. Notably, Chlorophyta group are only found in high abundance in Lake Gasikule (28.00%), whereas less represented in other hypersaline lakes such as Gahai (0.50%) and Xiaochaidan (1.15%). Further analysis show that the compositions of planktonic eukaryotic assemblages are also most variable between different sampling sites in the same lake. Out of the parameters, four show significant correlation to this CCA: altitude, calcium, sodium and potassium concentrations. Overall, this study shows important gaps in the current knowledge about planktonic microbial eukaryotes inhabiting Qaidam Basin (hyper) saline water bodies. The identified diversity and novelty patterns among eukaryotic plankton assemblages in saline lake are of great importance for understanding and interpreting their ecology and evolution. PMID:25401703

  13. High-performance ionic diode membrane for salinity gradient power generation.

    PubMed

    Gao, Jun; Guo, Wei; Feng, Dan; Wang, Huanting; Zhao, Dongyuan; Jiang, Lei

    2014-09-01

    Salinity difference between seawater and river water is a sustainable energy resource that catches eyes of the public and the investors in the background of energy crisis. To capture this energy, interdisciplinary efforts from chemistry, materials science, environmental science, and nanotechnology have been made to create efficient and economically viable energy conversion methods and materials. Beyond conventional membrane-based processes, technological breakthroughs in harvesting salinity gradient power from natural waters are expected to emerge from the novel fluidic transport phenomena on the nanoscale. A major challenge toward real-world applications is to extrapolate existing single-channel devices to macroscopic materials. Here, we report a membrane-scale nanofluidic device with asymmetric structure, chemical composition, and surface charge polarity, termed ionic diode membrane (IDM), for harvesting electric power from salinity gradient. The IDM comprises heterojunctions between mesoporous carbon (pore size ∼7 nm, negatively charged) and macroporous alumina (pore size ∼80 nm, positively charged). The meso-/macroporous membrane rectifies the ionic current with distinctly high ratio of ca. 450 and keeps on rectifying in high-concentration electrolytes, even in saturated solution. The selective and rectified ion transport furthermore sheds light on salinity-gradient power generation. By mixing artificial seawater and river water through the IDM, substantially high power density of up to 3.46 W/m(2) is discovered, which largely outperforms some commercial ion-exchange membranes. A theoretical model based on coupled Poisson and Nernst-Planck equations is established to quantitatively explain the experimental observations and get insights into the underlying mechanism. The macroscopic and asymmetric nanofluidic structure anticipates wide potentials for sustainable power generation, water purification, and desalination.

  14. High-performance ionic diode membrane for salinity gradient power generation.

    PubMed

    Gao, Jun; Guo, Wei; Feng, Dan; Wang, Huanting; Zhao, Dongyuan; Jiang, Lei

    2014-09-01

    Salinity difference between seawater and river water is a sustainable energy resource that catches eyes of the public and the investors in the background of energy crisis. To capture this energy, interdisciplinary efforts from chemistry, materials science, environmental science, and nanotechnology have been made to create efficient and economically viable energy conversion methods and materials. Beyond conventional membrane-based processes, technological breakthroughs in harvesting salinity gradient power from natural waters are expected to emerge from the novel fluidic transport phenomena on the nanoscale. A major challenge toward real-world applications is to extrapolate existing single-channel devices to macroscopic materials. Here, we report a membrane-scale nanofluidic device with asymmetric structure, chemical composition, and surface charge polarity, termed ionic diode membrane (IDM), for harvesting electric power from salinity gradient. The IDM comprises heterojunctions between mesoporous carbon (pore size ∼7 nm, negatively charged) and macroporous alumina (pore size ∼80 nm, positively charged). The meso-/macroporous membrane rectifies the ionic current with distinctly high ratio of ca. 450 and keeps on rectifying in high-concentration electrolytes, even in saturated solution. The selective and rectified ion transport furthermore sheds light on salinity-gradient power generation. By mixing artificial seawater and river water through the IDM, substantially high power density of up to 3.46 W/m(2) is discovered, which largely outperforms some commercial ion-exchange membranes. A theoretical model based on coupled Poisson and Nernst-Planck equations is established to quantitatively explain the experimental observations and get insights into the underlying mechanism. The macroscopic and asymmetric nanofluidic structure anticipates wide potentials for sustainable power generation, water purification, and desalination. PMID:25137214

  15. Multi-Scale Studies of Transport and Adsorption Phenomena of Cement-based Materials in Aqueous and Saline Environment

    NASA Astrophysics Data System (ADS)

    Yoon, Se Yoon

    The transport and adsorption phenomena in cement-based materials are the most important processes in the durability of concrete structures or nuclear waste containers, as they are precursors to a number of deterioration processes such as chloride-induced corrosion, sulfate attack, carbonation, etc. Despite this importance, our understanding of these processes remains limited because the pore structure and composition of concrete are complex. In addition, the range of the pore sizes, from nanometers to millimeters, requires the multi-scale modeling of the transport and adsorption processes. Among the various environments that cement-based materials are exposed to, aqueous and saline environments represent the most common types. Therefore, this dissertation investigates the adsorption and transport phenomena of cement-based materials exposed to an aqueous and saline environment from atomic to macro-scales using different arrays of novel spectroscopic techniques and simulation methods, such as scanning transmission X-ray microscopy (STXM), X-ray absorption near edge structure (XANES), molecular dynamics (MD), and finite element method (FEM). The structure and transport of water molecules through interlayer spacing of tobermorite was investigated using MD simulations because the interlayer water of calcium silicate hydrate (C-S-H) gel influences various material properties of concrete. The adsorption processes of cementitious phases interacting with sodium and chloride ions at the nano-scale were identified using STXM and XANES measurements. A mathematical model and FEM procedure were developed to identify the effect of surface treatments at macro-scale on ionic transport phenomena of surface-treated concrete. Finally, this dissertation introduced a new material, calcined layered double hydroxide (CLDH), to prevent chloride-induced deterioration.

  16. Evaluation of marine sediments as microbial sources for methane production from brown algae under high salinity.

    PubMed

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka

    2014-10-01

    Various marine sediments were evaluated as promising microbial sources for methane fermentation of Saccharina japonica, a brown alga, at seawater salinity. All marine sediments tested produced mainly acetate among volatile fatty acids. One marine sediment completely converted the produced volatile fatty acids to methane in a short period. Archaeal community analysis revealed that acetoclastic methanogens belonging to the Methanosarcina genus dominated after cultivation. Measurement of the specific conversion rate at each step of methane production under saline conditions demonstrated that the marine sediments had higher conversion rates of butyrate and acetate than mesophilic methanogenic granules. These results clearly show that marine sediments can be used as microbial sources for methane production from algae under high-salt conditions without dilution.

  17. Evaluating the tolerance of young hybrid poplar trees to recycled waters high in salinity and boron.

    PubMed

    Bañuelos, G S; LeDuc, D; Johnson, J

    2010-07-01

    The successful adoption of water recycling strategies in many arid regions will require crops able to tolerate poor-quality waters. We evaluated different clones for salt and boron (B) tolerance within each of seven genetically distinct genomic groups (e.g., deltoides, deltoides x nigra, trichocarpa x deltoides, trichocarpa x deltoides x maximowizcii, trichocarpa x deltoides x nigra, trichocarpa x nigra, trichocarpa x maximowizcii). During each evaluation period, different clones within each of the groups were irrigated with high sodium chloride (NaCl) salinity (i.e., 10-30 dS m(-1)) and B (i.e., 10 mg L(-1)) water up to a maximum of 150 days, for a 4-year testing period under micro-field plot conditions. Excessive accumulation (up to 6%) of chloride (Cl) likely caused toxicity symptoms (necrosis of the leaves) observed in the less tolerant clones, while leaf B concentrations rarely exceeded 300 mg kg(-1) DM in any clone. Increased soil salinity likely hindered the uptake of B by the clones. Our results show that a wide range of selected Populus clones, of parentage trichocarpa x nigra, followed by deltoides x nigra show potential salt and B tolerance as young trees to recycled waters high in salinity and B. PMID:21166286

  18. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination.

    PubMed

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-08-22

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes.

  19. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination

    NASA Astrophysics Data System (ADS)

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J.; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-08-01

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes.

  20. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination

    PubMed Central

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J.; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-01-01

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes. PMID:27545955

  1. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination.

    PubMed

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-01-01

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes. PMID:27545955

  2. Nitrogen mineralization from sludge in an alkaline, saline coal gasification ash environment.

    PubMed

    Mbakwe, Ikenna; De Jager, Pieter C; Annandale, John G; Matema, Taurai

    2013-01-01

    Rehabilitating coal gasification ash dumps by amendment with waste-activated sludge has been shown to improve the physical and chemical properties of ash and to facilitate the establishment of vegetation. However, mineralization of organic N from sludge in such an alkaline and saline medium and the effect that ash weathering has on the process are poorly understood and need to be ascertained to make decisions regarding the suitability of this rehabilitation option. This study investigated the rate and pattern of N mineralization from sludge in a coal gasification ash medium to determine the prevalent inorganic N form in the system and assess the effect of ash weathering on N mineralization. An incubation experiment was performed in which fresh ash, weathered ash, and soil were amended with the equivalent of 90 Mg ha sludge, and N mineralization was evaluated over 63 d. More N (24%) was mineralized in fresh ash than in weathered ash and soil, both of which mineralized 15% of the initial organic N in sludge. More nitrification occurred in soil, and most of the N mineralized in ash was in the form of ammonium, indicating an inhibition of nitrifying organisms in the ash medium and suggesting that, at least initially, plants used for rehabilitation of coal gasification ash dumps will take up N mostly as ammonium. PMID:23673951

  3. In Vitro Assessment of Serum-Saline Ratios for Fluid Simulator Testing of Highly Modular Spinal Implants With Articulating Surfaces

    PubMed Central

    Khandha, Ashutosh; Malcolmson, George; Timm, JP

    2008-01-01

    and lower bounds of predictive implant debris generation modeling, where saline represents a worst-case scenario and as little as 20% serum masks all weight loss completely in highly modular articulating implants. Clinical Relevance Clinical Relevance = 5 (Oxford Centre for Evidence-based Medicine Levels of Evidence). Study findings are limited to a greater understanding of the science associated with predictive wear testing of articulating spinal implants. PMID:25802619

  4. Evaluation of TDR sensors to estimate moisture content in a highly saline soil from northern Chile

    NASA Astrophysics Data System (ADS)

    Cristi Matte, F.; Hernandez, M. F.; Fierro, V.; Hausner, M. B.; Munoz, J.; Suarez, F. I.

    2013-12-01

    The major component of the water budget in many of the volcanic basins located in northern Chile is evaporation from zones with shallow groundwater tables. Therefore, the water fluxes in the vadose zone in those dry volcanic-origin soils are of particular interest. In these soils, it has been reported that traditional time domain reflectometry (TDR) measurement methods are ineffective. TDR is a fast and nondestructive indirect electromagnetic method that is used to estimate soil moisture from the soil's apparent dielectric permittivity. The relationship between moisture content and apparent dielectric permittivity is influenced by many factors, such as length of the sensor's rods, salinity of porous media and soil mineralogy. In volcanic soils, it has been reported that Topp's 'universal' relationship is no longer valid. In this study, we evaluated the performance of TDR probes for the estimation of soil moisture in a highly saline and volcanic-origin soil from the Salar del Huasco basin, northern Chile. TDR sensors with rods of 7.5 and 30 cm were used to test the dielectric permittivity of different potassium chloride solutions of known permittivity (with electrical conductivity ranging from 0.015 to 12.9 dS/m). The TDR probes were then used to test the permittivity of soils at known water contents and temperatures. The effects of temperature and the salinity of the solutions on the apparent permittivity were negligible, and the shorter rods proved more accurate than the longer rods. Furthermore, neither the Topp's equation nor previously proposed relationships for volcanic-origin soils developed around the world were adequate to represent the soil's moisture content used in this study. Based on the results, we propose a new relationship between moisture content and apparent dielectric permittivity for the volcanic-origin soil of the Salar del Huasco basin. Further research is ongoing to obtain analogous relationships between moisture content and apparent

  5. Salt resistance genes revealed by functional metagenomics from brines and moderate-salinity rhizosphere within a hypersaline environment.

    PubMed

    Mirete, Salvador; Mora-Ruiz, Merit R; Lamprecht-Grandío, María; de Figueras, Carolina G; Rosselló-Móra, Ramon; González-Pastor, José E

    2015-01-01

    Hypersaline environments are considered one of the most extreme habitats on earth and microorganisms have developed diverse molecular mechanisms of adaptation to withstand these conditions. The present study was aimed at identifying novel genes from the microbial communities of a moderate-salinity rhizosphere and brine from the Es Trenc saltern (Mallorca, Spain), which could confer increased salt resistance to Escherichia coli. The microbial diversity assessed by pyrosequencing of 16S rRNA gene libraries revealed the presence of communities that are typical in such environments and the remarkable presence of three bacterial groups never revealed as major components of salt brines. Metagenomic libraries from brine and rhizosphere samples, were transferred to the osmosensitive strain E. coli MKH13, and screened for salt resistance. Eleven genes that conferred salt resistance were identified, some encoding for well-known proteins previously related to osmoadaptation such as a glycerol transporter and a proton pump, whereas others encoded proteins not previously related to this function in microorganisms such as DNA/RNA helicases, an endonuclease III (Nth) and hypothetical proteins of unknown function. Furthermore, four of the retrieved genes were cloned and expressed in Bacillus subtilis and they also conferred salt resistance to this bacterium, broadening the spectrum of bacterial species in which these genes can function. This is the first report of salt resistance genes recovered from metagenomes of a hypersaline environment.

  6. Salt resistance genes revealed by functional metagenomics from brines and moderate-salinity rhizosphere within a hypersaline environment

    PubMed Central

    Mirete, Salvador; Mora-Ruiz, Merit R.; Lamprecht-Grandío, María; de Figueras, Carolina G.; Rosselló-Móra, Ramon; González-Pastor, José E.

    2015-01-01

    Hypersaline environments are considered one of the most extreme habitats on earth and microorganisms have developed diverse molecular mechanisms of adaptation to withstand these conditions. The present study was aimed at identifying novel genes from the microbial communities of a moderate-salinity rhizosphere and brine from the Es Trenc saltern (Mallorca, Spain), which could confer increased salt resistance to Escherichia coli. The microbial diversity assessed by pyrosequencing of 16S rRNA gene libraries revealed the presence of communities that are typical in such environments and the remarkable presence of three bacterial groups never revealed as major components of salt brines. Metagenomic libraries from brine and rhizosphere samples, were transferred to the osmosensitive strain E. coli MKH13, and screened for salt resistance. Eleven genes that conferred salt resistance were identified, some encoding for well-known proteins previously related to osmoadaptation such as a glycerol transporter and a proton pump, whereas others encoded proteins not previously related to this function in microorganisms such as DNA/RNA helicases, an endonuclease III (Nth) and hypothetical proteins of unknown function. Furthermore, four of the retrieved genes were cloned and expressed in Bacillus subtilis and they also conferred salt resistance to this bacterium, broadening the spectrum of bacterial species in which these genes can function. This is the first report of salt resistance genes recovered from metagenomes of a hypersaline environment. PMID:26528268

  7. Is the Taklimakan Desert Highway Shelterbelt Sustainable to Long-Term Drip Irrigation with High Saline Groundwater?

    PubMed Central

    Zhang, Jianguo; Xu, Xinwen; Li, Shengyu; Zhao, Ying; Zhang, Afeng; Zhang, Tibin; Jiang, Rui

    2016-01-01

    Freshwater resources are scarce in desert regions. Highly saline groundwater of different salinity is being used to drip irrigate the Taklimakan Desert Highway Shelterbelt with a double-branch-pipe system controlling the irrigation cycles. In this study, to evaluate the dynamics of soil moisture and salinity under the current irrigation system, soil samples were collected to a 2-m depth in the shelterbelt planted for different years and irrigated with different groundwater salinities, and soil moisture and salinity were analyzed. The results showed that both depletion of soil moisture and increase of topsoil salinity occurred simultaneously during one irrigation cycle. Soil moisture decreased from 27.4% to 2.4% for a 15-day irrigation cycle and from 26.4% to 2.7% for a 10-day-cycle, respectively. Topsoil electrical conductivity (EC) increased from 0.64 to 3.32 dS/m and 0.70 to 3.99 dS/m for these two irrigation cycles. With increased shelterbelt age, profiled average soil moisture (0–200 cm) reduced from 12.8% (1-year) to 7.1% (10-year); however, soil moisture in 0–20-cm increased, while topsoil salinity decreased. In addition, irrigation salinity mainly affected soil salinity in the 0–20-cm range. We conclude that water supply with the double-branch-pipe is a feasible irrigation method for the Taklimakan Desert Highway Shelterbelt, and our findings provide a model for shelterbelt construction and sustainable management when using highly saline water for irrigation in analogous habitats. PMID:27711244

  8. Implications of perennial saline springs for abnormally high fluid pressures and active thrusting in western California

    SciTech Connect

    Unruh, J.R.; Davisson, M.L.; Criss, R.E.; Moores, E.M. )

    1992-05-01

    Perennial saline springs in the Rumsey Hills area, southwestern Sacramento Valley, California, locally discharge at high elevations and near ridgetops. The springs are cold, are commonly associated with natural gas seeps, and typically emerge along west-vergent thrust faults. Stable isotope analyses indicate that the spring waters are similar to oil-field formation fluids and they have had a significant residence time in the subsurface at moderate temperatures. The nonmeteoric character of the springs demonstrates that they are not being fed by perched water tables. The authors propose that these subsurface formation waters are being forced to the surface by anomalously high porefluid pressures. The Rumsey Hills area is one of Quaternary uplift, thrusting, and crustal shortening, and prospect wells drilled there have encountered anomalously high fluid pressures at shallow depths. They attribute these high fluid pressures to active tectonic compression and shortening of Cretaceous marine sedimentary rocks. The widespread occurrence of anomalously high pore-fluid pressures and perennial saline springs in the Coast Ranges and western Great Valley suggests that much of western California may be characterized as a seismically active, overpressured thrust belt. The emergence of formation waters along thrust faults further suggests that patterns of subsurface fluid flow in western California may be similar to those in overpressured accretionary prisms, and that excess fluid pressures may also play a role in the distribution of seismicity.

  9. [Membrane surface fouling properties in MBRs for high-salinity wastewater treatment].

    PubMed

    Li, Bin; Wang, Zhi-Wei; An, Ying; Wu, Zhi-Chao

    2014-02-01

    The properties of membrane foulants in MBR treating high-salinity wastewater were studied. Results showed that the removal efficiency of organics and NH4(+) -N was stable and high-quality effluent was obtained after the operation time of 121 d; the ratio of VSS/ SS decreased and SVI declined at the same time, indicating that the inorganic content of sludge increased which might lead to more compact flocs and higher settling ability; SMP and EPS of the sludge were largely changed with a lower proportion of protein and a higher proportion of humic acid. Scanning electron microscope-energy diffusive X-ray analyzer (SEM-EDX) demonstrated that Na, Al, Mg, Ca, K, Fe, Ti, Cr, W, Si and Cl were the major inorganic elements in membrane foulants; Gel filtration chromatography (GFC) illustrated that there were organic matters with high molecular weight trapped by membrane and formed the membrane foulants; Fourier transform infrared (FTIR) spectroscopy and Excitation emission matrix (EEM) fluoresce spectroscopy discovered that carbohydrates, protein and humic acid were the main content of organics in membrane foulants.; quantitative analysis of membrane foulants showed that the amount of inorganic membrane foulants were significant when treating high-salinity wastewater. PMID:24812959

  10. Analysis of bacterial diversity in two oil blocks from two low-permeability reservoirs with high salinities

    PubMed Central

    Xiao, Meng; Sun, Shan-Shan; Zhang, Zhong-Zhi; Wang, Jun-Ming; Qiu, Long-Wei; Sun, Hua-Yang; Song, Zhao-Zheng; Zhang, Bei-Yu; Gao, De-Li; Zhang, Guang-Qing; Wu, Wei-Min

    2016-01-01

    The community diversities of two oil reservoirs with low permeability of 1.81 × 10−3 and 2.29 × 10−3 μm2 in Changqing, China, were investigated using a high throughput sequencing technique to analyze the influence of biostimulation with a nutrient activator on the bacterial communities. These two blocks differed significantly in salinity (average 17,500 vs 40,900 mg/L). A core simulation test was used to evaluate the effectiveness of indigenous microbial-enhanced oil recovery (MEOR). The results indicated that in the two high salinity oil reservoirs, one reservoir having relatively lower salinity level and a narrow salinity range had higher bacterial and phylogenetic diversity. The addition of the nutrient activator increased the diversity of the bacterial community structure and the diversity differences between the two blocks. The results of the core simulation test showed that the bacterial community in the reservoir with a salinity level of 17,500 mg/L did not show significant higher MEOR efficiency compared with the reservoir with 40,900 mg/L i.e. MEOR efficiency of 8.12% vs 6.56% (test p = 0.291 > 0.05). Therefore, salinity levels affected the bacterial diversities in the two low permeability oil blocks remarkably. But the influence of salinity for the MEOR recovery was slightly. PMID:26786765

  11. Analysis of bacterial diversity in two oil blocks from two low-permeability reservoirs with high salinities.

    PubMed

    Xiao, Meng; Sun, Shan-Shan; Zhang, Zhong-Zhi; Wang, Jun-Ming; Qiu, Long-Wei; Sun, Hua-Yang; Song, Zhao-Zheng; Zhang, Bei-Yu; Gao, De-Li; Zhang, Guang-Qing; Wu, Wei-Min

    2016-01-01

    The community diversities of two oil reservoirs with low permeability of 1.81 × 10(-3) and 2.29 × 10(-3) μm(2) in Changqing, China, were investigated using a high throughput sequencing technique to analyze the influence of biostimulation with a nutrient activator on the bacterial communities. These two blocks differed significantly in salinity (average 17,500 vs 40,900 mg/L). A core simulation test was used to evaluate the effectiveness of indigenous microbial-enhanced oil recovery (MEOR). The results indicated that in the two high salinity oil reservoirs, one reservoir having relatively lower salinity level and a narrow salinity range had higher bacterial and phylogenetic diversity. The addition of the nutrient activator increased the diversity of the bacterial community structure and the diversity differences between the two blocks. The results of the core simulation test showed that the bacterial community in the reservoir with a salinity level of 17,500 mg/L did not show significant higher MEOR efficiency compared with the reservoir with 40,900 mg/L i.e. MEOR efficiency of 8.12% vs 6.56% (test p = 0.291 > 0.05). Therefore, salinity levels affected the bacterial diversities in the two low permeability oil blocks remarkably. But the influence of salinity for the MEOR recovery was slightly. PMID:26786765

  12. Geochemical Modeling of pH Neutralization of High Alkaline-Saline Waste Fluids in Unsaturated Sediments

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Zheng, Z.

    2004-12-01

    Leakage of high alkaline-saline fluids, such as those stored in Hanford, a site of the U.S. Department of Energy (DOE) in Washington State, has raised attention of scientific community. These fluids have unique thermodynamic and physical properties. Chemical components in the fluids are incompletely dissociated, especially those containing divalent or polyvalent ions. A number of laboratory experiments through injecting synthetic high alkaline-saline fluids (up to 10M of sodium nitrate, pH >12) into the sediments sampled from the DOE Hanford site were conducted to study the reactive transport processes of the fluids in subsurface environments. The experimental results observed show that the composition of the high alkaline sodium nitrate fluids can be drastically changed due to fluid-rock interactions, and eventually lead to pH neutralization of the fluid in the plume front. The dominant fluid-rock interactions are cation exchanges (Na+-K+-Ca+2-Mg+2-H+), precipitation of calcium and magnesium minerals, and dissolution of silica. In order to precisely model the reactive transport of these processes, a coupling of the Pitzer's ion-interaction geochemical model and a flow and transport model would be highly needed. The extended existing reactive geochemical transport code, BIO-CORE2Dc, incorporating a comprehensive Pitzer ion-interaction model, is capable of predicting the experimental observations. In addition, the developed model was tested against two reported cases. In both cases, the measured mean ionic activity coefficients were well reproduced by our model, while the Debye-Hückel model, usually used to calculate aqueous species activities in dilute solutions, was unable to predict the experimental data. Finally, modeling study based on our laboratory column experiment was performed. Our simulation is able to capture the observed pH trends, changes in exchangeable cations such as Ca+2, Mg+2, and formation of secondary precipitation phases in the plume front.

  13. Nonmagnetotactic Multicellular Prokaryotes from Low-Saline, Nonmarine Aquatic Environments and Their Unusual Negative Phototactic Behavior▿ †

    PubMed Central

    Lefèvre, Christopher T.; Abreu, Fernanda; Lins, Ulysses; Bazylinski, Dennis A.

    2010-01-01

    Magnetotactic multicellular prokaryotes (MMPs) are unique magnetotactic bacteria of the Deltaproteobacteria class and the first found to biomineralize the magnetic mineral greigite (Fe3S4). Thus far they have been reported only from marine habitats. We questioned whether MMPs exist in low-saline, nonmarine environments. MMPs were observed in samples from shallow springs in the Great Boiling Springs geothermal field and Pyramid Lake, both located in northwestern Nevada. The temperature at all sites was ambient, and salinities ranged from 5 to 11 ppt. These MMPs were not magnetotactic and did not contain magnetosomes (called nMMPs here). nMMPs ranged from 7 to 11 μm in diameter, were composed of about 40 to 60 Gram-negative cells, and were motile by numerous flagella that covered each cell on one side, characteristics similar to those of MMPs. 16S rRNA gene sequences of nMMPs show that they form a separate phylogenetic branch within the MMP group in the Deltaproteobacteria class, probably representing a single species. nMMPs exhibited a negative phototactic behavior to white light and to wavelengths of ≤480 nm (blue). We devised a “light racetrack” to exploit this behavior, which was used to photoconcentrate nMMPs for specific purposes (e.g., DNA extraction) even though their numbers were low in the sample. Our results show that the unique morphology of the MMP is not restricted to marine and magnetotactic prokaryotes. Discovery of nonmagnetotactic forms of the MMP might support the hypothesis that acquisition of the magnetosome genes involves horizontal gene transfer. To our knowledge, this is the first report of phototaxis in bacteria of the Deltaproteobacteria class. PMID:20363801

  14. Electrochemical and microstructural performance of steel reinforced carbonated and non-carbonated mortars in a saline environment

    SciTech Connect

    Constantinou, A.G.; Sanjuan, M.A.; Scrivener, K.L.

    1995-10-01

    This paper describes work in progress to investigate the combined effect of chloride ions and carbonation in the corrosion of steel in mortar specimens. The corrosion behavior was investigated by electrochemical techniques, namely linear polarization resistance. Scanning electron microscopy (SEM) and energy dispersive x-ray microanalysis were used to study the microstructure of the steel/paste interface and the chemistry and distribution of the corrosion products. Eight mortar specimens were cast with water/cement and cement/sand ratios of 0.5 and 1/3, respectively. After 7 days of curing in plastic bags two samples were exposed to a saline environment (inversion in a 0.5M NaCl solution), another five were carbonated (in 100% C0{sub 2} and 65% RH), and the last one was kept immersed in water as reference. After 5 months, some of the specimens were switched round (i.e. the carbonated ones were immersed in 0.5M NACI), while one specimen from each environment remained in the initial environment. For the specimen which was placed in the C0{sub 2} environment after immersion in NaCl, the exposure time was not long enough to fully carbonate the mortar after the formation of observable amounts of corrosion products, although corrosion can be detected electrochemically. In the case of the specimens in a C0{sub 2} atmosphere, the corrosion rate was very low until full carbonation. When a specimen was then put in an NaCl solution, the corrosion rate increased almost immediately. The exposure time of the specimens was not long enough to produce any conclusive results, but the samples in a NaCl solution began to corrode soon after exposure.

  15. Predicting the surface tension of aqueous 1:1 electrolyte solutions at high salinity

    NASA Astrophysics Data System (ADS)

    Leroy, Philippe; Lassin, Arnault; Azaroual, Mohamed; André, Laurent

    2010-10-01

    The surface tension of the air/water interface is a phenomenon of particular interest in the water-unsaturated zone of porous media because it influences the contact angle and consequently the capillary water volume. A mechanistic model based on the modified Poisson-Boltzmann equation and the Pitzer theory is described and used to predict, under isothermal and isobaric conditions, the surface tension of 1:1 electrolytes at high salinity. These theories enable the determination of the electrical potential at the air/water interface and the activity coefficient of the ionic species in the bulk pore water, respectively. Hydration free energies of the structure-making and structure-breaking ions that influence the surface tension at high salinity are taken into account. Structure-making ions flee the air/water surface because they can better organize the water dipoles in bulk water than at the interface. Structure-breaking ions are positively adsorbed at the air/water interface because the bulk water can better organize their hydrogen-bonding network without these ions. The resulting surface tension increases and decreases, respectively, compared to the surface tension of pure water. The predictions are in good agreement with the surface tension data of 1:1 electrolytes (NaCl, KCl, HCl, NaNO 3, KNO 3, HNO 3 aqueous solutions) and the optimized parameters depend on the effective electrostatic diameters of cations and on the hydration free energies of the ions at the interface.

  16. Partitioning of Organic Contaminants and Tracer Compounds in a CO2-Brine System at High Salinities

    NASA Astrophysics Data System (ADS)

    Thomas, B.; Kharaka, Y. K.; Rosenbauer, R. J.; Janesko, D.; Trutna, J.

    2011-12-01

    Nonionic chemical species including gases and organic compounds partition between the fluid CO2 phase and the aqueous phase in geologic carbon sequestration systems. The injection and migration of CO2 in geologic carbon sequestration systems covers a wide range of pressure and temperature, so it is important to understand the partitioning of these compounds at various P-T conditions and salinities. Geochemical data is particularly lacking for the partitioning of organic contaminant compounds and tracer compounds between highly saline brines and CO2. Most groundwater is relatively low in organic contaminants; however, groundwater associated with hydrocarbon migration pathways, enhanced oil recovery (EOR), and hydrocarbon storage or extraction can contain high concentrations of known organic contaminants. CO2 injection in these systems may therefore be more likely to result in partitioning of contaminants into the CO2 phase that could, upon migration, represent an important risk to groundwater resources. We present the experimental apparatus and determination of partition coefficients between brine and CO2 for a suite of compounds including benzene, toluene, ethylbenzene, xylene (BTEX), and low molecular weight polynuclear aromatic hydrocarbons (PAHs). In addition, partition coefficients are determined for the important gas phase tracer compounds: SF6 and Krypton covering a P-T envelope consistent with CO2 injection and plume migration to the near surface.

  17. Using antibodies against ATPase and microarray immunoassays for the search for potential extraterrestrial life in saline environments on Mars.

    NASA Astrophysics Data System (ADS)

    Weigl, Andreas; Gruber, Claudia; Blanco-López, Yolanda; Rivas, Luis A.; Parro, Victor; Stan-Lotter, Helga

    2010-05-01

    For the search for extraterrestrial life it is proposed to use receptors such as labelled antibodies for the detection of organic biomarkers. One of these organic molecules to be tested is the universal enzyme ATP synthase which is present in highly conserved forms in all organisms on earth. Therefore it is necessary to evaluate antibodies against ATPase respectively ATP synthase and their subunits. As it is known, that there are halite deposits on Mars the experiments in this study have been carried out with regard to halophile microorganisms and saline environments. Standard F1F0 ATPase from Escherichia coli LE 392 and Bacillus megaterium as well as haloarchaeal A-ATPase from Halorubrum saccharovorum and Halobacterium salinarum NRC-1 were used. The cultivated cells, except Bacillus, were broken by passage through a French Pressure Cell. Separation of enzyme subunits was performed by polyacrylamide gel electrophoresis. Western Blotting with antisera produced in rabbit against A-ATPase subunits A (85 kD) and subunits B (60 kD) from Halorubrrum saccharovorum (1) showed positive reactions with the membrane fraction, which should be enriched with ATPase from Halorubrum saccharovorum, Halobacterium salinarum NRC-1 and Escherichia coli LE 392. Particular attention was given to the question if ATPase subunits can be detected in whole cells. Therefore whole cell preparations of all cells and spore suspensions from Geobacillus stearothermophilus were tested against the antiserum as well as against protein-A-purified antibody against A-ATPase subunit A from Halorubrum saccharovorum. A positive immuno reaction of all cell preparations with the antiserum as well as with the purified antibody was detected. The spores of Geobacillus stearothermophilus reacted positively with the antiserum against subunit A of the A-ATPase from Hrr. saccharovorum. A commercial antibody Rabbit Anti-V-ATPase subunit A polyclonal antibody from the GenScript Corporation reacted positively with

  18. Could high salinity be used to control bullfrogs in small ponds?

    USGS Publications Warehouse

    Ward, David L.; Finch, Colton; Blasius, Heidi

    2015-01-01

    We examined survival of bullfrog (Rana catesbeiana) eggs and tadpoles at 3 ppt and 6 ppt salinity in the laboratory to determine if low-level salinity could be used to eradicate bullfrogs from small ponds that contain native fishes. Bullfrog eggs and tadpoles <10 days old experienced 100% mortality when held at 6 ppt salinity for 10 days. Bullfrog tadpoles 10–15 days old experienced significantly reduced survival when exposed to salinity of 6 ppt for 10 days. Older bullfrog tadpoles (>9 months old) appeared unaffected by 14 days of 6 ppt salinity. Salinity of 3 ppt did not impact survival of bullfrog tadpole eggs or tadpoles at any of the life stages we tested. Adding salt to ponds in the early spring to increase salinity to 6 ppt may be a cost effective way to eradicate bullfrogs from small ponds without harming native fishes.

  19. Biodiversity patterns of soil ciliates along salinity gradients.

    PubMed

    Zhao, Feng; Xu, Kuidong

    2016-04-01

    We evaluated ciliate diversity in saline soils with a salinity range from 6.5 to 65 psu by the morphological method of the Ludox-quantitative protargol stain (QPS) and the molecular techniques of ciliate-specific clone library and denaturing gradient gel electrophoresis. No active ciliates could be detected with the Ludox-QPS method, while high molecular diversity of ciliates was found. The highest ciliate molecular diversity was obtained from the soil at salinity of 8.9 psu, moderate diversity was found at salinity of 6.5 psu, and the diversity sharply decreased at salinity of 50.5 psu. By contrast, the number of ciliate classes clearly decreased with increasing soil salinity: six, five, four and two classes from sites with salinity of 6.5 psu, 8.9 psu, 29.5 psu and 50.5 psu, respectively. Ciliate diversity pattern is different from that of bacteria, whose diversity is also high in extremely saline environments. Meanwhile, the composition of ciliate community was significantly different along salinity gradient. Colpodea and Oligohymenophorea were diverse in soils at salinity less than 29.5 psu, while absent in soils with salinity above 50.5 psu. BIOENV analysis indicated soil salinity and water content were the main factors regulating the distribution of ciliates in saline soils.

  20. Partitions and vertical profiles of 9 endocrine disrupting chemicals in an estuarine environment: Effect of tide, particle size and salinity.

    PubMed

    Yang, Lihua; Cheng, Qiao; Lin, Li; Wang, Xiaowei; Chen, Baowei; Luan, Tiangang; Tam, Nora F Y

    2016-04-01

    Phenolic endocrine disrupting chemicals (EDCs) in an estuarine water column in a depth profile of five water layers (0.05 D, 0.20 D, 0.60 D, 0.80 D and 0.90 D, D = Depth, 10.7 ± 0.7 m) and their corresponding environmental parameters (tide, salinity and particle size) were investigated over a year. Water sample from each layer was further separated into three fractions, which were dissolved, coarse (SPM-D, Φ ≥ 2.7 μm) and fine (SPM-F, 2.7 μm > Φ ≥ 0.7 μm) suspended particulate matters. Most of EDCs in the water column were presented in the dissolved fraction. Vertical profiles of salinity fluctuations showed that the upper water layer was most influenced by upstream flow. Estriol (E3), mestranol (Mes) and 17α-ethynylestradiol (EE2) concentrations were significantly higher in ebb tide than in flood tide, indicating that EDCs mainly came from terrestrial source, the upstream flow. Dissolved EDCs also exhibited high levels in the surface layer (0.05 D) due to the upstream source and atmosphere deposition, followed by the bottom layer (0.90 D) owing to the re-suspension of EDCs-containing sediment. Compared to the dissolved phase, the contents of BPA, Mes and EE2 in the solid phase were affected by particle size and exhibited a trend of SPM-F > SPM-D > sediment. On the other hand, the concentrations of octylphenol (OP) and t-nonylphenol (NP), the degradation products from common nonionic surfactants, in sediment were higher than those in suspended particles, and NP concentration was higher in flood tide than that in ebb tide. For both SPM-D and SPM-F, their corresponding EDCs concentrations were negatively related to SPM concentrations due to particle concentration effect (PCE). Owing to the "salting-out effect", salinity pushed EDCs from dissolved fraction to particulate or sedimentary phase.

  1. Partitions and vertical profiles of 9 endocrine disrupting chemicals in an estuarine environment: Effect of tide, particle size and salinity.

    PubMed

    Yang, Lihua; Cheng, Qiao; Lin, Li; Wang, Xiaowei; Chen, Baowei; Luan, Tiangang; Tam, Nora F Y

    2016-04-01

    Phenolic endocrine disrupting chemicals (EDCs) in an estuarine water column in a depth profile of five water layers (0.05 D, 0.20 D, 0.60 D, 0.80 D and 0.90 D, D = Depth, 10.7 ± 0.7 m) and their corresponding environmental parameters (tide, salinity and particle size) were investigated over a year. Water sample from each layer was further separated into three fractions, which were dissolved, coarse (SPM-D, Φ ≥ 2.7 μm) and fine (SPM-F, 2.7 μm > Φ ≥ 0.7 μm) suspended particulate matters. Most of EDCs in the water column were presented in the dissolved fraction. Vertical profiles of salinity fluctuations showed that the upper water layer was most influenced by upstream flow. Estriol (E3), mestranol (Mes) and 17α-ethynylestradiol (EE2) concentrations were significantly higher in ebb tide than in flood tide, indicating that EDCs mainly came from terrestrial source, the upstream flow. Dissolved EDCs also exhibited high levels in the surface layer (0.05 D) due to the upstream source and atmosphere deposition, followed by the bottom layer (0.90 D) owing to the re-suspension of EDCs-containing sediment. Compared to the dissolved phase, the contents of BPA, Mes and EE2 in the solid phase were affected by particle size and exhibited a trend of SPM-F > SPM-D > sediment. On the other hand, the concentrations of octylphenol (OP) and t-nonylphenol (NP), the degradation products from common nonionic surfactants, in sediment were higher than those in suspended particles, and NP concentration was higher in flood tide than that in ebb tide. For both SPM-D and SPM-F, their corresponding EDCs concentrations were negatively related to SPM concentrations due to particle concentration effect (PCE). Owing to the "salting-out effect", salinity pushed EDCs from dissolved fraction to particulate or sedimentary phase. PMID:26736056

  2. Halophilic Microorganisms Are Responsible for the Rosy Discolouration of Saline Environments in Three Historical Buildings with Mural Paintings

    PubMed Central

    Ettenauer, Jörg D.; Jurado, Valme; Piñar, Guadalupe; Miller, Ana Z.; Santner, Markus; Saiz-Jimenez, Cesareo; Sterflinger, Katja

    2014-01-01

    A number of mural paintings and building materials from monuments located in central and south Europe are characterized by the presence of an intriguing rosy discolouration phenomenon. Although some similarities were observed among the bacterial and archaeal microbiota detected in these monuments, their origin and nature is still unknown. In order to get a complete overview of this biodeterioration process, we investigated the microbial communities in saline environments causing the rosy discolouration of mural paintings in three Austrian historical buildings using a combination of culture-dependent and -independent techniques as well as microscopic techniques. The bacterial communities were dominated by halophilic members of Actinobacteria, mainly of the genus Rubrobacter. Representatives of the Archaea were also detected with the predominating genera Halobacterium, Halococcus and Halalkalicoccus. Furthermore, halophilic bacterial strains, mainly of the phylum Firmicutes, could be retrieved from two monuments using special culture media. Inoculation of building materials (limestone and gypsum plaster) with selected isolates reproduced the unaesthetic rosy effect and biodeterioration in the laboratory. PMID:25084531

  3. Halophilic microorganisms are responsible for the rosy discolouration of saline environments in three historical buildings with mural paintings.

    PubMed

    Ettenauer, Jörg D; Jurado, Valme; Piñar, Guadalupe; Miller, Ana Z; Santner, Markus; Saiz-Jimenez, Cesareo; Sterflinger, Katja

    2014-01-01

    A number of mural paintings and building materials from monuments located in central and south Europe are characterized by the presence of an intriguing rosy discolouration phenomenon. Although some similarities were observed among the bacterial and archaeal microbiota detected in these monuments, their origin and nature is still unknown. In order to get a complete overview of this biodeterioration process, we investigated the microbial communities in saline environments causing the rosy discolouration of mural paintings in three Austrian historical buildings using a combination of culture-dependent and -independent techniques as well as microscopic techniques. The bacterial communities were dominated by halophilic members of Actinobacteria, mainly of the genus Rubrobacter. Representatives of the Archaea were also detected with the predominating genera Halobacterium, Halococcus and Halalkalicoccus. Furthermore, halophilic bacterial strains, mainly of the phylum Firmicutes, could be retrieved from two monuments using special culture media. Inoculation of building materials (limestone and gypsum plaster) with selected isolates reproduced the unaesthetic rosy effect and biodeterioration in the laboratory.

  4. [Fatty acid composition of lipids of vegetative organs of Nigella at different levels of environment salinization].

    PubMed

    Gogue, D O; Sidorov, R A; Tsydendambaev, V D; Kholodova, V P; Kuznetsov, V V

    2014-01-01

    A comparative study of the tolerance of two species of medicinal plants of the genus Nigella (N. damascene L. and N. sativa L.) to salt stress was performed. It is shown that growing of plants in the presence of 70 or 110 mM NaCl suppressed the growth and accumulation of dry weight of leaves and roots in both species studied and that this suppression was more pronounced at the higher NaCl concentration. It is established that the salt stress leads to the accumulation of proline in leaves and to a change in the fatty acids composition of lipids in the vegetative parts of plants. It is noted that N. sativa has a higher salt tolerance (70-100 mM NaCl) than N. damascena. It is found that the removal of NaCI from the culture medium and subsequent cultivation of plants exposed to salt stress in a salt-free medium led to a gradual recovery of both Nigella species studied. N. sativa plants showed a high ability for recovery (regeneration) after a strong salt stress.

  5. Bacterial biodiversity from anthropogenic extreme environments: a hyper-alkaline and hyper-saline industrial residue contaminated by chromium and iron.

    PubMed

    Brito, Elcia M S; Piñón-Castillo, Hilda A; Guyoneaud, Rémy; Caretta, César A; Gutiérrez-Corona, J Félix; Duran, Robert; Reyna-López, Georgina E; Nevárez-Moorillón, G Virginia; Fahy, Anne; Goñi-Urriza, Marisol

    2013-01-01

    Anthropogenic extreme environments are among the most interesting sites for the bioprospection of extremophiles since the selection pressures may favor the presence of microorganisms of great interest for taxonomical and astrobiological research as well as for bioremediation technologies and industrial applications. In this work, T-RFLP and 16S rRNA gene library analyses were carried out to describe the autochthonous bacterial populations from an industrial waste characterized as hyper-alkaline (pH between 9 and 14), hyper-saline (around 100 PSU) and highly contaminated with metals, mainly chromium (from 5 to 18 g kg(-1)) and iron (from 2 to 108 g kg(-1)). Due to matrix interference with DNA extraction, a protocol optimization step was required in order to carry out molecular analyses. The most abundant populations, as evaluated by both T-RFLP and 16S rRNA gene library analyses, were affiliated to Bacillus and Lysobacter genera. Lysobacter related sequences were present in the three samples: solid residue and lixiviate sediments from both dry and wet seasons. Sequences related to Thiobacillus were also found; although strains affiliated to this genus are known to have tolerance to metals, they have not previously been detected in alkaline environments. Together with Bacillus (already described as a metal reducer), such organisms could be of use in bioremediation technologies for reducing chromium, as well as for the prospection of enzymes of biotechnological interest.

  6. Bacterial biodiversity from anthropogenic extreme environments: a hyper-alkaline and hyper-saline industrial residue contaminated by chromium and iron.

    PubMed

    Brito, Elcia M S; Piñón-Castillo, Hilda A; Guyoneaud, Rémy; Caretta, César A; Gutiérrez-Corona, J Félix; Duran, Robert; Reyna-López, Georgina E; Nevárez-Moorillón, G Virginia; Fahy, Anne; Goñi-Urriza, Marisol

    2013-01-01

    Anthropogenic extreme environments are among the most interesting sites for the bioprospection of extremophiles since the selection pressures may favor the presence of microorganisms of great interest for taxonomical and astrobiological research as well as for bioremediation technologies and industrial applications. In this work, T-RFLP and 16S rRNA gene library analyses were carried out to describe the autochthonous bacterial populations from an industrial waste characterized as hyper-alkaline (pH between 9 and 14), hyper-saline (around 100 PSU) and highly contaminated with metals, mainly chromium (from 5 to 18 g kg(-1)) and iron (from 2 to 108 g kg(-1)). Due to matrix interference with DNA extraction, a protocol optimization step was required in order to carry out molecular analyses. The most abundant populations, as evaluated by both T-RFLP and 16S rRNA gene library analyses, were affiliated to Bacillus and Lysobacter genera. Lysobacter related sequences were present in the three samples: solid residue and lixiviate sediments from both dry and wet seasons. Sequences related to Thiobacillus were also found; although strains affiliated to this genus are known to have tolerance to metals, they have not previously been detected in alkaline environments. Together with Bacillus (already described as a metal reducer), such organisms could be of use in bioremediation technologies for reducing chromium, as well as for the prospection of enzymes of biotechnological interest. PMID:22350256

  7. Stennis Space Center Salinity Drifter Project. A Collaborative Project with Hancock High School, Kiln, MS

    NASA Technical Reports Server (NTRS)

    Kalcic, Maria; Turowski, Mark; Hall, Callie

    2010-01-01

    Presentation topics include: importance of salinity of coastal waters, habitat switching algorithm, habitat switching module, salinity estimates from Landsat for Sabine Calcasieu Basin, percent of time inundated in 2006, salinity data, prototyping the system, system as packaged for field tests, salinity probe and casing, opening for water flow, cellular antenna used to transmit data, preparing to launch, system is launched in the Pearl River at Stennis Space Center, data are transmitted to Twitter by cell phone modem every 15 minutes, Google spreadsheet I used to import the data from the Twitter feed and to compute salinity (from conductivity) and display charts of salinity and temperature, results are uploaded to NASA's Applied Science and Technology Project Office Webpage.

  8. Dual Lattice Boltzmann method for electrokinetic coupling : behavior at high and low salinities in rough channels.

    NASA Astrophysics Data System (ADS)

    Fiorentino, Eve-Agnès; Toussaint, Renaud; Jouniaux, Laurence

    2014-05-01

    We study the coupling between hydraulic and electric flows in a porous medium at small scale using the Lattice Boltzmann method. This method is a computational fluid dynamics technique that is used for advection and diffusion modeling. We implement a coupled Lattice Boltzmann algorithm that solves both the mass transport and the electric field arising from charges displacements. The streaming potential and electroosmosis phenomena occur in a variety of situations and derive from this coupling. We focus on the streaming potential which is described using the ratio between the created potential difference and the applied pressure gradient. The streaming potential is assumed to be a linear function of the fluid conductivity, but experimental results highlight anomalous behaviors at low and high salinity. We try to account for them by setting extreme conditions that are likely to generate non-linearities. Several pore radii are tested so as to determine what is the effect of a radius that is comparable to the Debye length, the screening length of the electric potential, due to the ions in the electrolyte. The volumetric integral of the electrical current is calculated for comparison with the 2D simulations. High values of zeta potential are tested to verify if the discrepancy regarding the theoretical result is concentration-dependent. We try to include a surface conductivity term in the coefficient formulation. Some tests including a rugosity on the channel walls are performed. All of these attempts show a normal behaviour of the streaming potential at high salinity. We observe a decrease of the ratio at low conductivity, showing that this ratio is modified when the pore radius becomes negligible compared with the Debye length, which is physically meaningful in little pores at low concentrations. References : S. Pride. Governing equations for the coupled electromagnetics and acoustics of porous media. Physical Review B, 50 : 15678-15696, 1994. D. A. Wolf

  9. Effects of low and high salinity regimes on seasonal gametogenesis of the ribbed mussel Geukensia granosissima in coastal Louisiana, USA

    USGS Publications Warehouse

    Honig, Aaron; LaPeyre, Megan K.; Supan, John

    2014-01-01

    Benthic intertidal bivalves play an essential role in estuarine ecosystems by contributing to habitat provision, water filtration, and host vegetation productivity. As such, ecosystem level changes that impact population distributions and persistence of local bivalve populations may have large ecosystem level consequences, making it important to better understand the population ecology of native bivalves. In order to determine potential impacts of shifting salinity and temperature regimes along the northern Gulf of Mexico, the seasonal timing of gametogenesis in the Gulf estuarine ribbed mussel, Geukensia granossisima, was examined across a salinity gradient in southeastern Louisiana, from July 2011 through October 2012. Ten mussels were randomly sampled monthly from low (~ 5) and high (~25) salinity marsh sites in southeastern Louisiana, and histologically processed to determine the seasonal progression of gametogenesis. Peak ripeness occurred at both sites between April and September, was positively correlated with temperature, and coincided with seasonal shifts in salinity. Mussels located in lower salinity waters demonstrated a shorter period of gametogenesis, and lower rates of ripeness indicating that changes in salinity regimes may impact long-term population dynamics.

  10. An enriched environment reduces the stress level and locomotor activity induced by acute morphine treatment and by saline after chronic morphine treatment in mice.

    PubMed

    Xu, Jia; Sun, Jinling; Xue, Zhaoxia; Li, Xinwang

    2014-06-18

    This study investigated the relationships among an enriched environment, stress levels, and drug addiction. Mice were divided randomly into four treatment groups (n=12 each): enriched environment without restraint stress (EN), standard environment without restraint stress (SN), enriched environment with restraint stress (ES), and standard environment with restraint stress (SS). Mice were reared in the respective environment for 45 days. Then, the ES and SS groups were subjected to restraint stress daily (2 h/day) for 14 days, whereas the EN and SN groups were not subjected to restraint stress during this stage. The stress levels of all mice were tested in the elevated plus maze immediately after exposure to restraint stress. After the 2-week stress testing period, mice were administered acute or chronic morphine (5 mg/kg) treatment for 7 days. Then, after a 7-day withdrawal period, the mice were injected with saline (1 ml/kg) or morphine (5 mg/kg) daily for 2 days to observe locomotor activity. The results indicated that the enriched environment reduced the stress and locomotor activity induced by acute morphine administration or saline after chronic morphine treatment. However, the enriched environment did not significantly inhibit locomotor activity induced by morphine challenge. In addition, the stress level did not mediate the effect of the enriched environment on drug-induced locomotor activity after acute or chronic morphine treatment.

  11. Nutritional Status as the Key Modulator of Antioxidant Responses Induced by High Environmental Ammonia and Salinity Stress in European Sea Bass (Dicentrarchus labrax)

    PubMed Central

    Zinta, Gaurav; Dasan, Antony Franklin; Rasoloniriana, Rindra; Asard, Han; Blust, Ronny; De Boeck, Gudrun

    2015-01-01

    glutathione reductase), ascorbate peroxidase (APX) activity and reduced ascorbate (ASC) content. On the contrary, fasted fish could not activate many of these protective systems and rely mainly on CAT and ASC dependent pathways as antioxidative sentinels. The present findings exemplify that in fed fish single factors and a combination of HEA exposure and reduced seawater salinities (upto 10 ppt) were insufficient to cause oxidative damage due to the highly competent antioxidant system compared to fasted fish. However, the impact of HEA exposure at a hypo-saline environment (2.5 ppt) also defied antioxidant defence system in fed fish, suggesting this combined factor is beyond the tolerance range for both feeding groups. Overall, our results indicate that the oxidative stress mediated by the experimental conditions were exacerbated during starvation, and also suggest that feed deprivation particularly at reduced seawater salinities can instigate fish more susceptible to ammonia toxicity. PMID:26241315

  12. Nutritional Status as the Key Modulator of Antioxidant Responses Induced by High Environmental Ammonia and Salinity Stress in European Sea Bass (Dicentrarchus labrax).

    PubMed

    Sinha, Amit Kumar; AbdElgawad, Hamada; Zinta, Gaurav; Dasan, Antony Franklin; Rasoloniriana, Rindra; Asard, Han; Blust, Ronny; De Boeck, Gudrun

    2015-01-01

    glutathione reductase), ascorbate peroxidase (APX) activity and reduced ascorbate (ASC) content. On the contrary, fasted fish could not activate many of these protective systems and rely mainly on CAT and ASC dependent pathways as antioxidative sentinels. The present findings exemplify that in fed fish single factors and a combination of HEA exposure and reduced seawater salinities (upto 10 ppt) were insufficient to cause oxidative damage due to the highly competent antioxidant system compared to fasted fish. However, the impact of HEA exposure at a hypo-saline environment (2.5 ppt) also defied antioxidant defence system in fed fish, suggesting this combined factor is beyond the tolerance range for both feeding groups. Overall, our results indicate that the oxidative stress mediated by the experimental conditions were exacerbated during starvation, and also suggest that feed deprivation particularly at reduced seawater salinities can instigate fish more susceptible to ammonia toxicity.

  13. Nutritional Status as the Key Modulator of Antioxidant Responses Induced by High Environmental Ammonia and Salinity Stress in European Sea Bass (Dicentrarchus labrax).

    PubMed

    Sinha, Amit Kumar; AbdElgawad, Hamada; Zinta, Gaurav; Dasan, Antony Franklin; Rasoloniriana, Rindra; Asard, Han; Blust, Ronny; De Boeck, Gudrun

    2015-01-01

    glutathione reductase), ascorbate peroxidase (APX) activity and reduced ascorbate (ASC) content. On the contrary, fasted fish could not activate many of these protective systems and rely mainly on CAT and ASC dependent pathways as antioxidative sentinels. The present findings exemplify that in fed fish single factors and a combination of HEA exposure and reduced seawater salinities (upto 10 ppt) were insufficient to cause oxidative damage due to the highly competent antioxidant system compared to fasted fish. However, the impact of HEA exposure at a hypo-saline environment (2.5 ppt) also defied antioxidant defence system in fed fish, suggesting this combined factor is beyond the tolerance range for both feeding groups. Overall, our results indicate that the oxidative stress mediated by the experimental conditions were exacerbated during starvation, and also suggest that feed deprivation particularly at reduced seawater salinities can instigate fish more susceptible to ammonia toxicity. PMID:26241315

  14. High precision Multifrequency Electrical Impedance Tomography System and Preliminary imaging results on saline tank.

    PubMed

    Xuetao, Shi; Fusheng, You; Feng, Fu; Ruigang, Liu; Xiuzhen, Dong

    2005-01-01

    To establish a high precision data acquisition system for multi-frequency electrical impedance tomography (EIT), a series of methods were introduced. Those methods include building a driving signal with up to four frequency components to diminish the effect of the dynamic change of tissues resistivity, extracting the impedance information by a digital demodulator that can improve the SNR by 8 times. The system that established can work at a wide range from 1.6kHz to 380kHz. Its CMRR is 74dB at 100kHz. The output impedance of current source is 2MΩ at that frequency. And measurement precision on a 100ohm resistor is better than -80dB in full bandwidth. Both the quasi-static and the dynamic imaging results based on a saline tank can reflect the resistivity changes inside the phantom clearly. Therefore, the system was competent in multifrequency EIT research work.

  15. Adsorption of high salinity surfactant systems and sacrificial agents for EOR on model adsorbents

    SciTech Connect

    Volz, H.V.

    1988-05-01

    In chemical flooding processes for enhanced oil recovery, chemical adsorption is a major factor which may limit the applicability of these processes. Under typical high salinity conditions of West German oil reservoirs (100 to 200 kg/m/sup 3/ of total dissolved solids) adsorption experiments with single and multi-component surfactant systems and with and without the use of sacrificial agents on model adsorbents were carried out, adsorbents being calcium benetonite, illite, kaolinite, dickite, prochlorite, and quartz. It can be shown that polyethylene glycols of appropriate molecular weight, which were used as sacrificial agents, adsorb specifically on calcium bentonite or quartz, whereas on kaolnite they form an adsorbing complex together with the surfactant. Based on experimental results specific coverages of sacrificial agents and surfactants are calculated.

  16. Isolation of an extremely halophilic arhaeon Natrialba sp. C21 able to degrade aromatic compounds and to produce stable biosurfactant at high salinity.

    PubMed

    Khemili-Talbi, Souad; Kebbouche-Gana, Salima; Akmoussi-Toumi, Siham; Angar, Yassmina; Gana, Mohamed Lamine

    2015-11-01

    Natrialba sp. strain C21 was isolated from oil contaminated saline water in Ain Salah (Algeria) and has exhibited a good potential for degrading phenol (3% v/v), naphthalene (3% v/v), and pyrene (3% v/v) at high salinity with high growth, enzymatic activity and biosurfactant production. Successful metabolism of aromatic hydrocarbon compounds of the strain Natrialba sp. C21 appears to require the ortho-cleavage pathway. Indeed, assays of the key enzymes involved in the ring cleavage of catechol 1, 2-dioxygenase indicated that degradation of the phenol, naphthalene and pyrene by strain Natrialba sp. C21 was via the ortho-cleavage pathway. Cells grown on aromatic hydrocarbons displayed greater ortho-activities mainly towards catechol, while the meta-activity was very low. Besides, biosurfactants derived from the strain C21 were capable of effectively emulsifying both aromatic and aliphatic hydrocarbons and seem to be particularly promising since they have particular adaptations like the increased stability at high temperature and salinity conditions. This study clearly demonstrates for the first time that strain belonging to the genera Natrialba is able to grow at 25% (w/v) NaCl, utilizing phenol, naphthalene, and pyrene as the sole carbon sources. The results suggest that the isolated halophilic archaeon could be a good candidate for the remediation process in extreme environments polluted by aromatic hydrocarbons. Moreover, the produced biosurfactant offers a multitude of interesting potential applications in various fields of biotechnology.

  17. Intervention Research in Highly Unstable Environments

    PubMed Central

    Buckwalter, Kathleen C.; Grey, Margaret; Bowers, Barbara; McCarthy, Ann Marie; Gross, Deborah; Funk, Marjorie; Beck, Cornelia

    2010-01-01

    This article highlights issues and presents strategies for conducting intervention research in highly unstable environments such as schools, critical care units, and long-term care facilities. The authors draw on their own experiences to discuss the challenges that may be encountered in highly unstable settings. The concept of validity provides a framework for understanding the value of addressing the many methodological issues that can emerge in settings characterized by instability. We explain unstable environments by elaborating on knowable elements that contribute to instability. Strategies are provided for improving success of intervention research in unstable settings by carrying out an environmental assessment prior to beginning a study. PMID:19035619

  18. Isolation of high salinity stress tolerant genes from Pisum sativum by random overexpression in Escherichia coli and their functional validation

    PubMed Central

    Joshi, Amita; Dang, Hung Quang; Vaid, Neha

    2009-01-01

    Salinity stress is one of the major factors which reduce crop plants growth and productivity resulting in significant economic losses worldwide. Therefore, it would be fruitful to isolate and functionally identify new salinity stress-induced genes for understanding the mechanism and developing salinity stress tolerant plants. Based on functional gene screening assay, we have isolated few salinity tolerant genes out of one million Escherichia coli (SOLR) transformants containing pea cDNAs. Sequence analysis of three of these genes revealed homology to Ribosomal-L30E (RPL30E), Chlorophyll-a/b-binding protein (Chla/bBP) and FIDDLEHEAD (FDH). The salinity tolerance of these genes in bacteria was further confirmed by using another strain of E. coli (DH5α) transformants. The homology based computational modeling of these proteins suggested the high degree of conservation with the conserved domains of their homologous partners. The reverse transcriptase polymerase chain reaction (RT-PCR) analysis showed that the expression of these cDNAs (except the FDH) was upregulated in pea plants in response to NaCl stress. We observed that there was no significant effect of Li+ ion on the expression level of these genes, while an increase in response to K+ ion was observed. Overall, this study provides an evidence for a novel function of these genes in high salinity stress tolerance. The PsFDH showed constitutive expression in planta suggesting that it can be used as constitutively expressed marker gene for salinity stress tolerance in plants. This study brings new direction in identifying novel function of unidentified genes in abiotic stress tolerance without previous knowledge of the genome sequence. PMID:19816097

  19. Transport of ions in mesoporous carbon electrodes during capacitive deionization of high-salinity solutions.

    PubMed

    Sharma, K; Kim, Y-H; Gabitto, J; Mayes, R T; Yiacoumi, S; Bilheux, H Z; Walker, L M H; Dai, S; Tsouris, C

    2015-01-27

    Desalination of high-salinity solutions has been studied using a novel experimental technique and a theoretical model. Neutron imaging has been employed to visualize lithium ions in mesoporous carbon materials, which are used as electrodes in capacitive deionization (CDI) for water desalination. Experiments were conducted with a flow-through CDI cell designed for neutron imaging and with lithium-6 chloride ((6)LiCl) as the electrolyte. Sequences of neutron images have been obtained at a relatively high concentration of (6)LiCl solution to provide information on the transport of ions within the electrodes. A new model that computes the individual ionic concentration profiles inside mesoporous carbon electrodes has been used to simulate the CDI process. Modifications have also been introduced into the simulation model to calculate results at high electrolyte concentrations. Experimental data and simulation results provide insight into why CDI is not effective for desalination of high ionic-strength solutions. The combination of experimental information, obtained through neutron imaging, with the theoretical model will help in the design of CDI devices, which can improve the process for high ionic-strength solutions.

  20. High Temperature and Salinity Enhance Soil Nitrogen Mineralization in a Tidal Freshwater Marsh

    PubMed Central

    Gao, Haifeng; Bai, Junhong; He, Xinhua; Zhao, Qingqing; Lu, Qiongqiong; Wang, Junjing

    2014-01-01

    Soil nitrogen (N) mineralization in wetlands is sensitive to various environmental factors. To compare the effects of salinity and temperature on N mineralization, wetland soils from a tidal freshwater marsh locating in the Yellow River Delta was incubated over a 48-d anaerobic incubation period under four salinity concentrations (0, 10, 20 and 35‰) and four temperature levels (10, 20, 30 and 40°C). The results suggested that accumulated ammonium nitrogen (NH4+-N) increased with increasing incubation time under all salinity concentrations. Higher temperatures and salinities significantly enhanced soil N mineralization except for a short-term (≈10 days) inhibiting effect found under 35‰ salinity. The incubation time, temperature, salinity and their interactions exhibited significant effects on N mineralization (P<0.001) except the interactive effect of salinity and temperature (P>0.05), while temperature exhibited the greatest effect (P<0.001). Meanwhile, N mineralization processes were simulated using both an effective accumulated temperature model and a one-pool model. Both models fit well with the simulation of soil N mineralization process in the coastal freshwater wetlands under a range of 30 to 40°C (R2 = 0.88–0.99, P<0.01). Our results indicated that an enhanced NH4+-N release with increasing temperature and salinity deriving from the projected global warming could have profound effects on nutrient cycling in coastal wetland ecosystems. PMID:24733366

  1. High temperature and salinity enhance soil nitrogen mineralization in a tidal freshwater marsh.

    PubMed

    Gao, Haifeng; Bai, Junhong; He, Xinhua; Zhao, Qingqing; Lu, Qiongqiong; Wang, Junjing

    2014-01-01

    Soil nitrogen (N) mineralization in wetlands is sensitive to various environmental factors. To compare the effects of salinity and temperature on N mineralization, wetland soils from a tidal freshwater marsh locating in the Yellow River Delta was incubated over a 48-d anaerobic incubation period under four salinity concentrations (0, 10, 20 and 35‰) and four temperature levels (10, 20, 30 and 40°C). The results suggested that accumulated ammonium nitrogen (NH4+-N) increased with increasing incubation time under all salinity concentrations. Higher temperatures and salinities significantly enhanced soil N mineralization except for a short-term (≈10 days) inhibiting effect found under 35‰ salinity. The incubation time, temperature, salinity and their interactions exhibited significant effects on N mineralization (P<0.001) except the interactive effect of salinity and temperature (P>0.05), while temperature exhibited the greatest effect (P<0.001). Meanwhile, N mineralization processes were simulated using both an effective accumulated temperature model and a one-pool model. Both models fit well with the simulation of soil N mineralization process in the coastal freshwater wetlands under a range of 30 to 40°C (R2 = 0.88-0.99, P<0.01). Our results indicated that an enhanced NH4+-N release with increasing temperature and salinity deriving from the projected global warming could have profound effects on nutrient cycling in coastal wetland ecosystems. PMID:24733366

  2. High temperature and salinity enhance soil nitrogen mineralization in a tidal freshwater marsh.

    PubMed

    Gao, Haifeng; Bai, Junhong; He, Xinhua; Zhao, Qingqing; Lu, Qiongqiong; Wang, Junjing

    2014-01-01

    Soil nitrogen (N) mineralization in wetlands is sensitive to various environmental factors. To compare the effects of salinity and temperature on N mineralization, wetland soils from a tidal freshwater marsh locating in the Yellow River Delta was incubated over a 48-d anaerobic incubation period under four salinity concentrations (0, 10, 20 and 35‰) and four temperature levels (10, 20, 30 and 40°C). The results suggested that accumulated ammonium nitrogen (NH4+-N) increased with increasing incubation time under all salinity concentrations. Higher temperatures and salinities significantly enhanced soil N mineralization except for a short-term (≈10 days) inhibiting effect found under 35‰ salinity. The incubation time, temperature, salinity and their interactions exhibited significant effects on N mineralization (P<0.001) except the interactive effect of salinity and temperature (P>0.05), while temperature exhibited the greatest effect (P<0.001). Meanwhile, N mineralization processes were simulated using both an effective accumulated temperature model and a one-pool model. Both models fit well with the simulation of soil N mineralization process in the coastal freshwater wetlands under a range of 30 to 40°C (R2 = 0.88-0.99, P<0.01). Our results indicated that an enhanced NH4+-N release with increasing temperature and salinity deriving from the projected global warming could have profound effects on nutrient cycling in coastal wetland ecosystems.

  3. Effects of salinity build-up on biomass characteristics and trace organic chemical removal: implications on the development of high retention membrane bioreactors.

    PubMed

    Luo, Wenhai; Hai, Faisal I; Kang, Jinguo; Price, William E; Guo, Wenshan; Ngo, Hao H; Yamamoto, Kazuo; Nghiem, Long D

    2015-02-01

    This study investigated the impact of salinity build-up on the performance of membrane bioreactor (MBR), specifically in terms of the removal and fate of trace organic chemicals (TrOCs), nutrient removal, and biomass characteristics. Stepwise increase of the influent salinity, simulating salinity build-up in high retention MBRs, adversely affected the metabolic activity in the bioreactor, thereby reducing organic and nutrient removal. The removal of hydrophilic TrOCs by MBR decreased due to salinity build-up. By contrast, with the exception of 17α-ethynylestradiol, the removal of all hydrophobic TrOCs was not affected at high salinity. Moreover, salinity build-up had negligible impact on the residual accumulation of TrOCs in the sludge phase except for a few hydrophilic compounds. Additionally, the response of the biomass to salinity stress also dramatically enhanced the release of both soluble microbial products (SMP) and extracellular polymeric substances (EPS), leading to severe membrane fouling.

  4. High-temperature corrosion in halogen environments

    SciTech Connect

    McNallan, M. )

    1994-09-01

    Halogen contaminants, particularly chlorine and fluorine, cause accelerated corrosion in such high-temperature systems as waste incinerators and waste heat recuperators on metallurgical furnaces. The mechanisms by which these phenomena occur are reviewed and discussed with the goal of identifying appropriate corrosion control strategies for materials that operate in these environments.

  5. Salinity Adaptation and the Contribution of Parental Environmental Effects in Medicago truncatula

    PubMed Central

    Moriuchi, Ken S.; Friesen, Maren L.; Cordeiro, Matilde A.; Badri, Mounawer; Vu, Wendy T.; Main, Bradley J.; Aouani, Mohamed Elarbi; Nuzhdin, Sergey V.; Strauss, Sharon Y.; von Wettberg, Eric J. B.

    2016-01-01

    High soil salinity negatively influences plant growth and yield. Some taxa have evolved mechanisms for avoiding or tolerating elevated soil salinity, which can be modulated by the environment experienced by parents or offspring. We tested the contribution of the parental and offspring environments on salinity adaptation and their potential underlying mechanisms. In a two-generation greenhouse experiment, we factorially manipulated salinity concentrations for genotypes of Medicago truncatula that were originally collected from natural populations that differed in soil salinity. To compare population level adaptation to soil salinity and to test the potential mechanisms involved we measured two aspects of plant performance, reproduction and vegetative biomass, and phenological and physiological traits associated with salinity avoidance and tolerance. Saline-origin populations had greater biomass and reproduction under saline conditions than non-saline populations, consistent with local adaptation to saline soils. Additionally, parental environmental exposure to salt increased this difference in performance. In terms of environmental effects on mechanisms of salinity adaptation, parental exposure to salt spurred phenological differences that facilitated salt avoidance, while offspring exposure to salt resulted in traits associated with greater salt tolerance. Non-saline origin populations expressed traits associated with greater growth in the absence of salt while, for saline adapted populations, the ability to maintain greater performance in saline environments was also associated with lower growth potential in the absence of salt. Plastic responses induced by parental and offspring environments in phenology, leaf traits, and gas exchange contribute to salinity adaptation in M. truncatula. The ability of plants to tolerate environmental stress, such as high soil salinity, is likely modulated by a combination of parental effects and within-generation phenotypic

  6. Salinity Adaptation and the Contribution of Parental Environmental Effects in Medicago truncatula.

    PubMed

    Moriuchi, Ken S; Friesen, Maren L; Cordeiro, Matilde A; Badri, Mounawer; Vu, Wendy T; Main, Bradley J; Aouani, Mohamed Elarbi; Nuzhdin, Sergey V; Strauss, Sharon Y; von Wettberg, Eric J B

    2016-01-01

    High soil salinity negatively influences plant growth and yield. Some taxa have evolved mechanisms for avoiding or tolerating elevated soil salinity, which can be modulated by the environment experienced by parents or offspring. We tested the contribution of the parental and offspring environments on salinity adaptation and their potential underlying mechanisms. In a two-generation greenhouse experiment, we factorially manipulated salinity concentrations for genotypes of Medicago truncatula that were originally collected from natural populations that differed in soil salinity. To compare population level adaptation to soil salinity and to test the potential mechanisms involved we measured two aspects of plant performance, reproduction and vegetative biomass, and phenological and physiological traits associated with salinity avoidance and tolerance. Saline-origin populations had greater biomass and reproduction under saline conditions than non-saline populations, consistent with local adaptation to saline soils. Additionally, parental environmental exposure to salt increased this difference in performance. In terms of environmental effects on mechanisms of salinity adaptation, parental exposure to salt spurred phenological differences that facilitated salt avoidance, while offspring exposure to salt resulted in traits associated with greater salt tolerance. Non-saline origin populations expressed traits associated with greater growth in the absence of salt while, for saline adapted populations, the ability to maintain greater performance in saline environments was also associated with lower growth potential in the absence of salt. Plastic responses induced by parental and offspring environments in phenology, leaf traits, and gas exchange contribute to salinity adaptation in M. truncatula. The ability of plants to tolerate environmental stress, such as high soil salinity, is likely modulated by a combination of parental effects and within-generation phenotypic

  7. Salinity Adaptation and the Contribution of Parental Environmental Effects in Medicago truncatula.

    PubMed

    Moriuchi, Ken S; Friesen, Maren L; Cordeiro, Matilde A; Badri, Mounawer; Vu, Wendy T; Main, Bradley J; Aouani, Mohamed Elarbi; Nuzhdin, Sergey V; Strauss, Sharon Y; von Wettberg, Eric J B

    2016-01-01

    High soil salinity negatively influences plant growth and yield. Some taxa have evolved mechanisms for avoiding or tolerating elevated soil salinity, which can be modulated by the environment experienced by parents or offspring. We tested the contribution of the parental and offspring environments on salinity adaptation and their potential underlying mechanisms. In a two-generation greenhouse experiment, we factorially manipulated salinity concentrations for genotypes of Medicago truncatula that were originally collected from natural populations that differed in soil salinity. To compare population level adaptation to soil salinity and to test the potential mechanisms involved we measured two aspects of plant performance, reproduction and vegetative biomass, and phenological and physiological traits associated with salinity avoidance and tolerance. Saline-origin populations had greater biomass and reproduction under saline conditions than non-saline populations, consistent with local adaptation to saline soils. Additionally, parental environmental exposure to salt increased this difference in performance. In terms of environmental effects on mechanisms of salinity adaptation, parental exposure to salt spurred phenological differences that facilitated salt avoidance, while offspring exposure to salt resulted in traits associated with greater salt tolerance. Non-saline origin populations expressed traits associated with greater growth in the absence of salt while, for saline adapted populations, the ability to maintain greater performance in saline environments was also associated with lower growth potential in the absence of salt. Plastic responses induced by parental and offspring environments in phenology, leaf traits, and gas exchange contribute to salinity adaptation in M. truncatula. The ability of plants to tolerate environmental stress, such as high soil salinity, is likely modulated by a combination of parental effects and within-generation phenotypic

  8. Water salination: a source of energy.

    PubMed

    Norman, R S

    1974-10-25

    The thermodynamically reversible mixing of freshwater and seawater at constant temperature releases free energy. Salination power as a resource is comparable with hydroelectric power in magnitude; U.S. freshwater runoff could yield over 10(10) watts. The energy flux available for natural salination is equivalent to each river in the world ending at its mouth in a waterfall 225 meters high. An osmotic salination converter could possibly operate at 25 percent efficiency. This energy source is renewable and nonpolluting. Although its full utilization would destroy estuarine environments, it might be practical for specialized purposes.

  9. Fructose Accelerates UV-C Induced Photochemical Degradation of Pentachlorophenol in Low and High Salinity Water.

    PubMed

    Nayak, Shaila; O'Donnell, Sean-Erik; Sales, Christopher M; Tikekar, Rohan V

    2016-06-01

    A novel process involving 254 nm UV-C and fructose to degrade pentachlorophenol (PCP), a pollutant, in low and high salinity (0-10 g/L salt) solutions is presented. The first order rate constants in the presence of 0, 300, and 500 mM fructose were 0.23 ± 0.04, 0.54 ± 0.01, and 1.18 ± 0.03 min(-1), respectively. Experimental evidence has shown generation of hydrogen peroxide and singlet oxygen from the UV-C exposure of fructose, which may have accelerated PCP degradation. Although salts (sodium, potassium, and calcium chloride, 1101:6.4:1) are expected to enhance the degradation rate due to generation of reactive halide species (RHS) from exposure to UV-C light, 10 g/L salt decreased the degradation rates in both the absence and presence of fructose. An LC-ESI-MS spectrum of the reaction mixture revealed a high relative abundance at m/z of 215 that corresponds to a fructose-chlorine adduct, indicating that fructose may have scavenged these RHS and prevented their reaction with PCP.

  10. Fructose Accelerates UV-C Induced Photochemical Degradation of Pentachlorophenol in Low and High Salinity Water.

    PubMed

    Nayak, Shaila; O'Donnell, Sean-Erik; Sales, Christopher M; Tikekar, Rohan V

    2016-06-01

    A novel process involving 254 nm UV-C and fructose to degrade pentachlorophenol (PCP), a pollutant, in low and high salinity (0-10 g/L salt) solutions is presented. The first order rate constants in the presence of 0, 300, and 500 mM fructose were 0.23 ± 0.04, 0.54 ± 0.01, and 1.18 ± 0.03 min(-1), respectively. Experimental evidence has shown generation of hydrogen peroxide and singlet oxygen from the UV-C exposure of fructose, which may have accelerated PCP degradation. Although salts (sodium, potassium, and calcium chloride, 1101:6.4:1) are expected to enhance the degradation rate due to generation of reactive halide species (RHS) from exposure to UV-C light, 10 g/L salt decreased the degradation rates in both the absence and presence of fructose. An LC-ESI-MS spectrum of the reaction mixture revealed a high relative abundance at m/z of 215 that corresponds to a fructose-chlorine adduct, indicating that fructose may have scavenged these RHS and prevented their reaction with PCP. PMID:27160945

  11. Escherichia coli O157:H7 bacteriophage (phi)241 isolated from an industrial cucumber fermentation at high acidity and salinity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel phage, (phi)241, specific for Escherichia coli O157:H7 was isolated from an industrial cucumber fermentation where both acidity (pH less than or equal to 3.7) and salinity (greater than or equal to 5% NaCl) were high. The phage belongs to the Myoviridae family. Its latent period was 15 min a...

  12. The improved resistance to high salinity induced by trehalose is associated with ionic regulation and osmotic adjustment in Catharanthus roseus.

    PubMed

    Chang, Bowen; Yang, Lei; Cong, Weiwei; Zu, Yuangang; Tang, Zhonghua

    2014-04-01

    The effects of exogenous trehalose (Tre) on salt tolerance of pharmaceutical plant Catharanthus roseus and the physiological mechanisms were both investigated in this study. The results showed that the supplement of Tre in saline condition (250 mM NaCl) largely alleviated the inhibitory effects of salinity on plant growth, namely biomass accumulation and total leaf area per plant. In this saline condition, the decreased level of relative water content (RWC) and photosynthetic rate were also greatly rescued by exogenous Tre. This improved performance of plants under high salinity induced by Tre could be partly ascribed to its ability to decrease accumulation of sodium, and increase potassium in leaves. The exogenous Tre led to high levels of fructose, glucose, sucrose and Tre inside the salt-stressed plants during whole the three-week treatment. The major free amino acids such as proline, arginine, threonine and glutamate were also largely elevated in the first two-week course of treatment with Tre in saline solution. It was proposed here that Tre might act as signal to make the salt-stressed plants actively increase internal compatible solutes, including soluble sugars and free amino acids, to control water loss, leaf gas exchange and ionic flow at the onset of salt stress. The application of Tre in saline condition also promoted the accumulation of alkaloids. The regulatory role of Tre in improving salt tolerance was optimal with an exogenous concentration of 10 mM Tre. Larger concentrations of Tre were supra-optimum and adversely affected plant growth. PMID:24589477

  13. Removing organic and nitrogen content from a highly saline municipal wastewater reverse osmosis concentrate by UV/H2O2-BAC treatment.

    PubMed

    Pradhan, Shovana; Fan, Linhua; Roddick, Felicity A

    2015-10-01

    Reverse osmosis (RO) concentrate (ROC) streams generated from RO-based municipal wastewater reclamation processes pose potential health and environmental risks on their disposal to confined water bodies such as bays. A UV/H2O2 advanced oxidation process followed by a biological activated carbon (BAC) treatment was evaluated at lab-scale for the removal of organic and nutrient content from a highly saline ROC (TDS 16 g L(-1), EC 23.5 mS cm(-1)) for its safe disposal to the receiving environment. Over the 230-day operation of the UV/H2O2-BAC process, the colour and UV absorbance (254 nm) of the ROC were reduced to well below those of the influent to the reclamation process. The concentrations of DOC and total nitrogen (TN) were reduced by approximately 60% at an empty bed contact time (EBCT) of 60 min. The reduction in ammonia nitrogen by the BAC remained high under all conditions tested (>90%). Further investigation confirmed that the presence of residual peroxide in the UV/H2O2 treated ROC was beneficial for DOC removal, but markedly inhibited the activities of the nitrifying bacteria (i.e., nitrite oxidising bacteria) in the BAC system and hence compromised total nitrogen removal. This work demonstrated that the BAC treatment could be acclimated to the very high salinity environment, and could be used as a robust method for the removal of organic matter and nitrogen from the pre-oxidised ROC under optimised conditions.

  14. Effects of high salinity wastewater discharges on unionid mussels in the Allegheny River, Pennsylvania

    USGS Publications Warehouse

    Kathleen Patnode,; Hittle, Elizabeth A.; Robert Anderson,; Lora Zimmerman,; Fulton, John W.

    2015-01-01

    We examined the effect of high salinity wastewater (brine) from oil and natural gas drilling on freshwater mussels in the Allegheny River, Pennsylvania, during 2012. Mussel cages (N = 5 per site) were deployed at two sites upstream and four sites downstream of a brine treatment facility on the Allegheny River. Each cage contained 20 juvenile northern riffleshell mussels Epioblasma torulosa rangiana). Continuous specific conductance and temperature data were recorded by water quality probes deployed at each site. To measure the amount of mixing throughout the entire study area, specific conductance surveys were completed two times during low-flow conditions along transects from bank to bank that targeted upstream (reference) reaches, a municipal wastewater treatment plant discharge upstream of the brine-facility discharge, the brine facility, and downstream reaches. Specific conductance data indicated that high specific conductance water from the brine facility (4,000–12,000 µS/cm; mean 7,846) compared to the reference reach (103–188 µS/cm; mean 151) is carried along the left descending bank of the river and that dilution of the discharge via mixing does not occur until 0.5 mi (805 m) downstream. Juvenile northern riffleshell mussel survival was severely impaired within the high specific conductance zone (2 and 34% at and downstream of the brine facility, respectively) and at the municipal wastewater treatment plant (21%) compared to background (84%). We surveyed native mussels (family Unionidae) at 10 transects: 3 upstream, 3 within, and 4 downstream of the high specific conductance zone. Unionid mussel abundance and diversity were lower for all transects within and downstream of the high conductivity zone compared to upstream. The results of this study clearly demonstrate in situ toxicity to juvenile northern riffleshell mussels, a federally endangered species, and to the native unionid mussel assemblage located downstream of a brine discharge to the

  15. The Arabidopsis floral repressor BFT delays flowering by competing with FT for FD binding under high salinity.

    PubMed

    Ryu, Jae Yong; Lee, Hyo-Jun; Seo, Pil Joon; Jung, Jae-Hoon; Ahn, Ji Hoon; Park, Chung-Mo

    2014-02-01

    Soil salinity is one of the most serious agricultural problems that significantly reduce crop yields in the arid and semi-arid regions. It influences various phases of plant growth and developmental processes, such as seed germination, leaf and stem growth, and reproductive propagation. Salt stress delays the onset of flowering in many plant species. We have previously reported that the Arabidopsis BROTHER OF FT AND TFL1 (BFT) acts as a floral repressor under salt stress. However, the molecular mechanisms underlying the BFT function in the salt regulation of flowering induction is unknown. In this work, we found that BFT delays flowering under high salinity by competing with FLOWERING LOCUS T (FT) for binding to the FD transcription factor. The flowering time of FD-deficient fd-2 mutant was insensitive to high salinity. BFT interacts with FD in the nucleus via the C-terminal domain of FD, which is also required for the interaction of FD with FT, and interferes with the FT-FD interaction. These observations indicate that BFT constitutes a distinct salt stress signaling pathway that modulates the function of the FT-FD module and possibly provides an adaptation strategy that fine-tunes photoperiodic flowering under high salinity.

  16. Evaluating integrated strategies for robust treatment of high saline piggery wastewater.

    PubMed

    Kim, Hyun-Chul; Choi, Wook Jin; Chae, A Na; Park, Joonhong; Kim, Hyung Joo; Song, Kyung Guen

    2016-02-01

    In this study, we integrated physicochemical and biological strategies for the robust treatment of piggery effluent in which high levels of organic constituents, inorganic nutrients, color, and salts remained. Piggery effluent that was stabilized in an anaerobic digester was sequentially coagulated, micro-filtered, and air-stripped prior to biological treatment with mixotrophic algal species that showed tolerance to high salinity (up to 4.8% as Cl(-)). The algae treatment was conducted with continuous O2 supplementation instead of using the combination of high lighting and CO2 injection. The microalga Scenedesmus quadricauda employed as a bio-agent was capable of assimilating both nitrogen (222 mg N g cell(-1) d(-1)) and phosphorus (9.3 mg P g cell(-1) d(-1)) and utilizing dissolved organics (2053 mg COD g cell(-1) d(-1)) as a carbon source in a single treatment process under the heterotrophic growth conditions. The heterotrophic growth of S. quadricauda proceeded rapidly by directly incorporating organic substrate in the oxidative assimilation process, which coincided with the high productivity of algal biomass, accounting for 2.4 g cell L(-1) d(-1). The algae-treated wastewater was subsequently ozonated to comply with discharge permits that limit color in the effluent, which also resulted in improved biodegradability of residual organics. The integrated treatment scheme proposed in this study also achieved 89% removal of COD, 88% removal of TN, and 60% removal of TP. The advantage of using the hybrid configuration suggests that this would be a promising strategy in full-scale treatment facilities for piggery effluent. PMID:26689659

  17. High resolution synoptic salinity mapping to identify groundwater--surface water discharges in lowland rivers.

    PubMed

    Pai, Henry; Villamizar, Sandra R; Harmon, Thomas C

    2015-04-21

    Quantifying distributed lateral groundwater contributions to surface water (GW-SW discharges) is a key aspect of tracking nonpoint-source pollution (NPSP) within a watershed. In this study, we characterized distributed GW-SW discharges and associated salt loading using elevated GW specific conductance (SC) as a tracer along a 38 km reach of the Lower Merced River in Central California. High resolution longitudinal surveys for multiple flows (1.3-150 m(3) s(-1)) revealed river SC gradients that mainly decreased with increasing flow, suggesting a dilution effect and/or reduced GW-SW discharges due to hydraulic gradient reductions. However, exceptions occurred (gradients increasing with increasing flow), pointing to complex spatiotemporal influences on GW-SW dynamics. The surveys revealed detailed variability in salinity gradients, from which we estimated distributed GW-SW discharge and salt loading using a simple mixing model. Modeled cumulative GW discharges for two surveys unaffected by ungauged SW discharges were comparable in magnitude to differential gauging-based discharge estimates and prior GW-SW studies along the same river reach. Ungauged lateral inlets and sparse GW data limited the study, and argue for enhancing monitoring efforts. Our approach provides a rapid and economical method for characterizing NPSP for gaining rivers in the context of integrated watershed modeling and management.

  18. A High-Resolution Global Lake Inventory with Classified Freshwater and Saline Types

    NASA Astrophysics Data System (ADS)

    Wang, J.; Sheng, Y.; Song, C.; Urano, T.; Satori, P. J.; Ford, S. J.

    2015-12-01

    Lakes are the largest surface water stock readily accessible to human need. Monitoring and understanding the distribution, change, and vulnerability of contemporary lakes remain as one of the top priorities in hydrological studies. Our recent project supported by the U.S. Geological Survey produced a high-resolution inventory of global lake extents (greater than 0.4 hectare) using circa 2000 Landsat TM and ETM+ imagery, which further enhanced human's vision on the precise physical distribution of contemporary surface water stock worldwide. Continuous advancement in understanding regional-to-global surface water stress demands expanded knowledge on not only water discharge in streams and rivers but also stock in freshwater lakes. Yet to our best knowledge, we are currently lacking detailed, reliable inventory of lake water types on a global scale. Here we represent a progressing world lake database with differentiated freshwater and saline categories by integrating hydrological analysis, climate data, and spectral remote sensing. This effort is a natural extension of our global lake mapping project and a prerequisite of our overarching goal to assess global lake vulnerability. The completed lake data will also benefit a wide spectrum of scientific disciplines and water resources management agencies.

  19. A high resolution salinity time series 1993-2012 in the North Atlantic from Argo and Altimeter data

    NASA Astrophysics Data System (ADS)

    Stendardo, I.; Rhein, M.; Hollmann, R.

    2016-04-01

    The study of salinity changes has been hampered by the lack of temporal and spatial resolution of the observations. In order to improve the spatial and temporal distribution of salinity observations, we used the Gravest Empirical Mode (GEM) technique to calculate high-resolution salinity distributions as a function of dynamic height for the period 1993-2012. This technique combined Argo and altimeter data to exploit the relationship between T/S profiles and dynamic height in the North Atlantic. The method was valid in the upper 700 m mainly at and near the pathways of the North Atlantic Current (NAC), but failed in regions with weak stratification or with ambiguities in the T/S relationships. Coherent, multiannual large-scale variability was observed, with many features present in all regions, albeit with weaker amplitudes in the eastern basins. Some of the interannual features in the northeastern Atlantic basins were unrelated to the variability further south and west, pointing to an occasional advection of subtropical water in the eastern Atlantic. Origin and advection of salinity anomalies with the NAC from the North American Basin into the western subpolar North Atlantic are correlated with the state of the North Atlantic Oscillation (NAO) and dampened by the surface freshwater fluxes. Other mechanisms influencing the salinity pattern are the changing location of the subpolar front, also related to the NAO. The large multiyear variability in the 20 year time series obscured any potential trends caused by global warming. Only the Rockall Trough showed a salinity increase of 0.03 per decade.

  20. Evaluation of the halophyte Salsola soda as an alternative crop for saline soils high in selenium and boron.

    PubMed

    Centofanti, Tiziana; Bañuelos, Gary

    2015-07-01

    Urbanization, industrial development, and intensive agriculture have caused soil contamination and land degradation in many areas of the world. Salinization is one important factor contributing to land degradation and it affects agricultural production and environmental quality. When salinization is combined with soil pollution by trace elements, as it occurs in many arid and semi-arid regions around the world, strategies to phyto-manage pollutants and sustain crop production need to be implemented. In this study, we present the case of saline soils in the West side of Central California which contain naturally-occurring selenium (Se), boron (B), and other salts, such as NaCl, CaCl2, Na2SO4, and Na2SeO4. To sustain crop production on Se- and B-laden arid saline soils, we investigated the potential of the halophyte "agretti" (Salsola soda L.) as an alternative crop. The aim of our greenhouse study was to examine adaptability, B tolerance, and Se accumulation by S. soda grown on soils collected from a typical saline-laden field site located on the West side of the San Joaquin Valley (SJV). Our results showed that S. soda tolerates the saline (EC ∼ 10 dS m(-1)) and B-laden soils (10 mg B L(-1)) of the SJV even with the additional irrigation of saline and B rich water (EC ∼ 3 dS m(-1) and 4 mg B L(-1)). Under these growing conditions, the plant can accumulate high concentrations of Na (80 g Na kg(-1) DW), B (100 mg B kg(-1) DW), and Se (3-4 mg Se kg(-1) DW) without showing toxicity symptoms. Hence, S. soda showed promising potential as a plant species that can be grown in B-laden saline soils and accumulate and potentially manage excessive soluble Se and B in soil.

  1. Evaluation of the halophyte Salsola soda as an alternative crop for saline soils high in selenium and boron.

    PubMed

    Centofanti, Tiziana; Bañuelos, Gary

    2015-07-01

    Urbanization, industrial development, and intensive agriculture have caused soil contamination and land degradation in many areas of the world. Salinization is one important factor contributing to land degradation and it affects agricultural production and environmental quality. When salinization is combined with soil pollution by trace elements, as it occurs in many arid and semi-arid regions around the world, strategies to phyto-manage pollutants and sustain crop production need to be implemented. In this study, we present the case of saline soils in the West side of Central California which contain naturally-occurring selenium (Se), boron (B), and other salts, such as NaCl, CaCl2, Na2SO4, and Na2SeO4. To sustain crop production on Se- and B-laden arid saline soils, we investigated the potential of the halophyte "agretti" (Salsola soda L.) as an alternative crop. The aim of our greenhouse study was to examine adaptability, B tolerance, and Se accumulation by S. soda grown on soils collected from a typical saline-laden field site located on the West side of the San Joaquin Valley (SJV). Our results showed that S. soda tolerates the saline (EC ∼ 10 dS m(-1)) and B-laden soils (10 mg B L(-1)) of the SJV even with the additional irrigation of saline and B rich water (EC ∼ 3 dS m(-1) and 4 mg B L(-1)). Under these growing conditions, the plant can accumulate high concentrations of Na (80 g Na kg(-1) DW), B (100 mg B kg(-1) DW), and Se (3-4 mg Se kg(-1) DW) without showing toxicity symptoms. Hence, S. soda showed promising potential as a plant species that can be grown in B-laden saline soils and accumulate and potentially manage excessive soluble Se and B in soil. PMID:25897503

  2. Whole-Genome Analysis of a Novel Fish Reovirus (MsReV) Discloses Aquareovirus Genomic Structure Relationship with Host in Saline Environments.

    PubMed

    Chen, Zhong-Yuan; Gao, Xiao-Chan; Zhang, Qi-Ya

    2015-08-01

    Aquareoviruses are serious pathogens of aquatic animals. Here, genome characterization and functional gene analysis of a novel aquareovirus, largemouth bass Micropterus salmoides reovirus (MsReV), was described. It comprises 11 dsRNA segments (S1-S11) covering 24,024 bp, and encodes 12 putative proteins including the inclusion forming-related protein NS87 and the fusion-associated small transmembrane (FAST) protein NS22. The function of NS22 was confirmed by expression in fish cells. Subsequently, MsReV was compared with two representative aquareoviruses, saltwater fish turbot Scophthalmus maximus reovirus (SMReV) and freshwater fish grass carp reovirus strain 109 (GCReV-109). MsReV NS87 and NS22 genes have the same structure and function with those of SMReV, whereas GCReV-109 is either missing the coiled-coil region in NS79 or the gene-encoding NS22. Significant similarities are also revealed among equivalent genome segments between MsReV and SMReV, but a difference is found between MsReV and GCReV-109. Furthermore, phylogenetic analysis showed that 13 aquareoviruses could be divided into freshwater and saline environments subgroups, and MsReV was closely related to SMReV in saline environments. Consequently, these viruses from hosts in saline environments have more genomic structural similarities than the viruses from hosts in freshwater. This is the first study of the relationships between aquareovirus genomic structure and their host environments. PMID:26247954

  3. Whole-Genome Analysis of a Novel Fish Reovirus (MsReV) Discloses Aquareovirus Genomic Structure Relationship with Host in Saline Environments.

    PubMed

    Chen, Zhong-Yuan; Gao, Xiao-Chan; Zhang, Qi-Ya

    2015-08-01

    Aquareoviruses are serious pathogens of aquatic animals. Here, genome characterization and functional gene analysis of a novel aquareovirus, largemouth bass Micropterus salmoides reovirus (MsReV), was described. It comprises 11 dsRNA segments (S1-S11) covering 24,024 bp, and encodes 12 putative proteins including the inclusion forming-related protein NS87 and the fusion-associated small transmembrane (FAST) protein NS22. The function of NS22 was confirmed by expression in fish cells. Subsequently, MsReV was compared with two representative aquareoviruses, saltwater fish turbot Scophthalmus maximus reovirus (SMReV) and freshwater fish grass carp reovirus strain 109 (GCReV-109). MsReV NS87 and NS22 genes have the same structure and function with those of SMReV, whereas GCReV-109 is either missing the coiled-coil region in NS79 or the gene-encoding NS22. Significant similarities are also revealed among equivalent genome segments between MsReV and SMReV, but a difference is found between MsReV and GCReV-109. Furthermore, phylogenetic analysis showed that 13 aquareoviruses could be divided into freshwater and saline environments subgroups, and MsReV was closely related to SMReV in saline environments. Consequently, these viruses from hosts in saline environments have more genomic structural similarities than the viruses from hosts in freshwater. This is the first study of the relationships between aquareovirus genomic structure and their host environments.

  4. Whole-Genome Analysis of a Novel Fish Reovirus (MsReV) Discloses Aquareovirus Genomic Structure Relationship with Host in Saline Environments

    PubMed Central

    Chen, Zhong-Yuan; Gao, Xiao-Chan; Zhang, Qi-Ya

    2015-01-01

    Aquareoviruses are serious pathogens of aquatic animals. Here, genome characterization and functional gene analysis of a novel aquareovirus, largemouth bass Micropterus salmoides reovirus (MsReV), was described. It comprises 11 dsRNA segments (S1–S11) covering 24,024 bp, and encodes 12 putative proteins including the inclusion forming-related protein NS87 and the fusion-associated small transmembrane (FAST) protein NS22. The function of NS22 was confirmed by expression in fish cells. Subsequently, MsReV was compared with two representative aquareoviruses, saltwater fish turbot Scophthalmus maximus reovirus (SMReV) and freshwater fish grass carp reovirus strain 109 (GCReV-109). MsReV NS87 and NS22 genes have the same structure and function with those of SMReV, whereas GCReV-109 is either missing the coiled-coil region in NS79 or the gene-encoding NS22. Significant similarities are also revealed among equivalent genome segments between MsReV and SMReV, but a difference is found between MsReV and GCReV-109. Furthermore, phylogenetic analysis showed that 13 aquareoviruses could be divided into freshwater and saline environments subgroups, and MsReV was closely related to SMReV in saline environments. Consequently, these viruses from hosts in saline environments have more genomic structural similarities than the viruses from hosts in freshwater. This is the first study of the relationships between aquareovirus genomic structure and their host environments. PMID:26247954

  5. Delivering high speed communications into harsh environments

    SciTech Connect

    2007-08-15

    For those who believe that information is power, extending an organization's knowledge base throughout the entire enterprise can not help but improve operations. Until recently, though, field operations were often left out of the loop, as extending high-bandwidth communications into harsh environments often proved impossible. The article, submitted by Optical Cable Corp., describes development of a tight-buffered fibre optic cable designed for harsh underground mining conditions. CONSOL has installed almost 100 miles of the cable across 10 different installations. 1 fig., 1 photo.

  6. Prediction of surface tension of monovalent aqueous electrolytic solutions at high salinity

    NASA Astrophysics Data System (ADS)

    Leroy, P.; Lassin, A.; Azaroual, M.

    2009-12-01

    The surface tension between gas and pore water may be of crucial importance in some geological contexts like the storage of carbon dioxide in saline aquifers, which is a promising option for reducing CO2 atmospheric concentration. As an example, the problematic of capillary failure is, to a large extent, controlled by the gas/water surface tension. The higher the surface tension, the higher is the pressure difference between the two phases to attain capillary failure. The complexity of such a geochemical system (i.e., gas/brine interface) requires to start by studying simple systems where the physical chemical parameters are well constrained. Air/water surface tension depends on pressure, temperature, and on the chemical composition of the aqueous solution. At constant pressure and temperature, any solute that increases the surface tension of water may exhibit a negative total adsorption at the air/water interface. At high ionic strength (> 1 eq/kg H2O), the effect of ions on water structure is responsible for the variation of the surface tension. Structure-making ions (i.e., Na+ in the NaCl electrolyte) are fleeing the interface because they can better organize the water dipoles in bulk water than at the interface. The opposite is true for the structure-breaking ions (i.e., Cl- in the NaCl electrolyte): the total free energy of the system is minimized by pushing the structure-breaking ions toward the interface, because the bulk water can better organize their hydrogen bonding network without these ions. In the present study, we focus our attention on the characterization of the influence of ions at air/water interface on surface tension in the case of NaCl, NaNO3, KCl, KNO3, HCl, and HNO3 electrolytes. We use an electrostatic model based on the generalized Poisson-Boltzmann approach to describe attraction and repulsion of ions at air/water interface. This approach takes into account the mean electrostatic potential at the interface and a free energy of interaction

  7. Effect of six kinds of scale inhibitors on calcium carbonate precipitation in high salinity wastewater at high temperatures.

    PubMed

    Li, Xiaochen; Gao, Baoyu; Yue, Qinyan; Ma, Defang; Rong, Hongyan; Zhao, Pin; Teng, Pengyou

    2015-03-01

    Precipitation of calcium carbonate (CaCO3) scale on heat transfer surfaces is a serious and expensive problem widely occurring in numerous industrial processes. In this study, we compared the scale inhibition effect of six kinds of commercial scale inhibitors and screened out the best one (scale inhibitor SQ-1211) to investigate its scale inhibition performance in highly saline conditions at high temperature through static scale inhibition tests. The influences of scale inhibitor dosage, temperature, heating time and pH on the inhibition efficiency of the optimal scale inhibitor were investigated. The morphologies and crystal structures of the precipitates were characterized by Scanning Electron Microscopy and X-ray Diffraction analysis. Results showed that the scale inhibition efficiency of the optimal scale inhibitor decreased with the increase of the reaction temperature. When the concentration of Ca2+ was 1600 mg/L, the scale inhibition rate could reach 90.7% at 80°C at pH8. The optimal scale inhibitor could effectively retard scaling at high temperature. In the presence of the optimal scale inhibitor, the main crystal structure of CaCO3 changed from calcite to aragonite. PMID:25766020

  8. Effect of six kinds of scale inhibitors on calcium carbonate precipitation in high salinity wastewater at high temperatures.

    PubMed

    Li, Xiaochen; Gao, Baoyu; Yue, Qinyan; Ma, Defang; Rong, Hongyan; Zhao, Pin; Teng, Pengyou

    2015-03-01

    Precipitation of calcium carbonate (CaCO3) scale on heat transfer surfaces is a serious and expensive problem widely occurring in numerous industrial processes. In this study, we compared the scale inhibition effect of six kinds of commercial scale inhibitors and screened out the best one (scale inhibitor SQ-1211) to investigate its scale inhibition performance in highly saline conditions at high temperature through static scale inhibition tests. The influences of scale inhibitor dosage, temperature, heating time and pH on the inhibition efficiency of the optimal scale inhibitor were investigated. The morphologies and crystal structures of the precipitates were characterized by Scanning Electron Microscopy and X-ray Diffraction analysis. Results showed that the scale inhibition efficiency of the optimal scale inhibitor decreased with the increase of the reaction temperature. When the concentration of Ca2+ was 1600 mg/L, the scale inhibition rate could reach 90.7% at 80°C at pH8. The optimal scale inhibitor could effectively retard scaling at high temperature. In the presence of the optimal scale inhibitor, the main crystal structure of CaCO3 changed from calcite to aragonite.

  9. Tolerance of Venerupis philippinarum to salinity: osmotic and metabolic aspects.

    PubMed

    Carregosa, Vanessa; Figueira, Etelvina; Gil, Ana M; Pereira, Sara; Pinto, Joana; Soares, Amadeu M V M; Freitas, Rosa

    2014-05-01

    In the last few decades, attention has been focused on the impacts of contamination in marine benthic populations, while the responses of aquatic organisms to natural alterations, namely changes in salinity, have received little attention. In fact, salinity is one of the dominant environmental factors affecting marine bivalves. The ebb and flood of the tide, combined with fresh water inputs from rivers or heavy rainy events, and with extremely dry and hot seasons, can dramatically alter water salinity. Therefore, the salinity of a certain environment can restrict the spatial distribution of a given population, which is especially important when assessing the spread of an invasive species into a new environment. In the present study, the main objective was to understand how clam Venerupis philippinarum copes with salinity changes and, hence biochemical and metabolomic alterations, taking place in individuals submitted to a wide range of salinities were investigated. The results showed that V. philippinarum presented high mortality at lower salinities (0 and 7 g/L) but tolerated high salinities (35 and 42 g/L). The quantification of ionic content revealed that, clams had the capacity to maintain ionic homeostasis along the salinity gradient, mainly changing the concentration of Na, but also with the influence of Mg and Ca. The results showed a decrease in protein content at lower salinities (0 to 21 g/L). Glycogen and glucose increased with increasing salinity gradient. (1)H Nuclear Magnetic Resonance (NMR) spectra of clam aqueous extracts revealed different metabolite profiles at 7, 28 and 42 g/L salinities, thus enabling metabolite changes to be measured in relation to salinity.

  10. Tolerance of Venerupis philippinarum to salinity: osmotic and metabolic aspects.

    PubMed

    Carregosa, Vanessa; Figueira, Etelvina; Gil, Ana M; Pereira, Sara; Pinto, Joana; Soares, Amadeu M V M; Freitas, Rosa

    2014-05-01

    In the last few decades, attention has been focused on the impacts of contamination in marine benthic populations, while the responses of aquatic organisms to natural alterations, namely changes in salinity, have received little attention. In fact, salinity is one of the dominant environmental factors affecting marine bivalves. The ebb and flood of the tide, combined with fresh water inputs from rivers or heavy rainy events, and with extremely dry and hot seasons, can dramatically alter water salinity. Therefore, the salinity of a certain environment can restrict the spatial distribution of a given population, which is especially important when assessing the spread of an invasive species into a new environment. In the present study, the main objective was to understand how clam Venerupis philippinarum copes with salinity changes and, hence biochemical and metabolomic alterations, taking place in individuals submitted to a wide range of salinities were investigated. The results showed that V. philippinarum presented high mortality at lower salinities (0 and 7 g/L) but tolerated high salinities (35 and 42 g/L). The quantification of ionic content revealed that, clams had the capacity to maintain ionic homeostasis along the salinity gradient, mainly changing the concentration of Na, but also with the influence of Mg and Ca. The results showed a decrease in protein content at lower salinities (0 to 21 g/L). Glycogen and glucose increased with increasing salinity gradient. (1)H Nuclear Magnetic Resonance (NMR) spectra of clam aqueous extracts revealed different metabolite profiles at 7, 28 and 42 g/L salinities, thus enabling metabolite changes to be measured in relation to salinity. PMID:24556070

  11. Human homeostasis in high-latitude environment.

    PubMed

    Panin, L E

    2007-01-01

    Profound changes occur in human metabolism in high-latitude environments under the action of climatic, industrial, and social factors. These changes involve protein, fat, carbohydrate, vitamin, and macro and microelement metabolism. This allowed us to state that "a polar metabolic type" is formed in the Arctic and Antarctic regions. The most pronounced alterations are found in energy metabolism. They can be characterized as "the change-over from carbohydrate-type metabolism to the lipid one." Metabolic changes are reflected in the chemical composition of internal medium (blood) of the human organism and its homeostasis. However, homeostasis in high-latitude environments depends not only on natural, but also on various conditioning factors, in particular, prolonged emotional stress and inactual nutritional pattern. These two factors exert a pronounced effect on adaptive changes in human metabolism and its homeostasis. Both factors often act concurrently and result in sustained and persistent changes of homeostasis, which lead directly to obesity and development of endocrine and cardiovascular pathology. This is observed not only for newcomers, but also for the indigenous population of the Asian North.

  12. Efficacy of silicon priming and fertigation to modulate seedling's vigor and ion homeostasis of wheat (Triticum aestivum L.) under saline environment.

    PubMed

    Azeem, Muhammad; Iqbal, Naeem; Kausar, Shakila; Javed, M Tariq; Akram, M Sohail; Sajid, M Asim

    2015-09-01

    Seed preconditioning, a short gun approach to modulate the effects of abiotic stresses on crop plants, has recently gained considerable attention of the researchers to induce salinity tolerance in agronomically important crops. The present study was conducted to explore the comparative efficacy of presowing seed priming with silicon (Si) and Si fertigation to modulate the wheat growth and ion dynamics. Seeds of wheat variety, PUNJAB-11, were sown in Petri plates having nutrient solutions with (120 mM) and without NaCl. Six levels of Si (0, 10, 20, 30, 40, or 50 mM), applied as sodium silicate (Na2SiO3), were tested either as a seed priming agent or as a supplement in the nutrient solution. Priming of seeds with Si mitigated the adverse effects of salinity stress on germination percentage, root as well as shoot length, dry and fresh weight. Application of Si either as preconditioning of seeds or addition in the growth medium resulted in reduced accumulation of sodium (Na(+)) in wheat seedlings under saline environment. Seedling's potassium (K(+)) contents either remained unaffected or decreased whereas calcium (Ca(2+)) contents decreased at all Si concentrations except at 30 mM when Si primed seeds were grown under salt stress. Addition of Si, under salt stress, in cultivation medium exerted a positive effect on seedling's K(+) and Ca(2+) contents. Silicon contribution to decontamination strategies was evaluated.

  13. The Pepper Lipoxygenase CaLOX1 Plays a Role in Osmotic, Drought and High Salinity Stress Response.

    PubMed

    Lim, Chae Woo; Han, Sang-Wook; Hwang, In Sun; Kim, Dae Sung; Hwang, Byung Kook; Lee, Sung Chul

    2015-05-01

    In plants, lipoxygenases (LOXs) are involved in various physiological processes, including defense responses to biotic and abiotic stresses. Our previous study had shown that the pepper 9-LOX gene, CaLOX1, plays a crucial role in cell death due to pathogen infection. Here, the function of CaLOX1 in response to osmotic, drought and high salinity stress was examined using CaLOX1-overexpressing (CaLOX1-OX) Arabidopsis plants. Changes in the temporal expression pattern of the CaLOX1 gene were observed when pepper leaves were treated with drought and high salinity, but not when treated with ABA, the primary hormone in response to drought stress. During seed germination and seedling development, CaLOX1-OX plants were more tolerant to ABA, mannitol and high salinity than wild-type plants. In contrast, expression of the ABA-responsive marker genes RAB18 and RD29B was higher in CaLOX1-OX Arabidopsis plants than in wild-type plants. In response to high salinity, CaLOX1-OX plants exhibited enhanced tolerance, compared with the wild type, which was accompanied by decreased accumulation of H2O2 and high levels of RD20, RD29A, RD29B and P5CS gene expression. Similarly, CaLOX1-OX plants were also more tolerant than wild-type plants to severe drought stress. H2O2 production and the relative increase in lipid peroxidation were lower, and the expression of COR15A, DREB2A, RD20, RD29A and RD29B was higher in CaLOX1-OX plants, relative to wild-type plants. Taken together, our results indicate that CaLOX1 plays a crucial role in plant stress responses by modulating the expression of ABA- and stress-responsive marker genes, lipid peroxidation and H2O2 production.

  14. Collection of High Energy Yielding Strains of Saline Microalgae from Southwestern States: Final Report Draft

    SciTech Connect

    Sommerfield, M. R.

    1986-01-01

    Approximately 1,400 individual isolates of microalgae were obtained from surface waters in the Southwest. Of the initial 23 algae screened for growth characteristics, the majority grew best at the lower salinities in both SERI Type I and Type II Media. Growth rates for selected strains approached three doublings per day.

  15. Fundamental Understanding of the Flocculation of Mineral Tailings in High Salinity Water

    NASA Astrophysics Data System (ADS)

    Ji, Yaguan

    In this study, the effect of three polymer flocculants, polyacrylamide (PAM), Magnafloc 1011 (MF) and Al(OH)3-polyacrylamide (Al-PAM), on the settling of mineral freshwater and saline tailings was investigated. The settling of tailings significantly depends on solution salinity, polymer flocculant type and dosage. MF was identified as the most efficient flocculant among the three polymers to enhance the settling of freshwater and saline tailings. The flocculation mechanism of MF was further studied through model clay (i.e. kaolinite) under controlled solution conditions. The maximum initial settling rate (ISR) of kaolinite was found to increase with the addition of NaCl and CaCl2 at the cost of higher MF consumption. Using multiple advanced techniques, the interaction between MF molecules and clay particles were probed. The results indicate that the different settling behaviors of MF treated tailings of various salinities were mainly due to the change of polymer conformations and polymer-particle interactions in the suspensions.

  16. Arhodomonas sp. Strain Seminole and Its Genetic Potential To Degrade Aromatic Compounds under High-Salinity Conditions

    PubMed Central

    Dalvi, Sonal; Nicholson, Carla; Najar, Fares; Roe, Bruce A.; Canaan, Patricia; Hartson, Steven D.

    2014-01-01

    Arhodomonas sp. strain Seminole was isolated from a crude oil-impacted brine soil and shown to degrade benzene, toluene, phenol, 4-hydroxybenzoic acid (4-HBA), protocatechuic acid (PCA), and phenylacetic acid (PAA) as the sole sources of carbon at high salinity. Seminole is a member of the genus Arhodomonas in the class Gammaproteobacteria, sharing 96% 16S rRNA gene sequence similarity with Arhodomonas aquaeolei HA-1. Analysis of the genome predicted a number of catabolic genes for the metabolism of benzene, toluene, 4-HBA, and PAA. The predicted pathways were corroborated by identification of enzymes present in the cytosolic proteomes of cells grown on aromatic compounds using liquid chromatography-mass spectrometry. Genome analysis predicted a cluster of 19 genes necessary for the breakdown of benzene or toluene to acetyl coenzyme A (acetyl-CoA) and pyruvate. Of these, 12 enzymes were identified in the proteome of toluene-grown cells compared to lactate-grown cells. Genomic analysis predicted 11 genes required for 4-HBA degradation to form the tricarboxylic acid (TCA) cycle intermediates. Of these, proteomic analysis of 4-HBA-grown cells identified 6 key enzymes involved in the 4-HBA degradation pathway. Similarly, 15 genes needed for the degradation of PAA to the TCA cycle intermediates were predicted. Of these, 9 enzymes of the PAA degradation pathway were identified only in PAA-grown cells and not in lactate-grown cells. Overall, we were able to reconstruct catabolic steps for the breakdown of a variety of aromatic compounds in an extreme halophile, strain Seminole. Such knowledge is important for understanding the role of Arhodomonas spp. in the natural attenuation of hydrocarbon-impacted hypersaline environments. PMID:25149520

  17. Analysis of inorganic nitrogen and related anions in high salinity water using ion chromatography with tandem UV and conductivity detectors.

    PubMed

    Wilson, Brian; Gandhi, Jay; Zhang, Chunlong Carl

    2011-09-01

    Over 97% of the Earth's water is high salinity water in the form of gulfs, oceans, and salt lakes. There is an increasing concern for the quality of water in bays, gulfs, oceans, and other natural waters. These waters are affected by many different sources of contamination. The sources are, but not limited to, groundwater run-off of nitrogen containing fertilizer, pesticides, cleaning agents, solid wastes, industrial waters, and many more. The final destinations of these contaminants are rivers, lakes, and bayous that eventually will lead to bays, gulfs, and oceans. Many industries depend on the quality of these waters, such as the fishing industry. In addition to wild marine life, there are large aquariums and fish and shrimp farms that are required to know the quality of the water. However, the ability of these industries to monitor their processes is limited. Most analytical methods do not apply to the analysis of high salinity waters. They are dependent on wet chemistry techniques, spectrophotometers, and flow analyzers. These methods do not have the accuracy, precision, and sensitivity when compared to ion chromatography (IC). Since the inception of IC, it has become a standard practice for determining the content of many different water samples. Many IC methods are limited in the range of analytes that can be detected, as well as the numerous sample sources of which the methods are applicable. The main focus of current IC methods does not include high salinity waters. This research demonstrates an ion chromatographic method that has the ability to determine low level concentrations of inorganic nitrogen and related anions (nitrite-N, nitrate-N, phosphorous-P, sulfate, bromide, chloride, sulfide, fluoride, ammonia, calcium, and magnesium) in a single run using a combination of UV and conductivity detectors. This method is applicable to various waters, and uses both freshwater and high salinity water samples.

  18. Determination of UV active inorganic anions in potable and high salinity water by ion pair reversed phase liquid chromatography.

    PubMed

    Sadiq Khan, Sadaf; Riaz, M

    2014-05-01

    Reversed phase column was dynamically modified into anion exchange column using various types of tetraalkylammonium salts as ion pair reagents (IPRs) for the separation and quantification of toxic anions such as nitrite, bromate, bromide and nitrate in potable and high salinity water. Various chromatographic parameters such as types and concentration of IPRs, concentration of organic modifier, phosphate buffer and mobile phase pH were optimized for the base-line separation of anions. The lowest detection limits (LDLs) were 0.2 for nitrate and nitrite, 0.6 µg ml(-1)for bromate and bromide respectively for potable water samples. NaCl and Na₂SO₄ were incorporated in the mobile phase for the analysis of high salinity water samples to minimize matrix interferences. This has resulted in change in elution order of anions, better tolerance of matrix anions such as chloride and sulphate. The developed method was successfully utilized for analysis of anions in potable, high salinity and sea water samples.

  19. Monosaccharide absorption activity of Arabidopsis roots depends on expression profiles of transporter genes under high salinity conditions.

    PubMed

    Yamada, Kohji; Kanai, Motoki; Osakabe, Yuriko; Ohiraki, Haruka; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2011-12-16

    Plant roots are able to absorb sugars from the rhizosphere but also release sugars and other metabolites that are critical for growth and environmental signaling. Reabsorption of released sugar molecules could help reduce the loss of photosynthetically fixed carbon through the roots. Although biochemical analyses have revealed monosaccharide uptake mechanisms in roots, the transporters that are involved in this process have not yet been fully characterized. In the present study we demonstrate that Arabidopsis STP1 and STP13 play important roles in roots during the absorption of monosaccharides from the rhizosphere. Among 14 STP transporter genes, we found that STP1 had the highest transcript level and that STP1 was a major contributor for monosaccharide uptake under normal conditions. In contrast, STP13 was found to be induced by abiotic stress, with low expression under normal conditions. We analyzed the role of STP13 in roots under high salinity conditions where membranes of the epidermal cells were damaged, and we detected an increase in the amount of STP13-dependent glucose uptake. Furthermore, the amount of glucose efflux from stp13 mutants was higher than that from wild type plants under high salinity conditions. These results indicate that STP13 can reabsorb the monosaccharides that are released by damaged cells under high salinity conditions. Overall, our data indicate that sugar uptake capacity in Arabidopsis roots changes in response to environmental stresses and that this activity is dependent on the expression pattern of sugar transporters. PMID:22041897

  20. Performance of high producing dairy cows offered drinking water of high and low salinity in the Arava desert.

    PubMed

    Solomon, R; Miron, J; Ben-Ghedalia, D; Zomberg, Z

    1995-03-01

    The effect of supplying high producing Israeli Holstein cows with desalinated or salty water on milk composition and production was examined in the Arava desert of southern Israel. Daily water consumption of cows offered desalinated water was higher by 10.6 L than that of the group offered salty drinking water; DMI was similar for the two groups. Daily production of milk and 3.5% FCM was higher for the cows receiving desalinated water than for the cows receiving salty water; 35.2 versus 33.1 kg and 31.6 versus 29.8 kg, respectively. The percentage of protein in milk and the daily protein production were higher for the cows receiving desalinated water than for the cows receiving salty water: 2.89% and 1.01 kg versus 2.84% and .93 kg, respectively. The percentage of milk fat and the daily fat production were higher for the cows receiving desalinated water. These results indicate that water salinity negatively affects milk production. Improvement of water quality by desalination increased production of milk and milk constituents.

  1. Potential of BAC combined with UVC/H2O2 for reducing organic matter from highly saline reverse osmosis concentrate produced from municipal wastewater reclamation.

    PubMed

    Lu, Jie; Fan, Linhua; Roddick, Felicity A

    2013-10-01

    The organic matter present in the concentrate streams generated from reverse osmosis (RO) based municipal wastewater reclamation processes poses environmental and health risks on its disposal to the receiving environment (e.g., estuaries, bays). The potential of a biological activated carbon (BAC) process combined with pre-oxidation using a UVC/H2O2 advanced oxidation process for treating a high salinity (TDS~10000 mg L(-1)) municipal wastewater RO concentrate (ROC) was evaluated at lab scale during 90 d of operation. The combined treatment reduced the UVA254 and colour of the ROC to below those for the influent of the RO process (i.e., biologically treated secondary effluent), and the reductions in DOC and COD were approximately 60% and 50%, respectively. UVC/H2O2 was demonstrated to be an effective means of converting the recalcitrant organic compounds in the ROC into biodegradable substances which were readily removed by the BAC process, leading to a synergistic effect of the combined treatment in degrading the organic matter. The tests using various BAC feed concentrations suggested that the biological treatment was robust and consistent for treating the high salinity ROC. Using Microtox analysis no toxicity was detected for the ROC after the combined treatment, and the trihalomethane formation potential was reduced from 3.5 to 2.8 mg L(-1). PMID:23820538

  2. Potential of BAC combined with UVC/H2O2 for reducing organic matter from highly saline reverse osmosis concentrate produced from municipal wastewater reclamation.

    PubMed

    Lu, Jie; Fan, Linhua; Roddick, Felicity A

    2013-10-01

    The organic matter present in the concentrate streams generated from reverse osmosis (RO) based municipal wastewater reclamation processes poses environmental and health risks on its disposal to the receiving environment (e.g., estuaries, bays). The potential of a biological activated carbon (BAC) process combined with pre-oxidation using a UVC/H2O2 advanced oxidation process for treating a high salinity (TDS~10000 mg L(-1)) municipal wastewater RO concentrate (ROC) was evaluated at lab scale during 90 d of operation. The combined treatment reduced the UVA254 and colour of the ROC to below those for the influent of the RO process (i.e., biologically treated secondary effluent), and the reductions in DOC and COD were approximately 60% and 50%, respectively. UVC/H2O2 was demonstrated to be an effective means of converting the recalcitrant organic compounds in the ROC into biodegradable substances which were readily removed by the BAC process, leading to a synergistic effect of the combined treatment in degrading the organic matter. The tests using various BAC feed concentrations suggested that the biological treatment was robust and consistent for treating the high salinity ROC. Using Microtox analysis no toxicity was detected for the ROC after the combined treatment, and the trihalomethane formation potential was reduced from 3.5 to 2.8 mg L(-1).

  3. Massive infestation by Amyloodinium ocellatum (Dinoflagellida) of fish in a highly saline lake, Salton Sea, California, USA.

    PubMed

    Kuperman, B I; Matey, V E

    1999-12-22

    Persistent fish infestation by the parasitic dinoflagellate Amyloodinium ocellatum was found at a highly saline lake, Salton Sea, California, USA. The seasonal dynamics of the infestation of young tilapia was traced in 1997-1998. First appearing in May, it became maximal in June-August, decreased in October and was not detectable in November. Outbreak of the infestation and subsequent mortality of young fish was registered at the Sea at a water temperature and salinity of 40 degrees C and 46 ppt, respectively. Some aspects of the ultrastructure of parasitic trophonts of A. ocellatum and their location on the fish from different size groups are considered. The interactions of parasitological and environmental factors and their combined effect upon fish from the Salton Sea are discussed. PMID:11407406

  4. Assessing the potential of a UV-based AOP for treating high-salinity municipal wastewater reverse osmosis concentrate.

    PubMed

    Umar, Muhammad; Roddick, Felicity; Fan, Linhua

    2013-01-01

    The UVC/H(2)O(2) process was studied at laboratory scale for the treatment of one moderate (conductivity ∼8 mS/cm) and two high salinity (∼23 mS/cm) municipal wastewater reverse osmosis concentrate (ROC) samples with varying organic and inorganic characteristics. The process efficiency was characterized in terms of reduction of dissolved organic carbon (DOC), chemical oxygen demand (COD), colour and absorbance at 254 nm (A(254)), and the improvement of biodegradability. The reduction of colour and A(254) was significantly greater than for DOC and COD for all samples due to the greater breakdown of humic compounds, as confirmed by fluorescence excitation-emission matrix spectra. Fairly small differences in the reduction of DOC (26-38%) and COD (25-37%) were observed for all samples, suggesting that the salinity of the ROC did not have a significant impact on the UVC/H(2)O(2) treatment under the test conditions. The biodegradability of the treated ROC samples improved markedly (approximately 2-fold) after 60 min UVC/H(2)O(2) treatment. This study indicates the potential of UVC/H(2)O(2) treatment followed by biological processes for treating high-salinity concentrate, and the robustness of the process where the characteristics of the secondary effluent (influent to RO) and thus resultant ROC vary significantly.

  5. Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean

    PubMed Central

    Patil, Gunvant; Do, Tuyen; Vuong, Tri D.; Valliyodan, Babu; Lee, Jeong-Dong; Chaudhary, Juhi; Shannon, J. Grover; Nguyen, Henry T.

    2016-01-01

    Soil salinity is a limiting factor of crop yield. The soybean is sensitive to soil salinity, and a dominant gene, Glyma03g32900 is primarily responsible for salt-tolerance. The identification of high throughput and robust markers as well as the deployment of salt-tolerant cultivars are effective approaches to minimize yield loss under saline conditions. We utilized high quality (15x) whole-genome resequencing (WGRS) on 106 diverse soybean lines and identified three major structural variants and allelic variation in the promoter and genic regions of the GmCHX1 gene. The discovery of single nucleotide polymorphisms (SNPs) associated with structural variants facilitated the design of six KASPar assays. Additionally, haplotype analysis and pedigree tracking of 93 U.S. ancestral lines were performed using publically available WGRS datasets. Identified SNP markers were validated, and a strong correlation was observed between the genotype and salt treatment phenotype (leaf scorch, chlorophyll content and Na+ accumulation) using a panel of 104 soybean lines and, an interspecific bi-parental population (F8) from PI483463 x Hutcheson. These markers precisely identified salt-tolerant/sensitive genotypes (>91%), and different structural-variants (>98%). These SNP assays, supported by accurate phenotyping, haplotype analyses and pedigree tracking information, will accelerate marker-assisted selection programs to enhance the development of salt-tolerant soybean cultivars. PMID:26781337

  6. The Aquarius Ocean Salinity Mission High Stability L-band Radiometer

    NASA Technical Reports Server (NTRS)

    Pellerano, Fernando A.; Piepmeier, Jeffrey; Triesky, Michael; Horgan, Kevin; Forgione, Joshua; Caldwell, James; Wilson, William J.; Yueh, Simon; Spencer, Michael; McWatters, Dalia; Freedman, Adam

    2006-01-01

    The NASA Earth Science System Pathfinder (ESSP) mission Aquarius, will measure global ocean surface salinity with approx.120 km spatial resolution every 7-days with an average monthly salinity accuracy of 0.2 psu (parts per thousand). This requires an L-band low-noise radiometer with the long-term calibration stability of less than or equal to 0.15 K over 7 days. The instrument utilizes a push-broom configuration which makes it impractical to use a traditional warm load and cold plate in front of the feedhorns. Therefore, to achieve the necessary performance Aquarius utilizes a Dicke radiometer with noise injection to perform a warm - hot calibration. The radiometer sequence between antenna, Dicke load, and noise diode has been optimized to maximize antenna observations and therefore minimize NEDT. This is possible due the ability to thermally control the radiometer electronics and front-end components to 0.1 Crms over 7 days.

  7. Process for producing modified microorganisms for oil treatment at high temperatures, pressures and salinity

    DOEpatents

    Premuzic, E.T.; Lin, M.

    1996-02-20

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. The processes are comprised of steps which successively limit the carbon sources and increase the temperature, pressure and salinity of the media. This is done until microbial strains are obtained that are capable of growing in essentially crude oil as a carbon source and at a temperature range from about 70 C to 90 C, at a pressure range from about 2,000 to 2,500 psi and at a salinity range from about 1.3 to 35%. 68 figs.

  8. Process for producing modified microorganisms for oil treatment at high temperatures, pressures and salinity

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow

    1996-02-20

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. The processes are comprised of steps which successively limit the carbon sources and increase the temperature, pressure and salinity of the media. This is done until microbial strains are obtained that are capable of growing in essentially crude oil as a carbon source and at a temperature range from about 70.degree. C. to 90.degree. C., at a pressure range from about 2,000 to 2,500 psi and at a salinity range from about 1.3 to 35%.

  9. Hydrogenotrophic denitrification of highly saline aquaculture wastewater using hollow fiber membrane bioreactor.

    PubMed

    Visvanathan, C; Phong, D D; Jegatheesan, V

    2008-06-01

    A hydrogenotrophic denitrification system with a hollow fiber membrane was evaluated for treating and recycling synthetic aquaculture wastewater. Hollow fibers ensured bubble-less diffusion of hydrogen and subsequent removal of nitrate from the first bioreactor. The second aerobic reactor was used for biomass filtration and removal of organic matter. Nitrate and organic matter expressed as dissolved organic carbon were 50 mgl(-1) and 20 mgl(-1), respectively, in the inlet. Acclimatization of hydrogenotrophic bacteria to 10, 20 and 30 ppt of salinity was also observed. Optimum hydraulic retention time and denitrification rate corresponding to these salinities were 3, 5 and 6 h and 366.8, 226.2 and 193.2 gm(-3) day(-1), respectively. PMID:18702296

  10. Hydrogenotrophic denitrification of highly saline aquaculture wastewater using hollow fiber membrane bioreactor.

    PubMed

    Visvanathan, C; Phong, D D; Jegatheesan, V

    2008-06-01

    A hydrogenotrophic denitrification system with a hollow fiber membrane was evaluated for treating and recycling synthetic aquaculture wastewater. Hollow fibers ensured bubble-less diffusion of hydrogen and subsequent removal of nitrate from the first bioreactor. The second aerobic reactor was used for biomass filtration and removal of organic matter. Nitrate and organic matter expressed as dissolved organic carbon were 50 mgl(-1) and 20 mgl(-1), respectively, in the inlet. Acclimatization of hydrogenotrophic bacteria to 10, 20 and 30 ppt of salinity was also observed. Optimum hydraulic retention time and denitrification rate corresponding to these salinities were 3, 5 and 6 h and 366.8, 226.2 and 193.2 gm(-3) day(-1), respectively.

  11. The effect of salinity on experimental infections of a Hematodinium sp. in blue crabs, Callinectes sapidus.

    PubMed

    Coffey, Anna H; Li, Caiwen; Shields, Jeffrey D

    2012-06-01

    The parasitic dinoflagellate Hematodinium sp. parasitizes blue crabs along the Atlantic seaboard of the United States. Infections in blue crabs have only been reported from waters where salinity is >11 practical salinity units (psu). Blue crabs maintain a hyperosmotic internal concentration at low salinities (0-5 psu), roughly comparable to 24 psu, and should be capable of maintaining an infection in low-salinity waters even if Hematodinium spp. cells are intolerant of low salinities. We tested this notion by observing the effect of low salinity on the progression of disease in crabs experimentally infected with the parasite. Blue crabs were acclimated to 5 psu or 30 psu salinity treatments. They were inoculated with Hematodinium sp. and necropsied 3, 7, 10, and 15 days post-inoculation. The low-salinity treatment did not have an effect on the proliferation of Hematodinium sp. infections in blue crabs; moreover, a greater proportion of infections in crabs in the low-salinity treatment developed dinospore stages than did those in the high-salinity treatment, indicating that salinity may affect the development of the parasite. However, dinospores from in vitro cultures rapidly became inactive when held in salinities <15 psu. Our experiments indicate that Hematodinium spp. can develop in blue crabs at low salinities, but that the parasite is incapable of transmission in this environment, which explains the lack of natural infections in crabs at low salinities.

  12. Temperature effect on high salinity depuration of Vibrio vulnificus and V. parahaemolyticus from the Eastern oyster (Crassostrea virginica).

    PubMed

    Larsen, A M; Rikard, F S; Walton, W C; Arias, C R

    2015-01-01

    Vibrio vulnificus (Vv) and Vibrio parahaemolyticus (Vp) are opportunistic human pathogens naturally associated with the Eastern oyster Crassostrea virginica. The abundances of both pathogens in oysters are positively correlated with temperature, thus ingestion of raw oysters during the warm summer months is a risk factor for contracting illness from these bacteria. Current post-harvest processing (PHP) methods for elimination of these pathogens are expensive and kill the oyster, changing their organoleptic properties and making them less appealing to some consumers. High salinity has proven effective in reducing Vv numbers in the wild and our research aims at developing an indoor recirculating system to reduce pathogenic Vibrios while maintaining the taste and texture of live oysters. The goal of this study was to determine the influence of temperature on the efficacy of high salinity depuration. Vv was enumerated as most probable number (MPN) per gram of oyster tissue using the FDA-approved modified cellobiose polymyxin colistin (mCPC) protocol and with an alternative Vibrio specific media CHROMagar™ Vibrio (CaV). CaV was also used to quantify Vp. Oysters were held at 35 psu for 10 days at three temperatures: low (20°C), mid (22.5°C) and high (25°C). There was no difference in MPN/g of Vv between media; however more Vv isolates were obtained from mCPC than CaV. There was no significant effect of temperature on reduction of Vv or Vp throughout depuration but there was a tendency for low temperatures to be less effective than the higher ones. High salinity resulted in a significant decrease in Vv by day 3 and again by day 10, and a decrease in Vp by day 3. Oyster condition indices were maintained throughout depuration and mortality was low (4% across three trials). Overall these results support the use of mCPC for Vv enumeration and demonstrate the promise of high salinity depuration for PHP of the Eastern oyster. The trend for lower temperatures to be less

  13. Temperature effect on high salinity depuration of Vibrio vulnificus and V. parahaemolyticus from the Eastern oyster (Crassostrea virginica).

    PubMed

    Larsen, A M; Rikard, F S; Walton, W C; Arias, C R

    2015-01-01

    Vibrio vulnificus (Vv) and Vibrio parahaemolyticus (Vp) are opportunistic human pathogens naturally associated with the Eastern oyster Crassostrea virginica. The abundances of both pathogens in oysters are positively correlated with temperature, thus ingestion of raw oysters during the warm summer months is a risk factor for contracting illness from these bacteria. Current post-harvest processing (PHP) methods for elimination of these pathogens are expensive and kill the oyster, changing their organoleptic properties and making them less appealing to some consumers. High salinity has proven effective in reducing Vv numbers in the wild and our research aims at developing an indoor recirculating system to reduce pathogenic Vibrios while maintaining the taste and texture of live oysters. The goal of this study was to determine the influence of temperature on the efficacy of high salinity depuration. Vv was enumerated as most probable number (MPN) per gram of oyster tissue using the FDA-approved modified cellobiose polymyxin colistin (mCPC) protocol and with an alternative Vibrio specific media CHROMagar™ Vibrio (CaV). CaV was also used to quantify Vp. Oysters were held at 35 psu for 10 days at three temperatures: low (20°C), mid (22.5°C) and high (25°C). There was no difference in MPN/g of Vv between media; however more Vv isolates were obtained from mCPC than CaV. There was no significant effect of temperature on reduction of Vv or Vp throughout depuration but there was a tendency for low temperatures to be less effective than the higher ones. High salinity resulted in a significant decrease in Vv by day 3 and again by day 10, and a decrease in Vp by day 3. Oyster condition indices were maintained throughout depuration and mortality was low (4% across three trials). Overall these results support the use of mCPC for Vv enumeration and demonstrate the promise of high salinity depuration for PHP of the Eastern oyster. The trend for lower temperatures to be less

  14. Enhancement of anammox activity by addition of compatible solutes at high salinity conditions.

    PubMed

    Liu, Mu; Peng, Yongzhen; Wang, Shuying; Liu, Tiantian; Xiao, Han

    2014-09-01

    The enhancement effect of compatible solutes on anammox activity under salinity stress was investigated. Glycine betaine (GB) was the most effective in alleviating salt toxicity, although all the compatible solutes (GB, trehalose and ectoine) were found to be valid. Acclimation potential of anammox biomass under salinity of 30 g/L increased significantly with GB addition. The recovery time in the reactor with GB addition (RB) (49 days) accompanied by a more stable stoichiometric ratio was 2.65 times shorter than in the control reactor (RC) (130 days). After 49 days, the extracellular polymeric substances and the tetrazolium chloride-dehydrogenase activity were 217.9 mg/g VSS and 38.7 μg TF/g VSS/h in RB, 1.86 times lower and 3.17 times higher than the levels in RC, respectively. RB possessed evident superiority in the aspects of microbial population proportion. And thus, compatible solutes addition was regarded as one of the feasible solution to counteract saline inhibition on anammox. PMID:25024098

  15. Highly saline fluids from a subducting slab as the source for fluid-rich diamonds.

    PubMed

    Weiss, Yaakov; McNeill, John; Pearson, D Graham; Nowell, Geoff M; Ottley, Chris J

    2015-08-20

    The infiltration of fluids into continental lithospheric mantle is a key mechanism for controlling abrupt changes in the chemical and physical properties of the lithospheric root, as well as diamond formation, yet the origin and composition of the fluids involved are still poorly constrained. Such fluids are trapped within diamonds when they form and so diamonds provide a unique means of directly characterizing the fluids that percolate through the deep continental lithospheric mantle. Here we show a clear chemical evolutionary trend, identifying saline fluids as parental to silicic and carbonatitic deep mantle melts, in diamonds from the Northwest Territories, Canada. Fluid-rock interaction along with in situ melting cause compositional transitions, as the saline fluids traverse mixed peridotite-eclogite lithosphere. Moreover, the chemistry of the parental saline fluids--especially their strontium isotopic compositions--and the timing of host diamond formation suggest that a subducting Mesozoic plate under western North America is the source of the fluids. Our results imply a strong association between subduction, mantle metasomatism and fluid-rich diamond formation, emphasizing the importance of subduction-derived fluids in affecting the composition of the deep lithospheric mantle. PMID:26289205

  16. Reclamation of highly calcareous saline-sodic soil using low quality water and phosphogypsum

    NASA Astrophysics Data System (ADS)

    Gharaibeh, M. A.; Rusan, M. J.; Eltaif, N. I.; Shunnar, O. F.

    2014-09-01

    The efficiency of two amendments in reclaiming saline sodic soil using moderately saline (EC) and moderate sodium adsorption ratio (SAR) canal water was investigated. Phosphogypsum (PG) and reagent grade calcium chloride were applied to packed sandy loam soil columns and leached with canal water (SAR = 4, and EC = 2.16 dS m-1). Phosphogypsum was mixed with top soil prior to leaching at application rates of 5, 10, 15, 20, 25, 35, 40 Mg ha-1, whereas calcium chloride was dissolved directly in water at equivalent rates of 4.25, 8.5, 12.75, 17.0, 21.25, 29.75, and 34 Mg ha-1, respectively. Both amendments efficiently reduced soil salinity and sodicity. Calcium chloride removed 90 % of the total Na and soluble salts whereas PG removed 79 and 60 %, respectively. Exchangeable sodium percentage was reduced by 90 % in both amendments. Results indicated that during cation exchange reactions most of the sodium was removed when effluent SAR was at maximum. Phosphogypsum has lower total costs than calcium chloride and as an efficient amendment an application of 30 Mg ha-1 and leaching with 4 pore volume (PV) of canal water could be recommended to reclaim the studied soil.

  17. Highly saline fluids from a subducting slab as the source for fluid-rich diamonds.

    PubMed

    Weiss, Yaakov; McNeill, John; Pearson, D Graham; Nowell, Geoff M; Ottley, Chris J

    2015-08-20

    The infiltration of fluids into continental lithospheric mantle is a key mechanism for controlling abrupt changes in the chemical and physical properties of the lithospheric root, as well as diamond formation, yet the origin and composition of the fluids involved are still poorly constrained. Such fluids are trapped within diamonds when they form and so diamonds provide a unique means of directly characterizing the fluids that percolate through the deep continental lithospheric mantle. Here we show a clear chemical evolutionary trend, identifying saline fluids as parental to silicic and carbonatitic deep mantle melts, in diamonds from the Northwest Territories, Canada. Fluid-rock interaction along with in situ melting cause compositional transitions, as the saline fluids traverse mixed peridotite-eclogite lithosphere. Moreover, the chemistry of the parental saline fluids--especially their strontium isotopic compositions--and the timing of host diamond formation suggest that a subducting Mesozoic plate under western North America is the source of the fluids. Our results imply a strong association between subduction, mantle metasomatism and fluid-rich diamond formation, emphasizing the importance of subduction-derived fluids in affecting the composition of the deep lithospheric mantle.

  18. Removing organic and nitrogen content from a highly saline municipal wastewater reverse osmosis concentrate by UV/H2O2-BAC treatment.

    PubMed

    Pradhan, Shovana; Fan, Linhua; Roddick, Felicity A

    2015-10-01

    Reverse osmosis (RO) concentrate (ROC) streams generated from RO-based municipal wastewater reclamation processes pose potential health and environmental risks on their disposal to confined water bodies such as bays. A UV/H2O2 advanced oxidation process followed by a biological activated carbon (BAC) treatment was evaluated at lab-scale for the removal of organic and nutrient content from a highly saline ROC (TDS 16 g L(-1), EC 23.5 mS cm(-1)) for its safe disposal to the receiving environment. Over the 230-day operation of the UV/H2O2-BAC process, the colour and UV absorbance (254 nm) of the ROC were reduced to well below those of the influent to the reclamation process. The concentrations of DOC and total nitrogen (TN) were reduced by approximately 60% at an empty bed contact time (EBCT) of 60 min. The reduction in ammonia nitrogen by the BAC remained high under all conditions tested (>90%). Further investigation confirmed that the presence of residual peroxide in the UV/H2O2 treated ROC was beneficial for DOC removal, but markedly inhibited the activities of the nitrifying bacteria (i.e., nitrite oxidising bacteria) in the BAC system and hence compromised total nitrogen removal. This work demonstrated that the BAC treatment could be acclimated to the very high salinity environment, and could be used as a robust method for the removal of organic matter and nitrogen from the pre-oxidised ROC under optimised conditions. PMID:26002159

  19. Modulation of superoxide dismutase (SOD) isozymes by organ development and high long-term salinity in the halophyte Cakile maritima.

    PubMed

    Houmani, Hayet; Rodríguez-Ruiz, Marta; Palma, José M; Abdelly, Chedly; Corpas, Francisco J

    2016-05-01

    Superoxide dismutase (SOD) activity catalyzes the disproportionation of superoxide radicals into hydrogen peroxide and oxygen. This enzyme is considered to be a first line of defense for controlling the production of reactive oxygen species (ROS). In this study, the number and type of SOD isozymes were identified in the principal organs (roots, stems, leaves, flowers, and seeds) of Cakile maritima. We also analyzed the way in which the activity of these SOD isozymes is modulated during development and under high long-term salinity (400 mM NaCl) stress conditions. The data indicate that this plant contains a total of ten SOD isozymes: two Mn-SODs, one Fe-SOD, and seven CuZn-SODs, with the Fe-SOD being the most prominent isozyme in the different organs analyzed. Moreover, the modulation of SOD isozymes, particularly CuZn-SODs, was only detected during development and under severe salinity stress conditions. These data suggest that, in C. maritima, the occurrence of these CuZn-SODs in roots and leaves plays an adaptive role since this CuZn-SOD isozyme might replace the diminished Fe-SOD activity under salinity stress to overcome this adverse environmental condition. PMID:26159565

  20. Feasibility of Typha latifolia for high salinity effluent treatment in constructed wetlands for integration in resource management systems.

    PubMed

    Jesus, J M; Calheiros, C S C; Castro, P M L; Borges, M T

    2014-01-01

    High salinity wastewaters have limited treatment options due to the occurrence of salt inhibition in conventional biological treatments. Using recirculating marine aquaculture effluents as a case study, this work explored the use of Constructed Wetlands as a treatment option for nutrient and salt loads reduction. Three different substrates were tested for nutrient adsorption, of which expanded clay performed better. This substrate adsorbed 0.31 mg kg(-1) of NH4(+)-N and 5.60 mg kg(-1) of PO4(3-)-P and 6.9 mg kg(-1) dissolved salts after 7 days of contact. Microcosms with Typha latifolia planted in expanded clay and irrigated with aquaculture wastewater (salinity 2.4%, 7 days hydraulic retention time, for 4 weeks), were able to remove 94% NH(4+)-N (inlet 0.25 +/- 0.13 mg L(-1)), 78% NO2(-)-N (inlet 0.78 +/- 0.62 mg L(-1)), 46% NO3(-)-N (inlet 18.83 +/- 8.93 mg L(-1)) whereas PO4(3-)-P was not detected (inlet 1.41 +/- 0.21 mg L(-1)). Maximum salinity reductions of 52% were observed. Despite some growth inhibition, plants remained viable, with 94% survival rate. Daily treatment dynamics studies revealed rapid PO4(3-)-P adsorption, unbalancing the N:P ratio and possibly affecting plant development. An integrated treatment approach, coupled with biomass valorization, is suggested to provide optimal resource management possibilities.

  1. Physiological mechanisms used by fish to cope with salinity stress.

    PubMed

    Kültz, Dietmar

    2015-06-01

    Salinity represents a critical environmental factor for all aquatic organisms, including fishes. Environments of stable salinity are inhabited by stenohaline fishes having narrow salinity tolerance ranges. Environments of variable salinity are inhabited by euryhaline fishes having wide salinity tolerance ranges. Euryhaline fishes harbor mechanisms that control dynamic changes in osmoregulatory strategy from active salt absorption to salt secretion and from water excretion to water retention. These mechanisms of dynamic control of osmoregulatory strategy include the ability to perceive changes in environmental salinity that perturb body water and salt homeostasis (osmosensing), signaling networks that encode information about the direction and magnitude of salinity change, and epithelial transport and permeability effectors. These mechanisms of euryhalinity likely arose by mosaic evolution involving ancestral and derived protein functions. Most proteins necessary for euryhalinity are also critical for other biological functions and are preserved even in stenohaline fish. Only a few proteins have evolved functions specific to euryhaline fish and they may vary in different fish taxa because of multiple independent phylogenetic origins of euryhalinity in fish. Moreover, proteins involved in combinatorial osmosensing are likely interchangeable. Most euryhaline fishes have an upper salinity tolerance limit of approximately 2× seawater (60 g kg(-1)). However, some species tolerate up to 130 g kg(-1) salinity and they may be able to do so by switching their adaptive strategy when the salinity exceeds 60 g kg(-1). The superior salinity stress tolerance of euryhaline fishes represents an evolutionary advantage favoring their expansion and adaptive radiation in a climate of rapidly changing and pulsatory fluctuating salinity. Because such a climate scenario has been predicted, it is intriguing to mechanistically understand euryhalinity and how this complex

  2. Reduced salinity tolerance in the Arctic grayling (Thymallus arcticus) is associated with rapid development of a gill interlamellar cell mass: implications of high-saline spills on native freshwater salmonids

    PubMed Central

    Blair, Salvatore D.; Matheson, Derrick; He, Yuhe; Goss, Greg G.

    2016-01-01

    Arctic grayling (Thymallus arcticus) are salmonids that have a strict freshwater existence in post-glacial North America. Oil and gas development is associated with production of high volumes of hypersaline water. With planned industrial expansion into northern areas of Canada and the USA that directly overlap grayling habitat, the threat of accidental saline water release poses a significant risk. Despite this, we understand little about the responses of grayling to hypersaline waters. We compared the physiological responses and survivability of Arctic grayling and rainbow trout (Oncorhynchus mykiss) to tolerate an acute transfer to higher saline waters. Arctic grayling and rainbow trout were placed directly into 17 ppt salinity and sampled at 24 and 96 h along with control animals in freshwater at 24 h. Serum sodium, chloride and osmolality levels increased significantly in grayling at both 24 and 96 h time points, whereas trout were able to compensate for the osmoregulatory disturbance by 96 h. Sodium–potassium ATPase mRNA expression responses to salinity were also compared, demonstrating the inability of the grayling to up-regulate the seawater isoform nkaα1b. Our results demonstrated a substantially lower salinity tolerance in grayling. We also found a significant salinity-induced morphological gill remodelling by Arctic grayling, as demonstrated by the rapid growth of an interlamellar cell mass by 24 h that persisted at 96 h. We visualized and quantified the appearance of the interlamellar cell mass as a response to high salinity, although the functional significance remains to be understood fully. Compared with rainbow trout, which are used as an environmental regulatory species, Arctic grayling are unable to compensate for the osmotic stressors that would result from a highly saline produced water spill. Given these new data, collaboration between fisheries and the oil and gas industry will be vital in the long-term conservation strategies

  3. Reduced salinity tolerance in the Arctic grayling (Thymallus arcticus) is associated with rapid development of a gill interlamellar cell mass: implications of high-saline spills on native freshwater salmonids.

    PubMed

    Blair, Salvatore D; Matheson, Derrick; He, Yuhe; Goss, Greg G

    2016-01-01

    Arctic grayling (Thymallus arcticus) are salmonids that have a strict freshwater existence in post-glacial North America. Oil and gas development is associated with production of high volumes of hypersaline water. With planned industrial expansion into northern areas of Canada and the USA that directly overlap grayling habitat, the threat of accidental saline water release poses a significant risk. Despite this, we understand little about the responses of grayling to hypersaline waters. We compared the physiological responses and survivability of Arctic grayling and rainbow trout (Oncorhynchus mykiss) to tolerate an acute transfer to higher saline waters. Arctic grayling and rainbow trout were placed directly into 17 ppt salinity and sampled at 24 and 96 h along with control animals in freshwater at 24 h. Serum sodium, chloride and osmolality levels increased significantly in grayling at both 24 and 96 h time points, whereas trout were able to compensate for the osmoregulatory disturbance by 96 h. Sodium-potassium ATPase mRNA expression responses to salinity were also compared, demonstrating the inability of the grayling to up-regulate the seawater isoform nkaα1b. Our results demonstrated a substantially lower salinity tolerance in grayling. We also found a significant salinity-induced morphological gill remodelling by Arctic grayling, as demonstrated by the rapid growth of an interlamellar cell mass by 24 h that persisted at 96 h. We visualized and quantified the appearance of the interlamellar cell mass as a response to high salinity, although the functional significance remains to be understood fully. Compared with rainbow trout, which are used as an environmental regulatory species, Arctic grayling are unable to compensate for the osmotic stressors that would result from a highly saline produced water spill. Given these new data, collaboration between fisheries and the oil and gas industry will be vital in the long-term conservation strategies

  4. Two Brassica napus genes encoding NAC transcription factors are involved in response to high-salinity stress.

    PubMed

    Zhong, Hui; Guo, Qian-Qian; Chen, Liang; Ren, Feng; Wang, Qing-Qing; Zheng, Yong; Li, Xue-Bao

    2012-11-01

    The NAC protein family is one of the novel classes of plant-specific transcription factors. In this study, two genes (BnNAC2 and BnNAC5) encoding the putative NAC transcription factors were identified in Brassica napus. Sequence analysis revealed that the deduced BnNAC proteins contain conserved N-terminal region (NAC domain) and highly divergent C-terminal domain. Yeast transactivation analysis showed that BnNAC2 could activate reporter gene expression, suggesting that BnNAC2 functions as a transcriptional activator. Quantitative RT-PCR analysis revealed that BnNAC2 was preferentially expressed in flowers, whereas BnNAC5 mRNAs accumulated at the highest level in stems. Further experimental results indicated that the two genes are high-salinity-, drought- and abscisic acid (ABA)-induced. Overexpression of BnNAC2 and BnNAC5 genes in yeast (Schizosaccharomyces pombe) remarkably inhibited the growth rate of the host cells, and enhanced the cells sensitive to high-salinity and osmotic stresses. Complementation test indicated that BnNAC5 could recover the defects such as salt-hypersensitivity and accelerated-leaf senescence of vni2 T-DNA insertion mutant. Several stress-responsive genes including COR15A and RD29A were enhanced in the complemented plants. These results suggest that BnNAC5 may perform the similar function of VNI2 in response to high-salinity stress and regulation of leaf aging. Key message BnNAC2 and BnNAC5 are salt-, drought- and ABA-induced genes. Overexpression of BnNAC5 in Arabidopsis vni2 mutant recovered the mutant defects (salt-hypersensitivity and accelerated-leaf senescence) to the phenotype of wild type. PMID:22801866

  5. Remote sensing of salinity

    NASA Technical Reports Server (NTRS)

    Thomann, G. C.

    1975-01-01

    The complex dielectric constant of sea water is a function of salinity at 21 cm wavelength, and sea water salinity can be determined by a measurement of emissivity at 21 cm along with a measurement of thermodynamic temperature. Three aircraft and one helicopter experiments using two different 21 cm radiometers were conducted under different salinity and temperature conditions. Single or multiple ground truth measurements were used to calibrate the data in each experiment. It is inferred from these experiments that accuracies of 1 to 2%/OO are possible with a single surface calibration point necessary only every two hours if the following conditions are met--water temperatures above 20 C, salinities above 10%/OO, and level plane flight. More frequent calibration, constraint of the aircraft's orientation to the same as it was during calibration, and two point calibration (at a high and low salinity level) rather than single point calibration may give even better accuracies in some instances.

  6. Sub-Surface Currents and High-Salinity Intrusions in the Southern Bay of Bengal during the Northeast Monsoon

    NASA Astrophysics Data System (ADS)

    Wijesekera, H. W.; Jarosz, E.; Teague, W. J.; Jensen, T. G.; Metzger, E. J.; Jinadasa, S. U. P.; Arulananthan, K.; Centurioni, L.; Fernando, H.

    2014-12-01

    Shipboard velocity and CTD profiles collected in December 2013 from the R/V Roger Revelle along with satellite and drifter observations, and HYCOM nowcasts and COAMPS simulations show movement of sub-surface high-salinity intrusions into the Bay of Bengal (BoB) during the northeast monsoon. These observations were made as part of the Naval Research Laboratory research program titled "The Effects of Bay of Bengal Freshwater Flux on Indian Ocean Monsoon (EBOB)" and the Office of Naval Research (ONR) DRI titled "The Air-Sea Interaction in the Northern Indian Ocean (ASIRI)". A major objective of ASIRI-EBOB program is to understand and to quantify dynamical processes and boundary transports that control fresh and salt water exchanges between the BoB and the Arabian Sea. The transects of currents collected from shipboard ADCPs in the southern BoB, southeast of Sri Lanka, along 5.25°N in December show a southeastward flowing, surface intensified boundary current (referred to as the East India Coastal Current (EICC)) in the upper 75 m with speeds as large as 1.6 m/s at 21 m depth. Outside the EICC, a sub-surface intensified, northward moving, 300 km wide current with strongest velocities as high as 1 m/s near 50-75 m depth was observed. The near surface currents derived from AVISO altimeter and drifter records show quantitatively similar flow patterns. Numerical models produce qualitatively similar flow fields. The combined observations and model results indicate that the EICC moves low-salinity water out of the BoB while the sub-surface current carries high-salinity water into the BoB.

  7. Improved methylene blue two-phase titration method for determining cationic surfactant concentration in high-salinity brine.

    PubMed

    Cui, Leyu; Puerto, Maura; López-Salinas, José L; Biswal, Sibani L; Hirasaki, George J

    2014-11-18

    The methylene blue (MB) two-phase titration method is a rapid and efficient method for determining the concentrations of anionic surfactants. The point at which the aqueous and chloroform phases appear equally blue is called Epton's end point. However, many inorganic anions, e.g., Cl(-), NO3(-), Br(-), and I(-), can form ion pairs with MB(+) and interfere with Epton's end point, resulting in the failure of the MB two-phase titration in high-salinity brine. Here we present a method to extend the MB two-phase titration method for determining the concentration of various cationic surfactants in both deionized water and high-salinity brine (22% total dissolved solid). A colorless end point, at which the blue color is completely transferred from the aqueous phase to the chloroform phase, is proposed as titration end point. Light absorbance at the characteristic wavelength of MB is measured using a spectrophotometer. When the absorbance falls below a threshold value of 0.04, the aqueous phase is considered colorless, indicating that the end point has been reached. By using this improved method, the overall error for the titration of a permanent cationic surfactant, e.g., dodecyltrimethylammonium bromide, in deionized (DI) water and high-salinity brine is 1.274% and 1.322% with limits of detection (LOD) of 0.149 and 0.215 mM, respectively. Compared to the traditional acid-base titration method, the error of this improved method for a switchable cationic surfactant, e.g., tertiary amine surfactant (Ethomeen C12), is 2.22% in DI water and 0.106% with LOD of 0.369 and 0.439 mM, respectively.

  8. Coupled measurement of δ18O/δD in gypsum hydration water and salinity of fluid inclusions in gypsum: A novel tool for reconstructing parent water chemistry and depositional environment

    NASA Astrophysics Data System (ADS)

    Evans, Nick; Gázquez, Fernando; Turchyn, Alexandra; Chapman, Hazel; Hodell, David

    2015-04-01

    > 23.3o ; 11.3 > δ18OSO4 > 14.5o) and strontium isotopes (0.708942 > 87Sr/86Sr > 0.708971) that are similar to those measured in other Messinian evaporites of the Mediterranean. We suggest sulfate and strontium isotopes are relatively insensitive to freshwater influence because of the high concentrations of sulfate and strontium in seawater. The cyclic alternation of gypsum and marl in the Yesares Member has been interpreted as reflecting changing climate related to Earth's precession cycle, but to date direct evidence linking depositional environment and orbital forcing has been lacking. We demonstrate that the δ18O, δD and salinity of the parent brine increased from low values at the base of the cycle to a maximum in the massive gypsum palisade, and decreased again to lower values in the supercones at the top of the cycle. This pattern is consistent with precession-driven changes in climate with wetter conditions during precession minima (insolation maxima) associated with the interbedded marls and drier climate during gypsum precipitation with the driest conditions during the precession maxima (insolation minima) associated with gypsum palisade formation.

  9. Effects of salinity build-up on biomass characteristics and trace organic chemical removal: implications on the development of high retention membrane bioreactors.

    PubMed

    Luo, Wenhai; Hai, Faisal I; Kang, Jinguo; Price, William E; Guo, Wenshan; Ngo, Hao H; Yamamoto, Kazuo; Nghiem, Long D

    2015-02-01

    This study investigated the impact of salinity build-up on the performance of membrane bioreactor (MBR), specifically in terms of the removal and fate of trace organic chemicals (TrOCs), nutrient removal, and biomass characteristics. Stepwise increase of the influent salinity, simulating salinity build-up in high retention MBRs, adversely affected the metabolic activity in the bioreactor, thereby reducing organic and nutrient removal. The removal of hydrophilic TrOCs by MBR decreased due to salinity build-up. By contrast, with the exception of 17α-ethynylestradiol, the removal of all hydrophobic TrOCs was not affected at high salinity. Moreover, salinity build-up had negligible impact on the residual accumulation of TrOCs in the sludge phase except for a few hydrophilic compounds. Additionally, the response of the biomass to salinity stress also dramatically enhanced the release of both soluble microbial products (SMP) and extracellular polymeric substances (EPS), leading to severe membrane fouling. PMID:25496948

  10. Associations between School Environment and Environment in Religion Classes in Australian Catholic High Schools.

    ERIC Educational Resources Information Center

    Dorman, Jeffrey P.

    This paper describes a study of links between school environment and classroom environment in Catholic high schools in Australia. A sample of 893 students in 40 grade-9 and grade-12 religious education classes and 80 teachers of religious education in Catholic high schools was used to assess 4 dimensions of school environment (Empowerment, Student…

  11. Phytomonitoring the unique colonization of oil-contaminated saline environment by Limoniastrum monopetalum (L.) Boiss in Egypt.

    PubMed

    Hussein, Hussein S; Terry, Norman

    2002-04-01

    A site that covers over 20 acres of coastal saline depression in the western Mediterranean coastal desert of Egypt (El-Hammra station, the main crude oil pipeline terminal in Al-Alamein) is contaminated with crude oil spill as a result of activities from refineries, oilfield blowouts, tanker and pipeline break-ups. This area, prior to contamination, was dominated by different common halophytes. However, Limoniastrum monopetalum is now the only species found growing in the oil-contaminated soil. A specific question addressed in the present study was: what are the biochemical changes occurring in a desert plant growing in oil-contaminated soils? Major metabolites such as proline, betaine, free amino acids, fatty acid esters and mineral elements were studied. The plant samples were collected from the oil-contaminated, as well as noncontaminated, sites. The higher concentration in the selected organic metabolites in the plants growing in the contaminated site compared to those in noncontaminated site may be due to differences in a number of receptors. The sensitivity of such receptors for the environmental signal that cause differences in genetic expression leads to differences in physiological processes. The change in the landscape of the contaminated area and the elimination of the natural vegetation, except L. monopetalum, may explain the competitive balance toward the oil-resistant species.

  12. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment.

    PubMed

    Upadhyay, S K; Singh, D P

    2015-01-01

    Salt-tolerant plant growth-promoting rhizobacteria (ST-PGPR) significantly influence the growth and yield of wheat crops in saline soil. Wheat growth improved in pots with inoculation of all nine ST-PGPR (ECe = 4.3 dS·m(-1) ; greenhouse experiment), while maximum growth and dry biomass was observed in isolate SU18 Arthrobacter sp.; simultaneously, all ST-PGPR improved soil health in treated pot soil over controls. In the field experiment, maximum wheat root dry weight and shoot biomass was observed after inoculation with SU44 B. aquimaris, and SU8 B. aquimaris, respectively, after 60 and 90 days. Isolate SU8 B. aquimaris, induced significantly higher proline and total soluble sugar accumulation in wheat, while isolate SU44 B. aquimaris, resulted in higher accumulation of reducing sugars after 60 days. Percentage nitrogen (N), potassium (K) and phosphorus (P) in leaves of wheat increased significantly after inoculation with ST-PGPR, as compared to un-inoculated plants. Isolate SU47 B. subtilis showed maximum reduction of sodium (Na) content in wheat leaves of about 23% at both 60 and 90 days after sowing, and produced the best yield of around 17.8% more than the control.

  13. Evaluating abiotic influences on soil salinity of inland managed wetlands and agricultural croplands in a semi-arid environment

    USGS Publications Warehouse

    Fowler, D.; King, Sammy L.; Weindorf, David C.

    2014-01-01

    Agriculture and moist-soil management are important management techniques used on wildlife refuges to provide adequate energy for migrant waterbirds. In semi-arid systems, the accumulation of soluble salts throughout the soil profile can limit total production of wetland plants and agronomic crops and thus jeopardize meeting waterbird energy needs. This study evaluates the effect of distinct hydrologic regimes associated with moist-soil management and agricultural production on salt accumulation in a semi-arid floodplain. We hypothesized that the frequency of flooding and quantity of floodwater in a moist-soil management hydroperiod results in a less saline soil profile compared to profiles under traditional agricultural management. Findings showed that agricultural croplands differed (p-value < 0.001, df = 9) in quantities of total soluble salts (TSS) compared to moist-soil impoundments and contained greater concentrations (TSS range = 1,160-1,750 (mg kg-1)) at depth greater than 55 cm below the surface of the profile, while moist-soil impoundments contained lower concentrations (TSS range = 307-531 (mg kg-1)) at the same depths. Increased salts in agricultural may be attributed to the lack of leaching afforded by smaller summer irrigations while larger periodic flooding events in winter and summer flood irrigations in moist-soil impoundments may serve as leaching events.

  14. Heparinised saline or normal saline?

    PubMed

    Kannan, Anand

    2008-10-01

    Using heparinised saline as a flush to maintain the patency of arterial and central venous lines is a well-known practice. A literature search was undertaken but found no evidence to support the use of heparinised saline over normal saline. In addition, the use of heparinised saline may be associated with adverse effects. The literature search strategy utilised Ovid CINAHL and Medline databases, as well as hand-searching bibliographies of clinical and research articles from the University of Cambridge Medical Library. Keywords and phrases included 'heparin', 'normal saline', 'arterial', 'haemodynamic lines' and 'catheters'. All types of evidence from each of these resources were examined to identify major themes, areas of agreement and disagreement across clinical practice, changesin the concept over time and emerging trends. PMID:18983067

  15. NOvel Refractory Materials for High Alkali, High Temperature Environments

    SciTech Connect

    Hemrick, J.G.; Griffin, R.

    2011-08-30

    Refractory materials can be limited in their application by many factors including chemical reactions between the service environment and the refractory material, mechanical degradation of the refractory material by the service environment, temperature limitations on the use of a particular refractory material, and the inability to install or repair the refractory material in a cost effective manner or while the vessel was in service. The objective of this project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al2O3 spinel or other similar magnesia/alumina containing unshaped refractory composition (castables, gunnables, shotcretes, etc) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, highalkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. A research team was formed to carry out the proposed work led by Oak Ridge National Laboratory (ORNL) and was comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The two goals of this project were to produce novel refractory compositions which will allow for improved energy efficiency and to develop new refractory application techniques which would improve the speed of installation. Also methods of hot installation were sought which would allow for hot repairs and on-line maintenance leading to reduced process downtimes and eliminating the need to cool and reheat process vessels.

  16. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase.

    PubMed

    Ali, Shimaila; Charles, Trevor C; Glick, Bernard R

    2014-07-01

    Plant growth and productivity is negatively affected by soil salinity. However, it is predicted that plant growth-promoting bacterial (PGPB) endophytes that contain 1-aminocyclopropane-1-carboxylate (ACC) deaminase (E.C. 4.1.99.4) can facilitate plant growth and development in the presence of a number of different stresses. In present study, the ability of ACC deaminase containing PGPB endophytes Pseudomonas fluorescens YsS6, Pseudomonas migulae 8R6, and their ACC deaminase deficient mutants to promote tomato plant growth in the absence of salt and under two different levels of salt stress (165 mM and 185 mM) was assessed. It was evidence that wild-type bacterial endophytes (P. fluorescens YsS6 and P. migulae 8R6) promoted tomato plant growth significantly even in the absence of stress (salinity). Plants pretreated with wild-type ACC deaminase containing endophytic strains were healthier and grew to a much larger size under high salinity stress compared to plants pretreated with the ACC deaminase deficient mutants or no bacterial treatment (control). The plants pretreated with ACC deaminase containing bacterial endophytes exhibit higher fresh and dry biomass, higher chlorophyll contents, and a greater number of flowers and buds than the other treatments. Since the only difference between wild-type and mutant bacterial endophytes was ACC deaminase activity, it is concluded that this enzyme is directly responsible for the different behavior of tomato plants in response to salt stress. The use of PGPB endophytes with ACC deaminase activity has the potential to facilitate plant growth on land that is not normally suitable for the majority of crops due to their high salt contents.

  17. Changes in the bacterial populations of the highly alkaline saline soil of the former lake Texcoco (Mexico) following flooding.

    PubMed

    Valenzuela-Encinas, César; Neria-González, Isabel; Alcántara-Hernández, Rocio J; Estrada-Alvarado, Isabel; Zavala-Díaz de la Serna, Francisco Javier; Dendooven, Luc; Marsch, Rodolfo

    2009-07-01

    Flooding an extreme alkaline-saline soil decreased alkalinity and salinity, which will change the bacterial populations. Bacterial 16S rDNA libraries were generated of three soils with different electrolytic conductivity (EC), i.e. soil with EC 1.7 dS m(-1) and pH 7.80 (LOW soil), with EC 56 dS m(-1) and pH 10.11 (MEDIUM soil) and with EC 159 dS m(-1) and pH 10.02 (HIGH soil), using universal bacterial oligonucleotide primers, and 463 clone 16S rDNA sequences were analyzed phylogenetically. Library proportions and clone identification of the phyla Proteobacteria, Actinobacteria, Acidobacteria, Cyanobacteria, Bacteroidetes, Firmicutes and Cloroflexi showed that the bacterial communities were different. Species and genera of the Rhizobiales, Rhodobacterales and Xanthomonadales orders of the alpha- and gamma-subdivision of Proteobacteria were found at the three sites. Species and genera of the Rhodospirillales, Sphingobacteriales, Clostridiales, Oscillatoriales and Caldilineales were found only in the HIGH soil, Sphingomonadales, Burkholderiales and Pseudomonadales in the MEDIUM soil, Myxococcales in the LOW soil, and Actinomycetales in the MEDIUM and LOW soils. It was found that the largest diversity at the order and species level was found in the MEDIUM soil as bacteria of both the HIGH and LOW soils were found in it.

  18. Salinity Energy.

    ERIC Educational Resources Information Center

    Schmitt, Walter R.

    1987-01-01

    Discussed are the costs of deriving energy from the earth's natural reserves of salt. Argues that, as fossil fuel supplies become more depleted in the future, the environmental advantages of salinity power may prove to warrant its exploitation. (TW)

  19. Bulk Moisture and Salinity Sensor

    NASA Technical Reports Server (NTRS)

    Nurge, Mark; Monje, Oscar; Prenger, Jessica; Catechis, John

    2013-01-01

    Measurement and feedback control of nutrient solutions in plant root zones is critical to the development of healthy plants in both terrestrial and reduced-gravity environments. In addition to the water content, the amount of fertilizer in the nutrient solution is important to plant health. This typically requires a separate set of sensors to accomplish. A combination bulk moisture and salinity sensor has been designed, built, and tested with different nutrient solutions in several substrates. The substrates include glass beads, a clay-like substrate, and a nutrient-enriched substrate with the presence of plant roots. By measuring two key parameters, the sensor is able to monitor both the volumetric water content and salinity of the nutrient solution in bulk media. Many commercially available moisture sensors are point sensors, making localized measurements over a small volume at the point of insertion. Consequently, they are more prone to suffer from interferences with air bubbles, contact area of media, and root growth. This makes it difficult to get an accurate representation of true moisture content and distribution in the bulk media. Additionally, a network of point sensors is required, increasing the cabling, data acquisition, and calibration requirements. measure the dielectric properties of a material in the annular space of the vessel. Because the pore water in the media often has high salinity, a method to measure the media moisture content and salinity simultaneously was devised. Characterization of the frequency response for capacitance and conductance across the electrodes was completed for 2-mm glass bead media, 1- to 2-mm Turface (a clay like media), and 1- to 2-mm fertilized Turface with the presence of root mass. These measurements were then used to find empirical relationships among capacitance (C), the dissipation factor (D), the volumetric water content, and the pore water salinity.

  20. Start-up and microbial communities of a simultaneous nitrogen removal system for high salinity and high nitrogen organic wastewater via heterotrophic nitrification.

    PubMed

    Chen, Jiahao; Han, Yi; Wang, Yingmu; Gong, Benzhou; Zhou, Jian; Qing, Xiaoxia

    2016-09-01

    In this study, a simultaneous nitrogen removal system for high salinity and high nitrogen organic wastewater was developed in a pressurized biofilm reactor. The result showed that under the air supply rate of 200Lh(-1), salinity of 3.0±0.2%, organic load of 10kgCODm(-3)d(-1) and nitrogen loading of 0.185kgm(-3)d(-1), the reactor started up rapidly and performed stably after 30days operation. Meanwhile, a simultaneous COD and nitrogen removal was achieved in the single-stage reactor, with COD, NH4(+)-N and TN removal efficiency of 97%, 99% and 98%, respectively. Denaturing gradient gel electrophoresis profile demonstrated that simultaneous nitrogen removal could be achieved through heterotrophic nitrification-aerobic denitrification, and the pivotal microorganisms were Flavobacterium phragmitis and Paracoccus denitrificans. The microbial community of salt-tolerant halophilic microorganisms was developed successfully. This study can provide a more efficient and feasible solution to treat high salinity organic wastewater. PMID:27240235

  1. Characterization of the Prokaryotic Diversity in Cold Saline Perennial Springs of the Canadian High Arctic▿

    PubMed Central

    Perreault, Nancy N.; Andersen, Dale T.; Pollard, Wayne H.; Greer, Charles W.; Whyte, Lyle G.

    2007-01-01

    The springs at Gypsum Hill and Colour Peak on Axel Heiberg Island in the Canadian Arctic originate from deep salt aquifers and are among the few known examples of cold springs in thick permafrost on Earth. The springs discharge cold anoxic brines (7.5 to 15.8% salts), with a mean oxidoreduction potential of −325 mV, and contain high concentrations of sulfate and sulfide. We surveyed the microbial diversity in the sediments of seven springs by denaturing gradient gel electrophoresis (DGGE) and analyzing clone libraries of 16S rRNA genes amplified with Bacteria and Archaea-specific primers. Dendrogram analysis of the DGGE banding patterns divided the springs into two clusters based on their geographic origin. Bacterial 16S rRNA clone sequences from the Gypsum Hill library (spring GH-4) were classified into seven phyla (Actinobacteria, Bacteroidetes, Firmicutes, Gemmatimonadetes, Proteobacteria, Spirochaetes, and Verrucomicrobia); Deltaproteobacteria and Gammaproteobacteria sequences represented half of the clone library. Sequences related to Proteobacteria (82%), Firmicutes (9%), and Bacteroidetes (6%) constituted 97% of the bacterial clone library from Colour Peak (spring CP-1). Most GH-4 archaeal clone sequences (79%) were related to the Crenarchaeota while half of the CP-1 sequences were related to orders Halobacteriales and Methanosarcinales of the Euryarchaeota. Sequences related to the sulfur-oxidizing bacterium Thiomicrospira psychrophila dominated both the GH-4 (19%) and CP-1 (45%) bacterial libraries, and 56 to 76% of the bacterial sequences were from potential sulfur-metabolizing bacteria. These results suggest that the utilization and cycling of sulfur compounds may play a major role in the energy production and maintenance of microbial communities in these unique, cold environments. PMID:17220254

  2. Forsterite dissolution in saline water at elevated temperature and high CO2 pressure.

    PubMed

    Wang, Fei; Giammar, Daniel E

    2013-01-01

    The rates and mechanisms of magnesium silicate dissolution can control the aqueous chemistry in ways that influence carbonate mineral precipitation during geologic carbon sequestration (GCS). A series of batch experiments was performed with forsterite (Mg(1.81)Fe(0.19)SiO(4)) powder to determine the effects of pressure (10-100 bar CO(2)), temperature (25-100 °C), and salinity (0-50,000 mg/L NaCl) on its dissolution rate at conditions relevant to GCS. Dissolution rates and products were determined by analysis of the aqueous phase, equilibrium and reaction path modeling, and solid phase characterization by scanning electron microscopy and X-ray diffraction. After an initially rapid dissolution period, the dissolution rate declined significantly, an effect that is attributed to the formation of a silica-rich layer at the forsterite surface. The initial dissolution rate increased with increasing temperature and increasing CO(2) pressure; the effect of CO(2) was through its influence on the pH. The dissolution rate was enhanced by NaCl, which may have been due to its inhibition of the formation of a silica-rich surface layer. The experimental results provide information about magnesium silicate dissolution at conditions that will be encountered during GCS that can be used to predict the fate of CO(2) and the evolution of subsurface geochemistry following CO(2) injection.

  3. Increasing Gas Hydrate Formation Temperature for Desalination of High Salinity Produced Water with Secondary Guests

    SciTech Connect

    Cha, Jong-Ho; Seol, Yongkoo

    2013-10-07

    We suggest a new gas hydrate-based desalination process using water-immiscible hydrate formers; cyclopentane (CP) and cyclohexane (CH) as secondary hydrate guests to alleviate temperature requirements for hydrate formation. The hydrate formation reactions were carried out in an isobaric condition of 3.1 MPa to find the upper temperature limit of CO2 hydrate formation. Simulated produced water (8.95 wt % salinity) mixed with the hydrate formers shows an increased upper temperature limit from -2 °C for simple CO2 hydrate to 16 and 7 °C for double (CO2 + CP) and (CO2 + CH) hydrates, respectively. The resulting conversion rate to double hydrate turned out to be similar to that with simple CO2 hydrate at the upper temperature limit. Hydrate formation rates (Rf) for the double hydrates with CP and CH are shown to be 22 and 16 times higher, respectively, than that of the simple CO2 hydrate at the upper temperature limit. Such mild hydrate formation temperature and fast formation kinetics indicate increased energy efficiency of the double hydrate system for the desalination process. Dissociated water from the hydrates shows greater than 90% salt removal efficiency for the hydrates with the secondary guests, which is also improved from about 70% salt removal efficiency for the simple hydrates.

  4. Safety and Feasibility of High-pressure Transvenous Limb Perfusion With 0.9% Saline in Human Muscular Dystrophy

    PubMed Central

    Fan, Zheng; Kocis, Keith; Valley, Robert; Howard, James F; Chopra, Manisha; An, Hongyu; Lin, Weili; Muenzer, Joseph; Powers, William

    2012-01-01

    We evaluated safety and feasibility of the transvenous limb perfusion gene delivery method in muscular dystrophy. A dose escalation study of single limb perfusion with 0.9% saline starting with 5% of limb volume was carried out in adults with muscular dystrophies under intravenous analgesia/anesthesia. Cardiac, vascular, renal, muscle, and nerve functions were monitored. A tourniquet was placed above the knee with inflated pressure of 310 mm Hg. Infusion was carried out with a clinically approved infuser via an intravenous catheter inserted in the saphenous vein with a goal infusion rate of 80 ml/minute. Infusion volume was escalated stepwise to 20% limb volume in seven subjects. No subject complained of any post procedure pain other than due to needle punctures. Safety warning boundaries were exceeded only for transient depression of limb tissue oximetry and transient elevation of muscle compartment pressures; these were not associated with nerve, muscle, or vascular damage. Muscle magnetic resonant imaging (MRI) demonstrated fluid accumulation in muscles of the perfused lower extremity. High-pressure retrograde transvenous limb perfusion with saline up to 20% of limb volume at above infusion parameters is safe and feasible in adult human muscular dystrophy. This study will serve as a basis for future gene transfer clinical trials. PMID:21772257

  5. Integrated analysis environment for high impact systems

    SciTech Connect

    Martinez, M.; Davis, J.; Scott, J.; Sztipanovits, J.; Karsai, G.

    1998-02-01

    Modeling and analysis of high consequence, high assurance systems requires special modeling considerations. System safety and reliability information must be captured in the models. Previously, high consequence systems were modeled using separate, disjoint models for safety, reliability, and security. The MultiGraph Architecture facilitates the implementation of a model integrated system for modeling and analysis of high assurance systems. Model integrated computing allows an integrated modeling technique to be applied to high consequence systems. Among the tools used for analyzing safety and reliability are a behavioral simulator and an automatic fault tree generation and analysis tool. Symbolic model checking techniques are used to efficiently investigate the system models. A method for converting finite state machine models to ordered binary decision diagrams allows the application of symbolic model checking routines to the integrated system models. This integrated approach to modeling and analysis of high consequence systems ensures consistency between the models and the different analysis tools.

  6. Salinity and nutrient contents of tidal water affects soil respiration and carbon sequestration of high and low tidal flats of Jiuduansha wetlands in different ways.

    PubMed

    Hu, Yu; Wang, Lei; Fu, Xiaohua; Yan, Jianfang; Wu, Jihua; Tsang, Yiufai; Le, Yiquan; Sun, Ying

    2016-09-15

    Soils were collected from low tidal flats and high tidal flats of Shang shoal located upstream and Xia shoal located downstream with different tidal water qualities, in the Jiuduansha wetland of the Yangtze River estuary. Soil respiration (SR) in situ and soil abiotic and microbial characteristics were studied to clarify the respective differences in the effects of tidal water salinity and nutrient levels on SR and soil carbon sequestration in low and high tidal flats. In low tidal flats, higher total nitrogen (TN) and lower salinity in the tidal water of Shang shoal resulted in higher TN and lower salinity in its soils compared with Xia shoal. These would benefit β-Proteobacteria and Anaerolineae in Shang shoal soil, which might have higher heterotrophic microbial activities and thus soil microbial respiration and SR. In low tidal flats, where soil moisture was high and the major carbon input was active organic carbon from tidal water, increasing TN was a more important factor than salinity and obviously enhanced soil microbial heterotrophic activities, soil microbial respiration and SR. While, in high tidal flats, higher salinity in Xia shoal due to higher salinity in tidal water compared with Shang shoal benefited γ-Proteobacteria which might enhance autotrophic microbial activity, and was detrimental to β-Proteobacteria in Xia shoal soil. These might have led to lower soil microbial respiration and thus SR in Xia shoal compared with Shang shoal. In high tidal flats, where soil moisture was relatively lower and the major carbon input was plant biomass that was difficult to degrade, soil salinity was the major factor restraining microbial activities, soil microbial respiration and SR.

  7. Salinity and nutrient contents of tidal water affects soil respiration and carbon sequestration of high and low tidal flats of Jiuduansha wetlands in different ways.

    PubMed

    Hu, Yu; Wang, Lei; Fu, Xiaohua; Yan, Jianfang; Wu, Jihua; Tsang, Yiufai; Le, Yiquan; Sun, Ying

    2016-09-15

    Soils were collected from low tidal flats and high tidal flats of Shang shoal located upstream and Xia shoal located downstream with different tidal water qualities, in the Jiuduansha wetland of the Yangtze River estuary. Soil respiration (SR) in situ and soil abiotic and microbial characteristics were studied to clarify the respective differences in the effects of tidal water salinity and nutrient levels on SR and soil carbon sequestration in low and high tidal flats. In low tidal flats, higher total nitrogen (TN) and lower salinity in the tidal water of Shang shoal resulted in higher TN and lower salinity in its soils compared with Xia shoal. These would benefit β-Proteobacteria and Anaerolineae in Shang shoal soil, which might have higher heterotrophic microbial activities and thus soil microbial respiration and SR. In low tidal flats, where soil moisture was high and the major carbon input was active organic carbon from tidal water, increasing TN was a more important factor than salinity and obviously enhanced soil microbial heterotrophic activities, soil microbial respiration and SR. While, in high tidal flats, higher salinity in Xia shoal due to higher salinity in tidal water compared with Shang shoal benefited γ-Proteobacteria which might enhance autotrophic microbial activity, and was detrimental to β-Proteobacteria in Xia shoal soil. These might have led to lower soil microbial respiration and thus SR in Xia shoal compared with Shang shoal. In high tidal flats, where soil moisture was relatively lower and the major carbon input was plant biomass that was difficult to degrade, soil salinity was the major factor restraining microbial activities, soil microbial respiration and SR. PMID:27208721

  8. Refractories for high-alkali environments

    SciTech Connect

    Rau, A.W.; Cloer, F.

    1996-01-01

    There are two reliable and cost-effective tests for evaluating refractory materials. They are used to determine which refractory products allow greater variance in fuel type with respect to alkali environment for coal-fired applications. Preselection of a particular refractory is important because of down-time cost for premature failure. One test is a variation of the standard alkali cup test. The second involves reacting test specimens with the contaminant, followed by physical properties testing to determine degree of degradation and properties affected. The alkali cup test rates products using a relative numerical scale based upon visual appearance. This test indicates the presence and relative degree of chemical attack to the refractory. The physical properties test determines the specific properties affected by the given contaminant.

  9. NOVEL REFRACTORY MATERIALS FOR HIGH ALKALI, HIGH TEMPERATURE ENVIRONMENTS

    SciTech Connect

    Hemrick, James Gordon; Smith, Jeffrey D; O'Hara, Kelley; Rodrigues-Schroer, Angela; Colavito,

    2012-08-01

    A project was led by Oak Ridge National Laboratory (ORNL) in collaboration with a research team comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al 2O3, MgAl2O4, or other similar spinel structured or alumina-based unshaped refractory compositions (castables, gunnables, shotcretes, etc.) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, high-alkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. Both practical refractory development experience and computer modeling techniques were used to aid in the design of this new family of materials. The newly developed materials were expected to offer alternative material choices for high-temperature, high-alkali environments that were capable of operating at higher temperatures (goal of increasing operating temperature by 100-200oC depending on process) or for longer periods of time (goal of twice the life span of current materials or next process determined service increment). This would lead to less process down time, greater energy efficiency for associated manufacturing processes (more heat kept in process), and materials that could be installed/repaired in a more efficient manner. The overall project goal was a 5% improvement in energy efficiency (brought about through a 20% improvement in thermal efficiency) resulting in a savings of 3.7 TBtu/yr (7.2 billion ft3 natural gas) by the year 2030. Additionally, new

  10. Effects of salinity on leaf breakdown: Dryland salinity versus salinity from a coalmine.

    PubMed

    Sauer, Felix G; Bundschuh, Mirco; Zubrod, Jochen P; Schäfer, Ralf B; Thompson, Kristie; Kefford, Ben J

    2016-08-01

    Salinization of freshwater ecosystems as a result of human activities represents a global threat for ecosystems' integrity. Whether different sources of salinity with their differing ionic compositions lead to variable effects in ecosystem functioning is unknown. Therefore, the present study assessed the impact of dryland- (50μS/cm to 11,000μS/cm) and coalmine-induced (100μS/cm to 2400μS/cm) salinization on the leaf litter breakdown, with focus on microorganisms as main decomposer, in two catchments in New South Wales, Australia. The breakdown of Eucalyptus camaldulensis leaves decreased with increasing salinity by up to a factor of three. Coalmine salinity, which is characterised by a higher share of bicarbonates, had a slightly but consistently higher breakdown rate at a given salinity relative to dryland salinity, which is characterised by ionic proportions similar to sea water. Complementary laboratory experiments supported the stimulatory impact of sodium bicarbonates on leaf breakdown when compared to sodium chloride or artificial sea salt. Furthermore, microbial inoculum from a high salinity site (11,000μS/cm) yielded lower leaf breakdown at lower salinity relative to inoculum from a low salinity site (50μS/cm). Conversely, inoculum from the high salinity site was less sensitive towards increasing salinity levels relative to inoculum from the low salinity site. The effects of the different inoculum were the same regardless of salt source (sodium bicarbonate, sodium chloride and artificial sea salt). Finally, the microorganism-mediated leaf litter breakdown was most efficient at intermediate salinity levels (≈500μS/cm). The present study thus points to severe implications of increasing salinity intensities on the ecosystem function of leaf litter breakdown, while the underlying processes need further scrutiny.

  11. Effects of salinity on leaf breakdown: Dryland salinity versus salinity from a coalmine.

    PubMed

    Sauer, Felix G; Bundschuh, Mirco; Zubrod, Jochen P; Schäfer, Ralf B; Thompson, Kristie; Kefford, Ben J

    2016-08-01

    Salinization of freshwater ecosystems as a result of human activities represents a global threat for ecosystems' integrity. Whether different sources of salinity with their differing ionic compositions lead to variable effects in ecosystem functioning is unknown. Therefore, the present study assessed the impact of dryland- (50μS/cm to 11,000μS/cm) and coalmine-induced (100μS/cm to 2400μS/cm) salinization on the leaf litter breakdown, with focus on microorganisms as main decomposer, in two catchments in New South Wales, Australia. The breakdown of Eucalyptus camaldulensis leaves decreased with increasing salinity by up to a factor of three. Coalmine salinity, which is characterised by a higher share of bicarbonates, had a slightly but consistently higher breakdown rate at a given salinity relative to dryland salinity, which is characterised by ionic proportions similar to sea water. Complementary laboratory experiments supported the stimulatory impact of sodium bicarbonates on leaf breakdown when compared to sodium chloride or artificial sea salt. Furthermore, microbial inoculum from a high salinity site (11,000μS/cm) yielded lower leaf breakdown at lower salinity relative to inoculum from a low salinity site (50μS/cm). Conversely, inoculum from the high salinity site was less sensitive towards increasing salinity levels relative to inoculum from the low salinity site. The effects of the different inoculum were the same regardless of salt source (sodium bicarbonate, sodium chloride and artificial sea salt). Finally, the microorganism-mediated leaf litter breakdown was most efficient at intermediate salinity levels (≈500μS/cm). The present study thus points to severe implications of increasing salinity intensities on the ecosystem function of leaf litter breakdown, while the underlying processes need further scrutiny. PMID:27393920

  12. Effects of river discharge and high-tide stage on salinity intrusion in the Weeki Wachee, Crystal, and Withlacoochee River estuaries, southwest Florida

    USGS Publications Warehouse

    Yobbi, D.K.; Knochenmus, L.A.

    1989-01-01

    The Weeki Wachee, Crystal, and Withlacoochee Rivers are coastal streams flowing into the Gulf of Mexico that may be affected by either future surface water or groundwater withdrawals. Reduction of river discharge will affect the upstream extent of saltwater intrusion in the rivers; however, under certain reduced low-flow discharges, the estimated change in upstream extent of saltwater intrusion is on the order of several tenths of a mile and frequently is within the range of predicted error. Data on flow, tides, and salinity describe the physical characteristics of the Weeki Wachee, Crystal, and Withlacoochee River systems. Vertical and longitudinal salinity profiles indicate that salinity of the rivers increases downstream and varies substantially at any given location. The Weeki Wachee River system is the best mixed of the three. The Crystal River system exhibited the next best mixed system, and the Withlacoochee River system exhibited the most variation in its salinity regime. The daily maximum upstream extent of salinity intrusion is described by multiple linear-regression analysis based on daily mean streamflow of each river and high-tide stage of the gulf. The equations are used to show the effects of discharge on the daily maximum upstream extent of salinity intrusion in the rivers. (USGS)

  13. Larval Tolerance to Salinity in Three Species of Australian Anuran: An Indication of Saline Specialisation in Litoria aurea

    PubMed Central

    Kearney, Brian D.; Byrne, Phillip G.; Reina, Richard D.

    2012-01-01

    Recent anthropogenic influences on freshwater habitats are forcing anuran populations to rapidly adapt to high magnitude changes in environmental conditions or face local extinction. We examined the effects of ecologically relevant elevated salinity levels on larval growth, metamorphosis and survival of three species of Australian anuran; the spotted marsh frog (Limnodynastes tasmaniensis), the painted burrowing frog (Neobatrachus sudelli) and the green and golden bell frog (Litoria aurea), in order to better understand the responses of these animals to environmental change. Elevated salinity (16% seawater) negatively impacted on the survival of L. tasmaniensis (35% survival) and N sudelli (0% survival), while reduced salinity had a negative impact on L. aurea. (16% seawater: 85% survival; 0.4% seawater: 35% survival). L. aurea tadpoles survived in salinities much higher than previously reported for this species, indicating the potential for inter-populations differences in salinity tolerance. In L. tasmaniensis and L. aurea, development to metamorphosis was fastest in low and high salinity treatments suggesting it is advantageous for tadpoles to invest energy in development in both highly favourable and developmentally challenging environments. We propose that this response might either maximise potential lifetime fecundity when tadpoles experience favourable environments, or, facilitate a more rapid escape from pond environments where there is a reduced probability of survival. PMID:22916260

  14. Effect of Loading History on Stress Corrosion Cracking of 7075-T651 Aluminum Alloy in Saline Aqueous Environment

    NASA Astrophysics Data System (ADS)

    Zhang, Jixi; Kalnaus, Sergiy; Behrooz, Majid; Jiang, Yanyao

    2011-02-01

    An experimental study of stress corrosion cracking (SCC) was conducted on 7075-T651 aluminum alloy in a chromate-inhibited, acidic 3.5 pct sodium chloride aqueous solution using compact tension specimens with a thickness of 3.8 mm under permanent immersion conditions. The effects of loading magnitude, overload, underload, and two-step high-low sequence loading on incubation time and crack growth behavior were investigated. The results show that the SCC process consists of three stages: incubation, transient crack growth, and stable crack growth. The incubation time is highly dependent on the load level. Tensile overload or compressive underload applied prior to SCC significantly altered the initiation time of corrosion cracking. Transition from a high to a low loading magnitude resulted in a second incubation but much shorter or disappearing transient stage. The stable crack growth rate is independent of stress intensity factor in the range of 10 to 22 MPa sqrt {{m}}.

  15. Collection of High Energy Yielding Strains of Saline Microalgae from the Hawaiian Islands: Final Technical Report, Year 1

    SciTech Connect

    York, R. H.

    1986-01-01

    Microalgae were collected from 48 locations in the Hawaiian Islands in 1985. The sites were an aquaculture tank; a coral reef; bays; a geothermal steam vent; Hawaiian fish ponds; a Hawaiian salt punawai (well); the ocean; river mouths; saline lakes; saline pools; saline ponds; a saline swamp; and the ponds, drainage ditches and sumps of commercial shrimp farms. From 4,800 isolations, 100 of the most productive clones were selected to be maintained by periodic transfer to sterile medium. Five clones were tested for growth rate and production in a full-spectrum-transmitting solarium.

  16. Using UCST Ionic Liquid as a Draw Solute in Forward Osmosis to Treat High-Salinity Water.

    PubMed

    Zhong, Yujiang; Feng, Xiaoshuang; Chen, Wei; Wang, Xinbo; Huang, Kuo-Wei; Gnanou, Yves; Lai, Zhiping

    2016-01-19

    The concept of using a thermoresponsive ionic liquid (IL) with an upper critical solution temperature (UCST) as a draw solute in forward osmosis (FO) was successfully demonstrated here experimentally. A 3.2 M solution of protonated betaine bis(trifluoromethylsulfonyl)imide ([Hbet][Tf2N]) was obtained by heating and maintaining the temperature above 56 °C. This solution successfully drew water from high-salinity water up to 3.0 M through FO. When the IL solution cooled to room temperature, it spontaneously separated into a water-rich phase and an IL-rich phase: the water-rich phase was the produced water that contained a low IL concentration, and the IL-rich phase could be used directly as the draw solution in the next cycle of the FO process. The thermal stability, thermal-responsive solubility, and UV-vis absorption spectra of the IL were also studied in detail.

  17. The use of some ion-exchange sorbing tracer cations in in-situ experiments in high saline groundwaters

    SciTech Connect

    Byegaard, J.; Skarnemark, G.; Skaalberg, M.

    1995-12-31

    The possibility to use alkali metals and alkaline earth metals as slightly sorbing tracers in in-situ sorption experiments in high saline groundwaters has been investigated. The cation exchange characteristics of granite and some fracture minerals (chlorite and calcite) have been studied using the proposed cations as tracers. The results show low Kd`s for Na, Ca and Sr ({approximately}0.1 ml/g), while the sorption is higher for the more electropositive cations (Rb, Cs and Ba). A higher contribution of irreversible sorption can also be observed for the latter group of cations. For calcite the sorption of all the tracers, except Ca, is lower compared to the corresponding sorption to granite and chlorite. Differences in selectivity coefficients and cation exchange capacity are obtained when using different size fractions of crushed granite. The difference is even more pronounced when comparing crushed granite to intact granite.

  18. Using UCST Ionic Liquid as a Draw Solute in Forward Osmosis to Treat High-Salinity Water.

    PubMed

    Zhong, Yujiang; Feng, Xiaoshuang; Chen, Wei; Wang, Xinbo; Huang, Kuo-Wei; Gnanou, Yves; Lai, Zhiping

    2016-01-19

    The concept of using a thermoresponsive ionic liquid (IL) with an upper critical solution temperature (UCST) as a draw solute in forward osmosis (FO) was successfully demonstrated here experimentally. A 3.2 M solution of protonated betaine bis(trifluoromethylsulfonyl)imide ([Hbet][Tf2N]) was obtained by heating and maintaining the temperature above 56 °C. This solution successfully drew water from high-salinity water up to 3.0 M through FO. When the IL solution cooled to room temperature, it spontaneously separated into a water-rich phase and an IL-rich phase: the water-rich phase was the produced water that contained a low IL concentration, and the IL-rich phase could be used directly as the draw solution in the next cycle of the FO process. The thermal stability, thermal-responsive solubility, and UV-vis absorption spectra of the IL were also studied in detail. PMID:26649525

  19. Efficient treatment of phenolic wastewater with high salinity using a novel integrated system of magnetically immobilized cells coupling with electrodes.

    PubMed

    Jiang, Bei; Shi, Shengnan; Song, Lun; Tan, Liang; Li, Meidi; Liu, Jiaxin; Xue, Lanlan

    2016-10-01

    A novel integrated system in which magnetically immobilized cells coupled with a pair of stainless iron meshes-graphite plate electrodes has been designed and operated to enhance the treatment performance of phenolic wastewater under high salinity. With NaCl concentration increased, phenol, o-cresol, m-cresol, p-cresol and COD removal rates by integrated system increased significantly, which were obviously higher than the sum of removal rates by single magnetically immobilized cells and electrode reaction. This integrated system exhibited higher removal rates for all the compounds than that by single magnetically immobilized cells during six cycles for reuse, and it still performed better, even when the voltage was cut off. These results indicated that there was a coupling effect between biodegradation and electrode reaction. The investigation of phenol hydroxylase activity and cells concentration confirmed that electrode reaction played an important role in this coupling effect. PMID:27347805

  20. Efficient treatment of phenolic wastewater with high salinity using a novel integrated system of magnetically immobilized cells coupling with electrodes.

    PubMed

    Jiang, Bei; Shi, Shengnan; Song, Lun; Tan, Liang; Li, Meidi; Liu, Jiaxin; Xue, Lanlan

    2016-10-01

    A novel integrated system in which magnetically immobilized cells coupled with a pair of stainless iron meshes-graphite plate electrodes has been designed and operated to enhance the treatment performance of phenolic wastewater under high salinity. With NaCl concentration increased, phenol, o-cresol, m-cresol, p-cresol and COD removal rates by integrated system increased significantly, which were obviously higher than the sum of removal rates by single magnetically immobilized cells and electrode reaction. This integrated system exhibited higher removal rates for all the compounds than that by single magnetically immobilized cells during six cycles for reuse, and it still performed better, even when the voltage was cut off. These results indicated that there was a coupling effect between biodegradation and electrode reaction. The investigation of phenol hydroxylase activity and cells concentration confirmed that electrode reaction played an important role in this coupling effect.

  1. A Study on High School Students' Perceptions of "Geographical Environment"

    ERIC Educational Resources Information Center

    Nurettin, Bilgen

    2015-01-01

    This research investigates how high school students perceive the concept "environment". The research was conducted on 191 Social Science High School students from 9 to 12th grades in Istanbul and Denizli within 2012 to 2013 academic year. In the study, students were asked to draw a picture of the "environment". The research…

  2. High-Throughput Non-destructive Phenotyping of Traits that Contribute to Salinity Tolerance in Arabidopsis thaliana

    PubMed Central

    Awlia, Mariam; Nigro, Arianna; Fajkus, Jiří; Schmoeckel, Sandra M.; Negrão, Sónia; Santelia, Diana; Trtílek, Martin; Tester, Mark; Julkowska, Magdalena M.; Panzarová, Klára

    2016-01-01

    Reproducible and efficient high-throughput phenotyping approaches, combined with advances in genome sequencing, are facilitating the discovery of genes affecting plant performance. Salinity tolerance is a desirable trait that can be achieved through breeding, where most have aimed at selecting for plants that perform effective ion exclusion from the shoots. To determine overall plant performance under salt stress, it is helpful to investigate several plant traits collectively in one experimental setup. Hence, we developed a quantitative phenotyping protocol using a high-throughput phenotyping system, with RGB and chlorophyll fluorescence (ChlF) imaging, which captures the growth, morphology, color and photosynthetic performance of Arabidopsis thaliana plants in response to salt stress. We optimized our salt treatment by controlling the soil-water content prior to introducing salt stress. We investigated these traits over time in two accessions in soil at 150, 100, or 50 mM NaCl to find that the plants subjected to 100 mM NaCl showed the most prominent responses in the absence of symptoms of severe stress. In these plants, salt stress induced significant changes in rosette area and morphology, but less prominent changes in rosette coloring and photosystem II efficiency. Clustering of ChlF traits with plant growth of nine accessions maintained at 100 mM NaCl revealed that in the early stage of salt stress, salinity tolerance correlated with non-photochemical quenching processes and during the later stage, plant performance correlated with quantum yield. This integrative approach allows the simultaneous analysis of several phenotypic traits. In combination with various genetic resources, the phenotyping protocol described here is expected to increase our understanding of plant performance and stress responses, ultimately identifying genes that improve plant performance in salt stress conditions. PMID:27733855

  3. Selection of phytoplankton species in culture by gradual salinity changes

    NASA Astrophysics Data System (ADS)

    Rijstenbil, J. W.

    Continuous cultures of mixed phytoplankton populations were subjected to gradual salinity changes. The phytoplankton was exposed to defined regimes of high, low or fluctuating salinity, in artificial brackish media. In several experiments ammonium was the limiting nutrient. A rapid selection process was observed in natural phytoplankton assemblages. A gradual freshening caused the dominance of Chaetoceros mülleri at low salinity (S = 5). Skeletonema costatum became dominant at higher, constant or fluctuating salinities, accompanied by Ditylum brightwellii in low cell numbers. Ammonium limitation was not achieved in this experiment. Competition for ammonium was studied in a second experiment, using an inoculum of two species. At S = 18 D. brighwellii became the dominant species in this competition. A minor shift towards S = 15 reversed the affinities for ammonium, and S. costatum won the competition. At S = 8 S. costatum had the highest affinity for ammonium after a period of osmotic adjustment. Ammonium became limiting when salinities arrived at constant meso- or polyhaline levels. Both species were able to grow in fluctuating osmotic environments (S = 5 to 19). The growth of D. brightwellii decreased below S = 8 and after repeated variations of the salinity. These salinity fluctuations suppressed growth and ammonium uptake of both species, thus preventing ammonium limitation. These competition experiments indicate that unstable salinity may stimulate the mass development of S. costatum in brackish lakes.

  4. Evaluation of the halophyte Salsola soda as an alternative crop for saline soils high in selenium and boron

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salinization is one important factor contributing to land degradation, which affects agricultural production and environmental quality, especially in the West side of central California. When salinization is combined with a natural contamination of trace elements (i.e., Se and B) in arid and semi-ar...

  5. Illinois High School Principals' Perceptions of Alternative Learning Environments

    ERIC Educational Resources Information Center

    Carlton, Lawrence W.

    2009-01-01

    This study examined Illinois high school principals' perceptions of the growth, quality, advantages and disadvantages of alternative learning environments. In this study, alternative learning environments involved the use of both synchronous and asynchronous modes of communication for course delivery. Synchronous modes of instructional delivery…

  6. Science Laboratory Classroom Environments in Korean High Schools

    ERIC Educational Resources Information Center

    Fraser, Barry J.; Lee, Sunny S. U.

    2009-01-01

    In order to investigate the learning environment of senior high school science laboratory classrooms in Korea, the Science Laboratory Environment Inventory (SLEI) was translated into Korean and administered to 439 students (99 science-independent stream students, 195 science-oriented stream students and 145 humanities stream students). Data…

  7. Saline Sinus Rinse Recipe

    MedlinePlus

    ... Saline Sinus Rinse Recipe Share | Saline Sinus Rinse Recipe Saline sinus rinses can bring relief to patients ... at a fraction of the cost. Saline Rinse Recipe Ingredients 1. Pickling or canning salt-containing no ...

  8. Controlled ecological life support systems (CELSS) in high pressure environments.

    PubMed

    Thompson, B G

    1989-05-01

    Future space habitats may be constructed in high pressure environments. The biological components of any controlled ecological life support systems (CELSS) used in these habitats will have to be able to grow and metabolize normally for the CELSS to operate.

  9. Involvement of the crustacean hyperglycemic hormone (CHH) in the physiological compensation of the freshwater crayfish Cherax quadricarinatus to low temperature and high salinity stress.

    PubMed

    Prymaczok, Natalia C; Pasqualino, Valeria M; Viau, Verónica E; Rodríguez, Enrique M; Medesani, Daniel A

    2016-02-01

    This study was aimed at determining the role of the crustacean hyperglycemic hormone (CHH) in the physiological compensation to both saline and thermal stress, in the freshwater crayfish Cherax quadricarinatus. By determining the expression of the CHH gene in the eyestalk of juvenile crayfish, we found that maximal induction of CHH was induced at high salinity (10 g/L) and low temperature (20 °C). In order to investigate the role of CHH in the physiological compensation to such stressful conditions, recombinant CHH was supplied to stressed animals. CHH-injected crayfish showed increased hemolymphatic levels of glucose, in accordance with a significant utilization of glycogen reserves from the hepatopancreas. Furthermore, CHH administration allowed stressed animals to regulate hemolymphatic sodium and potassium at more constant levels than controls. Taken together, these results suggest a relevant role of CHH in increasing the energy available intended for processes involved in the physiological compensation of C. quadricarinatus to both saline and thermal stress.

  10. High resolution numerical investigation on the effect of convective instability on long term CO2 storage in saline aquifers

    NASA Astrophysics Data System (ADS)

    Lu, C.; Lichtner, P. C.

    2007-07-01

    CO2 sequestration (capture, separation, and long term storage) in various geologic media including depleted oil reservoirs, saline aquifers, and oceanic sediments is being considered as a possible solution to reduce green house gas emissions. Dissolution of supercritical CO2 in formation brines is considered an important storage mechanism to prevent possible leakage. Accurate prediction of the plume dissolution rate and migration is essential. Analytical analysis and numerical experiments have demonstrated that convective instability (Rayleigh instability) has a crucial effect on the dissolution behavior and subsequent mineralization reactions. Global stability analysis indicates that a certain grid resolution is needed to capture the features of density-driven fingering phenomena. For 3-D field scale simulations, high resolution leads to large numbers of grid nodes, unfeasible for a single workstation. In this study, we investigate the effects of convective instability on geologic sequestration of CO2 by taking advantage of parallel computing using the code PFLOTRAN, a massively parallel 3-D reservoir simulator for modeling subsurface multiphase, multicomponent reactive flow and transport based on continuum scale mass and energy conservation equations. The onset, development and long-term fate of a supercritical CO2 plume will be resolved with high resolution numerical simulations to investigate the rate of plume dissolution caused by fingering phenomena.

  11. Politics in evaluation: Politically responsive evaluation in high stakes environments.

    PubMed

    Azzam, Tarek; Levine, Bret

    2015-12-01

    The role of politics has often been discussed in evaluation theory and practice. The political influence of the situation can have major effects on the evaluation design, approach and methods. Politics also has the potential to influence the decisions made from the evaluation findings. The current study focuses on the influence of the political context on stakeholder decision making. Utilizing a simulation scenario, this study compares stakeholder decision making in high and low stakes evaluation contexts. Findings suggest that high stakes political environments are more likely than low stakes environments to lead to reduced reliance on technically appropriate measures and increased dependence on measures better reflect the broader political environment. PMID:26283476

  12. Politics in evaluation: Politically responsive evaluation in high stakes environments.

    PubMed

    Azzam, Tarek; Levine, Bret

    2015-12-01

    The role of politics has often been discussed in evaluation theory and practice. The political influence of the situation can have major effects on the evaluation design, approach and methods. Politics also has the potential to influence the decisions made from the evaluation findings. The current study focuses on the influence of the political context on stakeholder decision making. Utilizing a simulation scenario, this study compares stakeholder decision making in high and low stakes evaluation contexts. Findings suggest that high stakes political environments are more likely than low stakes environments to lead to reduced reliance on technically appropriate measures and increased dependence on measures better reflect the broader political environment.

  13. Intrinsic water use efficiency controls the adaptation to high salinity in a semi-arid adapted plant, henna (Lawsonia inermis L.).

    PubMed

    Fernández-García, Nieves; Olmos, Enrique; Bardisi, Enas; García-De la Garma, Jesús; López-Berenguer, Carmen; Rubio-Asensio, José Salvador

    2014-03-01

    Adaptation to salinity of a semi-arid inhabitant plant, henna, is studied. The salt tolerance mechanisms are evaluated in the belief that gas exchange (water vapor and CO2) should play a key role on its adaptation to salt stress because of the strong evaporation conditions and soil water deficit in its natural area of distribution. We grow henna plants hydroponically under controlled climate conditions and expose them to control (0mM NaCl), and two levels of salinity; medium (75mM NaCl) and high (150mM NaCl). Relative growth rate (RGR), biomass production, whole plant and leaf structure and ultrastructure adaptation, gas exchange, chlorophyll fluorescence, nutrients location in leaf tissue and its balance in the plant are studied. RGR and total biomass decreased as NaCl concentration increased in the nutrient solution. At 75mM NaCl root biomass was not affected by salinity and RGR reached similar values to control plants at the end of the experiment. At this salinity level henna plant responded to salinity decreasing shoot to root ratio, increasing leaf specific mass (LSM) and intrinsic water use efficiency (iWUE), and accumulating high concentrations of Na(+) and Cl(-) in leaves and root. At 150mM NaCl growth was severely reduced but plants reached the reproductive phase. At this salinity level, no further decrease in shoot to root ratio or increase in LSM was observed, but plants increased iWUE, maintaining water status and leaf and root Na(+) and Cl(-) concentrations were lower than expected. Moreover, plants at 150mM NaCl reallocated carbon to the root at the expense of the shoot. The effective PSII quantum yield [Y(II)] and the quantum yield of non-regulated energy dissipation [Y(NO)] were recovered over time of exposure to salinity. Overall, iWUE seems to be determinant in the adaptation of henna plant to high salinity level, when morphological adaptation fails. PMID:24484959

  14. Treatment of high-salinity chemical wastewater by indigenous bacteria--bioaugmented contact oxidation.

    PubMed

    Li, Qiang; Wang, Mengdi; Feng, Jun; Zhang, Wei; Wang, Yuanyuan; Gu, Yanyan; Song, Cunjiang; Wang, Shufang

    2013-09-01

    A 90 m(3) biological contact oxidation system in chemical factory was bioaugmented with three strains of indigenous salt-tolerant bacteria. These three strains were screened from contaminative soil in situ. Their activity of growth and degradation was investigated with lab-scale experiments. Their salt-tolerant mechanism was confirmed to be compatible-solutes strategy for moderately halophilic bacteria, with amino acid and betaine playing important roles. The running conditions of the system were recorded for 150 days. The indigenous bacteria had such high suitability that the reactor got steady rapidly and the removal of COD maintained above 90%. It was introduced that biofilm fragments in sedimentation tank were inversely flowed to each reaction tank, and quantitative PCR demonstrated that this process could successfully maintain the bacterial abundance in the reaction tanks. In addition, the T-RFLP revealed that bioaugmented strains dominated over others in the biofilm.

  15. Learning environment, motivation, and achievement in high school science

    NASA Astrophysics Data System (ADS)

    Bobbitt Nolen, Susan

    2003-04-01

    In a study of the relationship between high school students' perceptions of their science learning environments and their motivation, learning strategies, and achievement, 377 students in 22 introductory science classrooms completed surveys in the fall and spring of their ninth-grade year. Hierarchical linear regression was used to model the effects of variables at both the classroom and individual level simultaneously. High intraclass agreement (indicated by high parameter reliability) on all classroom environment measures indicated that students shared perceptions of the classroom learning environment. Controlling for other factors, shared perceptions that only the most able could succeed in science classrooms and that instruction was fast-paced and focused on correct answers negatively predicted science achievement, as measured on a districtwide curriculum-linked test. Shared perceptions that classrooms focused on understanding and independent thinking positively predicted students' self-reported satisfaction with learning. Implications of these results for both teaching and research into classroom environments are discussed.

  16. Analysis of radium-226 in high salinity wastewater from unconventional gas extraction by inductively coupled plasma-mass spectrometry.

    PubMed

    Zhang, Tieyuan; Bain, Daniel; Hammack, Richard; Vidic, Radisav D

    2015-03-01

    Elevated concentration of naturally occurring radioactive material (NORM) in wastewater generated from Marcellus Shale gas extraction is of great concern due to potential environmental and public health impacts. Development of a rapid and robust method for analysis of Ra-226, which is the major NORM component in this water, is critical for the selection of appropriate management approaches to properly address regulatory and public concerns. Traditional methods for Ra-226 determination require long sample holding time or long detection time. A novel method combining Inductively Coupled Mass Spectrometry (ICP-MS) with solid-phase extraction (SPE) to separate and purify radium isotopes from the matrix elements in high salinity solutions is developed in this study. This method reduces analysis time while maintaining requisite precision and detection limit. Radium separation is accomplished using a combination of a strong-acid cation exchange resin to separate barium and radium from other ions in the solution and a strontium-specific resin to isolate radium from barium and obtain a sample suitable for analysis by ICP-MS. Method optimization achieved high radium recovery (101 ± 6% for standard mode and 97 ± 7% for collision mode) for synthetic Marcellus Shale wastewater (MSW) samples with total dissolved solids as high as 171,000 mg/L. Ra-226 concentration in actual MSW samples with TDS as high as 415,000 mg/L measured using ICP-MS matched very well with the results from gamma spectrometry. The Ra-226 analysis method developed in this study requires several hours for sample preparation and several minutes for analysis with the detection limit of 100 pCi/L with RSD of 45% (standard mode) and 67% (collision mode). The RSD decreased to below 15% when Ra-226 concentration increased over 500 pCi/L.

  17. Analysis of radium-226 in high salinity wastewater from unconventional gas extraction by inductively coupled plasma-mass spectrometry.

    PubMed

    Zhang, Tieyuan; Bain, Daniel; Hammack, Richard; Vidic, Radisav D

    2015-03-01

    Elevated concentration of naturally occurring radioactive material (NORM) in wastewater generated from Marcellus Shale gas extraction is of great concern due to potential environmental and public health impacts. Development of a rapid and robust method for analysis of Ra-226, which is the major NORM component in this water, is critical for the selection of appropriate management approaches to properly address regulatory and public concerns. Traditional methods for Ra-226 determination require long sample holding time or long detection time. A novel method combining Inductively Coupled Mass Spectrometry (ICP-MS) with solid-phase extraction (SPE) to separate and purify radium isotopes from the matrix elements in high salinity solutions is developed in this study. This method reduces analysis time while maintaining requisite precision and detection limit. Radium separation is accomplished using a combination of a strong-acid cation exchange resin to separate barium and radium from other ions in the solution and a strontium-specific resin to isolate radium from barium and obtain a sample suitable for analysis by ICP-MS. Method optimization achieved high radium recovery (101 ± 6% for standard mode and 97 ± 7% for collision mode) for synthetic Marcellus Shale wastewater (MSW) samples with total dissolved solids as high as 171,000 mg/L. Ra-226 concentration in actual MSW samples with TDS as high as 415,000 mg/L measured using ICP-MS matched very well with the results from gamma spectrometry. The Ra-226 analysis method developed in this study requires several hours for sample preparation and several minutes for analysis with the detection limit of 100 pCi/L with RSD of 45% (standard mode) and 67% (collision mode). The RSD decreased to below 15% when Ra-226 concentration increased over 500 pCi/L. PMID:25642997

  18. RNA-Seq Analysis of the Response of the Halophyte, Mesembryanthemum crystallinum (Ice Plant) to High Salinity

    PubMed Central

    Tsukagoshi, Hironaka; Suzuki, Takamasa; Nishikawa, Kouki; Agarie, Sakae; Ishiguro, Sumie; Higashiyama, Tetsuya

    2015-01-01

    Understanding the molecular mechanisms that convey salt tolerance in plants is a crucial issue for increasing crop yield. The ice plant (Mesembryanthemum crystallinum) is a halophyte that is capable of growing under high salt conditions. For example, the roots of ice plant seedlings continue to grow in 140 mM NaCl, a salt concentration that completely inhibits Arabidopsis thaliana root growth. Identifying the molecular mechanisms responsible for this high level of salt tolerance in a halophyte has the potential of revealing tolerance mechanisms that have been evolutionarily successful. In the present study, deep sequencing (RNAseq) was used to examine gene expression in ice plant roots treated with various concentrations of NaCl. Sequencing resulted in the identification of 53,516 contigs, 10,818 of which were orthologs of Arabidopsis genes. In addition to the expression analysis, a web-based ice plant database was constructed that allows broad public access to the data. The results obtained from an analysis of the RNAseq data were confirmed by RT-qPCR. Novel patterns of gene expression in response to high salinity within 24 hours were identified in the ice plant when the RNAseq data from the ice plant was compared to gene expression data obtained from Arabidopsis plants exposed to high salt. Although ABA responsive genes and a sodium transporter protein (HKT1), are up-regulated and down-regulated respectively in both Arabidopsis and the ice plant; peroxidase genes exhibit opposite responses. The results of this study provide an important first step towards analyzing environmental tolerance mechanisms in a non-model organism and provide a useful dataset for predicting novel gene functions. PMID:25706745

  19. RNA-seq analysis of the response of the halophyte, Mesembryanthemum crystallinum (ice plant) to high salinity.

    PubMed

    Tsukagoshi, Hironaka; Suzuki, Takamasa; Nishikawa, Kouki; Agarie, Sakae; Ishiguro, Sumie; Higashiyama, Tetsuya

    2015-01-01

    Understanding the molecular mechanisms that convey salt tolerance in plants is a crucial issue for increasing crop yield. The ice plant (Mesembryanthemum crystallinum) is a halophyte that is capable of growing under high salt conditions. For example, the roots of ice plant seedlings continue to grow in 140 mM NaCl, a salt concentration that completely inhibits Arabidopsis thaliana root growth. Identifying the molecular mechanisms responsible for this high level of salt tolerance in a halophyte has the potential of revealing tolerance mechanisms that have been evolutionarily successful. In the present study, deep sequencing (RNAseq) was used to examine gene expression in ice plant roots treated with various concentrations of NaCl. Sequencing resulted in the identification of 53,516 contigs, 10,818 of which were orthologs of Arabidopsis genes. In addition to the expression analysis, a web-based ice plant database was constructed that allows broad public access to the data. The results obtained from an analysis of the RNAseq data were confirmed by RT-qPCR. Novel patterns of gene expression in response to high salinity within 24 hours were identified in the ice plant when the RNAseq data from the ice plant was compared to gene expression data obtained from Arabidopsis plants exposed to high salt. Although ABA responsive genes and a sodium transporter protein (HKT1), are up-regulated and down-regulated respectively in both Arabidopsis and the ice plant; peroxidase genes exhibit opposite responses. The results of this study provide an important first step towards analyzing environmental tolerance mechanisms in a non-model organism and provide a useful dataset for predicting novel gene functions.

  20. Simultaneous speciation analysis of inorganic nitrogen with the use of ion chromatography in highly salinated environmental samples.

    PubMed

    Kurzyca, Iwona; Niedzielski, Przemyslaw; Frankowski, Marcin

    2016-09-01

    We present the development of a method for the simultaneous determination of inorganic nitrogen species in oxidized (NO2 (-) , NO3 (-) ) and reduced (NH4 (+) ) forms using ion chromatography with diode-array detection (205, 208, and 425 nm, respectively). The oxidized forms were determined directly after the separation in the anion exchanger, while the reduced form was determined in the column hold-up time after derivatization with the Nessler reagent. The use of an appropriate modifier (Seignette reagent) and mobile phase (NaCl) enabled the determination of inorganic nitrogen species in highly salinated environmental samples (water, sediments). Moreover, low detection limits were obtained of 0.04 mg/L for NH4 (+) and 0.006 and 0.005 mg/L for NO2 (-) and NO3 (-) , respectively. The analysis of environmental samples indicated NH4 (+) contents of up to 1161 ± 47 mg/kg and NO3 (-) of up to 148 ± 6 mg/kg for sediment samples, as well as the NH4 (+) concentrations of up to 0.98 ± 0.10 mg/L, NO2 (-) of up to 24 ± 1 mg/L and NO3 (-) of up to 20 ± 1 mg/L for water samples.

  1. Simultaneous speciation analysis of inorganic nitrogen with the use of ion chromatography in highly salinated environmental samples.

    PubMed

    Kurzyca, Iwona; Niedzielski, Przemyslaw; Frankowski, Marcin

    2016-09-01

    We present the development of a method for the simultaneous determination of inorganic nitrogen species in oxidized (NO2 (-) , NO3 (-) ) and reduced (NH4 (+) ) forms using ion chromatography with diode-array detection (205, 208, and 425 nm, respectively). The oxidized forms were determined directly after the separation in the anion exchanger, while the reduced form was determined in the column hold-up time after derivatization with the Nessler reagent. The use of an appropriate modifier (Seignette reagent) and mobile phase (NaCl) enabled the determination of inorganic nitrogen species in highly salinated environmental samples (water, sediments). Moreover, low detection limits were obtained of 0.04 mg/L for NH4 (+) and 0.006 and 0.005 mg/L for NO2 (-) and NO3 (-) , respectively. The analysis of environmental samples indicated NH4 (+) contents of up to 1161 ± 47 mg/kg and NO3 (-) of up to 148 ± 6 mg/kg for sediment samples, as well as the NH4 (+) concentrations of up to 0.98 ± 0.10 mg/L, NO2 (-) of up to 24 ± 1 mg/L and NO3 (-) of up to 20 ± 1 mg/L for water samples. PMID:27422313

  2. Effects of OLRs and HRTs on hydrogen production from high salinity substrate by halophilic hydrogen producing bacterium (HHPB).

    PubMed

    Zhang, Shan; Lee, Yunhee; Kim, Tae-Hyeong; Hwang, Sun-Jin

    2013-08-01

    The effects of hydraulic retention time (HRT) and organic loading rate (OLR) on hydrogen production were investigated with glucose medium containing 2% NaCl. Halophilic hydrogen producing bacterium (HHPB) Clostridium bifermentans 3AT-ma, which can survive under high salt conditions, was used. Sponge media were used as 20% of working volume. The OLR and HRT were varied in 10-60 g-glucose/L-reactor/day and 24-6h. With OLR of 20 g-glucose/L/day, shorter HRT resulted in higher hydrogen producing rate and yield. When the OLR was increased from 20 to 60 g-glucose/L-reactor/day at HRT 6h, the hydrogen production rate increased, while the hydrogen production yield decreased due to the increase and accumulation of volatile fatty acids. Biohydrogen production was possible from the salinity substrate using HHPB, and the maximum hydrogen production yield was 1.1 mol-H₂/mol-glucose with optimal conditions of OLR of 20 g-glucose/L/day and HRT of 12h.

  3. The Arabidopsis Transcription Factor MYB112 Promotes Anthocyanin Formation during Salinity and under High Light Stress1[OPEN

    PubMed Central

    Lotkowska, Magda E.; Tohge, Takayuki; Fernie, Alisdair R.; Xue, Gang-Ping; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-01-01

    MYB transcription factors (TFs) are important regulators of flavonoid biosynthesis in plants. Here, we report MYB112 as a formerly unknown regulator of anthocyanin accumulation in Arabidopsis (Arabidopsis thaliana). Expression profiling after chemically induced overexpression of MYB112 identified 28 up- and 28 down-regulated genes 5 h after inducer treatment, including MYB7 and MYB32, which are both induced. In addition, upon extended induction, MYB112 also positively affects the expression of PRODUCTION OF ANTHOCYANIN PIGMENT1, a key TF of anthocyanin biosynthesis, but acts negatively toward MYB12 and MYB111, which both control flavonol biosynthesis. MYB112 binds to an 8-bp DNA fragment containing the core sequence (A/T/G)(A/C)CC(A/T)(A/G/T)(A/C)(T/C). By electrophoretic mobility shift assay and chromatin immunoprecipitation coupled to quantitative polymerase chain reaction, we show that MYB112 binds in vitro and in vivo to MYB7 and MYB32 promoters, revealing them as direct downstream target genes. We further show that MYB112 expression is up-regulated by salinity and high light stress, environmental parameters that both require the MYB112 TF for anthocyanin accumulation under these stresses. In contrast to several other MYB TFs affecting anthocyanin biosynthesis, MYB112 expression is not controlled by nitrogen limitation or an excess of carbon. Thus, MYB112 constitutes a regulator that promotes anthocyanin accumulation under abiotic stress conditions. PMID:26378103

  4. High environmental salinity induces memory enhancement and increases levels of brain angiotensin-like peptides in the crab Chasmagnathus granulatus.

    PubMed

    Delorenzi, A; Dimant, B; Frenkel, L; Nahmod, V E; Nässel, D R; Maldonado, H

    2000-11-01

    Previous work on the brackish-water crab Chasmagnathus granulatus demonstrated that an endogenous peptide similar to angiotensin II plays a significant role in enhancing long-term memory that involves an association between context and an iterative danger stimulus (context-signal memory). The present results show that this memory enhancement could be produced by moving crabs from brackish water to sea water (33.0%) and keeping them there for at least 4 days. The possibility that such a facilitatory effect is due to osmotic stress is ruled out. Coincidentally, the level of angiotensin-II-like peptides in crab brain, measured by radioimmunoassay, increases with the length of exposure to sea water, reaching a significantly different level at the fourth day. The presence of angiotensin-II-like immunoreactive material in neural structures of the supraoesophageal and eyestalk ganglia was confirmed by immunohistochemical analysis. The results are interpreted as supporting the hypothesis that exposure to water of high salinity is an external cue triggering a process mediated by angiotensins that leads to enhanced memory in these crabs.

  5. A Gas-Filled Calorimeter for High Intensity Beam Environments

    NASA Astrophysics Data System (ADS)

    Abrams, Robert; Ankenbrandt, Harles; Flanagan, Gene; Hauptman, John; Kahn, Steven; Lee, Sehwook; Notani, Masahiro

    We describe a novel gas-Cherenkov calorimeter, which detects Cherenkov light showers emitted in an array of thin metal tubes or channels filled with gas. The materials are not vulnerable to radiation damage, and the detector is inherently fast and able to operate in high rate environments. Future accelerators such as the ILC and a muon collider will need fast, radiation-tolerant detectors for monitoring beams and beam halos, and detectors are needed that can operate in the presence of high particle rates. Such detectors will also be useful for high rate environments at upgraded facilities such as RHIC, CEBAF II, and at Fermilab's Project X.

  6. Effects of oceanic salinity on body condition in sea snakes.

    PubMed

    Brischoux, François; Rolland, Virginie; Bonnet, Xavier; Caillaud, Matthieu; Shine, Richard

    2012-08-01

    Since the transition from terrestrial to marine environments poses strong osmoregulatory and energetic challenges, temporal and spatial fluctuations in oceanic salinity might influence salt and water balance (and hence, body condition) in marine tetrapods. We assessed the effects of salinity on three species of sea snakes studied by mark-recapture in coral-reef habitats in the Neo-Caledonian Lagoon. These three species include one fully aquatic hydrophiine (Emydocephalus annulatus), one primarily aquatic laticaudine (Laticauda laticaudata), and one frequently terrestrial laticaudine (Laticauda saintgironsi). We explored how oceanic salinity affected the snakes' body condition across various temporal and spatial scales relevant to each species' ecology, using linear mixed models and multimodel inference. Mean annual salinity exerted a consistent and negative effect on the body condition of all three snake species. The most terrestrial taxon (L. saintgironsi) was sensitive to salinity over a short temporal scale, corresponding to the duration of a typical marine foraging trip for this species. In contrast, links between oceanic salinity and body condition in the fully aquatic E. annulatus and the highly aquatic L. laticaudata were strongest at a long-term (annual) scale. The sophisticated salt-excreting systems of sea snakes allow them to exploit marine environments, but do not completely overcome the osmoregulatory challenges posed by oceanic conditions. Future studies could usefully explore such effects in other secondarily marine taxa such as seabirds, turtles, and marine mammals.

  7. Indicating the Attitudes of High School Students to Environment

    ERIC Educational Resources Information Center

    Ozkan, Recep

    2013-01-01

    Within this work in which it has been aimed to indicate the attitudes of High School Students to environment, indication of the attitudes of high school students in Nigde has been regarded as the problem matter. This analysis has the qualification of survey model and techniques of questionnaire and observation have been used. The investigation has…

  8. High School Students' Metaphorical Perceptions of Environment

    ERIC Educational Resources Information Center

    Çimen, Osman

    2014-01-01

    This study examines high school students' metaphorical perceptions in relation to the concept of environment. The study employs the phenomenological research design. The participants were 112 students studying at two different high schools in Ankara. As the data gathering tool, a survey form developed by the researcher was used in the study.…

  9. Evolutionary history influences the salinity preference of bacterial taxa in wetland soils

    PubMed Central

    Morrissey, Ember M.; Franklin, Rima B.

    2015-01-01

    Salinity is a major driver of bacterial community composition across the globe. Despite growing recognition that different bacterial species are present or active at different salinities, the mechanisms by which salinity structures community composition remain unclear. We tested the hypothesis that these patterns reflect ecological coherence in the salinity preferences of phylogenetic groups using a reciprocal transplant experiment of fresh- and saltwater wetland soils. The salinity of both the origin and host environments affected community composition (16S rRNA gene sequences) and activity (CO2 and CH4 production, and extracellular enzyme activity). These changes in community composition and activity rates were strongly correlated, which suggests the effect of environment on function could be mediated, at least in part, by microbial community composition. Based on their distribution across treatments, each phylotype was categorized as having a salinity preference (freshwater, saltwater, or none) and phylogenetic analyses revealed a significant influence of evolutionary history on these groupings. This finding was corroborated by examining the salinity preferences of high-level taxonomic groups. For instance, we found that the majority of α- and γ-proteobacteria in these wetland soils preferred saltwater, while many β-proteobacteria prefer freshwater. Overall, our results indicate the effect of salinity on bacterial community composition results from phylogenetically-clustered salinity preferences. PMID:26483764

  10. Teamwork in high-risk environments analogous to space

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.

    1990-01-01

    Mountaineering expeditions combine a number of factors which make them potentially good analogs to the planetary exploration facet of long-duration space missions. A study of mountain climbing teams was conducted in order to evaluate the usefulness of the environment as a space analog and to specifically identify the factors and issues surrounding teamwork and 'successful' team performance in two mountaineering environments. This paper focuses on social/organizational factors, including team size and structure, leadership styles and authority structure which were found in the sample of 22 climb teams (122 individuals). The second major issue discussed is the construction of a valid performance measure in this high-risk environment.

  11. Assessing sulfate reduction and methane cycling in a high salinity pore water system in the northern Gulf of Mexico

    USGS Publications Warehouse

    Pohlman, J.W.; Ruppel, C.; Hutchinson, D.R.; Downer, R.; Coffin, R.B.

    2008-01-01

    Pore waters extracted from 18 piston cores obtained on and near a salt-cored bathymetric high in Keathley Canyon lease block 151 in the northern Gulf of Mexico contain elevated concentrations of chloride (up to 838 mM) and have pore water chemical concentration profiles that exhibit extensive departures (concavity) from steady-state (linear) diffusive equilibrium with depth. Minimum ??13C dissolved inorganic carbon (DIC) values of -55.9??? to -64.8??? at the sulfate-methane transition (SMT) strongly suggest active anaerobic oxidation of methane (AOM) throughout the study region. However, the nonlinear pore water chemistry-depth profiles make it impossible to determine the vertical extent of active AOM or the potential role of alternate sulfate reduction pathways. Here we utilize the conservative (non-reactive) nature of dissolved chloride to differentiate the effects of biogeochemical activity (e.g., AOM and/or organoclastic sulfate reduction) relative to physical mixing in high salinity Keathley Canyon sediments. In most cases, the DIC and sulfate concentrations in pore waters are consistent with a conservative mixing model that uses chloride concentrations at the seafloor and the SMT as endmembers. Conservative mixing of pore water constituents implies that an undetermined physical process is primarily responsible for the nonlinearity of the pore water-depth profiles. In limited cases where the sulfate and DIC concentrations deviated from conservative mixing between the seafloor and SMT, the ??13C-DIC mixing diagrams suggest that the excess DIC is produced from a 13C-depleted source that could only be accounted for by microbial methane, the dominant form of methane identified during this study. We conclude that AOM is the most prevalent sink for sulfate and that it occurs primarily at the SMT at this Keathley Canyon site.

  12. The use of environmental tracers to determine focused recharge from a saline disposal basin and irrigation channels in a semiarid environment in Southeastern Australia

    NASA Astrophysics Data System (ADS)

    Robson, T. C.; Webb, J. A.

    2016-07-01

    Lake Tutchewop in southeastern Australia is a former ephemeral wetland that has been used as a saline disposal basin since 1968, forming part of the salinity management of the Murray River. The extent of saline focused recharge from Lake Tutchewop and fresh recharge from nearby unlined irrigation channels was determined using pore water and groundwater stable isotope and major ion chemistry, which were able to separate the influence of lake water, irrigation water and regional groundwater. In ∼45 years, saline water from Lake Tutchewop has infiltrated only up to 165 m from the lake edge in most directions, due to the underlying relatively impermeable clay-rich sediments, and a maximum of 700 m due to preferential groundwater flow along a sandy palaeochannel. The saline leakage has had limited, if any, impact on surrounding agricultural land use. Fresh water leakage from unlined irrigation channels extends up to 10 m deep, validating the current program to replace these channels with pipelines. This study demonstrates that focused recharge from different sources can be positively identified where the recharge waters have distinctive compositions, and that underlying clay-rich sediments restrict the extent of seepage. Therefore, management of focused recharge sources, particularly those that could decrease groundwater quality, requires a detailed knowledge of both the groundwater composition around the site and the underlying geology.

  13. Salinity dependence of the distribution of multicellular magnetotactic prokaryotes in a hypersaline lagoon.

    PubMed

    Martins, Juliana L; Silveira, Thaís S; Silva, Karen T; Lins, Ulysses

    2009-09-01

    Candidatus Magnetoglobus multicellularis is an unusual magnetotactic multicellular microorganism composed of a highly organized assemblage of gram-negative bacterial cells. In this work, the salinity dependence of Ca. M. multicellularis and its abundance in the hypersaline Araruama Lagoon, Brazil were studied. Viability experiments showed that Ca. M. multicellularis died in salinities upper than 55 per thousand and lower than 40 per thousand. Low salinities were also observed to modify the cellular assemblage. In microcosms prepared with different salinities, the microorganism grew better at intermediate salinities whereas in high or low salinities, the size of the population did not increase over time. The concentrations of Ca. M. multicellularis in the lagoon were related to salinity; sites with lower and higher salinities than the lagoon average contained less Ca. M. multicellularis. These results demonstrate the influence of salinity on the survival and distribution of Ca. M. multicellularis in the environment. In sediments, the abundance of Ca. M. multicellularis ranged from 0 to 103 microorganisms/ml, which represented 0.001% of the counts of total bacteria. The ability of Ca. M. multicellularis to accumulate iron and sulfur in high numbers of magnetosomes (up to 905 per microorganism) suggests that its impact on the sequestration of these elements (0.1% for biogenic bacterial iron) is not proportional to its abundance in the lagoon.

  14. Leaf gas exchange and solute accumulation in the halophyte Salvadora persica grown at moderate salinity.

    PubMed

    Maggio; Reddy; Joly

    2000-08-01

    The domestication of halophytes has been proposed as a strategy to expand cultivation onto unfavorable land. However, halophytes mainly have been considered for their performance in extremely saline environments, and only a few species have been characterized in terms of their tolerance and physiological responses to moderately high levels of salinity. Salvadora persica is an evergreen perennial halophyte capable of growing under extreme conditions, from very dry environments to highly saline soils. It possesses high potential economic value as a source of oil and medicinal compounds. To quantify its response to salinity, S. persica seedlings were exposed to 200 mM NaCl for 3 weeks, and growth, leaf gas exchange and solute accumulation were measured. The presence of NaCl induced a 100% increase in fresh weight and a 30% increase in dry weight, relative to non-salinized controls. Increases in fresh weight and dry weight were not associated with higher rates of net CO(2) assimilation, however. Analysis of ion accumulation revealed that S. persica leaves accumulated Na(+) as a primary osmoticum. The concentration of Na(+) in leaves of salinized plants was approximately 40-fold greater than that measured in non-salinized controls, and this was associated with significant reductions in leaf K(+) and Ca(2+) concentrations. In addition, a significant accumulation of proline, probably associated with osmotic adjustment and protection of membrane stability, occurred in roots of salinized plants.

  15. Alloy performance in high temperature oil refining environments

    SciTech Connect

    Sorell, G.; Humphries, M.J.; McLaughlin, J.E.

    1995-12-31

    The performance of steels and alloys in high temperature petroleum refining applications is strongly influenced by detrimental interactions with aggressive process environments. These are encountered in conventional refining processes and especially in processing schemes for fuels conversion and upgrading. Metal-environment interactions can shorten equipment life and cause impairment of mechanical properties, metallurgical stability and weldability. Corrosion and other high temperature attack modes discussed are sulfidation, hydrogen attack, carburization, and metal dusting. Sulfidation is characterized by bulky scales that are generally ineffective corrosion barriers. Metal loss is often accompanied by sub-surface sulfide penetration. Hydrogen attack and carburization proceed without metal loss and are detectable only by metallographic examination. In advanced stages, these deterioration modes cause severe impairment of mechanical properties. Harmful metal-environment interactions are characterized and illustrated with data drawn from test exposures and plant experience. Alloys employed for high temperature oil refining equipment are identified, including some promising newcomers.

  16. Radiation environment at high-mountains stations and onboard spacecraft

    SciTech Connect

    Spurny, Frantisek; Ploc, Ondrej; Jadrmickova, Iva

    2008-08-07

    Radiation environment has been studied at high-mountain observatories and onboard spacecraft. The most important contribution to this environment at high-mountain observatories represents cosmic radiation component. We have been studied this environment in two high-mountain observatories: one situated on the top of Lomnicky Stit, High Tatras, Slovakia, and another one close to the top of Moussala, Rila, Bulgaria (Basic Environment Observatory--BEO). The studies have been performed using: an energy deposition spectrometer with a Si-diode (MDU) developed at BAS, Sofia, permitting to estimate non-neutron as well as neutron component of the radiation field; other active equipment designated to measure natural radiation background, and thermoluminescent detectors as passive dosimeters. Basic dosimetry characteristics of these fields are presented, analyzed, and discussed; they are also compared with the estimation of cosmic radiation component as published in the Report of UNSCEAR 2000. Measuring instruments mentioned above, together with an LET spectrometer based on chemically etched track detectors have been also used to characterize radiation environment onboard spacecraft, particularly International Space Station. They have been exposed on the surface and/or inside a phantom. Some of results obtained are presented, and discussed.

  17. Investigation of Lake Water Salinity by Using Four-Band Salinity Algorithm on WorldView-2 Satellite Image for a Saline Industrial Lake

    NASA Astrophysics Data System (ADS)

    Budakoǧlu, Murat; Karaman, Muhittin; Damla Uça Avcı, Z.; Kumral, Mustafa; Geredeli (Yılmaz), Serpil

    2014-05-01

    Salinity of a lake is an important characteristic since, these are potentially industrial lakes and the degree of salinity can significantly be used for determination of mineral resources and for the production management. In the literature, there are many studies of using satellite data for salinity related lake studies such as determination of salinity distribution and detection of potential freshwater sources in less salt concentrated regions. As the study area Lake Acigol, located in Denizli (Turkey) was selected. With it's saline environment, it's the major sodium sulphate production resource of Turkey. In this study, remote sensing data and data from a field study was used and correlated. Remote sensing is an efficient tool to monitor and analyze lake properties by using it complementary to field data. Worldview-2 satellite data was used in this study which consists of 8 bands. At the same time with the satellite data acquisition, a field study was conducted to collect the salinity values in 17 points of the laker with using YSI 556 Multiparametre for measurements. The values were measured as salinity amount in grams per kilogram solution and obtained as ppt unit. It was observed that the values vary from 34 ppt - 40.1 ppt and the average is 38.056 ppt. In Thalassic serie, the lake was in mixoeuhaline state in the time of issue. As a first step, ATCOR correction was performed on satellite image for atmospheric correction. There were some clouds on the lake field, hence it was decided to continue the study by using the 12 sampling points which were clear on the image. Then, for each sampling point, a spectral value was obtained by calculating the average at a 11*11 neighborhood. The relation between the spectral reflectance values and the salinity was investigated. The 4-band algorithm, which was used for determination of chlorophyll-a distribution in highly turbid coastal environment by Wei (2012) was applied. Salinity α (Λi-1 / Λj-1) * (Λk-1 / Λm-1) (i

  18. Interactive effect of high environmental ammonia and nutritional status on ecophysiological performance of European sea bass (Dicentrarchus labrax) acclimated to reduced seawater salinities.

    PubMed

    Sinha, Amit Kumar; Rasoloniriana, Rindra; Dasan, Antony Franklin; Pipralia, Nitin; Blust, Ronny; De Boeck, Gudrun

    2015-03-01

    We investigated the interactive effect of ammonia toxicity, salinity challenge and nutritional status on the ecophysiological performance of European sea bass (Dicentrarchus labrax). Fish were progressively acclimated to normal seawater (32ppt), to brackish water (20ppt and 10ppt) and to hyposaline water (2.5ppt). Following acclimation to different salinities for two weeks, fish were exposed to high environmental ammonia (HEA, 20mg/L ∼1.18mM representing 50% of 96h LC50 value for ammonia) for 12h, 48h, 84h and 180h, and were either fed (2% body weight) or fasted (unfed for 7 days prior to HEA exposure). Biochemical responses such as ammonia (Jamm) and urea excretion rate, plasma ammonia, urea and lactate, plasma ions (Na(+), Cl(-) and K(+)) and osmolality, muscle water content (MWC) and liver and muscle energy budget (glycogen, lipid and protein), as well as branchial Na(+)/K(+)-ATPase (NKA) and H(+)-ATPase activity, and branchial mRNA expression of NKA and Na(+)/K(+)/2Cl(-) co-transporter (NKCC1) were investigated in order to understand metabolic and ion- osmoregulatory consequences of the experimental conditions. During HEA, Jamm was inhibited in fasted fish at 10ppt, while fed fish were still able to excrete efficiently. At 2.5ppt, both feeding groups subjected to HEA experienced severe reductions and eventually a reversion in Jamm. Overall, the build-up of plasma ammonia in HEA exposed fed fish was much lower than fasted ones. Unlike fasted fish, fed fish acclimated to lower salinities (10ppt-2.5ppt) could maintain plasma osmolality, [Na(+)], [Cl(-)] and MWC during HEA exposure. Thus fed fish were able to sustain ion-osmotic homeostasis which was associated with a more pronounced up-regulation in NKA expression and activity. At 2.5ppt both feeding groups activated H(+)-ATPase. The expression of NKCC1 was down-regulated at lower salinities in both fed and fasted fish, but was upregulated within each salinity after a few days of HEA exposure. Though an

  19. Zooplankton Seasonal Abundance of South AmericanSaline Shallow Lakes

    NASA Astrophysics Data System (ADS)

    Echaniz, Santiago Andrés; Vignatti, Alicia María; José de Paggi, Susana; Paggi, Juan César; Pilati, Alberto

    2006-02-01

    The central provinces of Argentina are characterized by the presence of a high number of shallow lakes, located in endorheic basins, many of which have elevated salinities as well as eutrophic or hypereutrophic condition. The zooplankton of four saline shallow lakes of the province of La Pampa was studied on a monthly basis during a 2-year period to determine its temporal and spatial variation.The surface of these shallow lakes (<2.5 m depth) varied between 56.8 and 215.9 ha, and some have from 8.4 to 20.8 g . l-1. The more saline lakes have clear water and the less saline lakes turbid water. Fishes, Jenynsia multidentata , were present in only two lakes during the last two months of the studied period.The zooplankton was composed of 17 taxa of Rotifera, 5 taxa of Cladocera and 4 taxa of Copepoda. The low diversity and the faunistic composition are characteristic of saline environments. Although the studied lakes share 38% of the species, the faunistic similarity was higher between the two least saline lakes. The lowest diversity was found in the two most saline lakes.All four shallow lakes were characterized by their very high zooplankton density, especially in the least saline lakes (<80000 ind . l-1). The abundance is significantly correlated with the water transparency but not with salinity.The zooplankton temporal variation was characterized by the alternation of macro- and microzooplankton, probably regulated by competition and intrazooplanktonic predation. In each lake, the spatial abundance distribution of the macro- and microzooplankton was homogeneous. It was related to the shallow depht of the lakes and their polymictic condition.The Scheffer model on alternative states in shallow lakes acknowledges that it cannot be applied to saline lakes because Daphnia , the main responsible for the clear water state, is not tolerant to high salinity. Our study shows that the most saline lakes, where the halophylic Daphnia menucoensis is abundant, have also the

  20. High Temperature Electronics for Intelligent Harsh Environment Sensors

    NASA Technical Reports Server (NTRS)

    Evans, Laura J.

    2008-01-01

    The development of intelligent instrumentation systems is of high interest in both public and private sectors. In order to obtain this ideal in extreme environments (i.e., high temperature, extreme vibration, harsh chemical media, and high radiation), both sensors and electronics must be developed concurrently in order that the entire system will survive for extended periods of time. The semiconductor silicon carbide (SiC) has been studied for electronic and sensing applications in extreme environment that is beyond the capability of conventional semiconductors such as silicon. The advantages of SiC over conventional materials include its near inert chemistry, superior thermomechanical properties in harsh environments, and electronic properties that include high breakdown voltage and wide bandgap. An overview of SiC sensors and electronics work ongoing at NASA Glenn Research Center (NASA GRC) will be presented. The main focus will be two technologies currently being investigated: 1) harsh environment SiC pressure transducers and 2) high temperature SiC electronics. Work highlighted will include the design, fabrication, and application of SiC sensors and electronics, with recent advancements in state-of-the-art discussed as well. These combined technologies are studied for the goal of developing advanced capabilities for measurement and control of aeropropulsion systems, as well as enhancing tools for exploration systems.

  1. Salinity tolerance and mycorrhizal responsiveness of native xeroriparian plants in semi-arid western USA

    USGS Publications Warehouse

    Beauchamp, Vanessa B.; Walz, C.; Shafroth, P.B.

    2009-01-01

    Restoration of salt-affected soils is a global concern. In the western United States, restoration of salinized land, particularly in river valleys, often involves control of Tamarix, an introduced species with high salinity tolerance. Revegetation of hydrologically disconnected floodplains and terraces after Tamarix removal is often difficult because of limited knowledge regarding the salinity tolerance of candidate native species for revegetation. Additionally, Tamarix appears to be non-mycorrhizal. Extended occupation of Tamarix may deplete arbuscular mycorrhizal fungi in the soil, further decreasing the success of revegetation efforts. To address these issues, we screened 42 species, races, or ecotypes native to southwestern U.S. for salinity tolerance and mycorrhizal responsiveness. As expected, the taxa tested showed a wide range of responses to salinity and mycorrhizal fungi. This variation also occurred between ecotypes or races of the same species, indicating that seed collected from high-salinity reference systems is likely better adapted to harsh conditions than seed originating from less saline environments. All species tested had a positive or neutral response to mycorrhizal inoculation. We found no clear evidence that mycorrhizae increased salinity tolerance, but some species were so dependent on mycorrhizal fungi that they grew poorly at all salinity levels in pasteurized soil. ?? 2009 Elsevier B.V.

  2. Salinization of aquifers at the regional scale by marine transgression: Time scales and processes

    NASA Astrophysics Data System (ADS)

    Armandine Les Landes, A.; Davy, P.; Aquilina, L.

    2014-12-01

    Saline fluids with moderate concentrations have been sampled and reported in the Armorican basement at the regional scale (northwestern France). The horizontal and vertical distributions of high chloride concentrations (60-1400mg/L) at the regional scale support the marine origin and provide constraints on the age of these saline fluids. The current distribution of fresh and "saline" groundwater at depth is the result mostly of processes occurring at geological timescales - seawater intrusion processes followed by fresh groundwater flushing -, and only slightly of recent anthropogenic activities. In this study, we focus on seawater intrusion mechanisms in continental aquifers. We argue that one of the most efficient processes in macrotidal environments is the gravity-driven downconing instability below coastal salinized rivers. 2-D numerical experiments have been used to quantify this process according to four main parameter types: (1) the groundwater system permeability, (2) the salinity degree of the river, (3) the river width and slope, and (4) the tidal amplitude. A general expression of the salinity inflow rates have been derived, which has been used to estimate groundwater salinization rates in Brittany, given the geomorphological and environmental characteristics (drainage basin area, river widths and slopes, tidal range, aquifer permeability). We found that downconing below coastal rivers entail very high saline rates, indicating that this process play a major role in the salinization of regional aquifers. This is also likely to be an issue in the context of climate change, where sea-level rise is expected.

  3. Salinity control in a clay soil beneath an orchard irrigated with treated waste water in the presence of a high water table: A numerical study

    NASA Astrophysics Data System (ADS)

    Russo, David; Laufer, Asher; Bardhan, Gopali; Levy, Guy J.

    2015-12-01

    A citrus orchard planted on a structured, clay soil associated with a high water table, irrigated by drip irrigation system using treated waste water (TWW) and local well water (LWW) was considered here. The scope of the present study was to analyze transport of mixed-ion, interacting salts in a combined vadose zone-groundwater flow system focusing on the following issues: (i) long-term effects of irrigation with TWW on the response of the flow system, identifying the main factors (e.g., soil salinity, soil sodicity) that control these effects, and (ii) salinity control aiming at improving both crop productivity and groundwater quality. To pursue this two-fold goal, 3-D numerical simulations of field-scale flow and transport were performed for an extended period of time, considering realistic features of the soil, water table, crop, weather and irrigation, and the coupling between the flow and the transport through the dependence of the soil hydraulic functions, K(ψ) and θ(ψ), on soil solution concentration C, and sodium adsorption ratio, SAR. Results of the analyses suggest that in the case studied, the long-term effect of irrigation with TWW on the response of the flow system is attributed to the enhanced salinity of the TWW, and not to the increase in soil sodicity. The latter findings are attributed to: (i) the negative effect of soil salinity on water uptake, and the tradeoff between water uptake and drainage flux, and, concurrently, solute discharge below the root zone; and, (ii) the tradeoff between the effects of C and SAR on K(ψ) and θ(ψ). Furthermore, it was demonstrated that a data-driven protocol for soil salinity control, based on alternating irrigation water quality between TWW and desalinized water, guided by the soil solution salinity at the centroid of the soil volume active in water uptake, may lead to a substantial increase in crop yield, and to a substantial decrease in the salinity load in the groundwater.

  4. Transformations of the chemical compositions of high molecular weight DOM along a salinity transect: Using two dimensional correlation spectroscopy and principal component analysis approaches

    NASA Astrophysics Data System (ADS)

    Abdulla, Hussain A. N.; Minor, Elizabeth C.; Dias, Robert F.; Hatcher, Patrick G.

    2013-10-01

    In a study of chemical transformations of estuarine high-molecular-weight (HMW, >1000 Da) dissolved organic matter (DOM) collected over a period of two years along a transect through the Elizabeth River/Chesapeake Bay system to the coastal Atlantic Ocean off Virginia, USA, δ13C values, N/C ratios, and principal component analysis (PCA) of the solid-state 13C NMR (nuclear magnetic resonance) spectra of HMW-DOM show an abrupt change in both its sources and chemical structural composition occurring around salinity 20. HMW-DOM in the lower salinity region had lighter isotopic values, higher aromatic and lower carbohydrate contents relative to that in the higher salinity region. These changes around a salinity of 20 are possibly due to introduction of a significant amount of new carbon (autotrophic DOM) to the transect. PC-1 loadings plot shows that spatially differing DOM components are similar to previously reported 13C NMR spectra of heteropolysaccharides (HPS) and carboxyl-rich alicyclic molecules (CRAM). Applying two dimensional correlation spectroscopy techniques to 1H NMR spectra from the same samples reveals increases in the contribution of N-acetyl amino sugars, 6-deoxy sugars, and sulfated polysaccharides to HPS components along the salinity transect, which suggests a transition from plant derived carbohydrates to marine produced carbohydrates within the HMW-DOM pool. In contrast to what has been suggested previously, our combined results from 13C NMR, 1H NMR, and FTIR indicate that CRAM consists of at least two different classes of compounds (aliphatic polycarboxyl compounds and lignin-like compounds).

  5. Environmental sensor networks and continuous data quality assurance to manage salinity within a highly regulated river basin

    SciTech Connect

    Quinn, N.W.T.; Ortega, R.; Holm, L.

    2010-01-05

    This paper describes a new approach to environmental decision support for salinity management in the San Joaquin Basin of California that focuses on web-based data sharing using YSI Econet technology and continuous data quality management using a novel software tool, Aquarius.

  6. Synthesis of the compatible solute ectoine in Virgibacillus pantothenticus is triggered by high salinity and low growth temperature.

    PubMed

    Kuhlmann, Anne U; Bursy, Jan; Gimpel, Silvy; Hoffmann, Tamara; Bremer, Erhard

    2008-07-01

    The quantification of the intracellular concentration of ectoine in Virgibacillus pantothenticus revealed that the production of this compatible solute is triggered either by an increase in the external salinity or by a reduction in the growth temperature. This finding reflects increased transcription of the ectoine biosynthetic operon (ectABC) under both environmental conditions. PMID:18487398

  7. Low salinity and high-level UV-B radiation reduce single-cell activity in antarctic sea ice bacteria.

    PubMed

    Martin, Andrew; Hall, Julie; Ryan, Ken

    2009-12-01

    Experiments simulating the sea ice cycle were conducted by exposing microbes from Antarctic fast ice to saline and irradiance regimens associated with the freeze-thaw process. In contrast to hypersaline conditions (ice formation), the simulated release of bacteria into hyposaline seawater combined with rapid exposure to increased UV-B radiation significantly reduced metabolic activity.

  8. Specialty fiber optic applications for harsh and high radiation environments

    NASA Astrophysics Data System (ADS)

    Risch, Brian G.

    2015-05-01

    Since the first commercial introduction in the 1980s, optical fiber technology has undergone an almost exponential growth. Currently over 2 billion fiber kilometers are deployed globally with 2014 global optical fiber production exceeding 300 million fiber kilometers. 1 Along with the staggering growth in optical fiber production and deployment, an increase in optical fiber technologies and applications has also followed. Although the main use of optical fibers by far has been for traditional data transmission and communications, numerous new applications are introduced each year. Initially the practical application of optical fibers was limited by cost and sensitivity of the optical fibers to stress, radiation, and other environmental factors. Tremendous advances have taken place in optical fiber design and materials allowing optical fibers to be deployed in increasingly harsh environments with exposure to increased mechanical and environmental stresses while maintaining high reliability. With the increased reliability, lower cost, and greatly expanded range of optical fiber types now available, new optical fiber deployments in harsh and high radiation environments is seeing a tremendous increase for data, communications, and sensing applications. An overview of key optical fiber applications in data, communications, and sensing for harsh environments in industrial, energy exploration, energy generation, energy transmission, and high radiation applications will be presented. Specific recent advances in new radiation resistant optical fiber types, other specialty optical fibers, optical fiber coatings, and optical fiber cable materials will be discussed to illustrate long term reliability for deployment of optical fibers in harsh and high radiation environments.

  9. Learning Environment, Motivation, and Achievement in High School Science.

    ERIC Educational Resources Information Center

    Nolen, Susan Bobbitt

    2003-01-01

    Examines the relationship between high school students' perceptions of their science learning environments and their motivation, learning strategies, and achievement. Discusses the focus of shared perceptions and instruction and indicates that shared perceptions focused on understanding and independent thinking positively predicted students'…

  10. Student Perceptions of High-Security School Environments

    ERIC Educational Resources Information Center

    Bracy, Nicole L.

    2011-01-01

    Public schools have transformed significantly over the past several decades in response to concerns about rising school violence. Today, most public schools are high-security environments employing police officers, security cameras, and metal detectors, as well as strict discipline policies to keep students in line and maintain safe campuses.…

  11. Advocacy for Child Wellness in High-Poverty Environments

    ERIC Educational Resources Information Center

    Mullen, Carol A.

    2014-01-01

    Child wellness needs to be understood holistically so that children and youth from high-poverty environments can succeed in schooling and life. Teachers who foster advocacy in themselves are well equipped to teach students to take ownership of their own well-being. Such advocacy can enrich the classroom curriculum and mitigate the negative effects…

  12. High concentrations of Na+ and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress.

    PubMed

    Tavakkoli, Ehsan; Rengasamy, Pichu; McDonald, Glenn K

    2010-10-01

    Despite the fact that most plants accumulate both sodium (Na(+)) and chloride (Cl(-)) ions to high concentration in their shoot tissues when grown in saline soils, most research on salt tolerance in annual plants has focused on the toxic effects of Na(+) accumulation. There have also been some recent concerns about the ability of hydroponic systems to predict the responses of plants to salinity in soil. To address these two issues, an experiment was conducted to compare the responses to Na(+) and to Cl(-) separately in comparison with the response to NaCl in a soil-based system using two varieties of faba bean (Vicia faba), that differed in salinity tolerance. The variety Nura is a salt-sensitive variety that accumulates Na(+) and Cl(-) to high concentrations while the line 1487/7 is salt tolerant which accumulates lower concentrations of Na(+) and Cl(-). Soils were prepared which were treated with Na(+) or Cl(-) by using a combination of different Na(+) salts and Cl(-) salts, respectively, or with NaCl. While this method produced Na(+)-dominant and Cl(-)-dominant soils, it unavoidably led to changes in the availability of other anions and cations, but tissue analysis of the plants did not indicate any nutritional deficiencies or toxicities other than those targeted by the salt treatments. The growth, water use, ionic composition, photosynthesis, and chlorophyll fluorescence were measured. Both high Na(+) and high Cl(-) reduced growth of faba bean but plants were more sensitive to Cl(-) than to Na(+). The reductions in growth and photosynthesis were greater under NaCl stress and the effect was mainly additive. An important difference to previous hydroponic studies was that increasing the concentrations of NaCl in the soil increased the concentration of Cl(-) more than the concentration of Na(+). The data showed that salinity caused by high concentrations of NaCl can reduce growth by the accumulation of high concentrations of both Na(+) and Cl(-) simultaneously, but

  13. Highly robust thin-film composite pressure retarded osmosis (PRO) hollow fiber membranes with high power densities for renewable salinity-gradient energy generation.

    PubMed

    Han, Gang; Wang, Peng; Chung, Tai-Shung

    2013-07-16

    The practical application of pressure retarded osmosis (PRO) technology for renewable blue energy (i.e., osmotic power generation) from salinity gradient is being hindered by the absence of effective membranes. Compared to flat-sheet membranes, membranes with a hollow fiber configuration are of great interest due to their high packing density and spacer-free module fabrication. However, the development of PRO hollow fiber membranes is still in its infancy. This study aims to open up new perspectives and design strategies to molecularly construct highly robust thin film composite (TFC) PRO hollow fiber membranes with high power densities. The newly developed TFC PRO membranes consist of a selective polyamide skin formed on the lumen side of well-constructed Matrimid hollow fiber supports via interfacial polymerization. For the first time, laboratory PRO power generation tests demonstrate that the newly developed PRO hollow fiber membranes can withstand trans-membrane pressures up to 16 bar and exhibit a peak power density as high as 14 W/m(2) using seawater brine (1.0 M NaCl) as the draw solution and deionized water as the feed. We believe that the developed TFC PRO hollow fiber membranes have great potential for osmotic power harvesting.

  14. Highly robust thin-film composite pressure retarded osmosis (PRO) hollow fiber membranes with high power densities for renewable salinity-gradient energy generation.

    PubMed

    Han, Gang; Wang, Peng; Chung, Tai-Shung

    2013-07-16

    The practical application of pressure retarded osmosis (PRO) technology for renewable blue energy (i.e., osmotic power generation) from salinity gradient is being hindered by the absence of effective membranes. Compared to flat-sheet membranes, membranes with a hollow fiber configuration are of great interest due to their high packing density and spacer-free module fabrication. However, the development of PRO hollow fiber membranes is still in its infancy. This study aims to open up new perspectives and design strategies to molecularly construct highly robust thin film composite (TFC) PRO hollow fiber membranes with high power densities. The newly developed TFC PRO membranes consist of a selective polyamide skin formed on the lumen side of well-constructed Matrimid hollow fiber supports via interfacial polymerization. For the first time, laboratory PRO power generation tests demonstrate that the newly developed PRO hollow fiber membranes can withstand trans-membrane pressures up to 16 bar and exhibit a peak power density as high as 14 W/m(2) using seawater brine (1.0 M NaCl) as the draw solution and deionized water as the feed. We believe that the developed TFC PRO hollow fiber membranes have great potential for osmotic power harvesting. PMID:23772898

  15. Practically Saline.

    PubMed

    Schroeder, Jonathan; O'Neal, Catherine; Jagneaux, Tonya

    2015-01-01

    Introduction. In December 2014, the Food and Drug Administration issued a recall of all Wallcur simulation products due to reports of their use in clinical practice. We present a case of septic shock and multiorgan failure after the accidental intravenous infusion of a nonsterile Wallcur simulation product. Case. The patient presented with symptoms of rigors and dyspnea occurring immediately after infusion of Wallcur Practi-0.9% saline. Initial laboratory evidence was consistent with severe septic shock and multiorgan dysfunction. His initial lactic acid level was 9 mmol/L (reference range = 0.5-2.2), and he had evidence of acute kidney injury and markers of disseminated intravascular coagulation. All 4 blood culture bottles isolated multidrug-resistant Empedobacter brevis. The patient recovered from his illness and was discharged with ciprofloxacin therapy per susceptibilities. Discussion. This patient represents the first described case of severe septic shock associated with the infusion of a Wallcur simulation product. Intravenous inoculation of a nonsterile fluid is rare and exposes the patient to unusual environmental organisms, toxins, or unsafe fluid characteristics such as tonicity. During course of treatment, we identified the possible culprit to be a multidrug-resistant isolate of Empedobacter brevis. We also discuss the systemic failures that led to this outbreak. PMID:26668812

  16. Saline Valley

    NASA Technical Reports Server (NTRS)

    2001-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1 Figure 2

    These images of the Saline Valley area, California, were acquired March 30, 2000 and cover a full ASTER scene (60 by 60 km). Each image displays data from a different spectral region, and illustrates the complementary nature of surface compositional information available as a function of wavelength. This image displays visible and near infrared bands 3, 2, and 1 in red, green, and blue (RGB). Vegetation appears red, snow and dry salt lakes are white, and exposed rocks are brown, gray, yellow and blue. Rock colors mainly reflect the presence of iron minerals, and variations in albedo. Figure 1 displays short wavelength infrared bands 4, 6, and 8 as RGB. In this wavelength region, clay, carbonate, and sulfate minerals have diagnostic absorption features, resulting in distinct colors on the image. For example, limestones are yellow-green, and purple areas are kaolinite-rich. Figure 2 displays thermal infrared bands 13, 12 and 10 as RGB. In this wavelength region, variations in quartz content appear as more or less red; carbonate rocks are green, and mafic volcanic rocks are purple. The image is located at 36.8 degrees north latitude and 117.7 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  17. Ecophysiological constraints of two invasive plant species under a saline gradient: Halophytes versus glycophytes

    NASA Astrophysics Data System (ADS)

    Duarte, B.; Santos, D.; Marques, J. C.; Caçador, I.

    2015-12-01

    Salt marsh environments are harsh environments where salinity comprises one of the most important species distribution shaping factor, presenting sediment salinities from 0 to 855 mM (0-50 ppt). Invasive species have often a high colonizing potential, due to its high plasticity and adaptation ability. Spartina patens is an invasive species already spread along several Mediterranean countries, like France and Spain. Cyperus longus is typically a freshwater species that has been spreading across the Mediterranean. In order to evaluate the ecophysiological fitness of these species, mesocosmos trials were performed subjecting both species to increasing realistic salinity levels and their photochemical and biochemical feedback was evaluated. Both species presented very different behaviours. S. patens appears to be insensitive to salt stress, mostly due to elevated proline concentrations in its leaves allowing it to maintain its osmotic balance, and thus preventing the damaging of its photochemical mechanisms. C. longus, on the other hand, was highly affected by elevated salt levels mostly due to the lack of osmotic balance driven by an incapacity to counteract the elevated ionic strength of the external medium by osmocompatible solutes. S. patens is physiologically highly adapted to saline environments and thus is capable to colonize all the marsh saline environments, while C. longus appears to be an opportunistic invader colonizing the marsh during periods of lower salinities typical from rainy seasons.

  18. Anuran larval developmental plasticity and survival in response to variable salinity of ecologically relevant timing and magnitude.

    PubMed

    Kearney, Brian D; Pell, Rebecca J; Byrne, Phillip G; Reina, Richard D

    2014-12-01

    Salinity in affected freshwater ecosystems fluctuates with seasonal rainfall, tidal flux, rates of evaporation, chemical runoff and the influence of secondary salinization. Environmental stressors such as salinity can have lasting effects on anuran development, yet little is known about the effects of fluctuating salinity on tadpole ontogeny or the effects of differing magnitudes of salinity exposure, as would occur in natural wetland systems. We examined how salinity fluctuations affected survival, growth and development of Litoria ewingii by exposing tadpoles to a range of salinity concentrations (5.6-10.85 ppt) at three different stages of development (hind limb-bud formation; toe differentiation and forearm development). We also investigated the plasticity of tadpole growth rates in response to non-lethal, transient salinity influxes, specifically examining the capacity for compensatory growth and its relationship to the timing, magnitude or frequency of salinity exposure. Our results show that later-stage tadpoles are more tolerant to elevated salinity than those exposed at a younger age, and that exposure to high salinity later in life suppresses the potential for compensatory growth. Tadpoles exposed to transient low salinity lost less mass during metamorphosis than animals in constant salinity treatments, indicating a possible alternate to compensatory growth. Exposure to near-lethal salinities early in development did not alter tadpole responses to subsequent salinity stress. Our results provide some of the first evidence that both the timing and magnitude of transient environmental stressors can have an effect on anuran development and developmental trade-offs in a stressful environment.

  19. Effects of high combustion chamber pressure on rocket noise environment

    NASA Technical Reports Server (NTRS)

    Pao, S. P.

    1972-01-01

    The acoustical environment for a high combustion chamber pressure engine was examined in detail, using both conventional and advanced theoretical analysis. The influence of elevated chamber pressure on the rocket noise environment was established, based on increase in exit velocity and flame temperature, and changes in basic engine dimensions. Compared to large rocket engines, the overall sound power level is found to be 1.5 dB higher, if the thrust is the same. The peak Strouhal number shifted about one octave lower to a value near 0.01. Data on apparent sound source location and directivity patterns are also presented.

  20. Multiple encounter simulation for high-acuity multipatient environment training.

    PubMed

    Kobayashi, Leo; Shapiro, Marc J; Gutman, Deborah C; Jay, Gregory

    2007-12-01

    Patient safety interventions for multitasking, multipatient, error-prone work settings such as the emergency department (ED) must improve assorted clinical abilities, specific cognitive strategies, and teamwork functions of the staff to be effective. Multiple encounter simulation scenarios explore and convey this specialized mental work-set through use of multiple high-fidelity medical simulation (SIM) manikins in realistic surroundings. Multipatient scenarios reflect the work situations being targeted yet have the benefit of scripted control and instructor guidance to advance specific educational objectives. The use of two or more SIM patients promotes the exploration not only of multiple distinct clinical issues but also of interdependent processes pervasive in EDs. Cascading shortages of time, personnel, equipment, and supplies are re-created, thereby replicating process limitations at various levels, in a safe environment in which compensatory actions and adaptive behaviors can be learned. Distinguishing features of multipatient exercises include 1) broadened educational scope and expanded indications for SIM application, 2) enhanced scenario complexity, 3) controlled exposure to high workload environments, 4) expanded communication requirements, and 5) increased potential for reflective learning. Widespread and effective training in well-replicated, carefully coordinated representations of complex multipatient work environments may strengthen educational interventions for personnel working in high acuity and work-overloaded settings such as the ED. The use of concurrent patient encounter SIM exercises to elicit calculated stressors and to foster compensatory staff behaviors is an educational advance toward this objective. The authors present SIM methodology using concurrent patient encounters to replicate these environments.

  1. A Compact L-band Radiometer for High Resolution sUAS-based Imaging of Soil Moisture and Surface Salinity Variations

    NASA Astrophysics Data System (ADS)

    Gasiewski, A. J.; Stachura, M.; Dai, E.; Elston, J.; McIntyre, E.; Leuski, V.

    2014-12-01

    Due to the long electrical wavelengths required along with practical aperture size limitations the scaling of passive microwave remote sensing of soil moisture and salinity from spaceborne low-resolution (~10-100 km) applications to high resolution (~10-1000 m) applications requires use of low flying aerial vehicles. This presentation summarizes the status of a project to develop a commercial small Unmanned Aerial System (sUAS) hosting a microwave radiometer for mapping of soil moisture in precision agriculture and sea surface salinity studies. The project is based on the Tempest electric-powered UAS and a compact L-band (1400-1427 MHz) radiometer developed specifically for extremely small and lightweight aerial platforms or man-portable, tractor, or tower-based applications. Notable in this combination are a highly integrated sUAS/radiometer antenna design and use of both the upwelling emitted signal from the surface and downwelling cold space signal for precise calibration using a unique lobe-differencing correlating radiometer architecture. The system achieves a spatial resolution comparable to the altitude of the UAS above the surface while referencing upwelling measurements to the constant and well-known background temperature of cold space. The radiometer has been tested using analog correlation detection, although future builds will include infrared, near-infrared, and visible (red) sensors for surface temperature and vegetation biomass correction and digital sampling for radio frequency interference mitigation. This NASA-sponsored project is being developed for commercial application in cropland water management (for example, high-value shallow root-zone crops), landslide risk assessment, NASA SMAP satellite validation, and NASA Aquarius salinity stratification studies. The system will ultimately be capable of observing salinity events caused by coastal glacier and estuary fresh water outflow plumes and open ocean rainfall events.

  2. Characterization of CCTα and evaluating its expression in the mud crab Scylla paramamosain when challenged by low temperatures alone and in combination with high and low salinity.

    PubMed

    Yu, Kun; Gong, Jie; Huang, Chencui; Huang, Huiyang; Ye, Haihui; Wang, Guizhong; Zeng, Chaoshu

    2015-09-01

    demonstrated that at both 10 and 15 °C, the expression of SpCCTα under the high salinity of 35 was significantly lower than that at low salinity of 10, implying that the damages caused by low temperatures with high salinity were less than that under low salinity.

  3. A nominal set of high-altitude EMP environments

    SciTech Connect

    Longmire, C.L.; Hamilton, R.M.; Hahn, J.M.

    1987-02-01

    This report presents high-altitude EMP (HEMP) environments calculated by the CHAP code for a nominal large yield burst at 400 km over the central US. Nominal, unclassified weapon output parameters were used, along with unclassified EMP theory and calculational techniques. While the resulting environments do not represent upper bounds, they should be useful in developing understanding of the effect of HEMP on electrical and electronic systems. The calculated environments illustrate the wide variability of the HEMP from a single burst, depending on ground range and azimuth from ground zero. Analytic fits to the HEMP fields are provided to facilitate coupling calculations. The CHAP results are justified by a detailed examination of Compton currents, air conductivities, and the resulting fields. It is shown that both HEMP theory and the calculations conserve energy scrupulously.

  4. The 2GCHAS: A high productivity software development environment

    NASA Technical Reports Server (NTRS)

    Babb, Larry

    1986-01-01

    To the user, the most visible feature of the Transportable Applications Executive (TAE) is its very powerful user interface. To the programmer, TAE's user interface, proc concept, standardized interface definitions, and hierarchy search provide a set of tools for rapidly prototyping or developing production software. The 2GCHAS (Second Generation Comprehensive Helicopter Analysis System) project has extended and enhanced these mechanisms, creating a powerful and high productivity programming environment where the 2GCHAS development environment is 2GCHAS itself and where a sustained rate for certified, documented, and tested software above 30 delivered source instructions per programmer day has been achieved. The 2GCHAS environment is not limited to helicopter analysis, but is applicable to other disciplines where software development is important.

  5. Toward the high-environment society from the high-information society

    NASA Astrophysics Data System (ADS)

    Aiso, Hideo

    The society in the 21st century may be cal[ed 'high-environmental society', in which information science and technology will play an essential role in creating new environments. 'Environments' in this context mean the whole outside world which is perceived by a human being, a living body, or a machine (these are 'systems' in a broad sense). The infrastructures needed for creation of the high-environmental society and plans for entering this society are discussed. In the high-environmental society, information environments and artificial environments will be greatly improved besides natural, living, and organizational environments. We should build the technological, social, and educational infrastructures for this society so that we can live a good life together with all environments.

  6. Effects of high salinity and constituent organic compounds on treatment of photo-processing waste by a sulfur-oxidizing bacteria/granular activated carbon sludge system.

    PubMed

    Lin, Bin-Le; Hosomi, Masaaki; Murakami, Akihiko

    2002-02-01

    To achieve practical treatment of photo-processing waste (PW) using our previously proposed sulfur-oxidizing bacteria (SOB)/granular activated carbon (GAC) sludge system, this paper elucidates why 3- to 5-X dilution of PW was required. That is, a series of experiments were carried out to show the effects of high salinity and constituent organic compounds in PW, respectively. Both an inorganic salts system and calcination PW system showed that SOB completely oxidizes S2O(3)2- -S to SO(4)2- -S even at 12.3 or 13.6% salinity, respectively; hence the dilution requirement is not attributable to high salinity. In experiments employing SOB and SOB/GAC systems to investigate the effects of 23 constituent compounds in PW, compounds were classified into Groups I, II, IIIa, and IIIb. Even with 10 g/l GAC, the nine compounds in Group IIIb still exhibited a toxic effect on SOB activity at 1- and 3-X dilutions; thus it is these compounds that are responsible for requiring dilution of PW. Accordingly, a reduction in their use within the photodeveloping and fix-stabilizing industry, and/or use of > 10g/l GAC, are new considerations for establishing a more practical PW treatment process.

  7. Spectroscopic gamma camera for use in high dose environments

    NASA Astrophysics Data System (ADS)

    Ueno, Yuichiro; Takahashi, Isao; Ishitsu, Takafumi; Tadokoro, Takahiro; Okada, Koichi; Nagumo, Yasushi; Fujishima, Yasutake; Kometani, Yutaka; Suzuki, Yasuhiko; Umegaki, Kikuo

    2016-06-01

    We developed a pinhole gamma camera to measure distributions of radioactive material contaminants and to identify radionuclides in extraordinarily high dose regions (1000 mSv/h). The developed gamma camera is characterized by: (1) tolerance for high dose rate environments; (2) high spatial and spectral resolution for identifying unknown contaminating sources; and (3) good usability for being carried on a robot and remotely controlled. These are achieved by using a compact pixelated detector module with CdTe semiconductors, efficient shielding, and a fine resolution pinhole collimator. The gamma camera weighs less than 100 kg, and its field of view is an 8 m square in the case of a distance of 10 m and its image is divided into 256 (16×16) pixels. From the laboratory test, we found the energy resolution at the 662 keV photopeak was 2.3% FWHM, which is enough to identify the radionuclides. We found that the count rate per background dose rate was 220 cps h/mSv and the maximum count rate was 300 kcps, so the maximum dose rate of the environment where the gamma camera can be operated was calculated as 1400 mSv/h. We investigated the reactor building of Unit 1 at the Fukushima Dai-ichi Nuclear Power Plant using the gamma camera and could identify the unknown contaminating source in the dose rate environment that was as high as 659 mSv/h.

  8. NASA's New High Intensity Solar Environment Test Capability

    NASA Technical Reports Server (NTRS)

    Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H.

    2012-01-01

    Across the world, new spaceflight missions are being designed and executed that will place spacecraft and instruments into challenging environments throughout the solar system. To aid in the successful completion of these new missions, NASA has developed a new flexible space environment test platform. The High Intensity Solar Environment Test (HISET) capability located at NASA fs Marshall Space Flight Center provides scientists and engineers with the means to test spacecraft materials and systems in a wide range of solar wind and solar photon environments. Featuring a solar simulator capable of delivering approximately 1 MW/m2 of broad spectrum radiation at maximum power, HISET provides a means to test systems or components that could explore the solar corona. The solar simulator consists of three high-power Xenon arc lamps that can be operated independently over a range of power to meet test requirements; i.e., the lamp power can be greatly reduced to simulate the solar intensity at several AU. Integral to the HISET capability are charged particle sources that can provide a solar wind (electron and proton) environment. Used individually or in combination, the charged particle sources can provide fluxes ranging from a few nA/cm2 to 100s of nA/cm2 over an energy range of 50 eV to 100 keV for electrons and 100 eV to 30 keV for protons. Anchored by a high vacuum facility equipped with a liquid nitrogen cold shroud for radiative cooling scenarios, HISET is able to accommodate samples as large as 1 meter in diameter. In this poster, details of the HISET capability will be presented, including the wide ]ranging configurability of the system.

  9. Changes in the salinity tolerance of sweet pepper plants as affected by nitrogen form and high CO2 concentration.

    PubMed

    Piñero, María C; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2016-08-01

    The assimilation and availability of nitrogen in its different forms can significantly affect the response of primary productivity under the current atmospheric alteration and soil degradation. An elevated CO2 concentration (e[CO2]) triggers changes in the efficiency and efficacy of photosynthetic processes, water use and product yield, the plant response to stress being altered with respect to ambient CO2 conditions (a[CO2]). Additionally, NH4(+) has been related to improved plant responses to stress, considering both energy efficiency in N-assimilation and the overcoming of the inhibition of photorespiration at e[CO2]. Therefore, the aim of this work was to determine the response of sweet pepper plants (Capsicum annuum L.) receiving an additional supply of NH4(+) (90/10 NO3(-)/NH4(+)) to salinity stress (60mM NaCl) under a[CO2] (400μmolmol(-1)) or e[CO2] (800μmolmol(-1)). Salt-stressed plants grown at e[CO2] showed DW accumulation similar to that of the non-stressed plants at a[CO2]. The supply of NH4(+) reduced growth at e[CO2] when salinity was imposed. Moreover, NH4(+) differentially affected the stomatal conductance and water use efficiency and the leaf Cl(-), K(+), and Na(+) concentrations, but the extent of the effects was influenced by the [CO2]. An antioxidant-related response was prompted by salinity, the total phenolics and proline concentrations being reduced by NH4(+) at e[CO2]. Our results show that the effect of NH4(+) on plant salinity tolerance should be globally re-evaluated as e[CO2] can significantly alter the response, when compared with previous studies at a[CO2].

  10. Changes in the salinity tolerance of sweet pepper plants as affected by nitrogen form and high CO2 concentration.

    PubMed

    Piñero, María C; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2016-08-01

    The assimilation and availability of nitrogen in its different forms can significantly affect the response of primary productivity under the current atmospheric alteration and soil degradation. An elevated CO2 concentration (e[CO2]) triggers changes in the efficiency and efficacy of photosynthetic processes, water use and product yield, the plant response to stress being altered with respect to ambient CO2 conditions (a[CO2]). Additionally, NH4(+) has been related to improved plant responses to stress, considering both energy efficiency in N-assimilation and the overcoming of the inhibition of photorespiration at e[CO2]. Therefore, the aim of this work was to determine the response of sweet pepper plants (Capsicum annuum L.) receiving an additional supply of NH4(+) (90/10 NO3(-)/NH4(+)) to salinity stress (60mM NaCl) under a[CO2] (400μmolmol(-1)) or e[CO2] (800μmolmol(-1)). Salt-stressed plants grown at e[CO2] showed DW accumulation similar to that of the non-stressed plants at a[CO2]. The supply of NH4(+) reduced growth at e[CO2] when salinity was imposed. Moreover, NH4(+) differentially affected the stomatal conductance and water use efficiency and the leaf Cl(-), K(+), and Na(+) concentrations, but the extent of the effects was influenced by the [CO2]. An antioxidant-related response was prompted by salinity, the total phenolics and proline concentrations being reduced by NH4(+) at e[CO2]. Our results show that the effect of NH4(+) on plant salinity tolerance should be globally re-evaluated as e[CO2] can significantly alter the response, when compared with previous studies at a[CO2]. PMID:27317970

  11. High salinity alters chloroplast morpho-physiology in a freshwater Kirchneriella species (Selenastraceae) from Ethiopian Lake Awasa.

    PubMed

    Ferroni, Lorenzo; Baldisserotto, Costanza; Pantaleoni, Laura; Billi, Paolo; Fasulo, Maria P; Pancaldi, Simonetta

    2007-12-01

    Plants differ in their ability to tolerate salt stress. In aquatic ecosystems, it is important to know the responses of microalgae to increased salinity levels, especially considering that global warming will increase salinity levels in some regions of the Earth, e.g., Ethiopia. A green microalga, Kirchneriella sp. (Selenastraceae, Chlorophyta), isolated from freshwater Lake Awasa in the Rift Valley, Ethiopia, was cultured in media amended with 0, 0.4, 1.9, 5.9, and 19.4 g NaCl·L(-1) adjusted with NaCl to five salinity levels adjusted with NaCl. Growth was monitored for 3 mo, then samples were collected for photosynthetic pigment determinations, microspectrofluorimetric analyses, and micro- and submicroscopic examinations. The best growth was found at 1.9 g NaCl·L(-1). In the chloroplast, excess NaCl affected the coupling of light harvesting complex II and photosystem II (LHCII-PSII), but changes in thylakoid architecture and in the PSII assembly state allowed sufficient integrity of the photosynthetic membrane. The mucilaginous capsule around the cell probably provided partial protection against NaCl excess. On the whole, the microalga is able to acclimate to a range of NaCl concentrations, and this plasticity indicates that Kirchneriella sp. may survive future changes in water quality. PMID:21636392

  12. High Temperature Wireless Communication And Electronics For Harsh Environment Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Beheim, G. M.; Ponchak, G. E.; Chen, L.-Y

    2007-01-01

    In order for future aerospace propulsion systems to meet the increasing requirements for decreased maintenance, improved capability, and increased safety, the inclusion of intelligence into the propulsion system design and operation becomes necessary. These propulsion systems will have to incorporate technology that will monitor propulsion component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This implies the development of sensors, actuators, and electronics, with associated packaging, that will be able to operate under the harsh environments present in an engine. However, given the harsh environments inherent in propulsion systems, the development of engine-compatible electronics and sensors is not straightforward. The ability of a sensor system to operate in a given environment often depends as much on the technologies supporting the sensor element as the element itself. If the supporting technology cannot handle the application, then no matter how good the sensor is itself, the sensor system will fail. An example is high temperature environments where supporting technologies are often not capable of operation in engine conditions. Further, for every sensor going into an engine environment, i.e., for every new piece of hardware that improves the in-situ intelligence of the components, communication wires almost always must follow. The communication wires may be within or between parts, or from the engine to the controller. As more hardware is added, more wires, weight, complexity, and potential for unreliability is also introduced. Thus, wireless communication combined with in-situ processing of data would significantly improve the ability to include sensors into high temperature systems and thus lead toward more intelligent engine systems. NASA Glenn Research Center (GRC) is presently leading the development of electronics, communication systems, and sensors capable of prolonged stable

  13. Physiological Responses to Salinity Vary with Proximity to the Ocean in a Coastal Amphibian.

    PubMed

    Hopkins, Gareth R; Brodie, Edmund D; Neuman-Lee, Lorin A; Mohammadi, Shabnam; Brusch, George A; Hopkins, Zoë M; French, Susannah S

    2016-01-01

    Freshwater organisms are increasingly exposed to elevated salinity in their habitats, presenting physiological challenges to homeostasis. Amphibians are particularly vulnerable to osmotic stress and yet are often subject to high salinity in a variety of inland and coastal environments around the world. Here, we examine the physiological responses to elevated salinity of rough-skinned newts (Taricha granulosa) inhabiting a coastal stream on the Pacific coast of North America and compare the physiological responses to salinity stress of newts living in close proximity to the ocean with those of newts living farther upstream. Although elevated salinity significantly affected the osmotic (body weight, plasma osmolality), stress (corticosterone), and immune (bactericidal ability) responses of newts, animals found closer to the ocean were generally less reactive to salt stress than those found farther upstream. Our results provide possible evidence for some physiological tolerance in this species to elevated salinity in coastal environments. As freshwater environments become increasingly saline and more stressful, understanding the physiological tolerances of vulnerable groups such as amphibians will become increasingly important to our understanding of their abilities to respond, to adapt, and, ultimately, to survive. PMID:27327182

  14. Climate and Geomorphic Risks in High-Mountain Environments

    NASA Astrophysics Data System (ADS)

    Huggel, Christian; Kääb, Andreas; Schneider, Jean

    2010-03-01

    Glacier Hazards, Permafrost Hazards, and Glacier Lake Outburst Floods in Mountain Areas: Processes, Assessment, Prevention, Mitigation; Vienna, Austria, 10-13 November 2009; Recent atmospheric warming is profoundly affecting high-mountain environments around the world. Glaciers are thinning and retreating, new and often unstable lakes are forming at glacier margins, other lakes are suddenly draining, and permafrost is degrading. These changes pose serious hazards to people and property in mountain valleys. Several tens of thousands of people were killed by landslides, floods, and debris flows from high-mountain regions during the twentieth century, and there is concern that such events will increase as temperatures warm through the 21st century.

  15. Effects of high-salinity seawater acclimation on the levels of D-alanine in the muscle and hepatopancreas of kuruma prawn, Marsupenaeus japonicus.

    PubMed

    Yoshikawa, Naoko; Yokoyama, Masahumi

    2015-12-10

    Changes in D- and L-alanine contents were determined in the muscle and hepatopancreas of kuruma prawn Marsupenaeus japonicus, during acclimation from seawater containing 100% salinity to artificial seawater containing 150% salinity. In the hepatopancreas, contents of both amino acids increased by approximately threefold. The activity of alanine racemase, which catalyzes the interconversion of D- and L-alanine, also increased in the high-salinity seawater. In addition, the expression of the gene encoding alanine racemase increased in the hepatopancreas with an increase in the alanine racemase activity. These data indicate that the biosynthesis of D- and L-alanine is controlled by the gene expression level of alanine racemase, and D-alanine in the hepatopancreas functions as a major osmolyte for isosmotic regulation. In contrast, the content of D-alanine and alanine racemase activity did not change in the muscle during hyper-osmotic acclimation. Therefore, we suggest that D-alanine, which exists in the several tissues of M. japonicus, is considered to be utilized in some different physiological phenomena in different tissues.

  16. Involvement of the crustacean hyperglycemic hormone (CHH) in the physiological compensation of the freshwater crayfish Cherax quadricarinatus to low temperature and high salinity stress.

    PubMed

    Prymaczok, Natalia C; Pasqualino, Valeria M; Viau, Verónica E; Rodríguez, Enrique M; Medesani, Daniel A

    2016-02-01

    This study was aimed at determining the role of the crustacean hyperglycemic hormone (CHH) in the physiological compensation to both saline and thermal stress, in the freshwater crayfish Cherax quadricarinatus. By determining the expression of the CHH gene in the eyestalk of juvenile crayfish, we found that maximal induction of CHH was induced at high salinity (10 g/L) and low temperature (20 °C). In order to investigate the role of CHH in the physiological compensation to such stressful conditions, recombinant CHH was supplied to stressed animals. CHH-injected crayfish showed increased hemolymphatic levels of glucose, in accordance with a significant utilization of glycogen reserves from the hepatopancreas. Furthermore, CHH administration allowed stressed animals to regulate hemolymphatic sodium and potassium at more constant levels than controls. Taken together, these results suggest a relevant role of CHH in increasing the energy available intended for processes involved in the physiological compensation of C. quadricarinatus to both saline and thermal stress. PMID:26660884

  17. Molecular analysis of enrichment cultures of ammonia oxidizers from the Salar de Huasco, a high altitude saline wetland in northern Chile.

    PubMed

    Dorador, Cristina; Busekow, Annika; Vila, Irma; Imhoff, Johannes F; Witzel, Karl-Paul

    2008-05-01

    We analyzed enrichment cultures of ammonia-oxidizing bacteria (AOB) collected from different areas of Salar de Huasco, a high altitude, saline, pH-neutral water body in the Chilean Altiplano. Samples were inoculated into mineral media with 10 mM NH4+ at five different salt concentrations (10, 200, 400, 800 and 1,400 mM NaCl). Low diversity (up to three phylotypes per enrichment) of beta-AOB was detected using 16S rDNA and amoA clone libraries. Growth of beta-AOB was only recorded in a few enrichment cultures and varied according to site or media salinity. In total, five 16S rDNA and amoA phylotypes were found which were related to Nitrosomonas europaea/Nitrosococcus mobilis, N. marina and N. communis clusters. Phylotype 1-16S was 97% similar with N. halophila, previously isolated from Mongolian soda lakes, and phylotypes from amoA sequences were similar with yet uncultured beta-AOB from different biofilms. Sequences related to N. halophila were frequently found at all salinities. Neither gamma-AOB nor ammonia-oxidizing Archaea were recorded in these enrichment cultures. PMID:18305895

  18. Using EPSAT to analyze high power systems in the space environment. [Environment Power System Analysis Tool

    NASA Technical Reports Server (NTRS)

    Kuharski, Robert A.; Jongeward, Gary A.; Wilcox, Katherine G.; Rankin, Tom R.; Roche, James C.

    1991-01-01

    The authors review the Environment Power System Analysis Tool (EPSAT) design and demonstrate its capabilities by using it to address some questions that arose in designing the SPEAR III experiment. It is shown that that the rocket body cannot be driven to large positive voltages under the constraints of this experiment. Hence, attempts to measure the effects of a highly positive rocket body in the plasma environment should not be made in this experiment. It is determined that a hollow cathode will need to draw only about 50 mA to ground the rocket body. It is shown that a relatively small amount of gas needs to be released to induce a bulk breakdown near the rocket body, and this gas release should not discharge the sphere. Therefore, the experiment provides an excellent opportunity to study the neutralization of a differential charge.

  19. Thin Film Ceramic Strain Sensor Development for High Temperature Environments

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Gonzalez, Jose M.; Laster, Kimala L.

    2008-01-01

    The need for sensors to operate in harsh environments is illustrated by the need for measurements in the turbine engine hot section. The degradation and damage that develops over time in hot section components can lead to catastrophic failure. At present, the degradation processes that occur in the harsh hot section environment are poorly characterized, which hinders development of more durable components, and since it is so difficult to model turbine blade temperatures, strains, etc, actual measurements are needed. The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in harsh environments. The effort at the NASA Glenn Research Center (GRC) to develop high temperature thin film ceramic static strain gauges for application in turbine engines is described, first in the fan and compressor modules, and then in the hot section. The near-term goal of this research effort was to identify candidate thin film ceramic sensor materials and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. A thorough literature search was conducted for ceramics that have the potential for application as high temperature thin film strain gauges chemically and physically compatible with the NASA GRCs microfabrication procedures and substrate materials. Test results are given for tantalum, titanium and zirconium-based nitride and oxynitride ceramic films.

  20. High-Performance, Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog

  1. Diversity and food web structure of nematode communities under high soil salinity and alkaline pH.

    PubMed

    Salamún, Peter; Kucanová, Eva; Brázová, Tímea; Miklisová, Dana; Renčo, Marek; Hanzelová, Vladimíra

    2014-10-01

    A long-term and intensive magnesium (Mg) ore processing in Slovenské Magnezitové Závody a.s. in Jelšava has resulted in a high Mg content and alkaline pH of the soil environment, noticeable mainly in the close vicinity of the smelter. Nematode communities strongly reacted to the contamination mostly by a decrease in abundance of the sensitive groups. Nematodes from c-p 1 group and bacterivores, tolerant to pollution played a significant role in establishing the dominance at all sites. With increasing distance from the pollution source, the nematode communities were more structured and complex, with an increase in proportion of sensitive c-p 4 and 5 nematodes, composed mainly of carnivores and omnivores. Various ecological indices (e.g. MI2-5, SI, H') indicated similar improvement of farther soil ecosystems.

  2. [Underlying mechanisms and related techniques of stand establishment of cotton on coastal saline-alkali soil].

    PubMed

    Dong, He-Zhong

    2012-02-01

    Stand establishment is the most difficult step for cotton planting on coastal saline-alkali soil. To establish and improve the techniques for stand establishment is the key in the production of high-yielding cotton on saline-alkali soil. Based on the previous studies and our own research progress in this field, this paper reviewed the effects and the underlying mechanisms of making unequal salt distribution in root zone, increasing soil moisture and temperature, establishing under-mulching greenhouse, and introducing seed coating agent in promoting stand establishment of cotton on saline-alkali soil. It was suggested that under the conditions of the average salt content in topsoil being not able to reduce, improving at least partial root zone environment through the induction of unequal salt distribution in the root zone and increasing soil moisture and temperature could significantly reduce salt injury and improve stand establishment. Flat seeding under plastic mulching on low-salinity soil, furrow seeding with mulching on moderate- or high-salinity soil, early mulching before sowing on rain-fed saline soil, and late sowing of short-season cotton in heat-limited area were the efficient techniques for improving the stand establishment of cotton on coastal saline-alkali soil. This review could provide full guarantee for the cotton stand establishment on coastal saline-alkali soil.

  3. Investigation of high voltage spacecraft system interactions with plasma environments

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Berkopec, F. D.; Purvis, C. K.; Grier, N.; Staskus, J.

    1978-01-01

    The exposure of high voltage spacecraft systems to the charged particle environment of space can produce interactions that will influence system operation. An experimental investigation of these interactions has been undertaken for insulator and conductor test surfaces biased up to plus or minus 1 kV in a simulated low earth orbit charged particle environment. It has been found that these interactions are controlled by the insulator surfaces surrounding the biased conductors. For positive applied voltages the electron current collection can be enhanced by the insulators. For negative applied voltages the insulator surface confines the voltage to the conductor region; this can cause arcing. Understanding these interactions and the technology to control their impact on system operation is essential to the design of solar cell arrays for ion drive propulsion applications that use direct drive power processing.

  4. Using Highly Interactive Virtual Environments for Safeguards Activities

    SciTech Connect

    Weil, Bradley S; Alcala, Benjamin S; Alcala, Scott; Eipeldauer, Mary D; Weil, Logan B

    2010-01-01

    Highly interactive virtual environment (HIVE) is a term that refers to interactive educational simulations, serious games and virtual worlds. Studies indicate that learning with the aid of interactive environments produces better retention and depth of knowledge by promoting improved trainee engagement and understanding. Virtual reality or three dimensional (3D) visualization is often used to promote the understanding of something when personal observation, photographs, drawings, and/or sketches are not possible or available. Subjects and situations, either real or hypothetical, can be developed using a 3D model. Models can be tailored to the audience allowing safeguards and security features to be demonstrated for educational purposes in addition to engineering evaluation and performance analysis. Oak Ridge National Laboratory (ORNL) has begun evaluating the feasibility of HIVEs for improving safeguards activities such as training, mission planning, and evaluating worker task performance. This paper will discuss the development workflow of HIVEs and present some recent examples.

  5. Soil salinity detection from satellite image analysis: an integrated approach of salinity indices and field data.

    PubMed

    Morshed, Md Manjur; Islam, Md Tazmul; Jamil, Raihan

    2016-02-01

    This paper attempts to detect soil salinity from satellite image analysis using remote sensing and geographic information system. Salinity intrusion is a common problem for the coastal regions of the world. Traditional salinity detection techniques by field survey and sampling are time-consuming and expensive. Remote sensing and geographic information system offer economic and efficient salinity detection, monitoring, and mapping. To predict soil salinity, an integrated approach of salinity indices and field data was used to develop a multiple regression equation. The correlations between different indices and field data of soil salinity were calculated to find out the highly correlated indices. The best regression model was selected considering the high R (2) value, low P value, and low Akaike's Information Criterion. About 20% variation was observed between the field data and predicted EC from the satellite image analysis. The precision of this salinity detection technique depends on the accuracy and uniform distribution of field data.

  6. Soil salinity detection from satellite image analysis: an integrated approach of salinity indices and field data.

    PubMed

    Morshed, Md Manjur; Islam, Md Tazmul; Jamil, Raihan

    2016-02-01

    This paper attempts to detect soil salinity from satellite image analysis using remote sensing and geographic information system. Salinity intrusion is a common problem for the coastal regions of the world. Traditional salinity detection techniques by field survey and sampling are time-consuming and expensive. Remote sensing and geographic information system offer economic and efficient salinity detection, monitoring, and mapping. To predict soil salinity, an integrated approach of salinity indices and field data was used to develop a multiple regression equation. The correlations between different indices and field data of soil salinity were calculated to find out the highly correlated indices. The best regression model was selected considering the high R (2) value, low P value, and low Akaike's Information Criterion. About 20% variation was observed between the field data and predicted EC from the satellite image analysis. The precision of this salinity detection technique depends on the accuracy and uniform distribution of field data. PMID:26815557

  7. Metabolic fingerprinting of the responses to salinity in the invasive ground beetle Merizodus soledadinus at the Kerguelen Islands.

    PubMed

    Hidalgo, K; Laparie, M; Bical, R; Larvor, V; Bouchereau, A; Siaussat, D; Renault, D

    2013-01-01

    Salinity is an abiotic factor that may impact survival and fitness of terrestrial insects in coastal environments. Meanwhile, some terrestrial arthropods can survive in hypersaline environments, and counterbalance osmotic stress by intra- and extracellular buildups of organic osmolytes. The ground beetle Merizodus soledadinus originates from South America and it is distributed in forests and riparian zones, where salinity levels are considerably low. This species has been introduced at the Kerguelen Islands a century ago, where it colonized coastal areas (tide drift lines), and must thus withstand salinity variations due to tide, spray, and organic matter deposited therein. In the present study, we addressed the physiological plasticity of M. soledadinus to saline conditions, by monitoring body water content and survival in adults experimentally subjected to different salinities. We also investigated possible metabolic adjustments involved at three contrasted salinity levels (0‰, 35‰, 70‰) at 4 and 8°C. We hypothesized that this invasive ground beetle can withstand a broad range of salinity conditions thanks to the plastic accumulation of compatible solutes. The study revealed a progressive drop in body water content in individuals exposed to 35‰ and 70‰, as opposed to the controls. Metabolic fingerprints showed compatible solute (erythritol, alanine, glycine and proline) accumulation at medium and high salinity conditions (35‰ and 70‰). We concluded that the osmo-induced accumulation of amino acids and polyols was likely to modulate the ground beetles' body water balance on medium saline substrates, thus enhancing their survival ability.

  8. High versus low crewmember autonomy in space simulation environments

    NASA Astrophysics Data System (ADS)

    Kanas, Nick; Saylor, Stephanie; Harris, Matthew; Neylan, Thomas; Boyd, Jennifer; Weiss, Daniel S.; Baskin, Pamela; Cook, Colleen; Marmar, Charles

    2010-10-01

    Given the long distances involved and the kinds of activities planned, crewmembers participating in long-duration exploratory space missions such as an expedition to Mars will have more autonomy than in previous space missions. In order to study the impact of high versus low crew autonomy on crewmembers and the crew-mission control interaction, we conducted a series of pilot studies involving three space simulation settings: NEEMO missions, the Haughton-Mars Project, and the pilot phase of the Mars 500 Program. As in our previous on-orbit studies on the Mir and International Space Station, crew and mission control subjects working in missions involving these three settings completed a weekly study questionnaire that assessed mood and interpersonal interactions using the Profile of Mood States, the Group Environment Scale, and the Work Environment Scale. The Mars 500 pilot study also directly assessed individual and group autonomy. In these studies, high autonomy periods were those where crewmembers planned much of their work schedule, whereas low autonomy periods were those where mission control personnel developed the schedule, much as happens now during actual space flight conditions. Our results suggested that high work autonomy was well-received by the crews, mission goals were accomplished, and there were no adverse effects. During high autonomy periods, crewmember mood was generally reported as being better and creativity was higher, but mission control personnel reported some confusion about their work role. The crewmember group environment in the Mars 500 pilot study was dependent on the nationality mix. Despite scoring lower in work pressure overall, the four Russian crewmembers reported a greater rise in work pressure from low to high autonomy than the two Europeans. In contrast, the European crewmembers reported a greater rise in dysphoric mood in going from low to high autonomy, whereas the Russians' emotional state remained the same or slightly

  9. Chemical Vapor Deposition at High Pressure in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    McCall, Sonya; Bachmann, Klaus; LeSure, Stacie; Sukidi, Nkadi; Wang, Fuchao

    1999-01-01

    In this paper we present an evaluation of critical requirements of organometallic chemical vapor deposition (OMCVD) at elevated pressure for a channel flow reactor in a microgravity environment. The objective of using high pressure is to maintain single-phase surface composition for materials that have high thermal decomposition pressure at their optimum growth temperature. Access to microgravity is needed to maintain conditions of laminar flow, which is essential for process analysis. Based on ground based observations we present an optimized reactor design for OMCVD at high pressure and reduced gravity. Also, we discuss non-intrusive real-time optical monitoring of flow dynamics coupled to homogeneous gas phase reactions, transport and surface processes. While suborbital flights may suffice for studies of initial stages of heteroepitaxy experiments in space are essential for a complete evaluation of steady-state growth.

  10. Zinc Excess Triggered Polyamines Accumulation in Lettuce Root Metabolome, As Compared to Osmotic Stress under High Salinity

    PubMed Central

    Rouphael, Youssef; Colla, Giuseppe; Bernardo, Letizia; Kane, David; Trevisan, Marco; Lucini, Luigi

    2016-01-01

    Abiotic stresses such as salinity and metal contaminations are the major environmental stresses that adversely affect crop productivity worldwide. Crop responses and tolerance to abiotic stress are complex processes for which “-omic” approaches such as metabolomics is giving us a newest view of biological systems. The aim of the current research was to assess metabolic changes in lettuce (Lactuca sativa L.), by specifically probing the root metabolome of plants exposed to elevated isomolar concentrations of NaCl and ZnSO4. Most of the metabolites that were differentially accumulated in roots were identified for stress conditions, however the response was more intense in plants exposed to NaCl. Compounds identified in either NaCl or ZnSO4 conditions were: carbohydrates, phenolics, hormones, glucosinolates, and lipids. Our findings suggest that osmotic stress and the consequent redox imbalance play a major role in determining lettuce root metabolic response. In addition, it was identified that polyamines and polyamine conjugates were triggered as a specific response to ZnSO4. These findings help improve understanding of how plants cope with abiotic stresses. This information can be used to assist decision-making in breeding programs for improving crop tolerance to salinity and heavy metal contaminations. PMID:27375675

  11. Zinc Excess Triggered Polyamines Accumulation in Lettuce Root Metabolome, As Compared to Osmotic Stress under High Salinity.

    PubMed

    Rouphael, Youssef; Colla, Giuseppe; Bernardo, Letizia; Kane, David; Trevisan, Marco; Lucini, Luigi

    2016-01-01

    Abiotic stresses such as salinity and metal contaminations are the major environmental stresses that adversely affect crop productivity worldwide. Crop responses and tolerance to abiotic stress are complex processes for which "-omic" approaches such as metabolomics is giving us a newest view of biological systems. The aim of the current research was to assess metabolic changes in lettuce (Lactuca sativa L.), by specifically probing the root metabolome of plants exposed to elevated isomolar concentrations of NaCl and ZnSO4. Most of the metabolites that were differentially accumulated in roots were identified for stress conditions, however the response was more intense in plants exposed to NaCl. Compounds identified in either NaCl or ZnSO4 conditions were: carbohydrates, phenolics, hormones, glucosinolates, and lipids. Our findings suggest that osmotic stress and the consequent redox imbalance play a major role in determining lettuce root metabolic response. In addition, it was identified that polyamines and polyamine conjugates were triggered as a specific response to ZnSO4. These findings help improve understanding of how plants cope with abiotic stresses. This information can be used to assist decision-making in breeding programs for improving crop tolerance to salinity and heavy metal contaminations. PMID:27375675

  12. Combined effect of boron and salinity on water transport

    PubMed Central

    del Carmen Martínez-Ballesta, Maria; Bastías, Elizabeth

    2008-01-01

    Boron toxicity is an important disorder that can limit plant growth on soils of arid and semi arid environments throughout the world. Although there are several reports about the combined effect of salinity and boron toxicity on plant growth and yield, there is no consensus about the experimental results. A general antagonistic relationship between boron excess and salinity has been observed, however the mechanisms for this interaction is not clear and several options can be discussed. In addition, there is no information, concerning the interaction between boron toxicity and salinity with respect to water transport and aquaporins function in the plants. We recently documented in the highly boron- and salt-tolerant the ecotype of Zea mays L. amylacea from Lluta valley in Northern Chile that under salt stress, the activity of specific membrane components can be influenced directly by boron, regulating the water uptake and water transport through the functions of certain aquaporin isoforms. PMID:19704850

  13. Evaluating alternative refrigerants for high ambient temperature environments

    DOE PAGES

    Abdelaziz, Omar; Shrestha, Som S.

    2016-01-01

    According to the Montreal Protocol, developing countries have started the phase out schedule of the ozone depleting substances, including HCFC refrigerants, in 2015 and expect them to reach 35% reduction in 2020. This commitment to the start the phase out of HCFC refrigerants, especially R-22, in developing countries is seen as an opportunity to introduce lower Global Warming Potential (GWP) refrigerants. Furthermore, this paper summarizes an investigation into the performance of lower GWP refrigerants in high ambient temperature environments, experienced in some of the developed countries, in mini-split air conditioning units.

  14. Mitigated-force carriage for high magnetic field environments

    SciTech Connect

    Ludtka, Gerard M.; Ludtka, Gail M.; Wilgen, John B.; Murphy, Bart L.

    2015-05-19

    A carriage for high magnetic field environments includes a plurality of work-piece separators disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla for supporting and separating a plurality of work-pieces by a preselected, essentially equal spacing, so that, as a first work-piece is inserted into the magnetic field, a second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.

  15. Management and Performance of APPLE Battery in High Temperature Environment

    NASA Technical Reports Server (NTRS)

    Suresh, M. S.; Subrahmanyam, A.; Agrawal, B. L.

    1984-01-01

    India's first experimental communication satellite, APPLE, carried a 12 AH Ni-Cd battery for supplying power during eclipse. Failure to deploy one of the two solar panels resulted in the battery operating in a high temperature environment, around 40 C. This also resulted in the battery being used in diurnal cycles rather than just half yearly eclipse seasons. The management and performance of the battery during its life of two years are described. An attempt to identify the probable degradation mechanisms is also made.

  16. Enhanced salinities, as a proxy of seawater desalination discharges, impact coastal microbial communities of the eastern Mediterranean Sea.

    PubMed

    Belkin, Natalia; Rahav, Eyal; Elifantz, Hila; Kress, Nurit; Berman-Frank, Ilana

    2015-10-01

    Seawater desalination plants increase local coastal salinities by discharging concentrated brine back to the sea with ∼ 50% higher than ambient salinities. The impacts of high salinities on microbial coastal populations of the eastern Mediterranean Sea (EMS) were examined in two mesocosm experiments; first, during the mixed-spring and second, during the stratified-summer periods with average salinity of ∼ 39. Ambient salinities were increased by 5% and 15%. Higher salinity (15%) mesocosms induced rapid (within 2 h) declines in both primary productivity (PP) and algal biomass parallel to an increase in bacterial productivity. Subsequently, for the duration of the experiments (11-12 days), both Chlorophyll a and PP rates increased (2 to 5 and 1.5 to 2.5-fold, respectively) relative to unamended controls. The initial assemblages of the ambient microbial populations and intensity of salinity enrichments influenced the community responses. During the mixed-spring experiment, the composition of prokaryotic and eukaryotic populations shifted only slightly, suggesting high functional plasticity of the initial populations. While during the stratified-summer experiment, high salinity changed the composition and reduced the biodiversity of the microbial communities. In an ultra-oligotrophic environment such as the EMS, salinity induced declines in microbial diversity may provide a tipping point destabilizing the local aquatic food web. PMID:26178627

  17. Enhanced salinities, as a proxy of seawater desalination discharges, impact coastal microbial communities of the eastern Mediterranean Sea.

    PubMed

    Belkin, Natalia; Rahav, Eyal; Elifantz, Hila; Kress, Nurit; Berman-Frank, Ilana

    2015-10-01

    Seawater desalination plants increase local coastal salinities by discharging concentrated brine back to the sea with ∼ 50% higher than ambient salinities. The impacts of high salinities on microbial coastal populations of the eastern Mediterranean Sea (EMS) were examined in two mesocosm experiments; first, during the mixed-spring and second, during the stratified-summer periods with average salinity of ∼ 39. Ambient salinities were increased by 5% and 15%. Higher salinity (15%) mesocosms induced rapid (within 2 h) declines in both primary productivity (PP) and algal biomass parallel to an increase in bacterial productivity. Subsequently, for the duration of the experiments (11-12 days), both Chlorophyll a and PP rates increased (2 to 5 and 1.5 to 2.5-fold, respectively) relative to unamended controls. The initial assemblages of the ambient microbial populations and intensity of salinity enrichments influenced the community responses. During the mixed-spring experiment, the composition of prokaryotic and eukaryotic populations shifted only slightly, suggesting high functional plasticity of the initial populations. While during the stratified-summer experiment, high salinity changed the composition and reduced the biodiversity of the microbial communities. In an ultra-oligotrophic environment such as the EMS, salinity induced declines in microbial diversity may provide a tipping point destabilizing the local aquatic food web.

  18. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes.

    PubMed

    Kumari, Asha; Das, Paromita; Parida, Asish Kumar; Agarwal, Pradeep K

    2015-01-01

    Halophytes are plants which naturally survive in saline environment. They account for ∼1% of the total flora of the world. They include both dicots and monocots and are distributed mainly in arid, semi-arid inlands and saline wet lands along the tropical and sub-tropical coasts. Salinity tolerance in halophytes depends on a set of ecological and physiological characteristics that allow them to grow and flourish in high saline conditions. The ability of halophytes to tolerate high salt is determined by the effective coordination between various physiological processes, metabolic pathways and protein or gene networks responsible for delivering salinity tolerance. The salinity responsive proteins belong to diverse functional classes such as photosynthesis, redox homeostasis; stress/defense, carbohydrate and energy metabolism, protein metabolism, signal transduction and membrane transport. The important metabolites which are involved in salt tolerance of halophytes are proline and proline analog (4-hydroxy-N-methyl proline), glycine betaine, pinitol, myo-inositol, mannitol, sorbitol, O-methylmucoinositol, and polyamines. In halophytes, the synthesis of specific proteins and osmotically active metabolites control ion and water flux and support scavenging of oxygen radicals under salt stress condition. The present review summarizes the salt tolerance mechanisms of halophytes by elucidating the recent studies that have focused on proteomic, metabolomic, and ionomic aspects of various halophytes in response to salinity. By integrating the information from halophytes and its comparison with glycophytes could give an overview of salt tolerance mechanisms in halophytes, thus laying down the pavement for development of salt tolerant crop plants through genetic modification and effective breeding strategies. PMID:26284080

  19. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes

    PubMed Central

    Kumari, Asha; Das, Paromita; Parida, Asish Kumar; Agarwal, Pradeep K.

    2015-01-01

    Halophytes are plants which naturally survive in saline environment. They account for ∼1% of the total flora of the world. They include both dicots and monocots and are distributed mainly in arid, semi-arid inlands and saline wet lands along the tropical and sub-tropical coasts. Salinity tolerance in halophytes depends on a set of ecological and physiological characteristics that allow them to grow and flourish in high saline conditions. The ability of halophytes to tolerate high salt is determined by the effective coordination between various physiological processes, metabolic pathways and protein or gene networks responsible for delivering salinity tolerance. The salinity responsive proteins belong to diverse functional classes such as photosynthesis, redox homeostasis; stress/defense, carbohydrate and energy metabolism, protein metabolism, signal transduction and membrane transport. The important metabolites which are involved in salt tolerance of halophytes are proline and proline analog (4-hydroxy-N-methyl proline), glycine betaine, pinitol, myo-inositol, mannitol, sorbitol, O-methylmucoinositol, and polyamines. In halophytes, the synthesis of specific proteins and osmotically active metabolites control ion and water flux and support scavenging of oxygen radicals under salt stress condition. The present review summarizes the salt tolerance mechanisms of halophytes by elucidating the recent studies that have focused on proteomic, metabolomic, and ionomic aspects of various halophytes in response to salinity. By integrating the information from halophytes and its comparison with glycophytes could give an overview of salt tolerance mechanisms in halophytes, thus laying down the pavement for development of salt tolerant crop plants through genetic modification and effective breeding strategies. PMID:26284080

  20. Isohaline Salinity Budget of the North Atlantic Salinity Maximum

    NASA Astrophysics Data System (ADS)

    Bryan, F.; Bachman, S.

    2014-12-01

    The Salinity Processes in the Upper Ocean Regional Study (SPURS) field experiment was designed as a multi-scale investigation of the processes that give rise to the North Atlantic subtropical salinity maximum. The choice of control volume influences the processes that dominate budgets of ocean properties. In this study we analyze the salinity budget of the North Atlantic subtropical salinity maximum region for control volumes bounded by isohaline surfaces. We provide closed budgets based on output from a high-resolution numerical simulation, and partial budgets based on climatological analyses of observations. With this choice of control volume, advection is eliminated from the instantaneous volume integrated salt budget, and time mean advection eliminated from the budget evaluated from time-averaged data. In this way, the role of irreversible mixing processes in the maintenance and variability of the salinity maximum are more readily revealed. By carrying out the analysis with near instantaneous and time-filtered model output, the role of mesoscale eddies in stirring and mixing for this region is determined. We find that the small-scale mixing acting on enhanced gradients generated by the mesoscale eddies is approximately equal to that acting on the large-scale gradients estimated from climatological mean conditions. The isohaline salinity budgets can be related to water mass transformation rates associated with surface forcing and mixing processes in a straightforward manner. We find that the surface net evaporation in the North Atlantic salinity maximum region accounts for a transformation of 7 Sv of water into the salinity maximum in the simulation, whereas the estimate based on climatological observations is 10 Sv.

  1. The high-risk infant environment. Part 2. The role of caregiving and the social environment.

    PubMed

    Graven, S N; Bowen, F W; Brooten, D; Eaton, A; Graven, M N; Hack, M; Hall, L A; Hansen, N; Hurt, H; Kavalhuna, R

    1992-09-01

    Neonatal intensive care units are essential for the successful care of very immature and sick infants. The technology of NICUs has contributed significantly to the reduction of neonatal mortality and improvement of neonatal outcome. While the outcome for high-risk neonates has vastly improved over the past three decades, a number of infants sustain injuries and complications that result in long-term disabilities. It is now clear that some of the long-term problems of high-risk infants are a result of the environment and care practices and are not attributable to the original disease or condition that necessitated intensive care. There is accumulating evidence that environmental factors and care practices can interact with disease processes in ways that can increase morbidity, and possibly mortality. In addition to developmental and behavioral problems, there is growing evidence of effects on visual function and perhaps other sensory systems. Many of the environmental and care factors may cause delay in recovery and increase NICU time or unnecessary discomfort, yet not produce long-term disabilities or problems, as currently assessed. Many of the potential behavioral and developmental problems, as well as many of the potential problems with visual, auditory, and other modes of sensory discrimination, are not included in the usual follow-up assessments. The absence of data or the limitations of existing studies are not a cause for comfort or the assumption that the environment and care practices are safe or not harmful.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Gamma-spectrometric analysis of high salinity fluids: how to analyze radionuclides of the thorium decay chain far from radioactive equilibrium?

    PubMed

    Degering, Detlev; Köhler, Matthias

    2011-11-01

    Highly saline brines from a geothermal plant in Neustadt-Glewe, Germany, were investigated with respect to their radionuclide concentrations. The natural decay series in these fluids are far from radioactive equilibrium with main activity contributions from the radium isotopes (226)Ra, (228)Ra and (224)Ra. A general mathematical formulation for the coupled radionuclide activities within one decay chain is applied on the system (228)Ra…(212)Pb and tested on real samples in order to evaluate several radionuclide concentrations at the moment of sampling.

  3. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA₄ interaction in cucumber (Cucumis sativus L.).

    PubMed

    Zhang, Hai-Jun; Zhang, Na; Yang, Rong-Chao; Wang, Li; Sun, Qian-Qian; Li, Dian-Bo; Cao, Yun-Yun; Weeda, Sarah; Zhao, Bing; Ren, Shuxin; Guo, Yang-Dong

    2014-10-01

    Although previous studies have found that melatonin can promote seed germination, the mechanisms involved in perceiving and signaling melatonin remain poorly understood. In this study, it was found that melatonin was synthesized during cucumber seed germination with a peak in melatonin levels occurring 14 hr into germination. This is indicative of a correlation between melatonin synthesis and seed germination. Meanwhile, seeds pretreated with exogenous melatonin (1 μM) showed enhanced germination rates under 150 mM NaCl stress compared to water-pretreated seeds under salinity stress. There are two apparent mechanisms by which melatonin alleviated salinity-induced inhibition of seed germination. Exogenous melatonin decreased oxidative damage induced by NaCl stress by enhancing gene expression of antioxidants. Under NaCl stress, compared to untreated control, the activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were significantly increased by approximately 1.3-5.0-fold, with a concomitant 1.4-2.0-fold increase of CsCu-ZnSOD, CsFe-ZnSOD, CsCAT, and CsPOD in melatonin-pretreated seeds. Melatonin also alleviated salinity stress by affecting abscisic acid (ABA) and gibberellin acid (GA) biosynthesis and catabolism during seed germination. Compared to NaCl treatment, melatonin significantly up-regulated ABA catabolism genes (e.g., CsCYP707A1 and CsCYP707A2, 3.5 and 105-fold higher than NaCl treatment at 16 hr, respectively) and down-regulated ABA biosynthesis genes (e.g., CsNECD2, 0.29-fold of CK2 at 16 hr), resulting in a rapid decrease of ABA content during the early stage of germination. At the same time, melatonin positively up-regulated GA biosynthesis genes (e.g., GA20ox and GA3ox, 2.3 and 3.9-fold higher than NaCl treatment at 0 and 12 hr, respectively), contributing to a significant increase of GA (especially GA4) content. In this study, we provide new evidence suggesting that melatonin alleviates the

  4. Expressed sequence tag (EST) profiling in hyper saline shocked Dunaliella salina reveals high expression of protein synthetic apparatus components.

    PubMed

    Alkayal, Fadi; Albion, Rebecca L; Tillett, Richard L; Hathwaik, Leyla T; Lemos, Mark S; Cushman, John C

    2010-11-01

    The unicellular, halotolerant, green alga, Dunaliella salina (Chlorophyceae) has the unique ability to adapt and grow in a wide range of salt conditions from about 0.05 to 5.5M. To better understand the molecular basis of its salinity tolerance, a complementary DNA (cDNA) library was constructed from D. salina cells adapted to 2.5M NaCl, salt-shocked at 3.4M NaCl for 5h, and used to generate an expressed sequence tag (EST) database. ESTs were obtained for 2831 clones representing 1401 unique transcripts. Putative functions were assigned to 1901 (67.2%) ESTs after comparison with protein databases. An additional 154 (5.4%) ESTs had significant similarity to known sequences whose functions are unclear and 776 (27.4%) had no similarity to known sequences. For those D. salina ESTs for which functional assignments could be made, the largest functional categories included protein synthesis (35.7%), energy (photosynthesis) (21.4%), primary metabolism (13.8%) and protein fate (6.8%). Within the protein synthesis category, the vast majority of ESTs (80.3%) encoded ribosomal proteins representing about 95% of the approximately 82 subunits of the cytosolic ribosome indicating that D. salina invests substantial resources in the production and maintenance of protein synthesis. The increased mRNA expression upon salinity shock was verified for a small set of selected genes by real-time, quantitative reverse-transcription-polymerase chain reaction (qRT-PCR). This EST collection also provided important new insights into the genetic underpinnings for the biosynthesis and utilization of glycerol and other osmoprotectants, the carotenoid biosynthetic pathway, reactive oxygen-scavenging enzymes, and molecular chaperones (heat shock proteins) not described previously for D. salina. EST discovery also revealed the existence of RNA interference and signaling pathways associated with osmotic stress adaptation. The unknown ESTs described here provide a rich resource for the identification

  5. Superconducting magnets in high radiation environments: Design problems and solutions

    SciTech Connect

    St. Lorant, S.J.; Tillmann, E.

    1989-11-01

    As part of the Stanford Linear Collider Project, three high-field superconducting solenoid magnets are used to rotate the spin direction of a polarized electron beam. The magnets are installed in a high-radiation environment, where they will receive a dose of approximately 10{sup 3} rad per hour, or 10{sup 8} rad over their lifetimes. This level of radiation and the location in which the magnets are installed, some 10 meters below ground in contiguous tunnels, required careful selection of materials for the construction of the solenoids and their ancillary cryogenic equipment, as well as the development of compatible component designs. This paper describes the materials used and the design of the equipment appropriate for the application. Included are summaries of the physical and mechanical properties of the materials and how they behave when irradiated. 16 refs., 7 figs., 1 tab.

  6. Removal of high-salinity matrices through polymer-complexation-ultrafiltration for the detection of trace levels of REEs using inductively coupled plasma mass spectrometry.

    PubMed

    Duan, Hualing; Lin, Jijun; Gong, Zhenbin; Huang, Jiahua; Yang, Shifeng

    2015-10-01

    The polymer-complexation-ultrafiltration (PCUF) technique was applied to separate trace levels of rare earth elements (REEs), including scandium, yttrium and the lanthanides, from high-salinity matrices prior to their determination by inductively coupled plasma mass spectrometry (ICP-MS). The REEs were converted into REE-polymer complexes using the water-soluble polymer polyacrylic acid (PAA) at a specified pH, retained on the ultrafiltration membrane of centrifugal filter units, and finally eluted using diluted nitric acid to achieve separation from matrices with relatively high levels of various inorganic ions, such as sodium, potassium, calcium, magnesium, and chlorine ions. Numerous factors affecting the PCUF efficiency were optimized. The optimal conditions included the addition of 30 mg L(-1) of PAA, a pH of 7.5, a reaction time of 40 min at room temperature, and 5.0 mL of 3% nitric acid (v/v) eluent. Under these conditions, the analytes were quantitatively separated and recovered, with a resulting relative standard deviation (RSD) of less than 4.0% (0.05 µg L(-1), n=5) and standard addition recoveries between 89.2% (La) and 95.8% (Sm) for matrices of various salinities. The blank samples for the method ranged from 0.0003 µg L(-1) (Dy) to 0.0031 µg L(-1) (Sc), and the limits of quantification (LOQs, 10σ) were between 0.0006 µg L(-1) (Dy) and 0.0026 µg L(-1) (Sc). Furthermore, the salinity of the sample exhibited no effect on the REE-polymer complex formation process. Finally, the method was successfully applied for the determination of trace levels of dissolved Sc, Y, and lanthanides in coastal and estuarine seawater samples. PMID:26078161

  7. Multi-Frequency Measured and Modeled Microwave Backscatter from a Highly Saline Snow Cover on Smooth First-Year Sea Ice

    NASA Astrophysics Data System (ADS)

    Nandan, V.; Geldsetzer, T.; Islam, T.; Yackel, J.; Gill, J. P. S.; Gunn, G. E.; Duguay, C. R.

    2015-12-01

    Monitoring Arctic sea ice and its snow cover variability is of prime importance in Cryosphere research. Snow cover plays major roles in the energy balance of Arctic sea ice and also required to understand the present condition and future behavior of first-year ice (FYI). Microwave remote sensing provides the most effective means to acquire near-real time thermodynamic information about snow cover on smooth FYI. Microwave interaction with snow-covered sea ice is a function of both snow and ice electro-thermo-physical properties such as shape, size and orientation of scatterers, surface roughness, complex dielectric constant as a function primarily of brine volume, and brine volume as a function of temperature, salinity and density; as well as microwave parameters such as incidence angle, polarization and wavelength. Fluctuations in snow cover thermodynamics affect microwave propagation, attenuation, and scattering through the influence that brine volume exerts on interfacial and volume characteristics of snow and ice layers. Previous studies exhibit reduced penetration depth and inaccurate snow thickness estimates, using a single-frequency approach (C-band), from highly saline snow covers. We present a case study based on an observational (Ku-, X- and C-band surface-based fully-polarimetric microwave scatterometer system) and theoretical multi-frequency approach (using first-order microwave scattering and penetration depth models), to understand the sensitivity of varying snow thermodynamics on microwave scattering and penetration. The study site is a 14cm highly saline snow cover over smooth FYI, near Resolute Bay, Nunavut, Canada (Figure 1), with in-situ snow property measurements acquired from 18th to 20th May 2012, when snow layer temperatures were found to be fluctuating (Figure 2). Preliminary results show variations in observed Ku-, X- and C-band VV backscatter (Figure 3) and penetration (Figure 5) for warm (18th and 20th May) and cold (19th May) snow cases

  8. High-Pressure Transvenous Perfusion of the Upper Extremity in Human Muscular Dystrophy: A Safety Study with 0.9% Saline

    PubMed Central

    Fan, Zheng; Kocis, Keith; Valley, Robert; Howard, James F.; Chopra, Manisha; Chen, Yasheng; An, Hongyu; Lin, Weili; Muenzer, Joseph; Powers, William

    2015-01-01

    We evaluated safety and feasibility of high-pressure transvenous limb perfusion in an upper extremity of adult patients with muscular dystrophy, after completing a similar study in a lower extremity. A dose escalation study of single-limb perfusion with 0.9% saline was carried out in nine adults with muscular dystrophies under intravenous analgesia. Our study demonstrates that it is feasible and definitely safe to perform high-pressure transvenous perfusion with 0.9% saline up to 35% of limb volume in the upper extremities of young adults with muscular dystrophy. Perfusion at 40% limb volume is associated with short-lived physiological changes in peripheral nerves without clinical correlates in one subject. This study provides the basis for a phase 1/2 clinical trial using pressurized transvenous delivery into upper limbs of nonambulatory patients with Duchenne muscular dystrophy. Furthermore, our results are applicable to other conditions such as limb girdle muscular dystrophy as a method for delivering regional macromolecular therapeutics in high dose to skeletal muscles of the upper extremity. PMID:25953425

  9. High-Pressure Transvenous Perfusion of the Upper Extremity in Human Muscular Dystrophy: A Safety Study with 0.9% Saline.

    PubMed

    Fan, Zheng; Kocis, Keith; Valley, Robert; Howard, James F; Chopra, Manisha; Chen, Yasheng; An, Hongyu; Lin, Weili; Muenzer, Joseph; Powers, William

    2015-09-01

    We evaluated safety and feasibility of high-pressure transvenous limb perfusion in an upper extremity of adult patients with muscular dystrophy, after completing a similar study in a lower extremity. A dose escalation study of single-limb perfusion with 0.9% saline was carried out in nine adults with muscular dystrophies under intravenous analgesia. Our study demonstrates that it is feasible and definitely safe to perform high-pressure transvenous perfusion with 0.9% saline up to 35% of limb volume in the upper extremities of young adults with muscular dystrophy. Perfusion at 40% limb volume is associated with short-lived physiological changes in peripheral nerves without clinical correlates in one subject. This study provides the basis for a phase 1/2 clinical trial using pressurized transvenous delivery into upper limbs of nonambulatory patients with Duchenne muscular dystrophy. Furthermore, our results are applicable to other conditions such as limb girdle muscular dystrophy as a method for delivering regional macromolecular therapeutics in high dose to skeletal muscles of the upper extremity.

  10. High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan.

    PubMed

    Egamberdieva, Dilfuza; Kamilova, Faina; Validov, Shamil; Gafurova, Laziza; Kucharova, Zulfiya; Lugtenberg, Ben

    2008-01-01

    Soil salinization is increasing steadily in many parts of the world and causes major problems for plant productivity. Under these stress conditions, root-associated beneficial bacteria can help improve plant growth and nutrition. In this study, salt-tolerant bacteria from the rhizosphere of Uzbek wheat with potentially beneficial traits were isolated and characterized. Eight strains which initially positively affect the growth of wheat plants in vitro were investigated in detail. All eight strains are salt tolerant and have some of the following plant growth-beneficial properties: production of auxin, HCN, lipase or protease and wheat growth promotion. Using sequencing of part of the 16S rDNA, the eight new isolates were identified as Acinetobacter (two strains), Pseudomonas aeruginosa, Staphylococcus saprophyticus, Bacillus cereus, Enterobacter hormaechei, Pantoae agglomerans and Alcaligenes faecalis. All these strains are potential human pathogens. Possible reasons for why these bacteria present in the rhizosphere and establish there are discussed.

  11. Development of a High-Stability Microstrip-based L-band Radiometer for Ocean Salinity Measurements

    NASA Technical Reports Server (NTRS)

    Pellerano, Fernando A.; Horgan, Kevin A.; Wilson, William J.; Tanner, Alan B.

    2004-01-01

    The development of a microstrip-based L-band Dicke radiometer with the long-term stability required for future ocean salinity measurements to an accuracy of 0.1 psu is presented. This measurement requires the L-band radiometers to have calibration stabilities of less than or equal to 0.05 K over 2 days. This research has focused on determining the optimum radiometer requirements and configuration to achieve this objective. System configuration and component performance have been evaluated with radiometer test beds at both JPL and GSFC. The GSFC testbed uses a cryogenic chamber that allows long-term characterization at radiometric temperatures in the range of 70 - 120 K. The research has addressed several areas including component characterization as a function of temperature and DC bias, system linearity, optimum noise diode injection calibration, and precision temperature control of components. A breadboard radiometer, utilizing microstrip-based technologies, has been built to demonstrate this long-term stability.

  12. Energy metabolism and the high-altitude environment.

    PubMed

    Murray, Andrew J

    2016-01-01

    At high altitude the barometric pressure falls, challenging oxygen delivery to the tissues. Thus, whilst hypoxia is not the only physiological stress encountered at high altitude, low arterial P(O2) is a sustained feature, even after allowing adequate time for acclimatization. Cardiac and skeletal muscle energy metabolism is altered in subjects at, or returning from, high altitude. In the heart, energetic reserve falls, as indicated by lower phosphocreatine-to-ATP ratios. The underlying mechanism is unknown, but in the hypoxic rat heart fatty acid oxidation and respiratory capacity are decreased, whilst pyruvate oxidation is also lower after sustained hypoxic exposure. In skeletal muscle, there is not a consensus. With prolonged exposure to extreme high altitude (>5500 m) a loss of muscle mitochondrial density is seen, but this was not observed in a simulated ascent of Everest in hypobaric chambers. At more moderate high altitude, decreased respiratory capacity may occur without changes in mitochondrial volume density, and fat oxidation may be downregulated, although this is not seen in all studies. The underlying mechanisms, including the possible role of hypoxia-signalling pathways, remain to be resolved, particularly in light of confounding factors in the high-altitude environment. In high-altitude-adapted Tibetan natives, however, there is evidence of natural selection centred around the hypoxia-inducible factor pathway, and metabolic features in this population (e.g. low cardiac phosphocreatine-to-ATP ratios, increased cardiac glucose uptake and lower muscle mitochondrial densities) share similarities with those in acclimatized lowlanders, supporting a possible role for the hypoxia-inducible factor pathway in the metabolic response of cardiac and skeletal muscle energy metabolism to high altitude. PMID:26315373

  13. Energy metabolism and the high-altitude environment.

    PubMed

    Murray, Andrew J

    2016-01-01

    At high altitude the barometric pressure falls, challenging oxygen delivery to the tissues. Thus, whilst hypoxia is not the only physiological stress encountered at high altitude, low arterial P(O2) is a sustained feature, even after allowing adequate time for acclimatization. Cardiac and skeletal muscle energy metabolism is altered in subjects at, or returning from, high altitude. In the heart, energetic reserve falls, as indicated by lower phosphocreatine-to-ATP ratios. The underlying mechanism is unknown, but in the hypoxic rat heart fatty acid oxidation and respiratory capacity are decreased, whilst pyruvate oxidation is also lower after sustained hypoxic exposure. In skeletal muscle, there is not a consensus. With prolonged exposure to extreme high altitude (>5500 m) a loss of muscle mitochondrial density is seen, but this was not observed in a simulated ascent of Everest in hypobaric chambers. At more moderate high altitude, decreased respiratory capacity may occur without changes in mitochondrial volume density, and fat oxidation may be downregulated, although this is not seen in all studies. The underlying mechanisms, including the possible role of hypoxia-signalling pathways, remain to be resolved, particularly in light of confounding factors in the high-altitude environment. In high-altitude-adapted Tibetan natives, however, there is evidence of natural selection centred around the hypoxia-inducible factor pathway, and metabolic features in this population (e.g. low cardiac phosphocreatine-to-ATP ratios, increased cardiac glucose uptake and lower muscle mitochondrial densities) share similarities with those in acclimatized lowlanders, supporting a possible role for the hypoxia-inducible factor pathway in the metabolic response of cardiac and skeletal muscle energy metabolism to high altitude.

  14. Nitrogen removal properties in a continuous marine anammox bacteria reactor under rapid and extensive salinity changes.

    PubMed

    Wei, Qiaoyan; Kawagoshi, Yasunori; Huang, Xiaowu; Hong, Nian; Van Duc, Luong; Yamashita, Yuki; Hama, Takehide

    2016-04-01

    Salinity tolerance is one of the most important factors for the application of bioreactors to high-salinity wastewater. Although marine anammox bacteria (MAB) might be expected to tolerate higher salinities than freshwater anammox bacteria, there is little information on the effects of salinity on MAB activity. This study aimed to reveal the nitrogen removal properties in a continuous MAB reactor under conditions of rapid and extensive salinity changes. The reactor demonstrated stable nitrogen removal performance with a removal efficiency of over 85% under salinity conditions ranging from 0 to 50 g/L NaCl. The reactor performance was also well maintained, even though the salinity was rapidly changed from 30 to 50 g/L and from 30 to 0 g/L. Other evidence suggested that the seawater medium used contained components essential for effective MAB performance. Bacterial community analysis using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) showed that planctomycete UKU-1, the dominant MAB species in the inoculum, was the main contributor to anammox activity under all conditions. The PCR-DGGE using a universal bacterial primer set showed different DNA band patterns between the reactor biomass sample collected under conditions of 75 g/L NaCl and all other conditions (0, 30, 50 and freshwater-medium). All DNA sequences determined were very similar to those of bacterial species from marine environments, anaerobic environments, or wastewater-treatment facilities.

  15. Nitrogen removal properties in a continuous marine anammox bacteria reactor under rapid and extensive salinity changes.

    PubMed

    Wei, Qiaoyan; Kawagoshi, Yasunori; Huang, Xiaowu; Hong, Nian; Van Duc, Luong; Yamashita, Yuki; Hama, Takehide

    2016-04-01

    Salinity tolerance is one of the most important factors for the application of bioreactors to high-salinity wastewater. Although marine anammox bacteria (MAB) might be expected to tolerate higher salinities than freshwater anammox bacteria, there is little information on the effects of salinity on MAB activity. This study aimed to reveal the nitrogen removal properties in a continuous MAB reactor under conditions of rapid and extensive salinity changes. The reactor demonstrated stable nitrogen removal performance with a removal efficiency of over 85% under salinity conditions ranging from 0 to 50 g/L NaCl. The reactor performance was also well maintained, even though the salinity was rapidly changed from 30 to 50 g/L and from 30 to 0 g/L. Other evidence suggested that the seawater medium used contained components essential for effective MAB performance. Bacterial community analysis using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) showed that planctomycete UKU-1, the dominant MAB species in the inoculum, was the main contributor to anammox activity under all conditions. The PCR-DGGE using a universal bacterial primer set showed different DNA band patterns between the reactor biomass sample collected under conditions of 75 g/L NaCl and all other conditions (0, 30, 50 and freshwater-medium). All DNA sequences determined were very similar to those of bacterial species from marine environments, anaerobic environments, or wastewater-treatment facilities. PMID:26845464

  16. Influence of salinity and temperature on uptake of perfluorinated carboxylic acids (PFCAs) by hydroponically grown wheat (Triticum aestivum L.).

    PubMed

    Zhao, Hongxia; Qu, Baocheng; Guan, Yue; Jiang, Jingqiu; Chen, Xiuying

    2016-01-01

    Perfluoroalkyl substances (PFASs) have recently attracted increasing concerns due to their ubiquitous existence, adverse effects and persistence in environment. This study employed four perfluorinated carboxylic acids (PFCAs) to examine effects of salinity and temperature on the PFAS uptake in wheat, one of the major crops in the North China Plain. Wheat plants were grown in the spiked-PFCA hydroponic culture system at different salinities and temperatures. As expected, salinity and temperature significantly impacted the root uptake and translocation of wheat to four PFCAs, and the concentrations for each of PFCAs in wheat root and shoot increased with increasing salinity and temperature, respectively. PFCA concentrations at high salinity or high temperature were up to thrice those found at low salinity or low temperature. Except for perfluorobutanoic acid, the amount of PFCAs in root was always higher than that in shoot at the ranges of salinity and temperature tested. Additionally salinity and temperature were also capable of influencing the transfer factors (TFs) of four PFCAs, and significant increase was observed in the TFs in response to the increases in salinity and temperature.

  17. Influence of salinity and temperature on uptake of perfluorinated carboxylic acids (PFCAs) by hydroponically grown wheat (Triticum aestivum L.).

    PubMed

    Zhao, Hongxia; Qu, Baocheng; Guan, Yue; Jiang, Jingqiu; Chen, Xiuying

    2016-01-01

    Perfluoroalkyl substances (PFASs) have recently attracted increasing concerns due to their ubiquitous existence, adverse effects and persistence in environment. This study employed four perfluorinated carboxylic acids (PFCAs) to examine effects of salinity and temperature on the PFAS uptake in wheat, one of the major crops in the North China Plain. Wheat plants were grown in the spiked-PFCA hydroponic culture system at different salinities and temperatures. As expected, salinity and temperature significantly impacted the root uptake and translocation of wheat to four PFCAs, and the concentrations for each of PFCAs in wheat root and shoot increased with increasing salinity and temperature, respectively. PFCA concentrations at high salinity or high temperature were up to thrice those found at low salinity or low temperature. Except for perfluorobutanoic acid, the amount of PFCAs in root was always higher than that in shoot at the ranges of salinity and temperature tested. Additionally salinity and temperature were also capable of influencing the transfer factors (TFs) of four PFCAs, and significant increase was observed in the TFs in response to the increases in salinity and temperature. PMID:27186505

  18. Power Distribution Architecture for High Energy Physic Hostile Environment

    NASA Astrophysics Data System (ADS)

    Alderighi, M.; Citterio, M.; Latorre, S.; Riva, M.; Cova, P.; Delmonte, N.; Lanza, A.; Bernardoni, M.; Menozzi, R.; Costabeber, A.; Paccagnella, A.; Sichirollo, F.; Spiazzi, G.; Stellini, M.; Tenti, P.; Baccaro, S.; Iannuzzo, F.; Sanseverino, A.; Busatto, G.; de Luca, V.

    2012-08-01

    In the high luminosity phase of the Large Hadron Collider (LHC) the selection of the most suitable architecture able to supply the instrumentation of the experiments represents a critical task today. The power conversion units will have to supply low voltages and high currents to the loads with reduced transmission losses and, moreover, their design will have to face the critical demand of efficiency, robustness and limited size together with the need to operate in hostile environment. The paper discusses the most promising solutions in the power supply distribution networks which could be implemented in the upgraded detectors at the High Luminosity LHC collider. The proposed topologies have been selected by considering their tolerance to high background magnetic field and nuclear radiations as well as their limited electromagnetic noise emission. The analysis focuses on the description of the power supplies for noble liquid calorimeters, such as the Atlas LAr calorimeters, though several outcomes of this research can be applied to other detectors of the future LHC experiments.

  19. Enabling Efficient Climate Science Workflows in High Performance Computing Environments

    NASA Astrophysics Data System (ADS)

    Krishnan, H.; Byna, S.; Wehner, M. F.; Gu, J.; O'Brien, T. A.; Loring, B.; Stone, D. A.; Collins, W.; Prabhat, M.; Liu, Y.; Johnson, J. N.; Paciorek, C. J.

    2015-12-01

    A typical climate science workflow often involves a combination of acquisition of data, modeling, simulation, analysis, visualization, publishing, and storage of results. Each of these tasks provide a myriad of challenges when running on a high performance computing environment such as Hopper or Edison at NERSC. Hurdles such as data transfer and management, job scheduling, parallel analysis routines, and publication require a lot of forethought and planning to ensure that proper quality control mechanisms are in place. These steps require effectively utilizing a combination of well tested and newly developed functionality to move data, perform analysis, apply statistical routines, and finally, serve results and tools to the greater scientific community. As part of the CAlibrated and Systematic Characterization, Attribution and Detection of Extremes (CASCADE) project we highlight a stack of tools our team utilizes and has developed to ensure that large scale simulation and analysis work are commonplace and provide operations that assist in everything from generation/procurement of data (HTAR/Globus) to automating publication of results to portals like the Earth Systems Grid Federation (ESGF), all while executing everything in between in a scalable environment in a task parallel way (MPI). We highlight the use and benefit of these tools by showing several climate science analysis use cases they have been applied to.

  20. The single event upset environment for avionics at high latitude

    SciTech Connect

    Sims, A.J.; Dyer, C.S.; Peerless, C.L. . Space and Communications Dept.); Johansson, K.; Pettersson, H. ); Farren, J. . Harwell Lab.)

    1994-12-01

    Modern avionic systems for civil and military applications are becoming increasingly reliant upon embedded microprocessors and associated memory devices. The phenomenon of single event upset (SEU) is well known in space systems and designers have generally been careful to use SEU tolerant devices or to implement error detection and correction (EDAC) techniques where appropriate. In the past, avionics designers have had no reason to consider SEU effects but is clear that the more prevalent use of memory devices combined with increasing levels of IC integration will make SEU mitigation an important design consideration for future avionic systems. To this end, it is necessary to work towards producing models of the avionics SEU environment which will permit system designers to choose components and EDAC techniques which are based on predictions of SEU rates correct to much better than an order of magnitude. Measurements of the high latitude SEU environment at avionics altitude have been made on board a commercial airliner. Results are compared with models of primary and secondary cosmic rays and atmospheric neutrons. Ground based SEU tests of static RAMs are used to predict rates in flight.

  1. Characterization of coaxial rocket injector sprays under high pressure environments

    NASA Technical Reports Server (NTRS)

    Sankar, S. V.; Wang, G.; Brena De La Rosa, A.; Rudoff, R. C.; Isakovic, A.; Bachalo, W. D.

    1992-01-01

    The effect of elevated environment pressures on the atomization characteristics of a single element, scaled-down, shear-coaxial rocket injector has been investigated. In this study, the shear coaxial injector was operated with water and air as simulants for conventionally used liquid oxygen and hydrogen gas, respectively. The experiments were conducted in a specially designed high pressure rig. A two-component PDPA/DSA system was used to study the spray characteristics at different chamber pressures ranging from atmospheric to 100 psig. The study showed an overall increase in the droplet sizes at higher chamber pressures. This phenomenon is attributed to a decrease in the secondary atomization effects at higher chamber pressures which, in turn, is directly related to a decrease in the shear experienced by the droplets as they move axially through the pressure chamber.

  2. Mitigated-force carriage for high magnetic field environments

    SciTech Connect

    Ludtka, Gerard M; Ludtka, Gail M; Wilgen, John B; Murphy, Bart L

    2014-05-20

    A carriage for high magnetic field environments includes a first work-piece holding means for holding a first work-piece, the first work-piece holding means being disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla. The first work-piece holding means is further disposed in operable connection with a second work-piece holding means for holding a second work-piece so that, as the first work-piece is inserted into the magnetic field, the second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.

  3. Towards high-speed autonomous navigation of unknown environments

    NASA Astrophysics Data System (ADS)

    Richter, Charles; Roy, Nicholas

    2015-05-01

    In this paper, we summarize recent research enabling high-speed navigation in unknown environments for dynamic robots that perceive the world through onboard sensors. Many existing solutions to this problem guarantee safety by making the conservative assumption that any unknown portion of the map may contain an obstacle, and therefore constrain planned motions to lie entirely within known free space. In this work, we observe that safety constraints may significantly limit performance and that faster navigation is possible if the planner reasons about collision with unobserved obstacles probabilistically. Our overall approach is to use machine learning to approximate the expected costs of collision using the current state of the map and the planned trajectory. Our contribution is to demonstrate fast but safe planning using a learned function to predict future collision probabilities.

  4. Advantages of High Tolerance Measurements in Fusion Environments Applying Photogrammetry

    SciTech Connect

    T. Dodson, R. Ellis, C. Priniski, S. Raftopoulos, D. Stevens, M. Viola

    2009-02-04

    Photogrammetry, a state-of-the-art technique of metrology employing digital photographs as the vehicle for measurement, has been investigated in the fusion environment. Benefits of this high tolerance methodology include relatively easy deployment for multiple point measurements and deformation/distortion studies. Depending on the equipment used, photogrammetric systems can reach tolerances of 25 microns (0.001 in) to 100 microns (0.004 in) on a 3-meter object. During the fabrication and assembly of the National Compact Stellarator Experiment (NCSX) the primary measurement systems deployed were CAD coordinate-based computer metrology equipment and supporting algorithms such as both interferometer-aided (IFM) and absolute distance measurementbased (ADM) laser trackers, as well as portable Coordinate Measurement Machine (CMM) arms. Photogrammetry was employed at NCSX as a quick and easy tool to monitor coil distortions incurred during welding operations of the machine assembly process and as a way to reduce assembly downtime for metrology processes.

  5. High Molecular Weight Petrogenic and Pyrogenic Hydrocarbons in Aquatic Environments

    NASA Astrophysics Data System (ADS)

    Abrajano, T. A., Jr.; Yan, B.; O'Malley, V.

    2003-12-01

    Geochemistry is ultimately the study of sources, movement, and fate of chemicals in the geosphere at various spatial and temporal scales. Environmental organic geochemistry focuses such studies on organic compounds of toxicological and ecological concern (e.g., Schwarzenbach et al., 1993, 1998; Eganhouse, 1997). This field emphasizes not only those compounds with potential toxicological properties, but also the geological systems accessible to the biological receptors of those hazards. Hence, the examples presented in this chapter focus on hydrocarbons with known health and ecological concern in accessible shallow, primarily aquatic, environments.Modern society depends on oil for energy and a variety of other daily needs, with present mineral oil consumption throughout the 1990s exceeding 3×109 t yr-1 (NRC, 2002). In the USA, e.g., ˜40% of energy consumed and 97% of transportation fuels are derived from oil. In the process of extraction, refinement, transport, use, and waste production, a small but environmentally significant fraction of raw oil materials, processed products, and waste are released inadvertently or purposefully into the environment. Because their presence and concentration in the shallow environments are often the result of human activities, these organic materials are generally referred to as "environmental contaminants." Although such reference connotes some form of toxicological or ecological hazard, specific health or ecological effects of many organic "environmental contaminants" remain to be demonstrated. Some are, in fact, likely innocuous at the levels that they are found in many systems, and simply adds to the milieu of biogenic organic compounds that naturally cycle through the shallow environment. Indeed, virtually all compounds in crude oil and processed petroleum products have been introduced naturally to the shallow environments as oil and gas seepage for millions of years ( NRC, 2002). Even high molecular weight (HMW) polyaromatic

  6. Effect of calcium carbonate on low carbon steel corrosion behavior in saline CO2 high pressure environments

    NASA Astrophysics Data System (ADS)

    Tavares, Lisiane Morfeo; Costa, Eleani Maria da; Andrade, Jairo José de Oliveira; Hubler, Roberto; Huet, Bruno

    2015-12-01

    The CaCO3 influence on the corrosion properties of low carbon steel in aqueous solutions saturated with CO2 and NaCl at 80 °C and 15 MPa was investigated over time with respect to morphology, thickness, structure, chemical composition and corrosion rate. The corrosion product formed in CaCO3-based solution was a calcium-enriched siderite and the scales were thinner and more porous than the ones formed in solutions without CaCO3. The CaCO3 reduced the corrosion rate, but the scales produced in the presence of this compound presented depassivation followed by formation of pits during electrochemical measurements effectuated on corroded samples.

  7. Salinity gradient power: utilizing vapor pressure differences.

    PubMed

    Olsson, M; Wick, G L; Isaacs, J D

    1979-10-26

    By utilizing the vapor pressure difference between high-salinity and lowsalinity wvater, one can obtain power from the gradients of salinity. This scheme eliminates the major problems associated with conversion methods in which membranes are used. The method we tested gave higher conversion efficiencies than membrane methods. Furthermore, hardware and techniques being developed for ocean thermal energy conversion may be applied to this approach to salinity gradient energy conversion. PMID:17809370

  8. Characterization of the organic contamination pattern of a hyper-saline ecosystem by rapid screening using gas chromatography coupled to high-resolution time-of-flight mass spectrometry.

    PubMed

    Serrano, Roque; Portolés, Tania; Blanes, Miguel A; Hernández, Félix; Navarro, Juan C; Varó, Inmaculada; Amat, Francisco

    2012-09-01

    In this paper, gas chromatography coupled to high-resolution time-of-flight mass spectrometry (GC-TOF MS) has been applied to evaluate organic pollution in a hyper-saline aquatic environment. Firstly, a target screening was made for a list of 150 GC-amenable organic micro-contaminants, including PAHs, octyl/nonyl phenols, PCBs, PBDEs, and a notable number of pesticides, such us insecticides (organochlorines, organophosphorus, carbamates and pyrethroids), herbicides (triazines and chloroacetanilides), fungicides and several transformation products. This methodology was applied to brine samples, with a salt content from 112 g/L to saturation, and to samples from Artemia populations (crustacean Anostraca) collected during 1 year from three sampling stations in saltworks bodies sited in the Ebro river delta. Around 50 target contaminants, belong to chemical families included in the list of priority substances within the framework on European water policy. Additionally, a non-target analysis was performed in both types of samples with the objective of investigating the presence of other non-selected organic compounds taking advantage of the potential of GC-TOF MS (high sensitivity in full-spectrum acquisition mode, accurate mass measurements) for searching unknowns. Organophosphorus pesticides were the contaminants more frequently detected in brine samples. Other compounds usually present in urban and industrial wastewaters, like caffeine, methylparaben, butylated-hydroxytoluene and N-butylbenzenesulfonamide were also detected in brines. The herbicide simazine and the insecticide chlorpyrifos were among the contaminants detected in Artemia samples. Results of this work reveal a potential threat to vulnerable populations inhabiting the hyper-saline ecosystem. The valuable contribution of GC-TOF MS in environmental analysis, allowing the rapid screening of a large number of organic contaminants, is also demonstrated in this paper. PMID:22789816

  9. Characterization of the organic contamination pattern of a hyper-saline ecosystem by rapid screening using gas chromatography coupled to high-resolution time-of-flight mass spectrometry.

    PubMed

    Serrano, Roque; Portolés, Tania; Blanes, Miguel A; Hernández, Félix; Navarro, Juan C; Varó, Inmaculada; Amat, Francisco

    2012-09-01

    In this paper, gas chromatography coupled to high-resolution time-of-flight mass spectrometry (GC-TOF MS) has been applied to evaluate organic pollution in a hyper-saline aquatic environment. Firstly, a target screening was made for a list of 150 GC-amenable organic micro-contaminants, including PAHs, octyl/nonyl phenols, PCBs, PBDEs, and a notable number of pesticides, such us insecticides (organochlorines, organophosphorus, carbamates and pyrethroids), herbicides (triazines and chloroacetanilides), fungicides and several transformation products. This methodology was applied to brine samples, with a salt content from 112 g/L to saturation, and to samples from Artemia populations (crustacean Anostraca) collected during 1 year from three sampling stations in saltworks bodies sited in the Ebro river delta. Around 50 target contaminants, belong to chemical families included in the list of priority substances within the framework on European water policy. Additionally, a non-target analysis was performed in both types of samples with the objective of investigating the presence of other non-selected organic compounds taking advantage of the potential of GC-TOF MS (high sensitivity in full-spectrum acquisition mode, accurate mass measurements) for searching unknowns. Organophosphorus pesticides were the contaminants more frequently detected in brine samples. Other compounds usually present in urban and industrial wastewaters, like caffeine, methylparaben, butylated-hydroxytoluene and N-butylbenzenesulfonamide were also detected in brines. The herbicide simazine and the insecticide chlorpyrifos were among the contaminants detected in Artemia samples. Results of this work reveal a potential threat to vulnerable populations inhabiting the hyper-saline ecosystem. The valuable contribution of GC-TOF MS in environmental analysis, allowing the rapid screening of a large number of organic contaminants, is also demonstrated in this paper.

  10. Preparation of non-aggregating aqueous fullerenes in highly saline solutions with a biocompatible non-ionic polymer

    NASA Astrophysics Data System (ADS)

    Aich, Nirupam; Boateng, Linkel K.; Flora, Joseph R. V.; Saleh, Navid B.

    2013-10-01

    Size-tunable stable aqueous fullerenes were prepared with different concentrations of biocompatible block-copolymer pluronic (PA) F-127, ranging from 0.001% to 1% (w/v). Size uniformity increased with the increase in PA concentration, yielding optimum 58.8 ± 5.6 and 61.8 ± 5.6 nm nC60s and nC70s, respectively (0.10%w/v PA), as observed using a dynamic light scattering technique. Fullerene aqueous suspensions also manifested enhanced stability in saline solution, Dulbecco’s modified Eagle medium (DMEM), and Roswell Park Memorial Institute (RPMI) culture medium. Transmission electron microscopy was performed to elaborate on the morphology and size specificity of fullerene clusters. Physicochemical characterizations of the suspended fullerenes were performed through UV-vis spectroscopy and electrophoretic mobility measurements. PA molecules showed size restriction by encasement, as observed via molecular dynamics simulations. Such solubilization with controllable size and non-aggregating behavior can facilitate application enhancement and mechanistic environmental and toxicological studies of size-specific fullerenes.

  11. The effects of magnetic fields exposure on relative permittivity of saline solutions measured by a high resolution SPR system

    NASA Astrophysics Data System (ADS)

    Jiang, Li; Zhao, Xinyuan; Fei, Yue; Yu, Dongdong; Qian, Jun; Tong, Jinguang; Chen, Guangdi; He, Sailing

    2016-04-01

    A measurement system for the relative permittivity of a physiological solution under 50 Hz magnetic fields (MF) is presented. It is based on a phase-sensitive surface plasmon resonance (SPR) system. Relative permittivity was analyzed for different solute concentrations of sodium chloride under various MF exposure parameters. We found that MF exposure at 0.2–4.0 mT step-wise decreased significantly the SPR phase signal of a 0.9% sodium chloride solution while 0.1 mT of MF exposure did not. The decreases in the SPR phase signal depended on the duration of MF exposure, and the signal reached a plateau after 15 min of exposure. Interestingly, the decreased SPR phase signal showed a gradual increase and approached the background level when the exposure was drawn off. In addition, we found that the response of the sodium chloride solution to MF also depended on its concentration. In brief, the relative permittivity of sodium chloride in solutions appears to be practically affected by 50 Hz MF exposure. Our data indicates that the relative permittivity of the saline solution influenced by MF exposure should be considered when investigating the biological effects of MF exposure on organisms in experimental study.

  12. The effects of magnetic fields exposure on relative permittivity of saline solutions measured by a high resolution SPR system

    PubMed Central

    Jiang, Li; Zhao, Xinyuan; Fei, Yue; Yu, Dongdong; Qian, Jun; Tong, Jinguang; Chen, Guangdi; He, Sailing

    2016-01-01

    A measurement system for the relative permittivity of a physiological solution under 50 Hz magnetic fields (MF) is presented. It is based on a phase-sensitive surface plasmon resonance (SPR) system. Relative permittivity was analyzed for different solute concentrations of sodium chloride under various MF exposure parameters. We found that MF exposure at 0.2–4.0 mT step-wise decreased significantly the SPR phase signal of a 0.9% sodium chloride solution while 0.1 mT of MF exposure did not. The decreases in the SPR phase signal depended on the duration of MF exposure, and the signal reached a plateau after 15 min of exposure. Interestingly, the decreased SPR phase signal showed a gradual increase and approached the background level when the exposure was drawn off. In addition, we found that the response of the sodium chloride solution to MF also depended on its concentration. In brief, the relative permittivity of sodium chloride in solutions appears to be practically affected by 50 Hz MF exposure. Our data indicates that the relative permittivity of the saline solution influenced by MF exposure should be considered when investigating the biological effects of MF exposure on organisms in experimental study. PMID:27121618

  13. geothermal salinity control system

    SciTech Connect

    McCabe, B.C.; Zajac, E.

    1985-01-08

    Highly saline geothermal brine, such as that produced from the lower geothermal reserve of the Salton Sea geothermal field, is diluted with non-geothermal water of much lower salinity in a mixing zone proximate the high temperature end of a geothermal power plant, and preferably down in the production well just above the production zone, so as to reduce the chloride salt content of the production brine to a level that is at or below the saturated level at reinjection temperatures, thereby preventing any material chloride salt scaling at any location in the plant through reinjection. The permanent cemented-in production casing in the well is protected against the corrosive effects of the hot production brine by means of a removable production liner that is generally coextensive with the casing. Said mixing zone is provided in the lower portion of the liner, and the liner establishes an annulus between it and the casing through which said non-geothermal water flows downwardly to the mixing zone so as to exclude the production brine from contact with the casing.

  14. Isolation of high-salinity-tolerant bacterial strains, Enterobacter sp., Serratia sp., Yersinia sp., for nitrification and aerobic denitrification under cyanogenic conditions.

    PubMed

    Mpongwana, N; Ntwampe, S K O; Mekuto, L; Akinpelu, E A; Dyantyi, S; Mpentshu, Y

    2016-01-01

    Cyanides (CN(-)) and soluble salts could potentially inhibit biological processes in wastewater treatment plants (WWTPs), such as nitrification and denitrification. Cyanide in wastewater can alter metabolic functions of microbial populations in WWTPs, thus significantly inhibiting nitrifier and denitrifier metabolic processes, rendering the water treatment processes ineffective. In this study, bacterial isolates that are tolerant to high salinity conditions, which are capable of nitrification and aerobic denitrification under cyanogenic conditions, were isolated from a poultry slaughterhouse effluent. Three of the bacterial isolates were found to be able to oxidise NH(4)-N in the presence of 65.91 mg/L of free cyanide (CN(-)) under saline conditions, i.e. 4.5% (w/v) NaCl. The isolates I, H and G, were identified as Enterobacter sp., Yersinia sp. and Serratia sp., respectively. Results showed that 81% (I), 71% (G) and 75% (H) of 400 mg/L NH(4)-N was biodegraded (nitrification) within 72 h, with the rates of biodegradation being suitably described by first order reactions, with rate constants being: 4.19 h(-1) (I), 4.21 h(-1) (H) and 3.79 h(-1) (G), respectively, with correlation coefficients ranging between 0.82 and 0.89. Chemical oxygen demand (COD) removal rates were 38% (I), 42% (H) and 48% (G), over a period of 168 h with COD reduction being highest at near neutral pH. PMID:27148718

  15. Effects of Fluctuating Environments on the Selection of High Yielding Microalgae

    SciTech Connect

    Benemann, J. R.; Tillett, D. M.

    1987-02-27

    Microalgae have the potential of producing biomass with a high content of lipids at high productivities using seawater or saline ground water resources. Microalgal lipids are similar to vegetable oils and suitable for processing to liquid fuels. Engineering cost analysis studies have concluded that, at a favorable site, microalgae cultivation for fuel production could be economically viable. The major uncertainties involve the microalgae themselves: biomass and lipid productivity and culture stability.

  16. Effect of salinity on the toxicity of road dust in an estuarine amphipod Grandidierella japonica.

    PubMed

    Hiki, Kyoshiro; Nakajima, Fumiyuki

    2015-01-01

    Urban runoff can reach coastal aquatic environments; however, little is known about the effect of salinity on road runoff toxicity. The objective of this study is to investigate the toxicity of highway road dust over a salinity gradient from 5 to 35‰, in an estuarine benthic amphipod, Grandidierella japonica. Road dust toxicity was evaluated by assessing mortality after 10 days of exposure and short-term microbead ingestion activity of the amphipod. For all road dust samples considered, amphipod mortality increased with increasing salinity, whereas no significant difference in mortality was observed among test salinities in the reference river sediment. Ingestion activity during exposure to road dust decreased with increasing salinity. In fact, none of the individuals ingested any microbeads at salinity of 35‰. If assumed microbead ingestion is a proxy for feeding activity, high mortality at 35‰ could be attributed to aquatic exposure and not to dietary exposure. These findings suggest that road dust may have considerable impact on benthic organisms at high salinity levels. PMID:26360764

  17. Effect of salinity on the toxicity of road dust in an estuarine amphipod Grandidierella japonica.

    PubMed

    Hiki, Kyoshiro; Nakajima, Fumiyuki

    2015-01-01

    Urban runoff can reach coastal aquatic environments; however, little is known about the effect of salinity on road runoff toxicity. The objective of this study is to investigate the toxicity of highway road dust over a salinity gradient from 5 to 35‰, in an estuarine benthic amphipod, Grandidierella japonica. Road dust toxicity was evaluated by assessing mortality after 10 days of exposure and short-term microbead ingestion activity of the amphipod. For all road dust samples considered, amphipod mortality increased with increasing salinity, whereas no significant difference in mortality was observed among test salinities in the reference river sediment. Ingestion activity during exposure to road dust decreased with increasing salinity. In fact, none of the individuals ingested any microbeads at salinity of 35‰. If assumed microbead ingestion is a proxy for feeding activity, high mortality at 35‰ could be attributed to aquatic exposure and not to dietary exposure. These findings suggest that road dust may have considerable impact on benthic organisms at high salinity levels.

  18. CID-720 aircraft high-environment flight instrumentation system

    NASA Technical Reports Server (NTRS)

    Calloway, R. S.

    1986-01-01

    The high-environment flight instrumentation system was designed to acquire Langley's structural response data during the full scale transport-controlled impact demonstration test. There was only one opportunity for data acquisition. Thus, a high reliability and crashworthy design approach was implemented. The approach featured multi-level redundancy and a vigorous quality assurance testing program. Complying with an accelerated schedule, the instrumentation system was developed, tested and shipped within 18 months to Dryden Flight Research Facility. The flight instrumentation system consists of two autonomous data systems, DAS #1 and #2, and an excellent checkout subsystem. Each data system is partitioned into four pallets. The system was designed to operate on manned and unmanned flights. There are 176 data channels per data system. These channels are sequentially sampled and encoded into 1 megabit/sec pulse code modulation (PCM) data signal. To increase the probability of success, a special PCM distribution subsystem was developed. This subsystem distributes the PCM signal to two transmitters, one delay memory, and eight recorder tracks. The data on four of these trackes was digitally delayed approximately 300 msec to maximize data acquisition during impact. Therefore each data system's data is redundantly recorded onboard and on the ground. There are two time code generators. Parallel time from each is encoded into both data systems. Serial time from each is redundantly recorded on both onboard recorders. Instrumentation power is independent of aircraft power and self-contained.

  19. Performance of BGO in a high radiation environment

    SciTech Connect

    Bobbink, G.J.; Engler, A.; Kraemer, R.W.; Nash, J.; Sutton, R.B.; Gearhart, R.A.; Linde, F.L.; Sens, J.C.

    1984-05-01

    Bismuth Germanate (Bi/sub 4/Ge/sub 3/O/sub 12/), an inert, high Z, and non-hygroscopic material, with a short radiation length L/sub RAD/ = 1.1 cm, has been proposed as the scintillator in a 4..pi.. electromagnetic calorimeter at LEP. Recently long BGO crystals have become available and studies of the effect of radiation have been made by several groups. We report here on the decrease of the light output of long BGO crystals due to irradiation by /sup 60/Co ..gamma..-rays and 25 MeV electrons with doses from 50 to 5000 rad and on the performance of a 4 x 4 matrix of BGO crystals located at small angles (5 to 9 mrad, a high radiation environment) at the e/sup +/e/sup -/ storage ring PEP at SLAC. All crystals used are 2 x 2 x 23 or 2 x 2 x 24 cm/sup 3/, have all six faces polished, and are wrapped in white teflon tape. 9 references, 11 figures.

  20. Modeling seismic energy propagation in highly scattering environments

    NASA Astrophysics Data System (ADS)

    Blanchette-Guertin, J.-F.; Johnson, C. L.; Lawrence, J. F.

    2015-03-01

    Meteoroid impacts over millions to billions of years can produce a highly fractured and heterogeneous megaregolith layer on planetary bodies such as the Moon that lack effective surface recycling mechanisms. The energy from seismic events on these bodies undergoes scattering in the fractured layer(s) and generates extensive coda wave trains that follow major seismic wave arrivals. The decay properties of these codas are affected by the planetary body's interior structure. To understand the propagation of seismic waves in such media, we model the transmission of seismic energy in highly scattering environments using an adapted phonon method. In this Monte Carlo simulation approach, we track a large number of seismic wavelets as they leave a source and we record the resulting ground deformation each time a wavelet reaches a surface receiver. Our method provides the first numerical global modeling of 3-D scattering, with user-defined power law distributions of scatterer length scales and frequency-dependent intrinsic attenuation, under the assumption of 1-D background velocity models. We model synthetic signals for simple, but highly scattering interior models and vary the model parameters independently to assess their individual effects on the coda. Results show that the magnitude of the decay times is most affected by the background velocity model, in particular the presence of shallow low-velocity layers, the event source depth, and the intrinsic attenuation level. The decay times are also controlled to a lesser extent by the size-frequency distribution of scatterers, the thickness of the scattering layer, and the impedance contrast at the scatterers.

  1. Living up to its name? The effect of salinity on development, growth, and phenotype of the "marine" toad (Rhinella marina).

    PubMed

    Wijethunga, Uditha; Greenlees, Matthew; Shine, Richard

    2016-02-01

    The highly permeable integument of amphibians renders them vulnerable to chemical characteristics of their environment, especially during the aquatic larval stage. As the cane toad (Rhinella marina, Bufonidae) invades southwards along the east coast of Australia, it is encountering waterbodies with highly variable conditions of temperature, pH, and salinity. Understanding the tolerance of toads to these conditions can clarify the likely further spread of the invader, as well as the adaptability of the species to novel environmental challenges. We measured salinity in waterbodies in the field and conducted laboratory trials to investigate the impacts of salinity on toad viability. Eggs and tadpoles from the southern invasion front tolerated the most saline conditions we found in potential spawning ponds during surveys [equivalent to 1200 ppm (3.5 % the salinity of seawater)]. Indeed, high-salinity treatments increased tadpole body sizes, accelerated metamorphosis, and improved locomotor ability of metamorphs (but did not affect metamorph morphology). At very low salinity [40 ppm (0.1 % seawater)], eggs hatched but larvae did not develop past Gosner stage 37. Our study shows that the egg and larval life stages of cane toads can tolerate wide variation in the salinity of natal ponds and that this aspect of waterbody chemistry is likely to facilitate rather than constrain continued southward expansion of the toad invasion front in eastern Australia.

  2. Long Term Surface Salinity Measurements

    NASA Technical Reports Server (NTRS)

    Schmitt, Raymond W.; Brown, Neil L.

    2005-01-01

    Our long-term goal is to establish a reliable system for monitoring surface salinity around the global ocean. Salinity is a strong indicator of the freshwater cycle and has a great influence on upper ocean stratification. Global salinity measurements have potential to improve climate forecasts if an observation system can be developed. This project is developing a new internal field conductivity cell that can be protected from biological fouling for two years. Combined with a temperature sensor, this foul-proof cell can be deployed widely on surface drifters. A reliable in-situ network of surface salinity sensors will be an important adjunct to the salinity sensing satellite AQUARIUS to be deployed by NASA in 2009. A new internal-field conductivity cell has been developed by N Brown, along with new electronics. This sensor system has been combined with a temperature sensor to make a conductivity - temperature (UT) sensor suitable for deployment on drifters. The basic sensor concepts have been proven on a high resolution CTD. A simpler (lower cost) circuit has been built for this application. A protection mechanism for the conductivity cell that includes antifouling protection has also been designed and built. Mr. A.Walsh of our commercial partner E-Paint has designed and delivered time-release formulations of antifoulants for our application. Mr. G. Williams of partner Clearwater Instrumentation advised on power and communication issues and supplied surface drifters for testing.

  3. High temperature oxidation of molybdenum in water vapor environments

    NASA Astrophysics Data System (ADS)

    Nelson, A. T.; Sooby, E. S.; Kim, Y.-J.; Cheng, B.; Maloy, S. A.

    2014-05-01

    Molybdenum has recently gained attention as a candidate cladding material for use in light water reactors. Its excellent high temperature mechanical properties and stability under irradiation suggest that it could offer benefits to performance under a wide range of reactor conditions, but little is known about its oxidation behavior in water vapor containing atmospheres. The current study was undertaken to elucidate the oxidation behavior of molybdenum in water vapor environments to 1200 °C in order to provide an initial assessment of its feasibility as a light water reactor cladding. Initial observations indicate that at temperatures below 1000 °C, the kinetics of mass loss in water vapor would not be detrimental to cladding integrity during an off-normal event. Above 1000 °C, degradation is more rapid but remains slower than observed for optimized zirconium cladding alloys. The effect of hydrogen-water vapor and oxygen-water vapor mixtures on material loss was also explored at elevated temperatures. Parts-per-million levels of either hydrogen or oxygen will minimally impact performance, but hydrogen contents in excess of 1000 ppm were observed to limit volatilization at 1000 °C.

  4. Cryogen free high magnetic field sample environment for neutron scattering

    NASA Astrophysics Data System (ADS)

    Down, R. B. E.; Kouzmenko, G.; Kirichek, O.; Wotherspoon, R.; Brown, J.; Bowden, Z. A.

    2010-11-01

    Cryogenic equipment can be found in the majority of neutron scattering experiments. Recent increases in liquid helium cost caused by global helium supply problems lead to significant concern about affordability of conventional cryogenic equipment. However the latest progress in cryo-cooler technology offers a new generation of cryogenic systems in which the cryogen consumption can be significantly reduced and in some cases completely eliminated. These systems also offer the advantage of operational simplicity, require less space than conventional cryogen-cooled systems and can significantly improve user safety. At the ISIS facility it is possible to substitute conventional cryostats with cryogen free systems. Such systems are based on the pulse tube refrigerator (PTR) which possesses no cold moving parts. Oxford Instruments in collaboration with ISIS have developed new high magnetic field sample environment equipment based on re-condensing technology. This project includes 9T wide angle chopper magnet for spectrometry and 14T magnet for diffraction. The main advantage of these systems is that all magnet operating procedures, for example cooling, running up to the field and quenching remain the same as for a standard magnet in a bath cryostat. This approach also provides a homogeneous temperature distribution, which is crucial for optimum magnet performance.

  5. Learning rate and temperament in a high predation risk environment

    USGS Publications Warehouse

    DePasquale, C.; Wagner, Tyler; Archard, G.A.; Ferguson, B.; Braithwaite, V.A.

    2014-01-01

    Living in challenging environments can influence the behavior of animals in a number of ways. For instance, populations of prey fish that experience frequent, nonlethal interactions with predators have a high proportion of individuals that express greater reaction to risk and increased activity and exploration—collectively known as temperament traits. Temperament traits are often correlated, such that individuals that are risk-prone also tend to be active and explore more. Spatial learning, which requires the integration of many sensory cues, has also been shown to vary in fish exposed to different levels of predation threat. Fish from areas of low predation risk learn to solve spatial tasks faster than fish from high predation areas. However, it is not yet known whether simpler forms of learning, such as learning associations between two events, are similarly influenced. Simple forms of associative learning are likely to be affected by temperament because a willingness to approach and explore novel situations could provide animals with a learning advantage. However, it is possible that routine-forming and inflexible traits associated with risk-prone and increased exploratory behavior may act in the opposite way and make risk-prone individuals poorer at learning associations. To investigate this, we measured temperament in Panamanian bishop fish (Brachyrhaphis episcopi) sampled from a site known to contain many predators. The B. episcopi were then tested with an associative learning task. Within this population, fish that explored more were faster at learning a cue that predicted access to food, indicating a link between temperament and basic learning abilities.

  6. Learning rate and temperament in a high predation risk environment.

    PubMed

    DePasquale, C; Wagner, T; Archard, G A; Ferguson, B; Braithwaite, V A

    2014-11-01

    Living in challenging environments can influence the behavior of animals in a number of ways. For instance, populations of prey fish that experience frequent, nonlethal interactions with predators have a high proportion of individuals that express greater reaction to risk and increased activity and exploration-collectively known as temperament traits. Temperament traits are often correlated, such that individuals that are risk-prone also tend to be active and explore more. Spatial learning, which requires the integration of many sensory cues, has also been shown to vary in fish exposed to different levels of predation threat. Fish from areas of low predation risk learn to solve spatial tasks faster than fish from high predation areas. However, it is not yet known whether simpler forms of learning, such as learning associations between two events, are similarly influenced. Simple forms of associative learning are likely to be affected by temperament because a willingness to approach and explore novel situations could provide animals with a learning advantage. However, it is possible that routine-forming and inflexible traits associated with risk-prone and increased exploratory behavior may act in the opposite way and make risk-prone individuals poorer at learning associations. To investigate this, we measured temperament in Panamanian bishop fish (Brachyrhaphis episcopi) sampled from a site known to contain many predators. The B. episcopi were then tested with an associative learning task. Within this population, fish that explored more were faster at learning a cue that predicted access to food, indicating a link between temperament and basic learning abilities.

  7. The relationship between environmental parameters of saline and underground karst - patients with different diseases in the course of speleotherapy - anthropogenic effect - keeping intact the underground environment and curative properties.

    NASA Astrophysics Data System (ADS)

    Simionca, Iu.; Hoteteu, M.; Chonka, Ia.; Slavik, P.; Kubas, J.; Grudnicki, N.

    2009-04-01

    One of the non-pharmacological therapy in patients with bronchial asthma (AB) and other BPOC is speleotherapy (ST), recognized as a complementary therapy. The curative effect of ST depends on geophysic structure of massive salt or karst, of mine or cave cavities, lack of noxes and toxic gas, also on the lack of the plant and microbial allergen, on the microclimatic parameters, sanitary and other parameters of the underground environment, on the mechanism of curative factors in these specific environments, on the medical particularities and disease specific speleotherapeutic methodology. An essential role they have environmental studies of underground cavities that own speleotherapeutic properties and use in medical and balneoclimatic tourism purposes. Among these studies are: - Air temperature, soil and salt layer; - Atmospheric pressure and the difference from the outside; - Relative humidity of the air underground; - Velocity of air currents; - Concentration of positive and negative air ions; - Particle size and concentration of saline aerosol; - Concentration of microorganisms, including pathogens, conditioning-pathogenic and saprophytic in air, soil saline and salt walls in rooms designed for speleotherapy; - Concentration of allergens; - Concentration of oxygen and carbon dioxide, the presence and concentration of ozone, the gaseous pollutants (NO2, SO2, hydrocarbons and derivatives of ozone); - Radioactivity (type, value), the presence and concentration of radon. Taking into consideration the possibility of anthropogenic effect on the underground salt or karst environment produced by patients with chronic inflammatory diseases, respiratory or skin allergic diseases is needed to assess the underground environmental sanitary parameters in various main locations (the entrance in the underground, the artificial or natural air flow; the sanatory area " - the location where patients or tourists are keeped for a period of 1-3 or more hours, bathroom) and the

  8. Sublethal salinity stress contributes to habitat limitation in an endangered estuarine fish.

    PubMed

    Komoroske, Lisa M; Jeffries, Ken M; Connon, Richard E; Dexter, Jason; Hasenbein, Matthias; Verhille, Christine; Fangue, Nann A

    2016-09-01

    As global change alters multiple environmental conditions, predicting species' responses can be challenging without understanding how each environmental factor influences organismal performance. Approaches quantifying mechanistic relationships can greatly complement correlative field data, strengthening our abilities to forecast global change impacts. Substantial salinity increases are projected in the San Francisco Estuary, California, due to anthropogenic water diversion and climatic changes, where the critically endangered delta smelt (Hypomesus transpacificus) largely occurs in a low-salinity zone (LSZ), despite their ability to tolerate a much broader salinity range. In this study, we combined molecular and organismal measures to quantify the physiological mechanisms and sublethal responses involved in coping with salinity changes. Delta smelt utilize a suite of conserved molecular mechanisms to rapidly adjust their osmoregulatory physiology in response to salinity changes in estuarine environments. However, these responses can be energetically expensive, and delta smelt body condition was reduced at high salinities. Thus, acclimating to salinities outside the LSZ could impose energetic costs that constrain delta smelt's ability to exploit these habitats. By integrating data across biological levels, we provide key insight into the mechanistic relationships contributing to phenotypic plasticity and distribution limitations and advance the understanding of the molecular osmoregulatory responses in nonmodel estuarine fishes. PMID:27606005

  9. Biomass yield efficiency of the marine anammox bacterium, "Candidatus Scalindua sp.," is affected by salinity.

    PubMed

    Awata, Takanori; Kindaichi, Tomonori; Ozaki, Noriatsu; Ohashi, Akiyoshi

    2015-01-01

    The growth rate and biomass yield efficiency of anaerobic ammonium oxidation (anammox) bacteria are markedly lower than those of most other autotrophic bacteria. Among the anammox bacterial genera, the growth rate and biomass yield of the marine anammox bacterium "Candidatus Scalindua sp." is still lower than those of other anammox bacteria enriched from freshwater environments. The activity and growth of marine anammox bacteria are generally considered to be affected by the presence of salinity and organic compounds. Therefore, in the present study, the effects of salinity and volatile fatty acids (VFAs) on the anammox activity, inorganic carbon uptake, and biomass yield efficiency of "Ca. Scalindua sp." enriched from the marine sediments of Hiroshima Bay, Japan, were investigated in batch experiments. Differences in VFA concentrations (0-10 mM) were observed under varying salinities (0.5%-4%). Anammox activity was high at 0.5%-3.5% salinity, but was 30% lower at 4% salinity. In addition, carbon uptake was higher at 1.5%-3.5% salinity. The results of the present study clearly demonstrated that the biomass yield efficiency of the marine anammox bacterium "Ca. Scalindua sp." was significantly affected by salinity. On the other hand, the presence of VFAs up to 10 mM did not affect anammox activity, carbon uptake, or biomass yield efficiency.

  10. The use of salinity contrast for density difference compensation to improve the thermal recovery efficiency in high-temperature aquifer thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    van Lopik, Jan H.; Hartog, Niels; Zaadnoordijk, Willem Jan

    2016-08-01

    The efficiency of heat recovery in high-temperature (>60 °C) aquifer thermal energy storage (HT-ATES) systems is limited due to the buoyancy of the injected hot water. This study investigates the potential to improve the efficiency through compensation of the density difference by increased salinity of the injected hot water for a single injection-recovery well scheme. The proposed method was tested through numerical modeling with SEAWATv4, considering seasonal HT-ATES with four consecutive injection-storage-recovery cycles. Recovery efficiencies for the consecutive cycles were investigated for six cases with three simulated scenarios: (a) regular HT-ATES, (b) HT-ATES with density difference compensation using saline water, and (c) theoretical regular HT-ATES without free thermal convection. For the reference case, in which 80 °C water was injected into a high-permeability aquifer, regular HT-ATES had an efficiency of 0.40 after four consecutive recovery cycles. The density difference compensation method resulted in an efficiency of 0.69, approximating the theoretical case (0.76). Sensitivity analysis showed that the net efficiency increase by using the density difference compensation method instead of regular HT-ATES is greater for higher aquifer hydraulic conductivity, larger temperature difference between injection water and ambient groundwater, smaller injection volume, and larger aquifer thickness. This means that density difference compensation allows the application of HT-ATES in thicker, more permeable aquifers and with larger temperatures than would be considered for regular HT-ATES systems.

  11. Salinity constraints on subsurface archaeal diversity and methanogenesis in sedimentary rock rich in organic matter.

    PubMed

    Waldron, Patricia J; Petsch, Steven T; Martini, Anna M; Nüsslein, Klaus; Nüslein, Klaus

    2007-07-01

    The diversity of microorganisms active within sedimentary rocks provides important controls on the geochemistry of many subsurface environments. In particular, biodegradation of organic matter in sedimentary rocks contributes to the biogeochemical cycling of carbon and other elements and strongly impacts the recovery and quality of fossil fuel resources. In this study, archaeal diversity was investigated along a salinity gradient spanning 8 to 3,490 mM Cl(-) in a subsurface shale rich in CH(4) derived from biodegradation of sedimentary hydrocarbons. Shale pore waters collected from wells in the main CH(4)-producing zone lacked electron acceptors such as O(2), NO(3)(-), Fe(3+), or SO(4)(2-). Acetate was detected only in high-salinity waters, suggesting that acetoclastic methanogenesis is inhibited at Cl(-) concentrations above approximately 1,000 mM. Most-probable-number series revealed differences in methanogen substrate utilization (acetate, trimethylamine, or H(2)/CO(2)) associated with chlorinity. The greatest methane production in enrichment cultures was observed for incubations with salinity at or close to the native pore water salinity of the inoculum. Restriction fragment length polymorphism analyses of archaeal 16S rRNA genes from seven wells indicated that there were links between archaeal communities and pore water salinity. Archaeal clone libraries constructed from sequences from 16S rRNA genes isolated from two wells revealed phylotypes similar to a halophilic methylotrophic Methanohalophilus species and a hydrogenotrophic Methanoplanus species at high salinity and a single phylotype closely related to Methanocorpusculum bavaricum at low salinity. These results show that several distinct communities of methanogens persist in this subsurface, CH(4)-producing environment and that each community is adapted to particular conditions of salinity and preferential substrate use and each community induces distinct geochemical signatures in shale formation waters.

  12. Imaging cross fault multiphase flow using time resolved high pressure-temperature synchrotron fluid tomography: implications for the geological storage of carbon dioxide within sandstone saline aquifers

    NASA Astrophysics Data System (ADS)

    Seers, Thomas; Andrew, Matthew; Bijeljic, Branko; Blunt, Martin; Dobson, Kate; Hodgetts, David; Lee, Peter; Menke, Hannah; Singh, Kamaljit; Parsons, Aaron

    2015-04-01

    Applied shear stresses within high porosity granular rocks result in characteristic deformation responses (rigid grain reorganisation, dilation, isovolumetric strain, grain fracturing and/or crushing) emanating from elevated stress concentrations at grain contacts. The strain localisation features produced by these processes are generically termed as microfaults (also shear bands), which occur as narrow tabular regions of disaggregated, rotated and/or crushed grains. Because the textural priors that favour microfault formation make their host rocks (esp. porous sandstones) conducive to the storage of geo-fluids, such structures are often abundant features within hydrocarbon reservoirs, aquifers and potential sites of CO2 storage (i.e. sandstone saline aquifers). The porosity collapse which accompanies microfault formation typically results in localised permeability reduction, often encompassing several orders of magnitude. Given that permeability is the key physical parameter that governs fluid circulation in the upper crust, this petrophysical degradation implicates microfaults as being flow impeding structures which may act as major baffles and/or barriers to fluid flow within the subsurface. Such features therefore have the potential to negatively impact upon hydrocarbon production or CO2 injection, making their petrophysical characterisation of considerable interest. Despite their significance, little is known about the pore-scale processes involved in fluid trapping and transfer within microfaults, particularly in the presence of multiphase flow analogous to oil accumulation, production and CO2 injection. With respect to the geological storage of CO2 within sandstone saline aquifers it has been proposed that even fault rocks with relatively low phyllosilicate content or minimal quartz cementation may act as major baffles or barriers to migrating CO2 plume. Alternatively, as ubiquitous intra-reservoir heterogeneities, micro-faults also have the potential to

  13. High Molybdenum availability for evolution in a Mesoproterozoic lacustrine environment

    NASA Astrophysics Data System (ADS)

    Parnell, John; Spinks, Samuel; Andrews, Steven; Thayalan, Wanethon; Bowden, Stephen

    2015-05-01

    Trace metal data for Proterozoic marine euxinic sediments imply that the expansion of nitrogen-fixing cyanobacteria and diversification of eukaryotes were delayed while the availability of bioessential metals such as molybdenum in the ocean was limited. However, there is increasing recognition that the Mesoproterozoic evolution of nitrogen fixation and eukaryotic life may have been promoted in marginal marine and terrestrial environments, including lakes, rather than in the deep ocean. Molybdenum availability is critical to life in lakes, just as it is in the oceans. It is, therefore, important to assess molybdenum availability to the lacustrine environment in the Mesoproterozoic. Here we show that the flux of molybdenum to a Mesoproterozoic lake was 1 to 2 orders of magnitude greater than typical fluxes in the modern and ancient marine environment. Thus, there was no barrier to availability to prevent evolution in the terrestrial environment, in contrast to the nutrient-limited Mesoproterozoic oceans.

  14. High Molybdenum availability for evolution in a Mesoproterozoic lacustrine environment.

    PubMed

    Parnell, John; Spinks, Samuel; Andrews, Steven; Thayalan, Wanethon; Bowden, Stephen

    2015-05-19

    Trace metal data for Proterozoic marine euxinic sediments imply that the expansion of nitrogen-fixing cyanobacteria and diversification of eukaryotes were delayed while the availability of bioessential metals such as molybdenum in the ocean was limited. However, there is increasing recognition that the Mesoproterozoic evolution of nitrogen fixation and eukaryotic life may have been promoted in marginal marine and terrestrial environments, including lakes, rather than in the deep ocean. Molybdenum availability is critical to life in lakes, just as it is in the oceans. It is, therefore, important to assess molybdenum availability to the lacustrine environment in the Mesoproterozoic. Here we show that the flux of molybdenum to a Mesoproterozoic lake was 1 to 2 orders of magnitude greater than typical fluxes in the modern and ancient marine environment. Thus, there was no barrier to availability to prevent evolution in the terrestrial environment, in contrast to the nutrient-limited Mesoproterozoic oceans.

  15. The Combined Effects of Salinity and Excess Boron on Mineral Ion Relations in Broccoli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two plant stress factors, salinity and high levels of boron, often co-occur in natural and agricultural environments. Many investigations have been conducted to document the influence of the combined stresses on crop growth and yield. Only limited information, however, is available concerning the c...

  16. Plasma simulations of emission line regions in high energy environments

    NASA Astrophysics Data System (ADS)

    Richardson, Chris T.

    This dissertation focuses on understanding two different, but in each case extreme, astrophysical environments: the Crab Nebula and emission line galaxies. These relatively local objects are well constrained by observations and are test cases of phenomena seen at high-z where detailed observations are rare. The tool used to study these objects is the plasma simulation code known as Cloudy. The introduction provides a brief summary of relevant physical concepts in nebular astrophysics and presents the basic features and assumptions of Cloudy. The first object investigated with Cloudy, the Crab Nebula, is a nearby supernova remnant that previously has been subject to photoionization modeling to reproduce the ionized emission seen in the nebula's filamentary structure. However, there are still several unanswered questions: (1) What excites the H2 emitting gas? (2) How much mass is in the molecular component? (3) How did the H2 form? (4) What is nature of the dust grains? A large suite of observations including long slit optical and NIR spectra over ionized, neutral and molecular gas in addition to HST and NIR ground based images constrain a particularly bright region of H2 emission, Knot 51, which exhibits a high excitation temperature of ˜3000 K. Simulations of K51 revealed that only a trace amount of H2 is needed to reproduce the observed emission and that H2 forms through an uncommon nebular process known as associative detachment. The final chapters of this dissertation focus on interpreting the narrow line region (NLR) in low-z emission line galaxies selected by a novel technique known as mean field independent component analysis (MFICA). A mixture of starlight and radiation from an AGN excites the gas present in galaxies. MFICA separates galaxies over a wide range of ionization into subsets of pure AGN and pure star forming galaxies allowing simulations to reveal the properties responsible for their observed variation in ionization. Emission line ratios can

  17. Test Before You Fly - High Fidelity Planetary Environment Simulation

    NASA Technical Reports Server (NTRS)

    Craven, Paul; Ramachandran, Narayanan; Vaughn, Jason; Schneider, Todd; Nehls, Mary

    2012-01-01

    The lunar surface environment will present many challenges to the survivability of systems developed for long duration lunar habitation and exploration of the lunar, or any other planetary, surface. Obstacles will include issues pertaining especially to the radiation environment (solar plasma and electromagnetic radiation) and lunar regolith dust. The Planetary Environments Chamber is one piece of the MSFC capability in Space Environmental Effects Test and Analysis. Comprised of many unique test systems, MSFC has the most complete set of SEE test capabilities in one location allowing examination of combined space environmental effects without transporting already degraded, potentially fragile samples over long distances between tests. With this system, the individual and combined effects of the lunar radiation and regolith environment on materials, sub-systems, and small systems developed for the lunar return can be investigated. This combined environments facility represents a unique capability to NASA, in which tests can be tailored to any one aspect of the lunar environment (radiation, temperature, vacuum, regolith) or to several of them combined in a single test.

  18. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    DOE PAGES

    Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.; Lauridsen, Erik M.; Bilheux, Hassina Z.; Molaison, Jamie J.; Santodonato, Louis J.; Tremsin, Anton S.; Grosse, Mirco; Morgano, Manuel; et al

    2015-12-17

    In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition,more » examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.« less

  19. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    SciTech Connect

    Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.; Lauridsen, Erik M.; Bilheux, Hassina Z.; Molaison, Jamie J.; Santodonato, Louis J.; Tremsin, Anton S.; Grosse, Mirco; Morgano, Manuel; Kabra, Saurabh; Strobl, Markus

    2015-12-17

    In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.

  20. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    SciTech Connect

    Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.; Lauridsen, Erik M.; Bilheux, Hassina Z.; Molaison, Jamie J.; Santodonato, Louis J.; Tremsin, Anton S.; Grosse, Mirco; Morgano, Manuel; Kabra, Saurabh; Strobl, Markus

    2015-12-15

    High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. This paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 °C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. This covers a broad field of research from fundamental to technological investigations of various types of materials and components.

  1. Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model

    PubMed Central

    Song, Jie; Wang, Baoshan

    2015-01-01

    Background As important components in saline agriculture, halophytes can help to provide food for a growing world population. In addition to being potential crops in their own right, halophytes are also potential sources of salt-resistance genes that might help plant breeders and molecular biologists increase the salt tolerance of conventional crop plants. One especially promising halophyte is Suaeda salsa, a euhalophytic herb that occurs both on inland saline soils and in the intertidal zone. The species produces dimorphic seeds: black seeds are sensitive to salinity and remain dormant in light under high salt concentrations, while brown seeds can germinate under high salinity (e.g. 600 mm NaCl) regardless of light. Consequently, the species is useful for studying the mechanisms by which dimorphic seeds are adapted to saline environments. S. salsa has succulent leaves and is highly salt tolerant (e.g. its optimal NaCl concentration for growth is 200 mm). A series of S. salsa genes related to salt tolerance have been cloned and their functions tested: these include SsNHX1, SsHKT1, SsAPX, SsCAT1, SsP5CS and SsBADH. The species is economically important because its fresh branches have high value as a vegetable, and its seed oil is edible and rich in unsaturated fatty acids. Because it can remove salts and heavy metals from saline soils, S. salsa can also be used in the restoration of salinized or contaminated saline land. Scope Because of its economic and ecological value in saline agriculture, S. salsa is one of the most important halophytes in China. In this review, the value of S. salsa as a source of food, medicine and forage is discussed. Its uses in the restoration of salinized or contaminated land and as a source of salt-resistance genes are also considered. PMID:25288631

  2. Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water.

    PubMed

    Yin, Huajie; Zhao, Shenlong; Wan, Jiawei; Tang, Hongjie; Chang, Lin; He, Liangcan; Zhao, Huijun; Gao, Yan; Tang, Zhiyong

    2013-11-20

    A novel and general method is proposed to construct three-dimensional graphene/metal oxide nanoparticle hybrids. For the first time, it is demonstrated that this graphene-based composite with open pore structures can be used as the high-performance capacitive deionization (CDI) electrode materials, which outperform currently reported materials. This work will offer a promising way to develop highly effective CDI electrode materials.

  3. CMOS pixel sensors on high resistive substrate for high-rate, high-radiation environments

    NASA Astrophysics Data System (ADS)

    Hirono, Toko; Barbero, Marlon; Breugnon, Patrick; Godiot, Stephanie; Gonella, Laura; Hemperek, Tomasz; Hügging, Fabian; Krüger, Hans; Liu, Jian; Pangaud, Patrick; Peric, Ivan; Pohl, David-Leon; Rozanov, Alexandre; Rymaszewski, Piotr; Wang, Anqing; Wermes, Norbert

    2016-09-01

    A depleted CMOS active pixel sensor (DMAPS) has been developed on a substrate with high resistivity in a high voltage process. High radiation tolerance and high time resolution can be expected because of the charge collection by drift. A prototype of DMAPS was fabricated in a 150 nm process by LFoundry. Two variants of the pixel layout were tested, and the measured depletion depths of the variants are 166 μm and 80 μm. We report the results obtained with the prototype fabricated in this technology.

  4. How to Sustain Warm Northern High Latitudes during the Late Pliocene? Roles of CO2, Orbital Changes and Increased Mediterranean Salinity on Oceanic Circulation

    NASA Astrophysics Data System (ADS)

    Contoux, C.; Zhang, Z.; Li, C.; Nisancioglu, K. H.; Risebrobakken, B.

    2014-12-01

    Northern high latitudes are thought to have been especially warm during the late Pliocene (e.g. Dowsett et al., 2013). However, the mechanisms sustaining these warm high latitude conditions are debated, especially because warm high latitudes are not necessarily depending on a stronger AMOC (Zhang et al., 2013). On the global scale, several authors reported CO2 level variability during the Pliocene ranging from 280 ppm to 450 ppm (e.g. Badger et al., 2013), which could be linked with orbital variability. More regionally, an aridification of the Mediterranean region is thought to have increased the Mediterranean outflow during the same period (e.g. Khélifi et al., 2009). These different forcings must have impacted on salinity and temperature profiles in the North Atlantic/Arctic oceans, which are then recorded at the local scale in the proxies derived from sediment cores. In order to carefully interpret these proxies, it is necessary to understand the large scale dynamics of the region during that period and its potential maximum variability with CO2 and orbital changes as well as Mediterranean outflow increase. Using the NorESM-L coupled atmosphere ocean model, which has a refined oceanic grid in the Nordic Seas region, we investigate the roles of extreme CO2and orbital variability on the Atlantic and Arctic oceanic circulation. An additional test to higher salinity in the Mediterranean is carried out. This study is part of a larger project which aims at characterising the state of the Nordic Seas during the Pliocene, and includes multi-proxy reconstructions and sensitivity model studies. References Badger et al., 2013. High resolution alkenone palaeobarometry indicates relatively stable pCO2 during the Pliocene (3.3 - 2.8 Ma), Philosophical Transactions of the Royal Society A, 371, 20130094. Dowsett et al., 2013. Sea surface temperature of the mid-Piacenzian ocean: a data-model comparison, Nature Scientific Reports, 3, 2013, doi:10.1038/srep02013. Khélifi et al

  5. Application of activated charcoal radon collectors in high humidity environments.

    PubMed

    Iimoto, Takeshi; Tokonami, Shinji; Morishita, Yasuaki; Kosako, Toshiso

    2005-01-01

    Most commercially based activated charcoal radon collectors were designed for use in indoor environments. However, at present, they are often used for research in radon surveys in unique environments, such as in the bathrooms, underground areas, mines, caves and tunnels. In these environments, the relative humidity would be around 100%, and a change in the sensitivity of cpm(Bq m(-3))(-1)(radon) would occur. For this study, the reduction in the sensitivity of activated charcoal radon collector due to environmental humidity was investigated, and the data correction was discussed. Here, ST-100 (Pico-Rad) was selected as an example of a familiar activated charcoal radon collector. According to our performance test, the humidity of 90% (20 degrees C) resulted in a 15% reduction of the sensitivity for 24 h collection. The ST-100 user should discuss the necessity of data correction by comparing the change of sensitivity with other levels of estimation errors.

  6. Principal processes within the estuarine salinity gradient: a review.

    PubMed

    Telesh, Irena V; Khlebovich, Vladislav V

    2010-01-01

    The salinity gradient is one of the main features characteristic of any estuarine ecosystem. Within this gradient in a critical salinity range of 5-8 PSU the major biotic and abiotic processes demonstrate non-linear dynamics of change in rates and directions. In estuaries, this salinity range acts as both external ecological factor and physiological characteristics of internal environment of aquatic organisms; it divides living conditions appropriate for freshwater and marine faunas, separates invertebrate communities with different osmotic regulation types, and defines the distribution range of high taxa. In this paper, the non-linearity of biotic processes within the estuarine salinity gradient is illustrated by the data on zooplankton from the Baltic estuaries. The non-tidal Baltic Sea provides a good demonstration of the above phenomena due to gradual changes of environmental factors and relatively stable isohalines. The non-linearity concept coupled with the ecosystem approach served the basis for a new definition of an estuary proposed by the authors. PMID:20304437

  7. Combined effects of cadmium and salinity on juvenile Takifugu obscurus: cadmium moderates salinity tolerance; salinity decreases the toxicity of cadmium.

    PubMed

    Wang, Jun; Zhu, Xuexia; Huang, Xin; Gu, Lei; Chen, Yafen; Yang, Zhou

    2016-01-01

    Obscure puffer Takifugu obscurus, a species of anadromous fish, experiences several salinity changes in its lifetime. Cadmium (Cd) is a toxic heavy metal that can potentially induce oxidative stress in fish. The present study aimed to detect the combined effects of Cd (0, 5, 10, 20 and 50 mg L(-1)) and salinity (0, 15 and 30 ppt) on juvenile T. obscurus. Results showed the juveniles could survive well under different salinities; however, with Cd exposure, the survival rates significantly decreased at 0 and 30 ppt. At 15 ppt, tolerance to Cd increased. Cd exposure clearly induced oxidative stress, and the responses among different tissues were qualitatively similar. Salinity acted as a protective factor which could reduce the reactive oxygen species and malondialdehyde levels. In addition, salinity could enhance the antioxidant defense system, including superoxide dismutase, catalase and glutathione. Na(+)/K(+)-ATPase activity significantly decreased under Cd exposure in gill, kidney and intestine. These findings indicated that Cd could moderate the adaptability of juvenile T. obscurus to high salinity and low salinity played a protective role upon Cd exposure. Thus, the role of salinity should be considered when evaluating the effect of heavy metals on anadromous and estuarine fishes. PMID:27487764

  8. Combined effects of cadmium and salinity on juvenile Takifugu obscurus: cadmium moderates salinity tolerance; salinity decreases the toxicity of cadmium

    PubMed Central

    Wang, Jun; Zhu, Xuexia; Huang, Xin; Gu, Lei; Chen, Yafen; Yang, Zhou

    2016-01-01

    Obscure puffer Takifugu obscurus, a species of anadromous fish, experiences several salinity changes in its lifetime. Cadmium (Cd) is a toxic heavy metal that can potentially induce oxidative stress in fish. The present study aimed to detect the combined effects of Cd (0, 5, 10, 20 and 50 mg L−1) and salinity (0, 15 and 30 ppt) on juvenile T. obscurus. Results showed the juveniles could survive well under different salinities; however, with Cd exposure, the survival rates significantly decreased at 0 and 30 ppt. At 15 ppt, tolerance to Cd increased. Cd exposure clearly induced oxidative stress, and the responses among different tissues were qualitatively similar. Salinity acted as a protective factor which could reduce the reactive oxygen species and malondialdehyde levels. In addition, salinity could enhance the antioxidant defense system, including superoxide dismutase, catalase and glutathione. Na+/K+–ATPase activity significantly decreased under Cd exposure in gill, kidney and intestine. These findings indicated that Cd could moderate the adaptability of juvenile T. obscurus to high salinity and low salinity played a protective role upon Cd exposure. Thus, the role of salinity should be considered when evaluating the effect of heavy metals on anadromous and estuarine fishes. PMID:27487764

  9. Composition and distribution of planktonic ciliates from ponds of different salinity in the solar saltwork of Sfax, Tunisia

    NASA Astrophysics Data System (ADS)

    Elloumi, Jannet; Carrias, Jean-François; Ayadi, Habib; Sime-Ngando, Télesphore; Boukhris, Mekki; Bouaïn, Abderrahmen

    2006-03-01

    The planktonic ciliated protozoa of 14 ponds of increasing salinity were investigated in the saline of Sfax, Tunisia. Taxa of the classes of Spirotrichea and Heterotrichea were the numerous ciliates. Abundance of the community ranged from 0.0 to 11.8 × 10 4 ciliates per litre. Values decrease significantly with salinity gradient, as species richness does. Based on the range of salinity over which ciliate taxa appeared, we distinguished three groups of ciliates. The first group is mainly composed of oligotrichs and choreotrichs that are commonly found in marine coastal waters. Small ciliates belonging to the order Prostomatida were found in a large range of salinity values, but their densities also decreased with salt concentration. In contrast, large-size species of heterotrichous ciliates were found in ponds with high salinity values only. In these ponds, the presence of prey appeared as an important factor in controlling the abundances of these halotolerant ciliates. Our data also suggest that Fabrea salina, a common halophile ciliate, acts as a competitor of the brine shrimp Artemia salina in the saline of Sfax. Salinity, prey availability, and the presence of competitors seem to be the main factors for the distribution of ciliate taxa in this hypersaline environment.

  10. Salinity affects microbial activity and soil organic matter content in tidal wetlands.

    PubMed

    Morrissey, Ember M; Gillespie, Jaimie L; Morina, Joseph C; Franklin, Rima B

    2014-04-01

    Climate change-associated sea level rise is expected to cause saltwater intrusion into many historically freshwater ecosystems. Of particular concern are tidal freshwater wetlands, which perform several important ecological functions including carbon sequestration. To predict the impact of saltwater intrusion in these environments, we must first gain a better understanding of how salinity regulates decomposition in natural systems. This study sampled eight tidal wetlands ranging from freshwater to oligohaline (0-2 ppt) in four rivers near the Chesapeake Bay (Virginia). To help isolate salinity effects, sites were selected to be highly similar in terms of plant community composition and tidal influence. Overall, salinity was found to be strongly negatively correlated with soil organic matter content (OM%) and C : N, but unrelated to the other studied environmental parameters (pH, redox, and above- and below-ground plant biomass). Partial correlation analysis, controlling for these environmental covariates, supported direct effects of salinity on the activity of carbon-degrading extracellular enzymes (β-1, 4-glucosidase, 1, 4-β-cellobiosidase, β-D-xylosidase, and phenol oxidase) as well as alkaline phosphatase, using a per unit OM basis. As enzyme activity is the putative rate-limiting step in decomposition, enhanced activity due to salinity increases could dramatically affect soil OM accumulation. Salinity was also found to be positively related to bacterial abundance (qPCR of the 16S rRNA gene) and tightly linked with community composition (T-RFLP). Furthermore, strong relationships were found between bacterial abundance and/or composition with the activity of specific enzymes (1, 4-β-cellobiosidase, arylsulfatase, alkaline phosphatase, and phenol oxidase) suggesting salinity's impact on decomposition could be due, at least in part, to its effect on the bacterial community. Together, these results indicate that salinity increases microbial decomposition rates

  11. Physiological and proteomic analysis in chloroplasts of Solanum lycopersicum L. under silicon efficiency and salinity stress.

    PubMed

    Muneer, Sowbiya; Park, Yoo Gyeong; Manivannan, Abinaya; Soundararajan, Prabhakaran; Jeong, Byoung Ryong

    2014-01-01

    Tomato plants often grow in saline environments in Mediterranean countries where salt accumulation in the soil is a major abiotic stress that limits its productivity. However, silicon (Si) supplementation has been reported to improve tolerance against several forms of abiotic stress. The primary aim of our study was to investigate, using comparative physiological and proteomic approaches, salinity stress in chloroplasts of tomato under silicon supplementation. Tomato seedlings (Solanum lycopersicum L.) were grown in nutrient media in the presence or absence of NaCl and supplemented with silicon for 5 days. Salinity stress caused oxidative damage, followed by a decrease in silicon concentrations in the leaves of the tomato plants. However, supplementation with silicon had an overall protective effect against this stress. The major physiological parameters measured in our studies including total chlorophyll and carotenoid content were largely decreased under salinity stress, but were recovered in the presence of silicon. Insufficient levels of net-photosynthesis, transpiration and stomatal conductance were also largely improved by silicon supplementation. Proteomics analysis of chloroplasts analyzed by 2D-BN-PAGE (second-dimensional blue native polyacrylamide-gel electrophoresis) revealed a high sensitivity of multiprotein complex proteins (MCPs) such as photosystems I (PSI) and II (PSII) to the presence of saline. A significant reduction in cytochrome b6/f and the ATP-synthase complex was also alleviated by silicon during salinity stress, while the complex forms of light harvesting complex trimers and monomers (LHCs) were rapidly up-regulated. Our results suggest that silicon plays an important role in moderating damage to chloroplasts and their metabolism in saline environments. We therefore hypothesize that tomato plants have a greater capacity for tolerating saline stress through the improvement of photosynthetic metabolism and chloroplast proteome expression

  12. Physiological and proteomic analysis in chloroplasts of Solanum lycopersicum L. under silicon efficiency and salinity stress.

    PubMed

    Muneer, Sowbiya; Park, Yoo Gyeong; Manivannan, Abinaya; Soundararajan, Prabhakaran; Jeong, Byoung Ryong

    2014-11-26

    Tomato plants often grow in saline environments in Mediterranean countries where salt accumulation in the soil is a major abiotic stress that limits its productivity. However, silicon (Si) supplementation has been reported to improve tolerance against several forms of abiotic stress. The primary aim of our study was to investigate, using comparative physiological and proteomic approaches, salinity stress in chloroplasts of tomato under silicon supplementation. Tomato seedlings (Solanum lycopersicum L.) were grown in nutrient media in the presence or absence of NaCl and supplemented with silicon for 5 days. Salinity stress caused oxidative damage, followed by a decrease in silicon concentrations in the leaves of the tomato plants. However, supplementation with silicon had an overall protective effect against this stress. The major physiological parameters measured in our studies including total chlorophyll and carotenoid content were largely decreased under salinity stress, but were recovered in the presence of silicon. Insufficient levels of net-photosynthesis, transpiration and stomatal conductance were also largely improved by silicon supplementation. Proteomics analysis of chloroplasts analyzed by 2D-BN-PAGE (second-dimensional blue native polyacrylamide-gel electrophoresis) revealed a high sensitivity of multiprotein complex proteins (MCPs) such as photosystems I (PSI) and II (PSII) to the presence of saline. A significant reduction in cytochrome b6/f and the ATP-synthase complex was also alleviated by silicon during salinity stress, while the complex forms of light harvesting complex trimers and monomers (LHCs) were rapidly up-regulated. Our results suggest that silicon plays an important role in moderating damage to chloroplasts and their metabolism in saline environments. We therefore hypothesize that tomato plants have a greater capacity for tolerating saline stress through the improvement of photosynthetic metabolism and chloroplast proteome expression

  13. Saline infusion sonohysterography.

    PubMed

    2004-01-01

    Saline infusion sonohysterography consists of ultrasonographic imaging of the uterus and uterocervical cavity, using real-time ultrasonography during injection of sterile saline into the uterus. When properly performed, saline infusion sonohysterography can provide information about the uterus and endometrium. The most common indication for sonohysterography is abnormal uterine bleeding. sonohysterography should not be performed in a woman who is pregnant or could be pregnant or in a woman with a pelvic infection or unexplained pelvic tenderness. Physicians who perform or supervise diagnostic saline infusion sonohysterograpy should have training, experience, and demonstrated competence in gynecologic ultrasonography and saline infusion sonohysterography. Portions of this document were developed jointly with the American College of Radiology and the American Institute of Ultrasound in Medicine. PMID:14968760

  14. Measuring soil salinity.

    PubMed

    Hardie, Marcus; Doyle, Richard

    2012-01-01

    Soil salinity is a form of land degradation in which salts accumulate in the soil profile to an extent that plant growth or infrastructure are negatively affected. A range of both field and laboratory procedures exist for measuring soil salinity. In the field, soil salinity is usually inferred from apparent electrical conductivity (EC(a)) using a range of devices, depending on the required depth of analysis, or size of the survey area. Field measurements of EC(a) require calibration to the actual salt content by laboratory analysis. In the laboratory, soil salinity is usually assessed by determining either the total soluble salts by evaporation of a soil water extract (TSS), or by determining the electrical conductivity (EC) of either a 1:5 distilled water:soil dilution, or a saturated paste extract. Although procedures for measuring soil salinity appear relatively straightforward, differences in methodology have considerable influence on measured values and interpretation of results. PMID:22895776

  15. A solution for cesium removal from high-salinity acidic or alkaline liquid waste: The crown calix[4]arenes

    SciTech Connect

    Dozol, J.F.; Simon, N.; Lamare, V.; Rouquette, H.; Eymard, S.; Tournois, B.; Marc, D. de; Macias, R.M.

    1999-04-01

    Calix[4]arenes monocrown or biscrown, blocked in 1,3 alternative cone conformation, display an exceptional efficiency for cesium extraction, even from very acid or alkaline media. Moreover, they possess an important selectivity for cesium over sodium that makes possible the extraction of cesium from media containing high sodium nitrate loadings. Another advantage, since the extraction of cesium is reversible, is that the stripping of cesium can be carried out in deionized water, a property which leads to very high concentration factors. 79 refs., 10 figs., 6 tabs.

  16. Bioprecipitation of Calcium Carbonate Crystals by Bacteria Isolated from Saline Environments Grown in Culture Media Amended with Seawater and Real Brine.

    PubMed

    Silva-Castro, G A; Uad, I; Gonzalez-Martinez, A; Rivadeneyra, A; Gonzalez-Lopez, J; Rivadeneyra, M A

    2015-01-01

    The precipitation of calcium carbonate and calcium sulphate by isolated bacteria from seawater and real brine obtained in a desalination plant growth in culture media containing seawater and brine as mineral sources has been studied. However, only bioprecipitation was detected when the bacteria were grown in media with added organic matter. Biomineralization process started rapidly, crystal formation taking place in the beginning a few days after inoculation of media; roughly 90% of total cultivated bacteria showed. Six major colonies with carbonate precipitation capacity dominated bacterial community structure cultivated in heterotrophic platable bacteria medium. Taxonomic identification of these six strains through partial 16S rRNA gene sequences showed their affiliation with Gram-positive Bacillus and Virgibacillus genera. These strains were able to form calcium carbonate minerals, which precipitated as calcite and aragonite crystals and showed bacterial fingerprints or bacteria calcification. Also, carbonic anhydrase activity was observed in three of these isolated bacteria. The results of this research suggest that microbiota isolated from sea water and brine is capable of precipitation of carbonate biominerals, which can occur in situ with mediation of organic matter concentrations. Moreover, calcium carbonate precipitation ability of this microbiota could be of importance in bioremediation of CO2 and calcium in certain environments.

  17. Bioprecipitation of Calcium Carbonate Crystals by Bacteria Isolated from Saline Environments Grown in Culture Media Amended with Seawater and Real Brine

    PubMed Central

    Silva-Castro, G. A.; Uad, I.; Gonzalez-Martinez, A.; Rivadeneyra, A.; Gonzalez-Lopez, J.; Rivadeneyra, M. A.

    2015-01-01

    The precipitation of calcium carbonate and calcium sulphate by isolated bacteria from seawater and real brine obtained in a desalination plant growth in culture media containing seawater and brine as mineral sources has been studied. However, only bioprecipitation was detected when the bacteria were grown in media with added organic matter. Biomineralization process started rapidly, crystal formation taking place in the beginning a few days after inoculation of media; roughly 90% of total cultivated bacteria showed. Six major colonies with carbonate precipitation capacity dominated bacterial community structure cultivated in heterotrophic platable bacteria medium. Taxonomic identification of these six strains through partial 16S rRNA gene sequences showed their affiliation with Gram-positive Bacillus and Virgibacillus genera. These strains were able to form calcium carbonate minerals, which precipitated as calcite and aragonite crystals and showed bacterial fingerprints or bacteria calcification. Also, carbonic anhydrase activity was observed in three of these isolated bacteria. The results of this research suggest that microbiota isolated from sea water and brine is capable of precipitation of carbonate biominerals, which can occur in situ with mediation of organic matter concentrations. Moreover, calcium carbonate precipitation ability of this microbiota could be of importance in bioremediation of CO2 and calcium in certain environments. PMID:26273646

  18. Bioprecipitation of Calcium Carbonate Crystals by Bacteria Isolated from Saline Environments Grown in Culture Media Amended with Seawater and Real Brine.

    PubMed

    Silva-Castro, G A; Uad, I; Gonzalez-Martinez, A; Rivadeneyra, A; Gonzalez-Lopez, J; Rivadeneyra, M A

    2015-01-01

    The precipitation of calcium carbonate and calcium sulphate by isolated bacteria from seawater and real brine obtained in a desalination plant growth in culture media containing seawater and brine as mineral sources has been studied. However, only bioprecipitation was detected when the bacteria were grown in media with added organic matter. Biomineralization process started rapidly, crystal formation taking place in the beginning a few days after inoculation of media; roughly 90% of total cultivated bacteria showed. Six major colonies with carbonate precipitation capacity dominated bacterial community structure cultivated in heterotrophic platable bacteria medium. Taxonomic identification of these six strains through partial 16S rRNA gene sequences showed their affiliation with Gram-positive Bacillus and Virgibacillus genera. These strains were able to form calcium carbonate minerals, which precipitated as calcite and aragonite crystals and showed bacterial fingerprints or bacteria calcification. Also, carbonic anhydrase activity was observed in three of these isolated bacteria. The results of this research suggest that microbiota isolated from sea water and brine is capable of precipitation of carbonate biominerals, which can occur in situ with mediation of organic matter concentrations. Moreover, calcium carbonate precipitation ability of this microbiota could be of importance in bioremediation of CO2 and calcium in certain environments. PMID:26273646

  19. EXPLORING ENVIRONMENTAL DATA IN A HIGHLY IMMERSIVE VIRTUAL REALITY ENVIRONMENT

    EPA Science Inventory

    Geography inherently fills a 3D space and yet we struggle with displaying geography using, primaarily, 2D display devices. Virtual environments offer a more realistically-dimensioned display space and this is being realized in the expanding area of research on 3D Geographic Infor...

  20. Reuse/disposal of agricultural drainage water with high levels of salinity and toxic trace elements in central California.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage waters in the western San Joaquin Valley of Central California contain high levels of salts, boron (B) and selenium (Se). Discharge of the drainage water directly into the Kesterson Reservoir in 1980's was hazardous to plants and wildlife. To investigate the plausibility of usi...

  1. Mycelial bacteria of saline soils

    NASA Astrophysics Data System (ADS)

    Zvyagintsev, D. G.; Zenova, G. M.; Oborotov, G. V.

    2008-10-01

    The actinomycetal complexes of saline soils comprise the representatives of the Streptomyces and Micromonospora genera, the number of which are hundreds and thousands of CFU/g soil. Complexes of mycelial bacteria in saline soils are poorer in terms of number (by 1-3 orders of magnitude) and taxonomic composition than the complexes of the zonal soil types. A specific feature of the actinomycetal complexes of saline soils is the predominance of halophilic, alkaliphilic, and haloalkaliphilic streptomycetes that well grow at pH 8-9 and concentrations of NaCl close to 5%. Actinomycetes in saline soils grow actively, and the length of their mycelium reaches 140 m in 1 gram of soil. The haloalkaliphilic streptomycetes grow fast and inhibit the formation of spores at pH 9 and high concentrations of salts (Na2SO4 and MgCl2, 5%) as compared to their behavior on a neutral medium with a salt concentration of 0.02%. They are characterized by the maximal radial growth rate of colonies on an alkaline medium with 5% NaCl.

  2. Ultra high pressure homogenization (UHPH) inactivation of Bacillus amyloliquefaciens spores in phosphate buffered saline (PBS) and milk.

    PubMed

    Dong, Peng; Georget, Erika S; Aganovic, Kemal; Heinz, Volker; Mathys, Alexander

    2015-01-01

    Ultra high pressure homogenization (UHPH) opens up new areas for dynamic high pressure assisted thermal sterilization of liquids. Bacillus amyloliquefaciens spores are resistant to high isostatic pressure and temperature and were suggested as potential surrogate for high pressure thermal sterilization validation. B. amyloliquefaciens spores suspended in PBS buffer (0.01 M, pH 7.0), low fat milk (1.5%, pH 6.7), and whole milk (3.5%, pH 6.7) at initial concentration of ~10(6) CFU/mL were subjected to UHPH treatments at 200, 300, and 350 MPa with an inlet temperature at ~80°C. Thermal inactivation kinetics of B. amyloliquefaciens spores in PBS and milk were assessed with thin wall glass capillaries and modeled using first-order and Weibull models. The residence time during UHPH treatments was estimated to determine the contribution of temperature to spore inactivation by UHPH. No sublethal injury was detected after UHPH treatments using sodium chloride as selective component in the nutrient agar medium. The inactivation profiles of spores in PBS buffer and milk were compared and fat provided no clear protective effect for spores against treatments. Treatment at 200 MPa with valve temperatures lower than 125°C caused no reduction of spores. A reduction of 3.5 log10CFU/mL of B. amyloliquefaciens spores was achieved by treatment at 350 MPa with a valve temperature higher than 150°C. The modeled thermal inactivation and observed inactivation during UHPH treatments suggest that temperature could be the main lethal effect driving inactivation.

  3. Ultra high pressure homogenization (UHPH) inactivation of Bacillus amyloliquefaciens spores in phosphate buffered saline (PBS) and milk

    PubMed Central

    Dong, Peng; Georget, Erika S.; Aganovic, Kemal; Heinz, Volker; Mathys, Alexander

    2015-01-01

    Ultra high pressure homogenization (UHPH) opens up new areas for dynamic high pressure assisted thermal sterilization of liquids. Bacillus amyloliquefaciens spores are resistant to high isostatic pressure and temperature and were suggested as potential surrogate for high pressure thermal sterilization validation. B. amyloliquefaciens spores suspended in PBS buffer (0.01 M, pH 7.0), low fat milk (1.5%, pH 6.7), and whole milk (3.5%, pH 6.7) at initial concentration of ~106 CFU/mL were subjected to UHPH treatments at 200, 300, and 350 MPa with an inlet temperature at ~80°C. Thermal inactivation kinetics of B. amyloliquefaciens spores in PBS and milk were assessed with thin wall glass capillaries and modeled using first-order and Weibull models. The residence time during UHPH treatments was estimated to determine the contribution of temperature to spore inactivation by UHPH. No sublethal injury was detected after UHPH treatments using sodium chloride as selective component in the nutrient agar medium. The inactivation profiles of spores in PBS buffer and milk were compared and fat provided no clear protective effect for spores against treatments. Treatment at 200 MPa with valve temperatures lower than 125°C caused no reduction of spores. A reduction of 3.5 log10CFU/mL of B. amyloliquefaciens spores was achieved by treatment at 350 MPa with a valve temperature higher than 150°C. The modeled thermal inactivation and observed inactivation during UHPH treatments suggest that temperature could be the main lethal effect driving inactivation. PMID:26236296

  4. Quantification of sub-resolution porosity in carbonate rocks by applying high-salinity contrast brine using X-ray microtomography differential imaging

    NASA Astrophysics Data System (ADS)

    Lin, Qingyang; Al-Khulaifi, Yousef; Blunt, Martin J.; Bijeljic, Branko

    2016-10-01

    Characterisation of the pore space in carbonate reservoirs and aquifers is of utmost importance in a number of applications such as enhanced oil recovery, geological carbon storage and contaminant transport. We present a new experimental methodology that uses high-salinity contrast brine and differential imaging acquired by X-ray tomography to non-invasively obtain three-dimensional spatially resolved information on porosity and connectivity of two rock samples, Portland and Estaillades limestones, including sub-resolution micro-porosity. We demonstrate that by injecting 30 wt% KI brine solution, a sufficiently high phase contrast can be achieved allowing accurate three-phase segmentation based on differential imaging. This results in spatially resolved maps of the solid grain phase, sub-resolution micro-pores within the grains, and macro-pores. The total porosity values from the three-phase segmentation for two carbonate rock samples are shown to be in good agreement with Helium porosity measurements. Furthermore, our flow-based method allows for an accurate estimate of pore connectivity and a distribution of porosity within the sub-resolution pores.

  5. Effects of plant downtime on the microbial community composition in the highly saline brine of a geothermal plant in the North German Basin.

    PubMed

    Westphal, Anke; Lerm, Stephanie; Miethling-Graff, Rona; Seibt, Andrea; Wolfgramm, Markus; Würdemann, Hilke

    2016-04-01

    The microbial biocenosis in highly saline fluids produced from the cold well of a deep geothermal heat store located in the North German Basin was characterized during regular plant operation and immediately after plant downtime phases. Genetic fingerprinting revealed the dominance of sulfate-reducing bacteria (SRB) and fermentative Halanaerobiaceae during regular plant operation, whereas after shutdown phases, sequences of sulfur-oxidizing bacteria (SOB) were also detected. The detection of SOB indicated oxygen ingress into the well during the downtime phase. High 16S ribosomal RNA (rRNA) and dsrA gene copy numbers at the beginning of the restart process showed an enrichment of bacteria, SRB, and SOB during stagnant conditions consistent with higher concentrations of dissolved organic carbon (DOC), sulfate, and hydrogen sulfide in the produced fluids. The interaction of SRB and SOB during plant downtimes might have enhanced the corrosion processes occurring in the well. It was shown that scale content of fluids was significantly increased after stagnant phases. Moreover, the sulfur isotopic signature of the mineral scales indicated microbial influence on scale formation. PMID:26610802

  6. Arsenic in drinking water wells on the Bolivian high plain: Field monitoring and effect of salinity on removal efficiency of iron-oxides-containing filters.

    PubMed

    Van Den Bergh, K; Du Laing, G; Montoya, Juan Carlos; De Deckere, E; Tack, F M G

    2010-11-01

    In the rural areas around Oruro (Bolivia), untreated groundwater is used directly as drinking water. This research aimed to evaluate the general drinking water quality, with focus on arsenic (As) concentrations, based on analysis of 67 samples from about 16 communities of the Oruro district. Subsequently a filter using Iron Oxide Coated Sand (IOCS) and a filter using a Composite Iron Matrix (CIM) were tested for their arsenic removal capacity using synthetic water mimicking real groundwater. Heavy metal concentrations in the sampled drinking water barely exceeded WHO guidelines. Arsenic concentrations reached values up to 964 μ g L⁻¹ and exceeded the current WHO provisional guideline value of 10 μ g L⁻¹ in more than 50% of the sampled wells. The WHO guideline of 250 mg L⁻¹ for chloride and sulphate was also exceeded in more than a third of the samples, indicating high salinity in the drinking waters. Synthetic drinking water could be treated effectively by the IOCS- and CIM-based filters reducing As to concentrations lower than 10 μ g L⁻¹. High levels of chloride and sulphate did not influence As removal efficiency. However, phosphate concentrations in the range from 4 to 24 mg L⁻¹ drastically decreased removal efficiency of the IOCS-based filter but had no effects on removal efficiency of the CIM-based filter. Results of this study can be used as a base for further testing and practical implementation of drinking water purification in the Oruro region.

  7. Effects of plant downtime on the microbial community composition in the highly saline brine of a geothermal plant in the North German Basin.

    PubMed

    Westphal, Anke; Lerm, Stephanie; Miethling-Graff, Rona; Seibt, Andrea; Wolfgramm, Markus; Würdemann, Hilke

    2016-04-01

    The microbial biocenosis in highly saline fluids produced from the cold well of a deep geothermal heat store located in the North German Basin was characterized during regular plant operation and immediately after plant downtime phases. Genetic fingerprinting revealed the dominance of sulfate-reducing bacteria (SRB) and fermentative Halanaerobiaceae during regular plant operation, whereas after shutdown phases, sequences of sulfur-oxidizing bacteria (SOB) were also detected. The detection of SOB indicated oxygen ingress into the well during the downtime phase. High 16S ribosomal RNA (rRNA) and dsrA gene copy numbers at the beginning of the restart process showed an enrichment of bacteria, SRB, and SOB during stagnant conditions consistent with higher concentrations of dissolved organic carbon (DOC), sulfate, and hydrogen sulfide in the produced fluids. The interaction of SRB and SOB during plant downtimes might have enhanced the corrosion processes occurring in the well. It was shown that scale content of fluids was significantly increased after stagnant phases. Moreover, the sulfur isotopic signature of the mineral scales indicated microbial influence on scale formation.

  8. Environment.

    ERIC Educational Resources Information Center

    White, Gilbert F.

    1980-01-01

    Presented are perspectives on the emergence of environmental problems. Six major trends in scientific thinking are identified including: holistic approaches to examining environments, life support systems, resource management, risk assessment, streamlined methods for monitoring environmental change, and emphasis on the global framework. (Author/SA)

  9. A high-salinity solution with calcium chloride enables RNase-free, easy plasmid isolation within 55 minutes.

    PubMed

    Sasagawa, Noboru; Koebis, Michinori; Yonemura, Yoji; Mitsuhashi, Hiroaki; Ishiura, Shoichi

    2013-12-01

    We dramatically improved a plasmid-isolation protocol based on the popular alkaline-sodium dodecyl sulfate plasmid isolation method. Our modified method provides significant time and cost savings. We used a modified solution during the neutralization step, which allowed us to skip several subsequent handling steps, saving a great amount of time. The plasmids purified by this method were of high quality, and the optical density ratio 260 and 280 was approximately 1.8. Plasmid DNA isolated by our method was of sufficient quality to perform subsequent restriction enzyme cuts and other downstream experiments, including budding yeast transformation, cultured cell transfection, and Caenorhabditis elegans injection experiments.

  10. World salinization with emphasis on Australia.

    PubMed

    Rengasamy, Pichu

    2006-01-01

    Salinization is the accumulation of water-soluble salts in the soil solum or regolith to a level that impacts on agricultural production, environmental health, and economic welfare. Salt-affected soils occur in more than 100 countries of the world with a variety of extents, nature, and properties. No climatic zone in the world is free from salinization, although the general perception is focused on arid and semi-arid regions. Salinization is a complex process involving the movement of salts and water in soils during seasonal cycles and interactions with groundwater. While rainfall, aeolian deposits, mineral weathering, and stored salts are the sources of salts, surface and groundwaters can redistribute the accumulated salts and may also provide additional sources. Sodium salts dominate in many saline soils of the world, but salts of other cations such as calcium, magnesium, and iron are also found in specific locations. Different types of salinization with a prevalence of sodium salts affect about 30% of the land area in Australia. While more attention is given to groundwater-associated salinity and irrigation salinity, which affects about 16% of the agricultural area, recent investigations suggest that 67% of the agricultural area has a potential for "transient salinity", a type of non-groundwater-associated salinity. Agricultural soils in Australia, being predominantly sodic, accumulate salts under seasonal fluctuations and have multiple subsoil constraints such as alkalinity, acidity, sodicity, and toxic ions. This paper examines soil processes that dictate the exact edaphic environment upon which root functions depend and can help in research on plant improvement.

  11. World salinization with emphasis on Australia.

    PubMed

    Rengasamy, Pichu

    2006-01-01

    Salinization is the accumulation of water-soluble salts in the soil solum or regolith to a level that impacts on agricultural production, environmental health, and economic welfare. Salt-affected soils occur in more than 100 countries of the world with a variety of extents, nature, and properties. No climatic zone in the world is free from salinization, although the general perception is focused on arid and semi-arid regions. Salinization is a complex process involving the movement of salts and water in soils during seasonal cycles and interactions with groundwater. While rainfall, aeolian deposits, mineral weathering, and stored salts are the sources of salts, surface and groundwaters can redistribute the accumulated salts and may also provide additional sources. Sodium salts dominate in many saline soils of the world, but salts of other cations such as calcium, magnesium, and iron are also found in specific locations. Different types of salinization with a prevalence of sodium salts affect about 30% of the land area in Australia. While more attention is given to groundwater-associated salinity and irrigation salinity, which affects about 16% of the agricultural area, recent investigations suggest that 67% of the agricultural area has a potential for "transient salinity", a type of non-groundwater-associated salinity. Agricultural soils in Australia, being predominantly sodic, accumulate salts under seasonal fluctuations and have multiple subsoil constraints such as alkalinity, acidity, sodicity, and toxic ions. This paper examines soil processes that dictate the exact edaphic environment upon which root functions depend and can help in research on plant improvement. PMID:16510516

  12. Fluid source and pressure temperature conditions of high-salinity fluids in syn-tectonic veins from the Northeastern Apuan Alps (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Montomoli, Chiara; Ruggieri, Giovanni; Carosi, Rodolfo; Dini, Andrea; Genovesi, Marianna

    the high-salinity fluids found in the syn-tectonic veins: the high-salinity and NaCl-rich nature of the trapped fluids suggest that the original metamorphic fluids interacted with evaporite levels present at the base of the Tuscan Nappe, overlying Apuan Alps metamorphic Units. These fluids then infiltrated downward, possibly through shear zones crosscutting the stratigraphic sequence, into the syn-tectonic veins and interacted with the host-rocks to produce a local element mobilization and their precipitation in the vein minerals; as a result the latter reflect the mineralogy of the host-rocks.

  13. Associations between land use and Perkinsus marinus infection of eastern oysters in a high salinity, partially urbanized estuary

    USGS Publications Warehouse

    Gray, Brian R.; Bushek, David; Drane, J. Wanzer; Porter, Dwayne

    2009-01-01

    Infection levels of eastern oysters by the unicellular pathogen Perkinsus marinus have been associated with anthropogenic influences in laboratory studies. However, these relationships have been difficult to investigate in the field because anthropogenic inputs are often associated with natural influences such as freshwater inflow, which can also affect infection levels. We addressed P. marinus-land use associations using field-collected data from Murrells Inlet, South Carolina, USA, a developed, coastal estuary with relatively minor freshwater inputs. Ten oysters from each of 30 reefs were sampled quarterly in each of 2 years. Distances to nearest urbanized land class and to nearest stormwater outfall were measured via both tidal creeks and an elaboration of Euclidean distance. As the forms of any associations between oyster infection and distance to urbanization were unknown a priori, we used data from the first and second years of the study as exploratory and confirmatory datasets, respectively. With one exception, quarterly land use associations identified using the exploratory dataset were not confirmed using the confirmatory dataset. The exception was an association between the prevalence of moderate to high infection levels in winter and decreasing distance to nearest urban land use. Given that the study design appeared adequate to detect effects inferred from the exploratory dataset, these results suggest that effects of land use gradients were largely insubstantial or were ephemeral with duration less than 3 months.

  14. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses.

    PubMed

    Rabbani, M Ashiq; Maruyama, Kyonoshin; Abe, Hiroshi; Khan, M Ayub; Katsura, Koji; Ito, Yusuke; Yoshiwara, Kyoko; Seki, Motoaki; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2003-12-01

    To identify cold-, drought-, high-salinity-, and/or abscisic acid (ABA)-inducible genes in rice (Oryza sativa), we prepared a rice cDNA microarray including about 1700 independent cDNAs derived from cDNA libraries prepared from drought-, cold-, and high-salinity-treated rice plants. We confirmed stress-inducible expression of the candidate genes selected by microarray analysis using RNA gel-blot analysis and finally identified a total of 73 genes as stress inducible including 58 novel unreported genes in rice. Among them, 36, 62, 57, and 43 genes were induced by cold, drought, high salinity, and ABA, respectively. We observed a strong association in the expression of stress-responsive genes and found 15 genes that responded to all four treatments. Venn diagram analysis revealed greater cross talk between signaling pathways for drought, ABA, and high-salinity stresses than between signaling pathways for cold and ABA stresses or cold and high-salinity stresses in rice. The rice genome database search enabled us not only to identify possible known cis-acting elements in the promoter regions of several stress-inducible genes but also to expect the existence of novel cis-acting elements involved in stress-responsive gene expression in rice stress-inducible promoters. Comparative analysis of Arabidopsis and rice showed that among the 73 stress-inducible rice genes, 51 already have been reported in Arabidopsis with similar function or gene name. Transcriptome analysis revealed novel stress-inducible genes, suggesting some differences between Arabidopsis and rice in their response to stress.

  15. Low-Flammability PTFE for High-Oxygen Environments

    NASA Technical Reports Server (NTRS)

    Walle, E.; Fallon, B.; Sheppard, A.

    1986-01-01

    Modified forming process removes volatile combustible materials. Flammability of cable-wrapping tape reduced by altering tape-manufacturing process. In new manufacturing process, tape formed by proprietary process of screw extrusion, followed by washing in solvent and drying. Tape then wrapped as before. Spectrogram taken after extrusion, washing, and drying shows lower hydrocarbon content. PTFE formed by new process suited to oxygen-rich environments. Safe in liquid oxygen of Space Shuttle tank and in medical uses; thin-wall shrinkable tubing in hospital test equipment, surgical instruments, and implants.

  16. Investigation of high voltage spacecraft system interactions with plasma environments

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Berkopec, F. D.; Purvis, C. K.; Grier, N.; Staskus, J. V.

    1978-01-01

    An experimental investigation was undertaken for insulator and conductor test surfaces biased up to + or - 1kV in a simulated low earth orbit charged particle environment. It was found that these interactions are controlled by the insulator surfaces surrounding the biased conductors. For positive applied voltages the electron current collection can be enhanced by the insulators. For negative applied voltages the insulator surface confines the voltage to the conductor region. Understanding these interactions and the technology to control their impact on system operation is essential to the design of solar cell arrays for ion drive propulsion applications that use direct drive power processing.

  17. Archaeal viruses from Yellowstone’s high temperature environments

    SciTech Connect

    M. Young; B. Wiedenheft; J. Snyder; J. Spuhler; F. Roberto; T. Douglas

    2005-01-01

    In general, our understanding of Archaea lags far behind our knowledge of the other two domains of life—Bacteria and Eukarya. Unlike the other domains of life, very few viruses of Archaea have been characterized. Of the approximately 4000 viruses described to date, only 36 are associated with archaeal hosts--many of these from thermophilic Crenarchaeota. In this work we describe the discovery, isolation and preliminary characterization of viruses and novel virus-like particles isolated directly from diverse thermal environments in Yellowstone National Park.

  18. Identification of Ice Plant (Mesembryanthemum crystallinum L.) MicroRNAs Using RNA-Seq and Their Putative Roles in High Salinity Responses in Seedlings.

    PubMed

    Chiang, Chih-Pin; Yim, Won C; Sun, Ying-Hsuan; Ohnishi, Miwa; Mimura, Tetsuro; Cushman, John C; Yen, Hungchen E

    2016-01-01

    The halophyte Mesembryanthemum crystallinum (common or crystalline ice plant) is a useful model for studying molecular mechanisms of salt tolerance. The morphology, physiology, metabolism, and gene expression of ice plant have been studied and large-scale analyses of gene expression profiling have drawn an outline of salt tolerance in ice plant. A rapid root growth to a sudden increase in salinity was observed in ice plant seedlings. Using a fluorescent dye to detect Na(+), we found that ice plant roots respond to an increased flux of Na(+) by either secreting or storing Na(+) in specialized cells. High-throughput sequencing was used to identify small RNA profiles in 3-day-old seedlings treated with or without 200 mM NaCl. In total, 135 conserved miRNAs belonging to 21 families were found. The hairpin precursor of 19 conserved mcr-miRNAs and 12 novel mcr-miRNAs were identified. After 6 h of salt stress, the expression of most mcr-miRNAs showed decreased relative abundance, whereas the expression of their corresponding target genes showed increased mRNA relative abundance. The cognate target genes are involved in a broad range of biological processes: transcription factors that regulate growth and development, enzymes that catalyze miRNA biogenesis for the most conserved mcr-miRNA, and proteins that are involved in ion homeostasis and drought-stress responses for some novel mcr-miRNAs. Analyses of the functions of target genes revealed that cellular processes, including growth and development, metabolism, and ion transport activity are likely to be enhanced in roots under salt stress. The expression of eleven conserved miRNAs and two novel miRNAs were correlated reciprocally with predicted targets within hours after salt stress exposure. Several conserved miRNAs have been known to regulate root elongation, root apical meristem activity, and lateral root formation. Based upon the expression pattern of miRNA and target genes in combination with the observation of Na

  19. Identification of Ice Plant (Mesembryanthemum crystallinum L.) MicroRNAs Using RNA-Seq and Their Putative Roles in High Salinity Responses in Seedlings

    DOE PAGES

    Chiang, Chih-Pin; Yim, Won C.; Sun, Ying-Hsuan; Ohnishi, Miwa; Mimura, Tetsuro; Cushman, John C.; Yen, Hungchen E.

    2016-08-09

    The halophyte Mesembryanthemum crystallinum (common or crystalline ice plant) is a useful model for studying molecular mechanisms of salt tolerance. The morphology, physiology, metabolism, and gene expression of ice plant have been studied and large-scale analyses of gene expression profiling have drawn an outline of salt tolerance in ice plant. A rapid root growth to a sudden increase in salinity was observed in ice plant seedlings. Using a fluorescent dye to detect Na+, we found that ice plant roots respond to an increased flux of Na+ by either secreting or storing Na+ in specialized cells. High-throughput sequencing was used tomore » identify small RNA profiles in 3-day-old seedlings treated with or without 200 mM NaCl. In total, 135 conserved miRNAs belonging to 21 families were found. The hairpin precursor of 19 conserved mcr-miRNAs and 12 novel mcr-miRNAs were identified. After 6 h of salt stress, the expression of most mcr-miRNAs showed decreased relative abundance, whereas the expression of their corresponding target genes showed increased mRNA relative abundance. The cognate target genes are involved in a broad range of biological processes: transcription factors that regulate growth and development, enzymes that catalyze miRNA biogenesis for the most conserved mcr-miRNA, and proteins that are involved in ion homeostasis and drought-stress responses for some novel mcr-miRNAs. Analyses of the functions of target genes revealed that cellular processes, including growth and development, metabolism, and ion transport activity are likely to be enhanced in roots under salt stress. The expression of eleven conserved miRNAs and two novel miRNAs were correlated reciprocally with predicted targets within hours after salt stress exposure. Several conserved miRNAs have been known to regulate root elongation, root apical meristem activity, and lateral root formation. Based upon the expression pattern of miRNA and target genes in combination with the observation of Na

  20. Identification of Ice Plant (Mesembryanthemum crystallinum L.) MicroRNAs Using RNA-Seq and Their Putative Roles in High Salinity Responses in Seedlings

    PubMed Central

    Chiang, Chih-Pin; Yim, Won C.; Sun, Ying-Hsuan; Ohnishi, Miwa; Mimura, Tetsuro; Cushman, John C.; Yen, Hungchen E.

    2016-01-01

    The halophyte Mesembryanthemum crystallinum (common or crystalline ice plant) is a useful model for studying molecular mechanisms of salt tolerance. The morphology, physiology, metabolism, and gene expression of ice plant have been studied and large-scale analyses of gene expression profiling have drawn an outline of salt tolerance in ice plant. A rapid root growth to a sudden increase in salinity was observed in ice plant seedlings. Using a fluorescent dye to detect Na+, we found that ice plant roots respond to an increased flux of Na+ by either secreting or storing Na+ in specialized cells. High-throughput sequencing was used to identify small RNA profiles in 3-day-old seedlings treated with or without 200 mM NaCl. In total, 135 conserved miRNAs belonging to 21 families were found. The hairpin precursor of 19 conserved mcr-miRNAs and 12 novel mcr-miRNAs were identified. After 6 h of salt stress, the expression of most mcr-miRNAs showed decreased relative abundance, whereas the expression of their corresponding target genes showed increased mRNA relative abundance. The cognate target genes are involved in a broad range of biological processes: transcription factors that regulate growth and development, enzymes that catalyze miRNA biogenesis for the most conserved mcr-miRNA, and proteins that are involved in ion homeostasis and drought-stress responses for some novel mcr-miRNAs. Analyses of the functions of target genes revealed that cellular processes, including growth and development, metabolism, and ion transport activity are likely to be enhanced in roots under salt stress. The expression of eleven conserved miRNAs and two novel miRNAs were correlated reciprocally with predicted targets within hours after salt stress exposure. Several conserved miRNAs have been known to regulate root elongation, root apical meristem activity, and lateral root formation. Based upon the expression pattern of miRNA and target genes in combination with the observation of Na

  1. Hydrothermal Vent Sampler: Does Life Exist in High Temperature Environments?

    NASA Technical Reports Server (NTRS)

    Rivadeneyra, Cesar R.

    2005-01-01

    The main purpose of this research is to search for the existence of biomass under extreme temperature and pressure conditions to determine the upper bounds of environments on which life can exist. Vents are, simply put, underwater volcano openings located at the bottom of the sea. The conditions at these locations are considerably extreme with pressures of up to 10,000 psi, and enormous temperature gradients. The temperature of the water near these vents is around 400 C, while that of the surrounding water is about 3 C. The extremity of these conditions makes it hard to estimate the existence of life in those environments. I n order to find whether such existence happens, we need to search for biomass inside these vents. The vent sampler is a device that has the purpose of safely and accurately collecting this biomass for examination. This sampler is constituted of a Series of filters of the order of 100-0.2 microns in size. Since this is a 3-year project, it has not concluded yet; however, during the time I contributed to this project, I worked with the mechanical design of this sampler device including the selection, assembly, and testing of the various subsystems and the design and construction of the electronics enclosure.

  2. The effects of olive mill waste compost and poultry manure on the availability and plant uptake of nutrients in a highly saline soil.

    PubMed

    Walker, David J; Bernal, M Pilar

    2008-01-01

    The effects of a compost (produced from by-products of the olive oil industry) and a poultry manure on mineral ion solubility and exchangeability in a highly saline agricultural soil (electrical conductivity for a 1:5 soil:water extract=1.85 dS m(-1)) from Murcia (SE Spain) were studied. The organic amendments did not change significantly the soil electrical conductivity or the soluble Na(+), Ca(2+) or Mg(2+). Only soluble K(+) increased, due to the K(+) supplied by the amendments. The cation exchange capacity increased in treated soils, the exchange complex being mainly saturated with Ca(2+), Mg(2+) and K(+). However, Na(+) was not retained in the exchange sites, and the sodium absorption ratio remained low. The compost and manure increased markedly the shoot growth of the salt-tolerant Beta maritima L. (sea beet) and Beta vulgaris L. (sugar beet). For B. maritima, this seemed to be related to decreases in the shoot concentrations of Na(+) and Cl(-) and increases in K(+) and H(2)PO(4)(-). In the case of B. vulgaris, increases in shoot H(2)PO(4)(-) and B and, for manure-treated soil, a decrease in shoot Na(+) may have been involved. Cultivation of tomato (Lycopersicon esculentum Mill. cv. Moneymaker) in the soil used previously for B. vulgaris indicated that the effects of the manure on tissue cation concentrations were longer-lasting than those of the compost.

  3. The effects of olive mill waste compost and poultry manure on the availability and plant uptake of nutrients in a highly saline soil.

    PubMed

    Walker, David J; Bernal, M Pilar

    2008-01-01

    The effects of a compost (produced from by-products of the olive oil industry) and a poultry manure on mineral ion solubility and exchangeability in a highly saline agricultural soil (electrical conductivity for a 1:5 soil:water extract=1.85 dS m(-1)) from Murcia (SE Spain) were studied. The organic amendments did not change significantly the soil electrical conductivity or the soluble Na(+), Ca(2+) or Mg(2+). Only soluble K(+) increased, due to the K(+) supplied by the amendments. The cation exchange capacity increased in treated soils, the exchange complex being mainly saturated with Ca(2+), Mg(2+) and K(+). However, Na(+) was not retained in the exchange sites, and the sodium absorption ratio remained low. The compost and manure increased markedly the shoot growth of the salt-tolerant Beta maritima L. (sea beet) and Beta vulgaris L. (sugar beet). For B. maritima, this seemed to be related to decreases in the shoot concentrations of Na(+) and Cl(-) and increases in K(+) and H(2)PO(4)(-). In the case of B. vulgaris, increases in shoot H(2)PO(4)(-) and B and, for manure-treated soil, a decrease in shoot Na(+) may have been involved. Cultivation of tomato (Lycopersicon esculentum Mill. cv. Moneymaker) in the soil used previously for B. vulgaris indicated that the effects of the manure on tissue cation concentrations were longer-lasting than those of the compost. PMID:17275292

  4. Characterization of salt-tolerant β-glucosidase with increased thermostability under high salinity conditions from Bacillus sp. SJ-10 isolated from jeotgal, a traditional Korean fermented seafood.

    PubMed

    Lee, Jong Min; Kim, Yu-Ri; Kim, Joong Kyun; Jeong, Gwi-Taek; Ha, Jeong-Chul; Kong, In-Soo

    2015-07-01

    The β-glucosidase gene, bglC, was cloned from Bacillus sp. SJ-10 isolated from the squid jeotgal. Recombinant BglC protein overexpression was induced in Escherichia coli. The optimal pH and temperature of the enzyme, using p-nitrophenyl-β-D-glucopyranoside (pNPβGlc) as a substrate, were pH 6 and 40 °C, respectively. Enzymatic activity increased by 3.3- and 3.5-fold in the presence of 15% NaCl and KCl, respectively. Furthermore, enzyme thermostability improved in the presence of NaCl or KCl. At 45 °C in the presence of salts, the enzyme was stable for 2 h and maintained 80% activity. In the absence of salts, BglC completely lost activity after 110 min at 45 °C. Comparison of the kinetic parameters at various salt concentrations revealed that BglC had approximately 1.5- and 1.2-fold higher affinity and hydrolyzed pNPβGlc 1.9- and 2.1-fold faster in the presence of 15% NaCl and KCl, respectively. Additionally, the Gibb's free energy for denaturation was higher in the presence of 15% salt than in the absence of salt at 45 and 50 °C. Since enzymatic activity and thermostability were enhanced under high salinity conditions, BglC is an ideal salt-tolerant enzyme for further research and industrial applications.

  5. Characteristics of a piezoresistive accelerometer in high frequency, high shock environments

    SciTech Connect

    Bateman, V.I.; Davie, N.T.; Brown, F.A.

    1993-12-31

    The characteristics of a piezoresistive accelerometer in shock environments are being studied at Sandia National Laboratories in the Mechanical Shock Testing Laboratory. A Hopkinson bar capability has been developed to extend our understanding of the piezoresistive accelerometer with and without mechanical isolation in the high frequency, high shock environments where measurements are being made. Two different Hopkinson bar materials are being used: titanium and beryllium. The characteristics of the piezoresistive accelerometer for frequencies of DC-10 kHz and shock magnitudes of up to 4,000 g as determined from measurements with a titanium Hopkinson bar are presented. The SNL uniaxial shock isolation technique has demonstrated acceptable characteristics for a temperature range of {minus}50{degree}F to +186{degree}F and a frequency bandwidth of DC to 10 kHz. These characteristics have been verified by the calibration of the Hopkinson bar used for accelerometer testing. The beryllium Hopkinson bar configuration is described. Preliminary characteristics of the piezoresistive accelerometer at a nominal shock level of 17,000 g for a frequency range of DC-50 kHz are presented.

  6. Some Determinants of Classroom Psychosocial Environment in Australian Catholic High Schools: A Multilevel Analysis

    ERIC Educational Resources Information Center

    Dorman, Jeffrey P.

    2009-01-01

    This research investigated some determinants of classroom environment in Australian Catholic high schools. The Catholic School Classroom Environment Questionnaire (CSCEQ) was used to assess 7 dimensions of the classroom psychosocial environment: student affiliation, interactions, cooperation, task orientation, order and organization,…

  7. Effects of salinity, temperature, and cadmium stress on cadmium-binding protein in the grass shrimp, Palaemonetes pugio

    SciTech Connect

    Howard, C.L.

    1988-01-01

    In 96-hour bioassays, shrimp were exposed to zero or one of three levels of cadmium, under one of six different salinity and temperature regimes. CdBP concentrations were quantified in survivors from the 24 exposure groups. Salinity and temperature did not affect survivorship unless the shrimp were also exposed to cadmium. Grass shrimp were most sensitive to cadmium at low salinity-high temperature, and least sensitive at high salinity-low temperature. The incidence of cadmium-associated black lesions in gill tissue was influenced by salinity and temperature stress. P. pugio produced a 10,000 dalton metallothionein-like CdBP when exposed to at least 0.1 mg Cd{sup 2+}/L for 96 hours. Accumulation of CdBP was increased with increases in the exposure cadmium level, increases in temperature and decreases in salinity, independently and in conjunction with one another. Maximum CdBP concentrations occurred in grass shrimp that survived the salinity-temperature-cadmium conditions creating maximum stress as measured by highest mortality, not necessarily in shrimp exposed to the highest cadmium levels. The potential utility of this method as a monitor of physiological stress in estuarine biota inhabiting metal-polluted environments is discussed.

  8. [Indices selection and comprehensive evaluation of salinity tolerance for peanut varieties].

    PubMed

    Zhang, Zhi-Meng; Ci, Dun-Wei; Ding, Hong; Song, Wen-Wu; Fu, Fang-Ping; Kang, Tao; Dai, Liang-Xiang

    2013-12-01

    A total of two hundred peanut varieties (lines) were exposed to different salt concentrations under pot cultivation, to evaluate salinity tolerance by indices such as emergence, morphology and biomass accumulation from emergence to seedling stage. The results showed that, as the salinity concentration increased, the emergence time was prolonged, plant morphology establishment was inhibited seriously, and biomass accumulation was reduced. The optimal concentration for evaluating salinity tolerance was 0.30%-0.45%. Ten indices were contributed to the mean membership function value by the membership function analysis. According to the correlation coefficient between indices and the mean membership function value, plant fresh mass, shoot fresh mass, root fresh mass, root dry mass, plant height and stem height could be the first selected indices for evaluating salinity tolerance of peanut plant. Plant dry mass, shoot dry mass, taproot length and emergence speed could be the second selected indices to comprehensively evaluate salinity tolerance of peanut plant. The 200 varieties were divided into 4 groups at different salinity concentrations, i. e. high salinity tolerance, salinity tolerance, salinity sensitivity, and high salinity sensitivity. Number of salinity tolerant varieties was decreased with increasing salinity concentration while the salinity sensitive one was increased. Salinity tolerance of some varieties showed the similarity (tolerant or sensitive) under different salinity stresses. Some varieties showed different tolerance under different salinity stresses, i. e. tolerance at low salinity concentration while sensitivity at high salinity concentration. PMID:24697069

  9. Sea Surface Salinity

    NASA Video Gallery

    The heat of the sun also forces evaporation at the ocean's surface, which puts water vapor into the atmosphere but leaves minerals and salts behind, keeping the ocean salty. The salinity of the oce...

  10. Salinity determination using NIRA

    SciTech Connect

    Hirschfeld, T.

    1985-07-01

    The determination of salinity of water by near infrared spectroscopic techniques is discussed. The concept of 'spectral shift reagents' is used and sufficiently rapid computer calculations yield the concentrations of Naci from measured absorbances at selected wavelengths. (AIP)

  11. Generation of High Current Densities by Pure Cultures of Anode-Respiring Geoalkalibacter spp. under Alkaline and Saline Conditions in Microbial Electrochemical Cells

    PubMed Central

    Badalamenti, Jonathan P.; Krajmalnik-Brown, Rosa; Torres, César I.

    2013-01-01

    ABSTRACT Anode-respiring bacteria (ARB) generate electric current in microbial electrochemical cells (MXCs) by chann