Robot Geometry and the High School Curriculum.
ERIC Educational Resources Information Center
Meyer, Walter
1988-01-01
Description of the field of robotics and its possible use in high school computational geometry classes emphasizes motion planning exercises and computer graphics displays. Eleven geometrical problems based on robotics are presented along with the correct solutions and explanations. (LRW)
A High School Level Course On Robot Design And Construction
NASA Astrophysics Data System (ADS)
Sadler, Paul M.; Crandall, Jack L.
1984-02-01
The Robotics Design and Construction Class at Sehome High School was developed to offer gifted and/or highly motivated students an in-depth introduction to a modern engineering topic. The course includes instruction in basic electronics, digital and radio electronics, construction skills, robotics literacy, construction of the HERO 1 Heathkit Robot, computer/ robot programming, and voice synthesis. A key element which leads to the success of the course is the involvement of various community assets including manpower and financial assistance. The instructors included a physics/electronics teacher, a computer science teacher, two retired engineers, and an electronics technician.
Gains in the Education of Mathematics and Science GEMS: Teaching Robotics to High School Students
2013-01-01
find amusing but that we find of less educational value, like having the robots say comical things. Those who have more teaching time would doubtless...Gains in the Education of Mathematics and Science GEMS: Teaching Robotics to High School Students by Edward M. Measure and Edward Creegan...TR-6220 January 2013 Gains in the Education of Mathematics and Science (GEMS): Teaching Robotics to High School Students Edward M
La Vida Robot - High School Engineering Program Combats Engineering Brain Drain
Cameron, Allan; Lajvardi, Fredi
2018-05-04
Carl Hayden High School has built an impressive reputation with its robotics club. At a time when interest in science, math and engineering is declining, the Falcon Robotics club has young people fired up about engineering. Their program in underwater robots (MATE) and FIRST robotics is becoming a national model, not for building robots, but for building engineers. Teachers Fredi Lajvardi and Allan Cameron will present their story (How kids 'from the mean streets of Phoenix took on the best from M.I.T. in the national underwater bot championship' - Wired Magazine, April 2005) and how every student needs the opportunity to 'do real engineering.'
La Vida Robot - High School Engineering Program Combats Engineering Brain Drain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cameron, Allan; Lajvardi, Fredi
Carl Hayden High School has built an impressive reputation with its robotics club. At a time when interest in science, math and engineering is declining, the Falcon Robotics club has young people fired up about engineering. Their program in underwater robots (MATE) and FIRST robotics is becoming a national model, not for building robots, but for building engineers. Teachers Fredi Lajvardi and Allan Cameron will present their story (How kids 'from the mean streets of Phoenix took on the best from M.I.T. in the national underwater bot championship' - Wired Magazine, April 2005) and how every student needs the opportunitymore » to 'do real engineering.'« less
Five Years of the RoBOT "Rocks Beneath Our Toes" High School Outreach Program
NASA Astrophysics Data System (ADS)
Baxter, E. F.
2011-12-01
The "Rocks Beneath Our Toes" or RoBOT Program began in 2006 as part of an NSF CAREER award through the Geochemistry and Petrology Program. The educational outreach program engages Boston area high school students in a hands on study of rocks and minerals collected in their communities. The goal is to provide high school students a unique window into modern scientific methods of geochemistry and mineralogy and create a higher level of interest and awareness of geoscience amongst Massachusetts secondary school students who are less often exposed to earth science coursework. Beginning with a joint field trip to sampling sites identified by participants, high school students work with Boston University undergraduates enrolled in Mineralogy to analyze their samples in thin section. During the field trip, each BU undergraduate is paired with a high school student. The assignment of student pairings (started in year 2) dramatically increased student interactions and enjoyment. The program culminates with a visit by the high school group to tour BU's lab facilities and work with the undergraduates using the petrographic microscopes to explore their rock. At this visit, BU undergraduates present their semester's work in one-on-one powerpoint presentations from which discussion and microscope work follow. Thus far, >50 high school students, >40 undergraduates, and 7 high school educators were involved in the program. This included participants from three different suburban Boston area high schools and with students enrolled in the BU "Upward Bound" program: an existing program designed to enhance educational opportunities for Boston inner city high school students. Participant reviews indicate great success in achieving the program's goals. Notably, both BU undergraduates and high school students rated the opportunities for interaction with eachother among the best aspects of RoBOT. On a scale of 1 to 10, BU undergraduates rated the following four categories highest
Robotics Workshop for High School and College Instructors
NASA Astrophysics Data System (ADS)
Holberg, Kathy; Reimers, Peggy
2010-03-01
Twenty-first century learners need critical thinking and effective communications skills. Practicing higher level cognitive skills are fun and engaging for students and teachers using LEGO Robotics. Come delve into the latest robotics technology from LEGO Education. Participants will construct and program robots with the new Technic Building System and NXT-G programming software. Attendees will take back instructional strategies and ideas on how to implement robotics into their classroom, school or district. Come, connect, explore, learn, enhance and have fun. Limited to 18 participants - 3 hours - Cost: 2.00
NASA Astrophysics Data System (ADS)
Koumoullos, Michael
This research study aimed to identify any correlation between participation in afterschool robotics at the high school level and academic performance. Through a sample of N=121 students, the researcher examined the grades and attendance of students who participated in a robotics program in the 2011-2012 school year. The academic record of these students was compared to a group of students who were members of school based sports teams and to a group of students who were not part of either of the first two groups. Academic record was defined as overall GPA, English grade, mathematics grade, mathematics-based standardized state exam scores, and attendance rates. All of the participants of this study were students in a large, urban career and technical education high school. As STEM (Science, Technology, Engineering, and Mathematics) has come to the forefront of educational focus, robotics programs have grown in quantity. Starting robotics programs requires a serious commitment of time, money, and other resources. The benefits of such programs have not been well analyzed. This research study had three major goals: to identify the academic characteristics of students who are drawn to robotics programs, to identify the academic impact of the robotics program during the robotics season, and to identify the academic impact of the robotics program at the end of the school year. The study was a non-experiment. The researchers ran MANOVS, repeated measures analyses, an ANOVA, and descriptive statistics to analyze the data. The data showed that students drawn to robotics were academically stronger than students who did not participate in robotics. The data also showed that grades and attendance did not significantly improve or degrade either during the robotics season or at year-end. These findings are significant because they show that robotics programs attract students who are academically strong. This information can be very useful in high school articulation programs
A Practice of Rescue Robot Contest in Junior High Schools
NASA Astrophysics Data System (ADS)
Kawada, Kazuo; Nagamatsu, Masayasu; Yamamoto, Toru
The rescue robot contest for junior high school students was created to give students an opportunity to design a robot to rescue the victims under large scale disasters. The activity was not only intended as an humanitarian project but also aiming at students to : (1) take the role of victims and imagining the situation from his or her perspective, (2) enhance thinking skills, creativity through the problem solving processes and, (3) work cooperatively in groups. From results of questionnaire for the participated students, important factors for further implementation as curriculum of technology education are implied.
The Effect of Robotics Competitions on High School Students' Attitudes toward Science
ERIC Educational Resources Information Center
Welch, Anita; Huffman, Douglas
2011-01-01
This study was designed to examine the impact of participating in an after-school robotics competition on high school students' attitudes toward science. Specifically, this study used the Test of Science-Related Attitude to measure students' social implications of science, normality of scientists, attitude toward scientific inquiry, adoption of…
ERIC Educational Resources Information Center
Koumoullos, Michael
2013-01-01
This research study aimed to identify any correlation between participation in afterschool robotics at the high school level and academic performance. Through a sample of N = 121 students, the researcher examined the grades and attendance of students who participated in a robotics program in the 2011-2012 school year. The academic record of these…
2017-02-19
software systems: the students design and build robotics software towards real-world applications, without being distracted by hardware issues; (ii) it...high school students require the students to focus on building and integrating the hardware that make up the robot, at the expense of designing and...robotics programs focus on the mechanics; as a result, they do not have room for students to design and implement relatively complex software systems, as
The positive effects of the FIRST high school robotics program
NASA Astrophysics Data System (ADS)
McIntyre, Nancy
The essence of the FIRST Robotics Program comes from the explanation of the acronym, which means For Inspiration and Recognition in Science and Technology. Their vision is to inspire young people, their schools, and communities, an appreciation of science and technology and an understanding that mastering these can enrich the lives of all. Last year I began our school's association with this program. I secured funding from NASA/JPL, attended a workshop and kickoff event, encouraged a team of students, parents, community members, and engineers to come together to design and construct a working, competitive robot in a six week time span. This year I expanded our participation to our 6th grade students. They competed in the FIRST Lego League. As part of my 9th grade science curriculum my students designed and built Panda II in class. The after-school team will submit a 30 second animation, an autocad design, and a team website for competition as well. Our AP art students have been charged with painting our travel crate. I couldn't have been successful without the help and support of a very dedicated JPL engineer who volunteers his time to come to our school to teach our team the technical components.
Building Bridges, Robots, and High Expectations
ERIC Educational Resources Information Center
Bennie, Fiona; Corbett, Charlotte; Palo, Angela
2015-01-01
This article describes an after-school program at the Horace Mann School for the Deaf (HMS), the oldest public day school for deaf students in the United States, where almost half of the student body imagined and created bridge and robotic machines. The Deaf Robotics Engineering and Math Team, or the DREAM Team club, included HMS students in…
Mars Robotics in the Elementary School
NASA Astrophysics Data System (ADS)
Bonett, D.
2003-05-01
Kenneth E. Little Elementary is a public school grades Pre-K to 5th in Bacliff, Texas. It has an ethnically diverse population of one-thousand boys and girls. It is a Title 1 school with eighty-six percent of the students receiving free or reduced meals. K.E. Little has a large at-risk population with a thirty-three percent transition rate. The Young Astronauts @ K.E. Little is an on-going afterschool space science program in it's third year of operation. Thirty students,fourth and fifth grade, were involved in our spring robotics program. Each co-operative group was assigned a LEGO robotics kit to inventory,organize, and familiarize themselves with. Each team made decisions, by consensus, concerning the robots design and capabilities. Students used the Dell Computer Lab on campus to program their robots. Although time did not permit the construction of a simulated Martian landscape, future Young Astronauts will continue this project in January 2004.
Middle School Girls: Perceptions and Experiences with Robotics
ERIC Educational Resources Information Center
Hyun, Tricia
2014-01-01
The purpose of this qualitative case study was to investigate the impact a robotics curriculum might have on the experiences and perceptions of middle school girls in two California classrooms. The research found that middle school girls in two different California classrooms felt that their experiences with robotics were personalized experiences…
2014-03-14
CAPE CANAVERAL, Fla. – Students from Hagerty High School in Oviedo, Fla., participants in FIRST Robotics, show off their robots' capabilities at the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett
Developing Creative Behavior in Elementary School Students with Robotics
ERIC Educational Resources Information Center
Nemiro, Jill; Larriva, Cesar; Jawaharlal, Mariappan
2017-01-01
The School Robotics Initiative (SRI), a problem-based robotics program for elementary school students, was developed with the objective of reaching students early on to instill an interest in Science, Technology, Engineering, and Math disciplines. The purpose of this exploratory, observational study was to examine how the SRI fosters student…
Exploring the Educational Potential of Robotics in Schools: A Systematic Review
ERIC Educational Resources Information Center
Benitti, Fabiane Barreto Vavassori
2012-01-01
This study reviews recently published scientific literature on the use of robotics in schools, in order to: (a) identify the potential contribution of the incorporation of robotics as educational tool in schools, (b) present a synthesis of the available empirical evidence on the educational effectiveness of robotics as an educational tool in…
Software for Secondary-School Learning About Robotics
NASA Technical Reports Server (NTRS)
Shelton, Robert O.; Smith, Stephanie L.; Truong, Dat; Hodgson, Terry R.
2005-01-01
The ROVer Ranch is an interactive computer program designed to help secondary-school students learn about space-program robotics and related basic scientific concepts by involving the students in simplified design and programming tasks that exercise skills in mathematics and science. The tasks involve building simulated robots and then observing how they behave. The program furnishes (1) programming tools that a student can use to assemble and program a simulated robot and (2) a virtual three-dimensional mission simulator for testing the robot. First, the ROVer Ranch presents fundamental information about robotics, mission goals, and facts about the mission environment. On the basis of this information, and using the aforementioned tools, the student assembles a robot by selecting parts from such subsystems as propulsion, navigation, and scientific tools, the student builds a simulated robot to accomplish its mission. Once the robot is built, it is programmed and then placed in a three-dimensional simulated environment. Success or failure in the simulation depends on the planning and design of the robot. Data and results of the mission are available in a summary log once the mission is concluded.
School-based use of a robotic arm system by children with disabilities.
Cook, Albert M; Bentz, Brenda; Harbottle, Norma; Lynch, Cheryl; Miller, Brad
2005-12-01
A robotic arm system was developed for use by children who had very severe motor disabilities and varying levels of cognitive and language skills. The children used the robot in a three-task sequence routine to dig objects from a tub of dry macaroni. The robotic system was used in the child's school for 12-15 sessions over a period of four weeks. Goal attainment scaling indicated improvement in all children in operational competence of the robot, and varying levels of gain in functional skill development with the robot and in carryover to the classroom from the robot experiments. Teacher interviews revealed gains in classroom participation, expressive language (vocalizations, symbolic communication), and a high degree of interest by the children in the robot tasks. The teachers also recommended that the robot should have more color, contrast and character, as well as generating sounds and/or music for student cues. They also felt that the robotic system accuracy should be increased so that teacher assistance is not necessary to complete the task.
ERIC Educational Resources Information Center
Welch, Anita G.
2010-01-01
This study examined high school students' attitudes toward science after participating in a robotics competition. Specifically, this study used the Test of Science Related Attitudes (TOSRA) to measure students' attitudes toward science in seven categories: Social Implications of Science, Normality of Scientists, Attitude toward Scientific Inquiry,…
Transformative Multicultural Science curriculum: A case study of middle school robotics
NASA Astrophysics Data System (ADS)
Grimes, Mary Katheryn
Multicultural Science has been a topic of research and discourse over the past several years. However, most of the literature concerning this topic (or paradigm) has centered on programs in tribal or Indigenous schools. Under the framework of instructional congruence, this case study explored how elementary and middle school students in a culturally diverse charter school responded to a Multicultural Science program. Furthermore, this research sought to better understand the dynamics of teaching and learning strategies used within the paradigm of Multicultural Science. The school's Robotics class, a class typically stereotyped as fitting within the misconceptions associated with the Western Modern Science paradigm, was the center of this case study. A triangulation of data consisted of class observations throughout two semesters; pre and post student science attitude surveys; and interviews with individual students, Robotic student teams, the Robotics class instructor, and school administration. Three themes emerged from the data that conceptualized the influence of a Multicultural Science curriculum with ethnically diverse students in a charter school's Robotics class. Results included the students' perceptions of a connection between science (i.e., Robotics) and their personal lives, a positive growth in the students' attitude toward science (and engineering), and a sense of personal empowerment toward being successful in science. However, also evident in the findings were the students' stereotypical attitudes toward science (and scientists) and their lack of understanding of the Nature of Science. Implications from this study include suggestions toward the development of Multicultural Science curricula in public schools. Modifications in university science methods courses to include the Multicultural Science paradigm are also suggested.
FIRST Robotics, Gulfport High, StenniSphere, Bo Clarke, mentor
NASA Technical Reports Server (NTRS)
2006-01-01
Bo Clarke, mentor for Gulfport High School's Team Fusion, offers strategy tips to students and coaches during the FIRST Robotics Competition kickoff held at StenniSphere on Jan. 7. Clarke is the lead building and infrastructure specialist for NASA's Shared Services Center at Stennis Space Center.
FIRST Robotics, Gulfport High, StenniSphere, Bo Clarke, mentor
2006-01-07
Bo Clarke, mentor for Gulfport High School's Team Fusion, offers strategy tips to students and coaches during the FIRST Robotics Competition kickoff held at StenniSphere on Jan. 7. Clarke is the lead building and infrastructure specialist for NASA's Shared Services Center at Stennis Space Center.
Experiential Learning of Electronics Subject Matter in Middle School Robotics Courses
ERIC Educational Resources Information Center
Rihtaršic, David; Avsec, Stanislav; Kocijancic, Slavko
2016-01-01
The purpose of this paper is to investigate whether the experiential learning of electronics subject matter is effective in the middle school open learning of robotics. Electronics is often ignored in robotics courses. Since robotics courses are typically comprised of computer-related subjects, and mechanical and electrical engineering, these…
Robots: A High Tech Tool for the Learner.
ERIC Educational Resources Information Center
Gray, Robert A.
1988-01-01
Discussion of the development of robots and their use in industry and education emphasizes their potential as instructional tools. Current use in elementary and secondary schools and with gifted students is described; hardware systems are explained; teaching strategies are discussed; and guidelines are presented to improve robotic literacy…
The Baltimore City Schools Middle School STEM Summer Program with VEX Robotics
ERIC Educational Resources Information Center
Mac Iver, Martha Abele; Mac Iver, Douglas J.
2015-01-01
In 2011 Baltimore City Schools submitted a successful proposal for an Investing in Innovations (i3) grant to offer a three year (2012-2014) summer program designed to expose rising sixth through eighth grade students to VEX robotics. The i3-funded Middle School Science, Technology, Engineering and Mathematics (STEM) Summer Learning Program was…
NASA, Engineering, and Swarming Robots
NASA Technical Reports Server (NTRS)
Leucht, Kurt
2015-01-01
This presentation is an introduction to NASA, to science and engineering, to biologically inspired robotics, and to the Swarmie ant-inspired robot project at KSC. This presentation is geared towards elementary school students, middle school students, and also high school students. This presentation is suitable for use in STEM (science, technology, engineering, and math) outreach events. The first use of this presentation will be on Oct 28, 2015 at Madison Middle School in Titusville, Florida where the author has been asked by the NASA-KSC Speakers Bureau to speak to the students about the Swarmie robots.
ERIC Educational Resources Information Center
Rursch, Julie A.; Luse, Andy; Jacobson, Doug
2010-01-01
The IT-Adventures program is dedicated to increasing interest in and awareness of information technology among high school students using inquiry-based learning focused on three content areas: cyber defense, game design programming, and robotics. The program combines secondary, post-secondary, and industry partnerships in educational programming,…
ERIC Educational Resources Information Center
Tally, Beth; Laverdure, Nate
2006-01-01
Chantilly High School Academy Robotics Team Number 612 from Chantilly, Virginia, is an award-winning team of high school students actively involved with FIRST (For Inspiration and Recognition of Science and Technology), a multinational nonprofit organization that inspires students to transform culture--making science, math, engineering and…
2016-03-06
HIGH SCHOOL STUDENTS FROM NORTH ALABAMA GATHER AT THE U.S. SPACE AND ROCKET CENTER'S DAVIDSON CENTER FOR THE "ROBOTS TO ROCKET CITY" EVENT SHOWCASING THEIR INDIVIDUAL ROBOTS PRIOR TO LATER COMPETITIONS.
2012-03-08
Spectators crew on teams during the 2012 FIRST (For Inspiration and Recognition of Science and Technology) Robotics Bayou Regional Competition March 15-17, 2012, in Kenner, La. Students from 49 high school teams in six states participated in the annual robotics tournament.
Team 393 robot scores in FIRST competition
NASA Technical Reports Server (NTRS)
2000-01-01
The Bee Bots team (393) robot, named Dr. Beevil, scores by gathering balls. The team is composed of students from Morristown Jr. and Sr. high schools in Morristown, Ind., and is co-sponsored by NASA Kennedy Space Center and IPT Inc. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville.
Real and virtual robotics in mathematics education at the school-university transition
NASA Astrophysics Data System (ADS)
Samuels, Peter; Haapasalo, Lenni
2012-04-01
LOGO and turtle graphics were an influential movement in primary school mathematics education in the 1980s and 1990s. Since then, technology has moved forward, both in terms of its sophistication and pedagogical potential; and learner experiences, preferences and ways of thinking have changed dramatically. Based on the authors' previous work and a literature review, this article revisits the subject of enhancing mathematics education through educational robotics kits and virtual robotic animations by proposing their simultaneous deployment at the school-university transition. The rationale for such an application is argued and an evaluation framework for these technologies is proposed. Two educational robotic kits and a virtual environment supporting robotic animations are evaluated both in terms of their feasibility of deployment and their educational effectiveness. Finally, the evaluation of learning experiences when deploying the proposed pedagogical approach is discussed.
2010-03-05
Students from McKinley Tech High School in Washington, D.C., work on their robot in the "Pit Area" as they prepare to compete in the First Robotics Competition, Friday, March 5, 2010, in Washington. The student competition is called "For Inspiration and Recognition of Science and Technology," or FIRST. The program was founded in 1989 by inventor Dean Kamen to inspire an appreciation of science and technology in young people, their schools and communities. Photo Credit: (NASA/Paul E. Alers)
ERIC Educational Resources Information Center
Cobb, Cheryl
2004-01-01
This article describes BEST (Boosting Engineering, Science, and Technology), a hands-on robotics program founded by Texas Instruments engineers Ted Mahler and Steve Marum. BEST links educators with industry to provide middle and high school students with a peek into the exciting world of robotics, with the goal of inspiring and interesting…
Sample Return Robot Centennial Challenge
2012-06-16
Children visiting the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event try to catch basketballs being thrown by a robot from FIRST Robotics at Burncoat High School (Mass.) on Saturday, June 16, 2012 at WPI in Worcester, Mass. The TouchTomorrow event was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
High precision detector robot arm system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Deming; Chu, Yong
A method and high precision robot arm system are provided, for example, for X-ray nanodiffraction with an X-ray nanoprobe. The robot arm system includes duo-vertical-stages and a kinematic linkage system. A two-dimensional (2D) vertical plane ultra-precision robot arm supporting an X-ray detector provides positioning and manipulating of the X-ray detector. A vertical support for the 2D vertical plane robot arm includes spaced apart rails respectively engaging a first bearing structure and a second bearing structure carried by the 2D vertical plane robot arm.
Portraits of self-organization in fish schools interacting with robots
NASA Astrophysics Data System (ADS)
Aureli, M.; Fiorilli, F.; Porfiri, M.
2012-05-01
In this paper, we propose an enabling computational and theoretical framework for the analysis of experimental instances of collective behavior in response to external stimuli. In particular, this work addresses the characterization of aggregation and interaction phenomena in robot-animal groups through the exemplary analysis of fish schooling in the vicinity of a biomimetic robot. We adapt global observables from statistical mechanics to capture the main features of the shoal collective motion and its response to the robot from experimental observations. We investigate the shoal behavior by using a diffusion mapping analysis performed on these global observables that also informs the definition of relevant portraits of self-organization.
Motivating Students with Robotics
ERIC Educational Resources Information Center
Brand, Brenda; Collver, Michael; Kasarda, Mary
2008-01-01
In recent years, the need to advance the number of individuals pursuing science, technology, engineering, and mathematics fields has gained much attention. The Montgomery County/Virginia Tech Robotics Collaborative (MCVTRC), a yearlong high school robotics program housed in an educational shop facility in Montgomery County, Virginia, seeks to…
ERIC Educational Resources Information Center
Edmison, Glenn A.; And Others
Robots are becoming increasingly common in American industry. By l990, they will revolutionize the way industry functions, replacing hundreds of workers and doing hot, dirty jobs better and more quickly than the workers could have done them. Robotics should be taught in high school industrial arts programs as a major curriculum component. The…
Student teams prepare robots for regional competition at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
These students from Astronaut High and Titusville High Schools, in Brevard County, Florida, known as the CombBat Team, make adjustments on their robot entered in the 1999 Southeastern Regional robotic competition at Kennedy Space Center Visitor Complex March 4-6. Thirty schools from around the country have converged at KSC for the event that pits gladiator robots against each other in an athletic-style competition. KSC is hosting the event being sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.
NASA Technical Reports Server (NTRS)
Stroupe, Ashley
2002-01-01
FIRST, For Inspiration and Recognition of Science and Technology, is an international program designed to encourage junior and senior high school students to participate in science and technology related activities. FIRST attempts to increase enthusiasm for technology by providing a competitive environment in which to demonstrate robotics technology designed for a particular set of tasks. Carnegie Mellon University provided student members of the project the opportunity to complete the design, construction, testing, and operation of a robot. Electrical, mechanical, and programming skills were stressed, with both adult and senior students acting as mentors for more junior members. Teamwork and integration was also stressed in order to provide students with a realistic feel for project-based work. Finally, an emphasis was placed on recruiting students with greater difficulty in entering technological fields: girls and ethnic minorities and students leaning toward humanities (especially art). Carnegie Mellon built a relationship with Taylor Allderdice High School that lasted four years. For four years, the success of the project increased each year. Each term, the students successfully designed and built a working robot that could fully participate in the competition. The enthusiasm of the students has been the cornerstone of the recruit of new students, keeping the project growing and vital. Carnegie Mellon's participation with Allderdice has been an overall great success.
2010 FIRST Robotics Bayou Regional Tournament
NASA Technical Reports Server (NTRS)
2010-01-01
Student-built robots maneuver the course during the 2010 Bayou Regional FIRST (For Inspiration and Recognition of Science and Technology) Robotics competition in Westwego on March 5-6. The annual competition drew 36 high school teams from eight states. NASA's John C. Stennis Space Center supports FIRST Robotics by providing financing, mentors and training, as well as competition judges and referees, audiovisual staff and other volunteer personnel.
2010 FIRST Robotics Bayou Regional Tournament
2010-03-05
Student-built robots maneuver the course during the 2010 Bayou Regional FIRST (For Inspiration and Recognition of Science and Technology) Robotics competition in Westwego on March 5-6. The annual competition drew 36 high school teams from eight states. NASA's John C. Stennis Space Center supports FIRST Robotics by providing financing, mentors and training, as well as competition judges and referees, audiovisual staff and other volunteer personnel.
The First Robotics Rocket City Regional Competition
2018-03-16
The First Robotics Rocket City Regional Competition was held at the Von Braun Civic Center in Huntsville, Alabama on March 16, 2018. High school robotics teams from throughout the U.S., as well as a team from Brazil, competed.
Students Compete at Robotics Competition
ERIC Educational Resources Information Center
Technology Teacher, 2005
2005-01-01
July 22-23, 2005 the Indiana Robotics Invitational (IRI) was held at Lawrence North High school in Indianapolis. The IRI began in Indiana in May 2000 with 20 teams. The first invitational was nicknamed the "Hoosier Havoc." The event was coordinated by FIRST robotics team #45 (the Techno-Kats) from Kokomo, Indiana. Today, the former…
NASA Astrophysics Data System (ADS)
Hinton, Tracy Barger
With the large expected growth in STEM-related careers in American industries, there are not enough graduates to fill these positions (United States Department of Labor, 2015). Increased efforts are being made to reform STEM education from early childhood to college level studies, mainly through increased efforts to incorporate new technologies and project-based learning activities (Hegedorn & Purnamasari, 2012). At the middle school level, a robotics educational platform can be a worthwhile activity that provides hands-on learning as students learn basic programming and engineering skills (Grubbs, 2013). Based on the popularity of LEGO toys, LEGO Education developed an engaging and effective way to learn about computer programming and basic engineering concepts (Welch & Huffman, 2011). LEGO MINDSTORMS offers a project-based learning environment that engages students in real-life, problem-solving challenges. The purpose of this qualitative study was to investigate the instructional use of a robotics educational curriculum on middle school students' attitudes toward and interests in STEM and their experiences with LEGO Robotics activities. Participants included 23 seventh grade students who were enrolled in a Career Cluster Technologies I class in a suburban middle school. Data for the study were collected from three focus group interviews, open-ended surveys, classroom observations, and the Career Cruising program. Findings revealed that the robotics activities led to an increased interest and higher self-efficacy in STEM tasks. If students continue to nurture and develop their STEM interests, it is possible that many of them may develop higher confidence and eventually set personal goals related to STEM classes and careers. While other studies have been conducted on similar topics, this qualitative research is unique because it contributed to the gap in research that investigates the impact of an in-class robotics curriculum on middle school students' attitudes
Robotics Applications for the Curriculum to Reflect Technology.
ERIC Educational Resources Information Center
Seaman, Virgil A.; Steck, Francis X.
This document contains suggestions for integrating the elements of robotics into technology education courses from elementary through junior high and high school levels. Eighteen courses into which robotics instruction can be incorporated are listed. They include the following: exploring industry and technology, introduction to industrial and…
Animatronics Workshop: a theater + engineering collaboration at a high school.
Alford, Jennifer Ginger; Jacob, Lucas; Dietz, Paul
2013-01-01
The Animatronics Workshop is a learning experience in which kids conceive and construct a robotic show. They write the story, build the robotic mechanisms and the set, perform voice acting, and create the motion tracks. This provides a deep cross-disciplinary experience, teaching participants how to think creatively across traditional areas of expertise. In an intensive three-day prototype workshop in summer 2013, 14 high school students created a three-character show.
Robot education peers in a situated primary school study: Personalisation promotes child learning.
Baxter, Paul; Ashurst, Emily; Read, Robin; Kennedy, James; Belpaeme, Tony
2017-01-01
The benefit of social robots to support child learning in an educational context over an extended period of time is evaluated. Specifically, the effect of personalisation and adaptation of robot social behaviour is assessed. Two autonomous robots were embedded within two matched classrooms of a primary school for a continuous two week period without experimenter supervision to act as learning companions for the children for familiar and novel subjects. Results suggest that while children in both personalised and non-personalised conditions learned, there was increased child learning of a novel subject exhibited when interacting with a robot that personalised its behaviours, with indications that this benefit extended to other class-based performance. Additional evidence was obtained suggesting that there is increased acceptance of the personalised robot peer over a non-personalised version. These results provide the first evidence in support of peer-robot behavioural personalisation having a positive influence on learning when embedded in a learning environment for an extended period of time.
Robot education peers in a situated primary school study: Personalisation promotes child learning
Ashurst, Emily; Read, Robin; Kennedy, James; Belpaeme, Tony
2017-01-01
The benefit of social robots to support child learning in an educational context over an extended period of time is evaluated. Specifically, the effect of personalisation and adaptation of robot social behaviour is assessed. Two autonomous robots were embedded within two matched classrooms of a primary school for a continuous two week period without experimenter supervision to act as learning companions for the children for familiar and novel subjects. Results suggest that while children in both personalised and non-personalised conditions learned, there was increased child learning of a novel subject exhibited when interacting with a robot that personalised its behaviours, with indications that this benefit extended to other class-based performance. Additional evidence was obtained suggesting that there is increased acceptance of the personalised robot peer over a non-personalised version. These results provide the first evidence in support of peer-robot behavioural personalisation having a positive influence on learning when embedded in a learning environment for an extended period of time. PMID:28542648
Human-Robot Interaction in High Vulnerability Domains
NASA Technical Reports Server (NTRS)
Gore, Brian F.
2016-01-01
Future NASA missions will require successful integration of the human with highly complex systems. Highly complex systems are likely to involve humans, automation, and some level of robotic assistance. The complex environments will require successful integration of the human with automation, with robots, and with human-automation-robot teams to accomplish mission critical goals. Many challenges exist for the human performing in these types of operational environments with these kinds of systems. Systems must be designed to optimally integrate various levels of inputs and outputs based on the roles and responsibilities of the human, the automation, and the robots; from direct manual control, shared human-robotic control, or no active human control (i.e. human supervisory control). It is assumed that the human will remain involved at some level. Technologies that vary based on contextual demands and on operator characteristics (workload, situation awareness) will be needed when the human integrates into these systems. Predictive models that estimate the impact of the technologies on the system performance and the on the human operator are also needed to meet the challenges associated with such future complex human-automation-robot systems in extreme environments.
Artificial Intelligence and the High School Computer Curriculum.
ERIC Educational Resources Information Center
Dillon, Richard W.
1993-01-01
Describes a four-part curriculum that can serve as a model for incorporating artificial intelligence (AI) into the high school computer curriculum. The model includes examining questions fundamental to AI, creating and designing an expert system, language processing, and creating programs that integrate machine vision with robotics and…
High-throughput mouse genotyping using robotics automation.
Linask, Kaari L; Lo, Cecilia W
2005-02-01
The use of mouse models is rapidly expanding in biomedical research. This has dictated the need for the rapid genotyping of mutant mouse colonies for more efficient utilization of animal holding space. We have established a high-throughput protocol for mouse genotyping using two robotics workstations: a liquid-handling robot to assemble PCR and a microfluidics electrophoresis robot for PCR product analysis. This dual-robotics setup incurs lower start-up costs than a fully automated system while still minimizing human intervention. Essential to this automation scheme is the construction of a database containing customized scripts for programming the robotics workstations. Using these scripts and the robotics systems, multiple combinations of genotyping reactions can be assembled simultaneously, allowing even complex genotyping data to be generated rapidly with consistency and accuracy. A detailed protocol, database, scripts, and additional background information are available at http://dir.nhlbi.nih.gov/labs/ldb-chd/autogene/.
ERIC Educational Resources Information Center
Mac Iver, Martha Abele; Mac Iver, Douglas J.
2014-01-01
Recognizing the importance of both keeping middle school students engaged and improving their math skills, Baltimore City Public Schools (City Schools) developed a summer school STEM program involving not only math and science instruction but also the experience of building a robot and competing with those robots in a city-wide tournament.…
NASA Sponsors Antelope Valley’s Inaugural FIRST Robotics Competition
2018-06-18
The Antelope Valley hosted its inaugural FIRST Robotics Competition (FRC) on April 6-7, 2018, in the gymnasium of Eastside High School in Lancaster, California. The regional competition “Aerospace Valley Regional” serves as a championship-qualifying robotics competition and is sponsored by NASA, Lockheed, Northrup, Boeing and several other local organizations. An estimated 500 to 700 high-school students on 35 teams from around the world, competed in the regional’s 2018 season challenge, “FIRST POWER UP.” The "FIRST POWER UP" game pairs two alliances of video game characters with their human operators as they work to defeat a "boss" to escape an arcade game where they are trapped inside. Each match begins with a 15-second autonomous period in which robots operate only on pre-programmed instructions. During this period, robots work to earn points according to the game's rules. During the remaining two minutes and 15 seconds, student drivers’ control robots to earn points.
Seeking Teachers for Underwater Robotics PD Program
ERIC Educational Resources Information Center
McGrath, Beth; Sayres, Jason
2012-01-01
With funding from the National Science Foundation (NSF), ITEEA members will contribute to the development of a hybrid professional development program designed to facilitate the scale-up of an innovative underwater robotics curriculum. WaterBotics[TM] is an underwater robotics curriculum that targets students in middle and high school classrooms…
2014-03-14
CAPE CANAVERAL, Fla. – Students gather to watch as a DARwin-OP miniature humanoid robot from Virginia Tech Robotics demonstrates its soccer abilities at the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett
2014-03-14
CAPE CANAVERAL, Fla. – A child gets an up-close look at Charli, an autonomous walking robot developed by Virginia Tech Robotics, during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett
High level language-based robotic control system
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Inventor); Kruetz, Kenneth K. (Inventor); Jain, Abhinandan (Inventor)
1994-01-01
This invention is a robot control system based on a high level language implementing a spatial operator algebra. There are two high level languages included within the system. At the highest level, applications programs can be written in a robot-oriented applications language including broad operators such as MOVE and GRASP. The robot-oriented applications language statements are translated into statements in the spatial operator algebra language. Programming can also take place using the spatial operator algebra language. The statements in the spatial operator algebra language from either source are then translated into machine language statements for execution by a digital control computer. The system also includes the capability of executing the control code sequences in a simulation mode before actual execution to assure proper action at execution time. The robot's environment is checked as part of the process and dynamic reconfiguration is also possible. The languages and system allow the programming and control of multiple arms and the use of inward/outward spatial recursions in which every computational step can be related to a transformation from one point in the mechanical robot to another point to name two major advantages.
High level language-based robotic control system
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Inventor); Kreutz, Kenneth K. (Inventor); Jain, Abhinandan (Inventor)
1996-01-01
This invention is a robot control system based on a high level language implementing a spatial operator algebra. There are two high level languages included within the system. At the highest level, applications programs can be written in a robot-oriented applications language including broad operators such as MOVE and GRASP. The robot-oriented applications language statements are translated into statements in the spatial operator algebra language. Programming can also take place using the spatial operator algebra language. The statements in the spatial operator algebra language from either source are then translated into machine language statements for execution by a digital control computer. The system also includes the capability of executing the control code sequences in a simulation mode before actual execution to assure proper action at execution time. The robot's environment is checked as part of the process and dynamic reconfiguration is also possible. The languages and system allow the programming and control of multiple arms and the use of inward/outward spatial recursions in which every computational step can be related to a transformation from one point in the mechanical robot to another point to name two major advantages.
The First Robotics Rocket City Regional Competition
2018-03-16
The First Robotics Rocket City Regional Competition was held at the Von Braun Civic Center in Huntsville, Alabama on March 16, 2018. High school robotics teams from throughout the U.S., as well as a team from Brazil, competed. Costumed students were the normal at this event and lent it much color.
2014-03-14
CAPE CANAVERAL, Fla. – A miniature humanoid robot known as DARwin-OP, from Virginia Tech Robotics, plays soccer with a red tennis ball for a crowd of students at the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett
Closing ceremonies of the FIRST Southeast Regional robotics competition
NASA Technical Reports Server (NTRS)
2000-01-01
Members of one of the teams competing in the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition, wait to receive their medals from the FIRST crew. At left is Nap Carroll, chief financial officer, Kennedy Space Center. The event was held at the KSC Visitor Complex. Teams of high school students from all over the country tested the limits of their imagination using robots they designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing at the Southeast Regional event, 16 were Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville.
Robotics Team Lights Up New Year's Eve
ERIC Educational Resources Information Center
LeBlanc, Cheryl
2011-01-01
A robotics team from Muncie, Indiana--the PhyXTGears--is made up of high school students from throughout Delaware County. The group formed as part of the FIRST Robotics program (For Inspiration and Recognition of Science and Technology), an international program founded by inventor Dean Kamen in which students work with professional engineers and…
2007-01-06
NASA engineers Scott Olive (left) and Bo Clarke answer questions during the 2007 FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition regional kickoff event held Saturday, Jan. 6, 2007, at StenniSphere, the visitor center at NASA Stennis Space Center near Bay St. Louis, Miss. The SSC employees and FIRST Robotics volunteer mentors are standing near a mock-up of the playing field for the FIRST Robotics' 2007 `Rack n' Roll' challenge. Roughly 300 students and adult volunteers - representing 29 high schools from four states - attended the kickoff to hear the rules of `Rack n' Roll.' The teams will spend the next six weeks building and programming robots from parts kits they received Saturday, then battle their creations at regional spring competitions in New Orleans, Houston, Atlanta and other cities around the nation. FIRST aims to inspire students in the pursuit of engineering and technology studies and careers.
NASA Technical Reports Server (NTRS)
2007-01-01
NASA engineers Scott Olive (left) and Bo Clarke answer questions during the 2007 FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition regional kickoff event held Saturday, Jan. 6, 2007, at StenniSphere, the visitor center at NASA Stennis Space Center near Bay St. Louis, Miss. The SSC employees and FIRST Robotics volunteer mentors are standing near a mock-up of the playing field for the FIRST Robotics' 2007 `Rack n' Roll' challenge. Roughly 300 students and adult volunteers - representing 29 high schools from four states - attended the kickoff to hear the rules of `Rack n' Roll.' The teams will spend the next six weeks building and programming robots from parts kits they received Saturday, then battle their creations at regional spring competitions in New Orleans, Houston, Atlanta and other cities around the nation. FIRST aims to inspire students in the pursuit of engineering and technology studies and careers.
Robotics in Industrial Arts. Final Narrative Report for the Exemplary Project.
ERIC Educational Resources Information Center
Ascension Parish School Board, Donaldsonville, LA.
To introduce students to the world of robotics and industrial automation, robotics was introduced to students enrolled in electronics classes in the industrial arts program at St. Amant High School (Louisiana). Three robots, three host microcomputers, and necessary software were purchased. The electronics instructor installed the three robots…
2014-03-14
CAPE CANAVERAL, Fla. – Andrew Nick of Kennedy Space Center's Swamp Works shows off RASSOR, a robotic miner, at the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett
The Summer Robotic Autonomy Course
NASA Technical Reports Server (NTRS)
Nourbakhsh, Illah R.
2002-01-01
We offered a first Robotic Autonomy course this summer, located at NASA/Ames' new NASA Research Park, for approximately 30 high school students. In this 7-week course, students worked in ten teams to build then program advanced autonomous robots capable of visual processing and high-speed wireless communication. The course made use of challenge-based curricula, culminating each week with a Wednesday Challenge Day and a Friday Exhibition and Contest Day. Robotic Autonomy provided a comprehensive grounding in elementary robotics, including basic electronics, electronics evaluation, microprocessor programming, real-time control, and robot mechanics and kinematics. Our course then continued the educational process by introducing higher-level perception, action and autonomy topics, including teleoperation, visual servoing, intelligent scheduling and planning and cooperative problem-solving. We were able to deliver such a comprehensive, high-level education in robotic autonomy for two reasons. First, the content resulted from close collaboration between the CMU Robotics Institute and researchers in the Information Sciences and Technology Directorate and various education program/project managers at NASA/Ames. This collaboration produced not only educational content, but will also be focal to the conduct of formative and summative evaluations of the course for further refinement. Second, CMU rapid prototyping skills as well as the PI's low-overhead perception and locomotion research projects enabled design and delivery of affordable robot kits with unprecedented sensory- locomotory capability. Each Trikebot robot was capable of both indoor locomotion and high-speed outdoor motion and was equipped with a high-speed vision system coupled to a low-cost pan/tilt head. As planned, follow the completion of Robotic Autonomy, each student took home an autonomous, competent robot. This robot is the student's to keep, as she explores robotics with an extremely capable tool in the
ANYmal - A Highly Mobile and Dynamic Quadrupedal Robot
2016-10-09
ANYmal - A Highly Mobile and Dynamic Quadrupedal Robot * Marco Hutter1, Christian Gehring2, Dominic Jud1, Andreas Lauber1, C. Dario Bellicoso1...Abstract— This paper introduces ANYmal, a quadrupedal robot that features outstanding mobility and dynamic motion capability. Thanks to novel...compliant joint modules with integrated electronics, the 30 kg, 0.5 m tall robotic dog is torque controllable and very robust against impulsive loads during
2014-03-14
CAPE CANAVERAL, Fla. – A visitor to the Robot Rocket Rally takes an up-close look at RASSOR, a robotic miner developed by NASA Kennedy Space Center's Swamp Works. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett
2014-03-14
CAPE CANAVERAL, Fla. – Students observe as Otherlab shows off a life-size, inflatable robot from its "" program. The demonstration was one of several provided during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett
Genetic Robots: An Integrated Art and Biology Curriculum.
ERIC Educational Resources Information Center
Schramm, Susan L.
2000-01-01
Describes the design and implementation of an integrated art and science curriculum "Genetic Robotics: A Three-Dimensional Scientific Inquiry" for high school art and biology students at Madeira Junior/Senior High School in Cincinnati, Ohio. States that the project aimed at recognizing individual differences while enabling students to become…
ISS Robotic Student Programming
NASA Technical Reports Server (NTRS)
Barlow, J.; Benavides, J.; Hanson, R.; Cortez, J.; Le Vasseur, D.; Soloway, D.; Oyadomari, K.
2016-01-01
The SPHERES facility is a set of three free-flying satellites launched in 2006. In addition to scientists and engineering, middle- and high-school students program the SPHERES during the annual Zero Robotics programming competition. Zero Robotics conducts virtual competitions via simulator and on SPHERES aboard the ISS, with students doing the programming. A web interface allows teams to submit code, receive results, collaborate, and compete in simulator-based initial rounds and semi-final rounds. The final round of each competition is conducted with SPHERES aboard the ISS. At the end of 2017 a new robotic platform called Astrobee will launch, providing new game elements and new ground support for even more student interaction.
Using robotics construction kits as metacognitive tools: a research in an Italian primary school.
La Paglia, Filippo; Caci, Barbara; La Barbera, Daniele; Cardaci, Maurizio
2010-01-01
The present paper is aimed at analyzing the process of building and programming robots as a metacognitive tool. Quantitative data and qualitative observations from a research performed in a sample of children attending an Italian primary school are described in this work. Results showed that robotics activities may be intended as a new metacognitive environment that allows children to monitor themselves and control their learning actions in an autonomous and self-centered way.
Closing ceremonies of the FIRST Southeast Regional robotics competition
NASA Technical Reports Server (NTRS)
2000-01-01
After the finals of the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition, Team 86 from Jacksonville, Fla., receives from the FIRST crew an award for Best Play of the Day. At left is Nap Carroll, chief financial officer, Kennedy Space Center. The event was held at the Kennedy Space Center Visitor Complex. Teams of high school students from all over the country tested the limits of their imagination using robots they designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing at the Southeast Regional event, 16 were Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville.
2014-03-14
CAPE CANAVERAL, Fla. – A visitor to the Robot Rocket Rally tries his hand at virtual reality in a demonstration of the Oculus Rift technology, provided by the Open Source Robotics Foundation. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett
ERIC Educational Resources Information Center
Matson, Eric; DeLoach, Scott; Pauly, Robyn
2004-01-01
The "Robot Roadshow Program" is designed to increase the interest of elementary school children in technical disciplines, specifically math and science. The program focuses on children from schools categorized as rural or underserved, which often have limited access to advanced technical resources. We developed the program using robots…
High precision redundant robotic manipulator
Young, K.K.D.
1998-09-22
A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space is disclosed. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degrees of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns. 3 figs.
High precision redundant robotic manipulator
Young, Kar-Keung David
1998-01-01
A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degreed of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns.
Closing ceremonies of the FIRST Southeast Regional robotics competition
NASA Technical Reports Server (NTRS)
2000-01-01
Adult members of the team known as Heatwave, from St. Petersburg, Fla., get 'high fives' from Nap Carroll (center), chief financial officer, Kennedy Space Center, and other officials of the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition held at the KSC Visitor Complex. Heatwave came in second for the final competition, plus received awards for Number One Seed, Best Offensive round, and the DaimlerChrysler Team Spirit. Teams of high school students from all over the country tested the limits of their imagination using robots they designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing at the Southeast Regional event, 16 were Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville.
Closing ceremonies of the FIRST Southeast Regional robotics competition
NASA Technical Reports Server (NTRS)
2000-01-01
At the conclusion of the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition held at the KSC Visitor Complex, KSC Deputy Director for Business Operations Jim Jennings speaks to the teams and other attendees. At left is Gregg Gale, with Walt Disney World, which is the site of the national competition (at EPCOT) April 6-8. Teams of high school students from all over the country tested the limits of their imagination using robots they designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing at the Southeast Regional event, 16 were Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville.
2014-03-14
CAPE CANAVERAL, Fla. – Bruce Yost of NASA's Ames Research Center discusses a small satellite, known as PhoneSat, during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett
2014-03-14
CAPE CANAVERAL, Fla. – Ron Diftler of NASA's Johnson Space Center in Houston demonstrates the leg movements of Robonaut 2 during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett
Closing ceremonies of the FIRST Southeast Regional robotics competition
NASA Technical Reports Server (NTRS)
2000-01-01
Members of the team known as Heatwave, from St. Petersburg, Fla., are excited after receiving an award at the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition held at the KSC Visitor Complex. At left are Carol Cavanaugh, Public Affairs, and Nap Carroll, chief financial officer, Kennedy Space Center. Heatwave came in second for the final competition, plus received awards for Number One Seed, Best Offensive round, and the DaimlerChrysler Team Spirit. Teams of high school students from all over the country tested the limits of their imagination using robots they designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing at the Southeast Regional event, 16 were Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville.
Closing ceremonies of the FIRST Southeast Regional robotics competition
NASA Technical Reports Server (NTRS)
2000-01-01
Members of the team known as Heatwave, from St. Petersburg, Fla., accept one of their four awards earned during the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition held at the KSC Visitor Complex. Heatwave came in second for the final competition, plus received awards for Number One Seed, Best Offensive round, and the DaimlerChrysler Team Spirit. At far left is Nap Carroll, chief financial officer, Kennedy Space Center. Teams of high school students from all over the country tested the limits of their imagination using robots they designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing at the Southeast Regional event, 16 were Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville.
It's 1984 and Robots Are in the Classroom.
ERIC Educational Resources Information Center
Howe, Samuel F.
1984-01-01
Describes the features of TOPO, HERO, RB5X, and Tasman Turtle, personal robots used in elementary and secondary schools and colleges to introduce concepts of artificial intelligence, advanced high school and college computer science, and elementary level programming. Mechanical arms are also briefly mentioned. (MBR)
Space technology and robotics in school projects
NASA Astrophysics Data System (ADS)
Villias, Georgios
2016-04-01
Space-related educational activities is a very inspiring and attractive way to involve students into science courses, present them the variety of STEM careers that they can follow, while giving them at the same time the opportunity to develop various practical and communication skills necessary for their future professional development. As part of a large scale extracurricular course in Space Science, Space Technology and Robotics that has been introduced in our school, our students, divided in smaller groups of 3-4 students in each, try to understand the challenges that current and future space exploration is facing. Following a mixture of an inquiry-based learning methodology and hands-on practical activities related with constructions and experiments, students get a glimpse of the pre-mentioned fields. Our main goal is to gain practical knowledge and inspiration from the exciting field of Space, to attain an adequate level of team spirit and effective cooperation, while developing technical and research data-mining skills. We use the following two approaches: 1. Constructive (Technical) approach Designing and constructing various customized robotic machines, that will simulate the future space exploration vehicles and satellites needed to study the atmosphere, surface and subsurface of planets, moons or other planetary bodies of our solar system that have shown some promising indications for the existence of life, taking seriously into account their special characteristics and known existing conditions (like Mars, Titan, Europa & Enceladus). The STEM tools we use are the following: - LEGO Mindstorms: to construct rovers for surface exploration. - Hydrobots: an MIT's SeaPerch program for the construction of submarine semi-autonomous robots. - CanSats: Arduino-based microsatellites able to receive, record & transmit data. - Space balloons: appropriate for high altitude atmospheric measurements & photography. 2. Scientific approach Conducting interesting physics
ERIC Educational Resources Information Center
Witherspoon, Eben B.; Schunn, Christian D.; Higashi, Ross M.; Baehr, Emily C.
2016-01-01
Background: Robotics competitions are increasingly popular and potentially provide an on-ramp to computer science, which is currently highly gender imbalanced. However, within competitive robotics teams, student participation in programming is not universal. This study gathered surveys from over 500 elementary, middle, and high school robotics…
2014-03-14
CAPE CANAVERAL, Fla. – Two young visitors get an up-close look at an engineering model of Robonaut 2, complete with a set of legs, during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett
ERIC Educational Resources Information Center
Clark, Lisa J.
2002-01-01
Introduces a project for elementary school students in which students build a robot by following instructions and then write a computer program to run their robot by using LabView graphical development software. Uses ROBOLAB curriculum which is designed for grade levels K-12. (YDS)
The Team From Brazil at the First Robotics Rocket City Regional
2018-03-16
The First Robotics Rocket City Regional Competition was held at the Von Braun Civic Center in Huntsville, Alabama on March 16, 2018. High school robotics teams from throughout the U.S., as well as a team from Brazil, competed. Pictured is the Brazilian team prior to competition
The Team From Brazil at the First Robotics Rocket City Regional
2018-03-16
The First Robotics Rocket City Regional Competition was held at the Von Braun Civic Center in Huntsville, Alabama on March 16, 2018. High school robotics teams from throughout the U.S., as well as a team from Brazil, competed. The Brazilian team sings their national anthem.
2011 FIRST Robotics Championship
2011-01-07
Chris Collins (l to r), Andy Zhou and Rachel Holladay from Northshore High School in Slidell place FIRST logo pieces during a Jan. 7, 2011 kickoff event for the 2011 FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition season. Thirty teams from four states attended the kickoff event at Stennis Space Center.
2010-03-05
Students from the Highland School in Warrenton, Va. work on their robot in the "Pit Area" as they prepare to compete in the First Robotics Competition, Friday, March 5, 2010, in Washington. The student competition is called "For Inspiration and Recognition of Science and Technology," or FIRST. The program was founded in 1989 by inventor Dean Kamen to inspire an appreciation of science and technology in young people, their schools and communities. Photo Credit: (NASA/Paul E. Alers) Photo Credit: (NASA/Paul E. Alers)
Detection of Subtle Context-Dependent Model Inaccuracies in High-Dimensional Robot Domains.
Mendoza, Juan Pablo; Simmons, Reid; Veloso, Manuela
2016-12-01
Autonomous robots often rely on models of their sensing and actions for intelligent decision making. However, when operating in unconstrained environments, the complexity of the world makes it infeasible to create models that are accurate in every situation. This article addresses the problem of using potentially large and high-dimensional sets of robot execution data to detect situations in which a robot model is inaccurate-that is, detecting context-dependent model inaccuracies in a high-dimensional context space. To find inaccuracies tractably, the robot conducts an informed search through low-dimensional projections of execution data to find parametric Regions of Inaccurate Modeling (RIMs). Empirical evidence from two robot domains shows that this approach significantly enhances the detection power of existing RIM-detection algorithms in high-dimensional spaces.
Sample Return Robot Centennial Challenge
2012-06-15
Intrepid Systems Team member Mark Curry, right, answers questions from 8th grade Sullivan Middle School (Mass.) students about his robot named "MXR - Mark's Exploration Robot" on Friday, June 15, 2012, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Curry's robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Evaluation of the power consumption of a high-speed parallel robot
NASA Astrophysics Data System (ADS)
Han, Gang; Xie, Fugui; Liu, Xin-Jun
2018-06-01
An inverse dynamic model of a high-speed parallel robot is established based on the virtual work principle. With this dynamic model, a new evaluation method is proposed to measure the power consumption of the robot during pick-and-place tasks. The power vector is extended in this method and used to represent the collinear velocity and acceleration of the moving platform. Afterward, several dynamic performance indices, which are homogenous and possess obvious physical meanings, are proposed. These indices can evaluate the power input and output transmissibility of the robot in a workspace. The distributions of the power input and output transmissibility of the high-speed parallel robot are derived with these indices and clearly illustrated in atlases. Furtherly, a low-power-consumption workspace is selected for the robot.
NASA Technical Reports Server (NTRS)
Henderson, A. J., Jr.
2001-01-01
FIRST is the acronym of For Inspiration and Recognition of Science and Technology. FIRST is a 501.C.3 non-profit organization whose mission is to generate an interest in science and engineering among today's young adults and youth. This mission is accomplished through a robot competition held annually in the spring of each year. NASAs Marshall Space Flight Center, Education Programs Department, awarded a grant to Lee High School, the sole engineering magnet school in Huntsville, Alabama. MSFC awarded the grant in hopes of fulfilling its goal of giving back invaluable resources to its community and engineers, as well as educating tomorrow's work force in the high-tech area of science and technology. Marshall engineers, Lee High School students and teachers, and a host of other volunteers and parents officially initiated this robot design process and competitive strategic game plan. The FIRST Robotics Competition is a national engineering contest, which immerses high school students in the exciting world of science and engineering. Teaming with engineers from government agencies, businesses, and universities enables the students to learn about the engineering profession. The students and engineers have six weeks to work together to brainstorm, design, procure, construct, and test their robot. The team then competes in a spirited, 'no-holds barred' tournament, complete with referees, other FIRST-designed robots, cheerleaders, and time clocks. The partnerships developed between schools, government agencies, businesses, and universities provide an exchange of resources and talent that build cooperation and expose students to new and rewarding career options. The result is a fun, exciting, and stimulating environment in which all participants discover the important connections between classroom experiences and real-world applications. This paper will highlight the story, engineering development, and evolutionary design of Xtraktor, the rookie robot, a manufacturing
Using FIRST LEGO League Robotics Competitions to Engage Middle School Students in Physics
NASA Astrophysics Data System (ADS)
Rosen, Jeffrey
2009-11-01
As the nation and world grapple with looming crises in sectors such as energy, health care and the environment, it is critical that we keep today's youth interested in careers in science, technology, engineering and math (STEM). Studies indicate that many students lose interest in the sciences by ages 10-13, when they are in grades 4-8 in the U.S. educational system. Many of the interventions to counteract this trend focus on boosting interest in STEM in secondary schools and universities. However the case can be made that the greater need is actually earlier in the education of the child. How can we work with this age group in an exciting way that will promote the study of science? Student robotics competitions might be one effective answer. Programs are currently being run around the country and the world that engage young people in the study of science through robotic competition. Many of these programs rely on mentors to guide the students through the process, which in the most effective programs includes the study of physic concepts through engineering design. During this presentation we will discuss the options for participating in programs that help the students and teachers better understand the science, specifically the physics, which underlies robotics. In particular, we will focus on the international program called FIRST LEGO League (FLL), in which students ages 9-14 are challenged every year to construct a LEGO robot that can navigate and complete a course of theme-related missions. The FLL program is currently operating in almost every state in the U.S. and relies on recruiting qualified mentors and judges who want to impact young people's interest in STEM. Physics professionals can make a tremendous difference in the lives of these eager middle school students.
Tough Hydrogel Robots: High-Speed, High-Force and Opto-sonically Invisible in Water
NASA Astrophysics Data System (ADS)
Zhao, Xuanhe
Sea animals such as leptocephali develop tissues and organs composed of active transparent hydrogels to achieve agile motions and natural camouflage in water. Hydrogel-based actuators that can imitate the capabilities of leptocephali will enable new applications in diverse fields. However, existing hydrogel actuators, mostly osmotic-driven, are intrinsically low-speed and/or low-force; and their camouflage capabilities have not been explored. Here we show that hydraulic actuations of tough hydrogels with designed structures and properties can give soft actuators and robots that are high-speed, high-force, and optically and sonically camouflaged in water. We invent a simple method capable of assembling physically-crosslinked hydrogel parts followed by covalent crosslinking to fabricate large-scale hydraulic hydrogel actuators and robots with robust bodies and interfaces. The hydrogel actuators and robots can maintain their robustness and functionality over multiple cycles of actuations, owning to the anti-fatigue property of the hydrogel under moderate stresses. A multiscale theoretical framework has been developed to guide the design and optimization of the hydrogel robots. We further demonstrate that the agile and transparent hydrogel actuators and robots perform extraordinary functions including swimming, kicking rubber-balls and catching a live fish in water. The work was supported by NSF(No. CMMI- 1253495) and ONR (No. N00014-14-1-0528).
ERIC Educational Resources Information Center
Mosley, Pauline Helen; Liu, Yun; Hargrove, S. Keith; Doswell, Jayfus T.
2010-01-01
This paper gives an overview of a new pre-engineering program--Robotics Technician Curriculum--that uses robots to solicit underrepresented students pursuing careers in science, technology, engineering, and mathematics (STEM). The curriculum uses a project-based learning environment, which consists of part lecture and part laboratory. This program…
Robotics Projects and Learning Concepts in Science, Technology and Problem Solving
ERIC Educational Resources Information Center
Barak, Moshe; Zadok, Yair
2009-01-01
This paper presents a study about learning and the problem solving process identified among junior high school pupils participating in robotics projects in the Lego Mindstorm environment. The research was guided by the following questions: (1) How do pupils come up with inventive solutions to problems in the context of robotics activities? (2)…
Sample Return Robot Centennial Challenge
2012-06-15
Wunderkammer Laboratory Team leader Jim Rothrock, left, answers questions from 8th grade Sullivan Middle School (Mass.) students about his robot named "Cerberus" on Friday, June 15, 2012, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Rothrock's robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-15
SpacePRIDE Team members Chris Williamson, right, and Rob Moore, second from right, answer questions from 8th grade Sullivan Middle School (Mass.) students about their robot on Friday, June 15, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. SpacePRIDE's robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Artificial intelligence and robotics in high throughput post-genomics.
Laghaee, Aroosha; Malcolm, Chris; Hallam, John; Ghazal, Peter
2005-09-15
The shift of post-genomics towards a systems approach has offered an ever-increasing role for artificial intelligence (AI) and robotics. Many disciplines (e.g. engineering, robotics, computer science) bear on the problem of automating the different stages involved in post-genomic research with a view to developing quality assured high-dimensional data. We review some of the latest contributions of AI and robotics to this end and note the limitations arising from the current independent, exploratory way in which specific solutions are being presented for specific problems without regard to how these could be eventually integrated into one comprehensible integrated intelligent system.
2014-03-14
CAPE CANAVERAL, Fla. – A torso model of Robonaut 2, identical to R2 already on the International Space Station, is introduced to a crowd of onlookers by Ron Diftler of NASA's Johnson Space Center in Houston. The demonstration was one of several provided during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett
NASA Astrophysics Data System (ADS)
Polishuk, Alexander; Verner, Igor; Mir, Ronen
This paper presents our experience of teaching robotics to primary and middle school students at the Gelfand Center for Model Building, Robotics & Communication which is part of the Israel National Museum of Science, Technology and Space (MadaTech). The educational study examines the value and characteristics of students’ teamwork in the museum robotics workshops.
Microsurgery robots: addressing the needs of high-precision surgical interventions.
Mattos, Leonardo S; Caldwell, Darwin G; Peretti, Giorgio; Mora, Francesco; Guastini, Luca; Cingolani, Roberto
2016-01-01
Robotics has a significant potential to enhance the overall capacity and efficiency of healthcare systems. Robots can help surgeons perform better quality operations, leading to reductions in the hospitalisation time of patients and in the impact of surgery on their postoperative quality of life. In particular, robotics can have a significant impact on microsurgery, which presents stringent requirements for superhuman precision and control of the surgical tools. Microsurgery is, in fact, expected to gain importance in a growing range of surgical specialties as novel technologies progressively enable the detection, diagnosis and treatment of diseases at earlier stages. Within such scenarios, robotic microsurgery emerges as one of the key components of future surgical interventions, and will be a vital technology for addressing major surgical challenges. Nonetheless, several issues have yet to be overcome in terms of mechatronics, perception and surgeon-robot interfaces before microsurgical robots can achieve their full potential in operating rooms. Research in this direction is progressing quickly and microsurgery robot prototypes are gradually demonstrating significant clinical benefits in challenging applications such as reconstructive plastic surgery, ophthalmology, otology and laryngology. These are reassuring results offering confidence in a brighter future for high-precision surgical interventions.
Robots Bring Math-Powered Ideas to Life
ERIC Educational Resources Information Center
Allen, Kasi C.
2013-01-01
What if every middle school student learned to create a robot in math class? What if every middle school had a robotics team? Would students view mathematics differently? Would they have a different relationship with technology? Might they see science and engineering as fields driven by innovation rather than memorization? As students find…
2010-03-06
Robots vie for position during the second day of the First Robotics Competition, Saturday, March 6, 2010, in Washington. The student competition is called "For Inspiration and Recognition of Science and Technology", or FIRST. The program was founded in 1989 by Dean Kamen to inspire an appreciation of science and technology in young people, their schools and communities. Photo Credit: (NASA/Paul E. Alers)
Using Robots to Motivate At-Risk Learners in Science over the Ninth Grade Hurdle
NASA Astrophysics Data System (ADS)
Cerge, Dora
The ninth grade is a pivotal year in an adolescent's academic career; however, educators have failed to find a remedy for the high failure and dropout rates at this grade level. Students who lack basic skills and support as they enter high school can experience repeated failures, which often lead to a decrease in motivation and dropping out of school. Up to 15% of all ninth graders repeat ninth grade and 36% of all U. S. dropouts are ninth graders. It is imperative that researchers and educators find new ways to motivate at-risk students and augment basic skills in order to mitigate the dropout problem at this grade level. Robot teachers could be a viable solution to increase student motivation and achievement. However, before such strategies could be recommended for implementation, information about their efficacy in a high school setting is needed. The purpose of this quantitative, two-group experimental, pretest-posttest study was to determine the effects of a robot teacher/instructor on science motivation and science achievement in ninth grade at-risk learners. Approximately 40 at-risk, repeating ninth graders, ranging in age from 13 to 17 years old from one high school in the United States Virgin Islands, participated in the study. Half of the students received a robot teacher/instructor manipulation whereby a robot taught a science lesson for physical science assessments (experimental group), and the other half received the same instruction from a human teacher (control group). An analysis of covariance (ANCOVA) was used to compare the science achievement posttest scores, as measured by test scores, and science motivation posttest scores, as measured by the SMTSL, between the experimental and the control groups, while controlling for the pretest scores (covariate). The results demonstrated that posttest motivation and achievement scores in the human teacher condition were not significantly different than posttest motivation scores in the robot teacher
Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion.
Marras, Stefano; Porfiri, Maurizio
2012-08-07
The integration of biomimetic robots in a fish school may enable a better understanding of collective behaviour, offering a new experimental method to test group feedback in response to behavioural modulations of its 'engineered' member. Here, we analyse a robotic fish and individual golden shiners (Notemigonus crysoleucas) swimming together in a water tunnel at different flow velocities. We determine the positional preference of fish with respect to the robot, and we study the flow structure using a digital particle image velocimetry system. We find that biomimetic locomotion is a determinant of fish preference as fish are more attracted towards the robot when its tail is beating rather than when it is statically immersed in the water as a 'dummy'. At specific conditions, the fish hold station behind the robot, which may be due to the hydrodynamic advantage obtained by swimming in the robot's wake. This work makes a compelling case for the need of biomimetic locomotion in promoting robot-animal interactions and it strengthens the hypothesis that biomimetic robots can be used to study and modulate collective animal behaviour.
Referees check robots after qualifying match at regional robotic competition at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
Referees check the robots on the floor of the playing field after a qualifying match of the 1999 Southeastern Regional robotic competition at Kennedy Space Center Visitor Complex . Thirty schools from around the country have converged at KSC for the event that pits gladiator robots against each other in an athletic-style competition. The robots have to retrieve pillow- like disks from the floor, as well as climb onto the platform (with flags) and raise the cache of pillows to a height of eight feet. KSC is hosting the event being sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.
2000 FIRST Robotics Competition
NASA Technical Reports Server (NTRS)
Purman, Richard
2000-01-01
The New Horizons Regional Education Center (NHREC) in Hampton, VA sought and received NASA funding to support its participation in the 2000 FIRST Robotics competition. FIRST, Inc. (For Inspiration and Recognition of Science and Technology) is an organization which encourages the application of creative science, math, and computer science principles to solve real-world engineering problems. The FIRST competition is an international engineering contest featuring high school, government, and business partnerships.
High School and Community College Astronomy Research Seminar
NASA Astrophysics Data System (ADS)
Genet, Russell M.; Boyce, Pat; Buchheim, Robert; Collins, Dwight; Freed, Rachel; Harshaw, Richard; Johnson, Jolyon; Kenney, John; Wallen, Vera
2016-06-01
For the past decade, Cuesta College has held an Astronomy Research Seminar. Teams of high school and community college students, with guidance from instructors and advanced amateur astronomers, have made astronomical observations, reduced their data, and submitted their research results to appropriate journals. A variety of projects, using modest-aperture telescopes equipped with low-cost instruments, are within reach of motivated students. These include double star astrometry, variable star photometry, and exoplanet transit timing. Advanced scientific knowledge and mastery of sophisticated experimental skills are not required when the students are immersed within a supportive community of practice. The seminar features self-paced, online learning units, an online textbook (the Small Telescope Astronomical Research Handbook), and a supportive website sponsored by the Institute for Student Astronomical Research (www.In4StAR.org). There are no prerequisites for the seminar. This encourages everyone—including underrepresented minorities and persons with disabilities—to participate. Each participant contributes as their time, talents, and experience dictates, thus replicating the modern, professional research team. Our spring 2015 seminar was the largest yet. Volunteer assistant instructors provided local in-person leadership, while the entire seminar met online for PowerPoint presentations on proposed projects and final research results. Some 37 students from eight schools finished the seminar as coauthors of 19 papers published in the January 2016 volume of the Journal of Double Star Observations. Robotic telescopes devoted to student research are coming online at both Concordia University and the Boyce Astronomical Robotic Observatory, as is a central online sever that will provide students with uniform, cost-free reduction and analysis software. The seminar has motivated many of its graduates to pursue careers in science, engineering, and medicine, often with
A Segway RMP-based robotic transport system
NASA Astrophysics Data System (ADS)
Nguyen, Hoa G.; Kogut, Greg; Barua, Ripan; Burmeister, Aaron; Pezeshkian, Narek; Powell, Darren; Farrington, Nathan; Wimmer, Matt; Cicchetto, Brett; Heng, Chana; Ramirez, Velia
2004-12-01
In the area of logistics, there currently is a capability gap between the one-ton Army robotic Multifunction Utility/Logistics and Equipment (MULE) vehicle and a soldier"s backpack. The Unmanned Systems Branch at Space and Naval Warfare Systems Center (SPAWAR Systems Center, or SSC), San Diego, with the assistance of a group of interns from nearby High Tech High School, has demonstrated enabling technologies for a solution that fills this gap. A small robotic transport system has been developed based on the Segway Robotic Mobility Platform (RMP). We have demonstrated teleoperated control of this robotic transport system, and conducted two demonstrations of autonomous behaviors. Both demonstrations involved a robotic transporter following a human leader. In the first demonstration, the transporter used a vision system running a continuously adaptive mean-shift filter to track and follow a human. In the second demonstration, the separation between leader and follower was significantly increased using Global Positioning System (GPS) information. The track of the human leader, with a GPS unit in his backpack, was sent wirelessly to the transporter, also equipped with a GPS unit. The robotic transporter traced the path of the human leader by following these GPS breadcrumbs. We have additionally demonstrated a robotic medical patient transport capability by using the Segway RMP to power a mock-up of the Life Support for Trauma and Transport (LSTAT) patient care platform, on a standard NATO litter carrier. This paper describes the development of our demonstration robotic transport system and the various experiments conducted.
Piezoresistive pressure sensor array for robotic skin
NASA Astrophysics Data System (ADS)
Mirza, Fahad; Sahasrabuddhe, Ritvij R.; Baptist, Joshua R.; Wijesundara, Muthu B. J.; Lee, Woo H.; Popa, Dan O.
2016-05-01
Robots are starting to transition from the confines of the manufacturing floor to homes, schools, hospitals, and highly dynamic environments. As, a result, it is impossible to foresee all the probable operational situations of robots, and preprogram the robot behavior in those situations. Among human-robot interaction technologies, haptic communication is an intuitive physical interaction method that can help define operational behaviors for robots cooperating with humans. Multimodal robotic skin with distributed sensors can help robots increase perception capabilities of their surrounding environments. Electro-Hydro-Dynamic (EHD) printing is a flexible multi-modal sensor fabrication method because of its direct printing capability of a wide range of materials onto substrates with non-uniform topographies. In past work we designed interdigitated comb electrodes as a sensing element and printed piezoresistive strain sensors using customized EHD printable PEDOT:PSS based inks. We formulated a PEDOT:PSS derivative ink, by mixing PEDOT:PSS and DMSO. Bending induced characterization tests of prototyped sensors showed high sensitivity and sufficient stability. In this paper, we describe SkinCells, robot skin sensor arrays integrated with electronic modules. 4x4 EHD-printed arrays of strain sensors was packaged onto Kapton sheets and silicone encapsulant and interconnected to a custom electronic module that consists of a microcontroller, Wheatstone bridge with adjustable digital potentiometer, multiplexer, and serial communication unit. Thus, SkinCell's electronics can be used for signal acquisition, conditioning, and networking between sensor modules. Several SkinCells were loaded with controlled pressure, temperature and humidity testing apparatuses, and testing results are reported in this paper.
Low-cost educational robotics applied to physics teaching in Brazil
NASA Astrophysics Data System (ADS)
Souza, Marcos A. M.; Duarte, José R. R.
2015-07-01
In this paper, we propose some of the strategies and methodologies for teaching high-school physics topics through an educational robotics show. This exhibition was part of a set of actions promoted by a Brazilian government program of incentive for teaching activities, whose primary focus is the training of teachers, the improvement of teaching in public schools, the dissemination of science, and the formation of new scientists and researchers. By means of workshops, banners and the prototyping of robotics, we were able to create a connection between the study areas and their surroundings, making learning meaningful and accessible for the students involved and contributing to their cognitive development.
FIRST Robotics NE Mentoring Team & Students
2017-04-05
Comprised of students from Cocoa Beach, Rockledge, Viera and Space Coast high schools, the robotics group known as the "Pink Team," chose the phoenix as its mascot for the 2016 season. The group, its mentors and support personnel celebrated a successful season near the Shuttle Landing Facility at NASA's Kennedy Space Center on April 5.
Students Learn Programming Faster through Robotic Simulation
ERIC Educational Resources Information Center
Liu, Allison; Newsom, Jeff; Schunn, Chris; Shoop, Robin
2013-01-01
Schools everywhere are using robotics education to engage kids in applied science, technology, engineering, and mathematics (STEM) activities, but teaching programming can be challenging due to lack of resources. This article reports on using Robot Virtual Worlds (RVW) and curriculum available on the Internet to teach robot programming. It also…
Robotic Mining Competition - Activities
2018-05-17
Team members from the South Dakota School of Mines & Technology pause with their robot miner in the RobotPits on the fourth day of NASA's 9th Robotic Mining Competition, May 17, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.
Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion
Marras, Stefano; Porfiri, Maurizio
2012-01-01
The integration of biomimetic robots in a fish school may enable a better understanding of collective behaviour, offering a new experimental method to test group feedback in response to behavioural modulations of its ‘engineered’ member. Here, we analyse a robotic fish and individual golden shiners (Notemigonus crysoleucas) swimming together in a water tunnel at different flow velocities. We determine the positional preference of fish with respect to the robot, and we study the flow structure using a digital particle image velocimetry system. We find that biomimetic locomotion is a determinant of fish preference as fish are more attracted towards the robot when its tail is beating rather than when it is statically immersed in the water as a ‘dummy’. At specific conditions, the fish hold station behind the robot, which may be due to the hydrodynamic advantage obtained by swimming in the robot's wake. This work makes a compelling case for the need of biomimetic locomotion in promoting robot–animal interactions and it strengthens the hypothesis that biomimetic robots can be used to study and modulate collective animal behaviour. PMID:22356819
Using Telescopic Observations to Explore the Science of AGN with High School Students
NASA Astrophysics Data System (ADS)
McLin, K. M.; Cominsky, L. R.
2010-12-01
Over the past several years the NASA E/PO Group at Sonoma State University has operated a small robotic telescope in northern Sonoma County, California. The telescope is used by high school and college instructors and their students from around the United States. Observations have been used both in classroom settings and in after-school or extracurricular activities. It has also been central over the past two summers (2009/2010) as part of a summer science internship program for Sonoma County high school students. The program gave these students an in-depth experience collecting and analyzing astronomical data. This poster describes some of the ways that the telescope has been used to make scientific measurements (as opposed to “pretty pictures”) of astronomical phenomena in high school settings. Some of the obstacles to implementing a set of astronomical observations in the high school classroom will be described, as will the steps we have taken to overcome them. Information is provided on how instructors can become involved in using the telescope and what support is available to help them get started in their classes.
Student teams maneuver robots in qualifying match at regional robotic competition at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
All four robots, maneuvered by student teams behind protective walls, converge on a corner of the playing field during qualifying matches of the 1999 Southeastern Regional robotic competition at Kennedy Space Center Visitor Complex . Thirty schools from around the country have converged at KSC for the event that pits gladiator robots against each other in an athletic-style competition. The robots have to retrieve pillow- like disks from the floor, as well as climb onto the platform (with flags) and raise the cache of pillows to a height of eight feet. KSC is hosting the event being sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.
The Power of Educational Robotics
NASA Astrophysics Data System (ADS)
Cummings, Timothy
The purpose of this action research project was to investigate the impact a students' participation in educational robotics has on his or her performance in the STEM subjects. This study attempted to utilize educational robotics as a method for increasing student achievement and engagement in STEM subjects. Over the course of 12 weeks, an after-school robotics program was offered to students. Guided by the standards and principles of VEX IQ, a leading resource in educational robotics, students worked in collaboration on creating a design for their robot, building and testing their robot, and competing in the VEX IQ Crossover Challenge. Student data was gathered through a pre-participation survey, observations from the work they performed in robotics club, their performance in STEM subject classes, and the analysis of their end-of-the-year report card. Results suggest that the students who participate in robotics club experienced a positive impact on their performance in STEM subject classes.
Huang, Shouren; Bergström, Niklas; Yamakawa, Yuji; Senoo, Taku; Ishikawa, Masatoshi
2016-01-01
It is traditionally difficult to implement fast and accurate position regulation on an industrial robot in the presence of uncertainties. The uncertain factors can be attributed either to the industrial robot itself (e.g., a mismatch of dynamics, mechanical defects such as backlash, etc.) or to the external environment (e.g., calibration errors, misalignment or perturbations of a workpiece, etc.). This paper proposes a systematic approach to implement high-performance position regulation under uncertainties on a general industrial robot (referred to as the main robot) with minimal or no manual teaching. The method is based on a coarse-to-fine strategy that involves configuring an add-on module for the main robot’s end effector. The add-on module consists of a 1000 Hz vision sensor and a high-speed actuator to compensate for accumulated uncertainties. The main robot only focuses on fast and coarse motion, with its trajectories automatically planned by image information from a static low-cost camera. Fast and accurate peg-and-hole alignment in one dimension was implemented as an application scenario by using a commercial parallel-link robot and an add-on compensation module with one degree of freedom (DoF). Experimental results yielded an almost 100% success rate for fast peg-in-hole manipulation (with regulation accuracy at about 0.1 mm) when the workpiece was randomly placed. PMID:27483274
Robotic Mining Competition - Setup
2018-05-14
On the first day of NASA's 9th Robotic Mining Competition, set-up day on May 14, team members from the South Dakota School of Mines & Technology work on their robot miner in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.
The First Robotics Rocket City Regional Competition
2018-03-16
Johnny Stephenson, director of NASA Marshall Space Flight Center's Office of Strategic Analysis & Communications, addresses the crowd during the March 16 award ceremony following the first day of competition at the FIRST Robotics Rocket City Regional at the Von Braun Center in Huntsville. Ed Sparks, of the Morgan County Mech Tech team, received the award for Volunteer of the Year at the March 16 award ceremony. Mech Tech, comprised of students from five high schools in Morgan County, Alabama, also won the Industrial Design Award. The team was one of three regional finalists that will advance to the FIRST national championships April 18-21 in Houston. The other two regional finalists were Burning Magnetos of Fort Dorchester High School in North Charleston, South Carolina, and OGRE of Opelika High School in Opelika, Alabama. Mech Tech and Golden Hurricane from Columbia High School in Huntsville, were "house" teams sponsored by Marshall.
Electronics and Software Engineer for Robotics Project Intern
NASA Technical Reports Server (NTRS)
Teijeiro, Antonio
2017-01-01
I was assigned to mentor high school students for the 2017 First Robotics Competition. Using a team based approach, I worked with the students to program the robot and applied my electrical background to build the robot from start to finish. I worked with students who had an interest in electrical engineering to teach them about voltage, current, pulse width modulation, solenoids, electromagnets, relays, DC motors, DC motor controllers, crimping and soldering electrical components, Java programming, and robotic simulation. For the simulation, we worked together to generate graphics files, write simulator description format code, operate Linux, and operate SOLIDWORKS. Upon completion of the FRC season, I transitioned over to providing full time support for the LCS hardware team. During this phase of my internship I helped my co-intern write test steps for two networking hardware DVTs , as well as run cables and update cable running lists.
A Behavior-Based Approach for Educational Robotics Activities
ERIC Educational Resources Information Center
De Cristoforis, P.; Pedre, S.; Nitsche, M.; Fischer, T.; Pessacg, F.; Di Pietro, C.
2013-01-01
Educational robotics proposes the use of robots as a teaching resource that enables inexperienced students to approach topics in fields unrelated to robotics. In recent years, these activities have grown substantially in elementary and secondary school classrooms and also in outreach experiences to interest students in science, technology,…
A Filtering Approach for Image-Guided Surgery With a Highly Articulated Surgical Snake Robot.
Tully, Stephen; Choset, Howie
2016-02-01
The objective of this paper is to introduce a probabilistic filtering approach to estimate the pose and internal shape of a highly flexible surgical snake robot during minimally invasive surgery. Our approach renders a depiction of the robot that is registered to preoperatively reconstructed organ models to produce a 3-D visualization that can be used for surgical feedback. Our filtering method estimates the robot shape using an extended Kalman filter that fuses magnetic tracker data with kinematic models that define the motion of the robot. Using Lie derivative analysis, we show that this estimation problem is observable, and thus, the shape and configuration of the robot can be successfully recovered with a sufficient number of magnetic tracker measurements. We validate this study with benchtop and in-vivo image-guidance experiments in which the surgical robot was driven along the epicardial surface of a porcine heart. This paper introduces a filtering approach for shape estimation that can be used for image guidance during minimally invasive surgery. The methods being introduced in this paper enable informative image guidance for highly articulated surgical robots, which benefits the advancement of robotic surgery.
Competitive Robotics Brings out the Best in Students
ERIC Educational Resources Information Center
Caron, Darrell
2010-01-01
This article features Advanced Competitive Science (ACS), a two-year course introduced by a science teacher, Joe Pouliot, in 2004 at Trinity High School in Manchester, New Hampshire. More than a traditional STEM (science, technology, engineering, and math) course, ACS harnesses the excitement of robotics competitions to promote student…
Highly dexterous 2-module soft robot for intra-organ navigation in minimally invasive surgery.
Abidi, Haider; Gerboni, Giada; Brancadoro, Margherita; Fras, Jan; Diodato, Alessandro; Cianchetti, Matteo; Wurdemann, Helge; Althoefer, Kaspar; Menciassi, Arianna
2018-02-01
For some surgical interventions, like the Total Mesorectal Excision (TME), traditional laparoscopes lack the flexibility to safely maneuver and reach difficult surgical targets. This paper answers this need through designing, fabricating and modelling a highly dexterous 2-module soft robot for minimally invasive surgery (MIS). A soft robotic approach is proposed that uses flexible fluidic actuators (FFAs) allowing highly dexterous and inherently safe navigation. Dexterity is provided by an optimized design of fluid chambers within the robot modules. Safe physical interaction is ensured by fabricating the entire structure by soft and compliant elastomers, resulting in a squeezable 2-module robot. An inner free lumen/chamber along the central axis serves as a guide of flexible endoscopic tools. A constant curvature based inverse kinematics model is also proposed, providing insight into the robot capabilities. Experimental tests in a surgical scenario using a cadaver model are reported, demonstrating the robot advantages over standard systems in a realistic MIS environment. Simulations and experiments show the efficacy of the proposed soft robot. Copyright © 2017 John Wiley & Sons, Ltd.
2017 Robotic Mining Competition
2017-05-24
Team members from the New York University Tandon School of Engineering transport their robot to the mining arena during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.
Final matches of the FIRST regional robotic competition at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
Student teams behind protective walls operate remote controls to maneuver their robots around the playing field during the 1999 FIRST Southeastern Regional robotic competition held at KSC. The robotic gladiators spent two minutes each trying to grab, claw and hoist large, satin pillows onto their machines. Teams played defense by taking away competitors' pillows and generally harassing opposing machines. On the side of the field are the judges, including (far left) Deputy Director for Launch and Payload Processing Loren Shriver and former KSC Director of Shuttle Processing Robert Sieck. A giant screen TV displays the action on the field. The competition comprised 27 teams, pairing high school students with engineer mentors and corporations. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.
ERIC Educational Resources Information Center
Smith, Ruth Baynard
1994-01-01
Intermediate level academically talented students learn essential elements of computer programming by working with robots at enrichment workshops at Dwight-Englewood School in Englewood, New Jersey. The children combine creative thinking and problem-solving skills to program the robots' microcomputers to perform a variety of movements. (JDD)
Robotic active positioning for magnetic resonance-guided high-intensity focused ultrasound
NASA Astrophysics Data System (ADS)
Xiao, Xu; Huang, Zhihong; Volovick, Alexander; Melzer, Andreas
2012-11-01
Magnetic resonance (MR) guided High-intensity focused ultrasound (HIFU) is a noninvasive method producing thermal necrosis and cavitation at the position of tumors with high accuracy. Because the typical size of the high-intensity focused ultrasound focus are much smaller than the targeted tumor or other tissues, multiple sonications and focus repositioning become necessary for HIFU treatment. In order to reach a much wider range, manual repositioning or using MR compatible mechanical actuators could be used. The repositioning technique is a time consuming procedure because it needs a series of MR imaging to detect the transducer and markers preplaced on the mechanical devices. We combined an active tracking technique into the MR guided HIFU system. In this work, the robotic system used is the MR-compatible robotics from InnoMotion{trade mark, serif} (IBSMM, Engineering spol. s r.o. / Ltd, Czech) which is originally designed for MR-guided needle biopsy. The precision and positioning speed of the combined robotic HIFU system are evaluated in this study. Compared to the existing MR guided HIFU systems, the combined robotic system with active tracking techniques provides a potential that allows the HIFU treatment to operate in a larger spatial range and with a faster speed.
NASA Astrophysics Data System (ADS)
Griffith, Donald Sanford, Jr.
2005-07-01
This research study was undertaken to examine potential relationships between high school students' attitudes and interests in science, mathematics, engineering, and technology, and their participation in the FIRST Robotics Competition six-week challenge to design, and build a robot. High school students' gender and race, in relationship to students' interest in the aforementioned topics was also examined in this study. A convenience sample of 727 South Carolina public high school students agreed to participate in the study. Data were collected using pre-and post-survey questionnaires. Student participants completed pre-survey questionnaires at the onset of the 2005 FIRST Robotics Competition Kick-off, concurrent with the beginning of the second semester of the 2004--2005 school year. Participants completed post-survey questionnaires after six-weeks, the period of time allocated for teams to design, build, and ship their 2005 FIRST Robotics Competition robot. Data analyzed was collected from the group of students participating in FIRST Robotics (treatment), the experimental group, and the group of students who are not participating in FIRST Robotics (control). Findings reported that the pre- and post-survey questionnaire responses regarding attitudinal change were not significantly different in either the experimental or control group. High pre-survey dependent variable scores provided by students in the FIRST group did not allow for significant gain in each of the seven-attitudinal categories. Findings also indicated that there were significant attitudinal differences between students in the experimental group (FIRST), and students the control group (SMET) pre- and post-survey responses. Students in the FIRST group had statistically significant higher attitude means than students in the SMET group on both pre- and post-surveys in the seven-attitudinal categories. The frequency for responses to each question in the three interest categories on the pre- and post
Automating High-Precision X-Ray and Neutron Imaging Applications with Robotics
Hashem, Joseph Anthony; Pryor, Mitch; Landsberger, Sheldon; ...
2017-03-28
Los Alamos National Laboratory and the University of Texas at Austin recently implemented a robotically controlled nondestructive testing (NDT) system for X-ray and neutron imaging. This system is intended to address the need for accurate measurements for a variety of parts and, be able to track measurement geometry at every imaging location, and is designed for high-throughput applications. This system was deployed in a beam port at a nuclear research reactor and in an operational inspection X-ray bay. The nuclear research reactor system consisted of a precision industrial seven-axis robot, 1.1-MW TRIGA research reactor, and a scintillator-mirror-camera-based imaging system. Themore » X-ray bay system incorporated the same robot, a 225-keV microfocus X-ray source, and a custom flat panel digital detector. The robotic positioning arm is programmable and allows imaging in multiple configurations, including planar, cylindrical, as well as other user defined geometries that provide enhanced engineering evaluation capability. The imaging acquisition device is coupled with the robot for automated image acquisition. The robot can achieve target positional repeatability within 17 μm in the 3-D space. Flexible automation with nondestructive imaging saves costs, reduces dosage, adds imaging techniques, and achieves better quality results in less time. Specifics regarding the robotic system and imaging acquisition and evaluation processes are presented. In conclusion, this paper reviews the comprehensive testing and system evaluation to affirm the feasibility of robotic NDT, presents the system configuration, and reviews results for both X-ray and neutron radiography imaging applications.« less
Automating High-Precision X-Ray and Neutron Imaging Applications with Robotics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashem, Joseph Anthony; Pryor, Mitch; Landsberger, Sheldon
Los Alamos National Laboratory and the University of Texas at Austin recently implemented a robotically controlled nondestructive testing (NDT) system for X-ray and neutron imaging. This system is intended to address the need for accurate measurements for a variety of parts and, be able to track measurement geometry at every imaging location, and is designed for high-throughput applications. This system was deployed in a beam port at a nuclear research reactor and in an operational inspection X-ray bay. The nuclear research reactor system consisted of a precision industrial seven-axis robot, 1.1-MW TRIGA research reactor, and a scintillator-mirror-camera-based imaging system. Themore » X-ray bay system incorporated the same robot, a 225-keV microfocus X-ray source, and a custom flat panel digital detector. The robotic positioning arm is programmable and allows imaging in multiple configurations, including planar, cylindrical, as well as other user defined geometries that provide enhanced engineering evaluation capability. The imaging acquisition device is coupled with the robot for automated image acquisition. The robot can achieve target positional repeatability within 17 μm in the 3-D space. Flexible automation with nondestructive imaging saves costs, reduces dosage, adds imaging techniques, and achieves better quality results in less time. Specifics regarding the robotic system and imaging acquisition and evaluation processes are presented. In conclusion, this paper reviews the comprehensive testing and system evaluation to affirm the feasibility of robotic NDT, presents the system configuration, and reviews results for both X-ray and neutron radiography imaging applications.« less
2010-03-05
U.S. Senate Majority Leader Harry Reid, D-Nev., left, stands with Dean Kamen, the founder of First Robotics, as he talks about the importance of Science and Technology education during the First Robotics Competition, Friday March 5, 2010, in Washington. The student competition is called "For Inspiration and Recognition ofScience and Technology," or FIRST. The program was founded in 1989 by Kamen to inspire an appreciation of science and technology in young people, their schools and communities. Photo Credit: (NASA/Paul E. Alers)
Final matches of the FIRST regional robotic competition at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
Four robots vie for position on the playing field during the 1999 FIRST Southeastern Regional robotic competition held at KSC. Powered by 12-volt batteries and operated by remote control, the robotic gladiators spent two minutes each trying to grab, claw and hoist large, satin pillows onto their machines. Student teams, shown behind protective walls, play defense by taking away competitors' pillows and generally harassing opposing machines. Two of the robots have lifted their caches of pillows above the field, a movement which earns them points. Along with the volunteer referees, at the edge of the playing field, judges at right watch the action. FIRST is a nonprofit organization, For Inspiration and Recognition of Science and Technology. The competition comprised 27 teams, pairing high school students with engineer mentors and corporations. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.
FIRST Robotics NE Mentoring Team & Students
2017-04-05
Comprised of students from Cocoa Beach, Rockledge, Viera and Space Coast high schools, the robotics group known as the "Pink Team," its mentors and support personnel celebrated a successful season near the Shuttle Landing Facility at NASA's Kennedy Space Center on April 5. The Pink Team fared well in the two regionals it competed in this year in West Palm Beach, Florida, and the University of Central Florida in Orlando.
Prototype crawling robotics system for remote visual inspection of high-mast light poles.
DOT National Transportation Integrated Search
1997-01-01
This report presents the results of a project to develop a crawling robotics system for the remote visual inspection of high-mast light poles in Virginia. The first priority of this study was to develop a simple robotics application that would reduce...
The Battling 'Bots of Bloomsburg High
ERIC Educational Resources Information Center
Gorman, Lynn
2007-01-01
In this article, the author describes how students in Kirk Marshall's industrial technology class at Bloomsburg Area High School, Pennsylvania, designed and manufactured battling robots (BattleBots) and their participation in an annual national robotics competition. According to Marshall, designing and building a complex robot would be virtually…
High-frequency imaging radar for robotic navigation and situational awareness
NASA Astrophysics Data System (ADS)
Thomas, David J.; Luo, Changan; Knox, Robert
2011-05-01
With increasingly available high frequency radar components, the practicality of imaging radar for mobile robotic applications is now practical. Navigation, ODOA, situational awareness and safety applications can be supported in small light weight packaging. Radar has the additional advantage of being able sense through aerosols, smoke and dust that can be difficult for many optical systems. The ability to directly measure the range rate of an object is also an advantage in radar applications. This paper will explore the applicability of high frequency imaging radar for mobile robotics and examine a W-band 360 degree imaging radar prototype. Indoor and outdoor performance data will be analyzed and evaluated for applicability to navigation and situational awareness.
Robotic Mining Competition - Opening Ceremony
2018-05-15
On the second day of NASA's 9th Robotic Mining Competition, May 15, team members from the South Dakota School of Mines & Engineering work on their robot miner in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. Second from right is Kennedy Space Center Director Bob Cabana. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.
Synthetic Fiber Capstan Drives for Highly Efficient, Torque Controlled, Robotic Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazumdar, Anirban; Spencer, Steven James; Hobart, Clinton
Here this paper describes the design and performance of a synthetic rope on sheave drive system. This system uses synthetic ropes instead of steel cables to achieve low weight and a compact form factor. We demonstrate how this system is capable of 28-Hz torque control bandwidth, 95% efficiency, and quiet operation, making it ideal for use on legged robots and other dynamic physically interactive systems. Component geometry and tailored maintenance procedures are used to achieve high endurance. Endurance tests based on walking data predict that the ropes will survive roughly 247,000 cycles when used on large (90 kg), fully actuatedmore » bipedal robot systems. The drive systems have been incorporated into two novel bipedal robots capable of three-dimensional unsupported walking. Robot data illustrate effective torque tracking and nearly silent operation. Finally, comparisons with alternative transmission designs illustrate the size, weight, and endurance advantages of using this type of synthetic rope drive system.« less
Synthetic Fiber Capstan Drives for Highly Efficient, Torque Controlled, Robotic Applications
Mazumdar, Anirban; Spencer, Steven James; Hobart, Clinton; ...
2017-01-05
Here this paper describes the design and performance of a synthetic rope on sheave drive system. This system uses synthetic ropes instead of steel cables to achieve low weight and a compact form factor. We demonstrate how this system is capable of 28-Hz torque control bandwidth, 95% efficiency, and quiet operation, making it ideal for use on legged robots and other dynamic physically interactive systems. Component geometry and tailored maintenance procedures are used to achieve high endurance. Endurance tests based on walking data predict that the ropes will survive roughly 247,000 cycles when used on large (90 kg), fully actuatedmore » bipedal robot systems. The drive systems have been incorporated into two novel bipedal robots capable of three-dimensional unsupported walking. Robot data illustrate effective torque tracking and nearly silent operation. Finally, comparisons with alternative transmission designs illustrate the size, weight, and endurance advantages of using this type of synthetic rope drive system.« less
Simulators, Remote Labs and Robotic Telescopes
NASA Astrophysics Data System (ADS)
Folhas, Alvaro
2015-04-01
There is an increasing gap between students of the twenty-first century and the teaching methodology still stuck in the past century. The myriad stimuli that involve our students, immediate consumption of information, and the availability of resources, should cast the teacher in search methodologies that encourage the student to learn. The simulators, virtual laboratories and remote controlled robotic equipment are examples of high didactic potential resources, created by scientific organizations and universities, to be used in education, providing a direct interaction with science and motivating our students to a future career in science. It is up to us to take advantage of that work, and those resources, to light the sparkle in the eyes of our students. In Astronomy Club I've developed with high school students some practical projects in science, using, over the web, the robotic telescopes through which the students are studying and photographing deep sky objects; or the European network of radio telescope, measuring the speed of the arms of our galaxy in our galactic dance, their temperatures showing where it is more likely to form new stars. Students use these tools, engaging in their own knowledge construction, and forego their Friday afternoons without a hurry to go home for the weekend. That's the spirit we want for the school.
Using Telescopic Observations to Mentor High School Students in STEM
NASA Astrophysics Data System (ADS)
McLin, K. M.; Cominsky, L. R.
2011-09-01
Over the past two summers (2009 and 2010) the NASA EPO Group at Sonoma State University (SSU) has sponsored local high school students in a summer science internship program at the University. The students, chosen from Sonoma County high schools in a competitive selection process, work in various science, technology, engineering, and mathematics (STEM) fields throughout the School of Science and Technology at SSU. The two interns sponsored by the EPO Group each summer monitor active galaxies using GORT, the NASA/Fermi-sponsored optical robotic telescope operated by the Group. They are mentored in their projects by EPO Group personnel and by SSU undergraduates who have experience with the telescope. The students learn about the sky, telescopes and the active galaxies they observe. They also learn how to make telescopic observations and how to reduce the CCD images obtained. Interns also participate in weekly meetings with other interns working on different projects around campus. At the end of the summer all the interns present their research results at a symposium held on campus.The symposium is attended by the interns themselves, their parents, their high school science teachers, and university faculty and administrators.The program has had a positive impact on how our interns view science, and specifically on their view of astronomy, as reported by the interns themselves in the first two years of the program.
Using Telescopic Observations to Mentor High School Students in STEM
NASA Astrophysics Data System (ADS)
McLin, Kevin M.; Cominsky, Lynn R.
2011-03-01
Over the past two summers (2009/2010) the NASA E/PO Group at Sonoma State University has sponsored local high school students in a summer science internship program at the University. The students, chosen from Sonoma County high schools in a competitive selection process, work in various STEM fields throughout the School of Science and Technology at SSU. The two interns sponsored by the E/PO Group each summer use GORT, the NASA/Fermi-sponsored robotic observatory operated by the Group, to monitor active galaxies. They are mentored in their projects by E/PO Group personnel and by SSU undergraduates who have experience with the telescope. The students learn about the sky, telescopes and the active galaxies they observe. They also learn how to make telescopic observations and how to reduce the CCD images obtained. Interns also participate in weekly meetings with other interns working on different projects around campus. At the end of the summer all the interns present their research results at a symposium held on campus.The symposium is attended by the interns themselves, their parents and sponsoring high school science teachers, and university faculty and administrators.The program has had a positive impact on how our interns view science, as reported by themselves, and specifically on their view of astronomy, in the first year of the program.
GelSight: High-Resolution Robot Tactile Sensors for Estimating Geometry and Force
Yuan, Wenzhen; Dong, Siyuan; Adelson, Edward H.
2017-01-01
Tactile sensing is an important perception mode for robots, but the existing tactile technologies have multiple limitations. What kind of tactile information robots need, and how to use the information, remain open questions. We believe a soft sensor surface and high-resolution sensing of geometry should be important components of a competent tactile sensor. In this paper, we discuss the development of a vision-based optical tactile sensor, GelSight. Unlike the traditional tactile sensors which measure contact force, GelSight basically measures geometry, with very high spatial resolution. The sensor has a contact surface of soft elastomer, and it directly measures its deformation, both vertical and lateral, which corresponds to the exact object shape and the tension on the contact surface. The contact force, and slip can be inferred from the sensor’s deformation as well. Particularly, we focus on the hardware and software that support GelSight’s application on robot hands. This paper reviews the development of GelSight, with the emphasis in the sensing principle and sensor design. We introduce the design of the sensor’s optical system, the algorithm for shape, force and slip measurement, and the hardware designs and fabrication of different sensor versions. We also show the experimental evaluation on the GelSight’s performance on geometry and force measurement. With the high-resolution measurement of shape and contact force, the sensor has successfully assisted multiple robotic tasks, including material perception or recognition and in-hand localization for robot manipulation. PMID:29186053
Liquid-handling Lego robots and experiments for STEM education and research
Gerber, Lukas C.; Calasanz-Kaiser, Agnes; Hyman, Luke; Voitiuk, Kateryna; Patil, Uday
2017-01-01
Liquid-handling robots have many applications for biotechnology and the life sciences, with increasing impact on everyday life. While playful robotics such as Lego Mindstorms significantly support education initiatives in mechatronics and programming, equivalent connections to the life sciences do not currently exist. To close this gap, we developed Lego-based pipetting robots that reliably handle liquid volumes from 1 ml down to the sub-μl range and that operate on standard laboratory plasticware, such as cuvettes and multiwell plates. These robots can support a range of science and chemistry experiments for education and even research. Using standard, low-cost household consumables, programming pipetting routines, and modifying robot designs, we enabled a rich activity space. We successfully tested these activities in afterschool settings with elementary, middle, and high school students. The simplest robot can be directly built from the widely used Lego Education EV3 core set alone, and this publication includes building and experiment instructions to set the stage for dissemination and further development in education and research. PMID:28323828
Liquid-handling Lego robots and experiments for STEM education and research.
Gerber, Lukas C; Calasanz-Kaiser, Agnes; Hyman, Luke; Voitiuk, Kateryna; Patil, Uday; Riedel-Kruse, Ingmar H
2017-03-01
Liquid-handling robots have many applications for biotechnology and the life sciences, with increasing impact on everyday life. While playful robotics such as Lego Mindstorms significantly support education initiatives in mechatronics and programming, equivalent connections to the life sciences do not currently exist. To close this gap, we developed Lego-based pipetting robots that reliably handle liquid volumes from 1 ml down to the sub-μl range and that operate on standard laboratory plasticware, such as cuvettes and multiwell plates. These robots can support a range of science and chemistry experiments for education and even research. Using standard, low-cost household consumables, programming pipetting routines, and modifying robot designs, we enabled a rich activity space. We successfully tested these activities in afterschool settings with elementary, middle, and high school students. The simplest robot can be directly built from the widely used Lego Education EV3 core set alone, and this publication includes building and experiment instructions to set the stage for dissemination and further development in education and research.
Integrated High-Speed Torque Control System for a Robotic Joint
NASA Technical Reports Server (NTRS)
Davis, Donald R. (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Valvo, Michael C. (Inventor); Askew, R. Scott (Inventor)
2013-01-01
A control system for achieving high-speed torque for a joint of a robot includes a printed circuit board assembly (PCBA) having a collocated joint processor and high-speed communication bus. The PCBA may also include a power inverter module (PIM) and local sensor conditioning electronics (SCE) for processing sensor data from one or more motor position sensors. Torque control of a motor of the joint is provided via the PCBA as a high-speed torque loop. Each joint processor may be embedded within or collocated with the robotic joint being controlled. Collocation of the joint processor, PIM, and high-speed bus may increase noise immunity of the control system, and the localized processing of sensor data from the joint motor at the joint level may minimize bus cabling to and from each control node. The joint processor may include a field programmable gate array (FPGA).
Using Robotics in Kinematics Classes: Exploring Braking and Stopping Distances
ERIC Educational Resources Information Center
Brockington, Guilherme; Schivani, Milton; Barscevicius, Cesar; Raquel, Talita; Pietrocola, Maurício
2018-01-01
Research in the field of physics teaching has revealed high school students' difficulties in establishing relations between kinematic equations and real movements. Moreover, there are well-known and significant challenges in their comprehension of graphic language content. Thus, this article explores a didactic activity which utilized robotics in…
An Integrated Fault Tolerant Robotic Controller System for High Reliability and Safety
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.; Tso, Kam S.; Hecht, Myron
1994-01-01
This paper describes the concepts and features of a fault-tolerant intelligent robotic control system being developed for applications that require high dependability (reliability, availability, and safety). The system consists of two major elements: a fault-tolerant controller and an operator workstation. The fault-tolerant controller uses a strategy which allows for detection and recovery of hardware, operating system, and application software failures.The fault-tolerant controller can be used by itself in a wide variety of applications in industry, process control, and communications. The controller in combination with the operator workstation can be applied to robotic applications such as spaceborne extravehicular activities, hazardous materials handling, inspection and maintenance of high value items (e.g., space vehicles, reactor internals, or aircraft), medicine, and other tasks where a robot system failure poses a significant risk to life or property.
Zero Robotics at Kennedy Space Center Visitor Complex
2017-08-11
A middle-school student high-fives a Star Wars character from the 501st Legion in the Center for Space Education at NASA’s Kennedy Space Center in Florida. Teams from across the state of Florida were gathered at Kennedy for the finals of the Zero Robotics Middle School Summer Program national championship. The five-week program allows rising sixth- through ninth-graders to write programs for small satellites called SPHERES (Synchronized, Position, Hold, Engage, Reorient, Experimental Satellites). Finalists saw their code tested aboard the International Space Station.
ROBOSIM: An intelligent simulator for robotic systems
NASA Technical Reports Server (NTRS)
Fernandez, Kenneth R.; Cook, George E.; Biegl, Csaba; Springfield, James F.
1993-01-01
The purpose of this paper is to present an update of an intelligent robotics simulator package, ROBOSIM, first introduced at Technology 2000 in 1990. ROBOSIM is used for three-dimensional geometrical modeling of robot manipulators and various objects in their workspace, and for the simulation of action sequences performed by the manipulators. Geometric modeling of robot manipulators has an expanding area of interest because it can aid the design and usage of robots in a number of ways, including: design and testing of manipulators, robot action planning, on-line control of robot manipulators, telerobotic user interface, and training and education. NASA developed ROBOSIM between 1985-88 to facilitate the development of robotics, and used the package to develop robotics for welding, coating, and space operations. ROBOSIM has been further developed for academic use by its co-developer Vanderbilt University, and has been in both classroom and laboratory environments for teaching complex robotic concepts. Plans are being formulated to make ROBOSIM available to all U.S. engineering/engineering technology schools (over three hundred total with an estimated 10,000+ users per year).
High productivity mould robotic milling in Al-5083
NASA Astrophysics Data System (ADS)
Urresti, Iker; Arrazola, Pedro Jose; Ørskov, Klaus Bonde; Pelegay, Jose Angel
2018-05-01
Industrial serial robots were usually limited to welding, handling or spray painting operations until very recent years. However, some industries have already realized about their important capabilities in terms of flexibility, working space, adaptability and cost. Hence, currently they are seriously being considered to carry out certain metal machining tasks. Therefore, robot based machining is presented as a cost-saving and flexible manufacturing alternative compared to conventional CNC machines especially for roughing or even pre-roughing of large parts. Nevertheless, there are still some drawbacks usually referred as low rigidity, accuracy and repeatability. Thus, the process productivity is usually sacrificed getting low Material Removal Rates (MRR), and consequently not being competitive. Nevertheless, in this paper different techniques to obtain increased productivity are presented, though an appropriate selection of cutting strategies and parameters that are essential for it. During this research some rough milling tests in Al-5083 are presented where High Feed Milling (HFM) is implemented as productive cutting strategy and the experimental modal analysis named Tap-testing is used for the suitable choice of cutting conditions. Competitive productivity rates are experienced while process stability is checked through the cutting forces measurements in order to prove the effectiveness of the experimental modal analysis for robotic machining.
Whitesides, George M
2018-04-09
This description of "soft robotics" is not intended to be a conventional review, in the sense of a comprehensive technical summary of a developing field. Rather, its objective is to describe soft robotics as a new field-one that offers opportunities to chemists and materials scientists who like to make "things" and to work with macroscopic objects that move and exert force. It will give one (personal) view of what soft actuators and robots are, and how this class of soft devices fits into the more highly developed field of conventional "hard" robotics. It will also suggest how and why soft robotics is more than simply a minor technical "tweak" on hard robotics and propose a unique role for chemistry, and materials science, in this field. Soft robotics is, at its core, intellectually and technologically different from hard robotics, both because it has different objectives and uses and because it relies on the properties of materials to assume many of the roles played by sensors, actuators, and controllers in hard robotics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Final matches of the FIRST regional robotic competition at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
During the 1999 FIRST Southeastern Regional robotic competition held at KSC, a robot carrying its cache of pillow-like disks maneuvers to move around another at left. Powered by 12-volt batteries and operated by remote control, the robotic gladiators spend two minutes each trying to grab, claw and hoist the pillows onto their machines. Teams play defense by taking away competitors' pillows and generally harassing opposing machines. Behind the field are a group of judges, including KSC former KSC Director of Shuttle Processing Robert Sieck (left, in cap), and Center Director Roy Bridges (in white shirt). A giant screen TV in the background displays the action on the playing field. FIRST is a nonprofit organization, For Inspiration and Recognition of Science and Technology. The competition comprised 27 teams, pairing high school students with engineer mentors and corporations. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.
Lego Robotics: STEM Sport of the Mind
ERIC Educational Resources Information Center
Gura, Mark
2012-01-01
Lego robotics is engaging, hands-on, and encompasses every one of the NETS for Students. It also inspires a love of science, technology, engineering, and mathematics (STEM) and provides the experience students need to use digital age skills in the real world. In this article, the author discusses how schools get involved with Lego Robotics and…
Learning to Explain: The Role of Educational Robots in Science Education
ERIC Educational Resources Information Center
Datteri, Edoardo; Zecca, Luisa; Laudisa, Federico; Castiglioni, Marco
2013-01-01
Educational robotics laboratories typically involve building and programming robotic systems to perform particular tasks or solve problems. In this paper we explore the potential educational value of a form of robot-supported educational activity that has been little discussed in the literature. During these activities, primary school children are…
Low-Cost Educational Robotics Applied to Physics Teaching in Brazil
ERIC Educational Resources Information Center
Souza, Marcos A. M.; Duarte, José R. R.
2015-01-01
In this paper, we propose some of the strategies and methodologies for teaching high-school physics topics through an educational robotics show. This exhibition was part of a set of actions promoted by a Brazilian government program of incentive for teaching activities, whose primary focus is the training of teachers, the improvement of teaching…
The Robots Are Coming! Training Tomorrow's High-Tech Workers.
ERIC Educational Resources Information Center
Zemke, Ron
1983-01-01
The United States, running second to Japan in the robot race, is employing 19 percent of the world's robots. This article presents six classes of robots that were defined by the Japanese trade association. All are multifunctional, equipped with a memory device, capable of rotation, and able to replace human workers. (SSH)
FIRST 2002, 2003, 2004 Robotics Competition(s)
NASA Technical Reports Server (NTRS)
Purman, Richard
2004-01-01
The New Horizons Regional Education Center (NHREC) in Hampton, VA sought and received NASA funding to support its participation in the 2002, 2003, and 2004 FIRST Robotics Competitions. FIRST, Inc. (For Inspiration and Recognition of Science and Technology) is an organization which encourages the application of creative science, math, and computer science principles to solve real-world engineering problems. The FIRST competition is an international engineering contest featuring high school, government, and business partnerships.
The climbing crawling robot (a unique cable robot for space and Earth)
NASA Technical Reports Server (NTRS)
Kerley, James J.; May, Edward; Eklund, Wayne
1991-01-01
Some of the greatest concerns in robotic designs have been the high center of gravity of the robot, the irregular or flat surface that the robot has to work on, the weight of the robot that has to handle heavy weights or use heavy forces, and the ability of the robot to climb straight up in the air. This climbing crawling robot handles these problems well with magnets, suction cups, or actuators. The cables give body to the robot and it performs very similar to a caterpillar. The computer program is simple and inexpensive as is the robot. One of the important features of this system is that the robot can work in pairs or triplets to handle jobs that would be extremely difficult for single robots. The light weight of the robot allows it to handle quite heavy weights. The number of feet give the robot many roots where a simple set of feet would give it trouble.
Principles of robotics: regulating robots in the real world
NASA Astrophysics Data System (ADS)
Boden, Margaret; Bryson, Joanna; Caldwell, Darwin; Dautenhahn, Kerstin; Edwards, Lilian; Kember, Sarah; Newman, Paul; Parry, Vivienne; Pegman, Geoff; Rodden, Tom; Sorrell, Tom; Wallis, Mick; Whitby, Blay; Winfield, Alan
2017-04-01
This paper proposes a set of five ethical principles, together with seven high-level messages, as a basis for responsible robotics. The Principles of Robotics were drafted in 2010 and published online in 2011. Since then the principles have influenced, and continue to influence, a number of initiatives in robot ethics but have not, to date, been formally published. This paper remedies that omission.
Wang, Kundong; Chen, Bing; Lu, Qingsheng; Li, Hongbing; Liu, Manhua; Shen, Yu; Xu, Zhuoyan
2018-05-15
Endovascular interventional surgery (EIS) is performed under a high radiation environment at the sacrifice of surgeons' health. This paper introduces a novel endovascular interventional surgical robot that aims to reduce radiation to surgeons and physical stress imposed by lead aprons during fluoroscopic X-ray guided catheter intervention. The unique mechanical structure allowed the surgeon to manipulate the axial and radial motion of the catheter and guide wire. Four catheter manipulators (to manipulate the catheter and guide wire), and a control console which consists of four joysticks, several buttons and two twist switches (to control the catheter manipulators) were presented. The entire robotic system was established on a master-slave control structure through CAN (Controller Area Network) bus communication, meanwhile, the slave side of this robotic system showed highly accurate control over velocity and displacement with PID controlling method. The robotic system was tested and passed in vitro and animal experiments. Through functionality evaluation, the manipulators were able to complete interventional surgical motion both independently and cooperatively. The robotic surgery was performed successfully in an adult female pig and demonstrated the feasibility of superior mesenteric and common iliac artery stent implantation. The entire robotic system met the clinical requirements of EIS. The results show that the system has the ability to imitate the movements of surgeons and to accomplish the axial and radial motions with consistency and high-accuracy. Copyright © 2018 John Wiley & Sons, Ltd.
Student teams practice for regional robotic competition at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
Student teams (background) maneuver their robots on the playing field during practice rounds of the 1999 Southeastern Regional robotic competition at Kennedy Space Center Visitor Complex . Thirty schools from around the country have converged at KSC for the event that pits gladiator robots against each other in an athletic-style competition. As one of their goals, the robots have to retrieve pillow-like disks from the floor. KSC is hosting the event being sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.
Robotic equipment malfunction during robotic prostatectomy: a multi-institutional study.
Lavery, Hugh J; Thaly, Rahul; Albala, David; Ahlering, Thomas; Shalhav, Arieh; Lee, David; Fagin, Randy; Wiklund, Peter; Dasgupta, Prokar; Costello, Anthony J; Tewari, Ashutosh; Coughlin, Geoff; Patel, Vipul R
2008-09-01
Robotic-assisted laparoscopic prostatectomy (RALP) is growing in popularity as a treatment option for prostate cancer. As a new technology, little is known regarding the reliability of the da Vinci robotic system. Intraoperative robotic equipment malfunction may force the surgeon to convert the procedure to an open or pure laparoscopic procedure, or possibly even abort the procedure. We report the first large-scale, multi-institutional review of robotic equipment malfunction. A questionnaire was designed to evaluate the rate of perioperative robotic malfunction during RALP. High-volume, experienced surgeons were asked to complete this evaluation based on the analysis of their data. Questions included the overall number of RALPs performed, the number of equipment malfunctions, the number of procedures that had to be converted or aborted, and the part of the robotic system that malfunctioned. Eleven institutions participated in the study with a median surgeon volume of 700 cases, accounting for a total case volume of 8240. Critical failure occurred in 34 cases (0.4%) leading to the cancellation of 24 cases prior to the procedure, and the conversion to two laparoscopic and eight open procedures. The most common components of the robot to malfunction were the arms and optical system. Critical robotic equipment malfunction is extremely rare in institutions that perform high volumes of RALPs, with a nonrecoverable malfunction rate of only 0.4%.
Robotics for Human Exploration
NASA Technical Reports Server (NTRS)
Fong, Terrence; Deans, Mathew; Bualat, Maria
2013-01-01
Robots can do a variety of work to increase the productivity of human explorers. Robots can perform tasks that are tedious, highly repetitive or long-duration. Robots can perform precursor tasks, such as reconnaissance, which help prepare for future human activity. Robots can work in support of astronauts, assisting or performing tasks in parallel. Robots can also perform "follow-up" work, completing tasks designated or started by humans. In this paper, we summarize the development and testing of robots designed to improve future human exploration of space.
High-Performance 3D Articulated Robot Display
NASA Technical Reports Server (NTRS)
Powell, Mark W.; Torres, Recaredo J.; Mittman, David S.; Kurien, James A.; Abramyan, Lucy
2011-01-01
In the domain of telerobotic operations, the primary challenge facing the operator is to understand the state of the robotic platform. One key aspect of understanding the state is to visualize the physical location and configuration of the platform. As there is a wide variety of mobile robots, the requirements for visualizing their configurations vary diversely across different platforms. There can also be diversity in the mechanical mobility, such as wheeled, tracked, or legged mobility over surfaces. Adaptable 3D articulated robot visualization software can accommodate a wide variety of robotic platforms and environments. The visualization has been used for surface, aerial, space, and water robotic vehicle visualization during field testing. It has been used to enable operations of wheeled and legged surface vehicles, and can be readily adapted to facilitate other mechanical mobility solutions. The 3D visualization can render an articulated 3D model of a robotic platform for any environment. Given the model, the software receives real-time telemetry from the avionics system onboard the vehicle and animates the robot visualization to reflect the telemetered physical state. This is used to track the position and attitude in real time to monitor the progress of the vehicle as it traverses its environment. It is also used to monitor the state of any or all articulated elements of the vehicle, such as arms, legs, or control surfaces. The visualization can also render other sorts of telemetered states visually, such as stress or strains that are measured by the avionics. Such data can be used to color or annotate the virtual vehicle to indicate nominal or off-nominal states during operation. The visualization is also able to render the simulated environment where the vehicle is operating. For surface and aerial vehicles, it can render the terrain under the vehicle as the avionics sends it location information (GPS, odometry, or star tracking), and locate the vehicle
Mindstorms Robots and the Application of Cognitive Load Theory in Introductory Programming
ERIC Educational Resources Information Center
Mason, Raina; Cooper, Graham
2013-01-01
This paper reports on a series of introductory programming workshops, initially targeting female high school students, which utilised Lego Mindstorms robots. Cognitive load theory (CLT) was applied to the instructional design of the workshops, and a controlled experiment was also conducted investigating aspects of the interface. Results indicated…
Hands Off: Mentoring a Student-Led Robotics Team
ERIC Educational Resources Information Center
Dolenc, Nathan R.; Mitchell, Claire E.; Tai, Robert H.
2016-01-01
Mentors play important roles in determining the working environment of out-of-school-time clubs. On robotics teams, they provide guidance in hopes that their protégés progress through an engineering process. This study examined how mentors on one robotics team who defined their mentoring style as "let the students do the work" navigated…
NASA hosts FIRST Robotics kickoff for regional schools
NASA Technical Reports Server (NTRS)
2008-01-01
Master of ceremonies Steve Culivan, an employee of Penn State University and aerospace education specialist at NASA's Stennis Space Center, talked to a crowd of more than 300 who attended the Jan. 5 kickoff of the 2008 FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition season. The students, coaches and mentors from three states who attended also watched a live broadcast from FIRST's Manchester, N.H., headquarters that revealed this year's competition challenge, and received parts kits from which they built robots to meet the challenge.
NASA hosts FIRST Robotics kickoff for regional schools
2008-01-05
Master of ceremonies Steve Culivan, an employee of Penn State University and aerospace education specialist at NASA's Stennis Space Center, talked to a crowd of more than 300 who attended the Jan. 5 kickoff of the 2008 FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition season. The students, coaches and mentors from three states who attended also watched a live broadcast from FIRST's Manchester, N.H., headquarters that revealed this year's competition challenge, and received parts kits from which they built robots to meet the challenge.
Student teams prepare robots for regional competition at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
Student teams and sponsors, with their robots, fill the Center for Space Education at KSC as they look over the competition. Thirty schools from around the country have converged at KSC for the 1999 Southeastern Regional robotic competition March 4-6. The event pits the team-built gladiator robots against each other in an athletic-style competition. KSC is hosting the event being sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.
Student teams prepare robots for regional competition at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
Students look over one of the robots to compete in the 1999 Southeastern Regional robotic competition being held at Kennedy Space Center March 4-6. Thirty schools from around the country have converged at KSC for the event that pits the team-built gladiator robots against each other in an athletic-style competition. KSC is hosting the event being sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.
NASA Astrophysics Data System (ADS)
Robinson, Trevor P.
The number of robotics competitions has steadily increased over the past 30 years. Schools are implementing robotics competitions to increase student content knowledge and interest in science, technology, engineering, and mathematics (STEM). Companies in STEM-related fields are financially supporting robotics competitions to help increase the number of students pursuing careers in STEM among other reasons. These financial supporters and school administrations are asking what the outcomes of students participating in competitive robotics are. Few studies have been conducted to investigate these outcomes. The studies that have been conducted usually compare students in robotics to students not in robotics. There have not been any studies that compare students to themselves before and after participating in robotics competitions. This may be due to the lack of available instruments to measure student outcomes. This study developed an instrument to measure the self-efficacy of students participating in VEX Robotics Competitions (VRC). The VRC is the world's largest and fastest growing robotics competition available for middle and high school students. Self-efficacy was measured because of its importance to the education community. Students with higher self-efficacy tend to persevere through difficult tasks more frequently than students with low self-efficacy. A person's self-efficacy has major influence over what interests, activities, classes, college majors, and careers he or she will pursue in life. The self-efficacy survey instrument created through this study was developed through an occupational and task analysis (OTA), and initial content and face validity was established through the OTA process. Exploratory and confirmatory factor analyses were also conducted to assist in instrument validation. The reliability was calculated using Cronbach's alpha. Face validity was established through the OTA process. Construct validity was established through the factor
Classroom evaluation of the Arlyn Arm robotic workstation.
Eberhardt, S P; Osborne, J; Rahman, T
2000-01-01
High school and junior high school students with neuromuscular weakness and other disorders of the arms evaluated a recently commercialized robotic workstation, the Arlyn Arm, to carry out art projects and science experiments. These tasks were designed for independent execution with the workstation using standard or custom-designed tools. Each task was divided into subtasks, and the execution time of each subtask was determined as a measure of efficiency. Special attention was given to the causes of required experimenter intervention. While subjects easily accomplished some subtasks, others required considerable intervention. Most of these interventions could be avoided by further customizing accessories. It is concluded that the Arlyn Arm workstation could be of considerable benefit in a classroom setting to persons with severe neuromuscular disorders.
NASA Astrophysics Data System (ADS)
Bering, E. A.; Ramsey, J.; Smith, H.; Boyko, B. S.; Peck, S.; Arcenaux, W. H.
2005-05-01
The present aerospace engineering and science workforce is ageing. It is not clear that the US education system will produce enough qualified replacements to meet the need in the near future. Unfortunately, by the time many students get to high school, it is often too late to get them pointed toward an engineering or science career. Since some college programs require 6 units of high school mathematics for admission, students need to begin consciously preparing for a science or engineering curriculum as early as 6th or 7th grade. The challenge for educators is to convince elementary school students that science and engineering are both exciting, relevant and accessible career paths. This paper describes a program designed to help provide some excitement and relevance. It is based on the task of developing a mobile robot or "Rover" to explore the surface of Mars. There are two components to the program, a curriculum unit and a contest. The curriculum unit is structured as a 6-week planetary science unit for elementary school (grades 3-5). It can also be used as a curriculum unit, enrichment program or extracurricular activity in grades 6-8 by increasing the expected level of scientific sophistication in the mission design. The second component is a citywide competition to select the most outstanding models that is held annually at a local college or University. Primary (Grades 3-5) and middle school (Grades 6-8) students interested in science and engineering will design and build of a model of a Mars Rover to carry out a specific science mission on the surface of Mars. The students will build the models as part of a 6-week Fall semester classroom-learning or homework project on Mars. The students will be given design criteria for a rover, and be required to do basic research on Mars that will determine the operational objectives and structural features of their rover. This module may be used as part of a class studying general science, earth science, solar system
ERIC Educational Resources Information Center
Wu, Wen-Chi Vivian; Wang, Rong-Jyue; Chen, Nian-Shing
2015-01-01
This paper presents a design for a cutting-edge English program in which elementary school learners of English as a foreign language in Taiwan had lively interactions with a teaching assistant robot. Three dimensions involved in the design included (1) a pleasant and interactive classroom environment as the learning context, (2) a teaching…
NASA Astrophysics Data System (ADS)
Nyein, Aung Kyaw; Thu, Theint Theint
2008-10-01
In this paper, an articulated type of industrial used robot is discussed. The robot is mainly intended to be used in pick and place operation. It will sense the object at the specified place and move it to a desired location. A peripheral interface controller (PIC16F84A) is used as the main controller of the robot. Infrared LED and IR receiver unit for object detection and 4-bit bidirectional universal shift registers (74LS194) and high current and high voltage Darlington transistors arrays (ULN2003) for driving the arms' motors are used in this robot. The amount of rotation for each arm is regulated by the limit switches. The operation of the robot is very simple but it has the ability of to overcome resetting position after power failure. It can continue its work from the last position before the power is failed without needing to come back to home position.
Experimental Studies of Joint Flexibility for PUMA 560 Robot.
1987-03-01
the robot and plant equipment be set up prior to the programming. With the advent of higher level programming languages such as VAL II and the ...SCHOOL I Monterey, California THESIS EC" ft EXPERIMENTAL STUDIES OF JOINT FLEXIBILITY FOR PUNA 560 ROBOT by Dennis K. Gonyier March 1987 Thesis Advisor ...9ABSTRACT (ContInUe on revene ff neccual) and odent’ f by block num~ber) This paper investigates flexibility of the PUMA 560 industrial robot arm. The
Student teams practice for regional robotic competition at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
During practice rounds of the 1999 Southeastern Regional robotic competition at Kennedy Space Center Visitor Complex, team members adjust components of their robot on the floor. Thirty schools from around the country have converged at KSC for the event that pits gladiator robots against each other in an athletic-style competition. The robots have to retrieve pillow-like disks from the floor, as well as climb onto a platform and raise the cache of pillows to a height of eight feet. KSC is hosting the event being sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.
NASA Technical Reports Server (NTRS)
Morring, Frank, Jr.
2004-01-01
Tests with robots and the high-fidelity Hubble Space Telescope mockup astronauts use to train for servicing missions have convinced NASA managers it may be possible to maintain and upgrade the orbiting observatory without sending a space shuttle to do the job. In a formal request last week, the agency gave bidders until July 16 to sub-mit proposals for a robotic mission to the space telescope before the end of 2007. At a minimum, the mission would attach a rocket motor to deorbit the telescope safely when its service life ends. In the best case, it would use state-of-the- art robotics to prolong its life on orbit and install new instruments. With the space shuttle off-limits for the job under strict post-Columbia safety policies set by Administrator Sean O'Keefe, NASA has designed a "straw- man" robotic mission that would use an Atlas V or Delta N to launch a 20,ooO-lb. "Hubble Robotic Vehicle" to service the telescope. There, a robotic arm would grapple it, much as the shuttle does.
New Horizons Regional Education Center 1999 FIRST Robotics Competition
NASA Technical Reports Server (NTRS)
Purman, Richard I.
1999-01-01
The New Horizons Regional Education Center (NHREC) in Hampton, VA sought and received NASA funding to support its participation in the 1999 FIRST Robotics competition. FIRST, Inc. (For Inspiration and Recognition of Science and Technology) is an organization which encourages the application of creative science, math, and computer science principles to solve real-world engineering problems. The FIRST competition is an international engineering contest featuring high school, government, and business partnerships.
New Horizons Regional Education Center 2001 FIRST Robotics Competition
NASA Technical Reports Server (NTRS)
2001-01-01
The New Horizons Regional Education Center (NHREC) in Hampton, VA sought and received NASA funding to support its participation in the 2001 FIRST Robotics competition. FIRST, Inc. (For Inspiration and Recognition of Science and Technology) is an organization which encourages the application of creative science, math, and computer science principles to solve real-world engineering problems. The FIRST competition is an international engineering contest featuring high school, government, and business partnerships.
Distributed Finite-Time Cooperative Control of Multiple High-Order Nonholonomic Mobile Robots.
Du, Haibo; Wen, Guanghui; Cheng, Yingying; He, Yigang; Jia, Ruting
2017-12-01
The consensus problem of multiple nonholonomic mobile robots in the form of high-order chained structure is considered in this paper. Based on the model features and the finite-time control technique, a finite-time cooperative controller is explicitly constructed which guarantees that the states consensus is achieved in a finite time. As an application of the proposed results, finite-time formation control of multiple wheeled mobile robots is studied and a finite-time formation control algorithm is proposed. To show effectiveness of the proposed approach, a simulation example is given.
TROTER's (Tiny Robotic Operation Team Experiment): A new concept of space robots
NASA Technical Reports Server (NTRS)
Su, Renjeng
1990-01-01
In view of the future need of automation and robotics in space and the existing approaches to the problem, we proposed a new concept of robots for space construction. The new concept is based on the basic idea of decentralization. Decentralization occurs, on the one hand, in using teams of many cooperative robots for construction tasks. Redundancy and modular design are explored to achieve high reliability for team robotic operations. Reliability requirement on individual robots is greatly reduced. Another area of decentralization is manifested by the proposed control hierarchy which eventually includes humans in the loop. The control strategy is constrained by various time delays and calls for different levels of abstraction of the task dynamics. Such technology is needed for remote control of robots in an uncertain environment. Thus, concerns of human safety around robots are relaxed. This presentation also introduces the required technologies behind the new robotic concept.
Design and Development Issues for Educational Robotics Training Camps
ERIC Educational Resources Information Center
Ucgul, Memet; Cagiltay, Kursat
2014-01-01
The aim of this study is to explore critical design issues for educational robotics training camps and to describe how these factors should be implemented in the development of such camps. For this purpose, two robotics training camps were organized for elementary school students. The first camp had 30 children attendees, and the second had 22. As…
Human-robot interaction tests on a novel robot for gait assistance.
Tagliamonte, Nevio Luigi; Sergi, Fabrizio; Carpino, Giorgio; Accoto, Dino; Guglielmelli, Eugenio
2013-06-01
This paper presents tests on a treadmill-based non-anthropomorphic wearable robot assisting hip and knee flexion/extension movements using compliant actuation. Validation experiments were performed on the actuators and on the robot, with specific focus on the evaluation of intrinsic backdrivability and of assistance capability. Tests on a young healthy subject were conducted. In the case of robot completely unpowered, maximum backdriving torques were found to be in the order of 10 Nm due to the robot design features (reduced swinging masses; low intrinsic mechanical impedance and high-efficiency reduction gears for the actuators). Assistance tests demonstrated that the robot can deliver torques attracting the subject towards a predicted kinematic status.
Dynamic traversal of high bumps and large gaps by a small legged robot
NASA Astrophysics Data System (ADS)
Gart, Sean; Winey, Nastasia; de La Tijera Obert, Rafael; Li, Chen
Small animals encounter and negotiate diverse obstacles comparable in size or larger than themselves. In recent experiments, we found that cockroaches can dynamically traverse bumps up to 4 times hip height and gaps up to 1 body length. To better understand the physics that governs these locomotor transitions, we studied a small six-legged robot negotiating high bumps and large gaps and compared it to animal observations. We found that the robot was able to traverse bumps as large as 1 hip height and gaps as wide as 0.5 body length. For the bump, the robot often climbed over to traverse when initial body yaw was small, but was often deflected laterally and failed to traverse when initial body yaw was large. A simple locomotion energy landscape model explained these observations. For the gap, traversal probability decreased with gap width, which was well explained by a simple Lagrangian model of a forward-moving rigid body falling over the gap edge. For both the bump and the gap, animal performance far exceeded that of the robot, likely due to their relatively higher running speeds and larger rotational oscillations prior to and during obstacle traversal. Differences between animal and robot obstacle negotiation behaviors revealed that animals used active strategies to overcome potential energy barriers.
ERIC Educational Resources Information Center
Hansen, Janus Halkier; Traeholt, Rune
2007-01-01
For the last four years, Soenderholm School, near the town of Aalborg, Northjutland, Denmark, has had an optional subject in the seventh grade called First "Lego" League (FLL). FLL is an international contest which aims to advance pupils' scientific interest. The task is for participants to build and program a "Lego" robot able…
NASA Technical Reports Server (NTRS)
1988-01-01
Martin Marietta Aero and Naval Systems has advanced the CAD art to a very high level at its Robotics Laboratory. One of the company's major projects is construction of a huge Field Material Handling Robot for the Army's Human Engineering Lab. Design of FMR, intended to move heavy and dangerous material such as ammunition, was a triumph in CAD Engineering. Separate computer problems modeled the robot's kinematics and dynamics, yielding such parameters as the strength of materials required for each component, the length of the arms, their degree of freedom and power of hydraulic system needed. The Robotics Lab went a step further and added data enabling computer simulation and animation of the robot's total operational capability under various loading and unloading conditions. NASA computer program (IAC), integrated Analysis Capability Engineering Database was used. Program contains a series of modules that can stand alone or be integrated with data from sensors or software tools.
Student teams practice for regional robotic competition at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
Student teams (right and left) behind protective walls maneuver their robots on the playing field during practice rounds of the 1999 Southeastern Regional robotic competition at Kennedy Space Center Visitor Complex . Thirty schools from around the country have converged at KSC for the event that pits gladiator robots against each other in an athletic-style competition. The robots have to retrieve pillow-like disks from the floor, as well as climb onto the platform (foreground) and raise the cache of pillows to a height of eight feet. KSC is hosting the event being sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.
Robot Tracer with Visual Camera
NASA Astrophysics Data System (ADS)
Jabbar Lubis, Abdul; Dwi Lestari, Yuyun; Dafitri, Haida; Azanuddin
2017-12-01
Robot is a versatile tool that can function replace human work function. The robot is a device that can be reprogrammed according to user needs. The use of wireless networks for remote monitoring needs can be utilized to build a robot that can be monitored movement and can be monitored using blueprints and he can track the path chosen robot. This process is sent using a wireless network. For visual robot using high resolution cameras to facilitate the operator to control the robot and see the surrounding circumstances.
A Predictive Study of Learner Attitudes toward Open Learning in a Robotics Class
ERIC Educational Resources Information Center
Avsec, Stanislav; Rihtarsic, David; Kocijancic, Slavko
2014-01-01
Open learning (OL) strives to transform teaching and learning by applying learning science and emerging technologies to increase student success, improve learning productivity, and lower barriers to access. OL of robotics has a significant growth rate in secondary and/or high schools, but failures exist. Little is known about why many users stop…
Robot-assisted surgery: the future is here.
Gerhardus, Diana
2003-01-01
According to L. Wiley Nifong, director of robotic surgery at East Carolina University's Brody School of Medicine, "Nationally, only one-fourth of the 15 million surgeries performed each year are done with small incisions or what doctors call 'minimally invasive surgery'." Robots could raise that number substantially (Stark 2002). Currently, healthcare organizations use robot technology for thoracic, abdominal, pelvic, and neurological surgical procedures. Minimally invasive surgery reduces the amount of inpatient hospital days, and the computer in the system filters any hand tremors a physician may have during the surgery. The use of robot-assisted surgery improves quality of care because the patient experiences less pain after the surgery. Robot-assisted surgery demonstrates definite advantages for the patient, physician, and hospital; however, healthcare organizations in the United States have yet to acquire the technology because of implementation costs and the lack of FDA (Food and Drug Administration) approval for using the technology for certain types of heart procedures. This article focuses on robot-assisted surgery advantages to patients, physicians, and hospitals as well as on the disadvantages to physicians. In addition, the article addresses implementation costs, which creates financial hurdles for most healthcare organizations; offers recommendations for administrators to embrace this technology for strategic positioning; and enumerates possible roles for robots in medicine.
Generating high-speed dynamic running gaits in a quadruped robot using an evolutionary search.
Krasny, Darren P; Orin, David E
2004-08-01
Over the past several decades, there has been a considerable interest in investigating high-speed dynamic gaits for legged robots. While much research has been published, both in the biomechanics and engineering fields regarding the analysis of these gaits, no single study has adequately characterized the dynamics of high-speed running as can be achieved in a realistic, yet simple, robotic system. The goal of this paper is to find the most energy-efficient, natural, and unconstrained gallop that can be achieved using a simulated quadrupedal robot with articulated legs, asymmetric mass distribution, and compliant legs. For comparison purposes, we also implement the bound and canter. The model used here is planar, although we will show that it captures much of the predominant dynamic characteristics observed in animals. While it is not our goal to prove anything about biological locomotion, the dynamic similarities between the gaits we produce and those found in animals does indicate a similar underlying dynamic mechanism. Thus, we will show that achieving natural, efficient high-speed locomotion is possible even with a fairly simple robotic system. To generate the high-speed gaits, we use an efficient evolutionary algorithm called set-based stochastic optimization. This algorithm finds open-loop control parameters to generate periodic trajectories for the body. Several alternative methods are tested to generate periodic trajectories for the legs. The combined solutions found by the evolutionary search and the periodic-leg methods, over a range of speeds up to 10.0 m/s, reveal "biological" characteristics that are emergent properties of the underlying gaits.
Tactile surface classification for limbed robots using a pressure sensitive robot skin.
Shill, Jacob J; Collins, Emmanuel G; Coyle, Eric; Clark, Jonathan
2015-02-02
This paper describes an approach to terrain identification based on pressure images generated through direct surface contact using a robot skin constructed around a high-resolution pressure sensing array. Terrain signatures for classification are formulated from the magnitude frequency responses of the pressure images. The initial experimental results for statically obtained images show that the approach yields classification accuracies [Formula: see text]. The methodology is extended to accommodate the dynamic pressure images anticipated when a robot is walking or running. Experiments with a one-legged hopping robot yield similar identification accuracies [Formula: see text]. In addition, the accuracies are independent with respect to changing robot dynamics (i.e., when using different leg gaits). The paper further shows that the high-resolution capabilities of the sensor enables similarly textured surfaces to be distinguished. A correcting filter is developed to accommodate for failures or faults that inevitably occur within the sensing array with continued use. Experimental results show using the correcting filter can extend the effective operational lifespan of a high-resolution sensing array over 6x in the presence of sensor damage. The results presented suggest this methodology can be extended to autonomous field robots, providing a robot with crucial information about the environment that can be used to aid stable and efficient mobility over rough and varying terrains.
NASA Astrophysics Data System (ADS)
Yukita, Kazuto; Goto, Tokimasa; Mizuno, Katsunori; Nakano, Hiroyuki; Ichiyanagi, Katsuhiro; Goto, Yasuyuki; Mori, Tsuyoshi
Recently the importance of Monozukuri (manufacturing) has been watched with keen interest as a social; problem, which has a relation with schoolchildren's decline of their academic standards, pointed out by the reports of PISA of OECD and TIMSS, etc., and their “losing interest in science” and “dislike of science”, some people worry about, which will lead to the decline of technology in the home industry, the top-class personnel shortage, and the decrease of economical power in this country in the future. In order to solve such a problem, science pavilions, universities, and academic societies of science and engineering etc. in various places hold “Monozukuiri Classrooms” or “Science Classrooms”. We can say that various activities which try to hold off “losing interest in science” and “dislike of science.” in the whole society. Under such a situation, Aichi Institute of Technology (AIT) to which we belong, also tries to contribute to the activity of solving the problem, and holds various engineering education lectures which intend for elementary, junior high school and senior high school students. AIT has held “The Whole Experience World” which tries to bring up a talented person who has a dream and hope towards science and technology, grows his/her originality, intellectual curiosity and spirit of inquiry, and supports the nation based on science and technology in the summer vacation since 2001. This paper reports the result of a questionnaire about what kind of the long-term learning effect on the children who participated in “The Whole Experience World” and “Boys and Girls Robot Lectures”. As the conclusion of the study, we can say that the lectures could give the participants who were interested in science and technology more interest. And we could give them the idea of what the study of science and technology is. As a result, we could contribute to the participants' decision of the courses' selection in life.
High-Repeatability, Robot Friendly, ORU Interface
NASA Technical Reports Server (NTRS)
Voellmer, George M. (Inventor)
1992-01-01
A robot-friendly coupling device for an Orbital Replacement Unit (ORU). The invention will provide a coupling that is detached and attached remotely by a robot. The design of the coupling must allow for slight misalignments, over torque protection, and precision placement. This is accomplished by using of a triangular interface having three components. A base plate assembly is located on an attachment surface, such as a satellite. The base plate assembly has a cup member, a slotted member, and a post member. The ORU that the robot attaches to the base plate assembly has an ORU plate assembly with two cone members and a post member which mate to the base plate assembly. As the two plates approach one another, one cone member of the ORU plate assembly only has to be placed accurately enough to fall into the cup member of the base plate assembly. The cup forces alignment until a second cone falls into a slotted member which provides final alignment. A single bolt is used to attach the two plates. Two deflecting plates are attached to the backs of the plates. When pressure is applied to the center of the deflecting plates, the force is distributed preventing the ORU & base plates from deflecting. This accounts for precision in the placement of the article.
Fort Collins High School Wins 28th Colorado High School Science Bowl | News
physics, math, biology, energy, chemistry, and earth and space sciences. Cherry Creek High School (Denver | NREL Fort Collins High School Wins 28th Colorado High School Science Bowl News Release: Fort Collins High School Wins 28th Colorado High School Science Bowl Team heading to Washington, D.C., to
Assistant Personal Robot (APR): Conception and Application of a Tele-Operated Assisted Living Robot.
Clotet, Eduard; Martínez, Dani; Moreno, Javier; Tresanchez, Marcel; Palacín, Jordi
2016-04-28
This paper presents the technical description, mechanical design, electronic components, software implementation and possible applications of a tele-operated mobile robot designed as an assisted living tool. This robotic concept has been named Assistant Personal Robot (or APR for short) and has been designed as a remotely telecontrolled robotic platform built to provide social and assistive services to elderly people and those with impaired mobility. The APR features a fast high-mobility motion system adapted for tele-operation in plain indoor areas, which incorporates a high-priority collision avoidance procedure. This paper presents the mechanical architecture, electrical fundaments and software implementation required in order to develop the main functionalities of an assistive robot. The APR uses a tablet in order to implement the basic peer-to-peer videoconference and tele-operation control combined with a tactile graphic user interface. The paper also presents the development of some applications proposed in the framework of an assisted living robot.
Wood, Luke Jai; Dautenhahn, Kerstin; Rainer, Austen; Robins, Ben; Lehmann, Hagen; Syrdal, Dag Sverre
2013-01-01
Robots have been used in a variety of education, therapy or entertainment contexts. This paper introduces the novel application of using humanoid robots for robot-mediated interviews. An experimental study examines how children’s responses towards the humanoid robot KASPAR in an interview context differ in comparison to their interaction with a human in a similar setting. Twenty-one children aged between 7 and 9 took part in this study. Each child participated in two interviews, one with an adult and one with a humanoid robot. Measures include the behavioural coding of the children’s behaviour during the interviews and questionnaire data. The questions in these interviews focused on a special event that had recently taken place in the school. The results reveal that the children interacted with KASPAR very similar to how they interacted with a human interviewer. The quantitative behaviour analysis reveal that the most notable difference between the interviews with KASPAR and the human were the duration of the interviews, the eye gaze directed towards the different interviewers, and the response time of the interviewers. These results are discussed in light of future work towards developing KASPAR as an ‘interviewer’ for young children in application areas where a robot may have advantages over a human interviewer, e.g. in police, social services, or healthcare applications. PMID:23533625
Zero Robotics at Kennedy Space Center Visitor Complex
2017-08-11
A programmable off-the-shelf Sphero robot is shown on a Mars mat at the Center for Space Education at NASA's Kennedy Space Center in Florida. The Spheros were available for students to practice their programming skills by navigating the robots around a challenge course on the mat. Students used the mat and Sphero robots during "loss of signal" times when the connection to the International Space Station was temporarily unavailable. Teams from across the state of Florida were gathered at Kennedy for the finals of the Zero Robotics Middle School Summer Program national championship. The five-week program allows rising sixth- through ninth-graders to write programs for small satellites called SPHERES (Synchronized, Position, Hold, Engage, Reorient, Experimental Satellites). Finalists saw their code tested aboard the orbiting laboratory.
Success with High School Allotment: Three High Schools' Rise to Exemplary
ERIC Educational Resources Information Center
Bevers, James Walter
2012-01-01
This study was implemented to investigate how three Texas high school campuses improved their campus accountability ratings using the High School Allotment (HSA) funding. Three high schools were selected based on criteria, including campus size, ethnic breakdown of student population, use of HSA finding, and improvement in the campus…
High School/College Collaboration that Promotes High School Success.
ERIC Educational Resources Information Center
Conklin, David
Over the past few years, Mercer County Community College (MCCC) in Trenton, New Jersey, has developed several programs and activities to promote a closer relationship between the college and local junior high and high schools. The programs are built on the premise that well-prepared students are more likely to persist through high school and…
NASA Astrophysics Data System (ADS)
Popov, E. P.; Iurevich, E. I.
The history and the current status of robotics are reviewed, as are the design, operation, and principal applications of industrial robots. Attention is given to programmable robots, robots with adaptive control and elements of artificial intelligence, and remotely controlled robots. The applications of robots discussed include mechanical engineering, cargo handling during transportation and storage, mining, and metallurgy. The future prospects of robotics are briefly outlined.
ARTIE: An Integrated Environment for the Development of Affective Robot Tutors
Imbernón Cuadrado, Luis-Eduardo; Manjarrés Riesco, Ángeles; De La Paz López, Félix
2016-01-01
Over the last decade robotics has attracted a great deal of interest from teachers and researchers as a valuable educational tool from preschool to highschool levels. The implementation of social-support behaviors in robot tutors, in particular in the emotional dimension, can make a significant contribution to learning efficiency. With the aim of contributing to the rising field of affective robot tutors we have developed ARTIE (Affective Robot Tutor Integrated Environment). We offer an architectural pattern which integrates any given educational software for primary school children with a component whose function is to identify the emotional state of the students who are interacting with the software, and with the driver of a robot tutor which provides personalized emotional pedagogical support to the students. In order to support the development of affective robot tutors according to the proposed architecture, we also provide a methodology which incorporates a technique for eliciting pedagogical knowledge from teachers, and a generic development platform. This platform contains a component for identiying emotional states by analysing keyboard and mouse interaction data, and a generic affective pedagogical support component which specifies the affective educational interventions (including facial expressions, body language, tone of voice,…) in terms of BML (a Behavior Model Language for virtual agent specification) files which are translated into actions of a robot tutor. The platform and the methodology are both adapted to primary school students. Finally, we illustrate the use of this platform to build a prototype implementation of the architecture, in which the educational software is instantiated with Scratch and the robot tutor with NAO. We also report on a user experiment we carried out to orient the development of the platform and of the prototype. We conclude from our work that, in the case of primary school students, it is possible to identify, without
ARTIE: An Integrated Environment for the Development of Affective Robot Tutors.
Imbernón Cuadrado, Luis-Eduardo; Manjarrés Riesco, Ángeles; De La Paz López, Félix
2016-01-01
Over the last decade robotics has attracted a great deal of interest from teachers and researchers as a valuable educational tool from preschool to highschool levels. The implementation of social-support behaviors in robot tutors, in particular in the emotional dimension, can make a significant contribution to learning efficiency. With the aim of contributing to the rising field of affective robot tutors we have developed ARTIE (Affective Robot Tutor Integrated Environment). We offer an architectural pattern which integrates any given educational software for primary school children with a component whose function is to identify the emotional state of the students who are interacting with the software, and with the driver of a robot tutor which provides personalized emotional pedagogical support to the students. In order to support the development of affective robot tutors according to the proposed architecture, we also provide a methodology which incorporates a technique for eliciting pedagogical knowledge from teachers, and a generic development platform. This platform contains a component for identiying emotional states by analysing keyboard and mouse interaction data, and a generic affective pedagogical support component which specifies the affective educational interventions (including facial expressions, body language, tone of voice,…) in terms of BML (a Behavior Model Language for virtual agent specification) files which are translated into actions of a robot tutor. The platform and the methodology are both adapted to primary school students. Finally, we illustrate the use of this platform to build a prototype implementation of the architecture, in which the educational software is instantiated with Scratch and the robot tutor with NAO. We also report on a user experiment we carried out to orient the development of the platform and of the prototype. We conclude from our work that, in the case of primary school students, it is possible to identify, without
Authoritative school climate and high school dropout rates.
Jia, Yuane; Konold, Timothy R; Cornell, Dewey
2016-06-01
This study tested the association between school-wide measures of an authoritative school climate and high school dropout rates in a statewide sample of 315 high schools. Regression models at the school level of analysis used teacher and student measures of disciplinary structure, student support, and academic expectations to predict overall high school dropout rates. Analyses controlled for school demographics of school enrollment size, percentage of low-income students, percentage of minority students, and urbanicity. Consistent with authoritative school climate theory, moderation analyses found that when students perceive their teachers as supportive, high academic expectations are associated with lower dropout rates. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Broeders, Ivo A M J
2014-02-01
Robotic systems were introduced 15 years ago to support complex endoscopic procedures. The technology is increasingly used in gastro-intestinal surgery. In this article, literature on experimental- and clinical research is reviewed and ergonomic issues are discussed. literature review was based on Medline search using a large variety of search terms, including e.g. robot(ic), randomized, rectal, oesophageal, ergonomics. Review articles on relevant topics are discussed with preference. There is abundant evidence of supremacy in performing complex endoscopic surgery tasks when using the robot in an experimental setting. There is little high-level evidence so far on translation of these merits to clinical practice. Robotic systems may appear helpful in complex gastro-intestinal surgery. Moreover, dedicated computer based technology integrated in telepresence systems opens the way to integration of planning, diagnostics and therapy. The first high tech add-ons such as near infrared technology are under clinical evaluation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Developing a successful robotics program.
Luthringer, Tyler; Aleksic, Ilija; Caire, Arthur; Albala, David M
2012-01-01
Advancements in the robotic surgical technology have revolutionized the standard of care for many surgical procedures. The purpose of this review is to evaluate the important considerations in developing a new robotics program at a given healthcare institution. Patients' interest in robotic-assisted surgery has and continues to grow because of improved outcomes and decreased periods of hospitalization. Resulting market forces have created a solid foundation for the implementation of robotic surgery into surgical practice. Given proper surgeon experience and an efficient system, robotic-assisted procedures have been cost comparable to open surgical alternatives. Surgeon training and experience is closely linked to the efficiency of a new robotics program. Formally trained robotic surgeons have better patient outcomes and shorter operative times. Training in robotics has shown no negative impact on patient outcomes or mentor learning curves. Individual economic factors of local healthcare settings must be evaluated when planning for a new robotics program. The high cost of the robotic surgical platform is best offset with a large surgical volume. A mature, experienced surgeon is integral to the success of a new robotics program.
Robotics: Instructional Manual. The North Dakota High Technology Mobile Laboratory Project.
ERIC Educational Resources Information Center
Auer, Herbert J.
This instructional manual contains 20 learning activity packets for use in a workshop on robotics. The lessons cover the following topics: safety considerations in robotics; introduction to technology-level and coordinate-systems categories; the teach pendant (a hand-held computer, usually attached to the robot controller, with which the operator…
High Reliability Robot Friendly ORU Interface
NASA Technical Reports Server (NTRS)
Voellmer, George M. (Inventor)
1991-01-01
Presented here is a robot friendly coupling device for an orbital replacement unit (ORU). The invention will provide a coupling that is detached and attached remotely by a robot. The design of the coupling must allow for slight misalignments, over-torque protection, and precision placement. This is accomplished by means of a triangular interface comprising three components. A base plate assembly is located on an attachment surface, such as a satellite. The base plate assembly has a cup member, a slotted member, and a post member. The ORU that the robot attaches to the base plate assembly has an ORU plate assembly with two cone members and a post member which mate to the base plate assembly. As the two plates approach one another, one cone member of the ORU plate assembly has to be placed accurately enough to fall into the cup member of the base plate assembly. The cup member forces alignment until a second cone falls into a slotted member which provides final alignment. A single bolt is used to attach the two plates. Two deflecting plates are attached to the backs of the plates. When pressure is applied to the center of the deflecting plates, the force is distributed preventing the ORU and base plates from deflecting. This accounts for precision in the placement of the article. The novelty is believed to reside in using deflecting plates in conjunction with kinematic mounts to provide distributed forces to the two members.
Project Georgia High School/High Tech
NASA Technical Reports Server (NTRS)
2000-01-01
The High School/High Tech initiative of the President's Committee on Employment of Disabilities, Georgia's application of the collaborative "Georgia Model" and NASA's commitment of funding have shown that opportunities for High School/High Tech students are unlimited. In Georgia, the partnership approach to meeting the needs of this program has opened doors previously closed. As the program grows and develops, reflecting the needs of our students and the marketplace, more opportunities will be available. Our collaboratives are there to provide these opportunities and meet the challenge of matching our students with appropriate education and career goals. Summing up the activities and outcomes of Project Georgia High School/High Tech is not difficult. Significant outcomes have already occurred in the Savannah area as a result of NASA's grant. The support of NASA has enabled Georgia Committee to "grow" High School/High Tech throughout the region-and, by example, the state. The success of the Columbus pilot project has fostered the proliferation of projects, resulting in more than 30 Georgia High School High Tech programs-with eight in the Savannah area.
Is robotic surgery cost-effective: yes.
Liberman, Daniel; Trinh, Quoc-Dien; Jeldres, Claudio; Zorn, Kevin C
2012-01-01
With the expanding use of new technology in the treatment of clinically localized prostate cancer (PCa), the financial burden on the healthcare system and the individual has been important. Robotics offer many potential advantages to the surgeon and the patient. We assessed the potential cost-effectiveness of robotics in urological surgery and performed a comparative cost analysis with respect to other potential treatment modalities. The direct and indirect costs of purchasing, maintaining, and operating the robot must be compared to alternatives in treatment of localized PCa. Some expanding technologies including intensity-modulated radiation therapy are significantly more expensive than robotic surgery. Furthermore, the benefits of robotics including decreased length of stay and return to work are considerable and must be measured when evaluating its cost-effectiveness. Robot-assisted laparoscopic surgery comes at a high cost but can become cost-effective in mostly high-volume centers with high-volume surgeons. The device when utilized to its maximum potential and with eventual market-driven competition can become affordable.
Dragons, Ladybugs, and Softballs: Girls' STEM Engagement with Human-Centered Robotics
ERIC Educational Resources Information Center
Gomoll, Andrea; Hmelo-Silver, Cindy E.; Šabanovic, Selma; Francisco, Matthew
2016-01-01
Early experiences in science, technology, engineering, and math (STEM) are important for getting youth interested in STEM fields, particularly for girls. Here, we explore how an after-school robotics club can provide informal STEM experiences that inspire students to engage with STEM in the future. Human-centered robotics, with its emphasis on the…
Middle School Concept Helps High-Poverty Schools Become High-Performing Schools
ERIC Educational Resources Information Center
Picucci, Ali Callicoatte; Brownson, Amanda; Kahlert, Rahel; Sobel, Andrew
2004-01-01
The results of a study conducted by the Charles A. Dana Center at the University of Texas at Austin for the U.S. Department of Education during the 2001-02 school year showed that elements of the middle school concept can lead to improved student performance, even in high-poverty schools. This article describes common elements of the middle school…
Integrating robotic partial nephrectomy to an existing robotic surgery program.
Yuh, Bertram; Muldrew, Shantel; Menchaca, Anita; Yip, Wesley; Lau, Clayton; Wilson, Timothy; Josephson, David
2012-04-01
As more centers develop robotic proficiency, progressing to a successful robot-assisted partial nephrectomy (RAPN) program depends on a number of factors. We describe our technique, results, and analysis of program setup for RAPN. Between 2005 and 2011, 92 RAPNs were performed following maturation of a robotic prostatectomy program. Operating rooms and supply rooms were outfitted for efficient robotic throughput. Tilepro and intraoperative ultrasound were used for all cases. Training and experiential learning for surgeons, anesthesia and nursing staff was a high priority. An onsite robotic technician helped troubleshoot, prepare the room and staff prior to starting surgery, and provide assistance with different robotic models. Average operative time decreased over time from 235 min to 199 min (p = .03). Warm ischemia time decreased from 26 minutes to 23 minutes (p = .02) despite an increased complexity of tumors and operations on multiple tumors. Median estimated blood loss was 150 mL. Average length of hospital stay was 3 days (range 1-9). Average size of lesions was 2.7 cm (range 0.7-8.6). Final pathology demonstrated 71 (77%) malignant lesions and 21 (23%) benign lesions. The addition of a robot-assisted partial nephrectomy program to an institutional robotic program can be coordinated with several key steps. Outcomes from an operational, oncologic, and renal functional standpoint are acceptable. Despite increased complexity of tumors and treatment of multiple lesions, operative and warm ischemia times showed a decrease over time. An organizational model that involves the surgeons, anesthesia, nursing staff, and possibly a robotic technical specialist helps to overcome the learning curve.
Robots could assist scientists working in Greenland
NASA Astrophysics Data System (ADS)
Showstack, Randy
2011-07-01
GREENLAND—Tom Lane and Suk Joon Lee, recent graduates of Dartmouth University's Thayer School of Engineering, in Hanover, N. H., are standing outside in the frigid cold testing an autonomous robot that could help with scientific research and logistics in harsh polar environments. This summer, Lane, Lee, and others are at Summit Station, a U.S. National Science Foundation (NSF)-sponsored scientific research station in Greenland, fine-tuning a battery-powered Yeti robot as part of a team working on the NSF-funded Cool Robot project. The station, also known as Summit Camp, is located on the highest point of the Greenland Ice Sheet (72°N, 38°W, 3200 meters above sea level) near the middle of the island. It is a proving ground this season for putting the approximately 68-kilogram, 1-cubic-meter robot through its paces, including improving Yeti's mobility capabilities and field-testing the robot. (See the electronic supplement to this Eos issue for a video of Yeti in action (http://www.agu.org/eos_elec/).) During field-testing, plans call for the robot to collect data on elevation and snow surface characteristics, including accumulation. In addition, the robot will collect black carbon and elemental carbon particulate matter air samples around Summit Camp's power generator to help study carbon dispersion over snow.
ERIC Educational Resources Information Center
Yoon, Ma-byong; Baek, Je-eun
2018-01-01
The purpose of this article was to develop an elementary school robot STEAM program and explore the possibility of field applications. To this end, the authors extracted the contents related to school achievement standards for 5th and 6th grade curricula around the topic of robot soccer, incorporating a relevant curriculum based on the extracted…
Service Oriented Robotic Architecture for Space Robotics: Design, Testing, and Lessons Learned
NASA Technical Reports Server (NTRS)
Fluckiger, Lorenzo Jean Marc E; Utz, Hans Heinrich
2013-01-01
This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at the NASA Ames Research Center. SORA relies on proven software engineering methods and technologies applied to space robotics. Based on a Service Oriented Architecture and robust middleware, SORA encompasses on-board robot control and a full suite of software tools necessary for remotely operated exploration missions. SORA has been eld tested in numerous scenarios of robotic lunar and planetary exploration. The experiments conducted by IRG with SORA exercise a large set of the constraints encountered in space applications: remote robotic assets, ight relevant science instruments, distributed operations, high network latencies and unreliable or intermittent communication links. In this paper, we present the results of these eld tests in regard to the developed architecture, and discuss its bene ts and limitations.
NASA Astrophysics Data System (ADS)
Lang, Á.; Bérczi, Sz.; Szalay, K.; Prajczer, P.; Kocsis, Á.
2014-11-01
We report about the work of the HUSAR-5 groups from the Széchenyi István Gimnázium High School Sopron, Hungary. We build and program robot-rovers, that can autonomous move and measure on a planetary surface.
Knaepen, Kristel; Mierau, Andreas; Swinnen, Eva; Fernandez Tellez, Helio; Michielsen, Marc; Kerckhofs, Eric; Lefeber, Dirk; Meeusen, Romain
2015-01-01
In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support). Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force) and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning. PMID:26485148
Knaepen, Kristel; Mierau, Andreas; Swinnen, Eva; Fernandez Tellez, Helio; Michielsen, Marc; Kerckhofs, Eric; Lefeber, Dirk; Meeusen, Romain
2015-01-01
In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support). Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force) and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning.
A Mobile, Map-Based Tasking Interface for Human-Robot Interaction
2010-12-01
A MOBILE, MAP-BASED TASKING INTERFACE FOR HUMAN-ROBOT INTERACTION By Eli R. Hooten Thesis Submitted to the Faculty of the Graduate School of...SUBTITLE A Mobile, Map-Based Tasking Interface for Human-Robot Interaction 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...3 II.1 Interactive Modalities and Multi-Touch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 II.2
Three High School After-School Initiatives: Lessons Learned
ERIC Educational Resources Information Center
Barr, Sarah; Birmingham, Jennifer; Fornal, Jennifer; Klein, Rachel; Piha, Sam
2006-01-01
Little attention has been paid to older youth in the recent expansion of school-based after-school programs. High school clubs and community-based programs have existed for years, but many have struggled to sustain the participation of teens. Alarmed by the large numbers of high school-age youth who are disengaged at school and leaving high school…
Preparing for High Technology: Robotics Programs. Research & Development Series No. 233.
ERIC Educational Resources Information Center
Ashley, William; And Others
This guide is one of three developed to provide guidelines, information, and resources useful in planning and developing postsecondary technician training programs in high technology. It is specifically intended for program planners and developers in the initial stages of planning a new program or specialized option in robotics. (Two companion…
Improving Robotic Assembly of Planar High Energy Density Targets
NASA Astrophysics Data System (ADS)
Dudt, D.; Carlson, L.; Alexander, N.; Boehm, K.
2016-10-01
Increased quantities of planar assemblies for high energy density targets are needed with higher shot rates being implemented at facilities such as the National Ignition Facility and the Matter in Extreme Conditions station of the Linac Coherent Light Source. To meet this growing demand, robotics are used to reduce assembly time. This project studies how machine vision and force feedback systems can be used to improve the quantity and quality of planar target assemblies. Vision-guided robotics can identify and locate parts, reducing laborious manual loading of parts into precision pallets and associated teaching of locations. On-board automated inspection can measure part pickup offsets to correct part drop-off placement into target assemblies. Force feedback systems can detect pickup locations and apply consistent force to produce more uniform glue bond thickness, thus improving the performance of the targets. System designs and performance evaluations will be presented. Work supported in part by the US DOE under the Science Undergraduate Laboratory Internships Program (SULI) and ICF Target Fabrication DE-NA0001808.
NASA Technical Reports Server (NTRS)
Behar, Alberto E. (Inventor); Marzwell, Neville I. (Inventor); Wall, Jonathan N. (Inventor); Poole, Michael D. (Inventor)
2011-01-01
A robot and robot system that are capable of functioning in a zero-gravity environment are provided. The robot can include a body having a longitudinal axis and having a control unit and a power source. The robot can include a first leg pair including a first leg and a second leg. Each leg of the first leg pair can be pivotally attached to the body and constrained to pivot in a first leg pair plane that is substantially perpendicular to the longitudinal axis of the body.
Robot design for a vacuum environment
NASA Technical Reports Server (NTRS)
Belinski, S.; Trento, W.; Imani-Shikhabadi, R.; Hackwood, S.
1987-01-01
The cleanliness requirements for many processing and manufacturing tasks are becoming ever stricter, resulting in a greater interest in the vacuum environment. Researchers discuss the importance of this special environment, and the development of robots which are physically and functionally suited to vacuum processing tasks. Work is in progress at the Center for robotic Systems in Microelectronics (CRSM) to provide a robot for the manufacture of a revolutionary new gyroscope in high vacuum. The need for vacuum in this and other processes is discussed as well as the requirements for a vacuum-compatible robot. Finally, researchers present details on work done at the CRSM to modify an existing clean-room compatible robot for use at high vacuum.
Robotic-assisted repair of iatrogenic ureteral ligation following robotic-assisted hysterectomy.
Kalisvaart, Jonathan F; Finley, David S; Ornstein, David K
2008-01-01
Ureteral injuries, while rare, do occur during gynecologic procedures. The expansion of laparoscopic and robotic pelvic surgical procedures increases the risk of ureteral injury from these procedures and suggests a role for minimally invasive approaches to the delayed repair of ureteral injuries. We present, to our knowledge, the first case of delayed robotic-assisted ureteral deligation and ureterolysis following iatrogenic ureteral injury occurring during a robotic abdominal hysterectomy. We present a case report and review of the literature. A 57-year-old female underwent a seemingly uncomplicated robotic-assisted laparoscopic total abdominal hysterectomy and bilateral oophorectomy for symptomatic fibroids. On postoperative day 8, she presented with persistent right flank pain. Imaging studies revealed high-grade ureteral obstruction consistent with suture ligation of the right ureter. She underwent successful robotic-assisted ureteral deligation and ureterolysis. Her postoperative course was unremarkable, and she was discharged home on postoperative day 1 from the deligation. Robotic-assisted management of complications from urologic or gynecologic surgery is technically feasible. This can potentially preserve the advantages to the patient that are being seen from the initial less-invasive surgery.
Modeling and Experiments with a High-Performance Flexible Swimming Robot
NASA Astrophysics Data System (ADS)
Wiens, Alexander; Hosoi, Anette
2017-11-01
Conventionally, fish-like swimming robots consist of a chain of rigid links connected by a series of rigid actuators. Devices of this nature have demonstrated impressive speeds and maneuverability, but from a practical perspective, their mechanical complexity makes them expensive to build and prone to failure. To address this problem, we present an alternative design approach which employs a single actuator to generate undulatory waves along a passive flexible structure. Through simulations and experiments we find that our robot can match the speed and agility of its rigid counterparts, while being simple, robust, and significantly less expensive. Physically, our robot consists of a small ellipsoidal head connected to a long flexible beam. Actuation is provided by a motor-driven flywheel within the head, which oscillates to produce a periodic torque. This torque propagates along the beam to generate an undulatory wave and propel the robot forwards. We construct a numerical model of the system using Lighthill's large-amplitude elongated-body theory coupled with a nonlinear model of elastic beam deformation. We then use this simulation to optimize the velocity and efficiency of the robot. The optimized design is validated through experiments with a prototype device. NSF DMS-1517842.
[Robotic surgery in gynecology].
Csorba, Roland
2012-06-24
Minimally invasive surgery has revolutionized gynecological interventions over the past 30 years. The introduction of the da Vinci robotic surgery in 2005 has resulted in large changes in surgical management. The robotic platform allows less experienced laparoscopic surgeons to perform more complex procedures. It can be utilized mainly in general gynecology and reproductive gynecology. The robot is being increasingly used for procedures such as hysterectomy, myomectomy, adnexal surgery, and tubal anastomosis. In urogynecology, the robot is being utilized for sacrocolopexy as well. In the field of gynecologic oncology, the robot is being increasingly used for hysterectomy and lymphadenectomy in oncologic diseases. Despite the rapid and widespread adaption of robotic surgery in gynecology, there are no randomized trials comparing its efficacy and safety to other traditional surgical approaches. This article presents the development, technical aspects and indications of robotic surgery in gynecology, based on the previously published reviews. Robotic surgery can be highly advantageous with the right amount of training, along with appropriate patient selection. Patients will have less blood loss, less post-operative pain, faster recovery, and fewer complications compared to open surgery and laparoscopy. However, until larger randomized control trials are completed which report long-term outcomes, robotic surgery cannot be stated to have priority over other surgical methods.
Organizational System for the LEGO WeDo 2.0 Robotics System
ERIC Educational Resources Information Center
Dolecheck, Suzann Hagan; Ewers, Timothy
2017-01-01
In this article, we explain an organizational system for the new LEGO Education WeDo 2.0 Core Set used in 4-H robotics; in school enrichment, afterschool, and other youth robotics programs; and by hobbyists. The system presented is for organizing WeDo parts into a translucent parts tray that includes part names and numbers. The article provides…
Tuschy, Benjamin; Berlit, Sebastian; Brade, Joachim; Sütterlin, Marc; Hornemann, Amadeus
2014-01-01
To investigate the clinical assessment of a full high-definition (HD) three-dimensional robot-assisted laparoscopic device in gynaecological surgery. This study included 70 women who underwent gynaecological laparoscopic procedures. Demographic parameters, type and duration of surgery and perioperative complications were analyzed. Fifteen surgeons were postoperatively interviewed regarding their assessment of this new system with a standardized questionnaire. The clinical assessment revealed that three-dimensional full-HD visualisation is comfortable and improves spatial orientation and hand-to-eye coordination. The majority of the surgeons stated they would prefer a three-dimensional system to a conventional two-dimensional device and stated that the robotic camera arm led to more relaxed working conditions. Three-dimensional laparoscopy is feasible, comfortable and well-accepted in daily routine. The three-dimensional visualisation improves surgeons' hand-to-eye coordination, intracorporeal suturing and fine dissection. The combination of full-HD three-dimensional visualisation with the robotic camera arm results in very high image quality and stability.
Robotic ICSI (intracytoplasmic sperm injection).
Lu, Zhe; Zhang, Xuping; Leung, Clement; Esfandiari, Navid; Casper, Robert F; Sun, Yu
2011-07-01
This paper is the first report of robotic intracytoplasmic sperm injection (ICSI). ICSI is a clinical procedure performed worldwide in fertility clinics, requiring pick-up of a single sperm and insertion of it into an oocyte (i.e., egg cell). Since its invention 20 years ago, ICSI has been conducted manually by a handful of highly skilled embryologists; however, success rates vary significantly among clinics due to poor reproducibility and inconsistency across operators. We leverage our work in robotic cell injection to realize robotic ICSI and aim ultimately, to standardize how clinical ICSI is performed. This paper presents some of the technical aspects of our robotic ICSI system, including a cell holding device, motion control, and computer vision algorithms. The system performs visual tracking of single sperm, robotic immobilization of sperm, aspiration of sperm with picoliter volume, and insertion of sperm into an oocyte with a high degree of reproducibility. The system requires minimal human involvement (requiring only a few computer mouse clicks), and is human operator skill independent. Using the hamster oocyte-human sperm model in preliminary trials, the robotic system demonstrated a high success rate of 90.0% and survival rate of 90.7% (n=120). © 2011 IEEE
High level functions for the intuitive use of an assistive robot.
Lebec, Olivier; Ben Ghezala, Mohamed Walid; Leynart, Violaine; Laffont, Isabelle; Fattal, Charles; Devilliers, Laurence; Chastagnol, Clement; Martin, Jean-Claude; Mezouar, Youcef; Korrapatti, Hermanth; Dupourqué, Vincent; Leroux, Christophe
2013-06-01
This document presents the research project ARMEN (Assistive Robotics to Maintain Elderly People in a Natural environment), aimed at the development of a user friendly robot with advanced functions for assistance to elderly or disabled persons at home. Focus is given to the robot SAM (Smart Autonomous Majordomo) and its new features of navigation, manipulation, object recognition, and knowledge representation developed for the intuitive supervision of the robot. The results of the technical evaluations show the value and potential of these functions for practical applications. The paper also documents the details of the clinical evaluations carried out with elderly and disabled persons in a therapeutic setting to validate the project.
NASA Astrophysics Data System (ADS)
Dragone, Mauro; O'Donoghue, Ruadhan; Leonard, John J.; O'Hare, Gregory; Duffy, Brian; Patrikalakis, Andrew; Leederkerken, Jacques
2005-06-01
The paper describes an ongoing effort to enable autonomous mobile robots to play soccer in unstructured, everyday environments. Unlike conventional robot soccer competitions that are usually held on purpose-built robot soccer "fields", in our work we seek to develop the capability for robots to demonstrate aspects of soccer-playing in more diverse environments, such as schools, hospitals, or shopping malls, with static obstacles (furniture) and dynamic natural obstacles (people). This problem of "Soccer Anywhere" presents numerous research challenges including: (1) Simultaneous Localization and Mapping (SLAM) in dynamic, unstructured environments, (2) software control architectures for decentralized, distributed control of mobile agents, (3) integration of vision-based object tracking with dynamic control, and (4) social interaction with human participants. In addition to the intrinsic research merit of these topics, we believe that this capability would prove useful for outreach activities, in demonstrating robotics technology to primary and secondary school students, to motivate them to pursue careers in science and engineering.
High School Employment, School Performance, and College Entry
ERIC Educational Resources Information Center
Lee, Chanyoung; Orazem, Peter F.
2010-01-01
The proportion of U.S. high school students working during the school year ranges from 23% in the freshman year to 75% in the senior year. This study estimates how cumulative work histories during the high school years affect probability of dropout, high school academic performance, and the probability of attending college. Variations in…
ERIC Educational Resources Information Center
Brand, Judith, Ed.
2002-01-01
This issue of Exploratorium Magazine focuses on the topic robotics. It explains how to make a vibrating robotic bug and features articles on robots. Contents include: (1) "Where Robot Mice and Robot Men Run Round in Robot Towns" (Ray Bradbury); (2) "Robots at Work" (Jake Widman); (3) "Make a Vibrating Robotic Bug" (Modesto Tamez); (4) "The Robot…
High-Efficiency Nested Hall Thrusters for Robotic Solar System Exploration
NASA Technical Reports Server (NTRS)
Hofer, Richard R.
2013-01-01
This work describes the scaling and design attributes of Nested Hall Thrusters (NHT) with extremely large operational envelopes, including a wide range of throttleability in power and specific impulse at high efficiency (>50%). NHTs have the potential to provide the game changing performance, powerprocessing capabilities, and cost effectiveness required to enable missions that cannot otherwise be accomplished. NHTs were first identified in the electric propulsion community as a path to 100- kW class thrusters for human missions. This study aimed to identify the performance capabilities NHTs can provide for NASA robotic and human missions, with an emphasis on 10-kW class thrusters well-suited for robotic exploration. A key outcome of this work has been the identification of NHTs as nearly constant-efficiency devices over large power throttling ratios, especially in direct-drive power systems. NHT systems sized for robotic solar system exploration are predicted to be capable of high-efficiency operation over nearly their entire power throttling range. A traditional Annular Hall Thruster (AHT) consists of a single annular discharge chamber where the propellant is ionized and accelerated. In an NHT, multiple annular channels are concentrically stacked. The channels can be operated in unison or individually depending on the available power or required performance. When throttling an AHT, performance must be sacrificed since a single channel cannot satisfy the diverse design attributes needed to maintain high thrust efficiency. NHTs can satisfy these requirements by varying which channels are operated and thereby offer significant benefits in terms of thruster performance, especially under deep power throttling conditions where the efficiency of an AHT suffers since a single channel can only operate efficiently (>50%) over a narrow power throttling ratio (3:1). Designs for 10-kW class NHTs were developed and compared with AHT systems. Power processing systems were
Final matches of the FIRST regional robotic competition at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
Students cheer their team during final matches at the 1999 Southeastern Regional robotic competition at the KSC Visitor Complex. Thirty schools from around the country have converged at KSC for the event that pits gladiator robots against each other in an athletic-style competition. The robots have to retrieve pillow-like disks from the floor, climb onto a platform (with flags), as well as raise the cache of pillows, maneuvered by student teams behind protective walls. KSC is hosting the event being sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers by pairing engineers and corporations with student teams.
Authoritative School Climate and High School Dropout Rates
ERIC Educational Resources Information Center
Jia, Yuane; Konold, Timothy R.; Cornell, Dewey
2016-01-01
This study tested the association between school-wide measures of an authoritative school climate and high school dropout rates in a statewide sample of 315 high schools. Regression models at the school level of analysis used teacher and student measures of disciplinary structure, student support, and academic expectations to predict overall high…
Final matches of the FIRST regional robotic competition at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
During final matches at the 1999 Southeastern Regional robotic competition at the KSC Visitor Complex, referees in opposite corners and student teams watch as two robots raise their pillow disks to a height of eight feet, one of the goals of the competition. Thirty schools from around the country have converged at KSC for the event that pits gladiator robots against each other in an athletic-style competition. The robots have to retrieve the pillow disks from the floor, climb onto a platform (with flags), as well as raise the cache of pillows, maneuvered by student teams behind protective walls. KSC is hosting the event being sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers by pairing engineers and corporations with student teams.
ERIC Educational Resources Information Center
Ediger, Marlow
2008-01-01
Of all levels of schooling, the high school receives by far the most criticism. There are continuous innovations recommended in journal articles, textbooks, and speeches at state/national conventions on ways to improve the secondary level of schooling. At one teacher education convention, the speaker was criticizing the American high school and…
Journalism Beyond High School.
ERIC Educational Resources Information Center
Turner, Sally
2001-01-01
Discusses the shift from high school journalism to college journalism for students. Describes the role of the high school journalism advisor in that process. Offers checklists for getting to know a college publication. Outlines ways high school journalism teachers can take advantage of journalism resources available at local colleges and…
School-Within-A-School (Hawaii Nui High) Hilo High School Report 1969-70.
ERIC Educational Resources Information Center
Hawaii Univ., Honolulu. Social Welfare Development and Research Center.
The second year of operation of Hilo High School's "School-Within-A-School" [SWS] program is evaluated in this paper. Planning, training, and program implementation are described in the document. The following are the results of the program: There was an improvement in attendance among project students when compared to their record in…
High-Flying High-Poverty Schools
ERIC Educational Resources Information Center
American Educator, 2013
2013-01-01
In discussing socioeconomic integration before audiences, the author is frequently asked: What about high-poverty schools that do work? Don't they suggest that economic segregation isn't much of a problem after all? High-poverty public schools that beat the odds paint a heartening story that often attracts considerable media attention. In 2000,…
Nasa's Ant-Inspired Swarmie Robots
NASA Technical Reports Server (NTRS)
Leucht, Kurt W.
2016-01-01
As humans push further beyond the grasp of earth, robotic missions in advance of human missions will play an increasingly important role. These robotic systems will find and retrieve valuable resources as part of an in-situ resource utilization (ISRU) strategy. They will need to be highly autonomous while maintaining high task performance levels. NASA Kennedy Space Center has teamed up with the Biological Computation Lab at the University of New Mexico to create a swarm of small, low-cost, autonomous robots to be used as a ground-based research platform for ISRU missions. The behavior of the robot swarm mimics the central-place foraging strategy of ants to find and collect resources in a previously unmapped environment and return those resources to a central site. This talk will guide the audience through the Swarmie robot project from its conception by students in a New Mexico research lab to its robot trials in an outdoor parking lot at NASA. The software technologies and techniques used on the project will be discussed, as well as various challenges and solutions that were encountered by the development team along the way.
Latino High School Students' Perceptions and Preferred Characteristics of High School Counselors
ERIC Educational Resources Information Center
Eckenrod-Green, Wendy; Culbreth, John R.
2008-01-01
With a trendsetting change in the demographic population of public high school students, school counselors need to be equipped with multicultural competence to better understand the needs of the students they serve, especially Latino students. Semi-structured interviews were conducted to obtain Latino high school students' perceptions and…
Payne, Christopher J; Yang, Guang-Zhong
2014-08-01
Medical robots have evolved from autonomous systems to tele-operated platforms and mechanically-grounded, cooperatively-controlled robots. Whilst these approaches have seen both commercial and clinical success, uptake of these robots remains moderate because of their high cost, large physical footprint and long setup times. More recently, researchers have moved toward developing hand-held robots that are completely ungrounded and manipulated by surgeons in free space, in a similar manner to how conventional instruments are handled. These devices provide specific functions that assist the surgeon in accomplishing tasks that are otherwise challenging with manual manipulation. Hand-held robots have the advantages of being compact and easily integrated into the normal surgical workflow since there is typically little or no setup time. Hand-held devices can also have a significantly reduced cost to healthcare providers as they do not necessitate the complex, multi degree-of-freedom linkages that grounded robots require. However, the development of such devices is faced with many technical challenges, including miniaturization, cost and sterility, control stability, inertial and gravity compensation and robust instrument tracking. This review presents the emerging technical trends in hand-held medical robots and future development opportunities for promoting their wider clinical uptake.
Lendvay, Thomas Sean; Hannaford, Blake; Satava, Richard M
2013-01-01
In just over a decade, robotic surgery has penetrated almost every surgical subspecialty and has even replaced some of the most commonly performed open oncologic procedures. The initial reports on patient outcomes yielded mixed results, but as more medical centers develop high-volume robotics programs, outcomes appear comparable if not improved for some applications. There are limitations to the current commercially available system, and new robotic platforms, some designed to compete in the current market and some to address niche surgical considerations, are being developed that will change the robotic landscape in the next decade. Adoption of these new systems will be dependent on overcoming barriers to true telesurgery that range from legal to logistical. As additional surgical disciplines embrace robotics and open surgery continues to be replaced by robotic approaches, it will be imperative that adequate education and training keep pace with technology. Methods to enhance surgical performance in robotics through the use of simulation and telementoring promise to accelerate learning curves and perhaps even improve surgical readiness through brief virtual-reality warm-ups and presurgical rehearsal. All these advances will need to be carefully and rigorously validated through not only patient outcomes, but also cost efficiency.
Research on Kinematic Trajectory Simulation System of KUKA Arc Welding Robot System
NASA Astrophysics Data System (ADS)
Hu, Min
2017-10-01
In this paper, the simulation trajectory simulation of KUKA arc welding robot system is realized by means of VC platform. It is used to realize the teaching of professional training of welding robot in middle school. It provides teaching resources for the combination of work and study and integration teaching, which enriches the content of course teaching.
Robotics and Science Literacy: Thinking Skills, Science Process Skills and Systems Understanding
ERIC Educational Resources Information Center
Sullivan, Florence R.
2008-01-01
This paper reports the results of a study of the relationship of robotics activity to the use of science literacy skills and the development of systems understanding in middle school students. Twenty-six 11-12-year-olds (22 males and 4 females) attending an intensive robotics course offered at a summer camp for academically advanced students…
Robotics as Means to Increase Achievement Scores in an Informal Learning Environment
ERIC Educational Resources Information Center
Barker, Bradley S.; Ansorge, John
2007-01-01
This paper reports on a pilot study that examined the use of a science and technology curriculum based on robotics to increase the achievement scores of youth ages 9-11 in an after school program. The study examined and compared the pretest and posttest scores of youth in the robotics intervention with youth in a control group. The results…
Robot-assisted surgery; Robotic-assisted laparoscopic surgery; Laparoscopic surgery with robotic assistance ... computer station and directs the movements of a robot. Small surgical tools are attached to the robot's ...
Training in urological robotic surgery. Future perspectives.
El Sherbiny, Ahmed; Eissa, Ahmed; Ghaith, Ahmed; Morini, Elena; Marzotta, Lucilla; Sighinolfi, Maria Chiara; Micali, Salvatore; Bianchi, Giampaolo; Rocco, Bernardo
2018-01-01
As robotics are becoming more integrated into the medical field, robotic training is becoming more crucial in order to overcome the lack of experienced robotic surgeons. However, there are several obstacles facing the development of robotic training programs like the high cost of training and the increased operative time during the initial period of the learning curve, which, in turn increase the operative cost. Robotic-assisted laparoscopic prostatectomy is the most commonly performed robotic surgery. Moreover, robotic surgery is becoming more popular among urologic oncologists and pediatric urologists. The need for a standardized and validated robotic training curriculum was growing along with the increased number of urologic centers and institutes adopting the robotic technology. Robotic training includes proctorship, mentorship or fellowship, telementoring, simulators and video training. In this chapter, we are going to discuss the different training methods, how to evaluate robotic skills, the available robotic training curriculum, and the future perspectives.
Robotic hepatectomies: advances and perspectives.
Dehlawi, Ammar; Memeo, Riccardo; DE Blasi, Vito; Mercoli, Henry A; Mutter, Didier; Marescaux, Jacques; Pessaux, Patrick
2016-12-01
Over recent years, minimally invasive hepatic resections have increasingly been reported in the literature. Even though hepatic surgery is still considered a challenge for surgeons due to its technical difficulties and high morbidity, the development and spread of robotic surgery has highlighted a new interest, which has induced a rapid dissemination of robotic approaches for hepatic pathologies. This article presents a systematic review of the literature regarding robotic hepatectomy in order to assess the safety and feasibility of robotic hepatic surgery. All eligible studies in robotic liver surgery which were published between January 2001 and January 2016 were reviewed systematically. Only series of ten patients and more were chosen in order to consider the experience of high-volume centers. In case of multiple articles on the same centers, the study including the largest number of patients was considered for the study. Overall, 18 studies, involving a total of 572 robotic liver resection (RLR) were finally analyzed. All articles in this review demonstrate that robotic liver surgery must be performed by surgeons trained in open liver surgery and skilled in minimally invasive techniques. RLR and laparoscopic liver resection (LLR) were comparable in terms of safety, feasibility, and outcome for hepatectomies. However, RLR is more expensive than LLR. Further studies are required before any final conclusion can be drawn.
ERIC Educational Resources Information Center
Thompson, Brett A.
2004-01-01
Since its inception in 1997, Cisco's curriculum has entered thousands of high schools across the U.S. and around the world for two reasons: (1) Cisco has a large portion of the computer networking market, and thus has the resources for and interest in developing high school academies; and (2) high school curriculum development teams recognize the…
Project Georgia High School/High Tech
NASA Technical Reports Server (NTRS)
2000-01-01
Georgia High School/High Tech has been developing a suggested curriculum for use in its programs. The purpose of this instructional material is to provide a basic curriculum format for teachers of High School/High Tech students. The curriculum is designed to implement QCC classroom instruction that encourages career development in technological fields through post-secondary education, paid summer internships, and exposure to experiences in high technology.
Nonoyama, Toshiya; Shimazaki, Yoshihiro; Nakagaki, Haruo; Tsuge, Shinpei
2016-12-01
Students often injure their teeth during participation in school-based sports clubs. This study examined the frequencies and types of dental injuries sustained at school sports clubs and compared the risk of dental injury among different sports. Based on injury statistics from the Japan Sport Council of the junior high schools and high schools in seven prefectures during fiscal year 2006, the risk of dental injury was estimated using a rate ratio (RR) by calculating the ratio of occurrence of dental injury under various circumstances. The RRs of exercise-related dental injury for boys and girls in junior high school were 0.7 (P < 0.001) and 1.3 (P < 0.05), respectively, and for those in high school were 2.6 (P < 0.001) and 2.7 (P < 0.001), respectively. In junior high school, softball (RR = 7.7) for boys and handball (RR = 3.9) for girls commonly led to dental injuries. In high school, Japanese-style wrestling (RR = 18.5) and rugby (RR = 7.3) for boys and handball (RR = 6.5) for girls had high risks for dental injury. Crown fracture was the predominant dental injury among boys and girls attending both junior high school and high school. The proportion of alveolar fracture was higher in school sports clubs than outside school sports clubs among high school boys. Contact or limited-contact sports had significantly higher risks for dental injuries than did noncontact sports. The results of this study suggest that teachers and administrators at schools should pay attention to the risk of dental injury among students participating in high-risk sports. © 2016 FDI World Dental Federation.
Gurusamy, Kurinchi Selvan; Samraj, Kumarakrishnan; Fusai, Giuseppe; Davidson, Brian R
2012-09-12
The role of a robotic assistant in laparoscopic cholecystectomy is controversial. While some trials have shown distinct advantages of a robotic assistant over a human assistant others have not, and it is unclear which robotic assistant is best. The aims of this review are to assess the benefits and harms of a robot assistant versus human assistant or versus another robot assistant in laparoscopic cholecystectomy, and to assess whether the robot can substitute the human assistant. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library, MEDLINE, EMBASE, and Science Citation Index Expanded (until February 2012) for identifying the randomised clinical trials. Only randomised clinical trials (irrespective of language, blinding, or publication status) comparing robot assistants versus human assistants in laparoscopic cholecystectomy were considered for the review. Randomised clinical trials comparing different types of robot assistants were also considered for the review. Two authors independently identified the trials for inclusion and independently extracted the data. We calculated the risk ratio (RR) or mean difference (MD) with 95% confidence interval (CI) using the fixed-effect and the random-effects models based on intention-to-treat analysis, when possible, using Review Manager 5. We included six trials with 560 patients. One trial involving 129 patients did not state the number of patients randomised to the two groups. In the remaining five trials 431 patients were randomised, 212 to the robot assistant group and 219 to the human assistant group. All the trials were at high risk of bias. Mortality and morbidity were reported in only one trial with 40 patients. There was no mortality or morbidity in either group. Mortality and morbidity were not reported in the remaining trials. Quality of life or the proportion of patients who were discharged as day-patient laparoscopic cholecystectomy patients were not reported in any
Impact of Robotics and Geospatial Technology Interventions on Youth STEM Learning and Attitudes
ERIC Educational Resources Information Center
Nugent, Gwen; Barker, Bradley; Grandgenett, Neal; Adamchuk, Viacheslav I.
2010-01-01
This study examined the impact of robotics and geospatial technologies interventions on middle school youth's learning of and attitudes toward science, technology, engineering, and mathematics (STEM). Two interventions were tested. The first was a 40-hour intensive robotics/GPS/GIS summer camp; the second was a 3-hour event modeled on the camp…
Socially intelligent robots: dimensions of human-robot interaction.
Dautenhahn, Kerstin
2007-04-29
Social intelligence in robots has a quite recent history in artificial intelligence and robotics. However, it has become increasingly apparent that social and interactive skills are necessary requirements in many application areas and contexts where robots need to interact and collaborate with other robots or humans. Research on human-robot interaction (HRI) poses many challenges regarding the nature of interactivity and 'social behaviour' in robot and humans. The first part of this paper addresses dimensions of HRI, discussing requirements on social skills for robots and introducing the conceptual space of HRI studies. In order to illustrate these concepts, two examples of HRI research are presented. First, research is surveyed which investigates the development of a cognitive robot companion. The aim of this work is to develop social rules for robot behaviour (a 'robotiquette') that is comfortable and acceptable to humans. Second, robots are discussed as possible educational or therapeutic toys for children with autism. The concept of interactive emergence in human-child interactions is highlighted. Different types of play among children are discussed in the light of their potential investigation in human-robot experiments. The paper concludes by examining different paradigms regarding 'social relationships' of robots and people interacting with them.
Robotics in space-age manufacturing
NASA Technical Reports Server (NTRS)
Jones, Chip
1991-01-01
Robotics technologies are developed to improve manufacturing of space hardware. The following applications of robotics are covered: (1) welding for the space shuttle and space station Freedom programs; (2) manipulation of high-pressure water for shuttle solid rocket booster refurbishment; (3) automating the application of insulation materials; (4) precision application of sealants; and (5) automation of inspection procedures. Commercial robots are used for these development programs, but they are teamed with advanced sensors, process controls, and computer simulation to form highly productive manufacturing systems. Many of the technologies are also being actively pursued in private sector manufacturing operations.
Pedagogical Stances of High School ESL Teachers: "Huelgas" in High School ESL Classrooms
ERIC Educational Resources Information Center
del Carmen Salazar, Maria
2010-01-01
This article presents a qualitative case study of the pedagogical stances of high school English as a Second Language (ESL) teachers, and the subsequent responses of resistance or conformity by their English Language Learners (ELLs). The participants include three high school ESL teachers and 60 high school ESL students of Mexican origin. Findings…
NASA Technical Reports Server (NTRS)
Tesar, Delbert; Butler, Michael S.
1989-01-01
Most robotic systems today are designed one at a time, at a high cost of time and money. This wasteful approach has been necessary because the industry has not established a foundation for the continued evolution of intelligent machines. The next generation of robots will have to be generic, versatile machines capable of absorbing new technology rapidly and economically. This approach is demonstrated in the success of the personal computer, which can be upgraded or expanded with new software and hardware at virtually every level. Modularity is perceived as a major opportunity to reduce the 6 to 7 year design cycle time now required for new robotic manipulators, greatly increasing the breadth and speed of diffusion of robotic systems in manufacturing. Modularity and its crucial role in the next generation of intelligent machines are the focus of interest. The main advantages that modularity provides are examined; types of modules needed to create a generic robot are discussed. Structural modules designed by the robotics group at the University of Texas at Austin are examined to demonstrate the advantages of modular design.
NASA Astrophysics Data System (ADS)
Meng, Qizhi; Xie, Fugui; Liu, Xin-Jun
2018-06-01
This paper deals with the conceptual design, kinematic analysis and workspace identification of a novel four degrees-of-freedom (DOFs) high-speed spatial parallel robot for pick-and-place operations. The proposed spatial parallel robot consists of a base, four arms and a 1½ mobile platform. The mobile platform is a major innovation that avoids output singularity and offers the advantages of both single and double platforms. To investigate the characteristics of the robot's DOFs, a line graph method based on Grassmann line geometry is adopted in mobility analysis. In addition, the inverse kinematics is derived, and the constraint conditions to identify the correct solution are also provided. On the basis of the proposed concept, the workspace of the robot is identified using a set of presupposed parameters by taking input and output transmission index as the performance evaluation criteria.
Final matches of the FIRST regional robotic competition at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
During final matches at the 1999 Southeastern Regional robotic competition at the KSC Visitor Complex, referees and judges (blue shirts at left) watch as two robots raise their pillow disks to a height of eight feet, one of the goals of the competition. KSC Deputy Director for Launch and Payload Processing Loren Shriver is one of the judges. Thirty schools from around the country have converged at KSC for the event that pits gladiator robots against each other in an athletic-style competition. The robots have to retrieve the disks from the floor, climb onto a platform (with flags), as well as raise the cache of pillows, maneuvered by student teams behind protective walls. KSC is hosting the event being sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers by pairing engineers and corporations with student teams.
ERIC Educational Resources Information Center
Arnstine, Donald
1987-01-01
Reviews three recent books on high schools: "The Last Little Citadel: American High Schools Since 1940" (Hampel, 1986), "The Shopping Mall High School: Winners and Losers in the Educational Marketplace" (Powell, Farrar, and Cohen, 1985), and "Multiple Realities: A Study of 13 American High Schools" (Tye, 1985). Notes that all three books are based…
ERIC Educational Resources Information Center
Dessoff, Alan
2011-01-01
For at-risk students who stand little chance of going to college, or even finishing high school, a growing number of districts have found a solution: Give them an early start in college while they still are in high school. The early college high school (ECHS) movement that began with funding from the Bill and Melinda Gates Foundation 10 years ago…
ERIC Educational Resources Information Center
Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley
2008-01-01
This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…
A highly articulated robotic surgical system for minimally invasive surgery.
Ota, Takeyoshi; Degani, Amir; Schwartzman, David; Zubiate, Brett; McGarvey, Jeremy; Choset, Howie; Zenati, Marco A
2009-04-01
We developed a novel, highly articulated robotic surgical system (CardioARM) to enable minimally invasive intrapericardial therapeutic delivery through a subxiphoid approach. We performed preliminary proof of concept studies in a porcine preparation by performing epicardial ablation. CardioARM is a robotic surgical system having an articulated design to provide unlimited but controllable flexibility. The CardioARM consists of serially connected, rigid cyclindrical links housing flexible working ports through which catheter-based tools for therapy and imaging can be advanced. The CardioARM is controlled by a computer-driven, user interface, which is operated outside the operative field. In six experimental subjects, the CardioARM was introduced percutaneously through a subxiphoid access. A commercial 5-French radiofrequency ablation catheter was introduced through the working port, which was then used to guide deployment. In all subjects, regional ("linear") left atrial ablation was successfully achieved without complications. Based on these preliminary studies, we believe that the CardioARM promises to enable deployment of a number of epicardium-based therapies. Improvements in imaging techniques will likely facilitate increasingly complex procedures.
High School Completion of In-School Suspension Students.
ERIC Educational Resources Information Center
Johnston, Joanne S.
1989-01-01
Examines the high school completion rate of students in the class of 1988 assigned to an inschool suspension (ISS) program at some time during their high school career. Clearly, ISS students are high risks for school completion, as shown by this study's less than 50 percent completion rate. Nonetheless, such programs are essential. (MLH)
Bridging the Gap in Robotics Education.
ERIC Educational Resources Information Center
Warnat, Winifred I.
New technologies will produce a radical restructuring of work, including a devaluation of current work skills and the creation of new ones at an ever-increasing rate. The robotics industry provides a prototype for the impact of technology on society, and a context for examining the relevancy of schooling in preparing individuals to function within…
Shaw High School A Case Study in Rural High School Improvement
ERIC Educational Resources Information Center
Williams, Doris Terry
2004-01-01
Shaw High School is one of two schools making up the Shaw School District. The school is located in an old and once majestic building whose large concrete pillars still stand at the entrance. A small white house across the street holds the district administrative office. Several buildings, detached from the main building, house the cafeteria,…
Manifold learning in machine vision and robotics
NASA Astrophysics Data System (ADS)
Bernstein, Alexander
2017-02-01
Smart algorithms are used in Machine vision and Robotics to organize or extract high-level information from the available data. Nowadays, Machine learning is an essential and ubiquitous tool to automate extraction patterns or regularities from data (images in Machine vision; camera, laser, and sonar sensors data in Robotics) in order to solve various subject-oriented tasks such as understanding and classification of images content, navigation of mobile autonomous robot in uncertain environments, robot manipulation in medical robotics and computer-assisted surgery, and other. Usually such data have high dimensionality, however, due to various dependencies between their components and constraints caused by physical reasons, all "feasible and usable data" occupy only a very small part in high dimensional "observation space" with smaller intrinsic dimensionality. Generally accepted model of such data is manifold model in accordance with which the data lie on or near an unknown manifold (surface) of lower dimensionality embedded in an ambient high dimensional observation space; real-world high-dimensional data obtained from "natural" sources meet, as a rule, this model. The use of Manifold learning technique in Machine vision and Robotics, which discovers a low-dimensional structure of high dimensional data and results in effective algorithms for solving of a large number of various subject-oriented tasks, is the content of the conference plenary speech some topics of which are in the paper.
Biologically-Inspired Micro-Robots. Volume 1. Robots Based on Crickets
2005-05-19
is limited to flat, smooth surfaces. Another group of specialized robots that use piezoelectric actuators are the pipe robots developed at Shanghai...along in a pipe . They were developed for very specific terrain that allows them to take advantage of the small strain, high- frequency motion of...the valve. To open the valve you apply a current to the TiNi, heating it and pulling the plunger up, opening the valve. All three components are
Development of wall climbing robot
NASA Astrophysics Data System (ADS)
Kojima, Hisao; Toyama, Ryousei; Kobayashi, Kengo
1992-03-01
A configuration design is presented for a wall-climbing robot with high payload which is capable of moving on diversified surfaces of walls including the wall surface to ceilings in every direction. A developed quadruped wall climbing robot, NINJYA-1, is introduced. NINJYA-1 is composed of legs based on a 3D parallel link mechanism and a VM (Valve-regulated Multiple) sucker which will be able to suck even if there are grooves and a small difference in level. A wall climbing robot which supports rescue operation at a high building using a VM sucker is also introduced. Finally, a wall climbing robot named Disk Rover with a disk-type magnetic wheel is shown. The wheel shape is calculated by FEM. The disk-type magnetic wheel has a force three times more powerful than the one heretofore in use.
Ferrigno, Giancarlo; Baroni, Guido; Casolo, Federico; De Momi, Elena; Gini, Giuseppina; Matteucci, Matteo; Pedrocchi, Alessandra
2011-01-01
Information and communication technology (ICT) and mechatronics play a basic role in medical robotics and computer-aided therapy. In the last three decades, in fact, ICT technology has strongly entered the health-care field, bringing in new techniques to support therapy and rehabilitation. In this frame, medical robotics is an expansion of the service and professional robotics as well as other technologies, as surgical navigation has been introduced especially in minimally invasive surgery. Localization systems also provide treatments in radiotherapy and radiosurgery with high precision. Virtual or augmented reality plays a role for both surgical training and planning and for safe rehabilitation in the first stage of the recovery from neurological diseases. Also, in the chronic phase of motor diseases, robotics helps with special assistive devices and prostheses. Although, in the past, the actual need and advantage of navigation, localization, and robotics in surgery and therapy has been in doubt, today, the availability of better hardware (e.g., microrobots) and more sophisticated algorithms(e.g., machine learning and other cognitive approaches)has largely increased the field of applications of these technologies,making it more likely that, in the near future, their presence will be dramatically increased, taking advantage of the generational change of the end users and the increasing request of quality in health-care delivery and management.
Innovative Educational Aerospace Research at the Northeast High School Space Research Center
NASA Technical Reports Server (NTRS)
Luyet, Audra; Matarazzo, Anthony; Folta, David
1997-01-01
Northeast High Magnet School of Philadelphia, Pennsylvania is a proud sponsor of the Space Research Center (SPARC). SPARC, a model program of the Medical, Engineering, and Aerospace Magnet school, provides talented students the capability to successfully exercise full simulations of NASA manned missions. These simulations included low-Earth Shuttle missions and Apollo lunar missions in the past, and will focus on a planetary mission to Mars this year. At the end of each scholastic year, a simulated mission, lasting between one and eight days, is performed involving 75 students as specialists in seven teams The groups are comprised of Flight Management, Spacecraft Communications (SatCom), Computer Networking, Spacecraft Design and Engineering, Electronics, Rocketry, Robotics, and Medical teams in either the mission operations center or onboard the spacecraft. Software development activities are also required in support of these simulations The objective of this paper is to present the accomplishments, technology innovations, interactions, and an overview of SPARC with an emphasis on how the program's educational activities parallel NASA mission support and how this education is preparing student for the space frontier.
Robotics in Colorectal Surgery
Weaver, Allison; Steele, Scott
2016-01-01
Over the past few decades, robotic surgery has developed from a futuristic dream to a real, widely used technology. Today, robotic platforms are used for a range of procedures and have added a new facet to the development and implementation of minimally invasive surgeries. The potential advantages are enormous, but the current progress is impeded by high costs and limited technology. However, recent advances in haptic feedback systems and single-port surgical techniques demonstrate a clear role for robotics and are likely to improve surgical outcomes. Although robotic surgeries have become the gold standard for a number of procedures, the research in colorectal surgery is not definitive and more work needs to be done to prove its safety and efficacy to both surgeons and patients. PMID:27746895
ERIC Educational Resources Information Center
Wallace, Jessica; Covassin, Tracey; Nogle, Sally; Gould, Daniel; Kovan, Jeffrey
2017-01-01
Background: We determined differences in knowledge of concussion and reporting behaviors of high school athletes attending urban and suburban high schools, and whether a relationship exists between underreporting and access to an athletic trainer in urban schools. Methods: High school athletes (N = 715) from 14 high schools completed a validated…
Participation in Summer School and High School Graduation in the Sun Valley High School District
ERIC Educational Resources Information Center
Trujillo, Gabriel
2012-01-01
This study examines the effectiveness of a summer school credit recovery program in the Sun Valley High School District. Using logistic regression I assess the relationship between race, gender, course failure, school of origin and summer school participation for a sample of students that failed one or more classes in their first year of high…
School factors and smoking prevalence among high school students in Japan.
Osaki, Y; Minowa, M
1996-10-01
The purpose of this study was to analyze the relationship between student smoking prevalence by school and school factors. Junior and senior high schools were selected from throughout Japan using a simple random sampling. One hundred junior high schools and 50 senior high schools were randomly selected. Of these 70 junior high schools (70%) and 33 senior high schools (66%) responded to this survey. Self-administered anonymous questionnaires were completed by all enrolled students in each school. The principal of each school completed a school questionnaire about school factors. The smoking rate of male teachers was significantly related to the student smoking rate in junior high schools. This factor was still associated with the student smoking rate after adjusting for family smoking status. Surprisingly, the smoking rates for junior high school boys in schools with a school policy against teachers smoking were higher than those of schools without one. The dropout rate and the proportion of students who went on to college were significantly related to the smoking rates among senior high school students of both sexes. The regular-smoker rate of boys in schools with health education on smoking was more likely to be low. It is important to take account of school factors in designing smoking control programs for junior and senior high schools.
Path Planning for Non-Circular, Non-Holonomic Robots in Highly Cluttered Environments.
Samaniego, Ricardo; Lopez, Joaquin; Vazquez, Fernando
2017-08-15
This paper presents an algorithm for finding a solution to the problem of planning a feasible path for a slender autonomous mobile robot in a large and cluttered environment. The presented approach is based on performing a graph search on a kinodynamic-feasible lattice state space of high resolution; however, the technique is applicable to many search algorithms. With the purpose of allowing the algorithm to consider paths that take the robot through narrow passes and close to obstacles, high resolutions are used for the lattice space and the control set. This introduces new challenges because one of the most computationally expensive parts of path search based planning algorithms is calculating the cost of each one of the actions or steps that could potentially be part of the trajectory. The reason for this is that the evaluation of each one of these actions involves convolving the robot's footprint with a portion of a local map to evaluate the possibility of a collision, an operation that grows exponentially as the resolution is increased. The novel approach presented here reduces the need for these convolutions by using a set of offline precomputed maps that are updated, by means of a partial convolution, as new information arrives from sensors or other sources. Not only does this improve run-time performance, but it also provides support for dynamic search in changing environments. A set of alternative fast convolution methods are also proposed, depending on whether the environment is cluttered with obstacles or not. Finally, we provide both theoretical and experimental results from different experiments and applications.
Self-organization, embodiment, and biologically inspired robotics.
Pfeifer, Rolf; Lungarella, Max; Iida, Fumiya
2007-11-16
Robotics researchers increasingly agree that ideas from biology and self-organization can strongly benefit the design of autonomous robots. Biological organisms have evolved to perform and survive in a world characterized by rapid changes, high uncertainty, indefinite richness, and limited availability of information. Industrial robots, in contrast, operate in highly controlled environments with no or very little uncertainty. Although many challenges remain, concepts from biologically inspired (bio-inspired) robotics will eventually enable researchers to engineer machines for the real world that possess at least some of the desirable properties of biological organisms, such as adaptivity, robustness, versatility, and agility.
Robotic Lobectomy Utilizing the Robotic Stapler.
Pearlstein, Daryl Phillip
2016-12-01
A drawback of robotic lobectomy is the inability of the operating surgeon to perform stapler division of the pulmonary vessels and bronchi. With the advent of the robotic stapler, the surgeon is able to control this instrument from the console. The robotic stapler presents certain challenges. This article outlines techniques to use the robotic stapler for the safe and predictable performance of lobectomies. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Report on High School Characteristic Index Study at John Marshall High School - 1970.
ERIC Educational Resources Information Center
Newman, Wilfred
The High School Characteristic Index (H.S.C.I.) was employed at a high school in Rochester to measure students' perceptions, as well as teachers' ability to predict students' perceptions, after black-white violence occurred in May, 1970. The 1970 results were compared with 1966 results of the H.S.C.I. at the same high school when a different…
ERIC Educational Resources Information Center
Buff, Shannon Jonell
2017-01-01
Retention of quality high school assistant principals is a problem in a suburban Georgia school district, where 35% of administrators left their schools in a 3-year period. Researchers indicated that high turnover rates in school leadership influence student achievement and school climate. The purpose of this qualitative case study was to explore…
A power autonomous monopedal robot
NASA Astrophysics Data System (ADS)
Krupp, Benjamin T.; Pratt, Jerry E.
2006-05-01
We present the design and initial results of a power-autonomous planar monopedal robot. The robot is a gasoline powered, two degree of freedom robot that runs in a circle, constrained by a boom. The robot uses hydraulic Series Elastic Actuators, force-controllable actuators which provide high force fidelity, moderate bandwidth, and low impedance. The actuators are mounted in the body of the robot, with cable drives transmitting power to the hip and knee joints of the leg. A two-stroke, gasoline engine drives a constant displacement pump which pressurizes an accumulator. Absolute position and spring deflection of each of the Series Elastic Actuators are measured using linear encoders. The spring deflection is translated into force output and compared to desired force in a closed loop force-control algorithm implemented in software. The output signal of each force controller drives high performance servo valves which control flow to each of the pistons of the actuators. In designing the robot, we used a simulation-based iterative design approach. Preliminary estimates of the robot's physical parameters were based on past experience and used to create a physically realistic simulation model of the robot. Next, a control algorithm was implemented in simulation to produce planar hopping. Using the joint power requirements and range of motions from simulation, we worked backward specifying pulley diameter, piston diameter and stroke, hydraulic pressure and flow, servo valve flow and bandwidth, gear pump flow, and engine power requirements. Components that meet or exceed these specifications were chosen and integrated into the robot design. Using CAD software, we calculated the physical parameters of the robot design, replaced the original estimates with the CAD estimates, and produced new joint power requirements. We iterated on this process, resulting in a design which was prototyped and tested. The Monopod currently runs at approximately 1.2 m/s with the weight of all
Conformal Robotic Stereolithography
Stevens, Adam G.; Oliver, C. Ryan; Kirchmeyer, Matthieu; Wu, Jieyuan; Chin, Lillian; Polsen, Erik S.; Archer, Chad; Boyle, Casey; Garber, Jenna
2016-01-01
Abstract Additive manufacturing by layerwise photopolymerization, commonly called stereolithography (SLA), is attractive due to its high resolution and diversity of materials chemistry. However, traditional SLA methods are restricted to planar substrates and planar layers that are perpendicular to a single-axis build direction. Here, we present a robotic system that is capable of maskless layerwise photopolymerization on curved surfaces, enabling production of large-area conformal patterns and the construction of conformal freeform objects. The system comprises an industrial six-axis robot and a custom-built maskless projector end effector. Use of the system involves creating a mesh representation of the freeform substrate, generation of a triangulated toolpath with curved layers that represents the target object to be printed, precision mounting of the substrate in the robot workspace, and robotic photopatterning of the target object by coordinated motion of the robot and substrate. We demonstrate printing of conformal photopatterns on spheres of various sizes, and construction of miniature three-dimensional objects on spheres without requiring support features. Improvement of the motion accuracy and development of freeform toolpaths would enable construction of polymer objects that surpass the size and support structure constraints imparted by traditional SLA systems. PMID:29577062
A Call to Action: Transforming High School for All Youth. National High School Alliance
ERIC Educational Resources Information Center
Institute for Educational Leadership (NJ1), 2005
2005-01-01
This paper identifies six core principles and recommends strategies that will foster high academic achievement, close the achievement gap, and promote civic and personal growth among all high-school-age youth in the high schools and communities. At the center of the framework is the Alliance's belief that the purpose of high school is to ensure…
3D printing for soft robotics - a review.
Gul, Jahan Zeb; Sajid, Memoon; Rehman, Muhammad Muqeet; Siddiqui, Ghayas Uddin; Shah, Imran; Kim, Kyung-Hwan; Lee, Jae-Wook; Choi, Kyung Hyun
2018-01-01
Soft robots have received an increasing attention due to their advantages of high flexibility and safety for human operators but the fabrication is a challenge. Recently, 3D printing has been used as a key technology to fabricate soft robots because of high quality and printing multiple materials at the same time. Functional soft materials are particularly well suited for soft robotics due to a wide range of stimulants and sensitive demonstration of large deformations, high motion complexities and varied multi-functionalities. This review comprises a detailed survey of 3D printing in soft robotics. The development of key 3D printing technologies and new materials along with composites for soft robotic applications is investigated. A brief summary of 3D-printed soft devices suitable for medical to industrial applications is also included. The growing research on both 3D printing and soft robotics needs a summary of the major reported studies and the authors believe that this review article serves the purpose.
Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID
2010-09-21
The present invention provides methods, computer readable media, and apparatuses for a generic robot architecture providing a framework that is easily portable to a variety of robot platforms and is configured to provide hardware abstractions, abstractions for generic robot attributes, environment abstractions, and robot behaviors. The generic robot architecture includes a hardware abstraction level and a robot abstraction level. The hardware abstraction level is configured for developing hardware abstractions that define, monitor, and control hardware modules available on a robot platform. The robot abstraction level is configured for defining robot attributes and provides a software framework for building robot behaviors from the robot attributes. Each of the robot attributes includes hardware information from at least one hardware abstraction. In addition, each robot attribute is configured to substantially isolate the robot behaviors from the at least one hardware abstraction.
Molecular Robots Obeying Asimov's Three Laws of Robotics.
Kaminka, Gal A; Spokoini-Stern, Rachel; Amir, Yaniv; Agmon, Noa; Bachelet, Ido
2017-01-01
Asimov's three laws of robotics, which were shaped in the literary work of Isaac Asimov (1920-1992) and others, define a crucial code of behavior that fictional autonomous robots must obey as a condition for their integration into human society. While, general implementation of these laws in robots is widely considered impractical, limited-scope versions have been demonstrated and have proven useful in spurring scientific debate on aspects of safety and autonomy in robots and intelligent systems. In this work, we use Asimov's laws to examine these notions in molecular robots fabricated from DNA origami. We successfully programmed these robots to obey, by means of interactions between individual robots in a large population, an appropriately scoped variant of Asimov's laws, and even emulate the key scenario from Asimov's story "Runaround," in which a fictional robot gets into trouble despite adhering to the laws. Our findings show that abstract, complex notions can be encoded and implemented at the molecular scale, when we understand robots on this scale on the basis of their interactions.
Wallace, Jessica; Covassin, Tracey; Nogle, Sally; Gould, Daniel; Kovan, Jeffrey
2017-09-01
We determined differences in knowledge of concussion and reporting behaviors of high school athletes attending urban and suburban high schools, and whether a relationship exists between underreporting and access to an athletic trainer in urban schools. High school athletes (N = 715) from 14 high schools completed a validated knowledge of concussion survey consisting of 83 questions. The independent variable was school type (urban/suburban). We examined the proportion of athletes who correctly identified signs and symptoms of concussion, knowledge of concussion and reasons why high school athletes would not disclose a potential concussive injury across school classification. Data were analyzed using descriptive, non-parametric, and inferential statistics. Athletes attending urban schools have less concussion knowledge than athletes attending suburban schools (p < .01). Athletes attending urban schools without an athletic trainer have less knowledge than urban athletes at schools with an athletic trainer (p < .01) There was no significant relationship between reporting percentage and school type (p = .73); however, significant relationships exist between AT access at urban schools and 10 reasons for not reporting. Concussion education efforts cannot be homogeneous in all communities. Education interventions must reflect the needs of each community. © 2017, American School Health Association.
Experientally guided robots. [for planet exploration
NASA Technical Reports Server (NTRS)
Merriam, E. W.; Becker, J. D.
1974-01-01
This paper argues that an experientally guided robot is necessary to successfully explore far-away planets. Such a robot is characterized as having sense organs which receive sensory information from its environment and motor systems which allow it to interact with that environment. The sensori-motor information which it receives is organized into an experiential knowledge structure and this knowledge in turn is used to guide the robot's future actions. A summary is presented of a problem solving system which is being used as a test bed for developing such a robot. The robot currently engages in the behaviors of visual tracking, focusing down, and looking around in a simulated Martian landscape. Finally, some unsolved problems are outlined whose solutions are necessary before an experientally guided robot can be produced. These problems center around organizing the motivational and memory structure of the robot and understanding its high-level control mechanisms.
Robotic Cooperative Learning Promotes Student STEM Interest
ERIC Educational Resources Information Center
Mosley, Pauline; Ardito, Gerald; Scollins, Lauren
2016-01-01
The principal purpose of this investigation is to study the effect of robotic cooperative learning methodologies on middle school students' critical thinking, and STEM interest. The semi-experimental inquiry consisted of ninety four six-grade students (forty nine students in the experimental group, forty five students in the control group), chosen…
ERIC Educational Resources Information Center
Falmouth Public Schools, MA.
This book is a compilation of a series of papers designed to aid high school teachers in organizing a course in oceanography for high school students. It consists of twelve papers, with references, covering each of the following: (1) Introduction to Oceanography, (2) Geology of the Ocean, (3) The Continental Shelves, (4) Physical Properties of Sea…
ERIC Educational Resources Information Center
Perkins-Gough, Deborah
2005-01-01
Reports from national education organizations in the US indicate the sorry state of high schools in the country that are accused of failing to adequately prepare their graduates for college or for the workforce, highlighting what is a serious problem in light of the troubled state of the US economy. The need to improve high schools is urgent and…
2010-03-01
piece of tissue. Full Mobility Manipulator Robot The primary challenge with the design of a full mobility robot is meeting the competing design...streamed through an embedded plug-in for VLC player using asf/wmv encoding with 200ms buffering. A benchtop test of the remote user interface was...encountered in ensuring quality video is being made available to the surgeon. A significant challenge has been to consistently provide high quality video
Shuttlecock detection system for fully-autonomous badminton robot with two high-speed video cameras
NASA Astrophysics Data System (ADS)
Masunari, T.; Yamagami, K.; Mizuno, M.; Une, S.; Uotani, M.; Kanematsu, T.; Demachi, K.; Sano, S.; Nakamura, Y.; Suzuki, S.
2017-02-01
Two high-speed video cameras are successfully used to detect the motion of a flying shuttlecock of badminton. The shuttlecock detection system is applied to badminton robots that play badminton fully autonomously. The detection system measures the three dimensional position and velocity of a flying shuttlecock, and predicts the position where the shuttlecock falls to the ground. The badminton robot moves quickly to the position where the shuttle-cock falls to, and hits the shuttlecock back into the opponent's side of the court. In the game of badminton, there is a large audience, and some of them move behind a flying shuttlecock, which are a kind of background noise and makes it difficult to detect the motion of the shuttlecock. The present study demonstrates that such noises can be eliminated by the method of stereo imaging with two high-speed cameras.
Design of a high-mobility multi-terrain robot based on eccentric paddle mechanism.
Sun, Yi; Yang, Yang; Ma, Shugen; Pu, Huayan
Gaining high mobility on versatile terrains is a crucial target for designing a mobile robot toward tasks such as search and rescue, scientific exploration, and environment monitoring. Inspired by dextrous limb motion of animals, a novel form of locomotion has been established in our previous study, by proposing an eccentric paddle mechanism (ePaddle) for integrating paddling motion into a traditional wheeled mechanism. In this paper, prototypes of an ePaddle mechanism and an ePaddle-based quadruped robot are presented. Several locomotion modes, including wheeled rolling, legged crawling, legged race-walking, rotational paddling, oscillating paddling, and paddle-aided rolling, are experimentally verified on testbeds with fabricated prototypes. Experimental results confirm that paddle's motion is useful in all the locomotion modes.
Mission Reliability Estimation for Repairable Robot Teams
NASA Technical Reports Server (NTRS)
Trebi-Ollennu, Ashitey; Dolan, John; Stancliff, Stephen
2010-01-01
A mission reliability estimation method has been designed to translate mission requirements into choices of robot modules in order to configure a multi-robot team to have high reliability at minimal cost. In order to build cost-effective robot teams for long-term missions, one must be able to compare alternative design paradigms in a principled way by comparing the reliability of different robot models and robot team configurations. Core modules have been created including: a probabilistic module with reliability-cost characteristics, a method for combining the characteristics of multiple modules to determine an overall reliability-cost characteristic, and a method for the generation of legitimate module combinations based on mission specifications and the selection of the best of the resulting combinations from a cost-reliability standpoint. The developed methodology can be used to predict the probability of a mission being completed, given information about the components used to build the robots, as well as information about the mission tasks. In the research for this innovation, sample robot missions were examined and compared to the performance of robot teams with different numbers of robots and different numbers of spare components. Data that a mission designer would need was factored in, such as whether it would be better to have a spare robot versus an equivalent number of spare parts, or if mission cost can be reduced while maintaining reliability using spares. This analytical model was applied to an example robot mission, examining the cost-reliability tradeoffs among different team configurations. Particularly scrutinized were teams using either redundancy (spare robots) or repairability (spare components). Using conservative estimates of the cost-reliability relationship, results show that it is possible to significantly reduce the cost of a robotic mission by using cheaper, lower-reliability components and providing spares. This suggests that the
ERIC Educational Resources Information Center
Rohlen, Thomas P.
The author, an anthropologist, spent 14 months (1974-75) in the industrial port city of Kobe (Japan) observing a cross section of urban high schools, including Japan's most elite private school and a night vocational school plagued by absenteeism and delinquency. He reports on the character of the institutions and of the experience via…
Laboratory systems integration: robotics and automation.
Felder, R A
1991-01-01
Robotic technology is going to have a profound impact on the clinical laboratory of the future. Faced with increased pressure to reduce health care spending yet increase services to patients, many laboratories are looking for alternatives to the inflexible or "fixed" automation found in many clinical analyzers. Robots are being examined by many clinical pathologists as an attractive technology which can adapt to the constant changes in laboratory testing. Already, laboratory designs are being altered to accommodate robotics and automated specimen processors. However, the use of robotics and computer intelligence in the clinical laboratory is still in its infancy. Successful examples of robotic automation exist in several laboratories. Investigators have used robots to automate endocrine testing, high performance liquid chromatography, and specimen transportation. Large commercial laboratories are investigating the use of specimen processors which combine the use of fixed automation and robotics. Robotics have also reduced the exposure of medical technologists to specimens infected with viral pathogens. The successful examples of clinical robotics applications were a result of the cooperation of clinical chemists, engineers, and medical technologists. At the University of Virginia we have designed and implemented a robotic critical care laboratory. Initial clinical experience suggests that robotic performance is reliable, however, staff acceptance and utilization requires continuing education. We are also developing a robotic cyclosporine which promises to greatly reduce the labor costs of this analysis. The future will bring lab wide automation that will fully integrate computer artificial intelligence and robotics. Specimens will be transported by mobile robots. Specimen processing, aliquotting, and scheduling will be automated.(ABSTRACT TRUNCATED AT 250 WORDS)
ERIC Educational Resources Information Center
Waddell, Steve; Doty, Keith L.
1999-01-01
"Why Teach Robotics?" (Waddell) suggests that the United States lags behind Europe and Japan in use of robotics in industry and teaching. "Creating a Course in Mobile Robotics" (Doty) outlines course elements of the Intelligent Machines Design Lab. (SK)
Robotic nurse duties in the urology operative room: 11 years of experience.
Abdel Raheem, Ali; Song, Hyun Jung; Chang, Ki Don; Choi, Young Deuk; Rha, Koon Ho
2017-04-01
The robotic nurse plays an essential role in a successful robotic surgery. As part of the robotic surgical team, the robotic nurse must demonstrate a high level of professional knowledge, and be an expert in robotic technology and dealing with robotic malfunctions. Each one of the robotic nursing team "nurse coordinator, scrub-nurse and circulating-nurse" has a certain job description to ensure maximum patient's safety and robotic surgical efficiency. Well-structured training programs should be offered to the robotic nurse to be well prepared, feel confident, and maintain high-quality of care.
ERIC Educational Resources Information Center
Office of Disability Employment Policy (DOL), Washington, DC.
This implementation guide is intended to assist educators in planning, establishing, building, and managing a High School/High Tech project for high school students with disabilities. The program is designed to develop career opportunities, provide activities that will spark an interest in high technology fields, and encourage students to pursue…
Warren, Zachary; Muramatsu, Taro; Yoshikawa, Yuichiro; Matsumoto, Yoshio; Miyao, Masutomo; Nakano, Mitsuko; Mizushima, Sakae; Wakita, Yujin; Ishiguro, Hiroshi; Mimura, Masaru; Minabe, Yoshio; Kikuchi, Mitsuru
2017-01-01
Recent rapid technological advances have enabled robots to fulfill a variety of human-like functions, leading researchers to propose the use of such technology for the development and subsequent validation of interventions for individuals with autism spectrum disorder (ASD). Although a variety of robots have been proposed as possible therapeutic tools, the physical appearances of humanoid robots currently used in therapy with these patients are highly varied. Very little is known about how these varied designs are experienced by individuals with ASD. In this study, we systematically evaluated preferences regarding robot appearance in a group of 16 individuals with ASD (ages 10–17). Our data suggest that there may be important differences in preference for different types of robots that vary according to interaction type for individuals with ASD. Specifically, within our pilot sample, children with higher-levels of reported ASD symptomatology reported a preference for specific humanoid robots to those perceived as more mechanical or mascot-like. The findings of this pilot study suggest that preferences and reactions to robotic interactions may vary tremendously across individuals with ASD. Future work should evaluate how such differences may be systematically measured and potentially harnessed to facilitate meaningful interactive and intervention paradigms. PMID:29028837
Robot navigation research using the HERMIES mobile robot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnett, D.L.
1989-01-01
In recent years robot navigation has attracted much attention from researchers around the world. Not only are theoretical studies being simulated on sophisticated computers, but many mobile robots are now used as test vehicles for these theoretical studies. Various algorithms have been perfected for navigation in a known static environment; but navigation in an unknown and dynamic environment poses a much more challenging problem for researchers. Many different methodologies have been developed for autonomous robot navigation, but each methodology is usually restricted to a particular type of environment. One important research focus of the Center for Engineering Systems Advanced researchmore » (CESAR) at Oak Ridge National Laboratory, is autonomous navigation in unknown and dynamic environments using the series of HERMIES mobile robots. The research uses an expert system for high-level planning interfaced with C-coded routines for implementing the plans, and for quick processing of data requested by the expert system. In using this approach, the navigation is not restricted to one methodology since the expert system can activate a rule module for the methodology best suited for the current situation. Rule modules can be added the rule base as they are developed and tested. Modules are being developed or enhanced for navigating from a map, searching for a target, exploring, artificial potential-field navigation, navigation using edge-detection, etc. This paper will report on the various rule modules and methods of navigation in use, or under development at CESAR, using the HERMIES-IIB robot as a testbed. 13 refs., 5 figs., 1 tab.« less
Comparison of physical activities of female football players in junior high school and high school.
Inoue, Yuri; Otani, Yoshitaka; Takemasa, Seiichi
2017-08-01
[Purpose] This study aimed to compare physical activities between junior high school and high school female football players in order to explain the factors that predispose to a higher incidence of sports injuries in high school female football players. [Subjects and Methods] Twenty-nine female football players participated. Finger floor distance, the center of pressure during single limb stance with eyes open and closed, the 40-m linear sprint time, hip abduction and extension muscle strength and isokinetic knee flexion and extension peak torque were measured. The modified Star Excursion Balance Test, the three-steps bounding test and three-steps hopping tests, agility test 1 (Step 50), agility test 2 (Forward run), curl-up test for 30 seconds and the Yo-Yo intermittent recovery test were performed. [Results] The high school group was only significantly faster than the junior high school group in the 40-m linear sprint time and in the agility tests. The distance of the bounding test in the high school group was longer than that in the junior high school group. [Conclusion] Agility and speed increase with growth; however, muscle strength and balance do not develop alongside. This unbalanced development may cause a higher incidence of sports injuries in high school football players.
Future of robotic surgery in urology.
Rassweiler, Jens J; Autorino, Riccardo; Klein, Jan; Mottrie, Alex; Goezen, Ali Serdar; Stolzenburg, Jens-Uwe; Rha, Koon H; Schurr, Marc; Kaouk, Jihad; Patel, Vipul; Dasgupta, Prokar; Liatsikos, Evangelos
2017-12-01
To provide a comprehensive overview of the current status of the field of robotic systems for urological surgery and discuss future perspectives. A non-systematic literature review was performed using PubMed/Medline search electronic engines. Existing patents for robotic devices were researched using the Google search engine. Findings were also critically analysed taking into account the personal experience of the authors. The relevant patents for the first generation of the da Vinci platform will expire in 2019. New robotic systems are coming onto the stage. These can be classified according to type of console, arrangement of robotic arms, handles and instruments, and other specific features (haptic feedback, eye-tracking). The Telelap ALF-X robot uses an open console with eye-tracking, laparoscopy-like handles with haptic feedback, and arms mounted on separate carts; first clinical trials with this system were reported in 2016. The Medtronic robot provides an open console using three-dimensional high-definition video technology and three arms. The Avatera robot features a closed console with microscope-like oculars, four arms arranged on one cart, and 5-mm instruments with six degrees of freedom. The REVO-I consists of an open console and a four-arm arrangement on one cart; the first experiments with this system were published in 2016. Medicaroid uses a semi-open console and three robot arms attached to the operating table. Clinical trials of the SP 1098-platform using the da Vinci Xi for console-based single-port surgery were reported in 2015. The SPORT robot has been tested in animal experiments for single-port surgery. The SurgiBot represents a bedside solution for single-port surgery providing flexible tube-guided instruments. The Avicenna Roboflex has been developed for robotic flexible ureteroscopy, with promising early clinical results. Several console-based robots for laparoscopic multi- and single-port surgery are expected to come to market within the
Extensible Hardware Architecture for Mobile Robots
NASA Technical Reports Server (NTRS)
Park, Eric; Kobayashi, Linda; Lee, Susan Y.
2005-01-01
The Intelligent Robotics Group at NASA Ames Research Center has developed a new mobile robot hardware architecture designed for extensibility and reconfigurability. Currently implemented on the k9 rover. and won to be integrated onto the K10 series of human-robot collaboration research robots, this architecture allows for rapid changes in instrumentation configuration and provides a high degree of modularity through a synergistic mix of off-the-shelf and custom designed components, allowing eased transplantation into a wide vane6 of mobile robot platforms. A component level overview of this architecture is presented along with a description of the changes required for implementation on K10 , followed by plans for future work.
Richer Connections to Robotics through Project Personalization
ERIC Educational Resources Information Center
Veltman, Melanie; Davidson, Valerie; Deyell, Bethany
2012-01-01
In this work, we describe youth outreach activities carried out under the Chair for Women in Science and Engineering for Ontario (CWSE-ON) program. Specifically, we outline our design and implementation of robotics workshops to introduce and engage middle and secondary school students in engineering and computer science. Toward the goal of…
Artificial heart for humanoid robot
NASA Astrophysics Data System (ADS)
Potnuru, Akshay; Wu, Lianjun; Tadesse, Yonas
2014-03-01
A soft robotic device inspired by the pumping action of a biological heart is presented in this study. Developing artificial heart to a humanoid robot enables us to make a better biomedical device for ultimate use in humans. As technology continues to become more advanced, the methods in which we implement high performance and biomimetic artificial organs is getting nearer each day. In this paper, we present the design and development of a soft artificial heart that can be used in a humanoid robot and simulate the functions of a human heart using shape memory alloy technology. The robotic heart is designed to pump a blood-like fluid to parts of the robot such as the face to simulate someone blushing or when someone is angry by the use of elastomeric substrates and certain features for the transport of fluids.
Vision-based Nano Robotic System for High-throughput Non-embedded Cell Cutting
NASA Astrophysics Data System (ADS)
Shang, Wanfeng; Lu, Haojian; Wan, Wenfeng; Fukuda, Toshio; Shen, Yajing
2016-03-01
Cell cutting is a significant task in biology study, but the highly productive non-embedded cell cutting is still a big challenge for current techniques. This paper proposes a vision-based nano robotic system and then realizes automatic non-embedded cell cutting with this system. First, the nano robotic system is developed and integrated with a nanoknife inside an environmental scanning electron microscopy (ESEM). Then, the positions of the nanoknife and the single cell are recognized, and the distance between them is calculated dynamically based on image processing. To guarantee the positioning accuracy and the working efficiency, we propose a distance-regulated speed adapting strategy, in which the moving speed is adjusted intelligently based on the distance between the nanoknife and the target cell. The results indicate that the automatic non-embedded cutting is able to be achieved within 1-2 mins with low invasion benefiting from the high precise nanorobot system and the sharp edge of nanoknife. This research paves a way for the high-throughput cell cutting at cell’s natural condition, which is expected to make significant impact on the biology studies, especially for the in-situ analysis at cellular and subcellular scale, such as cell interaction investigation, neural signal transduction and low invasive cell surgery.
High School Improvement: Indicators of Effectiveness and School-Level Benchmarks
ERIC Educational Resources Information Center
National High School Center, 2012
2012-01-01
The National High School Center's "Eight Elements of High School Improvement: A Mapping Framework" provides a cohesive high school improvement framework comprised of eight elements and related indicators of effectiveness. These indicators of effectiveness allow states, districts, and schools to identify strengths and weaknesses of their current…
4 Key Findings for High Schools from "Looking Forward to High School and College"
ERIC Educational Resources Information Center
Allensworth, Elaine M.; Gwynne, Julia A.; Moore, Paul; de La Torre, Marisa
2014-01-01
The transition from eighth grade to high school results in a substantial drop in course performance for many students. These declines in performance lead students to fall off-track for obtaining high school and college degrees. By using data on students' middle grade performance, high school staff can set goals for their students to help them meet…
Oksar, Menekse; Akbulut, Ziya; Ocal, Hakan; Balbay, Mevlana Derya; Kanbak, Orhan
2014-01-01
Although many features of robotic prostatectomy are similar to those of conventional laparoscopic urological procedures (such as laparoscopic prostatectomy), the procedure is associated with some drawbacks, which include limited intravenous access, relatively long operating time, deep Trendelenburg position, and high intra-abdominal pressure. The primary aim was to describe respiratory and hemodynamic challenges and the complications related to high intra-abdominal pressure and the deep Trendelenburg position in robotic prostatectomy patients. The secondary aim was to reveal safe discharge criteria from the operating room. Fifty-three patients who underwent robotic prostatectomy between December 2009 and January 2011 were prospectively enrolled. Main outcome measures were non-invasive monitoring, invasive monitoring and blood gas analysis performed at supine (T0), Trendelenburg (T1), Trendelenburg + pneumoperitoneum (T2), Trendelenburg-before desufflation (T3), Trendelenburg (after desufflation) (T4), and supine (T5) positions. Fifty-three robotic prostatectomy patients were included in the study. The main clinical challenge in our study group was the choice of ventilation strategy to manage respiratory acidosis, which is detected through end-tidal carbon dioxide pressure and blood gas analysis. Furthermore, the mean arterial pressure remained unchanged, the heart rate decreased significantly and required intervention. The central venous pressure values were also above the normal limits. Respiratory acidosis and "upper airway obstruction-like" clinical symptoms were the main challenges associated with robotic prostatectomy procedures during this study. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
Modelling of industrial robot in LabView Robotics
NASA Astrophysics Data System (ADS)
Banas, W.; Cwikła, G.; Foit, K.; Gwiazda, A.; Monica, Z.; Sekala, A.
2017-08-01
Currently can find many models of industrial systems including robots. These models differ from each other not only by the accuracy representation parameters, but the representation range. For example, CAD models describe the geometry of the robot and some even designate a mass parameters as mass, center of gravity, moment of inertia, etc. These models are used in the design of robotic lines and sockets. Also systems for off-line programming use these models and many of them can be exported to CAD. It is important to note that models for off-line programming describe not only the geometry but contain the information necessary to create a program for the robot. Exports from CAD to off-line programming system requires additional information. These models are used for static determination of reachability points, and testing collision. It’s enough to generate a program for the robot, and even check the interaction of elements of the production line, or robotic cell. Mathematical models allow robots to study the properties of kinematic and dynamic of robot movement. In these models the geometry is not so important, so are used only selected parameters such as the length of the robot arm, the center of gravity, moment of inertia. These parameters are introduced into the equations of motion of the robot and motion parameters are determined.
Robotics: An Introduction to Today’s Robot and Future Trends.
1983-07-01
trial applications." What qualities define a machine as a robot? The Robot Institute of Amer- ica defines a robot as follows: "A robot is a reprogrammable ...manufactures a robot with a spin- ning wrist. Second, and this is the key feature, robots are reprogrammable and hence versatile. An automatic lathe is not...robot spot-welds an automobile frame. In Figure 8, a single robot transferring a transmission case is shown, but a total of eight robots are
School Characteristics Related to High School Dropout Rates
ERIC Educational Resources Information Center
Christle, Christine A.; Jolivette, Kristine; Nelson, C. Michael
2007-01-01
Dropping out of high school culminates a long-term process of disengagement from school and has profound social and economic consequences for students, their families, and their communities. Students who drop out of high school are more likely to be unemployed, to earn less than those who graduate, to be on public assistance, and to end up in…
ERIC Educational Resources Information Center
Bakke, Christine K.
2013-01-01
The purpose of this study is to examine whether participation in robotics provides opportunities for educational and professional skill development, significant enough to merit the recommendation of robotics courses as a part of mainstream curriculum offerings in K-12 schools. This non-experimental, mixed methods study examined current junior high…
Dynamic photogrammetric calibration of industrial robots
NASA Astrophysics Data System (ADS)
Maas, Hans-Gerd
1997-07-01
Today's developments in industrial robots focus on aims like gain of flexibility, improvement of the interaction between robots and reduction of down-times. A very important method to achieve these goals are off-line programming techniques. In contrast to conventional teach-in-robot programming techniques, where sequences of actions are defined step-by- step via remote control on the real object, off-line programming techniques design complete robot (inter-)action programs in a CAD/CAM environment. This poses high requirements to the geometric accuracy of a robot. While the repeatability of robot poses in the teach-in mode is often better than 0.1 mm, the absolute pose accuracy potential of industrial robots is usually much worse due to tolerances, eccentricities, elasticities, play, wear-out, load, temperature and insufficient knowledge of model parameters for the transformation from poses into robot axis angles. This fact necessitates robot calibration techniques, including the formulation of a robot model describing kinematics and dynamics of the robot, and a measurement technique to provide reference data. Digital photogrammetry as an accurate, economic technique with realtime potential offers itself for this purpose. The paper analyzes the requirements posed to a measurement technique by industrial robot calibration tasks. After an overview on measurement techniques used for robot calibration purposes in the past, a photogrammetric robot calibration system based on off-the- shelf lowcost hardware components will be shown and results of pilot studies will be discussed. Besides aspects of accuracy, reliability and self-calibration in a fully automatic dynamic photogrammetric system, realtime capabilities are discussed. In the pilot studies, standard deviations of 0.05 - 0.25 mm in the three coordinate directions could be achieved over a robot work range of 1.7 X 1.5 X 1.0 m3. The realtime capabilities of the technique allow to go beyond kinematic robot
A Novel Concept for Safe, Stiffness-Controllable Robot Links.
Stilli, Agostino; Wurdemann, Helge A; Althoefer, Kaspar
2017-03-01
The recent decade has seen an astounding increase of interest and advancement in a new field of robotics, aimed at creating structures specifically for the safe interaction with humans. Softness, flexibility, and variable stiffness in robotics have been recognized as highly desirable characteristics for many applications. A number of solutions were proposed ranging from entirely soft robots (such as those composed mainly from soft materials such as silicone), via flexible continuum and snake-like robots, to rigid-link robots enhanced by joints that exhibit an elastic behavior either implemented in hardware or achieved purely by means of intelligent control. Although these are very good solutions paving the path to safe human-robot interaction, we propose here a new approach that focuses on creating stiffness controllability for the linkages between the robot joints. This article proposes a replacement for the traditionally rigid robot link-the new link is equipped with an additional capability of stiffness controllability. With this added feature, a robot can accurately carry out manipulation tasks (high stiffness), but can virtually instantaneously reduce its stiffness when a human is nearby or in contact with the robot. The key point of the invention described here is a robot link made of an airtight chamber formed by a soft and flexible, but high-strain resistant combination of a plastic mesh and silicone wall. Inflated with air to a high pressure, the mesh silicone chamber behaves like a rigid link; reducing the air pressure, softens the link and rendering the robot structure safe. This article investigates a number of link prototypes and shows the feasibility of the new concept. Stiffness tests have been performed, showing that a significant level of stiffness can be achieved-up to 40 N reaction force along the axial direction, for a 25-mm-diameter sample at 60 kPa, at an axial deformation of 5 mm. The results confirm that this novel concept to linkages
Soft Robotics: New Perspectives for Robot Bodyware and Control
Laschi, Cecilia; Cianchetti, Matteo
2014-01-01
The remarkable advances of robotics in the last 50 years, which represent an incredible wealth of knowledge, are based on the fundamental assumption that robots are chains of rigid links. The use of soft materials in robotics, driven not only by new scientific paradigms (biomimetics, morphological computation, and others), but also by many applications (biomedical, service, rescue robots, and many more), is going to overcome these basic assumptions and makes the well-known theories and techniques poorly applicable, opening new perspectives for robot design and control. The current examples of soft robots represent a variety of solutions for actuation and control. Though very first steps, they have the potential for a radical technological change. Soft robotics is not just a new direction of technological development, but a novel approach to robotics, unhinging its fundamentals, with the potential to produce a new generation of robots, in the support of humans in our natural environments. PMID:25022259
Developing a robotic pancreas program: the Dutch experience
Nota, Carolijn L.; Zwart, Maurice J.; Fong, Yuman; Hagendoorn, Jeroen; Hogg, Melissa E.; Koerkamp, Bas Groot; Besselink, Marc G.
2017-01-01
Robot-assisted surgery has been developed to overcome limitations of conventional laparoscopy aiming to further optimize minimally invasive surgery. Despite the fact that robotics already have been widely adopted in urology, gynecology, and several gastro-intestinal procedures, like colorectal surgery, pancreatic surgery lags behind. Due to the complex nature of the procedure, surgeons probably have been hesitant to apply minimally invasive techniques in pancreatic surgery. Nevertheless, the past few years pancreatic surgery has been catching up. An increasing number of procedures are being performed laparoscopically and robotically, despite it being a highly complex procedure with high morbidity and mortality rates. Since the complex nature and extensiveness of the procedure, the start of a robotic pancreatic program should be properly prepared and should comply with several conditions within high-volume centers. Robotic training plays a significant role in the preparation. In this review we discuss the different aspects of preparation when working towards the start of a robotic pancreas program against the background of our nationwide experience in the Netherlands. PMID:29078666
Developing a robotic pancreas program: the Dutch experience.
Nota, Carolijn L; Zwart, Maurice J; Fong, Yuman; Hagendoorn, Jeroen; Hogg, Melissa E; Koerkamp, Bas Groot; Besselink, Marc G; Molenaar, I Quintus
2017-01-01
Robot-assisted surgery has been developed to overcome limitations of conventional laparoscopy aiming to further optimize minimally invasive surgery. Despite the fact that robotics already have been widely adopted in urology, gynecology, and several gastro-intestinal procedures, like colorectal surgery, pancreatic surgery lags behind. Due to the complex nature of the procedure, surgeons probably have been hesitant to apply minimally invasive techniques in pancreatic surgery. Nevertheless, the past few years pancreatic surgery has been catching up. An increasing number of procedures are being performed laparoscopically and robotically, despite it being a highly complex procedure with high morbidity and mortality rates. Since the complex nature and extensiveness of the procedure, the start of a robotic pancreatic program should be properly prepared and should comply with several conditions within high-volume centers. Robotic training plays a significant role in the preparation. In this review we discuss the different aspects of preparation when working towards the start of a robotic pancreas program against the background of our nationwide experience in the Netherlands.
Computer hardware and software for robotic control
NASA Technical Reports Server (NTRS)
Davis, Virgil Leon
1987-01-01
The KSC has implemented an integrated system that coordinates state-of-the-art robotic subsystems. It is a sensor based real-time robotic control system performing operations beyond the capability of an off-the-shelf robot. The integrated system provides real-time closed loop adaptive path control of position and orientation of all six axes of a large robot; enables the implementation of a highly configurable, expandable testbed for sensor system development; and makes several smart distributed control subsystems (robot arm controller, process controller, graphics display, and vision tracking) appear as intelligent peripherals to a supervisory computer coordinating the overall systems.
Use of a robot for high-throughput crystallization of membrane proteins in lipidic mesophases.
Li, Dianfan; Boland, Coilín; Walsh, Kilian; Caffrey, Martin
2012-09-01
Structure-function studies of membrane proteins greatly benefit from having available high-resolution 3-D structures of the type provided through macromolecular X-ray crystallography (MX). An essential ingredient of MX is a steady supply of ideally diffraction-quality crystals. The in meso or lipidic cubic phase (LCP) method for crystallizing membrane proteins is one of several methods available for crystallizing membrane proteins. It makes use of a bicontinuous mesophase in which to grow crystals. As a method, it has had some spectacular successes of late and has attracted much attention with many research groups now interested in using it. One of the challenges associated with the method is that the hosting mesophase is extremely viscous and sticky, reminiscent of a thick toothpaste. Thus, dispensing it manually in a reproducible manner in small volumes into crystallization wells requires skill, patience and a steady hand. A protocol for doing just that was developed in the Membrane Structural & Functional Biology (MS&FB) Group(1-3). JoVE video articles describing the method are available(1,4). The manual approach for setting up in meso trials has distinct advantages with specialty applications, such as crystal optimization and derivatization. It does however suffer from being a low throughput method. Here, we demonstrate a protocol for performing in meso crystallization trials robotically. A robot offers the advantages of speed, accuracy, precision, miniaturization and being able to work continuously for extended periods under what could be regarded as hostile conditions such as in the dark, in a reducing atmosphere or at low or high temperatures. An in meso robot, when used properly, can greatly improve the productivity of membrane protein structure and function research by facilitating crystallization which is one of the slow steps in the overall structure determination pipeline. In this video article, we demonstrate the use of three commercially available
Stoianovici, D
2000-09-01
The industrial revolution demonstrated the capability of robotic systems to facilitate and improve manufacturing. As a result, robotics extended to various other domains, including the delivery of health care. Hence, robots have been developed to assist hospital staff, to facilitate laboratory analyses, to augment patient rehabilitation, and even to advance surgical performance. As robotics lead usefulness and gain wider acceptance among the surgical community, the urologist should become familiar with this new interdisciplinary field and its "URobotics" subset: robotics applied to urology. This article reviews the current applications and experience, issues and debates in surgical robotics, and highlights future directions in the field.
Gastrointestinal robot-assisted surgery. A current perspective.
Lunca, Sorinel; Bouras, George; Stanescu, Alexandru Calin
2005-12-01
Minimally invasive techniques have revolutionized operative surgery. Computer aided surgery and robotic surgical systems strive to improve further on currently available minimally invasive surgery and open new horizons. Only several centers are currently using surgical robots and publishing data. In gastrointestinal surgery, robotic surgery is applied to a wide range of procedures, but is still in its infancy. Cholecystectomy, Nissen fundoplication and Heller myotomy are among the most frequently performed operations. The ZEUS (Computer Motion, Goleta, CA) and the da Vinci (Intuitive Surgical, Mountain View, CA) surgical systems are today the most advanced robotic systems used in gastrointestinal surgery. Most studies reported that robotic gastrointestinal surgery is feasible and safe, provides improved dexterity, better visualization, reduced fatigue and high levels of precision when compared to conventional laparoscopic surgery. Its main drawbacks are the absence of force feedback and extremely high costs. At this moment there are no reports to clearly demonstrate the superiority of robotics over conventional laparoscopic surgery. Further research and more prospective randomized trials are needed to better define the optimal application of this new technology in gastrointestinal surgery.
Transition to High School: School "Choice" & Freshman Year in Philadelphia
ERIC Educational Resources Information Center
Gold, Eva; Evans, Shani Adia; Haxton, Clarisse; Maluk, Holly; Mitchell, Cecily; Simon, Elaine; Good, Deborah
2010-01-01
The School District of Philadelphia's tiered system of selective, nonselective, and charter high schools, and the process for high school choice, has created real variation in the degree to which high schools can successfully meet the needs of ninth graders. Research has shown that the ninth grade year is critical in determining a student's…
Teleautonomous guidance for mobile robots
NASA Technical Reports Server (NTRS)
Borenstein, J.; Koren, Y.
1990-01-01
Teleautonomous guidance (TG), a technique for the remote guidance of fast mobile robots, has been developed and implemented. With TG, the mobile robot follows the general direction prescribed by an operator. However, if the robot encounters an obstacle, it autonomously avoids collision with that obstacle while trying to match the prescribed direction as closely as possible. This type of shared control is completely transparent and transfers control between teleoperation and autonomous obstacle avoidance gradually. TG allows the operator to steer vehicles and robots at high speeds and in cluttered environments, even without visual contact. TG is based on the virtual force field (VFF) method, which was developed earlier for autonomous obstacle avoidance. The VFF method is especially suited to the accommodation of inaccurate sensor data (such as that produced by ultrasonic sensors) and sensor fusion, and allows the mobile robot to travel quickly without stopping for obstacles.
Crazy-Proofing High School Sports
ERIC Educational Resources Information Center
Tufte, John E.
2012-01-01
"Crazy-Proofing High School Sports" examines the often troubling high school sports phenomenon in two parts. Part one focuses on the problems facing educators, students, and parents as they struggle to make high school sports worthwhile. Few if any strategies for improvement in education are effective without first knowing what the real reasons…
2012-01-27
Freddie Douglas, manager of the Stennis Office of Safety and Mission Assurance, joins students to watch a robotic demonstration during activities at Lillie Burney Elementary School in Hattiesburg, Miss., on Jan. 27, 2012. NASA senior staff members from Stennis Space Center visited the school for a morning of activities and outreach to students and school officials.
Soft Actuators for Small-Scale Robotics.
Hines, Lindsey; Petersen, Kirstin; Lum, Guo Zhan; Sitti, Metin
2017-04-01
This review comprises a detailed survey of ongoing methodologies for soft actuators, highlighting approaches suitable for nanometer- to centimeter-scale robotic applications. Soft robots present a special design challenge in that their actuation and sensing mechanisms are often highly integrated with the robot body and overall functionality. When less than a centimeter, they belong to an even more special subcategory of robots or devices, in that they often lack on-board power, sensing, computation, and control. Soft, active materials are particularly well suited for this task, with a wide range of stimulants and a number of impressive examples, demonstrating large deformations, high motion complexities, and varied multifunctionality. Recent research includes both the development of new materials and composites, as well as novel implementations leveraging the unique properties of soft materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bolden at Aviation High School
2013-01-16
NASA Administrator Charles Bolden listens to students at Aviation High School at a lunch and learn session Tuesday, Jan. 15, 2013 in Des Moines, WA. Aviation High School is a college preparatory aviation- and aerospace-themed school and a premier school of choice for science, technology, engineering and math (STEM) in the Pacific Northwest. Photo Credit: (NASA/Carla Cioffi)
Bolden at Aviation High School
2013-01-16
NASA Administrator Charles Bolden speaks to students at Aviation High School at a lunch and learn session Tuesday, Jan. 15, 2013 in Des Moines, WA. Aviation High School is a college preparatory aviation- and aerospace-themed school and a premier school of choice for science, technology, engineering and math (STEM) in the Pacific Northwest. Photo Credit: (NASA/Carla Cioffi)
The Opinions of High School Principals about Their Schools' Reputation
ERIC Educational Resources Information Center
Aksu, Ali; Orcan, Asli
2015-01-01
With a notice that was issued by the Ministry of National Education, all the public high schools were gradually converted into Anatolian High School as of 2010. The aim of this research is to determine the criteria of school reputation of Anatolian High schools and how and to what extent the criteria changed after the notice was issued.…
ERIC Educational Resources Information Center
Megert, Diann Ackerman
2005-01-01
This research examined the high school transcripts of honors scholarship recipients to identify a better criterion for awarding scholarships than high school grade point average (GPA) alone. Specifically, this study compared the honors scholarship retention rate when the scholarship was awarded based on completed advanced high school math classes…
Vinobot and Vinoculer: Two Robotic Platforms for High-Throughput Field Phenotyping
Shafiekhani, Ali; Kadam, Suhas; Fritschi, Felix B.; DeSouza, Guilherme N.
2017-01-01
In this paper, a new robotic architecture for plant phenotyping is being introduced. The architecture consists of two robotic platforms: an autonomous ground vehicle (Vinobot) and a mobile observation tower (Vinoculer). The ground vehicle collects data from individual plants, while the observation tower oversees an entire field, identifying specific plants for further inspection by the Vinobot. The advantage of this architecture is threefold: first, it allows the system to inspect large areas of a field at any time, during the day and night, while identifying specific regions affected by biotic and/or abiotic stresses; second, it provides high-throughput plant phenotyping in the field by either comprehensive or selective acquisition of accurate and detailed data from groups or individual plants; and third, it eliminates the need for expensive and cumbersome aerial vehicles or similarly expensive and confined field platforms. As the preliminary results from our algorithms for data collection and 3D image processing, as well as the data analysis and comparison with phenotype data collected by hand demonstrate, the proposed architecture is cost effective, reliable, versatile, and extendable. PMID:28124976
Navigation of a care and welfare robot
NASA Astrophysics Data System (ADS)
Yukawa, Toshihiro; Hosoya, Osamu; Saito, Naoki; Okano, Hideharu
2005-12-01
In this paper, we propose the development of a robot that can perform nursing tasks in a hospital. In a narrow environment such as a sickroom or a hallway, the robot must be able to move freely in arbitrary directions. Therefore, the robot needs to have high controllability and the capability to make precise movements. Our robot can recognize a line by using cameras, and can be controlled in the reference directions by means of comparison with original cell map information; furthermore, it moves safely on the basis of an original center-line established permanently in the building. Correspondence between the robot and a centralized control center enables the robot's autonomous movement in the hospital. Through a navigation system using cell map information, the robot is able to perform nursing tasks smoothly by changing the camera angle.
REMOTE HIGH SCHOOLS--THE REALITIES.
ERIC Educational Resources Information Center
FORD, PAUL; AND OTHERS
THIS STUDY WAS CONDUCTED AT TWO URBAN HIGH SCHOOLS AND THREE SMALL, REMOTE HIGH SCHOOLS IN THE STATE OF WASHINGTON IN AN EFFORT TO INVESTIGATE STUDENT-TEACHER ACTIVITIES AND RELATIONSHIPS, AND TO EXPLORE, IN DEPTH, ANY EDUCATIONAL ADVANTAGES AND/OR DISADVANTAGES ACCRUING TO THE SMALL HIGH SCHOOL. GENERAL FINDINGS OF THE STUDY INDICATED THAT THERE…
Post High School Plans Survey.
ERIC Educational Resources Information Center
Muskingum Area Technical Coll., Zanesville, OH.
This survey investigated the immediate after-high school plans of high school juniors, with a special emphasis on post-secondary education intentions. The survey included the responses of 1,064 students from 12 high schools. Forty-nine percent of the respondents indicated that they planned to attend a four-year college or university, 18 percent…
Lanfranco, Anthony R.; Castellanos, Andres E.; Desai, Jaydev P.; Meyers, William C.
2004-01-01
Objective: To review the history, development, and current applications of robotics in surgery. Background: Surgical robotics is a new technology that holds significant promise. Robotic surgery is often heralded as the new revolution, and it is one of the most talked about subjects in surgery today. Up to this point in time, however, the drive to develop and obtain robotic devices has been largely driven by the market. There is no doubt that they will become an important tool in the surgical armamentarium, but the extent of their use is still evolving. Methods: A review of the literature was undertaken using Medline. Articles describing the history and development of surgical robots were identified as were articles reporting data on applications. Results: Several centers are currently using surgical robots and publishing data. Most of these early studies report that robotic surgery is feasible. There is, however, a paucity of data regarding costs and benefits of robotics versus conventional techniques. Conclusions: Robotic surgery is still in its infancy and its niche has not yet been well defined. Its current practical uses are mostly confined to smaller surgical procedures. PMID:14685095
3D printing for soft robotics – a review
Gul, Jahan Zeb; Sajid, Memoon; Rehman, Muhammad Muqeet; Siddiqui, Ghayas Uddin; Shah, Imran; Kim, Kyung-Hwan; Lee, Jae-Wook; Choi, Kyung Hyun
2018-01-01
Abstract Soft robots have received an increasing attention due to their advantages of high flexibility and safety for human operators but the fabrication is a challenge. Recently, 3D printing has been used as a key technology to fabricate soft robots because of high quality and printing multiple materials at the same time. Functional soft materials are particularly well suited for soft robotics due to a wide range of stimulants and sensitive demonstration of large deformations, high motion complexities and varied multi-functionalities. This review comprises a detailed survey of 3D printing in soft robotics. The development of key 3D printing technologies and new materials along with composites for soft robotic applications is investigated. A brief summary of 3D-printed soft devices suitable for medical to industrial applications is also included. The growing research on both 3D printing and soft robotics needs a summary of the major reported studies and the authors believe that this review article serves the purpose. PMID:29707065
Interactive Exploration Robots: Human-Robotic Collaboration and Interactions
NASA Technical Reports Server (NTRS)
Fong, Terry
2017-01-01
For decades, NASA has employed different operational approaches for human and robotic missions. Human spaceflight missions to the Moon and in low Earth orbit have relied upon near-continuous communication with minimal time delays. During these missions, astronauts and mission control communicate interactively to perform tasks and resolve problems in real-time. In contrast, deep-space robotic missions are designed for operations in the presence of significant communication delay - from tens of minutes to hours. Consequently, robotic missions typically employ meticulously scripted and validated command sequences that are intermittently uplinked to the robot for independent execution over long periods. Over the next few years, however, we will see increasing use of robots that blend these two operational approaches. These interactive exploration robots will be remotely operated by humans on Earth or from a spacecraft. These robots will be used to support astronauts on the International Space Station (ISS), to conduct new missions to the Moon, and potentially to enable remote exploration of planetary surfaces in real-time. In this talk, I will discuss the technical challenges associated with building and operating robots in this manner, along with lessons learned from research conducted with the ISS and in the field.
Harrington, John J.; Eskridge, Steven E.; Hurtado, John E.; Byrne, Raymond H.
2004-02-03
A miniature mobile robot provides a relatively inexpensive mobile robot. A mobile robot for searching an area provides a way for multiple mobile robots in cooperating teams. A robotic system with a team of mobile robots communicating information among each other provides a way to locate a source in cooperation. A mobile robot with a sensor, a communication system, and a processor, provides a way to execute a strategy for searching an area.
ERIC Educational Resources Information Center
Holme, Jennifer Jellison
2013-01-01
Background: Over the past several decades, a significant number of states have either adopted or increased high school exit examination requirements. Although these policies are intended to generate improvement in schools, little is known about how high schools are responding to exit testing pressures. Purpose: This study examined how five…
Zero Robotics at Kennedy Space Center Visitor Complex
2017-08-11
A trio of programmable off-the-shelf Sphero robots are shown at the Center for Space Education at NASA's Kennedy Space Center in Florida. The Spheros were available for students to practice their programming skills during "loss of signal" times when the connection to the International Space Station was temporarily unavailable. Teams from across the state of Florida were gathered at Kennedy for the finals of the Zero Robotics Middle School Summer Program national championship. The five-week program allows rising sixth- through ninth-graders to write programs for small satellites called SPHERES (Synchronized, Position, Hold, Engage, Reorient, Experimental Satellites). Finalists saw their code tested aboard the orbiting laboratory.
Miniature in vivo robotics and novel robotic surgical platforms.
Shah, Bhavin C; Buettner, Shelby L; Lehman, Amy C; Farritor, Shane M; Oleynikov, Dmitry
2009-05-01
Robotic surgical systems, such as the da Vinci Surgical System (Intuitive Surgical, Inc., Sunnyvale, California), have revolutionized laparoscopic surgery but are limited by large size, increased costs, and limitations in imaging. Miniature in vivo robots are being developed that are inserted entirely into the peritoneal cavity for laparoscopic and natural orifice transluminal endoscopic surgical (NOTES) procedures. In the future, miniature camera robots and microrobots should be able to provide a mobile viewing platform. This article discusses the current state of miniature robotics and novel robotic surgical platforms and the development of future robotic technology for general surgery and urology.
Development of a semi-autonomous service robot with telerobotic capabilities
NASA Technical Reports Server (NTRS)
Jones, J. E.; White, D. R.
1987-01-01
The importance to the United States of semi-autonomous systems for application to a large number of manufacturing and service processes is very clear. Two principal reasons emerge as the primary driving forces for development of such systems: enhanced national productivity and operation in environments whch are hazardous to humans. Completely autonomous systems may not currently be economically feasible. However, autonomous systems that operate in a limited operation domain or that are supervised by humans are within the technology capability of this decade and will likely provide reasonable return on investment. The two research and development efforts of autonomy and telerobotics are distinctly different, yet interconnected. The first addresses the communication of an intelligent electronic system with a robot while the second requires human communication and ergonomic consideration. Discussed here are work in robotic control, human/robot team implementation, expert system robot operation, and sensor development by the American Welding Institute, MTS Systems Corporation, and the Colorado School of Mines--Center for Welding Research.
Robotics Intrigue Middle School Students and Build STEM Skills
ERIC Educational Resources Information Center
Grubbs, Michael
2013-01-01
As science, technology, engineering and mathematics (STEM) education demands greater integration across all subject areas, technology teachers can showcase many of the cross-curricular projects already occurring inside their classrooms that intrigue students and build their STEM skills. Robotics, just one of those projects, has become an excellent…
Switching Schools: Reconsidering the Relationship Between School Mobility and High School Dropout
Gasper, Joseph; DeLuca, Stefanie; Estacion, Angela
2014-01-01
Youth who switch schools are more likely to demonstrate a wide array of negative behavioral and educational outcomes, including dropping out of high school. However, whether switching schools actually puts youth at risk for dropout is uncertain, since youth who switch schools are similar to dropouts in their levels of prior school achievement and engagement, which suggests that switching schools may be part of the same long-term developmental process of disengagement that leads to dropping out. Using data from the National Longitudinal Survey of Youth 1997, this study uses propensity score matching to pair youth who switched high schools with similar youth who stayed in the same school. We find that while over half the association between switching schools and dropout is explained by observed characteristics prior to 9th grade, switching schools is still associated with dropout. Moreover, the relationship between switching schools and dropout varies depending on a youth's propensity for switching schools. PMID:25554706
Controlling Tensegrity Robots through Evolution using Friction based Actuation
NASA Technical Reports Server (NTRS)
Kothapalli, Tejasvi; Agogino, Adrian K.
2017-01-01
Traditional robotic structures have limitations in planetary exploration as their rigid structural joints are prone to damage in new and rough terrains. In contrast, robots based on tensegrity structures, composed of rods and tensile cables, offer a highly robust, lightweight, and energy efficient solution over traditional robots. In addition tensegrity robots can be highly configurable by rearranging their topology of rods, cables and motors. However, these highly configurable tensegrity robots pose a significant challenge for locomotion due to their complexity. This study investigates a control pattern for successful locomotion in tensegrity robots through an evolutionary algorithm. A twelve-rod hardware model is rapidly prototyped to utilize a new actuation method based on friction. A web-based physics simulation is created to model the twelve-rod tensegrity ball structure. Square-waves are used as control policies for the actuators of the tensegrity structure. Monte Carlo trials are run to find the most successful number of amplitudes for the square-wave control policy. From the results, an evolutionary algorithm is implemented to find the most optimized solution for locomotion of the twelve-rod tensegrity structure. The software pattern coupled with the new friction based actuation method can serve as the basis for highly efficient tensegrity robots in space exploration.
Bolden at Aviation High School
2013-01-16
Aviation High School student, Katie McConville, introduces herself at a lunch and learn session with NASA Administrator Charles Bolden, Tuesday, Jan. 15, 2013 in Des Moines, WA. Aviation High School is a college preparatory aviation- and aerospace-themed school and a premier school of choice for science, technology, engineering and math (STEM) in the Pacific Northwest. Photo Credit: (NASA/Carla Cioffi)
NASA Astrophysics Data System (ADS)
Billard, Aude
2000-10-01
This paper summarizes a number of experiments in biologically inspired robotics. The common feature to all experiments is the use of artificial neural networks as the building blocks for the controllers. The experiments speak in favor of using a connectionist approach for designing adaptive and flexible robot controllers, and for modeling neurological processes. I present 1) DRAMA, a novel connectionist architecture, which has general property for learning time series and extracting spatio-temporal regularities in multi-modal and highly noisy data; 2) Robota, a doll-shaped robot, which imitates and learns a proto-language; 3) an experiment in collective robotics, where a group of 4 to 15 Khepera robots learn dynamically the topography of an environment whose features change frequently; 4) an abstract, computational model of primate ability to learn by imitation; 5) a model for the control of locomotor gaits in a quadruped legged robot.
Research and implementation of a new 6-DOF light-weight robot
NASA Astrophysics Data System (ADS)
Tao, Zihang; Zhang, Tao; Qi, Mingzhong; Ji, Junhui
2017-06-01
Traditional industrial robots have some weaknesses such as low payload-weight, high power consumption and high cost. These drawbacks limit their applications in such areas, special application, service and surgical robots. To improve these shortcomings, a new kind 6-DOF light-weight robot was designed based on modular joints and modular construction. This paper discusses the general requirements of the light-weight robots. Based on these requirements the novel robot is designed. The new robot is described from two aspects, mechanical design and control system. A prototype robot had developed and a joint performance test platform had designed. Position and velocity tests had conducted to evaluate the performance of the prototype robot. Test results showed that the prototype worked well.
Total robotic pancreaticoduodenectomy: a systematic review of the literature.
Kornaropoulos, Michail; Moris, Demetrios; Beal, Eliza W; Makris, Marinos C; Mitrousias, Apostolos; Petrou, Athanasios; Felekouras, Evangelos; Michalinos, Adamantios; Vailas, Michail; Schizas, Dimitrios; Papalampros, Alexandros
2017-11-01
Pancreaticoduodenectomy (PD) is a complex operation with high perioperative morbidity and mortality, even in the highest volume centers. Since the development of the robotic platform, the number of reports on robotic-assisted pancreatic surgery has been on the rise. This article reviews the current state of completely robotic PD. A systematic literature search was performed including studies published between January 2000 and July 2016 reporting PDs in which all procedural steps (dissection, resection and reconstruction) were performed robotically. Thirteen studies met the inclusion criteria, including a total of 738 patients. Data regarding perioperative outcomes such as operative time, blood loss, mortality, morbidity, conversion and oncologic outcomes were analyzed. No major differences were observed in mortality, morbidity and oncologic parameters, between robotic and non-robotic approaches. However, operative time was longer in robotic PD, whereas the estimated blood loss was lower. The conversion rate to laparotomy was 6.5-7.8%. Robotic PD is feasible and safe in high-volume institutions, where surgeons are experienced and medical staff are appropriately trained. Randomized controlled trials are required to further investigate outcomes of robotic PD. Additionally, cost analysis and data on long-term oncologic outcomes are needed to evaluate cost-effectiveness of the robotic approach in comparison with the open technique.
Determining robot actions for tasks requiring sensor interaction
NASA Technical Reports Server (NTRS)
Budenske, John; Gini, Maria
1989-01-01
The performance of non-trivial tasks by a mobile robot has been a long term objective of robotic research. One of the major stumbling blocks to this goal is the conversion of the high-level planning goals and commands into the actuator and sensor processing controls. In order for a mobile robot to accomplish a non-trivial task, the task must be described in terms of primitive actions of the robot's actuators. Most non-trivial tasks require the robot to interact with its environment; thus necessitating coordination of sensor processing and actuator control to accomplish the task. The main contention is that the transformation from the high level description of the task to the primitive actions should be performed primarily at execution time, when knowledge about the environment can be obtained through sensors. It is proposed to produce the detailed plan of primitive actions by using a collection of low-level planning components that contain domain specific knowledge and knowledge about the available sensors, actuators, and sensor/actuator processing. This collection will perform signal and control processing as well as serve as a control interface between an actual mobile robot and a high-level planning system. Previous research has shown the usefulness of high-level planning systems to plan the coordination of activities such to achieve a goal, but none have been fully applied to actual mobile robots due to the complexity of interacting with sensors and actuators. This control interface is currently being implemented on a LABMATE mobile robot connected to a SUN workstation and will be developed such to enable the LABMATE to perform non-trivial, sensor-intensive tasks as specified by a planning system.
Yang, Zhongyuan; Sassa, Fumihiro; Hayashi, Kenshi
2018-06-22
Improving the efficiency of detecting the spatial distribution of gas information with a mobile robot is a great challenge that requires rapid sample collection, which is basically determined by the speed of operation of gas sensors. The present work developed a robot equipped with a high-speed gas sensor module based on localized surface plasmon resonance. The sensor module is designed to sample gases from an on-ground odor source, such as a footprint material or artificial odor marker, via a fine sampling tubing. The tip of the sampling tubing was placed close to the ground to reduce the sampling time and the effect of natural gas diffusion. On-ground ethanol odor sources were detected by the robot at high resolution (i.e., 2.5 cm when the robot moved at 10 cm/s), and the reading of gas information was demonstrated experimentally. This work may help in the development of environmental sensing robots, such as the development of odor source mapping and multirobot systems with pheromone tracing.
NASA Astrophysics Data System (ADS)
Roubroeks, M. A. J.; Ham, J. R. C.; Midden, C. J. H.
Persuasive technology can take the form of a social agent that persuades people to change behavior or attitudes. However, like any persuasive technology, persuasive social agents might trigger psychological reactance, which can lead to restoration behavior. The current study investigated whether interacting with a persuasive robot can cause psychological reactance. Additionally, we investigated whether goal congruency plays a role in psychological reactance. Participants programmed a washing machine while a robot gave threatening advice. Confirming expectations, participants experienced more psychological reactance when receiving high-threatening advice compared to low-threatening advice. Moreover, when the robot gave high-threatening advice and expressed an incongruent goal, participants reported the highest level of psychological reactance (on an anger measure). Finally, high-threatening advice led to more restoration, and this relationship was partially mediated by psychological reactance. Overall, results imply that under certain circumstances persuasive technology can trigger opposite effects, especially when people have incongruent goal intentions.
Morelli, Luca; Morelli, John; Palmeri, Matteo; D'Isidoro, Cristiano; Kauffmann, Emanuele Federico; Tartaglia, Dario; Caprili, Giovanni; Pisano, Roberta; Guadagni, Simone; Di Franco, Gregorio; Di Candio, Giulio; Mosca, Franco
2015-09-01
Robot-assisted partial nephrectomy has been proposed as a technique to overcome technical challenges of laparoscopic partial nephrectomy. We prospectively collected and analyzed data from 31 patients who underwent robotic partial nephrectomy with systematic use of hemostatic agents, between February 2009 and October 2014. Thirty-three renal tumors were treated in 31 patients. There were no conversions to open surgery, intraoperative complications, or blood transfusions. The mean size of the resected tumors was 27 mm (median 20 mm, range 5-40 mm). Twenty-seven of 33 lesions (82%) did not require vascular clamping and therefore were treated in the absence of ischemia. All margins were negative. The high partial nephrectomy success rate without vascular clamping suggests that robotic nephron-sparing surgery with systematic use of hemostatic agents may be a safe, effective method to completely avoid ischemia in the treatment of selected renal masses.
Profiles of Schools in Change: Four Urban High Schools.
ERIC Educational Resources Information Center
Wermuth, Thomas R.; And Others
1997-01-01
This report highlights four urban comprehensive secondary schools that are developing, implementing, and evaluating reform initiatives that include vocational and technical education as a key component of these efforts. Efforts of these four high schools are described: Bryan High School, Omaha, Nebraska; Humboldt Secondary Complex, St. Paul,…
Bier, J
2000-05-01
Content of this paper is the current state of the art of robots in surgery and the ongoing work on the field of surgical robotics at the Clinic for Maxillofacial Surgery at the Charité. Robots in surgery allows the surgeon to transform the accuracy of the imaging systems directly during the intervention and to plan an intervention beforehand. In this paper firstly the state of the art is described. Subsequently the scientific work at the clinic is described in detail. The paper closes with a outlook for future applications of robotics systems in maxillofacial surgery.
Robot Manipulator Technologies for Planetary Exploration
NASA Technical Reports Server (NTRS)
Das, H.; Bao, X.; Bar-Cohen, Y.; Bonitz, R.; Lindemann, R.; Maimone, M.; Nesnas, I.; Voorhees, C.
1999-01-01
NASA exploration missions to Mars, initiated by the Mars Pathfinder mission in July 1997, will continue over the next decade. The missions require challenging innovations in robot design and improvements in autonomy to meet ambitious objectives under tight budget and time constraints. The authors are developing design tools, component technologies and capabilities to address these needs for manipulation with robots for planetary exploration. The specific developments are: 1) a software analysis tool to reduce robot design iteration cycles and optimize on design solutions, 2) new piezoelectric ultrasonic motors (USM) for light-weight and high torque actuation in planetary environments, 3) use of advanced materials and structures for strong and light-weight robot arms and 4) intelligent camera-image coordinated autonomous control of robot arms for instrument placement and sample acquisition from a rover vehicle.
Interactive-rate Motion Planning for Concentric Tube Robots.
Torres, Luis G; Baykal, Cenk; Alterovitz, Ron
2014-05-01
Concentric tube robots may enable new, safer minimally invasive surgical procedures by moving along curved paths to reach difficult-to-reach sites in a patient's anatomy. Operating these devices is challenging due to their complex, unintuitive kinematics and the need to avoid sensitive structures in the anatomy. In this paper, we present a motion planning method that computes collision-free motion plans for concentric tube robots at interactive rates. Our method's high speed enables a user to continuously and freely move the robot's tip while the motion planner ensures that the robot's shaft does not collide with any anatomical obstacles. Our approach uses a highly accurate mechanical model of tube interactions, which is important since small movements of the tip position may require large changes in the shape of the device's shaft. Our motion planner achieves its high speed and accuracy by combining offline precomputation of a collision-free roadmap with online position control. We demonstrate our interactive planner in a simulated neurosurgical scenario where a user guides the robot's tip through the environment while the robot automatically avoids collisions with the anatomical obstacles.
School Start Times for Middle School and High School Students - United States, 2011-12 School Year.
Wheaton, Anne G; Ferro, Gabrielle A; Croft, Janet B
2015-08-07
Adolescents who do not get enough sleep are more likely to be overweight; not engage in daily physical activity; suffer from depressive symptoms; engage in unhealthy risk behaviors such as drinking, smoking tobacco, and using illicit drugs; and perform poorly in school. However, insufficient sleep is common among high school students, with less than one third of U.S. high school students sleeping at least 8 hours on school nights. In a policy statement published in 2014, the American Academy of Pediatrics (AAP) urged middle and high schools to modify start times as a means to enable students to get adequate sleep and improve their health, safety, academic performance, and quality of life. AAP recommended that "middle and high schools should aim for a starting time of no earlier than 8:30 a.m.". To assess state-specific distributions of public middle and high school start times and establish a pre-recommendation baseline, CDC and the U.S. Department of Education analyzed data from the 2011-12 Schools and Staffing Survey (SASS). Among an estimated 39,700 public middle, high, and combined schools* in the United States, the average start time was 8:03 a.m. Overall, only 17.7% of these public schools started school at 8:30 a.m. or later. The percentage of schools with 8:30 a.m. or later start times varied greatly by state, ranging from 0% in Hawaii, Mississippi, and Wyoming to more than three quarters of schools in Alaska (76.8%) and North Dakota (78.5%). A school system start time policy of 8:30 a.m. or later provides teenage students the opportunity to achieve the 8.5-9.5 hours of sleep recommended by AAP and the 8-10 hours recommended by the National Sleep Foundation.
Bolden at Aviation High School
2013-01-16
Austin McHenry, a student at Aviation High School, introduces himself at a lunch and learn session with NASA Administrator Charles Bolden, Tuesday, Jan. 15, 2013 in Des Moines, WA. Aviation High School is a college preparatory aviation- and aerospace-themed school and a premier school of choice for science, technology, engineering and math (STEM) in the Pacific Northwest. Photo Credit: (NASA/Carla Cioffi)
Bolden at Aviation High School
2013-01-16
Chris Lu (third from left), a student at Aviation High School, asks a question at a lunch and learn session with NASA Administrator Charles Bolden, Tuesday, Jan. 15, 2013 in Des Moines, WA. Aviation High School is a college preparatory aviation- and aerospace-themed school and a premier school of choice for science, technology, engineering and math (STEM) in the Pacific Northwest. Photo Credit: (NASA/Carla Cioffi)
Dickstein-Fischer, Laurie; Fischer, Gregory S
2014-01-01
It is estimated that Autism Spectrum Disorder (ASD) affects 1 in 68 children. Early identification of an ASD is exceedingly important to the introduction of an intervention. We are developing a robot-assisted approach that will serve as an improved diagnostic and early intervention tool for children with autism. The robot, named PABI® (Penguin for Autism Behavioral Interventions), is a compact humanoid robot taking on an expressive cartoon-like embodiment. The robot is affordable, durable, and portable so that it can be used in various settings including schools, clinics, and the home. Thus enabling significantly enhanced and more readily available diagnosis and continuation of care. Through facial expressions, body motion, verbal cues, stereo vision-based tracking, and a tablet computer, the robot is capable of interacting meaningfully with an autistic child. Initial implementations of the robot, as part of a comprehensive treatment model (CTM), include Applied Behavioral Analysis (ABA) therapy where the child interacts with a tablet computer wirelessly interfaced with the robot. At the same time, the robot makes meaningful expressions and utterances and uses stereo cameras in eyes to track the child, maintain eye contact, and collect data such as affect and gaze direction for charting of progress. In this paper we present the clinical justification, anticipated usage with corresponding requirements, prototype development of the robotic system, and demonstration of a sample application for robot-assisted ABA therapy.
HyBAR: hybrid bone-attached robot for joint arthroplasty.
Song, S; Mor, A; Jaramaz, B
2009-06-01
A number of small bone-attached surgical robots have been introduced to overcome some disadvantages of large stand-alone surgical robots. In orthopaedics, increasing demand on minimally invasive joint replacement surgery has also been encouraging small surgical robot developments. Among various technical aspects of such an approach, optimal miniaturization that maintains structural strength for high speed bone removal was investigated. By observing advantages and disadvantages from serial and parallel robot structures, a new hybrid kinematic configuration was designed for a bone-attached robot to perform precision bone removal for cutting the femoral implant cavity during patellofemoral joint arthroplasty surgery. A series of experimental tests were conducted in order to evaluate the performance of the new robot, especially with respect to accuracy of bone preparation. A miniaturized and rigidly-structured robot prototype was developed for minimally invasive bone-attached robotic surgery. A new minimally invasive modular clamping system was also introduced to enhance the robotic procedure. Foam and pig bone experimental results demonstrated a successful implementation of the new robot that eliminated a number of major design problems of a previous prototype. For small bone-attached surgical robots that utilize high speed orthopaedic tools, structural rigidity and clamping mechanism are major design issues. The new kinematic configuration using hinged prismatic joints enabled an effective miniaturization with good structural rigidity. Although minor problems still exist at the prototype stage, the new development would be a significant step towards the practical use of such a robot.
Robots testing robots: ALAN-Arm, a humanoid arm for the testing of robotic rehabilitation systems.
Brookes, Jack; Kuznecovs, Maksims; Kanakis, Menelaos; Grigals, Arturs; Narvidas, Mazvydas; Gallagher, Justin; Levesley, Martin
2017-07-01
Robotics is increasing in popularity as a method of providing rich, personalized and cost-effective physiotherapy to individuals with some degree of upper limb paralysis, such as those who have suffered a stroke. These robotic rehabilitation systems are often high powered, and exoskeletal systems can attach to the person in a restrictive manner. Therefore, ensuring the mechanical safety of these devices before they come in contact with individuals is a priority. Additionally, rehabilitation systems may use novel sensor systems to measure current arm position. Used to capture and assess patient movements, these first need to be verified for accuracy by an external system. We present the ALAN-Arm, a humanoid robotic arm designed to be used for both accuracy benchmarking and safety testing of robotic rehabilitation systems. The system can be attached to a rehabilitation device and then replay generated or human movement trajectories, as well as autonomously play rehabilitation games or activities. Tests of the ALAN-Arm indicated it could recreate the path of a generated slow movement path with a maximum error of 14.2mm (mean = 5.8mm) and perform cyclic movements up to 0.6Hz with low gain (<1.5dB). Replaying human data trajectories showed the ability to largely preserve human movement characteristics with slightly higher path length and lower normalised jerk.
2017 Robotic Mining Competition
2017-05-24
Energy levels are high in the RoboPit as teams prepare for NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. arel using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.
High School Economic Composition and College Persistence.
Niu, Sunny X; Tienda, Marta
2013-02-01
Using a longitudinal sample of Texas high school seniors of 2002 who enrolled in college within the calendar year of high school graduation, we examine variation in college persistence according to the economic composition of their high schools, which serves as a proxy for unmeasured high school attributes that are conductive to postsecondary success. Students who graduated from affluent high schools have the highest persistence rates and those who attended poor high schools have the lowest rates. Multivariate analyses indicate that the advantages in persistence and on-time graduation from four-year colleges enjoyed by graduates of affluent high schools cannot be fully explained by high school college orientation and academic rigor, family background, pre-college academic preparedness or the institutional characteristics. High school college orientation, family background and pre-college academic preparation largely explain why graduates from affluent high schools who first enroll in two-year colleges have higher transfer rates to four-year institutions; however these factors and college characteristics do not explain the lower transfer rates for students from poor high schools. The conclusion discusses the implications of the empirical findings in light of several recent studies that call attention to the policy importance of high schools as a lever to improve persistence and completion rates via better institutional matches.
High School Economic Composition and College Persistence
Tienda, Marta
2013-01-01
Using a longitudinal sample of Texas high school seniors of 2002 who enrolled in college within the calendar year of high school graduation, we examine variation in college persistence according to the economic composition of their high schools, which serves as a proxy for unmeasured high school attributes that are conductive to postsecondary success. Students who graduated from affluent high schools have the highest persistence rates and those who attended poor high schools have the lowest rates. Multivariate analyses indicate that the advantages in persistence and on-time graduation from four-year colleges enjoyed by graduates of affluent high schools cannot be fully explained by high school college orientation and academic rigor, family background, pre-college academic preparedness or the institutional characteristics. High school college orientation, family background and pre-college academic preparation largely explain why graduates from affluent high schools who first enroll in two-year colleges have higher transfer rates to four-year institutions; however these factors and college characteristics do not explain the lower transfer rates for students from poor high schools. The conclusion discusses the implications of the empirical findings in light of several recent studies that call attention to the policy importance of high schools as a lever to improve persistence and completion rates via better institutional matches. PMID:23459198
Robot-Aided Neurorehabilitation: A Robot for Wrist Rehabilitation
Krebs, Hermano Igo; Volpe, Bruce T.; Williams, Dustin; Celestino, James; Charles, Steven K.; Lynch, Daniel; Hogan, Neville
2009-01-01
In 1991, a novel robot, MIT-MANUS, was introduced to study the potential that robots might assist in and quantify the neuro-rehabilitation of motor function. MIT-MANUS proved an excellent tool for shoulder and elbow rehabilitation in stroke patients, showing in clinical trials a reduction of impairment in movements confined to the exercised joints. This successful proof of principle as to additional targeted and intensive movement treatment prompted a test of robot training examining other limb segments. This paper focuses on a robot for wrist rehabilitation designed to provide three rotational degrees-of-freedom. The first clinical trial of the device will enroll 200 stroke survivors. Ultimately 160 stroke survivors will train with both the proximal shoulder and elbow MIT-MANUS robot, as well as with the novel distal wrist robot, in addition to 40 stroke survivor controls. So far 52 stroke patients have completed the robot training (ongoing protocol). Here, we report on the initial results on 36 of these volunteers. These results demonstrate that further improvement should be expected by adding additional training to other limb segments. PMID:17894265
Robot-aided neurorehabilitation: a robot for wrist rehabilitation.
Krebs, Hermano Igo; Volpe, Bruce T; Williams, Dustin; Celestino, James; Charles, Steven K; Lynch, Daniel; Hogan, Neville
2007-09-01
In 1991, a novel robot, MIT-MANUS, was introduced to study the potential that robots might assist in and quantify the neuro-rehabilitation of motor function. MIT-MANUS proved an excellent tool for shoulder and elbow rehabilitation in stroke patients, showing in clinical trials a reduction of impairment in movements confined to the exercised joints. This successful proof of principle as to additional targeted and intensive movement treatment prompted a test of robot training examining other limb segments. This paper focuses on a robot for wrist rehabilitation designed to provide three rotational degrees-of-freedom. The first clinical trial of the device will enroll 200 stroke survivors. Ultimately 160 stroke survivors will train with both the proximal shoulder and elbow MIT-MANUS robot, as well as with the novel distal wrist robot, in addition to 40 stroke survivor controls. So far 52 stroke patients have completed the robot training (ongoing protocol). Here, we report on the initial results on 36 of these volunteers. These results demonstrate that further improvement should be expected by adding additional training to other limb segments.
Astrobee: Space Station Robotic Free Flyer
NASA Technical Reports Server (NTRS)
Provencher, Chris; Bualat, Maria G.; Barlow, Jonathan; Fong, Terrence W.; Smith, Marion F.; Smith, Ernest E.; Sanchez, Hugo S.
2016-01-01
Astrobee is a free flying robot that will fly inside the International Space Station and primarily serve as a research platform for robotics in zero gravity. Astrobee will also provide mobile camera views to ISS flight and payload controllers, and collect various sensor data within the ISS environment for the ISS Program. Astrobee consists of two free flying robots, a dock, and ground data system. This presentation provides an overview, high level design description, and project status.
Guide to School Design: Healthy + High Performance Schools
ERIC Educational Resources Information Center
Healthy Schools Network, Inc., 2007
2007-01-01
A "healthy and high performance school" uses a holistic design process to promote the health and comfort of children and school employees, as well as conserve resources. Children may spend over eight hours a day at school with little, if any, legal protection from environmental hazards. Schools are generally not well-maintained; asthma is a…
Public, Private and Nonpublic Schools: High School Graduates, 2002-03.
ERIC Educational Resources Information Center
Bobek, Joanne R., Comp.
2004-01-01
This publication provides a compilation of statistical information covering Pennsylvania high school graduates in public, private and nonpublic schools for the 2002-03 school year. Information is provided on race/ethnicity, gender and planned post-high school activity of graduates, including those who are college-bound. Information is also…
Public, Private and Nonpublic Schools High School Graduates, 2004-05
ERIC Educational Resources Information Center
Bobek, Joanne R., Comp.
2006-01-01
This publication provides a compilation of statistical information covering Pennsylvania high school graduates in public, private and nonpublic schools for the 2004-05 school year. Information is provided on race/ethnicity, gender and intended post-high school activity of graduates, including those who are college-bound. Information is also…
Public, Private and Nonpublic Schools High School Graduates, 2003-04
ERIC Educational Resources Information Center
Bobek, Joanne R., Comp.
2005-01-01
This publication provides a compilation of statistical information covering Pennsylvania high school graduates in public, private and nonpublic schools for the 2003-04 school year. Information is provided on race/ethnicity, gender and intended post-high school activity of graduates, including those who are college-bound. Information is also…
School connectedness and high school graduation among maltreated youth.
Lemkin, Allison; Kistin, Caroline J; Cabral, Howard J; Aschengrau, Ann; Bair-Merritt, Megan
2018-01-01
Maltreated youth have higher rates of school dropout than their non-maltreated peers. School connectedness is a modifiable predictor of school success. We hypothesized maltreated youth's school connectedness (supportive relationships with adults at school and participation in school clubs) would be positively associated with high school graduation. We included youth with at least one Child Protective Services (CPS) report by age twelve from Longitudinal Studies of Child Abuse and Neglect, a prospective cohort study. Participation in extracurricular activities and adult relationships reported at age 16, high school graduation/General Education Development (GED) status reported at age 18, and demographics were provided by youth and caregivers. Maltreatment data were coded from CPS records. The outcome was graduation/receipt of GED. Multivariable logistic regressions examined the association between school connectedness and graduation/receipt of GED, controlling for confounders. In our sample of 318 maltreated youth, 73.3% graduated. School club was the only activity with a statistically significant association with graduation in bivariate analysis. Having supportive relationships with an adult at school was not significantly associated with graduation, though only 10.7% of youth reported this relationship. Maltreated youth who participated in school clubs had 2.54 times the odds of graduating, adjusted for study site, gender, poverty status, caregiver high school graduation status, and age at first CPS report (95% CI: [1.02, 6.33]). Few maltreated youth reported relationships with adults at school, and additional efforts may be needed to support these vulnerable youth. School club participation may represent an opportunity to modify maltreated youth's risk for school dropout. Copyright © 2017 Elsevier Ltd. All rights reserved.
Arizona Academic Standards, High School
ERIC Educational Resources Information Center
Arizona Department of Education, 2009
2009-01-01
This publication contains Arizona public schools' updated academic standards for high school. The contents of this document contain: (1) The Arts Standard 2006--High School; (2) Comprehensive Health Education/Physical Activity Standards 1997--Proficiency and Distinction (Grades 9-12); (3) Foreign and Native Language Standards 1997--Proficiency and…
NASA Astrophysics Data System (ADS)
Emmerman, Philip J.
2005-05-01
Teams of robots or mixed teams of warfighters and robots on reconnaissance and other missions can benefit greatly from a local fusion station. A local fusion station is defined here as a small mobile processor with interfaces to enable the ingestion of multiple heterogeneous sensor data and information streams, including blue force tracking data. These data streams are fused and integrated with contextual information (terrain features, weather, maps, dynamic background features, etc.), and displayed or processed to provide real time situational awareness to the robot controller or to the robots themselves. These blue and red force fusion applications remove redundancies, lessen ambiguities, correlate, aggregate, and integrate sensor information with context such as high resolution terrain. Applications such as safety, team behavior, asset control, training, pattern analysis, etc. can be generated or enhanced by these fusion stations. This local fusion station should also enable the interaction between these local units and a global information world.
Multipurpose surgical robot as a laparoscope assistant.
Nelson, Carl A; Zhang, Xiaoli; Shah, Bhavin C; Goede, Matthew R; Oleynikov, Dmitry
2010-07-01
This study demonstrates the effectiveness of a new, compact surgical robot at improving laparoscope guidance. Currently, the assistant guiding the laparoscope camera tends to be less experienced and requires physical and verbal direction from the surgeon. Human guidance has disadvantages of fatigue and shakiness leading to inconsistency in the field of view. This study investigates whether replacing the assistant with a compact robot can improve the stability of the surgeon's field of view and also reduce crowding at the operating table. A compact robot based on a bevel-geared "spherical mechanism" with 4 degrees of freedom and capable of full dexterity through a 15-mm port was designed and built. The robot was mounted on the standard railing of the operating table and used to manipulate a laparoscope through a supraumbilical port in a porcine model via a joystick controlled externally by a surgeon. The process was videotaped externally via digital video recorder and internally via laparoscope. Robot position data were also recorded within the robot's motion control software. The robot effectively manipulated the laparoscope in all directions to provide a clear and consistent view of liver, small intestine, and spleen. Its range of motion was commensurate with typical motions executed by a human assistant and was well controlled with the joystick. Qualitative analysis of the video suggested that this method of laparoscope guidance provides highly stable imaging during laparoscopic surgery, which was confirmed by robot position data. Because the robot was table-mounted and compact in design, it increased standing room around the operation table and did not interfere with the workspace of other surgical instruments. The study results also suggest that this robotic method may be combined with flexible endoscopes for highly dexterous visualization with more degrees of freedom.
Efficient Symbolic Task Planning for Multiple Mobile Robots
2016-12-13
Efficient Symbolic Task Planning for Multiple Mobile Robots Yuqian Jiang December 13, 2016 Abstract Symbolic task planning enables a robot to make...high-level deci- sions toward a complex goal by computing a sequence of actions with minimum expected costs. This thesis builds on a single- robot ...time complexity of optimal planning for multiple mobile robots . In this thesis we first investigate the performance of the state-of-the-art solvers of
Constructing a Real-Time Mobile Robot Software System
1994-09-01
forces to rely more on automation to fill the gap of reduced personnel and equipment. One key element to this move to more automation, is autonomous ... vehicles . These vehicles will continue to play a greater role in this nation’s defense. At the Naval Postgraduate School (NPS), the Yamabico robot is an
ERIC Educational Resources Information Center
Kazakoff, Elizabeth R.; Sullivan, Amanda; Bers, Marina U.
2013-01-01
This paper examines the impact of programming robots on sequencing ability during a 1-week intensive robotics workshop at an early childhood STEM magnet school in the Harlem area of New York City. Children participated in computer programming activities using a developmentally appropriate tangible programming language CHERP, specifically designed…
Very fast motion planning for highly dexterous-articulated robots
NASA Technical Reports Server (NTRS)
Challou, Daniel J.; Gini, Maria; Kumar, Vipin
1994-01-01
Due to the inherent danger of space exploration, the need for greater use of teleoperated and autonomous robotic systems in space-based applications has long been apparent. Autonomous and semi-autonomous robotic devices have been proposed for carrying out routine functions associated with scientific experiments aboard the shuttle and space station. Finally, research into the use of such devices for planetary exploration continues. To accomplish their assigned tasks, all such autonomous and semi-autonomous devices will require the ability to move themselves through space without hitting themselves or the objects which surround them. In space it is important to execute the necessary motions correctly when they are first attempted because repositioning is expensive in terms of both time and resources (e.g., fuel). Finally, such devices will have to function in a variety of different environments. Given these constraints, a means for fast motion planning to insure the correct movement of robotic devices would be ideal. Unfortunately, motion planning algorithms are rarely used in practice because of their computational complexity. Fast methods have been developed for detecting imminent collisions, but the more general problem of motion planning remains computationally intractable. However, in this paper we show how the use of multicomputers and appropriate parallel algorithms can substantially reduce the time required to synthesize paths for dexterous articulated robots with a large number of joints. We have developed a parallel formulation of the Randomized Path Planner proposed by Barraquand and Latombe. We have shown that our parallel formulation is capable of formulating plans in a few seconds or less on various parallel architectures including: the nCUBE2 multicomputer with up to 1024 processors (nCUBE2 is a registered trademark of the nCUBE corporation), and a network of workstations.
Control strategies for robots in contact
NASA Astrophysics Data System (ADS)
Park, Jaeheung
In the field of robotics, there is a growing need to provide robots with the ability to interact with complex and unstructured environments. Operations in such environments pose significant challenges in terms of sensing, planning, and control. In particular, it is critical to design control algorithms that account for the dynamics of the robot and environment at multiple contacts. The work in this thesis focuses on the development of a control framework that addresses these issues. The approaches are based on the operational space control framework and estimation methods. By accounting for the dynamics of the robot and environment, modular and systematic methods are developed for robots interacting with the environment at multiple locations. The proposed force control approach demonstrates high performance in the presence of uncertainties. Building on this basic capability, new control algorithms have been developed for haptic teleoperation, multi-contact interaction with the environment, and whole body motion of non-fixed based robots. These control strategies have been experimentally validated through simulations and implementations on physical robots. The results demonstrate the effectiveness of the new control structure and its robustness to uncertainties. The contact control strategies presented in this thesis are expected to contribute to the needs in advanced controller design for humanoid and other complex robots interacting with their environments.
New methods of measuring and calibrating robots
NASA Astrophysics Data System (ADS)
Janocha, Hartmut; Diewald, Bernd
1995-10-01
ISO 9283 and RIA R15.05 define industrial robot parameters which are applied to compare the efficiency of different robots. Hitherto, however, no suitable measurement systems have been available. ICAROS is a system which combines photogrammetrical procedures with an inertial navigation system. For the first time, this combination allows the high-precision static and dynamic measurement of the position as well as of the orientation of the robot endeffector. Thus, not only the measuring data for the determination of all industrial robot parameters can be acquired. By integration of a new over-all-calibration procedure, ICAROS also allows the reduction of the absolute robot pose errors to the range of its repeatability. The integration of both system components as well as measurement and calibration results are presented in this paper, using a six-axes robot as example. A further approach also presented here takes into consideration not only the individual robot errors but also the tolerances of workpieces. This allows the adjustment of off-line programs of robots based on inexact or idealized CAD data in any pose. Thus the robot position which is defined relative to the workpiece to be processed, is achieved as required. This includes the possibility to transfer teached robot programs to other devices without additional expenditure. The adjustment is based on the measurement of the robot position using two miniaturized CCD cameras mounted near the endeffector which are carried along by the robot during the correction phase. In the area viewed by both cameras, the robot position is determined in relation to prominent geometry elements, e.g. lines or holes. The scheduled data to be compared therewith can either be calculated in modern off-line programming systems during robot programming, or they can be determined at the so-called master robot if a transfer of the robot program is desired.
Bruemmer, David J [Idaho Falls, ID
2009-11-17
A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.
Mobility of lightweight robots over snow
NASA Astrophysics Data System (ADS)
Lever, James H.; Shoop, Sally A.
2006-05-01
Snowfields are challenging terrain for lightweight (<50 kg) unmanned ground vehicles. Deep sinkage, high snowcompaction resistance, traction loss while turning and ingestion of snow into the drive train can cause immobility within a few meters of travel. However, for suitably designed vehicles, deep snow offers a smooth, uniform surface that can obliterate obstacles. Key requirements for good over-snow mobility are low ground pressure, large clearance relative to vehicle size and a drive system that tolerates cohesive snow. A small robot will invariably encounter deep snow relative to its ground clearance. Because a single snowstorm can easily deposit 30 cm of fresh snow, robots with ground clearance less than about 10 cm must travel over the snow rather than gain support from the underlying ground. This can be accomplished using low-pressure tracks (< 1.5 kPa). Even still, snow-compaction resistance can exceed 20% of vehicle weight. Also, despite relatively high traction coefficients for low track pressures, differential or skid steering is difficult because the outboard track can easily break traction as the vehicle attempts to turn against the snow. Short track lengths (relative to track separation) or coupled articulated robots offer steering solutions for deep snow. This paper presents preliminary guidance to design lightweight robots for good mobility over snow based on mobility theory and tests of PackBot, Talon and SnoBot, a custom-designed research robot. Because many other considerations constrain robot designs, this guidance can help with development of winterization kits to improve the over-snow performance of existing robots.
ERIC Educational Resources Information Center
Chang, Chih-Wei; Lee, Jih-Hsien; Chao, Po-Yao; Wang, Chin-Yeh; Chen, Gwo-Dong
2010-01-01
As robot technologies develop, many researchers have tried to use robots to support education. Studies have shown that robots can help students develop problem-solving abilities and learn computer programming, mathematics, and science. However, few studies discuss the use of robots to facilitate the teaching of second languages. We discuss whether…
Robotics in urologic surgery: an evolving new technology.
Atug, Fatih; Castle, Erik P; Woods, Michael; Davis, Rodney; Thomas, Raju
2006-07-01
Rapid technological developments in the past two decades have produced new inventions such as robots and incorporated them into our daily lives. Today, robots perform vital functions in homes, outer space, hospitals and on military instillations. The development of robotic surgery has given hospitals and health care providers a valuable tool that is making a profound impact on highly technical surgical procedures. The field of urology is one area of medicine that has adopted and incorporated robotic surgery into its armamentarium. Innovative robotic urologic surgical applications and techniques are being developed and reported everyday. Increased utilization and development will ultimately fuel the discovery of newer applications of robotic systems in urologic surgery. Herein we provide an overview of the history, development, and applications of robotics in surgery with a focus on urologic surgery.
NASA Technical Reports Server (NTRS)
Whittaker, William; Dowling, Kevin
1994-01-01
Carnegie Mellon University's Autonomous Planetary Exploration Program (APEX) is currently building the Daedalus robot; a system capable of performing extended autonomous planetary exploration missions. Extended autonomy is an important capability because the continued exploration of the Moon, Mars and other solid bodies within the solar system will probably be carried out by autonomous robotic systems. There are a number of reasons for this - the most important of which are the high cost of placing a man in space, the high risk associated with human exploration and communication delays that make teleoperation infeasible. The Daedalus robot represents an evolutionary approach to robot mechanism design and software system architecture. Daedalus incorporates key features from a number of predecessor systems. Using previously proven technologies, the Apex project endeavors to encompass all of the capabilities necessary for robust planetary exploration. The Ambler, a six-legged walking machine was developed by CMU for demonstration of technologies required for planetary exploration. In its five years of life, the Ambler project brought major breakthroughs in various areas of robotic technology. Significant progress was made in: mechanism and control, by introducing a novel gait pattern (circulating gait) and use of orthogonal legs; perception, by developing sophisticated algorithms for map building; and planning, by developing and implementing the Task Control Architecture to coordinate tasks and control complex system functions. The APEX project is the successor of the Ambler project.
NASA Astrophysics Data System (ADS)
Whittaker, William; Dowling, Kevin
1994-03-01
Carnegie Mellon University's Autonomous Planetary Exploration Program (APEX) is currently building the Daedalus robot; a system capable of performing extended autonomous planetary exploration missions. Extended autonomy is an important capability because the continued exploration of the Moon, Mars and other solid bodies within the solar system will probably be carried out by autonomous robotic systems. There are a number of reasons for this - the most important of which are the high cost of placing a man in space, the high risk associated with human exploration and communication delays that make teleoperation infeasible. The Daedalus robot represents an evolutionary approach to robot mechanism design and software system architecture. Daedalus incorporates key features from a number of predecessor systems. Using previously proven technologies, the Apex project endeavors to encompass all of the capabilities necessary for robust planetary exploration. The Ambler, a six-legged walking machine was developed by CMU for demonstration of technologies required for planetary exploration. In its five years of life, the Ambler project brought major breakthroughs in various areas of robotic technology. Significant progress was made in: mechanism and control, by introducing a novel gait pattern (circulating gait) and use of orthogonal legs; perception, by developing sophisticated algorithms for map building; and planning, by developing and implementing the Task Control Architecture to coordinate tasks and control complex system functions. The APEX project is the successor of the Ambler project.
Anthropomorphic Robot Hand And Teaching Glove
NASA Technical Reports Server (NTRS)
Engler, Charles D., Jr.
1991-01-01
Robotic forearm-and-hand assembly manipulates objects by performing wrist and hand motions with nearly human grasping ability and dexterity. Imitates hand motions of human operator who controls robot in real time by programming via exoskeletal "teaching glove". Telemanipulator systems based on this robotic-hand concept useful where humanlike dexterity required. Underwater, high-radiation, vacuum, hot, cold, toxic, or inhospitable environments potential application sites. Particularly suited to assisting astronauts on space station in safely executing unexpected tasks requiring greater dexterity than standard gripper.
Knowledge based systems for intelligent robotics
NASA Technical Reports Server (NTRS)
Rajaram, N. S.
1982-01-01
It is pointed out that the construction of large space platforms, such as space stations, has to be carried out in the outer space environment. As it is extremely expensive to support human workers in space for large periods, the only feasible solution appears to be related to the development and deployment of highly capable robots for most of the tasks. Robots for space applications will have to possess characteristics which are very different from those needed by robots in industry. The present investigation is concerned with the needs of space robotics and the technologies which can be of assistance to meet these needs, giving particular attention to knowledge bases. 'Intelligent' robots are required for the solution of arising problems. The collection of facts and rules needed for accomplishing such solutions form the 'knowledge base' of the system.
ERIC Educational Resources Information Center
Leonard, Jacqueline; Buss, Alan; Gamboa, Ruben; Mitchell, Monica; Fashola, Olatokunbo S.; Hubert, Tarcia; Almughyirah, Sultan
2016-01-01
This paper describes the findings of a pilot study that used robotics and game design to develop middle school students' computational thinking strategies. One hundred and twenty-four students engaged in LEGO® EV3 robotics and created games using Scalable Game Design software. The results of the study revealed students' pre-post self-efficacy…
ERIC Educational Resources Information Center
Charron, Nancy; Lewis, Lundy; Craig, Michael
2017-01-01
The purpose of this article is to describe a possible methodology for developing joint attention skills in students with autism spectrum disorder. Co-robot therapy with the humanoid robot NAO was used to foster a student's joint attention skill development; 20-min sessions conducted once weekly during the school year were video recorded and…
Robots that can adapt like animals.
Cully, Antoine; Clune, Jeff; Tarapore, Danesh; Mouret, Jean-Baptiste
2015-05-28
Robots have transformed many industries, most notably manufacturing, and have the power to deliver tremendous benefits to society, such as in search and rescue, disaster response, health care and transportation. They are also invaluable tools for scientific exploration in environments inaccessible to humans, from distant planets to deep oceans. A major obstacle to their widespread adoption in more complex environments outside factories is their fragility. Whereas animals can quickly adapt to injuries, current robots cannot 'think outside the box' to find a compensatory behaviour when they are damaged: they are limited to their pre-specified self-sensing abilities, can diagnose only anticipated failure modes, and require a pre-programmed contingency plan for every type of potential damage, an impracticality for complex robots. A promising approach to reducing robot fragility involves having robots learn appropriate behaviours in response to damage, but current techniques are slow even with small, constrained search spaces. Here we introduce an intelligent trial-and-error algorithm that allows robots to adapt to damage in less than two minutes in large search spaces without requiring self-diagnosis or pre-specified contingency plans. Before the robot is deployed, it uses a novel technique to create a detailed map of the space of high-performing behaviours. This map represents the robot's prior knowledge about what behaviours it can perform and their value. When the robot is damaged, it uses this prior knowledge to guide a trial-and-error learning algorithm that conducts intelligent experiments to rapidly discover a behaviour that compensates for the damage. Experiments reveal successful adaptations for a legged robot injured in five different ways, including damaged, broken, and missing legs, and for a robotic arm with joints broken in 14 different ways. This new algorithm will enable more robust, effective, autonomous robots, and may shed light on the principles
Robots that can adapt like animals
NASA Astrophysics Data System (ADS)
Cully, Antoine; Clune, Jeff; Tarapore, Danesh; Mouret, Jean-Baptiste
2015-05-01
Robots have transformed many industries, most notably manufacturing, and have the power to deliver tremendous benefits to society, such as in search and rescue, disaster response, health care and transportation. They are also invaluable tools for scientific exploration in environments inaccessible to humans, from distant planets to deep oceans. A major obstacle to their widespread adoption in more complex environments outside factories is their fragility. Whereas animals can quickly adapt to injuries, current robots cannot `think outside the box' to find a compensatory behaviour when they are damaged: they are limited to their pre-specified self-sensing abilities, can diagnose only anticipated failure modes, and require a pre-programmed contingency plan for every type of potential damage, an impracticality for complex robots. A promising approach to reducing robot fragility involves having robots learn appropriate behaviours in response to damage, but current techniques are slow even with small, constrained search spaces. Here we introduce an intelligent trial-and-error algorithm that allows robots to adapt to damage in less than two minutes in large search spaces without requiring self-diagnosis or pre-specified contingency plans. Before the robot is deployed, it uses a novel technique to create a detailed map of the space of high-performing behaviours. This map represents the robot's prior knowledge about what behaviours it can perform and their value. When the robot is damaged, it uses this prior knowledge to guide a trial-and-error learning algorithm that conducts intelligent experiments to rapidly discover a behaviour that compensates for the damage. Experiments reveal successful adaptations for a legged robot injured in five different ways, including damaged, broken, and missing legs, and for a robotic arm with joints broken in 14 different ways. This new algorithm will enable more robust, effective, autonomous robots, and may shed light on the principles
Robotics in general thoracic surgery procedures.
Latif, M Jawad; Park, Bernard J
2017-01-01
The use of robotic technology in general thoracic surgical practice continues to expand across various institutions and at this point many major common thoracic surgical procedures have been successfully performed by general thoracic surgeons using the robotic technology. These procedures include lung resections, excision of mediastinal masses, esophagectomy and reconstruction for malignant and benign esophageal pathologies. The success of robotic technology can be attributed to highly magnified 3-D visualization, dexterity afforded by 7 degrees of freedom that allow difficult dissections in narrow fields and the ease of reproducibility once the initial set up and instruments become familiar to the surgeon. As the application of robotic technology trickle downs from major academic centers to community hospitals, it becomes imperative that its role, limitations, learning curve and financial impact are understood by the novice robotic surgeon. In this article, we share our experience as it relates to the setup, common pitfalls and long term results for more commonly performed robotic assisted lung and thymic resections using the 4 arm da Vinci Xi robotic platform (Intuitive Surgical, Inc., Sunnyvale, CA, USA) to help guide those who are interested in adopting this technology.
Robotic surgery: new robots and finally some real competition!
Rao, Pradeep P
2018-04-01
For the last 20 years, the predominant robot used in laparoscopic surgery has been Da Vinci by Intuitive Surgical. This monopoly situation has led to rising costs and relatively slow innovation. This article aims to discuss the two new robotic devices for laparoscopic surgery which have received regulatory approval for human use in different parts of the world. A short description of the Senhance Surgical Robotic System and the REVO-I Robot Platform and their pros and cons compared to the Da Vinci system is presented. A discussion about the differences between the three robotic systems now in the market is presented, as well as a short review of the present state of robotic assistance in surgery and where we are headed.
Cathedral High School: Indianapolis, Indiana
ERIC Educational Resources Information Center
Fetter, Corinne
2005-01-01
This article discusses Cathedral High School's peer program that involves seniors serving as mentors to freshmen students to help them transition to high school. Students pour into Cathedral from more than 60 different grade schools, and the administration saw a need to connect these students with their peers in order to retain them. The program…
NASA Astrophysics Data System (ADS)
Berland, Matthew W.
As scientists use the tools of computational and complex systems theory to broaden science perspectives (e.g., Bar-Yam, 1997; Holland, 1995; Wolfram, 2002), so can middle-school students broaden their perspectives using appropriate tools. The goals of this dissertation project are to build, study, evaluate, and compare activities designed to foster both computational and complex systems fluencies through collaborative constructionist virtual and physical robotics. In these activities, each student builds an agent (e.g., a robot-bird) that must interact with fellow students' agents to generate a complex aggregate (e.g., a flock of robot-birds) in a participatory simulation environment (Wilensky & Stroup, 1999a). In a participatory simulation, students collaborate by acting in a common space, teaching each other, and discussing content with one another. As a result, the students improve both their computational fluency and their complex systems fluency, where fluency is defined as the ability to both consume and produce relevant content (DiSessa, 2000). To date, several systems have been designed to foster computational and complex systems fluencies through computer programming and collaborative play (e.g., Hancock, 2003; Wilensky & Stroup, 1999b); this study suggests that, by supporting the relevant fluencies through collaborative play, they become mutually reinforcing. In this work, I will present both the design of the VBOT virtual/physical constructionist robotics learning environment and a comparative study of student interaction with the virtual and physical environments across four middle-school classrooms, focusing on the contrast in systems perspectives differently afforded by the two environments. In particular, I found that while performance gains were similar overall, the physical environment supported agent perspectives on aggregate behavior, and the virtual environment supported aggregate perspectives on agent behavior. The primary research questions
A tracked robot with novel bio-inspired passive "legs".
Sun, Bo; Jing, Xingjian
2017-01-01
For track-based robots, an important aspect is the suppression design, which determines the trafficability and comfort of the whole system. The trafficability limits the robot's working capability, and the riding comfort limits the robot's working effectiveness, especially with some sensitive instruments mounted on or operated. To these aims, a track-based robot equipped with a novel passive bio-inspired suspension is designed and studied systematically in this paper. Animal or insects have very special leg or limb structures which are good for motion control and adaptable to different environments. Inspired by this, a new track-based robot is designed with novel "legs" for connecting the loading wheels to the robot body. Each leg is designed with passive structures and can achieve very high loading capacity but low dynamic stiffness such that the robot can move on rough ground similar to a multi-leg animal or insect. Therefore, the trafficability and riding comfort can be significantly improved without losing loading capacity. The new track-based robot can be well applied to various engineering tasks for providing a stable moving platform of high mobility, better trafficability and excellent loading capacity.
Robots in space into the 21st century
NASA Technical Reports Server (NTRS)
Weisbin, C. R.; Lavery, D.; Rodriguez, G.
1997-01-01
Describes the technological developments which are establishing the foundation for an exciting era of in situ exploration missions to planets, comets and asteroids with advanced robotic systems. Also outlines important concurrent terrestrial applications and spinoffs of the space robotics technology. These include high-precision robotic manipulators for microsurgical operations and dexterous arm control systems.
ERIC Educational Resources Information Center
Luzerne County Community Coll., Nanticoke, PA.
The project described in this report was conducted at the Community College of Luzerne County (Pennsylvania) to develop, in conjunction with area vocational-technical schools, the second year of a competency-based curriculum in automated systems/robotics technology. During the project, a task force of teachers from the area schools and the college…
Rowe, Courtney K; Pierce, Michael W; Tecci, Katherine C; Houck, Constance S; Mandell, James; Retik, Alan B; Nguyen, Hiep T
2012-07-01
Cost in healthcare is an increasing and justifiable concern that impacts decisions about the introduction of new devices such as the da Vinci(®) surgical robot. Because equipment expenses represent only a portion of overall medical costs, we set out to make more specific cost comparisons between open and robot-assisted laparoscopic surgery. We performed a retrospective, observational, matched cohort study of 146 pediatric patients undergoing either open or robot-assisted laparoscopic urologic surgery from October 2004 to September 2009 at a single institution. Patients were matched based on surgery type, age, and fiscal year. Direct internal costs from the institution were used to compare the two surgery types across several procedures. Robot-assisted surgery direct costs were 11.9% (P=0.03) lower than open surgery. This cost difference was primarily because of the difference in hospital length of stay between patients undergoing open vs robot-assisted surgery (3.8 vs 1.6 days, P<0.001). Maintenance fees and equipment expenses were the primary contributors to robotic surgery costs, while open surgery costs were affected most by room and board expenses. When estimates of the indirect costs of robot purchase and maintenance were included, open surgery had a lower total cost. There were no differences in follow-up times or complication rates. Direct costs for robot-assisted surgery were significantly lower than equivalent open surgery. Factors reducing robot-assisted surgery costs included: A consistent and trained robotic surgery team, an extensive history of performing urologic robotic surgery, selection of patients for robotic surgery who otherwise would have had longer hospital stays after open surgery, and selection of procedures without a laparoscopic alternative. The high indirect costs of robot purchase and maintenance remain major factors, but could be overcome by high surgical volume and reduced prices as competitors enter the market.
Teleoperated Modular Robots for Lunar Operations
NASA Technical Reports Server (NTRS)
Globus, Al; Hornby, Greg; Larchev, Greg; Hancher, Matt; Cannon, Howard; Lohn, Jason
2004-01-01
Solar system exploration is currently carried out by special purpose robots exquisitely designed for the anticipated tasks. However, all contingencies for in situ resource utilization (ISRU), human habitat preparation, and exploration will be difficult to anticipate. Furthermore, developing the necessary special purpose mechanisms for deployment and other capabilities is difficult and error prone. For example, the Galileo high gain antenna never opened, severely restricting the quantity of data returned by the spacecraft. Also, deployment hardware is used only once. To address these problems, we are developing teleoperated modular robots for lunar missions, including operations in transit from Earth. Teleoperation of lunar systems from Earth involves a three second speed-of-light delay, but experiment suggests that interactive operations are feasible.' Modular robots typically consist of many identical modules that pass power and data between them and can be reconfigured for different tasks providing great flexibility, inherent redundancy and graceful degradation as modules fail. Our design features a number of different hub, link, and joint modules to simplify the individual modules, lower structure cost, and provide specialized capabilities. Modular robots are well suited for space applications because of their extreme flexibility, inherent redundancy, high-density packing, and opportunities for mass production. Simple structural modules can be manufactured from lunar regolith in situ using molds or directed solar sintering. Software to direct and control modular robots is difficult to develop. We have used genetic algorithms to evolve both the morphology and control system for walking modular robots3 We are currently using evolvable system technology to evolve controllers for modular robots in the ISS glove box. Development of lunar modular robots will require software and physical simulators, including regolith simulation, to enable design and test of robot
ERIC Educational Resources Information Center
Obiamalu, Reginald
2013-01-01
The purpose of study was to examine the attributes of teachers of urban continuation high schools in Los Angeles Unified School District. The research questions were: 1. What are the attributes of veteran teachers and new teachers as prepared to teach at-risk students in alternative high schools? and 2. How do alternative high school teachers…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morin, Stephen A.; Shepherd, Robert F.; Stokes, Adam
Systems and methods for providing flexible robotic actuators are disclosed. Some embodiments of the disclosed subject matter include a soft robot capable of providing a radial deflection motions; a soft tentacle actuator capable of providing a variety of motions and providing transportation means for various types of materials; and a hybrid robotic system that retains desirable characteristics of both soft robots and hard robots. Some embodiments of the disclosed subject matter also include methods for operating the disclosed robotic systems.
Value of Robotically Assisted Surgery for Mitral Valve Disease
Mihaljevic, Tomislav; Koprivanac, Marijan; Kelava, Marta; Goodman, Avi; Jarrett, Craig; Williams, Sarah J.; Gillinov, A. Marc; Bajwa, Gurjyot; Mick, Stephanie L.; Bonatti, Johannes; Blackstone, Eugene H.
2014-01-01
Importance The value of robotically assisted surgery for mitral valve disease is questioned because the high cost of care associated with robotic technology may outweigh its clinical benefits. Objective To investigate conditions under which benefits of robotic surgery mitigate high technology costs. Design Clinical cohort study comparing costs of robotic vs. three contemporaneous conventional surgical approaches for degenerative mitral disease. Surgery was performed from 2006–2011, and comparisons were based on intent-to-treat, with propensity-matching used to reduce selection bias. Setting Large multi-specialty academic medical center. Participants 1,290 patients aged 57±11 years, 27% women, underwent mitral repair for regurgitation from posterior leaflet prolapse. Robotic surgery was used in 473, complete sternotomy in 227, partial sternotomy in 349, and anterolateral thoracotomy in 241. Three propensity-matched groups were formed based on demographics, symptoms, cardiac and noncardiac comorbidities, valve pathophysiology, and echocardiographic measurements: robotic vs. sternotomy (n=198 pairs) vs. partial sternotomy (n=293 pairs) vs. thoracotomy (n=224 pairs). Interventions Mitral valve repair. Main Outcome Measures Cost of care, expressed as robotic capital investment, maintenance, and direct technical hospital cost, and benefit of care, based on differences in recovery time. Results Median cost of care for robotically assisted surgery exceeded the cost of alternative approaches by 27% (−5%, 68%), 32% (−6%, 70%), and 21% (−2%, 54%) (median [15th, 85th percentiles]) for complete sternotomy, partial sternotomy, and anterolateral thoracotomy, respectively. Higher operative costs were partially offset by lower postoperative costs and earlier return to work: median 35 days for robotic surgery, 49 for complete sternotomy, 56 for partial sternotomy, and 42 for anterolateral thoracotomy. Resulting net differences in cost of robotic surgery vs. the three
Especially for High School Teachers
NASA Astrophysics Data System (ADS)
Howell, J. Emory
1999-09-01
Secondary School Feature Articles * Authentic Research within the Grasp of High School Students, by Annis Hapkiewicz, p 1212 * JCE Classroom Activity #19: Blueprint Photography by the Cyanotype Process, by Glen D. Lawrence and Stuart Fishelson, p 1216A Author Recognition A new program has been instituted to recognize high school teachers who are authors or coauthors of manuscripts published in the Journal. In May, letters were sent to teachers who wrote articles published in JCE beginning with Volume 74 (1997). If you were an author, you should have received a letter from us in late May or early June stating that your high school principal has been sent a Certificate of High School Author Recognition to be presented to you at a suitable occasion. Because the letters were sent late in the school year, you may not see the certificate until fall, or you may not receive your letter until then if we had only your school address. If you have authored or coauthored an article published in JCE and did not receive a letter, please contact me using the information about the Secondary School Chemistry Editor appearing on the Information Page in this issue. Syllabus Swap In the August issue, this column contained an invitation to exchange high school syllabi. The day after my copy of the August issue arrived, I received an email from a teacher indicating an interest in participating in an exchange. If you are interested, check the August "Especially for High School Chemistry Teachers" column for a brief discussion of the informal exchange program, or contact me. Research Conducted by High School Students In his June 1999 editorial "Learning Is a Do-It-Yourself Activity", p 725, John Moore wrote about the need to engage students actively in the learning process. As I have mentioned in this column previously, research conducted by students is one means of accomplishing this goal. In this issue, p 1212, Annis Hapkiewicz explains how she has drawn her Okemos [Michigan] High
Lounging with robots--social spaces of residents in care: A comparison trial.
Peri, Kathryn; Kerse, Ngaire; Broadbent, Elizabeth; Jayawardena, Chandimal; Kuo, Tony; Datta, Chandan; Stafford, Rebecca; MacDonald, Bruce
2016-03-01
To investigate whether robots could reduce resident sleeping and stimulate activity in the lounges of an older persons' care facility. Non-randomised controlled trial over a 12-week period. The intervention involved situating robots in low-level and high-dependency ward lounges and a comparison with similar lounges without robots. A time sampling observation method was utilised to observe resident behaviour, including sleep and activities over periods of time, to compare interactions in robot and no robot lounges. The use of robots was modest; overall 13% of residents in robot lounges used the robot. Utilisation was higher in the low-level care lounges; on average, 23% used the robot, whereas in high-level care lounges, the television being on was the strongest predictor of sleep. This study found that having robots in lounges was mostly a positive experience. The amount of time residents slept during the day was significantly less in low-level care lounges that had a robot. © 2015 AJA Inc.
Minority participation in high school physics
NASA Astrophysics Data System (ADS)
White, Susan C.
2015-09-01
In the May 2014 issue of The Physics Teacher, we reported that 39% of high school seniors in the 2013 class took at least one high school physics course prior to graduation. (See TPT 52, 214-15.) This month we take a closer look at participation in high school physics by racial/ethnic group. As we see below, Asian students are most likely to take a high school physics course, while the participation of African-Americans and Hispanics remains below 30%. As we will see over the next few months, the lower participation can be explained, at least in part, by socioeconomic factors. About half of Hispanic seniors and almost 45% of African-American seniors were enrolled in schools where the student body was deemed as "worse off" than their peers by principals and teachers, and these "worse off" schools were less likely to offer physics. In October, we will look at high school physics enrollment by socioeconomic status of the student body.
ERIC Educational Resources Information Center
Vogel, Carl
2009-01-01
This article discusses recovery high schools which are designed specifically to serve students who have been through a professional substance abuse treatment program and are working to stay away from drugs and alcohol. The schools typically serve multiple districts and are funded from both the per-pupil state funds that follow a student and what…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruemmer, David J; Walton, Miles C
Methods and systems for controlling a plurality of robots through a single user interface include at least one robot display window for each of the plurality of robots with the at least one robot display window illustrating one or more conditions of a respective one of the plurality of robots. The user interface further includes at least one robot control window for each of the plurality of robots with the at least one robot control window configured to receive one or more commands for sending to the respective one of the plurality of robots. The user interface further includes amore » multi-robot common window comprised of information received from each of the plurality of robots.« less
System and method for seamless task-directed autonomy for robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, Curtis; Bruemmer, David; Few, Douglas
Systems, methods, and user interfaces are used for controlling a robot. An environment map and a robot designator are presented to a user. The user may place, move, and modify task designators on the environment map. The task designators indicate a position in the environment map and indicate a task for the robot to achieve. A control intermediary links task designators with robot instructions issued to the robot. The control intermediary analyzes a relative position between the task designators and the robot. The control intermediary uses the analysis to determine a task-oriented autonomy level for the robot and communicates targetmore » achievement information to the robot. The target achievement information may include instructions for directly guiding the robot if the task-oriented autonomy level indicates low robot initiative and may include instructions for directing the robot to determine a robot plan for achieving the task if the task-oriented autonomy level indicates high robot initiative.« less
Dynamic analysis of space robot remote control system
NASA Astrophysics Data System (ADS)
Kulakov, Felix; Alferov, Gennady; Sokolov, Boris; Gorovenko, Polina; Sharlay, Artem
2018-05-01
The article presents analysis on construction of two-stage remote control for space robots. This control ensures efficiency of the robot control system at large delays in transmission of control signals from the ground control center to the local control system of the space robot. The conditions for control stability of and high transparency are found.
Benner, Aprile D.; Wang, Yijie
2014-01-01
In the current study, we examine patterns of school attendance across middle and high school with a diverse sample of 8,908 students (48% female; 54% Latino, 31% White, 13% African American, 2% Asian American). Attendance declined from middle through high school, but this overall pattern masked important variations. In total, 44% of students maintained their attendance trajectories from middle to high school (11% stable high, 19% high-decreasing, 10% mid-decreasing, 4% low-decreasing), and shifting attendance trajectories often signaled greater school disengagement (38% shifted to poorer attendance trajectories, 18% experienced improved attendance trajectories). Transition experiences, school structural characteristics, and the divergence between students’ middle and high schools provided insights into which students recovered, becoming more engaged in high school versus those who became more disconnected. Implications for identifying and intervening with disengaged youth are discussed. PMID:24364827
Field Tested Service Oriented Robotic Architecture: Case Study
NASA Technical Reports Server (NTRS)
Flueckiger, Lorenzo; Utz, Hanz
2012-01-01
This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at NASA Ames Research Center. SORA relies on proven software methods and technologies applied to the robotic world. Based on a Service Oriented Architecture and robust middleware, SORA extends its reach beyond the on-board robot controller and supports the full suite of software tools used during mission scenarios from ground control to remote robotic sites. SORA has been field tested in numerous scenarios of robotic lunar and planetary exploration. The results of these high fidelity experiments are illustrated through concrete examples that have shown the benefits of using SORA as well as its limitations.
Robot-assisted Ivor-Lewis esophagectomy with intrathoracic robot-sewn anastomosis.
Jin, Runsen; Xiang, Jie; Han, Dingpei; Zhang, Yajie; Li, Hecheng
2017-11-01
This video clip demonstrated a performance of robot-assisted Ivor-Lewis esophagectomy with intrathoracic robot-sewn anastomosis. The patient had an esophageal mass located approximately 33 cm away from incisor, and robot-assisted Ivor-Lewis esophagectomy was applied for him. Importantly, a double-layer esophago-gastric anastomosis was made by robotic hand-sewn suture. Our early experience demonstrated that the robot-sewn intrathoracic anastomosis is feasible and safe with a lower complication rate and the absence of anastomotic leakage.
Tactical mobile robots for urban search and rescue
NASA Astrophysics Data System (ADS)
Blitch, John; Sidki, Nahid; Durkin, Tim
2000-07-01
Few disasters can inspire more compassion for victims and families than those involving structural collapse. Video clips of children's bodies pulled from earthquake stricken cities and bombing sties tend to invoke tremendous grief and sorrow because of the totally unpredictable nature of the crisis and lack of even the slightest degree of negligence (such as with those who choose to ignore storm warnings). Heartbreaking stories of people buried alive for days provide a visceral and horrific perspective of some of greatest fears ever to be imagined by human beings. Current trends toward urban sprawl and increasing human discord dictates that structural collapse disasters will continue to present themselves at an alarming rate. The proliferation of domestic terrorism, HAZMAT and biological contaminants further complicates the matter further and presents a daunting problem set for Urban Search and Rescue (USAR) organizations around the world. This paper amplifies the case for robot assisted search and rescue that was first presented during the KNOBSAR project initiated at the Colorado School of Mines in 1995. It anticipates increasing technical development in mobile robot technologies and promotes their use for a wide variety of humanitarian assistance missions. Focus is placed on development of advanced robotic systems that are employed in a complementary tool-like fashion as opposed to traditional robotic approaches that portend to replace humans in hazardous tasks. Operational challenges for USAR are presented first, followed by a brief history of mobiles robot development. The paper then presents conformal robotics as a new design paradigm with emphasis on variable geometry and volumes. A section on robot perception follows with an initial attempt to characterize sensing in a volumetric manner. Collaborative rescue is then briefly discussed with an emphasis on marsupial operations and linked mobility. The paper concludes with an emphasis on Human Robot Interface
Using Evidence to Create Next Generation High Schools
ERIC Educational Resources Information Center
Office of Planning, Evaluation and Policy Development, US Department of Education, 2016
2016-01-01
Next Generation High Schools are schools that redesign the high school experience to make it more engaging and worthwhile for high school students. In order to create such Next Generation High Schools, schools, districts, and States should utilize evidence-based strategies to transform high schools in ways that engage students and help prepare…
ERIC Educational Resources Information Center
Louisiana Department of Education, 2006
2006-01-01
This report describes the importance of redesigned high schools to engage full high school communities in the deliberate rethinking of virtually everything, ranging from how time is used, to how adults are deployed, even to the "places"where learning occurs. Essentially, redesigned high schools: (1) have high expectations for all…
Robotic laparoscopic surgery: cost and training.
Amodeo, A; Linares Quevedo, A; Joseph, J V; Belgrano, E; Patel, H R H
2009-06-01
The advantages of minimally invasive surgery are well accepted. Shorter hospital stays, decreased postoperative pain, rapid return to preoperative activity, decreased postoperative ileus, and preserved immune function are among the benefits of the laparoscopic approach. However, the instruments of laparoscopy afford surgeons limited precision and poor ergonomics, and their use is associated with a significant learning curve and the amount of time and energy necessary to develop and maintain such advanced laparoscopic skills is not insignificant. The robotic surgery allows all laparoscopists to perform advanced laparoscopic procedures with greater ease. The potential advantages of surgical robotic systems include making advanced laparoscopic surgical procedures accessible to surgeons who do not have advanced video endoscopic training and broadening the scope of surgical procedures that can be performed using the laparoscopic method. The wristed instruments, x10 magnifications, tremor filtering, scaling of movements and three-dimensional view allow the urologist to perform the intricate dissection and anastomosis with high precision. The robot is not, however, without significant disadvantages as compared with traditional laparoscopy. These include greater expense and consumption of operating room resources such as space and the availability of skilled technical staff, complete elimination of tactile feedback, and more limited options for trocar placement. The current cost of the da Vinci system is $ 1.2 million and annual maintenance is $ 138000. Many studies suggest that depreciation and maintenance costs can be minimised if the number of robotic cases is increased. The high cost of purchasing and maintaining the instruments of the robotic system is one of its many disadvantages. The availability of the robotic systems to only a limited number of centres reduces surgical training opportunities. Hospital administrators and surgeons must define the reasons for
McNulty, Jason D; Klann, Tyler; Sha, Jin; Salick, Max; Knight, Gavin T; Turng, Lih-Sheng; Ashton, Randolph S
2014-06-07
Increased realization of the spatial heterogeneity found within in vivo tissue microenvironments has prompted the desire to engineer similar complexities into in vitro culture substrates. Microcontact printing (μCP) is a versatile technique for engineering such complexities onto cell culture substrates because it permits microscale control of the relative positioning of molecules and cells over large surface areas. However, challenges associated with precisely aligning and superimposing multiple μCP steps severely limits the extent of substrate modification that can be achieved using this method. Thus, we investigated the feasibility of using a vision guided selectively compliant articulated robotic arm (SCARA) for μCP applications. SCARAs are routinely used to perform high precision, repetitive tasks in manufacturing, and even low-end models are capable of achieving microscale precision. Here, we present customization of a SCARA to execute robotic-μCP (R-μCP) onto gold-coated microscope coverslips. The system not only possesses the ability to align multiple polydimethylsiloxane (PDMS) stamps but also has the capability to do so even after the substrates have been removed, reacted to graft polymer brushes, and replaced back into the system. Plus, non-biased computerized analysis shows that the system performs such sequential patterning with <10 μm precision and accuracy, which is equivalent to the repeatability specifications of the employed SCARA model. R-μCP should facilitate the engineering of complex in vivo-like complexities onto culture substrates and their integration with microfluidic devices.
ERIC Educational Resources Information Center
Furger, Roberta
2004-01-01
No longer limited to the classroom, educators move to close the gap between school and the real world. Transforming high schools has been likened to turning an ocean liner around: It involves slow progress seemingly measured in inches, rather than yards or miles. This report discusses how educators move to close to gap between school and the real…
Carpet Aids Learning in High Performance Schools
ERIC Educational Resources Information Center
Hurd, Frank
2009-01-01
The Healthy and High Performance Schools Act of 2002 has set specific federal guidelines for school design, and developed a federal/state partnership program to assist local districts in their school planning. According to the Collaborative for High Performance Schools (CHPS), high-performance schools are, among other things, healthy, comfortable,…
Middle-ear microsurgery simulation to improve new robotic procedures.
Kazmitcheff, Guillaume; Nguyen, Yann; Miroir, Mathieu; Péan, Fabien; Ferrary, Evelyne; Cotin, Stéphane; Sterkers, Olivier; Duriez, Christian
2014-01-01
Otological microsurgery is delicate and requires high dexterity in bad ergonomic conditions. To assist surgeons in these indications, a teleoperated system, called RobOtol, is developed. This robot enhances gesture accuracy and handiness and allows exploration of new procedures for middle ear surgery. To plan new procedures that exploit the capacities given by the robot, a surgical simulator is developed. The simulation reproduces with high fidelity the behavior of the anatomical structures and can also be used as a training tool for an easier control of the robot for surgeons. In the paper, we introduce the middle ear surgical simulation and then we perform virtually two challenging procedures with the robot. We show how interactive simulation can assist in analyzing the benefits of robotics in the case of complex manipulations or ergonomics studies and allow the development of innovative surgical procedures. New robot-based microsurgical procedures are investigated. The improvement offered by RobOtol is also evaluated and discussed.
Middle-Ear Microsurgery Simulation to Improve New Robotic Procedures
Kazmitcheff, Guillaume; Nguyen, Yann; Miroir, Mathieu; Péan, Fabien; Ferrary, Evelyne; Cotin, Stéphane; Sterkers, Olivier; Duriez, Christian
2014-01-01
Otological microsurgery is delicate and requires high dexterity in bad ergonomic conditions. To assist surgeons in these indications, a teleoperated system, called RobOtol, is developed. This robot enhances gesture accuracy and handiness and allows exploration of new procedures for middle ear surgery. To plan new procedures that exploit the capacities given by the robot, a surgical simulator is developed. The simulation reproduces with high fidelity the behavior of the anatomical structures and can also be used as a training tool for an easier control of the robot for surgeons. In the paper, we introduce the middle ear surgical simulation and then we perform virtually two challenging procedures with the robot. We show how interactive simulation can assist in analyzing the benefits of robotics in the case of complex manipulations or ergonomics studies and allow the development of innovative surgical procedures. New robot-based microsurgical procedures are investigated. The improvement offered by RobOtol is also evaluated and discussed. PMID:25157373
A multimodal interface for real-time soldier-robot teaming
NASA Astrophysics Data System (ADS)
Barber, Daniel J.; Howard, Thomas M.; Walter, Matthew R.
2016-05-01
Recent research and advances in robotics have led to the development of novel platforms leveraging new sensing capabilities for semantic navigation. As these systems becoming increasingly more robust, they support highly complex commands beyond direct teleoperation and waypoint finding facilitating a transition away from robots as tools to robots as teammates. Supporting future Soldier-Robot teaming requires communication capabilities on par with human-human teams for successful integration of robots. Therefore, as robots increase in functionality, it is equally important that the interface between the Soldier and robot advances as well. Multimodal communication (MMC) enables human-robot teaming through redundancy and levels of communications more robust than single mode interaction. Commercial-off-the-shelf (COTS) technologies released in recent years for smart-phones and gaming provide tools for the creation of portable interfaces incorporating MMC through the use of speech, gestures, and visual displays. However, for multimodal interfaces to be successfully used in the military domain, they must be able to classify speech, gestures, and process natural language in real-time with high accuracy. For the present study, a prototype multimodal interface supporting real-time interactions with an autonomous robot was developed. This device integrated COTS Automated Speech Recognition (ASR), a custom gesture recognition glove, and natural language understanding on a tablet. This paper presents performance results (e.g. response times, accuracy) of the integrated device when commanding an autonomous robot to perform reconnaissance and surveillance activities in an unknown outdoor environment.
ROBOTIC MINING COMPETITORS BREAKFAST WITH NASA WOMEN ENGINEERS AND SCIENTISTS
2017-05-25
More than 40 female NASA engineers and scientists shared insights into their successful careers with several hundred students at NASA’s Women in STEM Mentoring Breakfast on Thursday, May 25, at Kennedy Space Center’s Debus Center in Florida. The students, members of the 45 teams in the 2017 NASA Robotic Mining Competition, sat alongside the female mentors and, between bites, learned of what paths the women took to establish their own careers in a field of science, technology, engineering and math, also known as STEM. Managed by, and held annually at Kennedy Space Center, the Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in STEM fields by expanding opportunities for student research and design. The project provides a competitive environment to foster innovative ideas and solutions with potential use on NASA’s deep space exploration missions, including to Mars. SOTs (In order of appearance): Janet Petro, Deputy Director, NASA Kennedy Space Center Camille Stimpson, Melbourne Central Catholic High School (Florida), Observer of Event Lynette Sugatan, Oakton Comminity College (Illinois), “Oaktobotics”
Using robotics in kinematics classes: exploring braking and stopping distances
NASA Astrophysics Data System (ADS)
Brockington, Guilherme; Schivani, Milton; Barscevicius, Cesar; Raquel, Talita; Pietrocola, Maurício
2018-03-01
Research in the field of physics teaching has revealed high school students’ difficulties in establishing relations between kinematic equations and real movements. Moreover, there are well-known and significant challenges in their comprehension of graphic language content. Thus, this article explores a didactic activity which utilized robotics in order to investigate significant aspects of kinematics, gathering data and performing analyses and descriptions via graphs and mathematical equations which were indispensable for the analysis of the phenomena in question. Traffic safety appears as a main theme, with particular emphasis on the distinction between braking and stopping distances in harsh conditions, as observed in the robot vehicle’s tires and track. This active-learning investigation allows students to identify significant differences between the average value of the initial empirical braking position and that of the vehicle’s programmed braking position, enabling them to more deeply comprehend the relations between mathematical and graphic representations of this real phenomenon and the phenomenon itself, thereby providing a sense of accuracy to this study.
Designing and implementing nervous system simulations on LEGO robots.
Blustein, Daniel; Rosenthal, Nikolai; Ayers, Joseph
2013-05-25
We present a method to use the commercially available LEGO Mindstorms NXT robotics platform to test systems level neuroscience hypotheses. The first step of the method is to develop a nervous system simulation of specific reflexive behaviors of an appropriate model organism; here we use the American Lobster. Exteroceptive reflexes mediated by decussating (crossing) neural connections can explain an animal's taxis towards or away from a stimulus as described by Braitenberg and are particularly well suited for investigation using the NXT platform.(1) The nervous system simulation is programmed using LabVIEW software on the LEGO Mindstorms platform. Once the nervous system is tuned properly, behavioral experiments are run on the robot and on the animal under identical environmental conditions. By controlling the sensory milieu experienced by the specimens, differences in behavioral outputs can be observed. These differences may point to specific deficiencies in the nervous system model and serve to inform the iteration of the model for the particular behavior under study. This method allows for the experimental manipulation of electronic nervous systems and serves as a way to explore neuroscience hypotheses specifically regarding the neurophysiological basis of simple innate reflexive behaviors. The LEGO Mindstorms NXT kit provides an affordable and efficient platform on which to test preliminary biomimetic robot control schemes. The approach is also well suited for the high school classroom to serve as the foundation for a hands-on inquiry-based biorobotics curriculum.
Designing and Implementing Nervous System Simulations on LEGO Robots
Blustein, Daniel; Rosenthal, Nikolai; Ayers, Joseph
2013-01-01
We present a method to use the commercially available LEGO Mindstorms NXT robotics platform to test systems level neuroscience hypotheses. The first step of the method is to develop a nervous system simulation of specific reflexive behaviors of an appropriate model organism; here we use the American Lobster. Exteroceptive reflexes mediated by decussating (crossing) neural connections can explain an animal's taxis towards or away from a stimulus as described by Braitenberg and are particularly well suited for investigation using the NXT platform.1 The nervous system simulation is programmed using LabVIEW software on the LEGO Mindstorms platform. Once the nervous system is tuned properly, behavioral experiments are run on the robot and on the animal under identical environmental conditions. By controlling the sensory milieu experienced by the specimens, differences in behavioral outputs can be observed. These differences may point to specific deficiencies in the nervous system model and serve to inform the iteration of the model for the particular behavior under study. This method allows for the experimental manipulation of electronic nervous systems and serves as a way to explore neuroscience hypotheses specifically regarding the neurophysiological basis of simple innate reflexive behaviors. The LEGO Mindstorms NXT kit provides an affordable and efficient platform on which to test preliminary biomimetic robot control schemes. The approach is also well suited for the high school classroom to serve as the foundation for a hands-on inquiry-based biorobotics curriculum. PMID:23728477
Shee, Kevin; Ghali, Fady M; Hyams, Elias S
Robotic surgical skill development is central to training in urology as well as in other surgical disciplines. Here, we describe a pilot study assessing the relationships between robotic surgery simulator performance and 3 categories of activities, namely, videogames, musical instruments, and athletics. A questionnaire was administered to preclinical medical students for general demographic information and prior experiences in surgery, videogames, musical instruments, and athletics. For follow-up performance studies, we used the Matchboard Level 1 and 2 modules on the da Vinci Skills Simulator, and recorded overall score, time to complete, economy of motion, workspace range, instrument collisions, instruments out of view, and drops. Task 1 was run once, whereas task 2 was run 3 times. All performance studies on the da Vinci Surgical Skills Simulator took place in the Simulation Center at Dartmouth-Hitchcock Medical Center. All participants were medical students at the Geisel School of Medicine. After excluding students with prior hands-on experience in surgery, a total of 30 students completed the study. We found a significant correlation between athletic skill level and performance for both task 1 (p = 0.0002) and task 2 (p = 0.0009). No significant correlations were found for videogame or musical instrument skill level. Students with experience in certain athletics (e.g., volleyball, tennis, and baseball) tended to perform better than students with experience in other athletics (e.g., track and field). For task 2, which was run 3 times, this association did not persist after the third repetition due to significant improvements in students with low-level athletic skill (levels 0-2). Our study suggests that prior experience in high-level athletics, but not videogames or musical instruments, significantly influences surgical proficiency in robot-naive students. Furthermore, our study suggests that practice through task repetition can overcome initial differences
Computer Utilization in Middle Tennessee High Schools.
ERIC Educational Resources Information Center
Lucas, Sam
In order to determine the capacity of high schools to profit from the pre-high school computer experiences of its students, a study was conducted to measure computer utilization in selected high schools of Middle Tennessee. Questionnaires distributed to 50 principals in 28 school systems covered the following areas: school enrollment; number and…
Origami-based earthworm-like locomotion robots.
Fang, Hongbin; Zhang, Yetong; Wang, K W
2017-10-16
Inspired by the morphology characteristics of the earthworms and the excellent deformability of origami structures, this research creates a novel earthworm-like locomotion robot through exploiting the origami techniques. In this innovation, appropriate actuation mechanisms are incorporated with origami ball structures into the earthworm-like robot 'body', and the earthworm's locomotion mechanism is mimicked to develop a gait generator as the robot 'centralized controller'. The origami ball, which is a periodic repetition of waterbomb units, could output significant bidirectional (axial and radial) deformations in an antagonistic way similar to the earthworm's body segment. Such bidirectional deformability can be strategically programmed by designing the number of constituent units. Experiments also indicate that the origami ball possesses two outstanding mechanical properties that are beneficial to robot development: one is the structural multistability in the axil direction that could contribute to the robot control implementation; and the other is the structural compliance in the radial direction that would increase the robot robustness and applicability. To validate the origami-based innovation, this research designs and constructs three robot segments based on different axial actuators: DC-motor, shape-memory-alloy springs, and pneumatic balloon. Performance evaluations reveal their merits and limitations, and to prove the concept, the DC-motor actuation is selected for building a six-segment robot prototype. Learning from earthworms' fundamental locomotion mechanism-retrograde peristalsis wave, seven gaits are automatically generated; controlled by which, the robot could achieve effective locomotion with qualitatively different modes and a wide range of average speeds. The outcomes of this research could lead to the development of origami locomotion robots with low fabrication costs, high customizability, light weight, good scalability, and excellent re-configurability.
The Wheels on the Bot Go Round and Round: Robotics Curriculum in Pre-Kindergarten
ERIC Educational Resources Information Center
Sullivan, Amanda; Kazakoff, Elizabeth R.; Bers, Marina Umashi
2013-01-01
This paper qualitatively examines the implementation of an intensive weeklong robotics curriculum in three Pre-Kindergarten classrooms (N = 37) at an early childhood STEM (science, technology, engineering, and math) focused magnet school in the Harlem area of New York City. Children at the school spent one week participating in computer…
Megasessions for Robotic Hair Restoration.
Pereira, Joa O Carlos; Pereira Filho, Joa O Carlos; Cabrera Pereira, Joa O Pedro
2016-11-01
A robotic system can select and remove individual hair follicles from the donor area with great precision and without fatigue. This report describes the use of the robotic system in a megasession for hair restoration. Patients were instructed to cut their hair to 1.0 to 1.2 mm before surgery. The robot selected and removed 600 to 800 grafts per hour so the follicular units (FU)s could be transplanted manually to recipient sites. The robot arm consists of a sharp inner punch and a blunt outer punch which together separate FUs from the sur- rounding tissue. Stereoscopic cameras controlled by image processing software allow the system to identify the angle and direction of hair growth. The physician and one assistant control the harvesting with a hand-held remote control and computer monitor while the patient is positioned in an adjustable chair. When the robot has harvested all the FUs they are removed by technicians with small forceps. Hairline design, creation of recipient sites, and graft placement are performed manually by the physician. Clinical photographs before and after surgery show that patients experience excellent outcomes with the robotic megasession. Phy- sician fatigue during graft extraction is reduced because the robot performs the repetitive movements without fatigue. Variability of graft extraction is minimized because the robot's optical system can be programmed to choose the best FUs. The transection rate is reduced because the robot's graft extraction system uses two needles, a sharp one to piece the skin and a blunt needle to dissect the root without trauma. A robotic megasession for hair restoration is minimally invasive, does not result in linear scars in the donor area, and is associated with minimal fatigue and discomfort for both patient and physician. Healing is rapid and patients experience a high level of satisfaction with the results. J Drugs Dermatol. 2016;15(11):1407-1412..
Vaccaro, Christine M; Crisp, Catrina C; Fellner, Angela N; Jackson, Christopher; Kleeman, Steven D; Pavelka, James
2013-01-01
The objective of this study was to compare the effect of virtual reality simulation training plus robotic orientation versus robotic orientation alone on performance of surgical tasks using an inanimate model. Surgical resident physicians were enrolled in this assessor-blinded randomized controlled trial. Residents were randomized to receive either (1) robotic virtual reality simulation training plus standard robotic orientation or (2) standard robotic orientation alone. Performance of surgical tasks was assessed at baseline and after the intervention. Nine of 33 modules from the da Vinci Skills Simulator were chosen. Experts in robotic surgery evaluated each resident's videotaped performance of the inanimate model using the Global Rating Scale (GRS) and Objective Structured Assessment of Technical Skills-modified for robotic-assisted surgery (rOSATS). Nine resident physicians were enrolled in the simulation group and 9 in the control group. As a whole, participants improved their total time, time to incision, and suture time from baseline to repeat testing on the inanimate model (P = 0.001, 0.003, <0.001, respectively). Both groups improved their GRS and rOSATS scores significantly (both P < 0.001); however, the GRS overall pass rate was higher in the simulation group compared with the control group (89% vs 44%, P = 0.066). Standard robotic orientation and/or robotic virtual reality simulation improve surgical skills on an inanimate model, although this may be a function of the initial "practice" on the inanimate model and repeat testing of a known task. However, robotic virtual reality simulation training increases GRS pass rates consistent with improved robotic technical skills learned in a virtual reality environment.
Evolutionary Developmental Robotics: Improving Morphology and Control of Physical Robots.
Vujovic, Vuk; Rosendo, Andre; Brodbeck, Luzius; Iida, Fumiya
2017-01-01
Evolutionary algorithms have previously been applied to the design of morphology and control of robots. The design space for such tasks can be very complex, which can prevent evolution from efficiently discovering fit solutions. In this article we introduce an evolutionary-developmental (evo-devo) experiment with real-world robots. It allows robots to grow their leg size to simulate ontogenetic morphological changes, and this is the first time that such an experiment has been performed in the physical world. To test diverse robot morphologies, robot legs of variable shapes were generated during the evolutionary process and autonomously built using additive fabrication. We present two cases with evo-devo experiments and one with evolution, and we hypothesize that the addition of a developmental stage can be used within robotics to improve performance. Moreover, our results show that a nonlinear system-environment interaction exists, which explains the nontrivial locomotion patterns observed. In the future, robots will be present in our daily lives, and this work introduces for the first time physical robots that evolve and grow while interacting with the environment.
The Canonical Robot Command Language (CRCL).
Proctor, Frederick M; Balakirsky, Stephen B; Kootbally, Zeid; Kramer, Thomas R; Schlenoff, Craig I; Shackleford, William P
2016-01-01
Industrial robots can perform motion with sub-millimeter repeatability when programmed using the teach-and-playback method. While effective, this method requires significant up-front time, tying up the robot and a person during the teaching phase. Off-line programming can be used to generate robot programs, but the accuracy of this method is poor unless supplemented with good calibration to remove systematic errors, feed-forward models to anticipate robot response to loads, and sensing to compensate for unmodeled errors. These increase the complexity and up-front cost of the system, but the payback in the reduction of recurring teach programming time can be worth the effort. This payback especially benefits small-batch, short-turnaround applications typical of small-to-medium enterprises, who need the agility afforded by off-line application development to be competitive against low-cost manual labor. To fully benefit from this agile application tasking model, a common representation of tasks should be used that is understood by all of the resources required for the job: robots, tooling, sensors, and people. This paper describes an information model, the Canonical Robot Command Language (CRCL), which provides a high-level description of robot tasks and associated control and status information.
The Canonical Robot Command Language (CRCL)
Proctor, Frederick M.; Balakirsky, Stephen B.; Kootbally, Zeid; Kramer, Thomas R.; Schlenoff, Craig I.; Shackleford, William P.
2017-01-01
Industrial robots can perform motion with sub-millimeter repeatability when programmed using the teach-and-playback method. While effective, this method requires significant up-front time, tying up the robot and a person during the teaching phase. Off-line programming can be used to generate robot programs, but the accuracy of this method is poor unless supplemented with good calibration to remove systematic errors, feed-forward models to anticipate robot response to loads, and sensing to compensate for unmodeled errors. These increase the complexity and up-front cost of the system, but the payback in the reduction of recurring teach programming time can be worth the effort. This payback especially benefits small-batch, short-turnaround applications typical of small-to-medium enterprises, who need the agility afforded by off-line application development to be competitive against low-cost manual labor. To fully benefit from this agile application tasking model, a common representation of tasks should be used that is understood by all of the resources required for the job: robots, tooling, sensors, and people. This paper describes an information model, the Canonical Robot Command Language (CRCL), which provides a high-level description of robot tasks and associated control and status information. PMID:28529393
Dragons, Ladybugs, and Softballs: Girls' STEM Engagement with Human-Centered Robotics
NASA Astrophysics Data System (ADS)
Gomoll, Andrea; Hmelo-Silver, Cindy E.; Šabanović, Selma; Francisco, Matthew
2016-12-01
Early experiences in science, technology, engineering, and math (STEM) are important for getting youth interested in STEM fields, particularly for girls. Here, we explore how an after-school robotics club can provide informal STEM experiences that inspire students to engage with STEM in the future. Human-centered robotics, with its emphasis on the social aspects of science and technology, may be especially important for bringing girls into the STEM pipeline. Using a problem-based approach, we designed two robotics challenges. We focus here on the more extended second challenge, in which participants were asked to imagine and build a telepresence robot that would allow others to explore their space from a distance. This research follows four girls as they engage with human-centered telepresence robotics design. We constructed case studies of these target participants to explore their different forms of engagement and phases of interest development—considering facets of behavioral, social, cognitive, and conceptual-to-consequential engagement as well as stages of interest ranging from triggered interest to well-developed individual interest. The results demonstrated that opportunities to personalize their robots and feedback from peers and facilitators were important motivators. We found both explicit and vicarious engagement and varied interest phases in our group of four focus participants. This first iteration of our project demonstrated that human-centered robotics is a promising approach to getting girls interested and engaged in STEM practices. As we design future iterations of our robotics club environment, we must consider how to harness multiple forms of leadership and engagement without marginalizing students with different working preferences.
... High School and Youth Trends Monitoring the Future Survey: High School and Youth Trends Email Facebook Twitter ... December 2017 This year's Monitoring the Future (MTF) survey of drug use and attitudes among 8th, 10th, ...
How to Identify High-Growth Schools
ERIC Educational Resources Information Center
Pfeiffer, Linda E.
2015-01-01
When researching school options, parents may want to look for schools with high-growth scores which, according to research, may be indicators of other characteristics such as programming, leadership, culture, and size. This quick guide offers parents tips on how to identify high-growth schools and what to ask when evaluating school options. An…
Bullying among Turkish High School Students
ERIC Educational Resources Information Center
Kepenekci, Yasemin Karaman; Cinkir, Sakir
2006-01-01
Objective: The purpose of this study was to investigate school bullying among public high school students in Turkey. Method: This study used a survey to examine different aspects of bullying in schools. The participants (N=692) were students chosen from five state high schools in Ankara in the 2000-2001 academic year. A self-administered…
Put Your Robot In, Put Your Robot Out: Sequencing through Programming Robots in Early Childhood
ERIC Educational Resources Information Center
Kazakoff, Elizabeth R.; Bers, Marina Umaschi
2014-01-01
This article examines the impact of programming robots on sequencing ability in early childhood. Thirty-four children (ages 4.5-6.5 years) participated in computer programming activities with a developmentally appropriate tool, CHERP, specifically designed to program a robot's behaviors. The children learned to build and program robots over three…
Robotics in biomedical chromatography and electrophoresis.
Fouda, H G
1989-08-11
The ideal laboratory robot can be viewed as "an indefatigable assistant capable of working continuously for 24 h a day with constant efficiency". The development of a system approaching that promise requires considerable skill and time commitment, a thorough understanding of the capabilities and limitations of the robot and its specialized modules and an intimate knowledge of the functions to be automated. The robot need not emulate every manual step. Effective substitutes for difficult steps must be devised. The future of laboratory robots depends not only on technological advances in other fields, but also on the skill and creativity of chromatographers and other scientists. The robot has been applied to automate numerous biomedical chromatography and electrophoresis methods. The quality of its data can approach, and in some cases exceed, that of manual methods. Maintaining high data quality during continuous operation requires frequent maintenance and validation. Well designed robotic systems can yield substantial increase in the laboratory productivity without a corresponding increase in manpower. They can free skilled personnel from mundane tasks and can enhance the safety of the laboratory environment. The integration of robotics, chromatography systems and laboratory information management systems permits full automation and affords opportunities for unattended method development and for future incorporation of artificial intelligence techniques and the evolution of expert systems. Finally, humanoid attributes aside, robotic utilization in the laboratory should not be an end in itself. The robot is a useful tool that should be utilized only when it is prudent and cost-effective to do so.
ERIC Educational Resources Information Center
Cleveland Public Schools, OH.
The Plain Dealer High School Newspaper Workshop was a pilot program created to introduce minority high school students (although not limited to minority students) to career opportunities in the newspaper business. Forty-four students from the Cleveland Public Schools' John F. Kennedy and West Technical High School participated in the 9-week…
Mathematics Course-Taking in Rural High Schools
ERIC Educational Resources Information Center
Anderson, Rick; Chang, Beng
2011-01-01
Using data from the 2005 NAEP High School Transcript Study, this paper examines the mathematics course-taking of rural high school students. Although several studies indicate rural high school students' mathematics achievement is comparable to that of students in non-rural high schools, the mathematics course-taking patterns of rural and non-rural…
High School Economic Composition and College Persistence
ERIC Educational Resources Information Center
Niu, Sunny X.; Tienda, Marta
2013-01-01
Using a longitudinal sample of Texas high school seniors of 2002 who enrolled in college within the calendar year of high school graduation, we examine variation in college persistence according to the economic composition of their high schools, which serves as a proxy for unmeasured high school attributes that are conductive to postsecondary…
Robotic pancreaticoduodenectomy.
Sola, Richard; Kirks, Russell C; Iannitti, David A; Vrochides, Dionisios; Martinie, John B
2016-01-01
Pancreaticoduodenectomy (PD) is considered one of the most complex and technically challenging abdominal surgeries performed by general surgeons. With increasing use of minimally invasive surgery, this operation continues to be performed most commonly in an open fashion. Open PD (OPD) is characterized by high morbidity and mortality rates in published series. Since the early 2000s, use of robotics for PD has slowly evolved. For appropriately selected patients, robotic PD (RPD) has been shown to have less intraoperative blood loss, decreased morbidity and mortality, shorter hospital length of stay, and similar oncological outcomes compared with OPD. At our high-volume center, we have found lower complication rates for RPD along with no difference in total cost when compared with OPD. With demonstrated non-inferior oncologic outcomes for RPD, the potential exists that RPD may be the future standard in surgical management for pancreatic disease. We present a case of a patient with a pancreatic head mass and describe our institution's surgical technique for RPD.
Teaching Ethics to High School Students
ERIC Educational Resources Information Center
Pass, Susan; Willingham, Wendy
2009-01-01
Working with two teachers and thirty-four high school seniors, the authors developed procedures and assessments to teach ethics in an American high school civics class. This approach requires high school students to discover an agreement or convergence between Kantian ethics and virtue ethics. The authors also created an instrument to measure…
ERIC Educational Resources Information Center
Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley
2008-01-01
This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…
Designing a social and assistive robot for seniors.
Eftring, H; Frennert, S
2016-06-01
The development of social assistive robots is an approach with the intention of preventing and detecting falls among seniors. There is a need for a relatively low-cost mobile robot with an arm and a gripper which is small enough to navigate through private homes. User requirements of a social assistive robot were collected using workshops, a questionnaire and interviews. Two prototype versions of a robot were designed, developed and tested by senior citizens (n = 49) in laboratory trials for 2 h each and in the private homes of elderly persons (n = 18) for 3 weeks each. The user requirement analysis resulted in a specification of tasks the robot should be able to do to prevent and detect falls. It was a challenge but possible to design and develop a robot where both the senior and the robot arm could reach the necessary interaction points of the robot. The seniors experienced the robot as happy and friendly. They wanted the robot to be narrower so it could pass through narrow passages in the home and they also wanted it to be able to pass over thresholds without using ramps and to drive over carpets. User trials in seniors' homes are very important to acquire relevant knowledge for developing robots that can handle real life situations in the domestic environment. Very high reliability of a robot is needed to get feedback about how seniors experience the overall behavior of the robot and to find out if the robot could reduce falls and improve the feeling of security for seniors living alone.
ERIC Educational Resources Information Center
Pitchford-Nicholas, Gloria Jean
2015-01-01
The preparedness of students to enter college is an ongoing issue of national concern. The purpose of the study was to conduct a mixed method descriptive case study to answer the question: "How African-American and Hispanic High School Students in an Urban Charter High School may benefit from the Early College High School Model of receiving…
High-Performance Schools: Affordable Green Design for K-12 Schools; Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plympton, P.; Brown, J.; Stevens, K.
2004-08-01
Schools in the United States spend $7.8 billion on energy each year-more than the cost of computers and textbooks combined, according to a 2003 report from the National Center for Education Statistics. The U.S. Department of Energy (DOE) estimates that these high utility bills could be reduced as much as 25% if schools adopt readily available high performance design principles and technologies. Accordingly, hundreds of K-12 schools across the country have made a commitment to improve the learning and teaching environment of schools while saving money and energy and protecting the environment. DOE and its public- and private-sector partners havemore » developed Energy Design Guidelines for High Performance Schools, customized for nine climate zones in U.S. states and territories. These design guidelines provide information for school decision makers and design professionals on the advantages of energy efficiency and renewable energy designs and technologies. With such features as natural day lighting, efficient electric lights, water conservation, and renewable energy, schools in all types of climates are proving that school buildings, and the students and teachers who occupy them, are indeed high performers. This paper describes high performance schools from each of the nine climate zones associated with the Energy Design Guidelines. The nine case studies focus on the high performance design strategies implemented in each school, as well as the cost savings and benefits realized by students, faculty, the community, and the environment.« less
School-Based Drug Abuse Prevention Programs in High School Students
ERIC Educational Resources Information Center
Sharma, Manoj; Branscum, Paul
2013-01-01
Drug abuse, or substance abuse, is a substantial public health problem in the United States, particularly among high school students. The purpose of this article was to review school-based programs implemented in high schools for substance abuse prevention and to suggest recommendations for future interventions. Included were English language…
Adaptive and Resilient Soft Tensegrity Robots.
Rieffel, John; Mouret, Jean-Baptiste
2018-04-17
Living organisms intertwine soft (e.g., muscle) and hard (e.g., bones) materials, giving them an intrinsic flexibility and resiliency often lacking in conventional rigid robots. The emerging field of soft robotics seeks to harness these same properties to create resilient machines. The nature of soft materials, however, presents considerable challenges to aspects of design, construction, and control-and up until now, the vast majority of gaits for soft robots have been hand-designed through empirical trial-and-error. This article describes an easy-to-assemble tensegrity-based soft robot capable of highly dynamic locomotive gaits and demonstrating structural and behavioral resilience in the face of physical damage. Enabling this is the use of a machine learning algorithm able to discover effective gaits with a minimal number of physical trials. These results lend further credence to soft-robotic approaches that seek to harness the interaction of complex material dynamics to generate a wealth of dynamical behaviors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This plan covers robotics Research, Development, Demonstration, Testing, activities in the Program for the next five years. These activities range from bench-scale R D to fullscale hot demonstrations at DOE sites. This plan outlines applications of existing technology to near-term needs, the development and application of enhanced technology for longer-term needs, and an initiation of advanced technology development to meet those needs beyond the five-year plan. The objective of the Robotic Technology Development (RTDP) is to develop and apply robotics technologies that will enable Environmental Restoration and Waste Management operations at DOE sites to be safer, faster and cheaper. Fivemore » priority DOE sites were visited in March 1990 to identify needs for robotics technology in ER WM operations. This 5-Year Program Plan for the RTDP detailed annual plans for robotics technology development based on identified needs. This 5-Year Program Plan discusses the overall approach to be adopted by the RTDP to aggressively develop robotics technology and contains discussions of the Program Management Plan, Site Visit and Needs Summary, Approach to Needs-Directed Technical Development, Application-Specific Technical Development, and Cross-Cutting and Advanced Technology. Integrating application-specific ER WM needs, the current state of robotics technology, and the potential benefits (in terms of faster, safer, and cheaper) of new technology, the Plan develops application-specific road maps for robotics RDDT E for the period FY 1991 through FY 1995. In addition, the Plan identifies areas where longer-term research in robotics will have a high payoff in the 5- to 20-year time frame. 12 figs.« less
ERIC Educational Resources Information Center
Neff, Thomas G.
2002-01-01
Describes the reorganization of the site of Ben Davis High School in Wayne Township, Indiana as an example of improvements to school parking lot design and vehicle/pedestrian traffic flow and security. Includes design drawings. (EV)
Robotics in surgery: is a robot necessary? For what?
Ross, Sharona B; Downs, Darrell; Saeed, Sabrina M; Dolce, John K; Rosemurgy, Alexander S
2017-02-01
Every operation can be categorized along a spectrum from "most invasive" to "least invasive", based on the approach(es) through which it is commonly undertaken. Operations that are considered "most invasive" are characterized by "open" approaches with a relatively high degree of morbidity, while operations that are considered "least invasive" are undertaken with minimally invasive techniques and are associated with relatively improved patient outcomes, including faster recovery times and fewer complications. Because of the potential for reduced morbidity, movement along the spectrum towards minimally invasive surgery (MIS) is associated with a host of salutary benefits and, as well, lower costs of patient care. Accordingly, the goal of all stakeholders in surgery should be to attain universal application of the most minimally invasive approaches. Yet the difficulty of performing minimally invasive operations has largely limited its widespread application in surgery, particularly in the context of complex operations (i.e., those requiring complex extirpation and/or reconstruction). Robotic surgery, however, may facilitate application of minimally invasive techniques requisite for particular operations. Enhancements in visualization and dexterity offered by robotic surgical systems allow busy surgeons to quickly gain proficiency in demanding techniques (e.g., pancreaticojejunostomy), within a short learning curve. That is not to say, however, that all operations undertaken with minimally invasive techniques require robotic technology. Herein, we attempt to define how surgeon skill, operative difficulty, patient outcomes, and cost factors determine when robotic technology should be reasonably applied to patient care in surgery.
Software for Project-Based Learning of Robot Motion Planning
ERIC Educational Resources Information Center
Moll, Mark; Bordeaux, Janice; Kavraki, Lydia E.
2013-01-01
Motion planning is a core problem in robotics concerned with finding feasible paths for a given robot. Motion planning algorithms perform a search in the high-dimensional continuous space of robot configurations and exemplify many of the core algorithmic concepts of search algorithms and associated data structures. Motion planning algorithms can…
Maurice, Matthew J; Kaouk, Jihad H
2017-12-01
To assess the feasibility of radical perineal cystoprostatectomy using the latest generation purpose-built single-port robotic surgical system. In two male cadavers the da Vinci ® SP1098 Surgical System (Intuitive Surgical, Sunnyvale, CA, USA) was used to perform radical perineal cystoprostatectomy and bilateral extended pelvic lymph node dissection (ePLND). New features in this model include enhanced high-definition three-dimensional optics, improved instrument manoeuvrability, and a real-time instrument tracking and guidance system. The surgery was accomplished through a 3-cm perineal incision via a novel robotic single-port system, which accommodates three double-jointed articulating robotic instruments, an articulating camera, and an accessory laparoscopic instrument. The primary outcomes were technical feasibility, intraoperative complications, and total robotic operative time. The cases were completed successfully without conversion. There were no accidental punctures or lacerations. The robotic operative times were 197 and 202 min. In this preclinical model, robotic radical perineal cystoprostatectomy and ePLND was feasible using the SP1098 robotic platform. Further investigation is needed to assess the feasibility of urinary diversion using this novel approach and new technology. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.
Spletzer, Barry L.; Fischer, Gary J.; Marron, Lisa C.; Martinez, Michael A.; Kuehl, Michael A.; Feddema, John T.
2001-01-01
The present invention provides a hopping robot that includes a misfire tolerant linear actuator suitable for long trips, low energy steering and control, reliable low energy righting, miniature low energy fuel control. The present invention provides a robot with hopping mobility, capable of traversing obstacles significant in size relative to the robot and capable of operation on unpredictable terrain over long range. The present invention further provides a hopping robot with misfire-tolerant combustion actuation, and with combustion actuation suitable for use in oxygen-poor environments.
ERIC Educational Resources Information Center
Barak, Moshe; Assal, Muhammad
2018-01-01
This study presents the case of development and evaluation of a STEM-oriented 30-h robotics course for junior high school students (n = 32). Class activities were designed according to the P3 Task Taxonomy, which included: (1) practice-basic closed-ended tasks and exercises; (2) problem solving--small-scale open-ended assignments in which the…
Robot-sewn ileoileal anastomosis during robot-assisted cystectomy.
Loertzer, P; Siemer, S; Stöckle, M; Ohlmann, C H
2018-07-01
To analyze the feasibility and perioperative results of patients undergoing robot-assisted cystectomy with intracorporeal urinary diversion and robot-sewn ileoileal anastomosis. This is a mono-centric analysis of perioperative data from 48 consecutive patients undergoing robot-assisted cystectomy with intracorporeal urinary diversion and robot-sewn ileoileal anastomosis. Data include the preoperative variables, operative and postoperative course and complication rates related to bowel anastomosis. End points were time spent for anastomosis and intra- and postoperative complication rates. Median operating time was 23.0 (13-60) min for the ileoileal anastomosis. Median overall operating time was 295 (200-780) min, with a median of 282 (200-418) min and 414.0 (225-780) min for the ileum conduit (N = 35) and ileal neobladder (N = 13). Two patients developed paralytic ileus; in another patient acute peritonitis occurred, but was caused by urinary leakage and therefore unrelated to the bowel anastomosis. No anastomotic leakage was noticed. Costs for the robot-sewn anastomosis was 8€ compared to 1250€ for a stapled anastomosis which was performed in previous cases. Limitations are the non-comparative nature of the analysis and the limited number of patients. Robot-sewn ileoileal anastomosis is feasible with low complication rates. Compared to the stapled anastomosis, a robot-sewn ileoileal anastomosis may serve as an alternative and cost-saving approach.
Laboratory testing of candidate robotic applications for space
NASA Technical Reports Server (NTRS)
Purves, R. B.
1987-01-01
Robots have potential for increasing the value of man's presence in space. Some categories with potential benefit are: (1) performing extravehicular tasks like satellite and station servicing, (2) supporting the science mission of the station by manipulating experiment tasks, and (3) performing intravehicular activities which would be boring, tedious, exacting, or otherwise unpleasant for astronauts. An important issue in space robotics is selection of an appropriate level of autonomy. In broad terms three levels of autonomy can be defined: (1) teleoperated - an operator explicitly controls robot movement; (2) telerobotic - an operator controls the robot directly, but by high-level commands, without, for example, detailed control of trajectories; and (3) autonomous - an operator supplies a single high-level command, the robot does all necessary task sequencing and planning to satisfy the command. Researchers chose three projects for their exploration of technology and implementation issues in space robots, one each of the three application areas, each with a different level of autonomy. The projects were: (1) satellite servicing - teleoperated; (2) laboratory assistant - telerobotic; and (3) on-orbit inventory manager - autonomous. These projects are described and some results of testing are summarized.
Credentialing high school psychology teachers.
Weaver, Kenneth A
2014-09-01
The National Standards for High School Psychology Curricula (American Psychological Association, 2013b) require a teacher with considerable psychology content knowledge to teach high school psychology courses effectively. In this study, I examined the initial teaching credential requirements for high school psychology teachers in the 50 states plus the District of Columbia. Thirty-four states (the District of Columbia is included as a state) require the social studies credential to teach high school psychology. An analysis of the items on standardized tests used by states to validate the content knowledge required to teach social studies indicates little or no presence of psychology, a reflection of psychology's meager presence in the social studies teacher preparation curricula. Thus, new teachers with the social studies teaching credential are not prepared to teach high school psychology according to the National Standards. Approval of The College, Career, and Civic Life (C3) Framework for Social Studies State Standards: Guidance for Enhancing the Rigor of K-12 Civics, Economics, Geography, and History (National Council for the Social Studies, 2013) presents an opportunity to advocate for establishing a psychology credential in the 34 states. (c) 2014 APA, all rights reserved.
High School Preparation Program 1975-1976.
ERIC Educational Resources Information Center
Giddings, Morsley G.
This report evaluates the High School Preparation Program which was designed to identify, orient and prepare third year intermediate and junior high school students for successful admission to the special high schools in New York City. 200 students participated in the program. Priority was given to those students who were one year or more below…
Trenton High School: Attitude Builds Community
ERIC Educational Resources Information Center
Principal Leadership, 2013
2013-01-01
High schools often are the anchor of their communities. Nowhere is this more so than in rural north-central Missouri where Trenton High School is the community. Over the last 10 years, this 400-student comprehensive high school mirrored the community's economic downturn and experienced a significant increase in students living in poverty--to the…
Towards a sustainable modular robot system for planetary exploration
NASA Astrophysics Data System (ADS)
Hossain, S. G. M.
This thesis investigates multiple perspectives of developing an unmanned robotic system suited for planetary terrains. In this case, the unmanned system consists of unit-modular robots. This type of robot has potential to be developed and maintained as a sustainable multi-robot system while located far from direct human intervention. Some characteristics that make this possible are: the cooperation, communication and connectivity among the robot modules, flexibility of individual robot modules, capability of self-healing in the case of a failed module and the ability to generate multiple gaits by means of reconfiguration. To demonstrate the effects of high flexibility of an individual robot module, multiple modules of a four-degree-of-freedom unit-modular robot were developed. The robot was equipped with a novel connector mechanism that made self-healing possible. Also, design strategies included the use of series elastic actuators for better robot-terrain interaction. In addition, various locomotion gaits were generated and explored using the robot modules, which is essential for a modular robot system to achieve robustness and thus successfully navigate and function in a planetary environment. To investigate multi-robot task completion, a biomimetic cooperative load transportation algorithm was developed and simulated. Also, a liquid motion-inspired theory was developed consisting of a large number of robot modules. This can be used to traverse obstacles that inevitably occur in maneuvering over rough terrains such as in a planetary exploration. Keywords: Modular robot, cooperative robots, biomimetics, planetary exploration, sustainability.
Human-Automation Allocations for Current Robotic Space Operations
NASA Technical Reports Server (NTRS)
Marquez, Jessica J.; Chang, Mai L.; Beard, Bettina L.; Kim, Yun Kyung; Karasinski, John A.
2018-01-01
gather existing lessons learned and best practices in these role assignments, from spaceflight operational experience of crew and ground teams that may be used to guide development for future systems. NASA and other space agencies have operational spaceflight experience with two key Human-Automation-Robotic (HAR) systems: heavy lift robotic arms and planetary robotic explorers. Additionally, NASA has invested in high-fidelity rover systems that can carry crew, building beyond Apollo's lunar rover. The heavy lift robotic arms reviewed are: Space Station Remote Manipulator System (SSRMS), Japanese Remote Manipulator System (JEMRMS), and the European Robotic Arm (ERA, designed but not deployed in space). The robotic rover systems reviewed are: Mars Exploration Rovers, Mars Science Laboratory rover, and the high-fidelity K10 rovers. Much of the design and operational feedback for these systems have been communicated to flight controllers and robotic design teams. As part of the mitigating the HARI risk for future human spaceflight operations, we must document function allocations between robots and humans that have worked well in practice.
A Study of School Size among Alabama's Public High Schools
ERIC Educational Resources Information Center
Lindahl, Ronald A.; Cain, Patrick M., Sr.
2012-01-01
The purpose of this study was to examine the relationship between the size of Alabama's public high schools, selected school quality and financial indicators, and their students' performance on standardized exams. When the socioeconomic level of the student bodies is held constant, the size of high schools in Alabama has relatively little…
Legal and ethical issues in robotic surgery.
Mavroforou, A; Michalodimitrakis, E; Hatzitheo-Filou, C; Giannoukas, A
2010-02-01
With the rapid introduction of revolutionary technologies in surgical practice, such as computer-enhanced robotic surgery, the complexity in various aspects, including medical, legal and ethical, will increase exponentially. Our aim was to highlight important legal and ethical implications emerged from the application of robotic surgery. Search of the pertinent medical and legal literature. Robotic surgery may open new avenues in the near future in surgical practice. However, in robotic surgery, special training and experience along with high quality assessment are required in order to provide normal conscientious care and state-of-the-art treatment. While the legal basis for professional liability remains exactly the same, litigation with the use of robotic surgery may be complex. In case of an undesirable outcome, in addition to physician and hospital, the manufacturer of the robotic system may be sued. In respect to ethical issues in robotic surgery, equipment safety and reliability, provision of adequate information, and maintenance of confidentiality are all of paramount importance. Also, the cost of robotic surgery and the lack of such systems in most of the public hospitals may restrict the majority from the benefits offered by the new technology. While surgical robotics will have a significant impact on surgical practice, it presents challenges so much in the realm of law and ethics as of medicine and health care.
Alaska High School Graduation Qualifying Examination Booklet.
ERIC Educational Resources Information Center
Alaska State Dept. of Education, Juneau.
This booklet is an explanation of what the Alaska High School Graduation Qualifying Examination means to Alaskans and how it fits into a larger school accountability reform initiative. The high school class of 2002 is the first group of students who will need to pass the High School Graduation Qualifying Examination to receive a high school…
Manned spacecraft automation and robotics
NASA Technical Reports Server (NTRS)
Erickson, Jon D.
1987-01-01
The Space Station holds promise of being a showcase user and driver of advanced automation and robotics technology. The author addresses the advances in automation and robotics from the Space Shuttle - with its high-reliability redundancy management and fault tolerance design and its remote manipulator system - to the projected knowledge-based systems for monitoring, control, fault diagnosis, planning, and scheduling, and the telerobotic systems of the future Space Station.
Automation and robotics for the Space Exploration Initiative: Results from Project Outreach
NASA Technical Reports Server (NTRS)
Gonzales, D.; Criswell, D.; Heer, E.
1991-01-01
A total of 52 submissions were received in the Automation and Robotics (A&R) area during Project Outreach. About half of the submissions (24) contained concepts that were judged to have high utility for the Space Exploration Initiative (SEI) and were analyzed further by the robotics panel. These 24 submissions are analyzed here. Three types of robots were proposed in the high scoring submissions: structured task robots (STRs), teleoperated robots (TORs), and surface exploration robots. Several advanced TOR control interface technologies were proposed in the submissions. Many A&R concepts or potential standards were presented or alluded to by the submitters, but few specific technologies or systems were suggested.