Science.gov

Sample records for high sediment discharge

  1. High methylmercury production under ferruginous conditions in sediments impacted by sewage treatment plant discharges.

    PubMed

    Bravo, Andrea G; Bouchet, Sylvain; Guédron, Stéphane; Amouroux, David; Dominik, Janusz; Zopfi, Jakob

    2015-09-01

    Sewage treatment plants (STPs) are important point sources of mercury (Hg) to the environment. STPs are also significant sources of iron when hydrated ferric oxide (HFO) is used as a dephosphatation agent during water purification. In this study, we combined geochemical and microbiological characterization with Hg speciation and sediment amendments to evaluate the impact of STP's effluents on monomethylmercury (MMHg) production. The highest in-situ Hg methylation was found close to the discharge pipe in subsurface sediments enriched with Hg, organic matter, and iron. There, ferruginous conditions were prevailing with high concentrations of dissolved Fe(2+) and virtually no free sulfide in the porewater. Sediment incubations demonstrated that the high MMHg production close to the discharge was controlled by low demethylation yields. Inhibition of dissimilatory sulfate reduction with molybdate led to increased iron reduction rates and Hg-methylation, suggesting that sulfate-reducing bacteria (SRB) may not have been the main Hg methylators under these conditions. However, Hg methylation in sediments amended with amorphous Fe(III)-oxides was only slightly higher than control conditions. Thus, in addition to iron-reducing bacteria, other non-SRB most likely contributed to Hg methylation. Overall, this study highlights that sediments impacted by STP discharges can become local hot-spots for Hg methylation due to the combined inputs of i) Hg, ii) organic matter, which fuels bacterial activities and iii) iron, which keeps porewater sulfide concentration low and hence Hg bioavailable.

  2. Estimating sediment discharge: Appendix D

    USGS Publications Warehouse

    Gray, John R.; Simões, Francisco J. M.

    2008-01-01

    Sediment-discharge measurements usually are available on a discrete or periodic basis. However, estimates of sediment transport often are needed for unmeasured periods, such as when daily or annual sediment-discharge values are sought, or when estimates of transport rates for unmeasured or hypothetical flows are required. Selected methods for estimating suspended-sediment, bed-load, bed- material-load, and total-load discharges have been presented in some detail elsewhere in this volume. The purposes of this contribution are to present some limitations and potential pitfalls associated with obtaining and using the requisite data and equations to estimate sediment discharges and to provide guidance for selecting appropriate estimating equations. Records of sediment discharge are derived from data collected with sufficient frequency to obtain reliable estimates for the computational interval and period. Most sediment- discharge records are computed at daily or annual intervals based on periodically collected data, although some partial records represent discrete or seasonal intervals such as those for flood periods. The method used to calculate sediment- discharge records is dependent on the types and frequency of available data. Records for suspended-sediment discharge computed by methods described by Porterfield (1972) are most prevalent, in part because measurement protocols and computational techniques are well established and because suspended sediment composes the bulk of sediment dis- charges for many rivers. Discharge records for bed load, total load, or in some cases bed-material load plus wash load are less common. Reliable estimation of sediment discharges presupposes that the data on which the estimates are based are comparable and reliable. Unfortunately, data describing a selected characteristic of sediment were not necessarily derived—collected, processed, analyzed, or interpreted—in a consistent manner. For example, bed-load data collected with

  3. Bankfull discharge and sediment transport in northwestern California

    Treesearch

    K. M. Nolan; T. E. Lisle; H. M. Kelsey

    1987-01-01

    Abstract - High-magnitude, low-frequency discharges are more responsible for transporting suspended sediment and forming channels in northwestern California than in previously studied areas. Bankfull discharge and the magnitude and frequency of suspended sediment discharge were determined at five gaging stations in northwestern California. Although discharges below...

  4. Computations of total sediment discharge, Niobrara River near Cody, Nebraska

    USGS Publications Warehouse

    Colby, Bruce R.; Hembree, C.H.

    1955-01-01

    A natural chute in the Niobrara River near Cody, Nebr., constricts the flow of the river except at high stages to a narrow channel in which the turbulence is sufficient to suspend nearly the total sediment discharge. Because much of the flow originates in the sandhills area of Nebraska, the water discharge and sediment discharge are relatively uniform. Sediment discharges based on depth-integrated samples at a contracted section in the chute and on streamflow records at a recording gage about 1,900 feet upstream are available for the period from April 1948 to September 1953 but are not given directly as continuous records in this report. Sediment measurements have been made periodically near the gage and at other nearby relatively unconfined sections of the stream for comparison with measurements at the contracted section. Sediment discharge at these relatively unconfined sections was computed from formulas for comparison with measured sediment discharges at the contracted section. A form of the Du Boys formula gave computed tonnages of sediment that were unsatisfactory. Sediment discharges as computed from the Schoklitsch formula agreed well with measured sediment discharges that were low, but they were much too low at measured sediment discharges that were higher. The Straub formula gave computed discharges, presumably of bed material, that were several times larger than measured discharges of sediment coarser than 0.125 millimeter. All three of these formulas gave computed sediment discharges that increased with water discharges much less rapidly than the measured discharges of sediment coarser than 0.125 millimeter. The Einstein procedure when applied to a reach that included 10 defined cross sections gave much better agreement between computed sediment discharge and measured sediment discharge than did anyone of the three other formulas that were used. This procedure does not compute the discharge of sediment that is too small to be found in the stream bed in

  5. Discharge of sediment in channelized alluvial streams

    USGS Publications Warehouse

    Simon, Andrew

    1989-01-01

    Approximately 400 million cubic feet of channel sediments have been delivered to the Mississippi River from the Obion-Forked Deer River system in the last 20 years. The discharge of sediment from these channelized networks in West Tennessee varies systematically with the stage of channel evolution. Maximum bed-material discharges occur during the initial phases of degradation (Stage III). In contrast, yields of suspended-sediment peak during the threshold stage (Stage IV: large-scale mass wasting) as sediments are delivered from main-channel banks and tributary beds. Suspended-sediment yields then decrease as aggradation (Stage V) becomes the dominant trend in the main channels, but remains relatively high through restabilization (Stage VI) because of continued degradation and widening in the tributaries. Bed-material discharges decrease from the degradation stage (III) to Stage V, and increase again during restabilization (Stage VI) because secondary aggradation increases gradients and incipient meandering serves to rework bed sediments. Additional aspects of the subject are discussed.

  6. Relationship of sediment discharge to streamflow

    USGS Publications Warehouse

    Colby, B.R.

    1956-01-01

    The relationship between rate of sediment discharge and rate of water discharge at a cross section of a stream is frequently expressed by an average curve. This curve is the sediment rating curve. It has been widely used in the computation of average sediment discharge from water discharge for periods when sediment samples were not collected. This report discusses primarily the applications of sediment rating curves for periods during which at least occasional sediment samples were collected. Because sediment rating curves are of many kinds, the selection of the correct kind for each use is important. Each curve should be carefully prepared. In particular, the correct dependent variable must be used or the slope of the sediment rating curve may be incorrect for computing sediment discharges. Sediment rating curves and their applications were studied for the following gaging stations: 1. Niobrara River near Cody, Nebr. 2. Colorado River near Grand Canyon, Ariz. 3. Rio Grande at San Martial, N. Mex. 4. Rio Puerto near Bernardo, N. Mex. 5. White River near Kadoka, S. Dak. 6. Sandusky River near Fremont, Ohio Except for the Sandusky River and the Rio Puerco, which transport mostly fine sediment, one instantaneous sediment rating curve was prepared for the discharge of suspended sands, at each station, and another for the discharge of sediment finer than 0.082 millimeter. Each curve was studied separately, and by trial-end-error multiple correlation some of the factors that cause scatter from the sediment rating curves were determined. Average velocity at the cross section, Water temperature, and erratic fluctuations in concentration seemed to be the three major factors that caused departures from the sediment rating curves for suspended sands. The concentration of suspended sands varied with about the 2.8 power of the mean velocity for the four sediment, rating curves for suspended sands. The effect of water temperature was not so consistent as that of velocity and

  7. Sediment discharge from highway construction near Port Carbon, Pennsylvania

    USGS Publications Warehouse

    Helm, Robert E.

    1978-01-01

    About 16,000 tons of suspended-sediment was discharged from the basin during the construction. The highway construction produced about 8,000 tons or 50 percent of the total sediment discharge. Steep slopes, the availability of fine coal wastes, coal-washing operations, and other land uses in the basin were responsible for most of the remaining sediment discharge. Seventy percent of the total suspended-sediment discharge occurred during eight storms.

  8. Impact Of Groundwater Discharge On Contaminant Behavior In Sediments

    EPA Science Inventory

    The discharge of groundwater into surface water may influence the concentrations and availability of contaminants in sediments. There are three predominant pathways by which groundwater may affect the characteristics of contaminated sediments: 1) direct contribution of contamin...

  9. Impact Of Groundwater Discharge On Contaminant Behavior In Sediments

    EPA Science Inventory

    The discharge of groundwater into surface water may influence the concentrations and availability of contaminants in sediments. There are three predominant pathways by which groundwater may affect the characteristics of contaminated sediments: 1) direct contribution of contamin...

  10. Sediment discharge in the Colorado River near De Beque, Colorado

    USGS Publications Warehouse

    Butler, D.L.

    1986-01-01

    A study was conducted to determine annual-sediment discharge at the site of a proposed reservoir on the Colorado River at Una, located 3 miles upstream from De Beque, Colorado. Eleven suspended sediment samples were collected during 1984 at the De Beque bridge. These data were combined with suspended sediment data collected for the Colorado River at two nearby streamflow gaging stations to define relations between suspended-sediment discharge and stream discharge. Best results were obtained when the data were separated into two periods, March through October, and November through February. The data for March through October were separated into two periods: (1) Rising stream-stage period, which includes data collected prior to the data of the annual peak-stream discharge, and (2) falling stream-stage period, which includes data collected after the date of the annual peak-stream discharge. Nine bedload samples were collected during 1984 to determine the contribution of bedload sediment discharge to total sediment discharge. Bedload accounted for < 2% of total sediment discharge. The best relations describing bedload sediment discharge were obtained when the bedload data were separated into two periods: (1) Data collected prior to the date of the annual peak-stream discharge, and (2) data collected after the date of the annual peak-stream discharge. Mean annual sediment discharge in the Colorado River at the proposed Una reservoir site was estimated to be 1,065,000 tons/year for October 1966 through September 1984. Water storage capacity of the proposed reservoir would decrease about 30% after 100 years at this sediment discharge rate. (USGS)

  11. Modelling the landslide area and sediment discharge in landslide-dominated region, Taiwan

    NASA Astrophysics Data System (ADS)

    Teng, Tse-Yang; Huang, -Chuan, Jr.; Lee, Tsung-Yu; Chen, Yi-Chin; Jan, Ming-Young; Liu, Cheng-Chien

    2016-04-01

    Many studies have indicated the magnified increase of rainfall intensification, landsliding and subsequent sediment discharge due to the global warming effect. However, a few works synthesized the "chain reaction" from rainfall, landsliding to sediment discharge at the same time because of the limited observations of landslide area and sediment discharge during episodes. Besides, the sediment transport strongly depends on the sediment supply and stream power which interact conditionally. In this study, our goal is to build a model that can simulate time-series landslide area and subsequent sediment discharge. The synthesized model would be applied onto Tsengwen Reservoir watershed in southern Taiwan, where lots of landslides occur every year. Unlike other studies, our landslide model considers not only rainfall effect but also previous landslide status, which may be applied to landslide-dominated regions and explains the irrelevant relationship between typhoon rainfall and landslide area. Furthermore, our sediment transport model considers the sediment budget which couples transport- and supply-limited of sediment. The result shows that the simulated time-series landslide area and the sediment transport agree with the observation and the R2 are 0.88 and 0.56, respectively. Reactivated ratio of previous landslide area is 72.7% which indicates the high reoccurrence of historical landslide in landslide-dominated regions. We divided nine historical typhoons into three periods to demonstrate the effect of sediment supply/supply-limited condition upon sediment transport. For instance, the rainfall is smaller in period 3 than in period 1 but the sediment transport is higher in period 3 due to the catastrophic landslide (typhoon Morakot) during period 2. We argue that quantifying sediment transport should couple not only with water discharge but sediment budget, which is rarely considered in calculating sediment transport. Moreover, the parameterization of the controlling

  12. Hyperpycnal sediment discharge from semiarid southern California rivers: Implications for coastal sediment budgets

    USGS Publications Warehouse

    Warrick, J.A.; Milliman, John D.

    2003-01-01

    Southern California rivers discharge hyperpycnal (river density greater than ocean density) concentrations of suspended sediment (>40 g/L, according to buoyancy theory) during flood events, mostly during El Nin??o-Southern Oscillation (ENSO) conditions. Because hyperpycnal river discharge commonly occurs during brief periods (hours to occasionally days), mean daily flow statistics often do not reveal the magnitude of these events. Hyperpycnal events are particularly important in rivers draining the Transverse Range and account for 75% of the cumulative sediment load discharged by the Santa Clara River over the past 50 yr. These events are highly pulsed, totaling only ??? 30 days (??? 0.15% of the total 50 yr period). Observations of the fate of sediment discharge, although rare, are consistent with hyperpycnal river dynamics and the high likelihood of turbidity currents during these events. We suggest that much of the sediment load initially bypasses the littoral circulation cells and is directly deposited on the adjacent continental shelf, thus potentially representing a loss of immediate beach sand supply. During particularly exceptional events (>100 yr recurrence intervals), flood underflows may extend past the shelf and escape to offshore basins.

  13. Characteristics of sediment discharge in the subarctic Yukon River, Alaska

    USGS Publications Warehouse

    Chikita, K.A.; Kemnitz, R.; Kumai, R.

    2002-01-01

    The characteristics of sediment discharge in the Yukon River, Alaska were investigated by monitoring water discharge, water turbidity and water temperature. The river-transported sediment, 90 wt.% or more, consists of silt and clay (grain size ??? 62.5 ??m), which probably originated in the glacier-covered mountains mostly in the Alaska Range. For early June to late August 1999, we continuously measured water turbidity and temperature near the estuary and in the middle of Yukon River by using self-recording turbidimeters and temperature data loggers. The water turbidity (ppm) was converted to suspended sediment concentration (SSC; mg/l) of river water, using a relation between simultaneous turbidity and SSC at each of the two sites, and then, the suspended sediment discharge, approximately equal to water discharge times SSC, was numerically obtained every 1 or 2 h. It should be noted that the sediment discharge in the Yukon River is controlled by SSC rather than water discharge. As a result, a peak sediment discharge occurred in mid or late August by local sediment runoffs due to glacier-melt (or glacier-melt plus rainfall), while a peak water discharge was produced by snowmelt in late June or early July. Application of the "extended Shields diagram" indicates that almost all the river-transported sediments are under complete suspension. ?? 2002 Elsevier Science B.V. All rights reserved.

  14. Prediction method of sediment discharge from forested basin

    Treesearch

    Kazutoki Abe; Ushio Kurokawa; Robert R. Ziemer

    2000-01-01

    An estimation model for sediment discharge from a forested basin using Universal Soil Loss Equation and delivery ratio was developed. Study basins are North fork and South fork in Caspar Creek, north California, where Forest Service, USDA has been using water and sediment discharge from both basins since 1962. The whole basin is covered with the forest, mainly...

  15. Microbial Community Response on Wastewater Discharge in Boreal Lake Sediments

    PubMed Central

    Saarenheimo, Jatta; Aalto, Sanni L.; Rissanen, Antti J.; Tiirola, Marja

    2017-01-01

    Despite high performance, municipal wastewater treatment plants (WWTPs) still discharge significant amounts of organic material and nitrogen and even microbes into the receiving water bodies, altering physico-chemical conditions and microbial functions. In this study, we examined how nitrified wastewater affects the microbiology of boreal lake sediments. Microbial community compositions were assessed with next generation sequencing of the 16S rRNA gene, and a more detailed view on nitrogen transformation processes was gained with qPCR targeting on functional genes (nirS, nirK, nosZI, nosZII, amoAarchaea, and amoAbacteria). In both of the two studied lake sites, the microbial community composition differed significantly between control point and wastewater discharge point, and a gradual shift toward natural community composition was seen downstream following the wastewater gradient. SourceTracker analysis predicted that ∼2% of sediment microbes were of WWTP-origin on the study site where wastewater was freely mixed with the lake water, while when wastewater was specially discharged to the sediment surface, ∼6% of microbes originated from WWTP, but the wastewater-influenced area was more limited. In nitrogen transformation processes, the ratio between nitrifying archaea (AOA) and bacteria (AOB) was affected by wastewater effluent, as the AOA abundance decreased from the control point (AOA:AOB 28:1 in Keuruu, 11:1 in Petäjävesi) to the wastewater-influenced sampling points, where AOB dominated (AOA:AOB 1:2–1:15 in Keuruu, 1:3–1:19 in Petäjävesi). The study showed that wastewater can affect sediment microbial community through importing nutrients and organic material and altering habitat characteristics, but also through bringing wastewater-originated microbes to the sediment, and may thus have significant impact on the freshwater biogeochemistry, especially in the nutrient-poor boreal ecosystems. PMID:28487691

  16. The role of sediment accumulation on lowland floodplains in modulating sediment discharge and recycling

    NASA Astrophysics Data System (ADS)

    Aalto, R.

    2006-12-01

    I will summarize recent advances in techniques used to study floodplain accumulation rates, dates, and processes in lowland rivers and resulting empirical discoveries regarding the trapping and recycling rates by floodplains within mobile, sand-bedded river-floodplain systems. I will then briefly compare and contrast processes in pristine versus anthropogenically perturbed rivers spanning various tectonic settings. The studied pristine rivers are: 1) the Strickland R. of Papua New Guinea, which traverses a drowned valley basin with both a high sediment discharge and a steep slope, 2) the Fly R. of PNG, which traverses a similar basin with a lower sediment load and slope, 3) the Beni R. of Bolivia, which traverses an enormous foreland basin with a very high sediment load and slope, and 4) the Mamore R. of Bolivia, traversing a similar basin with a lower sediment discharge and slope. Processes of sediment transport, deposition, and recycling differ between these basins, due to differences in slope, sediment and water supply, local hydrology, basin geometry, and tectonic activity. However, in all cases the rates of these processes and the resulting modulation of sediment delivery downstream by large, natural, lowland floodplains are significant, especially when compared to rates in human-influenced floodplains. The human-perturbed rivers discussed are 1) the Sacramento R. of California (USA), which has a moderate sediment load and slope, but is heavily engineered for channel stability and flood control along most of its lowland floodplains, and 2) the Danube R. of Romania, a large river that is also highly engineered, but with more separation between its levees. These engineered floodplains have largely ceased to function as depocenters that both capture and recycle a significant portion of the total sediment load, although the degree of this effect varies with the spacing of the engineered levees. For the natural systems, the floodplains essentially buffer extreme

  17. Effective Discharge and Annual Sediment Yield on Brazos River

    NASA Astrophysics Data System (ADS)

    Rouhnia, M.; Salehi, M.; Keyvani, A.; Ma, F.; Strom, K. B.; Raphelt, N.

    2012-12-01

    Geometry of an alluvial river alters dynamically over the time due to the sediment mobilization on the banks and bottom of the river channel in various flow rates. Many researchers tried to define a single representative discharge for these morphological processes such as "bank-full discharge", "effective discharge" and "channel forming discharge". Effective discharge is the flow rate in which, the most sediment load is being carried by water, in a long term period. This project is aimed to develop effective discharge estimates for six gaging stations along the Brazos River from Waco, TX to Rosharon, TX. The project was performed with cooperation of the In-stream Flow Team of the Texas Water Development Board (TWDB). Project objectives are listed as: 1) developing "Flow Duration Curves" for six stations based on mean-daily discharge by downloading the required, additional data from U.S Geological Survey website, 2) developing "Rating Curves" for six gaging stations after sampling and field measurements in three different flow conditions, 3) developing a smooth shaped "Sediment Yield Histogram" with a well distinguished peak as effective discharge. The effective discharge was calculated using two methods of manually and automatic bin selection. The automatic method is based on kernel density approximation. Cross-sectional geometry measurements, particle size distributions and water field samples were processed in the laboratory to obtain the suspended sediment concentration associated with flow rate. Rating curves showed acceptable trends, as the greater flow rate we experienced, the more sediment were carried by water.

  18. Fluvial sediments a summary of source, transportation, deposition, and measurement of sediment discharge

    USGS Publications Warehouse

    Colby, B.R.

    1963-01-01

    This paper presents a broad but undetailed picture of fluvial sediments in streams, reservoirs, and lakes and includes a discussion of the processes involved in the movement of sediment by flowing water. Sediment is fragmental material that originates from the chemical or physical disintegration of rocks. The disintegration products may have many different shapes and may range in size from large boulders to colloidal particles. In general, they retain about the same mineral composition as the parent rocks. Rock fragments become fluvial sediment when they are entrained in a stream of water. The entrainment may occur as sheet erosion from land surfaces, particularly for the fine particles, or as channel erosion after the surface runoff has accumulated in streams. Fluvial sediments move in streams as bedload (particles moving within a few particle diameters of the streambed) or as suspended sediment in the turbulent flow. The discharge of bedload varies with several factors, which may include particle size and a type of effective shear on the surface of the streambed. The discharge of suspended sediment depends partly on concentration of moving sediment near the streambed and hence on discharge of bedload. However, the concentration of fine sediment near the streambed varies widely, even for equal flows, and, therefore, the discharge of fine sediment normally cannot be computed theoretically. The discharge of suspended sediment also depends on velocity, turbulence, depth of flow, and fall velocity of the particles. In general, the coarse sediment transported by a stream moves intermittently and is discharged at a rate that depends on properties of the flow and of the sediment. If an ample supply of coarse sediment is available at the surface of the streambed, the discharge of the coarse sediment, such as sand, can be roughly computed from properties of the available sediment and of the flow. On the other hand, much of the fine sediment in a stream usually moves nearly

  19. Quantifying Construction Site Sediment Discharge Risk and Treatment Potential

    NASA Astrophysics Data System (ADS)

    Ferrell, L.; Beighley, R. E.

    2006-12-01

    Dealing with soil erosion and sediment transport can be a significant challenge during the construction process due to the potentially large spatial and temporal extent and conditions of bare soils. Best Management Practices (BMP) are commonly used to eliminate or reduce offsite discharge of sediment. However, few efforts have investigated the time varying risk of sediment discharge from construction sites, which often have dynamic soil conditions and the potential for less than optimal BMP installations. The goal of this research is to improve the design, implementation and effectiveness of sediment and erosion control at construction sites using site specific, temporal distributions of sediment discharge risk. Sediment risk is determined from individual factors leading to sediment expert, such as rainfall frequency, the adequacy of BMP installations, and the extent and duration of bare soil conditions. This research specifically focuses on quantifying: (a) the effectiveness of temporary sediment and control erosion control BMPs in preventing, containing, and/or treating construction site sediment discharge at varying levels of "proper" installation, and (b) sediment discharge potential from construction sites during different phases of construction, (ex., disturbed earth operations). BMPs are evaluated at selected construction sites in southern California and at the Soil Erosion Research Laboratory (SERL) in the Civil and Environmental Engineering department at San Diego State University. SERL experiments are performed on a 3-m by 10-m tilting soil bed with soil depths up to 1 meter, slopes ranging from 0 to 50 percent, and rainfall rates up to 150 mm/hr (6 in/hr). BMP performance is assessed based on experiments where BMPs are installed per manufacture specifications, potential less than optimal installations, and no treatment conditions. Soil conditions are also varied to represent site conditions during different phases of construction (i.e., loose lifts

  20. Influence Of Groundwater Discharge On Arsenic Contamination In Sediments

    EPA Science Inventory

    A field investigation was conducted to evaluate the impact of a discharging arsenic plume on sediment contaminant characteristics at a site adjacent to a landfill in northeastern Massachusetts. Site characterization included assessment of the hydrologic and chemical samples coll...

  1. Influence Of Groundwater Discharge On Arsenic Contamination In Sediments

    EPA Science Inventory

    A field investigation was conducted to evaluate the impact of a discharging arsenic plume on sediment contaminant characteristics at a site adjacent to a landfill in northeastern Massachusetts. Site characterization included assessment of the hydrologic and chemical samples coll...

  2. Storm Event Suspended Sediment-Discharge Hysteresis and Controls in Agricultural Watersheds: Implications for Watershed Scale Sediment Management.

    PubMed

    Sherriff, Sophie C; Rowan, John S; Fenton, Owen; Jordan, Philip; Melland, Alice R; Mellander, Per-Erik; hUallacháin, Daire Ó

    2016-02-16

    Within agricultural watersheds suspended sediment-discharge hysteresis during storm events is commonly used to indicate dominant sediment sources and pathways. However, availability of high-resolution data, qualitative metrics, longevity of records, and simultaneous multiwatershed analyses has limited the efficacy of hysteresis as a sediment management tool. This two year study utilizes a quantitative hysteresis index from high-resolution suspended sediment and discharge data to assess fluctuations in sediment source location, delivery mechanisms and export efficiency in three intensively farmed watersheds during events over time. Flow-weighted event sediment export was further considered using multivariate techniques to delineate rainfall, stream hydrology, and antecedent moisture controls on sediment origins. Watersheds with low permeability (moderately- or poorly drained soils) with good surface hydrological connectivity, therefore, had contrasting hysteresis due to source location (hillslope versus channel bank). The well-drained watershed with reduced connectivity exported less sediment but, when watershed connectivity was established, the largest event sediment load of all watersheds occurred. Event sediment export was elevated in arable watersheds when low groundcover was coupled with high connectivity, whereas in the grassland watershed, export was attributed to wetter weather only. Hysteresis analysis successfully indicated contrasting seasonality, connectivity and source availability and is a useful tool to identify watershed specific sediment management practices.

  3. Potential effects of runoff, fluvial sediment, and nutrient discharges on the coral reefs of Puerto Rico

    USGS Publications Warehouse

    Larsen, M.C.; Webb, R.M.T.

    2009-01-01

    Coral reefs, the foundation and primary structure of many highly productive and diverse tropical marine ecosystems, have been degraded by human activity in much of the earth's tropical oceans. To contribute to improved understanding of this problem, the potential relation between river sediment and nutrient discharges and degradation of coral reefs surrounding Puerto Rico was studied using streamflow, suspended-sediment, and water-quality data. Mean annual runoff for the 8711 km2 island is 911 mm, about 57% of mean annual precipitation (1600 mm). Mean annual suspended-sediment discharge from Puerto Rico to coastal waters is estimated at 2.7-9.0 million metric tonnes. Storm runoff transports a substantial part of sediment: the highest recorded daily sediment discharge is 1-3.6 times the mean annual sediment discharge. Hurricane Georges (1998) distributed an average of 300 mm of rain across the island, equivalent to a volume of about 2.6 billion m3. Runoff of more than 1.0 billion m3 of water and as much as 5 to 10 million metric tonnes of sediment were discharged to the coast and shelf. Nitrogen and phosphorous concentrations in river waters are as much as 10 times the estimated presettlement levels. Fecal coliform and fecal streptococcus concentrations in many Puerto Rico rivers are near or above regulatory limits. Unlike sediment discharges, which are predominantly episodic and intense, river-borne nutrient and fecal discharge is a less-intense but chronic stressor to coral reefs found near the mouths of rivers. Negative effects of riverderived sediment and nutrient discharge on coral reefs are especially pronounced on the north, southwest, and west coasts.

  4. Assessing modern rates of river sediment discharge to the ocean using satellite gravimetry

    NASA Astrophysics Data System (ADS)

    Mouyen, Maxime; Longuevergne, Laurent; Steer, Philippe; Crave, Alain; Lemoine, Jean-Michel; Save, Himanshu; Robin, Cécile

    2017-04-01

    Worldwide rivers annually export about 19 Gigatons of sediments to the ocean that mostly accumulate in the coastal zones and on the continental shelves. This sediment discharge testifies of the intensity of continental erosion and records changes in climate, tectonics and human activity. However, natural and instrumental uncertainties inherent to the in-situ measurements of sediment discharge prevent from conclusive estimates to better understand these linkages. Here we develop a new method, using the Gravity Recovery and Climate Experiment (GRACE) satellite data, to infer mass-integrative estimates of sediment discharge of large rivers to the ocean. GRACE satellite provides global gravity time series that have proven useful for quantifying mass transport, including continental water redistribution at the Earth surface (ice sheets and glaciers melting, groundwater storage variations) but has been seldom used for monitoring sediment mass transfers so far. Here we pair the analysis of regularized GRACE solutions at high spatial resolution corrected from all known contributions (hydrology, ocean, atmosphere) to a particle tracking model that predicts the location of the sediment sinks for 13 rivers with the highest sediments loads in the world. We find that the resulting GRACE-derived sediment discharges off the mouth of the Amazon, Ganges-Brahmaputra, Changjiang (Yangtze), Indus, Magdalena, Godavari and Mekong rivers are consistent with in-situ measurements. Our results suggest that the lack of time continuity and of global coverage in terrestrial sediment discharge measurements could be reduced by using GRACE, which provides global and continuous data since 2002. GRACE solutions are regularly improved and new satellite gravity missions are being prepared hence making our approach even more relevant in a near future. The accumulation of sediments over time will keep increasing the signal to noise ratio of the gravity time series, which will improve the precision of

  5. Discharge and sediment concentration in the Bill Williams River and turbidity in Lake Havasu during and following high releases from Alamo Dam, Arizona, in March and April 2010

    USGS Publications Warehouse

    Wiele, Stephen M.; Macy, Jamie P.; Darling, Hugh L.; Hart, Robert J.; Hautzinger, Andrew B.

    2011-01-01

    Discharges higher than are typically released from Alamo Dam in west-central Arizona were planned and released in 2005, 2006, 2007, 2008 and 2010 to study the effects of these releases on the Bill Williams River. The Bill Williams River Wildlife Refuge is located above the mouth of the Bill Williams River on Lake Havasu, and the river is the subject of ongoing ecological studies. Sediment concentrations and water discharges were measured in the Bill Williams River and turbidity, water temperature, specific conductance, pH, dissolved oxygen, and Secchi depth were measured in Lake Havasu during and after experimental releases in 2005 and 2006 from Alamo Dam. Additional measurements of the same parameters in the Bill Williams River and Lake Havasu were made during releases in 2010, and these are the subject of this report.

  6. Early Holocene Sediment Discharge from Taiwanese Rivers: Intensified Asian Monsoon and Climate Change

    NASA Astrophysics Data System (ADS)

    Hsu, Ho-Han; Liu, Char-Shine; Milliman, John; Chen, Tzu-Ting; Chang, Jih-Hsin; Wang, Yunshuen

    2016-04-01

    Temporal variations of fluvial sediment discharge can reflect the significant climatic variation. In this study, high-resolution sedimentary records - on the millennial scale - from onshore wells, offshore cores and seismic profiles are used to quantify sediment discharge from small mountainous rivers around Taiwan since the last glacial maximum. While significantly high sediment accumulation rates have been observed in the modern flood plain, shelf and deep-sea basins during the late Pleistocene and Holocene, early Holocene rates are unusually high. In northeast Taiwan, for example, sediment flux from the Lanyang River between 10-12 ka BP appears to have been 10 mt/yr, about 4 fold greater than measured annual discharge prior to 1960. In the southwest Taiwan, the highest sedimentation rate happened during 10-12 ka BP. Long-term average discharge since 8 ka BP has been ~12 mt/yr), less than half the 29 mt/yr that was deposited on the Kaohsiung-Pingtung Plain. These and other sedimentation histories around Taiwan as well as in the South China Sea and the Bay of Bengal indicate that the occurrence of high sediment load cannot be explained solely by general circulation model of sea-level change; climate and climatic change also should be taken into account. We suggest that the intensification of the Asian monsoon, particularly in the case of Taiwan, typhoons, which occurred during the early Holocene may have been the root cause of the increased rainfall and thus increased erosion and sediment delivery. This study reconstructs the long-term sedimentary history of the region since the late Quaternary, especially focuses on the increased sediment discharges during the particularly warm and humid paleo-climatic period in NE and SW Taiwan. Moreover, it could help to better understand and predict fluvial sediment fluxes and their geological and societal impacts in response to future global warming.

  7. Area-based approach improves global sediment discharge modeling

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-07-01

    By approaching the challenge of calculating global sediment discharge rates from a new angle, Pelletier developed a model that outperforms many existing simulations while minimizing the number of free parameters. Knowing how sediment is transported by the world's rivers is a key factor in understanding how landscapes change over time, with important consequences for agricultural viability, ecological health, and soil properties. Traditionally, the majority of discharge models calculate sediment redistribution at the watershed or drainage basin scale, using watershed average values of the physical properties known to affect sediment transport. The author's model, on the other hand, partitions the planet into sections that are 5 arc minutes wide—roughly 10 kilometers across at the equator and smaller at higher latitudes. This decision to use an area-based grid rather than drainage basin averages allows for an improved representation of small-scale processes that are often washed out at the watershed scale.

  8. Terrestrial Sediment and Nutrient Discharge, and Their Potential Influence on Coral Reefs, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Larsen, M. C.; Webb, R. M.; Warne, A. G.

    2004-12-01

    Sediment and nutrient discharge to the insular shelf of Puerto Rico (18 degrees latitude), augmented by anthropogenic activity, is believed to have contributed to widespread degradation of coral reefs of Puerto Rico during the 20th century. Sediment deposition degrades coral reefs because it reduces the area of sea floor suitable for growth of new coral, diminishes the amount of light available for photosynthesis by symbiotic algae that live within individual coral animals, and in extreme cases, buries coral colonies. Land-use history and data from 30 water-discharge, 9 daily and 15 intermittent sediment-concentration, and 24 water-quality gaging stations were analyzed to investigate the timing and intensity of terrestrial sediment and nutrient discharge into coastal waters. Watersheds in Puerto Rico generally are small (10's to 100's of square km), channel gradients are steep, and stream valleys are deeply incised and narrow. Major storms are usually brief (<24 h) but intense such that the majority of the annual sediment discharge occurs in a few days. From 1960 through 2000 the highest mean daily discharge for a water year (October - September) accounted for 20 to 60 percent of the total annual sediment discharge. Major storms, with a return frequency of approximately a decade, were capable of discharging up to 30 times the median annual sediment-discharge volume. Prior to agricultural and industrial development, coastal waters are believed to have been relatively transparent, with strong currents and seasonal high-energy swells assisting corals in the removal of minor amounts of sediment deposited after storms. Land clearing and modification, first for agriculture and later for urban development, have increased sediment and nutrient influx to the coast during the 19th and 20th centuries. Although forest cover has increased to approximately 30 percent of the surface of Puerto Rico during the past 60 years, sediment eroded from hillslopes during the agricultural

  9. HIGH ENERGY GASEOUS DISCHARGE DEVICES

    DOEpatents

    Josephson, V.

    1960-02-16

    The high-energy electrical discharge device described comprises an envelope, a pair of main discharge electrodes supported in opposition in the envelope, and a metallic shell symmetrically disposed around and spaced from the discharge path between the electrodes. The metallic shell comprises a first element of spaced helical turns of metallic material and a second element of spaced helical turns of methllic material insulatedly supported in superposition outside the first element and with the turns overlapping the gap between the turns of the first element.

  10. Effective discharge for sediment transport: the sorting role of river flow regimes

    NASA Astrophysics Data System (ADS)

    Basso, Stefano; Sprocati, Riccardo; Frascati, Alessandro; Marani, Marco; Schirmer, Mario; Botter, Gianluca

    2016-04-01

    The effective discharge is a key concept in geomorphology, river engineering and restoration. It is used to design the most stable channel configuration, to estimate sedimentation rate and lifespan of reservoirs and to characterize the hydrologic forcing in models studying long-term evolution of rivers. Previous empirical, theoretical and numerical studies found the effective discharge to be affected by climate, landscape and river morphology, type of transport (dissolved, suspended or bedload), and by streamflow variability. However, the heterogeneity of values observed for the effective discharge challenges a clear understanding of its pivotal drivers, and a consistent framework which explains observations carried out in different catchments and geographic areas is still lacking. This work relates the observed diversity of effective discharge values to the underlying heterogeneity of river flow regimes. The effective ratio (i.e. the ratio between effective discharge and mean streamflow) is derived as a function of the empirical exponent of the sediment rating curve and the streamflow variability, resulting from climatic and landscape drivers. The proposed analytic expression helps to disentangle hydrologic and landscape controls on the effective discharge, and highlights distinct effective ratios of persistent and erratic hydrologic regimes (respectively characterized by low and high flow variability), attributable to intrinsically different streamflow dynamics. The framework captures observed values of effective discharge for suspended sediment transport in a set of catchments of the continental United States, and may allow for first-order estimates of effective discharge in rivers belonging to different climatic regions.

  11. Human activity and climate variability impacts on sediment discharge and runoff in the Yellow River of China

    NASA Astrophysics Data System (ADS)

    He, Yi; Wang, Fei; Mu, Xingmin; Guo, Lanqin; Gao, Peng; Zhao, Guangju

    2017-07-01

    We analyze the variability of sediment discharge and runoff in the Hekou-Longmen segment in the middle reaches of the Yellow River, China. Our analysis is based on Normalized Difference Vegetation Index (NDVI), sediment discharge, runoff, and monthly meteorological data (1961-2010). The climate conditions are controlled via monthly regional average precipitation and potential evapotranspiration (ET0) that are calculated with the Penman-Monteith method. Data regarding water and soil conservation infrastructure and their effects were investigated as causal factors of runoff and sediment discharge changes. The results indicated the following conclusions: (1) The sediment concentration, sediment discharge, and annual runoff, varied considerably during the study period and all of these factors exhibited larger coefficients of variation than ET0 and precipitation. (2) Sediment discharge, annual runoff, and sediment concentration significantly declined over the study period in a linear fashion. This was accompanied by an increase in ET0 and decline in precipitation that were not significant. (3) Within paired years with similar precipitation and potential evapotranspiration conditions (SPEC), all pairs showed a decline in runoff, sediment discharge, and sediment concentration. (4) Human impacts in this region were markedly high as indicated by NDVI, and soil and water measurements, and especially the soil and water conservation infrastructure resulting in an approximately 312 Mt year-1 of sediment deposition during 1960-1999.

  12. Sediment discharge into a subsiding Louisiana deltaic estuary through a Mississippi River diversion

    USGS Publications Warehouse

    Snedden, G.A.; Cable, J.E.; Swarzenski, C.; Swenson, E.

    2007-01-01

    Wetlands of the Mississippi River deltaic plain in southeast Louisiana have been hydrologically isolated from the Mississippi River by containment levees for nearly a century. The ensuing lack of fluvial sediment inputs, combined with natural submergence processes, has contributed to high coastal land loss rates. Controlled river diversions have since been constructed to reconnect the marshes of the deltaic plain with the river. This study examines the impact of a pulsed diversion management plan on sediment discharge into the Breton Sound estuary, in which duplicate 185 m3 s-1-diversions lasting two weeks each were conducted in the spring of 2002 and 2003. Sediment delivery during each pulse was highly variable (11,300-43,800 metric tons), and was greatest during rising limbs of Mississippi River flood events. Overland flow, a necessary transport mechanism for river sediments to reach the subsiding backmarsh regions, was induced only when diversion discharge exceeded 100 m3 s-1. These results indicate that timing and magnitude of diversion events are both important factors governing marsh sediment deposition in the receiving basins of river diversions. Though the diversion serves as the primary source of river sediments to the estuary, the inputs observed here were several orders of magnitude less than historical sediment discharge through crevasses and uncontrolled diversions in the region, and are insufficient to offset present rates of relative sea level rise. ?? 2006 Elsevier Ltd. All rights reserved.

  13. Sediment discharge into a subsiding Louisiana deltaic estuary through a Mississippi River diversion

    NASA Astrophysics Data System (ADS)

    Snedden, Gregg A.; Cable, Jaye E.; Swarzenski, Christopher; Swenson, Erick

    2007-01-01

    Wetlands of the Mississippi River deltaic plain in southeast Louisiana have been hydrologically isolated from the Mississippi River by containment levees for nearly a century. The ensuing lack of fluvial sediment inputs, combined with natural submergence processes, has contributed to high coastal land loss rates. Controlled river diversions have since been constructed to reconnect the marshes of the deltaic plain with the river. This study examines the impact of a pulsed diversion management plan on sediment discharge into the Breton Sound estuary, in which duplicate 185 m 3 s -1-diversions lasting two weeks each were conducted in the spring of 2002 and 2003. Sediment delivery during each pulse was highly variable (11,300-43,800 metric tons), and was greatest during rising limbs of Mississippi River flood events. Overland flow, a necessary transport mechanism for river sediments to reach the subsiding backmarsh regions, was induced only when diversion discharge exceeded 100 m 3 s -1. These results indicate that timing and magnitude of diversion events are both important factors governing marsh sediment deposition in the receiving basins of river diversions. Though the diversion serves as the primary source of river sediments to the estuary, the inputs observed here were several orders of magnitude less than historical sediment discharge through crevasses and uncontrolled diversions in the region, and are insufficient to offset present rates of relative sea level rise.

  14. Arctic River Discharge and Sediment Loads --- an Overview

    NASA Astrophysics Data System (ADS)

    Syvitski, J. P.; Overeem, I.; Brakenridge, G. R.; Hudson, B.; Cohen, S.

    2014-12-01

    Evidence suggests that river discharge has been increasing (+10%) over the last 30 years (1977-2007) for most arctic rivers. The peak melt month occurs earlier in the season in 66% of the studied rivers. Cold season flow is also increasing. Satellite discharge estimates, daily, based on microwave radiometry, are now possible from 1998 onwards. Daily river discharge hindcasts over the last 60 years using the water balance model WBMsed at a 10km spatial resolution are now available. The WBMsed model can be used in forecast mode assuming valid input climatology. The challenge here has been the accuracy of sub-polar precipitation grids. While each of these three methods (gauging, orbital sensing, modeling) has temporal and spatial coverage limitations, the combination of all three methods provides for a realistic way forward for estimating local discharge across the pan arctic. Flood inundation products are routinely produced for the pan-arctic using automated mapping algorithms developed by the Dartmouth Flood Observatory. The determination of artic river sediment loads is less than ideal. Some rivers have only been monitored for a short number of years, and many have not been monitored at all. The WBMsed model is perhaps the best method of estimating the daily sediment flux to the Arctic Ocean, at least for rivers where the mean discharge is greater than 30 m3/s. Additionally there is limited-duration field monitoring by national surveys. New methods are being explored, including back calculating the delivery of sediment to the coastal ocean by plume dimensions observed from space (MODIS, LandSat). These methods have had moderate success when applied to plumes extending in the Greenland fjords. Canada maintains an active circa 7-y satellite program (ArcticNet) to track the Mackenzie discharge during the spring-summer runoff period when turbid river water is apt to flow under and over marginal sea ice in the Beaufort Sea.

  15. Water Discharge and Sediment Load from the Western Slopes of the Colombian Andes with Focus on Rio San Juan.

    PubMed

    Restrepo; Kjerfve

    2000-01-01

    Small rivers draining high-rainfall basins and mountainous terrain west of the Cordilleras in South America have disproportionately high water discharge and sediment load. Fifteen rivers in western Colombia discharge a combined 254 km3 yr-1 or 8020 m3 s-1 of water into the Pacific. Sediment yield is strongly correlated with basin area (R2=0.97), and sediment load is correlated with water discharge (R2=0.73). Rio San Juan occupies a 16,465-km2 basin with a mean annual rainfall of 7277 mm. It has the highest water discharge (2550 m3 s-1), sediment load (16x106 t yr-1), and basin-wide sediment yield (1150 t km-2 yr-1) on the entire west coast of South America. Rio Patía drains a 23,700-km2 basin with a mean annual rainfall of 2821 mm. Its water discharge, sediment load, and basin-wide sediment yield are 1291 m3 s-1, 14 t yr-1, and 972 t km-2 yr-1, respectively. Rio San Juan and Rio Patía deliver 30x106 t of suspended sediment annually into the Pacific. Analysis of data for an additional 22 rivers in Colombia that drain into the Caribbean Sea indicates that the Pacific rivers have at least twice the sediment yield compared with the larger Rio Magdalena. Our results confirm that the Pacific rivers of Colombia need to be accounted for in global sediment budgets.

  16. Dynamics of sediment disturbance by periodic artificial discharges from the world's largest tidal power plant

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Ha, H. K.; Woo, S. B.

    2017-05-01

    To investigate the dynamics of sediment disturbance near the world's largest Sihwa tidal power plant (TPP), two mooring observations have been conducted. The mooring results show that current velocity and suspended sediment concentration (SSC) were significantly disturbed over various time scales. On the short-term (flood-ebb) time scale, resuspension of bottom sediment is mainly controlled by the strong jet-flow (>2 m s-1) and resulting anticlockwise rotating vortex associated with the artificial discharge. During ebb phase, the strong flow resulted in suspension of high-concentration near-bed sediment and seaward transport of the suspended sediment. After turning to flood phase, the vortex produced secondary SSC peaks, transporting the suspended sediment toward the Sihwa TPP. The most active suspension of bed sediment predominantly occurred during 1-2 h immediately after the start of artificial discharge. For the fortnightly (spring-neap) time scale, SSC during spring tide was approximately 2-5 times higher than that during neap tide. During the combined period of ebb and spring tides, in particular, the periodic artificial discharge can enhance the responses of SSC in the vicinity of Sihwa TPP.

  17. Quality of sediment discharging from the Barton Springs system, Austin, Texas, 2000-2002

    USGS Publications Warehouse

    Mahler, Barbara J.

    2003-01-01

    Four spring outlets of the Barton Springs system provide the only known habitat for the Barton Springs salamander (Eurycea sosorum), a federally listed endangered species. After heavy rainfall, sediment is flushed through the Barton Springs segment of the Edwards aquifer and springflow often becomes turbid (cloudy). Sediment in urban areas often has high concentrations of hydrophobic contaminants, such as DDT, polycyclic aromatic hydrocarbons (PAHs), and lead. In response to concerns that sediment discharging from the Barton Springs outlets could contain contaminants at levels that pose a threat to the health of the salamander or its prey, the U.S. Geological Survey (USGS), in cooperation with the U.S. Fish and Wildlife Service, collected samples of suspended sediment discharging from each of the four spring outlets after two rainstorms and analyzed them for a suite of hydrophobic contaminants.

  18. Identifying trends in sediment discharge from alterations in upstream land use

    USGS Publications Warehouse

    Parker, R.S.; Osterkamp, W.R.

    1995-01-01

    Environmental monitoring is a primary reason for collecting sediment data. One emphasis of this monitoring is identification of trends in suspended sediment discharge. A stochastic equation was used to generate time series of annual suspended sediment discharges using statistics from gaging stations with drainage areas between 1606 and 1 805 230 km2. Annual sediment discharge was increased linearly to yield a given increase at the end of a fixed period and trend statistics were computed for each simulation series using Kendal's tau (at 0.05 significance level). A parameter was calculated from two factors that control trend detection time: (a) the magnitude of change in sediment discharge, and (b) the natural variability of sediment discharge. In this analysis the detection of a trend at most stations is well over 100 years for a 20% increase in sediment discharge. Further research is needed to assess the sensitivity of detecting trends at sediment stations.

  19. Long-term changes in sediment phosphorus below a rural effluent discharge

    NASA Astrophysics Data System (ADS)

    Haggard, B. E.; Stoner, R. J.

    2009-02-01

    Effluent discharge often increases the amount of phosphorus (P) in the water column and bed material of receiving water bodies. The goal of this study was to evaluate changes in sediment-P interactions in an effluent-driven stream over a 4-year period where hydrology and watershed P management changed dramatically. Specifically, this study evaluated (i) the equilibrium between benthic sediments and stream water dissolved P; and (ii) the amounts of select P fractions in the bed material within the fluvial channel. Sediment and water samples were collected at Columbia Hollow in northwest Arkansas from October 2003 through September 2007, and the sampling site was approximately 3 km downstream from the Decatur wastewater treatment plant (WWTP). Monthly average effluent total P (TP) concentrations were highly variable (0.30-4.80 mg L-1) from October 2003 until December 2005; however, the Decatur WWTP implemented new P management strategies in 2006 that reduced the variability in effluent TP (0.28-0.95 mg L-1). Soluble reactive P (SRP) concentrations at Columbia Hollow 3 km downstream from the effluent discharge followed the same pattern; these concentrations were positively correlated to the effluent TP (r=0.73; p<0.001). Sediment equilibrium concentrations (EPC0) were significantly less (ln transformed data, p<0.001) after the WWTP effluent reduced TP concentrations, and sediment EPC0 suggested that the stream bed material acted as a P source to the overlying water at Columbia Hollow. The effects of this effluent discharge and the WWTP management changes on sediment P dynamics were profound. Prior to implementation of WWTP P management, the effluent TP concentrations were the driving factor related to SRP concentrations in the water column and sediment EPC0. Conversely, after the P management changes the benthic sediments became the important factor likely regulating dissolved P concentrations in the stream water.

  20. Effects of a nearshore wastewater discharge: Water column and sediment pore water toxicity

    SciTech Connect

    Krause, P.R.; Carr, R.S.

    1995-12-31

    The relationship between water column and sediment pore water toxicity was investigated near a municipal-industrial wastewater discharge in southern Texas. Toxicity associated with effluent distributions in the water column are known to vary in both time and space. Toxicity of sediment, however, is often more stable over time. Sediment can serve as a long-term integrator of toxicity in areas subject to chronic exposure of effluents. This study addressed the relationship between water column toxicity and that found in the sediments on both spatial and temporal scales. Four 2 Km transacts were established around a nearshore wastewater outfall. Eight stations along each transact were sampled for both surface waters and sediment pore water toxicity. Toxicity was determined using a modified sea urchin fertilization test. Surface waters were sampled and tested for eight consecutive months, while sediment pore waters were sampled on three occasions over the length of this study. Results have shown that toxicity in receiving waters was a good indicator to trace movements of the highly variable effluent plume. The distribution of effluent in the water column, and hence water column toxicity, was primarily driven by local wind conditions. Toxicity in sediment porewater was, much less variable and more evenly distributed over the study site. Sediment pore water toxicity was also a good predictor of the distribution of benthic infaunal invertebrates over much of the study site.

  1. Global suspended sediment and water discharge dynamics between 1960 and 2010: Continental trends and intra-basin sensitivity

    NASA Astrophysics Data System (ADS)

    Cohen, Sagy; Kettner, Albert J.; Syvitski, James P. M.

    2014-04-01

    Establishing a quantitative description of global riverine fluxes is one of the main goals of contemporary hydrology and geomorphology. Here we study changes in global riverine water discharge and suspended sediment flux over a 50-year period, 1960-2010, applying a new version of the WBMsed (WBMsed v.2.0) global hydrological water balance model. A new floodplain component is introduced to better represent water and sediment dynamics during periods of overbank discharge. Validated against data from 16 globally distributed stations, WBMsed v.2.0 simulation results show considerable improvement over the original model. Normalized departure from an annual mean is used to quantify spatial and temporal dynamics in both water discharge and sediment flux. Considerable intra-basin variability in both water and sediment discharge is observed for the first time in different regions of the world. Continental-scale analysis shows considerable variability in water and sediment discharge fluctuations both in time and between continents. A correlation analysis between predicted continental suspended sediment and water discharge shows strong correspondence in Australia and Africa (R2 of 0.93 and 0.87 respectively), moderate correlation in North and South America (R2 of 0.64 and 0.73 respectively) and weak correlation in Asia and Europe (R2 of 0.35 and 0.24 respectively). We propose that yearly changes in intra-basin precipitation dynamics explain most of these differences in continental water discharge and suspended sediment correlation. The mechanism proposed and demonstrated here (for the Ganges, Danube and Amazon Rivers) is that regions with high relief and soft lithology will amplify the effect of higher than average precipitation by producing an increase in sediment yield that greatly exceeds increase in water discharge.

  2. Global suspended sediment and water discharge dynamics between 1960 and 2010: Continental trends and intra-basin sensitivity

    NASA Astrophysics Data System (ADS)

    Cohen, S.; Kettner, A. J.; Syvitski, J. P.

    2015-12-01

    Establishing a quantitative description of global riverine fluxes is one of themain goals of contemporary hydrol-ogy and geomorphology. Herewe study changes in global riverinewater discharge and suspended sediment fluxover a 50-year period, 1960-2010, applying a new version of theWBMsed (WBMsed v.2.0) global hydrologicalwater balancemodel. A newfloodplain component is introduced to better representwater and sediment dynam-ics during periods of overbank discharge. Validated against data from 16 globally distributed stations, WBMsedv.2.0 simulation results show considerable improvement over the original model. Normalized departure froman annual mean is used to quantify spatial and temporal dynamics in both water discharge and sediment flux.Considerable intra-basin variability in both water and sediment discharge is observed for the first time in differ-ent regions of the world. Continental-scale analysis shows considerable variability in water and sediment dis-charge fluctuations both in time and between continents. A correlation analysis between predicted continentalsuspended sediment and water discharge shows strong correspondence in Australia and Africa (R2 of 0.93 and 0.87 respectively), moderate correlation in North and South America (R2 of 0.64 and 0.73 respectively) and weak correlation in Asia and Europe (R2 of 0.35 and 0.24 respectively). We propose that yearly changes inintra-basin precipitation dynamics explain most of these differences in continental water discharge andsuspended sediment correlation. The mechanism proposed and demonstrated here (for the Ganges, Danubeand Amazon Rivers) is that regions with high relief and soft lithology will amplify the effect of higher than aver-age precipitation by producing an increase in sediment yield that greatly exceeds increase in water discharge.

  3. Importance of measuring discharge and sediment transport in lesser tributaries when closing sediment budgets

    USGS Publications Warehouse

    Griffiths, Ronald; Topping, David

    2017-01-01

    Sediment budgets are an important tool for understanding how riverine ecosystems respond to perturbations. Changes in the quantity and grain size distribution of sediment within river systems affect the channel morphology and related habitat resources. It is therefore important for resource managers to know if a river reach is in a state of sediment accumulation, deficit or stasis. Many sediment-budget studies have estimated the sediment loads of ungaged tributaries using regional sediment-yield equations or other similar techniques. While these approaches may be valid in regions where rainfall and geology are uniform over large areas, use of sediment-yield equations may lead to poor estimations of loads in regions where rainfall events, contributing geology, and vegetation have large spatial and/or temporal variability.Previous estimates of the combined mean-annual sediment load of all ungaged tributaries to the Colorado River downstream from Glen Canyon Dam vary by over a factor of three; this range in estimated sediment loads has resulted in different researchers reaching opposite conclusions on the sign (accumulation or deficit) of the sediment budget for particular reaches of the Colorado River. To better evaluate the supply of fine sediment (sand, silt, and clay) from these tributaries to the Colorado River, eight gages were established on previously ungaged tributaries in Glen, Marble, and Grand canyons. Results from this sediment-monitoring network show that previous estimates of the annual sediment loads of these tributaries were too high and that the sediment budget for the Colorado River below Glen Canyon Dam is more negative than previously calculated by most researchers. As a result of locally intense rainfall events with footprints smaller than the receiving basin, floods from a single tributary in semi-arid regions can have large (≥ 10 ×) differences in sediment concentrations between equal magnitude flows. Because sediment loads do not

  4. Analysis of suspended-sediment concentrations and discharges at four long-term sediment stations in central and southern Illinois, 1975-92 water years

    USGS Publications Warehouse

    Terrio, Paul J.

    1996-01-01

    The U.S. Geological Survey and the U.S. Army Corps of Engineers, St. Louis District, have jointly operated four sediment stations in central and southern Illinois since May 1975--Illinois River at Valley City, Kaskaskia River at Cooks Mills, Kaskaskia River near Venedy Station, and Big Muddy River at Murphysboro. A comprehensive analysis of the historical data from these sediment stations was done to determine changes in the concentrations or amounts of suspended sediment transported in the streams. Generally, the highest suspended-sediment concentrations were found in the Illinois River at Valley City (the station with the largest drainage area), and the lowest concentrations were in the Kaskaskia River at Cooks Mills (the station with the smallest drainage area). Suspended-sediment concentrations were typically high in the spring and summer (March through August) and low in the fall or winter (September through February). The seasonal Kendall test for trends indicated a statistically significant downward trend in suspended-sediment concentrations at three of the sediment stations, including a downward trend of 5.50 milligrams per liter per year in the Illinois River at Valley City. Median suspended-sediment discharges at the four sediment stations ranged from 47.1 to 3,260 tons per day and corresponded to the size of the drainage areas. The largest median suspended sediment yield, 0.12 tons per square mile per day, was in the Illinois River at Valley City. Suspended-sediment discharges during the spring were larger than during other seasons. The seasonal Kendall test for trends indicated a statistically significant downward trend in suspended sediment discharges at two of the sediment stations (Kaskaskia River at Cooks Mills and Big Muddy River at Murphysboro).

  5. Modeling the impact of climate change on watershed discharge and sediment yield in the black soil region, northeastern China

    NASA Astrophysics Data System (ADS)

    Li, Zhiying; Fang, Haiyan

    2017-09-01

    Climate change is expected to impact discharge and sediment yield in watersheds. The purpose of this paper is to assess the potential impacts of climate change on water discharge and sediment yield for the Yi'an watershed of the black soil region, northeastern China, based on the newly released Representative Concentration Pathways (RCPs) during 2071-2099. For this purpose, the TETIS model was implemented to simulate the hydrological and sedimentological responses to climate change. The model calibration (1971-1977) and validation (1978-1987) performances were rated as satisfactory. The modeling results for the four RCP scenarios relative to the control scenario under the same land use configuration indicated an increase in discharge of 16.3% (RCP 2.6), 14.3% (RCP 4.5), 36.7% (RCP 6.0) and 71.4% (RCP 8.5) and an increase in the sediment yield of 16.5% (RCP 2.6), 32.4% (RCP 4.5), 81.8% (RCP 6.0) and 170% (RCP 8.5). This implies that the negative impact of climate change on sediment yield is generally greater than that on discharge. At the monthly scale, both discharge and sediment yield increased dramatically in April to June and August to September. A more vigorous hydrological cycle and an increase in high values of sediment yield are also expected. These changes in annual discharge and sediment yield were closely linked with changes in precipitation, whereas monthly changes in late spring and autumn were mainly related to temperature. This study highlights the possible adverse impact of climate change on discharge and sediment yield in the black soil region of northeastern China and could provide scientific basis for adaptive management.

  6. Sediment transport and effective discharge of the North Platte, South Platte, and Platte Rivers in Nebraska

    USGS Publications Warehouse

    Kircher, J.E.

    1981-01-01

    Sediment discharge was computed for four locations along the North Platte, South Platte, and the Platte Rivers between North Platte and Grand Island, Nebraska in order to determine the effective discharge. The total-sediment discharge was computed by the Colby method and modified Einstein method so that comparisons could be made with the measured total-sediment discharge. The results agreed closely. The Colby method is the simplest and most convenient to use. The mean annual total-sediment discharge for the four sites investigated ranged from 150 tons per day for the South Platte River at North Platte to 1,260 tons per day for the Platte River near Grand Island. The effective discharge at the sites ranged from 41 to 158 cubic meters per second. The probability of the effective discharge being equaled or exceeded ranged from 1 to 30 percent for the four sites. (USGS)

  7. Seasonal arsenic accumulation in stream sediments at a groundwater discharge zone.

    PubMed

    MacKay, Allison A; Gan, Ping; Yu, Ran; Smets, Barth F

    2014-01-21

    Seasonal changes in arsenic and iron accumulation rates were examined in the sediments of a brook that receives groundwater discharges of arsenic and reduced iron. Clean glass bead columns were deployed in sediments for known periods over the annual hydrologic cycle to monitor changes in arsenic and iron concentrations in bead coatings. The highest accumulation rates occurred during the dry summer period (July-October) when groundwater discharges were likely greatest at the sample locations. The intermediate flow period (October-March), with higher surface water levels, was associated with losses of arsenic and iron from bead column coatings at depths below 2-6 cm. Batch incubations indicated iron releases from solids to be induced by biological reduction of iron (oxy)hydroxide solids. Congruent arsenic releases during incubation were limited by the high arsenic sorption capacity (0.536 mg(As)/mg(Fe)) of unreacted iron oxide solids. The flooded spring (March-June) with high surface water flows showed the lowest arsenic and iron accumulation rates in the sediments. Comparisons of accumulation rates across a shoreline transect were consistent with greater rates at regions exposed above surface water levels for longer times and greater losses at locations submerged below surface water. Iron (oxy)hydroxide solids in the shallowest sediments likely serve as a passive barrier to sorb arsenic released to pore water at depth by biological iron reduction.

  8. Suspended-sediment discharge in five streams near Harrisburg, Pennsylvania, before, during, and after highway construction

    USGS Publications Warehouse

    Reed, Lloyd A.

    1980-01-01

    Rainfall, streamflow, sediment, and turbidity data were collected as part of a study to evaluate the effects of highway construction on suspended-sediment discharges in streams. The study was also designed to evaluate the effectiveness of different erosion-control measures in reducing sediment discharge. Although highway construction increased suspended-sediment discharges from two to four-fold, the rate of sediment discharge quickly returned to pre-construction levels when construction ended. The most effective sediment control evaluated was offstream ponds, which were designed to trap and store sediment laden water from the construction area. The offstream ponds trapped about 70 percent of the sediment that reached them during most storms. Seeding and mulching generally reduced sediment loads about 20 percent. Rock dams and bales reduced loads about 5 percent. An onstream pond, constructed on a large stream below the construction area, reduced sediment loads about 80 percent. However, unlike the offstream ponds, which stopped discharging runoff water soon after precipitation ended, the onstream pond kept discharging runoff water, and the stream below the pond remained turbid for extended periods.

  9. Concentration-Discharge Relationships of Solutes and Suspended Sediments Indicate Differing Patterns of Hydrologic Mobilization, Reaction, and Transport

    NASA Astrophysics Data System (ADS)

    Rose, L.; Karwan, D. L.; Godsey, S.

    2016-12-01

    Concentration-discharge (C-Q) relationships are used to characterize catchment-scale solute and suspended sediment transport, reaction, mixing, and source dynamics. Differences in predominant solute and suspended sediment transport pathways (e.g., subsurface and overland flowpaths, in-channel sediment storage and mobilization) and hydrologic conditions can influence solute and sediment relationships with discharge. We examined instantaneous discharge and concentrations of weathering/bioactive solutes and suspended sediments over 11 years (2001-2012) in the White Clay Creek sub-watershed of the Christina River Basin Critical Zone Observatory (Pennsylvania, USA). This dataset includes extreme hydrologic events, such as Hurricanes Irene and Sandy. Coupled analysis of log-log regression slopes and the ratio of the coefficients of variation for concentration and discharge (CVc/CVq) suggest that concentrations of weathering solutes (Ca, Mg, Cl, Na, silica) and NO3 generally became diluted with increasing discharge. In contrast, bioactive solutes (K, DON, DOC) showed weak log linear C-Q relationships and low CVc/CVq values, demonstrating chemostatic behavior across a wide range of hydrologic conditions. Regression slopes of total P and total suspended sediment were positive and CVc/CVq values were > 1, indicating that these materials were transport-limited and their concentrations increased with discharge. Weak log-linear C-Q relationships and CVc/CVq values > 1 for PO4 and NH4 suggest that concentration dynamics for these solutes were more likely driven by their high reactivities rather than by discharge. We explore potential mechanisms contributing to these patterns of solute and sediment C-Q relationships and discuss further applications of C-Q relationships to characterize catchment-scale hydro-biogeochemical dynamics.

  10. Simplified methods for computing total sediment discharge with the modified Einstein procedure

    USGS Publications Warehouse

    Colby, Bruce R.; Hubbell, David Wellington

    1961-01-01

    A procedure was presented in 1950 by H. A. Einstein for computing the total discharge of sediment particles of sizes that are in appreciable quantities in the stream bed. This procedure was modified by the U.S. Geological Survey and adapted to computing the total sediment discharge of a stream on the basis of samples of bed sediment, depth-integrated samples of suspended sediment, streamflow measurements, and water temperature. This paper gives simplified methods for computing total sediment discharge by the modified Einstein procedure. Each of four homographs appreciably simplifies a major step in the computations. Within the stated limitations, use of the homographs introduces much less error than is present in either the basic data or the theories on which the computations of total sediment discharge are based. The results are nearly as accurate mathematically as those that could be obtained from the longer and more complex arithmetic and algebraic computations of the Einstein procedure.

  11. The effects of wastewater discharge on the microbiological nitrogen cycle of the lake sediments

    NASA Astrophysics Data System (ADS)

    Saarenheimo, Jatta; Aalto, Sanni L.; Tiirola, Marja

    2016-04-01

    Anthropogenic wastewater inputs alter the natural dynamics of nitrogen (N) cycle by providing high concentrations of nitrate and organic matter to the sediment microbes. It can also change the microbial community composition and N removal potential but this is currently not that well studied. To study these aspects, we conducted ecosystem-scale experiment in Lake Keurusselkä, Finland. In the experiment, the wastewater discharge to the recipient lake was optimized with sediment filtration, which increased the surface and retention time of the nitrified wastewater with the sediment. In addition to N transformation rates, which showed that optimization enhanced denitrification, we studied the microbial responses at the sediment. Genetic potential of nitrogen transformation processes, such as denitrification, dissimilatory nitrate reduction to ammonium (DNRA) and nitrification were studied by targeting the functional genes (i.e. nirS, nirK, nosZI, nosZII, nrfA, amoAarchaea and amoAbacteria) with quantitative PCR and digital droplet PCR. In addition, changes in the microbial community composition along the wastewater gradient were examined by using next generation sequencing of the 16S rRNA genes. In line with our hypothesis, the relative abundance of denitrifying genes followed the observed denitrification rates, being highest near the nitrate-rich wastewater discharge. Furthermore the microbial community composition in the discharge point differed clearly from the control and downstream sites, having also the highest numbers of rare OTUs. Abundance of nitrifying bacteria was higher than nitrifying archaea near the waste water discharge, whereas the opposite was seen at the control site. The results indicate that wastewater is not only increasing the denitrification rates, but can also alter the structure and genetic potential microbial communities.

  12. Bedload component of glacially discharged sediment: Insights from the Matanuska Glacier, Alaska

    USGS Publications Warehouse

    Pearce, J.T.; Pazzaglia, F.J.; Evenson, E.B.; Lawson, D.E.; Alley, R.B.; Germanoski, D.; Denner, J.D.

    2003-01-01

    The flux of glacially derived bedload and the proportions of the suspended and bedload components carried by proglacial streams are highly debated. Published data indicate a large range-from 75%-in the bedload percentage of the total load. Two "vents," where supercooled subglacial meltwater and sediment are discharged, were sampled over the course of an entire melt season in order to quantify the flux of glacially delivered bedload at the Matanuska Glacier, Alaska. The bedload component contributed by these vents, for the one melt season monitored, is negligible. Furthermore, the bedload fluxes appear to be strongly supply limited, as shown by the poorly correlated discharge, bedload-flux magnitude, and grain-size caliber. Thus, in this case, any attempt to employ a predictive quantitative expression for coarse-sediment production based on discharge alone would be inaccurate. A nonglaciated basin proximal to the Matanuska Glacier terminus yielded higher bedload sediment fluxes and larger clast sizes than delivered by the two monitored vents. Such nonglaciated basins should not be overlooked as potentially major sources of coarse bedload that is reworked and incorporated into valley outwash.

  13. Coastal erosion vs riverline sediment discharge in the Arctic shelfx seas

    USGS Publications Warehouse

    Rachold, V.; Grigoriev, M.N.; Are, F.E.; Solomon, Sean C.; Reimnitz, E.; Kassens, H.; Antonow, M.

    2000-01-01

    This article presents a comparison of sediment input by rivers and by coastal erosion into both the Laptev Sea and the Canadian Beaufort Sea (CBS). New data on coastal erosion in the Laptev Sea, which are based on field measurements and remote sensing information and existing data on coastal erosion in the CBS as well as riverine sediment discharge into both the Laptev Sea and the CBS are included. Strong regional differences in the percentages of coastal ero- sion and riverine sediment supply are observed. The CBS is dominated by the riverine sediment discharge (64.45x106 t a-1) mainly of the Mackenzie River. which is the largest single source of sediments in the Arctic. Riverine sediment discharge into the Laptev Sea amounts to 24.10x106 t a-1, more than 70% of which are related to the Lena River. In comparison with the CBS. the Laptev Sea coast on average delivers approximately twice as much sediment mass per kilometer, a result of higher erosion rates due to higher cliffs and seasonal ice melting. In the Laptev Sea sediment input by coastal erosion (58.4x106 t a-1) is therefore more important than in the CBS and the ratio between riverine and coastal sediment input amounts to 0.4. Coastal erosion supplying 5.6x106 t a-1 is less significant for the sediment budget of the CBS where riverine sediment discharge exceeds coastal sediment input by a factor of ca. 10.

  14. An Investigation of Effective Discharge for Suspended Sediment by Level III Ecoregion

    NASA Astrophysics Data System (ADS)

    Heins, A.; Simon, A.

    2002-12-01

    The concept of dominant discharge in alluvial channels was first introduced by Wolman and Miller (1960). In their examination of magnitude and frequency of geomorphic forces, they proposed that the flow transporting the greatest amount of sediment and controlling channel form was not the highest magnitude discharge experienced by a river channel as commonly perceived, but in reality a relatively frequent event. This "effective discharge" can be calculated using flow and sediment-transport data to establish the increment of discharge that transports the largest fraction of the annual sediment load over a period of years. Because of the availability of suspended-sediment data, the dearth of bed-load data and the need to establish water-quality criteria for suspended sediment, this study focuses on the "effective discharge" for suspended sediment only. In the decades since Wolman and Miller's work, the term "dominant discharge" has been associated with two other flows: bankfull discharge, and flow of a given recurrence interval. Pickup and Warner (1976) state the average dominant discharge is the 1.58 year event on the annual flood series, although in other literature the recurrence interval is cited to generally fall between 1.0 and 2.5 years. Conversely, other authors refute that a flow of a universally applicable recurrence interval represents the effective discharge. However, the recent focus on river restoration and rehabilitation projects has meant magnitude-frequency analysis has become more widely applied for designing stable channels, and in many cases the 1.5 year flood has been considered equivalent to the bankfull and effective discharges. The purpose of this paper is to determine the effective discharge for suspended sediment in various ecoregions of the continental United States and to test whether the 1.5 year discharge is a reasonable estimate of this channel-forming flow. To date, the effective discharges for suspended sediment have been calculated

  15. Fluvial-sediment discharge to the oceans from the conterminous United States

    USGS Publications Warehouse

    Curtis, Westley Farnsworth; Culbertson, James J.; Chase, Edith B.

    1973-01-01

    This report is a contribution to the UNESCO-sponsored project of the International Hydrological Decade called the World Water Balance. Annual fluvial-sediment discharge from the conterminous United States averages 491,449,600 short tons, of which 14,204,000 is discharged to the Atlantic Ocean, 378,179,000 to the Gulf of Mexico, and 99,066,600 to the Pacific Ocean. Data from 27 drainage areas were used to estimate the average annual discharge, yield, and concentration of fluvial sediment. The data may be used to extrapolate part of the total world sediment yield to the marine environment.

  16. Sediment discharge in the Santa Clara River Basin, Ventura and Los Angeles Counties, California

    USGS Publications Warehouse

    Williams, Rhea P.

    1979-01-01

    Sediment data collected in the Santa Clara River in California basin, during the 1967-75 water years were analyzed to determine the particle size and quantity of sediment transported past three gaging stations. The total sediment discharge of the basin , computed from records of Santa Clara River at Montalvo for water years 1968-75, was 63.5 million tons, of which 59.5 million tons was carried in suspension and an estimated 4 million tons was transported as unsampled sediment discharge. About 17.7 million tons, or 28 percent of the total sediment discharge, was coarse sediment (particles larger than 0.062 millimeter). Most of the sediment was transported during only a few days of floodflow each year. During the 1968-75 water years, approximately 55 percent of the total sediment was transported in 2 days and 92 percent was transported in 53 days. The long-term (1928-75) average annual sediment discharge of the Santa Clara River at Montalvo is estimated at 3.67 million tons. Of that quantity, 2.58 million tons consisted of fine sediment and 1.09 million tons consisted of coarse sediment. A sediment budget for the Santa Clara River basin was estimated for sediment discharges under both natural and actual conditions. The major difference between natural and actual sediment discharges of the Santa Clara River basin is the sediment intercepted upstream from Lake Piru. The combined trap efficiency of Lake Piru and Pyramid Lake approaches 100 percent. Sediment deposited in these reservoirs resulted in about a 6-percent reduction of sediment to the Santa Clara River basin during the historical period (1928-75) and a 12-percent reduction during the period most affected by dams (1953-75). Sediment losses to the basin by gravel mining, diversion of flows, and interception of sediment in the Castaic Creek basin resulted in additional reductions of 2 percent during the period 1928-75 and 4 percent during the period 1953-75. (Kosco-USGS)

  17. Anthropogenic effects on global riverine sediment and water discharge - a spatially explicit analysis

    NASA Astrophysics Data System (ADS)

    Cohen, S.; Kettner, A. J.; Syvitski, J. P.

    2013-12-01

    Changes in global riverine water discharge and suspended sediment flux over a 50-year period, 1960-2010 are studied, applying a new version of the WBMsed (WBMsed v.2.0) global hydrological water balance model. A new floodplain component is introduced to better represent water and sediment dynamics during periods of overbank discharge. Validated against data from 16 globally distributed stations, WBMsed v.2.0 simulation results show considerable improvement over the original model. Anthropogenic impact on sediment and water discharge is evaluated by comparing global scale simulations with and without human drivers and parameters (agricultural land use, water intake form aquifers and rivers, sediment trapping in reservoirs, and human-induced soil erosion). The results show that, on average, global riverine sediment flux is reduced by approximately 25% by anthropogenic activities (almost exclusively due to trapping in reservoirs) while water discharge is reduced by about 2%. These results correspond to previous analysis by other research groups. Substantial global and intra-basin variability is observed (see Figure 1) for the first time. In some regions an opposite anthropogenic effect on sediment and water discharge was predicted (e.g. west Mississippi Basin, Rio Grande River, Indian subcontinent). We discuss the western part of the Mississippi Basin as an example of this intriguing anthropogenic impact. Figure 1. Percent change between disturbed and pristine simulations (with and without human footprint respectively) for sediment flux (top) and water discharge (bottom).

  18. High Voltage Discharge Profile on Soil Breakdown Using Impulse Discharge

    NASA Astrophysics Data System (ADS)

    Fajingbesi, F. E.; Midi, N. S.; Elsheikh, E. M. A.; Yusoff, S. H.

    2017-06-01

    Grounding terminals are mandatory in electrical appliance design as they provide safety route during overvoltage faults. The soil (earth) been the universal ground is assumed to be at zero electric potential. However, due to properties like moisture, pH and available nutrients; the electric potential may fluctuate between positive and negative values that could be harmful for internally connected circuits on the grounding terminal. Fluctuations in soil properties may also lead to current crowding effect similar to those seen at the emitters of semiconductor transistors. In this work, soil samples are subjected to high impulse voltage discharge and the breakdown characteristics was profiled. The results from profiling discharge characteristics of soil in this work will contribute to the optimization of grounding protection system design in terms of electrode placement. This would also contribute to avoiding grounding electrode current crowding, ground potential rise fault and electromagnetic coupling faults.

  19. Detecting submarine groundwater discharge with synoptic surveys of sediment resistivity, radium, and salinity

    NASA Astrophysics Data System (ADS)

    Breier, J. A.; Breier, C. F.; Edmonds, H. N.

    2005-12-01

    A synoptic geophysical and geochemical survey was used to investigate the occurrence and spatial distribution of submarine discharges of water to upper Nueces Bay, Texas. The 17 km survey incorporated continuous resistivity profiling; measurements of surface water salinity, temperature, and dissolved oxygen; and point measurements of dissolved Ra isotopes. The survey revealed areas of interleaving, vertical fingers of high and low conductivity extending up through 7 m of bay bottom sediments into the surface water, located within 100 m of surface salinity and dissolved Ra maxima along with peaks in water temperature and lows in dissolved oxygen. These results indicate either brackish submarine groundwater discharge or the leakage of oil field brine from submerged petroleum pipelines.

  20. Assessing natural and anthropogenic influences on water discharge and sediment load in the Yangtze River, China.

    PubMed

    Zhao, Yifei; Zou, Xinqing; Liu, Qing; Yao, Yulong; Li, Yali; Wu, Xiaowei; Wang, Chenglong; Yu, Wenwen; Wang, Teng

    2017-12-31

    The water discharge and sediment load of rivers are changing substantially under the impacts of climate change and human activities, becoming a hot issue in hydro-environmental research. In this study, the water discharge and sediment load in the mainstream and seven tributaries of the Yangtze River were investigated by using long-term hydro-meteorological data from 1953 to 2013. The non-parametric Mann-Kendall test and double mass curve (DMC) were used to detect trends and abrupt change-points in water discharge and sediment load and to quantify the effects of climate change and human activities on water discharge and sediment load. The results are as follows: (1) the water discharge showed a non-significant decreasing trend at most stations except Hukou station. Among these, water discharge at Dongting Lake and the Min River basin shows a significant decreasing trend with average rates of -13.93×10(8)m(3)/year and -1.8×10(8)m(3)/year (P<0.05), respectively. However, the sediment load exhibited a significant decreasing trend in all tributaries of the Yangtze River. (2) No significant abrupt change-points were detected in the time series of water discharge for all hydrological stations. In contrast, significant abrupt change-points were detected in sediment load, most of these changes appeared in the late 1980s. (3) The water discharge was mainly influenced by precipitation in the Yangtze River basin, whereas sediment load was mainly affected by climate change and human activities; the relative contribution ratios of human activities were above 70% for the Yangtze River. (4) The decrease of sediment load has directly impacted the lower Yangtze River and the delta region. These results will provide a reference for better resource management in the Yangtze River Basin. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. High power impulse magnetron sputtering discharge

    SciTech Connect

    Gudmundsson, J. T.; Brenning, N.; Lundin, D.; Helmersson, U.

    2012-05-15

    The high power impulse magnetron sputtering (HiPIMS) discharge is a recent addition to plasma based sputtering technology. In HiPIMS, high power is applied to the magnetron target in unipolar pulses at low duty cycle and low repetition frequency while keeping the average power about 2 orders of magnitude lower than the peak power. This results in a high plasma density, and high ionization fraction of the sputtered vapor, which allows better control of the film growth by controlling the energy and direction of the deposition species. This is a significant advantage over conventional dc magnetron sputtering where the sputtered vapor consists mainly of neutral species. The HiPIMS discharge is now an established ionized physical vapor deposition technique, which is easily scalable and has been successfully introduced into various industrial applications. The authors give an overview of the development of the HiPIMS discharge, and the underlying mechanisms that dictate the discharge properties. First, an introduction to the magnetron sputtering discharge and its various configurations and modifications is given. Then the development and properties of the high power pulsed power supply are discussed, followed by an overview of the measured plasma parameters in the HiPIMS discharge, the electron energy and density, the ion energy, ion flux and plasma composition, and a discussion on the deposition rate. Finally, some of the models that have been developed to gain understanding of the discharge processes are reviewed, including the phenomenological material pathway model, and the ionization region model.

  2. Sediment concentration - water discharge hysteresis during runoff events in Norwegian agricultural rivers

    NASA Astrophysics Data System (ADS)

    Greipsland, Inga; Skarbøvik, Eva

    2017-04-01

    Reduced sediment losses from agricultural areas is a priority in Norway, mainly because of the associated transport of pollutants such as phosphorous or pesticides. At the same time, it is shown that a large proportion of the annual total runoff and soil loss often occurs during relatively short episodes. Understanding the dynamics of short-term events is therefore important in order to estimate sediment and pollutant losses, and to assess pollutant sources. Suspended sediment concentrations are often closely related to water discharge, but this relationship is seldom unequivocal and can vary by several orders of magnitude due to such factors as hysteresis, seasonality, and antecedent flow episodes (e.g., decrease of sediment availability in multi-peaked events). The aim of this research was to quantify seasonal differences in sediment concentration - water discharge hysteresis during runoff events in two agricultural catchments in Norway with different scales (5 km2 and 300 km2). Hourly records of turbidity (SEBA Hydrometric turbidity sensors) that correlated well with suspended sediment concentration, and hourly water discharge records were used in the analysis. Events were classified according to the Hysteresis Index (HI) developed by Lawler et al, (2006 Sci. Total Environ. 360:109-126). The HI was correlated with parameters such as precipitation, sediment transport, season, and previous water discharge events. The results indicate differences in the HI across scales and between seasons. Seasonality can be explained by variations in land use and climate; while differences between catchments can be attributed to scale and dominant sediment pathways.

  3. A bank-operated traveling-block cableway for stream discharge and sediment measurements

    Treesearch

    James J. Paradiso

    2000-01-01

    Streams often present a challenge for collecting flow and sediment measurements on a year-round basis. Streams that can normally be waded become hazardous during seasonal flows, either endangering hydrographers or precluding data collection completely. A hand-operated cableway permits the accurate and safe collection of discharge and sediment data from the stream bank...

  4. Control of groundwater recharge-discharge on coupled N-processing across the sediment- water interface of floodplain sediments

    NASA Astrophysics Data System (ADS)

    Scott, D.; Harvey, J. W.; Noe, G. B.; Böhlke, J.

    2007-12-01

    From headwater agricultural streams to floodplain sloughs, denitrification is a common and environmentally important redox mediated reaction that occurs as dissolved NO3- is transported across the sediment- water interface within these systems. Factors influencing denitrification rates include carbon quality, NO3- availability, and the presence of O2. Here we present findings illustrating the influence of net groundwater recharge-discharge on nitrogen fate within two floodplain sloughs. Using a combination of slough-scale flood measurements (within 2 floodplain sloughs) and labeled 15NO3- additions, we show that coupled nitrogen removal is 4 times higher in the recharging slough. Our results suggest that O2 delivery to the sediment-water interface of the recharging slough resulted in measurable nitrification, relative to the discharging slough where nitrification was not detected. The redox profiles (e.g. Fe) and hydrologic gradients are consistent with the deeper penetration of O2 into the sediments within the recharging slough. Although the recharge/discharge N-flux was small relative to the overall N-balance within each slough, the subtle changes in recharge/discharge altered O2 availability and redox conditions near the sediment-water interface enhancing coupled N-removal within the recharging slough. These results suggest that O2 delivery across the sediment-water interface (e.g. hyporheic environments) may enhance net N-removal, especially if NO3- is limiting.

  5. Hysteretic patterns of suspended sediment discharge in a glacierized Andean catchment

    NASA Astrophysics Data System (ADS)

    Mao, L.; Carrillo, R.; Escauriaza, C. R.

    2014-12-01

    Sediment transport during flood events often reveals hysteretic patterns. Hysteresis can be clockwise (when flow discharge peaks after the peak of bedload) or counterclockwise (when flow discharge peaks before the peak of bedload), and recent indexes have been developed in order to quantify the degree of hysteretic patterns. Hysteresis patterns and degree can be used to infer the dynamics of sediment availability, as counterclockwise and clockwise hysteresis have been interpreted as representative of limited and unlimited sediment supply conditions, respectively. This work focuses on the temporal variability of suspended sediment transport measured in the Estero Morales, a 27 km2 Andean catchment located in central Chile. The elevations range from 1850 m a.s.l to 3815 m a.s.l., and the basin host glaciers with a current extent of 1.8 km2. Runoff is dominated by snowmelt in late spring, and glacier melt from December to March. Liquid discharge and turbidity have been measured continuously from October 2013 to March 2014. The analysis of hysteretic loops of daily discharge fluctuations of spring and summer shows that patterns are mostly clockwise during snowmelt and early glacier melt period, and counterclockwise during late glacier melting, revealing a reduction of sediment supply conditions overtime. This is confirmed by the analysis of regressions between liquid discharge and turbidity, revealing that a higher discharge is progressively needed to transport the same concentration of suspended sediments as the glacier melting season progress. These evidences indicate that suspended sediment transport in glacierized basins is affected by complex interactions among runoff generation, and sediment availability, and that the analysis of temporal hysteresis can help inferring the activity of sediment sources at the basin scale. The research was supported by the projects FONDECYT 1130378 and IDRC 107081-00.

  6. Use of Acoustic Doppler Instruments for Measuring Discharge in Streams with Appreciable Sediment Transport

    USGS Publications Warehouse

    Mueller, D.S.; ,

    2002-01-01

    The use of Acoustic Doppler current profilers (ADCP) for measuring discharge in streams with sediment transport was discussed. The studies show that the acoustic frequency of an ADCP in combination with the sediment transport characteristics in a river causes the ADCP bottom-tracking algorithms to detect a moving bottom. A moving bottom causes bottom-tracking-referenced water velocities and discharges to be biased low. The results also show that the use of differential global positioning system (DGPS) data allows accurate measurement of water velocities and discharges in such cases.

  7. Quantifying the impacts of climate and human activities on water and sediment discharge in a karst region of southwest China

    NASA Astrophysics Data System (ADS)

    Li, Zhenwei; Xu, Xianli; Yu, Bofu; Xu, Chaohao; Liu, Meixian; Wang, Kelin

    2016-11-01

    Quantifying the impacts of climate and human activities on water and sediment discharge has become a central topic in climate and hydrologic research. This issue, however, has so far received little attention in karst regions around the world. Seven karst catchments located in southwest China were chosen to explore water and sediment discharge responses to different driving factors during the period from the 1950s to 2011. The non-parametric Mann-Kendall test was used to detect both the trends and abrupt changes in water and sediment discharge. The double mass curve method was used to quantify the effects of climate and human activities on water and sediment discharge. Results indicated that the annual water discharge showed a decreasing trend in all catchments (-0.21 to -3.68 × 108 m3 yr-1), and the sediment discharge exhibited a significant decreasing trend (-7 to -101 × 104 t yr-1) for six out of the seven catchments. A rapid decline (abrupt change) in sediment discharge occurred since 2000 for all except Liujiang catchment where the sediment discharge has a slight increase since 1983 as no large dams were constructed in this catchment. Specifically, the magnitude of reduction in sediment discharge (%) significantly increases with the extent of flow regulation as measured by the ratio of the area upstream the dam to the total catchment area for the seven catchments (R2 = 0.98, P < 0.01). This study demonstrated that water discharge was mainly influenced by precipitation, while sediment discharge was mainly influenced by human activities (relative contribution 70-111%, regardless of whether the effect is negative or positive). Ecological restoration played somehow important roles in the decrease in sediment discharge (negative relationships of sediment discharge with the Normalized Differential Vegetation Index (NDVI)), but dam construction was likely to be the principal cause of the significant decrease in sediment discharge. This study is of use for better

  8. Practical strategies for identifying groundwater discharges into sediment and surface water with fiber optic temperature measurement.

    PubMed

    Selker, John; Selker, Frank; Huff, Julie; Short, Russ; Edwards, Deborah; Nicholson, Peter; Chin, Arthur

    2014-07-01

    Identifying or ruling out groundwater discharges into sediment and surface waters is often critical for evaluating impacts and for planning remedial actions. Information about subsurface structure and groundwater can be helpful, but imperfect information, heterogeneous materials, and the likelihood of preferential pathways make it difficult to locate seeps without direct seep monitoring. We present the practical application of a method that uses fiber optic temperature measurement to provide high-resolution, sensitive, and dynamic monitoring of seepage from sediments over large areas: distributed temperature sensing to identify groundwater discharge (DTSID). First, we introduce a stochastic Monte Carlo method for designing DTSID installation based on site characteristics and the required probability of detecting particular size seeps. We then present practical methods for analysing DTSID results to prioritize locations for further investigation used at three industrial locations. Summer conditions generally presented greater difficulty in the method due to stronger environmentally-driven temperature fluctuations and thermal stratification of surface water. Tidal fluctuations were shown to be helpful in seepage detection at some locations by creating a dynamic temperature pattern that likely reflects changing seepage with varying water levels. At locations with suitable conditions for the application of DTSID, it can provide unique information regarding likely seep locations, enhancing an integrated site investigation.

  9. How are River Discharge - Suspended Sediment Relations Influenced by Watershed and Channel-Floodplain Morphology?

    NASA Astrophysics Data System (ADS)

    Vaughan, A. A.; Belmont, P.

    2015-12-01

    Erosion, transport and deposition of fine sediment (clay, silt and fine sand) influence the form and function of river systems. Excess suspended sediment degrades stream ecosystems and is implicated as a leading cause of water quality and aquatic life impairment. Consequently, understanding the factors that control fine sediment transport regimes is an interesting topic for basic science and one that has important management and policy implications. Fine sediment is mostly transported in suspension as a non-capacity load; transport rates are dependent on sediment supply in addition to a river's transport capacity. Many studies have investigated watershed-scale topographic, hydrologic, climatic, and land use influences on fine sediment erosion and transport regimes. Several recent studies in a wide range of landscapes have demonstrated that the majority of suspended sediment may be sourced from the near-channel environment; therefore, near-channel morphological characteristics may provide better predictive power compared to watershed averages. This study analyzes recent total suspended solids (TSS) data from 45 gages on 35 separate rivers. The rivers span the state of Minnesota, draining basins ranging from 33 km2 to 68100 km2 with distinct settings in terms of topography, land cover, hydrology and geologic history. We generate rating curves of the form TSS = aQb, where Q is normalized discharge and a and b are parameters that describe the shape of the relations. Values of a range from 4 to 138 mg/L; b values range from -0.53 to 1.86. We use high resolution lidar topography data to characterize the near-channel environment upstream of gages. In addition to commonly studied metrics describing the topographic, climatic/hydrologic and land use setting of the basin, we extract near-channel morphometrics that we hypothesize to influence fine sediment generation and transport: the difference in height of banks/bluffs (a measure of the amount of material available to be

  10. Erosion, sediment discharge, and channel morphology in the Upper Chattahoochee River basin, Georgia

    USGS Publications Warehouse

    Faye, Robert E.; Carey, W.R.; Stamer, J.K.; Kleckner, R.L.

    1978-01-01

    Average annual rates of sheet erosion and sediment discharge were computed for several watersheds in the Upper Chattahoochee River basin in Georgia. Erosion yields ranged from about 900 to 6,000 tons per year per square mile in nine watersheds and were greatest where land use is largely agricultural or transitional. Suspended sediment yields from the same watershed ranged from about 300 to 800 tons per year per square mile and were greatest from urban areas and least from mostly forested watersheds. The impact of suspended sediment on stream quality was evaluated for 14 watersheds. In general, 60 percent or more of the total annual discharge of trace metals and phosphorus was contributed by suspended sediment. Yields of trace metals and nutrients in suspension were consistently greater in urban watersheds. Turbidity in basin streams increased geometrically with increasing concentrations of suspended sediment. (Woodard-USGS)

  11. Characteristics of suspended sediment and river discharge during the beginning of snowmelt in volcanically active mountainous environments

    NASA Astrophysics Data System (ADS)

    Mouri, Goro; Ros, Faizah Che; Chalov, Sergey

    2014-05-01

    To better understand instream suspended sediment delivery and transformation processes, we conducted field measurements and laboratory experiments to study the natural function of spatial and temporal variation, sediment particles, stable isotopes, particle size, and aspect ratio from tributary to mainstream flows of the Sukhaya Elizovskaya River catchment at the beginning of and during snowmelt. The Sukhaya Elizovskaya River is located in the Kamchatka Peninsula of Russia and is surrounded by active volcanic territory. The study area has a range of hydrological features that determine the extreme amounts of washed sediments. Sediment transported to the river channels in volcanic mountainous terrain is believed to be strongly influenced by climate conditions, particularly when heavy precipitation and warmer climate trigger mudflows in association with the melting snow. The high porosity of the channel bottom material also leads to interactions with the surface water, causing temporal variability in the daily fluctuations in water and sediment flow. Field measurements revealed that suspended sediment behaviour and fluxes decreased along the mainstream Sukhaya Elizovskaya River from inflows from a tributary catchment located in the volcanic mountain range. In laboratory experiments, water samples collected from tributaries were mixed with those from the mainstream flow of the Sukhaya Elizovskaya River to examine the cause of debris flow and characteristics of suspended sediment in the mainstream. These findings and the geological conditions of the tributary catchments studied led us to conclude that halloysite minerals likely comprise the majority of suspended sediments and play a significant role in phosphate adsorption. The experimental results were upscaled and verified using field measurements. Our results indicate that the characteristics of suspended sediment and river discharge in the Sukhaya Elizovskaya River can be attributed primarily to the beginning of

  12. User's manual for SEDCALC, a computer program for computation of suspended-sediment discharge

    USGS Publications Warehouse

    Koltun, G.F.; Gray, John R.; McElhone, T.J.

    1994-01-01

    Sediment-Record Calculations (SEDCALC), a menu-driven set of interactive computer programs, was developed to facilitate computation of suspended-sediment records. The programs comprising SEDCALC were developed independently in several District offices of the U.S. Geological Survey (USGS) to minimize the intensive labor associated with various aspects of sediment-record computations. SEDCALC operates on suspended-sediment-concentration data stored in American Standard Code for Information Interchange (ASCII) files in a predefined card-image format. Program options within SEDCALC can be used to assist in creating and editing the card-image files, as well as to reformat card-image files to and from formats used by the USGS Water-Quality System. SEDCALC provides options for creating card-image files containing time series of equal-interval suspended-sediment concentrations from 1. digitized suspended-sediment-concentration traces, 2. linear interpolation between log-transformed instantaneous suspended-sediment-concentration data stored at unequal time intervals, and 3. nonlinear interpolation between log-transformed instantaneous suspended-sediment-concentration data stored at unequal time intervals. Suspended-sediment discharge can be computed from the streamflow and suspended-sediment-concentration data or by application of transport relations derived by regressing log-transformed instantaneous streamflows on log-transformed instantaneous suspended-sediment concentrations or discharges. The computed suspended-sediment discharge data are stored in card-image files that can be either directly imported to the USGS Automated Data Processing System or used to generate plots by means of other SEDCALC options.

  13. High Power ECR Ion Thruster Discharge Characterization

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Kamhawi, Hani; Haag, Thomas; Carpenter, Christian; Williams, George W.

    2006-01-01

    Electron cyclotron resonance (ECR) based ion thrusters with carbon based ion optics can potentially satisfy lifetime requirements for long duration missions (approximately 10 years) because grid erosion and cathode insert depletion issues are virtually eliminated. Though the ECR plasma discharge has been found to typically operate at slightly higher discharge losses than conventional DC ion thrusters (for high total thruster power applications), the discharge power fraction is small (less than 1 percent at 25 kW). In this regard, the benefits of increased life, low discharge plasma potentials, and reduced complexity are welcome tradeoffs for the associated discharge efficiency decrease. Presented here are results from discharge characterization of a large area ECR plasma source for gridded ion thruster applications. These measurements included load matching efficacy, bulk plasma properties via Langmuir probe, and plasma uniformity as measured using current probes distributed at the exit plane. A high degree of plasma uniformity was observed (flatness greater than 0.9). Additionally, charge state composition was qualitatively evaluated using emission spectroscopy. Plasma induced emission was dominated by xenon ion lines. No doubly charged xenon ions were detected.

  14. Near-surface Heating of Young Rift Sediment Causes Mass Production and Discharge of Reactive Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Shih; Koch, Boris P.; Feseker, Tomas; Ziervogel, Kai; Goldhammer, Tobias; Schmidt, Frauke; Witt, Matthias; Kellermann, Matthias Y.; Zabel, Matthias; Teske, Andreas; Hinrichs, Kai-Uwe

    2017-03-01

    Ocean margin sediments have been considered as important sources of dissolved organic carbon (DOC) to the deep ocean, yet the contribution from advective settings has just started to be acknowledged. Here we present evidence showing that near-surface heating of sediment in the Guaymas Basin, a young extensional depression, causes mass production and discharge of reactive dissolved organic matter (DOM). In the sediment heated up to ~100 °C, we found unexpectedly low DOC concentrations in the pore waters, reflecting the combined effect of thermal desorption and advective fluid flow. Heating experiments suggested DOC production to be a rapid, abiotic process with the DOC concentration increasing exponentially with temperature. The high proportions of total hydrolyzable amino acids and presence of chemical species affiliated with activated hydrocarbons, carbohydrates and peptides indicate high reactivity of the DOM. Model simulation suggests that at the local scale, near-surface heating of sediment creates short and massive DOC discharge events that elevate the bottom-water DOC concentration. Because of the heterogeneous distribution of high heat flow areas, the expulsion of reactive DOM is spotty at any given time. We conclude that hydrothermal heating of young rift sediments alter deep-ocean budgets of bioavailable DOM, creating organic-rich habitats for benthic life.

  15. Near-surface Heating of Young Rift Sediment Causes Mass Production and Discharge of Reactive Dissolved Organic Matter

    PubMed Central

    Lin, Yu-Shih; Koch, Boris P.; Feseker, Tomas; Ziervogel, Kai; Goldhammer, Tobias; Schmidt, Frauke; Witt, Matthias; Kellermann, Matthias Y.; Zabel, Matthias; Teske, Andreas; Hinrichs, Kai-Uwe

    2017-01-01

    Ocean margin sediments have been considered as important sources of dissolved organic carbon (DOC) to the deep ocean, yet the contribution from advective settings has just started to be acknowledged. Here we present evidence showing that near-surface heating of sediment in the Guaymas Basin, a young extensional depression, causes mass production and discharge of reactive dissolved organic matter (DOM). In the sediment heated up to ~100 °C, we found unexpectedly low DOC concentrations in the pore waters, reflecting the combined effect of thermal desorption and advective fluid flow. Heating experiments suggested DOC production to be a rapid, abiotic process with the DOC concentration increasing exponentially with temperature. The high proportions of total hydrolyzable amino acids and presence of chemical species affiliated with activated hydrocarbons, carbohydrates and peptides indicate high reactivity of the DOM. Model simulation suggests that at the local scale, near-surface heating of sediment creates short and massive DOC discharge events that elevate the bottom-water DOC concentration. Because of the heterogeneous distribution of high heat flow areas, the expulsion of reactive DOM is spotty at any given time. We conclude that hydrothermal heating of young rift sediments alter deep-ocean budgets of bioavailable DOM, creating organic-rich habitats for benthic life. PMID:28327661

  16. Near-surface Heating of Young Rift Sediment Causes Mass Production and Discharge of Reactive Dissolved Organic Matter.

    PubMed

    Lin, Yu-Shih; Koch, Boris P; Feseker, Tomas; Ziervogel, Kai; Goldhammer, Tobias; Schmidt, Frauke; Witt, Matthias; Kellermann, Matthias Y; Zabel, Matthias; Teske, Andreas; Hinrichs, Kai-Uwe

    2017-03-22

    Ocean margin sediments have been considered as important sources of dissolved organic carbon (DOC) to the deep ocean, yet the contribution from advective settings has just started to be acknowledged. Here we present evidence showing that near-surface heating of sediment in the Guaymas Basin, a young extensional depression, causes mass production and discharge of reactive dissolved organic matter (DOM). In the sediment heated up to ~100 °C, we found unexpectedly low DOC concentrations in the pore waters, reflecting the combined effect of thermal desorption and advective fluid flow. Heating experiments suggested DOC production to be a rapid, abiotic process with the DOC concentration increasing exponentially with temperature. The high proportions of total hydrolyzable amino acids and presence of chemical species affiliated with activated hydrocarbons, carbohydrates and peptides indicate high reactivity of the DOM. Model simulation suggests that at the local scale, near-surface heating of sediment creates short and massive DOC discharge events that elevate the bottom-water DOC concentration. Because of the heterogeneous distribution of high heat flow areas, the expulsion of reactive DOM is spotty at any given time. We conclude that hydrothermal heating of young rift sediments alter deep-ocean budgets of bioavailable DOM, creating organic-rich habitats for benthic life.

  17. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments.

    PubMed

    Li, Dong; Sharp, Jonathan O; Drewes, Jörg E

    2016-01-01

    To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction-modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants.

  18. Continuous measurement of suspended-sediment discharge in rivers by use of optical backscatterance sensors

    USGS Publications Warehouse

    Schoellhamer, D.H.; Wright, S.A.; Bogen, J.; Fergus, T.; Walling, D.

    2003-01-01

    Optical sensors have been used to measure turbidity and suspended-sediment concentration by many marine and estuarine studies, and optical sensors can provide automated, continuous time series of suspended-sediment concentration and discharge in rivers. Three potential problems with using optical sensors are biological fouling, particle-size variability, and particle-reflectivity variability. Despite varying particle size, output from an optical backscatterance sensor in the Sacramento River at Freeport, California, USA, was calibrated successfully to discharge-weighted, cross-sectionally averaged suspended-sediment concentration, which was measured with the equal discharge-, or width-increment, methods and an isokinetic sampler. A correction for sensor drift was applied to the 3-year time series. However, the calibration of an optical backscatterance sensor used in the Colorado River at Cisco, Utah, USA, was affected by particle-size variability. The adjusted time series at Freeport was used to calculate hourly suspended-sediment discharge that compared well with daily values from a sediment station at Freeport. The appropriateness of using optical sensors in rivers should be evaluated on a site-specific basis and measurement objectives, potential particle size effects, and potential fouling should be considered.

  19. Spatio-temporal variation of water flow and sediment discharge in the Mahanadi River, India

    NASA Astrophysics Data System (ADS)

    Bastia, Fakira; Equeenuddin, Sk. Md.

    2016-09-01

    The transport of sediments by rivers to the oceans represents an important link between the terrestrial and marine ecosystem. Therefore, this work aims to study spatio-temporal variation of the sediment discharge and erosion rate in the Mahanadi river, one of the biggest rivers in India, over past three decades vis-à-vis their controlling factors. To understand the sediment load variation, the trend analysis in the time series data of rainfall, water and sediment discharge of the Mahanadi river were also attempted. The non-parametric Mann-Kendall and Sen's methods were used to determine whether there was a positive or negative trend in the time series data with their statistical significance. The occurrence of abrupt changes was detected using Pettitt test. The trend test result represents that sediment load delivered from the Mahanadi river to the global ocean has decreased sharply at the rate of 0.515 × 106 tons/year between 1980 and 2010. Water discharge and rainfall in the basin showed no significant decreasing trend except at only one tributary. The decline in sediment discharge from the basin to the Bay of Bengal is mainly due to the increase in the number of dams, which has recorded the increase from 70 to 253 during the period of 1980 to 2010. Over the past 30 years the Mahanadi river has discharged about 49.0 ± 20.5 km3 of water and 17.4 ± 12.7 × 106 tons of sediment annually to the Bay of Bengal whereas the mean erosional rate is 265 ± 125 tons/km2/year over the period of 30 years in the basin. Based on the current data (2000-2001 to 2009-2010), sediment flux and water discharge to the ocean are 12 ± 5 × 106 tons/year and 49 ± 16 km3/year respectively; and ranking Mahanadi river second in terms of water discharge and sediment flux to the ocean among the peninsular rivers in India.

  20. Advanced high frequency partial discharge measuring system

    NASA Technical Reports Server (NTRS)

    Karady, George G.

    1994-01-01

    This report explains the Advanced Partial Discharge Measuring System in ASU's High Voltage Laboratory and presents some of the results obtained using the setup. While in operation an insulation is subjected to wide ranging temperature and voltage stresses. Hence, it is necessary to study the effect of temperature on the behavior of partial discharges in an insulation. The setup described in this report can be used to test samples at temperatures ranging from -50 C to 200 C. The aim of conducting the tests described herein is to be able to predict the behavior of an insulation under different operating conditions in addition to being able to predict the possibility of failure.

  1. Calculating sediment discharge from a highway construction site in central Pennsylvania

    USGS Publications Warehouse

    Reed, L.A.; Ward, J.R.; Wetzel, K.L.

    1985-01-01

    The Pennsylvania Department of Transportation, the Federal Highway Administration, and the U.S. Geological Survey have cooperated in a study to evaluate two methods of predicting sediment yields during highway construction. Sediment yields were calculated using the Universal Soil Loss and the Younkin Sediment Prediction Equations. Results were compared to the actual measured values, and standard errors and coefficients of correlation were calculated. Sediment discharge from the construction area was determined for storms that occurred during construction of Interstate 81 in a 0.38-square mile basin near Harrisburg, Pennsylvania. Precipitation data tabulated included total rainfall, maximum 30-minute rainfall, kinetic energy, and the erosive index of the precipitation. Highway construction data tabulated included the area disturbed by clearing and grubbing, the area in cuts and fills, the average depths of cuts and fills, the area seeded and mulched, and the area paved. Using the Universal Soil Loss Equation, sediment discharge from the construction area was calculated for storms. The standard error of estimate was 0.40 (about 105 percent), and the coefficient of correlation was 0.79. Sediment discharge from the construction area was also calculated using the Younkin Equation. The standard error of estimate of 0.42 (about 110 percent), and the coefficient of correlation of 0.77 are comparable to those from the Universal Soil Loss Equation.

  2. Creating an agreed discharge: discharge planning for clients with high care needs.

    PubMed

    Tomura, Hikari; Yamamoto-Mitani, Noriko; Nagata, Satoko; Murashima, Sachiyo; Suzuki, Shigemi

    2011-02-01

    The purpose of this study was to develop a conceptual model of discharge planning by discharge planning nurses for clients returning home with high care needs. In Japan, discharge planning plays an important role in the smooth and timely discharge of clients from medical facilities. Discharge planning nurses often oversee such processes, especially for clients with high care needs. However, a conceptual model that guides discharge planning nurses during the discharge planning process is currently lacking. Qualitative. A constant comparative approach was used to collect and analyse data from semi-structured interviews conducted with 13 discharge planning nurses working at medical centres throughout Japan. Each discharge planning nurse described her discharge planning activities for a client with high care needs. 'Creating an agreed discharge' was a core category of the discharge planning process carried out by discharge planning nurses. The process consisted of: (1) developing a blueprint, (2) reaching an agreement, (3) materialising the agreed plan and (4) sending the client home. The discharge planning nurse starts by developing a blueprint of client/family life after discharge. The blueprint guides each discharge planning nurse thereafter throughout their various activities. She or he also strives to reach an agreement with the client/family regarding the discharge plan. Discharge planning nurse activities detailed here are based on the client/family's daily life, and adjustments to the plan are made within an agreeable range. Developing a blueprint, revising and refining it to establish an agreed discharge plan based on the client/family's situations and preferences and coming to an agreement for further revisions and the final plan were essential in the discharge planning process. A precise projection of the client's condition, community resource knowledge, estimating family care and understanding specific client/family thoughts on returning home were vital to

  3. Impact of beaver ponds on river discharge and sediment deposition along the Chevral River, Ardennes, Belgium

    NASA Astrophysics Data System (ADS)

    Nyssen, Jan; Frankl, Amaury; Pontzeele, Jolien; De Visscher, Maarten; Billi, Paolo

    2013-04-01

    With the recovery of the European beaver (Castor fiber) and their capacity to engineer fluvial landscapes, questions arise as to how they influence river discharge and sediment transport. The Chevral river (Ardennes, Belgium) contains two beaver dam sequences which appeared in 2004 and count now about 30 dams. Flow discharges and sediment fluxes were measured at the in- and outflow of each dam sequence. Volumes of sediment deposited behind the dams were measured. Between 2004 and 2011, peak flows were topped off, and the magnitude of extreme events decreased. 1710 m³ of sediment were deposited behind the beaver dams, with an average sediment thickness of 25 cm. The thickness of the sediment layer is related to the area of the beaver ponds. Along the stream, beaver pond sediment thickness displayed a sinusoidal deposition pattern, in which ponds with thick sediment layers were preceded by a series of ponds with thinner sediment layers. A downstream textural coarsening in the dam sequences was also observed, probably due to dam failures subsequent to surges. Differences in sediment flux between the in- and outflow at the beaver pond sequence were related to the river hydrograph, with deposition taking place during the rising limbs and slight erosion during the falling limbs. The seven-year-old sequences have filtered 190 tons of sediment out of the Chevral river, which is of the same order of magnitude as the 374 tons measured in pond deposits, with the difference between the values corresponding to beaver excavations (60 tons), inflow from small tributaries, and runoff from the valley flanks. Hydrogeomorphic effects of C. fiber and C. canadensis activity are similar in magnitude. The detailed analysis of changes to hydrology in beaver pond sequences confirms the potential of beavers to contribute to river and wetland restoration and catchment management.

  4. Discharge and sediment loads in the Boise River drainage basin, Idaho 1939-40

    USGS Publications Warehouse

    Love, S.K.; Benedict, Paul Charles

    1948-01-01

    The Boise River project is a highly developed agricultural area comprising some 520 square miles of valley and bench lands in southwestern Idaho. Water for irrigation is obtained from the Boise River and its tributaries which are regulated by storage in Arrow Rock and Deer Flat reservoirs. Distribution of water to the farms is effected by 27 principal canals and several small farm laterals which divert directly from the river. The- New York Canal, which is the largest, not only supplies water to smaller canals and farm laterals, but also is used to fill Deer Flat Reservoir near Nampa from which water is furnished to farms in the lower valley. During the past 15 years maintenance costs in a number of those canals have increased due to deposition of sediment in them and in the river channel itself below the mouth of Moore Creek. Interest in determining the runoff and sediment loads from certain areas in the Boise River drainage basin led to an investigation by the Flood Control Coordinating Committee of the Department of Agriculture. Measurements of daily discharge and sediments loads were made by the Geological Survey at 13 stations in the drainage basin during the 18-month period ended June 30, 1940. The stations were on streams in areas having different kinds of vegetative cover and subjected to different kinds of land-use practice. Data obtained during the investigation furnish a basis for certain comparisons of runoff and sediment loads from several areas arid for several periods of time. Runoff measured at stations on the. Boise River near Twin Springs and on Moore Creek near Arrow Rock was smaller during 1939 than during 1940 and was below the average annual runoff for the period of available record. Runoff measured at the other stations on the project also was smaller during 1939 than during 1940 and probably did not exceed the average for the previous 25 years. The sediment loads measured during the spring runoff in 1939 were smaller at most stations than

  5. High intensity discharge device containing oxytrihalides

    DOEpatents

    Lapatovich, Walter P.; Keeffe, William M.; Liebermann, Richard W.; Maya, Jakob

    1987-01-01

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO.sub.2, with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube.

  6. High intensity discharge device containing oxytrihalides

    DOEpatents

    Lapatovich, W.P.; Keeffe, W.M.; Liebermann, R.W.; Maya, J.

    1987-06-09

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO[sub 2], with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube. 7 figs.

  7. TMF ultra-high rate discharge performance

    SciTech Connect

    Nelson, B.

    1997-12-01

    BOLDER Technologies Corporation has developed a valve-regulated lead-acid product line termed Thin Metal Film (TMF{trademark}) technology. It is characterized by extremely thin plates and close plate spacing that facilitate high rates of charge and discharge with minimal temperature increases, at levels unachievable with other commercially-available battery technologies. This ultra-high rate performance makes TMF technology ideal for such applications as various types of engine start, high drain rate portable devices and high-current pulsing. Data are presented on very high current continuous and pulse discharges. Power and energy relationships at various discharge rates are explored and the fast-response characteristics of the BOLDER{reg_sign} cell are qualitatively defined. Short-duration recharge experiments will show that devices powered by BOLDER batteries can be in operation for more than 90% of an extended usage period with multiple fast recharges. The BOLDER cell is ideal for applications such as engine-start, a wide range of portable devices including power tools, hybrid electric vehicles and pulse-power devices. Applications such as this are very attractive, and are well served by TMF technology, but an area of great interest and excitement is ultrahigh power delivery in excess of 1 kW/kg.

  8. Sediment-discharge characteristics of the Toutle River following the Mount St. Helens eruption

    USGS Publications Warehouse

    Culbertson, J.K.; Dinehart, R.L.

    1982-01-01

    Dinehart, R.L., Culbertson, J.K., 1982, Sediment-discharge characteristics of the Toutle River following the Mount St. Helens eruption, [abs.]: in Proceedings from the Conference on Mount St. Helens— Effects on water resources: State of Washington Water Research Center, p. 149.

  9. Discharge and sediment loads at the Kings River Experimental Forest in the Southern Sierra Nevada of California

    Treesearch

    S.M. Eagan; C.T. Hunsaker; C.R. Dolanc; M.E. Lynch; C.R. Johnson

    2007-01-01

    The Kings River Experimental Watershed (KREW) is now in its third year of data collection on eight small perennial watersheds. We are collecting meteorology, stream discharge, sediment load, water chemistry, shallow soil water chemistry, vegetation, macro-invertebrate, stream microclimate, and air quality data. This paper primarily examines discharge and sediment data...

  10. Sediment discharge in the Upper Arroyo Grande and Santa Rita Creek basins, San Luis Obispo County, California

    USGS Publications Warehouse

    Knott, J.M.

    1976-01-01

    Sediment data collected in the upper Arroyo Grande and Santa Rita Creek basins, San Luis Obispo County, California, during the 1968-73 water years were analyzed to determine total sediment discharge at four stations in the basins. Water discharge and total sediment discharge at these stations, representative of the 1943-72 period, were estimated from long-term flow data for nearby gaging stations and water-sediment discharge relations determined for the 1968-73 water years. Most of the total annual sediment discharge at each station occurs during a few days each year. The quantity of sediment transported in a single day often accounts for more than 40 percent of the total annual sediment discharge. Estimated sediment discharge for the upper Arroyo Grande and Santa Rita Creek basins during the 1943-72 water years averaged 53,000 tons and 23,000 tons per year. Long-term sediment deposition in Lopez Reservoir, which is in the southern part of the upper Arroyo Grande basin, was estimated to be 35 acre-feet per year. (Woodard-USGS)

  11. Dynamic modeling of environmental risk associated with drilling discharges to marine sediments.

    PubMed

    Durgut, İsmail; Rye, Henrik; Reed, Mark; Smit, Mathijs G D; Ditlevsen, May Kristin

    2015-10-15

    Drilling discharges are complex mixtures of base-fluids, chemicals and particulates, and may, after discharge to the marine environment, result in adverse effects on benthic communities. A numerical model was developed to estimate the fate of drilling discharges in the marine environment, and associated environmental risks. Environmental risk from deposited drilling waste in marine sediments is generally caused by four types of stressors: oxygen depletion, toxicity, burial and change of grain size. In order to properly model these stressors, natural burial, biodegradation and bioturbation processes were also included. Diagenetic equations provide the basis for quantifying environmental risk. These equations are solved numerically by an implicit-central differencing scheme. The sediment model described here is, together with a fate and risk model focusing on the water column, implemented in the DREAM and OSCAR models, both available within the Marine Environmental Modeling Workbench (MEMW) at SINTEF in Trondheim, Norway.

  12. Modeling High Pressure Micro Hollow Cathode Discharges

    DTIC Science & Technology

    2007-11-02

    calculations in glow discharge in argon and neon . A Monte Carlo simulation of the ions and Grant 033083 – Final report 7 the fast neutrals generated...in high pressure xenon or in rare gas mixtures containing xenon are of interest in the context of UV and VUV generation. Numerical experiments on...The shape of the calculated characteristic is similar to those measured by Schoenbach et al1 in argon and by Moselhy and Schoenbach9 in xenon . There

  13. Redox trapping of arsenic during groundwater discharge in sediments from the Meghna riverbank in Bangladesh

    PubMed Central

    Datta, S.; Mailloux, B.; Jung, H.-B.; Hoque, M. A.; Stute, M.; Ahmed, K. M.; Zheng, Y.

    2009-01-01

    Groundwater arsenic (As) is elevated in the shallow Holocene aquifers of Bangladesh. In the dry season, the shallow groundwater discharges to major rivers. This process may influence the chemistry of the river and the hyporheic zone sediment. To assess the fate of As during discharge, surface (0–5 cm) and subsurface (1–3 m) sediment samples were collected at 9 sites from the bank of the Meghna River along a transect from its northern source (25° N) to the Bay of Bengal (22.5° N). Bulk As concentrations of surface sediment averaged 16 ± 7 mg/kg (n = 9). Subsurface sediment contained higher mean concentrations of As of 4,000 mg/kg (n = 14), ranging from 1 to 23,000 mg/kg As, with >100 mg/kg As measured at 8 sites. X-ray absorption near-edge structure spectroscopy indicated that As was mainly arsenate and arsenite, not As-bearing sulfides. We hypothesize that the elevated sediment As concentrations form as As-rich groundwater discharges to the river, and enters a more oxidizing environment. A significant portion of dissolved As sorbs to iron-bearing minerals, which form a natural reactive barrier. Recycling of this sediment-bound As to the Ganges-Brahmaputra-Meghna Delta aquifer provides a potential source of As to further contaminate groundwater. Furthermore, chemical fluxes from groundwater discharge from the Ganges-Brahmaputra-Meghna Delta may be less than previous estimates because this barrier can immobilize many elements. PMID:19805180

  14. Redox Trapping of Arsenic During Groundwater Discharge in Sediments from the Meghna Riverbank in Bangladesh

    SciTech Connect

    Datta, S.; Mailloux, B; Jung, H; Hoque, M; Stute, M; Ahmed, K; Zheng, Y

    2009-01-01

    Groundwater arsenic (As) is elevated in the shallow Holocene aquifers of Bangladesh. In the dry season, the shallow groundwater discharges to major rivers. This process may influence the chemistry of the river and the hyporheic zone sediment. To assess the fate of As during discharge, surface (0-5 cm) and subsurface (1-3 m) sediment samples were collected at 9 sites from the bank of the Meghna River along a transect from its northern source (25 degrees N) to the Bay of Bengal (22.5 degrees N). Bulk As concentrations of surface sediment averaged 16 {+-} 7 mg/kg (n = 9). Subsurface sediment contained higher mean concentrations of As of 4,000 mg/kg (n = 14), ranging from 1 to 23,000 mg/kg As, with >100 mg/kg As measured at 8 sites. X-ray absorption near-edge structure spectroscopy indicated that As was mainly arsenate and arsenite, not As-bearing sulfides. We hypothesize that the elevated sediment As concentrations form as As-rich groundwater discharges to the river, and enters a more oxidizing environment. A significant portion of dissolved As sorbs to iron-bearing minerals, which form a natural reactive barrier. Recycling of this sediment-bound As to the Ganges-Brahmaputra-Meghna Delta aquifer provides a potential source of As to further contaminate groundwater. Furthermore, chemical fluxes from groundwater discharge from the Ganges-Brahmaputra-Meghna Delta may be less than previous estimates because this barrier can immobilize many elements.

  15. Evaluation of the potential of p-nitrophenol degradation in dredged sediment by pulsed discharge plasma.

    PubMed

    Wang, Tiecheng; Qu, Guangzhou; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2015-11-01

    Hazardous pollutants in dredged sediment pose great threats to ecological environment and human health. A novel approach, named pulsed discharge plasma (PDP), was employed for the degradation of p-nitrophenol (PNP) in dredged sediment. Experimental results showed that 92.9% of PNP in sediment was smoothly removed in 60 min, and the degradation process fitted the first-order kinetic model. Roles of some active species in PNP degradation in sediment were studied by various gas plasmas, OH radical scavenger, hydrated electron scavenger and O2(·-) scavenger; and the results presented that O3, OH radical, eaq(-) and O2(·-) all played significant roles in PNP removal, and eaq(-) and O2(·-) mainly participated in other oxidising active species formation. FTIR analysis showed that PNP molecular structure was destroyed after PDP treatment. The main degradation intermediates were identified as hydroquinone, benzoquinone, phenol, acetic acid, NO2(-) and NO3(-). PNP degradation pathway in dredged sediment was proposed. It is expected to contribute to an alternative for sediment remediation by pulse discharge plasma.

  16. Heavy metal in sediments and bioaccumulation in the bivalve Corbula gibba in a drilling discharge area.

    PubMed

    Mauri, Marina; Spagnoli, Federico; Marcaccio, Marco

    2004-01-01

    The longterm bioavailability of heavy metals in sediments of a Northern Adriatic Sea shelf area affected by drilling mud and cutting discharges was discussed. Levels of Mn, Cu, Cr, Zn and Pb in different geochemical phases of the sediment and in soft tissues of the bivalve Corbula gibba were recorded and the relationships between biological and geochemical metal investigated. Total metal content, acetic acid extractable-, exchangeable-, carbonate-, easily reducible-, moderately reducible-, oxidable- and residual-fractions were determined on sediment samples. Corbula gibba was collected from wet sediments at the same times and sites, and the soft-tissue metal contents were determined. Correlations show that the fractions with greatest bioavailability are the exchangeable and carbonate for Cr and the exchangeable, carbonate, easily and moderately reducible fractions for Zn. Data also show a possible bioavailability of Pb only from the residual fraction, consisting of very resistant matter of more recent anthropogenic origin. Near the platform, total Mn content in sediments and in C. gibba tissues show a strong correlation suggesting that this organism is sensitive to variations of the Mn-oxi-hydroxides superficial film. No relationships were found between biological and sediment-bound Cu, however the discharged muds did not cause Cu enrichment. The metal fraction determined by weak acetic acid extraction at no point seems related to metal levels in Corbula gibba.

  17. Dynamics of daily fluctuations of suspended sediment discharge in a glacierized Andean basin

    NASA Astrophysics Data System (ADS)

    Carillo, Ricardo; Mao, Luca; Morche, David

    2015-04-01

    Sediment transport during flood events often reveals hysteretic patterns. Hysteresis can be clockwise (when flow discharge peaks after the peak of bedload) or counterclockwise (when flow discharge peaks before the peak of bedload), and recent indexes have been developed in order to quantify the degree of hysteretic patterns. Hysteresis patterns and degree can be used to infer the dynamics of sediment availability, as counterclockwise and clockwise hysteresis have been interpreted as representative of limited and unlimited sediment supply conditions, respectively. This work focuses on the temporal variability of suspended sediment transport measured in the Estero Morales, a 27 km² Andean catchment located in central Chile. The elevations range from 1850 m a.s.l to 3815 m a.s.l., and the basin host glaciers with a current extent of 1.8 km². Runoff is dominated by snowmelt in late spring, and glacier melt from December to March. Liquid discharge and turbidity have been measured continuously from October 2013 to March 2014 and recently from October 2014 on. The analysis of the regressions between liquid discharge and turbidity reveals that a higher discharge is progressively needed to transport the same concentration of suspended sediments as the glacier melting season progresses. In fact, the coefficient a of the regressions (NTU=a*Qb) reduces, whereas the exponent b of the regressions increases overtime. The analysis of hysteretic loops of daily discharge fluctuations of spring and summer using three indexes are quite consistent in showing that patterns are mostly clockwise during snowmelt and early glacier melt period, and counterclockwise during late glacier melting. This tendency suggests a progressive reduction of sediment supply conditions overtime. Alternatively, this tendency could be interpreted as a proxy for the type and location of the main sediment source, that is likely to be the main channel and tributaries draining snowmelt in spring, and then only

  18. The trend of suspended-sediment discharge of the Brandywine Creek at Wilmington, Del., 1947-1955

    USGS Publications Warehouse

    Guy, Harold P.

    1957-01-01

    This report presents an analysis and evaluation of the trend of the sediment yield for the Brandywine Creek at Wilmington, Del., for the period from December 1946 to September 1955. The interest in such an analysis and evaluation stems from the efforts of the Brandywine Valley Association and others to reduce erosion and improve land use in the watershed. The data used for the analysis were taken from the continuous suspended-sediment and water-discharge records of the stream at Wilmington and the precipitation records at 8 standard and 1 recording rain gages. The analysis was made on the basis of 123 storm events for this period of record using only the water and sediment discharge attributed to direct runoff. These data represent 89 percent of the total sediment discharge and 19 percent of the total water discharge. The sediment load for each of the storm runoff events was correlated with storm runoff, rainfall intensity, and season to remove the effect, if ant, of the variation caused by these factors. The evaluation of the relative trend of sediment yield was made by two methods; first, the accumulative graph pr double mass curve as a graphical method, and second, the rank correlation method which results in a numerical coefficient and its significant. The graphical method of this evaluation shows an approximate 38 percent decrease in sediment yield for the period 1952 to 1955 from that for the period 1947 to 1951. The rank correlation coefficient was 0.152 for the same analysis showing a very high level (almost 99 percent) of confidence in the significance of a decreasing trend. A parallel analysis to that above using "peakedness" instead of rainfall intensity as a measure of storm intensity was made because "peakedness" is easier to evaluate than rainfall intensity. The results of this analysis again indicates the probably decreasing trend of sediment yield as shown by the change in slope of the accumulative graph from 0.77 fir the 1947 to 1951 period to 1

  19. How does litter cover, litter diversity and fauna affect sediment discharge and runoff?

    NASA Astrophysics Data System (ADS)

    Goebes, Philipp; Seitz, Steffen; Kühn, Peter; Scholten, Thomas

    2013-04-01

    Litter cover plays a major role in soil erosion processes. It is known that litter cover reduces erosivity of raindrops, decreases sediment discharge and lowers runoff volume compared to bare ground. However, in the context of biodiversity, the composition of litter cover, its effect on sediment discharge and runoff volume and their influence on soil erosion have not yet been analyzed in detail. Focusing on initial soil erosion (splash), our experimental design is designated to get a better understanding of these mechanisms. The experiments were carried out within the DFG research unit "Biodiversity and Ecosystem Functioning (BEF)-China" in subtropical China. The "New Integrated Litter Experiment (NILEx)" used as platform combining different subprojects of BEF-China dealing with "decomposition and nutrient cycling", "mechanisms of soil erosion" and "functional effects of herbivores, predators and saproxylics" in one experiment. In NILEx, 96 40cm x 40cm runoff plots on two hill slopes inside a castanea molissima forest plantation have been installed and filled with seven different types of litter cover. 16 one-species plots, 24 two-species plots, 4 four-species plots and 4 bare ground plots have been set up, each replicated once. We prepared 48 Plots with traps (Renner solution) for soil macrofauna (diplopods and collembola), so half of the plots were kept free from fauna while the other half was accessible for fauna. Rainfall was generated artificially by using a rainfall simulator with a continuous and stable intensity of 60 mm/h. Our experiments included two runs of 20 minutes duration each, both conducted at two different time steps (summer 2012 and autumn 2012). Runoff volume and sediment discharge were measured every 5 minutes during one rainfall run. Litter coverage and litter mass were recorded at the beginning (summer 2012) and at the end of the experiment (autumn 2012). Our results show that sediment discharge as well as runoff volume decreases

  20. Sediment concentration versus water discharge during single hydrologic events in rivers

    USGS Publications Warehouse

    Williams, G.P.

    1989-01-01

    Relations between sediment concentration (C) and water discharge (Q) for a hydrologic event, such as a flood, are studied qualitatively by analyzing "smoothed" temporal graphs (discharge and concentration vs. time) in terms of mode, spread, and skewness. Comparing C Q ratios at a given discharge on the rising and falling limbs of the discharge hydrograph provides a consistent, reliable method for categorizing C-Q relations. Five common classes of such relations are single-valued (straight or curved), clockwise loop, counterclockwise loop, single-valued plus a loop, and figure eight. Temporal-graph mode and skewness influence the type of relation, whereas temporal-graph spread affects the details of the particular C-Q relation (its graphical breadth, shape, orientation, and plotted location). Field examples of the various types of relations are given, including varieties that heretofore have received little attention, such as the figure eight. Explanations for each type of C-Q relation are discussed. ?? 1989.

  1. Effects of river discharge and tidal asymmetry on residual sediment transport and long-term morphodynamics in the river estuary

    NASA Astrophysics Data System (ADS)

    Guo, L.; Van der Wegen, M.; Roelvink, J.; He, Q.

    2013-12-01

    The morphodynamics are of ubiquitous importance to the estuarine function with respect to navigation and ecology. This study examines the hydrodynamics, residual sediment transport processes and long-term morphodynamics in the river estuary forced by river discharge and marine tides. We systematically investigated the generation of tidal asymmetry and its modulation by varying river discharges, the interactions between the river discharge and the tides, and the induced residual sediment transport and associated morphodynamic adjustment and then the feedback mechanisms by deploying the Delft3D model in 1D mode. The model shows that the internally generated tidal asymmetry behaves nonlinearly with increasing river discharge. The internal tidal asymmetry is flood dominated in the absence of river discharge and tidal flat. Introduction of a river discharge promotes the overtide generation which reinforces the tidal asymmetry. An increasing river discharge dissipates the tidal energy and damps the tides that the overtide generation is confined in the downstream. A river discharge threshed can be figured out at which the energy transformation from the principle tide (M2) to the overtide (M4) reaches maximum. The tidal averaged residual sediment transport is decomposed into components according to a bed load transport mode. The tidal asymmetry induces a residual sediment transport whose direction is determined by the nature of the tidal asymmetry. The river discharge induces a net seaward residual transport due to enhanced seaward residual current. Moreover, the interaction between the river discharge and tides generates a river-induced asymmetry. The river-induced asymmetry enhances the seaward residual sediment transport to a large degree that it plays a significant role in flushing sediment seaward. The estuarine morphodynamics reach a (quasi-) equilibrium in a time scale of millennia. The morphodynamic equilibrium is characterized by a reducing longitudinal residual

  2. Estimation of sediment-discharge reduction for two sites of the Yazoo River basin demonstration erosion control project, north-central Mississippi, 1985-94

    USGS Publications Warehouse

    Rebich, R.A.

    1995-01-01

    Sediment-discharge reduction was estimated at two Demonstration Erosion Control sites in north-central Mississippi for the period 1985 through 1994. Decreasing trends were detected in flow-adjusted sediment discharge at Hotopha Creek near Batesville for the study period. The annual reduction in sediment discharge at this site was about 7 percent (0.68 ton per day per year). Decreasing trends were also detected in flow- adjusted sediment discharge at Otoucalofa Creek Canal near Water Valley for the study period. The annual reduction in sediment discharge at this site was about 11 percent (5.33 tons per day per year). The computations used to estimate sediment-discharge reduction were based on time series of instantaneous sediment discharges for the study period. Non-parametric procedures were used to compute trends in sediment discharge and to quantify reductions over time at the two sites. Parametric procedures were then used to verify the non-parametric results.

  3. Sediment discharge of the rivers of Catalonia, NE Spain, and the influence of human impacts

    NASA Astrophysics Data System (ADS)

    Liquete, Camino; Canals, Miquel; Ludwig, Wolfgang; Arnau, Pedro

    2009-03-01

    SummaryThe environmental and anthropogenic factors controlling sediment delivery to the sea are numerous, intricate and usually difficult to quantify. Mediterranean watersheds are historically amongst the most heavily impacted by human activities in the world. This study analyzes some of these factors for nine river systems from Catalonia, NE Spain, that open into the Northwestern Mediterranean Sea, and discusses the results obtained from sediment yield models and sediment concentration data series. General models indicate that the natural suspended sediment yield by individual Catalan rivers ranged within a fork from 94 to 621 t km -2 yr -1. Such a sediment yield would be noticeably reduced (moving the fork to 7-148 t km -2 yr -1) because of lithological factors and direct anthropogenic and, possibly, climatic impacts. Damming, water extraction and urbanization appear as the most important direct anthropogenic impacts in Catalonia. Water discharge and sediment concentration measurements by basin authorities provide much lower sediment yield estimations, from 0.4 to 19.8 t km -2 yr -1, which is probably due to the lack of measured sediment loads during flood events, as it is the case in many other Mediterranean rivers. The Catalan watersheds have some of the smallest runoff values amongst Mediterranean rivers. Of the nine river systems studied, water discharge tends to decrease in two and to increase in one. The other six river systems do not show any clear tendency. Related to climatic parameters, temperature raised in all the watersheds between 1961 and 1990, while precipitation did not show significant trends.

  4. Salt wedge dynamics lead to enhanced sediment trapping within side embayments in high-energy estuaries

    NASA Astrophysics Data System (ADS)

    Yellen, Brian; Woodruff, Jonathan D.; Ralston, David K.; MacDonald, D. G.; Jones, D. S.

    2017-03-01

    Off-river coves and embayments provide accommodation space for sediment accumulation, particularly for sandy estuaries where high energy in the main channel prevents significant long-term storage of fine-grained material. Seasonal sediment inputs to Hamburg Cove in the Connecticut River estuary (USA) were monitored to understand the timing and mechanisms for sediment storage there. Unlike in freshwater tidal coves, sediment was primarily trapped here during periods of low discharge, when the salinity intrusion extended upriver to the cove entrance. During periods of low discharge and high sediment accumulation, deposited sediment displayed geochemical signatures consistent with a marine source. Numerical simulations reveal that low discharge conditions provide several important characteristics that maximize sediment trapping. First, these conditions allow the estuarine turbidity maximum (ETM) to be located in the vicinity of the cove entrance, which increases sediment concentrations during flood tide. Second, the saltier water in the main channel can enter the cove as a density current, enhancing near-bed velocities and resuspending sediment, providing an efficient delivery mechanism. Finally, higher salinity water accumulates in the deep basin of the cove, creating a stratified region that becomes decoupled from ebb currents, promoting retention of sediment in the cove. This process of estuarine-enhanced sediment accumulation in off-river coves will likely extend upriver during future sea level rise.

  5. Episodic sediment-discharge events in Cascade Springs, southern Black Hills, South Dakota

    USGS Publications Warehouse

    Hayes, Timothy Scott

    1999-01-01

    Cascade Springs is a group of artesian springs in the southern Black Hills, South Dakota, with collective flow of about 19.6 cubic feet per second. Beginning on February 28, 1992, a large discharge of red suspended sediment was observed from two of the six known discharge points. Similar events during 1906-07 and 1969 were documented by local residents and newspaper accounts. Mineralogic and grain-size analyses were performed to identify probable subsurface sources of the sediment. Geochemical modeling was performed to evaluate the geochemical evolution of water discharged from Cascade Springs. Interpretations of results provide a perspective on the role of artesian springs in the regional geohydrologic framework. X-ray diffraction mineralogic analyses of the clay fraction of the suspended sediment were compared to analyses of clay-fraction samples taken from nine geologic units at and stratigraphically below the spring-discharge points. Ongoing development of a subsurface breccia pipe(s) in the upper Minnelusa Formation and/or Opeche Shale was identified as a likely source of the suspended sediment; thus, exposed breccia pipes in lower Hell Canyon were examined. Upper Minnelusa Formation breccia pipes in lower Hell Canyon occur in clusters similar to the discrete discharge points of Cascade Springs. Grain-size analyses showed that breccia masses lack clay fractions and have coarser distributions than the wall rocks, which indicates that the red, fine-grained fractions have been carried out as suspended sediment. These findings support the hypothesis that many breccia pipes were formed as throats of abandoned artesian springs. Geochemical modeling was used to test whether geochemical evolution of ground water is consistent with this hypothesis. The evolution of water at Cascade Springs could not be suitably simulated using only upgradient water from the Minnelusa aquifer. A suitable model involved dissolution of anhydrite accompanied by dedolomitization in the

  6. Interim report on streamflow, sediment discharge, and water quality in the Calabazas Creek Basin, Santa Clara County, California

    USGS Publications Warehouse

    Knott, J.M.; Pederson, G.L.; Middelburg, Robert F.

    1978-01-01

    Streamflow, sediment-discharge, and water-quality data are being collected in the Calabazas Creek basin, Santa Clara County, Calif., to determine annual water and sediment discharge at base-line conditions that are representative of a basin prior to urbanization. Results of the first 3 years of the study (1973-75) are given in this report. Climatic conditions during this period were representative of a very wet year (1973) and 2 years of above-average rainfall (1974 and 1975). Daily water and sediment discharge were monitored at three primary stations, and periodic measurements were made at five secondary stations during selected storms. Most of the total annual sediment discharge at each station was transported during a few days each year. Maximum daily sediment discharge in a given year ranged from 23 to 62 percent of the annual total. Daily water discharge at the gaging station Calabazas Creek at Rainbow Drive, near Cupertino, ranged from no flow to 3.31 cubic meters per second. Streamflow at this location was significantly augmented during low flow by diversion of water from the South Bay Aqueduct. Annual sediment discharge at Calabazas Creek at Rainbow Drive was 4,900 t in 1974 and 9,570 t in 1975. A large quantity of sediment was trapped in a debris basin at Comer Drive upstream from this station during both years. If this sediment had not been trapped, sediment discharge at the station would have been about 35 percent greater in 1974 and 30 percent greater in 1975. Most of the trapped sediment consists of sand and gravel that would probably have been deposited in the Calabazas Creek channel downstream from the station. (Woodard-USGS)

  7. Dynamic linear models to explore time-varying suspended sediment-discharge rating curves

    NASA Astrophysics Data System (ADS)

    Ahn, Kuk-Hyun; Yellen, Brian; Steinschneider, Scott

    2017-06-01

    This study presents a new method to examine long-term dynamics in sediment yield using time-varying sediment-discharge rating curves. Dynamic linear models (DLMs) are introduced as a time series filter that can assess how the relationship between streamflow and sediment concentration or load changes over time in response to a wide variety of natural and anthropogenic watershed disturbances or long-term changes. The filter operates by updating parameter values using a recursive Bayesian design that responds to 1 day-ahead forecast errors while also accounting for observational noise. The estimated time series of rating curve parameters can then be used to diagnose multiscale (daily-decadal) variability in sediment yield after accounting for fluctuations in streamflow. The technique is applied in a case study examining changes in turbidity load, a proxy for sediment load, in the Esopus Creek watershed, part of the New York City drinking water supply system. The results show that turbidity load exhibits a complex array of variability across time scales. The DLM highlights flood event-driven positive hysteresis, where turbidity load remained elevated for months after large flood events, as a major component of dynamic behavior in the rating curve relationship. The DLM also produces more accurate 1 day-ahead loading forecasts compared to other static and time-varying rating curve methods. The results suggest that DLMs provide a useful tool for diagnosing changes in sediment-discharge relationships over time and may help identify variability in sediment concentrations and loads that can be used to inform dynamic water quality management.

  8. Plunge location of sediment driven hyperpycnal river discharges considering bottom friction, lateral entrainment, and particle settling

    NASA Astrophysics Data System (ADS)

    Strom, K. B.; Bhattacharya, J.

    2012-12-01

    River discharges with very high sediment loads have the potential to develop into plunging hyperpycnal flows that transition from a river jet to a turbidity current at some location basinward of the river mouth due to the density difference between the turbid river and the receiving water body. However, even if the bulk density of the turbid river is greater than that of the receiving lake or ocean, some distance is needed for the forward inertia of the river to dissipate so that the downward gravitational pull can cause the system to collapse into a subaqueous turbidity current. This collapsing at the plunge point has been found to occur when the densimetric Froude number decreases to a value between 0.3 < Frd < 0.7 (Fang and Stefan 2000, Parker and Toniolo 2007, Dai and Garcia 2010, Lamb et al. 2010). In 2D channel flow analysis at the plunge point, this has led to the concept of a two-fold criterion for plunging. The first is simply for the need of high enough suspended sediment concentration to overcome the density difference between the river fluid and the fluid of the receiving water. The second is the need for sufficiently deep water to reduce the densimetric Froude below the critical value for plunging, which leads to dependence of plunging on the receiving water basin topography (Lamb et al. 2010). In this analysis, we expand on past work by solving a system of ODE river jet equations to account for bottom friction, lateral entrainment of ambient fluid, and particle settling between the river mouth and the plunge location. Typical entrainment and bottom friction coefficients are used and the model is tested against the laboratory density current data of Fang and Stefan (1991). A suite of conditions is solved with variable river discharge velocity, aspect ratio, suspended sediment concentration, and particle size; a range of salinity values and bottom slopes are used for the receiving water body. The plunge location is then expressed as a function of the

  9. Characterization of highly transient EUV emitting discharges

    NASA Astrophysics Data System (ADS)

    van der Mullen, Joost; Kieft, Erik; Broks, Bart

    2006-07-01

    The method of disturbed Bilateral Relations (dBR) is used to characterize highly transient plasmas that are used for the generation of Extreme Ultra Violet (EUV), i.e. radiation with a wavelength around 13.5 nm. This dBR method relates equilibrium disturbing to equilibrium restoring processes and follows the degree of equilibrium departure from the global down to the elementary plasma-level. The study gives global values of the electron density and electron temperature. Moreover, it gives a method to construct the atomic state distribution function (ASDF). This ASDF, which is responsible for the spectrum generated by the discharge, is found to be far from equilibrium. There are two reasons for this: first, systems with high charge numbers radiate strongly, second the highly transient behaviour makes that the distribution over the various ionization stages lags behind the temperature evolution.

  10. A new approach to assess sediment impairment due to urban wet-weather discharges

    NASA Astrophysics Data System (ADS)

    Rossi, L.; Fankhauser, R.; Chèvre, N.

    2009-04-01

    Sediment represents an important compartment of surface waters as it constitutes a habitat or spawning site for organisms. It may be impacted by anthropogenic activities, particularly through urban wet-weather discharges. In fact, during rain events a lot of particles accumulated on impervious areas and washed-off by rain (stormwater) or originating from wastewater (combined sewer overflows) end up in receiving waters. Numerous pollutants are attached to these particles (organic matter, heavy metals, polyaromatic hydrocarbons (PAHs), biocides, etc) and may generate adverse effects in the receiving waters. In this study, we propose an approach to estimate the risk of urban wet-weather discharge for sediments based on three assessment criteria: a) the clogging of the riverbed, b) the oxygen demand due to organic matter accumulation and c) the accumulation of contaminants on the riverbed (heavy metals, PAHs). These assessment criteria are defined in term of equivalent total suspended solids (TSS), a parameter classically measured in urban wet-weather discharge studies. We have implemented these criteria in a stochastic model in order to calculate TSS behaviour in receiving waters. The processes incorporated in the model are accumulation/sedimentation, transport and erosion of particles. In the stochastic approach, all parameters of the processes are randomly selected in a given distribution for each run (Monte-Carlo approach). As results, a probability curve is generated, giving the probability of exceeding the defined sediment criteria. Impact assessment of urban wet-weather discharges on riverbeds can thus be used as basis for planning efficient urban wet-weather protection measures. This approach, however, should be considered as a screening tool and in situ measurements should confirm the results.

  11. A distal 140 kyr sediment record of Nile discharge and East African monsoon variability

    NASA Astrophysics Data System (ADS)

    Ehrmann, Werner; Schmiedl, Gerhard; Seidel, Martin; Krüger, Stefan; Schulz, Hartmut

    2016-03-01

    Clay mineral assemblages in a sediment core from the distal Nile discharge plume off Israel have been used to reconstruct the late Quaternary Nile sediment discharge into the eastern Mediterranean Sea (EMS). The record spans the last ca. 140 kyr. Smectite abundances indicate the influence of the Blue Nile and the Atbara River that have their headwaters in the volcanic rocks of the Ethiopian Highlands. Kaolinite abundances indicate the influence of wadis, which contribute periodically to the suspension load of the Nile. Due to the geographical position, the climate and the sedimentary framework of the EMS is controlled by two climate systems. The long-term climate regime was governed by the African monsoon that caused major African humid periods (AHPs) with enhanced sediment discharge at 132 to < 126 (AHP 5), 116 to 99 (AHP4), and 89 to 77 ka (AHP3). They lasted much longer than the formation of the related sapropel layers S5 (> 2 kyr), S4 (3.5 kyr), and S3 (5 kyr). During the last glacial period (Marine Isotope Stages (MISs) 4-2), the long-term changes in the monsoonal system were superimposed by millennial-scale changes in an intensified midlatitude glacial system. This climate regime caused short but pronounced drought periods in the Nile catchment, which are linked to Heinrich events and alternate with more humid interstadials. The clay mineral record further implies that feedback mechanisms between vegetation cover and sediment discharge of the Nile are detectable but of minor importance for the sedimentary record in the southeastern Mediterranean Sea during the investigated African humid periods.

  12. A distal 145 ka sediment record of Nile discharge and East African monsoon variability

    NASA Astrophysics Data System (ADS)

    Ehrmann, W.; Schmiedl, G.; Seidel, M.; Krüger, S.; Schulz, H.

    2015-09-01

    Clay mineral assemblages in a sediment core from the distal Nile discharge plume off Israel have been used to reconstruct the late Quaternary Nile sediment discharge into the Eastern Mediterranean Sea (EMS). The record spans the last ca. 145 ka. Smectite abundances indicate the influence of the Blue Nile and Atbara that have their headwaters in the volcanic rocks of the Ethiopian highlands. Kaolinite abundances indicate the influence of wadis, which contribute periodically to the suspension load of the Nile. Due to the geographical position, the climate and the sedimentary framework of the EMS is controlled by two climate systems. The long-term climate regime was governed by the African monsoon that caused major humid periods with enhanced sediment discharge at 132 to < 122 ka (AHP 5), 113 to 104 ka (AHP 4), and 86 to 74 ka (AHP 3). They lasted much longer than the formation of the related sapropel layers S5, S4 and S3. During the last glacial period (MIS 4-2) the long-term changes of the monsoonal system were superimposed by millennial-scale changes of an intensified mid-latitude glacial system. This climate regime caused short but pronounced drought periods in the Nile catchment, which are linked to Heinrich Events and alternate with more humid interstadials. The clay mineral record further implies that feedback mechanisms between vegetation cover and sediment discharge of the Nile are detectable but of minor importance for the sedimentary record in the southeastern Mediterranean Sea during the investigated African Humid Periods.

  13. Computer program for the computation of total sediment discharge by the modified Einstein procedure

    USGS Publications Warehouse

    Stevens, H.H.

    1985-01-01

    Two versions of a computer program to compute total sediment discharge by the modified Einstein procedure are presented. The FORTRAN 77 language version is for use on the PRIME computer, and the BASIC language version is for use on most microcomputers. The program contains built-in limitations and input-output options that closely follow the original modified Einstein procedure. Program documentation and listings of both versions of the program are included. (USGS)

  14. Sounding experiments of high pressure gas discharge

    SciTech Connect

    Biele, Joachim K.

    1998-07-10

    A high pressure discharge experiment (200 MPa, 5{center_dot}10{sup 21} molecules/cm{sup 3}, 3000 K) has been set up to study electrically induced shock waves. The apparatus consists of the combustion chamber (4.2 cm{sup 3}) to produce high pressure gas by burning solid propellant grains to fill the electrical pump chamber (2.5 cm{sup 3}) containing an insulated coaxial electrode. Electrical pump energy up to 7.8 kJ at 10 kV, which is roughly three times of the gas energy in the pump chamber, was delivered by a capacitor bank. From the current-voltage relationship the discharge develops at rapidly decreasing voltage. Pressure at the combustion chamber indicating significant underpressure as well as overpressure peaks is followed by an increase of static pressure level. These data are not yet completely understood. However, Lorentz forces are believed to generate pinching with subsequent pinch heating, resulting in fast pressure variations to be propagated as rarefaction and shock waves, respectively. Utilizing pure axisymmetric electrode initiation rather than often used exploding wire technology in the pump chamber, repeatable experiments were achieved.

  15. Modeling the Effects of Climate Change on Water, Sediment, and Nutrient Discharge from the Maumee River Watershed

    NASA Astrophysics Data System (ADS)

    Cousino, L. K.; Becker, R.; Zmijewski, K. A.

    2013-12-01

    A hydrologic model of the Maumee River watershed in NW Ohio, USA was constructed to test the effects of climate change on water flow and sediment and nutrient loading within the drainage basin. The Maumee River drains a larger area (17,100 km2) than any other watershed in the Great Lakes region before discharging into the Western Basin (WB) of Lake Erie. Approximately 70% of the land within the watershed is agricultural, resulting in excess sediment and nutrient loading in the WB. High nutrient concentrations, especially phosphate concentrations, contribute to harmful algal blooms (HABs) in Lake Erie, which is the source of drinking water for approximately 11 million people. After a decrease in Lake Erie HABs in the late 1980s and early 1990s, toxic cyanobacteria blooms have been prevalent in the WB every summer since 1995. To determine the effects of climate change on streamflow and sediment and nutrient loading in the Maumee River watershed, a Soil and Water Assessment Tool (SWAT) hydrologic model was constructed. Flow and suspended sediment calibrations were performed for 1995-1999 using observed data from four USGS gauging stations. Suspended sediment concentration, which correlates highly with total phosphorus concentration, was used as a proxy for total phosphorus loads. Downscaled climate projections from the World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3) were inputted into the model to test the effects of climate change on the flow and suspended sediment discharge of the Maumee River. Validation was performed by inputting downscaled climate data for 1975-1999 and comparing the output to observed flow and suspended sediment data from the USGS gauging station at Waterville, Ohio. Model outputs for A1B, A2, and B1 climate scenarios indicate an overall decrease in annual flow over the next century, with higher flow in the winter and spring and lower total flow in the summer. However, model outputs also indicate

  16. Decline of Yangtze River water and sediment discharge: Impact from natural and anthropogenic changes

    PubMed Central

    Yang, S. L.; Xu, K. H.; Milliman, J. D.; Yang, H. F.; Wu, C. S.

    2015-01-01

    The increasing impact of both climatic change and human activities on global river systems necessitates an increasing need to identify and quantify the various drivers and their impacts on fluvial water and sediment discharge. Here we show that mean Yangtze River water discharge of the first decade after the closing of the Three Gorges Dam (TGD) (2003–2012) was 67 km3/yr (7%) lower than that of the previous 50 years (1950–2002), and 126 km3/yr less compared to the relatively wet period of pre-TGD decade (1993–2002). Most (60–70%) of the decline can be attributed to decreased precipitation, the remainder resulting from construction of reservoirs, improved water-soil conservation and increased water consumption. Mean sediment flux decreased by 71% between 1950–1968 and the post-TGD decade, about half of which occurred prior to the pre-TGD decade. Approximately 30% of the total decline and 65% of the decline since 2003 can be attributed to the TGD, 5% and 14% of these declines to precipitation change, and the remaining to other dams and soil conservation within the drainage basin. These findings highlight the degree to which changes in riverine water and sediment discharge can be related with multiple environmental and anthropogenic factors. PMID:26206169

  17. Sediment filtration can reduce the N load of the waste water discharge - a full-scale lake experiment

    NASA Astrophysics Data System (ADS)

    Aalto, Sanni L.; Saarenheimo, Jatta; Karvinen, Anu; Rissanen, Antti J.; Ropponen, Janne; Juntunen, Janne; Tiirola, Marja

    2016-04-01

    European commission has obliged Baltic states to reduce nitrate load, which requires high investments on the nitrate removal processes and may increase emissions of greenhouse gases, e.g. N2O, in the waste water treatment plants. We used ecosystem-scale experimental approach to test a novel sediment filtration method for economical waste water N removal in Lake Keurusselkä, Finland between 2014 and 2015. By spatially optimizing the waste water discharge, the contact area and time of nitrified waste water with the reducing microbes of the sediment was increased. This was expected to enhance microbial-driven N transformation and to alter microbial community composition. We utilized 15N isotope pairing technique to follow changes in the actual and potential denitrification rates, nitrous oxide formation and dissimilatory nitrate reduction to ammonium (DNRA) in the lake sediments receiving nitrate-rich waste water input and in the control site. In addition, we investigated the connections between observed process rates and microbial community composition and functioning by using next generation sequencing and quantitative PCR. Furthermore, we estimated the effect of sediment filtration method on waste water contact time with sediment using the 3D hydrodynamic model. We sampled one year before the full-scale experiment and observed strong seasonal patterns in the process rates, which reflects the seasonal variation in the temperature-related mixing patterns of the waste water within the lake. During the experiment, we found that spatial optimization enhanced both actual and potential denitrification rates of the sediment. Furthermore, it did not significantly promote N2O emissions, or N retention through DNRA. Overall, our results indicate that sediment filtration can be utilized as a supplemental or even alternative method for the waste water N removal.

  18. Causes for the decline of suspended-sediment discharge in the Mississippi River system, 1940-2007

    USGS Publications Warehouse

    Meade, R.H.; Moody, J.A.

    2010-01-01

    Before 1900, the Missouri-Mississippi River system transported an estimated 400 million metric tons per year of sediment from the interior of the United States to coastal Louisiana. During the last two decades (1987-2006), this transport has averaged 145 million metric tons per year. The cause for this substantial decrease in sediment has been attributed to the trapping characteristics of dams constructed on the muddy part of the Missouri River during the 1950s. However, reexamination of more than 60 years of water- and sediment-discharge data indicates that the dams alone are not the sole cause. These dams trap about 100-150 million metric tons per year, which represent about half the decrease in sediment discharge near the mouth of the Mississippi. Changes in relations between water discharge and suspended-sediment concentration suggest that the Missouri-Mississippi has been transformed from a transport-limited to a supply-limited system. Thus, other engineering activities such as meander cutoffs, river-training structures, and bank revetments as well as soil erosion controls have trapped sediment, eliminated sediment sources, or protected sediment that was once available for transport episodically throughout the year. Removing major engineering structures such as dams probably would not restore sediment discharges to pre-1900 state, mainly because of the numerous smaller engineering structures and other soil-retention works throughout the Missouri-Mississippi system. ?? 2009 John Wiley & Sons, Ltd.

  19. Sediment discharges during storm flow from proximal urban and rural karst springs, central Kentucky, USA

    USGS Publications Warehouse

    Reed, T.M.; Todd, McFarland J.; Fryar, A.E.; Fogle, A.W.; Taraba, J.L.

    2010-01-01

    Since the mid-1990s, various studies have addressed the timing of sediment transport to karst springs during storm flow or the composition and provenance of sediment discharged from springs. However, relatively few studies have focused on the flow thresholds at which sediment is mobilized or total sediment yields across various time scales. We examined each of these topics for a mainly urban spring (Blue Hole) and a rural spring (SP-2) in the Inner Bluegrass region of central Kentucky (USA). Suspended sediment consisted mostly of quartz silt and sand, with lesser amounts of calcite and organic matter. Total suspended sediment (TSS) values measured during storm flow were greater at SP-2 than at Blue Hole. By aggregating data from four storms during 2 years, we found that median suspended-sediment size jumped as Q exceeded ???0.5 m3/s for both springs. At Blue Hole, TSS tended to vary with Q and capacity approached 1 g/L, but no systematic relationship between TSS and Q was evident at SP-2. Sediment fluxes from the Blue Hole basin were ???2 orders of magnitude greater for storms in March (2002 and 2004) than September (2002 and 2003). In contrast, sediment fluxes from the SP-2 basin were of similar magnitude in September 2003 and March 2004. The overall range of area-normalized fluxes for both springs, 9.16 ?? 10-3-4.45 ?? 102 kg/(ha h), overlaps values reported for farm plots and a stream in the Inner Bluegrass region and for other spring basins in the eastern USA and western Europe. Sediment compositions, sizes, and responses to storms in the basins may differ because of land use (e.g., the extent of impervious cover in the Blue Hole basin), basin size (larger for Blue Hole), conduit architecture, which appears to be more complex in the Blue Hole basin, and the impoundment of SP-2, which may have promoted decadal-scale storage of sediment upgradient. ?? 2009 Elsevier B.V. All rights reserved.

  20. Discharge current modes of high power impulse magnetron sputtering

    SciTech Connect

    Wu, Zhongzhen Xiao, Shu; Ma, Zhengyong; Cui, Suihan; Ji, Shunping; Pan, Feng; Tian, Xiubo; Fu, Ricky K. Y.; Chu, Paul K.

    2015-09-15

    Based on the production and disappearance of ions and electrons in the high power impulse magnetron sputtering plasma near the target, the expression of the discharge current is derived. Depending on the slope, six possible modes are deduced for the discharge current and the feasibility of each mode is discussed. The discharge parameters and target properties are simplified into the discharge voltage, sputtering yield, and ionization energy which mainly affect the discharge plasma. The relationship between these factors and the discharge current modes is also investigated.

  1. Effects of surface coal mining on suspended-sediment discharge in a small mountain watershed, Fayette County, Pennsylvania

    USGS Publications Warehouse

    Mastrilli, T.M.; Stump, D.E.

    1986-01-01

    Data collected in the upper Stony Fork basin from July 1980 to November 1981 indicate that logging operations associated with block-cut surface mining temporarily increased suspended-sediment discharge of Stony Fork. However, the strip-mining operation did not increase the suspended sediment discharges of Stony Fork because of effective sediment-control measures. These controls included diversion control terraces and a large sediment-control pond. The 50-acre mine site yielded an average of 6.9 tons of sediment per acre, whereas, the sediment yield of the 2.5-square-mile study area was 0.13 tons per acre. During most storms, sharp rises in streamflow were accompanied by corresponding rises in suspended sediment concentrations. At the end of a storm, suspended sediment concentrations quickly returned to base-flow levels. Instantaneous stream discharge ranged from 0.02 to 146 cubic feet per second. Suspended sediment concentration ranged from less than 10 to 905 milligrams per liter. The highest daily mean suspended sediment concentration was 176 milligrams per liter. (USGS)

  2. Hydrologic data for computation of sediment discharge : Toutle and North Fork Toutle Rivers near Mount St. Helens, Washington, water years 1980-84

    USGS Publications Warehouse

    Childers, Dallas; Hammond, Stephen E.; Johnson, William P.

    1988-01-01

    Immediately after the devastating May 18, 1980, eruption of Mount St. Helens, a program was initiated by the U.S. Geological Survey to study the streamflow and sediment characteristics of streams impacted by the eruption. Some of the data gathered in that program are presented in this report. Data are presented for two key sites in the Toutle River basin: North Fork Toutle River near Kid Valley, and Toutle River at Tower Road, near Silver Lake. The types of data presented are appropriate for use with sediment transport formulas; however, the data are also intended for use in a wide variety of additional applications. The data presented in this report are unique because they delineate flow conditions possessing great potential fo sediment transport. The data define unusually high suspended-sediment concentration. Data defining hydraulic, peak discharge, suspended-sediment, and bed-material characteristics are presented. (USGS)

  3. Pulse volume discharges in high pressure gases

    NASA Astrophysics Data System (ADS)

    Yamshchikov, V. A.

    2015-11-01

    New approach for suppression of plasma inhomogeneities and instabilities in the volume self-sustained discharge is offered. The physical model is offered and conditions of obtaining extremely homogeneous self-sustained discharge are defined (with full suppression of plasma inhomogeneity and instability). Results of calculations agree with experiments.

  4. Suspended-sediment and fresh-water discharges in the Ob and Yenisey rivers, 1960-1988

    USGS Publications Warehouse

    Meade, R.H.; Bobrovitskaya, N.N.; Babkin, V.I.

    2000-01-01

    Of the world's great rivers, the Ob and Yenisey rank among the largest suppliers of fresh water and among the smallest suppliers of suspended sediment to the coastal ocean. Sediment in the middle reaches of the rivers is mobilized from bordering terraces and exchanged between channels and flood plains. Sediment in the lower reaches of these great rivers is deposited and stored (permanently, on a millennial time scale) in flood plains. Sediment discharges, already small under natural conditions, are diminished further by large manmade reservoirs that trap significant proportions of the moving solids. The long winter freeze and sudden spring breakup impose a peakedness in seasonal water runoff and sediment discharge that contrasts markedly with that in rivers of the tropics and more temperate climates. Very little sediment from the Ob and Yenisey rivers is being transported to the open waters of the Arctic Ocean under present conditions.

  5. Modeling sediment delivery from a highly erodible mountain catchment

    NASA Astrophysics Data System (ADS)

    Le Bouteiller, C.; Asif, N. M.; Recking, A.; Liebault, F.

    2015-12-01

    Draix observatory is located in the French Alps on a highly erodible substrate of shale. Most of the observatory is in a badland area characterized by steep gullies and high erosion rates (up to 1cm/year). Within the observatory, the study focuses on the Moulin, which is an 8ha catchment located at an elevation of 850-925m, with 54% of badland area. Available data includes DEM, meteorological data, high-frequency records of discharge and suspended sediment concentration during the floods, cumulative values of bedload transport for each flood, high-frequency records of bedload transport for a few events from a Birkbeck sampler. Modeling sediment delivery in such a catchment is challenging because 1) most available models have been designed for low-relief regions and do not account for steep slope processes such as debris flow and landslides; 2) hydrology (especially flashfloods) in mountainous regions is not well understood; 3) soil properties are very heterogeneous ; 4) multiple time scales are involved: seasonal sediment production on the slopes, storage in the bed and exportation requires to work on yearly times scales, while summer floods and most sediment delivery events occur over a few minutes only. We evaluate the ability of the SHETRAN model to reproduce sediment delivery patterns from the catchment. First, we calibrate the hydrological model using one year of meteorological and hydrological data. We then apply the sediment transport module over several flood events, using in-situ measurements of bed and slope grain-size distributions. Finally we investigate how sediment available on the slopes moves through the catchment over a year. Event-scale volumes of sediment simulated by the model are comparable to observed values within an order of 2. Sediment delivery rates are very sensitive to the slope grain-size distribution. Depending on sediment availability on the slopes and on soil erodibility, the catchment is running either in a supply-limited or

  6. Simulation of Climate Change Impacts on Himalayan Headwater Watershed Snowmelt Hydrology: Discharge, Sediment Load, and Nutrient Shifts

    NASA Astrophysics Data System (ADS)

    Neupane, R. P.; White, J. D.

    2010-12-01

    Due to retreat of glaciers and rapid population growth in associated watersheds, the Himalayas are important due to their potential for constraining water availability for a significant portion of the world’s population. Uncertainty exists in the derivation of water from the Himalayan headwaters due to shifts in meltwater derived from glaciers to transient snowpack under future climate change. Because hydrologic changes from headwater sources will also impact downstream reservoirs, we used the Soil and Water Assessment Tool (SWAT 2005) to simulate hydrologic discharge, sediment yield, and nutrient loading from the Narayani River Basin Watershed. This watershed is located in central Nepal that covers 31,986 km2 area, has 50% of the elevation>3000m, and is a major headwater basin for the Ganges River. We calibrated the SWAT model for this basin with surprising accuracy where simulated monthly average supply rate of water from watershed was 1568 cms compared to the observed value of 1589 cms. In this calibration process, we found that the precipitation and temperature lapse rates and effective hydraulic conductivity in main channel alluvium were the most important factors influencing predicted discharge values. Analysis of input landcover data showed that 5% of the watershed area is covered by glaciers and contributes approximately 15% of the discharge rate, mostly during summer months. This is contrasted to snowmelt which contributes only 4% to discharge rate during early spring based on our simulations. Future climate scenarios predicted by general circulation models for 2050 which showed increased stream discharge of 4%, 5% and 2% compared to current low, medium and high emission scenarios respectively. Sediment yield also increased by 17%, 26% and 17% compared to current for each emission scenario. Nutrient concentrations, including nitrogen and phosphorus, showed decreases under low emission scenarios and increases under medium and high emission scenarios. Our

  7. Modeling discharge-sediment relationship using neural networks with artificial bee colony algorithm

    NASA Astrophysics Data System (ADS)

    Kisi, Ozgur; Ozkan, Coskun; Akay, Bahriye

    2012-03-01

    SummaryEstimation of suspended sediment concentration carried by a river is very important for many water resources projects. The accuracy of artificial neural networks (ANN) with artificial bee colony (ABC) algorithm is investigated in this paper for modeling discharge-suspended sediment relationship. The ANN-ABC was compared with those of the neural differential evolution, adaptive neuro-fuzzy, neural networks and rating curve models. The daily stream flow and suspended sediment concentration data from two stations, Rio Valenciano Station and Quebrada Blanca Station, were used as case studies. For evaluating the ability of the models, mean square error and determination coefficient criteria were used. Comparison results showed that the ANN-ABC was able to produce better results than the neural differential evolution, neuro-fuzzy, neural networks and rating curve models. The logarithm transformed data were also used as input to the proposed ANN-ABC models. It was found that the logarithm transform significantly increased accuracy of the models in suspended sediment estimation.

  8. Fluxes of water and solute in a coastal wetland sediment. l. The contribution of regional groundwater discharge

    USGS Publications Warehouse

    Nuttle, William K.; Harvey, Judson W.

    1995-01-01

    Upward discharge of fresh groundwater into a mid-Atlantic intertidal wetland contributed 62% of the water needed to replace evapotranspiration losses from the sediment during an 11 day period in September. Infiltration during flooding by tides provided most of the balance; thus there was a net advection of salt into the sediment. The amount of groundwater discharge was estimated from changes in water storage in the sediment, as inferred from measurements of hydraulic head made every 10 min. We argue that this approach is inherently more accurate than calculating the flux as the product of hydraulic conductivity and head gradient. Evapotranspiration was estimated from direct measurements of net radiation. On an annual time-scale, our results suggest that groundwater discharge at this site may exceed the evapotranspiration flux during months of reduced evapotranspiration. Should this occur, groundwater-driven advection would supplement diffusion, during flooding, in removing salt from the sediment.

  9. Ecological risk screen for PAHs in sediments near two produced water discharges at coastal production platforms in the Gulf of Mexico

    SciTech Connect

    Holtzman, S.; Meinhold, A.F.; DePhillips, M.P.

    1995-12-01

    Preliminary screens for risks to biota, were done on PAHs in sediments associated with produced waters from platforms at Delacroix Island and at Bay de Chene, in open bays of the Louisiana coast. Sediment samples were taken in Spring 1993 at the discharge sites, along three transacts at Delacroix Island and along four transacts at Bay de Chene (at intervals of 100, 300, 500 and 1000 ft), and at two reference locations for each discharge site. A screen for deleterious effects on biota was done by comparing concentrations to the Effects Range-Median (ERM) and Effects Range-Low (ERL) criteria of Long et al. 1995. Only sediment samples from the discharge site at Bay de Chene exceeded ERM concentrations for either total PAH, or individual and total high molecular weight PAHS. The ERL criteria for total and individual PAH concentrations were exceeded at, and 100 m from the discharge at Delacroix Island. At Bay de Chene the ERL criteria for total and individual PAH concentrations were exceeded at the discharge, as well as at 100 and 300 m stations.

  10. Influence of seasonal variability of lower Mississippi River discharge, temperature, suspended sediments, and salinity on oil-mineral aggregate formation.

    PubMed

    Danchuk, Samantha; Willson, Clinton S

    2011-07-01

    Under certain conditions, oil droplets that have separated from the main oil slick may become coated by suspended sediments forming oil-mineral aggregates (OMAs). The formation of these aggregates depends on suspended particulate characteristics, temperature, salinity, mixing energy, droplet size and number, and oil properties. The OMAs do not re-coalesce with the slick and tend not to adhere to surfaces, potentially evading surface cleanup measures, enhancing opportunity for biodegradation and reducing shoreline oiling. Potential OMA formation was quantified during four distinct states of the Lower Mississippi River during a typical year using empirical relationships from laboratory and field studies for three common oils and different combinations of discharge, temperature, suspended sediments, and salinity. The largest potential OMA formation for the two lighter oils, up to 36% of the total release volume, was in the winter and spring, when high sediment availability promotes formation. For the denser, high-viscosity oil, the peak potential OMA formation, 9% of the release volume, occurred in the summer, when the salinity was higher. These results provide some evidence that, depending on environmental and spill characteristics, the formation of OMAs could be an important, but unaccounted for, process in the fate and transport of oils released in the Lower Mississippi River and should be included in oil spill dispersion models and post-spill site assessment and remediation actions.

  11. Dynamic sediment discharge in the Hekou-Longmen region of Yellow River and soil and water conservation implications.

    PubMed

    Gao, Peng; Deng, Jingcheng; Chai, Xueke; Mu, Xingmin; Zhao, Guangju; Shao, Hongbo; Sun, Wenyi

    2017-02-01

    The middle reaches of the Yellow River Basin transport the vast majority of sediment (>85% of the basin's total available sediment load), which has had profound effects on the characteristics of the middle and lower reaches of the Yellow River. Since the late 1950s, soil and water conservation measures have been extensively implemented in the Loess Plateau, China, especially since the 1970s. This has resulted in sediment discharge changing significantly. In this study, data from 22 catchments in the region of the Loess Plateau from Hekou to Longmen in the middle reaches of the Yellow River were analyzed to investigate the responses of the sediment regime to climate change and human activities. The non-parametric Mann-Kendall test and the Pettitt test were used to identify trends and shifts in sediment discharge. All 22 catchments had a significantly decreasing trend (P<0.01) in annual sediment discharge. Change point years were detected between 1971 and 1994, and were concentrated between 1978 and 1984 in 17 catchments. Moreover, erosive rainfall exhibited a tendency to decrease, but this was not a significant trend. Compared to rainfall, human activities, primarily soil and water conservation and environmental rehabilitation campaigns, have played a more prominent role in the changes in sediment regimes. In order to reduce soil erosion and sediment yield, more attention should be paid to proper and rational soil and water conservation and eco-restoration in this region.

  12. Stepwise morphological evolution of the active Yellow River (Huanghe) delta lobe (1976-2013): Dominant roles of riverine discharge and sediment grain size

    NASA Astrophysics Data System (ADS)

    Wu, Xiao; Bi, Naishuang; Xu, Jingping; Nittrouer, Jeffrey A.; Yang, Zuosheng; Saito, Yoshiki; Wang, Houjie

    2017-09-01

    m; however, the delta suffered net erosion because of the insufficient sediment supply (0.11 Gt/yr). In the most recent stage (2002 - 2013), the intensive scouring of the lower river channel induced by the dam regulation provided relatively coarser sediment, which effectively reduced the critical sediment load to 0.06 Gt/yr, much lower than the corresponding sediment load at Lijin station ( 0.16 Gt/yr). Consequently, the subaerial Yellow River delta transitioned to a slight accretion phase. Overall, the evolution of the active Yellow River delta is highly correlated to riverine water and sediment discharge. The sediment supply for keeping the subaerial delta stability is inconstant and varying with the river channel morphology and sediment grain size. We conclude that the human-impacted riverine sediment discharge and grain-size composition play dominant roles in the stepwise morphological evolution of the active delta lobe.

  13. Preliminary analysis of water discharge and suspended sediment data from the Columbia River Basin: shifting rating curves and diminishing sediment loads

    NASA Astrophysics Data System (ADS)

    MacGregor, K. R.; Gelfenbaum, G.; Rubin, D.

    2003-12-01

    Significant erosion along the coastlines of southwestern Washington in the last decade has motivated increased studies of sediment sources, sinks, and transport dynamics in the region. A key question is whether a reduction in sediment supply is responsible for the recent shift from a depositional regime. Because the Columbia River is the major fluvial system in the littoral cell, it is important to quantify sediment flux from the Columbia River to the coastal environment. We examine historical records of water discharge and suspended sediment transport along the Columbia main stem and in three subbasins in an attempt to quantify changes in total sediment transport and total load, and examine possible shifts in sediment sources over time. Suspended sediment data from the main stem near Vancouver, WA demonstrate a 3 to 5 fold downward shift in the rating curve in the last 90 years. The same trend is visible in data from the Snake River, with a decrease of almost an order of magnitude in sediment transport since the 1950's. Grain size data from the Kootenai River show a clear fining trend in the suspended load. The John Day River is the only long-term record we examined with no change in the rating curve over time; it is also the largest undammed river in the basin. Calculations of sediment load in the main stem were made using actual water discharge, estimated discharge (assuming no dams), and calculated `virgin' flow (Naik and Jay, in review). Preliminary results suggest that changes in the hydrograph (assuming a uniform rating curve) would diminish sediment transport to the coast by up to 20% over the last century; changes in the rating curve are responsible for at least that change, possibly more.

  14. Streamflow, sediment discharge, and streambank erosion in Cache Creek, Yolo County, California, 1953-86

    USGS Publications Warehouse

    Harmon, J.G.

    1989-01-01

    This report defines cross-section geometry, slope, sinuosity, bed and bank material size, and sediment discharge for Cache Creek, Capay Valley, Yolo County, California; it also relates streambank erosion to daily volumes of flow greater than 6,000 acre-ft. Mean bed elevations at six cross sections during 1983-86 and at two cross sections over several years indicate general stability of elevations in the gravel-bed channel. Water-surface slope ranged from 0.13% to 0.51% in four reaches during two flood peaks. Aerial photographs indicate that the Cache Creek channel is sinuous. About 67% of bed material at 45 cross sections is gravel, and 23% is coarser than gravel. Bank material at 27 cross sections contain sands, silt, and clay, except at one cross section where cobbles and gravel form the left bank. The sediment-discharge rate was lower during 1984-86 than in 1960-63. Streambank erosion was measured by comparing aerial photographs taken over several years. Eroded areas total about 13.2 million sq ft (300 acres) from 1953 to 1984. Net migration is toward the right bank. (USGS)

  15. Simulating the Effects of Natural Events and Anthropogenic Activity on Sediment Discharge to the Poverty Shelf, New Zealand during the late Holocene

    NASA Astrophysics Data System (ADS)

    Kettner, A. J.; Syvitski, J. P.; Gomez, B.

    2005-12-01

    The 2203 km2 Waipaoa and 312 km2 Waimata river basins annually deliver ~16 Mt of suspended sediment to Poverty Bay and the adjacent continental shelf. Much of this sediment currently is generated during frequent runoff events by gully erosion, which was initiated in the early part of the twentieth century when the headwaters were deforested and converted to pasture by European farmers. In addition to this disturbance, the c. 200 A.D. Taupo eruption, Polynesian arrival (c. 1300 A.D); short-term fluctuations in climate of a few hundred years duration, such as a Southern hemisphere counterpart to the Medieval Warm Period; and short-lived, high magnitude events, such as magnitude > 7 earthquakes and large floods- with a >102 yr recurrence interval have all influenced basin sediment yield during the past 3000 yr. We modeled the effect of these events on basin sediment yield using HydroTrend, which is a numerical model that creates synthetic river discharge and sediment load time series over long periods as a function of climate trends and basin morphology. HydroTrend accepts input based on daily meteorological station data (e.g., statistics of temperature and precipitation and their interannual variations), and basin morphometry derived from DEM analysis. Altitudinal variations across the basin were characterized using climatological records from four stations, with between 10 and 100 years of record. Climate and environmental change scenarios were imposed onto the meteorological data using the record of storm activity derived from nearby Lake Tutira, and by varying the vegetation cover (which influences the amount of rain reaching the ground surface that is converted to runoff). Both the modeled water and suspended sediment discharge exhibit good agreement with 25 years of observations from a gauging station located ~10 km from the coast. In the long term, our simulations suggest that, under the indigenous forest cover, a 30% increase in precipitation due to increased

  16. Impacts of ENSO on multi-scale variations in sediment discharge from the Pearl River to the South China Sea

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Chen, Hui; Cai, Huayang; Luo, Xiangxin; Ou, Suying; Yang, Qingshu

    2017-09-01

    Sediment load delivered by rivers is an important terrestrial factor in the evolution and productivity of coastal ecosystems and coastal morphology. As the strongest interannual climate signal, the El Niño Southern Oscillation (ENSO) is closely related to variations in the hydrological cycle at global and regional scales. However, the influence of ENSO on temporal variations in sediment discharge is poorly understood. In this paper, we examine periodic variations in sediment discharge to the South China Sea from the Pearl River since the 1950s using wavelet transform analysis (WT). Furthermore, we apply cross wavelet spectrum (XWT) and wavelet coherence (WTC) to investigate the linkages between ENSO and sediment variability. The WT results revealed that periodic oscillations in sediment discharge in the Pearl River occurred annually (1 yr) before the 2000s, interannually (2-8 yr) from 1960-2002, and decadally (10-16 yr) from 1975-1995. These periodic variations in the sediment load series had common spectrum power with the water discharge and precipitation series, indicating an important climatic control. The XWT and WTC results revealed significant impacts of ENSO on precipitation, water discharge and sediment load at interannual time scales of 2-4.6 yr from 1960-2002 with a shift of patterns of ENSO on sediment variability after the 1970s. In addition, an in-phase relation between sediment discharge and ENSO at time scales of 10-16 yr from 1975-1995 was detected, indicating that variations at decadal scales could be related to other climatic teleconnections such as the Pacific Decadal Oscillation. Compared with the spectrum structures of periodic variations in precipitation and water discharge and their relationship with ENSO, there was a loss of energy in the sediment load at annual time scales after 2002 that can be attributed to dam construction in the river basin. Our study provides perspectives on the connections between ENSO and sediment variability at

  17. Threshold events in spring discharge: Evidence from sediment and continuous water level measurement

    NASA Astrophysics Data System (ADS)

    Herman, Ellen K.; Toran, Laura; White, William B.

    2008-03-01

    SummaryIn September 2004, three major hurricanes, Frances, Ivan, and Jeanne, traveled up the eastern United States from the Gulf Coast bringing large amounts of rain to Central Pennsylvania. Monitoring equipment in place at Arch Spring, Blair County, PA captured the effects of these storms on the karstic spring flow. Together these storms revealed a quantitative limit for the carrying capacity of the conduit system. Ivan was a much more devastating storm to the area because rain fell on ground already saturated by Frances, but the net stage increase at the spring was greater during the earlier Frances storm, a 74 cm stage increase versus a 54 cm increase. Storm water not transported through the Arch Spring system was diverted into surface channels during these storms. Suspended sediment collected by an automatic sampler during Frances reveals another threshold crossed. Concurrent with increasing stage and high conductance water, maximum sediment concentrations (933 mg/L) exceed previous fluxes by up to an order of magnitude. The timing of the sediment pulse indicates that high sediment concentrations occur not only when the storm water reaches the spring, but also when stored water is being flushed out of the karst spring system. Sediment previously deposited in the conduit system is flushed only when adequate flows occur, indicating that sediment transport in karst is marked by thresholds and is a strongly non-linear process.

  18. Daily water and sediment discharges from selected rivers of the eastern United States; a time-series modeling approach

    USGS Publications Warehouse

    Fitzgerald, Michael G.; Karlinger, Michael R.

    1983-01-01

    Time-series models were constructed for analysis of daily runoff and sediment discharge data from selected rivers of the Eastern United States. Logarithmic transformation and first-order differencing of the data sets were necessary to produce second-order, stationary time series and remove seasonal trends. Cyclic models accounted for less than 42 percent of the variance in the water series and 31 percent in the sediment series. Analysis of the apparent oscillations of given frequencies occurring in the data indicates that frequently occurring storms can account for as much as 50 percent of the variation in sediment discharge. Components of the frequency analysis indicate that a linear representation is reasonable for the water-sediment system. Models that incorporate lagged water discharge as input prove superior to univariate techniques in modeling and prediction of sediment discharges. The random component of the models includes errors in measurement and model hypothesis and indicates no serial correlation. An index of sediment production within or between drain-gage basins can be calculated from model parameters.

  19. Plutonium contamination issues in Hanford soils and sediments: Discharges from the Z-Plant (PFP) complex

    NASA Astrophysics Data System (ADS)

    Felmy, Andrew R.; Cantrell, Kirk J.; Conradson, Steven D.

    Beginning in 1945, weapons production activities at the Hanford Nuclear Reservation resulted in the discharge of large quantities of Pu and other transuranic elements to the subsurface. The vast majority of the transuranics was disposed in the Hanford central plateau (200 areas) predominately associated with activities at the Z-Plant (Plutonium Finishing Plant) complex. In the past Pu and Am migrated deep into the subsurface at certain locations, although Pu and other transuranics are not currently being detected in significant concentration in any associated groundwaters. Evaluation of the chemical form of the transuranics in the subsurface along with determining the mechanism(s) of the past subsurface migration is important in establishing strategies for long-term site management practices. Unfortunately, the chemical form of the transuranics in the deep subsurface sediments and the past mechanism of vertical migration remain largely unknown. However, initial studies performed as part of this research indicate that the chemical form of Pu can vary from disposal site to disposal site depending upon the waste type and the chemical form can also differ between surface sediments and deep subsurface sediments at the same site. This paper present a summary of the different waste types and locations where transuranics were disposed, the factors that could have lead to subsurface migration via different transport vectors, the information currently available on the chemical form of Pu in the subsurface, and a summary of current research needs.

  20. Correcting acoustic Doppler current profiler discharge measurements biased by sediment transport

    USGS Publications Warehouse

    Mueller, D.S.; Wagner, C.R.

    2007-01-01

    A negative bias in discharge measurements made with an acoustic Doppler current profiler (ADCP) is attributed to the movement of sediment on or near the streambed, and is an issue widely acknowledged by the scientific community. The integration of a differentially corrected global positioning system (DGPS) to track the movement of the ADCP can be used to avoid the systematic bias associated with a moving bed. DGPS, however, cannot provide consistently accurate positions because of multipath errors and satellite signal reception problems on waterways with dense tree canopy along the banks, in deep valleys or canyons, and near bridges. An alternative method of correcting for the moving-bed bias, based on the closure error resulting from a two-way crossing of the river, is presented. The uncertainty in the mean moving-bed velocity measured by the loop method is shown to be approximately 0.6cm/s. For the 13 field measurements presented, the loop method resulted in corrected discharges that were within 5% of discharges measured utilizing DGPS to compensate for moving-bed conditions. ?? 2007 ASCE.

  1. High output stomas: ensuring safe discharge from hospital to home.

    PubMed

    Smith, Lisa

    High-output stomas are a challenge for the patient and all health professionals involved. This article discusses safe discharge home for this patient group, encouraging collaborative working practices between acute care trust and the community services. The authors also discuss the management of a high-output stoma and preparation and education of the patient before discharge home.

  2. The dynamics of an experimental gravel bed meander with constant discharge and sediment supply

    NASA Astrophysics Data System (ADS)

    Braudrick, C. A.; Dietrich, W.; Sklar, L. S.

    2012-12-01

    As rivers meander, channel migration and cutoffs introduce continuous and episodic changes, respectively, in local boundary shear stress and bedload flux. These changes must affect the local and reach scale channel dynamics, but assessing their influence is limited by complications associated with varying discharge as well as challenging spatial and time scales. Here we explore the dynamics of a scaled-down gravel bed meandering river with constant discharge and sediment supply in a 6.1 m by 17 m long experimental flume at UC Berkeley's Richmond Field Station. The experiments are similar to Braudrick et al. (2009), but with constant rather than varying sediment supply. The flume was filled with a sorted sand with D50 of 0.85 mm, and had an initial 40 cm wide channel with a sinuosity of 1.1. Alfalfa sprouts provided bank and floodplain strength. The alfalfa was seeded by hand throughout the floodplain while a low flow provided irrigation during the 7-day alfalfa growth period. Sand (model gravel) and a lightweight plastic sediment (model sand) were fed independently from the upstream end of the flume at constant rates of 1.8 and 5 kg/hr, respectively. Despite the steady input conditions the experimental channel was quite dynamic as channel migration and bend morphology varied spatially and temporally. The sinuosity in the downstream 10 m of the flume (away from the inlet condition) increased from 1.1 to about 1.6 over the first 75 hours of the experiment, when 3 cutoffs in 29 hours decreased the sinuosity back to just over the initial value. Bank erosion was fastest when curvature was low at the beginning of the experiment and following cutoffs, and slowed once sinuosity increased. Once curvature increased the bends became asymmetric as bank erosion occurred almost exclusively at the bend apex. As the channel migrated, the local sinuosity increased, which decreasing the water surface slope and hence shear stress. The lower shear stress caused subsequent channel

  3. The impact of major earthquakes and subsequent sewage discharges on the microbial quality of water and sediments in an urban river.

    PubMed

    Devane, Megan L; Moriarty, Elaine M; Wood, David; Webster-Brown, Jenny; Gilpin, Brent J

    2014-07-01

    A series of large earthquakes struck the city of Christchurch, New Zealand in 2010-2011. Major damage sustained by the sewerage infrastructure required direct discharge of up to 38,000 m(3)/day of raw sewage into the Avon River of Christchurch for approximately six months. This allowed evaluation of the relationship between concentrations of indicator microorganisms (Escherichia coli, Clostridium perfringens and F-RNA phage) and pathogens (Campylobacter, Giardia and Cryptosporidium) in recreational water and sediment both during and post-cessation of sewage discharges. Giardia was the pathogen found most frequently in river water and sediment, although Campylobacter was found at higher levels in water samples. E. coli levels in water above 550 CFU/100 mL were associated with increased likelihood of detection of Campylobacter, Giardia and Cryptosporidium, supporting the use of E. coli as a reliable indicator for public health risk. The strength of the correlation of microbial indicators with pathogen detection in water decreased in the following order: E. coli>F-RNA phage>C. perfringens. All the microorganisms assayed in this study could be recovered from sediments. C. perfringens was observed to accumulate in sediments, which may have confounded its usefulness as an indicator of fresh sewage discharge. F-RNA phage, however, did not appear to accumulate in sediment and in conjunction with E. coli, may have potential as an indicator of recent human sewage discharge in freshwater. There is evidence to support the low-level persistence of Cryptosporidium and Giardia, but not Campylobacter, in river sediments after cessation of sewage discharges. In the event of disturbances of the sediment, it is highly probable that there could be re-mobilisation of microorganisms beyond the sediment-water exchange processes occurring under base flow conditions. Re-suspension events do, therefore, increase the potential risk to human health for those who participate in recreational

  4. Status and trends in suspended-sediment discharges, soil erosion, and conservation tillage in the Maumee River basin--Ohio, Michigan, and Indiana

    USGS Publications Warehouse

    Myers, Donna N.; Metzker, Kevin D.; Davis, Steven

    2000-01-01

    The relation of suspended-sediment discharges to conservation-tillage practices and soil loss were analyzed for the Maumee River Basin in Ohio, Michigan, and Indiana as part of the U.S. Geological Survey?s National Water-Quality Assessment Program. Cropland in the basin is the largest contributor to soil erosion and suspended-sediment discharge to the Maumee River and the river is the largest source of suspended sediments to Lake Erie. Retrospective and recently-collected data from 1970-98 were used to demonstrate that increases in conservation tillage and decreases in soil loss can be related to decreases in suspended-sediment discharge from streams. Average annual water and suspended-sediment budgets computed for the Maumee River Basin and its principal tributaries indicate that soil drainage and runoff potential, stream slope, and agricultural land use are the major human and natural factors related to suspended-sediment discharge. The Tiffin and St. Joseph Rivers drain areas of moderately to somewhat poorly drained soils with moderate runoff potential. Expressed as a percentage of the total for the Maumee River Basin, the St. Joseph and Tiffin Rivers represent 29.0 percent of the basin area, 30.7 percent of the average-annual streamflow, and 9.31 percent of the average annual suspended-sediment discharge. The Auglaize and St. Marys Rivers drain areas of poorly to very poorly drained soils with high runoff potential. Expressed as a percentage of the total for the Maumee River Basin, the Auglaize and St. Marys Rivers represent 48.7 percent of the total basin area, 53.5 percent of the average annual streamflow, and 46.5 percent of the average annual suspended-sediment discharge. Areas of poorly drained soils with high runoff potential appear to be the major source areas of suspended sediment discharge in the Maumee River Basin. Although conservation tillage differed in the degree of use throughout the basin, on aver-age, it was used on 55.4 percent of all crop

  5. Unsteady sediment discharge in earth flows: A case study from the Mount Pizzuto earth flow, southern Italy

    NASA Astrophysics Data System (ADS)

    Guerriero, Luigi; Bertello, Lara; Cardozo, Nestor; Berti, Matteo; Grelle, Gerardo; Revellino, Paola

    2017-10-01

    Surface mapping, GPS surveys, T-Lidar surveys, boreholes, seismic profiles, and HVSR measurements were used to study the mechanisms of sediment transport along the Mount Pizzuto earth flow in southern Italy. The earth flow has several kinematic zones, with transitional areas marked by changing structural styles, from compressional structures (thrusts) upslope to extensional structures (normal faults) downslope. We relate sediment discharge at these transitional zones to internal strain. The results suggest that during surge events, flow acceleration starts within the head and propagates downslope inducing a cascade effect between kinematic zones. During surge events, the average sediment discharge is nearly constant, and a change from sliding to flowing allows propagation of movement towards the toe. During slow movement, kinematic zones are independent and sediment discharge varies along the flow. In general, the velocity profile and the structural style are controlled by the basal slip surface. The implications are: i) sediment discharge is not constant but is a function of the earth flow activity, ii) during surge, earth flow material behaves similar to an incompressible fluid, and iii) the distribution of surface structures can provide information about the geometry of the slip surface and the velocity profile. Additionally, earth flows with a well-defined neck seem to be more likely to surge with respect to those without.

  6. Suspended sediment propagation in a long river reach: spatial and temporal dynamics of the Suspended Sediment Concentration-Water Discharge diagram for several hydrological events in the Northern French Alps.

    NASA Astrophysics Data System (ADS)

    Antoine, Germain; Jodeau, Magali; Camenen, Benoit; Esteves, Michel

    2014-05-01

    The relative propagation of water and suspended sediment is a key parameter to understand the suspended sediment transfers at the catchment scale. Several studies have shown the interest of performing detailed investigations of both temporal suspended sediment concentration (SSC) and water discharge signals. Most of them used temporal data from one measurement site, and classified hydrological events by studying the SSC curve as a function of water discharge (SSC-WD diagrams). Theoretical interpretations of these curves have been used to estimate the different sources of suspended sediment supply from sub-catchments, to evaluate the effect of seasons on the dynamics of suspended sediment, or to highlight the effect of a critical change at the catchment scale. However, few studies have focused on the signal propagation along the river channel. In this study, we analyze sampled data from a very well instrumented river reach in the Northern French Alps: the Arc-Isère River system. This gravel-bed river system is characterized by large concentrations of fines sediments, coming from the highly erodible mountains around. To control the hydraulic, sedimentary and chemical parameters from the catchment head, several gauging stations have been established since 2006. The continuous data measured at 4 gauging stations along 120 km of river have been analyzed to estimate the spatial and temporal dynamics of both SSC and water discharge. More precisely, about 40 major hydrological events have been sampled statistically between 2006 and 2012 from the data set and are analyzed in details. The study shows that the mean value of the propagation velocity is equal to 2 m/s and 3 m/s respectively for the SSC signal and the water discharge. These different propagation velocities imply that the suspended sediment mass is not only transported by the advection of the water at the river scale. The dispersion, erosion or deposition processes, and also the suspended sediment and discharge

  7. High-speed imaging system for observation of discharge phenomena

    NASA Astrophysics Data System (ADS)

    Tanabe, R.; Kusano, H.; Ito, Y.

    2008-11-01

    A thin metal electrode tip instantly changes its shape into a sphere or a needlelike shape in a single electrical discharge of high current. These changes occur within several hundred microseconds. To observe these high-speed phenomena in a single discharge, an imaging system using a high-speed video camera and a high repetition rate pulse laser was constructed. A nanosecond laser, the wavelength of which was 532 nm, was used as the illuminating source of a newly developed high-speed video camera, HPV-1. The time resolution of our system was determined by the laser pulse width and was about 80 nanoseconds. The system can take one hundred pictures at 16- or 64-microsecond intervals in a single discharge event. A band-pass filter at 532 nm was placed in front of the camera to block the emission of the discharge arc at other wavelengths. Therefore, clear images of the electrode were recorded even during the discharge. If the laser was not used, only images of plasma during discharge and thermal radiation from the electrode after discharge were observed. These results demonstrate that the combination of a high repetition rate and a short pulse laser with a high speed video camera provides a unique and powerful method for high speed imaging.

  8. New discharge form keeps satisfaction high.

    PubMed

    2008-10-01

    Discharge instruction forms, and the way they are presented, can make a significant impression on patients. This lesson has helped Avera Weskota Medical Center in Wessington Springs, SD, earn the prestigious Summit Ward from Press Ganey. Here are strategies they used: Include practical information, such as when the patient can return to work or school, as well as medications that must be taken. Include a visual cue for the caregivers to remind the patient to complete the satisfaction survey. Use colorful paper, and include a practical, re-useable binder that has your hospital's logo on it.

  9. Evaluating Reduction of Sediment Pollution as a Strategy for Conservation of Coral Reef in High C02 World

    NASA Astrophysics Data System (ADS)

    Maina, J. M.; de Moel, H.; Mora, C.; Ward, P.; Watson, J.

    2014-12-01

    One of the key strategies for coral reef conservation in a high CO2 world is reduction of sediment and nutrient pollution. However, the reduction of sediment is a complicated planning issue as a result of the competing land uses from the demands to satisfy food production needs and from economic development, among others. Moreover, despite the significance of sedimentation as a threat to coral reefs, historical baseline and future estimates of sediment discharge on coral reefs remains poorly quantified. Therefore, the effectiveness of this strategy hinges upon (i) identifying the future sediment discharge on coral reefs relative to historical baseline, and (ii) on identifying spatially where sediment reduction actions are urgently needed and where they are likely to succeed. We provide this understanding by simulating sediment dynamics for historical and future time scales using models of land use and climate, for coastal watersheds adjacent coral reefs where they are found globally.

  10. Satellite-Based Assessment of Sediment Transport, Distribution and Resuspension Associated with the Atchafalaya River Discharge Plume

    NASA Technical Reports Server (NTRS)

    Walker, Nan; Roberts, Harry; Stone, Gregory; Bentley, Samuel; Huh, Oscar; Sheremet, Alexandru; Rouse, Larry; Inoue, Masamichi; Welsh, Susan; Hsu, S. A.

    2002-01-01

    Tbe Atchafalaya River discharges over 80 x 10(exp 6) tons of sediment annually onto the broad shallow continental shelf of central and western Louisiana. Satellite imagery from the NOAA AVHRR and Terra MODIS are used in this paper to quantify suspended sediment concentrations and to assess sediment transport processes along the Louisiana shelf under varying conditions of river discharge and wind forcing. The image data reveal the maim sources of sediment, direction of transport amd regional extent of wind-wave resuspension. The prevailing easterly winds transport much of the suspended sediments westward toward the Chernier Plain in a well-defined mud stream. Westerly flow rates of 25-50 cm/s (21-43 km per day) have been measured, yielding a transit time of about 1.5-2.5 days from the mouth of Atchafalaya Bay to the Chernier Plain. Progradation rates along the Chernier Plain coast reach 50 m per year. The westward-flowing Atchafalaya "mud stream" is rapidly disrupted by westerly winds and northerly winds, which accompany frequent winter storms and less frequent tropical storms or hurricanes. During these events, the coastal current reverses and sediments are rapidly transported out of Atchafalaya Bay and offshore where substantial sedimentary deposits can also be found. Offshore sediment fluxes during storm events, in combination with wind-wave resuspension, can result in surface sediment "plumes" extending 70 km offshore and 150 km alongshore. Field measurements of suspended sediment concentrations, current and wind velocities, and directions are used to assess sediment transport processes on the shelf. These combined processes are extending the pro-delta deposits of the Atchafalaya-Wax Lake delta complex far onto the continental shelf and supplying sediments for a renewal era of progradation along tbe downdrift Chernier Plain coast.

  11. Pollutant removal from oily wastewater discharged from car washes through sedimentation-coagulation.

    PubMed

    Rubí, H; Fall, C; Ortega, R E

    2009-01-01

    Wastewater from car washes represents a potential problem for the sewer system due to its emulsified oils and suspended material. Treatment of wastewater discharged from four car washes was investigated by sedimentation and coagulation. The effect of the coagulants Servical P (aluminium hydroxychloride), Servican 50 (poly(diallyldimethylammonium chloride)), aluminium sulfate and ferric chloride was evaluated. The achieved removal using sedimentation was of 82%, 88% 73% and 51% for oils, total suspended solids, COD, and turbidity, respectively. In the treatment by coagulation we achieved average efficiencies nearly to 74% for COD removal, greater than 88% in the case of total suspended solids removal and 92% in the case of turbidity and except the performance of Servican 50 greater than 90% in oil removal. We concluded that the oil residual concentration and COD in the treated water allows pouring it in the sewer system complying with the limits of the Mexican rule NOM-002-ECOL-1996 and it is possible even its reuse, at least in the case of the chassis washing of cars.

  12. Behavior of natural radionuclides in surficial sediments from an estuary impacted by acid mine discharge and industrial effluents in Southwest Spain.

    PubMed

    Hierro, A; Bolivar, J P; Vaca, F; Borrego, J

    2012-08-01

    The environmental degradation resulting from the acid mine drainage (AMD) and discharge from effluents of phosphogypsum (PG) piles in the watershed of Tinto and Odiel Rivers estuary over long periods of time has resulted in significant impact on the ecosystem of this estuary, resulting that the sediments are highly polluted by heavy metals and radionuclides from the discharge AMD and leachates from the PG. During resuspension of benthic sediments some of the radionuclides are desorbed making them bioavailable. In the present study, we investigate the spatial distribution of radionuclides U, Th and Ra and assess the factors and processes that caused the spatial distribution of these nuclides in this estuarine system. This study has global significance for other polluted environmental systems that are impacted by AMD and PG.

  13. Discharge, suspended sediment, bedload, and water quality in Clear Creek, western Nevada, water years 2010-12

    USGS Publications Warehouse

    Huntington, Jena M.; Savard, Charles S.

    2015-09-30

    During this study, total annual sediment loads ranged from 355 tons per year in 2010 to 1,768 tons per year in 2011 and were significantly lower than the previous study (water years 2004–07). Bedload represented between 29 and 38 percent of total sediment load in water years 2010–12, and between 72 and 90 percent of the total sediment load in water years 2004–07, which indicates a decrease in bedload between study periods. Annual suspended-sediment loads in water years 2010–12 indicated no significant change from water years 2004–07. Mean daily discharge was significantly lower in water years 2010–12 than in waters years 2004–07 and may be the reason for the decrease in bedload that resulted in a lower total sediment load.

  14. Measuring the Thermal Conductivity of Sediments for the Estimation of Groundwater Discharge to Surface Waters with Temperature Probes

    NASA Astrophysics Data System (ADS)

    Duque, C.; Müller, S.; Sebok, E.; Engesgaard, P. K.

    2015-12-01

    Using temperature probes is a common exploratory method for studying groundwater-surface water interaction due to the ease for collecting measurements and the simplicity of the different analytical solutions. This approach requires to define the surface water temperature, the groundwater temperature and a set of parameters (density and specific capacity of water, and thermal conductivity of sediments) that can be easily extracted from tabulated values under the assumption that they are homogeneous in the study area. In the case of the thermal conductivity, it is common to apply a standard value of 1.84 Wm-1 C-1 corresponding to sand. Nevertheless the environments where this method is applied, like streambeds or lake/lagoons shores, are sedimentary depositional systems with high energy and biological activity that often lead to sediments dominated by organic matter or sharp changes in grain size modifying greatly the thermal conductivity values. In this study, the thermal conductivity was measured in situ along transects where vertical temperature profiles were collected in a coastal lagoon bed receiving groundwater discharge (Ringkøbing Fjord, Denmark). A set of 4 transects with 10-20 temperature profiles during 3 different seasons was analyzed together with more than 150 thermal conductivity measurements along the working transects and in experimental parcels of 1 m2 where the cm scale spatial variability of the thermal conductivity was assessed. The application of a literature-based bulk thermal conductivity of 1.84 Wm-1 C-1 instead of field data that ranged from 0.62 to 2.19 Wm-1 C-1, produced a mean flux overestimation of 2.33 cm d-1 that, considering the low fluxes of the study area, represents an increase of 89 % and up to a factor of 3 in the most extreme cases. The changes in thermal conductivity can alter the estimated fluxes hindering the detection of patterns in groundwater discharge and modifying the interpretation of the results.

  15. Distributed Temperature Sensing as a method to identify groundwater discharge zones and in-stream sedimentation processes in soft-bedded streams

    NASA Astrophysics Data System (ADS)

    Sebok, E.; Duque, C.; Engesgaard, P.; Boegh, E.

    2012-04-01

    Fiber optic Distributed Temperature Sensing (DTS) has been shown to be a quick and useful tool to identify spatial variability in groundwater discharge to shallow streams with hard streambed bottoms. Scouring and sedimentation in soft-bedded streams however, may cause the cable to float in the water column in some places and to be buried under sediments in other places. Here we report on a field investigation in a soft-bedded stream using long-term DTS and bed erosion monitoring in order to; (i) understand spatial variability in groundwater discharge, (ii) understand the effects of sediment bed erosion processes on DTS, and (iii) to see if DTS can be exploited to measure erosion and sedimentation processes. The idea is that DTS only provides useful information regarding the location of groundwater discharge zones within a short period of time after installation and when the cable is subsequently buried under sediment deposits, it is isolated from the stream temperature signal. By recording these temperature anomalies the spatial and temporal evolution of newly deposited sediments can be monitored. The long-term DTS study was carried out at a field site located along Holtum stream in Western Denmark. The 4 m wide stream has a soft sandy streambed, an average discharge of 1068 l/s and a depth of 0.7 m. Contrary to the traditional longitudinal layout, 750 meters of fiber optic cable was fixed to the streambed following a zig-zag pattern in a 70 meter long section providing for a high spatial resolution not only along, but also across the stream with an average 0.4 m distance between the cable rows. Zones of groundwater discharge were identified on the basis of a 24h DTS survey on 13 October 2011, right after positioning the cable on the streambed surface. The discrete groundwater inflow points were shown as low temperature anomalies during the day and warm temperature anomalies during the night. Continuous streambed temperature data between 18 and 22 October 2011

  16. Speciation And Distribution Of Arsenic In Fresh Water Pond Sediments Impacted By Contaminated Ground-Water Discharge

    EPA Science Inventory

    The speciation and mineralogy of sediments contaminated with arsenic due to arsenic enriched groundwater discharging into the pond at the Ft. Devens Super Fund Site in Ft. Devens, MA were determined using X-ray absorption fine structure and X-ray diffraction spectroscopy. Specia...

  17. Speciation And Distribution Of Arsenic In Fresh Water Pond Sediments Impacted By Contaminated Ground-Water Discharge (Presentation)

    EPA Science Inventory

    The speciation and mineralogy of sediments contaminated with arsenic due to arsenic enriched groundwater discharging into the pond at the Ft. Devens Super Fund Site in Ft. Devens, MA were determined using X-ray absorption fine structure and X-ray diffraction spectroscopy. Speci...

  18. Speciation And Distribution Of Arsenic In Fresh Water Pond Sediments Impacted By Contaminated Ground-Water Discharge (Presentation)

    EPA Science Inventory

    The speciation and mineralogy of sediments contaminated with arsenic due to arsenic enriched groundwater discharging into the pond at the Ft. Devens Super Fund Site in Ft. Devens, MA were determined using X-ray absorption fine structure and X-ray diffraction spectroscopy. Speci...

  19. Speciation And Distribution Of Arsenic In Fresh Water Pond Sediments Impacted By Contaminated Ground-Water Discharge

    EPA Science Inventory

    The speciation and mineralogy of sediments contaminated with arsenic due to arsenic enriched groundwater discharging into the pond at the Ft. Devens Super Fund Site in Ft. Devens, MA were determined using X-ray absorption fine structure and X-ray diffraction spectroscopy. Specia...

  20. Partial discharge in a high voltage experimental test assembly

    SciTech Connect

    Koss, R.J.; Brainard, J.P.

    1998-07-01

    This study was initiated when a new type of breakdown occurred in a high voltage experimental test assembly. An anomalous current pulse was observed, which indicated partial discharges, some leading to total breakdowns. High voltage insulator defects are shown along with their effect on the electrostatic fields in the breakdown region. OPERA electromagnetic field modeling software is used to calculate the fields and present a cause for the discharge. Several design modifications are investigated and one of the simplest resulted in a 25% decrease in the field at the discharge surface.

  1. Discharge characteristics of a high speed fuel injection system

    NASA Technical Reports Server (NTRS)

    Matthews, Robertson

    1925-01-01

    Discussed here are some discharge characteristics of a fuel injection system intended primarily for high speed service. The system consisted of a cam actuated fuel pump, a spring loaded automatic injection valve, and a connecting tube.

  2. Dynamics of laser-guided alternating current high voltage discharges

    NASA Astrophysics Data System (ADS)

    Daigle, J.-F.; Théberge, F.; Lassonde, P.; Kieffer, J.-C.; Fujii, T.; Fortin, J.; Châteauneuf, M.; Dubois, J.

    2013-10-01

    The dynamics of laser-guided alternating current high voltage discharges are characterized using a streak camera. Laser filaments were used to trigger and guide the discharges produced by a commercial Tesla coil. The streaking images revealed that the dynamics of the guided alternating current high voltage corona are different from that of a direct current source. The measured effective corona velocity and the absence of leader streamers confirmed that it evolves in a pure leader regime.

  3. Some applications of time-marking sediment traps and their implication for monitoring of sediment discharge from disturbed areas

    SciTech Connect

    Nuhfer, E.B.; Anderson, R.Y.; Dean, W.E.

    1985-12-01

    Sediment traps with sample time-marking capabilities have been utilized by the authors to study a variety of sedimentation rates and processes in lakes in both eastern and western US. Through using such traps in field studies, the authors have confirmed with major role that resuspension plays in governing sediment composition, sediment distribution, and duration of entrainment in lakes and reservoirs. In lakes and reservoirs fed from poorly-vegetated drainage basins, suspended sediment present in the reservoirs appears associated closely with rainfall and basin erosion. However, in lakes and reservoirs in well-vegetated basins suspended sediment is more closely related to resuspension caused by thermal destratification and wind-induced circulation. Time-marking sediment traps provide the continuous records of sedimentation that are needed for detailed understanding of patterns and processes. In these studies, they have served to provide information that could not be achieved through more conventional types of sampling. The information is closely analogous to the type sought in studies of reservoir sedimentation in areas disturbed by mining, logging, construction, farming, grazing, or other activities. Time-marking sediment traps hold much potential for such studies. 14 references, 9 figures, 4 tables.

  4. Effects of a physico-chemical treatment of a dredged sediment on its ecotoxicity after discharge in laboratory gravel pit microcosms.

    PubMed

    Clément, Bernard; Vaille, Gilles; Moretto, Robert; Vernus, Emmanuel; Abdelghafour, Mohammed

    2010-03-15

    In France, dredged sediments may be dumped into submerged gravel pits. As a consequence, adverse effects may be expected. In addition, groundwater quality may be impacted due to hydraulic communications with gravel pits. The immersion of dredged sediments into gravel pits should thus be restricted to clean or slightly contaminated sediments to minimize the impacts on aquatic ecosystems and human safe. For highly contaminated sediments, alternatives may be treatments aiming at removing or/and neutralizing contaminants. The Novosol treatment was aimed at neutralizing metals by complexation with orthophosphoric acid and discarding organic pollutants by calcination. The efficiency of the Novosol treatment was assessed in a scenario of sediment immersion into experimental laboratory gravel pits (LGP). A 180L water compartment was set up in each system so as to simulate the gravel pit, and various living organisms were introduced. Following a period of colonization and stabilization, raw and treated sediments were introduced into two different LGPs, and the fate and effects of pollutants were studied during the period of deposition and post-deposition. The treatment had positive effects on survival and development of benthic populations and reproduction of pond snails but the introduction of the treated sediment was followed by an increase in salinity (phosphates, sulphates) and a peak of hexavalent chromium at concentrations above drinkability limits and likely to have impaired invertebrate populations of the water column. The results of this study suggest that discharge of contaminated sediments at a high solid:liquid ratio (1:10) in gravel pits or equivalent aquatic ecosystems may have only limited effects on biota and ground water quality. The Novosol treatment should, however, be improved so as to increase efficiency of oxidised chromium complexation during the phosphatation step.

  5. Global biogeochemical implications of mercury discharges from rivers and sediment burial.

    PubMed

    Amos, Helen M; Jacob, Daniel J; Kocman, David; Horowitz, Hannah M; Zhang, Yanxu; Dutkiewicz, Stephanie; Horvat, Milena; Corbitt, Elizabeth S; Krabbenhoft, David P; Sunderland, Elsie M

    2014-08-19

    Rivers are an important source of mercury (Hg) to marine ecosystems. Based on an analysis of compiled observations, we estimate global present-day Hg discharges from rivers to ocean margins are 27 ± 13 Mmol a(-1) (5500 ± 2700 Mg a(-1)), of which 28% reaches the open ocean and the rest is deposited to ocean margin sediments. Globally, the source of Hg to the open ocean from rivers amounts to 30% of atmospheric inputs. This is larger than previously estimated due to accounting for elevated concentrations in Asian rivers and variability in offshore transport across different types of estuaries. Riverine inputs of Hg to the North Atlantic have decreased several-fold since the 1970s while inputs to the North Pacific have increased. These trends have large effects on Hg concentrations at ocean margins but are too small in the open ocean to explain observed declines of seawater concentrations in the North Atlantic or increases in the North Pacific. Burial of Hg in ocean margin sediments represents a major sink in the global Hg biogeochemical cycle that has not been previously considered. We find that including this sink in a fully coupled global biogeochemical box model helps to balance the large anthropogenic release of Hg from commercial products recently added to global inventories. It also implies that legacy anthropogenic Hg can be removed from active environmental cycling on a faster time scale (centuries instead of millennia). Natural environmental Hg levels are lower than previously estimated, implying a relatively larger impact from human activity.

  6. Use of an ADCP to compute suspended-sediment discharge in the tidal Hudson River, New York

    USGS Publications Warehouse

    Wall, Gary R.; Nystrom, Elizabeth A.; Litten, Simon

    2006-01-01

    Acoustic Doppler current profilers (ADCPs) can provide data needed for computation of suspended-sediment discharge in complex river systems, such as tidal rivers, in which conventional methods of collecting time-series data on suspended-sediment concentration (SSC) and water discharge are not feasible. Although ADCPs are not designed to measure SSC, ADCP data can be used as a surrogate under certain environmental conditions. However, the software for such computation is limited, and considerable post-processing is needed to correct and normalize ADCP data for this use. This report documents the sampling design and computational procedure used to calibrate ADCP measures of echo intensity to SSC and water velocity to discharge in the computation of suspended-sediment discharge at the study site on the Hudson River near Poughkeepsie, New York. The methods and procedures described may prove useful to others doing similar work in different locations; however, they are specific to this study site and may have limited applicability elsewhere.

  7. Pulsed high voltage electric discharge disinfection of microbially contaminated liquids.

    PubMed

    Anpilov, A M; Barkhudarov, E M; Christofi, N; Kop'ev, V A; Kossyi, I A; Taktakishvili, M I; Zadiraka, Y

    2002-01-01

    To examine the use of a novel multielectrode slipping surface discharge (SSD) treatment system, capable of pulsed plasma discharge directly in water, in killing micro-organisms. Potable water containing Escherichia coli and somatic coliphages was treated with pulsed electric discharges generated by the SSD. The SSD system was highly efficient in the microbial disinfection of water with a low energy utilization (eta approximately 10-4 kW h l-1). The SSD treatment was effective in the destruction of E. coli and its coliphages through the generation of u.v. radiation, ozone and free radicals. The non-thermal treatment method can be used for the eradication of micro-organisms in a range of contaminated liquids, including milk, negating the use of pasteurization. The method utilizes multipoint electric discharges capable of treating large volumes of liquid under static and flowing regimes.

  8. Glow discharge techniques for conditioning high vacuum systems

    SciTech Connect

    Dylla, H.F.

    1988-03-01

    A review is given of glow discharge techniques which are useful for conditioning vacuum vessels for high vacuum applications. Substantial development of glow discharge techniques has been done for the purpose of in-situ conditioning of the large ultrahigh vacuum systems for particle accelerators and magnetic fusion devices. In these applications the glow discharge treatments remove impurities from vessel surfaces in order to minimize particle-induced desorption coefficients. Cleaning mechanisms involve a mixture of sputtering and ion- (or neutral) induced desorption effects depending on the gas mixture (ArO/sub 2/ vs. H/sub 2/) and excitation method (DC, RF, and ECR). The author will review the methodology of glow discharge conditioning, diagnostic measurements provided by residual gas and surface composition analysis, and applications to vessel conditioning and materials processing. 76 refs., 16 figs.

  9. Runaway electrons preionized diffuse discharges at high pressure

    NASA Astrophysics Data System (ADS)

    Tarasenko, Victor F.; Lomaev, Mikhail I.; Sorokin, Dmitry A.

    2010-09-01

    Breakdown of the gaps with a non-uniform electric field filled with nitrogen and air as well as with other gases under high-voltage nanosecond pulses was investigated. It is shown that conditions of obtaining a diffuse discharge without a source of additional ionization are extended at the voltage pulse duration decreasing. A volume discharge is formed due to the gap pre-ionization by runaway electrons and X-ray quanta. At a negative polarity of the electrode with a small radius of curvature, a volume (diffuse) discharge formation is determined by pre-ionization with runaway electrons which are generated due to the electric field amplification near the cathode and in the gap. At a positive polarity of the electrode with a small radius of curvature, the X-ray radiation, generated at the runaway electrons braking at the anode and in the gap, is of great importance in a volume discharge formation. A runaway electrons preionized diffuse discharge (REP DD) has two characteristic stages. In the first stage, the ionization wave overlaps the gap during a fraction of a second. The discharge current is determined by the conductivity current in the dense plasma of the ionization wave and the displacement current in the remaining part of the gap. The second stage of the discharge can be related to the anomalous glow discharge with a high specific input power. During the second stage, the gap voltage decreases and the cathode spots formed as a result of explosive electron emission can participate in the electron emission from the cathode. At the increase of the voltage pulse duration and specific input power, the REP DD transforms into a spark discharge form. A REP DD is easily realized in various gases and at different pressures; see [1] and references in [1]. At pressure decrease was obtained the anode electrons beam current to rise (up to ~2 kA/cm2 in helium). At the REP DD, the anode is influenced by the plasma of a dense nanosecond discharge with the specific input power

  10. Plutonium Contamination Issues in Hanford Soils and Sediments: Discharges from the Z-Plant (PFP) Complex

    SciTech Connect

    Felmy, Andrew R.; Cantrell, Kirk J.; Conradson, Steven D.

    2010-08-23

    Beginning in 1945, weapons production activities at the Hanford Nuclear Reservation resulted in the discharge of large quantities of Pu and other transuranic elements to the subsurface. The vast majority of the transuranics were disposed in the Hanford central plateau (200 areas) predominately associated with activities at the Z-Plant (Plutonium Finishing Plant) complex. In the past the Pu and Am migrated deep into the subsurface at certain locations, although the Pu and other transuranics are not currently being detected in significant concentration in any associated groundwaters. Evaluation of the chemical form of the transuranics in the subsurface along with determining the mechanism(s) of the past subsurface migration is important in establishing strategies for long-term site management practices. Unfortunately, the chemical form of the transuranics in the deep subsurface sediments and the past mechanism of vertical migration remain largely unknown. This paper present a summary of the different waste types and locations where transuranics were disposed, the factors that could have lead to subsurface migration via different transport vectors, the information currently available on the chemical form of Pu in the subsurface, and a summary of current research needs.

  11. Sediment transport characteristics of selected streams in the Susitna River Basin, Alaska; data for water year 1985 and trends in bedload discharge, 1981-85

    USGS Publications Warehouse

    Knott, J.M.; Lipscomb, S.W.; Lewis, T.W.

    1987-01-01

    The upper reaches of the Susitna River have been considered for development of a large power generation system for south-central Alaska. Sediment and hydraulic data obtained from October 1984 to September 1985 (water year 1985) at selected sites on the Susitna, Chulitna, Talkectna and Yentna Rivers are summarized. Sediment data include measurements of suspended sediment and bedload discharge, and analyses of particle size distribution of suspended sediment, bedload, and bed material; hydraulic data include measurements of channel width, average depth and velocity of water, and water surface slope. Relations between water and sediment discharge are developed for each site. Sediment loads for water year 1985 were estimated for the Yentna , Chulitna, and Talkectna Rivers and for three sites on the Susitna River. About 31 million tons of sediment were transported to the Susitna River at Susitna Station during the year. The Yentna and Chulitna Rivers contributed about 21 million tons of sediment to the Susitna River. (Author 's abstract)

  12. High-frequency underwater plasma discharge application in antibacterial activity

    NASA Astrophysics Data System (ADS)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.

    2017-03-01

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O2) injected and hydrogen peroxide (H2O2) added discharge in water was achieved. The effect of H2O2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H2O2 addition with O2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH•, H, and O). Interestingly, the results demonstrated that O2 injected and H2O2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  13. High-frequency underwater plasma discharge application in antibacterial activity

    NASA Astrophysics Data System (ADS)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.

    2017-03-01

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli ( E. coli) by generating high-frequency, high-voltage, oxygen (O2) injected and hydrogen peroxide (H2O2) added discharge in water was achieved. The effect of H2O2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H2O2 addition with O2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH•, H, and O). Interestingly, the results demonstrated that O2 injected and H2O2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  14. Fluvial sediment transport in a glacier-fed high-mountain river (Riffler Bach, Austrian Alps)

    NASA Astrophysics Data System (ADS)

    Morche, David; Weber, Martin; Faust, Matthias; Schuchardt, Anne; Baewert, Henning

    2017-04-01

    High-alpine environments are strongly affected by glacier retreat since the Little Ice Age (LIA). Due to ongoing climate change the hydrology of proglacial rivers is also influenced. It is expected that the growing proportions of snow melt and rainfall events will change runoff characteristics of proglacial rivers. Additionally, the importance of paraglacial sediment sources in recently deglaciating glacier forefields is increasing, while the role of glacial erosion is declining. Thus complex environmental conditions leading to a complex pattern of fluvial sediment transport in partly glaciated catchments of the European Alps. Under the umbrella of the joint PROSA-project the fluvial sediment transport of the river Riffler Bach (Kaunertal, Tyrol, Austria) was studied in 3 consecutive ablation seasons in order to quantify sediment yields. In June 2012 a probe for water level and an automatic water sampler (AWS) were installed at the outlet of the catchment (20km2). In order to calculate annual stage-discharge-relations by the rating-curve approach, discharge (Q) was repeatedly measured with current meters and by salt dilution. Concurrent to the discharge measurements bed load was collected using a portable Helley-Smith sampler. Bed load samples were weighted and sieved in the laboratory to gain annual bed load rating curves and grain size distributions. In total 564 (2012: 154, 2013: 209, 2014: 201) water samples were collected and subsequently filtered to quantify suspended sediment concentrations (SSC). Q-SSC-relations were calculated for single flood events due to the high variability of suspended sediment transport. The results show a high inter- and intra-annual variability of solid fluvial sediment transport, which can be explained by the characteristics of suspended sediment transport. Only 13 of 22 event-based Q-SSC-relations show causal dependency. In 2012, during a period with multiple pluvial-induced peak discharges most sediment was transported. On the

  15. [Limnology of high mountain tropical lake, in Ecuador: characteristics of sediments and rate of sedimentation].

    PubMed

    Gunkel, Günter

    2003-06-01

    Equatorial high mountain lakes are a special type of lake occurring mainly in the South American Andes as well as in Central Africa and Asia. They occur at altitudes of a few thousand meters above sea level and are cold-water lakes (< 20 degrees C). Relatively little is known about them. A long-term limnological study was therefore undertaken at Lake San Pablo, Ecuador, to analyze the basic limnological processes of the lake, which has a tendency for eutrophication. Sediment quality of San Pablo Lake is given under consideration of horizontal and vertical distribution using sediment cores. Significance of sediments for eutrophication process of lakes is demonstrated using phosphorus concentration of sediments as well as the phosphorus retention capacity of the sediments by ratio Fe/P. Dating of the sediments is done using 137Cs and 210Pb, but the activity of 137Cs in the sediment was very low nearly at the detection level. Sedimentation rate is determined to be 3.5 mm/year and the sediment cores represent about 110 years. P concentration of the sediments is high (approximately 5 g/kg dry substance), and P retention capacity by Fe is insufficient (Fe/P = 4). The sediment quality did not change significantly during the past decades, and the trophic state of San Pablo Lake was already less or more eutrophic 110 years ago. The contamination of the lake sediments by heavy metals is insignificant.

  16. The uptake of iron-55 by marine sediment, macroalgae, and biota following discharge from a nuclear power station.

    PubMed

    Warwick, P E; Cundy, A B; Croudace, I W; Bains, M E; Dale, A A

    2001-06-01

    Significant quantities of 55Fe, an activation product of stable iron, have been released into the environment following the atmospheric testing of nuclear weapons (mainly in the 1950s and 1960s) as well as through authorized discharges of radioactivity from nuclear power and reprocessing sites. Although some studies have been performed on the behavior of weapons' fallout-derived 55Fe in the environment and subsequent impact on humans, little has been published on the behavior of 55Fe released as a point source discharge from nuclear sites. This study presents data on the concentration and temporal variation of 55Fe in fucoid seaweeds, shellfish, crab, and lobster collected from Weymouth Bay and adjacent coastal areas, southern England. These areas have received authorized discharges of radionuclides originating from the operation of a now-decommissioned steam-generating, heavy water-type reactor at AEE Winfrith. The highest activities of 55Fe are found associated with marine sediments collected near the discharge pipeline and a rapid decline occurs away from the pipeline. This is consistent with rapid sorption of 55Fe by the sediment, and the data show there is only limited reworking and remobilization. Activities of 55Fe in biota generally decreased over time, due to a reduction in the amount of 55Fe discharged. The variation of 55Fe activity, revealed from the monthly sampling of seaweed, does not reflect the short-term fluctuations seen in the patterns of discharged 55Fe activity. Although discharges of 55Fe from AEE Winfrith exceeded other radionuclides, the radiological impact on local seafood consumers is considerably less than for other key radionuclides such as 60Co and 65Zn but of comparable magnitude to the global average population dose arising from fallout-derived 55Fe.

  17. Generation of high pressure homogeneous dielectric barrier discharge in air

    NASA Astrophysics Data System (ADS)

    Osawa, Naoki; Takashi, Ami; Yoshioka, Yoshio; Hanaoka, Ryoichi

    2013-02-01

    We succeeded in generating an atmospheric pressure Townsend discharge (APTD) in air by using a simple DBD device that consists of alumina barriers and plane electrodes. So far, we applied the APTD to an ozonizer and found that the ozone generation efficiency was higher by the APTD mode than by the conventional DBD mode in larger specific input energy region. It is well known that an operation under an optimized high gas pressure is advantageous for efficient ozone generation from air. In this paper, we investigated whether the Townsend discharge (TD) in dry air in high pressure up to 0.17 MPa can be generated or not. From the observation results of current waveforms and discharge photographs, we found that (1) the discharge currents flow continuously and have only one peak in every half cycle in all gas pressure and (2) filamentary discharges are not recognized between barriers in all gas pressure. These features completely agree with the features of the APTD we reported. Therefore, we concluded that our TD can be generated even in dry air in the pressure range of 0.1 and 0.17 MPa. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  18. Moving through different structural styles: kinematics and sediment discharge of the Mount Pizzuto earth flow, southern Italy

    NASA Astrophysics Data System (ADS)

    Guerriero, Luigi; Bertello, Lara; Cardozo, Nestor; Berti, Matteo; Grelle, Gerardo; Revellino, Paola

    2017-04-01

    Surface mapping, GPS surveys, T-LiDAR surveys, boreholes, seismic profiles, and HVSR measurements are used to study the geometry, kinematics, segmentation, and sediment discharge of the Mount Pizzuto earth flow in southern Italy. This earth flow is one of the most active earth flows of the Benevento Province (southern Italy), causing direct damages to properties and indirect damages to the local road and service lines, which have been destroyed several times by the earth flow induced floods. It involves an estimated volume of 300,000 m3 of fine-grained flyschoid material, and has a complex source area with two branches, a 500 m long transport zone, and a fan-shaped bulging toe. The earth flow presents several kinematic zones, with transitional areas marked by a change of deformational style, from compressional structures (thrusts) upslope to extensional structures (normal faults) downslope. We use displacement/velocity data and the reconstructed cross-sectional geometry to calculate sediment discharge at the transition of the kinematic zones relating it to internal strain. This allows us to understand i) the characteristics of flow movement, ii) the control exerted by the basal slip surface on flow velocity, iii) changes and distribution of flow velocity, and iv) characteristics of sediment transport along the flow and cascade effects during both ordinary and extraordinary (i.e. surge) movements. The results suggest that: i) during surge, flow acceleration starts within the head and propagates downslope (constant sediment discharge) inducing a cascade effect between kinematic zones, ii) change in mechanical behavior of the material below the neck influences the propagation of movement downslope, iii) during ordinary movement, the activity of kinematic zones is mutually independent and sediment discharge varies along the flow length, iv) the velocity profile and the dilatation style are controlled by the geometry of the basal slip surface, and v) the earth flow

  19. Sediment discharge and channel change in the North Fork Teton River, 1977-78, Fremont and Madison counties, Idaho

    USGS Publications Warehouse

    Williams, Rhea P.

    1979-01-01

    The Teton Dam failure flood of June 5, 1976, severely disrupted the geomorphic character of North Fork Teton River in Idaho. Extensive channel restoration was required to contain expected normal spring flows. Six principal sites were established on the 17-mile reach of the river to study sediment transport and channel change during 1977-78. During April 1 to September 30, 1977, total water discharge at Teton Island bridge was 97,530 acre-feet; 4,360 tons of total sediment were transported. Total water discharge, April 1 to September 30, 1978, was 191,940 acre-feet; 10,680 tons of total sediment were transported. Analyses of data indicated several trends of erosion and deposition. Minimal channel change in the upper 7 miles of the river indicated equilibrium may temporarily exist between hydraulic-flow properties and channel shape. Streambed profiles indicated little change in streambed elevations. Erosional tonnage at mid-study reaches was 4,260 tons. One-half mile downstream, an increase of 4,150 tons of suspended and 1,050 tons of bedload sediment probably was partly derived from upstream bank erosion. An estimated 5,870 tons was deposited within the next subreach downstream. Virtually the entire bedload was redeposited before the last subreach, 4.4 miles downstream measured bedload was 91 tons. Suspended-sediment discharge transported past the last site was 16,470 tons. Lateral erosion and deposition in the lower 10 miles of the river indicate that subreaches now shortened by manmade channel alinements may begin to meander. Future deposition of coarse material at upstream gravel and concrete impoundments may trigger instability in the entire river. (Kosco-USGS)

  20. Neural network modelling of sediment-discharge relationships: Pictorial analysis of six computational methodologies applied to two rivers in Missouri

    NASA Astrophysics Data System (ADS)

    Ghani, N. Ab; Abrahart, R. J.; Clifford, N. J.

    2009-04-01

    Neural networks can be trained to model the sediment-discharge relationship: numerous illustrative applications exist. The standard method of reporting involves using a scatterplot of observed versus predicted records, plus a handful of global statistics, to support an assessment of model skill. This traditional approach will nevertheless result in undesirable side effects since it reinforces the 'black box' criticisms and associated demonisation that is sometimes levelled at computational intelligence solutions: no 'line-of-best-fit' is ever supplied. This paper in contrast compares and evaluates six computational methods for modelling the sediment-discharge relationship from a structural and behavioural standpoint in which the exact nature of each model is visualised for the purposes of diagnostic appraisal and scientific enlightenment. The following methods are compared: backpropagation neural network; corrected power function; simple linear regression; piecewise linear regression using an M5 Model Tree; LOWESS; and Robust LOWESS. Modelling is restricted to a consideration of bivariate relationships. The models were developed on daily river discharge and sediment concentration datasets for two rivers in Missouri: Lower Salt River and Little Black River. Each dataset was divided into two parts using different methods and each model was first calibrated on one sub-set and thereafter tested on the other. The datasets were next swapped over and the process repeated. Each model is also evaluated using statistical measures calculated in HydroTest (http://www.hydrotest.org.uk/). The need for more benchmarking exercises of a similar nature is highlighted.

  1. Transition from diffuse to self-organized discharge in a high frequency dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Belinger, Antoine; Naudé, Nicolas; Gherardi, Nicolas

    2017-05-01

    Depending on the operating conditions, different regimes can be obtained in a dielectric barrier discharge (DBD): filamentary, diffuse (also called homogeneous) or self-organized. For a plane-to-plane DBD operated at high frequency (160 kHz) and at atmospheric pressure in helium gas, we show that the addition of a small amount of nitrogen induces a transition from the diffuse regime to a self-organized regime characterized by the appearance of filaments at the exit of the discharge. In this paper, we detail mechanisms that could be responsible of the transition from diffuse mode to this self-organized mode. We point out the critical role of the power supply and the importance of the gas memory effect from one discharge to the following one on the transition to the self-organised mode. The self-organized mode is usually attributed to a surface memory effect. In this work, we show an additional involvement of the gas memory effect on the self-organized mode. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  2. Prospecting for zones of contaminated ground-water discharge to streams using bottom-sediment gas bubbles

    USGS Publications Warehouse

    Vroblesky, Don A.; Lorah, Michelle M.

    1991-01-01

    Decomposition of organic-rich bottom sediment in a tidal creek in Maryland results in production of gas bubbles in the bottom sediment during summer and fall. In areas where volatile organic contaminants discharge from ground water, through the bottom sediment, and into the creek, part of the volatile contamination diffuses into the gas bubbles and is released to the atmosphere by ebullition. Collection and analysis of gas bubbles for their volatile organic contaminant content indicate that relative concentrations of the volatile organic contaminants in the gas bubbles are substantially higher in areas where the same contaminants occur in the ground water that discharges to the streams. Analyses of the bubbles located an area of previously unknown ground-water contamination. The method developed for this study consisted of disturbing the bottom sediment to release gas bubbles, and then capturing the bubbles in a polyethylene bag at the water-column surface. The captured gas was transferred either into sealable polyethylene bags for immediate analysis with a photoionization detector or by syringe to glass tubes containing wires coated with an activated-carbon adsorbent. Relative concentrations were determined by mass spectral analysis for chloroform and trichloroethylene.

  3. Measuring water and sediment discharge from a road plot with a settling basin and tipping bucket

    Treesearch

    Thomas A. Black; Charles H. Luce

    2013-01-01

    A simple empirical method quantifies water and sediment production from a forest road surface, and is well suited for calibration and validation of road sediment models. To apply this quantitative method, the hydrologic technician installs bordered plots on existing typical road segments and measures coarse sediment production in a settling tank. When a tipping bucket...

  4. High voltage pulse ignition of mercury discharge hollow cathodes

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.

    1973-01-01

    A high voltage pulse generated by a capacitor discharge into a step-up transformer has been demonstrated capable of consistently igniting hollow cathode mercury discharges at propellant flows and heater power levels much below those required by conventional cathode starting. Results are presented for 3.2-mm diameter enclosed and open keeper cathodes. Starting characteristics are shown to depend on keeper voltage, mercury flow rate, heater power, keeper orifice size, emissive materials, and electrode to which the pulse is applied. This starting technique has been used to start a cathode over 10,000 times without any degradation of starting capability.

  5. High-order harmonic generation in a capillary discharge

    DOEpatents

    Rocca, Jorge J.; Kapteyn, Henry C.; Mumane, Margaret M.; Gaudiosi, David; Grisham, Michael E.; Popmintchev, Tenio V.; Reagan, Brendan A.

    2010-06-01

    A pre-ionized medium created by a capillary discharge results in more efficient use of laser energy in high-order harmonic generation (HHG) from ions. It extends the cutoff photon energy, and reduces the distortion of the laser pulse as it propagates down the waveguide. The observed enhancements result from a combination of reduced ionization energy loss and reduced ionization-induced defocusing of the driving laser as well as waveguiding of the driving laser pulse. The discharge plasma also provides a means to spectrally tune the harmonics by tailoring the initial level of ionization of the medium.

  6. Demonstration of a high repetition rate capillary discharge waveguide

    SciTech Connect

    Gonsalves, A. J. Pieronek, C.; Daniels, J.; Bulanov, S. S.; Waldron, W. L.; Mittelberger, D. E.; Leemans, W. P.; Liu, F.; Antipov, S.; Butler, J. E.; Bobrova, N. A.; Sasorov, P. V.

    2016-01-21

    A hydrogen-filled capillary discharge waveguide operating at kHz repetition rates is presented for parameters relevant to laser plasma acceleration (LPA). The discharge current pulse was optimized for erosion mitigation with laser guiding experiments and MHD simulation. Heat flow simulations and measurements showed modest temperature rise at the capillary wall due to the average heat load at kHz repetition rates with water-cooled capillaries, which is promising for applications of LPAs such as high average power radiation sources.

  7. High efficiency ionizer using a hollow cathode discharge plasma

    SciTech Connect

    Alessi, J.G.; Prelec, K.

    1984-01-01

    A proposal for an ionizer using a hollow cathode discharge plasma is described. Ionization is via the very high current density electron beam component in the plasma, as well as from charge exchange with plasma ions. Extraction of a He/sup +/ current corresponding to approximately 50% of the incoming atomic beam flux should be possible.

  8. Nonlinear behavior in high-intensity discharge lamps

    NASA Astrophysics Data System (ADS)

    Baumann, Bernd; Schwieger, Joerg; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2016-06-01

    The light flicker problem of high intensity discharge lamps is studied numerically and experimentally. It is shown that in some respects the systems behave very similar to the forced Duffing oscillator with a softening spring. In particular, the jump phenomenon and hysteresis are observed in the simulations and in the experiments.

  9. Biological and Agricultural Studies on Application of Discharge Plasma and Electromagnetic Fields 4. Destruction of Weeds by High Voltage Discharge

    NASA Astrophysics Data System (ADS)

    Mizuno, Akira

    In an attempt to replace chemicals for weed control, high voltage spark discharge has been applied. With the application of high voltage, discharge takes place, and current flows through the stem and root. Microscopic observation indicates that cells are damaged. The electrical resistance of the damage plant’s stems and roots decreased significantly. Several different types of apparatus were constructed, and field test results show the effectiveness of electrical discharge for weed control.

  10. Sediment and water discharge of the Colorado River at Matagorda, Texas : May 4-7, and June 7-11, 1979

    USGS Publications Warehouse

    Welborn, Clarence T.; Andrews, Freeman L.

    1980-01-01

    The U.S. Army Corps of Engineers requested the U.S. Geological Survey to collect data on the Colorado River at Matagorda, Texas , to determine the total sediment discharge into Matagorda Bay if all the water from the Colorado River were diverted into the bay. Data were collected from two floods (May 4-7, and June 7-11 , 1979) with peak discharges of 24,900 cubic feet per second and 40,900 cubic feet per second. The total suspended-sediment discharge from the first flood was approximately 201,000 tons, and the total suspended-sediment discharge from the second flood was 630,000 tons. The volume of sediment from these two floods was approximately 970 acre-feet with approximately 20 acre-feet of this total being the bed load. (USGS)

  11. Evaluation of the levels of alcohol sulfates and ethoxysulfates in marine sediments near wastewater discharge points along the coast of Tenerife Island.

    PubMed

    Fernández-Ramos, C; Ballesteros, O; Zafra-Gómez, A; Camino-Sánchez, F J; Blanc, R; Navalón, A; Pérez-Trujillo, J P; Vílchez, J L

    2014-02-15

    Alcohol sulfates (AS) and alcohol ethoxysulfates (AES) are all High Production Volume and 'down-the-drain' chemicals used globally in detergent and personal care products, resulting in low levels ultimately released to the environment via wastewater treatment plant effluents. They have a strong affinity for sorption to sediments. Almost 50% of Tenerife Island surface area is environmentally protected. Therefore, determination of concentration levels of AS/AES in marine sediments near wastewater discharge points along the coast of the Island is of interest. These data were obtained after pressurized liquid extraction and liquid chromatography-tandem mass spectrometry analysis. Short chains of AES and especially of AS dominated the homologue distribution for AES. The Principal Components Analysis was used. The results showed that the sources of AS and AES were the same and that both compounds exhibit similar behavior. Three different patterns in the distribution for homologues and ethoxymers were found.

  12. Characterization of surface discharge switches and high performance applications

    SciTech Connect

    Reinovsky, R.E.; Goforth, J.H.; Greene, A.E.; Graham, J.

    1987-01-01

    Results of experiments which were conducted to characterize the performance of a surface discharge as a high-performance, self-closing isolation switch for high energy applications are described. These experiments, conducted under both dc and pulsed conditions, lead to a model of switch operation which enables the design of such switches for multi-megajoule operation. The paper describes the successful implementation of a surface switch as an operational component in a multi-megampere pulse-power system.

  13. Discharges and yields of suspended sediment in the Ob' and Yenisey Rivers of Siberia

    USGS Publications Warehouse

    Bobrovitskaya, N.N.; Zubkova, C.; Meade, R.H.

    1996-01-01

    The northward-flowing rivers of Siberia deliver immense quantities of water but only relatively small quantities of sediment to the Arctic Ocean. The relatively low delivery of sediment to the ocean by these rivers is explained by the large areas of forest and swamp in their basins. In the Ob' River, sediment yields tend to increase between the headwaters and Kamen' na Obi. Further downstream, sediment yields gradually decrease. Near the mouth of the Ob' River, at Salekhard, sediment yield has remained constant at about 5.3 t km-2 year-1. In the lower Yenisey River, the already small natural sediment yield of 5.4 t km-2 year-1 has been decreased several fold by the construction of massive reservoirs on the main stem and on the tributary Angara River, and presently equals 1.8 t km-2 year-1.

  14. Connecting climate change to coastal evolution: Impact of sub-millenial- scale precipitation variability on fluvial sediment discharge

    NASA Astrophysics Data System (ADS)

    Krask, J. L.; Hein, C. J.; Galy, V.; FitzGerald, D.

    2016-12-01

    While millennial- scale variations in climate forcing drives changes in terrestrial processes, which are directly linked to fluvial sediment loads (e.g., weathering and erosion), the impact of decadal- to centennial- scale climate fluctuations on downstream coastal sedimentation patterns and landscape evolution remains unclear. Specifically, the connection between long-term (decades or more) precipitation seasonality and sediment export from river systems has not been established. This study examines the Tijucas strandplain (Southern Brazil) to determine if sub-millennial-scale fluctuations in precipitation at river systems have a detectable influence on the coastal landscape. A 5-km strandplain, formed over the last 5800 years through the rapid reworking of sediment discharged from the proximal Tijucas River in a regime of falling sea level, encompasses nearly 70 distinct transitions between shore-parallel sand- and mud- dominated facies. An overall shift from sand- to mud- dominance is due to a long-term reduction in wave energy caused by bay shoaling. Bulk and terrestrial vascular plant wax fatty acid stable hydrogen (δD) and carbon (δ13C) isotopic measurements from sediments from select sandy and muddy ridges across the plain reveal that these two sedimentological units are geochemically distinct. Furthermore, waxes from sediments deposited during periods of sandy progradation were, on average, >10‰ more enriched in deuterium than those from mud-dominated periods, indicating that these sedimentary units reflect different climatic conditions within the river drainage basin at the time of deposition. Comparison of plant wax isotopic signatures of river and beach sediments during the current period of mud-dominated progradation, reveals a close correlation with earlier periods of mud deposition within the Tijucas Strandplain. Thus, decadal- to centennial- scale sedimentologic transitions within the plain are interpreted to reflect climate-driven changes in mud

  15. Sediment reservoirs and sediment fluxes in high mountain environments: how does sediment move through the system at the decadal scale?

    NASA Astrophysics Data System (ADS)

    Micheletti, Natan; Lambiel, Christophe; Lane, Stuart N.

    2016-04-01

    Faced with rapid climate warming over recent decades, high mountain systems are likely to respond dramatically because of: (1) the vulnerability of permafrost, glacial and nival processes to temperature and precipitation changes; (2) the ample availability of unconsolidated, potentially mobile sediments left after deglaciation; and (3) steep slopes, that potentially aid sediment mobilization. We no surprisingly know little about these processes over the decadal scale because the geomorphic response is often complex, spatially and temporally, and there is little history of decadal scale measurement of these systems. In this paper, we focus upon a number of basins in the Southern Swiss Alps, with a wide range of primary sediment transfer mechanisms and altitude ranges up to 1,800 to 3,600 m asl. We are able to combine a set of unique data on: (1) erosion/deposition processes (derived from combined geomorphological maps and photogrammetrically-derived Digital Elevation Models); (2) sediment flux based upon tracking sediment using image correlation; (3) sediment connection quantified using a new approach to handle DEM noise; (4) changing stream sediment transport capacity derived from hydrodynamic modeling applied to long time series of river flow; and (5) sediment export measured at intakes flushed periodically as part of hydropower management. Results suggest a distinct landscape response to climatic forcing. A progressive acceleration of surface displacements for different landforms is observed throughout the last five decades. We observed that, with the beginning of a warmer period in the 1980s, glacier retreat and enhanced snowmelt caused water yield to increase considerably for various watersheds. This translates into enhancement of sediment transport capacities, which in combination with the intensification of landscape dynamics (greater erosion rates) explains the increase flushing frequency and hence sediment export registered in the basins. However, whilst

  16. Relatively high plasma density in low pressure inductive discharges

    SciTech Connect

    Kang, Hyun-Ju; Kim, Yu-Sin; Chung, Chin-Wook

    2015-09-15

    Electron energy probability functions (EEPFs) were measured in a low pressure argon inductive discharge. As radio frequency (RF) power increases, discharge mode is changed from E-mode (capacitively coupled) to H-mode (inductively coupled) and the EEPFs evolve from a bi-Maxwellian distribution to a Maxwellian distribution. It is found that the plasma densities at low RF powers (<30 W) are much higher than the density predicted from the slope of the densities at high powers. Because high portion of high energy electrons of the bi-Maxwellian distribution lowers the collisional energy loss and low electron temperature of low energy electrons reduces particle loss rate at low powers. Therefore, the energy loss of plasma decreases and electron densities become higher at low powers.

  17. Characterization of high power impulse magnetron sputtering discharges

    NASA Astrophysics Data System (ADS)

    Hala, Matej

    Paper I: In the first paper, we present a new approach in the characterization of the high power pulsed magnetron sputtering (HiPIMS) discharge evolution—time- and species-resolved plasma imaging—employing a set of band-pass optical interference filters suitable for the isolation of the emission originating from different species populating the plasma. We demonstrate that the introduction of such filters can be used to distinguish different phases of the discharge, and to visualize numerous plasma effects including background gas excitations during the discharge ignition, gas shock waves, and expansion of metal-rich plasmas. In particular, the application of this technique is shown on the diagnostics of the 200 µs long non-reactive HiPIMS discharges using a Cr target. Paper II: In order to gain further information about the dynamics of reactive HiPIMS discharges, both fast plasma imaging and time- and space-resolved optical emission spectroscopy (OES) are used for a systematic investigation of the 200 µs long HiPIMS pulses operated in Ar, N2 and N 2/Ar mixtures and at various pressures. It is observed that the dense metal plasma created next to the target propagates in the reactor at a speed ranging from 0.7 to 3.5 km s-1, depending on the working gas composition and the pressure. In fact, it increases with higher N 2 concentration and with lower pressure. The visible form of the propagating plasma wave changes from a hemispherical shape in Ar to a drop-like shape extending far from the target with increasing N2 concentration, owing to the significant emission from molecular N2. Interestingly, the evidence of the target self-sputtering is found for all investigated conditions, including pure N2 atmosphere. Paper III: Here, we report on the time- and species-resolved plasma imaging analysis of the dynamics of the 200 µs long HiPIMS discharges above a Cr target ignited in pure O2. It is shown that the discharge emission is dominated solely by neutral and

  18. High discharge capacity solid composite polymer electrolyte lithium battery

    NASA Astrophysics Data System (ADS)

    Chen, Y. T.; Chuang, Y. C.; Su, J. H.; Yu, H. C.; Chen-Yang, Y. W.

    2011-03-01

    In this study, a series of nanocomposite polymer electrolytes (CPEs), PAN/LiClO4/SAP, with high conductivity are prepared based on polyacrylonitrile (PAN), LiClO4 and low content of the silica aerogel powder (SAP) prepared by the sol-gel method with ionic liquid (IL) as the template. The effect of addition of SAP on the properties of the CPEs is investigated by FTIR, AC impedance, linear sweep voltagrams and cyclic voltammetry measurements as well as the charge-discharge performance. It is found that the ionic conductivity of the CPE is significantly improved by addition of SAP. The maximum ambient ionic conductivity of CPEs is about 12.5 times higher than that without addition of SAP. The results of the voltammetry measurements of CPE-3, which contained 3 wt% of SAP, show that the anodic and cathodic peaks are well maintained after 100 cycles, showing excellent electrochemical stability and cyclability over the potential range between 0 V and 4 V vs. Li/Li+. Besides, the room temperature discharge capacity measured at 0.5C for the coin cell based on CPE-3 is 120 mAh g-1 and the capacity is retained after 20 cycles discharge, indicating the potential for practical use. This is perhaps the first report of the room temperature charge-discharge performance on the solid composite polymer electrolyte to the best of our knowledge.

  19. Suspended Sediment Dynamics at High and Low Flows in Mining - Affected Catchments in Zambales Province, Philippines

    NASA Astrophysics Data System (ADS)

    Domingo, J. P. T.

    2016-12-01

    One of the critical issues linked to mining is the exacerbation of soil erosion. This problem is further aggravated in tropical areas as intensified rainfall usually result to an upsurge in suspended sediment concentrations (SSC) and total sediment yield. In this study, the discharge-SSC behavior in four river systems with nickel mining operations was analyzed during low flow and high flow conditions. Point sources with high SSC were correlated with existing mining activity and natural erosion susceptibility. Interestingly, the SSCs in all river systems were found to significantly decrease away from the mining areas but abruptly increase at the most downstream stations, indicating the significant contribution of other downstream sources in the total sediment yield. Aside from providing current `baseline' data for the catchments, the analysis of both low and high flow conditions have effectively pinpointed specific areas that significantly influence SSC dynamics, and thus provides insight for effective assessment of existing mine environmental structures.

  20. High voltage pulse ignition of mercury discharge hollow cathodes

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.

    1973-01-01

    A high voltage pulse generated by a capacitor discharge into a step-up transformer has been demonstrated capable of consistently igniting hollow cathode mercury discharges at propellant flows and heater power levels much below those required by conventional cathode starting. Results are presented for 3.2-mm diameter enclosed and open keeper cathodes. Starting characteristics are shown to depend on keeper voltage, mercury flow rate, heater power, keeper orifice size, emissive materials, and electrode to which the pulse is applied. This starting technique has been used to start a cathode over 10,000 times without any degradation of starting capability. The starting reliability, propellant and power savings offered by the high voltage pulse start should favorably impact performance of electron bombardment thrusters in missions requiring many on-off duty cycles.

  1. Cardiac stimulation with high voltage discharge from stun guns.

    PubMed

    Nanthakumar, Kumaraswamy; Massé, Stephane; Umapathy, Karthikeyan; Dorian, Paul; Sevaptsidis, Elias; Waxman, Menashe

    2008-05-20

    The ability of an electrical discharge to stimulate the heart depends on the duration of the pulse, the voltage and the current density that reaches the heart. Stun guns deliver very short electrical pulses with minimal amount of current at high voltages. We discuss external stimulation of the heart by high voltage discharges and review studies that have evaluated the potential of stun guns to stimulate cardiac muscle. Despite theoretical analyses and animal studies which suggest that stun guns cannot and do not affect the heart, 3 independent investigators have shown cardiac stimulation by stun guns. Additional research studies involving people are needed to resolve the conflicting theoretical and experimental findings and to aid in the design of stun guns that are unable to stimulate the heart.

  2. Cardiac stimulation with high voltage discharge from stun guns

    PubMed Central

    Nanthakumar, Kumaraswamy; Massé, Stephane; Umapathy, Karthikeyan; Dorian, Paul; Sevaptsidis, Elias; Waxman, Menashe

    2008-01-01

    The ability of an electrical discharge to stimulate the heart depends on the duration of the pulse, the voltage and the current density that reaches the heart. Stun guns deliver very short electrical pulses with minimal amount of current at high voltages. We discuss external stimulation of the heart by high voltage discharges and review studies that have evaluated the potential of stun guns to stimulate cardiac muscle. Despite theoretical analyses and animal studies which suggest that stun guns cannot and do not affect the heart, 3 independent investigators have shown cardiac stimulation by stun guns. Additional research studies involving people are needed to resolve the conflicting theoretical and experimental findings and to aid in the design of stun guns that are unable to stimulate the heart. PMID:18450834

  3. High energy XeBr electric discharge laser

    DOEpatents

    Sze, R.C.; Scott, P.B.

    A high energy XeBr laser for producing coherent radiation at 282 nm is disclosed. The XeBr laser utilizes an electric discharge as the excitation source to minimize formation of molecular ions thereby minimizing absorption of laser radiation by the active medium. Additionally, HBr, is used as the halogen donor which undergoes harpooning reactions with Xe/sub M/ to form XeBr.

  4. High energy KrCl electric discharge laser

    DOEpatents

    Sze, R.C.; Scott, P.B.

    A high energy KrCl laser is presented for producing coherent radiation at 222 nm. Output energies on the order of 100 mJ per pulse are produced utilizing a discharge excitation source to minimize formation of molecular ions, thereby minimizing absorption of laser radiation by the active medium. Additionally, HCl is used as a halogen donor which undergoes a harpooning reaction with metastable Kr/sub M/ to form KrCl.

  5. High energy KrCl electric discharge laser

    DOEpatents

    Sze, Robert C.; Scott, Peter B.

    1981-01-01

    A high energy KrCl laser for producing coherent radiation at 222 nm. Output energies on the order of 100 mJ per pulse are produced utilizing a discharge excitation source to minimize formation of molecular ions, thereby minimizing absorption of laser radiation by the active medium. Additionally, HCl is used as a halogen donor which undergoes a harpooning reaction with metastable Kr.sub.M * to form KrCl.

  6. High energy XeBr electric discharge laser

    DOEpatents

    Sze, Robert C.; Scott, Peter B.

    1981-01-01

    A high energy XeBr laser for producing coherent radiation at 282 nm. The XeBr laser utilizes an electric discharge as the excitation source to minimize formation of molecular ions thereby minimizing absorption of laser radiation by the active medium. Additionally, HBr is used as the halogen donor which undergoes harpooning reactions with Xe.sub.M * to form XeBr*.

  7. Modeling the Responses of Water and Sediment Discharge to Climate Change in the Upper Yellow River Basin, China

    NASA Astrophysics Data System (ADS)

    Yu, X.; Xie, X.

    2015-12-01

    The Yellow River flows through nine provinces and provides water for 30% of China's population. It is the largest sandy river in the world and its annual transport capacity is about 1.6 billion tons. Water availability and soil erosion in this basin have continuously obtained great concern. The upper Yellow River basin (UYRB) above the Tangnaihai hydrological station contributes over one-third water discharge to the entire Yellow River basin. This contribution and hydrological regime may have been substantially altered over the past decades due to climate change and human activities. Understanding the streamflow regime and sediment transport in the UYRB, especially in the context of climate change, is crucial for sustainable water resource management and soil-water conservation. In this study, we attempt to quantify the responses of water and sediment discharge to climate change in the UYRB. We employed a distributed hydrological model, i.e., the Soil and Water Assessment Tool (SWAT), to simulate the runoff and sediment load under different scenarios, including climate change and detrended climate conditions. To predict the future trend, we designed scenarios with Coupled Model Intercomparison Project Phase 3 (CMIP3) down scaled forcing data. The results indicate that the SWAT model successfully reproduced the historical patterns of water and sediment dischargewith calibration and validation. As a response to the decreased precipitation and increased temperature during 1966-2009, annual runoff and sediment load have significantly decreased with the trends of -11.6 mm/decade and -1.3 million ton/decade, respectively. But precipitation plays a dominate role in reshaping these trends, with the contribution over four times larger than that of temperature. In the near future (2049-2064), however, runoff and sediment load wouldrise to some degree. Especially in the A2 scenario, runoff and sediment load exceed more than double in summer relative to current climate

  8. Application of the loop method for correcting acoustic doppler current profiler discharge measurements biased by sediment transport

    USGS Publications Warehouse

    Mueller, David S.; Wagner, Chad R.

    2006-01-01

    A systematic bias in discharge measurements made with an acoustic Doppler current profiler (ADCP) is attributed to the movement of sediment near the streambed-an issue widely acknowledged by the scientific community. This systematic bias leads to an underestimation of measured velocity and discharge. The integration of a differentially corrected Global Positioning System (DGPS) to track the movement of the ADCP can be used to avoid the systematic bias associated with a moving bed. DGPS systems, however, cannot provide consistently accurate positions because of multipath errors and satellite signal reception problems on waterways with dense tree canopy along the banks, in deep valleys or canyons, and near bridges. An alternative method of correcting for the moving-bed bias was investigated by the U.S. Geological Survey.

  9. Study of Saturn electrostatic discharges with high time resolution

    NASA Astrophysics Data System (ADS)

    Zakharenko, V.; Mylostna, K.; Konovalenko, A.; Kolyadin, V.; Zarka, P.; Griessmeier, J.-M.; Litvinenko, G.; Sidorchuk, M.; Rucker, H.; Fischer, G.; Cecconi, B.; Coffre, A.; Denis, L.; Shevchenko, V.; Nikolaenko, V.

    2013-09-01

    Ground-based observations of SED (Saturn Electrostatic Discharges) with high time resolution are the next stage of extraterrestrial atmospheric processes study. Due to extremely high intensity of Saturn's storm J (2010) [1] we have obtained the records with high signal-to-noise (S/N) ratio with the time resolution of 15 ns. It permitted us to investigate the microsecond structure of lightning and clearly distinguish SED in the presence of local interference in virtue of a dispersive delay of extraterrestrial planetary signals.

  10. An improved method for interpretation of riverine concentration-discharge relationships indicates long-term shifts in reservoir sediment trapping

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Harman, Ciaran J.; Ball, William P.

    2016-10-01

    Derived from river monitoring data, concentration-discharge (C-Q) relationships are powerful indicators of export dynamics. Proper interpretation of such relationships can be made complex, however, if the ln(C)-ln(Q) relationships are nonlinear or if the relationships change over time, season, or discharge. Methods of addressing these issues by "binning" data can introduce artifacts that obscure underlying interactions among time, discharge, and season. Here we illustrate these issues and propose an alternative method that uses the regression coefficients of the recently developed "Weighted Regressions on Time, Discharge, and Season" model for examining C-Q relationships in long-term, discretely sampled data for various water-quality constituents, including their uncertainties. The method is applied to sediment concentration data from Susquehanna River at Conowingo Dam, Maryland, to illustrate how the coefficients can be accessed and presented in ways that provide additional insights toward the interpretation of river water-quality data, which reaffirms the recently documented decadal-scale decline in reservoir trapping performance.

  11. Predicting Monsoonal-Driven Stream Discharge and Sediment Yield in Himalaya Mountain Basins with Changing Climate and Deforestation

    NASA Astrophysics Data System (ADS)

    Neupane, R. P.; White, J. D.

    2014-12-01

    Short and long term effects of site water availability impacts the spectrum of management outcomes including landslide risk, hydropower generation, and sustainable agriculture in mountain systems heavily influenced by climate and land use changes. Climate change and land use may predominantly affect the hydrologic cycle of mountain basins as soil precipitation interception is affected by land cover. Using the Soil and Water Assessment Tool, we estimated stream discharge and sediment yield associated with climate and land use changes for two Himalaya basins located at eastern and western margins of Nepal that included drainages of the Tamor and Seti Rivers. Future climate change was modeled using average output of temperature and precipitation changes derived from Special Report on Emission Scenarios (B1, A1B & A2) of 16 global circulation models for 2080 as meteorological inputs into SWAT. Land use change was modeled spatially and included 1) deforestation, 2) expansion of agricultural land, and 3) increased human settlement that were produced by considering current land use with projected changes associated with viability of elevation and slope characteristics of the basins capable of supporting different land use types. We found higher annual stream discharge in all GCM-derived scenarios compared to the baseline with maximum increases of 13 and 8% in SRES-A2 and SRES-A1B for the Tamor and Seti basins, respectively. With 7% of original forest land removed, sediment yield for Tamor basin was estimated to be 65% higher, but increased to 124% for the SRES-B1 scenario. For the Seti basin, 4% deforestation yielded 33% more sediment for the SRES-A1B scenario. Our results indicated that combined effects of future, intensified monsoon rainfall with deforestation lead to dramatic potential for increased stream discharge and sediment yield as rainfall on steep slopes with thin exposed soils increases surface runoff and soil erosion in the Himalayas. This effect appears to

  12. Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow

    NASA Astrophysics Data System (ADS)

    Qi, Haicheng; Gao, Wei; Fan, Zhihui; Liu, Yidi; Ren, Chunsheng

    2016-05-01

    Volume diffuse dielectric barrier discharge (DBD) plasma is produced in subsonic airflow by nanosecond high-voltage pulse power supply with a plate-to-plate discharge cell at 6 mm air gap length. The discharge images, optical emission spectra (OES), the applied voltage and current waveforms of the discharge at the changed airflow rates are obtained. When airflow rate is increased, the transition of the discharge mode and the variations of discharge intensity, breakdown characteristics and the temperature of the discharge plasma are investigated. The results show that the discharge becomes more diffuse, discharge intensity is decreased accompanied by the increased breakdown voltage and time lag, and the temperature of the discharge plasma reduces when airflow of small velocity is introduced into the discharge gap. These phenomena are because that the airflow changes the spatial distribution of the heat and the space charge in the discharge gap. supported by National Natural Science Foundation of China (No. 51437002)

  13. Seafloor Morphology And Sediment Discharge Of The Storfjorden And Kveithola Palaeo-Ice Streams (NW Barents Sea) During The Last Deglaciation

    NASA Astrophysics Data System (ADS)

    Camerlenghi, Angelo; Rebesco, Michele; Pedrosa, Mayte; Demol, Ben; Giulia Lucchi, Renata; Urgeles, Roger; Colmenero-Hidalgo, Elena; Andreassen, Karin; Sverre Laberg, Jan; Winsborrow, Monica

    2010-05-01

    deposits up to 200 m thick in the early phases of the development of the glacially influenced margin. Conversely, the central and northern parts of the Storfjorden margin have prograded without appreciable episodes of mass failure. Sedimentation has occurred through alternate layering of decimeter-thick glacial debris flows deposits, with laminated and acoustically transparent interglacial sediment drape. Gullies and paleo-gullies incise the glacial debris flows and are covered by the interglacial drape. They are formed early during each deglaciation phase, most likely by the erosive action of short-lived hyperpycnal flows generated by sediment-laden subglacial meltwater discharge. In sediment cores thick finely-laminated sedimentary beds on the upper continental slope of the southern part of the margin indicate preferential deposition by settlement of meltwater sediment plumes. High sedimentation rates of plumites may contribute to the slope instability and suggest that meltwater discharge was focused on the southern Storfjorden and Kveithola paleo-ice streams.

  14. Collisional and Radiative Processes in High-Pressure Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Becker, Kurt

    2001-10-01

    High-pressure discharge plasmas (HPDPs) with operating pressures up to and exceeding atmospheric pressure have gained prominence in many areas of application such as EM absorbers and reflectors, remediation of waste streams, deposition and surface modification, surface cleaning and sterilization, and light source development. In particular, HPDPs are widely used as sources for the generation of non-coherent UV and VUV light such as excimer emissions in the spectral range from 50 nm to 300 nm using rare gases or rare gas admixed with other gases as the operating medium. In this talk we will discuss several common types of HPDPs (e.g. microhollow cathode discharge plasmas, dielectric barrier discharge plasmas, capillary dielectrode discharge plasmas) that are commonly used for the generation of non-coherent excimer emissions. The main focus of this talk will be on the elucidation of the underlying microscopic collisional and radiative processes in these plasmas that lead to the photon emission and that determine the efficiency and spectral characteristics of various sources. Processes of particular interest are the generation of intense, monochromatic atomic line emissions in the 90 - 130 nm range, in particular the H Lyman-alpha emission at 121.6 nm, from HPDPs in gas mixtures containing high-pressure He, Ne, or Ar with trace amounts (1which may have great potential in photolithography and related applications. The mechanism for the emission of these intense atomic VUV lines are near-resonant energy transfer processes from the excimer molecule to the diatomic gas (H2, O2, N2). This work was supported by the NSF and by DARPA/ARO and carried out in collaboration with P. Kurunczi, K.H. Schoenbach, M. Laroussi, M. Gupta, and N. Masoud. Helpful discussions with U. Kogelschatz and E. Kunhardt are gratefully acknowledged.

  15. Effects of sediment discharge from Namibian diamond mines on intertidal and subtidal rocky-reef communities and the rock lobster Jasus lalandii

    NASA Astrophysics Data System (ADS)

    Pulfrich, Andrea; Branch, George M.

    2014-10-01

    Extensive terrestrial diamond mining occurs on the southern coast of Namibia, and at Elizabeth Bay near Lüderitz sediment tailings totalling about 2 million tons.yr-1, have been discharged onto the beach. We report here on monitoring spanning 2004-2012 to assess (1) the impacts of increased tailings discharges following an expansion of the mine in 2005, and (2) recovery after discharges halted in 2009. Sampling covered three levels of wave exposure, and compared impacted sites with comparable unmined reference sites. Benthic communities were quantified on both intertidal and subtidal reefs, and kelp densities and rock-lobster abundances, lengths and sex ratios on subtidal reefs. Prior to intensification of mining, deposition of tailings significantly influenced intertidal communities only at sheltered localities where wave action was insufficient to disperse them. Following the mine expansion, effects spread to both semi-exposed and exposed sites. After mining was suspended, recovery of the biota was limited, even three years later. Reductions of intertidal diversity and grazers, proliferation of macroalgae, and increased dominance by filter feeders were recorded at the impacted sites and were persistent, but the affects of wave exposure on community composition generally exceeded those of mining discharges. On subtidal reefs, tailings deposition reduced predators and grazers, increased filter feeders and ephemeral green algae, and decreased all other algae, possibly driven by light reduction due to plumes of suspended fine sediments. Increased discharges post-2005 also substantially influenced bathymetry, wave and current regimes, transforming 2 km of previously wave-exposed rocky coastline into a semi-exposed sandy beach. Tailings discharge appeared to influence community composition in four ways: (1) inundation and blanketing; (2) increased suspended particulate materials; (3) indirect top-down ripple effects, and (4) light reduction. Throughout the period 2004

  16. California coast nearshore processes study. [nearshore currents, sediment transport, estuaries, and river discharge

    NASA Technical Reports Server (NTRS)

    Pirie, D. M.; Steller, D. D. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Large scale sediment plumes from intermittent streams and rivers form detectable seasonal patterns on ERTS-1 imagery. The ocean current systems, as plotted from three California coast ERTS mosaics, were identified. Offshore patterns of sediment in areas such as the Santa Barbara Channel are traceable. These patterns extend offshore to heretofore unanticipated ranges as shown on the ERTS-1 imagery. Flying spot scanner enhancements of NASA tapes resulted in details of subtle and often invisible (to the eye) nearshore features. The suspended sediments off San Francisco and in Monterey Bay are emphasized in detail. These are areas of extremely changeable offshore sediment transport patterns. Computer generated contouring of radiance levels resulted in maps that can be used in determining surface and nearsurface suspended sediment distribution. Tentative calibrations of ERTS-1 spectral brightness against sediment load have been made using shipboard measurements. Information from the combined enhancement and interpretation techniques is applicable to operational coastal engineering programs.

  17. The sediment load and deposition by river discharge and their relation to organochlorine pesticides pollutants in the sediment bottom of Nha Trang Bay, Vietnam

    NASA Astrophysics Data System (ADS)

    Du, Hoang Trung; Kunzmann, Andreas

    2015-06-01

    Based on previous results from the "River reef impact studies project that was carried out as a co-operation programme between ZMT (Germany) and NIO (Vietnam) from 2008-2012, the variation of sediment load and associated persistent organic pollutants were investigated in Nha Trang Bay. In northern parts of the bay, both suspended matter load and deposition rates are high during the rainy season (flood events). The total suspended matter (TSM) and particulate nitrogen (PN) concentration show variations both with season (dry and rainy seasons) and increasing distances from the coast: TSM ranged from 2.30 to 19.79 mgL-1; and PN concentration ranged from 0.006 to 0.055 mgL-1. High deposition rates occurred both near the shore and in mid-bay, ranging from 12.8 to 36.1 g m-2 d-1. In the southern section of the bay, sediment deposition was slightly lower, with little seasonal variation. The highest deposition rate was measured at the river estuarine site, amounting to 9.1 g m-2 d-1 (dry season) and 9.0 g m-2 d-1 (rainy season). Further, persistent organic pollutants (POP) concentrations in sediment samples and sediment cores clearly showed the presence of organo-chlorine pesticides (OCP pollutant). High accumulation levels of OCP components were found in almost all sediment samples of Nha Trang Bay. The DDT concentrations showed high levels in sediment located in the estuary at the northern part of the bay (ranged: 20.11µg kg-1 to 5.28µg kg-1), and in the southern part (B1) 3.76µg kg-1. This study provides essential data and information, which are needed to assess the long-term impacts of river input on the degradation of marine ecosystems in the coastal waters of Nha Trang Bay.

  18. Automatic real-time control of suspended sediment based upon high frequency in situ measurements of nephelometric turbidity

    Treesearch

    Jack Lewis; Rand Eads

    1998-01-01

    Abstract - For estimating suspended sediment concentration (SSC) in rivers, turbidity is potentially a much better predictor than water discharge. Since about 1990, it has been feasible to automatically collect high frequency turbidity data at remote sites using battery-powered turbidity probes that are properly mounted in the river or stream. With sensors calibrated...

  19. Evaluation of the water genotoxicity from Santos Estuary (Brazil) in relation to the sediment contamination and effluent discharges.

    PubMed

    Umbuzeiro, Gisela de A; Kummrow, Fábio; Roubicek, Deborah A; Tominaga, Maria Y

    2006-04-01

    The genotoxic activity of water samples collected in 9 different sites within the area of the Santos estuary was preliminary evaluated, and related to previous data on the genotoxicity of sediments and the contents of PAHs in both water and sediment samples. The liquid discharge of a steel mill (coke plant), known to be mutagenic, was chemically analyzed to determine its PAH content. For the water evaluation we employed the Salmonella/microsome assay with the strains TA98 and TA100 with and without S9 mix in the plate incorporation method. The water was filtered with an AP20 membrane before being extracted with XAD4 at natural and acidic pH. The industrial effluent was filtered in 0.45 microm membranes before being extracted with the liquid/liquid method. Both membranes containing the particulate material were extracted using ultrasonication. PAHs were found associated with the suspended particles present in the industrial effluent in accordance with mutagenicity data previously reported. In relation to the estuarine waters, sites 1 and 5 presented low levels of mutagenic activity only in the filtered water (liquid fraction) extracts. At site 3, both the filtered water and particulate solids presented also low mutagenicity. Results show that the mutagenic activity observed in water could not be directly related to the genotoxic activity and PAHs contents of the bottom sediments.

  20. Characteristics of the Plasma Environment and Discharge Process in a High-Pressure Pulsed Arc Discharge

    NASA Astrophysics Data System (ADS)

    Tang, Ricky; Hopkins, Matthew; Barnat, Edward

    2016-09-01

    The characteristics and properties of a plasma generated in a pulsed arc discharge are investigated. Arc discharge plasmas are prevalent in the production and treatment of materials. Photodetectors and optical emission spectroscopy (OES) are used to probe the plasmas and characterize their spectral responses. OES allows for species identification and provides information about the state of the plasma, such as the electron temperature. Discharges generated with inert gas such as argon, as well as with nitrogen and air, are studied and compared. In the case of reactive gases, OES also provides information on the possible reactions that took place. Microwave interferometry is used to measure the electron density to provide spatial information on the discharges. In addition, the measurement is synchronized with the discharge pulse to obtain temporal information, for instance, during the pulse initialization phase to investigate the arc discharge process prior to plasma generation, where optical information is absent. Together, this allows for the characterization of the pre-, during, and post-discharge processes.

  1. Collisional and radiative processes in high-pressure discharge plasmas

    NASA Astrophysics Data System (ADS)

    Becker, Kurt H.; Kurunczi, Peter F.; Schoenbach, Karl H.

    2002-05-01

    Discharge plasmas at high pressures (up to and exceeding atmospheric pressure), where single collision conditions no longer prevail, provide a fertile environment for the experimental study of collisions and radiative processes dominated by (i) step-wise processes, i.e., the excitation of an already excited atomic/molecular state and by (ii) three-body collisions leading, for instance, to the formation of excimers. The dominance of collisional and radiative processes beyond binary collisions involving ground-state atoms and molecules in such environments allows for many interesting applications of high-pressure plasmas such as high power lasers, opening switches, novel plasma processing applications and sputtering, absorbers and reflectors for electromagnetic waves, remediation of pollutants and waste streams, and excimer lamps and other noncoherent vacuum-ultraviolet light sources. Here recent progress is summarized in the use of hollow cathode discharge devices with hole dimensions in the range 0.1-0.5 mm for the generation of vacuum-ultraviolet light.

  2. Analysis of 16S Sediment Microbial Communities from a Southern California Wastewater-Treatment Discharge Field

    EPA Science Inventory

    Treated sewage effluent from several large wastewater treatment plants in the Los Angeles metropolitan area is discharged into the Pacific Ocean through a network of outfalls located between 5 and 7 miles offshore. To support development of new indicators of wastewater effects o...

  3. Analysis of 16S Sediment Microbial Communities from a Southern California Wastewater-Treatment Discharge Field

    EPA Science Inventory

    Treated sewage effluent from several large wastewater treatment plants in the Los Angeles metropolitan area is discharged into the Pacific Ocean through a network of outfalls located between 5 and 7 miles offshore. To support development of new indicators of wastewater effects o...

  4. Magnetic shielding of Hall thrusters at high discharge voltages

    SciTech Connect

    Mikellides, Ioannis G. Hofer, Richard R.; Katz, Ira; Goebel, Dan M.

    2014-08-07

    A series of numerical simulations and experiments have been performed to assess the effectiveness of magnetic shielding in a Hall thruster operating in the discharge voltage range of 300–700 V (I{sub sp} ≈ 2000–2700 s) at 6 kW, and 800 V (I{sub sp} ≈ 3000) at 9 kW. At 6 kW, the magnetic field topology with which highly effective magnetic shielding was previously demonstrated at 300 V has been retained for all other discharge voltages; only the magnitude of the field has been changed to achieve optimum thruster performance. It is found that magnetic shielding remains highly effective for all discharge voltages studied. This is because the channel is long enough to allow hot electrons near the channel exit to cool significantly upon reaching the anode. Thus, despite the rise of the maximum electron temperature in the channel with discharge voltage, the electrons along the grazing lines of force remain cold enough to eliminate or reduce significantly parallel gradients of the plasma potential near the walls. Computed maximum erosion rates in the range of 300–700 V are found not to exceed 10{sup −2} mm/kh. Such rates are ∼3 orders of magnitude less than those observed in the unshielded version of the same thruster at 300 V. At 9 kW and 800 V, saturation of the magnetic circuit did not allow for precisely the same magnetic shielding topology as that employed during the 6-kW operation since this thruster was not designed to operate at this condition. Consequently, the maximum erosion rate at the inner wall is found to be ∼1 order of magnitude higher (∼10{sup −1} mm/kh) than that at 6 kW. At the outer wall, the ion energy is found to be below the sputtering yield threshold so no measurable erosion is expected.

  5. Sub-ice shelf sediment geochronology utilizing novel radiocarbon methodology for highly detrital sediments

    NASA Astrophysics Data System (ADS)

    Subt, C.; Yoon, H. I.; Yoo, K. C.; Lee, J. I.; Leventer, A.; Domack, E. W.; Rosenheim, B. E.

    2017-04-01

    Sub-ice shelf sediments near Larsen C ice shelf (LIS-C) show fine-scale rhythmic laminations that could provide a near-continuous seasonal-resolution record of regional ice mass changes. Despite the great potential of these sediments, a dependable Late Quaternary chronology is difficult to generate, rendering the record incomplete. As with many marginal Antarctic sediments, in the absence of preserved carbonate microfossils, the reliability of radiocarbon chronologies depends on presence of high proportions of autochthonous organic carbon with minimized detrital organic carbon. Consequently, acid insoluble organic (AIO) 14C dating works best where high productivity drives high sediment accumulation rates, but can be problematic in condensed sequences with high proportions of detrital organic carbon. Ramped PyrOx 14C dating has progressively been shown to improve upon AIO 14C dates, to the point of matching foraminiferal carbonate 14C dates, through differential thermochemical degradation of organic components within samples. But in highly detrital sediments, proportions of contemporaneously deposited material are too low to fully separate autochthonous organic carbon from detrital carbon in samples large enough to 14C date. We introduce two modifications of the Ramped PyrOx 14C approach applied to highly detrital sediments near LIS-C to maximize accuracy by utilizing ultra-small fractions of the highly detrital AIO material. With minimization of the uncertainty cost, these techniques allow us to generate chronologies for cores that would otherwise go undated, pushing the limits of radiocarbon dating to regions and facies with high proportions of pre-aged detritus. Wider use of these techniques will enable more coordinated a priori coring efforts to constrain regional glacial responses to rapid warming where sediments had previously been thought too difficult to date.

  6. High Rate Discharge Studies of LI/SO2 Batteries

    NASA Technical Reports Server (NTRS)

    Barnes, J. A.; Buchholz, S.; Bis, R. F.; Debold, F. C.; Kowalchik, L. A.

    1984-01-01

    A battery composed of twelve lithium/sulfur dioxide D size cells in series is forced discharged at 21 amperes. This current is established by the proposed use of the battery and represented a discharge condition which might produce venting. Discharge of the battery into voltage reversal results not only in cells venting but also in the violent rupture of at least one cell.

  7. Non-stationary Concentration-Discharge Relationships for Nitrogen, Phosphorus, and Sediment for Nine Major Tributaries of the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Ball, W. P.

    2015-12-01

    Derived from river water-quality monitoring data, concentration-discharge (C-Q) relationships are a powerful tool for understanding nutrient and sediment dynamics. Here we first present a brief review of C-Q relationships documented in the scientific literature. Major categories of observed relationships for nutrient and sediment include: (a) "dilution" patterns (i.e., negative C-Q relationships), particularly for point-source dominated rivers; and (b) "concentration" patterns (i.e., positive C-Q relationships), particularly for nonpoint-source dominated rivers. In the second part of our work, we present a comprehensive evaluation of riverine C-Q patterns for multiple water-quality constituents for the nine major non-tidal tributaries of the Chesapeake Bay. Specifically, we have analyzed concentration data sets of total nitrogen, nitrate plus nitrite, total phosphorus, dissolved orthophosphate, and suspended sediment for the period between the 1980s and 2015. Separation of the monitoring data into non-overlapping decadal periods revealed clear non-stationarity in C-Q relationships for many of the selected site-constituent combinations. These temporal changes in C-Q relationships generally reflected changes in dominant watershed sources of nutrients and sediment (e.g., reduction in point-source dominance for total nitrogen in the Patuxent River due to technology upgrade at wastewater treatment plants) and are consistent with trends observed in previous research. The findings also highlight the potential pitfalls of assuming stationary C-Q relationships when estimating riverine concentrations and fluxes or analyzing their trends.

  8. Rapid Sediment Accumulation Results in High Methane Effluxes from Coastal Sediments

    PubMed Central

    Lenstra, Wytze; Jong, Dirk; Meysman, Filip J. R.; Sapart, Célia J.; van der Veen, Carina; Röckmann, Thomas; Gonzalez, Santiago; Slomp, Caroline P.

    2016-01-01

    Globally, the methane (CH4) efflux from the ocean to the atmosphere is small, despite high rates of CH4 production in continental shelf and slope environments. This low efflux results from the biological removal of CH4 through anaerobic oxidation with sulfate in marine sediments. In some settings, however, pore water CH4 is found throughout the sulfate-bearing zone, indicating an apparently inefficient oxidation barrier for CH4. Here we demonstrate that rapid sediment accumulation can explain this limited capacity for CH4 removal in coastal sediments. In a saline coastal reservoir (Lake Grevelingen, The Netherlands), we observed high diffusive CH4 effluxes from the sediment into the overlying water column (0.2–0.8 mol m-2 yr-1) during multiple years. Linear pore water CH4 profiles and the absence of an isotopic enrichment commonly associated with CH4 oxidation in a zone with high rates of sulfate reduction (50–170 nmol cm-3 d-1) both suggest that CH4 is bypassing the zone of sulfate reduction. We propose that the rapid sediment accumulation at this site (~ 13 cm yr-1) reduces the residence time of the CH4 oxidizing microorganisms in the sulfate/methane transition zone (< 5 years), thus making it difficult for these slow growing methanotrophic communities to build-up sufficient biomass to efficiently remove pore water CH4. In addition, our results indicate that the high input of organic matter (~ 91 mol C m-2 yr-1) allows for the co-occurrence of different dissimilatory respiration processes, such as (acetotrophic) methanogenesis and sulfate reduction in the surface sediments by providing abundant substrate. We conclude that anthropogenic eutrophication and rapid sediment accumulation likely increase the release of CH4 from coastal sediments. PMID:27560511

  9. Discharge mode transition in a high-pressure RF capacitive discharge

    NASA Astrophysics Data System (ADS)

    Moon, S. Y.

    2005-10-01

    α and γ mode of a RF helium capacitive discharge were investigated at higher than 5 torr up to atmospheric pressure. The discharge source consisted of two parallel electrodes of same diameters of 60 mm for avoid the self-bias voltage. The discharge gap was fixed as 1 cm at (5 -- 200) torr and varied from 0.5 mm to 5 mm at atmospheric pressure. α and γ modes and the mode transition were observed with a nearly 40% voltage drop and a 55% V-I phase angle decrease. The relation between the mode transition voltage and the multiplication of pressure and distance (pd) looked similar to the Paschen curve. At atmospheric pressure, the mode transition occurred abruptly with an instantaneous arc generation, different from a smooth transition at lower pressures. At less than 3 mm gap, an abnormal glow discharge occurred, showing a linear current increase with respect to the voltage. At 3 mm gap, α mode excited as a normal glow discharge with a constant current density (17 mA/cm^2). At over 5 mm gap, either γ mode was excited or the discharge was extinguished. It means there is a critical (pd)cr value for α-mode generation at atmospheric pressure, like at lower pressures. From the experimental result and a simple electrical circuit model, we conclude that the transition between two modes resulted from the α-sheath breakdown.

  10. Axial Structure of High-Vacuum Planar Magnetron Discharge Space

    NASA Astrophysics Data System (ADS)

    Miura, Tsutomu

    1999-09-01

    The spatial structure of high-vacuum planar magnetron discharge is theoretically investigated taking into account the electron confinement. The boundary xes of the electron confinement region depends on BA with Ea/BA as the parameter (BA: the magnetic flux density at the anode, Ea: the average electric field strength). The location at which the frequency of ionization events takes the maximum is expressed as CnNxiep (CnN: a factor related to the electron density distribution, xiep: the distance of the location from the cathode at which the ionization is most efficient). With increasing Ea and BA at a fixed Ea/BA, the density of the confined energetic electrons increases. With increasing Ea, the region where ionization is efficient shifts to the cathode side to give a high efficiency of the magnet. The boundary xes as determined by the probe method agreed with the theoretical prediction.

  11. Pulsed positive streamer discharges in air at high temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Kamakura, Taku

    2016-08-01

    Atmospheric-pressure air pulsed positive streamer discharges are generated in a 13 mm point-plane gap in the temperature range of 293 K-1136 K, and the effect of temperature on the streamer discharges is studied. When the temperature is increased, the product of applied voltage and temperature VT proportional to the reduced electric field can be used as a primary parameter that determines some discharge parameters regardless of temperature. For a given VT, the transferred charge per pulse, streamer diameter, product of discharge energy and temperature, and length of secondary streamer are almost constant regardless of T, whereas the streamer velocity decreases with increasing T and the decay rate of the discharge current is proportional to 1/T. The N2(C) emission intensity is approximately determined by the discharge energy independent of T. These results are useful to predict the streamer discharge and its reactive species production when the ambient temperature is increased.

  12. Pink marine sediments reveal rapid ice melt and Arctic meltwater discharge during Dansgaard-Oeschger warmings.

    PubMed

    Rasmussen, Tine L; Thomsen, Erik

    2013-01-01

    The climate of the last glaciation was interrupted by numerous abrupt temperature fluctuations, referred to as Greenland interstadials and stadials. During warm interstadials the meridional overturning circulation was active transferring heat to the north, whereas during cold stadials the Nordic Seas were ice-covered and the overturning circulation was disrupted. Meltwater discharge, from ice sheets surrounding the Nordic Seas, is implicated as a cause of this ocean instability, yet very little is known regarding this proposed discharge during warmings. Here we show that, during warmings, pink clay from Devonian Red Beds is transported in suspension by meltwater from the surrounding ice sheet and replaces the greenish silt that is normally deposited on the north-western slope of Svalbard during interstadials. The magnitude of the outpourings is comparable to the size of the outbursts during the deglaciation. Decreasing concentrations of ice-rafted debris during the interstadials signify that the ice sheet retreats as the meltwater production increases.

  13. Ionization front in a high-current gas discharge

    NASA Astrophysics Data System (ADS)

    Choueiri, Edgar Y.; Randolph, Thomas M.

    2007-02-01

    Spectroscopic measurements of ion/neutral density ratio profiles are made inside the high-current, low-pressure discharge of a coaxial magnetoplasmadynamic thruster and show the existence of a thin ionization front, upstream in the discharge, that effectively ionizes the incoming gas to ionization levels above 50%. The measurements allow an estimate of the width of this ionization front to be on the order of a few millimeters. Due to the known existence of microturbulence in the plasma, which can produce suprathermal electrons, an explanation of the measurements based on the existence of a suprathermal tail in the electron energy distribution function is sought. A theoretical model for the width of the ionization front is combined with a multilevel excitation model for argon and shows that a Maxwellian electron distribution function cannot account for the small length scale of the ionization front, and that the latter is more consistent with an electron distribution function having a suprathermal population, the magnitude of which is estimated by comparing the model to the experiments.

  14. Eastern Mediterranean high resolution paleoclimate investigations using south Adriatic finely laminated sediment

    NASA Astrophysics Data System (ADS)

    Robert, B.; Jilbert, T.; de Lange, G. J.

    2009-04-01

    Sediments from the Gulf of Taranto area, southern Italy, offer the possibility to very high resolution paleo-reconstructions of the eastern Mediterranean climate variability (MOCCHA project). Riverine waters, with the Po river as its main contributor, are streaming south-eastward in the Adriatic along the eastern Italian coastline, before entering the bay of Taranto and discharging their suspended material as sediments on the shelves. Multicore GeoB 107-39-03 was taken in 2006, in the central part of the straits of Otranto, south Adriatic, on a potential monitoring site for input variability of continental waters to the Gulf of Taranto. The sediment exhibits on its total length sub-milimetric scale laminae potentially connected to high-frequency climate/hydrology variability. Conventional geochemical analyses were carried out on discrete samples (XRF, ICP-OES, organic C/N, ^13C), and a novel technique was used to investigate the sediment chemistry at the laminae scale: the sediment has been resin-impregnated to enable laser ablation coupled to ICP-MS analyses (LA-ICP-MS). This powerful method recently developed at the University of Utrecht (Jilbert et al., 2008) permits extremely high resolution geochemical profiling of the laminated sediment, to unravel the forcing mechanisms generating the laminae. Furthermore, in order to compare the data to modern days sediment geochemistry, a series of analyses were carried out on a batch of 46 surface samples, in collaboration with the MOCCHA project partners (see Posters/Talks in Euromarc session OS18). This work is supported by the EUROCORES/EUROMARC Program of the European Science Foundation (NWO.817.01.002 MOCCHA project).

  15. The effects of eight years aeration and isolation from polluting discharges on sewage- and metal-contaminated sediments

    NASA Astrophysics Data System (ADS)

    Boult, Stephen; Rebbeck, Jonathan

    1999-03-01

    water interface, the extremely high original organic content of the sediment ensures that even after 10 years it exerts a high oxygen demand. Consequently, sediment management is likely to be a long-term commitment and as remediation proceeds the importance of continuity in management will increase.

  16. High-pressure dc glow discharges in hollow diamond cathodes

    NASA Astrophysics Data System (ADS)

    Truscott, B. S.; Turner, C.; May, P. W.

    2016-04-01

    We report the generation and characterization of dc helium microdischarges at several times atmospheric pressure in monolithic diamond hollow-cathode devices having cavity diameters on the order of 100 μm. I-V characteristics indicated operation in the glow discharge regime even at nearly 10 atm, while spectroscopic measurements of the N2 C3Πu  →  B3Πg emission returned rotational temperatures always around 420 K, with a pressure-dependent vibrational population distribution. The variation of breakdown voltage with pressure closely followed Paschen’s law, but with offsets in both axes that we tentatively ascribe to strong diffusive loss and a partial thermalization of electron energies under the high pressures considered here.

  17. Towards prediction of suspended sediment yield from peak discharge in small erodible mountainous catchments (0.45-22 km2) of France, Mexico and Spain

    NASA Astrophysics Data System (ADS)

    Duvert, C.; Nord, G.; Gratiot, N.; Navratil, O.; Nadal-Romero, E.; Mathys, N.; Némery, J.; Regüés, D.; García-Ruiz, J. M.; Gallart, F.; Esteves, M.

    2012-08-01

    SummaryThe erosion and transport of fine-grained sediment in small mountainous catchments involve complex processes occurring at different scales. The suspended sediment yields (SSYs) delivered downstream are difficult to accurately measure and estimate because they result from the coupling of all these processes. Using high frequency discharge and suspended sediment data collected in eight small mountainous catchments (0.45-22 km2) from four distinct regions, we studied the relationships between event-based SSY and a set of other variables. In almost all the catchments, the event peak discharge (Qmax) proved to be the best descriptor of SSY, and the relations were approximated by single power laws of the form SSY=αQmaxβ. The β exponents ranged between 0.9 and 1.9 across the catchments, while variability in α was much higher, with coefficients ranging between 25 and 5039. The broad distribution of α was explained by a combination of site-specific physical factors, such as the percentage of degraded areas and hillslope gradient. Further analysis of the factors responsible for data dispersion in each catchment was carried out. Seasonality had a significant influence on variability; but overall, most of the scattering in the SSY-Qmax regressions was explained by the short-lasting memory effects occurring between successive events (i.e. in-channel temporary storage and remobilization of sediment; antecedent moisture conditions). The predictability of SSY-Qmax models was also assessed. Simulations of SSY per event and of annual SSY were conducted by using the computed regressions and the measured Qmax. Estimates of SSY per event were very uncertain. In contrast, annual SSY estimates based on the site-specific models were reasonably accurate in all the catchments, with interquartile ranges remaining in the ±50% error interval. The prediction quality of SSY-Qmax relations was partly attributed to the statistical compensation that likely occurred between extreme

  18. Treatment of urban river contaminated sediment with ex situ advanced oxidation processes: technical feasibility, environmental discharges and cost-performance analysis.

    PubMed

    Yan, Dickson Y S; Liu, Tongzhou; Lo, Irene M C

    2015-01-01

    The technical feasibility, environmental discharges and cost-performance of urban river contaminated sediment treatment with ex situ advanced oxidation processes were evaluated for the purpose of achieving an ideal treatment goal (for marine disposal) and a cost-performance treatment goal (for beneficially reusing as a filling material). Sediment samples were collected from a river located in southern China. To achieve the ideal treatment goal, sequential treatments (Fenton's reaction+activated persulphate oxidation) were carried out. One-step Fenton's reaction was applied to achieve the cost-performance treatment goal. The resulting effluent was treated and discharged, and sludge generated in wastewater treatment was characterized. The resources input throughout the treatment processes were recorded for cost estimation. After the treatment designed for achieving the ideal treatment goal, most pollutants fulfilled the treatment goal except Pb, Cd, Hg and Ag, probably because these four metals were present mainly in stable fractions of the sediment. The cost-performance treatment goal was achieved in view of low pollutant contents in the toxicity characteristic leaching procedure leachate of treated sediment. The cost for achieving the cost-performance treatment goal is much less than that for achieving the ideal treatment goal. The major cost difference is attributed to chemical cost. Stringent sediment treatment goals based on existing standards would lead to massive chemical use, complex treatment and hence huge cost. A simpler treatment with fewer chemicals is adequate for sediment beneficially reused as a filling material, and is economically more advantageous than handling sediment for marine disposal.

  19. Modelling of a high-current magnetron discharge in a plasma electron emitter

    NASA Astrophysics Data System (ADS)

    Udovichenko, S. Yu; Kostrin, D. K.; Lisenkov, A. A.

    2017-07-01

    An analytical model of a high-current form of a low-pressure glow discharge in an inverted cylindrical magnetron, which performs the function of plasma electron emitter, is shown. Were found conditions of the discharge self-sustaining, allowing to estimate the voltage of the discharge and determine the critical value of the magnetic field and residual gas pressure below which the existence of this type of discharge is impossible. A comparison of the calculated discharge characteristics with experimental data obtained on the setup for studying the emission properties of the magnetron discharge was carried out.

  20. RF physics of ICWC discharge at high cyclotron harmonics

    SciTech Connect

    Lyssoivan, A.; Van Eester, D.; Wauters, T.; Vervier, M.; Van Schoor, M.; Bobkov, V.; Rohde, V.; Schneider, P.; Douai, D.; Kogut, D.; Kreter, A.; Möller, S.; Philipps, V.; Sergienko, G.; Moiseenko, V.; Noterdaeme, J.-M.; Collaboration: TEXTOR Team; ASDEX Upgrade Team

    2014-02-12

    Recent experiments on Ion Cyclotron Wall Conditioning (ICWC) performed in tokamaks TEXTOR and ASDEX Upgrade with standard ICRF antennas operated at fixed frequencies but variable toroidal magnetic field demonstrated rather contrasting parameters of ICWC discharge in scenarios with on-axis fundamental ion cyclotron resonance (ICR) for protons,ω=ω{sub H+}, and with its high cyclotron harmonics (HCH), ω=10ω{sub cH+}⋅ HCH scenario: very high antenna coupling to low density RF plasmas (P{sub pl}≈0.9P{sub RF-G}) and low energy Maxwellian distribution of CX hydrogen atoms with temperature T{sub H}≈350 eV. Fundamental ICR: lower antenna-plasma coupling efficiency (by factor of about 1.5 times) and generation of high energy non-Maxwellian CX hydrogen atoms (with local energy E{sub ⊥H} ≥1.0 keV). In the present paper, we analyze the obtained experimental results numerically using (i) newly developed 0-D transport code describing the process of plasma production with electron and ion collisional ionization in helium-hydrogen gas mixture and (ii) earlier developed 1-D Dispersion Relation Solver accounting for finite temperature effects and collision absorption mechanisms for all plasma species in addition to conventionally examined Landau/TTPM damping for electrons and cyclotron absorption for ions. The numerical study of plasma production in helium with minor hydrogen content in low and high toroidal magnetic fields is presented. The investigation of the excitation, conversion and absorption of plasma waves as function of B{sub T}-field suggests that only fast waves (FW) may give a crucial impact on antenna coupling and characteristics of the ICWC discharge using standard poloidally polarized ICRF antennas designed to couple RF power mainly to FW. The collisional (non-resonant) absorption by electrons and ions and IC absorption by resonant ions of minor concentration in low T{sub e} plasmas is studied at fundamental ICR and its high harmonics.

  1. Fluoroquinolones and qnr genes in sediment, water, soil, and human fecal flora in an environment polluted by manufacturing discharges.

    PubMed

    Rutgersson, Carolin; Fick, Jerker; Marathe, Nachiket; Kristiansson, Erik; Janzon, Anders; Angelin, Martin; Johansson, Anders; Shouche, Yogesh; Flach, Carl-Fredrik; Larsson, D G Joakim

    2014-07-15

    There is increasing concern that environmental antibiotic pollution promotes transfer of resistance genes to the human microbiota. Here, fluoroquinolone-polluted river sediment, well water, irrigated farmland, and human fecal flora of local villagers within a pharmaceutical industrial region in India were analyzed for quinolone resistance (qnr) genes by quantitative PCR. Similar samples from Indian villages farther away from industrial areas, as well as fecal samples from Swedish study participants and river sediment from Sweden, were included for comparison. Fluoroquinolones were detected by MS/MS in well water and soil from all villages located within three km from industrially polluted waterways. Quinolone resistance genes were detected in 42% of well water, 7% of soil samples and in 100% and 18% of Indian and Swedish river sediments, respectively. High antibiotic concentrations in Indian sediment coincided with high abundances of qnr, whereas lower fluoroquinolone levels in well water and soil did not. We could not find support for an enrichment of qnr in fecal samples from people living in the fluoroquinolone-contaminated villages. However, as qnr was detected in 91% of all Indian fecal samples (24% of the Swedish) it suggests that the spread of qnr between people is currently a dominating transmission route.

  2. High Temperature Hydrothermal Components in the Sediment Cover of the Saldanha Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Dias, A.; Frueh-Green, G. L.; Bernasconi, S. M.; Mills, R. A.; Taylor, R. N.; Barriga, F. J.

    2006-12-01

    The Saldanha hydrothermal field is located at a non-transform offset (NTO5), between the FAMOUS and AMAR segments on the Mid-Atlantic Ridge (N36° 34'; W33° 26'). This field was discovered in 1998 during the Saldanha cruise (FCT, Portugal and IFREMER, France) and was revisited in 2001 during the Seahma cruise (FCT, Portugal) and in 2004 during the CD167 cruise (NOC, UK and FCT, Portugal). It is a serpentinite-hosted hydrothermal field and in situ observations revealed that hydrothermal vents are scarce and disseminated along the ocean floor over an area of approximately 400m2. Weakly venting fluids discharge through centimeter-sized orifices. Maximum fluid temperatures of 9° C were measured with the Victor ROV in 2001. Surface sediments have been collected from the Saldanha hydrothermal field in 1998, 2001 and 2004 and differences concerning mineralogy and geochemistry were recorded between these sediments. Mineralogy, whole sediment geochemistry and isotope ((δ 13C, δ 18O, Pb and Nd) data suggest geochemical variations in hydrothermal activity in this system. Hydrothermal activity is more strongly recorded in sediments collected in 2004, which are richer in sulfide mineralization and in hydrothermally- derived elements such as Cu, Zn, Fe, Co, Ni and S. In these sediments, rare earth elements (REE) patterns are characteristically derived from vent fluids, with enrichment in light REE and a pronounced positive Eu anomaly. The seawater-derived REE components in these sediments are low, as revealed by a small negative Ce anomaly. Lead isotopic ratios are typically less radiogenic in the youngest sediments when compared with the ones recorded in 1998 and 2001 sediments, demonstrating a negligible contribution of Pb from pelagic sediments. This is in agreement with neodymium isotope analyses indicating a smaller seawater contribution in the 2004 sediments. Oxygen isotope compositions (δ18OSMOW=6,59-11,63‰) of hydrothermal calcites present throughout the 2004

  3. High Frequency Acoustic Reflection and Transmission in Ocean Sediments

    DTIC Science & Technology

    2011-09-01

    scattering in ocean environments with special emphasis on propagation in shallow water waveguides and scattering from ocean sediments. 3 ) Development of...TYPE 3 . DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE High Frequency Acoustic Reflection and Transmission in Ocean Sediments...REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 2 3

  4. Evaluation of the method of collecting suspended sediment from large rivers by discharge-weighted pumping and separation by continuous- flow centrifugation

    USGS Publications Warehouse

    Moody, J.A.; Meade, R.H.

    1994-01-01

    The efficacy of the method is evaluated by comparing the particle size distributions of sediment collected by the discharge-weighted pumping method with the particle size distributions of sediment collected by depth integration and separated by gravitational settling. The pumping method was found to undersample the suspended sand sized particles (>63 ??m) but to collect a representative sample of the suspended silt and clay sized particles (<63??m). The success of the discharge-weighted pumping method depends on how homogeneously the silt and clay sized particles (<63 ??m) are distributed in the vertical direction in the river. The degree of homogeneity depends on the composition and degree of aggregation of the suspended sediment particles. -from Authors

  5. Thomson scattering on high pressure Hg discharge lamps

    NASA Astrophysics Data System (ADS)

    Zhu, X.; de Vries, N.; Kieft, E. R.; van der Mullen, J. J. A. M.; Haverlag, M.

    2005-06-01

    Thomson scattering (TS) experiments have been performed on high-pressure Hg discharge lamps. These lamps were filled with different amounts of Hg (15, 30, 50 and 70 mg) and were operating at different powers (150, 200 and 240 W) with a square-wave ballast. As in the previous studies (Zhu X et al 2004 J. Phys. D: Appl. Phys. 37 736-43) a triple grating spectrograph was used to suppress the false stray light and Rayleigh scattered photons. This set-up had to be modified for this special application. The collective TS spectra have been fitted using both a calibration using Raman scattering and a form fitting procedure. It was found that the electron temperature fluctuates around a certain value that seems rather constant in the central region. The value of electron temperature (Te) varies between 5500 and 7600 K in the central region (r <= 0.3 R). The spatial-averaged Te value increases with the lamp power. The electron density was found to be of the order of 1021 m-3 which is high at the centre and decreases as r increases. The ne value also increases with the lamp power. Moreover the results of TS are compared with those from x-ray absorption measurement. The comparison shows that the plasmas in such lamps are not in local thermal equilibrium in the sense that T_e\

  6. Contemporary sediment production and transfer in high-altitude glaciers

    NASA Astrophysics Data System (ADS)

    Owen, Lewis A.; Derbyshire, Edward; Scott, Christine H.

    2003-01-01

    The nature of fine-grained sediment production and transfer in high-altitude debris-covered glaciers was studied by examining the Rakhiot and Chungphar glaciers in the Nanga Parbat Himalaya, Northern Pakistan. Transport pathways, from the source areas to the glacier snout, were mapped and samples collected for particle size analysis and scanning electron microscopy. Positive down-glacier trends in sediment fining and increased weathering showed that debris transport in the supraglacial zone of these Himalayan glaciers is an important contributor to contemporary glacial sediment production, resulting in intense comminution that yields large volumes of fine sediment. These findings cast doubt on the traditional view that the basal traction zone of glaciers is the only major source of fine sediment production in glaciated environments, although that view may hold true for classic alpine glaciers that are at lower altitudes and, as a consequence, generally have less supraglacial debris cover. To test this hypothesis, the Glacier de Cheilon, in the Swiss Alps was also studied. This glacier did not exhibit such striking down-glacier trends in the particle size characteristics measured. It is thus suggested that a thick debris-cover may be an important source of fine-grained sediments on glaciers that occur in high-altitude environments.

  7. Formation of a high-frequency discharge in the active metal vapor laser medium

    NASA Astrophysics Data System (ADS)

    Yudin, N. A.; Kostyrya, I. D.; Polunin, Yu. P.; Yudin, N. N.

    2013-07-01

    The evolution of an electric discharge in the active self-terminating metal atom laser medium is examined. Electrodes in the gas discharge tube are placed in cold buffer zones at a distance of several centimeters from the thermally insulated gas discharge channel. It is shown that an abnormal glow discharge is initiated in the cold buffer zones, as capacitive components of the discharge circuit charge from a storage capacitor. In this case, the current-voltage characteristic of the abnormal glow discharge in the cold buffer zones exhibiting a steep current growth and sharp voltage drop is illustrated in the right-hand branch of the Pashcen curve. These processes cause the discharge to pinch. As the capacitive components charge from the storage capacitor for the electrodes in the gas discharge tube placed in the cold buffer zones at a distance of ≤1-3 mm from the thermally insulated gas discharge channel, an obstructed discharge is formed in the cold zones. On ignition of the discharge shown in the right-hand branch of the Pashcen curve the current accompanied by gas heating eliminates the contraction of the discharge in the cold buffer zones and initiates a high-frequency discharge in the active medium since the instant the breakdown (pinch) occurs. In this case, the current-voltage characteristic is demonstrated in the left-hand branch of the Pashcen curve.

  8. Suspended sediment in a high-Arctic river: An appraisal of flux estimation methods.

    PubMed

    Ladegaard-Pedersen, Pernille; Sigsgaard, Charlotte; Kroon, Aart; Abermann, Jakob; Skov, Kirstine; Elberling, Bo

    2017-02-15

    Quantifying fluxes of water, sediment and dissolved compounds through Arctic rivers is important for linking the glacial, terrestrial and marine ecosystems and to quantify the impact of a warming climate. The quantification of fluxes is not trivial. This study uses a 8-years data set (2005-2012) of daily measurements from the high-Artic Zackenberg River in Northeast Greenland to estimate annual suspended sediment fluxes based on four commonly used methods: M1) is the discharge weighted mean and uses direct measurements, while M2-M4) are one uncorrected and two bias corrected rating curves extrapolating a continuous concentration trace from measured values. All methods are tested on complete and reduced datasets. The average annual runoff in the period 2005-2012 was 190±25mio·m(3)y(-1). The different estimation methods gave a range of average annual suspended sediment fluxes between 43,000±10,000ty(-1) and 61,000±16,000ty(-1). Extreme events with high discharges had a mean duration of 1day. The average suspended sediment flux during extreme events was 17,000±5000ty(-1), which constitutes a year-to-year variation of 20-37% of the total annual flux. The most accurate sampling strategy was bi-daily sampling together with a sampling frequency of 2h during extreme events. The most consistent estimation method was an uncorrected rating curve of bi-daily measurements (M2), combined with a linear interpolation of extreme event fluxes. Sampling can be reduced to every fourth day, with both method-agreements and accuracies <±10%, using 7year averages. The specific annual method-agreements were <±10% for all years and the specific annual accuracies <±20% for 6years out of 7. The rating curves were less sensitive to day-to-day variations in the measured suspended sediment concentrations. The discharge weighted mean was not recommended in the high-Arctic Zackenberg River, unless sampling was done bi-daily, every day and events sampled high-frequently.

  9. Dielectric surface discharges: Effects of combined low-energy and high-energy incident electrons

    NASA Technical Reports Server (NTRS)

    Balmain, K. G.; Hirt, W.

    1981-01-01

    Dielectric surface discharges affected by the addition of high energy electrons at 5 pA/sq cm to a primary 20 keV, 10 nA/sq cm electron beam with the high energy broad spectrum particles coming from the beta decay of Strontium 90 are studied. Kapton exhibits significantly increased discharge strength, increased waiting time between discharges, and a decreased number of discharges per specimen before discharge cessation. Mylar exhibits similar but less pronounced effects, while Teflon is relatively unaffected. With Kapton and Mylar, the high energy electrons act in some way to delay the instant of discharge ignition so that more charge can be accumulated and hence released during discharge.

  10. Dielectric surface discharges - Effects of combined low-energy and high-energy incident electrons

    NASA Technical Reports Server (NTRS)

    Balmain, K. G.; Hirt, W.

    1983-01-01

    Dielectric surface discharges affected by the addition of high energy electrons at 5 pA/sq cm to a primary 20 keV, 10 nA/sq cm electron beam with the high energy broad spectrum particles coming from the beta decay of Strontium 90 are studied. Kapton exhibits significantly increased discharge strength, increased waiting time between discharges, and a decreased number of discharges per specimen before discharge cessation. Mylar exhibits similar but less pronounced effects, while Teflon is relatively unaffected. With Kapton and Mylar, the high energy electrons act in some way to delay the instant of discharge ignition so that more charge can be accumulated and hence released during discharge. Previously announced in STAR as N82-14222

  11. High-altitude electrical discharges associated with thunderstorms and lightning

    NASA Astrophysics Data System (ADS)

    Liu, Ningyu; McHarg, Matthew G.; Stenbaek-Nielsen, Hans C.

    2015-12-01

    The purpose of this paper is to introduce electrical discharge phenomena known as transient luminous events above thunderstorms to the lightning protection community. Transient luminous events include the upward electrical discharges from thunderstorms known as starters, jets, and gigantic jets, and electrical discharges initiated in the lower ionosphere such as sprites, halos, and elves. We give an overview of these phenomena with a focus on starters, jets, gigantic jets, and sprites, because similar to ordinary lightning, streamers and leaders are basic components of these four types of transient luminous events. We present a few recent observations to illustrate their main properties and briefly review the theories. The research in transient luminous events has not only advanced our understanding of the effects of thunderstorms and lightning in the middle and upper atmosphere, but also improved our knowledge of basic electrical discharge processes critical for sparks and lightning.

  12. DEVICE AND METHOD FOR PRODUCING A HIGH INTENSITY ARC DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-01-01

    A device is described for producing an energetic d-c carbon arc discharge between widely spaced electrodes with arc currents in excess of 100 amperes in a magnetic field of about 3000 gauss and witnin an evacuated enclo sure at a pressure of about 10/sup -5/ mm Hg. No defining electrodes are used in the device, thus essentially eliminating the problems of shorting which heretofore limited the amount of current that could be produced in an arc discharge. The energetic carbon arc discharge is sustained by the potential across the electrodes and by carbon ions and electrons released from the electrodes during arc operation. A large part of the potential drop of the arc occurs along the arc and many energetic electrons reach the anode because the arc pressure is relatively low, and few collisions occur. The carbon discharge is also an efficient ion pump.

  13. On the electron energy in the high power impulse magnetron sputtering discharge

    SciTech Connect

    Gudmundsson, J. T.; Sigurjonsson, P.; Larsson, P.; Lundin, D.; Helmersson, U.

    2009-06-15

    The temporal variation of the electron energy distribution function (EEDF) was measured with a Langmuir probe in a high power impulse magnetron sputtering (HiPIMS) discharge at 3 and 20 mTorr pressures. In the HiPIMS discharge a high power pulse is applied to a planar magnetron giving a high electron density and highly ionized sputtered vapor. The measured EEDF is Maxwellian-like during the pulse; it is broader for lower discharge pressure and it becomes narrower as the pulse progresses. This indicates that the plasma cools as the pulse progresses, probably due to high metal content of the discharge.

  14. Pulsed Discharge Helium Ionization Detector for Highly Sensitive Aquametry.

    PubMed

    Mowry, Curtis D; Pimentel, Adam S; Sparks, Elizabeth S; Moorman, Matthew W; Achyuthan, Komandoor E; Manginell, Ronald P

    2016-01-01

    Trace moisture quantitation is crucial in medical, civilian and military applications. Current aquametry technologies are limited by the sample volume, reactivity, or interferences, and/or instrument size, weight, power, cost, and complexity. We report for the first time on the use of a pulsed discharge helium ionization detector (PDHID-D2) (∼196 cm(3)) for the sensitive (limit of detection, 0.047 ng; 26 ppm), linear (r(2) >0.99), and rapid (< 2 min) quantitation of water using a small (0.2 - 5.0 μL) volume of liquid or gas. The relative humidity sensitivity was 0.22% (61.4 ppmv) with a limit of detection of less than 1 ng moisture with gaseous samples. The sensitivity was 10 to 100 to fold superior to competing technologies without the disadvantages inherent to these technologies. The PDHID-D2, due to its small footprint and low power requirement, has good size, weight, and power-portability (SWAPP) factors. The relatively low cost (∼$5000) and commercial availability of the PDHID-D2 makes our technique applicable to highly sensitive aquametry.

  15. Plasma potential mapping of high power impulse magnetron sputtering discharges

    SciTech Connect

    Rauch, Albert; Mendelsberg, Rueben J.; Sanders, Jason M.; Anders, Andre

    2011-12-20

    Pulsed emissive probe techniques have been used to determine the plasma potential distribution of high power impulse magnetron sputtering (HiPIMS) discharges. An unbalanced magnetron with a niobium target in argon was investigated for pulse length of 100 μs at a pulse repetition rate of 100 Hz, giving a peak current of 170 A. The probe data were taken with a time resolution of 20 ns and a spatial resolution of 1 mm. It is shown that the local plasma potential varies greatly in space and time. The lowest potential was found over the target’s racetrack, gradually reaching anode potential (ground) several centimeters away from the target. The magnetic pre-sheath exhibits a funnel-shaped plasma potential resulting in an electric field which accelerates ions toward the racetrack. In certain regions and times, the potential exhibits weak local maxima which allow for ion acceleration to the substrate. Knowledge of the local E and static B fields lets us derive the electrons’ E×B drift velocity, which is about 105 m/s and shows structures in space and time.

  16. Cathode degradation and erosion in high pressure arc discharges

    NASA Technical Reports Server (NTRS)

    Hardy, T. L.; Nakanishi, S.

    1983-01-01

    The various processes which control cathode erosion and degradation were identified and evaluated. A direct current arc discharge was established between electrodes in a pressure-controlled gas flow environment. The cathode holder was designed for easy testing of various cathode materials. The anode was a water cooled copper collector electrode. The arc was powered by a dc power supply with current and voltage regulated cross-over control. Nitrogen and argon were used as propellants and the materials used were two percent thoriated tungsten, barium oxide impregnated porous tungsten, pure tungsten and lanthanum hexaboride. The configurations used were cylindrical solid rods, wire bundles supported by hollow molybdenum tubes, cylindrical hollow tubes, and hollow cathodes of the type used in ion thrusters. The results of the mass loss tests in nitrogen indicated that pure tungsten eroded at a rate more than 10 times faster than the rates of the impregnated tungsten materials. It was found that oxygen impurities of less than 0.5 percent in the nitrogen increased the mass loss rate by a factor of 4 over high purity nitrogen. At power levels less than 1 kW, cathode size and current level did not significantly affect the mass loss rate. The hollow cathode was found to be operable in argon and in nitrogen only at pressures below 400 and 200 torr, respectively.

  17. Cathode degradation and erosion in high pressure arc discharges

    NASA Technical Reports Server (NTRS)

    Hardy, T. L.; Nakanishi, S.

    1984-01-01

    The various processes which control cathode erosion and degradation were identified and evaluated. A direct current arc discharge was established between electrodes in a pressure-controlled gas flow environment. The cathode holder was designed for easy testing of various cathode materials. The anode was a water cooled copper collector electrode. The arc was powered by a dc power supply with current and voltage regulated cross-over control. Nitrogen and argon were used as propellants and the materials used were two percent thoriated tungsten, barium oxide impregnated porous tungsten, pure tungsten and lanthanum hexaboride. The configurations used were cylindrical solid rods, wire bundles supported by hollow molybdenum tubes, cylindrical hollow tubes, and hollow cathodes of the type used in ion thrusters. The results of the mass loss tests in nitrogen indicated that pure tungsten eroded at a rate more than 10 times faster than the rates of the impregnated tungsten materials. It was found that oxygen impurities of less than 0.5 percent in the nitrogen increased the mass loss rate by a factor of 4 over high purity nitrogen. At power levels less than 1 kW, cathode size and current level did not significantly affect the mass loss rate. The hollow cathode was found to be operable in argon and in nitrogen only at pressures below 400 and 200 torr, respectively.

  18. Spectroscopic imaging of metal halide high-intensity discharge lamps

    NASA Astrophysics Data System (ADS)

    Bonvallet, Geoffrey A.

    The body of this work consists of three main research projects. An optical- and near-ultraviolet-wavelength absorption study sought to determine absolute densities of ground and excited level Sc atoms, ground level Sc + ions, and ground level Na atoms in a commercial 250 W metal halide high intensity discharge lamp during operation. These measurements also allowed the determination of the arc temperature and absolute electron density as functions of radius. Through infrared emission spectroscopy, relative densities of sodium and scandium were determined as functions of radius. Using the absolute densities gained from the optical experiment, these relative densities were calibrated. In addition, direct observation of the infrared emission allowed us to characterize the infrared power losses of the lamp. When considered as a fraction of the overall power consumption, the near-infrared spectral power losses were not substantial enough to warrant thorough investigation of their reduction in these lamps. The third project was an attempt to develop a portable x-ray diagnostic experiment. Two-dimensional spatial maps of the lamps were analyzed to determine absolute elemental mercury densities and the arc temperature as a function of radius. Two methods were used to improve the calibration of the density measurements and to correct for the spread in x-ray energy: known solutions of mercury in nitric acid, and an arc lamp which was uniformly heated to evaporate the mercury content. Although many complexities arose in this experiment, its goal was successfully completed.

  19. Cathode degradation and erosion in high pressure arc discharges

    NASA Technical Reports Server (NTRS)

    Hardy, T. L.; Nakanishi, S.

    1984-01-01

    The various processes which control cathode erosion and degradation were identified and evaluated. A direct current arc discharge was established between electrodes in a pressure-controlled gas flow environment. The cathode holder was designed for easy testing of various cathode materials. The anode was a water cooled copper collector electrode. The arc was powered by a dc power supply with current and voltage regulated cross-over control. Nitrogen and argon were used as propellants and the materials used were two percent thoriated tungsten, barium oxide impregnated porous tungsten, pure tungsten and lanthanum hexaboride. The configurations used were cylindrical solid rods, wire bundles supported by hollow molybdenum tubes, cylindrical hollow tubes, and hollow cathodes of the type used in ion thrusters. The results of the mass loss tests in nitrogen indicated that pure tungsten eroded at a rate more than 10 times faster than the rates of the impregnated tungsten materials. It was found that oxygen impurities of less than 0.5 percent in the nitrogen increased the mass loss rate by a factor of 4 over high purity nitrogen. At power levels less than 1 kW, cathode size and current level did not significantly affect the mass loss rate. The hollow cathode was found to be operable in argon and in nitrogen only at pressures below 400 and 200 torr, respectively.

  20. Plasma potential mapping of high power impulse magnetron sputtering discharges

    SciTech Connect

    Rauch, Albert; Mendelsberg, Rueben J.; Sanders, Jason M.; Anders, Andre

    2012-04-15

    Pulsed emissive probe techniques have been used to determine the plasma potential distribution of high power impulse magnetron sputtering (HiPIMS) discharges. An unbalanced magnetron with a niobium target in argon was investigated for a pulse length of 100 {mu}s at a pulse repetition rate of 100 Hz, giving a peak current of 170 A. The probe data were recorded with a time resolution of 20 ns and a spatial resolution of 1 mm. It is shown that the local plasma potential varies greatly in space and time. The lowest potential was found over the target's racetrack, gradually reaching anode potential (ground) several centimeters away from the target. The magnetic presheath exhibits a funnel-shaped plasma potential resulting in an electric field which accelerates ions toward the racetrack. In certain regions and times, the potential exhibits weak local maxima which allow for ion acceleration to the substrate. Knowledge of the local E and static B fields lets us derive the electrons'ExB drift velocity, which is about 10{sup 5} m/s and shows structures in space and time.

  1. High Nutrient Load Increases Biostabilization of Sediment by Biofilms

    NASA Astrophysics Data System (ADS)

    Valentine, K.; Mariotti, G.

    2016-12-01

    Benthic biofilms, matrixes of microbial cells and their secretions, have been shown to stabilize sediment in coastal environments. While there have been numerous studies on the effects of nutrients on the ability of vascular plants to stabilize sediment, few studies have investigated how nutrients affect biofilm growth and their ability to stabilize sediment. Diatom-based biofilms were grown in laboratory experiments on a settled bed of bentonite clay, under a saline water column with varying amounts of nutrients. Erodibility at different stages of biofilm growth was measured using a Gust Erosion Microcosm System, which applied shear stresses from 0.05 to 0.6 Pa. Biofilms more than one week old decreased the erodibility of the sediments in all nutrient treatments compared to abiotic experiments. With high nutrients, the biofilm grew the fastest; the erodibility decreased within two weeks of biofilm growth and remained low for all applied shear stresses. After four weeks of biofilm growth, no erosion of sediment occurred even at the highest applied shear stress (0.6 Pa). With low nutrients the erodibility decreased within three weeks. With no nutrients the biofilms grew similarly to those with low nutrients; the erodibility decreased within three weeks under shear stresses 0.05-0.45 Pa, but the sediments were eroded under high shear stresses. Under low to moderate shear stresses (0.05-0.45 Pa), the total mass eroded by all experiments with biofilms was similar, suggesting that any amount of biofilm decreases erodibility at low shear stresses. In summary, high nutrients allow for faster biostabilization and for resistance to extreme shear stresses. These results suggest that eutrophication would not decrease the biofilm ability to stabilize muddy sediments in coastal environment.

  2. Arsenic Sequestration By Sorption Processes in High-Iron Sediments

    SciTech Connect

    Root, R.A.; Dixit, S.; Campbell, K.M.; Jew, A.D.; Hering, J.G.; O'Day, P.A.

    2009-06-04

    High-iron sediments in North Haiwee Reservoir (Olancha, CA), resulting from water treatment for removal of elevated dissolved arsenic in the Los Angeles Aqueduct system, were studied to examine arsenic partitioning between solid phases and porewaters undergoing shallow burial. To reduce arsenic in drinking water supplies, ferric chloride and a cationic polymer coagulant are added to the aqueduct upstream of Haiwee Reservoir, forming an iron-rich floc that scavenges arsenic from the water. Analysis by synchrotron X-ray absorption spectroscopy (XAS) showed that the aqueduct precipitate is an amorphous hydrous ferric oxide (HFO) similar to ferrihydrite, and that arsenic is associated with the floc as adsorbed and/or coprecipitated As(V). Arsenic-rich floc and sediments are deposited along the inlet channel as aqueduct waters enter the reservoir. Sediment core samples were collected in two consecutive years from the edge of the reservoir along the inlet channel using 30- or 90-cm push cores. Cores were analyzed for total and extractable arsenic and iron concentrations. Arsenic and iron speciation and mineralogy in sediments were examined at selected depths by synchrotron XAS and X-ray diffraction (XRD). Sediment-porewater measurements were made adjacent to the core sample sites using polyacrylamide gel probe samplers. Results showed that sediment As(V) is reduced to As(III) in all cores at or near the sediment-water interface (0--4 cm), and only As(III) was observed in deeper sediments. Analyses of EXAFS spectra indicated that arsenic is present in the sediments mostly as a bidentate-binuclear, inner-sphere sorption complex with local atomic geometries similar to those found in laboratory studies. Below about 10 cm depth, XAS indicated that the HFO floc had been reduced to a mixed Fe(II, III) solid with a local structure similar to that of synthetic green rust (GR) but with a slightly contracted average interatomic Fe-Fe distance in the hydroxide layer. There was no

  3. Arsenic sequestration by sorption processes in high-iron sediments

    NASA Astrophysics Data System (ADS)

    Root, Robert A.; Dixit, Suvasis; Campbell, Kate M.; Jew, Adam D.; Hering, Janet G.; O'Day, Peggy A.

    2007-12-01

    High-iron sediments in North Haiwee Reservoir (Olancha, CA), resulting from water treatment for removal of elevated dissolved arsenic in the Los Angeles Aqueduct system, were studied to examine arsenic partitioning between solid phases and porewaters undergoing shallow burial. To reduce arsenic in drinking water supplies, ferric chloride and a cationic polymer coagulant are added to the aqueduct upstream of Haiwee Reservoir, forming an iron-rich floc that scavenges arsenic from the water. Analysis by synchrotron X-ray absorption spectroscopy (XAS) showed that the aqueduct precipitate is an amorphous hydrous ferric oxide (HFO) similar to ferrihydrite, and that arsenic is associated with the floc as adsorbed and/or coprecipitated As(V). Arsenic-rich floc and sediments are deposited along the inlet channel as aqueduct waters enter the reservoir. Sediment core samples were collected in two consecutive years from the edge of the reservoir along the inlet channel using 30- or 90-cm push cores. Cores were analyzed for total and extractable arsenic and iron concentrations. Arsenic and iron speciation and mineralogy in sediments were examined at selected depths by synchrotron XAS and X-ray diffraction (XRD). Sediment-porewater measurements were made adjacent to the core sample sites using polyacrylamide gel probe samplers. Results showed that sediment As(V) is reduced to As(III) in all cores at or near the sediment-water interface (0-4 cm), and only As(III) was observed in deeper sediments. Analyses of EXAFS spectra indicated that arsenic is present in the sediments mostly as a bidentate-binuclear, inner-sphere sorption complex with local atomic geometries similar to those found in laboratory studies. Below about 10 cm depth, XAS indicated that the HFO floc had been reduced to a mixed Fe(II, III) solid with a local structure similar to that of synthetic green rust (GR) but with a slightly contracted average interatomic Fe-Fe distance in the hydroxide layer. There was no

  4. Method and apparatus for nondestructive testing. [using high frequency arc discharges

    NASA Technical Reports Server (NTRS)

    Hoop, J. M. (Inventor)

    1974-01-01

    High voltage is applied to an arc gap adjacent to a test specimen to develop a succession of high frequency arc discharges. Those high frequency arc discharges generate pulses of ultrasonic energy within the test specimen without requiring the arc discharges to contact that test specimen and without requiring a coupling medium. Those pulses can be used for detection of flaws and measurements of certain properties and stresses within the test specimen.

  5. Particle sedimentation monitoring in high-concentration slurries

    NASA Astrophysics Data System (ADS)

    Nagasawa, Yoshihiro; Kato, Zenji; Tanaka, Satoshi

    2016-11-01

    In this study, the sedimentation states of particles in high-concentration slurries were elucidated by monitoring their internal states. We prepared transparent high-concentration silica slurries by adjusting the refractive index of the aqueous glycerol liquid in which the particles were dispersed to match that of the silica particles. In addition, a fluorescent dye was dissolved in the liquid. Then, we directly observed the individual and flocculated particles in the slurries during sedimentation by confocal laser scanning fluorescent microscopy. The particles were found to sediment very slowly while exhibiting fluctuating motion. The particle sedimentation rate in the high-concentration slurry with the aqueous glycerol solution (η =0.068 Pa. s ) and a particle volume fraction on the order of 0.3 was determined to be 1.58 ± 0.66 μ m. min-1 on the basis of the obtained image sequences for 24.9 h. In-situ observation provides a large amount of information about the sedimentation behavior of particles in condensed matter.

  6. Application of microplasma discharge in a spark gap for high repetitive switching

    SciTech Connect

    Rahaman, Hasibur; Nam, Sang Hoon; Nam, Jong Woo; Lee, Byung-Joon; Frank, Klaus

    2010-04-05

    The electrical breakdown in a spark gap for repetitive switching has been a long research interest. For this purpose, microplasma discharge is implemented in the spark gap which is further integrated inside a coaxial transmission line. This work addresses important physical properties and insights of the microplasma discharge, to be optimized, such as plasma generation in a spark channel, dielectric recovery process, and residual plasma in the postspark discharge period. Although understanding the microplasma discharge is the primary goal, considerable attention has been focused on an external circuit scheme to drive the discharge system at a high repetition rate.

  7. FTIR Analysis of Flowing Afterglow from a High-Frequency Spark Discharge

    NASA Astrophysics Data System (ADS)

    White, Allen; Hieftje, Gary M.; Ray, Steve; Pfeuffer, Kevin

    2014-06-01

    Plasmas are often used as ionization sources for ambient mass spectrometry (AMS). Here, the flowing afterglow of a novel high-energy spark discharge system, operated in nitrogen at high repetition rates, is investigated as a source for AMS. The spark discharge here is the same as that of an automobile ignition circuit.Combustion in automobile engines is initiated by a spark ignition system that is designed to deliver short-duration,high-voltage sparks to multiple engine cylinders. The arrangement utilized in this study is a modified discharge configuration designed to produce similarly short-duration, high-voltage discharges. It consists of an automotive ignition coil that is activated by a spark initiation circuit that discharges in turn into a cell with neutral gas input flow and ultimately into the collection orifice of a mass spectrometer. The discharge voltage is approximately 40kV at 800 Hz. High-frequency spark discharges in a nitrogen flow produce reagent ions such as NO+. In order to better evaluate the effectiveness of the discharge in producing reagent ions, an FTIR is utilized to measure IR active species such as nitric oxide, hydroxide, ozone, and water in the afterglow of the spark discharge during variation of discharge parameters. Time-resolved IR emission spectra provide additional insight into the reagent ion production mechanisms.

  8. Sediment dynamics of a high gradient stream in the Oi river basin of Japan

    Treesearch

    Hideji Maita

    1991-01-01

    This paper discusses the effects of the valley width for discontinuities of sediment transport in natural stream channels. The results may be summarized as follows: 1)ln torrential rivers. deposition or erosion depend mostly on the sediment supply. not on the magnitude of the flow discharge. 2)Wide valley floors of streams are depositional spaces where the excess...

  9. Morphology and stratigraphy of the late Quaternary lower Brazos valley: Implications for paleo-climate, discharge and sediment delivery

    NASA Astrophysics Data System (ADS)

    Sylvia, Dennis A.; Galloway, William E.

    2006-08-01

    A shallow coring and geophysical logging program has recorded the sedimentary fill of the Brazos River valley in the Texas Gulf Coastal Plain. Thermoluminescence dates together with new and recalibrated published radiocarbon dates show the valley fill to include extensive, sandy, buried falling stage and lowstand Oxygen Isotope Stage (OIS) 3 and 2 deposits. These alluvial deposits are punctuated by numerous paleosoil horizons that record alternating periods of cutting, bypass and accumulation. Maximum valley incision and two periods of terrace formation preceded marine lowstand conditions, suggesting significant discordance between preserved fluvial and classical marine system tracts. The latest Pleistocene incision and fill history appears related to cycles of increased discharge and incision, followed by system equilibration and terrace formation. Analysis of the Brazos River incised valley and its contained paleochannels indicates that latest Pleistocene mean annual discharge was as much as four times greater than that of today. This magnitude of discharge in the Brazos would require a two-fold increase in precipitation across the drainage basin. Such an increase is comparable to the present day measured positive El Niño winter precipitation anomaly across the region. Paleochannel geometries and the stratigraphic and sedimentologic data from this investigation support the hypothesis that periods of high-amplitude, El Niño-like climatic perturbations characterized the late Quaternary climate of the south-central and southwestern U.S. This period of high discharge coincides, at least in part, with late OIS 3 progradation of the Brazos delta to the shelf margin, OIS 3 and 2 valley incision across the Texas shelf, and concomitant sand bypass to intraslope basins beyond the shelf edge.

  10. Density distribution of high energy electrons in pulsed corona discharge of NO+N2 mixture.

    PubMed

    Wang, Wenchun; Liu, Feng; Zhang, Jialiang; Wang, Younian

    2003-12-01

    Emission spectroscopy of the high-voltage pulsed positive corona discharge in a line-cylinder reactor is used to investigate the high-energy electron density distribution in the discharge gap. The relative overall emission intensity spatial distribution profile of the A2Sigma+ --> X2Pi transition of NO is successfully recorded against a severe electromagnetic pulse interference coming from the corona discharge at one atmosphere. The spectroscopic investigation shows that the high-energy electron density in the discharge has a nonlinearly decline in the radial distribution. When varying the discharge voltage, the absolute emission intensity of NO is different but the radial distribution profile is similar. If an oxygen flow was introduced into the discharge reactor, the emission intensity of NO decreases tremendously and, therefore, the high-energy electron density decreases reasonably.

  11. High Conductivity Water Treatment Using Water Surface Discharge with Nonmetallic Electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoping; Zhang, Xingwang; Lei, Lecheng

    2013-06-01

    Although electrohydraulic discharge is effective for wastewater treatment, its application is restricted by water conductivity and limited to the treatment of low conductivity water. For high conductivity water treatment, water-surface discharge is the preferred choice. However, the metallic electrodes are easily corroded because of the high temperature and strong oxidative environment caused by gas phase discharge and the electrochemical reaction in water. As a result, the efficiency of the water treatment might be affected and the service life of the reactor might be shortened. In order to avoid the corrosion problem, nonmetallic electrode water-surface discharge is introduced into high conductivity water treatment in the present study. Carbon-felt and water were used as the high voltage electrode and ground electrode, respectively. A comparison of the electrical and chemical characteristics showed that nonmetallic electrode discharge maintained the discharge characteristics and enhanced the energy efficiency, and furthermore, the corrosion of metal electrodes was avoided.

  12. Sedimentation

    Treesearch

    Cliff R. Hupp; Michael R. Schening

    2000-01-01

    Sedimentation is arguably the most important water-quality concern in the United States. Sediment trapping is cited frequently as a major function of riverine-forested wetlands, yet little is known about sedimcntation rates at the landscape scale in relation to site parameters, including woody vegetation type, elevation, velocity, and hydraulic connection to the river...

  13. Sediments in Semi-arid Wetlands: US Southern High Plains

    USDA-ARS?s Scientific Manuscript database

    Playas are ephemeral wetlands on the semi-arid U.S. Southern High Plains that serve as runoff catchment basins and are thought to be focal points of Ogallala aquifer recharge. Sediments in playas alter biodiversity and hydroperiods. The purpose of this study was to evaluate the effects of outerbas...

  14. High-speed micro-electro-discharge machining.

    SciTech Connect

    Chandrasekar, Srinivasan Dr. (.School of Industrial Engineering, West Lafayette, IN); Moylan, Shawn P. (School of Industrial Engineering, West Lafayette, IN); Benavides, Gilbert Lawrence

    2005-09-01

    When two electrodes are in close proximity in a dielectric liquid, application of a voltage pulse can produce a spark discharge between them, resulting in a small amount of material removal from both electrodes. Pulsed application of the voltage at discharge energies in the range of micro-Joules results in the continuous material removal process known as micro-electro-discharge machining (micro-EDM). Spark erosion by micro-EDM provides significant opportunities for producing small features and micro-components such as nozzle holes, slots, shafts and gears in virtually any conductive material. If the speed and precision of micro-EDM processes can be significantly enhanced, then they have the potential to be used for a wide variety of micro-machining applications including fabrication of microelectromechanical system (MEMS) components. Toward this end, a better understanding of the impacts the various machining parameters have on material removal has been established through a single discharge study of micro-EDM and a parametric study of small hole making by micro-EDM. The main avenues for improving the speed and efficiency of the micro-EDM process are in the areas of more controlled pulse generation in the power supply and more controlled positioning of the tool electrode during the machining process. Further investigation of the micro-EDM process in three dimensions leads to important design rules, specifically the smallest feature size attainable by the process.

  15. High Input Voltage Discharge Supply for High Power Hall Thrusters Using Silicon Carbide Devices

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Scheidegger, Robert J.; Aulsio, Michael V.; Birchenough, Arthur G.

    2014-01-01

    A power processing unit for a 15 kW Hall thruster is under development at NASA Glenn Research Center. The unit produces up to 400 VDC with two parallel 7.5 kW discharge modules that operate from a 300 VDC nominal input voltage. Silicon carbide MOSFETs and diodes were used in this design because they were the best choice to handle the high voltage stress while delivering high efficiency and low specific mass. Efficiencies in excess of 97 percent were demonstrated during integration testing with the NASA-300M 20 kW Hall thruster. Electromagnet, cathode keeper, and heater supplies were also developed and will be integrated with the discharge supply into a vacuum-rated brassboard power processing unit with full flight functionality. This design could be evolved into a flight unit for future missions that requires high power electric propulsion.

  16. High-intensity xenon plasma discharge lamp for bulk-sensitive high-resolution photoemission spectroscopy

    SciTech Connect

    Souma, S.; Sato, T.; Takahashi, T.; Baltzer, P.

    2007-12-15

    We have developed a highly brilliant xenon (Xe) discharge lamp operated by microwave-induced electron cyclotron resonance (ECR) for ultrahigh-resolution bulk-sensitive photoemission spectroscopy (PES). We observed at least eight strong radiation lines from neutral or singly ionized Xe atoms in the energy region of 8.4-10.7 eV. The photon flux of the strongest Xe I resonance line at 8.437 eV is comparable to that of the He I{alpha} line (21.218 eV) from the He-ECR discharge lamp. Stable operation for more than 300 h is achieved by efficient air-cooling of a ceramic tube in the resonance cavity. The high bulk sensitivity and high-energy resolution of PES using the Xe lines are demonstrated for some typical materials.

  17. Using Geochemical Indicators to Distinguish High Biogeochemical Activity in Sediments

    NASA Astrophysics Data System (ADS)

    Kenwell, A. M.; Navarre-Sitchler, A.; Prugue, R.; Spear, J. R.; Williams, K. H.; Maxwell, R. M.

    2014-12-01

    A better understanding of how microbial communities interact with their surroundings in physically and chemically heterogeneous subsurface environments will lead to improved quantification of biogeochemical reactions and associated nutrient cycling. This study develops a methodology to predict elevated rates of biogeochemical activity (microbial "hotspots") in subsurface environments by correlating microbial community structure with the spatial distribution of geochemical indicators in subsurface sediments. Statistical hierarchical cluster analyses (HCA) of X-ray fluorescence (XRF), simulated precipitation leachate, bioavailable Fe and Mn, total organic carbon (TOC), microbial community structure, grain size, bulk density and moisture content data were used to identify regions of the subsurface characterized by biogeochemical hotspots and sample characteristics indicative of these hotspots within fluvially-derived aquifer sediments. The methodology has been applied to (a) alluvial materials collected at a former uranium mill site near Rifle, Colorado and (b) relatively undisturbed floodplain deposits (soils and sediments) collected along the East River near Crested Butte, Colorado. At Rifle, 33 sediment samples were taken from 8 sediment cores and at the East River 33 soil/sediment samples were collected across and perpendicular to 3 active meanders. The East River watershed exhibits characteristic fluvial progression and serves as a representative example of many headwater catchments with the upper Colorado River basin. Initial clustering revealed that operationally defined hotspots were characterized by high organic carbon, bioavailable iron and dark colors but not necessarily low hydraulic conductivity. Applying the method to identify hotspots in both contaminated and natural floodplain deposits and their associated alluvial aquifers demonstrates the broad applicability of a geochemical indicator based approach.

  18. Field experimental observations of highly graded sediment plumes.

    PubMed

    Jensen, Jacob Hjelmager; Saremi, Sina; Jimenez, Carlos; Hadjioannou, Louis

    2015-06-15

    A field experiment in the waters off the south-eastern coast of Cyprus was carried out to study near-field formation of sediment plumes from dumping. Different loads of sediment were poured into calm and limpid waters one at the time from just above the sea surface. The associated plumes, gravitating towards the seafloor, were filmed simultaneously by four divers situated at different depths in the water column, and facing the plume at different angles. The processes were captured using GoPro-Hero-series cameras. The high-quality underwater footage from near-surface, mid-depth and near-bed positions gives unique insight into the dynamics of the descending plume and near-field dispersion processes, and enables good understanding of flow and sediment transport processes involved from-release-to-deposition of the load in a non-scaled environment. The high resolution images and footages are available through the link provided herein. Observations support the development of a detailed multi-fractional sediment plume model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Linking hysteresis patterns and variations in suspended sediment sources in a highly urbanized river: a case of the River Aire, UK

    NASA Astrophysics Data System (ADS)

    Vercruysse, Kim; Grabowski, Robert

    2017-04-01

    The natural sediment balance of rivers is often disturbed as a result of increased fine sediment influx from soil erosion and/or modifications to the river channel and floodplains, causing numerous problems related to ecology, water quality, flood risk and infrastructure. It is of great importance to understand fine sediment dynamics in rivers in order to manage the problems appropriately. However, despite decades of research, our understanding of fine sediment transport is not yet sufficient to fully explain the spatial and temporal variability in sediment concentrations in rivers. To this end, the study aims to investigate the importance of sediment source variations to explain hysteresis patterns in suspended sediment transport. A sediment fingerprinting technique based on infrared spectrometry was applied in the highly urbanized River Aire catchment in northern England to identify the dominant sources of suspended sediment. Three types of potential sediment source samples were collected: soil samples from pasture in three lithological areas (limestone, millstone grit and coal measures), eroding riverbanks and urban street dust. All source samples were analyzed with Diffuse Reflectance Infrared Fourier Transform spectrometry (DRIFTS). Discriminant analysis demonstrated that the source materials could be discriminated based on their respective infrared spectra. Infrared spectra of experimental mixtures were then used to develop statistical models to estimate relative source contributions from suspended sediment samples. Suspended sediment samples were collected during a set of high flow events between 2015 and 2016, showing different hysteresis patterns between suspended sediment concentration and discharge. The fingerprinting results suggest that pasture from the limestone area is the dominant source of fine sediment. However, significant variations in source contributions during and between events are present. Small events, in terms of discharge, are marked by

  20. Flooding in Myanmar: joint occurrence of high discharges and high sea water levels?

    NASA Astrophysics Data System (ADS)

    Bouaziz, Laurène; Sperna Weiland, Frederiek; Vatvani, Deepak; Diermanse, Ferdinand

    2016-04-01

    In the summer of 2015 serious flooding occurred in Myanmar when cyclone Komen made landfall in Bangladesh, bringing strong winds and heavy rains to Myanmar. The cyclone struck the country during the monsoon season and resulted in widespread flooding, temporarily displacing over 1.6 million people. It was hypothesized that there could be a relation between occurrences of storm surges and extreme discharges in Myanmar. Comparable studies have shown that dependence between storm surge at Hoek van Holland in the Netherlands and high river discharges of the Rhine at Lobith exist with a lag of 6 days (Klerk et. al, 2015). The processes generating high discharges in the Ayeyarwady river and storm surges along the Myanmar coast were analyzed using global precipitation data (EU FP7 eartH2Observe), a distributed wflow-sbm hydrological model of the Ayeyarwady and a global storm surge model. About 15 historical tropical storms and hurricanes affecting Myanmar since 1992 were analyzed in terms of rainfall distribution over the country, discharged river flow volumes and storm surge extent and magnitude. All storms except for Komen in 2015 occurred between October and May, which does not coincide with the monsoon season (mainly June, July and August). The intensities and the paths of the 15 studied cyclones varied considerably and largely affected the spatial extent and the magnitude of storm surges. The study showed that high Ayeyarwady river flows and high surges generally do not coincide for the following reasons: the large scale of the river basin, the estimated one week travel time of water from the upstream catchment to the mouth, the occurrence of the majority of historical storms outside the monsoon season and the (relatively) limited spatial extent of a storm surge (at the scale of Myanmar). While the applied method is deemed successful for the identification of joint probabilities of surges and river discharges, this study indicates that such analyses are more relevant

  1. A diagnostic system for electrical faults in a high current discharge plasma setup.

    PubMed

    Nigam, S; Aneesh, K; Navathe, C P; Gupta, P D

    2011-02-01

    A diagnostic system to detect electrical faults inside a coaxial high current discharge device is presented here. This technique utilizes two biconical antennas picking up electromagnetic radiation from the discharge device, a voltage divider sensing input voltage, and a Rogowski coil measuring the main discharge current. A computer program then analyses frequency components in these signals and provides information as to whether the discharge event was normal or any breakdown fault occurred inside the coaxial device. The diagnostic system is developed for a 450 kV and 50 kA capillary discharge plasma setup. For the setup various possible faults are analyzed by electrical simulation, followed by experimental results. In the case of normal discharge through the capillary load the dominant frequency is ∼4 MHz. Under faulty conditions, the peak in magnitude versus frequency plot of the antenna signal changes according to the fault position which involves different paths causing variation in the equivalent circuit elements.

  2. Process Properties of Electronic High Voltage Discharges Triggered by Ultra-short Pulsed Laser Filaments

    NASA Astrophysics Data System (ADS)

    Cvecek, Kristian; Gröschel, Benjamin; Schmidt, Michael

    Remote processing of metallic workpieces by techniques based on electric arc discharge or laser irradiation for joining or cutting has a long tradition and is still being intensively investigated in present-day research. In applications that require high power processing, both approaches exhibit certain advantages and disadvantages that make them specific for a given task. While several hybrid approaches exist that try to combine the benefits of both techniques, none were as successful in providing a fixed electric discharge direction as discharges triggered by plasma filaments generated by ultra-short pulsed lasers. In this work we investigate spatial and temporal aspects of laser filament guided discharges and give an upper time delay between the filament creation and the electrical build-up of a dischargeable voltage for a successful filament triggered discharge.

  3. Max Tech and Beyond: High-Intensity Discharge Lamps

    SciTech Connect

    Scholand, Michael

    2012-04-01

    High-intensity discharge (HID) lamps are most often found in industrial and commercial applications, and are the light source of choice in street and area lighting, and sports stadium illumination. HID lamps are produced in three types - mercury vapor (MV), high pressure sodium (HPS) and metal halide (MH). Of these, MV and MH are considered white-light sources (although the MV exhibits poor color rendering) and HPS produces a yellow-orange color light. A fourth lamp, low-pressure sodium (LPS), is not a HID lamp by definition, but it is used in similar applications and thus is often grouped with HID lamps. With the notable exception of MV which is comparatively inefficient and in decline in the US from both a sales and installed stock point of view; HPS, LPS and MH all have efficacies over 100 lumens per watt. The figure below presents the efficacy trends over time for commercially available HID lamps and LPS, starting with MV and LPS in 1930's followed by the development of HPS and MH in the 1960's. In HID lamps, light is generated by creating an electric arc between two electrodes in an arc tube. The particles in the arc are partially ionized, making them electrically conductive, and a light-emitting 'plasma' is created. This arc occurs within the arc tube, which for most HID lamps is enclosed within an evacuated outer bulb that thermally isolates and protects the hot arc tube from the surroundings. Unlike a fluorescent lamp that produces visible light through down-converting UV light with phosphors, the arc itself is the light source in an HID lamp, emitting visible radiation that is characteristic of the elements present in the plasma. Thus, the mixture of elements included in the arc tube is one critical factor determining the quality of the light emitted from the lamp, including its correlated color temperature (CCT) and color rendering index (CRI). Similar to fluorescent lamps, HID lamps require a ballast to start and maintain stable operating conditions, and

  4. Sediment Dynamics Affecting the Threatened Santa Ana Sucker in the Highly-modified Santa Ana River and Inset Channel, Southern California, USA

    NASA Astrophysics Data System (ADS)

    Minear, J. T.; Wright, S. A.

    2015-12-01

    In this study, we investigate the sediment dynamics of the low-flow channel of the Santa Ana River that is formed by wastewater discharges and contains some of the last remaining habitat of the Santa Ana Sucker (Catostomus santaanae). The Santa Ana River is a highly-modified river draining the San Bernardino Mountains and Inland Empire metropolitan area east of Los Angeles. Home to over 4 million people, the watershed provides habitat for the federally-threatened Santa Ana Sucker, which presently reside within the mainstem Santa Ana River in a reach supported by year-round constant discharges from water treatment plants. The nearly constant low-flow wastewater discharges and infrequent runoff events create a small, approximately 8 m wide, inset channel within the approximately 300 m wide mainstem channel that is typically dry except for large flood flows. The sediment dynamics within the inset channel are characterized by constantly evolving bed substrate and sediment transport rates, and occasional channel avulsions. The sediment dynamics have large influence on the Sucker, which rely on coarse-substrate (gravel and cobble) for their food production. In WY 2013 through the present, we investigated the sediment dynamics of the inset channel using repeat bathymetric and substrate surveys, bedload sampling, and discharge measurements. We found two distinct phases of the inset channel behavior: 1. 'Reset' flows, where sediment-laden mainstem discharges from upstream runoff events result in sand deposition in the inset channel or avulse the inset channel onto previously dry riverbed; and 2. 'Winnowing' flows, whereby the sand within the inset channel is removed by clear-water low flows from the wastewater treatment plant discharges. Thus, in contrast to many regulated rivers where high flows are required to flush fine sediments from the bed (for example, downstream from dams), in the Santa Ana River the low flows from wastewater treatment plants serve as the flushing

  5. Growth of arc in high-pressure, pulsed glow discharge by gas density depletion

    NASA Astrophysics Data System (ADS)

    Imada, Go; Yatsui, Kiyoshi; Masuda, Wataru

    2000-10-01

    Effects of gas density depletion on arc formation of high-pressure, pulsed glow discharge have been investigated by eliminating the other factors which may affect the discharge stability, such as shock waves, residual ions, electrode heating, and discharge products. The gas density depletion has been simulated by utilizing a subsonic gas flow between the curved electrodes combined with a convergent nozzle and a divergent diffuser. A comparison has been made on the discharge in the aerodynamically created gas density depletion with the second discharge in the double-pulse discharge within a stable gas. We have found that the large gas density depletion, Δρ/ρ0˜-3.6% corresponding to a pulse repetition rate (PRR) of ˜50 Hz, tends to cause an arc-like filament or an arc without the shocks, ions, electrode heating, and products. However, the second discharge in the double-pulse discharge becomes an arc in much smaller gas density depletion (Δρ/ρ0˜-1.2% corresponding to PRR ˜3 Hz). Therefore, the collapse of high-pressure, pulsed glow discharge is most likely caused by some factor other than the gas density depletion.

  6. Generation of high-current electron beam in a wide-aperture open discharge

    NASA Astrophysics Data System (ADS)

    Bokhan, P. A.; Zakrevsky, Dm. E.; Gugin, P. P.

    2011-10-01

    In the present study, it was examined generation of nanosecond-duration electron-beam (EB) pulses by a wide-aperture open discharge burning in helium or in a mixture of helium with nitrogen and water vapor. In the experiments, a discharge cell with coaxial electrode geometry, permitting radial injection of the electron beam into operating lasing medium, was used, with the cathode having radius 2.5 cm and length 12 cm. It was shown possible to achieve an efficient generation of a high-intensity electron beam (EB pulse power ˜250 MW and EB pulse energy up to 4 J) in the kiloampere range of discharge currents (up to 26 kA at ˜12 kV discharge voltage). The current-voltage characteristics of the discharge proved to be independent of the working-gas pressure. The existence of an unstable dynamic state of EB, conditioned by the presence of an uncompensated space charge accumulated in the discharge cell due to the exponential growth of the current in time during discharge initiation and the hyperbolic growth of current density in the direction towards the tube axis, was revealed. The obtained pulsed electron beam was used to excite the self-terminated laser on He 21P10-21S0 transition. The oscillations developing in the discharge cell at high discharge currents put limit to the pumping energy and emissive power of the laser excited with the radially converging electron beam.

  7. The Ability of Microbial Community of Lake Baikal Bottom Sediments Associated with Gas Discharge to Carry Out the Transformation of Organic Matter under Thermobaric Conditions.

    PubMed

    Bukin, Sergei V; Pavlova, Olga N; Manakov, Andrei Y; Kostyreva, Elena A; Chernitsyna, Svetlana M; Mamaeva, Elena V; Pogodaeva, Tatyana V; Zemskaya, Tamara I

    2016-01-01

    The ability to compare the composition and metabolic potential of microbial communities inhabiting the subsurface sediment in geographically distinct locations is one of the keys to understanding the evolution and function of the subsurface biosphere. Prospective areas for study of the subsurface biosphere are the sites of hydrocarbon discharges on the bottom of the Lake Baikal rift, where ascending fluxes of gas-saturated fluids and oil from deep layers of bottom sediments seep into near-surface sediment. The samples of surface sediments collected in the area of the Posolskaya Bank methane seep were cultured for 17 months under thermobaric conditions (80°C, 5 MPa) with the addition of complementary organic substrate, and a different composition for the gas phase. After incubation, the presence of intact cells of microorganisms, organic matter transformation and the formation of oil biomarkers was confirmed in the samples, with the addition of Baikal diatom alga Synedra acus detritus, and gas mixture CH4:H2:CO2. Taxonomic assignment of the 16S rRNA sequence data indicates that the predominant sequences in the enrichment were Sphingomonas (55.3%), Solirubrobacter (27.5%) and Arthrobacter (16.6%). At the same time, in heat-killed sediment and in sediment without any additional substrates, which were cultivated in a CH4 atmosphere, no geochemical changes were detected, nor the presence of intact cells and 16S rRNA sequences of Bacteria and Archaea. This data may suggest that the decomposition of organic matter under culturing conditions could be performed by microorganisms from low-temperature sediment layers. One possible explanation of this phenomenon is migration of the representatives of the deep thermophilic community through fault zones in the near surface sediment layers, together with gas-bearing fluids.

  8. The Ability of Microbial Community of Lake Baikal Bottom Sediments Associated with Gas Discharge to Carry Out the Transformation of Organic Matter under Thermobaric Conditions

    PubMed Central

    Bukin, Sergei V.; Pavlova, Olga N.; Manakov, Andrei Y.; Kostyreva, Elena A.; Chernitsyna, Svetlana M.; Mamaeva, Elena V.; Pogodaeva, Tatyana V.; Zemskaya, Tamara I.

    2016-01-01

    The ability to compare the composition and metabolic potential of microbial communities inhabiting the subsurface sediment in geographically distinct locations is one of the keys to understanding the evolution and function of the subsurface biosphere. Prospective areas for study of the subsurface biosphere are the sites of hydrocarbon discharges on the bottom of the Lake Baikal rift, where ascending fluxes of gas-saturated fluids and oil from deep layers of bottom sediments seep into near-surface sediment. The samples of surface sediments collected in the area of the Posolskaya Bank methane seep were cultured for 17 months under thermobaric conditions (80°C, 5 MPa) with the addition of complementary organic substrate, and a different composition for the gas phase. After incubation, the presence of intact cells of microorganisms, organic matter transformation and the formation of oil biomarkers was confirmed in the samples, with the addition of Baikal diatom alga Synedra acus detritus, and gas mixture CH4:H2:CO2. Taxonomic assignment of the 16S rRNA sequence data indicates that the predominant sequences in the enrichment were Sphingomonas (55.3%), Solirubrobacter (27.5%) and Arthrobacter (16.6%). At the same time, in heat-killed sediment and in sediment without any additional substrates, which were cultivated in a CH4 atmosphere, no geochemical changes were detected, nor the presence of intact cells and 16S rRNA sequences of Bacteria and Archaea. This data may suggest that the decomposition of organic matter under culturing conditions could be performed by microorganisms from low-temperature sediment layers. One possible explanation of this phenomenon is migration of the representatives of the deep thermophilic community through fault zones in the near surface sediment layers, together with gas-bearing fluids. PMID:27242716

  9. Suicide Risk Is High for Psychiatric Patients Long After Discharge from Care

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_166107.html Suicide Risk Is High for Psychiatric Patients Long After ... that psychiatric patients are at high risk for suicide immediately after being discharged from a mental health ...

  10. Effects of discharge fluctuation and the addition of fine sediment on stream fish and macroinvertebrates below a water-filtration facility

    NASA Astrophysics Data System (ADS)

    Erman, Don C.; Ligon, Franklin K.

    1988-01-01

    A small, coastal stream in the San Francisco Bay area of California, USA, received the discharges from a drinking-water filtration plant. Two types of discharges were present. Discharges from filter backwashing were 3 4 times base stream flow, occurred 10 60 times per day, contained fine sediments, and each lasted about 10 min. The other discharge was a large, steady flow of relatively sediment-free water from occasional overflow of the delivery aqueduct which generally lasted several hours a day. Samples of invertebrates from natural substrates had significantly fewer taxa and lower density at the two stations below the backwash than at the two above. However, when stable artificial substrates were used, there were no significant differences among all four stations. The aqueduct apparently had no effect because the. invertebrate community at the station upstream of the backwash but downstream of the aqueduct was statistically similar to the station above the aqueduct. To test for acute toxicity, we exposed additional artificial substrates to short-term simulated backwash conditions. These exposures had no effect on invertebrate density or drift. Three-spine stickleback ( Gasterosteus aculeatus) populations were also significantly reduced at the two downstream stations and were made up mostly of larger, adult fish. Prickly sculpins ( Cottus asper), restricted to the most downstream station, were emaciated and had poor growth, probably as a result of scarce benthic food organisms. Artificial redds with eggs of rainbow trout ( Salmo gairdneri) had significantly lower survival at two stations below the plant backwash (30.7% and 41.8%) than at the one above it (61.4%). Hatchery rainbow trout held in cages below the treatment plant from 7 to 37 days survived and continued to feed. Thus, the major effect of the water treatment plant on fish and invertebrates probably was not from acute toxicity in the discharges or the occasionally large discharge of clean water from the

  11. Chemical characterization of organic microcontaminant sources and biological effects in riverine sediments impacted by urban sewage and pulp mill discharges.

    PubMed

    Chamorro, S; Hernández, V; Matamoros, V; Domínguez, C; Becerra, J; Vidal, G; Piña, B; Bayona, J M

    2013-01-01

    The Biobío River basin is highly impacted by a variety of anthropogenic activities such as pulp mills and urban wastewaters subjected to different treatment processes. This work assesses for the first time, the contamination source and biological effects (estrogenic and dioxin-like activities) in the river basin by the determination of 45 organic microcontaminants in seven sediment samples. Pressurized solvent extraction combined with two-dimensional comprehensive gas chromatography coupled to time of flight mass spectrometry was employed for this purpose. The organic microcontaminants identified comprise monoterpenes, sesquiterpenes, diterpenes, ionones, lineal alkyl benzenes, polycyclic aromatic hydrocarbons, musk fragrances, sterols and phathalate esters. The presence of pine and eucalyptus pulp mill effluents increased the abundance of resin-derived neutral compounds and monoterpenes respectively. A principal component analysis showed that the Biobío River basin was impacted by domestic wastewater treatment plants (WWTPs), pine or eucalyptus Kraft pulp mills and pyrolytic and pyrogenic processes. Finally, the recombinant yeast assays showed that the presence of estrogenic and dioxin-like activity was mostly located in sediments impacted by domestic WWTP effluents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Kinetics of high pressure argon-helium pulsed gas discharge

    NASA Astrophysics Data System (ADS)

    Emmons, D. J.; Weeks, D. E.

    2017-05-01

    Simulations of a pulsed direct current discharge are performed for a 7% argon in helium mixture at a pressure of 270 Torr using both zero- and one-dimensional models. Kinetics of species relevant to the operation of an optically pumped rare-gas laser are analyzed throughout the pulse duration to identify key reaction pathways. Time dependent densities, electron temperatures, current densities, and reduced electric fields in the positive column are analyzed over a single 20 μs pulse, showing temporal agreement between the two models. Through the use of a robust reaction rate package, radiation trapping is determined to play a key role in reducing A r (1 s5) metastable loss rates through the reaction sequence A r (1 s5)+e-→A r (1 s4)+e- followed by A r (1 s4)→A r +ℏω . Collisions with He are observed to be responsible for A r (2 p9) mixing, with nearly equal rates to A r (2 p10) and A r (2 p8) . Additionally, dissociative recombination of A r2+ is determined to be the dominant electron loss mechanism for the simulated discharge conditions and cavity size.

  13. Effect of gold mining activities on water turbidity and river sediment discharge: comparison of two nearby river basin in French Guiana, using remote sensing and field measurements data

    NASA Astrophysics Data System (ADS)

    Marjorie, Gallay; Jean-Michel, Martinez; Alain, Laraque; Max, Sarrazin; Jean-Claude, Doudou; Antoine, Gardel; Vincent, Vantrepotte; Franck, Chow-Toun

    2016-04-01

    The Maroni and Oyapock rivers are two nearby basin in French Guiana, South America. The Maroni river drains a basin of 66 000 km² between French Guiana and Surinam. The Oyapock river basin covers 28 000 km² over French Guiana and Brazil. The Both over the Guyana shield presenting very lowest erosion rates. For both rivers, Suspended Sediment Concentration and remote sensing reflectance have been determined, during 3 fields sampling campaigns, using TriOs RAMSES radiometers operating in the 350-900 nm spectral range. Field data are compared with MODIS spaceborne sensors onboard calibration Terra and Aqua satellites. For the first time over the Maroni river, we show that it is possible to monitored from space both Surface Suspended Sediment Concentration (SSSC) and the Turbidity (R²=0,81), making possible to evaluate water quality long term. Combining fields and satellite derived SSSC measurements, we detected an increase of median SSSC (20 to 30 mg/l)and sediment budget in the Maroni river and a stability for the Oyapock river (10 mg/l), since 2000. Almost, relationship between SSSC and river water discharge was investigated for both rivers and for the 2000-2015 period. We show that SSSC and Maroni river discharge present decreasing correlation over the period of study. For the Oyapock River, SSSC and river discharge show good relationship over the period of study. Analysis of land-use change in the Maroni catchment showed an important increase of areas affected by gold mining which explain the observed modification of the Maroni River Suspended Sediment budget.

  14. Low-pressure electrical discharge experiment to simulate high-altitude lightning above thunderclouds

    NASA Technical Reports Server (NTRS)

    Jarzembski, M. A.; Srivastava, V.

    1995-01-01

    Recently, extremely interesting high-altitude cloud-ionosphere electrical discharges, like lightning above thunderstorms, have been observed from NASA's space shuttle missions and during airborne and ground-based experiments. To understand these discharges, a new experiment was conceived to simulate a thundercloud in a vacuum chamber using a dielectric in particulate form into which electrodes were inserted to create charge centers analogous to those in an electrified cloud. To represent the ionosphere, a conducting medium (metallic plate) was introduced at the top of the chamber. It was found that for different pressures between approximately 1 and 300 mb, corresponding to various upper atmospheric altitudes, different discharges occurred above the simulated thundercloud, and these bore a remarkable similarity to the observed atmospheric phenomena. At pressures greater than 300 mb, these discharges were rare and only discharges within the simulated thundercloud were observed. Use of a particulate dielectric was critical for the successful simulation of the high-altitude lightning.

  15. High Q silica microbubble resonators fabricated by arc discharge

    NASA Astrophysics Data System (ADS)

    Berneschi, S.; Farnesi, D.; Cosi, F.; Nunzi Conti, G.; Pelli, S.; Righini, G. C.; Soria, S.

    2011-09-01

    Microbubble resonators combine the unique properties of whispering gallery mode resonators with the intrinsic capability of integrated microfluidics. Here an improved fabrication method of microbubble resonators is presented, based on the heating of a slightly pressurized capillary by a rotating arc discharge. Rotation of the electrodes, moved out of a fiber splicer, ensures a homogeneous distribution of the heat all over the capillary surface. The demonstrated microbubble resonators have Q factors up to 6×107 at 1550nm. Microbubbles were filled with water and aqueous solutions of ethanol in order to test the refractive index sensing capabilities of such resonators, which also show a good temporal stability. The limit of detection of our microbubble resonator sensor is 10-6RIU.

  16. High Q silica microbubble resonators fabricated by arc discharge.

    PubMed

    Berneschi, S; Farnesi, D; Cosi, F; Conti, G Nunzi; Pelli, S; Righini, G C; Soria, S

    2011-09-01

    Microbubble resonators combine the unique properties of whispering gallery mode resonators with the intrinsic capability of integrated microfluidics. Here an improved fabrication method of microbubble resonators is presented, based on the heating of a slightly pressurized capillary by a rotating arc discharge. Rotation of the electrodes, moved out of a fiber splicer, ensures a homogeneous distribution of the heat all over the capillary surface. The demonstrated microbubble resonators have Q factors up to 6×10(7) at 1550 nm. Microbubbles were filled with water and aqueous solutions of ethanol in order to test the refractive index sensing capabilities of such resonators, which also show a good temporal stability. The limit of detection of our microbubble resonator sensor is 10(-6) RIU.

  17. Computational Study of Anomalous Transport in High Beta DIII-D Discharges with ITBs

    NASA Astrophysics Data System (ADS)

    Pankin, Alexei; Garofalo, Andrea; Grierson, Brian; Kritz, Arnold; Rafiq, Tariq

    2015-11-01

    The advanced tokamak scenarios require a large bootstrap current fraction and high β. These large values are often outside the range that occurs in ``conventional'' tokamak discharges. The GLF23, TGLF, and MMM transport models have been previously validated for discharges with parameters associated with ``conventional'' tokamak discharges. It has been demonstrated that the TGLF model under-predicts anomalous transport in high β DIII-D discharges [A.M. Garofalo et al. 2015 TTF Workshop]. In this research, the validity of MMM7.1 model [T. Rafiq et al. Phys. Plasmas 20 032506 (2013)] is tested for high β DIII-D discharges with low and high torque. In addition, the sensitivity of the anomalous transport to β is examined. It is shown that the MMM7.1 model over-predicts the anomalous transport in the DIII-D discharge 154406. In particular, a significant level of anomalous transport is found just outside the internal transport barrier. Differences in the anomalous transport predicted using TGLF and MMM7.1 are reviewed. Mechanisms for quenching of anomalous transport in the ITB regions of high-beta discharges are investigated. This research is supported by US Department of Energy.

  18. Overview of selected surrogate technologies for high-temporal resolution suspended-sediment monitoring

    USGS Publications Warehouse

    Gray, John R.; Gartner, Jeffrey W.

    2010-01-01

    Traditional methods for characterizing selected properties of suspended sediments in rivers are being augmented and in some cases replaced by cost-effective surrogate instruments and methods that produce a temporally dense time series of quantifiably accurate data for use primarily in sediment-flux computations. Turbidity is the most common such surrogate technology, and the first to be sanctioned by the U.S. Geological Survey for use in producing data used in concert with water-discharge data to compute sediment concentrations and fluxes for storage in the National Water Information System. Other technologies, including laser-diffraction, digital photo-optic, acoustic-attenuation and backscatter, and pressure-difference techniques are being evaluated for producing reliable sediment concentration and, in some cases, particle-size distribution data. Each technology addresses a niche for sediment monitoring. Their performances range from compelling to disappointing. Some of these technologies have the potential to revolutionize fluvial-sediment data collection, analysis, and availability.

  19. Effect of high sedimentation rates on surface sediment dynamics and mangrove growth in the Porong River, Indonesia.

    PubMed

    Sidik, Frida; Neil, David; Lovelock, Catherine E

    2016-06-15

    Large quantities of mud from the LUSI (Lumpur Sidoarjo) volcano in northeastern Java have been channeled to the sea causing high rates of sediment delivery to the mouth of the Porong River, which has a cover of natural and planted mangroves. This study investigated how the high rates of sediment delivery affected vertical accretion, surface elevation change and the growth of Avicennia sp., the dominant mangrove species in the region. During our observations in 2010-2011 (4-5years after the initial volcanic eruption), very high rates of sedimentation in the forests at the mouth of the river gave rise to high vertical accretion of over 10cmy(-1). The high sedimentation rates not only resulted in reduced growth of Avicennia sp. mangrove trees at the two study sites at the Porong River mouth, but also gave rise to high soil surface elevation gains.

  20. Composition, distribution, and hydrologic effects of contaminated sediments resulting from the discharge of gold milling wastes to Whitewood Creek at Lead and Deadwood, South Dakota

    USGS Publications Warehouse

    Goddard, K.E.

    1989-01-01

    The Whitewood Creek-Belle Fourche-Cheyenne River stream system in western South Dakota has been extensively contaminated by the discharge to Whitewood Creek of about 100 million tons of mill tailings from gold-mining operations. The resulting contaminated sediments contain unusually large concentrations of arsenic, as much as 11,000 micrograms/g, derived from the mineral arsenopyrite, as well as potentially toxic constituents derived from the ore-body minerals or from the milling processes. Because of the anomalous arsenic concentrations associated with the contamination, arsenic was used as an indicator for a geochemically based, random, sediment-sampling program. Arsenic concentrations in shallow, contaminated sediments along the flood plains of the streams were from 1 to 3 orders of magnitude larger than arsenic concentrations in uncontaminated sediments in about 75% of the flood plains of Whitewood Creek and the Belle Fourche River. Appreciable surface-water contamination resulting from the contaminated sediments is confined to Whitewood Creek and a reach of the Belle Fourche River downstream from the mouth of Whitewood Creek. In Whitewood Creek , dissolved-arsenic concentrations vary from about 20 to 80 microgram/L during the year in response to variations in groundwater inflow and dilution, whereas total-recoverable-arsenic concentrations vary from about 20 to 8 ,000 micrograms/L during short periods in response to rapid changes in suspended-sediment concentration. Contamination of the alluvial aquifer along the stream system is limited to areas in direct contact with large deposits of contaminated sediments. Within the aquifer, arsenic concentrations are thought to be controlled by sorption-desorption on metallic hydroxides. (USGS)

  1. Nontarget analysis of polar contaminants in freshwater sediments influenced by pharmaceutical industry using ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry.

    PubMed

    Terzic, Senka; Ahel, Marijan

    2011-02-01

    A comprehensive analytical procedure for a reliable identification of nontarget polar contaminants in aquatic sediments was developed, based on the application of ultra-high-pressure liquid chromatography (UHPLC) coupled to hybrid quadrupole time-of-flight mass spectrometry (QTOFMS). The procedure was applied for the analysis of freshwater sediment that was highly impacted by wastewater discharges from the pharmaceutical industry. A number of different contaminants were successfully identified owing to the high mass accuracy of the QTOFMS system, used in combination with high chromatographic resolution of UHPLC. The major compounds, identified in investigated sediment, included a series of polypropylene glycols (n=3-16), alkylbenzene sulfonate and benzalkonium surfactants as well as a number of various pharmaceuticals (chlorthalidone, warfarin, terbinafine, torsemide, zolpidem and macrolide antibiotics). The particular advantage of the applied technique is its capability to detect less known pharmaceutical intermediates and/or transformation products, which have not been previously reported in freshwater sediments.

  2. [Spectroscopic study on the high voltage fast pulsed discharge of nitrogen, ammonia or their mixture].

    PubMed

    Liu, Z P; Wang, P N; Yang, W D; Zheng, J B; Li, F M

    2001-10-01

    The emission spectra from the pulsed discharge plasma of nitrogen, ammonia or their mixture were measured. In the discharge of pure nitrogen gas, as the pressure increased, the discharge volume decreased and more dissociation of nitrogen molecules occurred due to the higher energy density. In the discharge of ammonia, N,N+ and NH+ were observed, but no NH2 and NH3 were detected, indicating that ammonia, which has the lower dissociation and ionization energies as compared to nitrogen, was highly dissociated. The discharge of the mixture of N2 and NH3 was also studied. The dependence of the dissociation of nitrogen on the ratio of nitrogen to ammonia was investigated by emission spectra. The optimal ratio for nitrogen dissociation was obtained. The advantage of using the mixture of nitrogen and ammonia in the synthesis of nitrides was discussed.

  3. Are the argon metastables important in high power impulse magnetron sputtering discharges?

    SciTech Connect

    Gudmundsson, J. T.; Lundin, D.; Minea, T. M.; Stancu, G. D.; Brenning, N.

    2015-11-15

    We use an ionization region model to explore the ionization processes in the high power impulse magnetron sputtering (HiPIMS) discharge in argon with a titanium target. In conventional dc magnetron sputtering (dcMS), stepwise ionization can be an important route for ionization of the argon gas. However, in the HiPIMS discharge stepwise ionization is found to be negligible during the breakdown phase of the HiPIMS pulse and becomes significant (but never dominating) only later in the pulse. For the sputtered species, Penning ionization can be a significant ionization mechanism in the dcMS discharges, while in the HiPIMS discharge Penning ionization is always negligible as compared to electron impact ionization. The main reasons for these differences are a higher plasma density in the HiPIMS discharge, and a higher electron temperature. Furthermore, we explore the ionization fraction and the ionized flux fraction of the sputtered vapor and compare with recent experimental work.

  4. Formation of an out-of-electrode plasma in a high-voltage gas discharge

    NASA Astrophysics Data System (ADS)

    Kolpakov, V. A.; Kolpakov, A. I.; Podlipnov, V. V.

    2013-04-01

    The formation of an out-of-electrode plasma in a high-voltage gas discharge is studied. The occurrence and self-maintenance of a gas discharge and its associated plasma fluxes on the straight portions of electrical field lines are predicted theoretically and confirmed experimentally. It is shown that the focusing of the gas discharge and plasma fluxes is provided by increasing the length of the field line straight portions toward the symmetry axis of a hole in the anode. It is found that, when the discharge power (more specifically, an accelerating voltage applied to the electrodes of the gas-discharge tube) rises, the straight portions of the field lines elongate and concentrate near the symmetry axis of the hole in the anode. Recommendations are given on using the out-of-electrode plasma in surface micro- and nanostructuring.

  5. Observation of Neutron Bursts Produced by Laboratory High-Voltage Atmospheric Discharge

    NASA Astrophysics Data System (ADS)

    Agafonov, A. V.; Bagulya, A. V.; Dalkarov, O. D.; Negodaev, M. A.; Oginov, A. V.; Rusetskiy, A. S.; Ryabov, V. A.; Shpakov, K. V.

    2013-09-01

    For the first time the emission of neutron bursts in the process of high-voltage discharge in air was observed. Experiments were carried out at an average electric field strength of ˜1MV·m-1 and discharge current of ˜10kA. Two independent methods (CR-39 track detectors and plastic scintillation detectors) registered neutrons within the range from thermal energies up to energies above 10 MeV and with an average flux density of ≳106cm-2 per shot inside the discharge zone. Neutron generation occurs at the initial phase of the discharge and correlates with x-ray generation. The data obtained allow us to assume that during the discharge fast neutrons are mainly produced.

  6. Improved high-intensity microwave discharge lamp for atomic resonance absorption and fluorescence spectrometry.

    PubMed

    Lifshitz, A; Skinner, G B; Wood, D R

    1978-09-01

    An unusually good combination of high intensity and narrow line has been achieved in a microwave discharge lamp by placing the optical window in the center of the microwave cavity. Construction details and performance characteristics are described.

  7. High resolution microprofiling, fractionation and speciation at sediment water interfaces

    NASA Astrophysics Data System (ADS)

    Fabricius, Anne-Lena; Duester, Lars; Ecker, Dennis; Ternes, Thomas A.

    2016-04-01

    Within aquatic environments, the exchange between the sediment and the overlaying water is often driven by steep gradients of, e.g., the oxygen concentration, the redox potential or the pH value at the sediment water interface (SWI). Important transport processes at the SWI are sedimentation and resuspension of particulate matter and diffusional fluxes of dissolved substances. To gain a better understanding of the key factors and processes determining the fate of substances at the SWI, methods with a spatial high resolution are required that enable the investigation of several sediment parameters in parallel to different analytes of interest in the sediment pore water. Moreover, beside the total content, questions concerning the speciation and fractionation are of concern in studying the different (transport) processes. Due to the availability of numerous micro-sensors and -electrodes (e.g., O2, redox potential, pH value, H2S, N2O) and the development of methods for pore water sampling [1], the toolbox to study the heterogeneous and often dynamic conditions at the SWI at a sub-millimetre scale were considerably improved. Nevertheless, the methods available for pore water sampling often require the installation of the sampling devices at the sampling site and/or intensive preparation procedures that may influence the conditions at the area studied and/or the characteristics of the samples taken. By combination of a micro profiling system with a new micro filtration probe head connected to a pump and a fraction collector, a micro profiling and micro sampling system ("missy") was developed that enables for the first time a direct, automate and low invasive sampling of small volumes (<500 μL) at a spatial high resolution of a few millimetres to sub-millimetres [2]. Via the application of different sample preparation procedures followed by inductively plasma-mass spectrometry analyses, it was possible to address not only the total content of metal(loid)s, but also

  8. Dielectric barrier discharge for multi-point plasma-assisted ignition at high pressures.

    PubMed

    Shcherbanev, S A; Stepanyan, S A; Popov, N A; Starikovskaia, S M

    2015-08-13

    Nanosecond surface dielectric barrier discharge (nSDBD) is an efficient tool for a multi-point plasma-assisted ignition of combustible mixtures at elevated pressures. The discharge develops as a set of synchronously propagated from the high-voltage electrode charged channels (streamers), with a typical density up to a few streamers per millimetre of the length of the electrode. In combustible mixtures, nSDBD initiates numerous combustion waves propagating from the electrode. Very little is known about nSDBD at high pressures. This work presents a comparative experimental study of the surface dielectric barrier discharge initiated by high-voltage pulses (U=±(20-60) kV) of different polarities in air at elevated pressures (P=1-6 atm). Discharge morphology, deposited energy and velocity of the discharge front propagation are analysed. Differences between the discharges of positive and negative polarity, as well as the changes in the discharge morphology with changing of a gas mixture composition.

  9. Capacity fade study of lithium-ion batteries cycled at high discharge rates

    NASA Astrophysics Data System (ADS)

    Ning, Gang; Haran, Bala; Popov, Branko N.

    Capacity fade of Sony US 18650 Li-ion batteries cycled using different discharge rates was studied at ambient temperature. The capacity losses were estimated after 300 cycles at 2 C and 3 C discharge rates and were found to be 13.2 and 16.9% of the initial capacity, respectively. At 1 C discharge rate the capacity lost was only 9.5%. The cell cycled at high discharge rate (3 C) showed the largest internal resistance increase of 27.7% relative to the resistance of the fresh cells. The rate capability losses were proportional with the increase of discharge rates. Half-cell study and material and charge balances were used to quantify the capacity fade due to the losses of primary active material (Li +), the secondary active material (LiCoO 2/C)) and rate capability losses. It was found that carbon with 10.6% capacity loss after 300 cycles dominates the capacity fade of the whole cell at high discharge rates (3 C). A mechanism is proposed which explains the capacity fade at high discharge rates.

  10. Testing of a high performance compressor discharge seal

    NASA Astrophysics Data System (ADS)

    Munson, John H.

    1993-06-01

    A gas lubricated film riding face seal (FRFS) is being developed for use in an advanced subsonic demonstrator engine. This seal will replace the multiple sets of labyrinth seals currently used to seal the compressor discharge air from the engine secondary flow system. The described program consisted of a design, fabrication, and test evaluation phase. This paper deals with testing and results of the rig evaluation of the seals. Several alternative hydrostatic and hydrodynamic FRFS designs were considered in the design phase. Film stiffness, leakage, and heat generation were selected to be the most important design criteria. Using these criteria, hydrodynamic seals proved superior to the hydrostatic designs. Spiral groove design and Rayleigh step pad type seals were selected for detail design and fabrication. Testing was performed in an advanced seal test rig. Both seals were successfully demonstrated. Testing included operation to approximately 700 ft/sec relative velocity, 500 psi pressure differential, and temperatures of at least 1200 F. Noncontacting operation and low leakage rates were demonstrated by both seals.

  11. Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage.

    PubMed

    Khanchaitit, Paisan; Han, Kuo; Gadinski, Matthew R; Li, Qi; Wang, Qing

    2013-01-01

    Ferroelectric polymers are being actively explored as dielectric materials for electrical energy storage applications. However, their high dielectric constants and outstanding energy densities are accompanied by large dielectric loss due to ferroelectric hysteresis and electrical conduction, resulting in poor charge-discharge efficiencies under high electric fields. To address this long-standing problem, here we report the ferroelectric polymer networks exhibiting significantly reduced dielectric loss, superior polarization and greatly improved breakdown strength and reliability, while maintaining their fast discharge capability at a rate of microseconds. These concurrent improvements lead to unprecedented charge-discharge efficiencies and large values of the discharged energy density and also enable the operation of the ferroelectric polymers at elevated temperatures, which clearly outperforms the melt-extruded ferroelectric polymer films that represents the state of the art in dielectric polymers. The simplicity and scalability of the described method further suggest their potential for high energy density capacitors.

  12. Sediment and discharge yields within a minimally disturbed, headwater watershed in North Central Pennsylvania, USA, with an emphasis on Superstorm Sandy

    USGS Publications Warehouse

    Maloney, Kelly O.; Shull, Dustin R.

    2015-01-01

    We estimated discharge and suspended sediment (SS) yield in a minimally disturbed watershed in North Central Pennsylvania, USA, and compared a typical storm (September storm, 4.80 cm) to a large storm (Superstorm Sandy, 7.47 cm rainfall). Depending on branch, Sandy contributed 9.7–19.9 times more discharge and 11.5–37.4 times more SS than the September storm. During the September storm, the upper two branches accounted for 60.6% of discharge and 88.8% of SS at Lower Branch; during Sandy these percentages dropped to 36.1% for discharge and 30.1% for SS. The branch with close proximity roads had over two-three times per area SS yield than the branch without such roads. Hysteresis loops showed typical clockwise patterns for the September storm and more complicated patterns for Sandy, reflecting the multipeak event. Estimates of SS and hysteresis in minimally disturbed watersheds provide useful information that can be compared spatially and temporally to facilitate management.

  13. Visualizing sediment dynamics through repeated high-resolution multibeam mapping

    NASA Astrophysics Data System (ADS)

    de Vries, J. J.; Greinert, J.; Maierhofer, T.

    2013-12-01

    Multibeam mapping has become a common method for mapping the seafloor in shallow and great water depths with different spatial resolutions depending on the system platform (ship-based, AUV- or ROV-based), the beam angle of the system itself, the survey speed, and the distance to the seafloor. Significant advances in system accuracy, processing power and new software make multibeam mapping a powerful tool for studying sediment dynamics in 4D through repeated surveys that are ideally linked to additional studies on currents and sediment load in the water column. The Texelstroom channel, which is part of the Marsdiep between the city of Den Helder and the island of Texel (North Holland, the Netherlands), has been investigated in such a way for many years using water depth estimates from an ADCP installed on a ferry shuttling 24 times a day between the mainland and the island. Since 2009, repeated multibeam surveys have been undertaken up to three times per year as part of a student course, revealing sediment dynamics in much more detail than could be previously seen with the water depth estimates from the ferry-based ADCP. In the Texelstroom channel, the water depth ranges from a few meters to 45 meters. In the highly variable bathymetry, a series of large, bended sand waves exist mainly perpendicular to the direction of the main current. The shape of the sand waves changes from asymmetrical to symmetrical depending on the time of year, with more symmetrical shapes in spring and summer. Perpendicular to the large sand waves, smaller ripples develop during autumn. In addition to these changes in sand wave characteristics, sand wave crests sometimes migrate more than 30m in two months with an average movement of half a meter per day. The migration direction changes during the year resulting in a non-constant back-and-forth movement of the large sand waves. These intra-annual variations are characterized by changes in the slope of the sand waves, variations in the

  14. Production of High Energy Ions Near an Ion Thruster Discharge Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Mikellides, I. G.; Goebel, D. M.; Jameson, K. K.; Wirz, R.; Polk, James E.

    2006-01-01

    Several researchers have measured ions leaving ion thruster discharge chambers with energies far greater than measured discharge chamber potentials. Presented in this paper is a new mechanism for the generation of high energy ions and a comparison with measured ion spectra. The source of high energy ions has been a puzzle because they not only have energies in excess of measured steady state potentials, but as reported by Goebel et. al. [1], their flux is independent of the amplitude of time dependent plasma fluctuations. The mechanism relies on the charge exchange neutralization of xenon ions accelerated radially into the potential trough in front of the discharge cathode. Previous researchers [2] have identified the importance of charge exchange in this region as a mechanism for protecting discharge cathode surfaces from ion bombardment. This paper is the first to identify how charge exchange in this region can lead to ion energy enhancement.

  15. Formation of carbon nanoparticle using Ar+CH4 high pressure nanosecond discharges

    NASA Astrophysics Data System (ADS)

    Koga, K.; Dong, X.; Iwashita, S.; Czarnetzki, U.; Shiratani, M.

    2014-06-01

    We have studied formation of carbon nanoparticles using Ar+CH4 high pressure nanosecond discharge non-thermal plasmas. Transition pressure from uniform glow discharges to filamentary ones was clarified to obtain conditions under which uniform glow discharges are sustained. We have produced nanoparticles using the glow discharges, and then we have collected nanoparticles on the grounded electrode by the filtered vacuum collection method. Size distribution analysis reveals that the CH4 concentration is an important parameter in controlling nanoparticle growth. We have also studied film deposition on the powered electrode and the grounded electrode. The deposition rate on the powered electrode is 7 times higher than that on the grounded electrode. Optical emission observations suggest that radical generation rate near the powered electrode is twice higher than that near the grounded electrode, leading to high deposition rate on the powered electrode.

  16. Production of High Energy Ions Near an Ion Thruster Discharge Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Mikellides, I. G.; Goebel, D. M.; Jameson, K. K.; Wirz, R.; Polk, James E.

    2006-01-01

    Several researchers have measured ions leaving ion thruster discharge chambers with energies far greater than measured discharge chamber potentials. Presented in this paper is a new mechanism for the generation of high energy ions and a comparison with measured ion spectra. The source of high energy ions has been a puzzle because they not only have energies in excess of measured steady state potentials, but as reported by Goebel et. al. [1], their flux is independent of the amplitude of time dependent plasma fluctuations. The mechanism relies on the charge exchange neutralization of xenon ions accelerated radially into the potential trough in front of the discharge cathode. Previous researchers [2] have identified the importance of charge exchange in this region as a mechanism for protecting discharge cathode surfaces from ion bombardment. This paper is the first to identify how charge exchange in this region can lead to ion energy enhancement.

  17. Novel charge/discharge method for lead acid battery by high-pressure crystallization

    NASA Astrophysics Data System (ADS)

    Arakawa, Naoko; Maeda, Kouji; Moritoki, Masato; Fukui, Keisuke; Kuramochi, Hidetoshi; Miki, Hideo

    2013-06-01

    The electrical charging and discharging of a battery involves the crystallization of electrolytes or metal oxides on both electrodes. Crystallization technology that can control nucleation, growth, and distribution of solute crystals might be effective for improving battery properties. We performed charge/discharge cycling of a lead acid battery under high pressure. The charging efficiency at high pressure was compared with that at atmospheric pressure. Charging efficiency at high pressure was found to be higher than that at atmospheric pressure under a high charging current. Observation of the positive electrode by scanning electron microscopy revealed that high pressure caused the crystals on the electrode to become extremely fine.

  18. Spatiotemporal study of the local thermodynamic equilibrium deviations in high-intensity discharge lamps

    SciTech Connect

    Helali, H.; Bchir, T.; Araoud, Z.; Charrada, K.

    2013-04-15

    The aim of this work is to study the local thermodynamic equilibrium (LTE) deviations in arc discharges plasma generated in high-intensity discharge lamps operating under an ac (50 Hz) power supply. To achieve this goal, we elaborate a two-temperature, two-dimensional, and time-depending model. We have found numerical results almost reproducing the experimental data, which allows us to validate this model. After validation, we have discussed different energy term effects on the LTE deviations.

  19. Observation of hard radiations in a laboratory atmospheric high-voltage discharge

    NASA Astrophysics Data System (ADS)

    Agafonov, A. V.; Bogachenkov, V. A.; Chubenko, A. P.; Oginov, A. V.; Rodionov, A. A.; Rusetskiy, A. S.; Ryabov, V. A.; Shepetov, A. L.; Shpakov, K. V.

    2017-04-01

    The new results concerning neutron emission detection from a laboratory high-voltage discharge in the air are presented. Data were obtained with a combination of plastic scintillation detectors and 3He-filled counters of thermal neutrons. Strong dependence of the hard x-ray and neutron radiation appearance on the field strength near electrodes, which is determined by their form, was found. We have revealed a more sophisticated temporal structure of the neutron bursts observed during electric discharge.

  20. Quasi-stationary convection in a periodic-pulsed optical discharge in high pressure rare gas

    NASA Astrophysics Data System (ADS)

    Zimakov, V. P.; Kuznetsov, V. A.; Solovyov, N. G.; Shemyakin, A. N.; Shilov, A. O.; Yakimov, M. Yu

    2017-02-01

    Unusual convection flows were observed in stabilized pre-breakdown phase of the periodic-pulsed optical discharge (POD) called “quiet” POD. The discharge was a relatively weakly glowing plasma filament sustained by focused λ = 1.064 μm laser pulses with repetition rate of fr = 50÷100 kHz at the intensity several times below than that required for the optical breakdown to occur. No strong shock waves or irregular turbulence around the discharge were observed, in contrast to breakdown types of POD. Significant laser beam refraction measured in the beam cross-section behind the discharge zone was explained by the gas heating in the discharge up to 10 kK, providing high gradients of gas density and refraction index. Intense convective flow was detected on the schlieren images as thermal traces of the laser-induced gas streams flowing from the discharge zone, directed mainly normally to the optical axis. Repeated relaxation of the gas expanding after being rapidly heated by the laser pulse is proposed to explain the effect. The periodic-pulsed discharge located in the elongated beam waist generates an anisotropic heated region with gas streams and vortices, which may form the observed regular convective flow at the late stages of expanding.

  1. High resolution synoptic salinity mapping to identify groundwater--surface water discharges in lowland rivers.

    PubMed

    Pai, Henry; Villamizar, Sandra R; Harmon, Thomas C

    2015-04-21

    Quantifying distributed lateral groundwater contributions to surface water (GW-SW discharges) is a key aspect of tracking nonpoint-source pollution (NPSP) within a watershed. In this study, we characterized distributed GW-SW discharges and associated salt loading using elevated GW specific conductance (SC) as a tracer along a 38 km reach of the Lower Merced River in Central California. High resolution longitudinal surveys for multiple flows (1.3-150 m(3) s(-1)) revealed river SC gradients that mainly decreased with increasing flow, suggesting a dilution effect and/or reduced GW-SW discharges due to hydraulic gradient reductions. However, exceptions occurred (gradients increasing with increasing flow), pointing to complex spatiotemporal influences on GW-SW dynamics. The surveys revealed detailed variability in salinity gradients, from which we estimated distributed GW-SW discharge and salt loading using a simple mixing model. Modeled cumulative GW discharges for two surveys unaffected by ungauged SW discharges were comparable in magnitude to differential gauging-based discharge estimates and prior GW-SW studies along the same river reach. Ungauged lateral inlets and sparse GW data limited the study, and argue for enhancing monitoring efforts. Our approach provides a rapid and economical method for characterizing NPSP for gaining rivers in the context of integrated watershed modeling and management.

  2. Mechanisms of deflagration-to-detonation transition under initiation by high-voltage nanosecond discharges

    SciTech Connect

    Rakitin, Aleksandr E.; Starikovskii, Andrei Yu.

    2008-10-15

    An experimental study of detonation initiation in a stoichiometric propane-oxygen mixture by a high-voltage nanosecond gas discharge was performed in a detonation tube with a single-cell discharge chamber. The discharge study performed in this geometry showed that three modes of discharge development were realized under the experimental conditions: a spark mode with high-temperature channel formation, a streamer mode with nonuniform gas excitation, and a transient mode. Under spark and transient initiation, simultaneous ignition inside the discharge channel occurred, forming a shock wave and leading to a conventional deflagration-to-detonation transition (DDT) via an adiabatic explosion. The DDT length and time at 1 bar of initial pressure in the square smooth tube with a 20-mm transverse size amounted to 50 mm and 50{mu}s, respectively. The streamer mode of discharge development at an initial pressure of 1 bar resulted in nonuniform mixture excitation and a successful DDT via a gradient mechanism, which was confirmed by high-speed time resolved ICCD imaging. The gradient mechanism implied a longer DDT time of 150{mu}s, a DDT run-up distance of 50 mm, and an initiation energy of 1 J, which is two orders of magnitude less than the direct initiation energy for a planar detonation under these conditions. (author)

  3. Ultra high energy density and fast discharge nanocomposite capacitors

    NASA Astrophysics Data System (ADS)

    Tang, Haixiong; Sodano, Henry A.

    2013-04-01

    Nanocomposites containing high dielectric permittivity ceramics embedded in high breakdown strength polymers are currently of considerable interest as a solution for the development of high energy density capacitors. However, the improvement of dielectric permittivity comes at expense of the breakdown strength leading to limit the final energy density. Here, an ultra-high energy density nanocomposite was fabricated based on high aspect ratio barium strontium titanate nanowires. The pyroelectric phase Ba0.2Sr0.8TiO3 was chosen for the nanowires combined with quenched PVDF to fabricate high energy density nanocomposite. The energy density with 7.5% Ba0.2Sr0.8TiO3 nanowires reached 14.86 J/cc at 450 MV/m, which represented a 42.9% increase in comparison to the PVDF with an energy density of 10.4 J/cc at the same electric field. The capacitors have 1138% greater than higher energy density than commercial biaxial oriented polypropylene capacitors (1.2 J/cc at 640). These results demonstrate that the high aspect ratio nanowires can be used to produce nanocomposite capacitors with greater performance than the neat polymers thus providing a novel process for the development of future pulsed-power capacitors.

  4. High pressure working mode of hollow cathode arc discharges

    NASA Technical Reports Server (NTRS)

    Minoo, H.; Popovici, C.

    1985-01-01

    The behavior of high pressure cathotrons is discussed. Methods of preheating either the gas or the cathode itself are detailed together with various geometries for the hollow cathode. Three special configurations were tested, and the results are analyzed.

  5. Remediation of the Highland Drive South Ravine, Port Hope, Ontario: Contaminated Groundwater Discharge Management Using Permeable Reactive Barriers and Contaminated Sediment Removal - 13447

    SciTech Connect

    Smyth, David; Roos, Gillian; Ferguson Jones, Andrea; Case, Glenn; Yule, Adam

    2013-07-01

    The Highland Drive South Ravine (HDSR) is the discharge area for groundwater originating from the Highland Drive Landfill, the Pine Street North Extension (PSNE) roadbed parts of the Highland Drive roadbed and the PSNE Consolidation Site that contain historical low-level radioactive waste (LLRW). The contaminant plume from these LLRW sites contains elevated concentrations of uranium and arsenic and discharges with groundwater to shallow soils in a wet discharge area within the ravine, and directly to Hunt's Pond and Highland Drive South Creek, which are immediately to the south of the wet discharge area. Remediation and environmental management plans for HDSR have been developed within the framework of the Port Hope Project and the Port Hope Area Initiative. The LLRW sites will be fully remediated by excavation and relocation to a new Long-Term Waste Management Facility (LTWMF) as part of the Port Hope Project. It is projected, however, that the groundwater contaminant plume between the remediated LLRW sites and HDSR will persist for several hundreds of years. At the HDSR, sediment remediation within Hunt's Ponds and Highland Drive South Creek, excavation of the existing and placement of clean fill will be undertaken to remove current accumulations of solid-phase uranium and arsenic associated with the upper 0.75 m of soil in the wet discharge area, and permeable reactive barriers (PRBs) will be used for in situ treatment of contaminated groundwater to prevent the ongoing discharge of uranium and arsenic to the area in HDSR where shallow soil excavation and replacement has been undertaken. Bench-scale testing using groundwater from HDSR has confirmed excellent treatment characteristics for both uranium and arsenic using permeable reactive mixtures containing granular zero-valent iron (ZVI). A sequence of three PRBs containing ZVI and sand in backfilled trenches has been designed to intercept the groundwater flow system prior to its discharge to the ground surface

  6. Polarity and Excursion Transitions: Can they be Adequately Recorded in High-Sedimentation-Rate Marine Sediments?

    NASA Astrophysics Data System (ADS)

    Channell, J. E. T.

    2014-12-01

    Polarity transitions and magnetic excursions have durations of a few thousand years, or less. Transition/excursion records in volcanic sequences are, at best, partial snap-shots of the transition/excursion field. Records from high-sedimentation-rate marine sediments may be more continuous but they are always smoothed by progressive acquisition of detrital remanent magnetization (DRM), and by sampling/measurement limitations. North Atlantic records of the Matuyama-Brunhes (M-B) polarity transition are compared with records of the Iceland Basin excursion (190 ka). Virtual geomagnetic polar (VGP) paths are used to map characteristic magnetization directions during the transition/excursion. Relative paleointensity (RPI) proxies indicate partial recovery of field intensity during the transition/excursion, with RPI minima coinciding with abrupt VGP shifts at the onset and end of the transition/excursion. Discrepancies in VGP paths among holes at the same site, among sites, and a comparison of u-channel and discrete sample measurements, reveal limitations in resolution of the transition/excursion fields. During the M-B polarity transition, VGP clusters appear in the NW Pacific, NE Asia and in the South Atlantic. Similarities in VGP clustering for the M-B boundary and the Iceland Basin excursion imply that the polarity transition and excursion fields had common characteristics. Similarities with the modern non-axial dipole (NAD) field imply that polarity transitions and excursions involve the demise of the Earth's axial dipole relative to the NAD field, and that the NAD field has long-lasting features locked in place by the lowermost mantle.

  7. Evidence for large-area superemission into a high-current glow discharge

    NASA Astrophysics Data System (ADS)

    Hartmann, W.; Dominic, V.; Kirkman, G. F.; Gundersen, M. A.

    1988-10-01

    This letter presents evidence for large-area (≊1 cm2) cathode superemission (˜10 000 A/cm2) into a high-current glow discharge in a pseudospark or back lighted thyratron switch. Cathodes studied with a scannning electron microscope following operation at 6-8 kA, ≊1 μs pulse length, and 105 pulses in a low-pressure H2 discharge show evidence of melting of a thin surface layer within a radius of ˜4 mm, indicating that the discharge is a superdense glow with a cross-sectional area of the order of 1 cm2, rather than an arc. Further supporting evidence is provided by streak camera data. An ion beam present during the avalanche phase of the discharge is responsible for heating the cathode surface resulting in a significant field-enhanced thermionic emission.

  8. Comparison of two high-repetition-rate pulsed CO/sub 2/ laser discharge geometries

    SciTech Connect

    Faszer, W.; Tulip, J.; Seguin, H.

    1980-11-01

    Two discharge geometries are commonly used for pumping high-repetition-rate transversely excited atmosphere (TEA) lasers. One uses solid electrodes with preionization provided by downstream spark pins. The other uses a solid electrode and a screen electrode with preionization provided by an auxiliary discharge behind the screen. In this study the performance of the two systems was compared. The repetition rate at which arcing occurs was found to increase linearly with flow velocity but decrease with increasing energy density. It was also dependent on system geometry and the spark pin preionized system performed better than the auxiliary discharge preionized system. Data are given for discharges in N/sub 2/, CO/sub 2/, He, and a CO/sub 2/ laser mixture.

  9. Hollow cathodes in high pressure arc discharges. [for arcjet thrusters

    NASA Technical Reports Server (NTRS)

    Hardy, T. L.; Curran, F. M.

    1985-01-01

    An orified hallow cathode was tested at high pressure to improve lifetime and efficiency in arcjet thrusters. It is indicated that the arc would not operate with emission from the insert above 200 torr in nitrogen regardless of insert material, orifice diameter, or gas flow direction. Emission occurred from the insert in argon and xenon although it could not be ascertained whether diffuse or spot emission existed within the cathode. Over the extended range of configurations and operating parameters explored the desired diffuse emission mode could not be obtained at high enough pressures for orified hollow cathodes to operate in the range which is considered for arcjet applications.

  10. Kinetics of charged particles in a high-voltage gas discharge in a nonuniform electrostatic field

    NASA Astrophysics Data System (ADS)

    Kolpakov, V. A.; Krichevskii, S. V.; Markushin, M. A.

    2017-01-01

    A high-voltage gas discharge is of interest as a possible means of generating directed flows of low-temperature plasma in the off-electrode space distinguished by its original features [1-4]. We propose a model for calculating the trajectories of charges particles in a high-voltage gas discharge in nitrogen at a pressure of 0.15 Torr existing in a nonuniform electrostatic field and the strength of this field. Based on the results of our calculations, we supplement and refine the extensive experimental data concerning the investigation of such a discharge published in [1, 2, 5-8]; good agreement between the theory and experiment has been achieved. The discharge burning is initiated and maintained through bulk electron-impact ionization and ion-electron emission. We have determined the sizes of the cathode surface regions responsible for these processes, including the sizes of the axial zone involved in the discharge generation. The main effect determining the kinetics of charged particles consists in a sharp decrease in the strength of the field under consideration outside the interelectrode space, which allows a free motion of charges with specific energies and trajectories to be generated in it. The simulation results confirm that complex electrode systems that allow directed plasma flows to be generated at a discharge current of hundreds or thousands of milliamperes and a voltage on the electrodes of 0.3-1 kV can be implemented in practice [3, 9, 10].

  11. Using high-resolution suspended-sediment measurements to infer changes in the topographic distribution and grain size of bed sediment in the Colorado River downstream from Glen Canyon Dam

    NASA Astrophysics Data System (ADS)

    Topping, D. J.; Rubin, D. M.; Melis, T. S.; Wright, S. A.

    2004-12-01

    Eddy sandbars and other sandy deposits in and along the Colorado River in Grand Canyon National Park (GCNP) were an integral part of the pre-dam riverscape, and are still important for habitat, protection of archeological sites, and recreation. Recent work has shown that eddy bars are dynamic landforms and represent the bulk of the ecosystem's sand reserves. These deposits began eroding following the 1963 closure of Glen Canyon Dam that reduced the supply of sand at the upstream boundary of GCNP by about 94% and are still eroding today. Sand transport in the post-dam river is limited by episodic resupply from tributaries, and is equally regulated by the discharge of water and short-term changes in the grain size of sand available for transport (Rubin and Topping, WRR, 2001). During tributary floods, sand on the bed of the Colorado River fines; this causes the suspended sand to fine and the suspended-sand concentration to increase even when the discharge of water remains constant. Subsequently, the bed is winnowed of finer sand, the suspended sand coarsens, and the suspended-sand concentration decreases independently of discharge. This prohibits the computation of sand-transport rates in the Colorado River using stable relations between water discharge and sand transport (i.e., sediment rating curves) and requires a more continuous method for measuring sand transport. To monitor suspended sediment at higher (i.e., 15-minute) resolutions, we began testing a laser-acoustic system at four locations along the Colorado River in Grand Canyon in August 2002. Because they are much easier to acquire, the high-resolution suspended-sediment datasets collected using the laser-acoustic systems greatly outnumber (by >5 orders of magnitude) direct grain-size measurements of the upstream bed sediment. Furthermore, suspension processes effectively provide an average "sample" of the bed sediment on the perimeter of the upstream channel and the underwater portions of the banks and

  12. High Specific Energy Pulsed Electric Discharge Laser Research.

    DTIC Science & Technology

    1975-12-01

    drop out excess water, filtered, dried, filtered again, and then pumped up to the storage bottle pressure (Fig. 47). At the exit of the high...pressure pump, an oil filter was used to remove any oil that may have been introduced by the compressor. Bottles were pumped up to 2000 psig...Lowder, R. S. , "Air-Combustion Product N2-C02 Electric Laser, " J. Appl. Phys. Lett. 26, 373 (1975). 5. Miller, D. J. and Millikan , R. C

  13. High-voltage pulsed generators for electro-discharge technologies

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Kharlov, A. V.; Kumpyak, E. V.; Sinebrykhov, V. A.

    2013-09-01

    A high-voltage pulse technology is one of effective techniques for the disintegration and milling of rocks, separation of ores and synthesized materials, recycling of building and elastoplastic materials. We present here the design and test results of two portable HV pulsed generators, designed for materials fragmentation, though some other technological applications are possible as well. Generator #1 consists of low voltage block, high voltage transformer, high voltage capacitive storage block, two electrode gas switch, fragmentation chamber and control system block. Technical characteristics of the #1 generator: stored energy in HV capacitors can be varied from 50 to 1000 J, output voltage up to 300 kV, voltage rise time ~ 50 ns, typical operation regime 1000 pulses bursts with a repetitive rate up to 10 Hz. Generator #2 is made on an eight stages Marx scheme with two capacitors (100 kV-400 nF) per stage, connected in parallel. Two electrode spark gap switches, operated in atmospheric air, are used in the Marx generator. Parameters of the generator: stored energy in capacitors 2÷8 kJ, amplitude of the output voltage 200÷400 kV, voltage rise time on a load 50÷100 ns, repetitive rate up to 0.5 Hz. The fragmentation process can be controlled within a wide range of parameters for both generators.

  14. Dynamics of a wire-to-cylinder atmospheric pressure high-voltage nanosecond discharge

    SciTech Connect

    Levko, Dmitry; Raja, Laxminarayan L.

    2015-08-15

    The dynamics of a wire-to-cylinder atmospheric pressure high-voltage nanosecond discharge is studied by the one-dimensional Particle-in-Cell Monte Carlo collisions model in cylindrical coordinates. The x-ray photons emitted from the anode are found to be inconsequential to the generation of dense plasma in the gap. Rather, the electron impact ionization resulting from acceleration of naturally occurring background electrons in the discharge gap are enough to explain the generation of high-density (∼10{sup 15 }cm{sup −3}) non-equilibrium plasma. The influence of the high-voltage rise time on the plasma parameters is discussed.

  15. Initiation of detonation by a high-voltage discharge in powdered explosives with nanosize inert admixtures

    NASA Astrophysics Data System (ADS)

    Rashkovskii, S. A.; Savenkov, G. G.

    2013-04-01

    It is shown that admixtures of a copper nanopowder in a high-disperse low-sensitivity explosive of the FOX-7 type sharply increase the sensitivity of the mixture to the action of a high-voltage electric discharge and facilitate detonation. The percolation model of propagation of the electric breakdown over a powdered mixture with nanosize admixtures and the model of initiation of detonation by a high-voltage discharge in the mixture of a brisant explosive with an inert admixture are developed. These models are in qualitative and quantitative agreement with experimental data.

  16. Changes in distribution of fine sediments in the hyporheic zone during high flow events

    NASA Astrophysics Data System (ADS)

    Kasahara, T.; Yasuda, Y.; Otsuki, K.

    2013-12-01

    Streambed sediments are dynamic, influencing stream-groundwater exchange. Reduction of the exchange flow due to streambed clogging by fine sediments has been reported in impacted agricultural and urban streams. In natural streams, intrusion of fine sediments and subsequent clogging may occur, but its effects are expected to be temporary due to the periodical washout of fine sediments. Understanding the dynamics of fine sediments in shallow streambed in natural streams is important in studying stream-groundwater exchange and in designing of management practices of impacted streams. In this study, we focused on shallow streambed, less than 25cm depth, where hyporheic exchange occurs. The concentrations of fine sediments in interstitial water were measured, using PVC pipes, to study the change in fine sediments distribution in the streambed during high flow events. We also measured the sediment accumulation on the streambed, using mesh, to study the linkage between the locations of surface accumulation and fine sediment intrusion. The study site was located in a 3rd order stream with gravel-cobble bed and base flow of about 80 L/s in northern Kyushu Island of Japan. The concentration of fine sediments in the interstitial water varied considerably among sampling locations, ranging from 38mg/L to over 200mg/L with an average of 120mg/L. The concentrations increased after high flow event, with an average of 3g/L in some event, and they were higher in the locations with negative vertical head gradient, indicating that the downwelling flow carrying fine sediments into the interstitial zone. Streambed sediment accumulation showed relation with fine sediment concentration, and also with water depth and velocity, suggesting that the surface channel condition may indicate the locations of fine sediments intrusion in the interstitial zone. The results of this study showed that fine sediment distribution in the shallow streambed changes considerably during high flow events, and

  17. Constant Light Output Ballasting For High Intensity Discharge Lamps

    NASA Astrophysics Data System (ADS)

    Donkin, Adrian

    1988-02-01

    Since the commercial introduction some twenty years ago of HMI* (Hydragyrum-mercury, Medium, Iodide) type lamps, as a source intended primarily for floodlighting applications, their attraction as a cinematographic light source has been apparent due to their largely desirable characteristics. Use in this field has been restricted due to the absolute requirement for an alternating current supply - with a sine wave supply frame rates are limited to a sub-multiple of the supply frequency with the supply frequency phase locked to the camera frame rate. This has effectively barred metal halide HID lighting from use in high speed photography. The general characteristics of metal halide HID lamps are presented alongside a sample of other light sources. An electronic ballast which has been proven to 12000 Watts in the motion picture industry is then described which overcomes the limitations of the conventional magnetic ballast - the square wave output of the electronic ballast theoretically allows the use of any camera frame rate/shutter angle combination. Finally the suitability of luminaires for high speed photography is discussed.

  18. High-Efficiency Hall Thruster Discharge Power Converter

    NASA Technical Reports Server (NTRS)

    Jaquish, Thomas

    2015-01-01

    Busek Company, Inc., is designing, building, and testing a new printed circuit board converter. The new converter consists of two series or parallel boards (slices) intended to power a high-voltage Hall accelerator (HiVHAC) thruster or other similarly sized electric propulsion devices. The converter accepts 80- to 160-V input and generates 200- to 700-V isolated output while delivering continually adjustable 300-W to 3.5-kW power. Busek built and demonstrated one board that achieved nearly 94 percent efficiency the first time it was turned on, with projected efficiency exceeding 97 percent following timing software optimization. The board has a projected specific mass of 1.2 kg/kW, achieved through high-frequency switching. In Phase II, Busek optimized to exceed 97 percent efficiency and built a second prototype in a form factor more appropriate for flight. This converter then was integrated with a set of upgraded existing boards for powering magnets and the cathode. The program culminated with integrating the entire power processing unit and testing it on a Busek thruster and on NASA's HiVHAC thruster.

  19. The impact of reforestation on discharge and sediment fluxes in drylands: long-term evidences from the Western Rift Valley Escarpment (Northern Ethiopia)

    NASA Astrophysics Data System (ADS)

    Asfaha, Tesfaalem; Frankl, Amaury; Zenebe, Amanuel; Haile, Mitiku; Nyssen, Jan

    2014-05-01

    Deforestation and land degradation have been common problems in the Northern Ethiopian highlands, including for the Western Rift Valley Escarpment. In particular, the rapid deforestation of the steep catchments (average slope gradient of 44% ± 10%) in the second half of 20th century, together with rainfall variability and over-cultivation, resulted in the development of dense gully and scar networks. Subsequently, huge amounts sediment were taken to the densely populated graben bottoms. In response, extensive reforestation interventions were carried out as of the 1980s, resulting in improvements of vegetation cover in many catchments. This study analyses the spatio-temporal changes in vegetation cover and rainfall variability and their impact on discharge and sediment transport in escarpment catchments. Degree of rehabilitation was examined in 20 adjacent catchments by correlating the density of scar networks incised down to the bed rock with Normalize Difference Vegetation Index (NDVI) and slope gradient. Based on these results, 11 contrasting catchments were selected for detailed investigation. To study the current spatio-temporal variability in rainfall and its relation with daily peak discharge, 7 rain gauges were installed at different locations and altitudes. Trendlines of decadal rainfall variability since 1996 will be established based on the analysis of NOAA's rainfall estimates, and long-term rainfall variability will be explored by correlating the field data to long-term rainfall measurements in nearby synoptic stations. The changes in land use and cover will be detected from aerial photos of the 1935, 1965 and 1986. Peak discharges were monitored using 11 crest stage gauges. Fixed boulders were painted in stream reaches to quantify the transport of bedload. This was done by photographing the stream reaches and by measuring the displacement of painted boulders after flood events. In a multiple regression analysis, scar density was negatively related

  20. An asymmetric Zn//Ag doped polyaniline microparticle suspension flow battery with high discharge capacity

    NASA Astrophysics Data System (ADS)

    Wu, Sen; Zhao, Yongfu; Li, Degeng; Xia, Yang; Si, Shihui

    2015-02-01

    In this study, the effect of oxygen on the potential of reduced polyaniline (PANI) was investigated. In order to enhance the air oxidation of reduced PANI, several composites of PANI doped with co-catalysts were prepared, and a reasonable flow Zn//PANI suspension cell system was designed to investigate the discharge capacity of obtained PANI composite microparticle suspension cathodes. Compared with PANI doped with Cu2+, La+, Mn2+ and zinc protoporphyrin, Ag doped PANI composite at 0.90 weight percent doping of Ag gave the highest value of discharge capacity for the half-cell potential from the initial value to -0.20 V (vs. SCE). A comparison study on the electrochemical properties of both PANI and Ag doped PANI microparticle suspension was done by using cyclic voltammetry, AC Impedance. Due to partial utilization of Zn//air fuel cell, the discharge capacity for Ag doped PANI reached 470 mA h g-1 at the current density of 20 mA cm-2. At 15 mA cm-2, the discharge capacity even reached up to 1650 mA h g-1 after 220 h constant current discharge at the final discharge voltage of 0.65 V. This work demonstrates an effective and feasible approach toward obtaining high energy and power densities by a Zn//Ag-doped PANI suspension flow battery system combined with Zn//air fuel cell.

  1. Numerical Simulation of Non-Equilibrium Plasma Discharge for High Speed Flow Control

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Ramakrishnan; Anandhanarayanan, Karupannasamy; Krishnamurthy, Rajah; Chakraborty, Debasis

    2017-06-01

    Numerical simulation of hypersonic flow control using plasma discharge technique is carried out using an in-house developed code CERANS-TCNEQ. The study is aimed at demonstrating a proof of concept futuristic aerodynamic flow control device. The Kashiwa Hypersonic and High Temperature wind tunnel study of plasma discharge over a flat plate had been considered for numerical investigation. The 7-species, 18-reaction thermo-chemical non-equilibrium, two-temperature air-chemistry model due Park is used to model the weakly ionized flow. Plasma discharge is modeled as Joule heating source terms in both the translation-rotational and vibrational energy equations. Comparison of results for plasma discharge at Mach 7 over a flat plate with the reference data reveals that the present study is able to mimic the exact physics of complex flow such as formation of oblique shock wave ahead of the plasma discharge region with a resultant rise in surface pressure and vibrational temperature up to 7000 K demonstrating the use of non-equilibrium plasma discharge for flow control at hypersonic speeds.

  2. Numerical Simulation of Non-Equilibrium Plasma Discharge for High Speed Flow Control

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Ramakrishnan; Anandhanarayanan, Karupannasamy; Krishnamurthy, Rajah; Chakraborty, Debasis

    2016-06-01

    Numerical simulation of hypersonic flow control using plasma discharge technique is carried out using an in-house developed code CERANS-TCNEQ. The study is aimed at demonstrating a proof of concept futuristic aerodynamic flow control device. The Kashiwa Hypersonic and High Temperature wind tunnel study of plasma discharge over a flat plate had been considered for numerical investigation. The 7-species, 18-reaction thermo-chemical non-equilibrium, two-temperature air-chemistry model due Park is used to model the weakly ionized flow. Plasma discharge is modeled as Joule heating source terms in both the translation-rotational and vibrational energy equations. Comparison of results for plasma discharge at Mach 7 over a flat plate with the reference data reveals that the present study is able to mimic the exact physics of complex flow such as formation of oblique shock wave ahead of the plasma discharge region with a resultant rise in surface pressure and vibrational temperature up to 7000 K demonstrating the use of non-equilibrium plasma discharge for flow control at hypersonic speeds.

  3. Investigation Of The High-Voltage Discharge On The Surface Of Gas-Liquid System

    NASA Astrophysics Data System (ADS)

    Nguyen-Kuok, Shi; Morgunov, Aleksandr; Malakhov, Yury; Korotkikh, Ivan

    2016-09-01

    This paper describes an experimental setup for study of physical processes in the high-voltage discharge on the surface of gas-liquid system at atmospheric pressure. Measurements of electrical and optical characteristics of the high-voltage discharge in gas, at the surface of the gas-liquid system and in the electrolyte are obtained. The parameters of the high-voltage discharge and the conditions for its stable operation are presented. Investigations with various electrolytes and cathode assemblies of various materials and sizes were carried out. The installation can be used for the processing and recycling of industrial and chemical liquid waste. Professor of Laboratory of Plasma Physics, National Research University MPEI, Krasnokazarmennya Str.14, 111250, Moscow, Russia.

  4. Dependence of recycling and edge profiles on lithium evaporation in high triangularity, high performance NSTX H-mode discharges

    NASA Astrophysics Data System (ADS)

    Maingi, R.; Osborne, T. H.; Bell, M. G.; Bell, R. E.; Boyle, D. P.; Canik, J. M.; Diallo, A.; Kaita, R.; Kaye, S. M.; Kugel, H. W.; LeBlanc, B. P.; Sabbagh, S. A.; Skinner, C. H.; Soukhanovskii, V. A.

    2015-08-01

    In this paper, the effects of a pre-discharge lithium evaporation variation on highly shaped discharges in the National Spherical Torus Experiment (NSTX) are documented. Lithium wall conditioning ('dose') was routinely applied onto graphite plasma facing components between discharges in NSTX, partly to reduce recycling. Reduced Dα emission from the lower and upper divertor and center stack was observed, as well as reduced midplane neutral pressure; the magnitude of reduction increased with the pre-discharge lithium dose. Improved energy confinement, both raw τE and H-factor normalized to scalings, with increasing lithium dose was also observed. At the highest doses, we also observed elimination of edge-localized modes. The midplane edge plasma profiles were dramatically altered, comparable to lithium dose scans at lower shaping, where the strike point was farther from the lithium deposition centroid. This indicates that the benefits of lithium conditioning should apply to the highly shaped plasmas planned in NSTX-U.

  5. Discharge Physics of High Power Impulse Magnetron Sputtering

    SciTech Connect

    Anders, Andre

    2010-10-13

    High power impulse magnetron sputtering (HIPIMS) is pulsed sputtering where the peak power exceeds the time-averaged power by typically two orders of magnitude. The peak power density, averaged over the target area, can reach or exceed 107 W/m2, leading to plasma conditions that make ionization of the sputtered atoms very likely. A brief review of HIPIMS operation is given in a tutorial manner, illustrated by some original data related to the self-sputtering of niobium in argon and krypton. Emphasis is put on the current-voltage-time relationships near the threshold of self-sputtering runaway. The great variety of current pulse shapes delivers clues on the very strong gas rarefaction, self-sputtering runaway conditions, and the stopping of runaway due to the evolution of atom ionization and ion return probabilities as the gas plasma is replaced by metal plasma. The discussions are completed by considering instabilities and the special case of ?gasless? self-sputtering.

  6. 42 CFR 412.104 - Special treatment: Hospitals with high percentage of ESRD discharges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Special treatment: Hospitals with high percentage..., DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM PROSPECTIVE PAYMENT SYSTEMS FOR INPATIENT HOSPITAL... Operating Costs § 412.104 Special treatment: Hospitals with high percentage of ESRD discharges. (a) Criteria...

  7. Ecological Consequences of Sediment on High-Energy Coral Reefs

    PubMed Central

    Goatley, Christopher H. R.; Bellwood, David R.

    2013-01-01

    Sediments are widely accepted as a threat to coral reefs but our understanding of their ecological impacts is limited. Evidence has suggested that benthic sediments bound within the epilithic algal matrix (EAM) suppress reef fish herbivory, a key ecological process maintaining reef resilience. An experimental combination of caging and sediment addition treatments were used to investigate the effects of sediment pulses on herbivory and EAMs and to determine whether sediment addition could trigger a positive-feedback loop, leading to deep, sediment-rich turfs. A 1-week pulsed sediment addition resulted in rapid increases in algal turf length with effects comparable to those seen in herbivore exclusion cages. Contrary to the hypothesised positive-feedback mechanism, benthic sediment loads returned to natural levels within 3 weeks, however, the EAM turfs remained almost 60% longer for at least 3 months. While reduced herbivore density is widely understood to be a major threat to reefs, we show that acute disturbances to reef sediments elicit similar ecological responses in the EAM. With reefs increasingly threatened by both reductions in herbivore biomass and altered sediment fluxes, the development of longer turfs may become more common on coral reefs. PMID:24124619

  8. Development and Applications of discharges generated in liquids with short high voltage pulses

    NASA Astrophysics Data System (ADS)

    Kolb, Juergen; Miron, Camelia; Kruth, Angela; Balcerak, Michal; Bonislawski, Michal; Holub, Marcin

    2016-09-01

    Discharges that are generated within a liquid have been of scientific interest for more than a century. The possibility for a breakdown development that is not mediated by an initial gaseous phase is still disputed. In this respect are especially discharges that are instigated with short high voltage pulses calling for attention. Associated with this specific excitation scheme is a change in plasma development, plasma parameters and reaction mechanisms in the liquid. We have compared discharges in a point-to-plane geometry that were generated with 50-us or 10-ns high voltage pulses. Time-resolved shadowgraphy and spectroscopy were performed to evaluate discharge structures, plasma parameter and reactive species that were formed in distilled water or ethanol. Different propagation modes, with velocities of 6.7 km/s for tree-like streamers and only 50 m/s for bush-like streamers, were observed. Optical emission spectroscopy has shown the formation of molecular bands of nitrogen, as well as strongly broadened atomic hydrogen and oxygen, which are likely to be responsible for the observed surface modifications of polymers. With nanosecond high voltage pulses we found an increase of unsaturated bondings for polyimide surfaces that were exposed in the discharge volume.

  9. DC negative corona discharge characteristics in high density nitrogen in point-plane configuration

    SciTech Connect

    Hernandez-Avila, H.L.; Nur, M.; Bonifaci, N.; Denat, A.

    1995-12-31

    Some investigations of corona discharges in pure nitrogen have been published but they were devoted to a range of low or medium pressure (P{<=}0.1 MPa). This paper deals with the behaviour of corona discharges in negative point-plane configuration in very pure nitrogen under high-pressure (from 0.5 MPa to 10 MPa). The first one, called the low current region appears immediately after the threshold voltage V{sub o} is reached. For higher voltages (V>V{sub o}), a high continuous glow current region is obtained. In addition with these two discharge regions, we can sometimes observe one intermediate region which looks like to a Trichel-like pulse regime. Consequently, in this non electronegative gas, several modes of current discharge can be distinguished on the current-voltage characteristics. In the same conditions in high pressure air - a weakly electronegative gas - only one mode of current discharge controlled by negative ions can be observed. Some assumptions about the physical mechanisms leading to these phenomena in nitrogen are discussed.

  10. NO2 production in a high pressure pulsed microwave discharge designed for VOC removal

    NASA Astrophysics Data System (ADS)

    Rousseau, A.; Dantier, A.; Mechtchanov, A.; Roepcke, J.; Golubovski, Y.; Ionikh, Y.; Porokhova, I.

    2002-10-01

    Non thermal pulsed microwave discharges represent an alternative to Dielectric Barrier Discharges for the removal of atmospheric pollutants. However, due to the relatively high peak power density injected in the plasma and to the high chemical efficiency of such a microwave plasma source, toxic nitrogen oxides may also be generated as undesirable by-products. Tuneable diode laser absorption spectroscopy (TDLAS) is used for highly sensitive and non intrusive diagnostic of undesirable NO2 produced by the discharge itself. The influence of the pulsed discharge parameters (pressure, peak power, pulse duration and frequency) on the generation of NO2 production is studied. It is showed that NO2 density increases monotoneously with the injected mean energy and the use of short pulses is a mean to limit its production. The time resolved measurements of the gas temperature are performed which shows that the heating of the gas occurs within 0.1ms. Finally, efficiency of such a discharge for VOC removal is studied.

  11. Plasma Perturbations in High-Speed Probing of Hall Thruster Discharge Chambers: Quantification and Mitigation

    NASA Technical Reports Server (NTRS)

    Jorns, Benjamin A.; Goebel, Dan M.; Hofer, Richard R.

    2015-01-01

    An experimental investigation is presented to quantify the effect of high-speed probing on the plasma parameters inside the discharge chamber of a 6-kW Hall thruster. Understanding the nature of these perturbations is of significant interest given the importance of accurate plasma measurements for characterizing thruster operation. An array of diagnostics including a high-speed camera and embedded wall probes is employed to examine in real time the changes in electron temperature and plasma potential induced by inserting a high-speed reciprocating Langmuir probe into the discharge chamber. It is found that the perturbations onset when the scanning probe is downstream of the electron temperature peak, and that along channel centerline, the perturbations are best characterized as a downstream shift of plasma parameters by 15-20% the length of the discharge chamber. A parametric study is performed to investigate techniques to mitigate the observed probe perturbations including varying probe speed, probe location, and operating conditions. It is found that the perturbations largely disappear when the thruster is operated at low power and low discharge voltage. The results of this mitigation study are discussed in the context of recommended methods for generating unperturbed measurements of the discharge chamber plasma.

  12. Lateral and vertical heterogeneity of flow and suspended sediment characteristics during a dam flushing event, in high velocity conditions

    NASA Astrophysics Data System (ADS)

    Antoine, Germain; Cazilhac, Marine; Monnoyer, Quentin; Jodeau, Magali; Gratiot, Nicolas; Besnier, Anne-Laure; Henault, Fabien; Le Brun, Matthieu

    2015-04-01

    The dynamic of suspended sediments in highly turbulent and concentrated flow is an important issue to better predict the sediment propagation along mountain rivers. In such extreme environments, the spatial and temporal variability of hydraulic and sediment parameters are difficult to measure: the flow velocity and the suspended sediment concentration (SSC) could be high (respectively several m/s and g/l) and rapidly variable. Simple methods are commonly used to estimate water discharge and mean or punctual SSC. But no method has been used successfully in a mountain river to estimate during a whole event the spatial distribution of flow velocity and SSC, as well as sediment parameters like grain size or settling velocity into a river cross section. This leads to these two questions: in such conditions, can we calculate sediment fluxes with one sediment concentration measurement? How can we explain the spatial heterogeneity of sediment characteristics? In this study, we analyze sampled data from a very well instrumented river reach in the Northern French Alps: the Arc-Isère River system. This gravel-bed river system is characterized by large concentrations of fines sediments, coming from the highly erodible mountains around. To control the hydraulic, sedimentary and chemical parameters from the catchment head, several gauging stations have been established since 2006. Especially, several measurements are usually done during the flushing of the dams located on the upper part of the river. During the flushing event of June 2014, we instrumented the gauging station located just upstream the confluence between the Isere and the Arc River, at the outlet of the Arc River watershed. ADCP measurements have been performed to estimate the spatial distribution of the flow velocity (up to 3 m/s), and turbidimeters and automatic samplers have been used to estimate the spatial distribution of the SSC into the cross section (up to 6 g/l). These samples have been directly analyzed

  13. Fluorescent and high intensity discharge lamp use in chambers and greenhouses

    NASA Technical Reports Server (NTRS)

    Langhans, Robert W.

    1994-01-01

    Fluorescent and High Intensity Discharge lamps have opened up great opportunities for researchers to study plant growth under controlled environment conditions and for commercial growers to increase plant production during low/light periods. Specific technical qualities of fluorescent and HID lamps have been critically reviewed. I will direct my remarks to fluorescent and high intensity discharge (HID) lamps in growth chambers, growth rooms, and greenhouses. I will discuss the advantages and disadvantages of using each lamp in growth chambers, growth rooms and greenhouses.

  14. Evidence of Chlorobenzene Natural Attenuation in Contaminated Sediments Using Compound Specific Isotope Analysis and High Resolution Pore Water Sampling

    NASA Astrophysics Data System (ADS)

    Passeport, E.; Landis, R.; Lacrampe Couloume, G.; Lutz, E. J.; Mack, E. E.; West, K.; Sherwood Lollar, B.

    2014-12-01

    Contaminated sediments can represent a significant risk for ecosystems and hinder drinking water production if contaminants discharge to surface and ground water. Understanding of contaminant fate and the potential for natural attenuation can help protect aquatic resources. In this study, the fate of chlorobenzene (MCB) and benzene was investigated in a contaminated canal sediment field site located in New Jersey, USA. Compound Specific Isotope Analysis (CSIA) was applied to sediment pore water samples collected with a peeper at high spatial resolution (3 cm) across the sediment - surface water interface (SWI). Samples were collected at three locations in canal sediments, all of which exhibited reducing redox conditions. The largest concentrations were observed in the bottommost portions of the sediment profile, with concentrations ranging from 300 to 2000 µg/L for MCB, and 16 to 180 µg/L for benzene. Conversely, concentrations were below detection limit in the surface water and in the top 6 cm of the sediment. In the zones of highest MCB concentrations, the δ13C values were -26.4 (location C) and -21.9 ‰ (location F), and became progressively more enriched in 13C while concentrations decreased, reaching -23.9 (at 12 cm below the SWI, location C) and -18.4 ‰ (at 16.5 cm below SWI, location F). Benzene was only detected in the bottom 6 cm of the sediment profiles. Benzene δ13C values were -27 (bottommost, i.e., 24 cm deep) to -29.7 ‰ (18 cm deep), in location C. Such significant isotopic enrichments in 13C (2.5 to 3.5 ‰) correlated with MCB and benzene concentration decrease are suggestive of in situ biodegradation. In addition, benzene δ13C values were systematically more depleted in 13C than MCB, suggesting that benzene found in these zones was likely produced from MCB via reductive dechlorination. This study combined for the first time CSIA with high spatial sampling resolution in surface water sediments. This setup enabled not only detection of

  15. Characteristics of High-Pressure Microwave Glow Discharge in a Microgap Aimed at VUV Light Source

    NASA Astrophysics Data System (ADS)

    Kono, Akihiro

    2004-09-01

    In continuous high-pressure discharge at high plasma densities, the gas and electron temperatures tend to be in equilibrium and the current path tends to constrict. However, using microdischarge with microwave excitation, we can produce a cw high-density non-equilibrium plasma extending one-dimensionally over some length. We are studying such a plasma aiming at producing a high-brightness VUV excimer light source. The plasma is produced in a microgap ( ˜ 100 μm) between two 10-mm-long knife-edge electrodes at a very high power deposition ( ˜ MW/cm^3). VUV emission from Ar2 and Xe2 was confirmed using discharge with Ar/He and Xe/He mixture gases. To understand the properties of the microgap discharge, detailed optical diagnostics are being carried out. Spatially resolved Thomson and Raman scattering measurements showed that the electron density in a 100 W He discharge is 3× 10^14 cm-3 and the gas temperature is 1200K. The gas temperature was also studied as a function of the gas flow rate through the microgap using N2 C^3Π-B^3Π optical emission. A rather surprising result is that the gas temperature is relatively insensitive to the gas flow rate even if the flow is rapid enough to replace the gas in the microgap within the characteristic time of diffusive heat conduction to the wall. This suggests the existence of a rapid heat transport mechanism in the discharge other than diffusive heat conduction. The existence of an extremely large gas-temperature garadient between the plasma and the wall may induce a rapid convective heat transport. A computational study of the heat transport mechanism in the microgap discharge is also in progress (Work supported by a Grant-in-Aid for Scientific Research of Priority Areas [15075205] from MEXT Japan)

  16. High-pressure pulsed avalanche discharges: Formulas for required preionization density and rate for homogeneity

    SciTech Connect

    Brenning, N.; Axnaes, I.; Nilsson, J.O.; Eninger, J.E.

    1997-02-01

    The requirements on preionization for the formation of spatially homogeneous pulsed avalanche discharges are examined. The authors derive two formulas which apply in the case of a slowly rising electric field, one which gives the required preionization density at breakdown, and one which gives the required preionization rate. These quantities are expressed as functions of the electrochemical properties of the gas, the neutral density, and the electric field rise time. They also treat the statistical effect that the electrons tend to form groups, in contrast to being randomly distributed in space, during the prebreakdown phase. This process is found to increase the required preionization rate significantly, typically by a factor of five for a discharge at atmospheric pressure. Homogeneous high-pressure discharges have been used for laser excitation, and have also been proposed for chemical plasma processing (ozone production) because of their good scaling properties and high efficiency.

  17. Experimental characterization of plasma formation and shockwave propagation induced by high power pulsed underwater electrical discharge.

    PubMed

    Claverie, A; Deroy, J; Boustie, M; Avrillaud, G; Chuvatin, A; Mazanchenko, E; Demol, G; Dramane, B

    2014-06-01

    High power pulsed electrical discharges into liquids are investigated for new industrial applications based on the efficiency of controlled shock waves. We present here new experimental data obtained by combination of detailed high speed imaging equipments. It allows the visualization of the very first instants of plasma discharge formation, and then the pulsations of the gaseous bubble with an accurate timing of events. The time history of the expansion/compression of this bubble leads to an estimation of the energy effectively transferred to water during the discharge. Finally, the consecutive shock generation driven by this pulsating bubble is optically monitored by shadowgraphs and schlieren setup. These data provide essential information about the geometrical pattern and chronometry associated with the shock wave generation and propagation.

  18. Predicting Negative Events: Using Post-discharge Data to Detect High-Risk Patients

    PubMed Central

    Sulieman, Lina; Fabbri, Daniel; Wang, Fei; Hu, Jianying; Malin, Bradley A

    2016-01-01

    Predicting negative outcomes, such as readmission or death, and detecting high-risk patients are important yet challenging problems in medical informatics. Various models have been proposed to detect high-risk patients; however, the state of the art relies on patient information collected before or at the time of discharge to predict future outcomes. In this paper, we investigate the effect of including data generated post discharge to predict negative outcomes. Specifically, we focus on two types of patients admitted to the Vanderbilt University Medical Center between 2010-2013: i) those with an acute event - 704 hip fractures and ii) those with chronic problems — 5250 congestive heart failure (CHF) patients. We show that the post-discharge model improved the AUC of the LACE index, a standard readmission scoring function, by 20 - 30%. Moreover, the new model resulted in higher AUCs by 15 - 27% for hip fracture and 10 - 12% for CHF compared to standard models. PMID:28269914

  19. Plasma Emission Characteristics from a High Current Hollow Cathode in an Ion Thruster Discharge Chamber

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    2002-01-01

    The presence of energetic ions produced by a hollow cathodes operating at high emission currents (greater than 5A) has been documented in the literature. In order to further elucidate these findings, an investigation of a high current cathode operating in an ion thruster discharge chamber has been undertaken. Using Langmuir probes, a low energy charged particle analyzer and emission spectroscopy, the behavior of the near-cathode plasma and the emitted ion energy distribution was characterized. The presence of energetic ions was confirmed. It was observed that these ions had energies in excess of the discharge voltage and thus cannot be simply explained by ions falling out of plasma through a potential difference of this order. Additionally, evidence provided by Langmuir probes suggests the existence of a double layer essentially separating the hollow cathode plasma column from the main discharge. The radial potential difference associated with this double layer was measured to be of order the ionization potential.

  20. Measurements of particle emission from discharge sites in Teflon irradiated by high energy electron beams

    NASA Technical Reports Server (NTRS)

    Hazelton, R. C.; Churchill, R. J.; Yadlowsky, E. J.

    1979-01-01

    Anomalous behavior of synchronous orbit satellites manifested by overall degradation of system performance and reduced operating life is associated with electrical discharges resulting from differential charging of the spacecraft surface by fluxes of high energy electrons. During a laboratory simulation silver-backed Teflon samples have been irradiated by electron beams having energies in the range 16-26 keV. Charged particles emitted from the resultant electrical discharges have been measured with a biased Faraday cup and retarding potential analyser. Measurements indicate the presence of two distinct fluxes of particles, the first being an early pulse (0-600ns) of high energy (about 7keV) electrons, while the second is a late pulse (1-5 microseconds) of low energy electrons (less than 1eV) and ions (70eV) leaving the discharge site as a quasi plasma. Calculations indicate an electrostatic field as the dominant accelerating mechanism for charged particles.

  1. Fabrication of high-aspect-ratio microgrooves using an electrochemical discharge micromilling process

    NASA Astrophysics Data System (ADS)

    Han, Min-Seop; Chae, Ki Woon; Min, Byung-Kwon

    2017-05-01

    In this study, we created high-aspect-ratio microgrooves in hard, brittle materials using an electrochemical discharge machining (ECDM) process by introducing microtextured machining tool. To enhance the electrical discharge activity, the morphology of the tool side surface was treated via micro-electrical discharge machining to produce fine microprotrusive patterns. The resulting microtextured surface morphology enhanced the electric field and played a key role in improving the step milling depth in the ECDM process. Using the FEM analysis, the evaluation of the field enhancement factor is also addressed. Our experimental investigation revealed microgrooves having an aspect ratio of 1:4, with high geometric accuracy and crack-free surfaces, using one-step ECDM.

  2. Measurements of particle emission from discharge sites in Teflon irradiated by high energy electron beams

    NASA Technical Reports Server (NTRS)

    Hazelton, R. C.; Churchill, R. J.; Yadlowsky, E. J.

    1979-01-01

    Anomalous behavior of synchronous orbit satellites manifested by overall degradation of system performance and reduced operating life is associated with electrical discharges resulting from differential charging of the spacecraft surface by fluxes of high energy electrons. During a laboratory simulation silver-backed Teflon samples have been irradiated by electron beams having energies in the range 16-26 keV. Charged particles emitted from the resultant electrical discharges have been measured with a biased Faraday cup and retarding potential analyser. Measurements indicate the presence of two distinct fluxes of particles, the first being an early pulse (0-600ns) of high energy (about 7keV) electrons, while the second is a late pulse (1-5 microseconds) of low energy electrons (less than 1eV) and ions (70eV) leaving the discharge site as a quasi plasma. Calculations indicate an electrostatic field as the dominant accelerating mechanism for charged particles.

  3. Plasma Emission Characteristics From a High Current Hollow Cathode in an Ion Thruster Discharge Chamber

    NASA Astrophysics Data System (ADS)

    Foster, John E.; Patterson, Michael J.

    2002-11-01

    The presence of energetic ions produced by a hollow cathodes operating at high emission currents (greater than 5A) has been documented in the literature. In order to further elucidate these findings, an investigation of a high current cathode operating in an ion thruster discharge chamber has been undertaken. Using Langmuir probes, a low energy charged particle analyzer and emission spectroscopy, the behavior of the near-cathode plasma and the emitted ion energy distribution was characterized. The presence of energetic ions was confirmed. It was observed that these ions had energies in excess of the discharge voltage and thus cannot be simply explained by ions falling out of plasma through a potential difference of this order. Additionally, evidence provided by Langmuir probes suggests the existence of a double layer essentially separating the hollow cathode plasma column from the main discharge. The radial potential difference associated with this double layer was measured to be of order the ionization potential.

  4. 1D simulation of runaway electrons generation in pulsed high-pressure gas discharge

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, V. Yu.; Kozyrev, A. V.; Semeniuk, N. S.

    2015-10-01

    The results of theoretical modelling of runaway electron generation in the high-pressure nanosecond pulsed gas discharge are presented. A novel hybrid model of gas discharge has been successfully built. Hydrodynamic and kinetic approaches are used simultaneously to describe the dynamics of different components of low-temperature discharge plasma. To consider motion of ions and low-energy (plasma) electrons the corresponding equations of continuity with drift-diffusion approximation are used. To describe high-energy (runaway) electrons the Boltzmann kinetic equation is included. As a result of the simulation we obtained spatial and temporal distributions of charged particles and electric field in a pulsed discharge. Furthermore, the energy spectra calculated runaway electrons in different cross-sections, particularly, the discharge gap in the anode plane. It is shown that the average energy of fast electrons (in eV) in the anode plane is usually slightly higher than the instantaneous value of the applied voltage to the gap (in V).

  5. VUV Emissions from a High-Pressure Cylindrical Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Martus, Kevin; Masoud, Nazieh; Becker, Kurt; Laroussi, Mounir

    2003-05-01

    High-pressure Dielectric Barrier Discharges (DBDs) produce non-equilibrium plasmas that can be used in a variety of applications. The emissions from a high-pressure cylindrical DBD in a mixture of Ne and H2 (less than 0.5proposed as a light source for 121.6nm radiation. Neon resonance lines and excimer emissions as well as, Hydrogen Lyman-alpha emission lines have been analyzed from a cylindrical DBD plasma in this work. The discharge source consists of a 1/4" dielectric tube with two outer electrodes and the discharge is sustained by RF power at 13.56MHz. The discharge is contained inside the tube with pressures ranging from 1 to 760 Torr and a gas flow rate that is adjustable from 25 to 600 sccm. The emissions were analyzed using a Minuteman 302-V 0.2m VUV spectrometer with an CCD camera to detect the photons in the wavelength range from 50 150nm. Results of measurements of the relative intensity of the resonance lines and excimer emission for pure Neon and Neon-Hydrogen admixtures as a function of Hydrogen concentration, discharge pressure, gas flow rate, and RF power will be presented and discussed. Work supported by NSF and the WPUNJ Sabbatical Leave Program.

  6. Improvement of discharge pumping for pulsed high-pressure gas lasers

    NASA Astrophysics Data System (ADS)

    Velikin, Alexei A.; Galaktionov, Imar I.; Belov, Sergei N.; Kanatenko, Michael A.; Podmoshensky, Ivan V.

    1990-10-01

    This paper presents an upgrading technique using anisotropic-resistive (AR) electrodes and radionucide pre-ionization for discharge pumping of pulsed high-pressure gas lasers. Plutonium-238, polonium-210 and krypton-85 radionucide alpha and beta radiation sources were effectivelyused for pre-ionization in the volumetric discharge setup. These sources feature high stability, versatility and simplicity as compared to traditional UV irradiation and electron beam ionization techniques. The use of AR electrodes makes it possible to suppress efficiently electrode instabilities in volumetric discharges with various power modes of operation and to increase energy input in an active medium by a factor of 2-3 due to extended discharge duration in the volumetric phase. With the use of the AR cathode as an alternative to a metal one, a commercially available photo-ionization 2 laser gained two-fold increase in generation energy. It also showed a stable operation of the volumetric discharge in Ar, Kr, Xe mixtures with He at atmospheric pressure and allowed us to obtain generation in An, Kr!, Xe! spectral lines.

  7. Patterns of Phrenic Nerve Discharge after Complete High Cervical Spinal Cord Injury in the Decerebrate Rat.

    PubMed

    Ghali, Michael George Zaki; Marchenko, Vitaliy

    2016-06-15

    Studies conducted since the second half of the 19th century have revealed spontaneous as well as pharmacologically induced phasic/rhythmic discharge in spinal respiratory motor outputs of cats, dogs, rabbits, and neonatal rats following high cervical transection (Tx). The extent to which these various studies validate the existence of a true spinal respiratory rhythm generator remains debated. In this set of studies, we seek to characterize patterns of spontaneous phasic/rhythmic, asphyxia-induced, and pharmacologically induced activity occurring in phrenic nerve (PhN) discharge after complete high cervical (C1-C2) spinal cord transection. Experiments were performed on 20 unanesthetized decerebrate Sprague-Dawley adult male rats. Patterns of spontaneous activity after spinalization included tonic, phasic, slow oscillatory, and long-lasting tonic discharges. Topical application of antagonists of GABAA and glycine receptors to C1- and C2- spinal segments induced left-right synchronized phasic decrementing activity in PhN discharge that was abolished by an additional C2Tx. Asphyxia elicited increases in tonic activity and left-right synchronized gasp-like bursts in PhN discharge, demonstrating the presence of spinal circuits that may underlie a spinal gasping-like mechanism. We conclude that intrinsic slow oscillators and a phasic burst/rhythm generator exist in the spinal cord of the adult rat. If present in humans, this mechanism may be exploited to recover respiratory function in patients sustaining severe spinal cord injury.

  8. Radiative heat transfer in plasma of pulsed high pressure caesium discharge

    NASA Astrophysics Data System (ADS)

    Lapshin, V. F.

    2016-01-01

    Two-temperature many component gas dynamic model is used for the analysis of features of radiative heat transfer in pulsed high pressure caesium discharge plasma. It is shown that at a sufficiently high pressure the radial optical thickness of arc column is close to unit (τR (λ) ∼ 1) in most part of spectrum. In this case radiative heat transfer has not local character. In these conditions the photons which are emitted in any point of plasma volume are absorbed in other point remote from an emission point on considerable distance. As a result, the most part of the electric energy put in the discharge mainly near its axis is almost instantly redistributed on all volume of discharge column. In such discharge radial profiles of temperature are smooth. In case of low pressure, when discharge plasma is optically transparent for own radiation in the most part of a spectrum (τR(λ) << 1), the emission of radiation without reabsorption takes place. Radiative heat transfer in plasma has local character and profiles of temperature have considerable gradient.

  9. A time-resolved imaging and electrical study on a high current atmospheric pressure spark discharge

    NASA Astrophysics Data System (ADS)

    Palomares, J. M.; Kohut, A.; Galbács, G.; Engeln, R.; Geretovszky, Zs.

    2015-12-01

    We present a time-resolved imaging and electrical study of an atmospheric pressure spark discharge. The conditions of the present study are those used for nanoparticle generation in spark discharge generator setups. The oscillatory bipolar spark discharge was generated between two identical Cu electrodes in different configurations (cylindrical flat-end or tipped-end geometries, electrode gap from 0.5 to 4 mm), in a controlled co-axial N2 flow, and was supplied by a high voltage capacitor. Imaging data with nanosecond time resolution were collected using an intensified CCD camera. This data were used to study the time evolution of plasma morphology, total light emission intensity, and the rate of plasma expansion. High voltage and high current probes were employed to collect electrical data about the discharge. The electrical data recorded allowed, among others, the calculation of the equivalent resistance and inductance of the circuit, estimations for the energy dissipated in the spark gap. By combining imaging and electrical data, observations could be made about the correlation of the evolution of total emitted light and the dissipated power. It was also observed that the distribution of light emission of the plasma in the spark gap is uneven, as it exhibits a "hot spot" with an oscillating position in the axial direction, in correlation with the high voltage waveform. The initial expansion rate of the cylindrical plasma front was found to be supersonic; thus, the discharge releases a strong shockwave. Finally, the results on equivalent resistance and channel expansion are comparable to those of unipolar arcs. This shows the spark discharge has a similar behavior to the arc regime during the conductive phase and until the current oscillations stop.

  10. Evaporation and discharge dynamics of highly charged multicomponent droplets generated by electrospray ionization.

    PubMed

    Grimm, Ronald L; Beauchamp, J L

    2010-01-28

    We investigate the Rayleigh discharge and evaporation dynamics of highly charged two-component droplets consisting principally of methanol with 2-methoxyethanol, tert-butanol, or m-nitrobenzyl alcohol. A phase Doppler anemometer (PDA) characterizes droplets generated by electrospray ionization (ESI) according to size, velocity, and charge as they move through a uniform electric field within an ion mobility spectrometer (IMS). Repeated field reversals result in droplet "ping-pong" through the PDA. This generates individual droplet histories of solvent evaporation behavior and the dynamics of charge loss to progeny droplets during Rayleigh discharge events. On average, methanol droplets discharge at 127% their Rayleigh limit of charge, q(R), and release 25% of the net charge. Charge loss from methanol/2-methoxyethanol droplets behaves similarly to pure 2-methoxyethanol droplets which release approximately 28% of their net charge. Binary methanol droplets containing up to 50% tert-butanol discharge at a lower percent q(R) than pure methanol and release a greater fraction of their net charge. Mixed 99% methanol/1% m-nitrobenzyl alcohol droplets possess discharge characteristics similar to those of methanol. However, droplets of methanol containing 2% m-nitrobenzyl evaporate down to a fixed size and charge that remains constant with no observable discharges. Quasi-steady-state evaporation models accurately describe observed evaporation phenomena in which methanol/tert-butanol droplets evaporate at a rate similar to that of pure methanol and methanol/2-methoxyethanol droplets evaporate at a rate similar to that of 2-methoxyethanol. We compare these results to previous Rayleigh discharge experiments and discuss the implications for binary solvents in electrospray mass spectrometry (ESI-MS) and field-induced droplet ionization mass spectrometry (FIDI-MS).

  11. Evaluation of sediment yield and sediment data-collection network in the Piceance basin, northwestern Colorado

    USGS Publications Warehouse

    Kircher, J.E.; Von Guerard, Paul

    1982-01-01

    Statistical relationships were developed between suspended-sediment discharge and several regional factors of climate, physiography, and land use in the Piceance basin, northwestern Colorado. The purpose of the study was to evaluate the existing sediment collection network, especially in regard to detecting changes in suspended-sediment discharge due to the development in the basin. Spatial- and time variability were examined using multiple linear regression techniques. Because of the short period of record, monthly mean sediment loads were used to determine shifts or changes in trends due to mining and related activities in the basin. Dummy variable analysis was used to detect these premining and postmining differences in the regression lines and also to detect seasonal differences in the sediment discharge. Differences did exist in the sediment discharge from season to season and before and after mining; however, due to the variability and short period of record the cause of these differences could not be adequately determined. Part of the high variability in sediment discharge was due to variability in the water discharge. Therefore, if the network is to be improved, the emphasis needs to be on improvement of the water-discharge. The results of the monthly mean regression analysis were used in the mean monthly and mean annual analysis for determination of initial network design equations. These were only preliminary in nature and could be improved with additional data. (USGS)

  12. Erosion rates, sediment transport and characteristic discharge in a transient landscape in the Entle catchment (northern border of the Central Alps, Switzerland)

    NASA Astrophysics Data System (ADS)

    van den Berg, Fabien; Schlunegger, Fritz; Norton, Kevin

    2010-05-01

    The 65 km2-large Entle catchment is located at the northern border of the Central Alps of Switzerland and is underlain by various lithologies including Flysch, carbonate sequences, Molasse deposits and glacial till. It has been subjected to headward knickpoint migration since the termination of the LGM (16 ± 3 ka), due to a base level fall upon glacial retreat. The incised portions of the catchment were delineated within a GIS environment in an effort to calculate volumetric differences between the glacial surface and the modern topography. The sediment budget estimates yield an average erosion rate of 1.93 ± 0.36 mm.yr-1 in the incised reaches, and a maximum local erosion rate of 11.47 ± 2.15 mm.yr-1. Assuming that there has been no erosion elsewhere, the basin-wide averaged erosion rate is estimated at 0.31 ± 0.06 mm.yr-1. This is consistent with 10Be-based denudation rates measured in adjacent catchments. Although constant erosion rates are generally assumed for studies involving 10Be analysis, field evidence indicate that headward knickzone migration through bedrock and unconsolidated glacial till has destabilized the surrounding hillslopes, resulting in supply of large volumes of sediment to the trunk channel by landsliding and/or debris flows downstream the knickzone. This additional influx of sediments may raise the local base level within the incised reach, thus perturbing the migration of the knickzone for a limited time interval. This time span critically depends on the relative importance between the probability density function (PDF) of the sediment particle size supplied by mass failure processes and debris flows, and the characteristic water discharge magnitude to remove that material. Measurements of the PDFs of the sediment particles along the incised Entle reach together with the application a simple long profile stream-power model for the entrainment and transport of sediment allow the identification of characteristic bed-forming discharge

  13. Design and maintenance of a network for collecting high-resolution suspended-sediment data at remote locations on rivers, with examples from the Colorado River

    USGS Publications Warehouse

    Griffiths, Ronald E.; Topping, David J.; Andrews, Timothy; Bennett, Glenn E.; Sabol, Thomas A.; Melis, Theodore S.

    2012-01-01

    instruments have been constructed and verified by using either equal-discharge-increment (EDI) or equal-width-increment (EWI) measurements of the velocity-weighted suspended-sediment concentration and grain-size distribution. The suspended-silt-and-clay concentration parts of these calibration relations have also included information from EDI- or EWI-calibrated samples collected by automatic pump samplers. Three of the monitoring stations are equipped with two-way satellite broadband telemetry systems that operate once a day to remotely monitor and program the instruments and download data. Data from these stations are typically downloaded twice per month; data from stations without satellite-telemetry systems are downloaded during site visits, which occur every 2 months or semiannually, depending on the remoteness of the site. Upon downloading and processing, suspended-silt-and-clay concentration, suspended-sand concentration, and suspended-sand median grain size are posted on the World Wide Web. Satellite telemetry in combination with the high-resolution sediment surrogate measurements can generate near-real-time suspended-sediment-concentration and grain-size data (limited only by the time required to download the instruments and process the data). The approach for measuring suspended-sediment concentration and grain size using this monitoring network is more practical, and can be done at a much lower cost and with higher temporal resolution, than any other method.

  14. Analysis of Physics Processes in the AC Plasma Torch Discharge under High Pressure

    NASA Astrophysics Data System (ADS)

    Safronov, A. A.; Vasilieva, O. B.; Dudnik, J. D.; E Kuznetsov, V.; Kuchina, J. A.; Shiryaev, V. N.; Pavlov, A. V.

    2017-04-01

    The paper is devoted to investigation of electrophysical processes in the electric discharge generated by a three-phase AC plasma torch when using a high pressure inert working gas. AC plasma torch design with end electrodes intended for work on inert gases at pressures up to 81 bar is studied. Current-voltage characteristics for different gas flow rates and pressures are presented. Physical processes characteristics of the arising voltage ripples which depend on various working parameters of the plasma torch have been investigated. Arc burning processes in the electric discharge chamber of the three-phase AC plasma torch at various working parameters were photographed.

  15. Computer simulation of effect of conditions on discharge-excited high power gas flow CO laser

    NASA Astrophysics Data System (ADS)

    Ochiai, Ryo; Iyoda, Mitsuhiro; Taniwaki, Manabu; Sato, Shunichi

    2017-01-01

    The authors have developed the computer simulation codes to analyze the effect of conditions on the performances of discharge excited high power gas flow CO laser. The six be analyzed. The simulation code described and executed by Macintosh computers consists of some modules to calculate the kinetic processes. The detailed conditions, kinetic processes, results and discussions are described in this paper below.

  16. High explosives vapor detection by atmospheric sampling glow discharge ionization/tandem mass spectrometry

    SciTech Connect

    McLuckey, S.A.; Goeringer, D.E.; Asano, K.G.

    1996-02-01

    The combination of atmospheric sampling glow discharge ionization with tandem mass spectrometry for the detection of traces of high explosives is described. Particular emphasis is placed on use of the quadrupole ion trap as the type of tandem mass spectrometer. Atmospheric sampling glow discharge provides a simple, rugged, and efficient means for anion formation while the quadrupole ion trap provides for efficient tandem mass spectrometry. Mass selective ion accumulation and non-specific ion activation methods can be used to overcome deleterious effects arising from ion/ion interactions. Such interactions constitute the major potential technical barrier to the use of the ion trap for real-time monitoring of targeted compounds in uncontrolled and highly variable matrices. Tailored waveforms can be used to effect both mass selective ion accumulation and ion activation. Concatenated tailored waveforms allow for both functions in a single experiment thereby providing the capability for monitoring several targeted species simultaneously. The combination of atmospheric sampling glow discharge ionization with a state-of-the-art analytical quadrupole ion trap is a highly sensitive and specific detector for traces of high explosives. The combination is also small and inexpensive relative to virtually any other form of tandem mass spectrometry. The science and technology underlying the glow discharge/ion trap combination is sufficiently mature to form the basis for an engineering effort to make the detector portable. 85 refs.

  17. Development of a compact neutron source by a high voltage ring electrode discharge

    NASA Astrophysics Data System (ADS)

    Watanabe, Masayuki; Shuhei Nezu Team; Akihiro Takeuchi Team

    2016-10-01

    Neutron is one of the particles in atomic nucleus. Neutron beam has many physical characteristics as follows; (a) the transmittance in a matter is high and (b) the interaction with atomic nuclei is dominant. For these reasons, the development of the neutron beam source is expected in many engineering and medical applications. However, it is still under development, because there is no compact neutron beam source. The purpose of this research is to develop the compact neutron beam source. The neutron is generated by using the inertial electrostatic confinement fusion. In this experiment, a ring-shaped electrode (cathode) is used for the convergence of the deuterium nucleus. To product the neutron by a D-D nuclear reaction, it is necessary to apply a high voltage into the glow discharge plasma. The neutron production rate is approximately 105 n/s under the condition that the cathode voltage is -15kV and discharge current is 10 mA. The neutron production rate increases with increasing the ring cathode voltage or discharge current. It will be possible to increase the number of neutrons by the stabilizing of the high voltage and high current discharge.

  18. Suspended sediment transport in the freshwater reach of the Hudson river estuary in eastern New York

    USGS Publications Warehouse

    Wall, G.R.; Nystrom, E.A.; Litten, S.

    2008-01-01

    Deposition of Hudson River sediment into New York Harbor interferes with navigation lanes and requires continuous dredging. Sediment dynamics at the Hudson estuary turbidity maximum (ETM) have received considerable study, but delivery of sediment to the ETM through the freshwater reach of the estuary has received relatively little attention and few direct measurements. An acoustic Doppler current profiler was positioned at the approximate limit of continuous freshwater to develop a 4-year time series of water velocity, discharge, suspended sediment concentration, and suspended sediment discharge. This data set was compared with suspended sediment discharge data collected during the same period at two sites just above the Hudson head-of-tide (the Federal Dam at Troy) that together represent the single largest source of sediment entering the estuary. The mean annual suspended sediment-discharge from the freshwater reach of the estuary was 737,000 metric tons. Unexpectedly, the total suspended sediment discharge at the study site in November and December slightly exceeded that observed during March and April, the months during which rain and snowmelt typically result in the largest sediment discharge to the estuary. Suspended sediment discharge at the study site exceeded that from the Federal Dam, even though the intervening reach appears to store significant amounts of sediment, suggesting that 30-40% of sediment discharge observed at the study site is derived from tributaries to the estuary between the Federal Dam and study site. A simple model of sediment entering and passing through the freshwater reach on a timescale of weeks appears reasonable during normal hydrologic conditions in adjoining watersheds; however, this simple model may dramatically overestimate sediment delivery during extreme tributary high flows, especially those at the end of, or after, the "flushing season" (October through April). Previous estimates of annual or seasonal sediment delivery

  19. Water-quality, bed-sediment, and discharge data for the Mississippi River-Gulf Outlet and adjacent waterways, southeastern Louisiana, August 2008 through December 2009

    USGS Publications Warehouse

    Swarzenski, Christopher M.; Mize, Scott V.; Lovelace, John K.

    2012-01-01

    The Mississippi River-Gulf Outlet navigation channel (MRGO) was constructed in the early 1960s to provide a safer and shorter route between the Gulf of Mexico and the Port of New Orleans for deep-draft, ocean-going vessels and to promote the economic development of the Port of New Orleans. In 2006, the U.S. Army Corps of Engineers developed a plan to de-authorize the MRGO. The plan called for a rock barrier to be constructed across the MRGO near Bayou La Loutre. In 2008, the U.S. Geological Survey, in cooperation with the Louisiana Coastal Area Science and Technology Program began a study to document the impacts of the rock barrier on water-quality and flow before, during, and after its construction. Water-quality, bed-sediment, and discharge data were collected in the MRGO and adjacent water bodies from August 2008 through December 2009.

  20. Partial discharge measurements on a high voltage direct current mass impregnated paper cable

    SciTech Connect

    Jeroense, M.J.P.; Kreuger, F.H.

    1996-12-31

    Partial discharge measurement has been a good tool for the quality assurance of cables under alternating voltage. With the growing interest in High Voltage Direct Current cables it seems therefore logical to extend this technique for use at direct voltage. The paper describes this technique as used on a HVDC cable with mass impregnated paper. The different phases of operation (no load, full load, cooling phase, etc.) are characterized by a different discharge behavior. Special attention is given to the dangerous cooling phase. Models have been developed which can explain the discharge patterns that were measured. This paper gives an insight in the electrical behavior of a HVDC cable with mass impregnated paper insulation.

  1. Spectral characteristics of optical discharge in a high-speed methane-air jet

    NASA Astrophysics Data System (ADS)

    Zudov, V. N.

    2017-06-01

    Results of gasdynamic and spectroscopic investigations of optical discharge in the subsupersonic flow of a homogeneous fuel-air (CH4 + air) mixtures are presented. The combustion was initiated and maintained by optical discharge created using a CO2 laser. The laser radiation propagated across the flow and was focused by a lens on the axis of the supersonic jet ( M = 2). Emission-spectroscopy techniques provided data on the composition of radiating combustion products and the intensity of components emitted in the region of optical discharge. Patterns of Toepler's visualization of the flow structure in the schlieren scheme are presented. The images were monitored by a high-speed video camera operating at an exposure time of 1.5 μs and a frame frequency of 1000 s-1.

  2. Current-voltage-time characteristics of the reactive Ar/N{sub 2} high power impulse magnetron sputtering discharge

    SciTech Connect

    Magnus, F.; Sveinsson, O. B.; Olafsson, S.; Gudmundsson, J. T.

    2011-10-15

    The discharge current and voltage waveforms have been measured in a reactive high power impulse magnetron sputtering (HiPIMS) Ar/N{sub 2} discharge with a Ti target for 400 {mu}s long pulses. We observe that the current waveform in the reactive Ar/N{sub 2} HiPIMS discharge is highly dependent on the pulse repetition frequency, unlike the non-reactive Ar discharge. The current is found to increase significantly as the frequency is lowered. This is attributed to an increase in the secondary electron emission yield during the self-sputtering phase, when the nitride forms on the target at low frequencies. In addition, self-sputtering runaway occurs at lower discharge voltages when nitrogen is added to the discharge. This illustrates the crucial role of self-sputtering in the behavior of the reactive HiPIMS discharge.

  3. Organic contaminants of emerging concern in sediments and flatfish collected near outfalls discharging treated wastewater effluent to the Southern California Bight.

    PubMed

    Maruya, Keith A; Vidal-Dorsch, Doris E; Bay, Steven M; Kwon, Jeong W; Xia, Kang; Armbrust, Kevin L

    2012-12-01

    To investigate the occurrence and bioaccumulation of organic contaminants of emerging concern (CECs) near four major wastewater ocean outfalls in the Southern California Bight, more than 75 pharmaceutical and personal care products, current-use pesticides, and industrial/commercial chemicals were analyzed in sediment and liver tissues of hornyhead turbot (Pleuronichthys verticalis) using gas and liquid chromatography-mass spectrometry. Although most CECs targeted were infrequently detected or not detectable, triclosan, 4-nonylphenol (4-NP) and bis(2-ethylhexylphthalate) were detected in all sediments at median (maximum) concentrations of 5.1 (8.6), 30 (380), and 121 (470) µg/kg, respectively. In the liver, 4-NP and polybrominated diphenyl ether (PBDE) congeners 47 and 99 were detected in >90% of samples at median (maximum) concentrations of 85 (290) and 210 (480) µg/kg, respectively. The sedative diazepam was detected in all liver samples, but was infrequently detected in sediments. Sediment and liver concentrations across outfall locations ranged over several orders of magnitude and were elevated relative to a reference site. Relative to sediment, accumulation in liver of PBDEs 47 and 99 was comparable to that for legacy organochlorines, confirming their high bioaccumulation potential and suggesting their inclusion in future tissue monitoring studies. Mean tissue PBDE and diazepam concentrations were higher in livers from male versus female P. verticalis, suggesting that gender differences also be considered in designing such studies. Copyright © 2012 SETAC.

  4. Investigation of plasma spokes in reactive high power impulse magnetron sputtering discharge

    NASA Astrophysics Data System (ADS)

    Hecimovic, A.; Corbella, C.; Maszl, C.; Breilmann, W.; von Keudell, A.

    2017-05-01

    Spokes, localised ionisation zones, are commonly observed in magnetron sputtering plasmas, appearing either with a triangular shape or with a diffuse shape, exhibiting self-organisation patterns. In this paper, we investigate the spoke properties (shape and emission) in a high power impulse magnetron sputtering (HiPIMS) discharge when reactive gas (N2 or O2) is added to the Ar gas, for three target materials; Al, Cr, and Ti. Peak discharge current and total pressure were kept constant, and the discharge voltage and mass flow ratios of Ar and the reactive gas were adjusted. The variation of the discharge voltage is used as an indication of a change of the secondary electron yield. The optical emission spectroscopy data demonstrate that by addition of reactive gas, the HiPIMS plasma exhibits a transition from a metal dominated plasma to the plasma dominated by Ar ions and, at high reactive gas partial pressures, to the plasma dominated by reactive gas ions. For all investigated materials, the spoke shape changed to the diffuse spoke shape in the poisoned mode. The change from the metal to the reactive gas dominated plasma and increase in the secondary electron production observed as the decrease of the discharge voltage corroborate our model of the spoke, where the diffuse spoke appears when the plasma is dominated by species capable of generating secondary electrons from the target. Behaviour of the discharge voltage and maximum plasma emission is strongly dependant on the target/reactive gas combination and does not fully match the behaviour observed in DC magnetron sputtering.

  5. Radio-frequency powered glow discharge device and method with high voltage interface

    DOEpatents

    Duckworth, Douglas C.; Marcus, R. Kenneth; Donohue, David L.; Lewis, Trousdale A.

    1994-01-01

    A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components.

  6. Radio-frequency powered glow discharge device and method with high voltage interface

    DOEpatents

    Duckworth, D.C.; Marcus, R.K.; Donohue, D.L.; Lewis, T.A.

    1994-06-28

    A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components. 11 figures.

  7. Sediment characteristics of small streams in southern Wisconsin, 1954-59

    USGS Publications Warehouse

    Collier, Charles R.

    1963-01-01

    The results of investigations of the sediment and water discharge characteristics of Black Earth Creek, Mount Vernon Creek, and Yellowstone River from 1954 to 1959 and Dell Creek for 1958 and 1959 indicate large differences in annual runoff and sediment yields. The suspended-sediment discharge of Black Earth Creek averaged 3,260 tons per year or 71 tons per square mile : the annual yields ranged from 27 to 102 tons per square mile. The annual suspended-sediment yield of Mount Vernon Creek ranged from 48 to 171 tons per square mile and averaged 96 tons per square mile. The maximum daily discharge was 1,120 tons on April 1, 1960, during a storm which produced 67 percent of the suspended load for that water year and exceeded the discharge for the preceding 3 years. The sediment discharge of the Yellowstone River averaged 6,870 tons per year or 236 tons per square riffle. The maximum daily sediment discharge, 3,750 tons on April 1, 1959, occurred during a 14-day period of high flow during which the sediment discharge was 15,480 tons. In 1958 and 1959, Dell Creek had suspended-sediment yields of 4.7 and 26 tons per square mile of drainage area. The suspended sediment transported by Black Earth and Mount Vernon Creeks is about two-thirds clay and one-third silt. For Yellowstone River the particle-size distribution of the suspended sediment ranged from three-fourths clay and one-fourth silt during periods of low sediment discharge to one-third clay and two-thirds silt during high sediment discharges. For Dell Creek nearly all of the suspended sediment is clay, but the bed load is sand. The mean sediment concentration of storm runoff averaged two to three times more in the summer than in the winter. No significant changes with time occurred in the relation between storm runoff and sediment yield.

  8. Hollow-cathode electrode for high-power, high-pressure discharge devices

    DOEpatents

    Chang, J.J.; Alger, T.W.

    1995-08-22

    Several different cold cathode configurations are disclosed for a gas discharge device each having a plurality of grooves of selected spacing, depth and width to improve the emission of electrons in a gas discharge device. Each of the cold cathode configurations can be machined from a single piece of a selected material. Several of the configurations can be assembled with individual elements which is easily seen from the various figures. 8 figs.

  9. Hollow - cathode electrode for high-power, high-pressure discharge devices

    DOEpatents

    Chang, Jim J.; Alger, Terry W.

    1995-01-01

    Several different cold cathode configurations for a gas discharge device each having a plurality of grooves of selected spacing, depth and width to improve the emission of electrons in a gas discharge device. Each of the cold cathode configurations can be machined from a single piece of a selected material. Several of the configurations can be assembled with individual elements which is easily seen from the various figures.

  10. Impact of sedimentation on evolution of accretionary wedges: Insights from high-resolution thermomechanical modeling

    NASA Astrophysics Data System (ADS)

    Mannu, Utsav; Ueda, Kosuke; Willett, Sean D.; Gerya, Taras V.; Strasser, Michael

    2016-12-01

    Syntectonic sedimentation history is a potential cause of differentiated accretionary wedge structures along the subduction margin. Recent efforts to model the role of sedimentation on wedge evolution have highlighted the importance of spatiotemporal history of sedimentation on the evolution of the wedge. Moreover, reconstruction of deformation history of the accretionary wedges using reflection seismic and borehole data has further substantiated the impact of sedimentation on wedge evolution. We conduct several numerical experiments using a high-resolution dynamic 2-D thermomechanical plate subduction model to systematically investigate and quantify different effects of sedimentation on accretionary wedge evolution. Models with sedimentation suggest migration of deformation to parts of the wedge lying outside the sedimentation zone leading to emergence/reactivation of out-of-sequence thrusts (OOSTs). Frequency and length of new thrust sheets are correlated with sedimentation in the trench. Models undergo a transition period of 1.5 Myr following the onset of sedimentation, after which they continue to grow under a new steady state. Stabilization of the wedge and increased load on the oceanic plate due to sedimentation create conditions in which smaller wedge-top basins combine to form a large and flat forearc basin. Last but not the least, emergence of OOST in models of accretionary wedges undergoing sedimentation provides important insights in to evolution of potentially tsunamigenic OOSTs like the Megasplay Fault seaward of the Kumano forearc basin.

  11. High concentration suspended sediment measurments using acontinuous fiber optic in-stream transmissometer

    SciTech Connect

    Campbell, Chris G.; Laycak, Danny T.; Hoppes, William; Tran,Nguyen T.; Shi, Frank G.

    2004-05-26

    Suspended sediment loads mobilized during high flow periods in rivers and streams are largely uncharacterized. In smaller and intermittent streams, a large storm may transport a majority of the annual sediment budget. Therefore monitoring techniques that can measure high suspended sediment concentrations at semi-continuous time intervals are needed. A Fiber optic In-stream Transmissometer (FIT) is presented for continuous measurement of high concentration suspended sediment in storm runoff. FIT performance and precision were demonstrated to be reasonably good for suspended sediment concentrations up to 10g/L. The FIT was compared to two commercially available turbidity devices and provided better precision and accuracy at both high and low concentrations. Both turbidity devices were unable to collect measurements at concentrations greater than 4 g/L. The FIT and turbidity measurements were sensitive to sediment particle size. Particle size dependence of transmittance and turbidity measurement poses the greatest problem for calibration to suspended sediment concentration. While the FIT was demonstrated to provide acceptable measurements of high suspended sediment concentrations, approaches to real-time suspended sediment detection need to address the particle size dependence in concentration measurements.

  12. The role of high Rydberg states in enhanced O- formation in a pulsed O2 discharge

    NASA Astrophysics Data System (ADS)

    Ding, W. X.; Pinnaduwage, L. A.; Tav, C.; McCorkle, D. L.

    1999-08-01

    Formation of O- ions in a pulsed discharge of O2 was investigated in a Langmuir-probe-assisted photodetachment experiment. A large enhancement of negative ion formation was observed in the afterglow. Experimental results are consistent with O- formation via electron attachment to high Rydberg states of O2 that survive into the afterglow. Such excited states can be produced by high-energy electron impact during the discharge. The lifetime of high-Rydberg molecules is estimated to be longer than 10 microseconds. The efficient production of O- ion by electron attachment to high-Rydberg O2 molecules was further confirmed in a laser excitation experiment. The O- ions and O atoms produced via enhanced dissociative electron attachment to excited states of O2 may be important for the chemical processes that occur in pulsed plasma remediation of contaminated air.

  13. Modeling glacial meltwater plume dynamics and sedimentation in high-latitude fjords

    NASA Astrophysics Data System (ADS)

    Mugford, R. I.; Dowdeswell, J. A.

    2011-03-01

    A model, SedPlume, has been developed to simulate marine sediment deposited by glacial meltwater plumes emerging from tidewater glaciers. Turbid meltwater emerging from beneath a glacier into a fjord rises as a buoyant forced plume due to density contrasts with the ambient fjord water. SedPlume assumes that meltwater discharge flows at a constant rate for long enough periods that the plume reaches a steady state. Entrainment of ambient fluid into the turbulent plume is assumed to occur at a rate proportional to the local velocity of the plume. Plume motion is considered in two dimensions: one horizontal dimension (perpendicular to the glacier front) and the vertical dimension. An integral model is formulated for the conservation equations of volume, momentum, buoyancy, and sediment flux along the path of a turbulent plume injected into stably stratified ambient fluid. Sedimentation occurs from the plume when the radial component of the sediment fall velocity exceeds the entrainment velocity. When the plume reaches the surface, it is treated as a radially spreading surface gravity current, for which exact solutions exist for the sediment deposition rate. Flocculation of silt and clay particles is modeled using empirical measurements of particle settling velocities in fjords to adjust the settling velocity of fine-grained sediments. SedPlume has been applied to McBride Inlet, Alaska, a temperate glaciated fjord where the majority of sedimentation originates from meltwater sources. SedPlume produces rates and patterns of sedimentation in good agreement with observations, with calculated peak ice-proximal annual sedimentation rates of approximately 22 m yr-1.

  14. Comparing Growth Rates after Hospital Discharge of Preterm Infants Fed with Either Post-Discharge Formula or High-Protein, Medium-Chain Triglyceride Containing Formula.

    PubMed

    Ekcharoen, Chanikarn; Tantibhaedhyangkul, Ruangvith

    2015-12-01

    To evaluate whether a high energy, high-protein, MCT-containing formula (HPMCT) is as appropriate as a post-discharge formula (PDF) for feeding preterm infants after hospital discharge by comparing growth, adverse effects, and cost per gram of bodyweight gain. The present study was a randomized controlled trial. The calculated sample size was 20 infants for each intervention group. After the consent procedure, preterm infants who had postconceptional age (PCA) 35⁺¹ to 36⁺⁰ weeks and weight between 1,800 and 3,000 g at hospital discharge were randomly enrolled to receive either PDF or HPMCT starting from the discharge day. Intervention period lasted at least 28 days and until the infant's weight was at least 3,000 g or PCA was at least 40⁺⁰ weeks. Body weight, length, and head circumference were measured on days 0, 14, 28, 56, and 84 after hospital discharge. Formula intakes and adverse symptoms (abdominal distension, diarrhea, and constipation) were recorded by parents before each visit in diaries provided by the study group. Cost was calculated from estimated actual formula intakes. There were six and five infants enrolled into PDF and HPMCT group, respectively. Demographic data were not different between the two groups. There were no significant differences of growth rates in both groups at days 28, 56, and 84 after hospital discharge. Adverse effects and costs were not different either. PDF and HPMCT might be comparably appropriate for feeding catching-up preterm infants after hospital discharge, as noted from growth rates, adverse effects, and costs. However, further studies involving biochemical and neurodevelopmental evaluation, with long-term follow-up in larger populations are needed to clearly compare both formulas.

  15. Distribution of arsenic and copper in sediment pore water: an ecological risk assessment case study for offshore drilling waste discharges.

    PubMed

    Sadiq, Rehan; Husain, Tahir; Veitch, Brian; Bose, Neil

    2003-12-01

    Due to the hydrophobic nature of synthetic based fluids (SBFs), drilling cuttings are not very dispersive in the water column and settle down close to the disposal site. Arsenic and copper are two important toxic heavy metals, among others, found in the drilling waste. In this article, the concentrations of heavy metals are determined using a steady state "aquivalence-based" fate model in a probabilistic mode. Monte Carlo simulations are employed to determine pore water concentrations. A hypothetical case study is used to determine the water quality impacts for two discharge options: 4% and 10% attached SBFs, which correspond to the best available technology option and the current discharge practice in the U.S. offshore. The exposure concentration (CE) is a predicted environmental concentration, which is adjusted for exposure probability and bioavailable fraction of heavy metals. The response of the ecosystem (RE) is defined by developing an empirical distribution function of predicted no-effect concentration. The pollutants' pore water concentrations within the radius of 750 m are estimated and cumulative distributions of risk quotient (RQ=CE/RE) are developed to determine the probability of RQ greater than 1.

  16. Experimental study of a very high frequency, 162 MHz, segmented electrode, capacitively coupled plasma discharge

    NASA Astrophysics Data System (ADS)

    Sirse, Nishant; Harvey, Cleo; Gaman, Cezar; Ellingboe, Bert

    2016-09-01

    Radio-frequency capacitively coupled plasma (CCP) discharge operating at a very high frequency, 30-300 MHz, offers many advantages over standard 13.56 MHz CCP. However, there is a limited flexibility on the choice of driving frequency and substrate size due to plasma non-uniformity caused by the standing wave effect and edge effect. To overcome this issue segmented electrode CCP's are proposed and researched. Despite its numerous advantages the power coupling mechanism and plasma chemistry in this type of discharge are not fully understood due to lack of experimental data. In this paper, we present the experimental study of a segmented electrode, 3x4 tile array (10x10 cm square tile with 1 cm tile-to-tile separation), CCP discharge driven at 162 MHz. We measured plasma uniformity and gas temperature using hairpin probe and optical emission spectroscopy respectively. A homemade RF compensated Langmuir probe is employed to measure the Electron Energy Distribution Function (EEDF) by second harmonic technique. Energy resolved quadrupole mass spectrometer is utilized to measure the ion energy distribution. Discharge/plasma properties are investigated for several operating conditions and for power coupling mode in both washer board and checker board configuration. The experimental results show that the uniform plasma density can be maintained over a large area along with highly non-equilibrium condition to produce unique gas phase plasma chemistry.

  17. Experimental study of pulsed corona discharge in air at high pressures

    NASA Astrophysics Data System (ADS)

    Lin, Yunghsu; Singleton, Dan; Sanders, Jason; Kuthi, Andras; Gundersen, Martin A.

    2012-10-01

    Understanding of the dynamics of nanosecond scale pulse discharges in air at multiatmospheric pressure is essential for the development of transient plasma enhanced combustion in internal combustion engines. Here we report the result of our experimental investigation of cathode-directed streamer discharges in synthetic air at pressures ranging from 1 to 20 bar. Two pulse generators with maximum pulse amplitudes of 50 kV and 65 kV, pulse width of approximately 12 ns and 85 ns and pulse rise times of 5 ns and 50 ns are used to generate streamers. The electrodes are coaxial with various radial gaps up to 11.75 mm. The discharge chamber is evacuated and backfilled with synthetic dry air at room temperature. Optical data is obtained from PI-MAX 3 ICCD camera with 3 ns gate width. The streamer propagation velocity variation with applied voltage, different pressures and reduced electric field, E/P, will be shown. Preliminary results indicate that the (pd) similarity law is violated at high pressures in agreement with other recent experiments [1].[4pt] [1] ``Nanosecond Scale Discharge Dynamics in High Pressure Air,'' Pierre Tardiveau, Nicolas Moreau, Francois Jorand, Christian Postel, St'ephane Pasquiers, and Pierre Vervisch, IEEE Trans. on Plasma Sci., Vol. 36, No. 4, 2008.

  18. Influence of pulse duration on the plasma characteristics in high-power pulsed magnetron discharges

    SciTech Connect

    Konstantinidis, S.; Dauchot, J.P.; Ganciu, M.; Ricard, A.; Hecq, M.

    2006-01-01

    High-power pulsed magnetron discharges have drawn an increasing interest as an approach to produce highly ionized metallic vapor. In this paper we propose to study how the plasma composition and the deposition rate are influenced by the pulse duration. The plasma is studied by time-resolved optical emission and absorption spectroscopies and the deposition rate is controlled thanks to a quartz microbalance. The pulse length is varied between 2.5 and 20 {mu}s at 2 and 10 mTorr in pure argon. The sputtered material is titanium. For a constant discharge power, the deposition rate increases as the pulse length decreases. With 5 {mu}s pulse, for an average power of 300 W, the deposition rate is {approx}70% of the deposition rate obtained in direct current magnetron sputtering at the same power. The increase of deposition rate can be related to the sputtering regime. For long pulses, self-sputtering seems to occur as demonstrated by time-resolved optical emission diagnostic of the discharge. In contrary, the metallic vapor ionization rate, as determined by absorption measurements, diminishes as the pulses are shortened. Nevertheless, the ionization rate is in the range of 50% for 5 {mu}s pulses while it lies below 10% in the case of a classical continuous magnetron discharge.

  19. Ordinary High Flows and the Stage-Discharge Relationship in the Arid West Region

    DTIC Science & Technology

    2011-07-01

    Lindsey E. Dixon Cold Regions Research and Engineering Laboratory U.S. Army Engineer Research and Development Center 72 Lyme Road Hanover, NH 03755...from rainfall is a supplemental source of water for stream flow. Perennial A perennial stream has flowing water year-round during a typical year. The...is a supplemental source of water for stream flow. ERDC/CRREL TR-11-12 2 is defined by the ordinary high flow. This ordinary high discharge is a

  20. High Resolution Numerical Modeling of Cohesive Sediment Transport

    DTIC Science & Technology

    2009-01-01

    floc breakup and aggregation processes (e.g., Winterwerp 1998). Existing flocculation models is able to predict flocs in equilibrium condition. However...addition, existing flocculation models commonly assume constant floc yield strength in modeling floc break-up process . However, laboratory evidences...induced fluid mud process , tidal- driven cohesive sediment transport and flocculation and sediment-laden river plume dynamics and initial deposition. Our

  1. Spectroscopic diagnostics of a pulsed discharge in high-pressure argon

    NASA Astrophysics Data System (ADS)

    Treshchalov, A. B.; Lissovskii, A. A.

    2010-05-01

    Results of investigation of high-pressure argon plasma excited by a high-current pulsed volume discharge are presented. The plasma diagnostics employs spatiotemporal dependences of the emission intensity in the VUV — visible range. A homogenous discharge is observed at pressures up to 10 atm. It is found that the spectrum of the UV — visible photorecombination continuum is sensitive to the discharge constriction. Change in the shape of the spectrum is caused bythe change of the type of positive charge carriers upon passing of the discharge from the uniform phase (molecular Ar2+ ions) to the arc phase (atomic Ar+ ions). Experimental data and model calculations show that the electron heating after the main excitation pulse is a highly undesirable process. It slows down the recombination flow in the plasma, which results in stretching of all the kinetic processes for all excited components in time, and hence in a decrease in the peak values of their concentrations. Electron collision-induced mixing effi-ciently converts the reservoir of long-lived Ar2* molecules in the triplet state into rapidly emitting singlet excimers. It is this mechanism that dominates the production of singlet Ar2* excimer molecules. The threshold concentration needed to obtain lasing at a wavelength of 127 nm on Ar2* excimers (1Σ+u(v=0)) was, according to calculations, about 5×1015 cm-3 for the gain 0.05 cm-1. This concentration can be achieved in the case of homogeneous pulsed discharge pumping with the peak electron concentration 2.×1016 cm-3 at the argon pressure 10 atm.

  2. Spectroscopic diagnostics of a pulsed discharge in high-pressure argon

    SciTech Connect

    Treshchalov, A B; Lissovskii, A A

    2010-05-26

    Results of investigation of high-pressure argon plasma excited by a high-current pulsed volume discharge are presented. The plasma diagnostics employs spatiotemporal dependences of the emission intensity in the VUV - visible range. A homogenous discharge is observed at pressures up to 10 atm. It is found that the spectrum of the UV - visible photorecombination continuum is sensitive to the discharge constriction. Change in the shape of the spectrum is caused bythe change of the type of positive charge carriers upon passing of the discharge from the uniform phase (molecular Ar{sub 2}{sup +} ions) to the arc phase (atomic Ar{sup +} ions). Experimental data and model calculations show that the electron heating after the main excitation pulse is a highly undesirable process. It slows down the recombination flow in the plasma, which results in stretching of all the kinetic processes for all excited components in time, and hence in a decrease in the peak values of their concentrations. Electron collision-induced mixing effi-ciently converts the reservoir of long-lived Ar{sub 2}* molecules in the triplet state into rapidly emitting singlet excimers. It is this mechanism that dominates the production of singlet Ar{sub 2}* excimer molecules. The threshold concentration needed to obtain lasing at a wavelength of 127 nm on Ar{sub 2}* excimers ({sup 1{Sigma}+}{sub u(v=0)}) was, according to calculations, about 5x10{sup 15} cm{sup -3} for the gain 0.05 cm{sup -1}. This concentration can be achieved in the case of homogeneous pulsed discharge pumping with the peak electron concentration 2.x10{sup 16} cm{sup -3} at the argon pressure 10 atm.

  3. Pulsed Discharge Through Wetland Vegetation as a Control on Bed Shear Stress and Sediment Transport Affecting Everglades Restoration

    NASA Astrophysics Data System (ADS)

    Larsen, L. E.; Harvey, J. W.; Crimaldi, J. P.

    2007-12-01

    The ridge and slough landscape is a patterned peatland within the Florida Everglades in which elevated ridges of emergent vegetation are regularly interspersed among open-water sloughs with floating and submerged vegetation. Landscape features are aligned parallel to the historic flow direction. Degradation of patterning over the past 100 years coincides with diminished flow resulting from drainage and construction of levees and canals. A goal of restoration is to increase flow velocities and redistribution of particles and solutes in attempt to preserve remnant patterning and restore degraded portions of the ridge and slough landscape. To explore different management strategies that could induce sediment redistribution in the ridge and slough landscape, we simulated velocity profiles and bed shear stresses for different combinations of surface water stage, water surface slope, and vegetation community structure, based on field measurements and laboratory experiments. A mixing length approach, in which the minimum of stem spacing and distance from a solid boundary determined eddy scale, was used to simulate velocity profiles and bed shear stress in vegetated arrays. Simplified velocity profiles based only on vegetation frontal area above the bed and the Karman-Prandtl logarithmic law near the bed closely were used to approximate solutions of the one-dimensional Navier-Stokes equations for large-scale simulation. Estimates of bed shear stress were most sensitive to bed roughness, vegetation community structure, and energy slope. Importantly, our simulations illustrate that velocity and bed shear stress cannot be increased substantially in the Everglades simply by increasing surface-water stage. This result comes directly from the dependence of velocity and shear stress on vegetation frontal area and the fact that emergent vegetation stems protrude through the water column even during times of relatively deep water in the Everglades. Since merely increasing water

  4. Contribution of radioactive (137)Cs discharge by suspended sediment, coarse organic matter, and dissolved fraction from a headwater catchment in Fukushima after the Fukushima Dai-ichi Nuclear Power Plant accident.

    PubMed

    Iwagami, Sho; Onda, Yuichi; Tsujimura, Maki; Abe, Yutaka

    2017-01-01

    Radiocesium ((137)Cs) migration from headwaters in forested areas provides important information, as the output from forest streams subsequently enters various land-use areas and downstream rivers. Thus, it is important to determine the composition of (137)Cs fluxes (dissolved fraction, suspended sediment, or coarse organic matter) that migrate through a headwater stream. In this study, the (137)Cs discharge by suspended sediment and coarse organic matter from a forest headwater catchment was monitored. The (137)Cs concentrations in suspended sediment and coarse organic matter, such as leaves and branches, and the amounts of suspended sediment and coarse organic matter were measured at stream sites in three headwater catchments in Yamakiya District, located ∼35 km northwest of Fukushima Dai-ichi Nuclear Power Plant (FDNPP) from August 2012 to September 2013, following the earthquake and tsunami disaster. Suspended sediment and coarse organic matter were sampled at intervals of approximately 1-2 months. The (137)Cs concentrations of suspended sediment and coarse organic matter were 2.4-49 kBq/kg and 0.85-14 kBq/kg, respectively. The (137)Cs concentrations of the suspended sediment were closely correlated with the average deposition density of the catchment. The annual proportions of contribution of (137)Cs discharge by suspended sediment, coarse organic matter, and dissolved fraction were 96-99%, 0.0092-0.069%, and 0.73-3.7%, respectively. The total annual (137)Cs discharge from the catchment was 0.02-0.3% of the deposition.

  5. Radio and television interference caused by corona discharges from high-voltage transmission lines

    SciTech Connect

    Sarmadi, M.

    1996-11-01

    Increase in power utility loads in industrialized countries, as well as developing countries, demands a higher level of transmission line voltage. Radio interference (RI) problems have been determined to be a limiting factor in selecting the size of transmission line conductors. Transmission line noise is primarily caused by corona discharges in the immediate vicinity of the conductor. It has been observed that discharges occur during both half-cycles of the applied voltage, but positive corona is usually predominant at AM radio frequencies range with practical high-voltage and extra high-voltage transmission lines. The corona radio noise effect is highly dependent upon the presence of particles on the surface of the conductor and the increase of the electrical gradient beyond the breakdown value of the air. Therefore, corona radio noise varies significantly with the weather and atmospheric conditions and generally increases by 10 to 30 dB in foul weather.

  6. Radio and television interference caused by corona discharges from high-voltage transmission lines

    SciTech Connect

    Sarmadi, M.

    1995-10-01

    Increase in power utility loads in industrialized countries, as well as developing countries, demands a higher level of transmission line voltage. Radio interference (RI) problems have been determined to be a limiting factor in selecting the size of transmission line conductors. Transmission line noise is primarily caused by corona discharges in the immediate vicinity of the conductor. It has been observed that discharges occur during both half-cycles of the applied voltage, but positive corona is usually predominant at AM radio frequencies range with practical high-voltage and extra high-voltage transmission lines. The corona radio noise effect is highly dependent upon the presence of particles on the surface of the conductor and the increase of the electrical gradient beyond the breakdown value of the air. Therefore, corona radio noise varies significantly with the weather and atmospheric conditions and generally increases by 10 to 30 dB in foul weather.

  7. Electron emission mechanism during the nanosecond high-voltage pulsed discharge in pressurized air

    NASA Astrophysics Data System (ADS)

    Levko, D.; Yatom, S.; Vekselman, V.; Krasik, Ya. E.

    2012-02-01

    A comparison between the results of x-ray absorption spectroscopy of runaway electrons (RAEs) generated during nanosecond timescale high-voltage (HV) gas discharge and the simulated attenuation of the x-ray flux produced by the runaway electron spectrum calculated using particle-in-cell numerical modeling of such a type of discharge is presented. The particle-in-cell simulation considered the field and explosive emissions (EEs) of the electrons from the cathode. It is shown that the field emission is the dominant emission mechanism for the short-duration (<2.5 ns) high-voltage pulses, while for the long-duration (>5 ns) high-voltage pulses, the explosive emission is likely to play a significant role.

  8. Environmental and biotechnological applications of high-voltage pulsed discharges in water

    NASA Astrophysics Data System (ADS)

    Sato, Masayuki

    2008-05-01

    A high-voltage pulse has wide application in fields such as chemistry, physics and biology and their combinations. The high-voltage pulse forms two kinds of physical processes in water, namely (a) a pulsed electric field (PEF) in the parallel electrode configuration and (b) plasma generation by a pulsed discharge in the water phase with a concentrated electric field. The PEF can be used for inactivation of bacteria in liquid foods as a non-thermal process, and the underwater plasma is applicable not only for the decomposition of organic materials in water but also for biological treatment of wastewater. These discharge states are controlled mainly by the applied pulse voltage and the electrode shape. Some examples of environmental and biotechnological applications of a high-voltage pulse are reviewed.

  9. Breakdown voltages for discharges initiated from plasma pulses produced by high-frequency excimer lasers

    SciTech Connect

    Yamaura, Michiteru

    2006-06-19

    The triggering ability under the different electric field was investigated using a KrF excimer laser with a high repetition rate of kilohertz order. Measurements were made of the magnitude of impulse voltages that were required to initiate a discharge from plasmas produced by a high-frequency excimer laser. Breakdown voltages were found to be reduced by 50% through the production of plasmas in the discharge gap by a high-frequency excimer laser. However, under direct-current electric field, triggering ability decreased drastically due to low plasma density. It is considered that such laser operation applied for laser-triggered lightning due to the produced location of plasma channel is formed under the impulse electric field since an electric field of the location drastically reduces temporary when the downward leader from thunderclouds propagates to the plasma channel.

  10. Point-to-plane corona discharge for high-speed reacting flow visualization

    NASA Astrophysics Data System (ADS)

    Wisman, David; Ganguly, Biswa

    2011-01-01

    We present the results of a novel technique for the high-speed visualization of a flame reaction zone using a streamer-initiated point-to-plane unipolar pulsed corona discharge. Our results show images of the flame front under conditions of natural hydrodynamic flame instability, as well as external air flow modulation induced flame instability. This technique can potentially be used as a high-speed 2-D flow visualization diagnostic tool to monitor flow instabilities in reacting and non-reacting fluids that have a density gradient. We also show that this technique does not modify the flame characteristics in any measurable way, if the high electric field region of the streamer/corona discharge is located in the downstream region.

  11. Impacts of Climate Change on Regulated Streamflow, Hydrologic Extremes, Hydropower Production, and Sediment Discharge in the Skagit River Basin

    USGS Publications Warehouse

    Lee, Se-Yeun; Hamlet, Alan F.; Grossman, Eric E.

    2016-01-01

    Previous studies have shown that the impacts of climate change on the hydrologic response of the Skagit River are likely to be substantial under natural (i.e. unregulated) conditions. To assess the combined effects of changing natural flow and dam operations that determine impacts to regulated flow, a new integrated daily-time-step reservoir operations model was constructed for the Skagit River Basin. The model was used to simulate current reservoir operating policies for historical flow conditions and for projected flows for the 2040s (2030–2059) and 2080s (2070–2099). The results show that climate change is likely to cause substantial seasonal changes in both natural and regulated flow, with more flow in the winter and spring, and less in summer. Hydropower generation in the basin follows these trends, increasing (+ 19%) in the winter/ spring, and decreasing (- 29%) in the summer by the 2080s. The regulated 100-year flood is projected to increase by 23% by the 2040s and 49% by the 2080s. Peak winter sediment loading in December is projected to increase by 335% by the 2080s in response to increasing winter flows, and average annual sediment loading increases from 2.3 to 5.8 teragrams (+ 149%) per year by the 2080s. Regulated extreme low flows (7Q10) are projected to decrease by about 30% by the 2080s, but remain well above natural low flows. Both current and proposed alternative flood control operations are shown to be largely ineffective in mitigating increasing flood risks in the lower Skagit due to the distribution of flow in the basin during floods.

  12. VUV-VIS spectroscopic diagnostics of a pulsed high-pressure discharge in argon

    NASA Astrophysics Data System (ADS)

    Treshchalov, A. B.; Lissovski, A. A.

    2009-12-01

    High-pressure argon plasma, excited by a high-current pulsed volume discharge, has been investigated. Spatial-time VUV-VIS emission kinetics were used for the plasma diagnostics. A homogeneous discharge was obtained at a pressure of up to 10 bar. It was revealed that the spectral shape of the UV-VIS photorecombination continuum is a sensitive diagnostic tool for the constriction of the discharge. This shape changes because of the difference of the positive charge carriers in the arc (atomic Ar+ ions) and homogeneous (molecular Ar_{2}^{+} ions) phases of the discharge. The intensity of this continuum is proportional to the square of the electron density. The experimental data and modelling show that the heating of electrons after the main excitation pulse is a very undesirable process. It suppresses the recombination flow in plasma, thus the kinetics of all excited species are spread in time with a decrease in the Ar_{2}^{\\ast } excimers densities. The electron collision-induced mixing effectively converts the reservoir of long-lived triplet Ar_{2}^{\\ast } molecules to fast-emitted singlet excimers. This mechanism is dominant in the production of singlet excimers. A realistic threshold density for the lasing of Ar_2^{\\ast}({{}^{1}\\Sigma_u})_{(v=0)} excimers of about 5 × 1015 cm-3 was estimated (the gain coefficient is 0.05 cm-1). This criterion could be realized in 10 bar of Ar by a homogeneous single pulse discharge pumping with a peak electron density of 2.4 × 1016 cm-3.

  13. Characterization of Stormflows and Wastewater Treatment-Plant Effluent Discharges on Water Quality, Suspended Sediment, and Stream Morphology for Fountain and Monument Creek Watersheds, Colorado, 1981-2006

    USGS Publications Warehouse

    Mau, David P.; Stogner, Robert W.; Edelmann, Patrick

    2007-01-01

    In 1998, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, began a study of the Fountain and Monument Creek watersheds to characterize water quality and suspended-sediment conditions in the watershed for different flow regimes, with an emphasis on characterizing water quality during storm runoff. Water-quality and suspended-sediment samples were collected in the Fountain and Monument Creek watersheds from 1981 through 2006 to evaluate the effects of stormflows and wastewater-treatment effluent on Fountain and Monument Creeks in the Colorado Springs, Colorado, area. Water-quality data were collected at 11 sites between 1981 and 2001, and 14 tributary sites were added in 2003 to increase spatial coverage and characterize water quality throughout the watersheds. Suspended-sediment samples collected daily at 7 sites from 1998 through 2001, 6 sites daily from 2003 through 2006, and 13 tributary sites intermittently from 2003 through 2006 were used to evaluate the effects of stormflow on suspended-sediment concentrations, discharges, and yields. Data were separated into three flow regimes: base flow, normal flow, and stormflow. Stormflow concentrations from 1998 through 2006 were compared to Colorado acute instream standards and, with the exception of a few isolated cases, did not exceed water-quality standards for inorganic constituents that were analyzed. However, stormflow concentrations of both fecal coliform and Escherichia coli (E. coli) frequently exceeded water-quality standards during 1998 through 2006 on main-stem and tributary sites by more than an order of magnitude. There were two sites on Cottonwood Creek, a tributary to Monument Creek, with elevated concentrations of dissolved nitrite plus nitrate: site 07103985 (TbCr), a tributary to Cottonwood Creek and site 07103990 (lower_CoCr), downstream from site 07103985 (TbCr), and near the confluence with Monument Creek. During base-flow and normal-flow conditions, the median

  14. Electric Discharge Sintering and Joining of Tungsten Carbide--Cobalt Composite with High-Speed Steel Substrate

    SciTech Connect

    Grigoryev, Evgeny G.

    2011-01-17

    Simultaneous electro discharge sintering of high strength structure of tungsten carbide-cobalt composite and connection it with high-speed steel substrate is investigated and suitable operating parameters are defined. Tungsten carbide-cobalt and high-speed steel joining was produced by the method of high voltage electrical discharge together with application of mechanical pressure to powder compact. It was found that the density and hardness of composite material reach its maximum values at certain magnitudes of applied pressure and high voltage electrical discharge parameters. We show that there is an upper level for the discharge voltage beyond which the powder of composite material disintegrates like an exploding wire. Due to our results it is possible to determine optimal parameters for simultaneous electro discharge sintering of WC-Co and bonding it with high-speed steel substrate.

  15. Electric Discharge Sintering and Joining of Tungsten Carbide—Cobalt Composite with High-Speed Steel Substrate

    NASA Astrophysics Data System (ADS)

    Grigoryev, Evgeny G.

    2011-01-01

    Simultaneous electro discharge sintering of high strength structure of tungsten carbide—cobalt composite and connection it with high-speed steel substrate is investigated and suitable operating parameters are defined. Tungsten carbide—cobalt and high-speed steel joining was produced by the method of high voltage electrical discharge together with application of mechanical pressure to powder compact. It was found that the density and hardness of composite material reach its maximum values at certain magnitudes of applied pressure and high voltage electrical discharge parameters. We show that there is an upper level for the discharge voltage beyond which the powder of composite material disintegrates like an exploding wire. Due to our results it is possible to determine optimal parameters for simultaneous electro discharge sintering of WC-Co and bonding it with high-speed steel substrate.

  16. High-Power Electrostatic Discharges in PETN: Threshold and Scaling Experiments

    SciTech Connect

    Liou, W; McCarrick, J F; Hodgin, R L; Phillips, D F

    2010-03-05

    There is a considerable set of data establishing the safety of PETN-based detonators that are insulted by electrostatic discharge (ESD) from a human body. However, the subject of ESD safety has garnered renewed interest because of the sparse data on high-power, low-impedance discharges that result when the source is a metallic object such as a tool. Experiments on as-built components, using pin-to-cap fault circuits through PETN-based detonators, showed significant evidence of a power dependence but with a very broad energy threshold and some uncertainty in the breakdown path. We have performed a series of experiments using a well-defined arc discharge path and a well-characterized source that is capable of independent variation of energy and power. Studies include threshold variation with power, arc length, powder surface area, and surface vs. bulk discharge paths. We find that an energy threshold variation with power does not appear to exist in the tested range of fractions to tens of MW, and that there are many subtleties to proper energy and power bookkeeping. We also present some test results for PBX 9407.

  17. Nanosecond-timescale high-pressure gas discharge in a microwave pulse compressor

    NASA Astrophysics Data System (ADS)

    Shlapakovski, Anatoli; Beilin, Leonid; Krasik, Yakov

    2016-09-01

    The results of experimental and numerical studies of the microwave plasma discharge initiated by a nanosecond laser pulse are presented. The discharge is ignited in the pressurized gas filling the switch, which opens the charged resonant cavity, so that the accumulated microwave energy is rapidly released into a load. Fast-framing optical imaging showed that the plasma in the switch appears as filaments expanding along the RF electric field. The temporal evolution of the plasma density was derived from time-resolved spectroscopic measurements. With increasing microwave energy in the cavity, the plasma appears earlier in time after the laser beam enters the switch and its density rises more steeply reaching values which exceed 1016 cm-3 at a gas pressure of 2 .105 Pa. Numerical simulations were conducted using the gas conductivity model of plasma and representation of discharge origin by setting initial population of seed electrons treated by PIC algorithm. The results showed good agreement with the experiments and explained how the self-consistent dynamics of the plasma and RF fields determines the quality of microwave output pulses. In addition, the dynamics of the microwave energy absorption in the discharge plasma was studied. It was shown that at a high pressure, even with an unlimited rate of ionization, a significant portion of the stored energy, 20%, is lost. This work was partially supported by the BSF Grant No. 2012038.

  18. Sediment yields from small, steep coastal watersheds of California

    USGS Publications Warehouse

    Warrick, Jonathan A.; Melack, John M.; Goodridge, Blair M.

    2015-01-01

    Global inventories of sediment discharge to the ocean highlight the importance of small, steep watersheds (i.e., those having drainage areas less than 100,000 km2 and over 1000 m of relief) that collectively provide a dominant flux of sediment. The smallest of these coastal watersheds (e.g., those that have drainage areas less than 1000 km2) can represent a large portion of the drainage areas of active margin coasts, such as California’s coast, but remain almost universally unmonitored. Here we report on the suspended-sediment discharge of several small coastal watersheds (10-56 km2) of the Santa Ynez Mountains, California, that were found to have ephemeral discharge and suspended-sediment concentrations ranging between 1 and over 200,000 mgL-1. Sediment concentrations were weakly correlated with discharge (r2 = 0.10–0.25), and all types of hysteresis patterns were observed during high flows (clockwise, counterclockwise, no hysteresis, and complex). Sediment discharge varied strongly with time and was measurably elevated in one watershed following a wildfire. Although sediment yields varied by over 100-fold across the watersheds (e.g., 15 – 2100 tkm-2 yr -1during the relatively wet 2005 water year), the majority of sediment discharge (65-80%) occurred during only 1% of the time for all watersheds. Furthermore, sampling of dozens of high flow events provides evidence that sediment yields were generally related to peak discharge yields, although these relationships were not consistent across the watersheds. These results suggest that small watersheds of active margins can provide large fluxes of sediment to the coast, but that the rates and timing of this sediment discharge is more irregular in time – and thus more difficult to characterize – than the better monitored and studied watersheds that are 1000-100,000 km2.

  19. Relationships between High River Discharge, Upwelling Events, and Bowhead Whale (Balaena mysticetus) Occurrence in the Central Alaskan Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Clarke, J.; Okkonen, S. R.; Potter, R. A.

    2016-02-01

    Aerial surveys of bowhead whales have been conducted in September in the central Alaskan Beaufort Sea (144°W-150°W) for several decades. These surveys, co-managed by BOEM and NOAA, have documented bowhead whale distribution that is almost exclusively on the continental shelf, generally from <1 to 70 km from shore. Most whales observed in September are actively migrating and swimming in a westerly direction, with feeding behavior occasionally observed. In September 2014, several hundred bowhead whales were observed feeding on several occasions within a few kilometers of local barrier islands. This is an unusual situation that has been observed in September in only one other year (1997). To investigate local conditions that might be conducive to increased bowhead whale occurrence, freshwater discharge data from the Sagavanirktok and Kuparak rivers, surface wind data, and suspended sediment data obtained from MODIS satellite imagery were analyzed and compared to bowhead whale observations for September 1989-2014. Results indicate that anomalously high freshwater river discharge coupled with prior upwelling events, based on surface winds >5.4 m s-1, may combine to promote the aggregation of bowhead whale prey on the shallow shelf. When these two conditions were met, whales were sighted more frequently, were more likely to be in groups of ≥2 animals, and be closer to shore. Conversely, when either of the two conditions was not met, whales were sighted less frequently, more likely to be single animals, and be farther from shore. These results underscore annual variation during the bowhead whale fall migration and the physical oceanography processes that may be related to whale distribution and behavior.

  20. Global estimates of fresh submarine groundwater discharge

    NASA Astrophysics Data System (ADS)

    Luijendijk, Elco; Gleeson, Tom; Moosdorf, Nils

    2016-04-01

    Fresh submarine groundwater discharge, the flow of fresh groundwater to oceans, may be a significant contributor to the water and chemical budgets of the world's oceans. We present new estimates of the flux of fresh groundwater to the world's oceans. We couple density-dependent numerical simulations of generic models of coastal basins with geospatial databases of hydrogeological parameters and topography to resolve the rate of terrestrially-derived submarine groundwater discharge globally. We compare the model results to a new global compilation of submarine groundwater discharge observations. The results show that terrestrially-derived SGD is highly sensitive to permeability. In most watersheds only a small fraction of groundwater recharge contributes to submarine groundwater discharge, with most recharge instead contributing to terrestrial discharge in the form of baseflow or evapotranspiration. Fresh submarine groundwater discharge is only significant in watersheds that contain highly permeable sediments, such as coarse-grained siliciclastic sediments, karstic carbonates or volcanic deposits. Our estimates of global submarine groundwater discharge are much lower than most previous estimates. However, many tropical and volcanic islands are hotspots of submarine groundwater discharge and solute fluxes towards the oceans. The comparison of model results and data highlights the spatial variability of SGD and the difficulty of scaling up observations.

  1. Effects of high salinity wastewater discharges on unionid mussels in the Allegheny River, Pennsylvania

    USGS Publications Warehouse

    Kathleen Patnode,; Hittle, Elizabeth A.; Robert Anderson,; Lora Zimmerman,; Fulton, John W.

    2015-01-01

    We examined the effect of high salinity wastewater (brine) from oil and natural gas drilling on freshwater mussels in the Allegheny River, Pennsylvania, during 2012. Mussel cages (N = 5 per site) were deployed at two sites upstream and four sites downstream of a brine treatment facility on the Allegheny River. Each cage contained 20 juvenile northern riffleshell mussels Epioblasma torulosa rangiana). Continuous specific conductance and temperature data were recorded by water quality probes deployed at each site. To measure the amount of mixing throughout the entire study area, specific conductance surveys were completed two times during low-flow conditions along transects from bank to bank that targeted upstream (reference) reaches, a municipal wastewater treatment plant discharge upstream of the brine-facility discharge, the brine facility, and downstream reaches. Specific conductance data indicated that high specific conductance water from the brine facility (4,000–12,000 µS/cm; mean 7,846) compared to the reference reach (103–188 µS/cm; mean 151) is carried along the left descending bank of the river and that dilution of the discharge via mixing does not occur until 0.5 mi (805 m) downstream. Juvenile northern riffleshell mussel survival was severely impaired within the high specific conductance zone (2 and 34% at and downstream of the brine facility, respectively) and at the municipal wastewater treatment plant (21%) compared to background (84%). We surveyed native mussels (family Unionidae) at 10 transects: 3 upstream, 3 within, and 4 downstream of the high specific conductance zone. Unionid mussel abundance and diversity were lower for all transects within and downstream of the high conductivity zone compared to upstream. The results of this study clearly demonstrate in situ toxicity to juvenile northern riffleshell mussels, a federally endangered species, and to the native unionid mussel assemblage located downstream of a brine discharge to the

  2. New strategies for upscaling high-resolution flow and overbank sedimentation models to quantify floodplain sediment storage at the catchment scale

    NASA Astrophysics Data System (ADS)

    Nicholas, A. P.; Walling, D. E.; Sweet, R. J.; Fang, X.

    2006-10-01

    SummaryQuantitative models of catchment scale floodplain sediment storage must balance competing demands. For example, such approaches must incorporate a physically-based representation of controls on overbank sedimentation rates at the reach scale, but should also be computationally efficient so that catchment scale analysis remains a realistic goal. This paper reports the development of a novel nested modelling strategy that combines a high-resolution hydraulic model based on the shallow water form of the Navier-Stokes equations, with a reduced complexity overbank sedimentation model and coarse-resolution catchment sediment budget model. The approach is implemented within a Monte-Carlo framework to allow an assessment of uncertainty in the parameterisation of overbank sedimentation processes, and to derive uncertainty-bounded estimates of floodplain sedimentation rates over a range of spatial scales. This strategy is applied to a 26 km reach of the River Culm, Devon, UK. The relative performance of a wide range of model structures is evaluated by comparing model predictions with estimates of actual mean annual sedimentation rates derived by analysis of the caesium-137 content of floodplain sediment cores at 20 locations within each of eight study sites distributed throughout the catchment. The results of the current model application demonstrate the potential of the nested modelling strategy as a means of upscaling physically-based flow and sediment transport codes. Furthermore, the novel reduced-complexity overbank sedimentation model presented here is shown to provide a means of simulating complex patterns of suspended sediment transport and deposition, while reducing computing costs by 2-3 orders of magnitude compared with conventional high-resolution advection-diffusion codes. Uncertainty-bounded estimates of floodplain sediment storage for the River Culm confirm that floodplain sedimentation represents a primary component of the fine sediment budget of

  3. Study of high-power pulsed RF generators based on a hollow-cathode discharge

    SciTech Connect

    Bulychev, S. V.; Vyalykh, D. V.; Dubinov, A. E.; Zhdanov, V. S.; Kornilova, I. Yu.; L'vov, I. L.; Saikov, S. K.; Sadovoy, S. A.; Selemir, V. D.

    2009-11-15

    Results are presented from studies of physical principles underlying operation of high-power pulsed RF generators based on a hollow-cathode discharge (HCD). Various types of instabilities that may occur in an HCD and lead to 100% RF modulation of the electrode voltage in the megahertz frequency range are discussed. The design, electric characteristics, and operating modes of HCD-based RF generators are described. Results of experiments aimed at increasing the power and duration of RF pulses are presented. It is demonstrated that such devices are capable of generating 10- to 220-MHz pulses with a power of up to 8 MW, duration of up to 10 {mu}s, and repetition rate of 1 kHz. The discharge chambers of such generators are very simple in design, they have very high stability, and their efficiency reaches 35%.

  4. Characterization of Plasma Discharges in a High-Field Magnetic Tandem Mirror

    NASA Technical Reports Server (NTRS)

    Chang-Diaz, Franklin R.

    1998-01-01

    High density magnetized plasma discharges in open-ended geometries, like Tandem Mirrors, have a variety of space applications. Chief among them is the production of variable Specific Impulse (I(sub sp)) and variable thrust in a magnetic nozzle. Our research group is pursuing the experimental characterization of such discharges in our high-field facility located at the Advanced Space Propulsion Laboratory (ASPL). These studies focus on identifying plasma stability criteria as functions of density, temperature and magnetic field strength. Plasma heating is accomplished by both Electron and Ion Cyclotron Resonance (ECR and ICR) at frequencies of 2-3 Ghz and 1-30 Mhz respectively, for both Hydrogen and Helium. Electron density and temperature has measured by movable Langmuir probes. Macroscopic plasma stability is being investigated in ongoing research.

  5. Ionic Wind Phenomenon and Charge Carrier Mobility in Very High Density Argon Corona Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Nur, M.; Bonifaci, N.; Denat, A.

    2014-04-01

    Wind ions phenomenon has been observed in the high density argon corona discharge plasma. Corona discharge plasma was produced by point to plane electrodes and high voltage DC. Light emission from the recombination process was observed visually. The light emission proper follow the electric field lines that occur between point and plane electrodes. By using saturation current, the mobilities of non-thermal electrons and ions have been obtained in argon gas and liquid with variation of density from 2,5 1021 to 2 1022 cm-3. In the case of ions, we found that the behaviour of the apparent mobility inversely proportional to the density or follow the Langevin variation law. For non-thermal electron, mobility decreases and approximately follows a variation of Langevin type until the density <= 0,25 the critical density of argon.

  6. Breakdown in helium in high-voltage open discharge with subnanosecond current front rise

    SciTech Connect

    Schweigert, I. V. Alexandrov, A. L.; Bokhan, P. A.; Zakrevskiy, Dm. E.

    2016-07-15

    Investigations of high-voltage open discharge in helium have shown a possibility of generation of current pulses with subnanosecond front rise, due to ultra-fast breakdown development. The open discharge is ignited between two planar cathodes with mesh anode in the middle between them. For gas pressure 6 Torr and 20 kV applied voltage, the rate of current rise reaches 500 A/(cm{sup 2} ns) for current density 200 A/cm{sup 2} and more. The time of breakdown development was measured for different helium pressures and a kinetic model of breakdown in open discharge is presented, based on elementary reactions for electrons, ions and fast atoms. The model also includes various cathode emission processes due to cathode bombardment by ions, fast atoms, electrons and photons of resonant radiation with Doppler shift of frequency. It is shown, that the dominating emission processes depend on the evolution of the discharge voltage during the breakdown. In the simulations, two cases of voltage behavior were considered: (i) the voltage is kept constant during the breakdown; (ii) the voltage is reduced with the growth of current. For the first case, the exponentially growing current is maintained due to photoemission by the resonant photons with Doppler-shifted frequency. For the second case, the dominating factor of current growth is the secondary electron emission. In both cases, the subnanosecond rise of discharge current was obtained. Also the effect of gas pressure on breakdown development was considered. It was found that for 20 Torr gas pressure the time of current rise decreases to 0.1 ns, which is in agreement with experimental data.

  7. A powerful electrohydrodynamic flow generated by a high-frequency dielectric barrier discharge in a gas

    NASA Astrophysics Data System (ADS)

    Nebogatkin, S. V.; Rebrov, I. E.; Khomich, V. Yu.; Yamshchikov, V. A.

    2016-01-01

    Theoretical and experimental studies of an electrohydrodynamic flow induced by a high-frequency dielectric barrier discharge distributed over a dielectric surface in a gas have been conducted. Dependences of the ion current, the gas flow velocity, and the spatial distributions thereof on the parameters of the power supply of the plasma ion emitter and an external electric field determined by the collector grid voltage have been described.

  8. High-voltage electrode optimization towards uniform surface treatment by a pulsed volume discharge

    NASA Astrophysics Data System (ADS)

    Ponomarev, A. V.; Pedos, M. S.; Scherbinin, S. V.; Mamontov, Y. I.; Ponomarev, S. V.

    2015-11-01

    In this study, the shape and material of the high-voltage electrode of an atmospheric pressure plasma generation system were optimised. The research was performed with the goal of achieving maximum uniformity of plasma treatment of the surface of the low-voltage electrode with a diameter of 100 mm. In order to generate low-temperature plasma with the volume of roughly 1 cubic decimetre, a pulsed volume discharge was used initiated with a corona discharge. The uniformity of the plasma in the region of the low-voltage electrode was assessed using a system for measuring the distribution of discharge current density. The system's low-voltage electrode - collector - was a disc of 100 mm in diameter, the conducting surface of which was divided into 64 radially located segments of equal surface area. The current at each segment was registered by a high-speed measuring system controlled by an ARM™-based 32-bit microcontroller. To facilitate the interpretation of results obtained, a computer program was developed to visualise the results. The program provides a 3D image of the current density distribution on the surface of the low-voltage electrode. Based on the results obtained an optimum shape for a high-voltage electrode was determined. Uniformity of the distribution of discharge current density in relation to distance between electrodes was studied. It was proven that the level of non-uniformity of current density distribution depends on the size of the gap between electrodes. Experiments indicated that it is advantageous to use graphite felt VGN-6 (Russian abbreviation) as the material of the high-voltage electrode's emitting surface.

  9. A powerful electrohydrodynamic flow generated by a high-frequency dielectric barrier discharge in a gas

    SciTech Connect

    Nebogatkin, S. V.; Rebrov, I. E.; Khomich, V. Yu.; Yamshchikov, V. A.

    2016-01-15

    Theoretical and experimental studies of an electrohydrodynamic flow induced by a high-frequency dielectric barrier discharge distributed over a dielectric surface in a gas have been conducted. Dependences of the ion current, the gas flow velocity, and the spatial distributions thereof on the parameters of the power supply of the plasma ion emitter and an external electric field determined by the collector grid voltage have been described.

  10. User Friendly Processing of Sediment CT Data: Software and Application in High Resolution Non-Destructive Sediment Core Data Sets

    NASA Astrophysics Data System (ADS)

    Reilly, B. T.; Stoner, J. S.; Wiest, J.; Abbott, M. B.; Francus, P.; Lapointe, F.

    2015-12-01

    Computed Tomography (CT) of sediment cores allow for high resolution images, three dimensional volumes, and down core profiles, generated through the attenuation of X-rays as a function of density and atomic number. When using a medical CT-Scanner, these quantitative data are stored in pixels using the Hounsfield scale, which are relative to the attenuation of X-rays in water and air at standard temperature and pressure. Here we present MATLAB based software specifically designed for sedimentary applications with a user friendly graphical interface to process DICOM files and stitch overlapping CT scans. For visualization, the software allows easy generation of core slice images with grayscale and false color relative to a user defined Hounsfield number range. For comparison to other high resolution non-destructive methods, down core Hounsfield number profiles are extracted using a method robust to coring imperfections, like deformation, bowing, gaps, and gas expansion. We demonstrate the usefulness of this technique with lacustrine sediment cores from the Western United States and Canadian High Arctic, including Fish Lake, Oregon, and Sawtooth Lake, Ellesmere Island. These sites represent two different depositional environments and provide examples for a variety of common coring defects and lithologies. The Hounsfield profiles and images can be used in combination with other high resolution data sets, including sediment magnetic parameters, XRF core scans and many other types of data, to provide unique insights into how lithology influences paleoenvironmental and paleomagnetic records and their interpretations.

  11. Arcing and discharges in high-voltage subsystems of Space Station

    NASA Technical Reports Server (NTRS)

    Singh, N.

    1988-01-01

    Arcing and other types of electrical discharges are likely to occur in high-voltage subsystems of the Space Station. Results from ground and space experiments on the arcing of solar cell arrays are briefly reviewed, showing that the arcing occurs when the conducting interconnects in the arrays are at negative potential above a threshold, which decreases with the increasing plasma density. Furthermore, above the threshold voltages the arcing rate increases with the plasma density. At the expected operating voltages (approximately 200 V) in the solar array for the space station, arcing is expected to occur even in the ambient ionospheric plasma. If the ionization of the contaminants increases the plasma density near the high-voltage systems, the adverse effects of arcing on the solar arrays and the space station are likely to be enhanced, In addition to arcing other discharge processes are likely to occur in high-voltage subsystems. For example, Paschen discharge is likely to occur when the neutral density N sub n greater that 10 to the 12th cu cm, the corresponding neutral pressure P greater than 3 x 10 to the -5 Torr.

  12. High-voltage nanosecond pulses in a low-pressure radio-frequency discharge.

    PubMed

    Pustylnik, M Y; Hou, L; Ivlev, A V; Vasilyak, L M; Couëdel, L; Thomas, H M; Morfill, G E; Fortov, V E

    2013-06-01

    An influence of a high-voltage (3-17 kV) 20 ns pulse on a weakly-ionized low-pressure (0.1-10 Pa) capacitively coupled radiofrequency (RF) argon plasma is studied experimentally. The plasma evolution after pulse exhibits two characteristic regimes: a bright flash, occurring within 100 ns after the pulse (when the discharge emission increases by 2-3 orders of magnitude over the steady-state level), and a dark phase, lasting a few hundreds μs (when the intensity of the discharge emission drops significantly below the steady-state level). The electron density increases during the flash and remains very large at the dark phase. 1D3V particle-in-cell simulations qualitatively reproduce both regimes and allow for detailed analysis of the underlying mechanisms. It is found that the high-voltage nanosecond pulse is capable of removing a significant fraction of plasma electrons out of the discharge gap, and that the flash is the result of the excitation of gas atoms, triggered by residual electrons accelerated in the electric field of immobile bulk ions. The secondary emission from the electrodes due to vacuum UV radiation plays an important role at this stage. High-density plasma generated during the flash provides efficient screening of the RF field (which sustains the steady-state plasma). This leads to the electron cooling and, hence, onset of the dark phase.

  13. Review of electric discharge microplasmas generated in highly fluctuating fluids: Characteristics and application to nanomaterials synthesis

    SciTech Connect

    Stauss, Sven Terashima, Kazuo; Muneoka, Hitoshi; Urabe, Keiichiro

    2015-05-15

    Plasma-based fabrication of novel nanomaterials and nanostructures is indispensible for the development of next-generation electronic devices and for green energy applications. In particular, controlling the interactions between plasmas and materials interfaces, and the plasma fluctuations, is crucial for further development of plasma-based processes and bottom-up growth of nanomaterials. Electric discharge microplasmas generated in supercritical fluids represent a special class of high-pressure plasmas, where fluctuations on the molecular scale influence the discharge properties and the possible bottom-up growth of nanomaterials. This review discusses an anomaly observed for direct current microplasmas generated near the critical point, a local decrease in the breakdown voltage. This anomalous behavior is suggested to be caused by the concomitant decrease of the ionization potential due to the formation of clusters near the critical point, and the formation of extended electron mean free paths caused by the high-density fluctuation near the critical point. It is also shown that in the case of dielectric barrier microdischarges generated close to the critical point, the high-density fluctuation of the supercritical fluid persists. The final part of the review discusses the application of discharges generated in supercritical fluids to synthesis of nanomaterials, in particular, molecular diamond—so-called diamondoids—by microplasmas generated inside conventional batch-type and continuous flow microreactors.

  14. Sedimentary infill dynamic and associated trace element temporal trends in a dam reservoir: evidence of high polluted sediment storage after major flood events (Upper Loire river, France)

    NASA Astrophysics Data System (ADS)

    Dhivert, Elie; Grosbois, Cécile; Desmet, Marc; Coynel, Alexandra; Lefevre, Irène

    2014-05-01

    The Villerest Dam, was built in the Upper Loire river during the early 1980's, 80 km downstream of the most important industrial and coal mining area of the basin. It constitutes an important trap of sediments and associated pollutants since its operation in 1984. A 154 cm long core was sampled in 2010, in a former channel levee in the reservoir. This study highlights (i) important sediment accumulation rate during flood events in the reservoir, (ii) the influence of high discharge events in sedimentary infill in terms of stored sediment quality, geochemical markers and anthropogenic sources influence. Coupling sedimentological analyses and 137Cs datation allows to define 3 sedimentary units in this core. The deepest unit corresponds to transported and/or reworked fluvial sediments undated, the uppermost unit to lacustrine sediments post 1984 and between, to a transition unit resulting from the reservoir water infilling in 1983-1984. In addition, the upper unit shows 3 turbiditic-like layers (of 6, 20 and 13 cm thick) corresponding respectively to 1996, 2003 and 2008 major flood events (more than 20-year flood average daily outflow). These flood sequences result from underflow sedimentary inputs and contribute to 43% of the 151 kg/m² of accumulated sediments since 1984. Over the 1984-2010 period, sediments show a general contamination decrease but major flood events transport highly impacted sediments (highest enrichment factor > 20 for Hg and >10 for Cd and Bi), never reached during interflood periods. During these events, trace elements (TE) are mostly associated to organic fraction and clays. Rich-TE solid sources appear to be only solicited, and/or severely amplified, during important flood events over the recording period. In addition to these pollutants inputs, floods also bring an important detrital fraction, diluting anthropogenic TE signal. In details, flood deposits show variations of sedimentological and geochemical signals delimiting two distinct

  15. A Ti-V-based bcc phase alloy for use as metal hydride electrode with high discharge capacity.

    PubMed

    Yu, X B; Wu, Z; Xia, B J; Xu, N X

    2004-07-08

    The electrochemical characteristics of single bcc phase Ti-30V-15Cr-15Mn alloy were investigated. It was demonstrated that the single bcc phase alloy has high electrochemical discharge performance at high temperature. Its discharge capacity is closely related with temperature and discharge current. The first discharge capacities of 580-814 mAh g(-1) of the alloy powder were obtained at discharge current of 45-10 mA g(-1) in 6 M KOH solution at 353 K. Although the electrochemical cycle life of the alloy is unsatisfactory at present, it opens up prospects for developing a new hydrogen storage alloy with high hydrogen capacity for use as high performance metal hydride electrodes in rechargeable Ni-MH battery.

  16. Demonstration of high performance negative central magnetic shear discharges on the DIII-D tokamak

    SciTech Connect

    Rice, B.W.; Burrell, K.H.; Lao, L.L.

    1996-01-01

    Reliable operation of discharges with negative central magnetic shear has led to significant increases in plasma performance and reactivity in both low confinement, L-mode, and high confinement, H-mode, regimes in the DIII-D tokamak. Using neutral beam injection early in the initial current ramp, a large range of negative shear discharges have been produced with durations lasting up to 3.2 s. The total non- inductive current (beam plus bootstrap) ranges from 50% to 80% in these discharges. In the region of shear reversal, significant peaking of the toroidal rotation [f{sub {phi}} {approx} 30-60 kHz] and ion temperature [T{sub i}(0) {approx} 15-22 keV] profiles are observed. In high power discharges with an L-mode edge, peaked density profiles are also observed. Confinement enhancement factors up to H {equivalent_to} {tau}{sub E}/{tau}{sub ITER-89P} {approx} 2.5 with an L-mode edge, and H {approx} 3.3 in an Edge Localized Mode (ELM)-free H-mode, are obtained. Transport analysis shows both ion thermal diffusivity and particle diffusivity to be near or below standard neoclassical values in the core. Large pressure peaking in L- mode leads to high disruptivity with {Beta}{sub N} {equivalent_to} {Beta}{sub T}/(I/aB) {<=} 2.3, while broader pressure profiles in H- mode gives low disruptivity with {Beta}{sub N} {<=} 4.2.

  17. The Fastest Flights in Nature: High-Speed Spore Discharge Mechanisms among Fungi

    PubMed Central

    Yafetto, Levi; Carroll, Loran; Cui, Yunluan; Davis, Diana J.; Fischer, Mark W. F.; Henterly, Andrew C.; Kessler, Jordan D.; Kilroy, Hayley A.; Shidler, Jacob B.; Stolze-Rybczynski, Jessica L.; Sugawara, Zachary; Money, Nicholas P.

    2008-01-01

    Background A variety of spore discharge processes have evolved among the fungi. Those with the longest ranges are powered by hydrostatic pressure and include “squirt guns” that are most common in the Ascomycota and Zygomycota. In these fungi, fluid-filled stalks that support single spores or spore-filled sporangia, or cells called asci that contain multiple spores, are pressurized by osmosis. Because spores are discharged at such high speeds, most of the information on launch processes from previous studies has been inferred from mathematical models and is subject to a number of errors. Methodology/Principal Findings In this study, we have used ultra-high-speed video cameras running at maximum frame rates of 250,000 fps to analyze the entire launch process in four species of fungi that grow on the dung of herbivores. For the first time we have direct measurements of launch speeds and empirical estimates of acceleration in these fungi. Launch speeds ranged from 2 to 25 m s−1 and corresponding accelerations of 20,000 to 180,000 g propelled spores over distances of up to 2.5 meters. In addition, quantitative spectroscopic methods were used to identify the organic and inorganic osmolytes responsible for generating the turgor pressures that drive spore discharge. Conclusions/Significance The new video data allowed us to test different models for the effect of viscous drag and identify errors in the previous approaches to modeling spore motion. The spectroscopic data show that high speed spore discharge mechanisms in fungi are powered by the same levels of turgor pressure that are characteristic of fungal hyphae and do not require any special mechanisms of osmolyte accumulation. PMID:18797504

  18. Real gas effects on charging and discharging processes of high pressure pneumatics

    NASA Astrophysics Data System (ADS)

    Luo, Yuxi; Wang, Xuanyin; Ge, Yaozheng

    2013-01-01

    The high pressure pneumatic system has been applied to special industries. It may cause errors when we analyze high pressure pneumatics under ideal gas assumption. However, the real gas effect on the performances of high pressure pneumatics is seldom investigated. In this paper, the real gas effects on air enthalpy and internal energy are estimated firstly to study the real gas effect on the energy conversion. Under ideal gas assumption, enthalpy and internal energy are solely related to air temperature. The estimation result indicates that the pressure enthalpy and pressure internal energy of real pneumatic air obviously decrease the values of enthalpy and internal energy for high pressure pneumatics, and the values of pressure enthalpy and pressure internal energy are close. Based on the relationship among pressure, enthalpy and internal energy, the real gas effects on charging and discharging processes of high pressure pneumatics are estimated, which indicates that the real gas effect accelerates the temperature and pressure decreasing rates during discharging process, and decelerates their increasing rates during charging process. According to the above analysis, and for the inconvenience in building the simulation model for real gas and the difficulty of measuring the detail thermal capacities of pneumatics, a method to compensate the real gas effect under ideal gas assumption is proposed by modulating the thermal capacity of the pneumatic container in simulation. The experiments of switching expansion reduction (SER) for high pressure pneumatics are used to verify this compensating method. SER includes the discharging process of supply tanks and the charging process of expansion tank. The simulated and experimental results of SER are highly consistent. The proposed compensation method provides a convenient way to obtain more realistic simulation results for high pressure pneumatics.

  19. Dependence of recycling and edge profiles on lithium evaporation in high triangularity, high performance NSTX H-mode discharges.

    DOE PAGES

    Maingi, R.; Osborne, T. H.; Bell, M. G.; ...

    2014-11-04

    In this paper, the effects of a pre-discharge lithium evaporation variation on highly shaped discharges in the National Spherical Torus Experiment (NSTX) are documented. Lithium wall conditioning (‘dose’) was routinely applied onto graphite plasma facing components between discharges in NSTX, partly to reduce recycling. Reduced Dα emission from the lower and upper divertor and center stack was observed, as well as reduced midplane neutral pressure; the magnitude of reduction increased with the pre-discharge lithium dose. Improved energy confinement, both raw τE and H-factor normalized to scalings, with increasing lithium dose was also observed. At the highest doses, we also observedmore » elimination of edge-localized modes. The midplane edge plasma profiles were dramatically altered, comparable to lithium dose scans at lower shaping, where the strike point was farther from the lithium deposition centroid. As a result, this indicates that the benefits of lithium conditioning should apply to the highly shaped plasmas planned in NSTX-U.« less

  20. Dependence of recycling and edge profiles on lithium evaporation in high triangularity, high performance NSTX H-mode discharges.

    SciTech Connect

    Maingi, R.; Osborne, T. H.; Bell, M. G.; Bell, R. E.; Boyle, D. P.; Canik, J. M.; Diallo, A.; Kaita, R.; Kaye, S. M.; Kugel, H. W.; LeBlanc, B. P.; Sabbagh, S. A.; Skinner, C. H.; Soukhanovskii, V. A.

    2014-11-04

    In this paper, the effects of a pre-discharge lithium evaporation variation on highly shaped discharges in the National Spherical Torus Experiment (NSTX) are documented. Lithium wall conditioning (‘dose’) was routinely applied onto graphite plasma facing components between discharges in NSTX, partly to reduce recycling. Reduced Dα emission from the lower and upper divertor and center stack was observed, as well as reduced midplane neutral pressure; the magnitude of reduction increased with the pre-discharge lithium dose. Improved energy confinement, both raw τE and H-factor normalized to scalings, with increasing lithium dose was also observed. At the highest doses, we also observed elimination of edge-localized modes. The midplane edge plasma profiles were dramatically altered, comparable to lithium dose scans at lower shaping, where the strike point was farther from the lithium deposition centroid. As a result, this indicates that the benefits of lithium conditioning should apply to the highly shaped plasmas planned in NSTX-U.

  1. Dependence of Recycling and Edge Profiles on Lithium Evaporation in High Triangularity, High Performance NSTX H-mode Discharges

    SciTech Connect

    Maingi, R; Osborne, T H; Bell, M G; Bell, R E; Boyle, D P; Canik, J M; Dialla, A; Kaita, R; Kaye, S M; Kugel, H W; LeBlanc, B P; Sabbagh, S A; Skinner, C H; Soukhanovskii, V A

    2014-04-01

    In this paper, the effects of a pre-discharge lithium evaporation scan on highly shaped discharges in the National Spherical Torus Experiment (NSTX) are documented. Lithium wall conditioning ('dose') was routinely applied onto graphite plasma facing components between discharges in NSTX, partly to reduce recycling. Reduced D[sub]α emission from the lower and upper divertor and center stack was observed, as well as reduced midplane neutral pressure; the magnitude of reduction increased with the pre-discharge lithium dose. Improved energy confinement, both raw τ[sub]E and H-factor normalized to scalings, with increasing lithium dose was also observed. At the highest doses, we also observed elimination of edge-localized modes. The midplane edge plasma profiles were dramatically altered, comparable to lithium dose scans at lower shaping, where the strike point was farther from the lithium deposition centroid. This indicates that the benefits of lithium conditioning should apply to the highly shaped plasmas planned in NSTX-U.

  2. Application of a regional procedure to assess the risk to fish from high sediment concentrations.

    PubMed

    Watts, Carol D; Naden, Pamela S; Cooper, David M; Gannon, Beate

    2003-10-01

    Periods of high suspended sediment concentration in rivers can affect the behaviour, health and habitat of freshwater fish. A simple regional model relating daily mean suspended sediment concentration in rivers to flow and percentage of cropped and urban land has been applied to the Lower Swale, UK. The model uses a GIS catchment coverage of hydrological response units (HRUs) of area 5-8 km2, each of which is assumed hydrologically independent and drains to an identified river reach. The sediment delivery properties of each HRU are a function of its land use characteristics determined from existing databases, and hydrological conditions determined from effective rainfall measurements. Daily mean suspended sediment concentrations for each river reach were derived by cumulating simulated HRU flows and sediment loads down successive reaches. A map of the modelled 10% quantile sediment concentrations is presented for both HRUs and river reaches. The map is substantially different from existing erosion risk maps because the delivery model is driven by flow in addition to land use, rather than by soil type. Frequency curves showing the exceedance probability of mean simulated sediment concentrations over 1-6-day durations have been derived using peaks-over-threshold techniques. Maps of the risk of harm to fish, based on the probability of 1- and 4-day sediment concentrations exceeding 80 mg l(-1), are presented. Such maps can be used to assess the impact of sediment on fish and for setting appropriate river water quality objectives.

  3. Coexisting sea-based and land-based sources of contamination by PAHs in the continental shelf sediments of Coatzacoalcos River discharge area (Gulf of Mexico).

    PubMed

    Ruiz-Fernández, Ana Carolina; Portela, Julián Mauricio Betancourt; Sericano, José Luis; Sanchez-Cabeza, Joan-Albert; Espinosa, Luisa Fernanda; Cardoso-Mohedano, José Gilberto; Pérez-Bernal, Libia Hascibe; Tinoco, Jesús Antonio Garay

    2016-02-01

    The oldest refinery and the major petrochemical complexes of Mexico are located in the lower reach of the Coatzacoalcos River, considered the most polluted coastal area of Mexico. A (210)Pb-dated sediment core, from the continental shelf of the Coatzacoalcos River, was studied to assess the contamination impact by the oil industry in the southern Gulf of Mexico. The sedimentary record showed the prevalence of petrogenic PAHs between 1950s and 1970s, a period during which waste discharges from the oil industry were not regulated. Later on, sediments exhibited higher contents of pyrogenic PAHs, attributed to the incineration of petrochemical industry wastes and recurrent wildfires in open dumpsites at the nearby swamps. The total concentration of the 16 EPA-priority PAHs indicated low levels of contamination (<100 ng g(-1)), except a peak value (>1000 ng g(-1)) during the late 1970s, most likely due to the major oil spill produced by the blowout of the Ixtoc-I offshore oil rig in deep waters of the southwestern Gulf of Mexico. Most of the PAH congeners did not show defined temporal trends but, according to a Factor Analysis, apparently have a common origin, probably waste released from the nearby oil industry. The only exceptions were the pyrogenic benzo(b)fluoranthene and benzo(a)pyrene, and the biogenic perylene, that showed increasing concentration trends with time, which we attributed to erosional input of contaminated soil from the catchment area. Our study confirmed chronic oil contamination in the Coatzacoalcos River coastal area from land based sources for more than 60 years (since 1950s). Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Glacial freshwater discharge events recorded by authigenic neodymium isotopes in sediments from the Mendeleev Ridge, western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Jang, Kwangchul; Han, Yeongcheol; Huh, Youngsook; Nam, Seung-Il; Stein, Ruediger; Mackensen, Andreas; Matthiessen, Jens

    2013-05-01

    The freshwater budget of the Arctic Ocean is a key component governing the deep water formation in the North Atlantic and the global climate system. We analyzed the isotopic composition of neodymium (ɛNd) in authigenic phases of marine sediments on the Mendeleev Ridge in the western Arctic Ocean spanning an estimated time interval from present to about 75 ka BP. This continuous record was used to reconstruct the ɛNd of the polar deep water (PDW) and changes in freshwater sources to the PDW through time. Three deviations in ɛNd from a long term average of -10.2 were identified at estimated 46-51, 35-39 and 13-21 ka BP. The estimated 46-51 ka BP event can be traced to bursting of ice-dammed lakes accompanying the collapse of the Barents-Kara Ice Sheet, which would have released radiogenic Nd to the eastern Arctic Ocean. The cyclonic surface circulation in the eastern Arctic Ocean must have been stronger than at present for the event to be recorded on the Mendeleev Ridge. For the 35-39 and 13-21 ka BP events, it is likely that the Laurentide Ice Sheet (LIS) supplied the unradiogenic freshwater. The configuration of the anticyclonic circulation in the western Arctic was probably similar to today or expanded eastward. Our simple mass balance calculations suggest that large amounts of freshwater were released but due to significant deep water formation within the Arctic Ocean, the effect on the formation of NADW was probably minor.

  5. Hollow cathode operation at high discharge currents. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Friedly, Verlin Joe

    1990-01-01

    It was shown that ion thruster hollow cathode operation at high discharge current levels can induce reduced thruster lifetimes by causing cathode insert overheating and/or erosion of surfaces located downstream of the cathode. The erosion problem has been particularly baffling because the mechanism by which it occurs has not been understood. The experimental investigation described reveals the energies of the ions produced close to the cathode orifice can be several times the anode-to-cathode potential difference generally considered available to accelerate them. These energies (of order 50 eV) are sufficient to cause the observed erosion rates. The effects of discharge current (to 60 A), magnetic field configuration and the cathode flowrate, orifice diameter and insert design on the energies and current densities of these jet ions are examined. A model describing the mechanism by which the high energy ions could be produced when the anode-cathode potential difference is insufficient is proposed. The effects of discharge current on cathode temperature and internal pressure are also examined experimentally and described phenomenologically.

  6. Seasonal variation in phosphorus concentration-discharge hysteresis inferred from high-frequency in situ monitoring

    NASA Astrophysics Data System (ADS)

    Bieroza, M. Z.; Heathwaite, A. L.

    2015-05-01

    High-resolution in situ total phosphorus (TP), total reactive phosphorus (TRP) and turbidity (TURB) time series are presented for a groundwater-dominated agricultural catchment. Meta-analysis of concentration-discharge (c-q) intra-storm signatures for 61 storm events revealed dominant hysteretic patterns with similar frequency of anti-clockwise and clockwise responses; different determinands (TP, TRP, TURB) behaved similarly. We found that the c-q loop direction is controlled by seasonally variable flow discharge and temperature whereas the magnitude is controlled by antecedent rainfall. Anti-clockwise storm events showed lower flow discharge and higher temperature compared to clockwise events. Hydrological controls were more important for clockwise events and TP and TURB responses, whereas in-stream biogeochemical controls were important for anti-clockwise storm events and TRP responses. Based on the best predictors of the direction of the hysteresis loops, we calibrated and validated a simple fuzzy logic inference model (FIS) to determine likely direction of the c-q responses. We show that seasonal and inter-storm succession in clockwise and anti-clockwise responses corroborates the transition in P transport from a chemostatic to an episodic regime. Our work delivers new insights for the evidence base on the complexity of phosphorus dynamics. We show the critical value of high-frequency in situ observations in advancing understanding of freshwater biogeochemical processes.

  7. The Effect of High-Pressure Arc Discharge Plasma on the Degradation of Chlorpyrifos

    NASA Astrophysics Data System (ADS)

    Yin, Meiqiang; Ma, Tengcai; Zhang, Jialiang; Huang, Mingjing; Ma, Buzhou

    2006-11-01

    A study is conducted to determine the effect of a kind of high-pressure arc discharge plasma on the degradation rate and kinetic equations of chlorpyrifos in different solvents with the treated times and concentrations as variables. The degradation rate was sorted in different solvents as water, methanol, acetone and then acetoacetate. The tendencies of the degradation rates with treated time in water and methanol were optimally fitted with first-order kinetics equations while those in acetone and acetoacetate were fitted with zeroth-order kinetics equations. The difference was attributed to the stronger polarity of water and methanol. The weak correlation of the degradation rates with time was mainly because the high-temperature of the arc discharge tube and the chemically-active species generated by the discharge. The degradation half-life was extended with increase of chlorpyrifos concentration. A degradation half-life less than 3 min was achieved for chlorpyrifos in water and methanol when the initial concentration was less than 300 μg/ml.

  8. Transfer of radionuclides from high polluted bottom sediments to marine organisms through benthic food chain in post Fukushima period

    NASA Astrophysics Data System (ADS)

    Bezhenar, Roman; Jung, Kyung Tae; Maderich, Vladimir; Willemsen, Stefan; de With, Govert; Qiao, Fangli

    2015-04-01

    A catastrophic earthquake and tsunami occurred on March 11, 2011 and severely damaged the Fukushima Daiichi Nuclear Power Plant (FDNPP) that resulted in an uncontrolled release of radioactivity into air and ocean. Around 80% of the radioactivity released due to the FDNPP accident in March-April 2011 was either directly discharged into the ocean or deposited onto the ocean surface from the atmosphere. A large amount of long-lived radionuclides (mainly Cs-137) were released into the environment. The concentration of radionuclides in the ocean reached a maximum in mid-April of 2011, and then gradually decreased. From 2011 the concentration of Cs-137 in water essentially fell except the area around the FDNPP where leaks of contaminated water are continued. However, in the bottom sediment high concentrations of Cs-137 were found in the first months after the accident and slowly decreased with time. Therefore, it should be expected that a time delay is found of sediment-bound radionuclides in marine organisms. For the modeling of radionuclide transfer from highly polluted bottom sediments to marine organisms the dynamical food chain model BURN-POSEIDON (Heling et al, 2002; Maderich et al., 2014) was extended. In this model marine organisms are grouped into a limited number of classes based on their trophic level and type of species. These include: phytoplankton, zooplankton, fishes (two types: piscivorous and non-piscivorous), crustaceans, and molluscs for pelagic food chain and bottom sediment invertebrates, demersal fishes and bottom predators for benthic food chain and whole water column predators feeding by pelagial and benthic fishes. Bottom invertebrates consume organic parts of bottom sediments with adsorbed radionuclides which then migrate through the food chain. All organisms take radionuclides directly from water as well as via food. In fishes where radioactivity is not homogeneously distributed over all tissues of the organism, it is assumed that radionuclide

  9. Effect of Doppler-shifted photons on subnanosecond breakdown in high-voltage pulse discharge

    SciTech Connect

    Schweigert, I. V.; Alexandrov, A. L.; Zakrevsky, Dm. E.; Bokhan, P. A.

    2016-06-08

    The experiments in high-voltage open discharge in helium [1, 2] showed a controlled current growth rate of 500 A/(cm{sup 2}ns) for an applied voltage of 20 kV and gas pressure of 6 Torr. A kinetic model of the subnanosecond breakdown is developed to analyze the mechanism of current growth, which takes into account the kinetics of electrons, ions, fast atoms and photons with a Doppler shift (DS). DS photons appear in discharge due to collisions of heavy particles. Using particle in cell simulations, we show a critical role of DS photons in the electron emission from the cathode during the breakdown. Our experimental and calculation results show a decrease of the breakdown time with increasing gas pressure from 3 Torr to 16 Torr.

  10. Experimental observation of standing wave effect in low-pressure very-high-frequency capacitive discharges

    SciTech Connect

    Liu, Yong-Xin; Gao, Fei; Liu, Jia; Wang, You-Nian

    2014-07-28

    Radial uniformity measurements of plasma density were carried out by using a floating double probe in a cylindrical (21 cm in electrode diameter) capacitive discharge reactor driven over a wide range of frequencies (27–220 MHz). At low rf power, a multiple-node structure of standing wave effect was observed at 130 MHz. The secondary density peak caused by the standing wave effect became pronounced and shifts toward the axis as the driving frequency further to increase, indicative of a much more shortened standing-wave wavelength. With increasing rf power, the secondary density peak shift toward the radial edge, namely, the standing-wave wavelength was increased, in good qualitative agreement with the previous theory and simulation results. At higher pressures and high frequencies, the rf power was primarily deposited at the periphery of the electrode, due to the fact that the waves were strongly damped as they propagated from the discharge edge into the center.

  11. Dissociation of carbon-dioxide at high-pressure using nanosecond-pulsed dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Yong, Taemin; Cappelli, Mark

    2016-10-01

    This study investigates the efficiency of the conversion of CO2 into CO and O2 using nanosecond repetitively pulsed discharges in a high pressure reactor capable of exceeding the supercritical point. The electrode configuration consists of a pin-to-plane geometry with the plane electrode covered by dielectric material (SiO2) . The products of CO2 splitting are measured using mass spectrometry. The energy efficiency is determined for a range of residence times, pulse frequency and energy, and reactor pressures. The extent of CO2 conversion is found to be dependent on the duration of the processing time, reaching an equilibrium level that is linearly-dependent on the discharge pulse energy. The results are compared with our previous experiment conducted in the absence of the dielectric layer.

  12. C3 as the dominant carbon cluster in high pressure discharges in graphite hollow cathodes

    NASA Astrophysics Data System (ADS)

    Janjua, Sohail Ahmad; Ahmad, Mashkoor; Khan, Sabih-ud-Din; Khalid, Rahila; Aleem, Abid; Ahmad, Shoaib

    2007-03-01

    Results are presented that have been obtained while operating the graphite hollow cathode duoplasmatron ion source in dual mode under constant discharge current. This dual mode operation enabled us to obtain the mass and emission spectra simultaneously. In mass spectra C3 is the main feature but C4 and C5 are also prominent, whereas in emission spectra C2 is also there and its presence shows that it is in an excited state rather than in an ionic state. These facts provide evidence that C3 is produced due to the regeneration of a soot forming sequence and leave it in ionic state. C3 is a stable molecule and the only dominant species among the carbon clusters that survives in a regenerative sooting environment at high-pressure discharges.

  13. Rapid Fabrication of High-Aspect-Ratio Platinum Microprobes by Electrochemical Discharge Etching

    PubMed Central

    Zhang, Min; Lian, Xiangwei

    2016-01-01

    Using a graphite crucible as the counter-electrode, platinum microprobes with an aspect ratio of 30 and a tip apex radius less than 100 nm were fabricated by an electrochemical discharge etching process. The “neck-in” structure on the platinum wire induced by the electrical discharge at the liquid-air interface plays a key role in the probe shape and the voltage of the following pure electrochemical etching determines the final probe aspect ratio and tip dimensions. Moreover, the shape and diameter of the graphite counter-electrode also exhibit a significant effect on the realization of high-aspect-ratio probes. The method presented here provides a simple and rapid approach to the fabrication of micro-tools for micromachining, micromanipulation, as well as biomedical applications. PMID:28773358

  14. High-k shallow traps observed by charge pumping with varying discharging times

    SciTech Connect

    Ho, Szu-Han; Chen, Ching-En; Tseng, Tseung-Yuen; Chang, Ting-Chang; Lu, Ying-Hsin; Lo, Wen-Hung; Tsai, Jyun-Yu; Liu, Kuan-Ju; Wang, Bin-Wei; Cao, Xi-Xin; Chen, Hua-Mao; Cheng, Osbert; Huang, Cheng-Tung; Chen, Tsai-Fu

    2013-11-07

    In this paper, we investigate the influence of falling time and base level time on high-k bulk shallow traps measured by charge pumping technique in n-channel metal-oxide-semiconductor field-effect transistors with HfO{sub 2}/metal gate stacks. N{sub T}-V{sub high} {sub level} characteristic curves with different duty ratios indicate that the electron detrapping time dominates the value of N{sub T} for extra contribution of I{sub cp} traps. N{sub T} is the number of traps, and I{sub cp} is charge pumping current. By fitting discharge formula at different temperatures, the results show that extra contribution of I{sub cp} traps at high voltage are in fact high-k bulk shallow traps. This is also verified through a comparison of different interlayer thicknesses and different Ti{sub x}N{sub 1−x} metal gate concentrations. Next, N{sub T}-V{sub high} {sub level} characteristic curves with different falling times (t{sub falling} {sub time}) and base level times (t{sub base} {sub level}) show that extra contribution of I{sub cp} traps decrease with an increase in t{sub falling} {sub time}. By fitting discharge formula for different t{sub falling} {sub time}, the results show that electrons trapped in high-k bulk shallow traps first discharge to the channel and then to source and drain during t{sub falling} {sub time}. This current cannot be measured by the charge pumping technique. Subsequent measurements of N{sub T} by charge pumping technique at t{sub base} {sub level} reveal a remainder of electrons trapped in high-k bulk shallow traps.

  15. An ionization region model of the reactive Ar/O2 high power impulse magnetron sputtering discharge

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. T.; Lundin, D.; Brenning, N.; Raadu, M. A.; Huo, Chunqing; Minea, T. M.

    2016-12-01

    A new reactive ionization region model (R-IRM) is developed to describe the reactive Ar/O2 high power impulse magnetron sputtering (HiPIMS) discharge with a titanium target. It is then applied to study the temporal behavior of the discharge plasma parameters such as electron density, the neutral and ion composition, the ionization fraction of the sputtered vapor, the oxygen dissociation fraction, and the composition of the discharge current. We study and compare the discharge properties when the discharge is operated in the two well established operating modes, the metal mode and the poisoned mode. Experimentally, it is found that in the metal mode the discharge current waveform displays a typical non-reactive evolution, while in the poisoned mode the discharge current waveform becomes distinctly triangular and the current increases significantly. Using the R-IRM we explore the current increase and find that when the discharge is operated in the metal mode Ar+ and Ti+ -ions contribute most significantly (roughly equal amounts) to the discharge current while in the poisoned mode the Ar+ -ions contribute most significantly to the discharge current and the contribution of O+ -ions, Ti+ -ions, and secondary electron emission is much smaller. Furthermore, we find that recycling of atoms coming from the target, that are subsequently ionized, is required for the current generation in both modes of operation. From the R-IRM results it is found that in the metal mode self-sputter recycling dominates and in the poisoned mode working gas recycling dominates. We also show that working gas recycling can lead to very high discharge currents but never to a runaway. It is concluded that the dominating type of recycling determines the discharge current waveform.

  16. Shelfal sediment transport by undercurrents forces turbidity current activity during high sea level, Chile continental margin

    NASA Astrophysics Data System (ADS)

    Bernhardt, Anne; Hebbeln, Dierk; Regenberg, Marcus; Lückge, Andreas; Strecker, Manfred. R.

    2016-04-01

    Understanding the links between terrigenous sediment supply and marine transport and depositional processes along tectonically active margins is essential to decipher turbidite successions as potential archives of climatic and seismic forcings and to comprehend timing and quantity of marine clastic deposition. Sequence stratigraphic models predict coarse-grained terrigenous sediment delivery to deep-marine sites mainly during sea-level fall and lowstand. Marine clastic deposition during periods of transgression and highstand has been attributed to the continued geomorphic connectivity between terrestrial sediment sources and marine sinks (e.g., rivers connected to submarine canyons) often facilitated by narrow shelves, high sediment supply causing delta migration to the shelf edge, and/or abrupt increases in sediment supply due to climatic variability or catastrophic events. To decipher the controls on Holocene highstand turbidite deposition, we analyzed twelve sediment cores of spatially disparate, coeval Holocene turbidite systems along the Chile margin (29-40°S) with changing climatic and geomorphic characteristics but uniform changes of sea level. Intraslope basins in north-central Chile (29-33°S) offshore a narrow to absent shelf record a shut-off of turbidite activity during the Holocene. In contrast, core sites in south-central Chile (36-40°S) offshore a wide continental shelf have repeatedly experienced turbidite deposition during sea-level highstand conditions, even though most of the depocenters are not connected via canyons to sediment sources. The interplay of stable high sediment supply related to strong onshore precipitation in combination with a wide shelf, over which undercurrents move sediment towards the shelf edge, appears to control Holocene turbidite sedimentation and sediment export to the deep sea.

  17. Fowl play? Forensic environmental assessment of alleged discharge of highly contaminated effluent from a chicken slaughterhouse

    NASA Astrophysics Data System (ADS)

    Harvey, P.; Taylor, M. P.; Handley, H. K.

    2016-12-01

    Multiple lines of geochemical and biological evidence are applied to identify and fingerprint the nature and source of alleged contamination emanating from a chicken slaughterhouse on the urban fringe of Sydney, Australia. The slaughterhouse has a long history of alleged environmental misconduct. The impact of the facility on catchment source waters by the slaughterhouse has been the subject of controversy. The facility owner has persistently denied breach of their licence condition and maintains it is `a very environmentally conscious operation'. The disputed nature of the possible sources of discharges and its contaminants required a detailed forensic environmental assessment. Water samples collected from off-site discharge points associated with the facility show highly elevated concentrations of faecal coliforms (max 68,000 cfu), ammonia-N (51,000 µg/L), total nitrogen (98,000 µg/L) and phosphorous (32,000 µg/L). Upstream and adjacent watercourses were markedly less contaminated. Water discharge points associated with the slaughterhouse and natural catchment runoff were sampled for arsenic speciation, including assessment for the organoarsenic compound Roxarsone. Roxarsone is used as a chicken growth promoter. Water draining the slaughterhouse facility contained concentrations around 10 times local background levels. The Roxarsone compound was not detected in any waters, but inorganic arsenic, As(V), was present in all waters with the greatest concentrations in waters draining from the slaughterhouse. The environmental evidence was compiled over a series of discharges events and presented to the NSW EPA. Subsequent to receipt of the data supported by their own investigations, the NSW EPA mandated that the slaughterhouse be subject to a pollution reduction program. The efficacy of the pollution reduction program to stem the release of highly contaminated effluent is currently subject to ongoing investigation using a suite of water chemistry measures including

  18. Hydrodynamic modelling of transient cavities in fluids generated by high voltage spark discharges

    NASA Astrophysics Data System (ADS)

    Timoshkin, I. V.; Fouracre, R. A.; Given, M. J.; MacGregor, S. J.

    2006-11-01

    Application of a voltage pulse having a rise time of tens of nanoseconds to electrodes immersed in water results in streamer development and the formation of a highly conductive plasma channel between the electrodes. The electrical resistance of such channels decreases rapidly from a few ohms to a few tens of milliohms due to Joule heating resulting from the high current which flows through the plasma. The dynamics of the plasma resistance depend on the parameters of the discharge circuit and the medium in which the discharge takes place. The resistance of the channel reaches a minimum value approximately at the moment of the peak current for under-damped current oscillations. During the resistance collapse, the pressure inside the channel rises to several GPa, causing a rapid expansion of the channel which forms a cavity in the liquid resulting in a high power ultrasound pulse. The cavity expands to a maximum size which is dependent on the circuit driving the discharge and the properties of the plasma discharge channel. The cavity then collapses producing a second acoustic pulse. In this paper the dynamic resistance of the spark channel is described using a phenomenological model based on the plasma channel energy balance equation used by Braginskii. The model which links the hydrodynamic characteristics of the channel and the resulting cavity with the parameters of the electric driving circuit allows the development of the plasma channel and cavity to be predicted. The peak high-power ultrasound (HPU) pressures calculated using this approach are compared with the pressure values estimated by an analytical model which uses a constant value of the spark channel resistance derived from experimental data. Comparisons are also made with direct measurements of HPU output made using a Pinducer sensor. Although the model is based on a phenomenological description of the plasma channel dynamics and its resistance and requires the value of the spark constant, the results

  19. Sediment Pond Removal and Enhanced Designs

    EPA Pesticide Factsheets

    Sediment Pond Removal Considerations; Scheduling, Baseflow diversion, Dewatering provisions, Sediment handling, Potential to discharge sediment, Down‐gradient sediment control(s), Erosion control(s), Stream reconstruction, Riparian vegetation.

  20. The Sediment Yield of High Mountain Environment Watersheds: Strong Evidence of Transport Capacity Limitation

    NASA Astrophysics Data System (ADS)

    Micheletti, N.; Lane, S. N.; Lambiel, C.

    2015-12-01

    Alpine landscapes are likely to be particularly sensitive to climate change, because of: (1) the vulnerability of permafrost and glacial and nival processes to changes in atmospheric temperature and precipitation; (2) their history, which may have led to high rates of sediment production, and hence high rates of sediment supply; and (3) the steep slopes that may sustain sediment transport. Assessing the effects of climate change upon these processes over the timescale of recent rapid warming (i.e. decades) is difficult because of the lack of available data. Here, we use two unique data sources to assess the relative importance of these three processes for two high mountain basins (altitude range 2'000 to 3'500 m asl): (1) histories of surface change from the late 1950s, based upon construction of digital elevation models from archival imagery; and (2) a long term record, beginning in the early 1960s, of sediment export based upon the flushing of sediment from hydropower intakes. The two basins contain glaciers, rock glaciers, permafrost and the legacy of past glacial activity. These data show that the level of geomorphic activity within both basins is orders of magnitude higher than the volume of sediment exported from the basins. Decadal scale changes in elevation and surface displacement velocities suggest an acceleration of landscape dynamics from the 1980s. Changes in atmospheric temperature remain a key control of this process, but precipitation and snow cover prove critical in controlling rock glacier behaviour and can induce acceleration of surface displacements even under cold atmospheric conditions. However, the analysis of the sediment export data show that despite generally greater within basin dynamics, the rate of export of sediment remains orders of magnitude lower than rates of sediment production. Calculations of sediment transport capacity suggest that this is because the fundamental limit upon sediment yield is the capacity of the stream to