Sample records for high sequence divergence

  1. Detection of novel divergent arenaviruses in boid snakes with inclusion body disease in The Netherlands.

    PubMed

    Bodewes, R; Kik, M J L; Raj, V Stalin; Schapendonk, C M E; Haagmans, B L; Smits, S L; Osterhaus, A D M E

    2013-06-01

    Arenaviruses are bi-segmented negative-stranded RNA viruses, which were until recently only detected in rodents and humans. Now highly divergent arenaviruses have been identified in boid snakes with inclusion body disease (IBD). Here, we describe the identification of a new species and variants of the highly divergent arenaviruses, which were detected in tissues of captive boid snakes with IBD in The Netherlands by next-generation sequencing. Phylogenetic analysis of the complete sequence of the open reading frames of the four predicted proteins of one of the detected viruses revealed that this virus was most closely related to the recently identified Golden Gate virus, while considerable sequence differences were observed between the highly divergent arenaviruses detected in this study. These findings add to the recent identification of the highly divergent arenaviruses in boid snakes with IBD in the United States and indicate that these viruses also circulate among boid snakes in Europe.

  2. Chromosome rearrangements via template switching between diverged repeated sequences

    PubMed Central

    Anand, Ranjith P.; Tsaponina, Olga; Greenwell, Patricia W.; Lee, Cheng-Sheng; Du, Wei; Petes, Thomas D.

    2014-01-01

    Recent high-resolution genome analyses of cancer and other diseases have revealed the occurrence of microhomology-mediated chromosome rearrangements and copy number changes. Although some of these rearrangements appear to involve nonhomologous end-joining, many must have involved mechanisms requiring new DNA synthesis. Models such as microhomology-mediated break-induced replication (MM-BIR) have been invoked to explain these rearrangements. We examined BIR and template switching between highly diverged sequences in Saccharomyces cerevisiae, induced during repair of a site-specific double-strand break (DSB). Our data show that such template switches are robust mechanisms that give rise to complex rearrangements. Template switches between highly divergent sequences appear to be mechanistically distinct from the initial strand invasions that establish BIR. In particular, such jumps are less constrained by sequence divergence and exhibit a different pattern of microhomology junctions. BIR traversing repeated DNA sequences frequently results in complex translocations analogous to those seen in mammalian cells. These results suggest that template switching among repeated genes is a potent driver of genome instability and evolution. PMID:25367035

  3. High-throughput sequencing of complete human mtDNA genomes from the Caucasus and West Asia: high diversity and demographic inferences.

    PubMed

    Schönberg, Anna; Theunert, Christoph; Li, Mingkun; Stoneking, Mark; Nasidze, Ivan

    2011-09-01

    To investigate the demographic history of human populations from the Caucasus and surrounding regions, we used high-throughput sequencing to generate 147 complete mtDNA genome sequences from random samples of individuals from three groups from the Caucasus (Armenians, Azeri and Georgians), and one group each from Iran and Turkey. Overall diversity is very high, with 144 different sequences that fall into 97 different haplogroups found among the 147 individuals. Bayesian skyline plots (BSPs) of population size change through time show a population expansion around 40-50 kya, followed by a constant population size, and then another expansion around 15-18 kya for the groups from the Caucasus and Iran. The BSP for Turkey differs the most from the others, with an increase from 35 to 50 kya followed by a prolonged period of constant population size, and no indication of a second period of growth. An approximate Bayesian computation approach was used to estimate divergence times between each pair of populations; the oldest divergence times were between Turkey and the other four groups from the South Caucasus and Iran (~400-600 generations), while the divergence time of the three Caucasus groups from each other was comparable to their divergence time from Iran (average of ~360 generations). These results illustrate the value of random sampling of complete mtDNA genome sequences that can be obtained with high-throughput sequencing platforms.

  4. Highly divergent ancient gene families in metagenomic samples are compatible with additional divisions of life.

    PubMed

    Lopez, Philippe; Halary, Sébastien; Bapteste, Eric

    2015-10-26

    Microbial genetic diversity is often investigated via the comparison of relatively similar 16S molecules through multiple alignments between reference sequences and novel environmental samples using phylogenetic trees, direct BLAST matches, or phylotypes counts. However, are we missing novel lineages in the microbial dark universe by relying on standard phylogenetic and BLAST methods? If so, how can we probe that universe using alternative approaches? We performed a novel type of multi-marker analysis of genetic diversity exploiting the topology of inclusive sequence similarity networks. Our protocol identified 86 ancient gene families, well distributed and rarely transferred across the 3 domains of life, and retrieved their environmental homologs among 10 million predicted ORFs from human gut samples and other metagenomic projects. Numerous highly divergent environmental homologs were observed in gut samples, although the most divergent genes were over-represented in non-gut environments. In our networks, most divergent environmental genes grouped exclusively with uncultured relatives, in maximal cliques. Sequences within these groups were under strong purifying selection and presented a range of genetic variation comparable to that of a prokaryotic domain. Many genes families included environmental homologs that were highly divergent from cultured homologs: in 79 gene families (including 18 ribosomal proteins), Bacteria and Archaea were less divergent than some groups of environmental sequences were to any cultured or viral homologs. Moreover, some groups of environmental homologs branched very deeply in phylogenetic trees of life, when they were not too divergent to be aligned. These results underline how limited our understanding of the most diverse elements of the microbial world remains, and encourage a deeper exploration of natural communities and their genetic resources, hinting at the possibility that still unknown yet major divisions of life have yet to be discovered.

  5. Detecting exact breakpoints of deletions with diversity in hepatitis B viral genomic DNA from next-generation sequencing data.

    PubMed

    Cheng, Ji-Hong; Liu, Wen-Chun; Chang, Ting-Tsung; Hsieh, Sun-Yuan; Tseng, Vincent S

    2017-10-01

    Many studies have suggested that deletions of Hepatitis B Viral (HBV) are associated with the development of progressive liver diseases, even ultimately resulting in hepatocellular carcinoma (HCC). Among the methods for detecting deletions from next-generation sequencing (NGS) data, few methods considered the characteristics of virus, such as high evolution rates and high divergence among the different HBV genomes. Sequencing high divergence HBV genome sequences using the NGS technology outputs millions of reads. Thus, detecting exact breakpoints of deletions from these big and complex data incurs very high computational cost. We proposed a novel analytical method named VirDelect (Virus Deletion Detect), which uses split read alignment base to detect exact breakpoint and diversity variable to consider high divergence in single-end reads data, such that the computational cost can be reduced without losing accuracy. We use four simulated reads datasets and two real pair-end reads datasets of HBV genome sequence to verify VirDelect accuracy by score functions. The experimental results show that VirDelect outperforms the state-of-the-art method Pindel in terms of accuracy score for all simulated datasets and VirDelect had only two base errors even in real datasets. VirDelect is also shown to deliver high accuracy in analyzing the single-end read data as well as pair-end data. VirDelect can serve as an effective and efficient bioinformatics tool for physiologists with high accuracy and efficient performance and applicable to further analysis with characteristics similar to HBV on genome length and high divergence. The software program of VirDelect can be downloaded at https://sourceforge.net/projects/virdelect/. Copyright © 2017. Published by Elsevier Inc.

  6. Laughter and the Management of Divergent Positions in Peer Review Interactions

    PubMed Central

    Raclaw, Joshua; Ford, Cecilia E.

    2017-01-01

    In this paper we focus on how participants in peer review interactions use laughter as a resource as they publicly report divergence of evaluative positions, divergence that is typical in the give and take of joint grant evaluation. Using the framework of conversation analysis, we examine the infusion of laughter and multimodal laugh-relevant practices into sequences of talk in meetings of grant reviewers deliberating on the evaluation and scoring of high-level scientific grant applications. We focus on a recurrent sequence in these meetings, what we call the score-reporting sequence, in which the assigned reviewers first announce the preliminary scores they have assigned to the grant. We demonstrate that such sequences are routine sites for the use of laugh practices to navigate the initial moments in which divergence of opinion is made explicit. In the context of meetings convened for the purposes of peer review, laughter thus serves as a valuable resource for managing the socially delicate but institutionally required reporting of divergence and disagreement that is endemic to meetings where these types of evaluative tasks are a focal activity. PMID:29170594

  7. Nucleotide sequences of bovine alpha S1- and kappa-casein cDNAs.

    PubMed Central

    Stewart, A F; Willis, I M; Mackinlay, A G

    1984-01-01

    The nucleotide sequences corresponding to bovine alpha S1- and kappa-casein mRNAs are presented. An unusual alpha S1-casein cDNA has been characterised whose 5' end commences upstream from its putative TATA box. The alpha S1-casein mRNA is compared to rat alpha-casein mRNA and two components of divergence are identified. Firstly, the two sequences have diverged at a high point mutation rate and the rate of amino acid replacement by this mechanism is at least as great as the rate of divergence of any other part of the mRNAs. Secondly, the protein coding sequence has been subjected to several insertion/deletion events, one of which may be an example of exon shuffling . The kappa-casein mRNA sequence verifies the proposition that it has arisen from a different ancestral gene to the other caseins. Images PMID:6328443

  8. Molecular cloning, sequence characterization and recombinant expression of Nanog gene in goat fibroblast cells using lentiviral based expression system.

    PubMed

    Singhal, Dinesh K; Singhal, Raxita; Malik, Hruda N; Kumar, Surender; Kumar, Sudarshan; Mohanty, Ashok K; Kaushik, Jai K; Malakar, Dhruba

    2014-01-01

    Nanog is a homeodomain containing protein which plays important roles in regulation of signaling pathways for maintenance and induction of pluripotency in stem cells. Because of its unique expression in stem cells it is also regarded as pluripotency marker. In this study goat Nanog (gNanog) gene has been amplified, cloned and characterized at sequence level with successful over-expression in CHO-K1 cell line using a lentiviral based system. gNanog ORF is 903 bp long which codes for Nanog protein of size 300 amino acids (aas). Complete nucleotide sequence shows some evolutionary mutation in goat in comparision to other species. Protein sequence of goat is highly similar to other species. Overall, gNanog nucleotide sequence and predicted protein sequence showed high similarity and minimum divergence with cattle (96 % identity/4 % divergence) and buffalo (94/5 %) while low similarity and high divergence with pig (84/15 %), human (81/23 %) and mouse (69/40 %) indicating evolutionary closeness of gNanog to cattle and buffalo. gNanog lentiviral expression construct was prepared for over-expression of Nanog gene in adult goat fibroblast cells. Lentiviral expression construct of Nanog enabled continuous protein expression for induction and maintenance of pluripotency. Western blotting revealed the expression of Nanog gene at protein level which supported that the lentiviral expression system is highly promising for Nanog protein expression in differentiated goat cell.

  9. Analysis of a native whitefly transcriptome and its sequence divergence with two invasive whitefly species.

    PubMed

    Wang, Xiao-Wei; Zhao, Qiong-Yi; Luan, Jun-Bo; Wang, Yu-Jun; Yan, Gen-Hong; Liu, Shu-Sheng

    2012-10-04

    Genomic divergence between invasive and native species may provide insight into the molecular basis underlying specific characteristics that drive the invasion and displacement of closely related species. In this study, we sequenced the transcriptome of an indigenous species, Asia II 3, of the Bemisia tabaci complex and compared its genetic divergence with the transcriptomes of two invasive whiteflies species, Middle East Asia Minor 1 (MEAM1) and Mediterranean (MED), respectively. More than 16 million reads of 74 base pairs in length were obtained for the Asia II 3 species using the Illumina sequencing platform. These reads were assembled into 52,535 distinct sequences (mean size: 466 bp) and 16,596 sequences were annotated with an E-value above 10-5. Protein family comparisons revealed obvious diversification among the transcriptomes of these species suggesting species-specific adaptations during whitefly evolution. On the contrary, substantial conservation of the whitefly transcriptomes was also evident, despite their differences. The overall divergence of coding sequences between the orthologous gene pairs of Asia II 3 and MEAM1 is 1.73%, which is comparable to the average divergence of Asia II 3 and MED transcriptomes (1.84%) and much higher than that of MEAM1 and MED (0.83%). This is consistent with the previous phylogenetic analyses and crossing experiments suggesting these are distinct species. We also identified hundreds of highly diverged genes and compiled sequence identify data into gene functional groups and found the most divergent gene classes are Cytochrome P450, Glutathione metabolism and Oxidative phosphorylation. These results strongly suggest that the divergence of genes related to metabolism might be the driving force of the MEAM1 and Asia II 3 differentiation. We also analyzed single nucleotide polymorphisms within the orthologous gene pairs of indigenous and invasive whiteflies which are helpful for the investigation of association between allelic and phenotypes. Our data present the most comprehensive sequences for the indigenous whitefly species Asia II 3. The extensive comparisons of Asia II 3, MEAM1 and MED transcriptomes will serve as an invaluable resource for revealing the genetic basis of whitefly invasion and the molecular mechanisms underlying their biological differences.

  10. Analysis of a native whitefly transcriptome and its sequence divergence with two invasive whitefly species

    PubMed Central

    2012-01-01

    Background Genomic divergence between invasive and native species may provide insight into the molecular basis underlying specific characteristics that drive the invasion and displacement of closely related species. In this study, we sequenced the transcriptome of an indigenous species, Asia II 3, of the Bemisia tabaci complex and compared its genetic divergence with the transcriptomes of two invasive whiteflies species, Middle East Asia Minor 1 (MEAM1) and Mediterranean (MED), respectively. Results More than 16 million reads of 74 base pairs in length were obtained for the Asia II 3 species using the Illumina sequencing platform. These reads were assembled into 52,535 distinct sequences (mean size: 466 bp) and 16,596 sequences were annotated with an E-value above 10-5. Protein family comparisons revealed obvious diversification among the transcriptomes of these species suggesting species-specific adaptations during whitefly evolution. On the contrary, substantial conservation of the whitefly transcriptomes was also evident, despite their differences. The overall divergence of coding sequences between the orthologous gene pairs of Asia II 3 and MEAM1 is 1.73%, which is comparable to the average divergence of Asia II 3 and MED transcriptomes (1.84%) and much higher than that of MEAM1 and MED (0.83%). This is consistent with the previous phylogenetic analyses and crossing experiments suggesting these are distinct species. We also identified hundreds of highly diverged genes and compiled sequence identify data into gene functional groups and found the most divergent gene classes are Cytochrome P450, Glutathione metabolism and Oxidative phosphorylation. These results strongly suggest that the divergence of genes related to metabolism might be the driving force of the MEAM1 and Asia II 3 differentiation. We also analyzed single nucleotide polymorphisms within the orthologous gene pairs of indigenous and invasive whiteflies which are helpful for the investigation of association between allelic and phenotypes. Conclusions Our data present the most comprehensive sequences for the indigenous whitefly species Asia II 3. The extensive comparisons of Asia II 3, MEAM1 and MED transcriptomes will serve as an invaluable resource for revealing the genetic basis of whitefly invasion and the molecular mechanisms underlying their biological differences. PMID:23036081

  11. A DNA Barcode Library for North American Ephemeroptera: Progress and Prospects

    PubMed Central

    Webb, Jeffrey M.; Jacobus, Luke M.; Funk, David H.; Zhou, Xin; Kondratieff, Boris; Geraci, Christy J.; DeWalt, R. Edward; Baird, Donald J.; Richard, Barton; Phillips, Iain; Hebert, Paul D. N.

    2012-01-01

    DNA barcoding of aquatic macroinvertebrates holds much promise as a tool for taxonomic research and for providing the reliable identifications needed for water quality assessment programs. A prerequisite for identification using barcodes is a reliable reference library. We gathered 4165 sequences from the barcode region of the mitochondrial cytochrome c oxidase subunit I gene representing 264 nominal and 90 provisional species of mayflies (Insecta: Ephemeroptera) from Canada, Mexico, and the United States. No species shared barcode sequences and all can be identified with barcodes with the possible exception of some Caenis. Minimum interspecific distances ranged from 0.3–24.7% (mean: 12.5%), while the average intraspecific divergence was 1.97%. The latter value was inflated by the presence of very high divergences in some taxa. In fact, nearly 20% of the species included two or three haplotype clusters showing greater than 5.0% sequence divergence and some values are as high as 26.7%. Many of the species with high divergences are polyphyletic and likely represent species complexes. Indeed, many of these polyphyletic species have numerous synonyms and individuals in some barcode clusters show morphological attributes characteristic of the synonymized species. In light of our findings, it is imperative that type or topotype specimens be sequenced to correctly associate barcode clusters with morphological species concepts and to determine the status of currently synonymized species. PMID:22666447

  12. High genetic diversities between isolates of the fish parasite Cryptocaryon irritans (Ciliophora) suggest multiple cryptic species.

    PubMed

    Chi, Hongshu; Taik, Patricia; Foley, Emily J; Racicot, Alycia C; Gray, Hilary M; Guzzetta, Katherine E; Lin, Hsin-Yun; Song, Yen-Ling; Tung, Che-Huang; Zenke, Kosuke; Yoshinaga, Tomoyoshi; Cheng, Chao-Yin; Chang, Wei-Jen; Gong, Hui

    2017-07-01

    The ciliate protozoan Cryptocaryon irritans parasitizes marine fish and causes lethal white spot disease. Sporadic infections as well as large-scale outbreaks have been reported globally and the parasite's broad host range poses particular threat to the aquaculture and ornamental fish markets. In order to better understand C. irritans' population structure, we sequenced and compared mitochondrial cox-1, SSU rRNA, and ITS-1 sequences from 8 new isolates of C. irritans collected in China, Japan, and Taiwan. We detected two SSU rRNA haplotypes, which differ at three positions, separating the isolates into two main groups (I and II). Cox-1 sequences also support the division into two groups, and the cox-1 divergence between these two groups is unexpectedly high (9.28% for 1582 nucleotide positions). The divergence is much greater than that detected in Ichthyophthirius multifiliis, the ciliate protozoan causing freshwater white spot disease in fish, where intraspecies divergence on cox-1 sequence is only 1.95%. ITS-1 sequences derived from these eight isolates and from all other C. irritans isolates (deposited in the GenBank) not only support the two groups, but further suggest the presence of a third group with even greater sequence divergence. Finally, a small Ka/Ks ratio estimated from cox-1 sequences suggests that this gene in C. irritans remains under strong purifying selection. Taken together, the C. irritans species may consists of many subspecies and/or syngens. Further work is needed to determine if there is reproductive isolation between the groups we have defined. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Concerted evolution at the population level: pupfish HindIII satellite DNA sequences.

    PubMed Central

    Elder, J F; Turner, B J

    1994-01-01

    The canonical monomers (approximately 170 bp) of an abundant (1.9 x 10(6) copies per diploid genome) satellite DNA sequence family in the genome of Cyprinodon variegatus, a "pupfish" that ranges along the Atlantic coast from Cape Cod to central Mexico, are divergent in base sequence in 10 of 12 samples collected from natural populations. The divergence involves substitutions, deletions, and insertions, is marked in scope (mean pairwise sequence similarity = 61.6%; range = 35-95.9%), is largely confined to the 3' half of the monomer, and is not correlated with the distance among collecting sites. Repetitive cloning and direct genomic sequencing experiments failed to detect intrapopulation and intraindividual variation, suggesting high levels of sequence homogeneity within populations. The satellite sequence has therefore undergone "concerted evolution," at the level of the local population. Concerted evolution has previously almost always been discussed in terms of the divergence of species or higher taxa; its intraspecific occurrence apparently has not been reported previously. The generality of the observation is difficult to evaluate, for although satellite DNAs from a large number of organisms have been studied in detail, there appear to be little or no other data on their sequence variation in natural populations. The relationship (if any) between concerted, population level, satellite DNA divergence and the extent of gene flow/genetic isolation among conspecific natural populations remains to be established. Images PMID:8302879

  14. Divergence in substrate specificity by the vOTU domain of various strains of highly-pathogenic PRRSV and the implications to pathogenicity

    USDA-ARS?s Scientific Manuscript database

    Porcine reproductive and respiratory syndrome virus (PRRSV) is widespread with a high variation in sequence and virulence among the divergent strains and causes an economically destructive disease. A viral ovarian domain protease (vOTU) has been previously identified within the nonstructural protein...

  15. The contribution of alu elements to mutagenic DNA double-strand break repair.

    PubMed

    Morales, Maria E; White, Travis B; Streva, Vincent A; DeFreece, Cecily B; Hedges, Dale J; Deininger, Prescott L

    2015-03-01

    Alu elements make up the largest family of human mobile elements, numbering 1.1 million copies and comprising 11% of the human genome. As a consequence of evolution and genetic drift, Alu elements of various sequence divergence exist throughout the human genome. Alu/Alu recombination has been shown to cause approximately 0.5% of new human genetic diseases and contribute to extensive genomic structural variation. To begin understanding the molecular mechanisms leading to these rearrangements in mammalian cells, we constructed Alu/Alu recombination reporter cell lines containing Alu elements ranging in sequence divergence from 0%-30% that allow detection of both Alu/Alu recombination and large non-homologous end joining (NHEJ) deletions that range from 1.0 to 1.9 kb in size. Introduction of as little as 0.7% sequence divergence between Alu elements resulted in a significant reduction in recombination, which indicates even small degrees of sequence divergence reduce the efficiency of homology-directed DNA double-strand break (DSB) repair. Further reduction in recombination was observed in a sequence divergence-dependent manner for diverged Alu/Alu recombination constructs with up to 10% sequence divergence. With greater levels of sequence divergence (15%-30%), we observed a significant increase in DSB repair due to a shift from Alu/Alu recombination to variable-length NHEJ which removes sequence between the two Alu elements. This increase in NHEJ deletions depends on the presence of Alu sequence homeology (similar but not identical sequences). Analysis of recombination products revealed that Alu/Alu recombination junctions occur more frequently in the first 100 bp of the Alu element within our reporter assay, just as they do in genomic Alu/Alu recombination events. This is the first extensive study characterizing the influence of Alu element sequence divergence on DNA repair, which will inform predictions regarding the effect of Alu element sequence divergence on both the rate and nature of DNA repair events.

  16. Contrasting morphological and DNA barcode-suggested species boundaries among shallow-water amphipod fauna from the southern European Atlantic coast.

    PubMed

    Lobo, Jorge; Ferreira, Maria S; Antunes, Ilisa C; Teixeira, Marcos A L; Borges, Luisa M S; Sousa, Ronaldo; Gomes, Pedro A; Costa, Maria Helena; Cunha, Marina R; Costa, Filipe O

    2017-02-01

    In this study we compared DNA barcode-suggested species boundaries with morphology-based species identifications in the amphipod fauna of the southern European Atlantic coast. DNA sequences of the cytochrome c oxidase subunit I barcode region (COI-5P) were generated for 43 morphospecies (178 specimens) collected along the Portuguese coast which, together with publicly available COI-5P sequences, produced a final dataset comprising 68 morphospecies and 295 sequences. Seventy-five BINs (Barcode Index Numbers) were assigned to these morphospecies, of which 48 were concordant (i.e., 1 BIN = 1 species), 8 were taxonomically discordant, and 19 were singletons. Twelve species had matching sequences (<2% distance) with conspecifics from distant locations (e.g., North Sea). Seven morphospecies were assigned to multiple, and highly divergent, BINs, including specimens of Corophium multisetosum (18% divergence) and Dexamine spiniventris (16% divergence), which originated from sampling locations on the west coast of Portugal (only about 36 and 250 km apart, respectively). We also found deep divergence (4%-22%) among specimens of seven species from Portugal compared to those from the North Sea and Italy. The detection of evolutionarily meaningful divergence among populations of several amphipod species from southern Europe reinforces the need for a comprehensive re-assessment of the diversity of this faunal group.

  17. Faster-X evolution of gene expression is driven by recessive adaptive cis-regulatory variation in Drosophila.

    PubMed

    Llopart, Ana

    2018-05-01

    The hemizygosity of the X (Z) chromosome fully exposes the fitness effects of mutations on that chromosome and has evolutionary consequences on the relative rates of evolution of X and autosomes. Specifically, several population genetics models predict increased rates of evolution in X-linked loci relative to autosomal loci. This prediction of faster-X evolution has been evaluated and confirmed for both protein coding sequences and gene expression. In the case of faster-X evolution for gene expression divergence, it is often assumed that variation in 5' noncoding sequences is associated with variation in transcript abundance between species but a formal, genomewide test of this hypothesis is still missing. Here, I use whole genome sequence data in Drosophila yakuba and D. santomea to evaluate this hypothesis and report positive correlations between sequence divergence at 5' noncoding sequences and gene expression divergence. I also examine polymorphism and divergence in 9,279 noncoding sequences located at the 5' end of annotated genes and detected multiple signals of positive selection. Notably, I used the traditional synonymous sites as neutral reference to test for adaptive evolution, but I also used bases 8-30 of introns <65 bp, which have been proposed to be a better neutral choice. X-linked genes with high degree of male-biased expression show the most extreme adaptive pattern at 5' noncoding regions, in agreement with faster-X evolution for gene expression divergence and a higher incidence of positively selected recessive mutations. © 2018 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  18. Clustering evolving proteins into homologous families.

    PubMed

    Chan, Cheong Xin; Mahbob, Maisarah; Ragan, Mark A

    2013-04-08

    Clustering sequences into groups of putative homologs (families) is a critical first step in many areas of comparative biology and bioinformatics. The performance of clustering approaches in delineating biologically meaningful families depends strongly on characteristics of the data, including content bias and degree of divergence. New, highly scalable methods have recently been introduced to cluster the very large datasets being generated by next-generation sequencing technologies. However, there has been little systematic investigation of how characteristics of the data impact the performance of these approaches. Using clusters from a manually curated dataset as reference, we examined the performance of a widely used graph-based Markov clustering algorithm (MCL) and a greedy heuristic approach (UCLUST) in delineating protein families coded by three sets of bacterial genomes of different G+C content. Both MCL and UCLUST generated clusters that are comparable to the reference sets at specific parameter settings, although UCLUST tends to under-cluster compositionally biased sequences (G+C content 33% and 66%). Using simulated data, we sought to assess the individual effects of sequence divergence, rate heterogeneity, and underlying G+C content. Performance decreased with increasing sequence divergence, decreasing among-site rate variation, and increasing G+C bias. Two MCL-based methods recovered the simulated families more accurately than did UCLUST. MCL using local alignment distances is more robust across the investigated range of sequence features than are greedy heuristics using distances based on global alignment. Our results demonstrate that sequence divergence, rate heterogeneity and content bias can individually and in combination affect the accuracy with which MCL and UCLUST can recover homologous protein families. For application to data that are more divergent, and exhibit higher among-site rate variation and/or content bias, MCL may often be the better choice, especially if computational resources are not limiting.

  19. Mechanisms of haplotype divergence at the RGA08 nucleotide-binding leucine-rich repeat gene locus in wild banana (Musa balbisiana).

    PubMed

    Baurens, Franc-Christophe; Bocs, Stéphanie; Rouard, Mathieu; Matsumoto, Takashi; Miller, Robert N G; Rodier-Goud, Marguerite; MBéguié-A-MBéguié, Didier; Yahiaoui, Nabila

    2010-07-16

    Comparative sequence analysis of complex loci such as resistance gene analog clusters allows estimating the degree of sequence conservation and mechanisms of divergence at the intraspecies level. In banana (Musa sp.), two diploid wild species Musa acuminata (A genome) and Musa balbisiana (B genome) contribute to the polyploid genome of many cultivars. The M. balbisiana species is associated with vigour and tolerance to pests and disease and little is known on the genome structure and haplotype diversity within this species. Here, we compare two genomic sequences of 253 and 223 kb corresponding to two haplotypes of the RGA08 resistance gene analog locus in M. balbisiana "Pisang Klutuk Wulung" (PKW). Sequence comparison revealed two regions of contrasting features. The first is a highly colinear gene-rich region where the two haplotypes diverge only by single nucleotide polymorphisms and two repetitive element insertions. The second corresponds to a large cluster of RGA08 genes, with 13 and 18 predicted RGA genes and pseudogenes spread over 131 and 152 kb respectively on each haplotype. The RGA08 cluster is enriched in repetitive element insertions, in duplicated non-coding intergenic sequences including low complexity regions and shows structural variations between haplotypes. Although some allelic relationships are retained, a large diversity of RGA08 genes occurs in this single M. balbisiana genotype, with several RGA08 paralogs specific to each haplotype. The RGA08 gene family has evolved by mechanisms of unequal recombination, intragenic sequence exchange and diversifying selection. An unequal recombination event taking place between duplicated non-coding intergenic sequences resulted in a different RGA08 gene content between haplotypes pointing out the role of such duplicated regions in the evolution of RGA clusters. Based on the synonymous substitution rate in coding sequences, we estimated a 1 million year divergence time for these M. balbisiana haplotypes. A large RGA08 gene cluster identified in wild banana corresponds to a highly variable genomic region between haplotypes surrounded by conserved flanking regions. High level of sequence identity (70 to 99%) of the genic and intergenic regions suggests a recent and rapid evolution of this cluster in M. balbisiana.

  20. High diversity and rapid diversification in the head louse, Pediculus humanus (Pediculidae: Phthiraptera)

    PubMed Central

    Ashfaq, Muhammad; Prosser, Sean; Nasir, Saima; Masood, Mariyam; Ratnasingham, Sujeevan; Hebert, Paul D. N.

    2015-01-01

    The study analyzes sequence variation of two mitochondrial genes (COI, cytb) in Pediculus humanus from three countries (Egypt, Pakistan, South Africa) that have received little prior attention, and integrates these results with prior data. Analysis indicates a maximum K2P distance of 10.3% among 960 COI sequences and 13.8% among 479 cytb sequences. Three analytical methods (BIN, PTP, ABGD) reveal five concordant OTUs for COI and cytb. Neighbor-Joining analysis of the COI sequences confirm five clusters; three corresponding to previously recognized mitochondrial clades A, B, C and two new clades, “D” and “E”, showing 2.3% and 2.8% divergence from their nearest neighbors (NN). Cytb data corroborate five clusters showing that clades “D” and “E” are both 4.6% divergent from their respective NN clades. Phylogenetic analysis supports the monophyly of all clusters recovered by NJ analysis. Divergence time estimates suggest that the earliest split of P. humanus clades occured slightly more than one million years ago (MYa) and the latest about 0.3 MYa. Sequence divergences in COI and cytb among the five clades of P. humanus are 10X those in their human host, a difference that likely reflects both rate acceleration and the acquisition of lice clades from several archaic hominid lineages. PMID:26373806

  1. [Hepatitis C virus: sequence homology of a European isolate and divergence from the prototype].

    PubMed

    Seelig, R; Seelig, H P; Renz, M

    1991-08-01

    The polymerase chain reaction (PCR) detected specific hepatitis C viral (HCV) RNA sequences in liver biopsies from two patients with chronic hepatitis, in the tissue of a liver implantate, in plasma from four chronic non-A, non-B hepatitis (NANBH) patients and, for the first time, in an infectious anti-D-immunoglobulin preparation. A comparison of the viral sequences coding for a region for the nonstructural NS3 protein from the liver tissues revealed only a very small degree of sequence divergence on the cDNA as well as on the amino acid level (between 0 and 5%). The sequence similarities of the RNA isolated from plasma of the four chronic NANBH patients and the anti-D-immunoglobulin preparation were partly somewhat lower but altogether also high (between 90 and 100%). In contrast, all eight cDNA and amino acid sequences exhibited a significantly higher degree of divergence in comparison with the HCV prototype sequence (between 29 and 32%) than among themselves (between 0 and 10%). This unexpected high sequence similarity of the eight European isolates and their low homology to the Northamerican prototype sequence is indicative for the existence of different types of HCV. This will be important not only for epidemiological studies but also for the development of effective diagnostic procedures and vaccines. Concerning the pathogenesis of NANBH, a double infection or a helper mechanism has to be considered: in addition to the C virus, sequences of an other virus particle were found in the infectious IgG preparation as well as in the liver biopsies.

  2. Divergent nuclear 18S rDNA paralogs in a turkey coccidium, Eimeria meleagrimitis, complicate molecular systematics and identification.

    PubMed

    El-Sherry, Shiem; Ogedengbe, Mosun E; Hafeez, Mian A; Barta, John R

    2013-07-01

    Multiple 18S rDNA sequences were obtained from two single-oocyst-derived lines of each of Eimeria meleagrimitis and Eimeria adenoeides. After analysing the 15 new 18S rDNA sequences from two lines of E. meleagrimitis and 17 new sequences from two lines of E. adenoeides, there were clear indications that divergent, paralogous 18S rDNA copies existed within the nuclear genome of E. meleagrimitis. In contrast, mitochondrial cytochrome c oxidase subunit I (COI) partial sequences from all lines of a particular Eimeria sp. were identical and, in phylogenetic analyses, COI sequences clustered unambiguously in monophyletic and highly-supported clades specific to individual Eimeria sp. Phylogenetic analysis of the new 18S rDNA sequences from E. meleagrimitis showed that they formed two distinct clades: Type A with four new sequences; and Type B with nine new sequences; both Types A and B sequences were obtained from each of the single-oocyst-derived lines of E. meleagrimitis. Together these rDNA types formed a well-supported E. meleagrimitis clade. Types A and B 18S rDNA sequences from E. meleagrimitis had a mean sequence identity of only 97.4% whereas mean sequence identity within types was 99.1-99.3%. The observed intraspecific sequence divergence among E. meleagrimitis 18S rDNA sequence types was even higher (approximately 2.6%) than the interspecific sequence divergence present between some well-recognized species such as Eimeria tenella and Eimeria necatrix (1.1%). Our observations suggest that, unlike COI sequences, 18S rDNA sequences are not reliable molecular markers to be used alone for species identification with coccidia, although 18S rDNA sequences have clear utility for phylogenetic reconstruction of apicomplexan parasites at the genus and higher taxonomic ranks. Copyright © 2013. Published by Elsevier Ltd.

  3. RECOVIR Software for Identifying Viruses

    NASA Technical Reports Server (NTRS)

    Chakravarty, Sugoto; Fox, George E.; Zhu, Dianhui

    2013-01-01

    Most single-stranded RNA (ssRNA) viruses mutate rapidly to generate a large number of strains with highly divergent capsid sequences. Determining the capsid residues or nucleotides that uniquely characterize these strains is critical in understanding the strain diversity of these viruses. RECOVIR (an acronym for "recognize viruses") software predicts the strains of some ssRNA viruses from their limited sequence data. Novel phylogenetic-tree-based databases of protein or nucleic acid residues that uniquely characterize these virus strains are created. Strains of input virus sequences (partial or complete) are predicted through residue-wise comparisons with the databases. RECOVIR uses unique characterizing residues to identify automatically strains of partial or complete capsid sequences of picorna and caliciviruses, two of the most highly diverse ssRNA virus families. Partition-wise comparisons of the database residues with the corresponding residues of more than 300 complete and partial sequences of these viruses resulted in correct strain identification for all of these sequences. This study shows the feasibility of creating databases of hitherto unknown residues uniquely characterizing the capsid sequences of two of the most highly divergent ssRNA virus families. These databases enable automated strain identification from partial or complete capsid sequences of these human and animal pathogens.

  4. Sequence analysis of MHC class I α2 from sockeye salmon (Oncorhynchus nerka).

    PubMed

    McClelland, Erin K; Ming, Tobi J; Tabata, Amy; Miller, Kristina M

    2011-09-01

    Most studies assessing adaptive MHC diversity in salmon populations have focused on the classical class II DAB or DAA loci, as these have been most amenable to single PCR amplifications due to their relatively low level of sequence divergence. Herein, we report the characterization of the classical class I UBA α2 locus based on collections taken throughout the species range of sockeye salmon (Oncorhynchus nerka). Through use of multiple lineage-specific primer sets, denaturing gradient gel electrophoresis and sequencing, we identified thirty-four alleles from three highly divergent lineages. Sequence identity between lineages ranged from 30.0% to 56.8% but was relatively high within lineages. Allelic identity within the antigen recognition site (ARS) was greater than for the longer sequence. Global positive selection on UBA was seen at the sequence level (dN:dS = 1.012) with four codons under positive selection and 12 codons under negative selection. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  5. Novel Virus Discovery and Genome Reconstruction from Field RNA Samples Reveals Highly Divergent Viruses in Dipteran Hosts

    PubMed Central

    Bass, David; Moureau, Gregory; Tang, Shuoya; McAlister, Erica; Culverwell, C. Lorna; Glücksman, Edvard; Wang, Hui; Brown, T. David K.; Gould, Ernest A.; Harbach, Ralph E.; de Lamballerie, Xavier; Firth, Andrew E.

    2013-01-01

    We investigated whether small RNA (sRNA) sequenced from field-collected mosquitoes and chironomids (Diptera) can be used as a proxy signature of viral prevalence within a range of species and viral groups, using sRNAs sequenced from wild-caught specimens, to inform total RNA deep sequencing of samples of particular interest. Using this strategy, we sequenced from adult Anopheles maculipennis s.l. mosquitoes the apparently nearly complete genome of one previously undescribed virus related to chronic bee paralysis virus, and, from a pool of Ochlerotatus caspius and Oc. detritus mosquitoes, a nearly complete entomobirnavirus genome. We also reconstructed long sequences (1503-6557 nt) related to at least nine other viruses. Crucially, several of the sequences detected were reconstructed from host organisms highly divergent from those in which related viruses have been previously isolated or discovered. It is clear that viral transmission and maintenance cycles in nature are likely to be significantly more complex and taxonomically diverse than previously expected. PMID:24260463

  6. Assessing DNA Barcodes for Species Identification in North American Reptiles and Amphibians in Natural History Collections.

    PubMed

    Chambers, E Anne; Hebert, Paul D N

    2016-01-01

    High rates of species discovery and loss have led to the urgent need for more rapid assessment of species diversity in the herpetofauna. DNA barcoding allows for the preliminary identification of species based on sequence divergence. Prior DNA barcoding work on reptiles and amphibians has revealed higher biodiversity counts than previously estimated due to cases of cryptic and undiscovered species. Past studies have provided DNA barcodes for just 14% of the North American herpetofauna, revealing the need for expanded coverage. This study extends the DNA barcode reference library for North American herpetofauna, assesses the utility of this approach in aiding species delimitation, and examines the correspondence between current species boundaries and sequence clusters designated by the BIN system. Sequences were obtained from 730 specimens, representing 274 species (43%) from the North American herpetofauna. Mean intraspecific divergences were 1% and 3%, while average congeneric sequence divergences were 16% and 14% in amphibians and reptiles, respectively. BIN assignments corresponded with current species boundaries in 79% of amphibians, 100% of turtles, and 60% of squamates. Deep divergences (>2%) were noted in 35% of squamate and 16% of amphibian species, and low divergences (<2%) occurred in 12% of reptiles and 23% of amphibians, patterns reflected in BIN assignments. Sequence recovery declined with specimen age, and variation in recovery success was noted among collections. Within collections, barcodes effectively flagged seven mislabeled tissues, and barcode fragments were recovered from five formalin-fixed specimens. This study demonstrates that DNA barcodes can effectively flag errors in museum collections, while BIN splits and merges reveal taxa belonging to deeply diverged or hybridizing lineages. This study is the first effort to compile a reference library of DNA barcodes for herpetofauna on a continental scale.

  7. Assessing DNA Barcodes for Species Identification in North American Reptiles and Amphibians in Natural History Collections

    PubMed Central

    Chambers, E. Anne; Hebert, Paul D. N.

    2016-01-01

    Background High rates of species discovery and loss have led to the urgent need for more rapid assessment of species diversity in the herpetofauna. DNA barcoding allows for the preliminary identification of species based on sequence divergence. Prior DNA barcoding work on reptiles and amphibians has revealed higher biodiversity counts than previously estimated due to cases of cryptic and undiscovered species. Past studies have provided DNA barcodes for just 14% of the North American herpetofauna, revealing the need for expanded coverage. Methodology/Principal Findings This study extends the DNA barcode reference library for North American herpetofauna, assesses the utility of this approach in aiding species delimitation, and examines the correspondence between current species boundaries and sequence clusters designated by the BIN system. Sequences were obtained from 730 specimens, representing 274 species (43%) from the North American herpetofauna. Mean intraspecific divergences were 1% and 3%, while average congeneric sequence divergences were 16% and 14% in amphibians and reptiles, respectively. BIN assignments corresponded with current species boundaries in 79% of amphibians, 100% of turtles, and 60% of squamates. Deep divergences (>2%) were noted in 35% of squamate and 16% of amphibian species, and low divergences (<2%) occurred in 12% of reptiles and 23% of amphibians, patterns reflected in BIN assignments. Sequence recovery declined with specimen age, and variation in recovery success was noted among collections. Within collections, barcodes effectively flagged seven mislabeled tissues, and barcode fragments were recovered from five formalin-fixed specimens. Conclusions/Significance This study demonstrates that DNA barcodes can effectively flag errors in museum collections, while BIN splits and merges reveal taxa belonging to deeply diverged or hybridizing lineages. This study is the first effort to compile a reference library of DNA barcodes for herpetofauna on a continental scale. PMID:27116180

  8. Comparative genomics and repetitive sequence divergence in the species of diploid Nicotiana section Alatae.

    PubMed

    Lim, K Yoong; Kovarik, Ales; Matyasek, Roman; Chase, Mark W; Knapp, Sandra; McCarthy, Elizabeth; Clarkson, James J; Leitch, Andrew R

    2006-12-01

    Combining phylogenetic reconstructions of species relationships with comparative genomic approaches is a powerful way to decipher evolutionary events associated with genome divergence. Here, we reconstruct the history of karyotype and tandem repeat evolution in species of diploid Nicotiana section Alatae. By analysis of plastid DNA, we resolved two clades with high bootstrap support, one containing N. alata, N. langsdorffii, N. forgetiana and N. bonariensis (called the n = 9 group) and another containing N. plumbaginifolia and N. longiflora (called the n = 10 group). Despite little plastid DNA sequence divergence, we observed, via fluorescent in situ hybridization, substantial chromosomal repatterning, including altered chromosome numbers, structure and distribution of repeats. Effort was focussed on 35S and 5S nuclear ribosomal DNA (rDNA) and the HRS60 satellite family of tandem repeats comprising the elements HRS60, NP3R and NP4R. We compared divergence of these repeats in diploids and polyploids of Nicotiana. There are dramatic shifts in the distribution of the satellite repeats and complete replacement of intergenic spacers (IGSs) of 35S rDNA associated with divergence of the species in section Alatae. We suggest that sequence homogenization has replaced HRS60 family repeats at sub-telomeric regions, but that this process may not occur, or occurs more slowly, when the repeats are found at intercalary locations. Sequence homogenization acts more rapidly (at least two orders of magnitude) on 35S rDNA than 5S rDNA and sub-telomeric satellite sequences. This rapid rate of divergence is analogous to that found in polyploid species, and is therefore, in plants, not only associated with polyploidy.

  9. Deciphering amphibian diversity through DNA barcoding: chances and challenges.

    PubMed

    Vences, Miguel; Thomas, Meike; Bonett, Ronald M; Vieites, David R

    2005-10-29

    Amphibians globally are in decline, yet there is still a tremendous amount of unrecognized diversity, calling for an acceleration of taxonomic exploration. This process will be greatly facilitated by a DNA barcoding system; however, the mitochondrial population structure of many amphibian species presents numerous challenges to such a standardized, single locus, approach. Here we analyse intra- and interspecific patterns of mitochondrial variation in two distantly related groups of amphibians, mantellid frogs and salamanders, to determine the promise of DNA barcoding with cytochrome oxidase subunit I (cox1) sequences in this taxon. High intraspecific cox1 divergences of 7-14% were observed (18% in one case) within the whole set of amphibian sequences analysed. These high values are not caused by particularly high substitution rates of this gene but by generally deep mitochondrial divergences within and among amphibian species. Despite these high divergences, cox1 sequences were able to correctly identify species including disparate geographic variants. The main problems with cox1 barcoding of amphibians are (i) the high variability of priming sites that hinder the application of universal primers to all species and (ii) the observed distinct overlap of intraspecific and interspecific divergence values, which implies difficulties in the definition of threshold values to identify candidate species. Common discordances between geographical signatures of mitochondrial and nuclear markers in amphibians indicate that a single-locus approach can be problematic when high accuracy of DNA barcoding is required. We suggest that a number of mitochondrial and nuclear genes may be used as DNA barcoding markers to complement cox1.

  10. The Evolution of Ribosomal DNA: Divergent Paralogues and Phylogenetic Implications

    PubMed Central

    Buckler-IV, E. S.; Ippolito, A.; Holtsford, T. P.

    1997-01-01

    Although nuclear ribosomal DNA (rDNA) repeats evolve together through concerted evolution, some genomes contain a considerable diversity of paralogous rDNA. This diversity includes not only multiple functional loci but also putative pseudogenes and recombinants. We examined the occurrence of divergent paralogues and recombinants in Gossypium, Nicotiana, Tripsacum, Winteraceae, and Zea ribosomal internal transcribed spacer (ITS) sequences. Some of the divergent paralogues are probably rDNA pseudogenes, since they have low predicted secondary structure stability, high substitution rates, and many deamination-driven substitutions at methylation sites. Under standard PCR conditions, the low stability paralogues amplified well, while many high-stability paralogues amplified poorly. Under highly denaturing PCR conditions (i.e., with dimethylsulfoxide), both low- and high-stability paralogues amplified well. We also found recombination between divergent paralogues. For phylogenetics, divergent ribosomal paralogues can aid in reconstructing ancestral states and thus serve as good outgroups. Divergent paralogues can also provide companion rDNA phylogenies. However, phylogeneticists must discriminate among families of divergent paralogues and recombinants or suffer from muddled and inaccurate organismal phylogenies. PMID:9055091

  11. Sequence space and the ongoing expansion of the protein universe.

    PubMed

    Povolotskaya, Inna S; Kondrashov, Fyodor A

    2010-06-17

    The need to maintain the structural and functional integrity of an evolving protein severely restricts the repertoire of acceptable amino-acid substitutions. However, it is not known whether these restrictions impose a global limit on how far homologous protein sequences can diverge from each other. Here we explore the limits of protein evolution using sequence divergence data. We formulate a computational approach to study the rate of divergence of distant protein sequences and measure this rate for ancient proteins, those that were present in the last universal common ancestor. We show that ancient proteins are still diverging from each other, indicating an ongoing expansion of the protein sequence universe. The slow rate of this divergence is imposed by the sparseness of functional protein sequences in sequence space and the ruggedness of the protein fitness landscape: approximately 98 per cent of sites cannot accept an amino-acid substitution at any given moment but a vast majority of all sites may eventually be permitted to evolve when other, compensatory, changes occur. Thus, approximately 3.5 x 10(9) yr has not been enough to reach the limit of divergent evolution of proteins, and for most proteins the limit of sequence similarity imposed by common function may not exceed that of random sequences.

  12. The Role of the Y-Chromosome in the Establishment of Murine Hybrid Dysgenesis and in the Analysis of the Nucleotide Sequence Organization, Genetic Transmission and Evolution of Repeated Sequences.

    NASA Astrophysics Data System (ADS)

    Nallaseth, Ferez Soli

    The Y-chromosome presents a unique cytogenetic framework for the evolution of nucleotide sequences. Alignment of nine Y-chromosomal fragments in their increasing Y-specific/non Y-specific (male/female) sequence divergence ratios was directly and inversely related to their interspersion on these two respective genomic fractions. Sequence analysis confirmed a direct relationship between divergence ratios and the Alu, LINE-1, Satellite and their derivative oligonucleotide contents. Thus their relocation on the Y-chromosome is followed by sequence divergence rather than the well documented concerted evolution of these non-coding progenitor repeated sequences. Five of the nine Y-chromosomal fragments are non-pseudoautosomal and transcribed into heterogeneous PolyA^+ RNA and thus can be retrotransposed. Evolutionary and computer analysis identified homologous oligonucleotide tracts in several human loci suggesting common and random mechanistic origins. Dysgenic genomes represent the accelerated evolution driving sequence divergence (McClintock, 1984). Sex reversal and sterility characterizing dysgenesis occurs in C57BL/6JY ^{rm Pos} but not in 129/SvY^{rm Pos} derivative strains. High frequency, random, multi-locus deletion products of the feral Y^{ rm Pos}-chromosome are generated in the germlines of F1(C57BL/6J X 129/SvY^{ rm Pos})(male) and C57BL/6JY ^{rm Pos}(male) but not in 129/SvY^{rm Pos}(male). Equal, 10^{-1}, 10^ {-2}, and 0 copies (relative to males) of Y^{rm Pos}-specific deletion products respectively characterize C57BL/6JY ^{rm Pos} (HC), (LC), (T) and (F) females. The testes determining loci of inactive Y^{rm Pos}-chromosomes in C57BL/6JY^{rm Pos} HC females are the preferentially deleted/rearranged Y ^{rm Pos}-sequences. Disruption of regulation of plasma testosterone and hepatic MUP-A mRNA levels, TRD of a 4.7 Kbp EcoR1 fragment suggest disruption of autosomal/X-chromosomal sequences. These data and the highly repeated progenitor (Alu, GATA, LINE-1) sequence content of deletion products confirmed the previously unidentified loss of genetic control of mammalian chromosome biology and hybrid dysgenesis.

  13. A highly divergent Puumala virus lineage in southern Poland.

    PubMed

    Rosenfeld, Ulrike M; Drewes, Stephan; Ali, Hanan Sheikh; Sadowska, Edyta T; Mikowska, Magdalena; Heckel, Gerald; Koteja, Paweł; Ulrich, Rainer G

    2017-05-01

    Puumala virus (PUUV) represents one of the most important hantaviruses in Central Europe. Phylogenetic analyses of PUUV strains indicate a strong genetic structuring of this hantavirus. Recently, PUUV sequences were identified in the natural reservoir, the bank vole (Myodes glareolus), collected in the northern part of Poland. The objective of this study was to evaluate the presence of PUUV in bank voles from southern Poland. A total of 72 bank voles were trapped in 2009 at six sites in this part of Poland. RT-PCR and IgG-ELISA analyses detected three PUUV positive voles at one trapping site. The PUUV-infected animals were identified by cytochrome b gene analysis to belong to the Carpathian and Eastern evolutionary lineages of bank vole. The novel PUUV S, M and L segment nucleotide sequences showed the closest similarity to sequences of the Russian PUUV lineage from Latvia, but were highly divergent to those previously found in northern Poland, Slovakia and Austria. In conclusion, the detection of a highly divergent PUUV lineage in southern Poland indicates the necessity of further bank vole monitoring in this region allowing rational public health measures to prevent human infections.

  14. The complete mitochondrial genome of dhole Cuon alpinus: phylogenetic analysis and dating evolutionary divergence within Canidae.

    PubMed

    Zhang, Honghai; Chen, Lei

    2011-03-01

    The dhole (Cuon alpinus) is the only existent species in the genus Cuon (Carnivora: Canidae). In the present study, the complete mitochondrial genome of the dhole was sequenced. The total length is 16672 base pairs which is the shortest in Canidae. Sequence analysis revealed that most mitochondrial genomic functional regions were highly consistent among canid animals except the CSB domain of the control region. The difference in length among the Canidae mitochondrial genome sequences is mainly due to the number of short segments of tandem repeated in the CSB domain. Phylogenetic analysis was progressed based on the concatenated data set of 14 mitochondrial genes of 8 canid animals by using maximum parsimony (MP), maximum likelihood (ML) and Bayesian (BI) inference methods. The genera Vulpes and Nyctereutes formed a sister group and split first within Canidae, followed by that in the Cuon. The divergence in the genus Canis was the latest. The divarication of domestic dogs after that of the Canis lupus laniger is completely supported by all the three topologies. Pairwise sequence divergence data of different mitochondrial genes among canid animals were also determined. Except for the synonymous substitutions in protein-coding genes, the control region exhibits the highest sequence divergences. The synonymous rates are approximately two to six times higher than those of the non-synonymous sites except for a slightly higher rate in the non-synonymous substitution between Cuon alpinus and Vulpes vulpes. 16S rRNA genes have a slightly faster sequence divergence than 12S rRNA and tRNA genes. Based on nucleotide substitutions of tRNA genes and rRNA genes, the times since divergence between dhole and other canid animals, and between domestic dogs and three subspecies of wolves were evaluated. The result indicates that Vulpes and Nyctereutes have a close phylogenetic relationship and the divergence of Nyctereutes is a little earlier. The Tibetan wolf may be an archaic pedigree within wolf subspecies. The genetic distance between wolves and domestic dogs is less than that among different subspecies of wolves. The domestication of dogs was about 1.56-1.92 million years ago or even earlier.

  15. Bayesian estimation of post-Messinian divergence times in Balearic Island lizards.

    PubMed

    Brown, R P; Terrasa, B; Pérez-Mellado, V; Castro, J A; Hoskisson, P A; Picornell, A; Ramon, M M

    2008-07-01

    Phylogenetic relationships and timings of major cladogenesis events are investigated in the Balearic Island lizards Podarcislilfordi and P.pityusensis using 2675bp of mitochondrial and nuclear DNA sequences. Partitioned Bayesian and Maximum Parsimony analyses provided a well-resolved phylogeny with high node-support values. Bayesian MCMC estimation of node dates was investigated by comparing means of posterior distributions from different subsets of the sequence against the most robust analysis which used multiple partitions and allowed for rate heterogeneity among branches under a rate-drift model. Evolutionary rates were systematically underestimated and thus divergence times overestimated when sequences containing lower numbers of variable sites were used (based on ingroup node constraints). The following analyses allowed the best recovery of node times under the constant-rate (i.e., perfect clock) model: (i) all cytochrome b sequence (partitioned by codon position), (ii) cytochrome b (codon position 3 alone), (iii) NADH dehydrogenase (subunits 1 and 2; partitioned by codon position), (iv) cytochrome b and NADH dehydrogenase sequence together (six gene-codon partitions), (v) all unpartitioned sequence, (vi) a full multipartition analysis (nine partitions). Of these, only (iv) and (vi) performed well under the rate-drift model. These findings have significant implications for dating of recent divergence times in other taxa. The earliest P.lilfordi cladogenesis event (divergence of Menorcan populations), occurred before the end of the Pliocene, some 2.6Ma. Subsequent events led to a West Mallorcan lineage (2.0Ma ago), followed 1.2Ma ago by divergence of populations from the southern part of the Cabrera archipelago from a widely-distributed group from north Cabrera, northern and southern Mallorcan islets. Divergence within P.pityusensis is more recent with the main Ibiza and Formentera clades sharing a common ancestor at about 1.0Ma ago. Climatic and sea level changes are likely to have initiated cladogenesis, with lineages making secondary contact during periodic landbridge formation. This oscillating cross-archipelago pattern in which ancient divergence is followed by repeated contact resembles that seen between East-West refugia populations from mainland Europe.

  16. Brettanomyces acidodurans sp. nov., a new acetic acid producing yeast species from olive oil.

    PubMed

    Péter, Gábor; Dlauchy, Dénes; Tóbiás, Andrea; Fülöp, László; Podgoršek, Martina; Čadež, Neža

    2017-05-01

    Two yeast strains representing a hitherto undescribed yeast species were isolated from olive oil and spoiled olive oil originating from Spain and Israel, respectively. Both strains are strong acetic acid producers, equipped with considerable tolerance to acetic acid. The cultures are not short-lived. Cellobiose is fermented as well as several other sugars. The sequences of their large subunit (LSU) rRNA gene D1/D2 domain are very divergent from the sequences available in the GenBank. They differ from the closest hit, Brettanomyces naardenensis by about 27%, mainly substitutions. Sequence analyses of the concatenated dataset from genes of the small subunit (SSU) rRNA, LSU rRNA and translation elongation factor-1α (EF-1α) placed the two strains as an early diverging member of the Brettanomyces/Dekkera clade with high bootstrap support. Sexual reproduction was not observed. The name Brettanomyces acidodurans sp. nov. (holotype: NCAIM Y.02178 T ; isotypes: CBS 14519 T  = NRRL Y-63865 T  = ZIM 2626 T , MycoBank no.: MB 819608) is proposed for this highly divergent new yeast species.

  17. New genes from old: asymmetric divergence of gene duplicates and the evolution of development.

    PubMed

    Holland, Peter W H; Marlétaz, Ferdinand; Maeso, Ignacio; Dunwell, Thomas L; Paps, Jordi

    2017-02-05

    Gene duplications and gene losses have been frequent events in the evolution of animal genomes, with the balance between these two dynamic processes contributing to major differences in gene number between species. After gene duplication, it is common for both daughter genes to accumulate sequence change at approximately equal rates. In some cases, however, the accumulation of sequence change is highly uneven with one copy radically diverging from its paralogue. Such 'asymmetric evolution' seems commoner after tandem gene duplication than after whole-genome duplication, and can generate substantially novel genes. We describe examples of asymmetric evolution in duplicated homeobox genes of moths, molluscs and mammals, in each case generating new homeobox genes that were recruited to novel developmental roles. The prevalence of asymmetric divergence of gene duplicates has been underappreciated, in part, because the origin of highly divergent genes can be difficult to resolve using standard phylogenetic methods.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'. © 2016 The Author(s).

  18. Comparative genome sequencing of Drosophila pseudoobscura: Chromosomal, gene, and cis-element evolution

    PubMed Central

    Richards, Stephen; Liu, Yue; Bettencourt, Brian R.; Hradecky, Pavel; Letovsky, Stan; Nielsen, Rasmus; Thornton, Kevin; Hubisz, Melissa J.; Chen, Rui; Meisel, Richard P.; Couronne, Olivier; Hua, Sujun; Smith, Mark A.; Zhang, Peili; Liu, Jing; Bussemaker, Harmen J.; van Batenburg, Marinus F.; Howells, Sally L.; Scherer, Steven E.; Sodergren, Erica; Matthews, Beverly B.; Crosby, Madeline A.; Schroeder, Andrew J.; Ortiz-Barrientos, Daniel; Rives, Catharine M.; Metzker, Michael L.; Muzny, Donna M.; Scott, Graham; Steffen, David; Wheeler, David A.; Worley, Kim C.; Havlak, Paul; Durbin, K. James; Egan, Amy; Gill, Rachel; Hume, Jennifer; Morgan, Margaret B.; Miner, George; Hamilton, Cerissa; Huang, Yanmei; Waldron, Lenée; Verduzco, Daniel; Clerc-Blankenburg, Kerstin P.; Dubchak, Inna; Noor, Mohamed A.F.; Anderson, Wyatt; White, Kevin P.; Clark, Andrew G.; Schaeffer, Stephen W.; Gelbart, William; Weinstock, George M.; Gibbs, Richard A.

    2005-01-01

    We have sequenced the genome of a second Drosophila species, Drosophila pseudoobscura, and compared this to the genome sequence of Drosophila melanogaster, a primary model organism. Throughout evolution the vast majority of Drosophila genes have remained on the same chromosome arm, but within each arm gene order has been extensively reshuffled, leading to a minimum of 921 syntenic blocks shared between the species. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 25–55 million years (Myr) since the pseudoobscura/melanogaster divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome-wide average, consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than random and nearby sequences between the species—but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a pattern of repeat-mediated chromosomal rearrangement, and high coadaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila. PMID:15632085

  19. Next generation sequencing and analysis of a conserved transcriptome of New Zealand's kiwi.

    PubMed

    Subramanian, Sankar; Huynen, Leon; Millar, Craig D; Lambert, David M

    2010-12-15

    Kiwi is a highly distinctive, flightless and endangered ratite bird endemic to New Zealand. To understand the patterns of molecular evolution of the nuclear protein-coding genes in brown kiwi (Apteryx australis mantelli) and to determine the timescale of avian history we sequenced a transcriptome obtained from a kiwi embryo using next generation sequencing methods. We then assembled the conserved protein-coding regions using the chicken proteome as a scaffold. Using 1,543 conserved protein coding genes we estimated the neutral evolutionary divergence between the kiwi and chicken to be ~45%, which is approximately equal to the divergence computed for the human-mouse pair using the same set of genes. A large fraction of genes was found to be under high selective constraint, as most of the expressed genes appeared to be involved in developmental gene regulation. Our study suggests a significant relationship between gene expression levels and protein evolution. Using sequences from over 700 nuclear genes we estimated the divergence between the two basal avian groups, Palaeognathae and Neognathae to be 132 million years, which is consistent with previous studies using mitochondrial genes. The results of this investigation revealed patterns of mutation and purifying selection in conserved protein coding regions in birds. Furthermore this study suggests a relatively cost-effective way of obtaining a glimpse into the fundamental molecular evolutionary attributes of a genome, particularly when no closely related genomic sequence is available.

  20. The evolutionary implications of knox-I gene duplications in conifers: correlated evidence from phylogeny, gene mapping, and analysis of functional divergence.

    PubMed

    Guillet-Claude, Carine; Isabel, Nathalie; Pelgas, Betty; Bousquet, Jean

    2004-12-01

    Class I knox genes code for transcription factors that play an essential role in plant growth and development as central regulators of meristem cell identity. Based on the analysis of new cDNA sequences from various tissues and genomic DNA sequences, we identified a highly diversified group of class I knox genes in conifers. Phylogenetic analyses of complete amino acid sequences from various seed plants indicated that all conifer sequences formed a monophyletic group. Within conifers, four subgroups here named genes KN1 to KN4 were well delineated, each regrouping pine and spruce sequences. KN4 was sister group to KN3, which was sister group to KN1 and KN2. Genetic mapping on the genomes of two divergent Picea species indicated that KN1 and KN2 are located close to each other on the same linkage group, whereas KN3 and KN4 mapped on different linkage groups, correlating the more ancient divergence of these two genes. The proportion of synonymous and nonsynonymous substitutions suggested intense purifying selection for the four genes. However, rates of substitution per year indicated an evolution in two steps: faster rates were noted after gene duplications, followed subsequently by lower rates. Positive directional selection was detected for most of the internal branches harboring an accelerated rate of evolution. In addition, many sites with highly significant amino acid rate shift were identified between these branches. However, the tightly linked KN1 and KN2 did not diverge as much from each other. The implications of the correlation between phylogenetic, structural, and functional information are discussed in relation to the diversification of the knox-I gene family in conifers.

  1. Adaptive genomic divergence under high gene flow between freshwater and brackish-water ecotypes of prickly sculpin (Cottus asper) revealed by Pool-Seq.

    PubMed

    Dennenmoser, Stefan; Vamosi, Steven M; Nolte, Arne W; Rogers, Sean M

    2017-01-01

    Understanding the genomic basis of adaptive divergence in the presence of gene flow remains a major challenge in evolutionary biology. In prickly sculpin (Cottus asper), an abundant euryhaline fish in northwestern North America, high genetic connectivity among brackish-water (estuarine) and freshwater (tributary) habitats of coastal rivers does not preclude the build-up of neutral genetic differentiation and emergence of different life history strategies. Because these two habitats present different osmotic niches, we predicted high genetic differentiation at known teleost candidate genes underlying salinity tolerance and osmoregulation. We applied whole-genome sequencing of pooled DNA samples (Pool-Seq) to explore adaptive divergence between two estuarine and two tributary habitats. Paired-end sequence reads were mapped against genomic contigs of European Cottus, and the gene content of candidate regions was explored based on comparisons with the threespine stickleback genome. Genes showing signals of repeated differentiation among brackish-water and freshwater habitats included functions such as ion transport and structural permeability in freshwater gills, which suggests that local adaptation to different osmotic niches might contribute to genomic divergence among habitats. Overall, the presence of both repeated and unique signatures of differentiation across many loci scattered throughout the genome is consistent with polygenic adaptation from standing genetic variation and locally variable selection pressures in the early stages of life history divergence. © 2016 John Wiley & Sons Ltd.

  2. The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza.

    PubMed

    Qian, Jun; Song, Jingyuan; Gao, Huanhuan; Zhu, Yingjie; Xu, Jiang; Pang, Xiaohui; Yao, Hui; Sun, Chao; Li, Xian'en; Li, Chuyuan; Liu, Juyan; Xu, Haibin; Chen, Shilin

    2013-01-01

    Salvia miltiorrhiza is an important medicinal plant with great economic and medicinal value. The complete chloroplast (cp) genome sequence of Salvia miltiorrhiza, the first sequenced member of the Lamiaceae family, is reported here. The genome is 151,328 bp in length and exhibits a typical quadripartite structure of the large (LSC, 82,695 bp) and small (SSC, 17,555 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 25,539 bp). It contains 114 unique genes, including 80 protein-coding genes, 30 tRNAs and four rRNAs. The genome structure, gene order, GC content and codon usage are similar to the typical angiosperm cp genomes. Four forward, three inverted and seven tandem repeats were detected in the Salvia miltiorrhiza cp genome. Simple sequence repeat (SSR) analysis among the 30 asterid cp genomes revealed that most SSRs are AT-rich, which contribute to the overall AT richness of these cp genomes. Additionally, fewer SSRs are distributed in the protein-coding sequences compared to the non-coding regions, indicating an uneven distribution of SSRs within the cp genomes. Entire cp genome comparison of Salvia miltiorrhiza and three other Lamiales cp genomes showed a high degree of sequence similarity and a relatively high divergence of intergenic spacers. Sequence divergence analysis discovered the ten most divergent and ten most conserved genes as well as their length variation, which will be helpful for phylogenetic studies in asterids. Our analysis also supports that both regional and functional constraints affect gene sequence evolution. Further, phylogenetic analysis demonstrated a sister relationship between Salvia miltiorrhiza and Sesamum indicum. The complete cp genome sequence of Salvia miltiorrhiza reported in this paper will facilitate population, phylogenetic and cp genetic engineering studies of this medicinal plant.

  3. Phased genotyping-by-sequencing enhances analysis of genetic diversity and reveals divergent copy number variants in maize

    USDA-ARS?s Scientific Manuscript database

    High-throughput sequencing of reduced representation genomic libraries has ushered in an era of genotyping-by-sequencing (GBS), where genome-wide genotype data can be obtained for nearly any species. However, there remains a need for imputation-free GBS methods for genotyping large samples taken fr...

  4. Mechanisms of haplotype divergence at the RGA08 nucleotide-binding leucine-rich repeat gene locus in wild banana (Musa balbisiana)

    PubMed Central

    2010-01-01

    Background Comparative sequence analysis of complex loci such as resistance gene analog clusters allows estimating the degree of sequence conservation and mechanisms of divergence at the intraspecies level. In banana (Musa sp.), two diploid wild species Musa acuminata (A genome) and Musa balbisiana (B genome) contribute to the polyploid genome of many cultivars. The M. balbisiana species is associated with vigour and tolerance to pests and disease and little is known on the genome structure and haplotype diversity within this species. Here, we compare two genomic sequences of 253 and 223 kb corresponding to two haplotypes of the RGA08 resistance gene analog locus in M. balbisiana "Pisang Klutuk Wulung" (PKW). Results Sequence comparison revealed two regions of contrasting features. The first is a highly colinear gene-rich region where the two haplotypes diverge only by single nucleotide polymorphisms and two repetitive element insertions. The second corresponds to a large cluster of RGA08 genes, with 13 and 18 predicted RGA genes and pseudogenes spread over 131 and 152 kb respectively on each haplotype. The RGA08 cluster is enriched in repetitive element insertions, in duplicated non-coding intergenic sequences including low complexity regions and shows structural variations between haplotypes. Although some allelic relationships are retained, a large diversity of RGA08 genes occurs in this single M. balbisiana genotype, with several RGA08 paralogs specific to each haplotype. The RGA08 gene family has evolved by mechanisms of unequal recombination, intragenic sequence exchange and diversifying selection. An unequal recombination event taking place between duplicated non-coding intergenic sequences resulted in a different RGA08 gene content between haplotypes pointing out the role of such duplicated regions in the evolution of RGA clusters. Based on the synonymous substitution rate in coding sequences, we estimated a 1 million year divergence time for these M. balbisiana haplotypes. Conclusions A large RGA08 gene cluster identified in wild banana corresponds to a highly variable genomic region between haplotypes surrounded by conserved flanking regions. High level of sequence identity (70 to 99%) of the genic and intergenic regions suggests a recent and rapid evolution of this cluster in M. balbisiana. PMID:20637079

  5. Complete nuclear ribosomal DNA sequence amplification and molecular analyses of Bangia (Bangiales, Rhodophyta) from China

    NASA Astrophysics Data System (ADS)

    Xu, Jiajie; Jiang, Bo; Chai, Sanming; He, Yuan; Zhu, Jianyi; Shen, Zonggen; Shen, Songdong

    2016-09-01

    Filamentous Bangia, which are distributed extensively throughout the world, have simple and similar morphological characteristics. Scientists can classify these organisms using molecular markers in combination with morphology. We successfully sequenced the complete nuclear ribosomal DNA, approximately 13 kb in length, from a marine Bangia population. We further analyzed the small subunit ribosomal DNA gene (nrSSU) and the internal transcribed spacer (ITS) sequence regions along with nine other marine, and two freshwater Bangia samples from China. Pairwise distances of the nrSSU and 5.8S ribosomal DNA gene sequences show the marine samples grouping together with low divergences (00.003; 0-0.006, respectively) from each other, but high divergences (0.123-0.126; 0.198, respectively) from freshwater samples. An exception is the marine sample collected from Weihai, which shows high divergence from both other marine samples (0.063-0.065; 0.129, respectively) and the freshwater samples (0.097; 0.120, respectively). A maximum likelihood phylogenetic tree based on a combined SSU-ITS dataset with maximum likelihood method shows the samples divided into three clades, with the two marine sample clades containing Bangia spp. from North America, Europe, Asia, and Australia; and one freshwater clade, containing Bangia atropurpurea from North America and China.

  6. Strong genetic structure corresponds to small-scale geographic breaks in the Australian alpine grasshopper Kosciuscola tristis.

    PubMed

    Slatyer, Rachel A; Nash, Michael A; Miller, Adam D; Endo, Yoshinori; Umbers, Kate D L; Hoffmann, Ary A

    2014-10-02

    Mountain landscapes are topographically complex, creating discontinuous 'islands' of alpine and sub-alpine habitat with a dynamic history. Changing climatic conditions drive their expansion and contraction, leaving signatures on the genetic structure of their flora and fauna. Australia's high country covers a small, highly fragmented area. Although the area is thought to have experienced periods of relative continuity during Pleistocene glacial periods, small-scale studies suggest deep lineage divergence across low-elevation gaps. Using both DNA sequence data and microsatellite markers, we tested the hypothesis that genetic partitioning reflects observable geographic structuring across Australia's mainland high country, in the widespread alpine grasshopper Kosciuscola tristis (Sjösted). We found broadly congruent patterns of regional structure between the DNA sequence and microsatellite datasets, corresponding to strong divergence among isolated mountain regions. Small and isolated mountains in the south of the range were particularly distinct, with well-supported divergence corresponding to climate cycles during the late Pliocene and Pleistocene. We found mixed support, however, for divergence among other mountain regions. Interestingly, within areas of largely contiguous alpine and sub-alpine habitat around Mt Kosciuszko, microsatellite data suggested significant population structure, accompanied by a strong signature of isolation-by-distance. Consistent patterns of strong lineage divergence among different molecular datasets indicate genetic breaks between populations inhabiting geographically distinct mountain regions. Three primary phylogeographic groups were evident in the highly fragmented Victorian high country, while within-region structure detected with microsatellites may reflect more recent population isolation. Despite the small area of Australia's alpine and sub-alpine habitats, their low topographic relief and lack of extensive glaciation, divergence among populations was on the same scale as that detected in much more extensive Northern hemisphere mountain systems. The processes driving divergence in the Australian mountains might therefore differ from their Northern hemisphere counterparts.

  7. First comparative insight into the architecture of COI mitochondrial minicircle molecules of dicyemids reveals marked inter-species variation.

    PubMed

    Catalano, Sarah R; Whittington, Ian D; Donnellan, Stephen C; Bertozzi, Terry; Gillanders, Bronwyn M

    2015-07-01

    Dicyemids, poorly known parasites of benthic cephalopods, are one of the few phyla in which mitochondrial (mt) genome architecture departs from the typical ~16 kb circular metazoan genome. In addition to a putative circular genome, a series of mt minicircles that each comprises the mt encoded units (I-III) of the cytochrome c oxidase complex have been reported. Whether the structure of the mt minicircles is a consistent feature among dicyemid species is unknown. Here we analyse the complete cytochrome c oxidase subunit I (COI) minicircle molecule, containing the COI gene and an associated non-coding region (NCR), for ten dicyemid species, allowing for first time comparisons between species of minicircle architecture, NCR function and inferences of minicircle replication. Divergence in COI nucleotide sequences between dicyemid species was high (average net divergence = 31.6%) while within species diversity was lower (average net divergence = 0.2%). The NCR and putative 5' section of the COI gene were highly divergent between dicyemid species (average net nucleotide divergence of putative 5' COI section = 61.1%). No tRNA genes were found in the NCR, although palindrome sequences with the potential to form stem-loop structures were identified in some species, which may play a role in transcription or other biological processes.

  8. Comparative sequence analyses of sixteen reptilian paramyxoviruses

    USGS Publications Warehouse

    Ahne, W.; Batts, W.N.; Kurath, G.; Winton, J.R.

    1999-01-01

    Viral genomic RNA of Fer-de-Lance virus (FDLV), a paramyxovirus highly pathogenic for reptiles, was reverse transcribed and cloned. Plasmids with significant sequence similarities to the hemagglutinin-neuraminidase (HN) and polymerase (L) genes of mammalian paramyxoviruses were identified by BLAST search. Partial sequences of the FDLV genes were used to design primers for amplification by nested polymerase chain reaction (PCR) and sequencing of 518-bp L gene and 352-bp HN gene fragments from a collection of 15 previously uncharacterized reptilian paramyxoviruses. Phylogenetic analyses of the partial L and HN sequences produced similar trees in which there were two distinct subgroups of isolates that were supported with maximum bootstrap values, and several intermediate isolates. Within each subgroup the nucleotide divergence values were less than 2.5%, while the divergence between the two subgroups was 20-22%. This indicated that the two subgroups represent distinct virus species containing multiple virus strains. The five intermediate isolates had nucleotide divergence values of 11-20% and may represent additional distinct species. In addition to establishing diversity among reptilian paramyxoviruses, the phylogenetic groupings showed some correlation with geographic location, and clearly demonstrated a low level of host species-specificity within these viruses. Copyright (C) 1999 Elsevier Science B.V.

  9. Mechanistically Distinct Pathways of Divergent Regulatory DNA Creation Contribute to Evolution of Human-Specific Genomic Regulatory Networks Driving Phenotypic Divergence of Homo sapiens

    PubMed Central

    Glinsky, Gennadi V.

    2016-01-01

    Abstract Thousands of candidate human-specific regulatory sequences (HSRS) have been identified, supporting the hypothesis that unique to human phenotypes result from human-specific alterations of genomic regulatory networks. Collectively, a compendium of multiple diverse families of HSRS that are functionally and structurally divergent from Great Apes could be defined as the backbone of human-specific genomic regulatory networks. Here, the conservation patterns analysis of 18,364 candidate HSRS was carried out requiring that 100% of bases must remap during the alignments of human, chimpanzee, and bonobo sequences. A total of 5,535 candidate HSRS were identified that are: (i) highly conserved in Great Apes; (ii) evolved by the exaptation of highly conserved ancestral DNA; (iii) defined by either the acceleration of mutation rates on the human lineage or the functional divergence from non-human primates. The exaptation of highly conserved ancestral DNA pathway seems mechanistically distinct from the evolution of regulatory DNA segments driven by the species-specific expansion of transposable elements. Genome-wide proximity placement analysis of HSRS revealed that a small fraction of topologically associating domains (TADs) contain more than half of HSRS from four distinct families. TADs that are enriched for HSRS and termed rapidly evolving in humans TADs (revTADs) comprise 0.8–10.3% of 3,127 TADs in the hESC genome. RevTADs manifest distinct correlation patterns between placements of human accelerated regions, human-specific transcription factor-binding sites, and recombination rates. There is a significant enrichment within revTAD boundaries of hESC-enhancers, primate-specific CTCF-binding sites, human-specific RNAPII-binding sites, hCONDELs, and H3K4me3 peaks with human-specific enrichment at TSS in prefrontal cortex neurons (P < 0.0001 in all instances). Present analysis supports the idea that phenotypic divergence of Homo sapiens is driven by the evolution of human-specific genomic regulatory networks via at least two mechanistically distinct pathways of creation of divergent sequences of regulatory DNA: (i) recombination-associated exaptation of the highly conserved ancestral regulatory DNA segments; (ii) human-specific insertions of transposable elements. PMID:27503290

  10. Speciation in ancient cryptic species complexes: evidence from the molecular phylogeny of Brachionus plicatilis (Rotifera).

    PubMed

    Gómez, Africa; Serra, Manuel; Carvalho, Gary R; Lunt, David H

    2002-07-01

    Continental lake-dwelling zooplanktonic organisms have long been considered cosmopolitan species with little geographic variation in spite of the isolation of their habitats. Evidence of morphological cohesiveness and high dispersal capabilities support this interpretation. However, this view has been challenged recently as many such species have been shown either to comprise cryptic species complexes or to exhibit marked population genetic differentiation and strong phylogeographic structuring at a regional scale. Here we investigate the molecular phylogeny of the cosmopolitan passively dispersing rotifer Brachionus plicatilis (Rotifera: Monogononta) species complex using nucleotide sequence variation from both nuclear (ribosomal internal transcribed spacer 1, ITS1) and mitochondrial (cytochrome c oxidase subunit I, COI) genes. Analysis of rotifer resting eggs from 27 salt lakes in the Iberian Peninsula plus lakes from four continents revealed nine genetically divergent lineages. The high level of sequence divergence, absence of hybridization, and extensive sympatry observed support the specific status of these lineages. Sequence divergence estimates indicate that the B. plicatilis complex began diversifying many millions of years ago, yet has showed relatively high levels of morphological stasis. We discuss these results in relation to the ecology and genetics of aquatic invertebrates possessing dispersive resting propagules and address the apparent contradiction between zooplanktonic population structure and their morphological stasis.

  11. Mhc class II B gene evolution in East African cichlid fishes.

    PubMed

    Figueroa, F; Mayer, W E; Sültmann, H; O'hUigin, C; Tichy, H; Satta, Y; Takezaki, N; Takahata, N; Klein, J

    2000-06-01

    A distinctive feature of essential major histocompatibility complex (Mhc) loci is their polymorphism characterized by large genetic distances between alleles and long persistence times of allelic lineages. Since the lineages often span several successive speciations, we investigated the behavior of the Mhc alleles during or close to the speciation phase. We sequenced exon 2 of the class II B locus 4 from 232 East African cichlid fishes representing 32 related species. The divergence times of the (sub)species ranged from 6,000 to 8.4 million years. Two types of evolutionary analysis were used to elucidate the pattern of exon 2 sequence divergence. First, phylogenetic methods were applied to reconstruct the most likely evolutionary pathways leading from the last common ancestor of the set to the extant sequences, and to assess the probable mechanisms involved in allelic diversification. Second, pairwise comparisons of sequences were carried out to detect differences seemingly incompatible with origin by nonparallel point mutations. The analysis revealed point mutations to be the most important mechanism behind allelic divergences, with recombination playing only an auxiliary part. Comparison of sequences from related species revealed evidence of random allelic (lineage) losses apparently associated with speciation. Sharing of identical alleles could be demonstrated between species that diverged 2 million years ago. The phylogeny of the exon was incongruent with that of the flanking introns, indicating either a high degree of convergent evolution at the peptide-binding region-encoding sites, or intron homogenization.

  12. Using multi-locus allelic sequence data to estimate genetic divergence among four Lilium (Liliaceae) cultivars

    PubMed Central

    Shahin, Arwa; Smulders, Marinus J. M.; van Tuyl, Jaap M.; Arens, Paul; Bakker, Freek T.

    2014-01-01

    Next Generation Sequencing (NGS) may enable estimating relationships among genotypes using allelic variation of multiple nuclear genes simultaneously. We explored the potential and caveats of this strategy in four genetically distant Lilium cultivars to estimate their genetic divergence from transcriptome sequences using three approaches: POFAD (Phylogeny of Organisms from Allelic Data, uses allelic information of sequence data), RAxML (Randomized Accelerated Maximum Likelihood, tree building based on concatenated consensus sequences) and Consensus Network (constructing a network summarizing among gene tree conflicts). Twenty six gene contigs were chosen based on the presence of orthologous sequences in all cultivars, seven of which also had an orthologous sequence in Tulipa, used as out-group. The three approaches generated the same topology. Although the resolution offered by these approaches is high, in this case there was no extra benefit in using allelic information. We conclude that these 26 genes can be widely applied to construct a species tree for the genus Lilium. PMID:25368628

  13. The impact of fossil calibrations, codon positions and relaxed clocks on the divergence time estimates of the native Australian rodents (Conilurini).

    PubMed

    Nilsson, Maria A; Härlid, Anna; Kullberg, Morgan; Janke, Axel

    2010-05-01

    The native rodents are the most species-rich placental mammal group on the Australian continent. Fossils of native Australian rodents belonging to the group Conilurini are known from Northern Australia at 4.5Ma. These fossil assemblages already display a rich diversity of rodents, but the exact timing of their arrival on the Australian continent is not yet established. The complete mitochondrial genomes of two native Australian rodents, Leggadina lakedownensis (Lakeland Downs mouse) and Pseudomys chapmani (Western Pebble-mound mouse) were sequenced for investigating their evolutionary history. The molecular data were used for studying the phylogenetic position and divergence times of the Australian rodents, using 12 calibration points and various methods. Phylogenetic analyses place the native Australian rodents as the sister-group to the genus Mus. The Mus-Conilurini calibration point (7.3-11.0Ma) is highly critical for estimating rodent divergence times, while the influence of the different algorithms on estimating divergence times is negligible. The influence of the data type was investigated, indicating that amino acid data are more likely to reflect the correct divergence times than nucleotide sequences. The study on the problems related to estimating divergence times in fast-evolving lineages such as rodents, emphasize the choice of data and calibration points as being critical. Furthermore, it is essential to include accurate calibration points for fast-evolving groups, because the divergence times can otherwise be estimated to be significantly older. The divergence times of the Australian rodents are highly congruent and are estimated to 6.5-7.2Ma, a date that is compatible with their fossil record.

  14. Miniprimer PCR, a New Lens for Viewing the Microbial World▿ †

    PubMed Central

    Isenbarger, Thomas A.; Finney, Michael; Ríos-Velázquez, Carlos; Handelsman, Jo; Ruvkun, Gary

    2008-01-01

    Molecular methods based on the 16S rRNA gene sequence are used widely in microbial ecology to reveal the diversity of microbial populations in environmental samples. Here we show that a new PCR method using an engineered polymerase and 10-nucleotide “miniprimers” expands the scope of detectable sequences beyond those detected by standard methods using longer primers and Taq polymerase. After testing the method in silico to identify divergent ribosomal genes in previously cloned environmental sequences, we applied the method to soil and microbial mat samples, which revealed novel 16S rRNA gene sequences that would not have been detected with standard primers. Deeply divergent sequences were discovered with high frequency and included representatives that define two new division-level taxa, designated CR1 and CR2, suggesting that miniprimer PCR may reveal new dimensions of microbial diversity. PMID:18083877

  15. Molecular diversity of some species belonging to the genus Daphnia O. F. Müller, 1785 (Crustacea: Cladocera) in Turkey.

    PubMed

    Özdemir, Ebru; Altındağ, Ahmet; Kandemir, İrfan

    2017-05-01

    Daphnia is a freshwater zooplankton species with controversial taxonomy due to its high morphological variation linked to environmental factors and inter-specific hybridization and polyploidy in some groups. The aim of the present study is to examine molecular diversity of some Daphnia species in Turkey and to establish DNA barcodes of Turkish Daphnia species. Sequence analysis was performed using 540 bp region of cytochrome oxidase subunit I gene of mitochondrial DNA. A total of 34 haplotypes have been identified for Turkey. Daphnia pulex complex was divided into two clades with 16.1% sequence divergence according to molecular taxonomy based on Kimura 2-parameter. The clade which was molecularly diverged from Daphnia pulex with 16.1% sequence divergence was found to show 99% similarity with Daphnia cf. pulicaria (sensu Alonso 1996) instead of Daphnia pulicaria Forbes, 1893. Furthermore, this study has contributed to Turkish zoogeography by demonstrating the distribution of Daphnia species in Turkey.

  16. Conceptual issues in Bayesian divergence time estimation

    PubMed Central

    2016-01-01

    Bayesian inference of species divergence times is an unusual statistical problem, because the divergence time parameters are not identifiable unless both fossil calibrations and sequence data are available. Commonly used marginal priors on divergence times derived from fossil calibrations may conflict with node order on the phylogenetic tree causing a change in the prior on divergence times for a particular topology. Care should be taken to avoid confusing this effect with changes due to informative sequence data. This effect is illustrated with examples. A topology-consistent prior that preserves the marginal priors is defined and examples are constructed. Conflicts between fossil calibrations and relative branch lengths (based on sequence data) can cause estimates of divergence times that are grossly incorrect, yet have a narrow posterior distribution. An example of this effect is given; it is recommended that overly narrow posterior distributions of divergence times should be carefully scrutinized. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325831

  17. Conceptual issues in Bayesian divergence time estimation.

    PubMed

    Rannala, Bruce

    2016-07-19

    Bayesian inference of species divergence times is an unusual statistical problem, because the divergence time parameters are not identifiable unless both fossil calibrations and sequence data are available. Commonly used marginal priors on divergence times derived from fossil calibrations may conflict with node order on the phylogenetic tree causing a change in the prior on divergence times for a particular topology. Care should be taken to avoid confusing this effect with changes due to informative sequence data. This effect is illustrated with examples. A topology-consistent prior that preserves the marginal priors is defined and examples are constructed. Conflicts between fossil calibrations and relative branch lengths (based on sequence data) can cause estimates of divergence times that are grossly incorrect, yet have a narrow posterior distribution. An example of this effect is given; it is recommended that overly narrow posterior distributions of divergence times should be carefully scrutinized.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. © 2016 The Author(s).

  18. Evolution of the cytoskeleton

    PubMed Central

    Erickson, Harold P.

    2009-01-01

    Summary The eukaryotic cytoskeleton appears to have evolved from ancestral precursors related to prokaryotic FtsZ and MreB. FtsZ and MreB show 40−50% sequence identity across different bacterial and archaeal species. Here I suggest that this represents the limit of divergence that is consistent with maintaining their functions for cytokinesis and cell shape. Previous analyses have noted that tubulin and actin are highly conserved across eukaryotic species, but so divergent from their prokaryotic relatives as to be hardly recognizable from sequence comparisons. One suggestion for this extreme divergence of tubulin and actin is that it occurred as they evolved very different functions from FtsZ and MreB. I will present new arguments favoring this suggestion, and speculate on pathways. Moreover, the extreme conservation of tubulin and actin across eukaryotic species is not due to an intrinsic lack of variability, but is attributed to their acquisition of elaborate mechanisms for assembly dynamics and their interactions with multiple motor and binding proteins. A new structure-based sequence alignment identifies amino acids that are conserved from FtsZ to tubulins. The highly conserved amino acids are not those forming the subunit core or protofilament interface, but those involved in binding and hydrolysis of GTP. PMID:17563102

  19. DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar

    PubMed Central

    Smith, M. Alex; Fisher, Brian L; Hebert, Paul D.N

    2005-01-01

    The role of DNA barcoding as a tool to accelerate the inventory and analysis of diversity for hyperdiverse arthropods is tested using ants in Madagascar. We demonstrate how DNA barcoding helps address the failure of current inventory methods to rapidly respond to pressing biodiversity needs, specifically in the assessment of richness and turnover across landscapes with hyperdiverse taxa. In a comparison of inventories at four localities in northern Madagascar, patterns of richness were not significantly different when richness was determined using morphological taxonomy (morphospecies) or sequence divergence thresholds (Molecular Operational Taxonomic Unit(s); MOTU). However, sequence-based methods tended to yield greater richness and significantly lower indices of similarity than morphological taxonomy. MOTU determined using our molecular technique were a remarkably local phenomenon—indicative of highly restricted dispersal and/or long-term isolation. In cases where molecular and morphological methods differed in their assignment of individuals to categories, the morphological estimate was always more conservative than the molecular estimate. In those cases where morphospecies descriptions collapsed distinct molecular groups, sequence divergences of 16% (on average) were contained within the same morphospecies. Such high divergences highlight taxa for further detailed genetic, morphological, life history, and behavioral studies. PMID:16214741

  20. Comparative genomics using microarrays reveals divergence and loss of virulence-associated genes in host-specific strains of the insect pathogen Metarhizium anisopliae.

    PubMed

    Wang, Sibao; Leclerque, Andreas; Pava-Ripoll, Monica; Fang, Weiguo; St Leger, Raymond J

    2009-06-01

    Many strains of Metarhizium anisopliae have broad host ranges, but others are specialists and adapted to particular hosts. Patterns of gene duplication, divergence, and deletion in three generalist and three specialist strains were investigated by heterologous hybridization of genomic DNA to genes from the generalist strain Ma2575. As expected, major life processes are highly conserved, presumably due to purifying selection. However, up to 7% of Ma2575 genes were highly divergent or absent in specialist strains. Many of these sequences are conserved in other fungal species, suggesting that there has been rapid evolution and loss in specialist Metarhizium genomes. Some poorly hybridizing genes in specialists were functionally coordinated, indicative of reductive evolution. These included several involved in toxin biosynthesis and sugar metabolism in root exudates, suggesting that specialists are losing genes required to live in alternative hosts or as saprophytes. Several components of mobile genetic elements were also highly divergent or lost in specialists. Exceptionally, the genome of the specialist cricket pathogen Ma443 contained extra insertion elements that might play a role in generating evolutionary novelty. This study throws light on the abundance of orphans in genomes, as 15% of orphan sequences were found to be rapidly evolving in the Ma2575 lineage.

  1. Sperm Bindin Divergence under Sexual Selection and Concerted Evolution in Sea Stars.

    PubMed

    Patiño, Susana; Keever, Carson C; Sunday, Jennifer M; Popovic, Iva; Byrne, Maria; Hart, Michael W

    2016-08-01

    Selection associated with competition among males or sexual conflict between mates can create positive selection for high rates of molecular evolution of gamete recognition genes and lead to reproductive isolation between species. We analyzed coding sequence and repetitive domain variation in the gene encoding the sperm acrosomal protein bindin in 13 diverse sea star species. We found that bindin has a conserved coding sequence domain structure in all 13 species, with several repeated motifs in a large central region that is similar among all sea stars in organization but highly divergent among genera in nucleotide and predicted amino acid sequence. More bindin codons and lineages showed positive selection for high relative rates of amino acid substitution in genera with gonochoric outcrossing adults (and greater expected strength of sexual selection) than in selfing hermaphrodites. That difference is consistent with the expectation that selfing (a highly derived mating system) may moderate the strength of sexual selection and limit the accumulation of bindin amino acid differences. The results implicate both positive selection on single codons and concerted evolution within the repetitive region in bindin divergence, and suggest that both single amino acid differences and repeat differences may affect sperm-egg binding and reproductive compatibility. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Evolutionary Drivers of Diversification and Distribution of a Southern Temperate Stream Fish Assemblage: Testing the Role of Historical Isolation and Spatial Range Expansion

    PubMed Central

    Chakona, Albert; Swartz, Ernst R.; Gouws, Gavin

    2013-01-01

    This study used phylogenetic analyses of mitochondrial cytochrome b sequences to investigate genetic diversity within three broadly co-distributed freshwater fish genera (Galaxias, Pseudobarbus and Sandelia) to shed some light on the processes that promoted lineage diversification and shaped geographical distribution patterns. A total of 205 sequences of Galaxias, 177 sequences of Pseudobarbus and 98 sequences of Sandelia from 146 localities across nine river systems in the south-western Cape Floristic Region (South Africa) were used. The data were analysed using phylogenetic and haplotype network methods and divergence times for the clades retrieved were estimated using *BEAST. Nine extremely divergent (3.5–25.3%) lineages were found within Galaxias. Similarly, deep phylogeographic divergence was evident within Pseudobarbus, with four markedly distinct (3.8–10.0%) phylogroups identified. Sandelia had two deeply divergent (5.5–5.9%) lineages, but seven minor lineages with strong geographical congruence were also identified. The Miocene-Pliocene major sea-level transgression and the resultant isolation of populations in upland refugia appear to have driven widespread allopatric divergence within the three genera. Subsequent coalescence of rivers during the Pleistocene major sea-level regression as well as intermittent drainage connections during wet periods are proposed to have facilitated range expansion of lineages that currently occur across isolated river systems. The high degree of genetic differentiation recovered from the present and previous studies suggest that freshwater fish diversity within the south-western CFR may be vastly underestimated, and taxonomic revisions are required. PMID:23951050

  3. Positive selection and propeptide repeats promote rapid interspecific divergence of a gastropod sperm protein.

    PubMed

    Hellberg, M E; Moy, G W; Vacquier, V D

    2000-03-01

    Male-specific proteins have increasingly been reported as targets of positive selection and are of special interest because of the role they may play in the evolution of reproductive isolation. We report the rapid interspecific divergence of cDNA encoding a major acrosomal protein of unknown function (TMAP) of sperm from five species of teguline gastropods. A mitochondrial DNA clock (calibrated by congeneric species divided by the Isthmus of Panama) estimates that these five species diverged 2-10 MYA. Inferred amino acid sequences reveal a propeptide that has diverged rapidly between species. The mature protein has diverged faster still due to high nonsynonymous substitution rates (> 25 nonsynonymous substitutions per site per 10(9) years). cDNA encoding the mature protein (89-100 residues) shows evidence of positive selection (Dn/Ds > 1) for 4 of 10 pairwise species comparisons. cDNA and predicted secondary-structure comparisons suggest that TMAP is neither orthologous nor paralogous to abalone lysin, and thus marks a second, phylogenetically independent, protein subject to strong positive selection in free-spawning marine gastropods. In addition, an internal repeat in one species (Tegula aureotincta) produces a duplicated cleavage site which results in two alternatively processed mature proteins differing by nine amino acid residues. Such alternative processing may provide a mechanism for introducing novel amino acid sequence variation at the amino-termini of proteins. Highly divergent TMAP N-termini from two other tegulines (Tegula regina and Norrisia norrisii) may have originated by such a mechanism.

  4. Candida ficus sp. nov., a novel yeast species from the gut of Apriona germari larvae.

    PubMed

    Hui, Feng-Li; Niu, Qiu-Hong; Ke, Tao; Liu, Zheng

    2012-11-01

    A novel yeast species is described based on three strains from the gut of wood-boring larvae collected in a tree trunk of Ficus carica cultivated in parks near Nanyang, central China. Phylogenetic analysis based on sequences of the D1/D2 domains of the large subunit rRNA gene showed that these strains occurred in a separate clade that was genetically distinct from all known ascomycetous yeasts. In terms of pairwise sequence divergence, the novel strains differed by 15.3% divergence from the type strain of Pichia terricola, and by 15.8% divergence from the type strains of Pichia exigua and Candida rugopelliculosa in the D1/D2 domains. All three are ascomycetous yeasts in the Pichia clade. Unlike P. terricola, P. exigua and C. rugopelliculosa, the novel isolates did not ferment glucose. The name Candida ficus sp. nov. is proposed to accommodate these highly divergent organisms, with STN-8(T) (=CICC 1980(T)=CBS 12638(T)) as the type strain.

  5. Bathymetric and geographic population structure in the pan-Atlantic deep-sea bivalve Deminucula atacellana (Schenck, 1939).

    PubMed

    Zardus, John D; Etter, Ron J; Chase, Michael R; Rex, Michael A; Boyle, Elizabeth E

    2006-03-01

    The deep-sea soft-sediment environment hosts a diverse and highly endemic fauna of uncertain origin. We know little about how this fauna evolved because geographic patterns of genetic variation, the essential information for inferring patterns of population differentiation and speciation are poorly understood. Using formalin-fixed specimens from archival collections, we quantify patterns of genetic variation in the protobranch bivalve Deminucula atacellana, a species widespread throughout the Atlantic Ocean at bathyal and abyssal depths. Samples were taken from 18 localities in the North American, West European and Argentine basins. A hypervariable region of mitochondrial 16S rDNA was amplified by polymerase chain reaction (PCR) and sequenced from 130 individuals revealing 21 haplotypes. Except for several important exceptions, haplotypes are unique to each basin. Overall gene diversity is high (h = 0.73) with pronounced population structure (Phi(ST) = 0.877) and highly significant geographic associations (P < 0.0001). Sequences cluster into four major clades corresponding to differences in geography and depth. Genetic divergence was much greater among populations at different depths within the same basin, than among those at similar depths but separated by thousands of kilometres. Isolation by distance probably explains much of the interbasin variation. Depth-related divergence may reflect historical patterns of colonization or strong environmental selective gradients. Broadly distributed deep-sea organisms can possess highly genetically divergent populations, despite the lack of any morphological divergence.

  6. DRS is far less divergent than streptococcal inhibitor of complement of group A streptococcus.

    PubMed

    Sagar, Vivek; Kumar, Rajesh; Ganguly, Nirmal K; Menon, Thangam; Chakraborti, Anuradha

    2007-04-01

    When 100 group A streptococcus isolates were screened, drs, a variant of sic, was identified in emm12 and emm55 isolates. Molecular characterization showed that the drs gene sequence is highly conserved, unlike the sic gene sequence. However, the variation in gene size observed was due to the presence of extra internal repeat sequences.

  7. DRS Is Far Less Divergent than Streptococcal Inhibitor of Complement of Group A Streptococcus▿

    PubMed Central

    Sagar, Vivek; Kumar, Rajesh; Ganguly, Nirmal K.; Menon, Thangam; Chakraborti, Anuradha

    2007-01-01

    When 100 group A streptococcus isolates were screened, drs, a variant of sic, was identified in emm12 and emm55 isolates. Molecular characterization showed that the drs gene sequence is highly conserved, unlike the sic gene sequence. However, the variation in gene size observed was due to the presence of extra internal repeat sequences. PMID:17237170

  8. A dated molecular phylogeny of manta and devil rays (Mobulidae) based on mitogenome and nuclear sequences.

    PubMed

    Poortvliet, Marloes; Olsen, Jeanine L; Croll, Donald A; Bernardi, Giacomo; Newton, Kelly; Kollias, Spyros; O'Sullivan, John; Fernando, Daniel; Stevens, Guy; Galván Magaña, Felipe; Seret, Bernard; Wintner, Sabine; Hoarau, Galice

    2015-02-01

    Manta and devil rays are an iconic group of globally distributed pelagic filter feeders, yet their evolutionary history remains enigmatic. We employed next generation sequencing of mitogenomes for nine of the 11 recognized species and two outgroups; as well as additional Sanger sequencing of two mitochondrial and two nuclear genes in an extended taxon sampling set. Analysis of the mitogenome coding regions in a Maximum Likelihood and Bayesian framework provided a well-resolved phylogeny. The deepest divergences distinguished three clades with high support, one containing Manta birostris, Manta alfredi, Mobula tarapacana, Mobula japanica and Mobula mobular; one containing Mobula kuhlii, Mobula eregoodootenkee and Mobula thurstoni; and one containing Mobula munkiana, Mobula hypostoma and Mobula rochebrunei. Mobula remains paraphyletic with the inclusion of Manta, a result that is in agreement with previous studies based on molecular and morphological data. A fossil-calibrated Bayesian random local clock analysis suggests that mobulids diverged from Rhinoptera around 30 Mya. Subsequent divergences are characterized by long internodes followed by short bursts of speciation extending from an initial episode of divergence in the Early and Middle Miocene (19-17 Mya) to a second episode during the Pliocene and Pleistocene (3.6 Mya - recent). Estimates of divergence dates overlap significantly with periods of global warming, during which upwelling intensity - and related high primary productivity in upwelling regions - decreased markedly. These periods are hypothesized to have led to fragmentation and isolation of feeding regions leading to possible regional extinctions, as well as the promotion of allopatric speciation. The closely shared evolutionary history of mobulids in combination with ongoing threats from fisheries and climate change effects on upwelling and food supply, reinforces the case for greater protection of this charismatic family of pelagic filter feeders. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Genetic structure of Plasmodium vivax using the merozoite surface protein 1 icb5-6 fragment reveals new hybrid haplotypes in southern Mexico

    PubMed Central

    2014-01-01

    Background Plasmodium vivax is a protozoan parasite with an extensive worldwide distribution, being highly prevalent in Asia as well as in Mesoamerica and South America. In southern Mexico, P. vivax transmission has been endemic and recent studies suggest that these parasites have unique biological and genetic features. The msp1 gene has shown high rate of nucleotide substitutions, deletions, insertions, and its mosaic structure reveals frequent events of recombination, maybe between highly divergent parasite isolates. Methods The nucleotide sequence variation in the polymorphic icb5-6 fragment of the msp1 gene of Mexican and worldwide isolates was analysed. To understand how genotype diversity arises, disperses and persists in Mexico, the genetic structure and genealogical relationships of local isolates were examined. To identify new sequence hybrids and their evolutionary relationships with other P. vivax isolates circulating worldwide two haplotype networks were constructed questioning that two portions of the icb5-6 have different evolutionary history. Results Twelve new msp1 icb5-6 haplotypes of P. vivax from Mexico were identified. These nucleotide sequences show mosaic structure comprising three partially conserved and two variable subfragments and resulted into five different sequence types. The variable subfragment sV1 has undergone recombination events and resulted in hybrid sequences and the haplotype network allocated the Mexican haplotypes to three lineages, corresponding to the Sal I and Belem types, and other more divergent group. In contrast, the network from icb5-6 fragment but not sV1 revealed that the Mexican haplotypes belong to two separate lineages, none of which are closely related to Sal I or Belem sequences. Conclusions These results suggest that the new hybrid haplotypes from southern Mexico were the result of at least three different recombination events. These rearrangements likely resulted from the recombination between haplotypes of highly divergent lineages that are frequently distributed in South America and Asia and diversified rapidly. PMID:24472213

  10. Evaluation of SNP Data from the Malus Infinium Array Identifies Challenges for Genetic Analysis of Complex Genomes of Polyploid Origin.

    PubMed

    Troggio, Michela; Surbanovski, Nada; Bianco, Luca; Moretto, Marco; Giongo, Lara; Banchi, Elisa; Viola, Roberto; Fernández, Felicdad Fernández; Costa, Fabrizio; Velasco, Riccardo; Cestaro, Alessandro; Sargent, Daniel James

    2013-01-01

    High throughput arrays for the simultaneous genotyping of thousands of single-nucleotide polymorphisms (SNPs) have made the rapid genetic characterisation of plant genomes and the development of saturated linkage maps a realistic prospect for many plant species of agronomic importance. However, the correct calling of SNP genotypes in divergent polyploid genomes using array technology can be problematic due to paralogy, and to divergence in probe sequences causing changes in probe binding efficiencies. An Illumina Infinium II whole-genome genotyping array was recently developed for the cultivated apple and used to develop a molecular linkage map for an apple rootstock progeny (M432), but a large proportion of segregating SNPs were not mapped in the progeny, due to unexpected genotype clustering patterns. To investigate the causes of this unexpected clustering we performed BLAST analysis of all probe sequences against the 'Golden Delicious' genome sequence and discovered evidence for paralogous annealing sites and probe sequence divergence for a high proportion of probes contained on the array. Following visual re-evaluation of the genotyping data generated for 8,788 SNPs for the M432 progeny using the array, we manually re-scored genotypes at 818 loci and mapped a further 797 markers to the M432 linkage map. The newly mapped markers included the majority of those that could not be mapped previously, as well as loci that were previously scored as monomorphic, but which segregated due to divergence leading to heterozygosity in probe annealing sites. An evaluation of the 8,788 probes in a diverse collection of Malus germplasm showed that more than half the probes returned genotype clustering patterns that were difficult or impossible to interpret reliably, highlighting implications for the use of the array in genome-wide association studies.

  11. Ignoring heterozygous sites biases phylogenomic estimates of divergence times: implications for the evolutionary history of microtus voles.

    PubMed

    Lischer, Heidi E L; Excoffier, Laurent; Heckel, Gerald

    2014-04-01

    Phylogenetic reconstruction of the evolutionary history of closely related organisms may be difficult because of the presence of unsorted lineages and of a relatively high proportion of heterozygous sites that are usually not handled well by phylogenetic programs. Genomic data may provide enough fixed polymorphisms to resolve phylogenetic trees, but the diploid nature of sequence data remains analytically challenging. Here, we performed a phylogenomic reconstruction of the evolutionary history of the common vole (Microtus arvalis) with a focus on the influence of heterozygosity on the estimation of intraspecific divergence times. We used genome-wide sequence information from 15 voles distributed across the European range. We provide a novel approach to integrate heterozygous information in existing phylogenetic programs by repeated random haplotype sampling from sequences with multiple unphased heterozygous sites. We evaluated the impact of the use of full, partial, or no heterozygous information for tree reconstructions on divergence time estimates. All results consistently showed four deep and strongly supported evolutionary lineages in the vole data. These lineages undergoing divergence processes split only at the end or after the last glacial maximum based on calibration with radiocarbon-dated paleontological material. However, the incorporation of information from heterozygous sites had a significant impact on absolute and relative branch length estimations. Ignoring heterozygous information led to an overestimation of divergence times between the evolutionary lineages of M. arvalis. We conclude that the exclusion of heterozygous sites from evolutionary analyses may cause biased and misleading divergence time estimates in closely related taxa.

  12. A Generalized Least-Squares Estimate for the Origin of Sporophytic Self-Incompatibility

    PubMed Central

    Uyenoyama, M. K.

    1995-01-01

    Analysis of nucleotide sequences that regulate the expression of self-incompatibility in flowering plants affords a direct means of examining classical hypotheses for the origin and evolution of this major feature of mating systems. Departing from the classical view of monophyly of all forms of self-incompatibility, the current paradigm for the origin of self-incompatibility postulates multiple episodes of recruitment and modification of preexisting genes. In Brassica, the S locus, which regulates sporophytic self-incompatibility, shows homology to a multigene family present both in self-compatible congeners and in groups for which this form of self-incompatibility is atypical. A phylogenetic analysis of S-allele sequences together with homologous sequences that do not cosegregate with self-incompatibility permits dating the change of function that marked the origin of self-incompatibility. A generalized least-squares method is introduced that provides closed-form expressions for estimates and standard errors for function-specific divergence rates and times of divergence among sequences. This analysis suggests that the age of the sporophytic self-incompatibility system expressed in Brassica exceeds species divergence within the genus by four- to fivefold. The extraordinarily high levels of sequence diversity exhibited by S alleles appears to reflect their ancient derivation, with the alternative hypothesis of hypermutability rejected by the analysis. PMID:7713446

  13. Molecular evolution of ependymin and the phylogenetic resolution of early divergences among euteleost fishes.

    PubMed

    Ortí, G; Meyer, A

    1996-04-01

    The rate and pattern of DNA evolution of ependymin, a single-copy gene coding for a highly expressed glycoprotein in the brain matrix of teleost fishes, is characterized and its phylogenetic utility for fish systematics is assessed. DNA sequences were determined from catfish, electric fish, and characiforms and compared with published ependymin sequences from cyprinids, salmon, pike, and herring. Among these groups, ependymin amino acid sequences were highly divergent (up to 60% sequence difference), but had surprisingly similar hydropathy profiles and invariant glycosylation sites, suggesting that functional properties of the proteins are conserved. Comparison of base composition at third codon positions and introns revealed AT-rich introns and GC-rich third codon positions, suggesting that the biased codon usage observed might not be due to mutational bias. Phylogenetic information content of third codon positions was surprisingly high and sufficient to recover the most basal nodes of the tree, in spite of the observation that pairwise distances (at third codon positions) were well above the presumed saturation level. This finding can be explained by the high proportion of phylogenetically informative nonsynonymous changes at third codon positions among these highly divergent proteins. Ependymin DNA sequences have established the first molecular evidence for the monophyly of a group containing salmonids and esociforms. In addition, ependymin suggests a sister group relationship of electric fish (Gymnotiformes) and Characiformes, constituting a significant departure from currently accepted classifications. However, relationships among characiform lineages were not completely resolved by ependymin sequences in spite of seemingly appropriate levels of variation among taxa and considerably low levels of homoplasy in the data (consistency index = 0.7). If the diversification of Characiformes took place in an "explosive" manner, over a relatively short period of time this pattern should also be observed using other phylogenetic markers. Poor conservation of ependymin's primary structure hinders the design of efficient primers for PCR that could be used in wide-ranging fish systematic studies. However, alternative methods like PCR amplification from cDNA used here should provide promising comparative sequence data for the resolution of phylogenetic relationships among other basal lineages of teleost fishes.

  14. Single sample resolution of rare microbial dark matter in a marine invertebrate metagenome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Ian J.; Weyna, Theodore R.; Fong, Stephen S.

    Direct, untargeted sequencing of environmental samples (metagenomics) and de novo genome assembly enable the study of uncultured and phylogenetically divergent organisms. However, separating individual genomes from a mixed community has often relied on the differential-coverage analysis of multiple, deeply sequenced samples. In the metagenomic investigation of the marine bryozoan Bugula neritina, we uncovered seven bacterial genomes associated with a single B. neritina individual that appeared to be transient associates, two of which were unique to one individual and undetectable using certain “universal” 16S rRNA primers and probes. We recovered high quality genome assemblies for several rare instances of “microbial darkmore » matter,” or phylogenetically divergent bacteria lacking genomes in reference databases, from a single tissue sample that was not subjected to any physical or chemical pre-treatment. One of these rare, divergent organisms has a small (593 kbp), poorly annotated genome with low GC content (20.9%) and a 16S rRNA gene with just 65% sequence similarity to the closest reference sequence. Lastly, our findings illustrate the importance of sampling strategy and de novo assembly of metagenomic reads to understand the extent and function of bacterial biodiversity.« less

  15. Single sample resolution of rare microbial dark matter in a marine invertebrate metagenome

    DOE PAGES

    Miller, Ian J.; Weyna, Theodore R.; Fong, Stephen S.; ...

    2016-09-29

    Direct, untargeted sequencing of environmental samples (metagenomics) and de novo genome assembly enable the study of uncultured and phylogenetically divergent organisms. However, separating individual genomes from a mixed community has often relied on the differential-coverage analysis of multiple, deeply sequenced samples. In the metagenomic investigation of the marine bryozoan Bugula neritina, we uncovered seven bacterial genomes associated with a single B. neritina individual that appeared to be transient associates, two of which were unique to one individual and undetectable using certain “universal” 16S rRNA primers and probes. We recovered high quality genome assemblies for several rare instances of “microbial darkmore » matter,” or phylogenetically divergent bacteria lacking genomes in reference databases, from a single tissue sample that was not subjected to any physical or chemical pre-treatment. One of these rare, divergent organisms has a small (593 kbp), poorly annotated genome with low GC content (20.9%) and a 16S rRNA gene with just 65% sequence similarity to the closest reference sequence. Lastly, our findings illustrate the importance of sampling strategy and de novo assembly of metagenomic reads to understand the extent and function of bacterial biodiversity.« less

  16. Analyzing the relationship between sequence divergence and nodal support using Bayesian phylogenetic analyses.

    PubMed

    Makowsky, Robert; Cox, Christian L; Roelke, Corey; Chippindale, Paul T

    2010-11-01

    Determining the appropriate gene for phylogeny reconstruction can be a difficult process. Rapidly evolving genes tend to resolve recent relationships, but suffer from alignment issues and increased homoplasy among distantly related species. Conversely, slowly evolving genes generally perform best for deeper relationships, but lack sufficient variation to resolve recent relationships. We determine the relationship between sequence divergence and Bayesian phylogenetic reconstruction ability using both natural and simulated datasets. The natural data are based on 28 well-supported relationships within the subphylum Vertebrata. Sequences of 12 genes were acquired and Bayesian analyses were used to determine phylogenetic support for correct relationships. Simulated datasets were designed to determine whether an optimal range of sequence divergence exists across extreme phylogenetic conditions. Across all genes we found that an optimal range of divergence for resolving the correct relationships does exist, although this level of divergence expectedly depends on the distance metric. Simulated datasets show that an optimal range of sequence divergence exists across diverse topologies and models of evolution. We determine that a simple to measure property of genetic sequences (genetic distance) is related to phylogenic reconstruction ability in Bayesian analyses. This information should be useful for selecting the most informative gene to resolve any relationships, especially those that are difficult to resolve, as well as minimizing both cost and confounding information during project design. Copyright © 2010. Published by Elsevier Inc.

  17. Expression Divergence Is Correlated with Sequence Evolution but Not Positive Selection in Conifers.

    PubMed

    Hodgins, Kathryn A; Yeaman, Sam; Nurkowski, Kristin A; Rieseberg, Loren H; Aitken, Sally N

    2016-06-01

    The evolutionary and genomic determinants of sequence evolution in conifers are poorly understood, and previous studies have found only limited evidence for positive selection. Using RNAseq data, we compared gene expression profiles to patterns of divergence and polymorphism in 44 seedlings of lodgepole pine (Pinus contorta) and 39 seedlings of interior spruce (Picea glauca × engelmannii) to elucidate the evolutionary forces that shape their genomes and their plastic responses to abiotic stress. We found that rapidly diverging genes tend to have greater expression divergence, lower expression levels, reduced levels of synonymous site diversity, and longer proteins than slowly diverging genes. Similar patterns were identified for the untranslated regions, but with some exceptions. We found evidence that genes with low expression levels had a larger fraction of nearly neutral sites, suggesting a primary role for negative selection in determining the association between evolutionary rate and expression level. There was limited evidence for differences in the rate of positive selection among genes with divergent versus conserved expression profiles and some evidence supporting relaxed selection in genes diverging in expression between the species. Finally, we identified a small number of genes that showed evidence of site-specific positive selection using divergence data alone. However, estimates of the proportion of sites fixed by positive selection (α) were in the range of other plant species with large effective population sizes suggesting relatively high rates of adaptive divergence among conifers. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Next-generation sequencing of the Trichinella murrelli mitochondrial genome allows comprehensive comparison of its divergence from the principal agent of human trichinellosis, Trichinella spiralis.

    PubMed

    Webb, Kristen M; Rosenthal, Benjamin M

    2011-01-01

    The mitochondrial genome's non-recombinant mode of inheritance and relatively rapid rate of evolution has promoted its use as a marker for studying the biogeographic history and evolutionary interrelationships among many metazoan species. A modest portion of the mitochondrial genome has been defined for 12 species and genotypes of parasites in the genus Trichinella, but its adequacy in representing the mitochondrial genome as a whole remains unclear, as the complete coding sequence has been characterized only for Trichinella spiralis. Here, we sought to comprehensively describe the extent and nature of divergence between the mitochondrial genomes of T. spiralis (which poses the most appreciable zoonotic risk owing to its capacity to establish persistent infections in domestic pigs) and Trichinella murrelli (which is the most prevalent species in North American wildlife hosts, but which poses relatively little risk to the safety of pork). Next generation sequencing methodologies and scaffold and de novo assembly strategies were employed. The entire protein-coding region was sequenced (13,917 bp), along with a portion of the highly repetitive non-coding region (1524 bp) of the mitochondrial genome of T. murrelli with a combined average read depth of 250 reads. The accuracy of base calling, estimated from coding region sequence was found to exceed 99.3%. Genome content and gene order was not found to be significantly different from that of T. spiralis. An overall inter-species sequence divergence of 9.5% was estimated. Significant variation was identified when the amount of variation between species at each gene is compared to the average amount of variation between species across the coding region. Next generation sequencing is a highly effective means to obtain previously unknown mitochondrial genome sequence. Particular to parasites, the extremely deep coverage achieved through this method allows for the detection of sequence heterogeneity between the multiple individuals that necessarily comprise such templates. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Evidence for Deep Regulatory Similarities in Early Developmental Programs across Highly Diverged Insects

    PubMed Central

    Zhang, Yinan; Samee, Md. Abul Hassan; Halfon, Marc S.; Sinha, Saurabh

    2014-01-01

    Many genes familiar from Drosophila development, such as the so-called gap, pair-rule, and segment polarity genes, play important roles in the development of other insects and in many cases appear to be deployed in a similar fashion, despite the fact that Drosophila-like “long germband” development is highly derived and confined to a subset of insect families. Whether or not these similarities extend to the regulatory level is unknown. Identification of regulatory regions beyond the well-studied Drosophila has been challenging as even within the Diptera (flies, including mosquitoes) regulatory sequences have diverged past the point of recognition by standard alignment methods. Here, we demonstrate that methods we previously developed for computational cis-regulatory module (CRM) discovery in Drosophila can be used effectively in highly diverged (250–350 Myr) insect species including Anopheles gambiae, Tribolium castaneum, Apis mellifera, and Nasonia vitripennis. In Drosophila, we have successfully used small sets of known CRMs as “training data” to guide the search for other CRMs with related function. We show here that although species-specific CRM training data do not exist, training sets from Drosophila can facilitate CRM discovery in diverged insects. We validate in vivo over a dozen new CRMs, roughly doubling the number of known CRMs in the four non-Drosophila species. Given the growing wealth of Drosophila CRM annotation, these results suggest that extensive regulatory sequence annotation will be possible in newly sequenced insects without recourse to costly and labor-intensive genome-scale experiments. We develop a new method, Regulus, which computes a probabilistic score of similarity based on binding site composition (despite the absence of nucleotide-level sequence alignment), and demonstrate similarity between functionally related CRMs from orthologous loci. Our work represents an important step toward being able to trace the evolutionary history of gene regulatory networks and defining the mechanisms underlying insect evolution. PMID:25173756

  20. Evidence for deep regulatory similarities in early developmental programs across highly diverged insects.

    PubMed

    Kazemian, Majid; Suryamohan, Kushal; Chen, Jia-Yu; Zhang, Yinan; Samee, Md Abul Hassan; Halfon, Marc S; Sinha, Saurabh

    2014-09-01

    Many genes familiar from Drosophila development, such as the so-called gap, pair-rule, and segment polarity genes, play important roles in the development of other insects and in many cases appear to be deployed in a similar fashion, despite the fact that Drosophila-like "long germband" development is highly derived and confined to a subset of insect families. Whether or not these similarities extend to the regulatory level is unknown. Identification of regulatory regions beyond the well-studied Drosophila has been challenging as even within the Diptera (flies, including mosquitoes) regulatory sequences have diverged past the point of recognition by standard alignment methods. Here, we demonstrate that methods we previously developed for computational cis-regulatory module (CRM) discovery in Drosophila can be used effectively in highly diverged (250-350 Myr) insect species including Anopheles gambiae, Tribolium castaneum, Apis mellifera, and Nasonia vitripennis. In Drosophila, we have successfully used small sets of known CRMs as "training data" to guide the search for other CRMs with related function. We show here that although species-specific CRM training data do not exist, training sets from Drosophila can facilitate CRM discovery in diverged insects. We validate in vivo over a dozen new CRMs, roughly doubling the number of known CRMs in the four non-Drosophila species. Given the growing wealth of Drosophila CRM annotation, these results suggest that extensive regulatory sequence annotation will be possible in newly sequenced insects without recourse to costly and labor-intensive genome-scale experiments. We develop a new method, Regulus, which computes a probabilistic score of similarity based on binding site composition (despite the absence of nucleotide-level sequence alignment), and demonstrate similarity between functionally related CRMs from orthologous loci. Our work represents an important step toward being able to trace the evolutionary history of gene regulatory networks and defining the mechanisms underlying insect evolution. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Extraordinary Sequence Divergence at Tsga8, an X-linked Gene Involved in Mouse Spermiogenesis

    PubMed Central

    Good, Jeffrey M.; Vanderpool, Dan; Smith, Kimberly L.; Nachman, Michael W.

    2011-01-01

    The X chromosome plays an important role in both adaptive evolution and speciation. We used a molecular evolutionary screen of X-linked genes potentially involved in reproductive isolation in mice to identify putative targets of recurrent positive selection. We then sequenced five very rapidly evolving genes within and between several closely related species of mice in the genus Mus. All five genes were involved in male reproduction and four of the genes showed evidence of recurrent positive selection. The most remarkable evolutionary patterns were found at Testis-specific gene a8 (Tsga8), a spermatogenesis-specific gene expressed during postmeiotic chromatin condensation and nuclear transformation. Tsga8 was characterized by extremely high levels of insertion–deletion variation of an alanine-rich repetitive motif in natural populations of Mus domesticus and M. musculus, differing in length from the reference mouse genome by up to 89 amino acids (27% of the total protein length). This population-level variation was coupled with striking divergence in protein sequence and length between closely related mouse species. Although no clear orthologs had previously been described for Tsga8 in other mammalian species, we have identified a highly divergent hypothetical gene on the rat X chromosome that shares clear orthology with the 5′ and 3′ ends of Tsga8. Further inspection of this ortholog verified that it is expressed in rat testis and shares remarkable similarity with mouse Tsga8 across several general features of the protein sequence despite no conservation of nucleotide sequence across over 60% of the rat-coding domain. Overall, Tsga8 appears to be one of the most rapidly evolving genes to have been described in rodents. We discuss the potential evolutionary causes and functional implications of this extraordinary divergence and the possible contribution of Tsga8 and the other four genes we examined to reproductive isolation in mice. PMID:21186189

  2. Mitogenome Sequencing in the Genus Camelus Reveals Evidence for Purifying Selection and Long-term Divergence between Wild and Domestic Bactrian Camels.

    PubMed

    Mohandesan, Elmira; Fitak, Robert R; Corander, Jukka; Yadamsuren, Adiya; Chuluunbat, Battsetseg; Abdelhadi, Omer; Raziq, Abdul; Nagy, Peter; Stalder, Gabrielle; Walzer, Chris; Faye, Bernard; Burger, Pamela A

    2017-08-30

    The genus Camelus is an interesting model to study adaptive evolution in the mitochondrial genome, as the three extant Old World camel species inhabit hot and low-altitude as well as cold and high-altitude deserts. We sequenced 24 camel mitogenomes and combined them with three previously published sequences to study the role of natural selection under different environmental pressure, and to advance our understanding of the evolutionary history of the genus Camelus. We confirmed the heterogeneity of divergence across different components of the electron transport system. Lineage-specific analysis of mitochondrial protein evolution revealed a significant effect of purifying selection in the concatenated protein-coding genes in domestic Bactrian camels. The estimated dN/dS < 1 in the concatenated protein-coding genes suggested purifying selection as driving force for shaping mitogenome diversity in camels. Additional analyses of the functional divergence in amino acid changes between species-specific lineages indicated fixed substitutions in various genes, with radical effects on the physicochemical properties of the protein products. The evolutionary time estimates revealed a divergence between domestic and wild Bactrian camels around 1.1 [0.58-1.8] million years ago (mya). This has major implications for the conservation and management of the critically endangered wild species, Camelus ferus.

  3. Segmenting the human genome based on states of neutral genetic divergence.

    PubMed

    Kuruppumullage Don, Prabhani; Ananda, Guruprasad; Chiaromonte, Francesca; Makova, Kateryna D

    2013-09-03

    Many studies have demonstrated that divergence levels generated by different mutation types vary and covary across the human genome. To improve our still-incomplete understanding of the mechanistic basis of this phenomenon, we analyze several mutation types simultaneously, anchoring their variation to specific regions of the genome. Using hidden Markov models on insertion, deletion, nucleotide substitution, and microsatellite divergence estimates inferred from human-orangutan alignments of neutrally evolving genomic sequences, we segment the human genome into regions corresponding to different divergence states--each uniquely characterized by specific combinations of divergence levels. We then parsed the mutagenic contributions of various biochemical processes associating divergence states with a broad range of genomic landscape features. We find that high divergence states inhabit guanine- and cytosine (GC)-rich, highly recombining subtelomeric regions; low divergence states cover inner parts of autosomes; chromosome X forms its own state with lowest divergence; and a state of elevated microsatellite mutability is interspersed across the genome. These general trends are mirrored in human diversity data from the 1000 Genomes Project, and departures from them highlight the evolutionary history of primate chromosomes. We also find that genes and noncoding functional marks [annotations from the Encyclopedia of DNA Elements (ENCODE)] are concentrated in high divergence states. Our results provide a powerful tool for biomedical data analysis: segmentations can be used to screen personal genome variants--including those associated with cancer and other diseases--and to improve computational predictions of noncoding functional elements.

  4. Divergence with gene flow within the recent chipmunk radiation (Tamias)

    PubMed Central

    Sullivan, J; Demboski, J R; Bell, K C; Hird, S; Sarver, B; Reid, N; Good, J M

    2014-01-01

    Increasing data have supported the importance of divergence with gene flow (DGF) in the generation of biological diversity. In such cases, lineage divergence occurs on a shorter timescale than does the completion of reproductive isolation. Although it is critical to explore the mechanisms driving divergence and preventing homogenization by hybridization, it is equally important to document cases of DGF in nature. Here we synthesize data that have accumulated over the last dozen or so years on DGF in the chipmunk (Tamias) radiation with new data that quantify very high rates of mitochondrial DNA (mtDNA) introgression among para- and sympatric species in the T. quadrivittatus group in the central and southern Rocky Mountains. These new data (188 cytochrome b sequences) bring the total number of sequences up to 1871; roughly 16% (298) of the chipmunks we have sequenced exhibit introgressed mtDNA. This includes ongoing introgression between subspecies and between both closely related and distantly related taxa. In addition, we have identified several taxa that are apparently fixed for ancient introgressions and in which there is no evidence of ongoing introgression. A recurrent observation is that these introgressions occur between ecologically and morphologically diverged, sometimes non-sister taxa that engage in well-documented niche partitioning. Thus, the chipmunk radiation in western North America represents an excellent mammalian example of speciation in the face of recurrent gene flow among lineages and where biogeography, habitat differentiation and mating systems suggest important roles for both ecological and sexual selection. PMID:24781803

  5. Comparing and combining distance-based and character-based approaches for barcoding turtles.

    PubMed

    Reid, B N; LE, M; McCord, W P; Iverson, J B; Georges, A; Bergmann, T; Amato, G; Desalle, R; Naro-Maciel, E

    2011-11-01

    Molecular barcoding can serve as a powerful tool in wildlife forensics and may prove to be a vital aid in conserving organisms that are threatened by illegal wildlife trade, such as turtles (Order Testudines). We produced cytochrome oxidase subunit one (COI) sequences (650 bp) for 174 turtle species and combined these with publicly available sequences for 50 species to produce a data set representative of the breadth of the order. Variability within the barcode region was assessed, and the utility of both distance-based and character-based methods for species identification was evaluated. For species in which genetic material from more than one individual was available (n = 69), intraspecific divergences were 1.3% on average, although divergences greater than the customary 2% barcode threshold occurred within 15 species. High intraspecific divergences could indicate species with a high degree of internal genetic structure or possibly even cryptic species, although introgression is also probable in some of these taxa. Divergences between species of the same genus were 6.4% on average; however, 49 species were <2% divergent from congeners. Low levels of interspecific divergence could be caused by recent evolutionary radiations coupled with the low rates of mtDNA evolution previously observed in turtles. Complementing distance-based barcoding with character-based methods for identifying diagnostic sets of nucleotides provided better resolution in several cases where distance-based methods failed to distinguish species. An online identification engine was created to provide character-based identifications. This study constitutes the first comprehensive barcoding effort for this seriously threatened order. © 2011 Blackwell Publishing Ltd.

  6. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality.

    PubMed

    Wei, Chaoling; Yang, Hua; Wang, Songbo; Zhao, Jian; Liu, Chun; Gao, Liping; Xia, Enhua; Lu, Ying; Tai, Yuling; She, Guangbiao; Sun, Jun; Cao, Haisheng; Tong, Wei; Gao, Qiang; Li, Yeyun; Deng, Weiwei; Jiang, Xiaolan; Wang, Wenzhao; Chen, Qi; Zhang, Shihua; Li, Haijing; Wu, Junlan; Wang, Ping; Li, Penghui; Shi, Chengying; Zheng, Fengya; Jian, Jianbo; Huang, Bei; Shan, Dai; Shi, Mingming; Fang, Congbing; Yue, Yi; Li, Fangdong; Li, Daxiang; Wei, Shu; Han, Bin; Jiang, Changjun; Yin, Ye; Xia, Tao; Zhang, Zhengzhu; Bennetzen, Jeffrey L; Zhao, Shancen; Wan, Xiaochun

    2018-05-01

    Tea, one of the world's most important beverage crops, provides numerous secondary metabolites that account for its rich taste and health benefits. Here we present a high-quality sequence of the genome of tea, Camellia sinensis var. sinensis (CSS), using both Illumina and PacBio sequencing technologies. At least 64% of the 3.1-Gb genome assembly consists of repetitive sequences, and the rest yields 33,932 high-confidence predictions of encoded proteins. Divergence between two major lineages, CSS and Camellia sinensis var. assamica (CSA), is calculated to ∼0.38 to 1.54 million years ago (Mya). Analysis of genic collinearity reveals that the tea genome is the product of two rounds of whole-genome duplications (WGDs) that occurred ∼30 to 40 and ∼90 to 100 Mya. We provide evidence that these WGD events, and subsequent paralogous duplications, had major impacts on the copy numbers of secondary metabolite genes, particularly genes critical to producing three key quality compounds: catechins, theanine, and caffeine. Analyses of transcriptome and phytochemistry data show that amplification and transcriptional divergence of genes encoding a large acyltransferase family and leucoanthocyanidin reductases are associated with the characteristic young leaf accumulation of monomeric galloylated catechins in tea, while functional divergence of a single member of the glutamine synthetase gene family yielded theanine synthetase. This genome sequence will facilitate understanding of tea genome evolution and tea metabolite pathways, and will promote germplasm utilization for breeding improved tea varieties. Copyright © 2018 the Author(s). Published by PNAS.

  7. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality

    PubMed Central

    Wei, Chaoling; Yang, Hua; Wang, Songbo; Zhao, Jian; Liu, Chun; Gao, Liping; Xia, Enhua; Lu, Ying; Tai, Yuling; She, Guangbiao; Sun, Jun; Cao, Haisheng; Tong, Wei; Gao, Qiang; Li, Yeyun; Deng, Weiwei; Jiang, Xiaolan; Wang, Wenzhao; Chen, Qi; Zhang, Shihua; Li, Haijing; Wu, Junlan; Wang, Ping; Li, Penghui; Shi, Chengying; Zheng, Fengya; Jian, Jianbo; Huang, Bei; Shan, Dai; Shi, Mingming; Fang, Congbing; Yue, Yi; Li, Fangdong; Li, Daxiang; Wei, Shu; Han, Bin; Jiang, Changjun; Yin, Ye; Xia, Tao; Zhang, Zhengzhu; Bennetzen, Jeffrey L.; Zhao, Shancen; Wan, Xiaochun

    2018-01-01

    Tea, one of the world’s most important beverage crops, provides numerous secondary metabolites that account for its rich taste and health benefits. Here we present a high-quality sequence of the genome of tea, Camellia sinensis var. sinensis (CSS), using both Illumina and PacBio sequencing technologies. At least 64% of the 3.1-Gb genome assembly consists of repetitive sequences, and the rest yields 33,932 high-confidence predictions of encoded proteins. Divergence between two major lineages, CSS and Camellia sinensis var. assamica (CSA), is calculated to ∼0.38 to 1.54 million years ago (Mya). Analysis of genic collinearity reveals that the tea genome is the product of two rounds of whole-genome duplications (WGDs) that occurred ∼30 to 40 and ∼90 to 100 Mya. We provide evidence that these WGD events, and subsequent paralogous duplications, had major impacts on the copy numbers of secondary metabolite genes, particularly genes critical to producing three key quality compounds: catechins, theanine, and caffeine. Analyses of transcriptome and phytochemistry data show that amplification and transcriptional divergence of genes encoding a large acyltransferase family and leucoanthocyanidin reductases are associated with the characteristic young leaf accumulation of monomeric galloylated catechins in tea, while functional divergence of a single member of the glutamine synthetase gene family yielded theanine synthetase. This genome sequence will facilitate understanding of tea genome evolution and tea metabolite pathways, and will promote germplasm utilization for breeding improved tea varieties. PMID:29678829

  8. Complete genome sequences of two highly divergent Japanese isolates of Plantago asiatica mosaic virus.

    PubMed

    Komatsu, Ken; Yamashita, Kazuo; Sugawara, Kota; Verbeek, Martin; Fujita, Naoko; Hanada, Kaoru; Uehara-Ichiki, Tamaki; Fuji, Shin-Ichi

    2017-02-01

    Plantago asiatica mosaic virus (PlAMV) is a member of the genus Potexvirus and has an exceptionally wide host range. It causes severe damage to lilies. Here we report on the complete nucleotide sequences of two new Japanese PlAMV isolates, one from the eudicot weed Viola grypoceras (PlAMV-Vi), and the other from the eudicot shrub Nandina domestica Thunb. (PlAMV-NJ). Their genomes contain five open reading frames (ORFs), which is characteristic of potexviruses. Surprisingly, the isolates showed only 76.0-78.0 % sequence identity with each other and with other PlAMV isolates, including isolates from Japanese lily and American nandina. Amino acid alignments of the replicase coding region encoded by ORF1 showed that the regions between the methyltransferase and helicase domains were less conserved than other regions, with several insertions and/or deletions. Phylogenetic analyses of the full-length nucleotide sequences revealed a moderate correlation between phylogenetic clustering and the original host plants of the PlAMV isolates. This study revealed the presence of two highly divergent PlAMV isolates in Japan.

  9. Dynamics of actin evolution in dinoflagellates.

    PubMed

    Kim, Sunju; Bachvaroff, Tsvetan R; Handy, Sara M; Delwiche, Charles F

    2011-04-01

    Dinoflagellates have unique nuclei and intriguing genome characteristics with very high DNA content making complete genome sequencing difficult. In dinoflagellates, many genes are found in multicopy gene families, but the processes involved in the establishment and maintenance of these gene families are poorly understood. Understanding the dynamics of gene family evolution in dinoflagellates requires comparisons at different evolutionary scales. Studies of closely related species provide fine-scale information relative to species divergence, whereas comparisons of more distantly related species provides broad context. We selected the actin gene family as a highly expressed conserved gene previously studied in dinoflagellates. Of the 142 sequences determined in this study, 103 were from the two closely related species, Dinophysis acuminata and D. caudata, including full length and partial cDNA sequences as well as partial genomic amplicons. For these two Dinophysis species, at least three types of sequences could be identified. Most copies (79%) were relatively similar and in nucleotide trees, the sequences formed two bushy clades corresponding to the two species. In comparisons within species, only eight to ten nucleotide differences were found between these copies. The two remaining types formed clades containing sequences from both species. One type included the most similar sequences in between-species comparisons with as few as 12 nucleotide differences between species. The second type included the most divergent sequences in comparisons between and within species with up to 93 nucleotide differences between sequences. In all the sequences, most variation occurred in synonymous sites or the 5' UnTranslated Region (UTR), although there was still limited amino acid variation between most sequences. Several potential pseudogenes were found (approximately 10% of all sequences depending on species) with incomplete open reading frames due to frameshifts or early stop codons. Overall, variation in the actin gene family fits best with the "birth and death" model of evolution based on recent duplications, pseudogenes, and incomplete lineage sorting. Divergence between species was similar to variation within species, so that actin may be too conserved to be useful for phylogenetic estimation of closely related species.

  10. Evolution of nuclear rDNA ITS sequences in the Cladophora albida/sericea clade (Chlorophyta).

    PubMed

    Bakker, F T; Olsen, J L; Stam, W T

    1995-06-01

    Ribosomal DNA ITS sequences were compared among 13 different species and biogeographic isolates from the monophyletic "albida/sericea clade" in the green algal genus Cladophora. Six distinct ITS sequence types were found, characterized by multiple insertions and deletions and high levels of nucleotide substitution. Conserved domains within the ITS regions indicate the presence of ITS secondary structure. Low transition/transversion ratios among the six types and nearly symmetrical tree-length frequency distributions indicate some saturation, and low phylogenetic signal. Although branching order among five of the six ITS sequence types could not be resolved, estimates of ITS sequence divergence as compared with 18S divergence in a subset of the taxa suggests that the origin of the different ITS types is probably in the mid-Miocene (12 Ma ago) but that biogeographic isolates within a single ITS type (including both Pacific and Atlantic representatives) have probably dispersed on a time scale of thousands rather than millions of years.

  11. Mechanistically Distinct Pathways of Divergent Regulatory DNA Creation Contribute to Evolution of Human-Specific Genomic Regulatory Networks Driving Phenotypic Divergence of Homo sapiens.

    PubMed

    Glinsky, Gennadi V

    2016-09-19

    Thousands of candidate human-specific regulatory sequences (HSRS) have been identified, supporting the hypothesis that unique to human phenotypes result from human-specific alterations of genomic regulatory networks. Collectively, a compendium of multiple diverse families of HSRS that are functionally and structurally divergent from Great Apes could be defined as the backbone of human-specific genomic regulatory networks. Here, the conservation patterns analysis of 18,364 candidate HSRS was carried out requiring that 100% of bases must remap during the alignments of human, chimpanzee, and bonobo sequences. A total of 5,535 candidate HSRS were identified that are: (i) highly conserved in Great Apes; (ii) evolved by the exaptation of highly conserved ancestral DNA; (iii) defined by either the acceleration of mutation rates on the human lineage or the functional divergence from non-human primates. The exaptation of highly conserved ancestral DNA pathway seems mechanistically distinct from the evolution of regulatory DNA segments driven by the species-specific expansion of transposable elements. Genome-wide proximity placement analysis of HSRS revealed that a small fraction of topologically associating domains (TADs) contain more than half of HSRS from four distinct families. TADs that are enriched for HSRS and termed rapidly evolving in humans TADs (revTADs) comprise 0.8-10.3% of 3,127 TADs in the hESC genome. RevTADs manifest distinct correlation patterns between placements of human accelerated regions, human-specific transcription factor-binding sites, and recombination rates. There is a significant enrichment within revTAD boundaries of hESC-enhancers, primate-specific CTCF-binding sites, human-specific RNAPII-binding sites, hCONDELs, and H3K4me3 peaks with human-specific enrichment at TSS in prefrontal cortex neurons (P < 0.0001 in all instances). Present analysis supports the idea that phenotypic divergence of Homo sapiens is driven by the evolution of human-specific genomic regulatory networks via at least two mechanistically distinct pathways of creation of divergent sequences of regulatory DNA: (i) recombination-associated exaptation of the highly conserved ancestral regulatory DNA segments; (ii) human-specific insertions of transposable elements. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Three Divergent Subpopulations of the Malaria Parasite Plasmodium knowlesi

    PubMed Central

    Lin, Lee C.; Rovie-Ryan, Jeffrine J.; Kadir, Khamisah A.; Anderios, Fread; Hisam, Shamilah; Sharma, Reuben S.K.; Singh, Balbir; Conway, David J.

    2017-01-01

    Multilocus microsatellite genotyping of Plasmodium knowlesi isolates previously indicated 2 divergent parasite subpopulations in humans on the island of Borneo, each associated with a different macaque reservoir host species. Geographic divergence was also apparent, and independent sequence data have indicated particularly deep divergence between parasites from mainland Southeast Asia and Borneo. To resolve the overall population structure, multilocus microsatellite genotyping was conducted on a new sample of 182 P. knowlesi infections (obtained from 134 humans and 48 wild macaques) from diverse areas of Malaysia, first analyzed separately and then in combination with previous data. All analyses confirmed 2 divergent clusters of human cases in Malaysian Borneo, associated with long-tailed macaques and pig-tailed macaques, and a third cluster in humans and most macaques in peninsular Malaysia. High levels of pairwise divergence between each of these sympatric and allopatric subpopulations have implications for the epidemiology and control of this zoonotic species. PMID:28322705

  13. Mitochondrial divergence between slow- and fast-aging garter snakes.

    PubMed

    Schwartz, Tonia S; Arendsee, Zebulun W; Bronikowski, Anne M

    2015-11-01

    Mitochondrial function has long been hypothesized to be intimately involved in aging processes--either directly through declining efficiency of mitochondrial respiration and ATP production with advancing age, or indirectly, e.g., through increased mitochondrial production of damaging free radicals with age. Yet we lack a comprehensive understanding of the evolution of mitochondrial genotypes and phenotypes across diverse animal models, particularly in species that have extremely labile physiology. Here, we measure mitochondrial genome-types and transcription in ecotypes of garter snakes (Thamnophis elegans) that are adapted to disparate habitats and have diverged in aging rates and lifespans despite residing in close proximity. Using two RNA-seq datasets, we (1) reconstruct the garter snake mitochondrial genome sequence and bioinformatically identify regulatory elements, (2) test for divergence of mitochondrial gene expression between the ecotypes and in response to heat stress, and (3) test for sequence divergence in mitochondrial protein-coding regions in these slow-aging (SA) and fast-aging (FA) naturally occurring ecotypes. At the nucleotide sequence level, we confirmed two (duplicated) mitochondrial control regions one of which contains a glucocorticoid response element (GRE). Gene expression of protein-coding genes was higher in FA snakes relative to SA snakes for most genes, but was neither affected by heat stress nor an interaction between heat stress and ecotype. SA and FA ecotypes had unique mitochondrial haplotypes with amino acid substitutions in both CYTB and ND5. The CYTB amino acid change (Isoleucine → Threonine) was highly segregated between ecotypes. This divergence of mitochondrial haplotypes between SA and FA snakes contrasts with nuclear gene-flow estimates, but correlates with previously reported divergence in mitochondrial function (mitochondrial oxygen consumption, ATP production, and reactive oxygen species consequences). Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Genome Sequence of the Novel Marine Member of the Gammaproteobacteria Strain HTCC5015▿

    PubMed Central

    Thrash, J. Cameron; Stingl, Ulrich; Cho, Jang-Cheon; Ferriera, Steve; Johnson, Justin; Vergin, Kevin L.; Giovannoni, Stephen J.

    2010-01-01

    HTCC5015 is a novel, highly divergent marine member of the Gammaproteobacteria, currently without a cultured representative with greater than 89% 16S rRNA gene identity to itself. The organism was isolated from water collected from Hydrostation S south of Bermuda using high-throughput dilution-to-extinction culturing techniques. Here we present the genome sequence of the unique Gammaproteobacterium strain HTCC5015. PMID:20472792

  15. Estimation of primate speciation dates using local molecular clocks.

    PubMed

    Yoder, A D; Yang, Z

    2000-07-01

    Protein-coding genes of the mitochondrial genomes from 31 mammalian species were analyzed to estimate the speciation dates within primates and also between rats and mice. Three calibration points were used based on paleontological data: one at 20-25 MYA for the hominoid/cercopithecoid divergence, one at 53-57 MYA for the cetacean/artiodactyl divergence, and the third at 110-130 MYA for the metatherian/eutherian divergence. Both the nucleotide and the amino acid sequences were analyzed, producing conflicting results. The global molecular clock was clearly violated for both the nucleotide and the amino acid data. Models of local clocks were implemented using maximum likelihood, allowing different evolutionary rates for some lineages while assuming rate constancy in others. Surprisingly, the highly divergent third codon positions appeared to contain phylogenetic information and produced more sensible estimates of primate divergence dates than did the amino acid sequences. Estimated dates varied considerably depending on the data type, the calibration point, and the substitution model but differed little among the four tree topologies used. We conclude that the calibration derived from the primate fossil record is too recent to be reliable; we also point out a number of problems in date estimation when the molecular clock does not hold. Despite these obstacles, we derived estimates of primate divergence dates that were well supported by the data and were generally consistent with the paleontological record. Estimation of the mouse-rat divergence date, however, was problematic.

  16. Multivariate sequence analysis reveals additional function impacting residues in the SDR superfamily.

    PubMed

    Tiwari, Pratibha; Singh, Noopur; Dixit, Aparna; Choudhury, Devapriya

    2014-10-01

    The "extended" type of short chain dehydrogenases/reductases (SDR), share a remarkable similarity in their tertiary structures inspite of being highly divergent in their functions and sequences. We have carried out principal component analysis (PCA) on structurally equivalent residue positions of 10 SDR families using information theoretic measures like Jensen-Shannon divergence and average shannon entropy as variables. The results classify residue positions in the SDR fold into six groups, one of which is characterized by low Shannon entropies but high Jensen-Shannon divergence against the reference family SDR1E, suggesting that these positions are responsible for the specific functional identities of individual SDR families, distinguishing them from the reference family SDR1E. Site directed mutagenesis of three residues from this group in the enzyme UDP-Galactose 4-epimerase belonging to SDR1E shows that the mutants promote the formation of NADH containing abortive complexes. Finally, molecular dynamics simulations have been used to suggest a mechanism by which the mutants interfere with the re-oxidation of NADH leading to the formation of abortive complexes. © 2014 Wiley Periodicals, Inc.

  17. Genome sequence of a diabetes-prone rodent reveals a mutation hotspot around the ParaHox gene cluster.

    PubMed

    Hargreaves, Adam D; Zhou, Long; Christensen, Josef; Marlétaz, Ferdinand; Liu, Shiping; Li, Fang; Jansen, Peter Gildsig; Spiga, Enrico; Hansen, Matilde Thye; Pedersen, Signe Vendelbo Horn; Biswas, Shameek; Serikawa, Kyle; Fox, Brian A; Taylor, William R; Mulley, John Frederick; Zhang, Guojie; Heller, R Scott; Holland, Peter W H

    2017-07-18

    The sand rat Psammomys obesus is a gerbil species native to deserts of North Africa and the Middle East, and is constrained in its ecology because high carbohydrate diets induce obesity and type II diabetes that, in extreme cases, can lead to pancreatic failure and death. We report the sequencing of the sand rat genome and discovery of an unusual, extensive, and mutationally biased GC-rich genomic domain. This highly divergent genomic region encompasses several functionally essential genes, and spans the ParaHox cluster which includes the insulin-regulating homeobox gene Pdx1. The sequence of sand rat Pdx1 has been grossly affected by GC-biased mutation, leading to the highest divergence observed for this gene across the Bilateria. In addition to genomic insights into restricted caloric intake in a desert species, the discovery of a localized chromosomal region subject to elevated mutation suggests that mutational heterogeneity within genomes could influence the course of evolution.

  18. Sequence divergence in the 3'-untranslated region has an effect on the subfunctionalization of duplicate genes.

    PubMed

    Tong, Ying; Zheng, Kang; Zhao, Shufang; Xiao, Guanxiu; Luo, Chen

    2012-11-01

    Recent studies demonstrated that sequence divergence in both transcriptional regulatory region and coding region contributes to the subfunctionalization of duplicate gene. However, whether sequence divergence in the 3'-untranslated region (3'-UTR) has an impact on the subfunctionalization of duplicate genes remains unclear. Here, we identified two diverging duplicate vsx1 (visual system homeobox-1) loci in goldfish, named vsx1A1 and vsx1A2. Phylogenetic analysis suggests that vsx1A1 and vsx1A2 may arise from a duplication of vsx1 after the separation of goldfish and zebrafish. Sequence comparison revealed that divergence in both transcriptional and translational regulatory regions is higher than divergence in the introns. vsx1A2 expresses during blastula and gastrula stages and in adult retina but silences from segmentation stage to hatching stage, vsx1A1 starts expression from segmentation onward. Comparing to that zebrafish vsx1 expresses in all the developmental stages and in the adult retina, it appears that goldfish vsx1A1 and vsx1A2 are under going to share the functions of ancestral vsx1. The different but overlapping temporal expression patterns of vsx1A1 and vsx1A2 suggest that sequence divergence in the promoter region of duplicate vsx1 is not sufficient for partitioning the functions of ancestral vsx1. By comparing vsx1A1 and vsx1A2 3'-UTR-linked green fluorescent protein gene expression patterns, we demonstrated that the 3'-UTR of vsx1A1 remains but the 3'-UTR of vsx1A2 has lost the capability of mediating bipolar cell specific expression during retina development. These results indicate that sequence divergence in the 3'-UTRs has a clear effect on subfunctionalization of the duplicate genes. © 2012 WILEY PERIODICALS, INC.

  19. Characterisation of divergent flavivirus NS3 and NS5 protein sequences detected in Rhipicephalus microplus ticks from Brazil

    PubMed Central

    Maruyama, Sandra Regina; Castro-Jorge, Luiza Antunes; Ribeiro, José Marcos Chaves; Gardinassi, Luiz Gustavo; Garcia, Gustavo Rocha; Brandão, Lucinda Giampietro; Rodrigues, Aline Rezende; Okada, Marcos Ituo; Abrão, Emiliana Pereira; Ferreira, Beatriz Rossetti; da Fonseca, Benedito Antonio Lopes; de Miranda-Santos, Isabel Kinney Ferreira

    2013-01-01

    Transcripts similar to those that encode the nonstructural (NS) proteins NS3 and NS5 from flaviviruses were found in a salivary gland (SG) complementary DNA (cDNA) library from the cattle tick Rhipicephalus microplus. Tick extracts were cultured with cells to enable the isolation of viruses capable of replicating in cultured invertebrate and vertebrate cells. Deep sequencing of the viral RNA isolated from culture supernatants provided the complete coding sequences for the NS3 and NS5 proteins and their molecular characterisation confirmed similarity with the NS3 and NS5 sequences from other flaviviruses. Despite this similarity, phylogenetic analyses revealed that this potentially novel virus may be a highly divergent member of the genus Flavivirus. Interestingly, we detected the divergent NS3 and NS5 sequences in ticks collected from several dairy farms widely distributed throughout three regions of Brazil. This is the first report of flavivirus-like transcripts in R. microplus ticks. This novel virus is a potential arbovirus because it replicated in arthropod and mammalian cells; furthermore, it was detected in a cDNA library from tick SGs and therefore may be present in tick saliva. It is important to determine whether and by what means this potential virus is transmissible and to monitor the virus as a potential emerging tick-borne zoonotic pathogen. PMID:24626302

  20. COMPLETE GENOMIC SEQUENCE OF VIRULENT PIGEON PARAMYXOVIRUS IN LAUGHING DOVES (STREPTOPELIA SENEGALENSIS) IN KENYA.

    PubMed

    Obanda, Vincent; Michuki, George; Jowers, Michael J; Rumberia, Cecilia; Mutinda, Mathew; Lwande, Olivia Wesula; Wangoru, Kihara; Kasiiti-Orengo, Jacquiline; Yongo, Moses; Angelone-Alasaad, Samer

    2016-07-01

    Following mass deaths of Laughing Doves (Streptopelia senegalensis) in different localities throughout Kenya, internal organs obtained during necropsy of two moribund birds were sampled and analyzed by next generation sequencing. We isolated the virulent strain of pigeon paramyxovirus type-1 (PPMV-1), PPMV1/Laughing Dove/Kenya/Isiolo/B2/2012, which had a characteristic fusion gene motif (110)GGRRQKRF(117). We obtained a partial full genome of 15,114 nucleotides. The phylogenetic relationship based on the fusion gene and genomic sequence grouped our isolate as class II genotype VI, a group of viruses commonly isolated from wild birds but potentially lethal to Chickens ( Gallus gallus domesticus ). The fusion gene isolate clustered with PPMV-I strains from pigeons (Columbidae) in Nigeria. The complete genome showed a basal and highly divergent lineage to American, European, and Asian strains, indicating a divergent evolutionary pathway. The isolated strain is highly virulent and apparently species-specific to Laughing Doves in Kenya. Risk of transmission of such a strain to poultry is potentially high whereas the cyclic epizootic in doves is a threat to conservation of wild Columbidae in Kenya.

  1. SVM-dependent pairwise HMM: an application to protein pairwise alignments.

    PubMed

    Orlando, Gabriele; Raimondi, Daniele; Khan, Taushif; Lenaerts, Tom; Vranken, Wim F

    2017-12-15

    Methods able to provide reliable protein alignments are crucial for many bioinformatics applications. In the last years many different algorithms have been developed and various kinds of information, from sequence conservation to secondary structure, have been used to improve the alignment performances. This is especially relevant for proteins with highly divergent sequences. However, recent works suggest that different features may have different importance in diverse protein classes and it would be an advantage to have more customizable approaches, capable to deal with different alignment definitions. Here we present Rigapollo, a highly flexible pairwise alignment method based on a pairwise HMM-SVM that can use any type of information to build alignments. Rigapollo lets the user decide the optimal features to align their protein class of interest. It outperforms current state of the art methods on two well-known benchmark datasets when aligning highly divergent sequences. A Python implementation of the algorithm is available at http://ibsquare.be/rigapollo. wim.vranken@vub.be. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  2. AlignMiner: a Web-based tool for detection of divergent regions in multiple sequence alignments of conserved sequences

    PubMed Central

    2010-01-01

    Background Multiple sequence alignments are used to study gene or protein function, phylogenetic relations, genome evolution hypotheses and even gene polymorphisms. Virtually without exception, all available tools focus on conserved segments or residues. Small divergent regions, however, are biologically important for specific quantitative polymerase chain reaction, genotyping, molecular markers and preparation of specific antibodies, and yet have received little attention. As a consequence, they must be selected empirically by the researcher. AlignMiner has been developed to fill this gap in bioinformatic analyses. Results AlignMiner is a Web-based application for detection of conserved and divergent regions in alignments of conserved sequences, focusing particularly on divergence. It accepts alignments (protein or nucleic acid) obtained using any of a variety of algorithms, which does not appear to have a significant impact on the final results. AlignMiner uses different scoring methods for assessing conserved/divergent regions, Entropy being the method that provides the highest number of regions with the greatest length, and Weighted being the most restrictive. Conserved/divergent regions can be generated either with respect to the consensus sequence or to one master sequence. The resulting data are presented in a graphical interface developed in AJAX, which provides remarkable user interaction capabilities. Users do not need to wait until execution is complete and can.even inspect their results on a different computer. Data can be downloaded onto a user disk, in standard formats. In silico and experimental proof-of-concept cases have shown that AlignMiner can be successfully used to designing specific polymerase chain reaction primers as well as potential epitopes for antibodies. Primer design is assisted by a module that deploys several oligonucleotide parameters for designing primers "on the fly". Conclusions AlignMiner can be used to reliably detect divergent regions via several scoring methods that provide different levels of selectivity. Its predictions have been verified by experimental means. Hence, it is expected that its usage will save researchers' time and ensure an objective selection of the best-possible divergent region when closely related sequences are analysed. AlignMiner is freely available at http://www.scbi.uma.es/alignminer. PMID:20525162

  3. Use of tuf Sequences for Genus-Specific PCR Detection and Phylogenetic Analysis of 28 Streptococcal Species

    PubMed Central

    Picard, François J.; Ke, Danbing; Boudreau, Dominique K.; Boissinot, Maurice; Huletsky, Ann; Richard, Dave; Ouellette, Marc; Roy, Paul H.; Bergeron, Michel G.

    2004-01-01

    A 761-bp portion of the tuf gene (encoding the elongation factor Tu) from 28 clinically relevant streptococcal species was obtained by sequencing amplicons generated using broad-range PCR primers. These tuf sequences were used to select Streptococcus-specific PCR primers and to perform phylogenetic analysis. The specificity of the PCR assay was verified using 102 different bacterial species, including the 28 streptococcal species. Genomic DNA purified from all streptococcal species was efficiently detected, whereas there was no amplification with DNA from 72 of the 74 nonstreptococcal bacterial species tested. There was cross-amplification with DNAs from Enterococcus durans and Lactococcus lactis. However, the 15 to 31% nucleotide sequence divergence in the 761-bp tuf portion of these two species compared to any streptococcal tuf sequence provides ample sequence divergence to allow the development of internal probes specific to streptococci. The Streptococcus-specific assay was highly sensitive for all 28 streptococcal species tested (i.e., detection limit of 1 to 10 genome copies per PCR). The tuf sequence data was also used to perform extensive phylogenetic analysis, which was generally in agreement with phylogeny determined on the basis of 16S rRNA gene data. However, the tuf gene provided a better discrimination at the streptococcal species level that should be particularly useful for the identification of very closely related species. In conclusion, tuf appears more suitable than the 16S ribosomal RNA gene for the development of diagnostic assays for the detection and identification of streptococcal species because of its higher level of species-specific genetic divergence. PMID:15297518

  4. Centromere location in Arabidopsis is unaltered by extreme divergence in CENH3 protein sequence

    PubMed Central

    2017-01-01

    During cell division, spindle fibers attach to chromosomes at centromeres. The DNA sequence at regional centromeres is fast evolving with no conserved genetic signature for centromere identity. Instead CENH3, a centromere-specific histone H3 variant, is the epigenetic signature that specifies centromere location across both plant and animal kingdoms. Paradoxically, CENH3 is also adaptively evolving. An ongoing question is whether CENH3 evolution is driven by a functional relationship with the underlying DNA sequence. Here, we demonstrate that despite extensive protein sequence divergence, CENH3 histones from distant species assemble centromeres on the same underlying DNA sequence. We first characterized the organization and diversity of centromere repeats in wild-type Arabidopsis thaliana. We show that A. thaliana CENH3-containing nucleosomes exhibit a strong preference for a unique subset of centromeric repeats. These sequences are largely missing from the genome assemblies and represent the youngest and most homogeneous class of repeats. Next, we tested the evolutionary specificity of this interaction in a background in which the native A. thaliana CENH3 is replaced with CENH3s from distant species. Strikingly, we find that CENH3 from Lepidium oleraceum and Zea mays, although specifying epigenetically weaker centromeres that result in genome elimination upon outcrossing, show a binding pattern on A. thaliana centromere repeats that is indistinguishable from the native CENH3. Our results demonstrate positional stability of a highly diverged CENH3 on independently evolved repeats, suggesting that the sequence specificity of centromeres is determined by a mechanism independent of CENH3. PMID:28223399

  5. Divergence with gene flow across a speciation continuum of Heliconius butterflies.

    PubMed

    Supple, Megan A; Papa, Riccardo; Hines, Heather M; McMillan, W Owen; Counterman, Brian A

    2015-09-24

    A key to understanding the origins of species is determining the evolutionary processes that drive the patterns of genomic divergence during speciation. New genomic technologies enable the study of high-resolution genomic patterns of divergence across natural speciation continua, where taxa pairs with different levels of reproductive isolation can be used as proxies for different stages of speciation. Empirical studies of these speciation continua can provide valuable insights into how genomes diverge during speciation. We examine variation across a handful of genomic regions in parapatric and allopatric populations of Heliconius butterflies with varying levels of reproductive isolation. Genome sequences were mapped to 2.2-Mb of the H. erato genome, including 1-Mb across the red color pattern locus and multiple regions unlinked to color pattern variation. Phylogenetic analyses reveal a speciation continuum of pairs of hybridizing races and incipient species in the Heliconius erato clade. Comparisons of hybridizing pairs of divergently colored races and incipient species reveal that genomic divergence increases with ecological and reproductive isolation, not only across the locus responsible for adaptive variation in red wing coloration, but also at genomic regions unlinked to color pattern. We observe high levels of divergence between the incipient species H. erato and H. himera, suggesting that divergence may accumulate early in the speciation process. Comparisons of genomic divergence between the incipient species and allopatric races suggest that limited gene flow cannot account for the observed high levels of divergence between the incipient species. Our results provide a reconstruction of the speciation continuum across the H. erato clade and provide insights into the processes that drive genomic divergence during speciation, establishing the H. erato clade as a powerful framework for the study of speciation.

  6. Characterization and Evolution of Conserved MicroRNA through Duplication Events in Date Palm (Phoenix dactylifera)

    PubMed Central

    Yang, Yaodong; Mason, Annaliese S.; Lei, Xintao; Ma, Zilong

    2013-01-01

    MicroRNAs (miRNAs) are important regulators of gene expression at the post-transcriptional level in a wide range of species. Highly conserved miRNAs regulate ancestral transcription factors common to all plants, and control important basic processes such as cell division and meristem function. We selected 21 conserved miRNA families to analyze the distribution and maintenance of miRNAs. Recently, the first genome sequence in Palmaceae was released: date palm (Phoenix dactylifera). We conducted a systematic miRNA analysis in date palm, computationally identifying and characterizing the distribution and duplication of conserved miRNAs in this species compared to other published plant genomes. A total of 81 miRNAs belonging to 18 miRNA families were identified in date palm. The majority of miRNAs in date palm and seven other well-studied plant species were located in intergenic regions and located 4 to 5 kb away from the nearest protein-coding genes. Sequence comparison showed that 67% of date palm miRNA members were present in duplicated segments, and that 135 pairs of miRNA-containing segments were duplicated in Arabidopsis, tomato, orange, rice, apple, poplar and soybean with a high similarity of non coding sequences between duplicated segments, indicating genomic duplication was a major force for expansion of conserved miRNAs. Duplicated miRNA pairs in date palm showed divergence in pre-miRNA sequence and in number of promoters, implying that these duplicated pairs may have undergone divergent evolution. Comparisons between date palm and the seven other plant species for the gain/loss of miR167 loci in an ancient segment shared between monocots and dicots suggested that these conserved miRNAs were highly influenced by and diverged as a result of genomic duplication events. PMID:23951162

  7. Characterization and evolution of conserved MicroRNA through duplication events in date palm (Phoenix dactylifera).

    PubMed

    Xiao, Yong; Xia, Wei; Yang, Yaodong; Mason, Annaliese S; Lei, Xintao; Ma, Zilong

    2013-01-01

    MicroRNAs (miRNAs) are important regulators of gene expression at the post-transcriptional level in a wide range of species. Highly conserved miRNAs regulate ancestral transcription factors common to all plants, and control important basic processes such as cell division and meristem function. We selected 21 conserved miRNA families to analyze the distribution and maintenance of miRNAs. Recently, the first genome sequence in Palmaceae was released: date palm (Phoenix dactylifera). We conducted a systematic miRNA analysis in date palm, computationally identifying and characterizing the distribution and duplication of conserved miRNAs in this species compared to other published plant genomes. A total of 81 miRNAs belonging to 18 miRNA families were identified in date palm. The majority of miRNAs in date palm and seven other well-studied plant species were located in intergenic regions and located 4 to 5 kb away from the nearest protein-coding genes. Sequence comparison showed that 67% of date palm miRNA members were present in duplicated segments, and that 135 pairs of miRNA-containing segments were duplicated in Arabidopsis, tomato, orange, rice, apple, poplar and soybean with a high similarity of non coding sequences between duplicated segments, indicating genomic duplication was a major force for expansion of conserved miRNAs. Duplicated miRNA pairs in date palm showed divergence in pre-miRNA sequence and in number of promoters, implying that these duplicated pairs may have undergone divergent evolution. Comparisons between date palm and the seven other plant species for the gain/loss of miR167 loci in an ancient segment shared between monocots and dicots suggested that these conserved miRNAs were highly influenced by and diverged as a result of genomic duplication events.

  8. Genetic divergence of common bean cultivars.

    PubMed

    Veloso, J S; Silva, W; Pinheiro, L R; Dos Santos, J B; Fonseca, N S; Euzebio, M P

    2015-09-22

    The aim of this study was to evaluate genetic divergence in the 'Carioca' (beige with brown stripes) common bean cultivar used by different institutions and in 16 other common bean cultivars used in the Rede Cooperativa de Pesquisa de Feijão (Cooperative Network of Common Bean Research), by using simple sequence repeats associated with agronomic traits that are highly distributed in the common bean genome. We evaluated 22 polymorphic loci using bulks containing DNA from 30 plants. There was genetic divergence among the Carioca cultivar provided by the institutions. Nevertheless, there was lower divergence among them than among the other cultivars. The cultivar used by Instituto Agronômico do Paraná was the most divergent in relation to the Carioca samples. The least divergence was observed among the samples used by Universidade Federal de Lavras and by Embrapa Arroz e Feijão. Of all the cultivars, 'CNFP 10104' and 'BRSMG Realce' showed the greatest dissimilarity. The cultivars were separated in two groups of greatest similarity using the Structure software. Genetic variation among cultivars was greater than the variation within or between the groups formed. This fact, together with the high estimate of heterozygosity observed and the genetic divergence of the samples of the Carioca cultivar in relation to the original provided by Instituto Agronômico de Campinas, indicates a mixture of cultivars. The high divergence among cultivars provides potential for the utilization of this genetic variability in plant breeding.

  9. Analysis of the Macaca mulatta transcriptome and the sequence divergence between Macaca and human.

    PubMed

    Magness, Charles L; Fellin, P Campion; Thomas, Matthew J; Korth, Marcus J; Agy, Michael B; Proll, Sean C; Fitzgibbon, Matthew; Scherer, Christina A; Miner, Douglas G; Katze, Michael G; Iadonato, Shawn P

    2005-01-01

    We report the initial sequencing and comparative analysis of the Macaca mulatta transcriptome. Cloned sequences from 11 tissues, nine animals, and three species (M. mulatta, M. fascicularis, and M. nemestrina) were sampled, resulting in the generation of 48,642 sequence reads. These data represent an initial sampling of the putative rhesus orthologs for 6,216 human genes. Mean nucleotide diversity within M. mulatta and sequence divergence among M. fascicularis, M. nemestrina, and M. mulatta are also reported.

  10. Sequencing of Chloroplast Genomes from Wheat, Barley, Rye and Their Relatives Provides a Detailed Insight into the Evolution of the Triticeae Tribe

    PubMed Central

    Middleton, Christopher P.; Senerchia, Natacha; Stein, Nils; Akhunov, Eduard D.; Keller, Beat

    2014-01-01

    Using Roche/454 technology, we sequenced the chloroplast genomes of 12 Triticeae species, including bread wheat, barley and rye, as well as the diploid progenitors and relatives of bread wheat Triticum urartu, Aegilops speltoides and Ae. tauschii. Two wild tetraploid taxa, Ae. cylindrica and Ae. geniculata, were also included. Additionally, we incorporated wild Einkorn wheat Triticum boeoticum and its domesticated form T. monococcum and two Hordeum spontaneum (wild barley) genotypes. Chloroplast genomes were used for overall sequence comparison, phylogenetic analysis and dating of divergence times. We estimate that barley diverged from rye and wheat approximately 8–9 million years ago (MYA). The genome donors of hexaploid wheat diverged between 2.1–2.9 MYA, while rye diverged from Triticum aestivum approximately 3–4 MYA, more recently than previously estimated. Interestingly, the A genome taxa T. boeoticum and T. urartu were estimated to have diverged approximately 570,000 years ago. As these two have a reproductive barrier, the divergence time estimate also provides an upper limit for the time required for the formation of a species boundary between the two. Furthermore, we conclusively show that the chloroplast genome of hexaploid wheat was contributed by the B genome donor and that this unknown species diverged from Ae. speltoides about 980,000 years ago. Additionally, sequence alignments identified a translocation of a chloroplast segment to the nuclear genome which is specific to the rye/wheat lineage. We propose the presented phylogeny and divergence time estimates as a reference framework for future studies on Triticeae. PMID:24614886

  11. Determining divergence times with a protein clock: update and reevaluation

    NASA Technical Reports Server (NTRS)

    Feng, D. F.; Cho, G.; Doolittle, R. F.; Bada, J. L. (Principal Investigator)

    1997-01-01

    A recent study of the divergence times of the major groups of organisms as gauged by amino acid sequence comparison has been expanded and the data have been reanalyzed with a distance measure that corrects for both constraints on amino acid interchange and variation in substitution rate at different sites. Beyond that, the availability of complete genome sequences for several eubacteria and an archaebacterium has had a great impact on the interpretation of certain aspects of the data. Thus, the majority of the archaebacterial sequences are not consistent with currently accepted views of the Tree of Life which cluster the archaebacteria with eukaryotes. Instead, they are either outliers or mixed in with eubacterial orthologs. The simplest resolution of the problem is to postulate that many of these sequences were carried into eukaryotes by early eubacterial endosymbionts about 2 billion years ago, only very shortly after or even coincident with the divergence of eukaryotes and archaebacteria. The strong resemblances of these same enzymes among the major eubacterial groups suggest that the cyanobacteria and Gram-positive and Gram-negative eubacteria also diverged at about this same time, whereas the much greater differences between archaebacterial and eubacterial sequences indicate these two groups may have diverged between 3 and 4 billion years ago.

  12. Evaluation of SNP Data from the Malus Infinium Array Identifies Challenges for Genetic Analysis of Complex Genomes of Polyploid Origin

    PubMed Central

    Troggio, Michela; Šurbanovski, Nada; Bianco, Luca; Moretto, Marco; Giongo, Lara; Banchi, Elisa; Viola, Roberto; Fernández, Felicdad Fernández; Costa, Fabrizio; Velasco, Riccardo; Cestaro, Alessandro; Sargent, Daniel James

    2013-01-01

    High throughput arrays for the simultaneous genotyping of thousands of single-nucleotide polymorphisms (SNPs) have made the rapid genetic characterisation of plant genomes and the development of saturated linkage maps a realistic prospect for many plant species of agronomic importance. However, the correct calling of SNP genotypes in divergent polyploid genomes using array technology can be problematic due to paralogy, and to divergence in probe sequences causing changes in probe binding efficiencies. An Illumina Infinium II whole-genome genotyping array was recently developed for the cultivated apple and used to develop a molecular linkage map for an apple rootstock progeny (M432), but a large proportion of segregating SNPs were not mapped in the progeny, due to unexpected genotype clustering patterns. To investigate the causes of this unexpected clustering we performed BLAST analysis of all probe sequences against the ‘Golden Delicious’ genome sequence and discovered evidence for paralogous annealing sites and probe sequence divergence for a high proportion of probes contained on the array. Following visual re-evaluation of the genotyping data generated for 8,788 SNPs for the M432 progeny using the array, we manually re-scored genotypes at 818 loci and mapped a further 797 markers to the M432 linkage map. The newly mapped markers included the majority of those that could not be mapped previously, as well as loci that were previously scored as monomorphic, but which segregated due to divergence leading to heterozygosity in probe annealing sites. An evaluation of the 8,788 probes in a diverse collection of Malus germplasm showed that more than half the probes returned genotype clustering patterns that were difficult or impossible to interpret reliably, highlighting implications for the use of the array in genome-wide association studies. PMID:23826289

  13. Population-genomic variation within RNA viruses of the Western honey bee, Apis mellifera, inferred from deep sequencing

    PubMed Central

    2013-01-01

    Background Deep sequencing of viruses isolated from infected hosts is an efficient way to measure population-genetic variation and can reveal patterns of dispersal and natural selection. In this study, we mined existing Illumina sequence reads to investigate single-nucleotide polymorphisms (SNPs) within two RNA viruses of the Western honey bee (Apis mellifera), deformed wing virus (DWV) and Israel acute paralysis virus (IAPV). All viral RNA was extracted from North American samples of honey bees or, in one case, the ectoparasitic mite Varroa destructor. Results Coverage depth was generally lower for IAPV than DWV, and marked gaps in coverage occurred in several narrow regions (< 50 bp) of IAPV. These coverage gaps occurred across sequencing runs and were virtually unchanged when reads were re-mapped with greater permissiveness (up to 8% divergence), suggesting a recurrent sequencing artifact rather than strain divergence. Consensus sequences of DWV for each sample showed little phylogenetic divergence, low nucleotide diversity, and strongly negative values of Fu and Li’s D statistic, suggesting a recent population bottleneck and/or purifying selection. The Kakugo strain of DWV fell outside of all other DWV sequences at 100% bootstrap support. IAPV consensus sequences supported the existence of multiple clades as had been previously reported, and Fu and Li’s D was closer to neutral expectation overall, although a sliding-window analysis identified a significantly positive D within the protease region, suggesting selection maintains diversity in that region. Within-sample mean diversity was comparable between the two viruses on average, although for both viruses there was substantial variation among samples in mean diversity at third codon positions and in the number of high-diversity sites. FST values were bimodal for DWV, likely reflecting neutral divergence in two low-diversity populations, whereas IAPV had several sites that were strong outliers with very low FST. Conclusions This initial survey of genetic variation within honey bee RNA viruses suggests future directions for studies examining the underlying causes of population-genetic structure in these economically important pathogens. PMID:23497218

  14. Population-genomic variation within RNA viruses of the Western honey bee, Apis mellifera, inferred from deep sequencing.

    PubMed

    Cornman, Robert Scott; Boncristiani, Humberto; Dainat, Benjamin; Chen, Yanping; vanEngelsdorp, Dennis; Weaver, Daniel; Evans, Jay D

    2013-03-07

    Deep sequencing of viruses isolated from infected hosts is an efficient way to measure population-genetic variation and can reveal patterns of dispersal and natural selection. In this study, we mined existing Illumina sequence reads to investigate single-nucleotide polymorphisms (SNPs) within two RNA viruses of the Western honey bee (Apis mellifera), deformed wing virus (DWV) and Israel acute paralysis virus (IAPV). All viral RNA was extracted from North American samples of honey bees or, in one case, the ectoparasitic mite Varroa destructor. Coverage depth was generally lower for IAPV than DWV, and marked gaps in coverage occurred in several narrow regions (< 50 bp) of IAPV. These coverage gaps occurred across sequencing runs and were virtually unchanged when reads were re-mapped with greater permissiveness (up to 8% divergence), suggesting a recurrent sequencing artifact rather than strain divergence. Consensus sequences of DWV for each sample showed little phylogenetic divergence, low nucleotide diversity, and strongly negative values of Fu and Li's D statistic, suggesting a recent population bottleneck and/or purifying selection. The Kakugo strain of DWV fell outside of all other DWV sequences at 100% bootstrap support. IAPV consensus sequences supported the existence of multiple clades as had been previously reported, and Fu and Li's D was closer to neutral expectation overall, although a sliding-window analysis identified a significantly positive D within the protease region, suggesting selection maintains diversity in that region. Within-sample mean diversity was comparable between the two viruses on average, although for both viruses there was substantial variation among samples in mean diversity at third codon positions and in the number of high-diversity sites. FST values were bimodal for DWV, likely reflecting neutral divergence in two low-diversity populations, whereas IAPV had several sites that were strong outliers with very low FST. This initial survey of genetic variation within honey bee RNA viruses suggests future directions for studies examining the underlying causes of population-genetic structure in these economically important pathogens.

  15. Sequence-Level Mechanisms of Human Epigenome Evolution

    PubMed Central

    Prendergast, James G.D.; Chambers, Emily V.; Semple, Colin A.M.

    2014-01-01

    DNA methylation and chromatin states play key roles in development and disease. However, the extent of recent evolutionary divergence in the human epigenome and the influential factors that have shaped it are poorly understood. To determine the links between genome sequence and human epigenome evolution, we examined the divergence of DNA methylation and chromatin states following segmental duplication events in the human lineage. Chromatin and DNA methylation states were found to have been generally well conserved following a duplication event, with the evolution of the epigenome largely uncoupled from the total number of genetic changes in the surrounding DNA sequence. However, the epigenome at tissue-specific, distal regulatory regions was observed to be unusually prone to diverge following duplication, with particular sequence differences, altering known sequence motifs, found to be associated with divergence in patterns of DNA methylation and chromatin. Alu elements were found to have played a particularly prominent role in shaping human epigenome evolution, and we show that human-specific AluY insertion events are strongly linked to the evolution of the DNA methylation landscape and gene expression levels, including at key neurological genes in the human brain. Studying paralogous regions within the same sample enables the study of the links between genome and epigenome evolution while controlling for biological and technical variation. We show DNA methylation and chromatin divergence between duplicated regions are linked to the divergence of particular genetic motifs, with Alu elements having played a disproportionate role in the evolution of the epigenome in the human lineage. PMID:24966180

  16. Testing the molecular clock using mechanistic models of fossil preservation and molecular evolution

    PubMed Central

    2017-01-01

    Molecular sequence data provide information about relative times only, and fossil-based age constraints are the ultimate source of information about absolute times in molecular clock dating analyses. Thus, fossil calibrations are critical to molecular clock dating, but competing methods are difficult to evaluate empirically because the true evolutionary time scale is never known. Here, we combine mechanistic models of fossil preservation and sequence evolution in simulations to evaluate different approaches to constructing fossil calibrations and their impact on Bayesian molecular clock dating, and the relative impact of fossil versus molecular sampling. We show that divergence time estimation is impacted by the model of fossil preservation, sampling intensity and tree shape. The addition of sequence data may improve molecular clock estimates, but accuracy and precision is dominated by the quality of the fossil calibrations. Posterior means and medians are poor representatives of true divergence times; posterior intervals provide a much more accurate estimate of divergence times, though they may be wide and often do not have high coverage probability. Our results highlight the importance of increased fossil sampling and improved statistical approaches to generating calibrations, which should incorporate the non-uniform nature of ecological and temporal fossil species distributions. PMID:28637852

  17. Diverging Narratives: Evaluating the Uses of the Ideal-Typical Sequence of Transport Network Development

    ERIC Educational Resources Information Center

    Weber, Joe

    2004-01-01

    The development of new transport systems has been an important and highly visible component of economic development and spatial reorganization in the past two centuries. The Ideal-Typical Sequence of network development has been a widely used model of transport development. This paper shows that this model has been used in several different ways,…

  18. Armillaria phylogeny based on tef-1α sequences suggests ongoing divergent speciation within the boreal floristic kingdom

    Treesearch

    Ned B. Klopfenstein; John W. Hanna; Amy L. Ross-Davis; Jane E. Stewart; Yuko Ota; Rosario Medel-Ortiz; Miguel Armando Lopez-Ramirez; Ruben Damian Elias-Roman; Dionicio Alvarado-Rosales; Mee-Sook Kim

    2013-01-01

    Armillaria plays diverse ecological roles in forests worldwide, which has inspired interest in understanding phylogenetic relationships within and among species of this genus. Previous rDNA sequence-based phylogenetic analyses of Armillaria have shown general relationships among widely divergent taxa, but rDNA sequences were not reliable for separating closely related...

  19. Napoleon Bonaparte and the fate of an Amazonian rat: new data on the taxonomy of Mesomys hispidus (Rodentia: Echimyidae).

    PubMed

    Orlando, Ludovic; Mauffrey, Jean-François; Cuisin, Jacques; Patton, James L; Hänni, Catherine; Catzeflis, François

    2003-04-01

    The spiny rat Mesomys hispidus is one of many South American rodents that lack adequate taxonomic definition. The few sampled populations of this broadly distributed trans-Amazonian arboreal rat have come from widely separated regions and are typically highly divergent. The holotype was described in 1817 by A.-G. Desmarest, after Napoleon's army brought it to Paris following the plunder of Lisbon in 1808; however, the locality of origin has remained unknown. Here we examine the taxonomic status of this species by direct comparison of 50 extant individuals with the holotype at the morphometric and genetic levels, the latter based on 331 bp of the mitochondrial cytochrome b gene retrieved from a small skin fragment of the holotype with ancient DNA technology. Extensive sequence divergence is present among samples of M. hispidus collected from throughout its range, from French Guiana across Amazonia to Bolivia and Peru, with at least seven mitochondrial clades recognized (average divergence of 7.7% Kimura 2-parameter distance). Sequence from the holotype is, however, only weakly divergent from those of recent samples from French Guiana. Moreover, the holotype clusters with greater that 99% posterior probability with samples from this part of Amazonia in a discriminant analysis based on 22 cranial and dental measurements. Thus, we suggest that the holotype was originally obtained in eastern Amazonia north of the Amazon River, most likely in the Brazilian state of Amapá. Despite the high level of sequence diversity and marked morphological differences in size across the range of M. hispidus, we continue to regard this assemblage as a single species until additional samples and analyses suggest otherwise. Copyright 2002 Elsevier Science (USA)

  20. Evolution of the chalcone synthase gene family in the genus Ipomoea.

    PubMed Central

    Durbin, M L; Learn, G H; Huttley, G A; Clegg, M T

    1995-01-01

    The evolution of the chalcone synthase [CHS; malonyl-CoA:4-coumaroyl-CoA malonyltransferase (cyclizing), EC 2.3.1.74] multigene family in the genus Ipomoea is explored. Thirteen CHS genes from seven Ipomoea species (family Convolvulaceae) were sequenced--three from genomic clones and the remainder from PCR amplification with primers designed from the 5' flanking region and the end of the 3' coding region of Ipomoea purpurea Roth. Analysis of the data indicates a duplication of CHS that predates the divergence of the Ipomoea species in this study. The Ipomoea CHS genes are among the most rapidly evolving of the CHS genes sequenced to date. The CHS genes in this study are most closely related to the Petunia CHS-B gene, which is also rapidly evolving and highly divergent from the rest of the Petunia CHS sequences. PMID:7724563

  1. Inference of Functionally-Relevant N-acetyltransferase Residues Based on Statistical Correlations.

    PubMed

    Neuwald, Andrew F; Altschul, Stephen F

    2016-12-01

    Over evolutionary time, members of a superfamily of homologous proteins sharing a common structural core diverge into subgroups filling various functional niches. At the sequence level, such divergence appears as correlations that arise from residue patterns distinct to each subgroup. Such a superfamily may be viewed as a population of sequences corresponding to a complex, high-dimensional probability distribution. Here we model this distribution as hierarchical interrelated hidden Markov models (hiHMMs), which describe these sequence correlations implicitly. By characterizing such correlations one may hope to obtain information regarding functionally-relevant properties that have thus far evaded detection. To do so, we infer a hiHMM distribution from sequence data using Bayes' theorem and Markov chain Monte Carlo (MCMC) sampling, which is widely recognized as the most effective approach for characterizing a complex, high dimensional distribution. Other routines then map correlated residue patterns to available structures with a view to hypothesis generation. When applied to N-acetyltransferases, this reveals sequence and structural features indicative of functionally important, yet generally unknown biochemical properties. Even for sets of proteins for which nothing is known beyond unannotated sequences and structures, this can lead to helpful insights. We describe, for example, a putative coenzyme-A-induced-fit substrate binding mechanism mediated by arginine residue switching between salt bridge and π-π stacking interactions. A suite of programs implementing this approach is available (psed.igs.umaryland.edu).

  2. Genetic and phylogenetic divergence of feline immunodeficiency virus in the puma (Puma concolor).

    PubMed Central

    Carpenter, M A; Brown, E W; Culver, M; Johnson, W E; Pecon-Slattery, J; Brousset, D; O'Brien, S J

    1996-01-01

    Feline immunodeficiency virus (FIV) is a lentivirus which causes an AIDS-like disease in domestic cats (Felis catus). A number of other felid species, including the puma (Puma concolor), carry a virus closely related to domestic cat FIV. Serological testing revealed the presence of antibodies to FIV in 22% of 434 samples from throughout the geographic range of the puma. FIV-Pco pol gene sequences isolated from pumas revealed extensive sequence diversity, greater than has been documented in the domestic cat. The puma sequences formed two highly divergent groups, analogous to the clades which have been defined for domestic cat and lion (Panthera leo) FIV. The puma clade A was made up of samples from Florida and California, whereas clade B consisted of samples from other parts of North America, Central America, and Brazil. The difference between these two groups was as great as that reported among three lion FIV clades. Within puma clades, sequence variation is large, comparable to between-clade differences seen for domestic cat clades, allowing recognition of 15 phylogenetic lineages (subclades) among puma FIV-Pco. Large sequence divergence among isolates, nearly complete species monophyly, and widespread geographic distribution suggest that FIV-Pco has evolved within the puma species for a long period. The sequence data provided evidence for vertical transmission of FIV-Pco from mothers to their kittens, for coinfection of individuals by two different viral strains, and for cross-species transmission of FIV from a domestic cat to a puma. These factors may all be important for understanding the epidemiology and natural history of FIV in the puma. PMID:8794304

  3. Evolutionary and Ecological Characterization of Mayaro Virus Strains Isolated during an Outbreak, Venezuela, 2010

    PubMed Central

    Auguste, Albert J.; Liria, Jonathan; Forrester, Naomi L.; Giambalvo, Dileyvic; Moncada, Maria; Long, Kanya C.; Morón, Dulce; de Manzione, Nuris; Tesh, Robert B.; Halsey, Eric S.; Kochel, Tadeusz J.; Hernandez, Rosa; Navarro, Juan-Carlos

    2015-01-01

    In 2010, an outbreak of febrile illness with arthralgic manifestations was detected at La Estación village, Portuguesa State, Venezuela. The etiologic agent was determined to be Mayaro virus (MAYV), a reemerging South American alphavirus. A total of 77 cases was reported and 19 were confirmed as seropositive. MAYV was isolated from acute-phase serum samples from 6 symptomatic patients. We sequenced 27 complete genomes representing the full spectrum of MAYV genetic diversity, which facilitated detection of a new genotype, designated N. Phylogenetic analysis of genomic sequences indicated that etiologic strains from Venezuela belong to genotype D. Results indicate that MAYV is highly conserved genetically, showing ≈17% nucleotide divergence across all 3 genotypes and 4% among genotype D strains in the most variable genes. Coalescent analyses suggested genotypes D and L diverged ≈150 years ago and genotype diverged N ≈250 years ago. This virus commonly infects persons residing near enzootic transmission foci because of anthropogenic incursions. PMID:26401714

  4. Evolutionary and Ecological Characterization of Mayaro Virus Strains Isolated during an Outbreak, Venezuela, 2010.

    PubMed

    Auguste, Albert J; Liria, Jonathan; Forrester, Naomi L; Giambalvo, Dileyvic; Moncada, Maria; Long, Kanya C; Morón, Dulce; de Manzione, Nuris; Tesh, Robert B; Halsey, Eric S; Kochel, Tadeusz J; Hernandez, Rosa; Navarro, Juan-Carlos; Weaver, Scott C

    2015-10-01

    In 2010, an outbreak of febrile illness with arthralgic manifestations was detected at La Estación village, Portuguesa State, Venezuela. The etiologic agent was determined to be Mayaro virus (MAYV), a reemerging South American alphavirus. A total of 77 cases was reported and 19 were confirmed as seropositive. MAYV was isolated from acute-phase serum samples from 6 symptomatic patients. We sequenced 27 complete genomes representing the full spectrum of MAYV genetic diversity, which facilitated detection of a new genotype, designated N. Phylogenetic analysis of genomic sequences indicated that etiologic strains from Venezuela belong to genotype D. Results indicate that MAYV is highly conserved genetically, showing ≈17% nucleotide divergence across all 3 genotypes and 4% among genotype D strains in the most variable genes. Coalescent analyses suggested genotypes D and L diverged ≈150 years ago and genotype diverged N ≈250 years ago. This virus commonly infects persons residing near enzootic transmission foci because of anthropogenic incursions.

  5. DNA barcodes for two scale insect families, mealybugs (Hemiptera: Pseudococcidae) and armored scales (Hemiptera: Diaspididae).

    PubMed

    Park, D-S; Suh, S-J; Hebert, P D N; Oh, H-W; Hong, K-J

    2011-08-01

    Although DNA barcode coverage has grown rapidly for many insect orders, there are some groups, such as scale insects, where sequence recovery has been difficult. However, using a recently developed primer set, we recovered barcode records from 373 specimens, providing coverage for 75 species from 31 genera in two families. Overall success was >90% for mealybugs and >80% for armored scale species. The G·C content was very low in most species, averaging just 16.3%. Sequence divergences (K2P) between congeneric species averaged 10.7%, while intra-specific divergences averaged 0.97%. However, the latter value was inflated by high intra-specific divergence in nine taxa, cases that may indicate species overlooked by current taxonomic treatments. Our study establishes the feasibility of developing a comprehensive barcode library for scale insects and indicates that its construction will both create an effective system for identifying scale insects and reveal taxonomic situations worthy of deeper analysis.

  6. Phylogenetic analysis of Haemaphysalis erinacei Pavesi, 1884 (Acari: Ixodidae) from China, Turkey, Italy and Romania.

    PubMed

    Hornok, Sándor; Wang, Yuanzhi; Otranto, Domenico; Keskin, Adem; Lia, Riccardo Paolo; Kontschán, Jenő; Takács, Nóra; Farkas, Róbert; Sándor, Attila D

    2016-12-15

    Haemaphysalis erinacei is one of the few ixodid tick species for which valid names of subspecies exist. Despite their disputed taxonomic status in the literature, these subspecies have not yet been compared with molecular methods. The aim of the present study was to investigate the phylogenetic relationships of H. erinacei subspecies, in the context of the first finding of this tick species in Romania. After morphological identification, DNA was extracted from five adults of H. e. taurica (from Romania and Turkey), four adults of H. e. erinacei (from Italy) and 17 adults of H. e. turanica (from China). From these samples fragments of the cytochrome c oxidase subunit 1 (cox1) and 16S rRNA genes were amplified via PCR and sequenced. Results showed that cox1 and 16S rRNA gene sequence divergences between H. e. taurica from Romania and H. e. erinacei from Italy were below 2%. However, the sequence divergences between H. e. taurica from Romania and H. e. turanica from China were high (up to 7.3% difference for the 16S rRNA gene), exceeding the reported level of sequence divergence between closely related tick species. At the same time, two adults of H. e. taurica from Turkey had higher 16S rRNA gene similarity to H. e. turanica from China (up to 97.5%) than to H. e. taurica from Romania (96.3%), but phylogenetically clustered more closely to H. e. taurica than to H. e. turanica. This is the first finding of H. erinacei in Romania, and the first (although preliminary) phylogenetic comparison of H. erinacei subspecies. Phylogenetic analyses did not support that the three H. erinacei subspecies evaluated here are of equal taxonomic rank, because the genetic divergence between H. e. turanica from China and H. e. taurica from Romania exceeded the usual level of sequence divergence between closely related tick species, suggesting that they might represent different species. Therefore, the taxonomic status of the subspecies of H. erinacei needs to be revised based on a larger number of specimens collected throughout its geographical range.

  7. Probing the phylogenetic relationships of a few newly recorded intertidal zoanthids of Gujarat coast (India) with mtDNA COI sequences.

    PubMed

    Joseph, Sneha; Poriya, Paresh; Kundu, Rahul

    2016-11-01

    The present study reports the phylogenetic relationship of six zoanthid species belonging to three genera, Isaurus, Palythoa, and Zoanthus identified using systematic computational analysis of mtDNA gene sequences. All six species are first recorded from the coasts of Kathiawar Peninsula, India. Genus: Isaurus is represented by Isaurus tuberculatus, genus Zoanthus is represented by Zoanthus kuroshio and Zoanthus sansibaricus, while genus Palythoa is represented by Palythoa tuberculosa, P. sp. JVK-2006 and Palythoa heliodiscus. Results of the present study revealed that among the various species observed along the coastline, a minimum of 99% sequence divergence and a maximum of 96% sequence divergence were seen. An interspecific divergence of 1-4% and negligible intraspecific divergence was observed. These results not only highlighted the efficiency of the COI gene region in species identification but also demonstrated the genetic variability of zoanthids along the Saurashtra coastline of the west coast of India.

  8. Centromere location in Arabidopsis is unaltered by extreme divergence in CENH3 protein sequence.

    PubMed

    Maheshwari, Shamoni; Ishii, Takayoshi; Brown, C Titus; Houben, Andreas; Comai, Luca

    2017-03-01

    During cell division, spindle fibers attach to chromosomes at centromeres. The DNA sequence at regional centromeres is fast evolving with no conserved genetic signature for centromere identity. Instead CENH3, a centromere-specific histone H3 variant, is the epigenetic signature that specifies centromere location across both plant and animal kingdoms. Paradoxically, CENH3 is also adaptively evolving. An ongoing question is whether CENH3 evolution is driven by a functional relationship with the underlying DNA sequence. Here, we demonstrate that despite extensive protein sequence divergence, CENH3 histones from distant species assemble centromeres on the same underlying DNA sequence. We first characterized the organization and diversity of centromere repeats in wild-type Arabidopsis thaliana We show that A. thaliana CENH3-containing nucleosomes exhibit a strong preference for a unique subset of centromeric repeats. These sequences are largely missing from the genome assemblies and represent the youngest and most homogeneous class of repeats. Next, we tested the evolutionary specificity of this interaction in a background in which the native A. thaliana CENH3 is replaced with CENH3s from distant species. Strikingly, we find that CENH3 from Lepidium oleraceum and Zea mays , although specifying epigenetically weaker centromeres that result in genome elimination upon outcrossing, show a binding pattern on A. thaliana centromere repeats that is indistinguishable from the native CENH3. Our results demonstrate positional stability of a highly diverged CENH3 on independently evolved repeats, suggesting that the sequence specificity of centromeres is determined by a mechanism independent of CENH3. © 2017 Maheshwari et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Phylogenetic analysis of Sicilian goats reveals a new mtDNA lineage.

    PubMed

    Sardina, M T; Ballester, M; Marmi, J; Finocchiaro, R; van Kaam, J B C H M; Portolano, B; Folch, J M

    2006-08-01

    The mitochondrial hypervariable region 1 (HVR1) sequence of 67 goats belonging to the Girgentana, Maltese and Derivata di Siria breeds was partially sequenced in order to present the first phylogenetic characterization of Sicilian goat breeds. These sequences were compared with published sequences of Indian and Pakistani domestic goats and wild goats. Mitochondrial lineage A was observed in most of the Sicilian goats. However, three Girgentana haplotypes were highly divergent from the Capra hircus clade, indicating that a new mtDNA lineage in domestic goats was found.

  10. A strategy for detecting the conservation of folding-nucleus residues in protein superfamilies.

    PubMed

    Michnick, S W; Shakhnovich, E

    1998-01-01

    Nucleation-growth theory predicts that fast-folding peptide sequences fold to their native structure via structures in a transition-state ensemble that share a small number of native contacts (the folding nucleus). Experimental and theoretical studies of proteins suggest that residues participating in folding nuclei are conserved among homologs. We attempted to determine if this is true in proteins with highly diverged sequences but identical folds (superfamilies). We describe a strategy based on comparisons of residue conservation in natural superfamily sequences with simulated sequences (generated with a Monte-Carlo sequence design strategy) for the same proteins. The basic assumptions of the strategy were that natural sequences will conserve residues needed for folding and stability plus function, the simulated sequences contain no functional conservation, and nucleus residues make native contacts with each other. Based on these assumptions, we identified seven potential nucleus residues in ubiquitin superfamily members. Non-nucleus conserved residues were also identified; these are proposed to be involved in stabilizing native interactions. We found that all superfamily members conserved the same potential nucleus residue positions, except those for which the structural topology is significantly different. Our results suggest that the conservation of the nucleus of a specific fold can be predicted by comparing designed simulated sequences with natural highly diverged sequences that fold to the same structure. We suggest that such a strategy could be used to help plan protein folding and design experiments, to identify new superfamily members, and to subdivide superfamilies further into classes having a similar folding mechanism.

  11. Diversity and phylogenetic relationships among Bartonella strains from Thai bats.

    PubMed

    McKee, Clifton D; Kosoy, Michael Y; Bai, Ying; Osikowicz, Lynn M; Franka, Richard; Gilbert, Amy T; Boonmar, Sumalee; Rupprecht, Charles E; Peruski, Leonard F

    2017-01-01

    Bartonellae are phylogenetically diverse, intracellular bacteria commonly found in mammals. Previous studies have demonstrated that bats have a high prevalence and diversity of Bartonella infections globally. Isolates (n = 42) were obtained from five bat species in four provinces of Thailand and analyzed using sequences of the citrate synthase gene (gltA). Sequences clustered into seven distinct genogroups; four of these genogroups displayed similarity with Bartonella spp. sequences from other bats in Southeast Asia, Africa, and Eastern Europe. Thirty of the isolates representing these seven genogroups were further characterized by sequencing four additional loci (ftsZ, nuoG, rpoB, and ITS) to clarify their evolutionary relationships with other Bartonella species and to assess patterns of diversity among strains. Among the seven genogroups, there were differences in the number of sequence variants, ranging from 1-5, and the amount of nucleotide divergence, ranging from 0.035-3.9%. Overall, these seven genogroups meet the criteria for distinction as novel Bartonella species, with sequence divergence among genogroups ranging from 6.4-15.8%. Evidence of intra- and intercontinental phylogenetic relationships and instances of homologous recombination among Bartonella genogroups in related bat species were found in Thai bats.

  12. Extensive genetic differentiation detected within a model marsupial, the tammar wallaby (Notamacropus eugenii)

    PubMed Central

    Miller, Emily J.; Neaves, Linda E.; Zenger, Kyall R.; Herbert, Catherine A.

    2017-01-01

    The tammar wallaby (Notamacropus eugenii) is one of the most intensively studied of all macropodids and was the first Australasian marsupial to have its genome sequenced. However, comparatively little is known about genetic diversity and differentiation amongst the morphologically distinct allopatric populations of tammar wallabies found in Western (WA) and South Australia (SA). Here we compare autosomal and Y-linked microsatellite genotypes, as well as sequence data (~600 bp) from the mitochondrial DNA (mtDNA) control region (CR) in tammar wallabies from across its distribution. Levels of diversity at autosomal microsatellite loci were typically high in the WA mainland and Kangaroo Island (SA) populations (A = 8.9–10.6; He = 0.77–0.78) but significantly reduced in other endemic island populations (A = 3.8–4.1; He = 0.41–0.48). Autosomal and Y-linked microsatellite loci revealed a pattern of significant differentiation amongst populations, especially between SA and WA. The Kangaroo Island and introduced New Zealand population showed limited differentiation. Multiple divergent mtDNA CR haplotypes were identified within both SA and WA populations. The CR haplotypes of tammar wallabies from SA and WA show reciprocal monophyly and are highly divergent (14.5%), with levels of sequence divergence more typical of different species. Within WA tammar wallabies, island populations each have unique clusters of highly related CR haplotypes and each is most closely related to different WA mainland haplotypes. Y-linked microsatellite haplotypes show a similar pattern of divergence although levels of diversity are lower. In light of these differences, we suggest that two subspecies of tammar wallaby be recognized; Notamacropus eugenii eugenii in SA and N. eugenii derbianus in WA. The extensive neutral genetic diversity and inter-population differentiation identified within tammar wallabies should further increase the species value and usefulness as a model organism. PMID:28257440

  13. A DNA Barcode Library for North American Pyraustinae (Lepidoptera: Pyraloidea: Crambidae).

    PubMed

    Yang, Zhaofu; Landry, Jean-François; Hebert, Paul D N

    2016-01-01

    Although members of the crambid subfamily Pyraustinae are frequently important crop pests, their identification is often difficult because many species lack conspicuous diagnostic morphological characters. DNA barcoding employs sequence diversity in a short standardized gene region to facilitate specimen identifications and species discovery. This study provides a DNA barcode reference library for North American pyraustines based upon the analysis of 1589 sequences recovered from 137 nominal species, 87% of the fauna. Data from 125 species were barcode compliant (>500bp, <1% n), and 99 of these taxa formed a distinct cluster that was assigned to a single BIN. The other 26 species were assigned to 56 BINs, reflecting frequent cases of deep intraspecific sequence divergence and a few instances of barcode sharing, creating a total of 155 BINs. Two systems for OTU designation, ABGD and BIN, were examined to check the correspondence between current taxonomy and sequence clusters. The BIN system performed better than ABGD in delimiting closely related species, while OTU counts with ABGD were influenced by the value employed for relative gap width. Different species with low or no interspecific divergence may represent cases of unrecognized synonymy, whereas those with high intraspecific divergence require further taxonomic scrutiny as they may involve cryptic diversity. The barcode library developed in this study will also help to advance understanding of relationships among species of Pyraustinae.

  14. A tale of swinger insects: Signatures of past sexuality between divergent lineages of a parthenogenetic weevil revealed by ribosomal intraindividual variation.

    PubMed

    Rodriguero, Marcela S; Wirth, Sonia A; Alberghina, Josefina S; Lanteri, Analía A; Confalonieri, Viviana A

    2018-01-01

    Naupactus cervinus (Boheman) (Curculionidae, Naupactini) is a parthenogenetic weevil native to the Paranaense Forest which displays high levels of genetic variation. Two divergent clades were identified, one ranging in forest areas (Forest clade), and the other in open vegetation areas (Grassland clade). Both of them have individuals with high levels of heterozygosity in ribosomal sequences. Investigation of intraindividual variation in ITS1 sequences through cloning and posterior sequencing suggested that mating between both groups most likely occurred in the Paranaense Forest after a secondary contact, which led to fixed heterozygotes as a consequence of parthenogenesis. Otherwise, sexual segregation would have disrupted multilocus genotypes. Only a small number of heterozygous genotypes of all the possible combinations are found in nature. We propose the occurrence of a hybrid zone in the Paranaense Forest. The fact that it is one of the most important biodiversity hotspots of the world, together with its key role for investigating evolutionary processes, makes it worthy of conservation. This is the first genetic evidence of bisexuality in N. cervinus.

  15. Enlightenment of Yeast Mitochondrial Homoplasmy: Diversified Roles of Gene Conversion

    PubMed Central

    Ling, Feng; Mikawa, Tsutomu; Shibata, Takehiko

    2011-01-01

    Mitochondria have their own genomic DNA. Unlike the nuclear genome, each cell contains hundreds to thousands of copies of mitochondrial DNA (mtDNA). The copies of mtDNA tend to have heterogeneous sequences, due to the high frequency of mutagenesis, but are quickly homogenized within a cell (“homoplasmy”) during vegetative cell growth or through a few sexual generations. Heteroplasmy is strongly associated with mitochondrial diseases, diabetes and aging. Recent studies revealed that the yeast cell has the machinery to homogenize mtDNA, using a common DNA processing pathway with gene conversion; i.e., both genetic events are initiated by a double-stranded break, which is processed into 3′ single-stranded tails. One of the tails is base-paired with the complementary sequence of the recipient double-stranded DNA to form a D-loop (homologous pairing), in which repair DNA synthesis is initiated to restore the sequence lost by the breakage. Gene conversion generates sequence diversity, depending on the divergence between the donor and recipient sequences, especially when it occurs among a number of copies of a DNA sequence family with some sequence variations, such as in immunoglobulin diversification in chicken. MtDNA can be regarded as a sequence family, in which the members tend to be diversified by a high frequency of spontaneous mutagenesis. Thus, it would be interesting to determine why and how double-stranded breakage and D-loop formation induce sequence homogenization in mitochondria and sequence diversification in nuclear DNA. We will review the mechanisms and roles of mtDNA homoplasmy, in contrast to nuclear gene conversion, which diversifies gene and genome sequences, to provide clues toward understanding how the common DNA processing pathway results in such divergent outcomes. PMID:24710143

  16. Extensive Local Gene Duplication and Functional Divergence among Paralogs in Atlantic Salmon

    PubMed Central

    Warren, Ian A.; Ciborowski, Kate L.; Casadei, Elisa; Hazlerigg, David G.; Martin, Sam; Jordan, William C.; Sumner, Seirian

    2014-01-01

    Many organisms can generate alternative phenotypes from the same genome, enabling individuals to exploit diverse and variable environments. A prevailing hypothesis is that such adaptation has been favored by gene duplication events, which generate redundant genomic material that may evolve divergent functions. Vertebrate examples of recent whole-genome duplications are sparse although one example is the salmonids, which have undergone a whole-genome duplication event within the last 100 Myr. The life-cycle of the Atlantic salmon, Salmo salar, depends on the ability to produce alternating phenotypes from the same genome, to facilitate migration and maintain its anadromous life history. Here, we investigate the hypothesis that genome-wide and local gene duplication events have contributed to the salmonid adaptation. We used high-throughput sequencing to characterize the transcriptomes of three key organs involved in regulating migration in S. salar: Brain, pituitary, and olfactory epithelium. We identified over 10,000 undescribed S. salar sequences and designed an analytic workflow to distinguish between paralogs originating from local gene duplication events or from whole-genome duplication events. These data reveal that substantial local gene duplications took place shortly after the whole-genome duplication event. Many of the identified paralog pairs have either diverged in function or become noncoding. Future functional genomics studies will reveal to what extent this rich source of divergence in genetic sequence is likely to have facilitated the evolution of extreme phenotypic plasticity required for an anadromous life-cycle. PMID:24951567

  17. Demographic history and rare allele sharing among human populations.

    PubMed

    Gravel, Simon; Henn, Brenna M; Gutenkunst, Ryan N; Indap, Amit R; Marth, Gabor T; Clark, Andrew G; Yu, Fuli; Gibbs, Richard A; Bustamante, Carlos D

    2011-07-19

    High-throughput sequencing technology enables population-level surveys of human genomic variation. Here, we examine the joint allele frequency distributions across continental human populations and present an approach for combining complementary aspects of whole-genome, low-coverage data and targeted high-coverage data. We apply this approach to data generated by the pilot phase of the Thousand Genomes Project, including whole-genome 2-4× coverage data for 179 samples from HapMap European, Asian, and African panels as well as high-coverage target sequencing of the exons of 800 genes from 697 individuals in seven populations. We use the site frequency spectra obtained from these data to infer demographic parameters for an Out-of-Africa model for populations of African, European, and Asian descent and to predict, by a jackknife-based approach, the amount of genetic diversity that will be discovered as sample sizes are increased. We predict that the number of discovered nonsynonymous coding variants will reach 100,000 in each population after ∼1,000 sequenced chromosomes per population, whereas ∼2,500 chromosomes will be needed for the same number of synonymous variants. Beyond this point, the number of segregating sites in the European and Asian panel populations is expected to overcome that of the African panel because of faster recent population growth. Overall, we find that the majority of human genomic variable sites are rare and exhibit little sharing among diverged populations. Our results emphasize that replication of disease association for specific rare genetic variants across diverged populations must overcome both reduced statistical power because of rarity and higher population divergence.

  18. Demographic history and rare allele sharing among human populations

    PubMed Central

    Gravel, Simon; Henn, Brenna M.; Gutenkunst, Ryan N.; Indap, Amit R.; Marth, Gabor T.; Clark, Andrew G.; Yu, Fuli; Gibbs, Richard A.; Bustamante, Carlos D.; Altshuler, David L.; Durbin, Richard M.; Abecasis, Gonçalo R.; Bentley, David R.; Chakravarti, Aravinda; Clark, Andrew G.; Collins, Francis S.; De La Vega, Francisco M.; Donnelly, Peter; Egholm, Michael; Flicek, Paul; Gabriel, Stacey B.; Gibbs, Richard A.; Knoppers, Bartha M.; Lander, Eric S.; Lehrach, Hans; Mardis, Elaine R.; McVean, Gil A.; Nickerson, Debbie A.; Peltonen, Leena; Schafer, Alan J.; Sherry, Stephen T.; Wang, Jun; Wilson, Richard K.; Gibbs, Richard A.; Deiros, David; Metzker, Mike; Muzny, Donna; Reid, Jeff; Wheeler, David; Wang, Jun; Li, Jingxiang; Jian, Min; Li, Guoqing; Li, Ruiqiang; Liang, Huiqing; Tian, Geng; Wang, Bo; Wang, Jian; Wang, Wei; Yang, Huanming; Zhang, Xiuqing; Zheng, Huisong; Lander, Eric S.; Altshuler, David L.; Ambrogio, Lauren; Bloom, Toby; Cibulskis, Kristian; Fennell, Tim J.; Gabriel, Stacey B.; Jaffe, David B.; Shefler, Erica; Sougnez, Carrie L.; Bentley, David R.; Gormley, Niall; Humphray, Sean; Kingsbury, Zoya; Koko-Gonzales, Paula; Stone, Jennifer; McKernan, Kevin J.; Costa, Gina L.; Ichikawa, Jeffry K.; Lee, Clarence C.; Sudbrak, Ralf; Lehrach, Hans; Borodina, Tatiana A.; Dahl, Andreas; Davydov, Alexey N.; Marquardt, Peter; Mertes, Florian; Nietfeld, Wilfiried; Rosenstiel, Philip; Schreiber, Stefan; Soldatov, Aleksey V.; Timmermann, Bernd; Tolzmann, Marius; Egholm, Michael; Affourtit, Jason; Ashworth, Dana; Attiya, Said; Bachorski, Melissa; Buglione, Eli; Burke, Adam; Caprio, Amanda; Celone, Christopher; Clark, Shauna; Conners, David; Desany, Brian; Gu, Lisa; Guccione, Lorri; Kao, Kalvin; Kebbel, Andrew; Knowlton, Jennifer; Labrecque, Matthew; McDade, Louise; Mealmaker, Craig; Minderman, Melissa; Nawrocki, Anne; Niazi, Faheem; Pareja, Kristen; Ramenani, Ravi; Riches, David; Song, Wanmin; Turcotte, Cynthia; Wang, Shally; Mardis, Elaine R.; Wilson, Richard K.; Dooling, David; Fulton, Lucinda; Fulton, Robert; Weinstock, George; Durbin, Richard M.; Burton, John; Carter, David M.; Churcher, Carol; Coffey, Alison; Cox, Anthony; Palotie, Aarno; Quail, Michael; Skelly, Tom; Stalker, James; Swerdlow, Harold P.; Turner, Daniel; De Witte, Anniek; Giles, Shane; Gibbs, Richard A.; Wheeler, David; Bainbridge, Matthew; Challis, Danny; Sabo, Aniko; Yu, Fuli; Yu, Jin; Wang, Jun; Fang, Xiaodong; Guo, Xiaosen; Li, Ruiqiang; Li, Yingrui; Luo, Ruibang; Tai, Shuaishuai; Wu, Honglong; Zheng, Hancheng; Zheng, Xiaole; Zhou, Yan; Li, Guoqing; Wang, Jian; Yang, Huanming; Marth, Gabor T.; Garrison, Erik P.; Huang, Weichun; Indap, Amit; Kural, Deniz; Lee, Wan-Ping; Leong, Wen Fung; Quinlan, Aaron R.; Stewart, Chip; Stromberg, Michael P.; Ward, Alistair N.; Wu, Jiantao; Lee, Charles; Mills, Ryan E.; Shi, Xinghua; Daly, Mark J.; DePristo, Mark A.; Altshuler, David L.; Ball, Aaron D.; Banks, Eric; Bloom, Toby; Browning, Brian L.; Cibulskis, Kristian; Fennell, Tim J.; Garimella, Kiran V.; Grossman, Sharon R.; Handsaker, Robert E.; Hanna, Matt; Hartl, Chris; Jaffe, David B.; Kernytsky, Andrew M.; Korn, Joshua M.; Li, Heng; Maguire, Jared R.; McCarroll, Steven A.; McKenna, Aaron; Nemesh, James C.; Philippakis, Anthony A.; Poplin, Ryan E.; Price, Alkes; Rivas, Manuel A.; Sabeti, Pardis C.; Schaffner, Stephen F.; Shefler, Erica; Shlyakhter, Ilya A.; Cooper, David N.; Ball, Edward V.; Mort, Matthew; Phillips, Andrew D.; Stenson, Peter D.; Sebat, Jonathan; Makarov, Vladimir; Ye, Kenny; Yoon, Seungtai C.; Bustamante, Carlos D.; Clark, Andrew G.; Boyko, Adam; Degenhardt, Jeremiah; Gravel, Simon; Gutenkunst, Ryan N.; Kaganovich, Mark; Keinan, Alon; Lacroute, Phil; Ma, Xin; Reynolds, Andy; Clarke, Laura; Flicek, Paul; Cunningham, Fiona; Herrero, Javier; Keenen, Stephen; Kulesha, Eugene; Leinonen, Rasko; McLaren, William M.; Radhakrishnan, Rajesh; Smith, Richard E.; Zalunin, Vadim; Zheng-Bradley, Xiangqun; Korbel, Jan O.; Stütz, Adrian M.; Humphray, Sean; Bauer, Markus; Cheetham, R. Keira; Cox, Tony; Eberle, Michael; James, Terena; Kahn, Scott; Murray, Lisa; Chakravarti, Aravinda; Ye, Kai; De La Vega, Francisco M.; Fu, Yutao; Hyland, Fiona C. L.; Manning, Jonathan M.; McLaughlin, Stephen F.; Peckham, Heather E.; Sakarya, Onur; Sun, Yongming A.; Tsung, Eric F.; Batzer, Mark A.; Konkel, Miriam K.; Walker, Jerilyn A.; Sudbrak, Ralf; Albrecht, Marcus W.; Amstislavskiy, Vyacheslav S.; Herwig, Ralf; Parkhomchuk, Dimitri V.; Sherry, Stephen T.; Agarwala, Richa; Khouri, Hoda M.; Morgulis, Aleksandr O.; Paschall, Justin E.; Phan, Lon D.; Rotmistrovsky, Kirill E.; Sanders, Robert D.; Shumway, Martin F.; Xiao, Chunlin; McVean, Gil A.; Auton, Adam; Iqbal, Zamin; Lunter, Gerton; Marchini, Jonathan L.; Moutsianas, Loukas; Myers, Simon; Tumian, Afidalina; Desany, Brian; Knight, James; Winer, Roger; Craig, David W.; Beckstrom-Sternberg, Steve M.; Christoforides, Alexis; Kurdoglu, Ahmet A.; Pearson, John V.; Sinari, Shripad A.; Tembe, Waibhav D.; Haussler, David; Hinrichs, Angie S.; Katzman, Sol J.; Kern, Andrew; Kuhn, Robert M.; Przeworski, Molly; Hernandez, Ryan D.; Howie, Bryan; Kelley, Joanna L.; Melton, S. Cord; Abecasis, Gonçalo R.; Li, Yun; Anderson, Paul; Blackwell, Tom; Chen, Wei; Cookson, William O.; Ding, Jun; Kang, Hyun Min; Lathrop, Mark; Liang, Liming; Moffatt, Miriam F.; Scheet, Paul; Sidore, Carlo; Snyder, Matthew; Zhan, Xiaowei; Zöllner, Sebastian; Awadalla, Philip; Casals, Ferran; Idaghdour, Youssef; Keebler, John; Stone, Eric A.; Zilversmit, Martine; Jorde, Lynn; Xing, Jinchuan; Eichler, Evan E.; Aksay, Gozde; Alkan, Can; Hajirasouliha, Iman; Hormozdiari, Fereydoun; Kidd, Jeffrey M.; Sahinalp, S. Cenk; Sudmant, Peter H.; Mardis, Elaine R.; Chen, Ken; Chinwalla, Asif; Ding, Li; Koboldt, Daniel C.; McLellan, Mike D.; Dooling, David; Weinstock, George; Wallis, John W.; Wendl, Michael C.; Zhang, Qunyuan; Durbin, Richard M.; Albers, Cornelis A.; Ayub, Qasim; Balasubramaniam, Senduran; Barrett, Jeffrey C.; Carter, David M.; Chen, Yuan; Conrad, Donald F.; Danecek, Petr; Dermitzakis, Emmanouil T.; Hu, Min; Huang, Ni; Hurles, Matt E.; Jin, Hanjun; Jostins, Luke; Keane, Thomas M.; Le, Si Quang; Lindsay, Sarah; Long, Quan; MacArthur, Daniel G.; Montgomery, Stephen B.; Parts, Leopold; Stalker, James; Tyler-Smith, Chris; Walter, Klaudia; Zhang, Yujun; Gerstein, Mark B.; Snyder, Michael; Abyzov, Alexej; Balasubramanian, Suganthi; Bjornson, Robert; Du, Jiang; Grubert, Fabian; Habegger, Lukas; Haraksingh, Rajini; Jee, Justin; Khurana, Ekta; Lam, Hugo Y. K.; Leng, Jing; Mu, Xinmeng Jasmine; Urban, Alexander E.; Zhang, Zhengdong; Li, Yingrui; Luo, Ruibang; Marth, Gabor T.; Garrison, Erik P.; Kural, Deniz; Quinlan, Aaron R.; Stewart, Chip; Stromberg, Michael P.; Ward, Alistair N.; Wu, Jiantao; Lee, Charles; Mills, Ryan E.; Shi, Xinghua; McCarroll, Steven A.; Banks, Eric; DePristo, Mark A.; Handsaker, Robert E.; Hartl, Chris; Korn, Joshua M.; Li, Heng; Nemesh, James C.; Sebat, Jonathan; Makarov, Vladimir; Ye, Kenny; Yoon, Seungtai C.; Degenhardt, Jeremiah; Kaganovich, Mark; Clarke, Laura; Smith, Richard E.; Zheng-Bradley, Xiangqun; Korbel, Jan O.; Humphray, Sean; Cheetham, R. Keira; Eberle, Michael; Kahn, Scott; Murray, Lisa; Ye, Kai; De La Vega, Francisco M.; Fu, Yutao; Peckham, Heather E.; Sun, Yongming A.; Batzer, Mark A.; Konkel, Miriam K.; Walker, Jerilyn A.; Xiao, Chunlin; Iqbal, Zamin; Desany, Brian; Blackwell, Tom; Snyder, Matthew; Xing, Jinchuan; Eichler, Evan E.; Aksay, Gozde; Alkan, Can; Hajirasouliha, Iman; Hormozdiari, Fereydoun; Kidd, Jeffrey M.; Chen, Ken; Chinwalla, Asif; Ding, Li; McLellan, Mike D.; Wallis, John W.; Hurles, Matt E.; Conrad, Donald F.; Walter, Klaudia; Zhang, Yujun; Gerstein, Mark B.; Snyder, Michael; Abyzov, Alexej; Du, Jiang; Grubert, Fabian; Haraksingh, Rajini; Jee, Justin; Khurana, Ekta; Lam, Hugo Y. K.; Leng, Jing; Mu, Xinmeng Jasmine; Urban, Alexander E.; Zhang, Zhengdong; Gibbs, Richard A.; Bainbridge, Matthew; Challis, Danny; Coafra, Cristian; Dinh, Huyen; Kovar, Christie; Lee, Sandy; Muzny, Donna; Nazareth, Lynne; Reid, Jeff; Sabo, Aniko; Yu, Fuli; Yu, Jin; Marth, Gabor T.; Garrison, Erik P.; Indap, Amit; Leong, Wen Fung; Quinlan, Aaron R.; Stewart, Chip; Ward, Alistair N.; Wu, Jiantao; Cibulskis, Kristian; Fennell, Tim J.; Gabriel, Stacey B.; Garimella, Kiran V.; Hartl, Chris; Shefler, Erica; Sougnez, Carrie L.; Wilkinson, Jane; Clark, Andrew G.; Gravel, Simon; Grubert, Fabian; Clarke, Laura; Flicek, Paul; Smith, Richard E.; Zheng-Bradley, Xiangqun; Sherry, Stephen T.; Khouri, Hoda M.; Paschall, Justin E.; Shumway, Martin F.; Xiao, Chunlin; McVean, Gil A.; Katzman, Sol J.; Abecasis, Gonçalo R.; Blackwell, Tom; Mardis, Elaine R.; Dooling, David; Fulton, Lucinda; Fulton, Robert; Koboldt, Daniel C.; Durbin, Richard M.; Balasubramaniam, Senduran; Coffey, Allison; Keane, Thomas M.; MacArthur, Daniel G.; Palotie, Aarno; Scott, Carol; Stalker, James; Tyler-Smith, Chris; Gerstein, Mark B.; Balasubramanian, Suganthi; Chakravarti, Aravinda; Knoppers, Bartha M.; Abecasis, Gonçalo R.; Bustamante, Carlos D.; Gharani, Neda; Gibbs, Richard A.; Jorde, Lynn; Kaye, Jane S.; Kent, Alastair; Li, Taosha; McGuire, Amy L.; McVean, Gil A.; Ossorio, Pilar N.; Rotimi, Charles N.; Su, Yeyang; Toji, Lorraine H.; TylerSmith, Chris; Brooks, Lisa D.; Felsenfeld, Adam L.; McEwen, Jean E.; Abdallah, Assya; Juenger, Christopher R.; Clemm, Nicholas C.; Collins, Francis S.; Duncanson, Audrey; Green, Eric D.; Guyer, Mark S.; Peterson, Jane L.; Schafer, Alan J.; Abecasis, Gonçalo R.; Altshuler, David L.; Auton, Adam; Brooks, Lisa D.; Durbin, Richard M.; Gibbs, Richard A.; Hurles, Matt E.; McVean, Gil A.

    2011-01-01

    High-throughput sequencing technology enables population-level surveys of human genomic variation. Here, we examine the joint allele frequency distributions across continental human populations and present an approach for combining complementary aspects of whole-genome, low-coverage data and targeted high-coverage data. We apply this approach to data generated by the pilot phase of the Thousand Genomes Project, including whole-genome 2–4× coverage data for 179 samples from HapMap European, Asian, and African panels as well as high-coverage target sequencing of the exons of 800 genes from 697 individuals in seven populations. We use the site frequency spectra obtained from these data to infer demographic parameters for an Out-of-Africa model for populations of African, European, and Asian descent and to predict, by a jackknife-based approach, the amount of genetic diversity that will be discovered as sample sizes are increased. We predict that the number of discovered nonsynonymous coding variants will reach 100,000 in each population after ∼1,000 sequenced chromosomes per population, whereas ∼2,500 chromosomes will be needed for the same number of synonymous variants. Beyond this point, the number of segregating sites in the European and Asian panel populations is expected to overcome that of the African panel because of faster recent population growth. Overall, we find that the majority of human genomic variable sites are rare and exhibit little sharing among diverged populations. Our results emphasize that replication of disease association for specific rare genetic variants across diverged populations must overcome both reduced statistical power because of rarity and higher population divergence. PMID:21730125

  19. Toxic hydrogen sulfide and dark caves: phenotypic and genetic divergence across two abiotic environmental gradients in Poecilia mexicana.

    PubMed

    Tobler, Michael; Dewitt, Thomas J; Schlupp, Ingo; García de León, Francisco J; Herrmann, Roger; Feulner, Philine G D; Tiedemann, Ralph; Plath, Martin

    2008-10-01

    Divergent natural selection drives evolutionary diversification. It creates phenotypic diversity by favoring developmental plasticity within populations or genetic differentiation and local adaptation among populations. We investigated phenotypic and genetic divergence in the livebearing fish Poecilia mexicana along two abiotic environmental gradients. These fish typically inhabit nonsulfidic surface rivers, but also colonized sulfidic and cave habitats. We assessed phenotypic variation among a factorial combination of habitat types using geometric and traditional morphometrics, and genetic divergence using quantitative and molecular genetic analyses. Fish in caves (sulfidic or not) exhibited reduced eyes and slender bodies. Fish from sulfidic habitats (surface or cave) exhibited larger heads and longer gill filaments. Common-garden rearing suggested that these morphological differences are partly heritable. Population genetic analyses using microsatellites as well as cytochrome b gene sequences indicate high population differentiation over small spatial scale and very low rates of gene flow, especially among different habitat types. This suggests that divergent environmental conditions constitute barriers to gene flow. Strong molecular divergence over short distances as well as phenotypic and quantitative genetic divergence across habitats in directions classic to fish ecomorphology suggest that divergent selection is structuring phenotypic variation in this system.

  20. Single-molecule, full-length transcript sequencing provides insight into the extreme metabolism of the ruby-throated hummingbird Archilochus colubris.

    PubMed

    Workman, Rachael E; Myrka, Alexander M; Wong, G William; Tseng, Elizabeth; Welch, Kenneth C; Timp, Winston

    2018-03-01

    Hummingbirds oxidize ingested nectar sugars directly to fuel foraging but cannot sustain this fuel use during fasting periods, such as during the night or during long-distance migratory flights. Instead, fasting hummingbirds switch to oxidizing stored lipids that are derived from ingested sugars. The hummingbird liver plays a key role in moderating energy homeostasis and this remarkable capacity for fuel switching. Additionally, liver is the principle location of de novo lipogenesis, which can occur at exceptionally high rates, such as during premigratory fattening. Yet understanding how this tissue and whole organism moderates energy turnover is hampered by a lack of information regarding how relevant enzymes differ in sequence, expression, and regulation. We generated a de novo transcriptome of the hummingbird liver using PacBio full-length cDNA sequencing (Iso-Seq), yielding 8.6Gb of sequencing data, or 2.6M reads from 4 different size fractions. We analyzed data using the SMRTAnalysis v3.1 Iso-Seq pipeline, then clustered isoforms into gene families to generate de novo gene contigs using Cogent. We performed orthology analysis to identify closely related sequences between our transcriptome and other avian and human gene sets. Finally, we closely examined homology of critical lipid metabolism genes between our transcriptome data and avian and human genomes. We confirmed high levels of sequence divergence within hummingbird lipogenic enzymes, suggesting a high probability of adaptive divergent function in the hepatic lipogenic pathways. Our results leverage cutting-edge technology and a novel bioinformatics pipeline to provide a first direct look at the transcriptome of this incredible organism.

  1. Recovery of symbiotic nitrogen fixing acacia rhizobia from Merzouga Desert sand dunes in South East Morocco--Identification of a probable new species of Ensifer adapted to stressed environments.

    PubMed

    Sakrouhi, Ilham; Belfquih, Meryem; Sbabou, Laïla; Moulin, Patricia; Bena, Gilles; Filali-Maltouf, Abdelkarim; Le Quéré, Antoine

    2016-03-01

    Bacteria capable of nodulating Acacia tortilis and A. gummifera could be recovered from sand dunes collected in the Moroccan Merzouga desert. The trapping approach enabled the recovery of 17 desert rhizobia that all clustered within the Ensifer (Sinorhizobium) genus. Four isolates of the dominant genotype comprising 15 strains as well as 2 divergent strains were further characterized by MLSA. Phylogenetic analyzes indicated that the dominant genetic type was belonging to a new and yet undefined species within the Ensifer genus. Interestingly, housekeeping gene phylogenies showed that this possibly new species is also present in another desert but in India. Phylogenetic analyses of nifH and nodC sequences showed high sequence conservation among the Moroccan strains belonging to the dominant genotype but high divergence with sequences from Indian isolates suggesting acquisition of symbiotic genes through Horizontal Gene Transfer. These desert rhizobia were capable of growing in media containing high salt concentrations, under high pH and most of the strains showed growth at 45°C. Only recovered from desert type of Biome, yet, this new taxon appears particularly adapted to such harsh environment. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. rpoB-Based Identification of Nonpigmented and Late-Pigmenting Rapidly Growing Mycobacteria

    PubMed Central

    Adékambi, Toïdi; Colson, Philippe; Drancourt, Michel

    2003-01-01

    Nonpigmented and late-pigmenting rapidly growing mycobacteria (RGM) are increasingly isolated in clinical microbiology laboratories. Their accurate identification remains problematic because classification is labor intensive work and because new taxa are not often incorporated into classification databases. Also, 16S rRNA gene sequence analysis underestimates RGM diversity and does not distinguish between all taxa. We determined the complete nucleotide sequence of the rpoB gene, which encodes the bacterial β subunit of the RNA polymerase, for 20 RGM type strains. After using in-house software which analyzes and graphically represents variability stretches of 60 bp along the nucleotide sequence, our analysis focused on a 723-bp variable region exhibiting 83.9 to 97% interspecies similarity and 0 to 1.7% intraspecific divergence. Primer pair Myco-F-Myco-R was designed as a tool for both PCR amplification and sequencing of this region for molecular identification of RGM. This tool was used for identification of 63 RGM clinical isolates previously identified at the species level on the basis of phenotypic characteristics and by 16S rRNA gene sequence analysis. Of 63 clinical isolates, 59 (94%) exhibited <2% partial rpoB gene sequence divergence from 1 of 20 species under study and were regarded as correctly identified at the species level. Mycobacterium abscessus and Mycobacterium mucogenicum isolates were clearly distinguished from Mycobacterium chelonae; Mycobacterium mageritense isolates were clearly distinguished from “Mycobacterium houstonense.” Four isolates were not identified at the species level because they exhibited >3% partial rpoB gene sequence divergence from the corresponding type strain; they belonged to three taxa related to M. mucogenicum, Mycobacterium smegmatis, and Mycobacterium porcinum. For M. abscessus and M. mucogenicum, this partial sequence yielded a high genetic heterogeneity within the clinical isolates. We conclude that molecular identification by analysis of the 723-bp rpoB sequence is a rapid and accurate tool for identification of RGM. PMID:14662964

  3. Divergence of RNA polymerase α subunits in angiosperm plastid genomes is mediated by genomic rearrangement.

    PubMed

    Blazier, J Chris; Ruhlman, Tracey A; Weng, Mao-Lun; Rehman, Sumaiyah K; Sabir, Jamal S M; Jansen, Robert K

    2016-04-18

    Genes for the plastid-encoded RNA polymerase (PEP) persist in the plastid genomes of all photosynthetic angiosperms. However, three unrelated lineages (Annonaceae, Passifloraceae and Geraniaceae) have been identified with unusually divergent open reading frames (ORFs) in the conserved region of rpoA, the gene encoding the PEP α subunit. We used sequence-based approaches to evaluate whether these genes retain function. Both gene sequences and complete plastid genome sequences were assembled and analyzed from each of the three angiosperm families. Multiple lines of evidence indicated that the rpoA sequences are likely functional despite retaining as low as 30% nucleotide sequence identity with rpoA genes from outgroups in the same angiosperm order. The ratio of non-synonymous to synonymous substitutions indicated that these genes are under purifying selection, and bioinformatic prediction of conserved domains indicated that functional domains are preserved. One of the lineages (Pelargonium, Geraniaceae) contains species with multiple rpoA-like ORFs that show evidence of ongoing inter-paralog gene conversion. The plastid genomes containing these divergent rpoA genes have experienced extensive structural rearrangement, including large expansions of the inverted repeat. We propose that illegitimate recombination, not positive selection, has driven the divergence of rpoA.

  4. DNA barcoding reveals species level divergence between populations of the microhylid frog genus Arcovomer (Anura: Microhylidae) in the Atlantic Rainforest of southeastern Brazil.

    PubMed

    Jennings, W Bryan; Wogel, Henrique; Bilate, Marcos; Salles, Rodrigo de O L; Buckup, Paulo A

    2016-09-01

    The microhylid frogs belonging to the genus Arcovomer have been reported from lowland Atlantic Rainforest in the Brazilian states of Espírito Santo, Rio de Janeiro, and São Paulo. Here, we use DNA barcoding to assess levels of genetic divergence between apparently isolated populations in Espírito Santo and Rio de Janeiro. Our mtDNA data consisting of cytochrome oxidase subunit I (COI) nucleotide sequences reveals 13.2% uncorrected and 30.4% TIM2 + I + Γ corrected genetic divergences between these two populations. This level of divergence exceeds the suggested 10% uncorrected divergence threshold for elevating amphibian populations to candidate species using this marker, which implies that the Espírito Santo population is a species distinct from Arcovomer passarellii. Calibration of our model-corrected sequence divergence estimates suggests that the time of population divergence falls between 12 and 29 million years ago.

  5. New families of site-specific repetitive DNA sequences that comprise constitutive heterochromatin of the Syrian hamster (Mesocricetus auratus, Cricetinae, Rodentia).

    PubMed

    Yamada, Kazuhiko; Kamimura, Eikichi; Kondo, Mariko; Tsuchiya, Kimiyuki; Nishida-Umehara, Chizuko; Matsuda, Yoichi

    2006-02-01

    We molecularly cloned new families of site-specific repetitive DNA sequences from BglII- and EcoRI-digested genomic DNA of the Syrian hamster (Mesocricetus auratus, Cricetrinae, Rodentia) and characterized them by chromosome in situ hybridization and filter hybridization. They were classified into six different types of repetitive DNA sequence families according to chromosomal distribution and genome organization. The hybridization patterns of the sequences were consistent with the distribution of C-positive bands and/or Hoechst-stained heterochromatin. The centromeric major satellite DNA and sex chromosome-specific and telomeric region-specific repetitive sequences were conserved in the same genus (Mesocricetus) but divergent in different genera. The chromosome-2-specific sequence was conserved in two genera, Mesocricetus and Cricetulus, and a low copy number of repetitive sequences on the heterochromatic chromosome arms were conserved in the subfamily Cricetinae but not in the subfamily Calomyscinae. By contrast, the other type of repetitive sequences on the heterochromatic chromosome arms, which had sequence similarities to a LINE sequence of rodents, was conserved through the three subfamilies, Cricetinae, Calomyscinae and Murinae. The nucleotide divergence of the repetitive sequences of heterochromatin was well correlated with the phylogenetic relationships of the Cricetinae species, and each sequence has been independently amplified and diverged in the same genome.

  6. DNA barcodes for dragonflies and damselflies (Odonata) of Mindanao, Philippines.

    PubMed

    Casas, Princess Angelie S; Sing, Kong-Wah; Lee, Ping-Shin; Nuñeza, Olga M; Villanueva, Reagan Joseph T; Wilson, John-James

    2018-03-01

    Reliable species identification provides a sounder basis for use of species in the order Odonata as biological indicators and for their conservation, an urgent concern as many species are threatened with imminent extinction. We generated 134 COI barcodes from 36 morphologically identified species of Odonata collected from Mindanao Island, representing 10 families and 19 genera. Intraspecific sequence divergences ranged from 0 to 6.7% with four species showing more than 2%, while interspecific sequence divergences ranged from 0.5 to 23.3% with seven species showing less than 2%. Consequently, no distinct gap was observed between intraspecific and interspecific DNA barcode divergences. The numerous islands of the Philippine archipelago may have facilitated rapid speciation in the Odonata and resulted in low interspecific sequence divergences among closely related groups of species. This study contributes DNA barcodes for 36 morphologically identified species of Odonata reported from Mindanao including 31 species with no previous DNA barcode records.

  7. Testing the molecular clock using mechanistic models of fossil preservation and molecular evolution.

    PubMed

    Warnock, Rachel C M; Yang, Ziheng; Donoghue, Philip C J

    2017-06-28

    Molecular sequence data provide information about relative times only, and fossil-based age constraints are the ultimate source of information about absolute times in molecular clock dating analyses. Thus, fossil calibrations are critical to molecular clock dating, but competing methods are difficult to evaluate empirically because the true evolutionary time scale is never known. Here, we combine mechanistic models of fossil preservation and sequence evolution in simulations to evaluate different approaches to constructing fossil calibrations and their impact on Bayesian molecular clock dating, and the relative impact of fossil versus molecular sampling. We show that divergence time estimation is impacted by the model of fossil preservation, sampling intensity and tree shape. The addition of sequence data may improve molecular clock estimates, but accuracy and precision is dominated by the quality of the fossil calibrations. Posterior means and medians are poor representatives of true divergence times; posterior intervals provide a much more accurate estimate of divergence times, though they may be wide and often do not have high coverage probability. Our results highlight the importance of increased fossil sampling and improved statistical approaches to generating calibrations, which should incorporate the non-uniform nature of ecological and temporal fossil species distributions. © 2017 The Authors.

  8. Whole genome investigation of a divergent clade of the pathogen Streptococcus suis

    PubMed Central

    Baig, Abiyad; Weinert, Lucy A.; Peters, Sarah E.; Howell, Kate J.; Chaudhuri, Roy R.; Wang, Jinhong; Holden, Matthew T. G.; Parkhill, Julian; Langford, Paul R.; Rycroft, Andrew N.; Wren, Brendan W.; Tucker, Alexander W.; Maskell, Duncan J.

    2015-01-01

    Streptococcus suis is a major porcine and zoonotic pathogen responsible for significant economic losses in the pig industry and an increasing number of human cases. Multiple isolates of S. suis show marked genomic diversity. Here, we report the analysis of whole genome sequences of nine pig isolates that caused disease typical of S. suis and had phenotypic characteristics of S. suis, but their genomes were divergent from those of many other S. suis isolates. Comparison of protein sequences predicted from divergent genomes with those from normal S. suis reduced the size of core genome from 793 to only 397 genes. Divergence was clear if phylogenetic analysis was performed on reduced core genes and MLST alleles. Phylogenies based on certain other genes (16S rRNA, sodA, recN, and cpn60) did not show divergence for all isolates, suggesting recombination between some divergent isolates with normal S. suis for these genes. Indeed, there is evidence of recent recombination between the divergent and normal S. suis genomes for 249 of 397 core genes. In addition, phylogenetic analysis based on the 16S rRNA gene and 132 genes that were conserved between the divergent isolates and representatives of the broader Streptococcus genus showed that divergent isolates were more closely related to S. suis. Six out of nine divergent isolates possessed a S. suis-like capsule region with variation in capsular gene sequences but the remaining three did not have a discrete capsule locus. The majority (40/70), of virulence-associated genes in normal S. suis were present in the divergent genomes. Overall, the divergent isolates extend the current diversity of S. suis species but the phenotypic similarities and the large amount of gene exchange with normal S. suis gives insufficient evidence to assign these isolates to a new species or subspecies. Further, sampling and whole genome analysis of more isolates is warranted to understand the diversity of the species. PMID:26583006

  9. Tracking the origins of the cave bear (Ursus spelaeus) by mitochondrial DNA sequencing.

    PubMed Central

    Hänni, C; Laudet, V; Stehelin, D; Taberlet, P

    1994-01-01

    The different European populations of Ursus arctos, the brown bear, were recently studied for mitochondrial DNA polymorphism. Two clearly distinct lineages (eastern and western) were found, which may have diverged approximately 850,000 years ago. In this context, it was interesting to study the cave bear, Ursus spelaeus, a species which became extinct 20,000 years ago. In this study, we have amplified and sequenced a fragment of 139-bp in the mitochondrial DNA control region of a 40,000-year-old specimen of U. spelaeus. Phylogenetic reconstructions using this sequence and the European brown bear sequences already published suggest that U. spelaeus diverged from an early offshoot of U. arctos--i.e., approximately at the same time as the divergence of the two main lineages of U. arctos. This divergence probably took place at the earliest glaciation, likely due to geographic separation during the earlier Quaternary cold periods. This result is in agreement with the paleontological data available and suggests a good correspondence between molecular and morphological data. Images PMID:7991628

  10. Genotyping of Salmonella enterica serovar Typhi strains isolated from 1959 to 2006 in China and analysis of genetic diversity by genomic microarray.

    PubMed

    Zhang, Haifang; Zhang, Xiaolei; Yan, Meiying; Pang, Bo; Kan, Biao; Xu, Huaxi; Huang, Xinxiang

    2011-12-15

    To determine the genotype of Salmonella enterica serovar Typhi (S. Typhi) strains in China and analyze their genetic diversity. We collected S. Typhi strains from 1959 to 2006 in five highly endemic Chinese provinces and chose 40 representative strains. Multilocus sequence typing was used to determine the genotypes or sequence types (ST) and microarray-based comparative genomic hybridization (M-CGH) to investigate the differences in gene content among these strains. Forty representative S. Typhi strains belonged to 4 sequence types (ST1, ST2, ST890, and ST892). The predominant S. Typhi genotype (31/40) was ST2 and it had a diverse geographic distribution. We discovered two novel STs - ST890 and ST892. M-CGH showed that 69 genes in these two novel STs were divergent from S. Typhi Ty2, which belongs to ST1. In addition, 5 representative Typhi strains of ST2 isolated from Guizhou province showed differences in divergent genes. We determined two novel sequence types, ST890 and ST892, and found that ST2 was the most prevalent genotype of S. Typhi in China. Genetic diversity was present even within a highly clonal bacterial population.

  11. Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics.

    PubMed

    Straub, Shannon C K; Parks, Matthew; Weitemier, Kevin; Fishbein, Mark; Cronn, Richard C; Liston, Aaron

    2012-02-01

    Just as Sanger sequencing did more than 20 years ago, next-generation sequencing (NGS) is poised to revolutionize plant systematics. By combining multiplexing approaches with NGS throughput, systematists may no longer need to choose between more taxa or more characters. Here we describe a genome skimming (shallow sequencing) approach for plant systematics. Through simulations, we evaluated optimal sequencing depth and performance of single-end and paired-end short read sequences for assembly of nuclear ribosomal DNA (rDNA) and plastomes and addressed the effect of divergence on reference-guided plastome assembly. We also used simulations to identify potential phylogenetic markers from low-copy nuclear loci at different sequencing depths. We demonstrated the utility of genome skimming through phylogenetic analysis of the Sonoran Desert clade (SDC) of Asclepias (Apocynaceae). Paired-end reads performed better than single-end reads. Minimum sequencing depths for high quality rDNA and plastome assemblies were 40× and 30×, respectively. Divergence from the reference significantly affected plastome assembly, but relatively similar references are available for most seed plants. Deeper rDNA sequencing is necessary to characterize intragenomic polymorphism. The low-copy fraction of the nuclear genome was readily surveyed, even at low sequencing depths. Nearly 160000 bp of sequence from three organelles provided evidence of phylogenetic incongruence in the SDC. Adoption of NGS will facilitate progress in plant systematics, as whole plastome and rDNA cistrons, partial mitochondrial genomes, and low-copy nuclear markers can now be efficiently obtained for molecular phylogenetics studies.

  12. The mitochondrial genomes of Campodea fragilis and C. lubbocki(Hexapoda: Diplura): high genetic divergence in a morphologically uniformtaxon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podsiadlowski, L.; Carapelli, A.; Nardi, F.

    2005-12-01

    Mitochondrial genomes from two dipluran hexapods of the genus Campodea have been sequenced. Gene order is the same as in most other hexapods and crustaceans. Secondary structures of tRNAs reveal specific structural changes in tRNA-C, tRNA-R, tRNA-S1 and tRNA-S2. Comparative analyses of nucleotide and amino acid composition, as well as structural features of both ribosomal RNA subunits, reveal substantial differences among the analyzed taxa. Although the two Campodea species are morphologically highly uniform, genetic divergence is larger than expected, suggesting a long evolutionary history under stable ecological conditions.

  13. Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis)

    PubMed Central

    FUNK, W. CHRIS; LOVICH, ROBERT E.; HOHENLOHE, PAUL A.; HOFMAN, COURTNEY A.; MORRISON, SCOTT A.; SILLETT, T. SCOTT; GHALAMBOR, CAMERON K.; MALDONADO, JESUS E.; RICK, TORBEN C.; DAY, MITCH D.; POLATO, NICHOLAS R.; FITZPATRICK, SARAH W.; COONAN, TIMOTHY J.; CROOKS, KEVIN R.; DILLON, ADAM; GARCELON, DAVID K.; KING, JULIE L.; BOSER, CHRISTINA L.; GOULD, NICHOLAS; ANDELT, WILLIAM F.

    2016-01-01

    The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of 6 subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction-site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1–89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland gray foxes, and vice versa, indicating genetic drift drives genome-wide divergence. Nonetheless, outlier tests identified 3.6–6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness, and reduced adaptive potential. PMID:26992010

  14. Complete genome sequences of two divergent isolates of strawberry crinkle virus coinfecting a single strawberry plant.

    PubMed

    Koloniuk, Igor; Fránová, Jana; Sarkisova, Tatiana; Přibylová, Jaroslava

    2018-05-04

    Strawberry crinkle disease is one of the major diseases that threatens strawberry production. Although the biological properties of the agent, strawberry crinkle virus (SCV), have been thoroughly investigated, its complete genome sequence has never been published. Existing RT-PCR-based detection relies on a partial sequence of the L protein gene, presumably the least expressed viral gene. Here, we present complete sequences of two divergent SCV isolates co-infecting a single plant, Fragaria x ananassa cv. Čačanská raná.

  15. Distinct subspecies or phenotypic plasticity? Genetic and morphological differentiation of mountain honey bees in East Africa.

    PubMed

    Gruber, Karl; Schöning, Caspar; Otte, Marianne; Kinuthia, Wanja; Hasselmann, Martin

    2013-09-01

    Identifying the forces shaping intraspecific phenotypic and genotypic divergence are of key importance in evolutionary biology. Phenotypic divergence may result from local adaptation or, especially in species with strong gene flow, from pronounced phenotypic plasticity. Here, we examine morphological and genetic divergence among populations of the western honey bee Apis mellifera in the topographically heterogeneous East African region. The currently accepted "mountain refugia hypothesis" states that populations living in disjunct montane forests belong to a different lineage than those in savanna habitats surrounding these forests. We obtained microsatellite data, mitochondrial sequences, and morphometric data from worker honey bees collected from feral colonies in three montane forests and corresponding neighboring savanna regions in Kenya. Honey bee colonies from montane forests showed distinct worker morphology compared with colonies in savanna areas. Mitochondrial sequence data did not support the existence of the two currently accepted subspecies. Furthermore, analyses of the microsatellite data with a Bayesian clustering method did not support the existence of two source populations as it would be expected under the mountain refugia scenario. Our findings suggest that phenotypic plasticity rather than distinct ancestry is the leading cause behind the phenotypic divergence observed between montane forest and savanna honey bees. Our study thus corroborates the idea that high gene flow may select for increased plasticity.

  16. Genetic diversity among populations of Antarctic springtails (Collembola) within the Mackay Glacier ecotone.

    PubMed

    Beet, Clare R; Hogg, Ian D; Collins, Gemma E; Cowan, Don A; Wall, Diana H; Adams, Byron J

    2016-09-01

    Climate changes are likely to have major influences on the distribution and abundance of Antarctic terrestrial biota. To assess arthropod distribution and diversity within the Ross Sea region, we examined mitochondrial DNA (COI) sequences for three currently recognized species of springtail (Collembola) collected from sites in the vicinity, and to the north of, the Mackay Glacier (77°S). This area acts as a transition between two biogeographic regions (northern and southern Victoria Land). We found populations of highly divergent individuals (5%-11.3% intraspecific sequence divergence) for each of the three putative springtail species, suggesting the possibility of cryptic diversity. Based on molecular clock estimates, these divergent lineages are likely to have been isolated for 3-5 million years. It was during this time that the Western Antarctic Ice Sheet (WAIS) was likely to have completely collapsed, potentially facilitating springtail dispersal via rafting on running waters and open seaways. The reformation of the WAIS would have isolated newly established populations, with subsequent dispersal restricted by glaciers and ice-covered areas. Given the currently limited distributions for these genetically divergent populations, any future changes in species' distributions can be easily tracked through the DNA barcoding of springtails from within the Mackay Glacier ecotone.

  17. More reliable estimates of divergence times in Pan using complete mtDNA sequences and accounting for population structure.

    PubMed

    Stone, Anne C; Battistuzzi, Fabia U; Kubatko, Laura S; Perry, George H; Trudeau, Evan; Lin, Hsiuman; Kumar, Sudhir

    2010-10-27

    Here, we report the sequencing and analysis of eight complete mitochondrial genomes of chimpanzees (Pan troglodytes) from each of the three established subspecies (P. t. troglodytes, P. t. schweinfurthii and P. t. verus) and the proposed fourth subspecies (P. t. ellioti). Our population genetic analyses are consistent with neutral patterns of evolution that have been shaped by demography. The high levels of mtDNA diversity in western chimpanzees are unlike those seen at nuclear loci, which may reflect a demographic history of greater female to male effective population sizes possibly owing to the characteristics of the founding population. By using relaxed-clock methods, we have inferred a timetree of chimpanzee species and subspecies. The absolute divergence times vary based on the methods and calibration used, but relative divergence times show extensive uniformity. Overall, mtDNA produces consistently older times than those known from nuclear markers, a discrepancy that is reduced significantly by explicitly accounting for chimpanzee population structures in time estimation. Assuming the human-chimpanzee split to be between 7 and 5 Ma, chimpanzee time estimates are 2.1-1.5, 1.1-0.76 and 0.25-0.18 Ma for the chimpanzee/bonobo, western/(eastern + central) and eastern/central chimpanzee divergences, respectively.

  18. Divergent allele advantage at MHC-DRB through direct and maternal genotypic effects and its consequences for allele pool composition and mating

    PubMed Central

    Lenz, Tobias L.; Mueller, Birte; Trillmich, Fritz; Wolf, Jochen B. W.

    2013-01-01

    It is still debated whether main individual fitness differences in natural populations can be attributed to genome-wide effects or to particular loci of outstanding functional importance such as the major histocompatibility complex (MHC). In a long-term monitoring project on Galápagos sea lions (Zalophus wollebaeki), we collected comprehensive fitness and mating data for a total of 506 individuals. Controlling for genome-wide inbreeding, we find strong associations between the MHC locus and nearly all fitness traits. The effect was mainly attributable to MHC sequence divergence and could be decomposed into contributions of own and maternal genotypes. In consequence, the population seems to have evolved a pool of highly divergent alleles conveying near-optimal MHC divergence even by random mating. Our results demonstrate that a single locus can significantly contribute to fitness in the wild and provide conclusive evidence for the ‘divergent allele advantage’ hypothesis, a special form of balancing selection with interesting evolutionary implications. PMID:23677346

  19. Genome-wide patterns of differentiation and spatially varying selection between postglacial recolonization lineages of Populus alba (Salicaceae), a widespread forest tree.

    PubMed

    Stölting, Kai N; Paris, Margot; Meier, Cécile; Heinze, Berthold; Castiglione, Stefano; Bartha, Denes; Lexer, Christian

    2015-08-01

    Studying the divergence continuum in plants is relevant to fundamental and applied biology because of the potential to reveal functionally important genetic variation. In this context, whole-genome sequencing (WGS) provides the necessary rigour for uncovering footprints of selection. We resequenced populations of two divergent phylogeographic lineages of Populus alba (n = 48), thoroughly characterized by microsatellites (n = 317), and scanned their genomes for regions of unusually high allelic differentiation and reduced diversity using > 1.7 million single nucleotide polymorphisms (SNPs) from WGS. Results were confirmed by Sanger sequencing. On average, 9134 high-differentiation (≥ 4 standard deviations) outlier SNPs were uncovered between populations, 848 of which were shared by ≥ three replicate comparisons. Annotation revealed that 545 of these were located in 437 predicted genes. Twelve percent of differentiation outlier genome regions exhibited significantly reduced genetic diversity. Gene ontology (GO) searches were successful for 327 high-differentiation genes, and these were enriched for 63 GO terms. Our results provide a snapshot of the roles of 'hard selective sweeps' vs divergent selection of standing genetic variation in distinct postglacial recolonization lineages of P. alba. Thus, this study adds to our understanding of the mechanisms responsible for the origin of functionally relevant variation in temperate trees. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. New Hepatitis B Virus of Cranes That Has an Unexpected Broad Host Range

    PubMed Central

    Prassolov, Alexej; Hohenberg, Heinz; Kalinina, Tatyana; Schneider, Carola; Cova, Lucyna; Krone, Oliver; Frölich, Kai; Will, Hans; Sirma, Hüseyin

    2003-01-01

    All hepadnaviruses known so far have a very limited host range, restricted to their natural hosts and a few closely related species. This is thought to be due mainly to sequence divergence in the large envelope protein and species-specific differences in host components essential for virus propagation. Here we report an infection of cranes with a novel hepadnavirus, designated CHBV, that has an unexpectedly broad host range and is only distantly evolutionarily related to avihepadnaviruses of related hosts. Direct DNA sequencing of amplified CHBV DNA as well a sequencing of cloned viral genomes revealed that CHBV is most closely related to, although distinct from, Ross' goose hepatitis B virus (RGHBV) and slightly less closely related to duck hepatitis B virus (DHBV). Phylogenetically, cranes are very distant from geese and ducks and are most closely related to herons and storks. Naturally occurring hepadnaviruses in the last two species are highly divergent in sequence from RGHBV and DHBV and do not infect ducks or do so only marginally. In contrast, CHBV from crane sera and recombinant CHBV produced from LMH cells infected primary duck hepatocytes almost as efficiently as DHBV did. This is the first report of a rather broad host range of an avihepadnavirus. Our data imply either usage of similar or identical entry pathways and receptors by DHBV and CHBV, unusual host and virus adaptation mechanisms, or divergent evolution of the host genomes and cellular components required for virus propagation. PMID:12525630

  1. New hepatitis B virus of cranes that has an unexpected broad host range.

    PubMed

    Prassolov, Alexej; Hohenberg, Heinz; Kalinina, Tatyana; Schneider, Carola; Cova, Lucyna; Krone, Oliver; Frölich, Kai; Will, Hans; Sirma, Hüseyin

    2003-02-01

    All hepadnaviruses known so far have a very limited host range, restricted to their natural hosts and a few closely related species. This is thought to be due mainly to sequence divergence in the large envelope protein and species-specific differences in host components essential for virus propagation. Here we report an infection of cranes with a novel hepadnavirus, designated CHBV, that has an unexpectedly broad host range and is only distantly evolutionarily related to avihepadnaviruses of related hosts. Direct DNA sequencing of amplified CHBV DNA as well a sequencing of cloned viral genomes revealed that CHBV is most closely related to, although distinct from, Ross' goose hepatitis B virus (RGHBV) and slightly less closely related to duck hepatitis B virus (DHBV). Phylogenetically, cranes are very distant from geese and ducks and are most closely related to herons and storks. Naturally occurring hepadnaviruses in the last two species are highly divergent in sequence from RGHBV and DHBV and do not infect ducks or do so only marginally. In contrast, CHBV from crane sera and recombinant CHBV produced from LMH cells infected primary duck hepatocytes almost as efficiently as DHBV did. This is the first report of a rather broad host range of an avihepadnavirus. Our data imply either usage of similar or identical entry pathways and receptors by DHBV and CHBV, unusual host and virus adaptation mechanisms, or divergent evolution of the host genomes and cellular components required for virus propagation.

  2. A little bit of sex matters for genome evolution in asexual plants.

    PubMed

    Hojsgaard, Diego; Hörandl, Elvira

    2015-01-01

    Genome evolution in asexual organisms is theoretically expected to be shaped by various factors: first, hybrid origin, and polyploidy confer a genomic constitution of highly heterozygous genotypes with multiple copies of genes; second, asexuality confers a lack of recombination and variation in populations, which reduces the efficiency of selection against deleterious mutations; hence, the accumulation of mutations and a gradual increase in mutational load (Muller's ratchet) would lead to rapid extinction of asexual lineages; third, allelic sequence divergence is expected to result in rapid divergence of lineages (Meselson effect). Recent transcriptome studies on the asexual polyploid complex Ranunculus auricomus using single-nucleotide polymorphisms confirmed neutral allelic sequence divergence within a short time frame, but rejected a hypothesis of a genome-wide accumulation of mutations in asexuals compared to sexuals, except for a few genes related to reproductive development. We discuss a general model that the observed incidence of facultative sexuality in plants may unmask deleterious mutations with partial dominance and expose them efficiently to purging selection. A little bit of sex may help to avoid genomic decay and extinction.

  3. Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution

    PubMed Central

    Smith, Jeramiah J; Kuraku, Shigehiro; Holt, Carson; Sauka-Spengler, Tatjana; Jiang, Ning; Campbell, Michael S; Yandell, Mark D; Manousaki, Tereza; Meyer, Axel; Bloom, Ona E; Morgan, Jennifer R; Buxbaum, Joseph D; Sachidanandam, Ravi; Sims, Carrie; Garruss, Alexander S; Cook, Malcolm; Krumlauf, Robb; Wiedemann, Leanne M; Sower, Stacia A; Decatur, Wayne A; Hall, Jeffrey A; Amemiya, Chris T; Saha, Nil R; Buckley, Katherine M; Rast, Jonathan P; Das, Sabyasachi; Hirano, Masayuki; McCurley, Nathanael; Guo, Peng; Rohner, Nicolas; Tabin, Clifford J; Piccinelli, Paul; Elgar, Greg; Ruffier, Magali; Aken, Bronwen L; Searle, Stephen MJ; Muffato, Matthieu; Pignatelli, Miguel; Herrero, Javier; Jones, Matthew; Brown, C Titus; Chung-Davidson, Yu-Wen; Nanlohy, Kaben G; Libants, Scot V; Yeh, Chu-Yin; McCauley, David W; Langeland, James A; Pancer, Zeev; Fritzsch, Bernd; de Jong, Pieter J; Zhu, Baoli; Fulton, Lucinda L; Theising, Brenda; Flicek, Paul; Bronner, Marianne E; Warren, Wesley C; Clifton, Sandra W; Wilson, Richard K; Li, Weiming

    2013-01-01

    Lampreys are representatives of an ancient vertebrate lineage that diverged from our own ~500 million years ago. By virtue of this deeply shared ancestry, the sea lamprey (P. marinus) genome is uniquely poised to provide insight into the ancestry of vertebrate genomes and the underlying principles of vertebrate biology. Here, we present the first lamprey whole-genome sequence and assembly. We note challenges faced owing to its high content of repetitive elements and GC bases, as well as the absence of broad-scale sequence information from closely related species. Analyses of the assembly indicate that two whole-genome duplications likely occurred before the divergence of ancestral lamprey and gnathostome lineages. Moreover, the results help define key evolutionary events within vertebrate lineages, including the origin of myelin-associated proteins and the development of appendages. The lamprey genome provides an important resource for reconstructing vertebrate origins and the evolutionary events that have shaped the genomes of extant organisms. PMID:23435085

  4. A new family of satellite DNA sequences as a major component of centromeric heterochromatin in owls (Strigiformes).

    PubMed

    Yamada, Kazuhiko; Nishida-Umehara, Chizuko; Matsuda, Yoichi

    2004-03-01

    We isolated a new family of satellite DNA sequences from HaeIII- and EcoRI-digested genomic DNA of the Blakiston's fish owl ( Ketupa blakistoni). The repetitive sequences were organized in tandem arrays of the 174 bp element, and localized to the centromeric regions of all macrochromosomes, including the Z and W chromosomes, and microchromosomes. This hybridization pattern was consistent with the distribution of C-band-positive centromeric heterochromatin, and the satellite DNA sequences occupied 10% of the total genome as a major component of centromeric heterochromatin. The sequences were homogenized between macro- and microchromosomes in this species, and therefore intraspecific divergence of the nucleotide sequences was low. The 174 bp element cross-hybridized to the genomic DNA of six other Strigidae species, but not to that of the Tytonidae, suggesting that the satellite DNA sequences are conserved in the same family but fairly divergent between the different families in the Strigiformes. Secondly, the centromeric satellite DNAs were cloned from eight Strigidae species, and the nucleotide sequences of 41 monomer fragments were compared within and between species. Molecular phylogenetic relationships of the nucleotide sequences were highly correlated with both the taxonomy based on morphological traits and the phylogenetic tree constructed by DNA-DNA hybridization. These results suggest that the satellite DNA sequence has evolved by concerted evolution in the Strigidae and that it is a good taxonomic and phylogenetic marker to examine genetic diversity between Strigiformes species.

  5. An appraisal of the enzyme stability-activity trade-off.

    PubMed

    Miller, Scott R

    2017-07-01

    A longstanding idea in evolutionary physiology is that an enzyme cannot jointly optimize performance at both high and low temperatures due to a trade-off between stability and activity. Although a stability-activity trade-off has been observed for well-characterized examples, such a trade-off is not imposed by any physical chemical constraint. To better understand the pervasiveness of this trade-off, I investigated the stability-activity relationship for comparative biochemical studies of purified orthologous enzymes identified by a literature search. The nature of this relationship varied greatly among studies. Notably, studies of enzymes with low mean synonymous nucleotide sequence divergence were less likely to exhibit the predicted negative correlation between stability and activity. Similarly, a survey of directed evolution investigations of the stability-activity relationship indicated that these traits are often uncoupled among nearly identical yet phenotypically divergent enzymes. This suggests that the presumptive trade-off often reported for investigations of enzymes with high mean sequence divergence may in some cases instead be a consequence of the degeneration over time of enzyme function in unselected environments, rather than a direct effect of thermal adaptation. The results caution against the general assertion of a stability-activity trade-off during enzyme adaptation. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  6. Polymorphism discovery and allele frequency estimation using high-throughput DNA sequencing of target-enriched pooled DNA samples

    PubMed Central

    2012-01-01

    Background The central role of the somatotrophic axis in animal post-natal growth, development and fertility is well established. Therefore, the identification of genetic variants affecting quantitative traits within this axis is an attractive goal. However, large sample numbers are a pre-requisite for the identification of genetic variants underlying complex traits and although technologies are improving rapidly, high-throughput sequencing of large numbers of complete individual genomes remains prohibitively expensive. Therefore using a pooled DNA approach coupled with target enrichment and high-throughput sequencing, the aim of this study was to identify polymorphisms and estimate allele frequency differences across 83 candidate genes of the somatotrophic axis, in 150 Holstein-Friesian dairy bulls divided into two groups divergent for genetic merit for fertility. Results In total, 4,135 SNPs and 893 indels were identified during the resequencing of the 83 candidate genes. Nineteen percent (n = 952) of variants were located within 5' and 3' UTRs. Seventy-two percent (n = 3,612) were intronic and 9% (n = 464) were exonic, including 65 indels and 236 SNPs resulting in non-synonymous substitutions (NSS). Significant (P < 0.01) mean allele frequency differentials between the low and high fertility groups were observed for 720 SNPs (58 NSS). Allele frequencies for 43 of the SNPs were also determined by genotyping the 150 individual animals (Sequenom® MassARRAY). No significant differences (P > 0.1) were observed between the two methods for any of the 43 SNPs across both pools (i.e., 86 tests in total). Conclusions The results of the current study support previous findings of the use of DNA sample pooling and high-throughput sequencing as a viable strategy for polymorphism discovery and allele frequency estimation. Using this approach we have characterised the genetic variation within genes of the somatotrophic axis and related pathways, central to mammalian post-natal growth and development and subsequent lactogenesis and fertility. We have identified a large number of variants segregating at significantly different frequencies between cattle groups divergent for calving interval plausibly harbouring causative variants contributing to heritable variation. To our knowledge, this is the first report describing sequencing of targeted genomic regions in any livestock species using groups with divergent phenotypes for an economically important trait. PMID:22235840

  7. Highly divergent mussel lineages in isolated Indonesian marine lakes.

    PubMed

    Becking, Leontine E; de Leeuw, Christiaan A; Knegt, Bram; Maas, Diede L; de Voogd, Nicole J; Abdunnur; Suyatna, Iwan; Peijnenburg, Katja T C A

    2016-01-01

    Marine lakes, with populations in landlocked seawater and clearly delineated contours, have the potential to provide a unique model to study early stages of evolution in coastal marine taxa. Here we ask whether populations of the mussel Brachidontes from marine lakes in Berau, East Kalimantan (Indonesia) are isolated from each other and from the coastal mangrove systems. We analyzed sequence data of one mitochondrial marker (Cytochrome Oxidase I (COI)), and two nuclear markers (18S and 28S). In addition, we examined shell shape using a geometric morphometric approach. The Indonesian populations of Brachidontes spp. harbored four deeply diverged lineages (14-75% COI corrected net sequence divergence), two of which correspond to previously recorded lineages from marine lakes in Palau, 1,900 km away. These four lineages also showed significant differences in shell shape and constitute a species complex of at least four undescribed species. Each lake harbored a different lineage despite the fact that the lakes are separated from each other by only 2-6 km, while the two mangrove populations, at 20 km distance from each other, harbored the same lineage and shared haplotypes. Marine lakes thus represent isolated habitats. As each lake contained unique within lineage diversity (0.1-0.2%), we suggest that this may have resulted from in situ divergence due to isolation of founder populations after the formation of the lakes (6,000-12,000 years before present). Combined effects of stochastic processes, local adaptation and increased evolutionary rates could produce high levels of differentiation in small populations such as in marine lake environments. Such short-term isolation at small spatial scales may be an important contributing factor to the high marine biodiversity that is found in the Indo-Australian Archipelago.

  8. Divergence of RNA polymerase α subunits in angiosperm plastid genomes is mediated by genomic rearrangement

    PubMed Central

    Blazier, J. Chris; Ruhlman, Tracey A.; Weng, Mao-Lun; Rehman, Sumaiyah K.; Sabir, Jamal S. M.; Jansen, Robert K.

    2016-01-01

    Genes for the plastid-encoded RNA polymerase (PEP) persist in the plastid genomes of all photosynthetic angiosperms. However, three unrelated lineages (Annonaceae, Passifloraceae and Geraniaceae) have been identified with unusually divergent open reading frames (ORFs) in the conserved region of rpoA, the gene encoding the PEP α subunit. We used sequence-based approaches to evaluate whether these genes retain function. Both gene sequences and complete plastid genome sequences were assembled and analyzed from each of the three angiosperm families. Multiple lines of evidence indicated that the rpoA sequences are likely functional despite retaining as low as 30% nucleotide sequence identity with rpoA genes from outgroups in the same angiosperm order. The ratio of non-synonymous to synonymous substitutions indicated that these genes are under purifying selection, and bioinformatic prediction of conserved domains indicated that functional domains are preserved. One of the lineages (Pelargonium, Geraniaceae) contains species with multiple rpoA-like ORFs that show evidence of ongoing inter-paralog gene conversion. The plastid genomes containing these divergent rpoA genes have experienced extensive structural rearrangement, including large expansions of the inverted repeat. We propose that illegitimate recombination, not positive selection, has driven the divergence of rpoA. PMID:27087667

  9. Alignment-free microbial phylogenomics under scenarios of sequence divergence, genome rearrangement and lateral genetic transfer.

    PubMed

    Bernard, Guillaume; Chan, Cheong Xin; Ragan, Mark A

    2016-07-01

    Alignment-free (AF) approaches have recently been highlighted as alternatives to methods based on multiple sequence alignment in phylogenetic inference. However, the sensitivity of AF methods to genome-scale evolutionary scenarios is little known. Here, using simulated microbial genome data we systematically assess the sensitivity of nine AF methods to three important evolutionary scenarios: sequence divergence, lateral genetic transfer (LGT) and genome rearrangement. Among these, AF methods are most sensitive to the extent of sequence divergence, less sensitive to low and moderate frequencies of LGT, and most robust against genome rearrangement. We describe the application of AF methods to three well-studied empirical genome datasets, and introduce a new application of the jackknife to assess node support. Our results demonstrate that AF phylogenomics is computationally scalable to multi-genome data and can generate biologically meaningful phylogenies and insights into microbial evolution.

  10. Novel RAD sequence data reveal a lack of genomic divergence between dietary ecotypes in a landlocked salmonid population

    USGS Publications Warehouse

    Limborg, Morten T.; Larson, Wesley; Shedd, Kyle; Seeb, Lisa W.; Seeb, James E.

    2017-01-01

    Preservation of heritable ecological diversity within species and populations is a key challenge for managing natural resources and wild populations. Salmonid fish are iconic and socio-economically important species for commercial, aquaculture, and recreational fisheries across the globe. Many salmonids are known to exhibit ecological divergence within species, including distinct feeding ecotypes within the same lakes. Here we used 5559 SNPs, derived from RAD sequencing, to perform population genetic comparisons between two dietary ecotypes of sockeye salmon (Oncorhynchus nerka) in Jo-Jo Lake, Alaska (USA). We tested the standing hypothesis that these two ecotypes are currently diverging as a result of adaptation to distinct dietary niches; results support earlier conclusions of a single panmictic population. The RAD sequence data revealed 40 new SNPs not previously detected in the species, and our sequence data can be used in future studies of ecotypic diversity in salmonid species.

  11. Single-molecule, full-length transcript sequencing provides insight into the extreme metabolism of the ruby-throated hummingbird Archilochus colubris

    PubMed Central

    Workman, Rachael E; Myrka, Alexander M; Wong, G William; Tseng, Elizabeth

    2018-01-01

    Abstract Background Hummingbirds oxidize ingested nectar sugars directly to fuel foraging but cannot sustain this fuel use during fasting periods, such as during the night or during long-distance migratory flights. Instead, fasting hummingbirds switch to oxidizing stored lipids that are derived from ingested sugars. The hummingbird liver plays a key role in moderating energy homeostasis and this remarkable capacity for fuel switching. Additionally, liver is the principle location of de novo lipogenesis, which can occur at exceptionally high rates, such as during premigratory fattening. Yet understanding how this tissue and whole organism moderates energy turnover is hampered by a lack of information regarding how relevant enzymes differ in sequence, expression, and regulation. Findings We generated a de novo transcriptome of the hummingbird liver using PacBio full-length cDNA sequencing (Iso-Seq), yielding 8.6Gb of sequencing data, or 2.6M reads from 4 different size fractions. We analyzed data using the SMRTAnalysis v3.1 Iso-Seq pipeline, then clustered isoforms into gene families to generate de novo gene contigs using Cogent. We performed orthology analysis to identify closely related sequences between our transcriptome and other avian and human gene sets. Finally, we closely examined homology of critical lipid metabolism genes between our transcriptome data and avian and human genomes. Conclusions We confirmed high levels of sequence divergence within hummingbird lipogenic enzymes, suggesting a high probability of adaptive divergent function in the hepatic lipogenic pathways. Our results leverage cutting-edge technology and a novel bioinformatics pipeline to provide a first direct look at the transcriptome of this incredible organism. PMID:29618047

  12. Mining sequence variations in representative polyploid sugarcane germplasm accessions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiping; Song, Jian; You, Qian

    Sugarcane (Saccharum spp.) is one of the most important economic crops because of its high sugar production and biofuel potential. Due to the high polyploid level and complex genome of sugarcane, it has been a huge challenge to investigate genomic sequence variations, which are critical for identifying alleles contributing to important agronomic traits. In order to mine the genetic variations in sugarcane, genotyping by sequencing (GBS), was used to genotype 14 representative Saccharum complex accessions. GBS is a method to generate a large number of markers, enabled by next generation sequencing (NGS) and the genome complexity reduction using restriction enzymes.more » To use GBS for high throughput genotyping highly polyploid sugarcane, the GBS analysis pipelines in 14 Saccharum complex accessions were established by evaluating different alignment methods, sequence variants callers, and sequence depth for single nucleotide polymorphism (SNP) filtering. By using the established pipeline, a total of 76,251 non-redundant SNPs, 5642 InDels, 6380 presence/absence variants (PAVs), and 826 copy number variations (CNVs) were detected among the 14 accessions. In addition, non-reference based universal network enabled analysis kit and Stacks de novo called 34,353 and 109,043 SNPs, respectively. In the 14 accessions, the percentages of single dose SNPs ranged from 38.3% to 62.3% with an average of 49.6%, much more than the portions of multiple dosage SNPs. Concordantly called SNPs were used to evaluate the phylogenetic relationship among the 14 accessions. The results showed that the divergence time between the Erianthus genus and the Saccharum genus was more than 10 million years ago (MYA). The Saccharum species separated from their common ancestors ranging from 0.19 to 1.65 MYA. The GBS pipelines including the reference sequences, alignment methods, sequence variant callers, and sequence depth were recommended and discussed for the Saccharum complex and other related species. A large number of sequence variations were discovered in the Saccharum complex, including SNPs, InDels, PAVs, and CNVs. Genome-wide SNPs were further used to illustrate sequence features of polyploid species and demonstrated the divergence of different species in the Saccharum complex. The results of this study showed that GBS was an effective NGS-based method to discover genomic sequence variations in highly polyploid and heterozygous species.« less

  13. Mining sequence variations in representative polyploid sugarcane germplasm accessions

    DOE PAGES

    Yang, Xiping; Song, Jian; You, Qian; ...

    2017-08-09

    Sugarcane (Saccharum spp.) is one of the most important economic crops because of its high sugar production and biofuel potential. Due to the high polyploid level and complex genome of sugarcane, it has been a huge challenge to investigate genomic sequence variations, which are critical for identifying alleles contributing to important agronomic traits. In order to mine the genetic variations in sugarcane, genotyping by sequencing (GBS), was used to genotype 14 representative Saccharum complex accessions. GBS is a method to generate a large number of markers, enabled by next generation sequencing (NGS) and the genome complexity reduction using restriction enzymes.more » To use GBS for high throughput genotyping highly polyploid sugarcane, the GBS analysis pipelines in 14 Saccharum complex accessions were established by evaluating different alignment methods, sequence variants callers, and sequence depth for single nucleotide polymorphism (SNP) filtering. By using the established pipeline, a total of 76,251 non-redundant SNPs, 5642 InDels, 6380 presence/absence variants (PAVs), and 826 copy number variations (CNVs) were detected among the 14 accessions. In addition, non-reference based universal network enabled analysis kit and Stacks de novo called 34,353 and 109,043 SNPs, respectively. In the 14 accessions, the percentages of single dose SNPs ranged from 38.3% to 62.3% with an average of 49.6%, much more than the portions of multiple dosage SNPs. Concordantly called SNPs were used to evaluate the phylogenetic relationship among the 14 accessions. The results showed that the divergence time between the Erianthus genus and the Saccharum genus was more than 10 million years ago (MYA). The Saccharum species separated from their common ancestors ranging from 0.19 to 1.65 MYA. The GBS pipelines including the reference sequences, alignment methods, sequence variant callers, and sequence depth were recommended and discussed for the Saccharum complex and other related species. A large number of sequence variations were discovered in the Saccharum complex, including SNPs, InDels, PAVs, and CNVs. Genome-wide SNPs were further used to illustrate sequence features of polyploid species and demonstrated the divergence of different species in the Saccharum complex. The results of this study showed that GBS was an effective NGS-based method to discover genomic sequence variations in highly polyploid and heterozygous species.« less

  14. Acute diarrhea in West African children: diverse enteric viruses and a novel parvovirus genus.

    PubMed

    Phan, Tung G; Vo, Nguyen P; Bonkoungou, Isidore J O; Kapoor, Amit; Barro, Nicolas; O'Ryan, Miguel; Kapusinszky, Beatrix; Wang, Chunling; Delwart, Eric

    2012-10-01

    Parvoviruses cause a variety of mild to severe symptoms or asymptomatic infections in humans and animals. During a viral metagenomic analysis of feces from children with acute diarrhea in Burkina Faso, we identified in decreasing prevalence nucleic acids from anelloviruses, dependoviruses, sapoviruses, enteroviruses, bocaviruses, noroviruses, adenoviruses, parechoviruses, rotaviruses, cosavirus, astroviruses, and hepatitis B virus. Sequences from a highly divergent parvovirus, provisionally called bufavirus, were also detected whose NS1 and VP1 proteins showed <39% and <31% identities to those of previously known parvoviruses. Four percent of the fecal samples were PCR positive for this new parvovirus, including a related bufavirus species showing only 72% identity in VP1. The high degree of genetic divergence of these related genomes from those of other parvoviruses indicates the presence of a proposed new Parvoviridae genus containing at least two species. Studies of the tropism and pathogenicity of these novel parvoviruses will be facilitated by the availability of their genome sequences.

  15. Acute Diarrhea in West African Children: Diverse Enteric Viruses and a Novel Parvovirus Genus

    PubMed Central

    Phan, Tung G.; Vo, Nguyen P.; Bonkoungou, Isidore J. O.; Kapoor, Amit; Barro, Nicolas; O'Ryan, Miguel; Kapusinszky, Beatrix; Wang, Chunling

    2012-01-01

    Parvoviruses cause a variety of mild to severe symptoms or asymptomatic infections in humans and animals. During a viral metagenomic analysis of feces from children with acute diarrhea in Burkina Faso, we identified in decreasing prevalence nucleic acids from anelloviruses, dependoviruses, sapoviruses, enteroviruses, bocaviruses, noroviruses, adenoviruses, parechoviruses, rotaviruses, cosavirus, astroviruses, and hepatitis B virus. Sequences from a highly divergent parvovirus, provisionally called bufavirus, were also detected whose NS1 and VP1 proteins showed <39% and <31% identities to those of previously known parvoviruses. Four percent of the fecal samples were PCR positive for this new parvovirus, including a related bufavirus species showing only 72% identity in VP1. The high degree of genetic divergence of these related genomes from those of other parvoviruses indicates the presence of a proposed new Parvoviridae genus containing at least two species. Studies of the tropism and pathogenicity of these novel parvoviruses will be facilitated by the availability of their genome sequences. PMID:22855485

  16. Molecular phylogenetic analysis of non-sexually transmitted strains of Haemophilus ducreyi.

    PubMed

    Gaston, Jordan R; Roberts, Sally A; Humphreys, Tricia L

    2015-01-01

    Haemophilus ducreyi, the etiologic agent of chancroid, has been previously reported to show genetic variance in several key virulence factors, placing strains of the bacterium into two genetically distinct classes. Recent studies done in yaws-endemic areas of the South Pacific have shown that H. ducreyi is also a major cause of cutaneous limb ulcers (CLU) that are not sexually transmitted. To genetically assess CLU strains relative to the previously described class I, class II phylogenetic hierarchy, we examined nucleotide sequence diversity at 11 H. ducreyi loci, including virulence and housekeeping genes, which encompass approximately 1% of the H. ducreyi genome. Sequences for all 11 loci indicated that strains collected from leg ulcers exhibit DNA sequences homologous to class I strains of H. ducreyi. However, sequences for 3 loci, including a hemoglobin receptor (hgbA), serum resistance protein (dsrA), and a collagen adhesin (ncaA) contained informative amounts of variation. Phylogenetic analyses suggest that these non-sexually transmitted strains of H. ducreyi comprise a sub-clonal population within class I strains of H. ducreyi. Molecular dating suggests that CLU strains are the most recently developed, having diverged approximately 0.355 million years ago, fourteen times more recently than the class I/class II divergence. The CLU strains' divergence falls after the divergence of humans from chimpanzees, making it the first known H. ducreyi divergence event directly influenced by the selective pressures accompanying human hosts.

  17. The primary structure of fatty-acid-binding protein from nurse shark liver. Structural and evolutionary relationship to the mammalian fatty-acid-binding protein family.

    PubMed

    Medzihradszky, K F; Gibson, B W; Kaur, S; Yu, Z H; Medzihradszky, D; Burlingame, A L; Bass, N M

    1992-02-01

    The primary structure of a fatty-acid-binding protein (FABP) isolated from the liver of the nurse shark (Ginglymostoma cirratum) was determined by high-performance tandem mass spectrometry (employing multichannel array detection) and Edman degradation. Shark liver FABP consists of 132 amino acids with an acetylated N-terminal valine. The chemical molecular mass of the intact protein determined by electrospray ionization mass spectrometry (Mr = 15124 +/- 2.5) was in good agreement with that calculated from the amino acid sequence (Mr = 15121.3). The amino acid sequence of shark liver FABP displays significantly greater similarity to the FABP expressed in mammalian heart, peripheral nerve myelin and adipose tissue (61-53% sequence similarity) than to the FABP expressed in mammalian liver (22% similarity). Phylogenetic trees derived from the comparison of the shark liver FABP amino acid sequence with the members of the mammalian fatty-acid/retinoid-binding protein gene family indicate the initial divergence of an ancestral gene into two major subfamilies: one comprising the genes for mammalian liver FABP and gastrotropin, the other comprising the genes for mammalian cellular retinol-binding proteins I and II, cellular retinoic-acid-binding protein myelin P2 protein, adipocyte FABP, heart FABP and shark liver FABP, the latter having diverged from the ancestral gene that ultimately gave rise to the present day mammalian heart-FABP, adipocyte FABP and myelin P2 protein sequences. The sequence for intestinal FABP from the rat could be assigned to either subfamily, depending on the approach used for phylogenetic tree construction, but clearly diverged at a relatively early evolutionary time point. Indeed, sequences proximately ancestral or closely related to mammalian intestinal FABP, liver FABP, gastrotropin and the retinoid-binding group of proteins appear to have arisen prior to the divergence of shark liver FABP and should therefore also be present in elasmobranchs. The presence in shark liver of an FABP which differs substantially in primary structure from mammalian liver FABP, while being closely related to the FABP expressed in mammalian heart muscle, peripheral nerve myelin and adipocytes, opens a further dimension regarding the question of the existence of structure-dependent and tissue-specific specialization of FABP function in lipid metabolism.

  18. Integration of hybridization-based markers (overgos) into physical maps for comparative and evolutionary explorations in the genus Oryza and in Sorghum

    PubMed Central

    Hass-Jacobus, Barbara L; Futrell-Griggs, Montona; Abernathy, Brian; Westerman, Rick; Goicoechea, Jose-Luis; Stein, Joshua; Klein, Patricia; Hurwitz, Bonnie; Zhou, Bin; Rakhshan, Fariborz; Sanyal, Abhijit; Gill, Navdeep; Lin, Jer-Young; Walling, Jason G; Luo, Mei Zhong; Ammiraju, Jetty Siva S; Kudrna, Dave; Kim, Hye Ran; Ware, Doreen; Wing, Rod A; Miguel, Phillip San; Jackson, Scott A

    2006-01-01

    Background With the completion of the genome sequence for rice (Oryza sativa L.), the focus of rice genomics research has shifted to the comparison of the rice genome with genomes of other species for gene cloning, breeding, and evolutionary studies. The genus Oryza includes 23 species that shared a common ancestor 8–10 million years ago making this an ideal model for investigations into the processes underlying domestication, as many of the Oryza species are still undergoing domestication. This study integrates high-throughput, hybridization-based markers with BAC end sequence and fingerprint data to construct physical maps of rice chromosome 1 orthologues in two wild Oryza species. Similar studies were undertaken in Sorghum bicolor, a species which diverged from cultivated rice 40–50 million years ago. Results Overgo markers, in conjunction with fingerprint and BAC end sequence data, were used to build sequence-ready BAC contigs for two wild Oryza species. The markers drove contig merges to construct physical maps syntenic to rice chromosome 1 in the wild species and provided evidence for at least one rearrangement on chromosome 1 of the O. sativa versus Oryza officinalis comparative map. When rice overgos were aligned to available S. bicolor sequence, 29% of the overgos aligned with three or fewer mismatches; of these, 41% gave positive hybridization signals. Overgo hybridization patterns supported colinearity of loci in regions of sorghum chromosome 3 and rice chromosome 1 and suggested that a possible genomic inversion occurred in this syntenic region in one of the two genomes after the divergence of S. bicolor and O. sativa. Conclusion The results of this study emphasize the importance of identifying conserved sequences in the reference sequence when designing overgo probes in order for those probes to hybridize successfully in distantly related species. As interspecific markers, overgos can be used successfully to construct physical maps in species which diverged less than 8 million years ago, and can be used in a more limited fashion to examine colinearity among species which diverged as much as 40 million years ago. Additionally, overgos are able to provide evidence of genomic rearrangements in comparative physical mapping studies. PMID:16895597

  19. Comparative analysis of gene regulatory networks: from network reconstruction to evolution.

    PubMed

    Thompson, Dawn; Regev, Aviv; Roy, Sushmita

    2015-01-01

    Regulation of gene expression is central to many biological processes. Although reconstruction of regulatory circuits from genomic data alone is therefore desirable, this remains a major computational challenge. Comparative approaches that examine the conservation and divergence of circuits and their components across strains and species can help reconstruct circuits as well as provide insights into the evolution of gene regulatory processes and their adaptive contribution. In recent years, advances in genomic and computational tools have led to a wealth of methods for such analysis at the sequence, expression, pathway, module, and entire network level. Here, we review computational methods developed to study transcriptional regulatory networks using comparative genomics, from sequence to functional data. We highlight how these methods use evolutionary conservation and divergence to reliably detect regulatory components as well as estimate the extent and rate of divergence. Finally, we discuss the promise and open challenges in linking regulatory divergence to phenotypic divergence and adaptation.

  20. HMMerThread: detecting remote, functional conserved domains in entire genomes by combining relaxed sequence-database searches with fold recognition.

    PubMed

    Bradshaw, Charles Richard; Surendranath, Vineeth; Henschel, Robert; Mueller, Matthias Stefan; Habermann, Bianca Hermine

    2011-03-10

    Conserved domains in proteins are one of the major sources of functional information for experimental design and genome-level annotation. Though search tools for conserved domain databases such as Hidden Markov Models (HMMs) are sensitive in detecting conserved domains in proteins when they share sufficient sequence similarity, they tend to miss more divergent family members, as they lack a reliable statistical framework for the detection of low sequence similarity. We have developed a greatly improved HMMerThread algorithm that can detect remotely conserved domains in highly divergent sequences. HMMerThread combines relaxed conserved domain searches with fold recognition to eliminate false positive, sequence-based identifications. With an accuracy of 90%, our software is able to automatically predict highly divergent members of conserved domain families with an associated 3-dimensional structure. We give additional confidence to our predictions by validation across species. We have run HMMerThread searches on eight proteomes including human and present a rich resource of remotely conserved domains, which adds significantly to the functional annotation of entire proteomes. We find ∼4500 cross-species validated, remotely conserved domain predictions in the human proteome alone. As an example, we find a DNA-binding domain in the C-terminal part of the A-kinase anchor protein 10 (AKAP10), a PKA adaptor that has been implicated in cardiac arrhythmias and premature cardiac death, which upon stress likely translocates from mitochondria to the nucleus/nucleolus. Based on our prediction, we propose that with this HLH-domain, AKAP10 is involved in the transcriptional control of stress response. Further remotely conserved domains we discuss are examples from areas such as sporulation, chromosome segregation and signalling during immune response. The HMMerThread algorithm is able to automatically detect the presence of remotely conserved domains in proteins based on weak sequence similarity. Our predictions open up new avenues for biological and medical studies. Genome-wide HMMerThread domains are available at http://vm1-hmmerthread.age.mpg.de.

  1. HMMerThread: Detecting Remote, Functional Conserved Domains in Entire Genomes by Combining Relaxed Sequence-Database Searches with Fold Recognition

    PubMed Central

    Bradshaw, Charles Richard; Surendranath, Vineeth; Henschel, Robert; Mueller, Matthias Stefan; Habermann, Bianca Hermine

    2011-01-01

    Conserved domains in proteins are one of the major sources of functional information for experimental design and genome-level annotation. Though search tools for conserved domain databases such as Hidden Markov Models (HMMs) are sensitive in detecting conserved domains in proteins when they share sufficient sequence similarity, they tend to miss more divergent family members, as they lack a reliable statistical framework for the detection of low sequence similarity. We have developed a greatly improved HMMerThread algorithm that can detect remotely conserved domains in highly divergent sequences. HMMerThread combines relaxed conserved domain searches with fold recognition to eliminate false positive, sequence-based identifications. With an accuracy of 90%, our software is able to automatically predict highly divergent members of conserved domain families with an associated 3-dimensional structure. We give additional confidence to our predictions by validation across species. We have run HMMerThread searches on eight proteomes including human and present a rich resource of remotely conserved domains, which adds significantly to the functional annotation of entire proteomes. We find ∼4500 cross-species validated, remotely conserved domain predictions in the human proteome alone. As an example, we find a DNA-binding domain in the C-terminal part of the A-kinase anchor protein 10 (AKAP10), a PKA adaptor that has been implicated in cardiac arrhythmias and premature cardiac death, which upon stress likely translocates from mitochondria to the nucleus/nucleolus. Based on our prediction, we propose that with this HLH-domain, AKAP10 is involved in the transcriptional control of stress response. Further remotely conserved domains we discuss are examples from areas such as sporulation, chromosome segregation and signalling during immune response. The HMMerThread algorithm is able to automatically detect the presence of remotely conserved domains in proteins based on weak sequence similarity. Our predictions open up new avenues for biological and medical studies. Genome-wide HMMerThread domains are available at http://vm1-hmmerthread.age.mpg.de. PMID:21423752

  2. Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis).

    PubMed

    Funk, W Chris; Lovich, Robert E; Hohenlohe, Paul A; Hofman, Courtney A; Morrison, Scott A; Sillett, T Scott; Ghalambor, Cameron K; Maldonado, Jesus E; Rick, Torben C; Day, Mitch D; Polato, Nicholas R; Fitzpatrick, Sarah W; Coonan, Timothy J; Crooks, Kevin R; Dillon, Adam; Garcelon, David K; King, Julie L; Boser, Christina L; Gould, Nicholas; Andelt, William F

    2016-05-01

    The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of six subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction-site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1-89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland grey foxes, and vice versa, indicating genetic drift drives genome-wide divergence. Nonetheless, outlier tests identified 3.6-6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness and reduced adaptive potential. © 2016 John Wiley & Sons Ltd.

  3. Highly conserved Z and molecularly diverged W chromosomes in the fish genus Triportheus (Characiformes, Triportheidae).

    PubMed

    Yano, C F; Bertollo, L A C; Ezaz, T; Trifonov, V; Sember, A; Liehr, T; Cioffi, M B

    2017-03-01

    The main objectives of this study were to test: (1) whether the W-chromosome differentiation matches to species' evolutionary divergence (phylogenetic concordance) and (2) whether sex chromosomes share a common ancestor within a congeneric group. The monophyletic genus Triportheus (Characiformes, Triportheidae) was the model group for this study. All species in this genus so far analyzed have ZW sex chromosome system, where the Z is always the largest chromosome of the karyotype, whereas the W chromosome is highly variable ranging from almost homomorphic to highly heteromorphic. We applied conventional and molecular cytogenetic approaches including C-banding, ribosomal DNA mapping, comparative genomic hybridization (CGH) and cross-species whole chromosome painting (WCP) to test our questions. We developed Z- and W-chromosome paints from T. auritus for cross-species WCP and performed CGH in a representative species (T. signatus) to decipher level of homologies and rates of differentiation of W chromosomes. Our study revealed that the ZW sex chromosome system had a common origin, showing highly conserved Z chromosomes and remarkably divergent W chromosomes. Notably, the W chromosomes have evolved to different shapes and sequence contents within ~15-25 Myr of divergence time. Such differentiation highlights a dynamic process of W-chromosome evolution within congeneric species of Triportheus.

  4. Genomic evolution, recombination, and inter-strain diversity of chelonid alphaherpesvirus 5 from Florida and Hawaii green sea turtles with fibropapillomatosis.

    PubMed

    Morrison, Cheryl L; Iwanowicz, Luke; Work, Thierry M; Fahsbender, Elizabeth; Breitbart, Mya; Adams, Cynthia; Iwanowicz, Deb; Sanders, Lakyn; Ackermann, Mathias; Cornman, Robert S

    2018-01-01

    Chelonid alphaherpesvirus 5 (ChHV5) is a herpesvirus associated with fibropapillomatosis (FP) in sea turtles worldwide. Single-locus typing has previously shown differentiation between Atlantic and Pacific strains of this virus, with low variation within each geographic clade. However, a lack of multi-locus genomic sequence data hinders understanding of the rate and mechanisms of ChHV5 evolutionary divergence, as well as how these genomic changes may contribute to differences in disease manifestation. To assess genomic variation in ChHV5 among five Hawaii and three Florida green sea turtles, we used high-throughput short-read sequencing of long-range PCR products amplified from tumor tissue using primers designed from the single available ChHV5 reference genome from a Hawaii green sea turtle. This strategy recovered sequence data from both geographic regions for approximately 75% of the predicted ChHV5 coding sequences. The average nucleotide divergence between geographic populations was 1.5%; most of the substitutions were fixed differences between regions. Protein divergence was generally low (average 0.08%), and ranged between 0 and 5.3%. Several atypical genes originally identified and annotated in the reference genome were confirmed in ChHV5 genomes from both geographic locations. Unambiguous recombination events between geographic regions were identified, and clustering of private alleles suggests the prevalence of recombination in the evolutionary history of ChHV5. This study significantly increased the amount of sequence data available from ChHV5 strains, enabling informed selection of loci for future population genetic and natural history studies, and suggesting the (possibly latent) co-infection of individuals by well-differentiated geographic variants.

  5. Genomic evolution, recombination, and inter-strain diversity of chelonid alphaherpesvirus 5 from Florida and Hawaii green sea turtles with fibropapillomatosis

    USGS Publications Warehouse

    Morrison, Cheryl L.; Iwanowicz, Luke R.; Work, Thierry M.; Fahsbender, Elizabeth; Breitbart, Mya; Adams, Cynthia; Iwanowicz, Deborah; Sanders, Lakyn; Ackermann, Mathias; Cornman, Robert S.

    2018-01-01

    Chelonid alphaherpesvirus 5 (ChHV5) is a herpesvirus associated with fibropapillomatosis (FP) in sea turtles worldwide. Single-locus typing has previously shown differentiation between Atlantic and Pacific strains of this virus, with low variation within each geographic clade. However, a lack of multi-locus genomic sequence data hinders understanding of the rate and mechanisms of ChHV5 evolutionary divergence, as well as how these genomic changes may contribute to differences in disease manifestation. To assess genomic variation in ChHV5 among five Hawaii and three Florida green sea turtles, we used high-throughput short-read sequencing of long-range PCR products amplified from tumor tissue using primers designed from the single available ChHV5 reference genome from a Hawaii green sea turtle. This strategy recovered sequence data from both geographic regions for approximately 75% of the predicted ChHV5 coding sequences. The average nucleotide divergence between geographic populations was 1.5%; most of the substitutions were fixed differences between regions. Protein divergence was generally low (average 0.08%), and ranged between 0 and 5.3%. Several atypical genes originally identified and annotated in the reference genome were confirmed in ChHV5 genomes from both geographic locations. Unambiguous recombination events between geographic regions were identified, and clustering of private alleles suggests the prevalence of recombination in the evolutionary history of ChHV5. This study significantly increased the amount of sequence data available from ChHV5 strains, enabling informed selection of loci for future population genetic and natural history studies, and suggesting the (possibly latent) co-infection of individuals by well-differentiated geographic variants.

  6. Population Genomics of Paramecium Species.

    PubMed

    Johri, Parul; Krenek, Sascha; Marinov, Georgi K; Doak, Thomas G; Berendonk, Thomas U; Lynch, Michael

    2017-05-01

    Population-genomic analyses are essential to understanding factors shaping genomic variation and lineage-specific sequence constraints. The dearth of such analyses for unicellular eukaryotes prompted us to assess genomic variation in Paramecium, one of the most well-studied ciliate genera. The Paramecium aurelia complex consists of ∼15 morphologically indistinguishable species that diverged subsequent to two rounds of whole-genome duplications (WGDs, as long as 320 MYA) and possess extremely streamlined genomes. We examine patterns of both nuclear and mitochondrial polymorphism, by sequencing whole genomes of 10-13 worldwide isolates of each of three species belonging to the P. aurelia complex: P. tetraurelia, P. biaurelia, P. sexaurelia, as well as two outgroup species that do not share the WGDs: P. caudatum and P. multimicronucleatum. An apparent absence of global geographic population structure suggests continuous or recent dispersal of Paramecium over long distances. Intergenic regions are highly constrained relative to coding sequences, especially in P. caudatum and P. multimicronucleatum that have shorter intergenic distances. Sequence diversity and divergence are reduced up to ∼100-150 bp both upstream and downstream of genes, suggesting strong constraints imposed by the presence of densely packed regulatory modules. In addition, comparison of sequence variation at non-synonymous and synonymous sites suggests similar recent selective pressures on paralogs within and orthologs across the deeply diverging species. This study presents the first genome-wide population-genomic analysis in ciliates and provides a valuable resource for future studies in evolutionary and functional genetics in Paramecium. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Genomic evolution, recombination, and inter-strain diversity of chelonid alphaherpesvirus 5 from Florida and Hawaii green sea turtles with fibropapillomatosis

    PubMed Central

    Iwanowicz, Luke; Work, Thierry M.; Fahsbender, Elizabeth; Breitbart, Mya; Adams, Cynthia; Iwanowicz, Deb; Sanders, Lakyn; Ackermann, Mathias; Cornman, Robert S.

    2018-01-01

    Chelonid alphaherpesvirus 5 (ChHV5) is a herpesvirus associated with fibropapillomatosis (FP) in sea turtles worldwide. Single-locus typing has previously shown differentiation between Atlantic and Pacific strains of this virus, with low variation within each geographic clade. However, a lack of multi-locus genomic sequence data hinders understanding of the rate and mechanisms of ChHV5 evolutionary divergence, as well as how these genomic changes may contribute to differences in disease manifestation. To assess genomic variation in ChHV5 among five Hawaii and three Florida green sea turtles, we used high-throughput short-read sequencing of long-range PCR products amplified from tumor tissue using primers designed from the single available ChHV5 reference genome from a Hawaii green sea turtle. This strategy recovered sequence data from both geographic regions for approximately 75% of the predicted ChHV5 coding sequences. The average nucleotide divergence between geographic populations was 1.5%; most of the substitutions were fixed differences between regions. Protein divergence was generally low (average 0.08%), and ranged between 0 and 5.3%. Several atypical genes originally identified and annotated in the reference genome were confirmed in ChHV5 genomes from both geographic locations. Unambiguous recombination events between geographic regions were identified, and clustering of private alleles suggests the prevalence of recombination in the evolutionary history of ChHV5. This study significantly increased the amount of sequence data available from ChHV5 strains, enabling informed selection of loci for future population genetic and natural history studies, and suggesting the (possibly latent) co-infection of individuals by well-differentiated geographic variants. PMID:29479497

  8. A DNA Barcoding Method to Discriminate between the Model Plant Brachypodium distachyon and Its Close Relatives B. stacei and B. hybridum (Poaceae)

    PubMed Central

    López-Alvarez, Diana; López-Herranz, Maria Luisa; Betekhtin, Alexander; Catalán, Pilar

    2012-01-01

    Background Brachypodium distachyon s. l. has been widely investigated across the world as a model plant for temperate cereals and biofuel grasses. However, this annual plant shows three cytotypes that have been recently recognized as three independent species, the diploids B. distachyon (2n = 10) and B. stacei (2n = 20) and their derived allotetraploid B. hybridum (2n = 30). Methodology/Principal Findings We propose a DNA barcoding approach that consists of a rapid, accurate and automatable species identification method using the standard DNA sequences of complementary plastid (trnLF) and nuclear (ITS, GI) loci. The highly homogenous but largely divergent B. distachyon and B. stacei diploids could be easily distinguished (100% identification success) using direct trnLF (2.4%), ITS (5.5%) or GI (3.8%) sequence divergence. By contrast, B. hybridum could only be unambiguously identified through the use of combined trnLF+ITS sequences (90% of identification success) or by cloned GI sequences (96.7%) that showed 5.4% (ITS) and 4% (GI) rate divergence between the two parental sequences found in the allopolyploid. Conclusion/Significance Our data provide an unbiased and effective barcode to differentiate these three closely-related species from one another. This procedure overcomes the taxonomic uncertainty generated from methods based on morphology or flow cytometry identifications that have resulted in some misclassifications of the model plant and its allies. Our study also demonstrates that the allotetraploid B. hybridum has resulted from bi-directional crosses of B. distachyon and B. stacei plants acting either as maternal or paternal parents. PMID:23240000

  9. Divergence of Gene Body DNA Methylation and Evolution of Plant Duplicate Genes

    PubMed Central

    Wang, Jun; Marowsky, Nicholas C.; Fan, Chuanzhu

    2014-01-01

    It has been shown that gene body DNA methylation is associated with gene expression. However, whether and how deviation of gene body DNA methylation between duplicate genes can influence their divergence remains largely unexplored. Here, we aim to elucidate the potential role of gene body DNA methylation in the fate of duplicate genes. We identified paralogous gene pairs from Arabidopsis and rice (Oryza sativa ssp. japonica) genomes and reprocessed their single-base resolution methylome data. We show that methylation in paralogous genes nonlinearly correlates with several gene properties including exon number/gene length, expression level and mutation rate. Further, we demonstrated that divergence of methylation level and pattern in paralogs indeed positively correlate with their sequence and expression divergences. This result held even after controlling for other confounding factors known to influence the divergence of paralogs. We observed that methylation level divergence might be more relevant to the expression divergence of paralogs than methylation pattern divergence. Finally, we explored the mechanisms that might give rise to the divergence of gene body methylation in paralogs. We found that exonic methylation divergence more closely correlates with expression divergence than intronic methylation divergence. We show that genomic environments (e.g., flanked by transposable elements and repetitive sequences) of paralogs generated by various duplication mechanisms are associated with the methylation divergence of paralogs. Overall, our results suggest that the changes in gene body DNA methylation could provide another avenue for duplicate genes to develop differential expression patterns and undergo different evolutionary fates in plant genomes. PMID:25310342

  10. Highly divergent cyclo-like virus in a great roundleaf bat (Hipposideros armiger) in Vietnam.

    PubMed

    Kemenesi, Gábor; Kurucz, Kornélia; Zana, Brigitta; Tu, Vuong Tan; Görföl, Tamás; Estók, Péter; Földes, Fanni; Sztancsik, Katalin; Urbán, Péter; Fehér, Enikő; Jakab, Ferenc

    2017-08-01

    Members of the viral family Circoviridae are increasingly recognized worldwide. Bats seem to be natural reservoirs or dietary-related dispensers of these viruses. Here, we report a distantly related member of the genus Cyclovirus detected in the faeces of a great roundleaf bat (Hipposideros armiger). Interestingly, the novel virus lacks a Circoviridae-specific stem-loop structure, although a Geminiviridae-like nonamer sequence was detected in the large intergenic region. Based on these differences and its phylogenetic position, we propose that our new virus represents a distant and highly divergent member of the genus Cyclovirus. However it is lacking several characteristics of members of the genus, which raises a challenge in its taxonomic classification.

  11. Genome analysis and polar tube firing dynamics of mosquito-infecting microsporidia

    USDA-ARS?s Scientific Manuscript database

    Microsporidia are highly divergent fungi that are obligate intracellular pathogens of a wide range of host organisms. Here we review recent findings from the genome sequences of mosquito-infecting microsporidian species Edhazardia aedis and Vavraia culicis, which show large differences in genome siz...

  12. ACCELERATED EVOLUTION OF LAND SNAILS MANDARINA IN THE OCEANIC BONIN ISLANDS: EVIDENCE FROM MITOCHONDRIAL DNA SEQUENCES.

    PubMed

    Chiba, Satoshi

    1999-04-01

    An endemic land snail genus Mandarina of the oceanic Bonin (Ogasawara) Islands shows exceptionally rapid evolution not only of morphological and ecological traits, but of DNA sequence. A phylogenetic relationship based on mitochondrial DNA (mtDNA) sequences suggests that morphological differences equivalent to the differences between families were produced between Mandarina and its ancestor during the Pleistocene. The inferred phylogeny shows that species with similar morphologies and life habitats appeared repeatedly and independently in different lineages and islands at different times. Sequential adaptive radiations occurred in different islands of the Bonin Islands and species occupying arboreal, semiarboreal, and terrestrial habitat arose independently in each island. Because of a close relationship between shell morphology and life habitat, independent evolution of the same life habitat in different islands created species possesing the same shell morphology in different islands and lineages. This rapid evolution produced some incongruences between phylogenetic relationship and species taxonomy. Levels of sequence divergence of mtDNA among the species of Mandarina is extremely high. The maximum level of sequence divergence at 16S and 12S ribosomal RNA sequence within Mandarina are 18.7% and 17.7%, respectively, and this suggests that evolution of mtDNA of Mandarina is extremely rapid, more than 20 times faster than the standard rate in other animals. The present examination reveals that evolution of morphological and ecological traits occurs at extremely high rates in the time of adaptive radiation, especially in fragmented environments. © 1999 The Society for the Study of Evolution.

  13. Evolutionary growth process of highly conserved sequences in vertebrate genomes.

    PubMed

    Ishibashi, Minaka; Noda, Akiko Ogura; Sakate, Ryuichi; Imanishi, Tadashi

    2012-08-01

    Genome sequence comparison between evolutionarily distant species revealed ultraconserved elements (UCEs) among mammals under strong purifying selection. Most of them were also conserved among vertebrates. Because they tend to be located in the flanking regions of developmental genes, they would have fundamental roles in creating vertebrate body plans. However, the evolutionary origin and selection mechanism of these UCEs remain unclear. Here we report that UCEs arose in primitive vertebrates, and gradually grew in vertebrate evolution. We searched for UCEs in two teleost fishes, Tetraodon nigroviridis and Oryzias latipes, and found 554 UCEs with 100% identity over 100 bps. Comparison of teleost and mammalian UCEs revealed 43 pairs of common, jawed-vertebrate UCEs (jUCE) with high sequence identities, ranging from 83.1% to 99.2%. Ten of them retain lower similarities to the Petromyzon marinus genome, and the substitution rates of four non-exonic jUCEs were reduced after the teleost-mammal divergence, suggesting that robust conservation had been acquired in the jawed vertebrate lineage. Our results indicate that prototypical UCEs originated before the divergence of jawed and jawless vertebrates and have been frozen as perfect conserved sequences in the jawed vertebrate lineage. In addition, our comparative sequence analyses of UCEs and neighboring regions resulted in a discovery of lineage-specific conserved sequences. They were added progressively to prototypical UCEs, suggesting step-wise acquisition of novel regulatory roles. Our results indicate that conserved non-coding elements (CNEs) consist of blocks with distinct evolutionary history, each having been frozen since different evolutionary era along the vertebrate lineage. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Chromosome-Encoded Broad-Spectrum Ambler Class A β-Lactamase RUB-1 from Serratia rubidaea

    PubMed Central

    Didi, Jennifer; Ergani, Ayla; Lima, Sandra

    2016-01-01

    ABSTRACT Whole-genome sequencing of Serratia rubidaea CIP 103234T revealed a chromosomally located Ambler class A β-lactamase gene. The gene was cloned, and the β-lactamase, RUB-1, was characterized. RUB-1 displayed 74% and 73% amino acid sequence identity with the GIL-1 and TEM-1 penicillinases, respectively, and its substrate profile was similar to that of the latter β-lactamases. Analysis by 5′ rapid amplification of cDNA ends revealed promoter sequences highly divergent from the Escherichia coli σ70 consensus sequence. This work further illustrates the heterogeneity of β-lactamases among Serratia spp. PMID:27956418

  15. Chromosome-Encoded Broad-Spectrum Ambler Class A β-Lactamase RUB-1 from Serratia rubidaea.

    PubMed

    Bonnin, Rémy A; Didi, Jennifer; Ergani, Ayla; Lima, Sandra; Naas, Thierry

    2017-02-01

    Whole-genome sequencing of Serratia rubidaea CIP 103234 T revealed a chromosomally located Ambler class A β-lactamase gene. The gene was cloned, and the β-lactamase, RUB-1, was characterized. RUB-1 displayed 74% and 73% amino acid sequence identity with the GIL-1 and TEM-1 penicillinases, respectively, and its substrate profile was similar to that of the latter β-lactamases. Analysis by 5' rapid amplification of cDNA ends revealed promoter sequences highly divergent from the Escherichia coli σ 70 consensus sequence. This work further illustrates the heterogeneity of β-lactamases among Serratia spp. Copyright © 2017 American Society for Microbiology.

  16. Detection and Analysis of Circular RNAs by RT-PCR.

    PubMed

    Panda, Amaresh C; Gorospe, Myriam

    2018-03-20

    Gene expression in eukaryotic cells is tightly regulated at the transcriptional and posttranscriptional levels. Posttranscriptional processes, including pre-mRNA splicing, mRNA export, mRNA turnover, and mRNA translation, are controlled by RNA-binding proteins (RBPs) and noncoding (nc)RNAs. The vast family of ncRNAs comprises diverse regulatory RNAs, such as microRNAs and long noncoding (lnc)RNAs, but also the poorly explored class of circular (circ)RNAs. Although first discovered more than three decades ago by electron microscopy, only the advent of high-throughput RNA-sequencing (RNA-seq) and the development of innovative bioinformatic pipelines have begun to allow the systematic identification of circRNAs (Szabo and Salzman, 2016; Panda et al ., 2017b; Panda et al ., 2017c). However, the validation of true circRNAs identified by RNA sequencing requires other molecular biology techniques including reverse transcription (RT) followed by conventional or quantitative (q) polymerase chain reaction (PCR), and Northern blot analysis (Jeck and Sharpless, 2014). RT-qPCR analysis of circular RNAs using divergent primers has been widely used for the detection, validation, and sometimes quantification of circRNAs (Abdelmohsen et al ., 2015 and 2017; Panda et al ., 2017b). As detailed here, divergent primers designed to span the circRNA backsplice junction sequence can specifically amplify the circRNAs and not the counterpart linear RNA. In sum, RT-PCR analysis using divergent primers allows direct detection and quantification of circRNAs.

  17. A novel, highly divergent ssDNA virus identified in Brazil infecting apple, pear and grapevine.

    PubMed

    Basso, Marcos Fernando; da Silva, José Cleydson Ferreira; Fajardo, Thor Vinícius Martins; Fontes, Elizabeth Pacheco Batista; Zerbini, Francisco Murilo

    2015-12-02

    Fruit trees of temperate and tropical climates are of great economical importance worldwide and several viruses have been reported affecting their productivity and longevity. Fruit trees of different Brazilian regions displaying virus-like symptoms were evaluated for infection by circular DNA viruses. Seventy-four fruit trees were sampled and a novel, highly divergent, monopartite circular ssDNA virus was cloned from apple, pear and grapevine trees. Forty-five complete viral genomes were sequenced, with a size of approx. 3.4 kb and organized into five ORFs. Deduced amino acid sequences showed identities in the range of 38% with unclassified circular ssDNA viruses, nanoviruses and alphasatellites (putative Replication-associated protein, Rep), and begomo-, curto- and mastreviruses (putative coat protein, CP, and movement protein, MP). A large intergenic region contains a short palindromic sequence capable of forming a hairpin-like structure with the loop sequence TAGTATTAC, identical to the conserved nonanucleotide of circoviruses, nanoviruses and alphasatellites. Recombination events were not detected and phylogenetic analysis showed a relationship with circo-, nano- and geminiviruses. PCR confirmed the presence of this novel ssDNA virus in field plants. Infectivity tests using the cloned viral genome confirmed its ability to infect apple and pear tree seedlings, but not Nicotiana benthamiana. The name "Temperate fruit decay-associated virus" (TFDaV) is proposed for this novel virus. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Molecular authentication of Radix Puerariae Lobatae and Radix Puerariae Thomsonii by ITS and 5S rRNA spacer sequencing.

    PubMed

    Sun, Ye; Shaw, Pang-Chui; Fung, Kwok-Pui

    2007-01-01

    In the present study, we examined nuclear DNA sequences in an attempt to reveal the relationships between Pueraria lobata (Willd). Ohwi, P. thomsonii Benth., and P. montana (Lour.) Merr. We found that internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA are highly divergent in P. lobata and P. thomsonii, and four types of ITS with different length are found in the two species. On the other hand, DNA sequences of 5S rRNA gene spacer are highly conserved across multiple copies in P. lobata and P. thomsonii, they could be used to identify P. lobata, P. thomsonii, and P. montana of this complex, and may serve as a useful tool in medical authentication of Radix Puerariae Lobatae and Radix Puerariae Thomsonii.

  19. Oil palm genome sequence reveals divergence of interfertile species in old and new worlds

    PubMed Central

    Singh, Rajinder; Ong-Abdullah, Meilina; Low, Eng-Ti Leslie; Manaf, Mohamad Arif Abdul; Rosli, Rozana; Nookiah, Rajanaidu; Ooi, Leslie Cheng-Li; Ooi, Siew–Eng; Chan, Kuang-Lim; Halim, Mohd Amin; Azizi, Norazah; Nagappan, Jayanthi; Bacher, Blaire; Lakey, Nathan; Smith, Steven W; He, Dong; Hogan, Michael; Budiman, Muhammad A; Lee, Ernest K; DeSalle, Rob; Kudrna, David; Goicoechea, Jose Louis; Wing, Rod; Wilson, Richard K; Fulton, Robert S; Ordway, Jared M; Martienssen, Robert A; Sambanthamurthi, Ravigadevi

    2013-01-01

    Oil palm is the most productive oil-bearing crop. Planted on only 5% of the total vegetable oil acreage, palm oil accounts for 33% of vegetable oil, and 45% of edible oil worldwide, but increased cultivation competes with dwindling rainforest reserves. We report the 1.8 gigabase (Gb) genome sequence of the African oil palm Elaeis guineensis, the predominant source of worldwide oil production. 1.535 Gb of assembled sequence and transcriptome data from 30 tissue types were used to predict at least 34,802 genes, including oil biosynthesis genes and homologues of WRINKLED1 (WRI1), and other transcriptional regulators1, which are highly expressed in the kernel. We also report the draft sequence of the S. American oil palm Elaeis oleifera, which has the same number of chromosomes (2n=32) and produces fertile interspecific hybrids with E. guineensis2, but appears to have diverged in the new world. Segmental duplications of chromosome arms define the palaeotetraploid origin of palm trees. The oil palm sequence enables the discovery of genes for important traits as well as somaclonal epigenetic alterations which restrict the use of clones in commercial plantings3, and thus helps achieve sustainability for biofuels and edible oils, reducing the rainforest footprint of this tropical plantation crop. PMID:23883927

  20. Distinct subspecies or phenotypic plasticity? Genetic and morphological differentiation of mountain honey bees in East Africa

    PubMed Central

    Gruber, Karl; Schöning, Caspar; Otte, Marianne; Kinuthia, Wanja; Hasselmann, Martin

    2013-01-01

    Identifying the forces shaping intraspecific phenotypic and genotypic divergence are of key importance in evolutionary biology. Phenotypic divergence may result from local adaptation or, especially in species with strong gene flow, from pronounced phenotypic plasticity. Here, we examine morphological and genetic divergence among populations of the western honey bee Apis mellifera in the topographically heterogeneous East African region. The currently accepted “mountain refugia hypothesis” states that populations living in disjunct montane forests belong to a different lineage than those in savanna habitats surrounding these forests. We obtained microsatellite data, mitochondrial sequences, and morphometric data from worker honey bees collected from feral colonies in three montane forests and corresponding neighboring savanna regions in Kenya. Honey bee colonies from montane forests showed distinct worker morphology compared with colonies in savanna areas. Mitochondrial sequence data did not support the existence of the two currently accepted subspecies. Furthermore, analyses of the microsatellite data with a Bayesian clustering method did not support the existence of two source populations as it would be expected under the mountain refugia scenario. Our findings suggest that phenotypic plasticity rather than distinct ancestry is the leading cause behind the phenotypic divergence observed between montane forest and savanna honey bees. Our study thus corroborates the idea that high gene flow may select for increased plasticity. PMID:24223262

  1. Expansion of divergent SEA domains in cell surface proteins and nucleoporin 54.

    PubMed

    Pei, Jimin; Grishin, Nick V

    2017-03-01

    SEA (sea urchin sperm protein, enterokinase, agrin) domains, many of which possess autoproteolysis activity, have been found in a number of cell surface and secreted proteins. Despite high sequence divergence, SEA domains were also proposed to be present in dystroglycan based on a conserved autoproteolysis motif and receptor-type protein phosphatase IA-2 based on structural similarity. The presence of a SEA domain adjacent to the transmembrane segment appears to be a recurring theme in quite a number of type I transmembrane proteins on the cell surface, such as MUC1, dystroglycan, IA-2, and Notch receptors. By comparative sequence and structural analyses, we identified dystroglycan-like proteins with SEA domains in Capsaspora owczarzaki of the Filasterea group, one of the closest single-cell relatives of metazoans. We also detected novel and divergent SEA domains in a variety of cell surface proteins such as EpCAM, α/ε-sarcoglycan, PTPRR, collectrin/Tmem27, amnionless, CD34, KIAA0319, fibrocystin-like protein, and a number of cadherins. While these proteins are mostly from metazoans or their single cell relatives such as choanoflagellates and Filasterea, fibrocystin-like proteins with SEA domains were found in several other eukaryotic lineages including green algae, Alveolata, Euglenozoa, and Haptophyta, suggesting an ancient evolutionary origin. In addition, the intracellular protein Nucleoporin 54 (Nup54) acquired a divergent SEA domain in choanoflagellates and metazoans. © 2016 The Protein Society.

  2. Demographic Divergence History of Pied Flycatcher and Collared Flycatcher Inferred from Whole-Genome Re-sequencing Data

    PubMed Central

    Nadachowska-Brzyska, Krystyna; Burri, Reto; Olason, Pall I.; Kawakami, Takeshi; Smeds, Linnéa; Ellegren, Hans

    2013-01-01

    Profound knowledge of demographic history is a prerequisite for the understanding and inference of processes involved in the evolution of population differentiation and speciation. Together with new coalescent-based methods, the recent availability of genome-wide data enables investigation of differentiation and divergence processes at unprecedented depth. We combined two powerful approaches, full Approximate Bayesian Computation analysis (ABC) and pairwise sequentially Markovian coalescent modeling (PSMC), to reconstruct the demographic history of the split between two avian speciation model species, the pied flycatcher and collared flycatcher. Using whole-genome re-sequencing data from 20 individuals, we investigated 15 demographic models including different levels and patterns of gene flow, and changes in effective population size over time. ABC provided high support for recent (mode 0.3 my, range <0.7 my) species divergence, declines in effective population size of both species since their initial divergence, and unidirectional recent gene flow from pied flycatcher into collared flycatcher. The estimated divergence time and population size changes, supported by PSMC results, suggest that the ancestral species persisted through one of the glacial periods of middle Pleistocene and then split into two large populations that first increased in size before going through severe bottlenecks and expanding into their current ranges. Secondary contact appears to have been established after the last glacial maximum. The severity of the bottlenecks at the last glacial maximum is indicated by the discrepancy between current effective population sizes (20,000–80,000) and census sizes (5–50 million birds) of the two species. The recent divergence time challenges the supposition that avian speciation is a relatively slow process with extended times for intrinsic postzygotic reproductive barriers to evolve. Our study emphasizes the importance of using genome-wide data to unravel tangled demographic histories. Moreover, it constitutes one of the first examples of the inference of divergence history from genome-wide data in non-model species. PMID:24244198

  3. Demographic divergence history of pied flycatcher and collared flycatcher inferred from whole-genome re-sequencing data.

    PubMed

    Nadachowska-Brzyska, Krystyna; Burri, Reto; Olason, Pall I; Kawakami, Takeshi; Smeds, Linnéa; Ellegren, Hans

    2013-11-01

    Profound knowledge of demographic history is a prerequisite for the understanding and inference of processes involved in the evolution of population differentiation and speciation. Together with new coalescent-based methods, the recent availability of genome-wide data enables investigation of differentiation and divergence processes at unprecedented depth. We combined two powerful approaches, full Approximate Bayesian Computation analysis (ABC) and pairwise sequentially Markovian coalescent modeling (PSMC), to reconstruct the demographic history of the split between two avian speciation model species, the pied flycatcher and collared flycatcher. Using whole-genome re-sequencing data from 20 individuals, we investigated 15 demographic models including different levels and patterns of gene flow, and changes in effective population size over time. ABC provided high support for recent (mode 0.3 my, range <0.7 my) species divergence, declines in effective population size of both species since their initial divergence, and unidirectional recent gene flow from pied flycatcher into collared flycatcher. The estimated divergence time and population size changes, supported by PSMC results, suggest that the ancestral species persisted through one of the glacial periods of middle Pleistocene and then split into two large populations that first increased in size before going through severe bottlenecks and expanding into their current ranges. Secondary contact appears to have been established after the last glacial maximum. The severity of the bottlenecks at the last glacial maximum is indicated by the discrepancy between current effective population sizes (20,000-80,000) and census sizes (5-50 million birds) of the two species. The recent divergence time challenges the supposition that avian speciation is a relatively slow process with extended times for intrinsic postzygotic reproductive barriers to evolve. Our study emphasizes the importance of using genome-wide data to unravel tangled demographic histories. Moreover, it constitutes one of the first examples of the inference of divergence history from genome-wide data in non-model species.

  4. Sooty mangabey genome sequence provides insight into AIDS resistance in a natural SIV host.

    PubMed

    Palesch, David; Bosinger, Steven E; Tharp, Gregory K; Vanderford, Thomas H; Paiardini, Mirko; Chahroudi, Ann; Johnson, Zachary P; Kirchhoff, Frank; Hahn, Beatrice H; Norgren, Robert B; Patel, Nirav B; Sodora, Donald L; Dawoud, Reem A; Stewart, Caro-Beth; Seepo, Sara M; Harris, R Alan; Liu, Yue; Raveendran, Muthuswamy; Han, Yi; English, Adam; Thomas, Gregg W C; Hahn, Matthew W; Pipes, Lenore; Mason, Christopher E; Muzny, Donna M; Gibbs, Richard A; Sauter, Daniel; Worley, Kim; Rogers, Jeffrey; Silvestri, Guido

    2018-01-03

    In contrast to infections with human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques, SIV infection of a natural host, sooty mangabeys (Cercocebus atys), is non-pathogenic despite high viraemia. Here we sequenced and assembled the genome of a captive sooty mangabey. We conducted genome-wide comparative analyses of transcript assemblies from C. atys and AIDS-susceptible species, such as humans and macaques, to identify candidates for host genetic factors that influence susceptibility. We identified several immune-related genes in the genome of C. atys that show substantial sequence divergence from macaques or humans. One of these sequence divergences, a C-terminal frameshift in the toll-like receptor-4 (TLR4) gene of C. atys, is associated with a blunted in vitro response to TLR-4 ligands. In addition, we found a major structural change in exons 3-4 of the immune-regulatory protein intercellular adhesion molecule 2 (ICAM-2); expression of this variant leads to reduced cell surface expression of ICAM-2. These data provide a resource for comparative genomic studies of HIV and/or SIV pathogenesis and may help to elucidate the mechanisms by which SIV-infected sooty mangabeys avoid AIDS.

  5. Sooty mangabey genome sequence provides insight into AIDS resistance in a natural SIV host

    PubMed Central

    Palesch, David; Bosinger, Steven E.; Tharp, Gregory K.; Vanderford, Thomas H.; Paiardini, Mirko; Chahroudi, Ann; Johnson, Zachary P.; Kirchhoff, Frank; Hahn, Beatrice H.; Norgren, Robert B.; Patel, Nirav B.; Sodora, Donald L.; Dawoud, Reem A.; Stewart, Caro-Beth; Seepo, Sara M.; Harris, R. Alan; Liu, Yue; Raveendran, Muthuswamy; Han, Yi; English, Adam; Thomas, Gregg W. C.; Hahn, Matthew W.; Pipes, Lenore; Mason, Christopher E.; Muzny, Donna M.; Gibbs, Richard A.; Sauter, Daniel; Worley, Kim; Rogers, Jeffrey; Silvestri, Guido

    2018-01-01

    In contrast to infections with human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques, SIV infection of a natural host, sooty mangabeys (Cercocebus atys), is non-pathogenic despite high viraemia1. Here we sequenced and assembled the genome of a captive sooty mangabey. We conducted genome-wide comparative analyses of transcript assemblies from C. atys and AIDS-susceptible species, such as humans and macaques, to identify candidates for host genetic factors that influence susceptibility. We identified several immune-related genes in the genome of C. atys that show substantial sequence divergence from macaques or humans. One of these sequence divergences, a C-terminal frameshift in the toll-like receptor-4 (TLR4) gene of C. atys, is associated with a blunted in vitro response to TLR-4 ligands. In addition, we found a major structural change in exons 3–4 of the immune-regulatory protein intercellular adhesion molecule 2 (ICAM-2); expression of this variant leads to reduced cell surface expression of ICAM-2. These data provide a resource for comparative genomic studies of HIV and/or SIV pathogenesis and may help to elucidate the mechanisms by which SIV-infected sooty mangabeys avoid AIDS. PMID:29300007

  6. Estimation of population divergence times from non-overlapping genomic sequences: examples from dogs and wolves.

    PubMed

    Skoglund, Pontus; Götherström, Anders; Jakobsson, Mattias

    2011-04-01

    Despite recent technological advances in DNA sequencing, incomplete coverage remains to be an issue in population genomics, in particular for studies that include ancient samples. Here, we describe an approach to estimate population divergence times for non-overlapping sequence data that is based on probabilities of different genealogical topologies under a structured coalescent model. We show that the approach can be adapted to accommodate common problems such as sequencing errors and postmortem nucleotide misincorporations, and we use simulations to investigate biases involved with estimating genealogical topologies from empirical data. The approach relies on three reference genomes and should be particularly useful for future analysis of genomic data that comprise of nonoverlapping sets of sequences, potentially from different points in time. We applied the method to shotgun sequence data from an ancient wolf together with extant dogs and wolves and found striking resemblance to previously described fine-scale population structure among dog breeds. When comparing modern dogs to four geographically distinct wolves, we find that the divergence time between dogs and an Indian wolf is smallest, followed by the divergence times to a Chinese wolf and a Spanish wolf, and a relatively long divergence time to an Alaskan wolf, suggesting that the origin of modern dogs is somewhere in Eurasia, potentially southern Asia. We find that less than two-thirds of all loci in the boxer and poodle genomes are more similar to each other than to a modern gray wolf and that--assuming complete isolation without gene flow--the divergence time between gray wolves and modern European dogs extends to 3,500 generations before the present, corresponding to approximately 10,000 years ago (95% confidence interval [CI]: 9,000-13,000). We explicitly study the effect of gene flow between dogs and wolves on our estimates and show that a low rate of gene flow is compatible with an even earlier domestication date ∼30,000 years ago (95% CI: 15,000-90,000). This observation is in agreement with recent archaeological findings and indicates that human behavior necessary for domestication of wild animals could have appeared much earlier than the development of agriculture.

  7. Link Between the Adult and the Metacercaria of Clinostomum heluans Braun, 1899 (Trematoda: Clinostomidae) Through DNA Sequences, and its Phylogenetic Position Within the Genus Clinostomum Leidy, 1856.

    PubMed

    Briosio-Aguilar, R; Pinto, H A; Rodríguez-Santiago, M A; López-García, K; García-Varela, M; de León, G Pérez-Ponce

    2018-06-01

    The phylogenetic position of Clinostomum heluans Braun, 1899 within the genus Clinostomum Leidy, 1856 is reported in this study based on sequences of the barcoding region of the mitochondrial cytochrome c oxidase subunit 1 gene ( COX1). Additionally, molecular data are used to link the adult and the metacercariae of the species. The metacercariae of C. heluans were found encysted infecting the cichlid fish Australoheros sp. in Minas Gerais, Brazil, whereas the adults were obtained from the mouth cavity of the Great White Egret, Ardea alba, in Campeche, Mexico. The COX1 sequences obtained for the Mexican clinostomes and the Brazilian metacercaria were almost identical (0.2% molecular divergence), indicating conspecificity. Similar molecular divergence (0.2-0.4%) was found between sequences of C. heluans reported here and Clinostomum sp. 6 previously obtained from a metacercaria recovered from the cichlid Cichlasoma boliviense in Santa Cruz, Bolivia. Both maximum likelihood and Bayesian inference analyses unequivocally showed the conspecificity between C. heluans and Clinostomum sp. 6, which form a monophyletic clade with high nodal support and very low genetic divergence. Moreover, tree topology reveals that C. heluans occupies a basal position with respect to New World species of Clinostomum, although a denser taxon sampling of species within the genus is further required. The metacercaria of C. heluans seems to be specific to cichlid fish because both samples from South America were recovered from species of this fish family, although not closely related.

  8. Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny

    PubMed Central

    Martínez-Castilla, León Patricio; Alvarez-Buylla, Elena R.

    2003-01-01

    Gene duplication is a substrate of evolution. However, the relative importance of positive selection versus relaxation of constraints in the functional divergence of gene copies is still under debate. Plant MADS-box genes encode transcriptional regulators key in various aspects of development and have undergone extensive duplications to form a large family. We recovered 104 MADS sequences from the Arabidopsis genome. Bayesian phylogenetic trees recover type II lineage as a monophyletic group and resolve a branching sequence of monophyletic groups within this lineage. The type I lineage is comprised of several divergent groups. However, contrasting gene structure and patterns of chromosomal distribution between type I and II sequences suggest that they had different evolutionary histories and support the placement of the root of the gene family between these two groups. Site-specific and site-branch analyses of positive Darwinian selection (PDS) suggest that different selection regimes could have affected the evolution of these lineages. We found evidence for PDS along the branch leading to flowering time genes that have a direct impact on plant fitness. Sites with high probabilities of having been under PDS were found in the MADS and K domains, suggesting that these played important roles in the acquisition of novel functions during MADS-box diversification. Detected sites are targets for further experimental analyses. We argue that adaptive changes in MADS-domain protein sequences have been important for their functional divergence, suggesting that changes within coding regions of transcriptional regulators have influenced phenotypic evolution of plants. PMID:14597714

  9. Ikoma lyssavirus, highly divergent novel lyssavirus in an African civet.

    PubMed

    Marston, Denise A; Horton, Daniel L; Ngeleja, Chanasa; Hampson, Katie; McElhinney, Lorraine M; Banyard, Ashley C; Haydon, Daniel; Cleaveland, Sarah; Rupprecht, Charles E; Bigambo, Machunde; Fooks, Anthony R; Lembo, Tiziana

    2012-04-01

    Evidence in support of a novel lyssavirus was obtained from brain samples of an African civet in Tanzania. Results of phylogenetic analysis of nucleoprotein gene sequences from representative Lyssavirus species and this novel lyssavirus provided strong empirical evidence that this is a new lyssavirus species, designated Ikoma lyssavirus.

  10. Topology and cellular localization of the small hydrophobic protein of avian metapneumovirus

    USDA-ARS?s Scientific Manuscript database

    The small hydrophobic protein (SH) is a type II integral membrane protein that is packaged into virions and is only present in certain paramyxoviruses including metapneumovirus. In addition to a highly divergent primary sequence, SH proteins vary significantly in size among the different viruses. Hu...

  11. Beta vulgaris crop types: Genomic signatures of selection (GSS) using next generation sequencing of pooled samples

    USDA-ARS?s Scientific Manuscript database

    Beta vulgaris crop types represent highly diverged populations with distinct phenotypes resulting from long-term selection. Differential end use in the crop types includes: leaf quality (chard/leaf beet), root enlargement and biomass, (table beet, fodder beet, sugar beet), and secondary metabolite a...

  12. Plastome data reveal multiple geographic origins of Quercus Group Ilex

    PubMed Central

    Grimm, Guido W.; Papini, Alessio; Vessella, Federico; Cardoni, Simone; Tordoni, Enrico; Piredda, Roberta; Franc, Alain; Denk, Thomas

    2016-01-01

    Nucleotide sequences from the plastome are currently the main source for assessing taxonomic and phylogenetic relationships in flowering plants and their historical biogeography at all hierarchical levels. One major exception is the large and economically important genus Quercus (oaks). Whereas differentiation patterns of the nuclear genome are in agreement with morphology and the fossil record, diversity patterns in the plastome are at odds with established taxonomic and phylogenetic relationships. However, the extent and evolutionary implications of this incongruence has yet to be fully uncovered. The DNA sequence divergence of four Euro-Mediterranean Group Ilex oak species (Quercus ilex L., Q. coccifera L., Q. aucheri Jaub. & Spach., Q. alnifolia Poech.) was explored at three chloroplast markers (rbcL, trnK/matK, trnH-psbA). Phylogenetic relationships were reconstructed including worldwide members of additional 55 species representing all Quercus subgeneric groups. Family and order sequence data were harvested from gene banks to better frame the observed divergence in larger taxonomic contexts. We found a strong geographic sorting in the focal group and the genus in general that is entirely decoupled from species boundaries. High plastid divergence in members of Quercus Group Ilex, including haplotypes shared with related, but long isolated oak lineages, point towards multiple geographic origins of this group of oaks. The results suggest that incomplete lineage sorting and repeated phases of asymmetrical introgression among ancestral lineages of Group Ilex and two other main Groups of Eurasian oaks (Cyclobalanopsis and Cerris) caused this complex pattern. Comparison with the current phylogenetic synthesis also suggests an initial high- versus mid-latitude biogeographic split within Quercus. High plastome plasticity of Group Ilex reflects geographic area disruptions, possibly linked with high tectonic activity of past and modern distribution ranges, that did not leave imprints in the nuclear genome of modern species and infrageneric lineages. PMID:27123376

  13. Phylogenetic analysis of the Pacific cutthroat trout (Oncorhynchus clarki ssp.: Salmonidae) based on partial mtDNA ND4 sequences: a closer look at the highly fragmented inland species.

    PubMed

    Wilson, Wade D; Turner, Thomas F

    2009-08-01

    The genus Oncorhynchus includes Pacific salmon and trout (anadromous and land-locked) species of the western United States and Mexico. All species and subspecies in this group are threatened, endangered, sensitive, or species of conservation concern in portions of their native ranges. To examine the relationships of the species within Oncorhynchus we sequenced a 768 bp fragment of the protein-encoding ND4 mtDNA region. We included all six recognized subspecies of O. clarki (cutthroat trout), O. gilaegilae (Gila trout) and O. g. apache (Apache trout). Gene trees from likelihood and Bayesian phylogenetic analyses revealed that Salvelinus was the sister group to Oncorhynchus, and as expected based on previous studies, O. clarki was sister to a clade that consisted of O. mykiss plus O. g. gilae and O. g. apache. Within the cutthroat clade (O. clarki), the coastal form O. c. clarki was basal with the Rio Grande cutthroat (O. c. virginalis) most derived. Divergence dating based on a fossil calibration molecular clock showed the oldest clade (mean node age) was O. masou ssp., which diverged roughly 7.6 MYA. Highest probability density intervals for divergence of O. masou overlapped with divergence (6.3 MYA) of Pacific salmon clades ((O. gorbuscha + O. nerka) and (O. tshawytscha + O. kisutch)). The Pacific trout clade ((O. mykiss + O. gilae ssp.) + (O. clarki ssp.)) diverged from the Pacific salmon around 6.3 MYA, with most of the diversification within the O. clarki clade occurring in the last 1 MY.

  14. Phylogenetic relationships in the mushroom genus Coprinus and dark-spored allies based on sequence data from the nuclear gene coding for the large ribosomal subunit RNA: divergent domains, outgroups, and monophyly.

    PubMed

    Hopple, J S; Vilgalys, R

    1999-10-01

    Phylogenetic relationships were investigated in the mushroom genus Coprinus based on sequence data from the nuclear encoded large-subunit rDNA gene. Forty-seven species of Coprinus and 19 additional species from the families Coprinaceae, Strophariaceae, Bolbitiaceae, Agaricaceae, Podaxaceae, and Montagneaceae were studied. A total of 1360 sites was sequenced across seven divergent domains and intervening sequences. A total of 302 phylogenetically informative characters was found. Ninety-eight percent of the average divergence between taxa was located within the divergent domains, with domains D2 and D8 being most divergent and domains D7 and D10 the least divergent. An empirical test of phylogenetic signal among divergent domains also showed that domains D2 and D3 had the lowest levels of homoplasy. Two equally most parsimonious trees were resolved using Wagner parsimony. A character-state weighted analysis produced 12 equally most parsimonious trees similar to those generated by Wagner parsimony. Phylogenetic analyses employing topological constraints suggest that none of the major taxonomic systems proposed for subgeneric classification is able to completely reflect phylogenetic relationships in Coprinus. A strict consensus integration of the two Wagner trees demonstrates the problematic nature of choosing outgroups within dark-spored mushrooms. The genus Coprinus is found to be polyphyletic and is separated into three distinct clades. Most Coprinus taxa belong to the first two clades, which together form a larger monophyletic group with Lacrymaria and Psathyrella in basal positions. A third clade contains members of Coprinus section Comati as well as the genus Leucocoprinus, Podaxis pistillaris, Montagnea arenaria, and Agaricus pocillator. This third clade is separated from the other species of Coprinus by members of the families Strophariaceae and Bolbitiaceae and the genus Panaeolus. Copyright 1999 Academic Press.

  15. The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences

    PubMed Central

    2010-01-01

    Background In today's age of genomic discovery, no attempt has been made to comprehensively sequence a gymnosperm genome. The largest genus in the coniferous family Pinaceae is Pinus, whose 110-120 species have extremely large genomes (c. 20-40 Gb, 2N = 24). The size and complexity of these genomes have prompted much speculation as to the feasibility of completing a conifer genome sequence. Conifer genomes are reputed to be highly repetitive, but there is little information available on the nature and identity of repetitive units in gymnosperms. The pines have extensive genetic resources, with approximately 329000 ESTs from eleven species and genetic maps in eight species, including a dense genetic map of the twelve linkage groups in Pinus taeda. Results We present here the Sanger sequence and annotation of ten P. taeda BAC clones and Genome Analyzer II whole genome shotgun (WGS) sequences representing 7.5% of the genome. Computational annotation of ten BACs predicts three putative protein-coding genes and at least fifteen likely pseudogenes in nearly one megabase of sequence. We found three conifer-specific LTR retroelements in the BACs, and tentatively identified at least 15 others based on evidence from the distantly related angiosperms. Alignment of WGS sequences to the BACs indicates that 80% of BAC sequences have similar copies (≥ 75% nucleotide identity) elsewhere in the genome, but only 23% have identical copies (99% identity). The three most common repetitive elements in the genome were identified and, when combined, represent less than 5% of the genome. Conclusions This study indicates that the majority of repeats in the P. taeda genome are 'novel' and will therefore require additional BAC or genomic sequencing for accurate characterization. The pine genome contains a very large number of diverged and probably defunct repetitive elements. This study also provides new evidence that sequencing a pine genome using a WGS approach is a feasible goal. PMID:20609256

  16. Lineage divergence detected in the malaria vector Anopheles marajoara (Diptera: Culicidae) in Amazonian Brazil

    PubMed Central

    2010-01-01

    Background Cryptic species complexes are common among anophelines. Previous phylogenetic analysis based on the complete mtDNA COI gene sequences detected paraphyly in the Neotropical malaria vector Anopheles marajoara. The "Folmer region" detects a single taxon using a 3% divergence threshold. Methods To test the paraphyletic hypothesis and examine the utility of the Folmer region, genealogical trees based on a concatenated (white + 3' COI sequences) dataset and pairwise differentiation of COI fragments were examined. The population structure and demographic history were based on partial COI sequences for 294 individuals from 14 localities in Amazonian Brazil. 109 individuals from 12 localities were sequenced for the nDNA white gene, and 57 individuals from 11 localities were sequenced for the ribosomal DNA (rDNA) internal transcribed spacer 2 (ITS2). Results Distinct A. marajoara lineages were detected by combined genealogical analysis and were also supported among COI haplotypes using a median joining network and AMOVA, with time since divergence during the Pleistocene (<100,000 ya). COI sequences at the 3' end were more variable, demonstrating significant pairwise differentiation (3.82%) compared to the more moderate 2.92% detected by the Folmer region. Lineage 1 was present in all localities, whereas lineage 2 was restricted mainly to the west. Mismatch distributions for both lineages were bimodal, likely due to multiple colonization events and spatial expansion (~798 - 81,045 ya). There appears to be gene flow within, not between lineages, and a partial barrier was detected near Rio Jari in Amapá state, separating western and eastern populations. In contrast, both nDNA data sets (white gene sequences with or without the retention of the 4th intron, and ITS2 sequences and length) detected a single A. marajoara lineage. Conclusions Strong support for combined data with significant differentiation detected in the COI and absent in the nDNA suggest that the divergence is recent, and detectable only by the faster evolving mtDNA. A within subgenus threshold of >2% may be more appropriate among sister taxa in cryptic anopheline complexes than the standard 3%. Differences in demographic history and climatic changes may have contributed to mtDNA lineage divergence in A. marajoara. PMID:20929572

  17. Rates of genomic divergence in humans, chimpanzees and their lice.

    PubMed

    Johnson, Kevin P; Allen, Julie M; Olds, Brett P; Mugisha, Lawrence; Reed, David L; Paige, Ken N; Pittendrigh, Barry R

    2014-02-22

    The rate of DNA mutation and divergence is highly variable across the tree of life. However, the reasons underlying this variation are not well understood. Comparing the rates of genetic changes between hosts and parasite lineages that diverged at the same time is one way to begin to understand differences in genetic mutation and substitution rates. Such studies have indicated that the rate of genetic divergence in parasites is often faster than that of their hosts when comparing single genes. However, the variation in this relative rate of molecular evolution across different genes in the genome is unknown. We compared the rate of DNA sequence divergence between humans, chimpanzees and their ectoparasitic lice for 1534 protein-coding genes across their genomes. The rate of DNA substitution in these orthologous genes was on average 14 times faster for lice than for humans and chimpanzees. In addition, these rates were positively correlated across genes. Because this correlation only occurred for substitutions that changed the amino acid, this pattern is probably produced by similar functional constraints across the same genes in humans, chimpanzees and their ectoparasites.

  18. Rates of genomic divergence in humans, chimpanzees and their lice

    PubMed Central

    Johnson, Kevin P.; Allen, Julie M.; Olds, Brett P.; Mugisha, Lawrence; Reed, David L.; Paige, Ken N.; Pittendrigh, Barry R.

    2014-01-01

    The rate of DNA mutation and divergence is highly variable across the tree of life. However, the reasons underlying this variation are not well understood. Comparing the rates of genetic changes between hosts and parasite lineages that diverged at the same time is one way to begin to understand differences in genetic mutation and substitution rates. Such studies have indicated that the rate of genetic divergence in parasites is often faster than that of their hosts when comparing single genes. However, the variation in this relative rate of molecular evolution across different genes in the genome is unknown. We compared the rate of DNA sequence divergence between humans, chimpanzees and their ectoparasitic lice for 1534 protein-coding genes across their genomes. The rate of DNA substitution in these orthologous genes was on average 14 times faster for lice than for humans and chimpanzees. In addition, these rates were positively correlated across genes. Because this correlation only occurred for substitutions that changed the amino acid, this pattern is probably produced by similar functional constraints across the same genes in humans, chimpanzees and their ectoparasites. PMID:24403325

  19. Nucleotide sequences of immunoglobulin eta genes of chimpanzee and orangutan: DNA molecular clock and hominoid evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakoyama, Y.; Hong, K.J.; Byun, S.M.

    To determine the phylogenetic relationships among hominoids and the dates of their divergence, the complete nucleotide sequences of the constant region of the immunoglobulin eta-chain (C/sub eta1/) genes from chimpanzee and orangutan have been determined. These sequences were compared with the human eta-chain constant-region sequence. A molecular clock (silent molecular clock), measured by the degree of sequence divergence at the synonymous (silent) positions of protein-encoding regions, was introduced for the present study. From the comparison of nucleotide sequences of ..cap alpha../sub 1/-antitrypsin and ..beta..- and delta-globulin genes between humans and Old World monkeys, the silent molecular clock was calibrated: themore » mean evolutionary rate of silent substitution was determined to be 1.56 x 10/sup -9/ substitutions per site per year. Using the silent molecular clock, the mean divergence dates of chimpanzee and orangutan from the human lineage were estimated as 6.4 +/- 2.6 million years and 17.3 +/- 4.5 million years, respectively. It was also shown that the evolutionary rate of primate genes is considerably slower than those of other mammalian genes.« less

  20. A HIGH COVERAGE GENOME SEQUENCE FROM AN ARCHAIC DENISOVAN INDIVIDUAL

    PubMed Central

    Meyer, Matthias; Kircher, Martin; Gansauge, Marie-Theres; Li, Heng; Racimo, Fernando; Mallick, Swapan; Schraiber, Joshua G.; Jay, Flora; Prüfer, Kay; de Filippo, Cesare; Sudmant, Peter H.; Alkan, Can; Fu, Qiaomei; Do, Ron; Rohland, Nadin; Tandon, Arti; Siebauer, Michael; Green, Richard E.; Bryc, Katarzyna; Briggs, Adrian W.; Stenzel, Udo; Dabney, Jesse; Shendure, Jay; Kitzman, Jacob; Hammer, Michael F.; Shunkov, Michael V.; Derevianko, Anatoli P.; Patterson, Nick; Andrés, Aida M.; Eichler, Evan E.; Slatkin, Montgomery; Reich, David; Kelso, Janet; Pääbo, Svante

    2013-01-01

    We present a DNA library preparation method that has allowed us to reconstruct a high coverage (30X) genome sequence of a Denisovan, an extinct relative of Neandertals. The quality of this genome allows a direct estimation of Denisovan heterozygosity indicating that genetic diversity in these archaic hominins was extremely low. It also allows tentative dating of the specimen on the basis of “missing evolution” in its genome, detailed measurements of Denisovan and Neandertal admixture into present-day human populations, and the generation of a near-complete catalog of genetic changes that swept to high frequency in modern humans since their divergence from Denisovans. PMID:22936568

  1. Phylogenetic relationships in Demodex mites (Acari: Demodicidae) based on mitochondrial 16S rDNA partial sequences.

    PubMed

    Zhao, Ya-E; Wu, Li-Ping

    2012-09-01

    To confirm phylogenetic relationships in Demodex mites based on mitochondrial 16S rDNA partial sequences, mtDNA 16S partial sequences of ten isolates of three Demodex species from China were amplified, recombined, and sequenced and then analyzed with two Demodex folliculorum isolates from Spain. Lastly, genetic distance was computed, and phylogenetic tree was reconstructed. MEGA 4.0 analysis showed high sequence identity among 16S rDNA partial sequences of three Demodex species, which were 95.85 % in D. folliculorum, 98.53 % in Demodex canis, and 99.71 % in Demodex brevis. The divergence, genetic distance, and transition/transversions of the three Demodex species reached interspecies level, whereas there was no significant difference of the divergence (1.1 %), genetic distance (0.011), and transition/transversions (3/1) of the two geographic D. folliculorum isolates (Spain and China). Phylogenetic trees reveal that the three Demodex species formed three separate branches of one clade, where D. folliculorum and D. canis gathered first, and then gathered with D. brevis. The two Spain and five China D. folliculorum isolates did not form sister clades. In conclusion, 16S mtDNA are suitable for phylogenetic relationship analysis in low taxa (genus or species), but not for intraspecies determination of Demodex. The differentiation among the three Demodex species has reached interspecies level.

  2. Bloom DNA Helicase Facilitates Homologous Recombination between Diverged Homologous Sequences*

    PubMed Central

    Kikuchi, Koji; Abdel-Aziz, H. Ismail; Taniguchi, Yoshihito; Yamazoe, Mitsuyoshi; Takeda, Shunichi; Hirota, Kouji

    2009-01-01

    Bloom syndrome caused by inactivation of the Bloom DNA helicase (Blm) is characterized by increases in the level of sister chromatid exchange, homologous recombination (HR) associated with cross-over. It is therefore believed that Blm works as an anti-recombinase. Meanwhile, in Drosophila, DmBlm is required specifically to promote the synthesis-dependent strand anneal (SDSA), a type of HR not associating with cross-over. However, conservation of Blm function in SDSA through higher eukaryotes has been a matter of debate. Here, we demonstrate the function of Blm in SDSA type HR in chicken DT40 B lymphocyte line, where Ig gene conversion diversifies the immunoglobulin V gene through intragenic HR between diverged homologous segments. This reaction is initiated by the activation-induced cytidine deaminase enzyme-mediated uracil formation at the V gene, which in turn converts into abasic site, presumably leading to a single strand gap. Ig gene conversion frequency was drastically reduced in BLM−/− cells. In addition, BLM−/− cells used limited donor segments harboring higher identity compared with other segments in Ig gene conversion event, suggesting that Blm can promote HR between diverged sequences. To further understand the role of Blm in HR between diverged homologous sequences, we measured the frequency of gene targeting induced by an I-SceI-endonuclease-mediated double-strand break. BLM−/− cells showed a severer defect in the gene targeting frequency as the number of heterologous sequences increased at the double-strand break site. Conversely, the overexpression of Blm, even an ATPase-defective mutant, strongly stimulated gene targeting. In summary, Blm promotes HR between diverged sequences through a novel ATPase-independent mechanism. PMID:19661064

  3. Inversions and Gene Order Shuffling in Anopheles gambiae and A. funestus

    NASA Astrophysics Data System (ADS)

    Sharakhov, Igor V.; Serazin, Andrew C.; Grushko, Olga G.; Dana, Ali; Lobo, Neil; Hillenmeyer, Maureen E.; Westerman, Richard; Romero-Severson, Jeanne; Costantini, Carlo; Sagnon, N'Fale; Collins, Frank H.; Besansky, Nora J.

    2002-10-01

    In tropical Africa, Anopheles funestus is one of the three most important malaria vectors. We physically mapped 157 A. funestus complementary DNAs (cDNAs) to the polytene chromosomes of this species. Sequences of the cDNAs were mapped in silico to the A. gambiae genome as part of a comparative genomic study of synteny, gene order, and sequence conservation between A. funestus and A. gambiae. These species are in the same subgenus and diverged about as recently as humans and chimpanzees. Despite nearly perfect preservation of synteny, we found substantial shuffling of gene order along corresponding chromosome arms. Since the divergence of these species, at least 70 chromosomal inversions have been fixed, the highest rate of rearrangement of any eukaryote studied to date. The high incidence of paracentric inversions and limited colinearity suggests that locating genes in one anopheline species based on gene order in another may be limited to closely related taxa.

  4. Worldwide prevalence of lentivirus infection in wild feline species: epidemiologic and phylogenetic aspects.

    PubMed

    Olmsted, R A; Langley, R; Roelke, M E; Goeken, R M; Adger-Johnson, D; Goff, J P; Albert, J P; Packer, C; Laurenson, M K; Caro, T M

    1992-10-01

    The natural occurrence of lentiviruses closely related to feline immunodeficiency virus (FIV) in nondomestic felid species is shown here to be worldwide. Cross-reactive antibodies to FIV were common in several free-ranging populations of large cats, including East African lions and cheetahs of the Serengeti ecosystem and in puma (also called cougar or mountain lion) populations throughout North America. Infectious puma lentivirus (PLV) was isolated from several Florida panthers, a severely endangered relict puma subspecies inhabiting the Big Cypress Swamp and Everglades ecosystems in southern Florida. Phylogenetic analysis of PLV genomic sequences from disparate geographic isolates revealed appreciable divergence from domestic cat FIV sequences as well as between PLV sequences found in different North American locales. The level of sequence divergence between PLV and FIV was greater than the level of divergence between human and certain simian immunodeficiency viruses, suggesting that the transmission of FIV between feline species is infrequent and parallels in time the emergence of HIV from simian ancestors.

  5. Impact of duplicate gene copies on phylogenetic analysis and divergence time estimates in butterflies.

    PubMed

    Pohl, Nélida; Sison-Mangus, Marilou P; Yee, Emily N; Liswi, Saif W; Briscoe, Adriana D

    2009-05-13

    The increase in availability of genomic sequences for a wide range of organisms has revealed gene duplication to be a relatively common event. Encounters with duplicate gene copies have consequently become almost inevitable in the context of collecting gene sequences for inferring species trees. Here we examine the effect of incorporating duplicate gene copies evolving at different rates on tree reconstruction and time estimation of recent and deep divergences in butterflies. Sequences from ultraviolet-sensitive (UVRh), blue-sensitive (BRh), and long-wavelength sensitive (LWRh) opsins,EF-1 and COI were obtained from 27 taxa representing the five major butterfly families (5535 bp total). Both BRh and LWRh are present in multiple copies in some butterfly lineages and the different copies evolve at different rates. Regardless of the phylogenetic reconstruction method used, we found that analyses of combined data sets using either slower or faster evolving copies of duplicate genes resulted in a single topology in agreement with our current understanding of butterfly family relationships based on morphology and molecules. Interestingly, individual analyses of BRh and LWRh sequences also recovered these family-level relationships. Two different relaxed clock methods resulted in similar divergence time estimates at the shallower nodes in the tree, regardless of whether faster or slower evolving copies were used, with larger discrepancies observed at deeper nodes in the phylogeny. The time of divergence between the monarch butterfly Danaus plexippus and the queen D. gilippus (15.3-35.6 Mya) was found to be much older than the time of divergence between monarch co-mimic Limenitis archippus and red-spotted purple L. arthemis (4.7-13.6 Mya), and overlapping with the time of divergence of the co-mimetic passionflower butterflies Heliconius erato and H. melpomene (13.5-26.1 Mya). Our family-level results are congruent with recent estimates found in the literature and indicate an age of 84-113 million years for the divergence of all butterfly families. These results are consistent with diversification of the butterfly families following the radiation of angiosperms and suggest that some classes of opsin genes may be usefully employed for both phylogenetic reconstruction and divergence time estimation.

  6. Genetic characterization of a novel astrovirus in Pekin ducks.

    PubMed

    Liao, Qinfeng; Liu, Ning; Wang, Xiaoyan; Wang, Fumin; Zhang, Dabing

    2015-06-01

    Three divergent groups of duck astroviruses (DAstVs), namely DAstV-1, DAstV-2 (formerly duck hepatitis virus type 3) and DAstV-3 (isolate CPH), and other avastroviruses are known to infect domestic ducks. To provide more data regarding the molecular epidemiology of astroviruses in domestic ducks, we examined the prevalence of astroviruses in 136 domestic duck samples collected from four different provinces of China. Nineteen goose samples were also included. Using an astrovirus-specific reverse transcription-PCR assay, two groups of astroviruses were detected from our samples. A group of astroviruses detected from Pekin ducks, Shaoxing ducks and Landes geese were highly similar to the newly discovered DAstV-3. More interestingly, a novel group of avastroviruses, which we named DAstV-4, was detected in Pekin ducks. Following full-length sequencing and sequence analysis, the variation between DAstV-4 and other avastroviruses in terms of lengths of genome and internal component was highlighted. Sequence identity and phylogenetic analyses based on the amino acid sequences of the three open reading frames (ORFs) clearly demonstrated that DAstV-4 was highly divergent from all other avastroviruses. Further analyses showed that DAstV-4 shared low levels of genome identities (50-58%) and high levels of mean amino acid genetic distances in the ORF2 sequences (0.520-0.801) with other avastroviruses, suggesting DAstV-4 may represent an additional avastrovirus species although the taxonomic relationship of DAstV-4 to DAstV-3 remains to be resolved. The present works contribute to the understanding of epidemiology, ecology and taxonomy of astroviruses in ducks. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. DNA barcodes for 1/1000 of the animal kingdom.

    PubMed

    Hebert, Paul D N; Dewaard, Jeremy R; Landry, Jean-François

    2010-06-23

    This study reports DNA barcodes for more than 1300 Lepidoptera species from the eastern half of North America, establishing that 99.3 per cent of these species possess diagnostic barcode sequences. Intraspecific divergences averaged just 0.43 per cent among this assemblage, but most values were lower. The mean was elevated by deep barcode divergences (greater than 2%) in 5.1 per cent of the species, often involving the sympatric occurrence of two barcode clusters. A few of these cases have been analysed in detail, revealing species overlooked by the current taxonomic system. This study also provided a large-scale test of the extent of regional divergence in barcode sequences, indicating that geographical differentiation in the Lepidoptera of eastern North America is small, even when comparisons involve populations as much as 2800 km apart. The present results affirm that a highly effective system for the identification of Lepidoptera in this region can be built with few records per species because of the limited intra-specific variation. As most terrestrial and marine taxa are likely to possess a similar pattern of population structure, an effective DNA-based identification system can be developed with modest effort.

  8. Genome differentiation of Drosophila melanogaster from a microclimate contrast in Evolution Canyon, Israel

    PubMed Central

    Hübner, Sariel; Rashkovetsky, Eugenia; Kim, Young Bun; Oh, Jung Hun; Michalak, Katarzyna; Weiner, Dmitry; Korol, Abraham B.; Nevo, Eviatar; Michalak, Pawel

    2013-01-01

    The opposite slopes of “Evolution Canyon” in Israel have served as a natural model system of adaptation to a microclimate contrast. Long-term studies of Drosophila melanogaster populations inhabiting the canyon have exhibited significant interslope divergence in thermal and drought stress resistance, candidate genes, mobile elements, habitat choice, mating discrimination, and wing-shape variation, all despite close physical proximity of the contrasting habitats, as well as substantial interslope migration. To examine patterns of genetic differentiation at the genome-wide level, we used high coverage sequencing of the flies’ genomes. A total of 572 genes were significantly different in allele frequency between the slopes, 106 out of which were associated with 74 significantly overrepresented gene ontology (GO) terms, particularly so with response to stimulus and developmental and reproductive processes, thus corroborating previous observations of interslope divergence in stress response, life history, and mating functions. There were at least 37 chromosomal “islands” of interslope divergence and low sequence polymorphism, plausible signatures of selective sweeps, more abundant in flies derived from one (north-facing) of the slopes. Positive correlation between local recombination rate and the level of nucleotide polymorphism was also found. PMID:24324170

  9. Distinguishing molecular features and clinical characteristics of a putative new rhinovirus species, human rhinovirus C (HRV C).

    PubMed

    McErlean, Peter; Shackelton, Laura A; Andrews, Emily; Webster, Dale R; Lambert, Stephen B; Nissen, Michael D; Sloots, Theo P; Mackay, Ian M

    2008-04-02

    Human rhinoviruses (HRVs) are the most frequently detected pathogens in acute respiratory tract infections (ARTIs) and yet little is known about the prevalence, recurrence, structure and clinical impact of individual members. During 2007, the complete coding sequences of six previously unknown and highly divergent HRV strains were reported. To catalogue the molecular and clinical features distinguishing the divergent HRV strains, we undertook, for the first time, in silico analyses of all available polyprotein sequences and performed retrospective reviews of the medical records of cases in which variants of the prototype strain, HRV-QPM, had been detected. Genomic analyses revealed that the six divergent strains, residing within a clade we previously called HRV A2, had the shortest polyprotein of all picornaviruses investigated. Structure-based amino acid alignments identified conserved motifs shared among members of the genus Rhinovirus as well as substantive deletions and insertions unique to the divergent strains. Deletions mostly affected regions encoding proteins traditionally involved in antigenicity and serving as HRV and HEV receptor footprints. Because the HRV A2 strains cannot yet be cultured, we created homology models of predicted HRV-QPM structural proteins. In silico comparisons confirmed that HRV-QPM was most closely related to the major group HRVs. HRV-QPM was most frequently detected in infants with expiratory wheezing or persistent cough who had been admitted to hospital and required supplemental oxygen. It was the only virus detected in 65% of positive individuals. These observations contributed to an objective clinical impact ranging from mild to severe. The divergent strains did not meet classification requirements for any existing species of the genus Rhinovirus or Enterovirus. HRV A2 strains should be partitioned into at least one new species, putatively called Human rhinovirus C, populated by members detected with high frequency, from individuals with respiratory symptoms requiring hospital admission.

  10. Resolving the tips of the tree of life: How much mitochondrialdata doe we need?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonett, Ronald M.; Macey, J. Robert; Boore, Jeffrey L.

    2005-04-29

    Mitochondrial (mt) DNA sequences are used extensively to reconstruct evolutionary relationships among recently diverged animals,and have constituted the most widely used markers for species- and generic-level relationships for the last decade or more. However, most studies to date have employed relatively small portions of the mt-genome. In contrast, complete mt-genomes primarily have been used to investigate deep divergences, including several studies of the amount of mt sequence necessary to recover ancient relationships. We sequenced and analyzed 24 complete mt-genomes from a group of salamander species exhibiting divergences typical of those in many species-level studies. We present the first comprehensive investigationmore » of the amount of mt sequence data necessary to consistently recover the mt-genome tree at this level, using parsimony and Bayesian methods. Both methods of phylogenetic analysis revealed extremely similar results. A surprising number of well supported, yet conflicting, relationships were found in trees based on fragments less than {approx}2000 nucleotides (nt), typical of the vast majority of the thousands of mt-based studies published to date. Large amounts of data (11,500+ nt) were necessary to consistently recover the whole mt-genome tree. Some relationships consistently were recovered with fragments of all sizes, but many nodes required the majority of the mt-genome to stabilize, particularly those associated with short internal branches. Although moderate amounts of data (2000-3000 nt) were adequate to recover mt-based relationships for which most nodes were congruent with the whole mt-genome tree, many thousands of nucleotides were necessary to resolve rapid bursts of evolution. Recent advances in genomics are making collection of large amounts of sequence data highly feasible, and our results provide the basis for comparative studies of other closely related groups to optimize mt sequence sampling and phylogenetic resolution at the ''tips'' of the Tree of Life.« less

  11. Genetic, Ecological and Morphological Divergence between Populations of the Endangered Mexican Sheartail Hummingbird (Doricha eliza)

    PubMed Central

    Licona-Vera, Yuyini; Ornelas, Juan Francisco

    2014-01-01

    The Mexican Sheartail (Doricha eliza), an endangered hummingbird, is endemic to Mexico where two populations have a disjunct distribution. One population is distributed along the northern tip of the Yucatan Peninsula whereas the other is mostly restricted to central Veracruz. Despite their disjunct distribution, previous work has failed to detect morphological or behavioral differences between these populations. Here we use variation in morphology, mtDNA and nuDNA sequences to determine the degree of morphological and molecular divergence between populations, their divergence time, and historical demography. We use species distribution modeling and niche divergence tests to infer the relative roles of vicariance and dispersal in driving divergence in the genus. Our Bayesian and maximum likelihood phylogenetic analyses revealed that Doricha eliza populations form a monophyletic clade and support their sister relationship with D. enicura. We found marked genetic differentiation, with reciprocal monophyly of haplotypes and highly restricted gene flow, supporting a history of isolation over the last 120,000 years. Genetic divergence between populations is consistent with the lack of overlap in environmental space and slight morphological differences between males. Our findings indicate that the divergence of the Veracruz and Yucatan populations is best explained by a combination of a short period of isolation exacerbated by subsequent divergence in climate conditions, and that rather than vicariance, the two isolated ranges of D. eliza are the product of recent colonization and divergence in isolation. PMID:24992589

  12. Cytogenetic evidence for asexual evolution of bdelloid rotifers.

    PubMed

    Mark Welch, Jessica L; Mark Welch, David B; Meselson, Matthew

    2004-02-10

    DNA sequencing has shown individual bdelloid rotifer genomes to contain two or more diverged copies of every gene examined and has revealed no closely similar copies. These and other findings are consistent with long-term asexual evolution of bdelloids. It is not entirely ruled out, however, that bdelloid genomes consist of previously undetected pairs of sequences so similar as to be identical over the regions sequenced, as might result if bdelloids were highly inbred sexual diploids or polyploids. Here, we employ fluorescent in situ hybridization with cosmid probes to determine the copy number and chromosomal distribution of the heat shock gene hsp82 and adjacent sequences in the bdelloid Philodina roseola. We conclude that the four copies identified by sequencing are the only ones present and that each is on a separate chromosome. Bdelloids therefore are not highly homozygous sexually reproducing diploids or polyploids.

  13. Phylogenetic analyses of complete mitochondrial genome sequences suggest a basal divergence of the enigmatic rodent Anomalurus

    PubMed Central

    Horner, David S; Lefkimmiatis, Konstantinos; Reyes, Aurelio; Gissi, Carmela; Saccone, Cecilia; Pesole, Graziano

    2007-01-01

    Background Phylogenetic relationships between Lagomorpha, Rodentia and Primates and their allies (Euarchontoglires) have long been debated. While it is now generally agreed that Rodentia constitutes a monophyletic sister-group of Lagomorpha and that this clade (Glires) is sister to Primates and Dermoptera, higher-level relationships within Rodentia remain contentious. Results We have sequenced and performed extensive evolutionary analyses on the mitochondrial genome of the scaly-tailed flying squirrel Anomalurus sp., an enigmatic rodent whose phylogenetic affinities have been obscure and extensively debated. Our phylogenetic analyses of the coding regions of available complete mitochondrial genome sequences from Euarchontoglires suggest that Anomalurus is a sister taxon to the Hystricognathi, and that this clade represents the most basal divergence among sampled Rodentia. Bayesian dating methods incorporating a relaxed molecular clock provide divergence-time estimates which are consistently in agreement with the fossil record and which indicate a rapid radiation within Glires around 60 million years ago. Conclusion Taken together, the data presented provide a working hypothesis as to the phylogenetic placement of Anomalurus, underline the utility of mitochondrial sequences in the resolution of even relatively deep divergences and go some way to explaining the difficulty of conclusively resolving higher-level relationships within Glires with available data and methodologies. PMID:17288612

  14. Characterization of regionally associated feline immunodeficiency virus (FIV) in bobcats (Lynx rufus).

    PubMed

    Lagana, Danielle M; Lee, Justin S; Lewis, Jesse S; Bevins, Sarah N; Carver, Scott; Sweanor, Linda L; McBride, Roy; McBride, Caleb; Crooks, Kevin R; VandeWoude, Sue

    2013-07-01

    Feline immunodeficiency virus (FIV) classically infects felid species with highly divergent species-specific FIVs. However, recent studies have detected an FIV strain infecting both bobcats (Lynx rufus) and pumas (Puma concolor) in California and Florida. To further investigate this observation, we evaluated FIV from bobcats in Florida (n=25) and Colorado (n=80) between 2008 and 2011. Partial viral sequences from five Florida bobcats cluster with previously published sequences from Florida panthers. We did not detect FIV in Colorado bobcats.

  15. When are pathogen genome sequences informative of transmission events?

    PubMed Central

    Ferguson, Neil; Jombart, Thibaut

    2018-01-01

    Recent years have seen the development of numerous methodologies for reconstructing transmission trees in infectious disease outbreaks from densely sampled whole genome sequence data. However, a fundamental and as of yet poorly addressed limitation of such approaches is the requirement for genetic diversity to arise on epidemiological timescales. Specifically, the position of infected individuals in a transmission tree can only be resolved by genetic data if mutations have accumulated between the sampled pathogen genomes. To quantify and compare the useful genetic diversity expected from genetic data in different pathogen outbreaks, we introduce here the concept of ‘transmission divergence’, defined as the number of mutations separating whole genome sequences sampled from transmission pairs. Using parameter values obtained by literature review, we simulate outbreak scenarios alongside sequence evolution using two models described in the literature to describe transmission divergence of ten major outbreak-causing pathogens. We find that while mean values vary significantly between the pathogens considered, their transmission divergence is generally very low, with many outbreaks characterised by large numbers of genetically identical transmission pairs. We describe the impact of transmission divergence on our ability to reconstruct outbreaks using two outbreak reconstruction tools, the R packages outbreaker and phybreak, and demonstrate that, in agreement with previous observations, genetic sequence data of rapidly evolving pathogens such as RNA viruses can provide valuable information on individual transmission events. Conversely, sequence data of pathogens with lower mean transmission divergence, including Streptococcus pneumoniae, Shigella sonnei and Clostridium difficile, provide little to no information about individual transmission events. Our results highlight the informational limitations of genetic sequence data in certain outbreak scenarios, and demonstrate the need to expand the toolkit of outbreak reconstruction tools to integrate other types of epidemiological data. PMID:29420641

  16. Phylogenetic and specificity studies of two-domain GNA-related lectins: generation of multispecificity through domain duplication and divergent evolution

    PubMed Central

    Van Damme, Els J. M.; Nakamura-Tsuruta, Sachiko; Smith, David F.; Ongenaert, Maté; Winter, Harry C.; Rougé, Pierre; Goldstein, Irwin J.; Mo, Hanqing; Kominami, Junko; Culerrier, Raphaël; Barre, Annick; Hirabayashi, Jun; Peumans, Willy J.

    2007-01-01

    A re-investigation of the occurrence and taxonomic distribution of proteins built up of protomers consisting of two tandem arrayed domains equivalent to the GNA [Galanthus nivalis (snowdrop) agglutinin] revealed that these are widespread among monotyledonous plants. Phylogenetic analysis of the available sequences indicated that these proteins do not represent a monophylogenetic group but most probably result from multiple independent domain duplication/in tandem insertion events. To corroborate the relationship between inter-domain sequence divergence and the widening of specificity range, a detailed comparative analysis was made of the sequences and specificity of a set of two-domain GNA-related lectins. Glycan microarray analyses, frontal affinity chromatography and surface plasmon resonance measurements demonstrated that the two-domain GNA-related lectins acquired a marked diversity in carbohydrate-binding specificity that strikingly contrasts the canonical exclusive specificity of their single domain counterparts towards mannose. Moreover, it appears that most two-domain GNA-related lectins interact with both high mannose and complex N-glycans and that this dual specificity relies on the simultaneous presence of at least two different independently acting binding sites. The combined phylogenetic, specificity and structural data strongly suggest that plants used domain duplication followed by divergent evolution as a mechanism to generate multispecific lectins from a single mannose-binding domain. Taking into account that the shift in specificity of some binding sites from high mannose to complex type N-glycans implies that the two-domain GNA-related lectins are primarily directed against typical animal glycans, it is tempting to speculate that plants developed two-domain GNA-related lectins for defence purposes. PMID:17288538

  17. Arbuscular mycorrhizal fungi (Glomeromycota) harbour ancient fungal tubulin genes that resemble those of the chytrids (Chytridiomycota).

    PubMed

    Corradi, Nicolas; Hijri, Mohamed; Fumagalli, Luca; Sanders, Ian R

    2004-11-01

    The genes encoding alpha- and beta-tubulins have been widely sampled in most major fungal phyla and they are useful tools for fungal phylogeny. Here, we report the first isolation of alpha-tubulin sequences from arbuscular mycorrhizal fungi (AMF). In parallel, AMF beta-tubulins were sampled and analysed to identify the presence of paralogs of this gene. The AMF alpha-tubulin amino acid phylogeny was congruent with the results previously reported for AMF beta-tubulins and showed that AMF tubulins group together at a basal position in the fungal clade and showed high sequence similarities with members of the Chytridiomycota. This is in contrast with phylogenies for other regions of the AMF genome. The amount and nature of substitutions are consistent with an ancient divergence of both orthologs and paralogs of AMF tubulins. At the amino acid level, however, AMF tubulins have hardly evolved from those of the chytrids. This is remarkable given that these two groups are ancient and the monophyletic Glomeromycota probably diverged from basal fungal ancestors at least 500 million years ago. The specific primers we designed for the AMF tubulins, together with the high molecular variation we found among the AMF species we analysed, make AMF tubulin sequences potentially useful for AMF identification purposes.

  18. Multiplex Degenerate Primer Design for Targeted Whole Genome Amplification of Many Viral Genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, Shea N.; Jaing, Crystal J.; Elsheikh, Maher M.

    Background . Targeted enrichment improves coverage of highly mutable viruses at low concentration in complex samples. Degenerate primers that anneal to conserved regions can facilitate amplification of divergent, low concentration variants, even when the strain present is unknown. Results . A tool for designing multiplex sets of degenerate sequencing primers to tile overlapping amplicons across multiple whole genomes is described. The new script, run_tiled_primers, is part of the PriMux software. Primers were designed for each segment of South American hemorrhagic fever viruses, tick-borne encephalitis, Henipaviruses, Arenaviruses, Filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, and Japanese encephalitis virus. Eachmore » group is highly diverse with as little as 5% genome consensus. Primer sets were computationally checked for nontarget cross reactions against the NCBI nucleotide sequence database. Primers for murine hepatitis virus were demonstrated in the lab to specifically amplify selected genes from a laboratory cultured strain that had undergone extensive passage in vitro and in vivo. Conclusions . This software should help researchers design multiplex sets of primers for targeted whole genome enrichment prior to sequencing to obtain better coverage of low titer, divergent viruses. Applications include viral discovery from a complex background and improved sensitivity and coverage of rapidly evolving strains or variants in a gene family.« less

  19. Multiplex Degenerate Primer Design for Targeted Whole Genome Amplification of Many Viral Genomes

    DOE PAGES

    Gardner, Shea N.; Jaing, Crystal J.; Elsheikh, Maher M.; ...

    2014-01-01

    Background . Targeted enrichment improves coverage of highly mutable viruses at low concentration in complex samples. Degenerate primers that anneal to conserved regions can facilitate amplification of divergent, low concentration variants, even when the strain present is unknown. Results . A tool for designing multiplex sets of degenerate sequencing primers to tile overlapping amplicons across multiple whole genomes is described. The new script, run_tiled_primers, is part of the PriMux software. Primers were designed for each segment of South American hemorrhagic fever viruses, tick-borne encephalitis, Henipaviruses, Arenaviruses, Filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, and Japanese encephalitis virus. Eachmore » group is highly diverse with as little as 5% genome consensus. Primer sets were computationally checked for nontarget cross reactions against the NCBI nucleotide sequence database. Primers for murine hepatitis virus were demonstrated in the lab to specifically amplify selected genes from a laboratory cultured strain that had undergone extensive passage in vitro and in vivo. Conclusions . This software should help researchers design multiplex sets of primers for targeted whole genome enrichment prior to sequencing to obtain better coverage of low titer, divergent viruses. Applications include viral discovery from a complex background and improved sensitivity and coverage of rapidly evolving strains or variants in a gene family.« less

  20. Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chain, Patrick S. G.; Carniel, E.; Larimer, Frank W

    2004-09-01

    Yersinia pestis, the causative agent of plague, is a highly uniform clone that diverged recently from the enteric pathogen Yersinia pseudotuberculosis. Despite their close genetic relationship, they differ radically in their pathogenicity and transmission. Here, we report the complete genomic sequence of Y. pseudotuberculosis IP32953 and its use for detailed genome comparisons with available Y. pestis sequences. Analyses of identified differences across a panel of Yersinia isolates from around the world reveal 32 Y. pestis chromosomal genes that, together with the two Y. pestis-specific plasmids, to our knowledge, represent the only new genetic material in Y. pestis acquired since themore » the divergence from Y. pseudotuberculosis. In contrast, 149 other pseudogenes (doubling the previous estimate) and 317 genes absent from Y. pestis were detected, indicating that as many as 13% of Y. pseudotuberculosis genes no longer function in Y. pestis. Extensive insertion sequence-mediated genome rearrangements and reductive evolution through massive gene loss, resulting in elimination and modification of preexisting gene expression pathways, appear to be more important than acquisition of genes in the evolution of Y. pestis. These results provide a sobering example of how a highly virulent epidemic clone can suddenly emerge from a less virulent, closely related progenitor.« less

  1. Century-scale Methylome Stability in a Recently Diverged Arabidopsis thaliana Lineage

    PubMed Central

    Müller, Jonas; Stegle, Oliver; Meyer, Rhonda C.; Wang, George; Schneeberger, Korbinian; Fitz, Joffrey; Altmann, Thomas; Bergelson, Joy; Borgwardt, Karsten; Weigel, Detlef

    2015-01-01

    There has been much excitement about the possibility that exposure to specific environments can induce an ecological memory in the form of whole-sale, genome-wide epigenetic changes that are maintained over many generations. In the model plant Arabidopsis thaliana, numerous heritable DNA methylation differences have been identified in greenhouse-grown isogenic lines, but it remains unknown how natural, highly variable environments affect the rate and spectrum of such changes. Here we present detailed methylome analyses in a geographically dispersed A. thaliana population that constitutes a collection of near-isogenic lines, diverged for at least a century from a common ancestor. Methylome variation largely reflected genetic distance, and was in many aspects similar to that of lines raised in uniform conditions. Thus, even when plants are grown in varying and diverse natural sites, genome-wide epigenetic variation accumulates mostly in a clock-like manner, and epigenetic divergence thus parallels the pattern of genome-wide DNA sequence divergence. PMID:25569172

  2. Genetic characterization of a Coxsackie A9 virus associated with aseptic meningitis in Alberta, Canada in 2010

    PubMed Central

    2013-01-01

    Background An unusually high incidence of aseptic meningitis caused by enteroviruses was noted in Alberta, Canada between March and October 2010. Sequence based typing was performed on the enterovirus positive samples to gain a better understanding of the molecular characteristics of the Coxsackie A9 (CVA-9) strain responsible for most cases in this outbreak. Methods Molecular typing was performed by amplification and sequencing of the VP2 region. The genomic sequence of one of the 2010 outbreak isolates was compared to a CVA-9 isolate from 2003 and the prototype sequence to study genetic drift and recombination. Results Of the 4323 samples tested, 213 were positive for enteroviruses (4.93%). The majority of the positives were detected in CSF samples (n = 157, 73.71%) and 81.94% of the sequenced isolates were typed as CVA-9. The sequenced CVA-9 positives were predominantly (94.16%) detected in patients ranging in age from 15 to 29 years and the peak months for detection were between March and October. Full genome sequence comparisons revealed that the CVA-9 viruses isolated in Alberta in 2003 and 2010 were highly homologous to the prototype CVA-9 in the structural VP1, VP2 and VP3 regions but divergent in the VP4, non-structural and non-coding regions. Conclusion The increase in cases of aseptic meningitis was associated with enterovirus CVA-9. Sequence divergence between the prototype strain of CVA-9 and the Alberta isolates suggests genetic drifting and/or recombination events, however the sequence was conserved in the antigenic regions determined by the VP1, VP2 and VP3 genes. These results suggest that the increase in CVA-9 cases likely did not result from the emergence of a radically different immune escape mutant. PMID:23521862

  3. Genetic variability in Melipona quinquefasciata (Hymenoptera, Apidae, Meliponini) from northeastern Brazil determined using the first internal transcribed spacer (ITS1).

    PubMed

    Pereira, J O P; Freitas, B M; Jorge, D M M; Torres, D C; Soares, C E A; Grangeiro, T B

    2009-01-01

    Melipona quinquefasciata is a ground-nesting South American stingless bee whose geographic distribution was believed to comprise only the central and southern states of Brazil. We obtained partial sequences (about 500-570 bp) of first internal transcribed spacer (ITS1) nuclear ribosomal DNA from Melipona specimens putatively identified as M. quinquefasciata collected from different localities in northeastern Brazil. To confirm the taxonomic identity of the northeastern samples, specimens from the state of Goiás (Central region of Brazil) were included for comparison. All sequences were deposited in GenBank (accession numbers EU073751-EU073759). The mean nucleotide divergence (excluding sites with insertions/deletions) in the ITS1 sequences was only 1.4%, ranging from 0 to 4.1%. When the sites with insertions/deletions were also taken into account, sequence divergences varied from 0 to 5.3%. In all pairwise comparisons, the ITS1 sequence from the specimens collected in Goiás was most divergent compared to the ITS1 sequences of the bees from the other locations. However, neighbor-joining phylogenetic analysis showed that all ITS1 sequences from northeastern specimens along with the sample of Goiás were resolved in a single clade with a bootstrap support of 100%. The ITS1 sequencing data thus support the occurrence of M. quinquefasciata in northeast Brazil.

  4. Characterisation of Asian Snakehead Murrel Channa striata (Channidae) in Malaysia: An Insight into Molecular Data and Morphological Approach

    PubMed Central

    Song, Li Min; Munian, Kaviarasu; Abd Rashid, Zulkafli; Bhassu, Subha

    2013-01-01

    Conservation is imperative for the Asian snakeheads Channa striata, as the species has been overfished due to its high market demand. Using maternal markers (mitochondrial cytochrome c oxidase subunit 1 gene (COI)), we discovered that evolutionary forces that drove population divergence did not show any match between the genetic and morphological divergence pattern. However, there is evidence of incomplete divergence patterns between the Borneo population and the populations from Peninsular Malaysia. This supports the claim of historical coalescence of C. striata during Pleistocene glaciations. Ecological heterogeneity caused high phenotypic variance and was not correlated with genetic variance among the populations. Spatial conservation assessments are required to manage different stock units. Results on DNA barcoding show no evidence of cryptic species in C. striata in Malaysia. The newly obtained sequences add to the database of freshwater fish DNA barcodes and in future will provide information relevant to identification of species. PMID:24396312

  5. Comparative Analysis of the Full Genome of Helicobacter pylori Isolate Sahul64 Identifies Genes of High Divergence

    PubMed Central

    Lu, Wei; Wise, Michael J.; Tay, Chin Yen; Windsor, Helen M.; Marshall, Barry J.; Peacock, Christopher

    2014-01-01

    Isolates of Helicobacter pylori can be classified phylogeographically. High genetic diversity and rapid microevolution are a hallmark of H. pylori genomes, a phenomenon that is proposed to play a functional role in persistence and colonization of diverse human populations. To provide further genomic evidence in the lineage of H. pylori and to further characterize diverse strains of this pathogen in different human populations, we report the finished genome sequence of Sahul64, an H. pylori strain isolated from an indigenous Australian. Our analysis identified genes that were highly divergent compared to the 38 publically available genomes, which include genes involved in the biosynthesis and modification of lipopolysaccharide, putative prophage genes, restriction modification components, and hypothetical genes. Furthermore, the virulence-associated vacA locus is a pseudogene and the cag pathogenicity island (cagPAI) is not present. However, the genome does contain a gene cluster associated with pathogenicity, including dupA. Our analysis found that with the addition of Sahul64 to the 38 genomes, the core genome content of H. pylori is reduced by approximately 14% (∼170 genes) and the pan-genome has expanded from 2,070 to 2,238 genes. We have identified three putative horizontally acquired regions, including one that is likely to have been acquired from the closely related Helicobacter cetorum prior to speciation. Our results suggest that Sahul64, with the absence of cagPAI, highly divergent cell envelope proteins, and a predicted nontransportable VacA protein, could be more highly adapted to ancient indigenous Australian people but with lower virulence potential compared to other sequenced and cagPAI-positive H. pylori strains. PMID:24375107

  6. Comparative analysis of the full genome of Helicobacter pylori isolate Sahul64 identifies genes of high divergence.

    PubMed

    Lu, Wei; Wise, Michael J; Tay, Chin Yen; Windsor, Helen M; Marshall, Barry J; Peacock, Christopher; Perkins, Tim

    2014-03-01

    Isolates of Helicobacter pylori can be classified phylogeographically. High genetic diversity and rapid microevolution are a hallmark of H. pylori genomes, a phenomenon that is proposed to play a functional role in persistence and colonization of diverse human populations. To provide further genomic evidence in the lineage of H. pylori and to further characterize diverse strains of this pathogen in different human populations, we report the finished genome sequence of Sahul64, an H. pylori strain isolated from an indigenous Australian. Our analysis identified genes that were highly divergent compared to the 38 publically available genomes, which include genes involved in the biosynthesis and modification of lipopolysaccharide, putative prophage genes, restriction modification components, and hypothetical genes. Furthermore, the virulence-associated vacA locus is a pseudogene and the cag pathogenicity island (cagPAI) is not present. However, the genome does contain a gene cluster associated with pathogenicity, including dupA. Our analysis found that with the addition of Sahul64 to the 38 genomes, the core genome content of H. pylori is reduced by approximately 14% (∼170 genes) and the pan-genome has expanded from 2,070 to 2,238 genes. We have identified three putative horizontally acquired regions, including one that is likely to have been acquired from the closely related Helicobacter cetorum prior to speciation. Our results suggest that Sahul64, with the absence of cagPAI, highly divergent cell envelope proteins, and a predicted nontransportable VacA protein, could be more highly adapted to ancient indigenous Australian people but with lower virulence potential compared to other sequenced and cagPAI-positive H. pylori strains.

  7. The Plasmodium gaboni genome illuminates allelic dimorphism of immunologically important surface antigens in P. falciparum.

    PubMed

    Roy, Scott William

    2015-12-01

    In the deadly human malaria parasite Plasmodium falciparum, several major merozoite surface proteins (MSPs) show a striking pattern of allelic diversity called allelic dimorphism (AD). In AD, the vast majority of observed alleles fall into two highly divergent allelic classes, with recombinant alleles being rare or not observed, presumably due to repression by natural selection (recombination suppression, or RS). The three AD loci, merozoite surface proteins (MSPs) 1, 2, and 6, along with MSP3, which also exhibits RS among four allelic classes, can be collectively called AD/RS. The causes of AD/RS and the evolutionary history of allelic diversity at these loci remain mysterious. The few available sequences from a single closely related chimpanzee parasite, P. reichenowi, have suggested that for 3/4 loci, AD/RS is an ancient state that has been retained in P. falciparum since well before the P. falciparum-P. reichenowi ancestor. On the other hand, based on comparative sequence analysis, we recently suggested that (i) AD/RS P. falciparum loci have undergone interallelic recombination over longer evolutionary times (on the timescale of recent speciation events), and thus (ii) AD/RS may be a recent phenomenon. The recent publication of genomic sequencing efforts for P. gaboni, an outgroup to P. falciparum and P. reichenowi, allows for improved reconstruction of the evolutionary history of these loci. In this work, I report genic sequence for P. gaboni for all four AD/RS P. falciparum loci (MSP1, 2, 3, and 6). Comparison of these sequences with available P. falciparum and P. reichenowi data strengthens the evidence for interallelic recombination over the evolutionary history of these species and also strengthens the case that AD/RS at these loci is ancient. Combined with previous results, these data provide evidence that AD/RS at different loci has evolved at several different times in the evolutionary history of P. falciparum: (i) before the P. gaboni-P. falciparum divergence, for much of MSP1 and MSP3; (ii) between the P. gaboni-P. falciparum and P. reichenowi-P. falciparum divergences, for the 5' end of the AD region of MSP6 and block 3 of MSP1; (iii) near the P. reichenowi-P. falciparum divergence, for the 3' end of the AD region of MSP6; and (iv) after the P. reichenowi-P. falciparum divergence, for MSP2. Based on these results, I suggest a new hypothesis for long-term evolutionary maintenance of AD/RS by recombination within allelic groups. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Sequence divergence of the red and green visual pigments in great apes and humans.

    PubMed Central

    Deeb, S S; Jorgensen, A L; Battisti, L; Iwasaki, L; Motulsky, A G

    1994-01-01

    We have determined the coding sequences of red and green visual pigment genes of the chimpanzee, gorilla, and orangutan. The deduced amino acid sequences of these pigments are highly homologous to the equivalent human pigments. None of the amino acid differences occurred at sites that were previously shown to influence pigment absorption characteristics. Therefore, we predict the spectra of red and green pigments of the apes to have wavelengths of maximum absorption that differ by < 2 nm from the equivalent human pigments and that color vision in these nonhuman primates will be very similar, if not identical, to that in humans. A total of 14 within-species polymorphisms (6 involving silent substitutions) were observed in the coding sequences of the red and green pigment genes of the great apes. Remarkably, the polymorphisms at 6 of these sites had been observed in human populations, suggesting that they predated the evolution of higher primates. Alleles at polymorphic sites were often shared between the red and green pigment genes. The average synonymous rate of divergence of red from green sequences was approximately 1/10th that estimated for other proteins of higher primates, indicating the involvement of gene conversion in generating these polymorphisms. The high degree of homology and juxtaposition of these two genes on the X chromosome has promoted unequal recombination and/or gene conversion that led to sequence homogenization. However, natural selection operated to maintain the degree of separation in peak absorbance between the red and green pigments that resulted in optimal chromatic discrimination. This represents a unique case of molecular coevolution between two homologous genes that functionally interact at the behavioral level. PMID:8041777

  9. Origin and domestication of papaya Yh chromosome.

    PubMed

    VanBuren, Robert; Zeng, Fanchang; Chen, Cuixia; Zhang, Jisen; Wai, Ching Man; Han, Jennifer; Aryal, Rishi; Gschwend, Andrea R; Wang, Jianping; Na, Jong-Kuk; Huang, Lixian; Zhang, Lingmao; Miao, Wenjing; Gou, Jiqing; Arro, Jie; Guyot, Romain; Moore, Richard C; Wang, Ming-Li; Zee, Francis; Charlesworth, Deborah; Moore, Paul H; Yu, Qingyi; Ming, Ray

    2015-04-01

    Sex in papaya is controlled by a pair of nascent sex chromosomes. Females are XX, and two slightly different Y chromosomes distinguish males (XY) and hermaphrodites (XY(h)). The hermaphrodite-specific region of the Y(h) chromosome (HSY) and its X chromosome counterpart were sequenced and analyzed previously. We now report the sequence of the entire male-specific region of the Y (MSY). We used a BAC-by-BAC approach to sequence the MSY and resequence the Y regions of 24 wild males and the Y(h) regions of 12 cultivated hermaphrodites. The MSY and HSY regions have highly similar gene content and structure, and only 0.4% sequence divergence. The MSY sequences from wild males include three distinct haplotypes, associated with the populations' geographic locations, but gene flow is detected for other genomic regions. The Y(h) sequence is highly similar to one Y haplotype (MSY3) found only in wild dioecious populations from the north Pacific region of Costa Rica. The low MSY3-Y(h) divergence supports the hypothesis that hermaphrodite papaya is a product of human domestication. We estimate that Y(h) arose only ∼ 4000 yr ago, well after crop plant domestication in Mesoamerica >6200 yr ago but coinciding with the rise of the Maya civilization. The Y(h) chromosome has lower nucleotide diversity than the Y, or the genome regions that are not fully sex-linked, consistent with a domestication bottleneck. The identification of the ancestral MSY3 haplotype will expedite investigation of the mutation leading to the domestication of the hermaphrodite Y(h) chromosome. In turn, this mutation should identify the gene that was affected by the carpel-suppressing mutation that was involved in the evolution of males. © 2015 VanBuren et al.; Published by Cold Spring Harbor Laboratory Press.

  10. Origin and domestication of papaya Yh chromosome

    PubMed Central

    VanBuren, Robert; Zeng, Fanchang; Chen, Cuixia; Zhang, Jisen; Wai, Ching Man; Han, Jennifer; Aryal, Rishi; Gschwend, Andrea R.; Wang, Jianping; Na, Jong-Kuk; Huang, Lixian; Zhang, Lingmao; Miao, Wenjing; Gou, Jiqing; Arro, Jie; Guyot, Romain; Moore, Richard C.; Wang, Ming-Li; Zee, Francis; Charlesworth, Deborah; Moore, Paul H.; Yu, Qingyi; Ming, Ray

    2015-01-01

    Sex in papaya is controlled by a pair of nascent sex chromosomes. Females are XX, and two slightly different Y chromosomes distinguish males (XY) and hermaphrodites (XYh). The hermaphrodite-specific region of the Yh chromosome (HSY) and its X chromosome counterpart were sequenced and analyzed previously. We now report the sequence of the entire male-specific region of the Y (MSY). We used a BAC-by-BAC approach to sequence the MSY and resequence the Y regions of 24 wild males and the Yh regions of 12 cultivated hermaphrodites. The MSY and HSY regions have highly similar gene content and structure, and only 0.4% sequence divergence. The MSY sequences from wild males include three distinct haplotypes, associated with the populations’ geographic locations, but gene flow is detected for other genomic regions. The Yh sequence is highly similar to one Y haplotype (MSY3) found only in wild dioecious populations from the north Pacific region of Costa Rica. The low MSY3-Yh divergence supports the hypothesis that hermaphrodite papaya is a product of human domestication. We estimate that Yh arose only ∼4000 yr ago, well after crop plant domestication in Mesoamerica >6200 yr ago but coinciding with the rise of the Maya civilization. The Yh chromosome has lower nucleotide diversity than the Y, or the genome regions that are not fully sex-linked, consistent with a domestication bottleneck. The identification of the ancestral MSY3 haplotype will expedite investigation of the mutation leading to the domestication of the hermaphrodite Yh chromosome. In turn, this mutation should identify the gene that was affected by the carpel-suppressing mutation that was involved in the evolution of males. PMID:25762551

  11. Ikoma Lyssavirus, Highly Divergent Novel Lyssavirus in an African Civet1

    PubMed Central

    Marston, Denise A.; Horton, Daniel L.; Ngeleja, Chanasa; Hampson, Katie; McElhinney, Lorraine M.; Banyard, Ashley C.; Haydon, Daniel; Cleaveland, Sarah; Rupprecht, Charles E.; Bigambo, Machunde; Lembo, Tiziana

    2012-01-01

    Evidence in support of a novel lyssavirus was obtained from brain samples of an African civet in Tanzania. Results of phylogenetic analysis of nucleoprotein gene sequences from representative Lyssavirus species and this novel lyssavirus provided strong empirical evidence that this is a new lyssavirus species, designated Ikoma lyssavirus. PMID:22469151

  12. Starmerella reginensis f.a., sp. nov. and Starmerella kourouensis f.a., sp. nov., isolated from flowers in French Guiana.

    PubMed

    Amoikon, Tiemele Laurent Simon; Grondin, Cécile; Djéni, Théodore N'Dédé; Jacques, Noémie; Casaregola, Serge

    2018-05-21

    Analysis of yeasts isolated from various biotopes in French Guiana led to the identification of two strains isolated from flowers and designated CLIB 1634 T and CLIB 1707 T . Comparison of the D1/D2 domain of the large subunit (LSU D1/D2) rRNA gene sequences of CLIB 1634 T and CLIB 1707 T to those in the GenBank database revealed that these strains belong to the Starmerella clade. Strain CLIB 1634 T was shown to diverge from the closely related Starmerella apicola type strain CBS 2868 T with a sequence divergence of 1.34 and 1.30 %, in the LSU D1/D2 rRNA gene and internal transcribed spacer (ITS) sequences respectively. Strain CLIB 1634 T and Candida apicola CBS 2868 T diverged by 3.81 and 14.96 % at the level of the protein-coding gene partial sequences EF-1α and RPB2, respectively. CLIB 1707 T was found to have sequence divergence of 3.88 and 9.16 % in the LSU D1/D2 rRNA gene and ITS, respectively, from that of the most closely related species Starmerella ratchasimensis type strain CBS 10611 T . The species Starmerella reginensis f.a., sp. nov. and Starmerella kourouensis f.a., sp. nov. are proposed to accommodate strains CLIB 1634 T (=CBS 15247 T ) and CLIB 1707 T (=CBS 15257 T ), respectively.

  13. Intraspecific variation in Cryptocaryon irritans.

    PubMed

    Diggles, B K; Adlard, R D

    1997-01-01

    Intraspecific variation in the ciliate Cryptocaryon irritans was examined using sequences of the first internal transcribed spacer region (ITS-1) of ribosomal DNA (rDNA) combined with developmental and morphological characters. Amplified rDNA sequences consisting of 151 bases of the flanking 18 S and 5.8 S regions, and the entire ITS-1 region (169 or 170 bases), were determined and compared for 16 isolates of C. irritans from Australia, Israel and the USA. There was one variable base between isolates in the 18 S region and 11 variable bases in the ITS-1 region. Despite their similar morphology, significant sequence variation (4.1% divergence) and developmental differences indicate that Australian C. irritans isolates from estuarine (Moreton Bay) and coral reef (Heron Island) environments are distinct. The Heron Island isolate was genetically closer to morphologically dissimilar isolates from Israel (1.8% divergence) and the USA (2.3% divergence) than it was to the Moreton Bay isolates. Three isolates maintained in our laboratory since February 1994 differed in sequence from earlier laboratory isolates (2.9% to 3.5% divergence), even though all were similar morphologically and originated from the same source. During this time the sequence of the isolates from wild fish in Moreton Bay remained unchanged. These genetic differences indicate the existence of a founder effect in laboratory populations of C. irritans. The genetic variation found here, combined with known morphological and developmental differences, is used to characterise four strains of C. irritans.

  14. Natural Allelic Variations in Highly Polyploidy Saccharum Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Jian; Yang, Xiping; Resende, Jr., Marcio F. R.

    Sugarcane ( Saccharum spp.) is an important sugar and biofuel crop with high polyploid and complex genomes. The Saccharum complex, comprised of Saccharum genus and a few related genera, are important genetic resources for sugarcane breeding. A large amount of natural variation exists within the Saccharum complex. Though understanding their allelic variation has been challenging, it is critical to dissect allelic structure and to identify the alleles controlling important traits in sugarcane. To characterize natural variations in Saccharum complex, a target enrichment sequencing approach was used to assay 12 representative germplasm accessions. In total, 55,946 highly efficient probes were designedmore » based on the sorghum genome and sugarcane unigene set targeting a total of 6 Mb of the sugarcane genome. A pipeline specifically tailored for polyploid sequence variants and genotype calling was established. BWAmem and sorghum genome approved to be an acceptable aligner and reference for sugarcane target enrichment sequence analysis, respectively. Genetic variations including 1,166,066 non-redundant SNPs, 150,421 InDels, 919 gene copy number variations, and 1,257 gene presence/absence variations were detected. SNPs from three different callers (Samtools, Freebayes, and GATK) were compared and the validation rates were nearly 90%. Based on the SNP loci of each accession and their ploidy levels, 999,258 single dosage SNPs were identified and most loci were estimated as largely homozygotes. An average of 34,397 haplotype blocks for each accession was inferred. The highest divergence time among the Saccharum spp. was estimated as 1.2 million years ago (MYA). Saccharum spp. diverged from Erianthus and Sorghum approximately 5 and 6 MYA, respectively. Furthermore, the target enrichment sequencing approach provided an effective way to discover and catalog natural allelic variation in highly polyploid or heterozygous genomes.« less

  15. Natural Allelic Variations in Highly Polyploidy Saccharum Complex

    DOE PAGES

    Song, Jian; Yang, Xiping; Resende, Jr., Marcio F. R.; ...

    2016-06-08

    Sugarcane ( Saccharum spp.) is an important sugar and biofuel crop with high polyploid and complex genomes. The Saccharum complex, comprised of Saccharum genus and a few related genera, are important genetic resources for sugarcane breeding. A large amount of natural variation exists within the Saccharum complex. Though understanding their allelic variation has been challenging, it is critical to dissect allelic structure and to identify the alleles controlling important traits in sugarcane. To characterize natural variations in Saccharum complex, a target enrichment sequencing approach was used to assay 12 representative germplasm accessions. In total, 55,946 highly efficient probes were designedmore » based on the sorghum genome and sugarcane unigene set targeting a total of 6 Mb of the sugarcane genome. A pipeline specifically tailored for polyploid sequence variants and genotype calling was established. BWAmem and sorghum genome approved to be an acceptable aligner and reference for sugarcane target enrichment sequence analysis, respectively. Genetic variations including 1,166,066 non-redundant SNPs, 150,421 InDels, 919 gene copy number variations, and 1,257 gene presence/absence variations were detected. SNPs from three different callers (Samtools, Freebayes, and GATK) were compared and the validation rates were nearly 90%. Based on the SNP loci of each accession and their ploidy levels, 999,258 single dosage SNPs were identified and most loci were estimated as largely homozygotes. An average of 34,397 haplotype blocks for each accession was inferred. The highest divergence time among the Saccharum spp. was estimated as 1.2 million years ago (MYA). Saccharum spp. diverged from Erianthus and Sorghum approximately 5 and 6 MYA, respectively. Furthermore, the target enrichment sequencing approach provided an effective way to discover and catalog natural allelic variation in highly polyploid or heterozygous genomes.« less

  16. Biophysical models of protein evolution: Understanding the patterns of evolutionary sequence divergence

    PubMed Central

    Echave, Julian; Wilke, Claus O.

    2018-01-01

    For decades, rates of protein evolution have been interpreted in terms of the vague concept of “functional importance”. Slowly evolving proteins or sites within proteins were assumed to be more functionally important and thus subject to stronger selection pressure. More recently, biophysical models of protein evolution, which combine evolutionary theory with protein biophysics, have completely revolutionized our view of the forces that shape sequence divergence. Slowly evolving proteins have been found to evolve slowly because of selection against toxic misfolding and misinteractions, linking their rate of evolution primarily to their abundance. Similarly, most slowly evolving sites in proteins are not directly involved in function, but mutating them has large impacts on protein structure and stability. Here, we review the studies of the emergent field of biophysical protein evolution that have shaped our current understanding of sequence divergence patterns. We also propose future research directions to develop this nascent field. PMID:28301766

  17. Evidence of Divergent Amino Acid Usage in Comparative Analyses of R5- and X4-Associated HIV-1 Vpr Sequences

    PubMed Central

    Antell, Gregory C.; Zhong, Wen; Kercher, Katherine; Passic, Shendra; Williams, Jean; Liu, Yucheng; James, Tony; Jacobson, Jeffrey M.; Szep, Zsofia

    2017-01-01

    Vpr is an HIV-1 accessory protein that plays numerous roles during viral replication, and some of which are cell type dependent. To test the hypothesis that HIV-1 tropism extends beyond the envelope into the vpr gene, studies were performed to identify the associations between coreceptor usage and Vpr variation in HIV-1-infected patients. Colinear HIV-1 Env-V3 and Vpr amino acid sequences were obtained from the LANL HIV-1 sequence database and from well-suppressed patients in the Drexel/Temple Medicine CNS AIDS Research and Eradication Study (CARES) Cohort. Genotypic classification of Env-V3 sequences as X4 (CXCR4-utilizing) or R5 (CCR5-utilizing) was used to group colinear Vpr sequences. To reveal the sequences associated with a specific coreceptor usage genotype, Vpr amino acid sequences were assessed for amino acid diversity and Jensen-Shannon divergence between the two groups. Five amino acid alphabets were used to comprehensively examine the impact of amino acid substitutions involving side chains with similar physiochemical properties. Positions 36, 37, 41, 89, and 96 of Vpr were characterized by statistically significant divergence across multiple alphabets when X4 and R5 sequence groups were compared. In addition, consensus amino acid switches were found at positions 37 and 41 in comparisons of the R5 and X4 sequence populations. These results suggest an evolutionary link between Vpr and gp120 in HIV-1-infected patients. PMID:28620613

  18. TRStalker: an efficient heuristic for finding fuzzy tandem repeats.

    PubMed

    Pellegrini, Marco; Renda, M Elena; Vecchio, Alessio

    2010-06-15

    Genomes in higher eukaryotic organisms contain a substantial amount of repeated sequences. Tandem Repeats (TRs) constitute a large class of repetitive sequences that are originated via phenomena such as replication slippage and are characterized by close spatial contiguity. They play an important role in several molecular regulatory mechanisms, and also in several diseases (e.g. in the group of trinucleotide repeat disorders). While for TRs with a low or medium level of divergence the current methods are rather effective, the problem of detecting TRs with higher divergence (fuzzy TRs) is still open. The detection of fuzzy TRs is propaedeutic to enriching our view of their role in regulatory mechanisms and diseases. Fuzzy TRs are also important as tools to shed light on the evolutionary history of the genome, where higher divergence correlates with more remote duplication events. We have developed an algorithm (christened TRStalker) with the aim of detecting efficiently TRs that are hard to detect because of their inherent fuzziness, due to high levels of base substitutions, insertions and deletions. To attain this goal, we developed heuristics to solve a Steiner version of the problem for which the fuzziness is measured with respect to a motif string not necessarily present in the input string. This problem is akin to the 'generalized median string' that is known to be an NP-hard problem. Experiments with both synthetic and biological sequences demonstrate that our method performs better than current state of the art for fuzzy TRs and that the fuzzy TRs of the type we detect are indeed present in important biological sequences. TRStalker will be integrated in the web-based TRs Discovery Service (TReaDS) at bioalgo.iit.cnr.it. Supplementary data are available at Bioinformatics online.

  19. Evolutionary trends of European bat lyssavirus type 2 including genetic characterization of Finnish strains of human and bat origin 24 years apart.

    PubMed

    Jakava-Viljanen, Miia; Miia, Jakava-Viljanen; Nokireki, Tiina; Tiina, Nokireki; Sironen, Tarja; Tarja, Sironen; Vapalahti, Olli; Olli, Vapalahti; Sihvonen, Liisa; Liisa, Sihvonen; Huovilainen, Anita; Anita, Huovilainen

    2015-06-01

    Among other Lyssaviruses, Daubenton's and pond-bat-related European bat lyssavirus type 2 (EBLV-2) can cause human rabies. To investigate the diversity and evolutionary trends of EBLV-2, complete genome sequences of two Finnish isolates were analysed. One originated from a human case in 1985, and the other originated from a bat in 2009. The overall nucleotide and deduced amino acid sequence identity of the two Finnish isolates were high, as well as the similarity to fully sequenced EBLV-2 strains originating from the UK and the Netherlands. In phylogenetic analysis, the EBLV-2 strains formed a monophyletic group that was separate from other bat-type lyssaviruses, with significant support. EBLV-2 shared the most recent common ancestry with Bokeloh bat lyssavirus (BBLV) and Khujan virus (KHUV). EBLV-2 showed limited diversity compared to RABV and appears to be well adapted to its host bat species. The slow tempo of viral evolution was evident in the estimations of divergence times for EBLV-2: the current diversity was estimated to have built up during the last 2000 years, and EBLV-2 diverged from KHUV about 8000 years ago. In a phylogenetic tree of partial N gene sequences, the Finnish EBLV-2 strains clustered with strains from Central Europe, supporting the hypothesis that EBLV-2 circulating in Finland might have a Central European origin. The Finnish EBLV-2 strains and a Swiss strain were estimated to have diverged from other EBLV-2 strains during the last 1000 years, and the two Finnish strains appear to have evolved from a common ancestor during the last 200 years.

  20. The Divergence of Neandertal and Modern Human Y Chromosomes

    PubMed Central

    Mendez, Fernando L.; Poznik, G. David; Castellano, Sergi; Bustamante, Carlos D.

    2016-01-01

    Sequencing the genomes of extinct hominids has reshaped our understanding of modern human origins. Here, we analyze ∼120 kb of exome-captured Y-chromosome DNA from a Neandertal individual from El Sidrón, Spain. We investigate its divergence from orthologous chimpanzee and modern human sequences and find strong support for a model that places the Neandertal lineage as an outgroup to modern human Y chromosomes—including A00, the highly divergent basal haplogroup. We estimate that the time to the most recent common ancestor (TMRCA) of Neandertal and modern human Y chromosomes is ∼588 thousand years ago (kya) (95% confidence interval [CI]: 447–806 kya). This is ∼2.1 (95% CI: 1.7–2.9) times longer than the TMRCA of A00 and other extant modern human Y-chromosome lineages. This estimate suggests that the Y-chromosome divergence mirrors the population divergence of Neandertals and modern human ancestors, and it refutes alternative scenarios of a relatively recent or super-archaic origin of Neandertal Y chromosomes. The fact that the Neandertal Y we describe has never been observed in modern humans suggests that the lineage is most likely extinct. We identify protein-coding differences between Neandertal and modern human Y chromosomes, including potentially damaging changes to PCDH11Y, TMSB4Y, USP9Y, and KDM5D. Three of these changes are missense mutations in genes that produce male-specific minor histocompatibility (H-Y) antigens. Antigens derived from KDM5D, for example, are thought to elicit a maternal immune response during gestation. It is possible that incompatibilities at one or more of these genes played a role in the reproductive isolation of the two groups. PMID:27058445

  1. The Divergence of Neandertal and Modern Human Y Chromosomes.

    PubMed

    Mendez, Fernando L; Poznik, G David; Castellano, Sergi; Bustamante, Carlos D

    2016-04-07

    Sequencing the genomes of extinct hominids has reshaped our understanding of modern human origins. Here, we analyze ∼120 kb of exome-captured Y-chromosome DNA from a Neandertal individual from El Sidrón, Spain. We investigate its divergence from orthologous chimpanzee and modern human sequences and find strong support for a model that places the Neandertal lineage as an outgroup to modern human Y chromosomes-including A00, the highly divergent basal haplogroup. We estimate that the time to the most recent common ancestor (TMRCA) of Neandertal and modern human Y chromosomes is ∼588 thousand years ago (kya) (95% confidence interval [CI]: 447-806 kya). This is ∼2.1 (95% CI: 1.7-2.9) times longer than the TMRCA of A00 and other extant modern human Y-chromosome lineages. This estimate suggests that the Y-chromosome divergence mirrors the population divergence of Neandertals and modern human ancestors, and it refutes alternative scenarios of a relatively recent or super-archaic origin of Neandertal Y chromosomes. The fact that the Neandertal Y we describe has never been observed in modern humans suggests that the lineage is most likely extinct. We identify protein-coding differences between Neandertal and modern human Y chromosomes, including potentially damaging changes to PCDH11Y, TMSB4Y, USP9Y, and KDM5D. Three of these changes are missense mutations in genes that produce male-specific minor histocompatibility (H-Y) antigens. Antigens derived from KDM5D, for example, are thought to elicit a maternal immune response during gestation. It is possible that incompatibilities at one or more of these genes played a role in the reproductive isolation of the two groups. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. DNA Barcode Analysis of Thrips (Thysanoptera) Diversity in Pakistan Reveals Cryptic Species Complexes.

    PubMed

    Iftikhar, Romana; Ashfaq, Muhammad; Rasool, Akhtar; Hebert, Paul D N

    2016-01-01

    Although thrips are globally important crop pests and vectors of viral disease, species identifications are difficult because of their small size and inconspicuous morphological differences. Sequence variation in the mitochondrial COI-5' (DNA barcode) region has proven effective for the identification of species in many groups of insect pests. We analyzed barcode sequence variation among 471 thrips from various plant hosts in north-central Pakistan. The Barcode Index Number (BIN) system assigned these sequences to 55 BINs, while the Automatic Barcode Gap Discovery detected 56 partitions, a count that coincided with the number of monophyletic lineages recognized by Neighbor-Joining analysis and Bayesian inference. Congeneric species showed an average of 19% sequence divergence (range = 5.6% - 27%) at COI, while intraspecific distances averaged 0.6% (range = 0.0% - 7.6%). BIN analysis suggested that all intraspecific divergence >3.0% actually involved a species complex. In fact, sequences for three major pest species (Haplothrips reuteri, Thrips palmi, Thrips tabaci), and one predatory thrips (Aeolothrips intermedius) showed deep intraspecific divergences, providing evidence that each is a cryptic species complex. The study compiles the first barcode reference library for the thrips of Pakistan, and examines global haplotype diversity in four important pest thrips.

  3. Extensive concerted evolution of rice paralogs and the road to regaining independence.

    PubMed

    Wang, Xiyin; Tang, Haibao; Bowers, John E; Feltus, Frank A; Paterson, Andrew H

    2007-11-01

    Many genes duplicated by whole-genome duplications (WGDs) are more similar to one another than expected. We investigated whether concerted evolution through conversion and crossing over, well-known to affect tandem gene clusters, also affects dispersed paralogs. Genome sequences for two Oryza subspecies reveal appreciable gene conversion in the approximately 0.4 MY since their divergence, with a gradual progression toward independent evolution of older paralogs. Since divergence from subspecies indica, approximately 8% of japonica paralogs produced 5-7 MYA on chromosomes 11 and 12 have been affected by gene conversion and several reciprocal exchanges of chromosomal segments, while approximately 70-MY-old "paleologs" resulting from a genome duplication (GD) show much less conversion. Sequence similarity analysis in proximal gene clusters also suggests more conversion between younger paralogs. About 8% of paleologs may have been converted since rice-sorghum divergence approximately 41 MYA. Domain-encoding sequences are more frequently converted than nondomain sequences, suggesting a sort of circularity--that sequences conserved by selection may be further conserved by relatively frequent conversion. The higher level of concerted evolution in the 5-7 MY-old segmental duplication may reflect the behavior of many genomes within the first few million years after duplication or polyploidization.

  4. srRNA evolution and phylogenetic relationships of the genus Naegleria (Protista: Rhizopoda).

    PubMed

    Baverstock, P R; Illana, S; Christy, P E; Robinson, B S; Johnson, A M

    1989-05-01

    A rapid RNA sequencing technique was used to partially sequence the small-subunit ribosomal RNA (srRNA) of four species of the amoeboid genus Naegleria. The extent of nucleotide sequence divergence between the two most divergent species was roughly similar to that found between mammals and frogs. However, the pattern of variation among the Naegleria species was quite different from that found for those species of tetrapods characterized to date. A phylogenetic analysis of the consensus Naegleria sequence showed that Naegleria was not monophyletic with either Acanthamoeba castellanii or Dictyostelium discoideum, two other amoebas for which sequences were available. It was shown that the semiconserved regions of the srRNA molecule evolve in a clocklike fashion and that the clock is time dependent rather than generation dependent.

  5. Evidence of host-associated divergence from coral-eating snails (genus Coralliophila) in the Coral Triangle

    NASA Astrophysics Data System (ADS)

    Simmonds, Sara E.; Chou, Vincent; Cheng, Samantha H.; Rachmawati, Rita; Calumpong, Hilconida P.; Ngurah Mahardika, G.; Barber, Paul H.

    2018-06-01

    We studied how host-associations and geography shape the genetic structure of sister species of marine snails Coralliophila radula (A. Adams, 1853) and C. violacea (Kiener, 1836). These obligate ectoparasites prey upon corals and are sympatric throughout much of their ranges in coral reefs of the tropical and subtropical Indo-Pacific. We tested for population genetic structure of snails in relation to geography and their host corals using mtDNA (COI) sequences in minimum spanning trees and AMOVAs. We also examined the evolutionary relationships of their Porites host coral species using maximum likelihood trees of RAD-seq (restriction site-associated DNA sequencing) loci mapped to a reference transcriptome. A maximum likelihood tree of host corals revealed three distinct clades. Coralliophila radula showed a pronounced genetic break across the Sunda Shelf ( Φ CT = 0.735) but exhibited no genetic structure with respect to host. C. violacea exhibited significant geographic structure ( Φ CT = 0.427), with divergence among Hawaiian populations, the Coral Triangle and the Indian Ocean. Notably, C. violacea showed evidence of ecological divergence; two lineages were associated with different groups of host coral species, one widespread found at all sites, and the other restricted to the Coral Triangle. Sympatric populations of C. violacea found on different suites of coral species were highly divergent ( Φ CT = 0.561, d = 5.13%), suggesting that symbiotic relationships may contribute to lineage diversification in the Coral Triangle.

  6. De novo identification of highly diverged protein repeats by probabilistic consistency.

    PubMed

    Biegert, A; Söding, J

    2008-03-15

    An estimated 25% of all eukaryotic proteins contain repeats, which underlines the importance of duplication for evolving new protein functions. Internal repeats often correspond to structural or functional units in proteins. Methods capable of identifying diverged repeated segments or domains at the sequence level can therefore assist in predicting domain structures, inferring hypotheses about function and mechanism, and investigating the evolution of proteins from smaller fragments. We present HHrepID, a method for the de novo identification of repeats in protein sequences. It is able to detect the sequence signature of structural repeats in many proteins that have not yet been known to possess internal sequence symmetry, such as outer membrane beta-barrels. HHrepID uses HMM-HMM comparison to exploit evolutionary information in the form of multiple sequence alignments of homologs. In contrast to a previous method, the new method (1) generates a multiple alignment of repeats; (2) utilizes the transitive nature of homology through a novel merging procedure with fully probabilistic treatment of alignments; (3) improves alignment quality through an algorithm that maximizes the expected accuracy; (4) is able to identify different kinds of repeats within complex architectures by a probabilistic domain boundary detection method and (5) improves sensitivity through a new approach to assess statistical significance. Server: http://toolkit.tuebingen.mpg.de/hhrepid; Executables: ftp://ftp.tuebingen.mpg.de/pub/protevo/HHrepID

  7. Genetic divergence between populations of feral and domestic forms of a mosquito disease vector assessed by transcriptomics

    PubMed Central

    2015-01-01

    Culex pipiens, an invasive mosquito and vector of West Nile virus in the US, has two morphologically indistinguishable forms that differ dramatically in behavior and physiology. Cx. pipiens form pipiens is primarily a bird-feeding temperate mosquito, while the sub-tropical Cx. pipiens form molestus thrives in sewers and feeds on mammals. Because the feral form can diapause during the cold winters but the domestic form cannot, the two Cx. pipiens forms are allopatric in northern Europe and, although viable, hybrids are rare. Cx. pipiens form molestus has spread across all inhabited continents and hybrids of the two forms are common in the US. Here we elucidate the genes and gene families with the greatest divergence rates between these phenotypically diverged mosquito populations, and discuss them in light of their potential biological and ecological effects. After generating and assembling novel transcriptome data for each population, we performed pairwise tests for nonsynonymous divergence (Ka) of homologous coding sequences and examined gene ontology terms that were statistically over-represented in those sequences with the greatest divergence rates. We identified genes involved in digestion (serine endopeptidases), innate immunity (fibrinogens and α-macroglobulins), hemostasis (D7 salivary proteins), olfaction (odorant binding proteins) and chitin binding (peritrophic matrix proteins). By examining molecular divergence between closely related yet phenotypically divergent forms of the same species, our results provide insights into the identity of rapidly-evolving genes between incipient species. Additionally, we found that families of signal transducers, ATP synthases and transcription regulators remained identical at the amino acid level, thus constituting conserved components of the Cx. pipiens proteome. We provide a reference with which to gauge the divergence reported in this analysis by performing a comparison of transcriptome sequences from conspecific (yet allopatric) populations of another member of the Cx. pipiens complex, Cx. quinquefasciatus. PMID:25755934

  8. Can DNA barcoding accurately discriminate megadiverse Neotropical freshwater fish fauna?

    PubMed Central

    2013-01-01

    Background The megadiverse Neotropical freshwater ichthyofauna is the richest in the world with approximately 6,000 recognized species. Interestingly, they are distributed among only 17 orders, and almost 80% of them belong to only three orders: Characiformes, Siluriformes and Perciformes. Moreover, evidence based on molecular data has shown that most of the diversification of the Neotropical ichthyofauna occurred recently. These characteristics make the taxonomy and identification of this fauna a great challenge, even when using molecular approaches. In this context, the present study aimed to test the effectiveness of the barcoding methodology (COI gene) to identify the mega diverse freshwater fish fauna from the Neotropical region. For this purpose, 254 species of fishes were analyzed from the Upper Parana River basin, an area representative of the larger Neotropical region. Results Of the 254 species analyzed, 252 were correctly identified by their barcode sequences (99.2%). The main K2P intra- and inter-specific genetic divergence values (0.3% and 6.8%, respectively) were relatively low compared with similar values reported in the literature, reflecting the higher number of closely related species belonging to a few higher taxa and their recent radiation. Moreover, for 84 pairs of species that showed low levels of genetic divergence (<2%), application of a complementary character-based nucleotide diagnostic approach proved useful in discriminating them. Additionally, 14 species displayed high intra-specific genetic divergence (>2%), pointing to at least 23 strong candidates for new species. Conclusions Our study is the first to examine a large number of freshwater fish species from the Neotropical area, including a large number of closely related species. The results confirmed the efficacy of the barcoding methodology to identify a recently radiated, megadiverse fauna, discriminating 99.2% of the analyzed species. The power of the barcode sequences to identify species, even with low interspecific divergence, gives us an idea of the distribution of inter-specific genetic divergence in these megadiverse fauna. The results also revealed hidden genetic divergences suggestive of reproductive isolation and putative cryptic speciation in some species (23 candidates for new species). Finally, our study constituted an important contribution to the international Barcoding of Life (iBOL.org) project, providing barcode sequences for use in identification of these species by experts and non-experts, and allowing them to be available for use in other applications. PMID:23497346

  9. Complete genome sequence of Ikoma lyssavirus.

    PubMed

    Marston, Denise A; Ellis, Richard J; Horton, Daniel L; Kuzmin, Ivan V; Wise, Emma L; McElhinney, Lorraine M; Banyard, Ashley C; Ngeleja, Chanasa; Keyyu, Julius; Cleaveland, Sarah; Lembo, Tiziana; Rupprecht, Charles E; Fooks, Anthony R

    2012-09-01

    Lyssaviruses (family Rhabdoviridae) constitute one of the most important groups of viral zoonoses globally. All lyssaviruses cause the disease rabies, an acute progressive encephalitis for which, once symptoms occur, there is no effective cure. Currently available vaccines are highly protective against the predominantly circulating lyssavirus species. Using next-generation sequencing technologies, we have obtained the whole-genome sequence for a novel lyssavirus, Ikoma lyssavirus (IKOV), isolated from an African civet in Tanzania displaying clinical signs of rabies. Genetically, this virus is the most divergent within the genus Lyssavirus. Characterization of the genome will help to improve our understanding of lyssavirus diversity and enable investigation into vaccine-induced immunity and protection.

  10. Detection of Novel Sequences Related to African Swine Fever Virus in Human Serum and Sewage▿ †

    PubMed Central

    Loh, Joy; Zhao, Guoyan; Presti, Rachel M.; Holtz, Lori R.; Finkbeiner, Stacy R.; Droit, Lindsay; Villasana, Zoilmar; Todd, Collin; Pipas, James M.; Calgua, Byron; Girones, Rosina; Wang, David; Virgin, Herbert W.

    2009-01-01

    The family Asfarviridae contains only a single virus species, African swine fever virus (ASFV). ASFV is a viral agent with significant economic impact due to its devastating effects on populations of domesticated pigs during outbreaks but has not been reported to infect humans. We report here the discovery of novel viral sequences in human serum and sewage which are clearly related to the asfarvirus family but highly divergent from ASFV. Detection of these sequences suggests that greater genetic diversity may exist among asfarviruses than previously thought and raises the possibility that human infection by asfarviruses may occur. PMID:19812170

  11. A gyrovirus infecting a sea bird

    PubMed Central

    Li, Linlin; Pesavento, Patricia A.; Gaynor, Anne M.; Duerr, Rebecca S.; Phan, Tung Gia; Zhang, Wen; Deng, Xutao

    2015-01-01

    We characterized the genome of a highly divergent gyrovirus (GyV8) in the spleen and uropygial gland tissues of a diseased northern fulmar (Fulmarus glacialis), a pelagic bird beached in San Francisco, California. No other exogenous viral sequences could be identified using viral metagenomics. The small circular DNA genome shared no significant nucleotide sequence identity, and only 38–42 % amino acid sequence identity in VP1, with any of the previously identified gyroviruses. GyV8 is the first member of the third major phylogenetic clade of this viral genus and the first gyrovirus detected in an avian species other than chicken. PMID:26036564

  12. Extreme MHC class I diversity in the sedge warbler (Acrocephalus schoenobaenus); selection patterns and allelic divergence suggest that different genes have different functions.

    PubMed

    Biedrzycka, Aleksandra; O'Connor, Emily; Sebastian, Alvaro; Migalska, Magdalena; Radwan, Jacek; Zając, Tadeusz; Bielański, Wojciech; Solarz, Wojciech; Ćmiel, Adam; Westerdahl, Helena

    2017-07-05

    Recent work suggests that gene duplications may play an important role in the evolution of immunity genes. Passerine birds, and in particular Sylvioidea warblers, have highly duplicated major histocompatibility complex (MHC) genes, which are key in immunity, compared to other vertebrates. However, reasons for this high MHC gene copy number are yet unclear. High-throughput sequencing (HTS) allows MHC genotyping even in individuals with extremely duplicated genes. This HTS data can reveal evidence of selection, which may help to unravel the putative functions of different gene copies, i.e. neofunctionalization. We performed exhaustive genotyping of MHC class I in a Sylvioidea warbler, the sedge warbler, Acrocephalus schoenobaenus, using the Illumina MiSeq technique on individuals from a wild study population. The MHC diversity in 863 genotyped individuals by far exceeds that of any other bird species described to date. A single individual could carry up to 65 different alleles, a large proportion of which are expressed (transcribed). The MHC alleles were of three different lengths differing in evidence of selection, diversity and divergence within our study population. Alleles without any deletions and alleles containing a 6 bp deletion showed characteristics of classical MHC genes, with evidence of multiple sites subject to positive selection and high sequence divergence. In contrast, alleles containing a 3 bp deletion had no sites subject to positive selection and had low divergence. Our results suggest that sedge warbler MHC alleles that either have no deletion, or contain a 6 bp deletion, encode classical antigen presenting MHC molecules. In contrast, MHC alleles containing a 3 bp deletion may encode molecules with a different function. This study demonstrates that highly duplicated MHC genes can be characterised with HTS and that selection patterns can be useful for revealing neofunctionalization. Importantly, our results highlight the need to consider the putative function of different MHC genes in future studies of MHC in relation to disease resistance and fitness.

  13. Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs.

    PubMed Central

    Horai, S; Hayasaka, K; Kondo, R; Tsugane, K; Takahata, N

    1995-01-01

    We analyzed the complete mitochondrial DNA (mtDNA) sequences of three humans (African, European, and Japanese), three African apes (common and pygmy chimpanzees, and gorilla), and one orangutan in an attempt to estimate most accurately the substitution rates and divergence times of hominoid mtDNAs. Nonsynonymous substitutions and substitutions in RNA genes have accumulated with an approximately clock-like regularity. From these substitutions and under the assumption that the orangutan and African apes diverged 13 million years ago, we obtained a divergence time for humans and chimpanzees of 4.9 million years. This divergence time permitted calibration of the synonymous substitution rate (3.89 x 10(-8)/site per year). To obtain the substitution rate in the displacement (D)-loop region, we compared the three human mtDNAs and measured the relative abundance of substitutions in the D-loop region and at synonymous sites. The estimated substitution rate in the D-loop region was 7.00 x 10(-8)/site per year. Using both synonymous and D-loop substitutions, we inferred the age of the last common ancestor of the human mtDNAs as 143,000 +/- 18,000 years. The shallow ancestry of human mtDNAs, together with the observation that the African sequence is the most diverged among humans, strongly supports the recent African origin of modern humans, Homo sapiens sapiens. PMID:7530363

  14. Population genomics of parallel hybrid zones in the mimetic butterflies, H. melpomene and H. erato

    PubMed Central

    Ruiz, Mayté; Salazar, Patricio; Counterman, Brian; Medina, Jose Alejandro; Ortiz-Zuazaga, Humberto; Morrison, Anna; Papa, Riccardo

    2014-01-01

    Hybrid zones can be valuable tools for studying evolution and identifying genomic regions responsible for adaptive divergence and underlying phenotypic variation. Hybrid zones between subspecies of Heliconius butterflies can be very narrow and are maintained by strong selection acting on color pattern. The comimetic species, H. erato and H. melpomene, have parallel hybrid zones in which both species undergo a change from one color pattern form to another. We use restriction-associated DNA sequencing to obtain several thousand genome-wide sequence markers and use these to analyze patterns of population divergence across two pairs of parallel hybrid zones in Peru and Ecuador. We compare two approaches for analysis of this type of data—alignment to a reference genome and de novo assembly—and find that alignment gives the best results for species both closely (H. melpomene) and distantly (H. erato, ∼15% divergent) related to the reference sequence. Our results confirm that the color pattern controlling loci account for the majority of divergent regions across the genome, but we also detect other divergent regions apparently unlinked to color pattern differences. We also use association mapping to identify previously unmapped color pattern loci, in particular the Ro locus. Finally, we identify a new cryptic population of H. timareta in Ecuador, which occurs at relatively low altitude and is mimetic with H. melpomene malleti. PMID:24823669

  15. Chloroplast genomes of Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea: Structures and comparative analysis.

    PubMed

    Asaf, Sajjad; Khan, Abdul Latif; Khan, Muhammad Aaqil; Waqas, Muhammad; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung

    2017-08-08

    We investigated the complete chloroplast (cp) genomes of non-model Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea using Illumina paired-end sequencing to understand their genetic organization and structure. Detailed bioinformatics analysis revealed genome sizes of both subspecies ranging between 154.4~154.5 kbp, with a large single-copy region (84,197~84,158 bp), a small single-copy region (17,738~17,813 bp) and pair of inverted repeats (IRa/IRb; 26,264~26,259 bp). Both cp genomes encode 130 genes, including 85 protein-coding genes, eight ribosomal RNA genes and 37 transfer RNA genes. Whole cp genome comparison of A. halleri ssp. gemmifera and A. lyrata ssp. petraea, along with ten other Arabidopsis species, showed an overall high degree of sequence similarity, with divergence among some intergenic spacers. The location and distribution of repeat sequences were determined, and sequence divergences of shared genes were calculated among related species. Comparative phylogenetic analysis of the entire genomic data set and 70 shared genes between both cp genomes confirmed the previous phylogeny and generated phylogenetic trees with the same topologies. The sister species of A. halleri ssp. gemmifera is A. umezawana, whereas the closest relative of A. lyrata spp. petraea is A. arenicola.

  16. A survey of current practices for genomic sequencing test interpretation and reporting processes in US laboratories.

    PubMed

    O'Daniel, Julianne M; McLaughlin, Heather M; Amendola, Laura M; Bale, Sherri J; Berg, Jonathan S; Bick, David; Bowling, Kevin M; Chao, Elizabeth C; Chung, Wendy K; Conlin, Laura K; Cooper, Gregory M; Das, Soma; Deignan, Joshua L; Dorschner, Michael O; Evans, James P; Ghazani, Arezou A; Goddard, Katrina A; Gornick, Michele; Farwell Hagman, Kelly D; Hambuch, Tina; Hegde, Madhuri; Hindorff, Lucia A; Holm, Ingrid A; Jarvik, Gail P; Knight Johnson, Amy; Mighion, Lindsey; Morra, Massimo; Plon, Sharon E; Punj, Sumit; Richards, C Sue; Santani, Avni; Shirts, Brian H; Spinner, Nancy B; Tang, Sha; Weck, Karen E; Wolf, Susan M; Yang, Yaping; Rehm, Heidi L

    2017-05-01

    While the diagnostic success of genomic sequencing expands, the complexity of this testing should not be overlooked. Numerous laboratory processes are required to support the identification, interpretation, and reporting of clinically significant variants. This study aimed to examine the workflow and reporting procedures among US laboratories to highlight shared practices and identify areas in need of standardization. Surveys and follow-up interviews were conducted with laboratories offering exome and/or genome sequencing to support a research program or for routine clinical services. The 73-item survey elicited multiple choice and free-text responses that were later clarified with phone interviews. Twenty-one laboratories participated. Practices highly concordant across all groups included consent documentation, multiperson case review, and enabling patient opt-out of incidental or secondary findings analysis. Noted divergence included use of phenotypic data to inform case analysis and interpretation and reporting of case-specific quality metrics and methods. Few laboratory policies detailed procedures for data reanalysis, data sharing, or patient access to data. This study provides an overview of practices and policies of experienced exome and genome sequencing laboratories. The results enable broader consideration of which practices are becoming standard approaches, where divergence remains, and areas of development in best practice guidelines that may be helpful.Genet Med advance online publication 03 Novemeber 2016.

  17. Chloroplast Genome Evolution in Early Diverged Leptosporangiate Ferns

    PubMed Central

    Kim, Hyoung Tae; Chung, Myong Gi; Kim, Ki-Joong

    2014-01-01

    In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. cinnamomea. In addition, putative RNA editing sites in the cp genome were rare in O. cinnamomea, even though the sites were frequently predicted to be present in leptosporangiate ferns. The complete cp genome sequence of Diplopterygium glaucum (Gleicheniales) was 151,007 bp and has a 9.7 kb inversion between the trnL-CAA and trnV-GCA genes when compared to O. cinnamomea. Several repeated sequences were detected around the inversion break points. The complete cp genome sequence of Lygodium japonicum (Schizaeales) was 157,142 bp and a deletion of the rpoC1 intron was detected. This intron loss was shared by all of the studied species of the genus Lygodium. The GC contents and the effective numbers of co-dons (ENCs) in ferns varied significantly when compared to seed plants. The ENC values of the early diverged leptosporangiate ferns showed intermediate levels between eusporangiate and core leptosporangiate ferns. However, our phylogenetic tree based on all of the cp gene sequences clearly indicated that the cp genome similarity between O. cinnamomea (Osmundales) and eusporangiate ferns are symplesiomorphies, rather than synapomorphies. Therefore, our data is in agreement with the view that Osmundales is a distinct early diverged lineage in the leptosporangiate ferns. PMID:24823358

  18. Chloroplast genome evolution in early diverged leptosporangiate ferns.

    PubMed

    Kim, Hyoung Tae; Chung, Myong Gi; Kim, Ki-Joong

    2014-05-01

    In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. cinnamomea. In addition, putative RNA editing sites in the cp genome were rare in O. cinnamomea, even though the sites were frequently predicted to be present in leptosporangiate ferns. The complete cp genome sequence of Diplopterygium glaucum (Gleicheniales) was 151,007 bp and has a 9.7 kb inversion between the trnL-CAA and trnVGCA genes when compared to O. cinnamomea. Several repeated sequences were detected around the inversion break points. The complete cp genome sequence of Lygodium japonicum (Schizaeales) was 157,142 bp and a deletion of the rpoC1 intron was detected. This intron loss was shared by all of the studied species of the genus Lygodium. The GC contents and the effective numbers of codons (ENCs) in ferns varied significantly when compared to seed plants. The ENC values of the early diverged leptosporangiate ferns showed intermediate levels between eusporangiate and core leptosporangiate ferns. However, our phylogenetic tree based on all of the cp gene sequences clearly indicated that the cp genome similarity between O. cinnamomea (Osmundales) and eusporangiate ferns are symplesiomorphies, rather than synapomorphies. Therefore, our data is in agreement with the view that Osmundales is a distinct early diverged lineage in the leptosporangiate ferns.

  19. Novel non-parametric models to estimate evolutionary rates and divergence times from heterochronous sequence data.

    PubMed

    Fourment, Mathieu; Holmes, Edward C

    2014-07-24

    Early methods for estimating divergence times from gene sequence data relied on the assumption of a molecular clock. More sophisticated methods were created to model rate variation and used auto-correlation of rates, local clocks, or the so called "uncorrelated relaxed clock" where substitution rates are assumed to be drawn from a parametric distribution. In the case of Bayesian inference methods the impact of the prior on branching times is not clearly understood, and if the amount of data is limited the posterior could be strongly influenced by the prior. We develop a maximum likelihood method--Physher--that uses local or discrete clocks to estimate evolutionary rates and divergence times from heterochronous sequence data. Using two empirical data sets we show that our discrete clock estimates are similar to those obtained by other methods, and that Physher outperformed some methods in the estimation of the root age of an influenza virus data set. A simulation analysis suggests that Physher can outperform a Bayesian method when the real topology contains two long branches below the root node, even when evolution is strongly clock-like. These results suggest it is advisable to use a variety of methods to estimate evolutionary rates and divergence times from heterochronous sequence data. Physher and the associated data sets used here are available online at http://code.google.com/p/physher/.

  20. Two divergent endo-beta-1,4-glucanase genes exhibit overlapping expression in ripening fruit and abscising flowers.

    PubMed Central

    Lashbrook, C C; Gonzalez-Bosch, C; Bennett, A B

    1994-01-01

    Two structurally divergent endo-beta-1,4-glucanase (EGase) cDNAs were cloned from tomato. Although both cDNAs (Cel1 and Cel2) encode potentially glycosylated, basic proteins of 51 to 53 kD and possess multiple amino acid domains conserved in both plant and microbial EGases, Cel1 and Cel2 exhibit only 50% amino acid identity at the overall sequence level. Amino acid sequence comparisons to other plant EGases indicate that tomato Cel1 is most similar to bean abscission zone EGase (68%), whereas Cel2 exhibits greatest sequence identity to avocado fruit EGase (57%). Sequence comparisons suggest the presence of at least two structurally divergent EGase families in plants. Unlike ripening avocado fruit and bean abscission zones in which a single EGase mRNA predominates, EGase expression in tomato reflects the overlapping accumulation of both Cel1 and Cel2 transcripts in ripening fruit and in plant organs undergoing cell separation. Cel1 mRNA contributes significantly to total EGase mRNA accumulation within plant organs undergoing cell separation (abscission zones and mature anthers), whereas Cel2 mRNA is most abundant in ripening fruit. The overlapping expression of divergent EGase genes within a single species may suggest that multiple activities are required for the cooperative disassembly of cell wall components during fruit ripening, floral abscission, and anther dehiscence. PMID:7994180

  1. Genetic divergence between freshwater and marine morphs of alewife (Alosa pseudoharengus): a 'next-generation' sequencing analysis.

    PubMed

    Czesny, Sergiusz; Epifanio, John; Michalak, Pawel

    2012-01-01

    Alewife Alosa pseudoharengus, a small clupeid fish native to Atlantic Ocean, has recently (∼150 years ago) invaded the North American Great Lakes and despite challenges of freshwater environment its populations exploded and disrupted local food web structures. This range expansion has been accompanied by dramatic changes at all levels of organization. Growth rates, size at maturation, or fecundity are only a few of the most distinct morphological and life history traits that contrast the two alewife morphs. A question arises to what extent these rapidly evolving differences between marine and freshwater varieties result from regulatory (including phenotypic plasticity) or structural mutations. To gain insights into expression changes and sequence divergence between marine and freshwater alewives, we sequenced transcriptomes of individuals from Lake Michigan and Atlantic Ocean. Population specific single nucleotide polymorphisms were rare but interestingly occurred in sequences of genes that also tended to show large differences in expression. Our results show that the striking phenotypic divergence between anadromous and lake alewives can be attributed to massive regulatory modifications rather than coding changes.

  2. Genetic Divergence between Freshwater and Marine Morphs of Alewife (Alosa pseudoharengus): A ‘Next-Generation’ Sequencing Analysis

    PubMed Central

    Czesny, Sergiusz; Epifanio, John; Michalak, Pawel

    2012-01-01

    Alewife Alosa pseudoharengus, a small clupeid fish native to Atlantic Ocean, has recently (∼150 years ago) invaded the North American Great Lakes and despite challenges of freshwater environment its populations exploded and disrupted local food web structures. This range expansion has been accompanied by dramatic changes at all levels of organization. Growth rates, size at maturation, or fecundity are only a few of the most distinct morphological and life history traits that contrast the two alewife morphs. A question arises to what extent these rapidly evolving differences between marine and freshwater varieties result from regulatory (including phenotypic plasticity) or structural mutations. To gain insights into expression changes and sequence divergence between marine and freshwater alewives, we sequenced transcriptomes of individuals from Lake Michigan and Atlantic Ocean. Population specific single nucleotide polymorphisms were rare but interestingly occurred in sequences of genes that also tended to show large differences in expression. Our results show that the striking phenotypic divergence between anadromous and lake alewives can be attributed to massive regulatory modifications rather than coding changes. PMID:22438868

  3. Molecular phylogeography of the brown bear (Ursus arctos) in Northeastern Asia based on analyses of complete mitochondrial DNA sequences.

    PubMed

    Hirata, Daisuke; Mano, Tsutomu; Abramov, Alexei V; Baryshnikov, Gennady F; Kosintsev, Pavel A; Vorobiev, Alexandr A; Raichev, Evgeny G; Tsunoda, Hiroshi; Kaneko, Yayoi; Murata, Koichi; Fukui, Daisuke; Masuda, Ryuichi

    2013-07-01

    To further elucidate the migration history of the brown bears (Ursus arctos) on Hokkaido Island, Japan, we analyzed the complete mitochondrial DNA (mtDNA) sequences of 35 brown bears from Hokkaido, the southern Kuril Islands (Etorofu and Kunashiri), Sakhalin Island, and the Eurasian Continent (continental Russia, Bulgaria, and Tibet), and those of four polar bears. Based on these sequences, we reconstructed the maternal phylogeny of the brown bear and estimated divergence times to investigate the timing of brown bear migrations, especially in northeastern Eurasia. Our gene tree showed the mtDNA haplotypes of all 73 brown and polar bears to be divided into eight divergent lineages. The brown bear on Hokkaido was divided into three lineages (central, eastern, and southern). The Sakhalin brown bear grouped with eastern European and western Alaskan brown bears. Etorofu and Kunashiri brown bears were closely related to eastern Hokkaido brown bears and could have diverged from the eastern Hokkaido lineage after formation of the channel between Hokkaido and the southern Kuril Islands. Tibetan brown bears diverged early in the eastern lineage. Southern Hokkaido brown bears were closely related to North American brown bears.

  4. Comparative sequence analysis of Mycobacterium leprae and the new leprosy-causing Mycobacterium lepromatosis.

    PubMed

    Han, Xiang Y; Sizer, Kurt C; Thompson, Erika J; Kabanja, Juma; Li, Jun; Hu, Peter; Gómez-Valero, Laura; Silva, Francisco J

    2009-10-01

    Mycobacterium lepromatosis is a newly discovered leprosy-causing organism. Preliminary phylogenetic analysis of its 16S rRNA gene and a few other gene segments revealed significant divergence from Mycobacterium leprae, a well-known cause of leprosy, that justifies the status of M. lepromatosis as a new species. In this study we analyzed the sequences of 20 genes and pseudogenes (22,814 nucleotides). Overall, the level of matching of these sequences with M. leprae sequences was 90.9%, which substantiated the species-level difference; the levels of matching for the 16S rRNA genes and 14 protein-encoding genes were 98.0% and 93.1%, respectively, but the level of matching for five pseudogenes was only 79.1%. Five conserved protein-encoding genes were selected to construct phylogenetic trees and to calculate the numbers of synonymous substitutions (dS values) and nonsynonymous substitutions (dN values) in the two species. Robust phylogenetic trees constructed using concatenated alignment of these genes placed M. lepromatosis and M. leprae in a tight cluster with long terminal branches, implying that the divergence occurred long ago. The dS and dN values were also much higher than those for other closest pairs of mycobacteria. The dS values were 14 to 28% of the dS values for M. leprae and Mycobacterium tuberculosis, a more divergent pair of species. These results thus indicate that M. lepromatosis and M. leprae diverged approximately 10 million years ago. The M. lepromatosis pseudogenes analyzed that were also pseudogenes in M. leprae showed nearly neutral evolution, and their relative ages were similar to those of M. leprae pseudogenes, suggesting that they were pseudogenes before divergence. Taken together, the results described above indicate that M. lepromatosis and M. leprae diverged from a common ancestor after the massive gene inactivation event described previously for M. leprae.

  5. Impact of duplicate gene copies on phylogenetic analysis and divergence time estimates in butterflies

    PubMed Central

    Pohl, Nélida; Sison-Mangus, Marilou P; Yee, Emily N; Liswi, Saif W; Briscoe, Adriana D

    2009-01-01

    Background The increase in availability of genomic sequences for a wide range of organisms has revealed gene duplication to be a relatively common event. Encounters with duplicate gene copies have consequently become almost inevitable in the context of collecting gene sequences for inferring species trees. Here we examine the effect of incorporating duplicate gene copies evolving at different rates on tree reconstruction and time estimation of recent and deep divergences in butterflies. Results Sequences from ultraviolet-sensitive (UVRh), blue-sensitive (BRh), and long-wavelength sensitive (LWRh) opsins,EF-1α and COI were obtained from 27 taxa representing the five major butterfly families (5535 bp total). Both BRh and LWRh are present in multiple copies in some butterfly lineages and the different copies evolve at different rates. Regardless of the phylogenetic reconstruction method used, we found that analyses of combined data sets using either slower or faster evolving copies of duplicate genes resulted in a single topology in agreement with our current understanding of butterfly family relationships based on morphology and molecules. Interestingly, individual analyses of BRh and LWRh sequences also recovered these family-level relationships. Two different relaxed clock methods resulted in similar divergence time estimates at the shallower nodes in the tree, regardless of whether faster or slower evolving copies were used, with larger discrepancies observed at deeper nodes in the phylogeny. The time of divergence between the monarch butterfly Danaus plexippus and the queen D. gilippus (15.3–35.6 Mya) was found to be much older than the time of divergence between monarch co-mimic Limenitis archippus and red-spotted purple L. arthemis (4.7–13.6 Mya), and overlapping with the time of divergence of the co-mimetic passionflower butterflies Heliconius erato and H. melpomene (13.5–26.1 Mya). Our family-level results are congruent with recent estimates found in the literature and indicate an age of 84–113 million years for the divergence of all butterfly families. Conclusion These results are consistent with diversification of the butterfly families following the radiation of angiosperms and suggest that some classes of opsin genes may be usefully employed for both phylogenetic reconstruction and divergence time estimation. PMID:19439087

  6. Correlation of fitness landscapes from three orthologous TIM barrels originates from sequence and structure constraints

    PubMed Central

    Chan, Yvonne H.; Venev, Sergey V.; Zeldovich, Konstantin B.; Matthews, C. Robert

    2017-01-01

    Sequence divergence of orthologous proteins enables adaptation to environmental stresses and promotes evolution of novel functions. Limits on evolution imposed by constraints on sequence and structure were explored using a model TIM barrel protein, indole-3-glycerol phosphate synthase (IGPS). Fitness effects of point mutations in three phylogenetically divergent IGPS proteins during adaptation to temperature stress were probed by auxotrophic complementation of yeast with prokaryotic, thermophilic IGPS. Analysis of beneficial mutations pointed to an unexpected, long-range allosteric pathway towards the active site of the protein. Significant correlations between the fitness landscapes of distant orthologues implicate both sequence and structure as primary forces in defining the TIM barrel fitness landscape and suggest that fitness landscapes can be translocated in sequence space. Exploration of fitness landscapes in the context of a protein fold provides a strategy for elucidating the sequence-structure-fitness relationships in other common motifs. PMID:28262665

  7. Evolutionary Insights from a Genetically Divergent Hantavirus Harbored by the European Common Mole (Talpa europaea)

    PubMed Central

    Kang, Hae Ji; Bennett, Shannon N.; Sumibcay, Laarni; Arai, Satoru; Hope, Andrew G.; Mocz, Gabor; Song, Jin-Won; Cook, Joseph A.; Yanagihara, Richard

    2009-01-01

    Background The discovery of genetically distinct hantaviruses in shrews (Order Soricomorpha, Family Soricidae) from widely separated geographic regions challenges the hypothesis that rodents (Order Rodentia, Family Muridae and Cricetidae) are the primordial reservoir hosts of hantaviruses and also predicts that other soricomorphs harbor hantaviruses. Recently, novel hantavirus genomes have been detected in moles of the Family Talpidae, including the Japanese shrew mole (Urotrichus talpoides) and American shrew mole (Neurotrichus gibbsii). We present new insights into the evolutionary history of hantaviruses gained from a highly divergent hantavirus, designated Nova virus (NVAV), identified in the European common mole (Talpa europaea) captured in Hungary. Methodology/Principal Findings Pair-wise alignment and comparison of the full-length S- and L-genomic segments indicated moderately low sequence similarity of 54–65% and 46–63% at the nucleotide and amino acid levels, respectively, between NVAV and representative rodent- and soricid-borne hantaviruses. Despite the high degree of sequence divergence, the predicted secondary structure of the NVAV nucleocapsid protein exhibited the characteristic coiled-coil domains at the amino-terminal end, and the L-segment motifs, typically found in hantaviruses, were well conserved. Phylogenetic analyses, using maximum-likelihood and Bayesian methods, showed that NVAV formed a distinct clade that was evolutionarily distant from all other hantaviruses. Conclusions Newly identified hantaviruses harbored by shrews and moles support long-standing virus-host relationships and suggest that ancestral soricomorphs, rather than rodents, may have been the early or original mammalian hosts. PMID:19582155

  8. A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution

    USDA-ARS?s Scientific Manuscript database

    We report a chromosome-scale assembly and analysis of the Daucus carota genome, an important source of provitamin A in the human diet and the first sequenced genome among members of the Euasterid II clade. We characterized two new polyploidization events, both occurring after the divergence of carro...

  9. Generalization of Entropy Based Divergence Measures for Symbolic Sequence Analysis

    PubMed Central

    Ré, Miguel A.; Azad, Rajeev K.

    2014-01-01

    Entropy based measures have been frequently used in symbolic sequence analysis. A symmetrized and smoothed form of Kullback-Leibler divergence or relative entropy, the Jensen-Shannon divergence (JSD), is of particular interest because of its sharing properties with families of other divergence measures and its interpretability in different domains including statistical physics, information theory and mathematical statistics. The uniqueness and versatility of this measure arise because of a number of attributes including generalization to any number of probability distributions and association of weights to the distributions. Furthermore, its entropic formulation allows its generalization in different statistical frameworks, such as, non-extensive Tsallis statistics and higher order Markovian statistics. We revisit these generalizations and propose a new generalization of JSD in the integrated Tsallis and Markovian statistical framework. We show that this generalization can be interpreted in terms of mutual information. We also investigate the performance of different JSD generalizations in deconstructing chimeric DNA sequences assembled from bacterial genomes including that of E. coli, S. enterica typhi, Y. pestis and H. influenzae. Our results show that the JSD generalizations bring in more pronounced improvements when the sequences being compared are from phylogenetically proximal organisms, which are often difficult to distinguish because of their compositional similarity. While small but noticeable improvements were observed with the Tsallis statistical JSD generalization, relatively large improvements were observed with the Markovian generalization. In contrast, the proposed Tsallis-Markovian generalization yielded more pronounced improvements relative to the Tsallis and Markovian generalizations, specifically when the sequences being compared arose from phylogenetically proximal organisms. PMID:24728338

  10. Conservation of Endo16 expression in sea urchins despite evolutionary divergence in both cis and trans-acting components of transcriptional regulation

    NASA Technical Reports Server (NTRS)

    Romano, Laura A.; Wray, Gregory A.

    2003-01-01

    Evolutionary changes in transcriptional regulation undoubtedly play an important role in creating morphological diversity. However, there is little information about the evolutionary dynamics of cis-regulatory sequences. This study examines the functional consequence of evolutionary changes in the Endo16 promoter of sea urchins. The Endo16 gene encodes a large extracellular protein that is expressed in the endoderm and may play a role in cell adhesion. Its promoter has been characterized in exceptional detail in the purple sea urchin, Strongylocentrotus purpuratus. We have characterized the structure and function of the Endo16 promoter from a second sea urchin species, Lytechinus variegatus. The Endo16 promoter sequences have evolved in a strongly mosaic manner since these species diverged approximately 35 million years ago: the most proximal region (module A) is conserved, but the remaining modules (B-G) are unalignable. Despite extensive divergence in promoter sequences, the pattern of Endo16 transcription is largely conserved during embryonic and larval development. Transient expression assays demonstrate that 2.2 kb of upstream sequence in either species is sufficient to drive GFP reporter expression that correctly mimics this pattern of Endo16 transcription. Reciprocal cross-species transient expression assays imply that changes have also evolved in the set of transcription factors that interact with the Endo16 promoter. Taken together, these results suggest that stabilizing selection on the transcriptional output may have operated to maintain a similar pattern of Endo16 expression in S. purpuratus and L. variegatus, despite dramatic divergence in promoter sequence and mechanisms of transcriptional regulation.

  11. Generalization of entropy based divergence measures for symbolic sequence analysis.

    PubMed

    Ré, Miguel A; Azad, Rajeev K

    2014-01-01

    Entropy based measures have been frequently used in symbolic sequence analysis. A symmetrized and smoothed form of Kullback-Leibler divergence or relative entropy, the Jensen-Shannon divergence (JSD), is of particular interest because of its sharing properties with families of other divergence measures and its interpretability in different domains including statistical physics, information theory and mathematical statistics. The uniqueness and versatility of this measure arise because of a number of attributes including generalization to any number of probability distributions and association of weights to the distributions. Furthermore, its entropic formulation allows its generalization in different statistical frameworks, such as, non-extensive Tsallis statistics and higher order Markovian statistics. We revisit these generalizations and propose a new generalization of JSD in the integrated Tsallis and Markovian statistical framework. We show that this generalization can be interpreted in terms of mutual information. We also investigate the performance of different JSD generalizations in deconstructing chimeric DNA sequences assembled from bacterial genomes including that of E. coli, S. enterica typhi, Y. pestis and H. influenzae. Our results show that the JSD generalizations bring in more pronounced improvements when the sequences being compared are from phylogenetically proximal organisms, which are often difficult to distinguish because of their compositional similarity. While small but noticeable improvements were observed with the Tsallis statistical JSD generalization, relatively large improvements were observed with the Markovian generalization. In contrast, the proposed Tsallis-Markovian generalization yielded more pronounced improvements relative to the Tsallis and Markovian generalizations, specifically when the sequences being compared arose from phylogenetically proximal organisms.

  12. Deep phylogeographic divergence and cytonuclear discordance in the grasshopper Oedaleus decorus.

    PubMed

    Kindler, Eveline; Arlettaz, Raphaël; Heckel, Gerald

    2012-11-01

    The grasshopper Oedaleus decorus is a thermophilic insect with a large, mostly south-Palaearctic distribution range, stretching from the Mediterranean regions in Europe to Central-Asia and China. In this study, we analyzed the extent of phylogenetic divergence and the recent evolutionary history of the species based on 274 specimens from 26 localities across the distribution range in Europe. Phylogenetic relationships were determined using sequences of two mitochondrial loci (ctr, ND2) with neighbour-joining and Bayesian methods. Additionally, genetic differentiation was analyzed based on mitochondrial DNA and 11 microsatellite markers using F-statistics, model-free multivariate and model-based Bayesian clustering approaches. Phylogenetic analyses detected consistently two highly divergent, allopatrically distributed lineages within O. decorus. The divergence among these Western and Eastern lineages meeting in the region of the Alps was similar to the divergence of each lineage to the sister species O. asiaticus. Genetic differentiation for ctr was extremely high between Western and Eastern grasshopper populations (F(ct)=0.95). Microsatellite markers detected much lower but nevertheless very significant genetic structure among population samples. The nuclear data also demonstrated a case of cytonuclear discordance because the affiliation with mitochondrial lineages was incongruent in Northern Italy. Taken together these results provide evidence of an ancient separation within Oedaleus and either historical introgression of mtDNA among lineages and/or ongoing sex-specific gene flow in this grasshopper. Our study stresses the importance of multilocus approaches for unravelling the history and status of taxa of uncertain evolutionary divergence. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Phenotypic and genotypic discrepancy of Streptococcus pneumoniae strains isolated from Asian countries.

    PubMed

    Ko, Kwan Soo; Oh, Won Sup; Peck, Kyong Ran; Lee, Jang Ho; Lee, Nam Yong; Song, Jae-Hoon

    2005-07-01

    Non-typeable isolates of Streptococcus pneumoniae collected from Asian countries were characterized by optochin susceptibility test, bile solubility test, multilocus sequence typing of housekeeping genes, amplification of virulence-related genes, 16S rDNA-RsaI digestion, and 16S rDNA sequencing. Six of 54 non-typeable pneumococcal isolates showed divergence of gene sequences of recP and xpt from typical pneumococcal strains. Of these six atypical pneumococcal strains, two showed different results in optochin susceptibility or bile solubility test from typical pneumococcal strains. All six isolates showed high sequence dissimilarities of multilocus sequence typing, 16S rDNA sequences, and lytA sequences from typical S. pneumoniae strains. Data from this study suggest that classic tests such as optochin susceptibility and bile solubility tests may lead to incorrect identification of S. pneumoniae. These atypical strains may belong to different bacterial species from S. pneumoniae.

  14. Regulatory versus coding signatures of natural selection in a candidate gene involved in the adaptive divergence of whitefish species pairs (Coregonus spp.)

    PubMed Central

    Jeukens, Julie; Bernatchez, Louis

    2012-01-01

    While gene expression divergence is known to be involved in adaptive phenotypic divergence and speciation, the relative importance of regulatory and structural evolution of genes is poorly understood. A recent next-generation sequencing experiment allowed identifying candidate genes potentially involved in the ongoing speciation of sympatric dwarf and normal lake whitefish (Coregonus clupeaformis), such as cytosolic malate dehydrogenase (MDH1), which showed both significant expression and sequence divergence. The main goal of this study was to investigate into more details the signatures of natural selection in the regulatory and coding sequences of MDH1 in lake whitefish and test for parallelism of these signatures with other coregonine species. Sequencing of the two regions in 118 fish from four sympatric pairs of whitefish and two cisco species revealed a total of 35 single nucleotide polymorphisms (SNPs), with more genetic diversity in European compared to North American coregonine species. While the coding region was found to be under purifying selection, an SNP in the proximal promoter exhibited significant allele frequency divergence in a parallel manner among independent sympatric pairs of North American lake whitefish and European whitefish (C. lavaretus). According to transcription factor binding simulation for 22 regulatory haplotypes of MDH1, putative binding profiles were fairly conserved among species, except for the region around this SNP. Moreover, we found evidence for the role of this SNP in the regulation of MDH1 expression level. Overall, these results provide further evidence for the role of natural selection in gene regulation evolution among whitefish species pairs and suggest its possible link with patterns of phenotypic diversity observed in coregonine species. PMID:22408741

  15. Regulatory versus coding signatures of natural selection in a candidate gene involved in the adaptive divergence of whitefish species pairs (Coregonus spp.).

    PubMed

    Jeukens, Julie; Bernatchez, Louis

    2012-01-01

    While gene expression divergence is known to be involved in adaptive phenotypic divergence and speciation, the relative importance of regulatory and structural evolution of genes is poorly understood. A recent next-generation sequencing experiment allowed identifying candidate genes potentially involved in the ongoing speciation of sympatric dwarf and normal lake whitefish (Coregonus clupeaformis), such as cytosolic malate dehydrogenase (MDH1), which showed both significant expression and sequence divergence. The main goal of this study was to investigate into more details the signatures of natural selection in the regulatory and coding sequences of MDH1 in lake whitefish and test for parallelism of these signatures with other coregonine species. Sequencing of the two regions in 118 fish from four sympatric pairs of whitefish and two cisco species revealed a total of 35 single nucleotide polymorphisms (SNPs), with more genetic diversity in European compared to North American coregonine species. While the coding region was found to be under purifying selection, an SNP in the proximal promoter exhibited significant allele frequency divergence in a parallel manner among independent sympatric pairs of North American lake whitefish and European whitefish (C. lavaretus). According to transcription factor binding simulation for 22 regulatory haplotypes of MDH1, putative binding profiles were fairly conserved among species, except for the region around this SNP. Moreover, we found evidence for the role of this SNP in the regulation of MDH1 expression level. Overall, these results provide further evidence for the role of natural selection in gene regulation evolution among whitefish species pairs and suggest its possible link with patterns of phenotypic diversity observed in coregonine species.

  16. Phylogeography of Canada Geese (Branta canadensis) in western North America

    USGS Publications Warehouse

    Scribner, K.T.; Talbot, S.L.; Pearce, J.M.; Pierson, Barbara J.; Bollinger, K.S.; Derksen, D.V.

    2003-01-01

    Using molecular genetic markers that differ in mode of inheritance and rate of evolution, we examined levels and partitioning of genetic variation for seven nominal subspecies (11 breeding populations) of Canada Geese (Branta canadensis) in western North America. Gene trees constructed from mtDNA control region sequence data show that subspecies of Canada Geese do not have distinct mtDNA. Large- and small-bodied forms of Canada Geese were highly diverged (0. 077 average sequence divergence) and represent monophyletic groups. A majority (65%) of 20 haplotypes resolved were observed in single breeding locales. However, within both large- and small-bodied forms certain haplotypes occurred across multiple subspecies. Population trees for both nuclear (microsatellites) and mitochondrial markers were generally concordant and provide resolution of population and subspecific relationships indicating incomplete lineage sorting. All populations and subspecies were genetically diverged, but to varying degrees. Analyses of molecular variance, nested-clade and coalescence-based analyses of mtDNA suggest that both historical (past fragmentation) and contemporary forces have been important in shaping current spatial genetic distributions. Gene flow appears to be ongoing though at different rates, even among currently recognized subspecies. The efficacy of current subspecific taxonomy is discussed in light of hypothesized historical vicariance and current demographic trends of management and conservation concern.

  17. Genetic characterization of influenza A viruses circulating in pigs and isolated in north-east Spain during the period 2006-2007.

    PubMed

    Baratelli, Massimiliano; Córdoba, Lorena; Pérez, Lester J; Maldonado, Jaime; Fraile, Lorenzo; Núñez, José I; Montoya, Maria

    2014-04-01

    Swine influenza virus is one of the most important pathogens involved in the swine respiratory disease complex. Recent serological surveys showed a high prevalence of swine influenza strains belonging to the H1N1, H1N2 and H3N2 subtypes circulating in pigs in Spain. However, little is known about their genome sequence. Five swine influenza strains were isolated from some unrelated outbreaks occurred during 2006-2007, and their complete genome sequences were determined. Phylogenetic analysis revealed that they belonged to the lineages "Avian-Like" H1N1, "Human-Like" H3N2, and "Human-Like" H1N2, showing tight relationships with early or contemporary strains described in Europe. Notably, one virus of the H1N2 subtype showed genetic and antigenic divergence with the European contemporary strains or vaccinal strains of the same subtype, suggesting that some local and divergent clusters of the virus may pass unnoticed in routinary subtyping. Finally, analysis on the entire pattern of genome segments suggested that a second reassortment event could have influenced the evolution of that divergent H1N2 strain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Biochemical Regulatory Features of Activation-Induced Cytidine Deaminase Remain Conserved from Lampreys to Humans

    PubMed Central

    King, Justin J.; Amemiya, Chris T.; Hsu, Ellen

    2017-01-01

    ABSTRACT Activation-induced cytidine deaminase (AID) is a genome-mutating enzyme that initiates class switch recombination and somatic hypermutation of antibodies in jawed vertebrates. We previously described the biochemical properties of human AID and found that it is an unusual enzyme in that it exhibits binding affinities for its substrate DNA and catalytic rates several orders of magnitude higher and lower, respectively, than a typical enzyme. Recently, we solved the functional structure of AID and demonstrated that these properties are due to nonspecific DNA binding on its surface, along with a catalytic pocket that predominantly assumes a closed conformation. Here we investigated the biochemical properties of AID from a sea lamprey, nurse shark, tetraodon, and coelacanth: representative species chosen because their lineages diverged at the earliest critical junctures in evolution of adaptive immunity. We found that these earliest-diverged AID orthologs are active cytidine deaminases that exhibit unique substrate specificities and thermosensitivities. Significant amino acid sequence divergence among these AID orthologs is predicted to manifest as notable structural differences. However, despite major differences in sequence specificities, thermosensitivities, and structural features, all orthologs share the unusually high DNA binding affinities and low catalytic rates. This absolute conservation is evidence for biological significance of these unique biochemical properties. PMID:28716949

  19. Genome analysis of Hibiscus syriacus provides insights of polyploidization and indeterminate flowering in woody plants

    PubMed Central

    Kim, Yong-Min; Kim, Seungill; Koo, Namjin; Shin, Ah-Young; Yeom, Seon-In; Seo, Eunyoung; Park, Seong-Jin; Kang, Won-Hee; Kim, Myung-Shin; Park, Jieun; Jang, Insu; Kim, Pan-Gyu; Byeon, Iksu; Kim, Min-Seo; Choi, JinHyuk; Ko, Gunhwan; Hwang, JiHye; Yang, Tae-Jin; Choi, Sang-Bong; Lee, Je Min; Lim, Ki-Byung; Lee, Jungho; Choi, Ik-Young; Park, Beom-Seok; Kwon, Suk-Yoon; Choi, Doil

    2017-01-01

    Abstract Hibiscus syriacus (L.) (rose of Sharon) is one of the most widespread garden shrubs in the world. We report a draft of the H. syriacus genome comprised of a 1.75 Gb assembly that covers 92% of the genome with only 1.7% (33 Mb) gap sequences. Predicted gene modeling detected 87,603 genes, mostly supported by deep RNA sequencing data. To define gene family distribution among relatives of H. syriacus, orthologous gene sets containing 164,660 genes in 21,472 clusters were identified by OrthoMCL analysis of five plant species, including H. syriacus, Arabidopsis thaliana, Gossypium raimondii, Theobroma cacao and Amborella trichopoda. We inferred their evolutionary relationships based on divergence times among Malvaceae plant genes and found that gene families involved in flowering regulation and disease resistance were more highly divergent and expanded in H. syriacus than in its close relatives, G. raimondii (DD) and T. cacao. Clustered gene families and gene collinearity analysis revealed that two recent rounds of whole-genome duplication were followed by diploidization of the H. syriacus genome after speciation. Copy number variation and phylogenetic divergence indicates that WGDs and subsequent diploidization led to unequal duplication and deletion of flowering-related genes in H. syriacus and may affect its unique floral morphology. PMID:28011721

  20. Patterns and rates of intron divergence between humans and chimpanzees

    PubMed Central

    Gazave, Elodie; Marqués-Bonet, Tomàs; Fernando, Olga; Charlesworth, Brian; Navarro, Arcadi

    2007-01-01

    Background Introns, which constitute the largest fraction of eukaryotic genes and which had been considered to be neutral sequences, are increasingly acknowledged as having important functions. Several studies have investigated levels of evolutionary constraint along introns and across classes of introns of different length and location within genes. However, thus far these studies have yielded contradictory results. Results We present the first analysis of human-chimpanzee intron divergence, in which differences in the number of substitutions per intronic site (Ki) can be interpreted as the footprint of different intensities and directions of the pressures of natural selection. Our main findings are as follows: there was a strong positive correlation between intron length and divergence; there was a strong negative correlation between intron length and GC content; and divergence rates vary along introns and depending on their ordinal position within genes (for instance, first introns are more GC rich, longer and more divergent, and divergence is lower at the 3' and 5' ends of all types of introns). Conclusion We show that the higher divergence of first introns is related to their larger size. Also, the lower divergence of short introns suggests that they may harbor a relatively greater proportion of regulatory elements than long introns. Moreover, our results are consistent with the presence of functionally relevant sequences near the 5' and 3' ends of introns. Finally, our findings suggest that other parts of introns may also be under selective constraints. PMID:17309804

  1. Genomics of the divergence continuum in an African plant biodiversity hotspot, I: drivers of population divergence in Restio capensis (Restionaceae).

    PubMed

    Lexer, C; Wüest, R O; Mangili, S; Heuertz, M; Stölting, K N; Pearman, P B; Forest, F; Salamin, N; Zimmermann, N E; Bossolini, E

    2014-09-01

    Understanding the drivers of population divergence, speciation and species persistence is of great interest to molecular ecology, especially for species-rich radiations inhabiting the world's biodiversity hotspots. The toolbox of population genomics holds great promise for addressing these key issues, especially if genomic data are analysed within a spatially and ecologically explicit context. We have studied the earliest stages of the divergence continuum in the Restionaceae, a species-rich and ecologically important plant family of the Cape Floristic Region (CFR) of South Africa, using the widespread CFR endemic Restio capensis (L.) H.P. Linder & C.R. Hardy as an example. We studied diverging populations of this morphotaxon for plastid DNA sequences and >14 400 nuclear DNA polymorphisms from Restriction site Associated DNA (RAD) sequencing and analysed the results jointly with spatial, climatic and phytogeographic data, using a Bayesian generalized linear mixed modelling (GLMM) approach. The results indicate that population divergence across the extreme environmental mosaic of the CFR is mostly driven by isolation by environment (IBE) rather than isolation by distance (IBD) for both neutral and non-neutral markers, consistent with genome hitchhiking or coupling effects during early stages of divergence. Mixed modelling of plastid DNA and single divergent outlier loci from a Bayesian genome scan confirmed the predominant role of climate and pointed to additional drivers of divergence, such as drift and ecological agents of selection captured by phytogeographic zones. Our study demonstrates the usefulness of population genomics for disentangling the effects of IBD and IBE along the divergence continuum often found in species radiations across heterogeneous ecological landscapes. © 2014 John Wiley & Sons Ltd.

  2. Characterization of Encapsulated and Noncapsulated Haemophilus influenzae and Determination of Phylogenetic Relationships by Multilocus Sequence Typing

    PubMed Central

    Meats, Emma; Feil, Edward J.; Stringer, Suzanna; Cody, Alison J.; Goldstein, Richard; Kroll, J. Simon; Popovic, Tanja; Spratt, Brian G.

    2003-01-01

    A multilocus sequence typing (MLST) scheme has been developed for the unambiguous characterization of encapsulated and noncapsulated Haemophilus influenzae isolates. The sequences of internal fragments of seven housekeeping genes were determined for 131 isolates, comprising a diverse set of 104 serotype a, b, c, d, e, and f isolates and 27 noncapsulated isolates. Many of the encapsulated isolates had previously been characterized by multilocus enzyme electrophoresis (MLEE), and the validity of the MLST scheme was established by the very similar clustering of isolates obtained by these methods. Isolates of serotypes c, d, e, and f formed monophyletic groups on a dendrogram constructed from the differences in the allelic profiles of the isolates, whereas there were highly divergent lineages of both serotype a and b isolates. Noncapsulated isolates were distinct from encapsulated isolates and, with one exception, were within two highly divergent clusters. The relationships between the major lineages of encapsulated H. influenzae inferred from MLEE data could not be discerned on a dendrogram constructed from differences in the allelic profiles, but were apparent on a tree reconstructed from the concatenated nucleotide sequences. Recombination has not therefore completely eliminated phylogenetic signal, and in support of this, for encapsulated isolates, there was significant congruence between many of the trees reconstructed from the sequences of the seven individual loci. Congruence was less apparent for noncapsulated isolates, suggesting that the impact of recombination is greater among noncapsulated than encapsulated isolates. The H. influenzae MLST scheme is available at www.mlst.net, it allows any isolate to be compared with those in the MLST database, and (for encapsulated isolates) it assigns isolates to their phylogenetic lineage, via the Internet. PMID:12682154

  3. High levels of Y-chromosome nucleotide diversity in the genus Pan

    PubMed Central

    Stone, Anne C.; Griffiths, Robert C.; Zegura, Stephen L.; Hammer, Michael F.

    2002-01-01

    Although some mitochondrial, X chromosome, and autosomal sequence diversity data are available for our closest relatives, Pan troglodytes and Pan paniscus, data from the nonrecombining portion of the Y chromosome (NRY) are more limited. We examined ≈3 kb of NRY DNA from 101 chimpanzees, seven bonobos, and 42 humans to investigate: (i) relative levels of intraspecific diversity; (ii) the degree of paternal lineage sorting among species and subspecies of the genus Pan; and (iii) the date of the chimpanzee/bonobo divergence. We identified 10 informative sequence-tagged sites associated with 23 polymorphisms on the NRY from the genus Pan. Nucleotide diversity was significantly higher on the NRY of chimpanzees and bonobos than on the human NRY. Similar to mtDNA, but unlike X-linked and autosomal loci, lineages defined by mutations on the NRY were not shared among subspecies of P. troglodytes. Comparisons with mtDNA ND2 sequences from some of the same individuals revealed a larger female versus male effective population size for chimpanzees. The NRY-based divergence time between chimpanzees and bonobos was estimated at ≈1.8 million years ago. In contrast to human populations who appear to have had a low effective size and a recent origin with subsequent population growth, some taxa within the genus Pan may be characterized by large populations of relatively constant size, more ancient origins, and high levels of subdivision. PMID:11756656

  4. Karyotype divergence and spreading of 5S rDNA sequences between genomes of two species: darter and emerald gobies ( Ctenogobius , Gobiidae).

    PubMed

    Lima-Filho, P A; Bertollo, L A C; Cioffi, M B; Costa, G W W F; Molina, W F

    2014-01-01

    Karyotype analyses of the cryptobenthic marine species Ctenogobius boleosoma and C. smaragdus were performed by means of classical and molecular cytogenetics, including physical mapping of the multigene 18S and 5S rDNA families. C. boleosoma has 2n = 44 chromosomes (2 submetacentrics + 42 acrocentrics; FN = 46) with a single chromosome pair each carrying 18S and 5S ribosomal sites; whereas C. smaragdus has 2n = 48 chromosomes (2 submetacentrics + 46 acrocentrics; FN = 50), also with a single pair bearing 18S rDNA, but an extensive increase in the number of GC-rich 5S rDNA sites in 21 chromosome pairs. The highly divergent karyotypes among Ctenogobius species contrast with observations in several other marine fish groups, demonstrating an accelerated rate of chromosomal evolution mediated by both chromosomal rearrangements and the extensive dispersion of 5S rDNA sequences in the genome. © 2014 S. Karger AG, Basel.

  5. Domain Evolution and Functional Diversification of Sulfite Reductases

    NASA Astrophysics Data System (ADS)

    Dhillon, Ashita; Goswami, Sulip; Riley, Monica; Teske, Andreas; Sogin, Mitchell

    2005-02-01

    Sulfite reductases are key enzymes of assimilatory and dissimilatory sulfur metabolism, which occur in diverse bacterial and archaeal lineages. They share a highly conserved domain "C-X5-C-n-C-X3-C" for binding siroheme and iron-sulfur clusters that facilitate electron transfer to the substrate. For each sulfite reductase cluster, the siroheme-binding domain is positioned slightly differently at the N-terminus of dsrA and dsrB, while in the assimilatory proteins the siroheme domain is located at the C-terminus. Our sequence and phylogenetic analysis of the siroheme-binding domain shows that sulfite reductase sequences diverged from a common ancestor into four separate clusters (aSir, alSir, dsr, and asrC) that are biochemically distinct; each serves a different assimilatory or dissimilatory role in sulfur metabolism. The phylogenetic distribution and functional grouping in sulfite reductase clusters (dsrA and dsrB vs. aSiR, asrC, and alSir) suggest that their functional diversification during evolution may have preceded the bacterial/archaeal divergence.

  6. Multilocus analysis of nucleotide variation and speciation in three closely related Populus (Salicaceae) species.

    PubMed

    Du, Shuhui; Wang, Zhaoshan; Ingvarsson, Pär K; Wang, Dongsheng; Wang, Junhui; Wu, Zhiqiang; Tembrock, Luke R; Zhang, Jianguo

    2015-10-01

    Historical tectonism and climate oscillations can isolate and contract the geographical distributions of many plant species, and they are even known to trigger species divergence and ultimately speciation. Here, we estimated the nucleotide variation and speciation in three closely related Populus species, Populus tremuloides, P. tremula and P. davidiana, distributed in North America and Eurasia. We analysed the sequence variation in six single-copy nuclear loci and three chloroplast (cpDNA) fragments in 497 individuals sampled from 33 populations of these three species across their geographic distributions. These three Populus species harboured relatively high levels of nucleotide diversity and showed high levels of nucleotide differentiation. Phylogenetic analysis revealed that P. tremuloides diverged earlier than the other two species. The cpDNA haplotype network result clearly illustrated the dispersal route from North America to eastern Asia and then into Europe. Molecular dating results confirmed that the divergence of these three species coincided with the sundering of the Bering land bridge in the late Miocene and a rapid uplift of the Qinghai-Tibetan Plateau around the Miocene/Pliocene boundary. Vicariance-driven successful allopatric speciation resulting from historical tectonism and climate oscillations most likely played roles in the formation of the disjunct distributions and divergence of these three Populus species. © 2015 John Wiley & Sons Ltd.

  7. When Genomics Is Not Enough: Experimental Evidence for a Decrease in LINE-1 Activity During the Evolution of Australian Marsupials

    PubMed Central

    Gallus, Susanne; Lammers, Fritjof

    2016-01-01

    The autonomous transposable element LINE-1 is a highly abundant element that makes up between 15% and 20% of therian mammal genomes. Since their origin before the divergence of marsupials and placental mammals, LINE-1 elements have contributed actively to the genome landscape. A previous in silico screen of the Tasmanian devil genome revealed a lack of functional coding LINE-1 sequences. In this study we present the results of an in vitro analysis from a partial LINE-1 reverse transcriptase coding sequence in five marsupial species. Our experimental screen supports the in silico findings of the genome-wide degradation of LINE-1 sequences in the Tasmanian devil, and identifies a high frequency of degraded LINE-1 sequences in other Australian marsupials. The comparison between the experimentally obtained LINE-1 sequences and reference genome assemblies suggests that conclusions from in silico analyses of retrotransposition activity can be influenced by incomplete genome assemblies from short reads. PMID:27389686

  8. Conserved intergenic sequences revealed by CTAG-profiling in Salmonella: thermodynamic modeling for function prediction

    NASA Astrophysics Data System (ADS)

    Tang, Le; Zhu, Songling; Mastriani, Emilio; Fang, Xin; Zhou, Yu-Jie; Li, Yong-Guo; Johnston, Randal N.; Guo, Zheng; Liu, Gui-Rong; Liu, Shu-Lin

    2017-03-01

    Highly conserved short sequences help identify functional genomic regions and facilitate genomic annotation. We used Salmonella as the model to search the genome for evolutionarily conserved regions and focused on the tetranucleotide sequence CTAG for its potentially important functions. In Salmonella, CTAG is highly conserved across the lineages and large numbers of CTAG-containing short sequences fall in intergenic regions, strongly indicating their biological importance. Computer modeling demonstrated stable stem-loop structures in some of the CTAG-containing intergenic regions, and substitution of a nucleotide of the CTAG sequence would radically rearrange the free energy and disrupt the structure. The postulated degeneration of CTAG takes distinct patterns among Salmonella lineages and provides novel information about genomic divergence and evolution of these bacterial pathogens. Comparison of the vertically and horizontally transmitted genomic segments showed different CTAG distribution landscapes, with the genome amelioration process to remove CTAG taking place inward from both terminals of the horizontally acquired segment.

  9. Divergent evolutionary rates in vertebrate and mammalian specific conserved non-coding elements (CNEs) in echolocating mammals.

    PubMed

    Davies, Kalina T J; Tsagkogeorga, Georgia; Rossiter, Stephen J

    2014-12-19

    The majority of DNA contained within vertebrate genomes is non-coding, with a certain proportion of this thought to play regulatory roles during development. Conserved Non-coding Elements (CNEs) are an abundant group of putative regulatory sequences that are highly conserved across divergent groups and thus assumed to be under strong selective constraint. Many CNEs may contain regulatory factor binding sites, and their frequent spatial association with key developmental genes - such as those regulating sensory system development - suggests crucial roles in regulating gene expression and cellular patterning. Yet surprisingly little is known about the molecular evolution of CNEs across diverse mammalian taxa or their role in specific phenotypic adaptations. We examined 3,110 vertebrate-specific and ~82,000 mammalian-specific CNEs across 19 and 9 mammalian orders respectively, and tested for changes in the rate of evolution of CNEs located in the proximity of genes underlying the development or functioning of auditory systems. As we focused on CNEs putatively associated with genes underlying the development/functioning of auditory systems, we incorporated echolocating taxa in our dataset because of their highly specialised and derived auditory systems. Phylogenetic reconstructions of concatenated CNEs broadly recovered accepted mammal relationships despite high levels of sequence conservation. We found that CNE substitution rates were highest in rodents and lowest in primates, consistent with previous findings. Comparisons of CNE substitution rates from several genomic regions containing genes linked to auditory system development and hearing revealed differences between echolocating and non-echolocating taxa. Wider taxonomic sampling of four CNEs associated with the homeobox genes Hmx2 and Hmx3 - which are required for inner ear development - revealed family-wise variation across diverse bat species. Specifically within one family of echolocating bats that utilise frequency-modulated echolocation calls varying widely in frequency and intensity high levels of sequence divergence were found. Levels of selective constraint acting on CNEs differed both across genomic locations and taxa, with observed variation in substitution rates of CNEs among bat species. More work is needed to determine whether this variation can be linked to echolocation, and wider taxonomic sampling is necessary to fully document levels of conservation in CNEs across diverse taxa.

  10. A New Phylogeographic Pattern of Endemic Bufo bankorensis in Taiwan Island Is Attributed to the Genetic Variation of Populations

    PubMed Central

    Yu, Teng-Lang; Lin, Hung-Du; Weng, Ching-Feng

    2014-01-01

    Aim To comprehend the phylogeographic patterns of genetic variation in anurans at Taiwan Island, this study attempted to examine (1) the existence of various geological barriers (Central Mountain Ranges, CMRs); and (2) the genetic variation of Bufo bankorensis using mtDNA sequences among populations located in different regions of Taiwan, characterized by different climates and existing under extreme conditions when compared available sequences of related species B. gargarizans of mainland China. Methodology/Principal Findings Phylogenetic analyses of the dataset with mitochondrial DNA (mtDNA) D-loop gene (348 bp) recovered a close relationship between B. bankorensis and B. gargarizans, identified three distinct lineages. Furthermore, the network of mtDNA D-loop gene (564 bp) amplified (279 individuals, 27 localities) from Taiwan Island indicated three divergent clades within B. bankorensis (Clade W, E and S), corresponding to the geography, thereby verifying the importance of the CMRs and Kaoping River drainage as major biogeographic barriers. Mismatch distribution analysis, neutrality tests and Bayesian skyline plots revealed that a significant population expansion occurred for the total population and Clade W, with horizons dated to approximately 0.08 and 0.07 Mya, respectively. These results suggest that the population expansion of Taiwan Island species B. bankorensis might have resulted from the release of available habitat in post-glacial periods, the genetic variation on mtDNA showing habitat selection, subsequent population dispersal, and co-distribution among clades. Conclusions The multiple origins (different clades) of B. bankorensis mtDNA sequences were first evident in this study. The divergent genetic clades found within B. bankorensis could be independent colonization by previously diverged lineages; inferring B. bankorensis originated from B. gargarizans of mainland China, then dispersal followed by isolation within Taiwan Island. Highly divergent clades between W and E of B. bankorensis, implies that the CMRs serve as a genetic barrier and separated the whole island into the western and eastern phylogroups. PMID:24853679

  11. Inter- and intraspecific mitochondrial DNA variation in North American bears (Ursus)

    USGS Publications Warehouse

    Cronin, Matthew A.; Amstrup, Steven C.; Garner, Gerald W.; Vyse, Ernest R.

    1991-01-01

    We assessed mitochondrial DNA variation in North American black bears (Ursus americanus), brown bears (Ursus arctos), and polar bears (Ursus maritimus). Divergent mitochondrial DNA haplotypes (0.05 base substitutions per nucleotide) were identified in populations of black bears from Montana and Oregon. In contrast, very similar haplotypes occur in black bears across North America. This discordance of haplotype phylogeny and geographic distribution indicates that there has been maintenance of polymorphism and considerable gene flow throughout the history of the species. Intraspecific mitochondrial DNA sequence divergence in brown bears and polar bears is lower than in black bears. The two morphological forms of U. arctos, grizzly and coastal brown bears, are not in distinct mtDNA lineages. Interspecific comparisons indicate that brown bears and polar bears share similar mitochondrial DNA (0.023 base substitutions per nucleotide) which is quite divergent (0.078 base substitutions per nucleotide) from that of black bears. High mitochondrial DNA divergence within black bears and paraphyletic relationships of brown and polar bear mitochondrial DNA indicate that intraspecific variation across species' ranges should be considered in phylogenetic analyses of mitochondrial DNA.

  12. Extensive Concerted Evolution of Rice Paralogs and the Road to Regaining Independence

    PubMed Central

    Wang, Xiyin; Tang, Haibao; Bowers, John E.; Feltus, Frank A.; Paterson, Andrew H.

    2007-01-01

    Many genes duplicated by whole-genome duplications (WGDs) are more similar to one another than expected. We investigated whether concerted evolution through conversion and crossing over, well-known to affect tandem gene clusters, also affects dispersed paralogs. Genome sequences for two Oryza subspecies reveal appreciable gene conversion in the ∼0.4 MY since their divergence, with a gradual progression toward independent evolution of older paralogs. Since divergence from subspecies indica, ∼8% of japonica paralogs produced 5–7 MYA on chromosomes 11 and 12 have been affected by gene conversion and several reciprocal exchanges of chromosomal segments, while ∼70-MY-old “paleologs” resulting from a genome duplication (GD) show much less conversion. Sequence similarity analysis in proximal gene clusters also suggests more conversion between younger paralogs. About 8% of paleologs may have been converted since rice–sorghum divergence ∼41 MYA. Domain-encoding sequences are more frequently converted than nondomain sequences, suggesting a sort of circularity—that sequences conserved by selection may be further conserved by relatively frequent conversion. The higher level of concerted evolution in the 5–7 MY-old segmental duplication may reflect the behavior of many genomes within the first few million years after duplication or polyploidization. PMID:18039882

  13. Mitochondrial sequence divergence among Antarctic killer whale ecotypes is consistent with multiple species.

    PubMed

    LeDuc, Richard G; Robertson, Kelly M; Pitman, Robert L

    2008-08-23

    Recently, three visually distinct forms of killer whales (Orcinus orca) were described from Antarctic waters and designated as types A, B and C. Based on consistent differences in prey selection and habitat preferences, morphological divergence and apparent lack of interbreeding among these broadly sympatric forms, it was suggested that they may represent separate species. To evaluate this hypothesis, we compared complete sequences of the mitochondrial control region from 81 Antarctic killer whale samples, including 9 type A, 18 type B, 47 type C and 7 type-undetermined individuals. We found three fixed differences that separated type A from B and C, and a single fixed difference that separated type C from A and B. These results are consistent with reproductive isolation among the different forms, although caution is needed in drawing further conclusions. Despite dramatic differences in morphology and ecology, the relatively low levels of sequence divergence in Antarctic killer whales indicate that these evolutionary changes occurred relatively rapidly and recently.

  14. Genetic and Genomic Response to Selection for Food Consumption in Drosophila melanogaster.

    PubMed

    Garlapow, Megan E; Everett, Logan J; Zhou, Shanshan; Gearhart, Alexander W; Fay, Kairsten A; Huang, Wen; Morozova, Tatiana V; Arya, Gunjan H; Turlapati, Lavanya; St Armour, Genevieve; Hussain, Yasmeen N; McAdams, Sarah E; Fochler, Sophia; Mackay, Trudy F C

    2017-03-01

    Food consumption is an essential component of animal fitness; however, excessive food intake in humans increases risk for many diseases. The roles of neuroendocrine feedback loops, food sensing modalities, and physiological state in regulating food intake are well understood, but not the genetic basis underlying variation in food consumption. Here, we applied ten generations of artificial selection for high and low food consumption in replicate populations of Drosophila melanogaster. The phenotypic response to selection was highly asymmetric, with significant responses only for increased food consumption and minimal correlated responses in body mass and composition. We assessed the molecular correlates of selection responses by DNA and RNA sequencing of the selection lines. The high and low selection lines had variants with significantly divergent allele frequencies within or near 2081 genes and 3526 differentially expressed genes in one or both sexes. A total of 519 genes were both genetically divergent and differentially expressed between the divergent selection lines. We performed functional analyses of the effects of RNAi suppression of gene expression and induced mutations for 27 of these candidate genes that have human orthologs and the strongest statistical support, and confirmed that 25 (93 %) affected the mean and/or variance of food consumption.

  15. Archaebacterial rhodopsin sequences: Implications for evolution

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1991-01-01

    It was proposed over 10 years ago that the archaebacteria represent a separate kingdom which diverged very early from the eubacteria and eukaryotes. It follows that investigations of archaebacterial characteristics might reveal features of early evolution. So far, two genes, one for bacteriorhodopsin and another for halorhodopsin, both from Halobacterium halobium, have been sequenced. We cloned and sequenced the gene coding for the polypeptide of another one of these rhodopsins, a halorhodopsin in Natronobacterium pharaonis. Peptide sequencing of cyanogen bromide fragments, and immuno-reactions of the protein and synthetic peptides derived from the C-terminal gene sequence, confirmed that the open reading frame was the structural gene for the pharaonis halorhodopsin polypeptide. The flanking DNA sequences of this gene, as well as those of other bacterial rhodopsins, were compared to previously proposed archaebacterial consensus sequences. In pairwise comparisons of the open reading frame with DNA sequences for bacterio-opsin and halo-opsin from Halobacterium halobium, silent divergences were calculated. These indicate very considerable evolutionary distance between each pair of genes, even in the dame organism. In spite of this, three protein sequences show extensive similarities, indicating strong selective pressures.

  16. Reptilian-transcriptome v1.0, a glimpse in the brain transcriptome of five divergent Sauropsida lineages and the phylogenetic position of turtles.

    PubMed

    Tzika, Athanasia C; Helaers, Raphaël; Schramm, Gerrit; Milinkovitch, Michel C

    2011-09-26

    Reptiles are largely under-represented in comparative genomics despite the fact that they are substantially more diverse in many respects than mammals. Given the high divergence of reptiles from classical model species, next-generation sequencing of their transcriptomes is an approach of choice for gene identification and annotation. Here, we use 454 technology to sequence the brain transcriptome of four divergent reptilian and one reference avian species: the Nile crocodile, the corn snake, the bearded dragon, the red-eared turtle, and the chicken. Using an in-house pipeline for recursive similarity searches of >3,000,000 reads against multiple databases from 7 reference vertebrates, we compile a reptilian comparative transcriptomics dataset, with homology assignment for 20,000 to 31,000 transcripts per species and a cumulated non-redundant sequence length of 248.6 Mbases. Our approach identifies the majority (87%) of chicken brain transcripts and about 50% of de novo assembled reptilian transcripts. In addition to 57,502 microsatellite loci, we identify thousands of SNP and indel polymorphisms for population genetic and linkage analyses. We also build very large multiple alignments for Sauropsida and mammals (two million residues per species) and perform extensive phylogenetic analyses suggesting that turtles are not basal living reptiles but are rather associated with Archosaurians, hence, potentially answering a long-standing question in the phylogeny of Amniotes. The reptilian transcriptome (freely available at http://www.reptilian-transcriptomes.org) should prove a useful new resource as reptiles are becoming important new models for comparative genomics, ecology, and evolutionary developmental genetics.

  17. Centromere Binding and Evolution of Chromosomal Partition Systems in the Burkholderiales

    PubMed Central

    Passot, Fanny M.; Calderon, Virginie; Fichant, Gwennaele; Lane, David

    2012-01-01

    How split genomes arise and evolve in bacteria is poorly understood. Since each replicon of such genomes encodes a specific partition (Par) system, the evolution of Par systems could shed light on their evolution. The cystic fibrosis pathogen Burkholderia cenocepacia has three chromosomes (c1, c2, and c3) and one plasmid (pBC), whose compatibility depends on strictly specific interactions of the centromere sequences (parS) with their cognate binding proteins (ParB). However, the Par systems of B. cenocepacia c2, c3, and pBC share many features, suggesting that they arose within an extended family. Database searching revealed seven subfamilies of Par systems like those of B. cenocepacia. All are from plasmids and secondary chromosomes of the Burkholderiales, which reinforces the proposal of an extended family. The subfamily of the Par system of B. cenocepacia c3 includes plasmid variants with parS sequences divergent from that of c3. Using electrophoretic mobility shift assay (EMSA), we found that ParB-c3 binds specifically to centromeres of these variants, despite high DNA sequence divergence. We suggest that the Par system of B. cenocepacia c3 has preserved the features of an ancestral system. In contrast, these features have diverged variably in the plasmid descendants. One such descendant is found both in Ralstonia pickettii 12D, on a free plasmid, and in Ralstonia pickettii 12J, on a plasmid integrated into the main chromosome. These observations suggest that we are witnessing a plasmid-chromosome interaction from which a third chromosome will emerge in a two-chromosome species. PMID:22522899

  18. Conservation genetics of snowy plovers (Charadrius alexandrinus) in the Western Hemisphere: Population genetic structure and delineation of subspecies

    USGS Publications Warehouse

    Funk, W.C.; Mullins, T.D.; Haig, S.M.

    2007-01-01

    We examined the genetic structure of snowy plovers (Charadrius alexandrinus) in North America, the Caribbean, and the west coast of South America to quantify variation within and among breeding areas and to test the validity of three previously recognized subspecies. Sequences (676 bp) from domains I and II of the mitochondrial control region were analyzed for 166 snowy plovers from 20 breeding areas. Variation was also examined at 10 microsatellite loci for 144 snowy plovers from 14 breeding areas. The mtDNA and microsatellite data provided strong evidence that the Puerto Rican breeding group is genetically divergent from sites in the continental U.S. (net sequence divergence = 0.38%; F ST for microsatellites = 0.190). Our data also revealed high levels of differentiation between sites from South America and North America (net sequence divergence = 0.81%; F ST for microsatellites = 0.253). In contrast, there was little genetic structure among breeding sites within the continental U.S. Our results suggest that snowy plovers in Florida should be considered part of C. a. nivosus (rather than part of C. a. tenuirostris, where they are currently placed), whereas snowy plovers from Puerto Rico should be considered part of C. a. tenuirostris. Snowy plovers in South America should remain a separate subspecies (C. a. occidentalis). Although U.S. Pacific and Gulf Coast breeding areas were not genetically distinct from other continental U.S. sites, demographic isolation, unique coastal habitats, and recent population declines suggest they warrant special concern. ?? 2007 Springer Science+Business Media, Inc.

  19. Centromere binding and evolution of chromosomal partition systems in the Burkholderiales.

    PubMed

    Passot, Fanny M; Calderon, Virginie; Fichant, Gwennaele; Lane, David; Pasta, Franck

    2012-07-01

    How split genomes arise and evolve in bacteria is poorly understood. Since each replicon of such genomes encodes a specific partition (Par) system, the evolution of Par systems could shed light on their evolution. The cystic fibrosis pathogen Burkholderia cenocepacia has three chromosomes (c1, c2, and c3) and one plasmid (pBC), whose compatibility depends on strictly specific interactions of the centromere sequences (parS) with their cognate binding proteins (ParB). However, the Par systems of B. cenocepacia c2, c3, and pBC share many features, suggesting that they arose within an extended family. Database searching revealed seven subfamilies of Par systems like those of B. cenocepacia. All are from plasmids and secondary chromosomes of the Burkholderiales, which reinforces the proposal of an extended family. The subfamily of the Par system of B. cenocepacia c3 includes plasmid variants with parS sequences divergent from that of c3. Using electrophoretic mobility shift assay (EMSA), we found that ParB-c3 binds specifically to centromeres of these variants, despite high DNA sequence divergence. We suggest that the Par system of B. cenocepacia c3 has preserved the features of an ancestral system. In contrast, these features have diverged variably in the plasmid descendants. One such descendant is found both in Ralstonia pickettii 12D, on a free plasmid, and in Ralstonia pickettii 12J, on a plasmid integrated into the main chromosome. These observations suggest that we are witnessing a plasmid-chromosome interaction from which a third chromosome will emerge in a two-chromosome species.

  20. Identification of different lineages of measles virus strains circulating in Uttar Pradesh, North India.

    PubMed

    Shakya, Akhalesh Kumar; Shukla, Vibha; Maan, Harjeet Singh; Dhole, Tapan N

    2012-10-16

    Genetic analysis of measles viruses associated with recent cases and outbreaks has proven to bridge information gaps in routine outbreak investigations and has made a substantial contribution to measles control efforts by helping to identify the transmission pathways of the virus. The present study describes the genetic characterization of wild type measles viruses from Uttar Pradesh, India isolated between January 2008 and January 2011. In the study, 526 suspected measles cases from 15 outbreaks were investigated. Blood samples were collected from suspected measles outbreaks and tested for the presence of measles specific IgM; throat swab and urine samples were collected for virus isolation and RT-PCR. Genotyping of circulating measles viruses in Uttar Pradesh was performed by sequencing a 450-bp region encompassing the nucleoprotein hypervariable region and phylogenetic analysis. Based on serological results, all the outbreaks were confirmed as measles. Thirty eight strains were obtained. Genetic analysis of circulating measles strains (n = 38) in Uttar Pradesh from 235 cases of laboratory-confirmed cases from 526 suspected measles cases between 2008 and 2011 showed that all viruses responsible for outbreaks were within clade D and all were genotype D8.Analysis of this region showed that it is highly divergent (up to 3.4% divergence in the nucleotide sequence and 4.1% divergence in the amino acid sequence between most distant strains). Considerable genetic heterogeneity was observed in the MV genotype D8 viruses in North India and underscores the need for continued surveillance and in particular increases in vaccination levels to decrease morbidity and mortality attributable to measles.

  1. Chromosomal Speciation in the Genomics Era: Disentangling Phylogenetic Evolution of Rock-wallabies.

    PubMed

    Potter, Sally; Bragg, Jason G; Blom, Mozes P K; Deakin, Janine E; Kirkpatrick, Mark; Eldridge, Mark D B; Moritz, Craig

    2017-01-01

    The association of chromosome rearrangements (CRs) with speciation is well established, and there is a long history of theory and evidence relating to "chromosomal speciation." Genomic sequencing has the potential to provide new insights into how reorganization of genome structure promotes divergence, and in model systems has demonstrated reduced gene flow in rearranged segments. However, there are limits to what we can understand from a small number of model systems, which each only tell us about one episode of chromosomal speciation. Progressing from patterns of association between chromosome (and genic) change, to understanding processes of speciation requires both comparative studies across diverse systems and integration of genome-scale sequence comparisons with other lines of evidence. Here, we showcase a promising example of chromosomal speciation in a non-model organism, the endemic Australian marsupial genus Petrogale . We present initial phylogenetic results from exon-capture that resolve a history of divergence associated with extensive and repeated CRs. Yet it remains challenging to disentangle gene tree heterogeneity caused by recent divergence and gene flow in this and other such recent radiations. We outline a way forward for better integration of comparative genomic sequence data with evidence from molecular cytogenetics, and analyses of shifts in the recombination landscape and potential disruption of meiotic segregation and epigenetic programming. In all likelihood, CRs impact multiple cellular processes and these effects need to be considered together, along with effects of genic divergence. Understanding the effects of CRs together with genic divergence will require development of more integrative theory and inference methods. Together, new data and analysis tools will combine to shed light on long standing questions of how chromosome and genic divergence promote speciation.

  2. Genetic identification and evolutionary trends of the seagrass Halophila nipponica in temperate coastal waters of Korea.

    PubMed

    Kim, Young Kyun; Kim, Seung Hyeon; Yi, Joo Mi; Kang, Chang-Keun; Short, Frederick; Lee, Kun-Seop

    2017-01-01

    Although seagrass species in the genus Halophila are generally distributed in tropical or subtropical regions, H. nipponica has been reported to occur in temperate coastal waters of the northwestern Pacific. Because H. nipponica occurs only in the warm temperate areas influenced by the Kuroshio Current and shows a tropical seasonal growth pattern, such as severely restricted growth in low water temperatures, it was hypothesized that this temperate Halophila species diverged from tropical species in the relatively recent evolutionary past. We used a phylogenetic analysis of internal transcribed spacer (ITS) regions to examine the genetic variability and evolutionary trend of H. nipponica. ITS sequences of H. nipponica from various locations in Korea and Japan were identical or showed very low sequence divergence (less than 3-base pair, bp, difference), confirming that H. nipponica from Japan and Korea are the same species. Halophila species in the section Halophila, which have simple phyllotaxy (a pair of petiolate leaves at the rhizome node), were separated into five well-supported clades by maximum parsimony analysis. H. nipponica grouped with H. okinawensis and H. gaudichaudii from the subtropical regions in the same clade, the latter two species having quite low ITS sequence divergence from H. nipponica (7-15-bp). H. nipponica in Clade I diverged 2.95 ± 1.08 million years ago from species in Clade II, which includes H. ovalis. According to geographical distribution and genetic similarity, H. nipponica appears to have diverged from a tropical species like H. ovalis and adapted to warm temperate environments. The results of divergence time estimates suggest that the temperate H. nipponica is an older species than the subtropical H. okinawensis and H. gaudichaudii and they may have different evolutionary histories.

  3. Genetic identification and evolutionary trends of the seagrass Halophila nipponica in temperate coastal waters of Korea

    PubMed Central

    Kim, Young Kyun; Kim, Seung Hyeon; Yi, Joo Mi; Kang, Chang-Keun; Short, Frederick; Lee, Kun-Seop

    2017-01-01

    Although seagrass species in the genus Halophila are generally distributed in tropical or subtropical regions, H. nipponica has been reported to occur in temperate coastal waters of the northwestern Pacific. Because H. nipponica occurs only in the warm temperate areas influenced by the Kuroshio Current and shows a tropical seasonal growth pattern, such as severely restricted growth in low water temperatures, it was hypothesized that this temperate Halophila species diverged from tropical species in the relatively recent evolutionary past. We used a phylogenetic analysis of internal transcribed spacer (ITS) regions to examine the genetic variability and evolutionary trend of H. nipponica. ITS sequences of H. nipponica from various locations in Korea and Japan were identical or showed very low sequence divergence (less than 3-base pair, bp, difference), confirming that H. nipponica from Japan and Korea are the same species. Halophila species in the section Halophila, which have simple phyllotaxy (a pair of petiolate leaves at the rhizome node), were separated into five well-supported clades by maximum parsimony analysis. H. nipponica grouped with H. okinawensis and H. gaudichaudii from the subtropical regions in the same clade, the latter two species having quite low ITS sequence divergence from H. nipponica (7–15-bp). H. nipponica in Clade I diverged 2.95 ± 1.08 million years ago from species in Clade II, which includes H. ovalis. According to geographical distribution and genetic similarity, H. nipponica appears to have diverged from a tropical species like H. ovalis and adapted to warm temperate environments. The results of divergence time estimates suggest that the temperate H. nipponica is an older species than the subtropical H. okinawensis and H. gaudichaudii and they may have different evolutionary histories. PMID:28505209

  4. Adaptive microclimatic structural and expressional dehydrin 1 evolution in wild barley, Hordeum spontaneum, at 'Evolution Canyon', Mount Carmel, Israel.

    PubMed

    Yang, Zujun; Zhang, Tao; Bolshoy, Alexander; Beharav, Alexander; Nevo, Eviatar

    2009-05-01

    'Evolution Canyon' (ECI) at Lower Nahal Oren, Mount Carmel, Israel, is an optimal natural microscale model for unravelling evolution in action highlighting the twin evolutionary processes of adaptation and speciation. A major model organism in ECI is wild barley, Hordeum spontaneum, the progenitor of cultivated barley, which displays dramatic interslope adaptive and speciational divergence on the 'African' dry slope (AS) and the 'European' humid slope (ES), separated on average by 200 m. Here we examined interslope single nucleotide polymorphism (SNP) sequences and the expression diversity of the drought resistant dehydrin 1 gene (Dhn1) between the opposite slopes. We analysed 47 plants (genotypes), 4-10 individuals in each of seven stations (populations) in an area of 7000 m(2), for Dhn1 sequence diversity located in the 5' upstream flanking region of the gene. We found significant levels of Dhn1 genic diversity represented by 29 haplotypes, derived from 45 SNPs in a total of 708 bp sites. Most of the haplotypes, 25 out of 29 (= 86.2%), were represented by one genotype; hence, unique to one population. Only a single haplotype was common to both slopes. Genetic divergence of sequence and haplotype diversity was generally and significantly different among the populations and slopes. Nucleotide diversity was higher on the AS, whereas haplotype diversity was higher on the ES. Interslope divergence was significantly higher than intraslope divergence. The applied Tajima D rejected neutrality of the SNP diversity. The Dhn1 expression under dehydration indicated interslope divergent expression between AS and ES genotypes, reinforcing Dhn1 associated with drought resistance of wild barley at 'Evolution Canyon'. These results are inexplicable by mutation, gene flow, or chance effects, and support adaptive natural microclimatic selection as the major evolutionary divergent driving force.

  5. Genetic structure and divergence in populations of Lutzomyia cruciata, a phlebotomine sand fly (Diptera: Psychodidae) vector of Leishmania mexicana in southeastern Mexico.

    PubMed

    Pech-May, Angélica; Marina, Carlos F; Vázquez-Domínguez, Ella; Berzunza-Cruz, Miriam; Rebollar-Téllez, Eduardo A; Narváez-Zapata, José A; Moo-Llanes, David; Ibáñez-Bernal, Sergio; Ramsey, Janine M; Becker, Ingeborg

    2013-06-01

    The low dispersal capacity of sand flies could lead to population isolation due to geographic barriers, climate variation, or to population fragmentation associated with specific local habitats due to landscape modification. The phlebotomine sand fly Lutzomyia cruciata has a wide distribution throughout Mexico and is a vector of Leishmania mexicana in the southeast. The aim of this study was to evaluate the genetic diversity, structure, and divergence within and among populations of Lu. cruciata in the state of Chiapas, and to infer the intra-specific phylogeny using the 3' end of the mitochondrial cytochrome b gene. We analyzed 62 sequences from four Lu. cruciata populations and found 26 haplotypes, high genetic differentiation and restricted gene flow among populations (Fst=0.416, Nm=0.701, p<0.001). The highest diversity values were recorded in populations from Loma Bonita and Guadalupe Miramar. Three lineages (100% bootstrap and 7% overall divergence) were identified using a maximum likelihood phylogenetic analysis which showed high genetic divergence (17.2-22.7%). A minimum spanning haplotype network also supported separation into three lineages. Genetic structure and divergence within and among Lu. cruciata populations are hence affected by geographic heterogeneity and evolutionary background. Data obtained in the present study suggest that Lu. cruciata in the state of Chiapas consists of at least three lineages. Such findings may have implications for vector capacity and hence for vector control strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Molecular phylogeny, population genetics, and evolution of heterocystous cyanobacteria using nifH gene sequences.

    PubMed

    Singh, Prashant; Singh, Satya Shila; Elster, Josef; Mishra, Arun Kumar

    2013-06-01

    In order to assess phylogeny, population genetics, and approximation of future course of cyanobacterial evolution based on nifH gene sequences, 41 heterocystous cyanobacterial strains collected from all over India have been used in the present study. NifH gene sequence analysis data confirm that the heterocystous cyanobacteria are monophyletic while the stigonematales show polyphyletic origin with grave intermixing. Further, analysis of nifH gene sequence data using intricate mathematical extrapolations revealed that the nucleotide diversity and recombination frequency is much greater in Nostocales than the Stigonematales. Similarly, DNA divergence studies showed significant values of divergence with greater gene conversion tracts in the unbranched (Nostocales) than the branched (Stigonematales) strains. Our data strongly support the origin of true branching cyanobacterial strains from the unbranched strains.

  7. Complete nucleotide sequence of a novel Hibiscus-infecting Cilevirus from Florida and its relationship with closely associated Cileviruses

    USDA-ARS?s Scientific Manuscript database

    The complete nucleotide sequence of a recently discovered Florida (FL) isolate of Hibiscus infecting Cilevirus (HiCV) was determined by Sanger sequencing. The movement- and coat- protein gene sequences of the HiCV-FL isolate are more divergent than other genes of the previously sequenced HiCV-HA (Ha...

  8. Influence of gene flow on divergence dating - implications for the speciation history of Takydromus grass lizards.

    PubMed

    Tseng, Shu-Ping; Li, Shou-Hsien; Hsieh, Chia-Hung; Wang, Hurng-Yi; Lin, Si-Min

    2014-10-01

    Dating the time of divergence and understanding speciation processes are central to the study of the evolutionary history of organisms but are notoriously difficult. The difficulty is largely rooted in variations in the ancestral population size or in the genealogy variation across loci. To depict the speciation processes and divergence histories of three monophyletic Takydromus species endemic to Taiwan, we sequenced 20 nuclear loci and combined with one mitochondrial locus published in GenBank. They were analysed by a multispecies coalescent approach within a Bayesian framework. Divergence dating based on the gene tree approach showed high variation among loci, and the divergence was estimated at an earlier date than when derived by the species-tree approach. To test whether variations in the ancestral population size accounted for the majority of this variation, we conducted computer inferences using isolation-with-migration (IM) and approximate Bayesian computation (ABC) frameworks. The results revealed that gene flow during the early stage of speciation was strongly favoured over the isolation model, and the initiation of the speciation process was far earlier than the dates estimated by gene- and species-based divergence dating. Due to their limited dispersal ability, it is suggested that geographical isolation may have played a major role in the divergence of these Takydromus species. Nevertheless, this study reveals a more complex situation and demonstrates that gene flow during the speciation process cannot be overlooked and may have a great impact on divergence dating. By using multilocus data and incorporating Bayesian coalescence approaches, we provide a more biologically realistic framework for delineating the divergence history of Takydromus. © 2014 John Wiley & Sons Ltd.

  9. Who's for dinner? High-throughput sequencing reveals bat dietary differentiation in a biodiversity hotspot where prey taxonomy is largely undescribed.

    PubMed

    Burgar, Joanna M; Murray, Daithi C; Craig, Michael D; Haile, James; Houston, Jayne; Stokes, Vicki; Bunce, Michael

    2014-08-01

    Effective management and conservation of biodiversity requires understanding of predator-prey relationships to ensure the continued existence of both predator and prey populations. Gathering dietary data from predatory species, such as insectivorous bats, often presents logistical challenges, further exacerbated in biodiversity hot spots because prey items are highly speciose, yet their taxonomy is largely undescribed. We used high-throughput sequencing (HTS) and bioinformatic analyses to phylogenetically group DNA sequences into molecular operational taxonomic units (MOTUs) to examine predator-prey dynamics of three sympatric insectivorous bat species in the biodiversity hotspot of south-western Australia. We could only assign between 4% and 20% of MOTUs to known genera or species, depending on the method used, underscoring the importance of examining dietary diversity irrespective of taxonomic knowledge in areas lacking a comprehensive genetic reference database. MOTU analysis confirmed that resource partitioning occurred, with dietary divergence positively related to the ecomorphological divergence of the three bat species. We predicted that bat species' diets would converge during times of high energetic requirements, that is, the maternity season for females and the mating season for males. There was an interactive effect of season on female, but not male, bat species' diets, although small sample sizes may have limited our findings. Contrary to our predictions, females of two ecomorphologically similar species showed dietary convergence during the mating season rather than the maternity season. HTS-based approaches can help elucidate complex predator-prey relationships in highly speciose regions, which should facilitate the conservation of biodiversity in genetically uncharacterized areas, such as biodiversity hotspots. © 2013 John Wiley & Sons Ltd.

  10. Highly divergent mussel lineages in isolated Indonesian marine lakes

    PubMed Central

    de Leeuw, Christiaan A.; Knegt, Bram; Maas, Diede L.; de Voogd, Nicole J.; Abdunnur; Suyatna, Iwan; Peijnenburg, Katja T.C.A.

    2016-01-01

    Marine lakes, with populations in landlocked seawater and clearly delineated contours, have the potential to provide a unique model to study early stages of evolution in coastal marine taxa. Here we ask whether populations of the mussel Brachidontes from marine lakes in Berau, East Kalimantan (Indonesia) are isolated from each other and from the coastal mangrove systems. We analyzed sequence data of one mitochondrial marker (Cytochrome Oxidase I (COI)), and two nuclear markers (18S and 28S). In addition, we examined shell shape using a geometric morphometric approach. The Indonesian populations of Brachidontes spp. harbored four deeply diverged lineages (14–75% COI corrected net sequence divergence), two of which correspond to previously recorded lineages from marine lakes in Palau, 1,900 km away. These four lineages also showed significant differences in shell shape and constitute a species complex of at least four undescribed species. Each lake harbored a different lineage despite the fact that the lakes are separated from each other by only 2–6 km, while the two mangrove populations, at 20 km distance from each other, harbored the same lineage and shared haplotypes. Marine lakes thus represent isolated habitats. As each lake contained unique within lineage diversity (0.1–0.2%), we suggest that this may have resulted from in situdivergence due to isolation of founder populations after the formation of the lakes (6,000–12,000 years before present). Combined effects of stochastic processes, local adaptation and increased evolutionary rates could produce high levels of differentiation in small populations such as in marine lake environments. Such short-term isolation at small spatial scales may be an important contributing factor to the high marine biodiversity that is found in the Indo-Australian Archipelago. PMID:27761314

  11. Skull ontogeny: developmental patterns of fishes conserved across major tetrapod clades.

    PubMed

    Schoch, Rainer R

    2006-01-01

    In vertebrates, the ontogeny of the bony skull forms a particularly complex part of embryonic development. Although this area used to be restricted to neontology, recent discoveries of fossil ontogenies provide an additional source of data. One of the most detailed ossification sequences is known from Permo-Carboniferous amphibians, the branchiosaurids. These temnospondyls form a near-perfect link between the piscine osteichthyans and the various clades of extant tetrapods, retaining a full complement of dermal bones in the skull. For the first time, the broader evolutionary significance of these event sequences is analyzed, focusing on the identification of sequence heterochronies. A set of 120 event pairs was analyzed by event pair cracking, which helped identify active movers. A cladistic analysis of the event pair data was also carried out, highlighting some shared patterns between widely divergent clades of tetrapods. The analyses revealed an unexpected degree of similarity between the widely divergent taxa. Most interesting is the apparently modular composition of the cranial sequence: five clusters of bones were discovered in each of which the elements form in the same time window: (1) jaw bones, (2) marginal palatal elements, (3) circumorbital bones, (4) skull roof elements, and (5) neurocranial ossifications. In the studied taxa, these "modules" have in most cases been shifted fore and back on the trajectory relative to the Amia sequence, but did not disintegrate. Such "modules" might indicate a high degree of evolutionary limitation (constraint).

  12. Evolutionary dynamics of retrotransposons assessed by high-throughput sequencing in wild relatives of wheat.

    PubMed

    Senerchia, Natacha; Wicker, Thomas; Felber, François; Parisod, Christian

    2013-01-01

    Transposable elements (TEs) represent a major fraction of plant genomes and drive their evolution. An improved understanding of genome evolution requires the dynamics of a large number of TE families to be considered. We put forward an approach bypassing the required step of a complete reference genome to assess the evolutionary trajectories of high copy number TE families from genome snapshot with high-throughput sequencing. Low coverage sequencing of the complex genomes of Aegilops cylindrica and Ae. geniculata using 454 identified more than 70% of the sequences as known TEs, mainly long terminal repeat (LTR) retrotransposons. Comparing the abundance of reads as well as patterns of sequence diversity and divergence within and among genomes assessed the dynamics of 44 major LTR retrotransposon families of the 165 identified. In particular, molecular population genetics on individual TE copies distinguished recently active from quiescent families and highlighted different evolutionary trajectories of retrotransposons among related species. This work presents a suite of tools suitable for current sequencing data, allowing to address the genome-wide evolutionary dynamics of TEs at the family level and advancing our understanding of the evolution of nonmodel genomes.

  13. A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region.

    PubMed

    Kress, W John; Erickson, David L

    2007-06-06

    A useful DNA barcode requires sufficient sequence variation to distinguish between species and ease of application across a broad range of taxa. Discovery of a DNA barcode for land plants has been limited by intrinsically lower rates of sequence evolution in plant genomes than that observed in animals. This low rate has complicated the trade-off in finding a locus that is universal and readily sequenced and has sufficiently high sequence divergence at the species-level. Here, a global plant DNA barcode system is evaluated by comparing universal application and degree of sequence divergence for nine putative barcode loci, including coding and non-coding regions, singly and in pairs across a phylogenetically diverse set of 48 genera (two species per genus). No single locus could discriminate among species in a pair in more than 79% of genera, whereas discrimination increased to nearly 88% when the non-coding trnH-psbA spacer was paired with one of three coding loci, including rbcL. In silico trials were conducted in which DNA sequences from GenBank were used to further evaluate the discriminatory power of a subset of these loci. These trials supported the earlier observation that trnH-psbA coupled with rbcL can correctly identify and discriminate among related species. A combination of the non-coding trnH-psbA spacer region and a portion of the coding rbcL gene is recommended as a two-locus global land plant barcode that provides the necessary universality and species discrimination.

  14. Rapid rate of control-region evolution in Pacific butterflyfishes (Chaetodontidae).

    PubMed

    McMillan, W O; Palumbi, S R

    1997-11-01

    Sequence differences in the tRNA-proline (tRNApro) end of the mitochondrial control-region of three species of Pacific butterflyfishes accumulated 33-43 times more rapidly than did changes within the mitochondrial cytochrome b gene (cytb). Rapid evolution in this region was accompanied by strong transition/transversion bias and large variation in the probability of a DNA substitution among sites. These substitution constraints placed an absolute ceiling on the magnitude of sequence divergence that could be detected between individuals. This divergence "ceiling" was reached rapidly and led to a decay in the relative rate of control-region/cytb b evolution. A high rate of evolution in this section of the control-region of butterflyfishes stands in marked contrast to the patterns reported in some other fish lineages. Although the mechanism underlying rate variation remains unclear, all taxa with rapid evolution in the 5'-end of the control-region showed extreme transition biases. By contrast, in taxa with slower control-region evolution, transitions accumulated at nearly the same rate as transversions. More information is needed to understand the relationship between nucleotide bias and the rate of evolution in the 5'-end of the control-region. Despite strong constraints on sequence change, phylogenetic information was preserved in the group of recently differentiated species and supported the clustering of sequences into three major mtDNA groupings. Within these groups, very similar control-region sequences were widely distributed across the Pacific Ocean and were shared between recognized species, indicating a lack of mitochondrial sequence monophyly among species.

  15. Tolerance of DNA Mismatches in Dmc1 Recombinase-mediated DNA Strand Exchange.

    PubMed

    Borgogno, María V; Monti, Mariela R; Zhao, Weixing; Sung, Patrick; Argaraña, Carlos E; Pezza, Roberto J

    2016-03-04

    Recombination between homologous chromosomes is required for the faithful meiotic segregation of chromosomes and leads to the generation of genetic diversity. The conserved meiosis-specific Dmc1 recombinase catalyzes homologous recombination triggered by DNA double strand breaks through the exchange of parental DNA sequences. Although providing an efficient rate of DNA strand exchange between polymorphic alleles, Dmc1 must also guard against recombination between divergent sequences. How DNA mismatches affect Dmc1-mediated DNA strand exchange is not understood. We have used fluorescence resonance energy transfer to study the mechanism of Dmc1-mediated strand exchange between DNA oligonucleotides with different degrees of heterology. The efficiency of strand exchange is highly sensitive to the location, type, and distribution of mismatches. Mismatches near the 3' end of the initiating DNA strand have a small effect, whereas most mismatches near the 5' end impede strand exchange dramatically. The Hop2-Mnd1 protein complex stimulates Dmc1-catalyzed strand exchange on homologous DNA or containing a single mismatch. We observed that Dmc1 can reject divergent DNA sequences while bypassing a few mismatches in the DNA sequence. Our findings have important implications in understanding meiotic recombination. First, Dmc1 acts as an initial barrier for heterologous recombination, with the mismatch repair system providing a second level of proofreading, to ensure that ectopic sequences are not recombined. Second, Dmc1 stepping over infrequent mismatches is likely critical for allowing recombination between the polymorphic sequences of homologous chromosomes, thus contributing to gene conversion and genetic diversity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Tolerance of DNA Mismatches in Dmc1 Recombinase-mediated DNA Strand Exchange*

    PubMed Central

    Borgogno, María V.; Monti, Mariela R.; Zhao, Weixing; Sung, Patrick; Argaraña, Carlos E.; Pezza, Roberto J.

    2016-01-01

    Recombination between homologous chromosomes is required for the faithful meiotic segregation of chromosomes and leads to the generation of genetic diversity. The conserved meiosis-specific Dmc1 recombinase catalyzes homologous recombination triggered by DNA double strand breaks through the exchange of parental DNA sequences. Although providing an efficient rate of DNA strand exchange between polymorphic alleles, Dmc1 must also guard against recombination between divergent sequences. How DNA mismatches affect Dmc1-mediated DNA strand exchange is not understood. We have used fluorescence resonance energy transfer to study the mechanism of Dmc1-mediated strand exchange between DNA oligonucleotides with different degrees of heterology. The efficiency of strand exchange is highly sensitive to the location, type, and distribution of mismatches. Mismatches near the 3′ end of the initiating DNA strand have a small effect, whereas most mismatches near the 5′ end impede strand exchange dramatically. The Hop2-Mnd1 protein complex stimulates Dmc1-catalyzed strand exchange on homologous DNA or containing a single mismatch. We observed that Dmc1 can reject divergent DNA sequences while bypassing a few mismatches in the DNA sequence. Our findings have important implications in understanding meiotic recombination. First, Dmc1 acts as an initial barrier for heterologous recombination, with the mismatch repair system providing a second level of proofreading, to ensure that ectopic sequences are not recombined. Second, Dmc1 stepping over infrequent mismatches is likely critical for allowing recombination between the polymorphic sequences of homologous chromosomes, thus contributing to gene conversion and genetic diversity. PMID:26709229

  17. Two new anamorphic yeasts species, Cyberlindnera samutprakarnensis sp. nov. and Candida thasaenensis sp. nov., isolated from industrial wastes in Thailand.

    PubMed

    Poomtien, Jamroonsri; Jindamorakot, Sasitorn; Limtong, Savitree; Pinphanichakarn, Pairoh; Thaniyavarn, Jiraporn

    2013-01-01

    Three yeast strains were isolated from industrial wastes in Thailand. Based on the phylogenetic sequence analysis of the D1/D2 region of the large subunit rRNA gene, the internal transcribed spacer (ITS1-5.8S rRNA gene-ITS2; ITS1-2) region, and their physiological characteristics, the three strains were found to represent two novel species of the ascomycetous anamorphic yeast. Strain JP52(T) represent a novel species which was named Cyberlindnera samutprakarnensis sp. nov. (type strain JP52(T); = BCC 46825(T) = JCM 17816(T) = CBS 12528(T), MycoBank no. MB800879), which was differentiated from the closely related species Cyberlindnera mengyuniae CBS 10845(T) by 2.9 % sequence divergence in the D1/D2 region and 4.4 % sequence divergence in the ITS1-2. Strain JP59(T) and JP60 were identical in their D1/D2 and ITS1-2 regions, which were closely related to those of Scheffersomyces spartinae CBS 6059(T) by 0.9 and 1.0 % sequence divergence, respectively. In addition, supportive evidence of actin gene and translational elongation factor gene by sequence divergence of 6.5 % each confirmed their distinct status. Furthermore, JP59(T) and JP60 differentiated from the closely related species in some biochemical and physiological characteristics. These two strains were assigned as a single novel species which was named Candida thasaenensis sp. nov. (type JP59(T) = BCC 46828(T) = JCM 17817(T) = CBS 12529(T), MycoBank no. MB800880).

  18. Low X/Y divergence in four pairs of papaya sex-linked genes.

    PubMed

    Yu, Qingyi; Hou, Shaobin; Feltus, F Alex; Jones, Meghan R; Murray, Jan E; Veatch, Olivia; Lemke, Cornelia; Saw, Jimmy H; Moore, Richard C; Thimmapuram, Jyothi; Liu, Lei; Moore, Paul H; Alam, Maqsudul; Jiang, Jiming; Paterson, Andrew H; Ming, Ray

    2008-01-01

    Sex chromosomes in flowering plants, in contrast to those in animals, evolved relatively recently and only a few are heteromorphic. The homomorphic sex chromosomes of papaya show features of incipient sex chromosome evolution. We investigated the features of paired X- and Y-specific bacterial artificial chromosomes (BACs), and estimated the time of divergence in four pairs of sex-linked genes. We report the results of a comparative analysis of long contiguous genomic DNA sequences between the X and hermaphrodite Y (Y(h)) chromosomes. Numerous chromosomal rearrangements were detected in the male-specific region of the Y chromosome (MSY), including inversions, deletions, insertions, duplications and translocations, showing the dynamic evolutionary process on the MSY after recombination ceased. DNA sequence expansion was documented in the two regions of the MSY, demonstrating that the cytologically homomorphic sex chromosomes are heteromorphic at the molecular level. Analysis of sequence divergence between four X and Y(h) gene pairs resulted in a estimated age of divergence of between 0.5 and 2.2 million years, supporting a recent origin of the papaya sex chromosomes. Our findings indicate that sex chromosomes did not evolve at the family level in Caricaceae, and reinforce the theory that sex chromosomes evolve at the species level in some lineages.

  19. Identification of a novel bovine enterovirus possessing highly divergent amino acid sequences in capsid protein.

    PubMed

    Tsuchiaka, Shinobu; Rahpaya, Sayed Samim; Otomaru, Konosuke; Aoki, Hiroshi; Kishimoto, Mai; Naoi, Yuki; Omatsu, Tsutomu; Sano, Kaori; Okazaki-Terashima, Sachiko; Katayama, Yukie; Oba, Mami; Nagai, Makoto; Mizutani, Tetsuya

    2017-01-17

    Bovine enterovirus (BEV) belongs to the species Enterovirus E or F, genus Enterovirus and family Picornaviridae. Although numerous studies have identified BEVs in the feces of cattle with diarrhea, the pathogenicity of BEVs remains unclear. Previously, we reported the detection of novel kobu-like virus in calf feces, by metagenomics analysis. In the present study, we identified a novel BEV in diarrheal feces collected for that survey. Complete genome sequences were determined by deep sequencing in feces. Secondary RNA structure analysis of the 5' untranslated region (UTR), phylogenetic tree construction and pairwise identity analysis were conducted. The complete genome sequences of BEV were genetically distant from other EVs and the VP1 coding region contained novel and unique amino acid sequences. We named this strain as BEV AN12/Bos taurus/JPN/2014 (referred to as BEV-AN12). According to genome analysis, the genome length of this virus is 7414 nucleotides excluding the poly (A) tail and its genome consists of a 5'UTR, open reading frame encoding a single polyprotein, and 3'UTR. The results of secondary RNA structure analysis showed that in the 5'UTR, BEV-AN12 had an additional clover leaf structure and small stem loop structure, similarly to other BEVs. In pairwise identity analysis, BEV-AN12 showed high amino acid (aa) identities to Enterovirus F in the polyprotein, P2 and P3 regions (aa identity ≥82.4%). Therefore, BEV-AN12 is closely related to Enterovirus F. However, aa sequences in the capsid protein regions, particularly the VP1 encoding region, showed significantly low aa identity to other viruses in genus Enterovirus (VP1 aa identity ≤58.6%). In addition, BEV-AN12 branched separately from Enterovirus E and F in phylogenetic trees based on the aa sequences of P1 and VP1, although it clustered with Enterovirus F in trees based on sequences in the P2 and P3 genome region. We identified novel BEV possessing highly divergent aa sequences in the VP1 coding region in Japan. According to species definition, we proposed naming this strain as "Enterovirus K", which is a novel species within genus Enterovirus. Further genomic studies are needed to understand the pathogenicity of BEVs.

  20. eShadow: A tool for comparing closely related sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovcharenko, Ivan; Boffelli, Dario; Loots, Gabriela G.

    2004-01-15

    Primate sequence comparisons are difficult to interpret due to the high degree of sequence similarity shared between such closely related species. Recently, a novel method, phylogenetic shadowing, has been pioneered for predicting functional elements in the human genome through the analysis of multiple primate sequence alignments. We have expanded this theoretical approach to create a computational tool, eShadow, for the identification of elements under selective pressure in multiple sequence alignments of closely related genomes, such as in comparisons of human to primate or mouse to rat DNA. This tool integrates two different statistical methods and allows for the dynamic visualizationmore » of the resulting conservation profile. eShadow also includes a versatile optimization module capable of training the underlying Hidden Markov Model to differentially predict functional sequences. This module grants the tool high flexibility in the analysis of multiple sequence alignments and in comparing sequences with different divergence rates. Here, we describe the eShadow comparative tool and its potential uses for analyzing both multiple nucleotide and protein alignments to predict putative functional elements. The eShadow tool is publicly available at http://eshadow.dcode.org/« less

  1. Use of DNA barcodes to identify flowering plants.

    PubMed

    Kress, W John; Wurdack, Kenneth J; Zimmer, Elizabeth A; Weigt, Lee A; Janzen, Daniel H

    2005-06-07

    Methods for identifying species by using short orthologous DNA sequences, known as "DNA barcodes," have been proposed and initiated to facilitate biodiversity studies, identify juveniles, associate sexes, and enhance forensic analyses. The cytochrome c oxidase 1 sequence, which has been found to be widely applicable in animal barcoding, is not appropriate for most species of plants because of a much slower rate of cytochrome c oxidase 1 gene evolution in higher plants than in animals. We therefore propose the nuclear internal transcribed spacer region and the plastid trnH-psbA intergenic spacer as potentially usable DNA regions for applying barcoding to flowering plants. The internal transcribed spacer is the most commonly sequenced locus used in plant phylogenetic investigations at the species level and shows high levels of interspecific divergence. The trnH-psbA spacer, although short ( approximately 450-bp), is the most variable plastid region in angiosperms and is easily amplified across a broad range of land plants. Comparison of the total plastid genomes of tobacco and deadly nightshade enhanced with trials on widely divergent angiosperm taxa, including closely related species in seven plant families and a group of species sampled from a local flora encompassing 50 plant families (for a total of 99 species, 80 genera, and 53 families), suggest that the sequences in this pair of loci have the potential to discriminate among the largest number of plant species for barcoding purposes.

  2. Tracing early stages of species differentiation: Ecological, morphological and genetic divergence of Galápagos sea lion populations

    PubMed Central

    2008-01-01

    Background Oceans are high gene flow environments that are traditionally believed to hamper the build-up of genetic divergence. Despite this, divergence appears to occur occasionally at surprisingly small scales. The Galápagos archipelago provides an ideal opportunity to examine the evolutionary processes of local divergence in an isolated marine environment. Galápagos sea lions (Zalophus wollebaeki) are top predators in this unique setting and have an essentially unlimited dispersal capacity across the entire species range. In theory, this should oppose any genetic differentiation. Results We find significant ecological, morphological and genetic divergence between the western colonies and colonies from the central region of the archipelago that are exposed to different ecological conditions. Stable isotope analyses indicate that western animals use different food sources than those from the central area. This is likely due to niche partitioning with the second Galápagos eared seal species, the Galápagos fur seal (Arctocephalus galapagoensis) that exclusively dwells in the west. Stable isotope patterns correlate with significant differences in foraging-related skull morphology. Analyses of mitochondrial sequences as well as microsatellites reveal signs of initial genetic differentiation. Conclusion Our results suggest a key role of intra- as well as inter-specific niche segregation in the evolution of genetic structure among populations of a highly mobile species under conditions of free movement. Given the monophyletic arrival of the sea lions on the archipelago, our study challenges the view that geographical barriers are strictly needed for the build-up of genetic divergence. The study further raises the interesting prospect that in social, colonially breeding mammals additional forces, such as social structure or feeding traditions, might bear on the genetic partitioning of populations. PMID:18485220

  3. Novel phytochrome sequences in Arabidopsis thaliana: Structure, evolution, and differential expression of a plant regulatory photoreceptor family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharrock, R.A.; Quail, P.H.

    1989-01-01

    Phytochrome is a plant regulatory photoreceptor that mediates red light effects on a wide variety of physiological and molecular responses. DNA blot analysis indicates that the Arabidopsis thaliana genome contains four to five phytochrome-related gene sequences. The authors have isolated and sequenced cDNA clones corresponding to three of these genes and have deduced the amino acid sequence of the full-length polypeptide encoded in each case. One of these proteins (phyA) shows 65-80% amino acid sequence identity with the major, etiolated-tissue phytochrome apoproteins described previously in other plant species. The other two polypeptides (phyB and phyC) are unique in that theymore » have low sequence identity with each other, with phyA, and with all previously described phytochromes. The phyA, phyB, and phyC proteins are of similar molecular mass, have related hydropathic profiles, and contain a conserved chromophore attachment region. However, the sequence comparison data indicate that the three phy genes diverged early in plant evolution, well before the divergence of the two major groups of angiosperms, the monocots and dicots. The steady-state level of the phyA transcript is high in dark-grown A. thaliana seedlings and is down-regulated by light. In contrast, the phyB and phyC transcripts are present at lower levels and are not strongly light-regulated. These findings indicate that the red/far red light-responsive phytochrome photoreceptor system in A. thaliana, and perhaps in all higher plants, consists of a family of chromoproteins that are heterogeneous in structure and regulation.« less

  4. Acoustic divergence in two cryptic Hipposideros species: a role for social selection?

    PubMed Central

    Kingston, T.; Lara, M. C.; Jones, G.; Akbar, Z.; Kunz, T. H.; Schneider, C. J.

    2001-01-01

    We present evidence that a relatively widespread and common bat from South East Asia comprises two morphologically cryptic but acoustically divergent species. A population of the bicoloured leaf-nosed bat (Hipposideros bicolor) from Peninsular Malaysia exhibits a bimodal distribution of echolocation call frequencies, with peaks in the frequency of maximum energy at ca. 131 and 142 kHz. The two phonic types are genetically distinct, with a cytochrome b sequence divergence of just under 7%. We consider the mechanisms by which acoustic divergence in these species might arise. Differences in call frequency are not likely to effect resource partitioning by detectable prey size or functional range. However, ecological segregation may be achieved by differences in microhabitat use; the 131kHz H. bicolor is characterized by significantly longer forearms, lower wing loading, a lower aspect ratio and a more rounded wingtip, features that are associated with greater manoeuvrability in flight that may enable it to forage in more cluttered environments relative to the 142 kHz phonic type. We suggest that acoustic divergence in these species is a consequence of social selection for a clear communication channel, which is mediated by the close link between the acoustic signal and receptor systems imposed by the highly specialized nature of the hipposiderid and rhinolophid echolocation system. PMID:11429138

  5. Adaptive Genetic Divergence Despite Significant Isolation-by-Distance in Populations of Taiwan Cow-Tail Fir (Keteleeria davidiana var. formosana)

    PubMed Central

    Shih, Kai-Ming; Chang, Chung-Te; Chung, Jeng-Der; Chiang, Yu-Chung; Hwang, Shih-Ying

    2018-01-01

    Double digest restriction site-associated DNA sequencing (ddRADseq) is a tool for delivering genome-wide single nucleotide polymorphism (SNP) markers for non-model organisms useful in resolving fine-scale population structure and detecting signatures of selection. This study performs population genetic analysis, based on ddRADseq data, of a coniferous species, Keteleeria davidiana var. formosana, disjunctly distributed in northern and southern Taiwan, for investigation of population adaptive divergence in response to environmental heterogeneity. A total of 13,914 SNPs were detected and used to assess genetic diversity, FST outlier detection, population genetic structure, and individual assignments of five populations (62 individuals) of K. davidiana var. formosana. Principal component analysis (PCA), individual assignments, and the neighbor-joining tree were successful in differentiating individuals between northern and southern populations of K. davidiana var. formosana, but apparent gene flow between the southern DW30 population and northern populations was also revealed. Fifteen of 23 highly differentiated SNPs identified were found to be strongly associated with environmental variables, suggesting isolation-by-environment (IBE). However, multiple matrix regression with randomization analysis revealed strong IBE as well as significant isolation-by-distance. Environmental impacts on divergence were found between populations of the North and South regions and also between the two southern neighboring populations. BLASTN annotation of the sequences flanking outlier SNPs gave significant hits for three of 23 markers that might have biological relevance to mitochondrial homeostasis involved in the survival of locally adapted lineages. Species delimitation between K. davidiana var. formosana and its ancestor, K. davidiana, was also examined (72 individuals). This study has produced highly informative population genomic data for the understanding of population attributes, such as diversity, connectivity, and adaptive divergence associated with large- and small-scale environmental heterogeneity in K. davidiana var. formosana. PMID:29449860

  6. Koi herpesvirus encodes and expresses a functional interleukin-10.

    PubMed

    Sunarto, Agus; Liongue, Clifford; McColl, Kenneth A; Adams, Mathew M; Bulach, Dieter; Crane, Mark St J; Schat, Karel A; Slobedman, Barry; Barnes, Andrew C; Ward, Alister C; Walker, Peter J

    2012-11-01

    Koi herpesvirus (KHV) (species Cyprinid herpesvirus 3) ORF134 was shown to transcribe a spliced transcript encoding a 179-amino-acid (aa) interleukin-10 (IL-10) homolog (khvIL-10) in koi fin (KF-1) cells. Pairwise sequence alignment indicated that the expressed product shares 25% identity with carp IL-10, 22 to 24% identity with mammalian (including primate) IL-10s, and 19.1% identity with European eel herpesvirus IL-10 (ahvIL-10). In phylogenetic analyses, khvIL-10 fell in a divergent position from all host IL-10 sequences, indicating extensive structural divergence following capture from the host. In KHV-infected fish, khvIL-10 transcripts were observed to be highly expressed during the acute and reactivation phases but to be expressed at very low levels during low-temperature-induced persistence. Similarly, KHV early (helicase [Hel] and DNA polymerase [DNAP]) and late (intercapsomeric triplex protein [ITP] and major capsid protein [MCP]) genes were also expressed at high levels during the acute and reactivation phases, but only low-level expression of the ITP gene was detected during the persistent phase. Injection of khvIL-10 mRNA into zebrafish (Danio rerio) embryos increased the number of lysozyme-positive cells to a similar degree as zebrafish IL-10. Downregulation of the IL-10 receptor long chain (IL-10R1) using a specific morpholino abrogated the response to both khvIL-10 and zebrafish IL-10 transcripts, indicating that, despite the structural divergence, khvIL-10 functions via this receptor. This is the first report describing the characteristics of a functional viral IL-10 gene in the Alloherpesviridae.

  7. The Korarchaeota: Archaeal orphans representing an ancestral lineage of life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkins, James G.; Kunin, Victor; Anderson, Iain

    Based on conserved cellular properties, all life on Earth can be grouped into different phyla which belong to the primary domains Bacteria, Archaea, and Eukarya. However, tracing back their evolutionary relationships has been impeded by horizontal gene transfer and gene loss. Within the Archaea, the kingdoms Crenarchaeota and Euryarchaeota exhibit a profound divergence. In order to elucidate the evolution of these two major kingdoms, representatives of more deeply diverged lineages would be required. Based on their environmental small subunit ribosomal (ss RNA) sequences, the Korarchaeota had been originally suggested to have an ancestral relationship to all known Archaea although thismore » assessment has been refuted. Here we describe the cultivation and initial characterization of the first member of the Korarchaeota, highly unusual, ultrathin filamentous cells about 0.16 {micro}m in diameter. A complete genome sequence obtained from enrichment cultures revealed an unprecedented combination of signature genes which were thought to be characteristic of either the Crenarchaeota, Euryarchaeota, or Eukarya. Cell division appears to be mediated through a FtsZ-dependent mechanism which is highly conserved throughout the Bacteria and Euryarchaeota. An rpb8 subunit of the DNA-dependent RNA polymerase was identified which is absent from other Archaea and has been described as a eukaryotic signature gene. In addition, the representative organism possesses a ribosome structure typical for members of the Crenarchaeota. Based on its gene complement, this lineage likely diverged near the separation of the two major kingdoms of Archaea. Further investigations of these unique organisms may shed additional light onto the evolution of extant life.« less

  8. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus) Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms

    PubMed Central

    Bertolini, Francesca; Scimone, Concetta; Geraci, Claudia; Schiavo, Giuseppina; Utzeri, Valerio Joe; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources. PMID:26151450

  9. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus) Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms.

    PubMed

    Bertolini, Francesca; Scimone, Concetta; Geraci, Claudia; Schiavo, Giuseppina; Utzeri, Valerio Joe; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources.

  10. Inbred or Outbred? Genetic Diversity in Laboratory Rodent Colonies

    PubMed Central

    Brekke, Thomas D.; Steele, Katherine A.; Mulley, John F.

    2017-01-01

    Nonmodel rodents are widely used as subjects for both basic and applied biological research, but the genetic diversity of the study individuals is rarely quantified. University-housed colonies tend to be small and subject to founder effects and genetic drift; so they may be highly inbred or show substantial genetic divergence from other colonies, even those derived from the same source. Disregard for the levels of genetic diversity in an animal colony may result in a failure to replicate results if a different colony is used to repeat an experiment, as different colonies may have fixed alternative variants. Here we use high throughput sequencing to demonstrate genetic divergence in three isolated colonies of Mongolian gerbil (Meriones unguiculatus) even though they were all established recently from the same source. We also show that genetic diversity in allegedly “outbred” colonies of nonmodel rodents (gerbils, hamsters, house mice, deer mice, and rats) varies considerably from nearly no segregating diversity to very high levels of polymorphism. We conclude that genetic divergence in isolated colonies may play an important role in the “replication crisis.” In a more positive light, divergent rodent colonies represent an opportunity to leverage genetically distinct individuals in genetic crossing experiments. In sum, awareness of the genetic diversity of an animal colony is paramount as it allows researchers to properly replicate experiments and also to capitalize on other genetically distinct individuals to explore the genetic basis of a trait. PMID:29242387

  11. An improved divergent synthesis of comb-type branched oligodeoxyribonucleotides (bDNA) containing multiple secondary sequences.

    PubMed

    Horn, T; Chang, C A; Urdea, M S

    1997-12-01

    The divergent synthesis of branched DNA (bDNA) comb structures is described. This new type of bDNA contains one unique oligonucleotide, the primary sequence, covalently attached through a comb-like branch network to many identical copies of a different oligonucleotide, the secondary sequence. The bDNA comb structures were assembled on a solid support and several synthesis parameters were investigated and optimized. The bDNA comb molecules were characterized by polyacrylamide gel electrophoretic methods and by controlled cleavage at periodate-cleavable moieties incorporated during synthesis. The developed chemistry allows synthesis of bDNA comb molecules containing multiple secondary sequences. In the accompanying article we describe the synthesis and characterization of large bDNA combs containing all four deoxynucleotides for use as signal amplifiers in nucleic acid quantification assays.

  12. An improved divergent synthesis of comb-type branched oligodeoxyribonucleotides (bDNA) containing multiple secondary sequences.

    PubMed Central

    Horn, T; Chang, C A; Urdea, M S

    1997-01-01

    The divergent synthesis of branched DNA (bDNA) comb structures is described. This new type of bDNA contains one unique oligonucleotide, the primary sequence, covalently attached through a comb-like branch network to many identical copies of a different oligonucleotide, the secondary sequence. The bDNA comb structures were assembled on a solid support and several synthesis parameters were investigated and optimized. The bDNA comb molecules were characterized by polyacrylamide gel electrophoretic methods and by controlled cleavage at periodate-cleavable moieties incorporated during synthesis. The developed chemistry allows synthesis of bDNA comb molecules containing multiple secondary sequences. In the accompanying article we describe the synthesis and characterization of large bDNA combs containing all four deoxynucleotides for use as signal amplifiers in nucleic acid quantification assays. PMID:9365265

  13. Genetic Divergence between Camellia sinensis and Its Wild Relatives Revealed via Genome-Wide SNPs from RAD Sequencing.

    PubMed

    Yang, Hua; Wei, Chao-Ling; Liu, Hong-Wei; Wu, Jun-Lan; Li, Zheng-Guo; Zhang, Liang; Jian, Jian-Bo; Li, Ye-Yun; Tai, Yu-Ling; Zhang, Jing; Zhang, Zheng-Zhu; Jiang, Chang-Jun; Xia, Tao; Wan, Xiao-Chun

    2016-01-01

    Tea is one of the most popular beverages across the world and is made exclusively from cultivars of Camellia sinensis. Many wild relatives of the genus Camellia that are closely related to C. sinensis are native to Southwest China. In this study, we first identified the distinct genetic divergence between C. sinensis and its wild relatives and provided a glimpse into the artificial selection of tea plants at a genome-wide level by analyzing 15,444 genomic SNPs that were identified from 18 cultivated and wild tea accessions using a high-throughput genome-wide restriction site-associated DNA sequencing (RAD-Seq) approach. Six distinct clusters were detected by phylogeny inferrence and principal component and genetic structural analyses, and these clusters corresponded to six Camellia species/varieties. Genetic divergence apparently indicated that C. taliensis var. bangwei is a semi-wild or transient landrace occupying a phylogenetic position between those wild and cultivated tea plants. Cultivated accessions exhibited greater heterozygosity than wild accessions, with the exception of C. taliensis var. bangwei. Thirteen genes with non-synonymous SNPs exhibited strong selective signals that were suggestive of putative artificial selective footprints for tea plants during domestication. The genome-wide SNPs provide a fundamental data resource for assessing genetic relationships, characterizing complex traits, comparing heterozygosity and analyzing putatitve artificial selection in tea plants.

  14. Genome analysis of Hibiscus syriacus provides insights of polyploidization and indeterminate flowering in woody plants.

    PubMed

    Kim, Yong-Min; Kim, Seungill; Koo, Namjin; Shin, Ah-Young; Yeom, Seon-In; Seo, Eunyoung; Park, Seong-Jin; Kang, Won-Hee; Kim, Myung-Shin; Park, Jieun; Jang, Insu; Kim, Pan-Gyu; Byeon, Iksu; Kim, Min-Seo; Choi, JinHyuk; Ko, Gunhwan; Hwang, JiHye; Yang, Tae-Jin; Choi, Sang-Bong; Lee, Je Min; Lim, Ki-Byung; Lee, Jungho; Choi, Ik-Young; Park, Beom-Seok; Kwon, Suk-Yoon; Choi, Doil; Kim, Ryan W

    2017-02-01

    Hibiscus syriacus (L.) (rose of Sharon) is one of the most widespread garden shrubs in the world. We report a draft of the H. syriacus genome comprised of a 1.75 Gb assembly that covers 92% of the genome with only 1.7% (33 Mb) gap sequences. Predicted gene modeling detected 87,603 genes, mostly supported by deep RNA sequencing data. To define gene family distribution among relatives of H. syriacus, orthologous gene sets containing 164,660 genes in 21,472 clusters were identified by OrthoMCL analysis of five plant species, including H. syriacus, Arabidopsis thaliana, Gossypium raimondii, Theobroma cacao and Amborella trichopoda. We inferred their evolutionary relationships based on divergence times among Malvaceae plant genes and found that gene families involved in flowering regulation and disease resistance were more highly divergent and expanded in H. syriacus than in its close relatives, G. raimondii (DD) and T. cacao. Clustered gene families and gene collinearity analysis revealed that two recent rounds of whole-genome duplication were followed by diploidization of the H. syriacus genome after speciation. Copy number variation and phylogenetic divergence indicates that WGDs and subsequent diploidization led to unequal duplication and deletion of flowering-related genes in H. syriacus and may affect its unique floral morphology. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  15. Candida ruelliae sp. nov., a novel yeast species isolated from flowers of Ruellia sp. (Acanthaceae).

    PubMed

    Saluja, Puja; Prasad, Gandham S

    2008-06-01

    Two novel yeast strains designated as 16Q1 and 16Q3 were isolated from flowers of the Ruellia species of the Acanthaceae family. The D1/D2 domain and ITS sequences of these two strains were identical. Sequence analysis of the D1/D2 domain of large-subunit rRNA gene indicated their relationship to species of the Candida haemulonii cluster. However, they differ from C. haemulonii by 14% nucleotide sequence divergence, from Candida pseudohaemulonii by 16.1% and from C. haemulonii type II by 16.5%. These strains also differ in 18 physiological tests from the type strain of C. haemulonii, and 12 and 16 tests, respectively, from C. pseudohaemulonii and C. haemulonii type II. They also differ from C. haemulonii and other related species by more than 13% sequence divergence in the internal transcribed spacer region. In the SSU rRNA gene sequences, strain 16Q1 differs by 1.7% nucleotide divergence from C. haemulonii. Sporulation was not observed in pure or mixed cultures on several media examined. All these data support the assignment of these strains to a novel species; we have named them as Candida ruelliae sp. nov., and designate strain 16Q1(T)=MTCC 7739(T)=CBS10815(T) as type strain of the novel species.

  16. LinkFinder: An expert system that constructs phylogenic trees

    NASA Technical Reports Server (NTRS)

    Inglehart, James; Nelson, Peter C.

    1991-01-01

    An expert system has been developed using the C Language Integrated Production System (CLIPS) that automates the process of constructing DNA sequence based phylogenies (trees or lineages) that indicate evolutionary relationships. LinkFinder takes as input homologous DNA sequences from distinct individual organisms. It measures variations between the sequences, selects appropriate proportionality constants, and estimates the time that has passed since each pair of organisms diverged from a common ancestor. It then designs and outputs a phylogenic map summarizing these results. LinkFinder can find genetic relationships between different species, and between individuals of the same species, including humans. It was designed to take advantage of the vast amount of sequence data being produced by the Genome Project, and should be of value to evolution theorists who wish to utilize this data, but who have no formal training in molecular genetics. Evolutionary theory holds that distinct organisms carrying a common gene inherited that gene from a common ancestor. Homologous genes vary from individual to individual and species to species, and the amount of variation is now believed to be directly proportional to the time that has passed since divergence from a common ancestor. The proportionality constant must be determined experimentally; it varies considerably with the types of organisms and DNA molecules under study. Given an appropriate constant, and the variation between two DNA sequences, a simple linear equation gives the divergence time.

  17. The complex evolutionary dynamics of ancient and recent polyploidy in Leucaena (Leguminosae; Mimosoideae).

    PubMed

    Govindarajulu, Rajanikanth; Hughes, Colin E; Alexander, Patrick J; Bailey, C Donovan

    2011-12-01

    The evolutionary history of Leucaena has been impacted by polyploidy, hybridization, and divergent allopatric species diversification, suggesting that this is an ideal group to investigate the evolutionary tempo of polyploidy and the complexities of reticulation and divergence in plant diversification. Parsimony- and ML-based phylogenetic approaches were applied to 105 accessions sequenced for six sequence characterized amplified region-based nuclear encoded loci, nrDNA ITS, and four cpDNA regions. Hypotheses for the origin of tetraploid species were inferred using results derived from a novel species tree and established gene tree methods and from data on genome sizes and geographic distributions. The combination of comprehensively sampled multilocus DNA sequence data sets and a novel methodology provide strong resolution and support for the origins of all five tetraploid species. A minimum of four allopolyploidization events are required to explain the origins of these species. The origin(s) of one tetraploid pair (L. involucrata/L. pallida) can be equally explained by two unique allopolyploidizations or a single event followed by divergent speciation. Alongside other recent findings, a comprehensive picture of the complex evolutionary dynamics of polyploidy in Leucaena is emerging that includes paleotetraploidization, diploidization of the last common ancestor to Leucaena, allopatric divergence among diploids, and recent allopolyploid origins for tetraploid species likely associated with human translocation of seed. These results provide insights into the role of divergence and reticulation in a well-characterized angiosperm lineage and into traits of diploid parents and derived tetraploids (particularly self-compatibility and year-round flowering) favoring the formation and establishment of novel tetraploids combinations.

  18. Phylogenetic analysis of Demodex caprae based on mitochondrial 16S rDNA sequence.

    PubMed

    Zhao, Ya-E; Hu, Li; Ma, Jun-Xian

    2013-11-01

    Demodex caprae infests the hair follicles and sebaceous glands of goats worldwide, which not only seriously impairs goat farming, but also causes a big economic loss. However, there are few reports on the DNA level of D. caprae. To reveal the taxonomic position of D. caprae within the genus Demodex, the present study conducted phylogenetic analysis of D. caprae based on mt16S rDNA sequence data. D. caprae adults and eggs were obtained from a skin nodule of the goat suffering demodicidosis. The mt16S rDNA sequences of individual mite were amplified using specific primers, and then cloned, sequenced, and aligned. The sequence divergence, genetic distance, and transition/transversion rate were computed, and the phylogenetic trees in Demodex were reconstructed. Results revealed the 339-bp partial sequences of six D. caprae isolates were obtained, and the sequence identity was 100% among isolates. The pairwise divergences between D. caprae and Demodex canis or Demodex folliculorum or Demodex brevis were 22.2-24.0%, 24.0-24.9%, and 22.9-23.2%, respectively. The corresponding average genetic distances were 2.840, 2.926, and 2.665, and the average transition/transversion rates were 0.70, 0.55, and 0.54, respectively. The divergences, genetic distances, and transition/transversion rates of D. caprae versus the other three species all reached interspecies level. The five phylogenetic trees all presented that D. caprae clustered with D. brevis first, and then with D. canis, D. folliculorum, and Demodex injai in sequence. In conclusion, D. caprae is an independent species, and it is closer to D. brevis than to D. canis, D. folliculorum, or D. injai.

  19. Ferritin gene organization: differences between plants and animals suggest possible kingdom-specific selective constraints.

    PubMed

    Proudhon, D; Wei, J; Briat, J; Theil, E C

    1996-03-01

    Ferritin, a protein widespread in nature, concentrates iron approximately 10(11)-10(12)-fold above the solubility within a spherical shell of 24 subunits; it derives in plants and animals from a common ancestor (based on sequence) but displays a cytoplasmic location in animals compared to the plastid in contemporary plants. Ferritin gene regulation in plants and animals is altered by development, hormones, and excess iron; iron signals target DNA in plants but mRNA in animals. Evolution has thus conserved the two end points of ferritin gene expression, the physiological signals and the protein structure, while allowing some divergence of the genetic mechanisms. Comparison of ferritin gene organization in plants and animals, made possible by the cloning of a dicot (soybean) ferritin gene presented here and the recent cloning of two monocot (maize) ferritin genes, shows evolutionary divergence in ferritin gene organization between plants and animals but conservation among plants or among animals; divergence in the genetic mechanism for iron regulation is reflected by the absence in all three plant genes of the IRE, a highly conserved, noncoding sequence in vertebrate animal ferritin mRNA. In plant ferritin genes, the number of introns (n = 7) is higher than in animals (n = 3). Second, no intron positions are conserved when ferritin genes of plants and animals are compared, although all ferritin gene introns are in the coding region; within kingdoms, the intron positions in ferritin genes are conserved. Finally, secondary protein structure has no apparent relationship to intron/exon boundaries in plant ferritin genes, whereas in animal ferritin genes the correspondence is high. The structural differences in introns/exons among phylogenetically related ferritin coding sequences and the high conservation of the gene structure within plant or animal kingdoms of the gene structure within plant or animal kingdoms suggest that kingdom-specific functional constraints may exist to maintain a particular intron/exon pattern within ferritin genes. In the case of plants, where ferritin gene intron placement is unrelated to triplet codons or protein structure, and where ferritin is targeted to the plastid, the selection pressure on gene organization may relate to RNA function and plastid/nuclear signaling.

  20. Hybridization Reveals the Evolving Genomic Architecture of Speciation

    PubMed Central

    Kronforst, Marcus R.; Hansen, Matthew E.B.; Crawford, Nicholas G.; Gallant, Jason R.; Zhang, Wei; Kulathinal, Rob J.; Kapan, Durrell D.; Mullen, Sean P.

    2014-01-01

    SUMMARY The rate at which genomes diverge during speciation is unknown, as are the physical dynamics of the process. Here, we compare full genome sequences of 32 butterflies, representing five species from a hybridizing Heliconius butterfly community, to examine genome-wide patterns of introgression and infer how divergence evolves during the speciation process. Our analyses reveal that initial divergence is restricted to a small fraction of the genome, largely clustered around known wing-patterning genes. Over time, divergence evolves rapidly, due primarily to the origin of new divergent regions. Furthermore, divergent genomic regions display signatures of both selection and adaptive introgression, demonstrating the link between microevolutionary processes acting within species and the origin of species across macroevolutionary timescales. Our results provide a uniquely comprehensive portrait of the evolving species boundary due to the role that hybridization plays in reducing the background accumulation of divergence at neutral sites. PMID:24183670

  1. Mitochondrial Analysis of the Most Basal Canid Reveals Deep Divergence between Eastern and Western North American Gray Foxes (Urocyon spp.) and Ancient Roots in Pleistocene California.

    PubMed

    Goddard, Natalie S; Statham, Mark J; Sacks, Benjamin N

    2015-01-01

    Pleistocene aridification in central North America caused many temperate forest-associated vertebrates to split into eastern and western lineages. Such divisions can be cryptic when Holocene expansions have closed the gaps between once-disjunct ranges or when local morphological variation obscures deeper regional divergences. We investigated such cryptic divergence in the gray fox (Urocyon cinereoargenteus), the most basal extant canid in the world. We also investigated the phylogeography of this species and its diminutive relative, the island fox (U. littoralis), in California. The California Floristic Province was a significant source of Pleistocene diversification for a wide range of taxa and, we hypothesized, for the gray fox as well. Alternatively, gray foxes in California potentially reflected a recent Holocene expansion from further south. We sequenced mitochondrial DNA from 169 gray foxes from the southeastern and southwestern United States and 11 island foxes from three of the Channel Islands. We estimated a 1.3% sequence divergence in the cytochrome b gene between eastern and western foxes and used coalescent simulations to date the divergence to approximately 500,000 years before present (YBP), which is comparable to that between recognized sister species within the Canidae. Gray fox samples collected from throughout California exhibited high haplotype diversity, phylogeographic structure, and genetic signatures of a late-Holocene population decline. Bayesian skyline analysis also indicated an earlier population increase dating to the early Wisconsin glaciation (~70,000 YBP) and a root height extending back to the previous interglacial (~100,000 YBP). Together these findings support California's role as a long-term Pleistocene refugium for western Urocyon. Lastly, based both on our results and re-interpretation of those of another study, we conclude that island foxes of the Channel Islands trace their origins to at least 3 distinct female founders from the mainland rather than to a single matriline, as previously suggested.

  2. Mitochondrial Analysis of the Most Basal Canid Reveals Deep Divergence between Eastern and Western North American Gray Foxes (Urocyon spp.) and Ancient Roots in Pleistocene California

    PubMed Central

    Goddard, Natalie S.; Statham, Mark J.; Sacks, Benjamin N.

    2015-01-01

    Pleistocene aridification in central North America caused many temperate forest-associated vertebrates to split into eastern and western lineages. Such divisions can be cryptic when Holocene expansions have closed the gaps between once-disjunct ranges or when local morphological variation obscures deeper regional divergences. We investigated such cryptic divergence in the gray fox (Urocyon cinereoargenteus), the most basal extant canid in the world. We also investigated the phylogeography of this species and its diminutive relative, the island fox (U. littoralis), in California. The California Floristic Province was a significant source of Pleistocene diversification for a wide range of taxa and, we hypothesized, for the gray fox as well. Alternatively, gray foxes in California potentially reflected a recent Holocene expansion from further south. We sequenced mitochondrial DNA from 169 gray foxes from the southeastern and southwestern United States and 11 island foxes from three of the Channel Islands. We estimated a 1.3% sequence divergence in the cytochrome b gene between eastern and western foxes and used coalescent simulations to date the divergence to approximately 500,000 years before present (YBP), which is comparable to that between recognized sister species within the Canidae. Gray fox samples collected from throughout California exhibited high haplotype diversity, phylogeographic structure, and genetic signatures of a late-Holocene population decline. Bayesian skyline analysis also indicated an earlier population increase dating to the early Wisconsin glaciation (~70,000 YBP) and a root height extending back to the previous interglacial (~100,000 YBP). Together these findings support California’s role as a long-term Pleistocene refugium for western Urocyon. Lastly, based both on our results and re-interpretation of those of another study, we conclude that island foxes of the Channel Islands trace their origins to at least 3 distinct female founders from the mainland rather than to a single matriline, as previously suggested. PMID:26288066

  3. Evolutionary relationships and divergence times among the native rats of Australia.

    PubMed

    Robins, Judith H; McLenachan, Patricia A; Phillips, Matthew J; McComish, Bennet J; Matisoo-Smith, Elizabeth; Ross, Howard A

    2010-12-02

    The genus Rattus is highly speciose and has a complex taxonomy that is not fully resolved. As shown previously there are two major groups within the genus, an Asian and an Australo-Papuan group. This study focuses on the Australo-Papuan group and particularly on the Australian rats. There are uncertainties regarding the number of species within the group and the relationships among them. We analysed 16 mitochondrial genomes, including seven novel genomes from six species, to help elucidate the evolutionary history of the Australian rats. We also demonstrate, from a larger dataset, the usefulness of short regions of the mitochondrial genome in identifying these rats at the species level. Analyses of 16 mitochondrial genomes representing species sampled from Australo-Papuan and Asian clades of Rattus indicate divergence of these two groups ~2.7 million years ago (Mya). Subsequent diversification of at least 4 lineages within the Australo-Papuan clade was rapid and occurred over the period from ~ 0.9-1.7 Mya, a finding that explains the difficulty in resolving some relationships within this clade. Phylogenetic analyses of our 126 taxon, but shorter sequence (1952 nucleotides long), Rattus database generally give well supported species clades. Our whole mitochondrial genome analyses are concordant with a taxonomic division that places the native Australian rats into the Rattus fuscipes species group. We suggest the following order of divergence of the Australian species. R. fuscipes is the oldest lineage among the Australian rats and is not part of a New Guinean radiation. R. lutreolus is also within this Australian clade and shallower than R. tunneyi while the R. sordidus group is the shallowest lineage in the clade. The divergences within the R. sordidus and R. leucopus lineages occurring about half a million years ago support the hypotheses of more recent interchanges of rats between Australia and New Guinea. While problematic for inference of deeper divergences, we report that the analysis of shorter mitochondrial sequences is very useful for species identification in rats.

  4. Dissecting the relationship between protein structure and sequence variation

    NASA Astrophysics Data System (ADS)

    Shahmoradi, Amir; Wilke, Claus; Wilke Lab Team

    2015-03-01

    Over the past decade several independent works have shown that some structural properties of proteins are capable of predicting protein evolution. The strength and significance of these structure-sequence relations, however, appear to vary widely among different proteins, with absolute correlation strengths ranging from 0 . 1 to 0 . 8 . Here we present the results from a comprehensive search for the potential biophysical and structural determinants of protein evolution by studying more than 200 structural and evolutionary properties in a dataset of 209 monomeric enzymes. We discuss the main protein characteristics responsible for the general patterns of protein evolution, and identify sequence divergence as the main determinant of the strengths of virtually all structure-evolution relationships, explaining ~ 10 - 30 % of observed variation in sequence-structure relations. In addition to sequence divergence, we identify several protein structural properties that are moderately but significantly coupled with the strength of sequence-structure relations. In particular, proteins with more homogeneous back-bone hydrogen bond energies, large fractions of helical secondary structures and low fraction of beta sheets tend to have the strongest sequence-structure relation. BEACON-NSF center for the study of evolution in action.

  5. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing

    PubMed Central

    Green, Richard E.; Malaspinas, Anna-Sapfo; Krause, Johannes; Briggs, Adrian W.; Johnson, Philip L. F.; Uhler, Caroline; Meyer, Matthias; Good, Jeffrey M.; Maricic, Tomislav; Stenzel, Udo; Prüfer, Kay; Siebauer, Michael; Burbano, Hernán A.; Ronan, Michael; Rothberg, Jonathan M.; Egholm, Michael; Rudan, Pavao; Brajković, Dejana; Kućan, Željko; Gušić, Ivan; Wikström, Mårten; Laakkonen, Liisa; Kelso, Janet; Slatkin, Montgomery; Pääbo, Svante

    2008-01-01

    Summary A complete mitochondrial (mt) genome sequence was reconstructed from a 38,000-year-old Neandertal individual using 8,341 mtDNA sequences identified among 4.8 Gb of DNA generated from ~0.3 grams of bone. Analysis of the assembled sequence unequivocally establishes that the Neandertal mtDNA falls outside the variation of extant human mtDNAs and allows an estimate of the divergence date between the two mtDNA lineages of 660,000±140,000 years. Of the 13 proteins encoded in the mtDNA, subunit 2 of cytochrome c oxidase of the mitochondrial electron transport chain has experienced the largest number of amino acid substitutions in human ancestors since the separation from Neandertals. There is evidence that purifying selection in the Neandertal mtDNA was reduced compared to other primate lineages suggesting that the effective population size of Neandertals was small. PMID:18692465

  6. Sequence analysis of a few species of termites (Order: Isoptera) on the basis of partial characterization of COII gene.

    PubMed

    Sobti, Ranbir Chander; Kumari, Mamtesh; Sharma, Vijay Lakshmi; Sodhi, Monika; Mukesh, Manishi; Shouche, Yogesh

    2009-11-01

    The present study was aimed to get the nucleotide sequences of a part of COII mitochondrial gene amplified from individuals of five species of Termites (Isoptera: Termitidae: Macrotermitinae). Four of them belonged to the genus Odontotermes (O. obesus, O. horni, O. bhagwatii and Odontotermes sp.) and one to Microtermes (M. obesi). Partial COII gene fragments were amplified by using specific primers. The sequences so obtained were characterized to calculate the frequencies of each nucleotide bases and a high A + T content was observed. The interspecific pairwise sequence divergence in Odontotermes species ranged from 6.5% to 17.1% across COII fragment. M. obesi sequence diversity ranged from 2.5 with Odontotermes sp. to 19.0% with O. bhagwatii. Phylogenetic trees drawn on the basis of distance neighbour-joining method revealed three main clades clustering all the individuals according to their genera and families.

  7. flyDIVaS: A Comparative Genomics Resource for Drosophila Divergence and Selection

    PubMed Central

    Stanley, Craig E.; Kulathinal, Rob J.

    2016-01-01

    With arguably the best finished and expertly annotated genome assembly, Drosophila melanogaster is a formidable genetics model to study all aspects of biology. Nearly a decade ago, the 12 Drosophila genomes project expanded D. melanogaster’s breadth as a comparative model through the community-development of an unprecedented genus- and genome-wide comparative resource. However, since its inception, these datasets for evolutionary inference and biological discovery have become increasingly outdated, outmoded, and inaccessible. Here, we provide an updated and upgradable comparative genomics resource of Drosophila divergence and selection, flyDIVaS, based on the latest genomic assemblies, curated FlyBase annotations, and recent OrthoDB orthology calls. flyDIVaS is an online database containing D. melanogaster-centric orthologous gene sets, CDS and protein alignments, divergence statistics (% gaps, dN, dS, dN/dS), and codon-based tests of positive Darwinian selection. Out of 13,920 protein-coding D. melanogaster genes, ∼80% have one aligned ortholog in the closely related species, D. simulans, and ∼50% have 1–1 12-way alignments in the original 12 sequenced species that span over 80 million yr of divergence. Genes and their orthologs can be chosen from four different taxonomic datasets differing in phylogenetic depth and coverage density, and visualized via interactive alignments and phylogenetic trees. Users can also batch download entire comparative datasets. A functional survey finds conserved mitotic and neural genes, highly diverged immune and reproduction-related genes, more conspicuous signals of divergence across tissue-specific genes, and an enrichment of positive selection among highly diverged genes. flyDIVaS will be regularly updated and can be freely accessed at www.flydivas.info. We encourage researchers to regularly use this resource as a tool for biological inference and discovery, and in their classrooms to help train the next generation of biologists to creatively use such genomic big data resources in an integrative manner. PMID:27226167

  8. flyDIVaS: A Comparative Genomics Resource for Drosophila Divergence and Selection.

    PubMed

    Stanley, Craig E; Kulathinal, Rob J

    2016-08-09

    With arguably the best finished and expertly annotated genome assembly, Drosophila melanogaster is a formidable genetics model to study all aspects of biology. Nearly a decade ago, the 12 Drosophila genomes project expanded D. melanogaster's breadth as a comparative model through the community-development of an unprecedented genus- and genome-wide comparative resource. However, since its inception, these datasets for evolutionary inference and biological discovery have become increasingly outdated, outmoded, and inaccessible. Here, we provide an updated and upgradable comparative genomics resource of Drosophila divergence and selection, flyDIVaS, based on the latest genomic assemblies, curated FlyBase annotations, and recent OrthoDB orthology calls. flyDIVaS is an online database containing D. melanogaster-centric orthologous gene sets, CDS and protein alignments, divergence statistics (% gaps, dN, dS, dN/dS), and codon-based tests of positive Darwinian selection. Out of 13,920 protein-coding D. melanogaster genes, ∼80% have one aligned ortholog in the closely related species, D. simulans, and ∼50% have 1-1 12-way alignments in the original 12 sequenced species that span over 80 million yr of divergence. Genes and their orthologs can be chosen from four different taxonomic datasets differing in phylogenetic depth and coverage density, and visualized via interactive alignments and phylogenetic trees. Users can also batch download entire comparative datasets. A functional survey finds conserved mitotic and neural genes, highly diverged immune and reproduction-related genes, more conspicuous signals of divergence across tissue-specific genes, and an enrichment of positive selection among highly diverged genes. flyDIVaS will be regularly updated and can be freely accessed at www.flydivas.info We encourage researchers to regularly use this resource as a tool for biological inference and discovery, and in their classrooms to help train the next generation of biologists to creatively use such genomic big data resources in an integrative manner. Copyright © 2016 Stanley and Kulathinal.

  9. A High-Density Linkage Map for Astyanax mexicanus Using Genotyping-by-Sequencing Technology

    PubMed Central

    Carlson, Brian M.; Onusko, Samuel W.; Gross, Joshua B.

    2014-01-01

    The Mexican tetra, Astyanax mexicanus, is a unique model system consisting of cave-adapted and surface-dwelling morphotypes that diverged >1 million years (My) ago. This remarkable natural experiment has enabled powerful genetic analyses of cave adaptation. Here, we describe the application of next-generation sequencing technology to the creation of a high-density linkage map. Our map comprises more than 2200 markers populating 25 linkage groups constructed from genotypic data generated from a single genotyping-by-sequencing project. We leveraged emergent genomic and transcriptomic resources to anchor hundreds of anonymous Astyanax markers to the genome of the zebrafish (Danio rerio), the most closely related model organism to our study species. This facilitated the identification of 784 distinct connections between our linkage map and the Danio rerio genome, highlighting several regions of conserved genomic architecture between the two species despite ∼150 My of divergence. Using a Mendelian cave-associated trait as a proof-of-principle, we successfully recovered the genomic position of the albinism locus near the gene Oca2. Further, our map successfully informed the positions of unplaced Astyanax genomic scaffolds within particular linkage groups. This ability to identify the relative location, orientation, and linear order of unaligned genomic scaffolds will facilitate ongoing efforts to improve on the current early draft and assemble future versions of the Astyanax physical genome. Moreover, this improved linkage map will enable higher-resolution genetic analyses and catalyze the discovery of the genetic basis for cave-associated phenotypes. PMID:25520037

  10. Diversification in the northern neotropics: mitochondrial and nuclear DNA phylogeography of the iguana Ctenosaura pectinata and related species.

    PubMed

    Zarza, Eugenia; Reynoso, Victor H; Emerson, Brent C

    2008-07-01

    While Quaternary climatic changes are considered by some to have been a major factor promoting speciation within the neotropics, others suggest that much of the neotropical species diversity originated before the Pleistocene. Using mitochondrial and nuclear sequence data, we evaluate the relative importance of Pleistocene and pre-Pleistocene events within the evolutionary history of the Mexican iguana Ctenosaura pectinata, and related species. Results support the existence of cryptic lineages with strong mitochondrial divergence (> 4%) among them. Some of these lineages form zones of secondary contact, with one of them hybridizing with C. hemilopha. Evolutionary network analyses reveal the oldest populations of C. pectinata to be those of the northern and southern Mexican coastal regions. Inland and mid-latitudinal coastal populations are younger in age as a consequence of a history of local extinction within these regions followed by re-colonization. Estimated divergence times suggest that C. pectinata originated during the Pliocene, whereas geographically distinct mitochondrial DNA lineages first started to diverge during the Pliocene, with subsequent divergence continuing through the Pleistocene. Our results highlight the influence of both Pliocene and Pleistocene events in shaping the geographical distribution of genetic variation within neotropical lowland organisms. Areas of high genetic diversity in southern Mexico were detected, this finding plus the high levels of genetic diversity within C. pectinata, have implications for the conservation of this threatened species.

  11. Full-genome sequence and analysis of a novel human rhinovirus strain within a divergent HRV-A clade.

    PubMed

    Rathe, Jennifer A; Liu, Xinyue; Tallon, Luke J; Gern, James E; Liggett, Stephen B

    2010-01-01

    Genome sequences of human rhinoviruses (HRV) have primarily been from stocks collected in the 1960s, with genomes and phylogeny of modern HRVs remaining undefined. Here, two modern isolates (hrv-A101 and hrv-A101-v1) collected approximately 8 years apart were sequenced in their entirety. Incorporation into our full-genome HRV alignment with subsequent phylogenetic network inference indicated that these represent a unique HRV-A, localized within a distinct divergent clade. They appear to have resulted from recombination of the hrv-65 and hrv-78 lineages. These results support our contention that there are unrecognized distinct HRV-A strains, and that recombination is evident in currently circulating strains.

  12. The Species Dilemma of Northeast Indian Mahseer (Actinopterygii: Cyprinidae): DNA Barcoding in Clarifying the Riddle

    PubMed Central

    Laskar, Boni A.; Bhattacharjee, Maloyjo J.; Dhar, Bishal; Mahadani, Pradosh; Kundu, Shantanu; Ghosh, Sankar K.

    2013-01-01

    Background The taxonomic validity of Northeast Indian endemic Mahseer species, Tor progeneius and Neolissochilus hexastichus, has been argued repeatedly. This is mainly due to disagreements in recognizing the species based on morphological characters. Consequently, both the species have been concealed for many decades. DNA barcoding has become a promising and an independent technique for accurate species level identification. Therefore, utilization of such technique in association with the traditional morphotaxonomic description can resolve the species dilemma of this important group of sport fishes. Methodology/Principal Findings Altogether, 28 mahseer specimens including paratypes were studied from different locations in Northeast India, and 24 morphometric characters were measured invariably. The Principal Component Analysis with morphometric data revealed five distinct groups of sample that were taxonomically categorized into 4 species, viz., Tor putitora, T. progeneius, Neolissochilus hexagonolepis and N. hexastichus. Analysis with a dataset of 76 DNA barcode sequences of different mahseer species exhibited that the queries of T. putitora and N. hexagonolepis clustered cohesively with the respective conspecific database sequences maintaining 0.8% maximum K2P divergence. The closest congeneric divergence was 3 times higher than the mean conspecific divergence and was considered as barcode gap. The maximum divergence among the samples of T. progeneius and T. putitora was 0.8% that was much below the barcode gap, indicating them being synonymous. The query sequences of N. hexastichus invariably formed a discrete and a congeneric clade with the database sequences and maintained the interspecific divergence that supported its distinct species status. Notably, N. hexastichus was encountered in a single site and seemed to be under threat. Conclusion This study substantiated the identification of N. hexastichus to be a true species, and tentatively regarded T. progeneius to be a synonym of T. putitora. It would guide the conservationists to initiate priority conservation of N. hexastichus and T. putitora. PMID:23341979

  13. Parapatric genetic divergence among deep evolutionary lineages in the Mediterranean green crab, Carcinus aestuarii (Brachyura, Portunoidea, Carcinidae), accounts for a sharp phylogeographic break in the Eastern Mediterranean.

    PubMed

    Deli, Temim; Kalkan, Evrim; Karhan, Selahattin Ünsal; Uzunova, Sonya; Keikhosravi, Alireza; Bilgin, Raşit; Schubart, Christoph D

    2018-04-11

    Recently, population genetic studies of Mediterranean marine species highlighted patterns of genetic divergence and phylogeographic breaks, due to the interplay between impacts of Pleistocene climate shifts and contemporary hydrographical barriers. These factors markedly shaped the distribution of marine organisms and their genetic makeup. The present study is part of an ongoing effort to understand the phylogeography and evolutionary history of the highly dispersive Mediterranean green crab, Carcinus aestuarii (Nardo, 1847), across the Mediterranean Sea. Recently, marked divergence between two highly separated haplogroups (genetic types I and II) of C. aestuarii was discerned across the Siculo-Tunisian Strait, suggesting an Early Pleistocene vicariant event. In order to better identify phylogeographic patterns in this species, a total of 263 individuals from 22 Mediterranean locations were analysed by comparing a 587 basepair region of the mitochondrial gene Cox1 (cytochrome oxidase subunit 1). The examined dataset is composed of both newly generated sequences (76) and previously investigated ones (187). Our results unveiled the occurrence of a highly divergent haplogroup (genetic type III) in the most north-eastern part of the Mediterranean Sea. Divergence between the most distinct type III and the common ancestor of both types I and II corresponds to the Early Pleistocene and coincides with the historical episode of separation between types I and II. Our results also revealed strong genetic divergence among adjacent regions (separating the Aegean and Marmara seas from the remaining distribution zone) and confirmed a sharp phylogeographic break across the Eastern Mediterranean. The recorded parapatric genetic divergence, with the potential existence of a contact zone between both groups in the Ionian Sea and notable differences in the demographic history, suggest the likely impact of paleoclimatic events, as well as past and contemporary oceanographic processes, in shaping genetic variability of this species. Our findings not only provide further evidence for the complex evolutionary history of the green crab in the Mediterranean Sea, but also stress the importance of investigating peripheral areas in the species' distribution zone in order to fully understand the distribution of genetic diversity and unravel hidden genetic units and local patterns of endemism.

  14. Balancing Selection on a Regulatory Region Exhibiting Ancient Variation That Predates Human–Neandertal Divergence

    PubMed Central

    Iskow, Rebecca C.; Austermann, Christian; Scharer, Christopher D.; Raj, Towfique; Boss, Jeremy M.; Sunyaev, Shamil; Price, Alkes; Stranger, Barbara; Simon, Viviana; Lee, Charles

    2013-01-01

    Ancient population structure shaping contemporary genetic variation has been recently appreciated and has important implications regarding our understanding of the structure of modern human genomes. We identified a ∼36-kb DNA segment in the human genome that displays an ancient substructure. The variation at this locus exists primarily as two highly divergent haplogroups. One of these haplogroups (the NE1 haplogroup) aligns with the Neandertal haplotype and contains a 4.6-kb deletion polymorphism in perfect linkage disequilibrium with 12 single nucleotide polymorphisms (SNPs) across diverse populations. The other haplogroup, which does not contain the 4.6-kb deletion, aligns with the chimpanzee haplotype and is likely ancestral. Africans have higher overall pairwise differences with the Neandertal haplotype than Eurasians do for this NE1 locus (p<10−15). Moreover, the nucleotide diversity at this locus is higher in Eurasians than in Africans. These results mimic signatures of recent Neandertal admixture contributing to this locus. However, an in-depth assessment of the variation in this region across multiple populations reveals that African NE1 haplotypes, albeit rare, harbor more sequence variation than NE1 haplotypes found in Europeans, indicating an ancient African origin of this haplogroup and refuting recent Neandertal admixture. Population genetic analyses of the SNPs within each of these haplogroups, along with genome-wide comparisons revealed significant FST (p = 0.00003) and positive Tajima's D (p = 0.00285) statistics, pointing to non-neutral evolution of this locus. The NE1 locus harbors no protein-coding genes, but contains transcribed sequences as well as sequences with putative regulatory function based on bioinformatic predictions and in vitro experiments. We postulate that the variation observed at this locus predates Human–Neandertal divergence and is evolving under balancing selection, especially among European populations. PMID:23593015

  15. Reptilian-transcriptome v1.0, a glimpse in the brain transcriptome of five divergent Sauropsida lineages and the phylogenetic position of turtles

    PubMed Central

    2011-01-01

    Background Reptiles are largely under-represented in comparative genomics despite the fact that they are substantially more diverse in many respects than mammals. Given the high divergence of reptiles from classical model species, next-generation sequencing of their transcriptomes is an approach of choice for gene identification and annotation. Results Here, we use 454 technology to sequence the brain transcriptome of four divergent reptilian and one reference avian species: the Nile crocodile, the corn snake, the bearded dragon, the red-eared turtle, and the chicken. Using an in-house pipeline for recursive similarity searches of >3,000,000 reads against multiple databases from 7 reference vertebrates, we compile a reptilian comparative transcriptomics dataset, with homology assignment for 20,000 to 31,000 transcripts per species and a cumulated non-redundant sequence length of 248.6 Mbases. Our approach identifies the majority (87%) of chicken brain transcripts and about 50% of de novo assembled reptilian transcripts. In addition to 57,502 microsatellite loci, we identify thousands of SNP and indel polymorphisms for population genetic and linkage analyses. We also build very large multiple alignments for Sauropsida and mammals (two million residues per species) and perform extensive phylogenetic analyses suggesting that turtles are not basal living reptiles but are rather associated with Archosaurians, hence, potentially answering a long-standing question in the phylogeny of Amniotes. Conclusions The reptilian transcriptome (freely available at http://www.reptilian-transcriptomes.org) should prove a useful new resource as reptiles are becoming important new models for comparative genomics, ecology, and evolutionary developmental genetics. PMID:21943375

  16. Assessment of snake DNA barcodes based on mitochondrial COI and Cytb genes revealed multiple putative cryptic species in Thailand.

    PubMed

    Laopichienpong, Nararat; Muangmai, Narongrit; Supikamolseni, Arrjaree; Twilprawat, Panupon; Chanhome, Lawan; Suntrarachun, Sunutcha; Peyachoknagul, Surin; Srikulnath, Kornsorn

    2016-12-15

    DNA barcodes of mitochondrial cytochrome c oxidase I (COI), cytochrome b (Cytb) genes, and their combined data sets were constructed from 35 snake species in Thailand. No barcoding gap was detected in either of the two genes from the observed intra- and interspecific sequence divergences. Intra- and interspecific sequence divergences of the COI gene differed 14 times, with barcode cut-off scores ranging over 2%-4% for threshold values differentiated among most of the different species; the Cytb gene differed 6 times with cut-off scores ranging over 2%-6%. Thirty-five specific nucleotide mutations were also found at interspecific level in the COI gene, identifying 18 snake species, but no specific nucleotide mutation was observed for Cytb in any single species. This suggests that COI barcoding was a better marker than Cytb. Phylogenetic clustering analysis indicated that most species were represented by monophyletic clusters, suggesting that these snake species could be clearly differentiated using COI barcodes. However, the two-marker combination of both COI and Cytb was more effective, differentiating snake species by over 2%-4%, and reducing species numbers in the overlap value between intra- and interspecific divergences. Three species delimitation algorithms (general mixed Yule-coalescent, automatic barcoding gap detection, and statistical parsimony network analysis) were extensively applied to a wide range of snakes based on both barcodes. This revealed cryptic diversity for eleven snake species in Thailand. In addition, eleven accessions from the database previously grouped under the same species were represented at different species level, suggesting either high genetic diversity, or the misidentification of these sequences in the database as a consequence of cryptic species. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Strong genetic divergence among populations of a marine fish with limited dispersal, Acanthochromis polyacanthus, within the Great Barrier Reef and the Coral Sea.

    PubMed

    Planes, S; Doherty, P J; Bernardi, G

    2001-11-11

    Acanthochromis polyacanthus is an unusual tropical marine damselfish that uniquely lacks pelagic larvae and has lost the capacity for broad-scale dispersal among coral reefs. On the modern Great Barrier Reef (GBR), three color morphs meet and hydridize at two zones of secondary contact. Allozyme electrophoreses revealed strong differences between morphs from the southern zone but few differences between morphs from the northern counterpart, thus suggesting different contact histories. We explore the phylogeography of Acanthochromis polyacanthus with mitochondrial cytochrome b region sequences (alignment of 565 positions) obtained from 126 individuals representing seven to 12 fish from 13 sites distributed over 12 reefs of the GBR and the Coral Sea. The samples revealed three major clades: (1) black fish collected from the southern GBR; (2) bicolored fish collected from the GBR and one reef (Osprey) from the northern Coral Sea; (3) black and white monomorphs collected from six reefs in the Coral Sea. All three clades were well supported (72-100%) by bootstrap analyses. Sequence divergences were very high between the major clades (mean = 7.6%) as well as within them (2.0-3.6%). Within clades, most reefs segregated as monophyletic assemblages. This was revealed both by phylogenetic analyses and AMOVAs that showed that 72-90% of the variance originated from differences among groups, whereas only 5-13% originated within populations. These patterns are discussed in relation to the known geological history of coral reefs of the GBR and the Coral Sea. Finally, we ask whether the monospecific status of Acanthochromis should be revisited because the sequence divergences found among our samples is substantially greater than those recorded among well-recognized species in other reef fishes.

  18. Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs.

    PubMed

    Yang, Jun-Bo; Li, De-Zhu; Li, Hong-Tao

    2014-09-01

    Chloroplast genomes supply indispensable information that helps improve the phylogenetic resolution and even as organelle-scale barcodes. Next-generation sequencing technologies have helped promote sequencing of complete chloroplast genomes, but compared with the number of angiosperms, relatively few chloroplast genomes have been sequenced. There are two major reasons for the paucity of completely sequenced chloroplast genomes: (i) massive amounts of fresh leaves are needed for chloroplast sequencing and (ii) there are considerable gaps in the sequenced chloroplast genomes of many plants because of the difficulty of isolating high-quality chloroplast DNA, preventing complete chloroplast genomes from being assembled. To overcome these obstacles, all known angiosperm chloroplast genomes available to date were analysed, and then we designed nine universal primer pairs corresponding to the highly conserved regions. Using these primers, angiosperm whole chloroplast genomes can be amplified using long-range PCR and sequenced using next-generation sequencing methods. The primers showed high universality, which was tested using 24 species representing major clades of angiosperms. To validate the functionality of the primers, eight species representing major groups of angiosperms, that is, early-diverging angiosperms, magnoliids, monocots, Saxifragales, fabids, malvids and asterids, were sequenced and assembled their complete chloroplast genomes. In our trials, only 100 mg of fresh leaves was used. The results show that the universal primer set provided an easy, effective and feasible approach for sequencing whole chloroplast genomes in angiosperms. The designed universal primer pairs provide a possibility to accelerate genome-scale data acquisition and will therefore magnify the phylogenetic resolution and species identification in angiosperms. © 2014 John Wiley & Sons Ltd.

  19. Direct sequencing of mitochondrial DNA detects highly divergent haplotypes in blue marlin (Makaira nigricans).

    PubMed

    Finnerty, J R; Block, B A

    1992-06-01

    We were able to differentiate between species of billfish (Istiophoridae family) and to detect considerable intraspecific variation in the blue marlin (Makaira nigricans) by directly sequencing a polymerase chain reaction (PCR)-amplified, 612-bp fragment of the mitochondrial cytochrome b gene. Thirteen variable nucleotide sites separated blue marlin (n = 26) into 7 genotypes. On average, these genotypes differed by 5.7 base substitutions. A smaller sample of swordfish from an equally broad geographic distribution displayed relatively little intraspecific variation, with an average of 1.3 substitutions separating different genotypes. A cladistic analysis of blue marlin cytochrome b variants indicates two major divergent evolutionary lines within the species. The frequencies of these two major evolutionary lines differ significantly between Atlantic and Pacific ocean basins. This finding is important given that the Atlantic stocks of blue marlin are considered endangered. Migration from the Pacific can help replenish the numbers of blue marlin in the Atlantic, but the loss of certain mitochondrial DNA haplotypes in the Atlantic due to overfishing probably could not be remedied by an influx of Pacific fish because of their absence in the Pacific population. Fishery management strategies should attempt to preserve the genetic diversity within the species. The detection of DNA sequence polymorphism indicates the utility of PCR technology in pelagic fishery genetics.

  20. Binding Site Turnover Produces Pervasive Quantitative Changes in Transcription Factor Binding between Closely Related Drosophila Species

    PubMed Central

    Trapnell, Cole; Davidson, Stuart; Pachter, Lior; Chu, Hou Cheng; Tonkin, Leath A.; Biggin, Mark D.; Eisen, Michael B.

    2010-01-01

    Changes in gene expression play an important role in evolution, yet the molecular mechanisms underlying regulatory evolution are poorly understood. Here we compare genome-wide binding of the six transcription factors that initiate segmentation along the anterior-posterior axis in embryos of two closely related species: Drosophila melanogaster and Drosophila yakuba. Where we observe binding by a factor in one species, we almost always observe binding by that factor to the orthologous sequence in the other species. Levels of binding, however, vary considerably. The magnitude and direction of the interspecies differences in binding levels of all six factors are strongly correlated, suggesting a role for chromatin or other factor-independent forces in mediating the divergence of transcription factor binding. Nonetheless, factor-specific quantitative variation in binding is common, and we show that it is driven to a large extent by the gain and loss of cognate recognition sequences for the given factor. We find only a weak correlation between binding variation and regulatory function. These data provide the first genome-wide picture of how modest levels of sequence divergence between highly morphologically similar species affect a system of coordinately acting transcription factors during animal development, and highlight the dominant role of quantitative variation in transcription factor binding over short evolutionary distances. PMID:20351773

  1. Molecular Divergence and Species Delimitation of the Cultivated Oyster Mushrooms: Integration of IGS1 and ITS

    PubMed Central

    Bhassu, Subha; Tan, Yee Shin; Vikineswary, Sabaratnam

    2014-01-01

    Identification of edible mushrooms particularly Pleurotus genus has been restricted due to various obstacles. The present study attempted to use the combination of two variable regions of IGS1 and ITS for classifying the economically cultivated Pleurotus species. Integration of the two regions proved a high ability that not only could clearly distinguish the species but also served sufficient intraspecies variation. Phylogenetic tree (IGS1 + ITS) showed seven distinct clades, each clade belonging to a separate species group. Moreover, the species differentiation was tested by AMOVA and the results were reconfirmed by presenting appropriate amounts of divergence (91.82% among and 8.18% within the species). In spite of achieving a proper classification of species by combination of IGS1 and ITS sequences, the phylogenetic tree showed the misclassification of the species of P. nebrodensis and P. eryngii var. ferulae with other strains of P. eryngii. However, the constructed median joining (MJ) network could not only differentiate between these species but also offer a profound perception of the species' evolutionary process. Eventually, due to the sufficient variation among and within species, distinct sequences, simple amplification, and location between ideal conserved ribosomal genes, the integration of IGS1 and ITS sequences is recommended as a desirable DNA barcode. PMID:24587752

  2. Barcoding the Dendrobium (Orchidaceae) Species and Analysis of the Intragenomic Variation Based on the Internal Transcribed Spacer 2

    PubMed Central

    Wang, Xiaoyue; Yang, Pei; Wang, Lili

    2017-01-01

    Many species belonging to the genus Dendrobium are of great commercial value. However, their difficult growth conditions and high demand have caused many of these species to become endangered. Indeed, counterfeit Dendrobium products are common, especially in medicinal markets. This study aims to assess the suitability of the internal transcribed spacer 2 (ITS2) region as a marker for identifying Dendrobium and to evaluate its intragenomic variation in Dendrobium species. In total, 29,624 ITS2 copies from 18 species were obtained using 454 pyrosequencing to evaluate intragenomic variation. In addition, 513 ITS2 sequences from 26 Dendrobium species were used to assess its identification suitability. The highest intragenomic genetic distance was observed in Dendrobium chrysotoxum (0.081). The average intraspecific genetic distances of each species ranged from 0 to 0.032. Phylogenetic trees based on ITS2 sequences showed that most Dendrobium species are monophyletic. The intragenomic and intraspecies divergence analysis showed that greater intragenomic divergence is mostly correlated with larger intraspecific variation. As a major ITS2 variant becomes more common in genome, there are fewer intraspecific variable sites in ITS2 sequences at the species level. The results demonstrated that the intragenomic multiple copies of ITS2 did not affect species identification. PMID:29181391

  3. Barcoding the Dendrobium (Orchidaceae) Species and Analysis of the Intragenomic Variation Based on the Internal Transcribed Spacer 2.

    PubMed

    Wang, Xiaoyue; Chen, Xiaochen; Yang, Pei; Wang, Lili; Han, Jianping

    2017-01-01

    Many species belonging to the genus Dendrobium are of great commercial value. However, their difficult growth conditions and high demand have caused many of these species to become endangered. Indeed, counterfeit Dendrobium products are common, especially in medicinal markets. This study aims to assess the suitability of the internal transcribed spacer 2 (ITS2) region as a marker for identifying Dendrobium and to evaluate its intragenomic variation in Dendrobium species. In total, 29,624 ITS2 copies from 18 species were obtained using 454 pyrosequencing to evaluate intragenomic variation. In addition, 513 ITS2 sequences from 26 Dendrobium species were used to assess its identification suitability. The highest intragenomic genetic distance was observed in Dendrobium chrysotoxum (0.081). The average intraspecific genetic distances of each species ranged from 0 to 0.032. Phylogenetic trees based on ITS2 sequences showed that most Dendrobium species are monophyletic. The intragenomic and intraspecies divergence analysis showed that greater intragenomic divergence is mostly correlated with larger intraspecific variation. As a major ITS2 variant becomes more common in genome, there are fewer intraspecific variable sites in ITS2 sequences at the species level. The results demonstrated that the intragenomic multiple copies of ITS2 did not affect species identification.

  4. Complete mitochondrial genome of Porzana fusca and Porzana pusilla and phylogenetic relationship of 16 Rallidae species.

    PubMed

    Chen, Peng; Han, Yuqing; Zhu, Chaoying; Gao, Bin; Ruan, Luzhang

    2017-12-01

    The complete mitochondrial genome sequences of Porzana fusca and Porzana pusilla were determined. The two avian species share a high degree of homology in terms of mitochondrial genome organization and gene arrangement. Their corresponding mitochondrial genomes are 16,935 and 16,978 bp and consist of 37 genes and a control region. Their PCGs were both 11,365 bp long and have similar structure. Their tRNA gene sequences could be folded into canonical cloverleaf secondary structure, except for tRNA Ser (AGY) , which lost its "DHU" arm. Based on the concatenated nucleotide sequences of the complete mitochondrial DNA genes of 16 Rallidae species, reconstruction of phylogenetic trees and analysis of the molecular clock of P. fusca and P. pusilla indicated that these species from a sister group, which in turn are sister group to Rallina eurizonoides. The genus Gallirallus is a sister group to genus Lewinia, and these groups in turn are sister groups to genus Porphyrio. Moreover, molecular clock analyses suggested that the basal divergence of Rallidae could be traced back to 40.47 (41.46‒39.45) million years ago (Mya), and the divergence of Porzana occurred approximately 5.80 (15.16‒0.79) Mya.

  5. Ancient DNA evidence for the loss of a highly divergent brown bear clade during historical times.

    PubMed

    Calvignac, Sebastien; Hughes, Sandrine; Tougard, Christelle; Michaux, Jacques; Thevenot, Michel; Philippe, Michel; Hamdine, Watik; Hänni, Catherine

    2008-04-01

    The genetic diversity of present-day brown bears (Ursus arctos) has been extensively studied over the years and appears to be geographically structured into five main clades. The question of the past diversity of the species has been recently addressed by ancient DNA studies that concluded to a relative genetic stability over the last 35,000 years. However, the post-last glacial maximum genetic diversity of the species still remains poorly documented, notably in the Old World. Here, we analyse Atlas brown bears, which became extinct during the Holocene period. A divergent brown bear mitochondrial DNA lineage not present in any of the previously studied modern or ancient bear samples was uncovered, suggesting that the diversity of U. arctos was larger in the past than it is now. Specifically, a significant portion (with respect to sequence divergence) of the intraspecific diversity of the brown bear was lost with the extinction of the Atlas brown bear after the Pleistocene/Holocene transition.

  6. Biophysical Constraints Arising from Compositional Context in Synthetic Gene Networks.

    PubMed

    Yeung, Enoch; Dy, Aaron J; Martin, Kyle B; Ng, Andrew H; Del Vecchio, Domitilla; Beck, James L; Collins, James J; Murray, Richard M

    2017-07-26

    Synthetic gene expression is highly sensitive to intragenic compositional context (promoter structure, spacing regions between promoter and coding sequences, and ribosome binding sites). However, much less is known about the effects of intergenic compositional context (spatial arrangement and orientation of entire genes on DNA) on expression levels in synthetic gene networks. We compare expression of induced genes arranged in convergent, divergent, or tandem orientations. Induction of convergent genes yielded up to 400% higher expression, greater ultrasensitivity, and dynamic range than divergent- or tandem-oriented genes. Orientation affects gene expression whether one or both genes are induced. We postulate that transcriptional interference in divergent and tandem genes, mediated by supercoiling, can explain differences in expression and validate this hypothesis through modeling and in vitro supercoiling relaxation experiments. Treatment with gyrase abrogated intergenic context effects, bringing expression levels within 30% of each other. We rebuilt the toggle switch with convergent genes, taking advantage of supercoiling effects to improve threshold detection and switch stability. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. High polymorphism in Est-SSR loci for cellulose synthase and β-amylase of sugarcane varieties (Saccharum spp.) used by the industrial sector for ethanol production.

    PubMed

    Augusto, Raphael; Maranho, Rone Charles; Mangolin, Claudete Aparecida; Pires da Silva Machado, Maria de Fátima

    2015-01-01

    High and low polymorphisms in simple sequence repeats of expressed sequence tag (EST-SSR) for specific proteins and enzymes, such as β-amylase, cellulose synthase, xyloglucan endotransglucosylase, fructose 1,6-bisphosphate aldolase, and fructose 1,6-bisphosphatase, were used to illustrate the genetic divergence within and between varieties of sugarcane (Saccharum spp.) and to guide the technological paths to optimize ethanol production from lignocellulose biomass. The varieties RB72454, RB867515, RB92579, and SP813250 on the second stage of cutting, all grown in the state of Paraná (PR), and the varieties RB92579 and SP813250 cultured in the PR state and in Northeastern Brazil, state of Pernambuco (PE), were analyzed using five EST-SSR primers for EstC66, EstC67, EstC68, EstC69, and EstC91 loci. Genetic divergence was evident in the EstC67 and EstC69 loci for β-amylase and cellulose synthase, respectively, among the four sugarcane varieties. An extremely high level of genetic differentiation was also detected in the EstC67 locus from the RB82579 and SP813250 varieties cultured in the PR and PE states. High polymorphism in SSR of the cellulose synthase locus may explain the high variability of substrates used in pretreatment and enzymatic hydrolysis processes, which has been an obstacle to effective industrial adaptations.

  8. Plant centromere organization: a dynamic structure with conserved functions.

    PubMed

    Ma, Jianxin; Wing, Rod A; Bennetzen, Jeffrey L; Jackson, Scott A

    2007-03-01

    Although the structural features of centromeres from most multicellular eukaryotes remain to be characterized, recent analyses of the complete sequences of two centromeric regions of rice, together with data from Arabidopsis thaliana and maize, have illuminated the considerable size variation and sequence divergence of plant centromeres. Despite the severe suppression of meiotic chromosomal exchange in centromeric and pericentromeric regions of rice, the centromere core shows high rates of unequal homologous recombination in the absence of chromosomal exchange, resulting in frequent and extensive DNA rearrangement. Not only is the sequence of centromeric tandem and non-tandem repeats highly variable but also the copy number, spacing, order and orientation, providing ample natural variation as the basis for selection of superior centromere performance. This review article focuses on the structural and evolutionary dynamics of plant centromere organization and the potential molecular mechanisms responsible for the rapid changes of centromeric components.

  9. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development.

    PubMed

    Daccord, Nicolas; Celton, Jean-Marc; Linsmith, Gareth; Becker, Claude; Choisne, Nathalie; Schijlen, Elio; van de Geest, Henri; Bianco, Luca; Micheletti, Diego; Velasco, Riccardo; Di Pierro, Erica Adele; Gouzy, Jérôme; Rees, D Jasper G; Guérif, Philippe; Muranty, Hélène; Durel, Charles-Eric; Laurens, François; Lespinasse, Yves; Gaillard, Sylvain; Aubourg, Sébastien; Quesneville, Hadi; Weigel, Detlef; van de Weg, Eric; Troggio, Michela; Bucher, Etienne

    2017-07-01

    Using the latest sequencing and optical mapping technologies, we have produced a high-quality de novo assembly of the apple (Malus domestica Borkh.) genome. Repeat sequences, which represented over half of the assembly, provided an unprecedented opportunity to investigate the uncharacterized regions of a tree genome; we identified a new hyper-repetitive retrotransposon sequence that was over-represented in heterochromatic regions and estimated that a major burst of different transposable elements (TEs) occurred 21 million years ago. Notably, the timing of this TE burst coincided with the uplift of the Tian Shan mountains, which is thought to be the center of the location where the apple originated, suggesting that TEs and associated processes may have contributed to the diversification of the apple ancestor and possibly to its divergence from pear. Finally, genome-wide DNA methylation data suggest that epigenetic marks may contribute to agronomically relevant aspects, such as apple fruit development.

  10. SNP-array reveals genome-wide patterns of geographical and potential adaptive divergence across the natural range of Atlantic salmon (Salmo salar).

    PubMed

    Bourret, Vincent; Kent, Matthew P; Primmer, Craig R; Vasemägi, Anti; Karlsson, Sten; Hindar, Kjetil; McGinnity, Philip; Verspoor, Eric; Bernatchez, Louis; Lien, Sigbjørn

    2013-02-01

    Atlantic salmon (Salmo salar) is one of the most extensively studied fish species in the world due to its significance in aquaculture, fisheries and ongoing conservation efforts to protect declining populations. Yet, limited genomic resources have hampered our understanding of genetic architecture in the species and the genetic basis of adaptation to the wide range of natural and artificial environments it occupies. In this study, we describe the development of a medium-density Atlantic salmon single nucleotide polymorphism (SNP) array based on expressed sequence tags (ESTs) and genomic sequencing. The array was used in the most extensive assessment of population genetic structure performed to date in this species. A total of 6176 informative SNPs were successfully genotyped in 38 anadromous and freshwater wild populations distributed across the species natural range. Principal component analysis clearly differentiated European and North American populations, and within Europe, three major regional genetic groups were identified for the first time in a single analysis. We assessed the potential for the array to disentangle neutral and putative adaptive divergence of SNP allele frequencies across populations and among regional groups. In Europe, secondary contact zones were identified between major clusters where endogenous and exogenous barriers could be associated, rendering the interpretation of environmental influence on potentially adaptive divergence equivocal. A small number of markers highly divergent in allele frequencies (outliers) were observed between (multiple) freshwater and anadromous populations, between northern and southern latitudes, and when comparing Baltic populations to all others. We also discuss the potential future applications of the SNP array for conservation, management and aquaculture. © 2012 Blackwell Publishing Ltd.

  11. Patterns of DNA barcode variation in Canadian marine molluscs.

    PubMed

    Layton, Kara K S; Martel, André L; Hebert, Paul D N

    2014-01-01

    Molluscs are the most diverse marine phylum and this high diversity has resulted in considerable taxonomic problems. Because the number of species in Canadian oceans remains uncertain, there is a need to incorporate molecular methods into species identifications. A 648 base pair segment of the cytochrome c oxidase subunit I gene has proven useful for the identification and discovery of species in many animal lineages. While the utility of DNA barcoding in molluscs has been demonstrated in other studies, this is the first effort to construct a DNA barcode registry for marine molluscs across such a large geographic area. This study examines patterns of DNA barcode variation in 227 species of Canadian marine molluscs. Intraspecific sequence divergences ranged from 0-26.4% and a barcode gap existed for most taxa. Eleven cases of relatively deep (>2%) intraspecific divergence were detected, suggesting the possible presence of overlooked species. Structural variation was detected in COI with indels found in 37 species, mostly bivalves. Some indels were present in divergent lineages, primarily in the region of the first external loop, suggesting certain areas are hotspots for change. Lastly, mean GC content varied substantially among orders (24.5%-46.5%), and showed a significant positive correlation with nearest neighbour distances. DNA barcoding is an effective tool for the identification of Canadian marine molluscs and for revealing possible cases of overlooked species. Some species with deep intraspecific divergence showed a biogeographic partition between lineages on the Atlantic, Arctic and Pacific coasts, suggesting the role of Pleistocene glaciations in the subdivision of their populations. Indels were prevalent in the barcode region of the COI gene in bivalves and gastropods. This study highlights the efficacy of DNA barcoding for providing insights into sequence variation across a broad taxonomic group on a large geographic scale.

  12. Decelerated genome evolution in modern vertebrates revealed by analysis of multiple lancelet genomes

    PubMed Central

    Huang, Shengfeng; Chen, Zelin; Yan, Xinyu; Yu, Ting; Huang, Guangrui; Yan, Qingyu; Pontarotti, Pierre Antoine; Zhao, Hongchen; Li, Jie; Yang, Ping; Wang, Ruihua; Li, Rui; Tao, Xin; Deng, Ting; Wang, Yiquan; Li, Guang; Zhang, Qiujin; Zhou, Sisi; You, Leiming; Yuan, Shaochun; Fu, Yonggui; Wu, Fenfang; Dong, Meiling; Chen, Shangwu; Xu, Anlong

    2014-01-01

    Vertebrates diverged from other chordates ~500 Myr ago and experienced successful innovations and adaptations, but the genomic basis underlying vertebrate origins are not fully understood. Here we suggest, through comparison with multiple lancelet (amphioxus) genomes, that ancient vertebrates experienced high rates of protein evolution, genome rearrangement and domain shuffling and that these rates greatly slowed down after the divergence of jawed and jawless vertebrates. Compared with lancelets, modern vertebrates retain, at least relatively, less protein diversity, fewer nucleotide polymorphisms, domain combinations and conserved non-coding elements (CNE). Modern vertebrates also lost substantial transposable element (TE) diversity, whereas lancelets preserve high TE diversity that includes even the long-sought RAG transposon. Lancelets also exhibit rapid gene turnover, pervasive transcription, fastest exon shuffling in metazoans and substantial TE methylation not observed in other invertebrates. These new lancelet genome sequences provide new insights into the chordate ancestral state and the vertebrate evolution. PMID:25523484

  13. Decelerated genome evolution in modern vertebrates revealed by analysis of multiple lancelet genomes.

    PubMed

    Huang, Shengfeng; Chen, Zelin; Yan, Xinyu; Yu, Ting; Huang, Guangrui; Yan, Qingyu; Pontarotti, Pierre Antoine; Zhao, Hongchen; Li, Jie; Yang, Ping; Wang, Ruihua; Li, Rui; Tao, Xin; Deng, Ting; Wang, Yiquan; Li, Guang; Zhang, Qiujin; Zhou, Sisi; You, Leiming; Yuan, Shaochun; Fu, Yonggui; Wu, Fenfang; Dong, Meiling; Chen, Shangwu; Xu, Anlong

    2014-12-19

    Vertebrates diverged from other chordates ~500 Myr ago and experienced successful innovations and adaptations, but the genomic basis underlying vertebrate origins are not fully understood. Here we suggest, through comparison with multiple lancelet (amphioxus) genomes, that ancient vertebrates experienced high rates of protein evolution, genome rearrangement and domain shuffling and that these rates greatly slowed down after the divergence of jawed and jawless vertebrates. Compared with lancelets, modern vertebrates retain, at least relatively, less protein diversity, fewer nucleotide polymorphisms, domain combinations and conserved non-coding elements (CNE). Modern vertebrates also lost substantial transposable element (TE) diversity, whereas lancelets preserve high TE diversity that includes even the long-sought RAG transposon. Lancelets also exhibit rapid gene turnover, pervasive transcription, fastest exon shuffling in metazoans and substantial TE methylation not observed in other invertebrates. These new lancelet genome sequences provide new insights into the chordate ancestral state and the vertebrate evolution.

  14. Recovery of divergent avian bornaviruses from cases of proventricular dilatation disease: Identification of a candidate etiologic agent

    PubMed Central

    Kistler, Amy L; Gancz, Ady; Clubb, Susan; Skewes-Cox, Peter; Fischer, Kael; Sorber, Katherine; Chiu, Charles Y; Lublin, Avishai; Mechani, Sara; Farnoushi, Yigal; Greninger, Alexander; Wen, Christopher C; Karlene, Scott B; Ganem, Don; DeRisi, Joseph L

    2008-01-01

    Background Proventricular dilatation disease (PDD) is a fatal disorder threatening domesticated and wild psittacine birds worldwide. It is characterized by lymphoplasmacytic infiltration of the ganglia of the central and peripheral nervous system, leading to central nervous system disorders as well as disordered enteric motility and associated wasting. For almost 40 years, a viral etiology for PDD has been suspected, but to date no candidate etiologic agent has been reproducibly linked to the disease. Results Analysis of 2 PDD case-control series collected independently on different continents using a pan-viral microarray revealed a bornavirus hybridization signature in 62.5% of the PDD cases (5/8) and none of the controls (0/8). Ultra high throughput sequencing was utilized to recover the complete viral genome sequence from one of the virus-positive PDD cases. This revealed a bornavirus-like genome organization for this agent with a high degree of sequence divergence from all prior bornavirus isolates. We propose the name avian bornavirus (ABV) for this agent. Further specific ABV PCR analysis of an additional set of independently collected PDD cases and controls yielded a significant difference in ABV detection rate among PDD cases (71%, n = 7) compared to controls (0%, n = 14) (P = 0.01; Fisher's Exact Test). Partial sequence analysis of a total of 16 ABV isolates we have now recovered from these and an additional set of cases reveals at least 5 distinct ABV genetic subgroups. Conclusion These studies clearly demonstrate the existence of an avian reservoir of remarkably diverse bornaviruses and provide a compelling candidate in the search for an etiologic agent of PDD. PMID:18671869

  15. Atomic interaction networks in the core of protein domains and their native folds.

    PubMed

    Soundararajan, Venkataramanan; Raman, Rahul; Raguram, S; Sasisekharan, V; Sasisekharan, Ram

    2010-02-23

    Vastly divergent sequences populate a majority of protein folds. In the quest to identify features that are conserved within protein domains belonging to the same fold, we set out to examine the entire protein universe on a fold-by-fold basis. We report that the atomic interaction network in the solvent-unexposed core of protein domains are fold-conserved, extraordinary sequence divergence notwithstanding. Further, we find that this feature, termed protein core atomic interaction network (or PCAIN) is significantly distinguishable across different folds, thus appearing to be "signature" of a domain's native fold. As part of this study, we computed the PCAINs for 8698 representative protein domains from families across the 1018 known protein folds to construct our seed database and an automated framework was developed for PCAIN-based characterization of the protein fold universe. A test set of randomly selected domains that are not in the seed database was classified with over 97% accuracy, independent of sequence divergence. As an application of this novel fold signature, a PCAIN-based scoring scheme was developed for comparative (homology-based) structure prediction, with 1-2 angstroms (mean 1.61A) C(alpha) RMSD generally observed between computed structures and reference crystal structures. Our results are consistent across the full spectrum of test domains including those from recent CASP experiments and most notably in the 'twilight' and 'midnight' zones wherein <30% and <10% target-template sequence identity prevails (mean twilight RMSD of 1.69A). We further demonstrate the utility of the PCAIN protocol to derive biological insight into protein structure-function relationships, by modeling the structure of the YopM effector novel E3 ligase (NEL) domain from plague-causative bacterium Yersinia Pestis and discussing its implications for host adaptive and innate immune modulation by the pathogen. Considering the several high-throughput, sequence-identity-independent applications demonstrated in this work, we suggest that the PCAIN is a fundamental fold feature that could be a valuable addition to the arsenal of protein modeling and analysis tools.

  16. Atomic Interaction Networks in the Core of Protein Domains and Their Native Folds

    PubMed Central

    Soundararajan, Venkataramanan; Raman, Rahul; Raguram, S.; Sasisekharan, V.; Sasisekharan, Ram

    2010-01-01

    Vastly divergent sequences populate a majority of protein folds. In the quest to identify features that are conserved within protein domains belonging to the same fold, we set out to examine the entire protein universe on a fold-by-fold basis. We report that the atomic interaction network in the solvent-unexposed core of protein domains are fold-conserved, extraordinary sequence divergence notwithstanding. Further, we find that this feature, termed protein core atomic interaction network (or PCAIN) is significantly distinguishable across different folds, thus appearing to be “signature” of a domain's native fold. As part of this study, we computed the PCAINs for 8698 representative protein domains from families across the 1018 known protein folds to construct our seed database and an automated framework was developed for PCAIN-based characterization of the protein fold universe. A test set of randomly selected domains that are not in the seed database was classified with over 97% accuracy, independent of sequence divergence. As an application of this novel fold signature, a PCAIN-based scoring scheme was developed for comparative (homology-based) structure prediction, with 1–2 angstroms (mean 1.61A) Cα RMSD generally observed between computed structures and reference crystal structures. Our results are consistent across the full spectrum of test domains including those from recent CASP experiments and most notably in the ‘twilight’ and ‘midnight’ zones wherein <30% and <10% target-template sequence identity prevails (mean twilight RMSD of 1.69A). We further demonstrate the utility of the PCAIN protocol to derive biological insight into protein structure-function relationships, by modeling the structure of the YopM effector novel E3 ligase (NEL) domain from plague-causative bacterium Yersinia Pestis and discussing its implications for host adaptive and innate immune modulation by the pathogen. Considering the several high-throughput, sequence-identity-independent applications demonstrated in this work, we suggest that the PCAIN is a fundamental fold feature that could be a valuable addition to the arsenal of protein modeling and analysis tools. PMID:20186337

  17. [Structural organization of 5S ribosomal DNA of Rosa rugosa].

    PubMed

    Tynkevych, Iu O; Volkov, R A

    2014-01-01

    In order to clarify molecular organization of the genomic region encoding 5S rRNA in diploid species Rosa rugosa several 5S rDNA repeated units were cloned and sequenced. Analysis of the obtained sequences revealed that only one length variant of 5S rDNA repeated units, which contains intact promoter elements in the intergenic spacer region (IGS) and appears to be transcriptionally active is present in the genome. Additionally, a limited number of 5S rDNA pseudogenes lacking a portion of coding sequence and the complete IGS was detected. A high level of sequence similarity (from 93.7 to 97.5%) between the IGS of major 5S rDNA variants of East Asian R. rugosa and North American R. nitida was found indicating comparatively recent divergence of these species.

  18. Pathogenicity, sequence and phylogenetic analysis of Malaysian Chicken anaemia virus obtained after low and high passages in MSB-1 cells.

    PubMed

    Chowdhury, S M Z H; Omar, A R; Aini, I; Hair-Bejo, M; Jamaluddin, A A; Md-Zain, B M; Kono, Y

    2003-12-01

    Specific-pathogen-free (SPF) chickens inoculated with low passage Chicken anaemia virus (CAV), SMSC-1 and 3-1 isolates produced lesions suggestive of CAV infection. Repeated passages of the isolates in cell culture until passage 60 (P60) and passage 123 produced viruses that showed a significantly reduced level of pathogenicity in SPF chickens compared to the low passage isolates. Sequence comparison indicated that nucleotide changes in only the coding region of the P60 passage isolates were thought to contribute to virus attenuation. Phylogenetic analysis indicated that SMSC-1 and 3-1 were highly divergent, but their P60 passage derivatives shared significant homology to a Japanese isolate A2.

  19. Ancient wolf lineages in India.

    PubMed Central

    Sharma, Dinesh K; Maldonado, Jesus E; Jhala, Yadrendradev V; Fleischer, Robert C

    2004-01-01

    All previously obtained wolf (Canis lupus) and dog (Canis familiaris) mitochondrial (mt) DNA sequences fall within an intertwined and shallow clade (the 'wolf-dog' clade). We sequenced mtDNA of recent and historical samples from 45 wolves from throughout lowland peninsular India and 23 wolves from the Himalayas and Tibetan Plateau and compared these sequences with all available wolf and dog sequences. All 45 lowland Indian wolves have one of four closely related haplotypes that form a well-supported, divergent sister lineage to the wolf-dog clade. This unique lineage may have been independent for more than 400,000 years. Although seven Himalayan wolves from western and central Kashmir fall within the widespread wolf-dog clade, one from Ladakh in eastern Kashmir, nine from Himachal Pradesh, four from Nepal and two from Tibet form a very different basal clade. This lineage contains five related haplotypes that probably diverged from other canids more than 800,000 years ago, but we find no evidence of current barriers to admixture. Thus, the Indian subcontinent has three divergent, ancient and apparently parapatric mtDNA lineages within the morphologically delineated wolf. No haplotypes of either novel lineage are found within a sample of 37 Indian (or other) dogs. Thus, we find no evidence that these two taxa played a part in the domestication of canids. PMID:15101402

  20. Amazonian phylogeography: mtDNA sequence variation in arboreal echimyid rodents (Caviomorpha).

    PubMed

    da Silva, M N; Patton, J L

    1993-09-01

    Patterns of evolutionary relationships among haplotype clades of sequences of the mitochondrial cytochrome b DNA gene are examined for five genera of arboreal rodents of the Caviomorph family Echimyidae from the Amazon Basin. Data are available for 798 bp of sequence from a total of 24 separate localities in Peru, Venezuela, Bolivia, and Brazil for Mesomys, Isothrix, Makalata, Dactylomys, and Echimys. Sequence divergence, corrected for multiple hits, is extensive, ranging from less than 1% for comparisons within populations of over 20% among geographic units within genera. Both the degree of differentiation and the geographic patterning of the variation suggest that more than one species composes the Amazonian distribution of the currently recognized Mesomys hispidus, Isothrix bistriata, Makalata didelphoides, and Dactylomys dactylinus. There is general concordance in the geographic range of haplotype clades for each of these taxa, and the overall level of differentiation within them is largely equivalent. These observations suggest that a common vicariant history underlies the respective diversification of each genus. However, estimated times of divergence based on the rate of third position transversion substitutions for the major clades within each genus typically range above 1 million years. Thus, allopatric isolation precipitating divergence must have been considerably earlier than the late Pleistocene forest fragmentation events commonly invoked for Amazonian biota.

  1. Ancient wolf lineages in India.

    PubMed

    Sharma, Dinesh K; Maldonado, Jesus E; Jhala, Yadrendradev V; Fleischer, Robert C

    2004-02-07

    All previously obtained wolf (Canis lupus) and dog (Canis familiaris) mitochondrial (mt) DNA sequences fall within an intertwined and shallow clade (the 'wolf-dog' clade). We sequenced mtDNA of recent and historical samples from 45 wolves from throughout lowland peninsular India and 23 wolves from the Himalayas and Tibetan Plateau and compared these sequences with all available wolf and dog sequences. All 45 lowland Indian wolves have one of four closely related haplotypes that form a well-supported, divergent sister lineage to the wolf-dog clade. This unique lineage may have been independent for more than 400,000 years. Although seven Himalayan wolves from western and central Kashmir fall within the widespread wolf-dog clade, one from Ladakh in eastern Kashmir, nine from Himachal Pradesh, four from Nepal and two from Tibet form a very different basal clade. This lineage contains five related haplotypes that probably diverged from other canids more than 800,000 years ago, but we find no evidence of current barriers to admixture. Thus, the Indian subcontinent has three divergent, ancient and apparently parapatric mtDNA lineages within the morphologically delineated wolf. No haplotypes of either novel lineage are found within a sample of 37 Indian (or other) dogs. Thus, we find no evidence that these two taxa played a part in the domestication of canids.

  2. Biological and serological variability, evolution and molecular epidemiology of Zucchini yellow mosaic virus (ZYMV, Potyvirus) with special reference to Caribbean islands.

    PubMed

    Desbiez, C; Wipf-Scheibel, C; Lecoq, H

    2002-04-23

    Zucchini yellow mosaic virus (ZYMV, Potyvirus) emerged as an important pathogen of cucurbits within the last 20 years. Its origins and mechanisms for evolution and worldwide spread represent important questions to understand plant virus emergence. Sequence analysis on a 250 nucleotide fragment including the N-terminal part of the coat protein coding region, revealed one major group of strains, and some highly divergent isolates from distinct origins. Within the major group, three subsets of strains were defined without correlation with geographic origin, year of collection or biological properties. ZYMV was first observed in Martinique and Guadeloupe in 1992 and 1994, respectively. We studied the evolution of ZYMV variability on both islands in the few years following the putative virus introduction. In Martinique, molecular divergence remained low even after 6 years, suggesting a lack of new introductions. Interactions between strains resulted in a stability of the high biological variability, while the serological diversity decreased and molecular divergence remained low. In Guadeloupe, as in Martinique in 1993, serological variability was high shortly after virus introduction. While the first introduction in Guadeloupe was independent from Martinique, the 'Martinique' type was detected in 1998, suggesting further introductions, maybe through viruliferous aphids or imported plant material.

  3. Genetic and Genomic Response to Selection for Food Consumption in Drosophila melanogaster

    PubMed Central

    Garlapow, Megan E.; Everett, Logan J.; Zhou, Shanshan; Gearhart, Alexander W.; Fay, Kairsten A.; Huang, Wen; Morozova, Tatiana V.; Arya, Gunjan H.; Turlapati, Lavanya; Armour, Genevieve St.; Hussain, Yasmeen N.; McAdams, Sarah E.; Fochler, Sophia; Mackay, Trudy F. C.

    2016-01-01

    Food consumption is an essential component of animal fitness; however, excessive food intake in humans increases risk for many diseases. The roles of neuroendocrine feedback loops, food sensing modalities, and physiological state in regulating food intake are well understood, but not the genetic basis underlying variation in food consumption. Here, we applied ten generations of artificial selection for high and low food consumption in replicate populations of Drosophila melanogaster. The phenotypic response to selection was highly asymmetric, with significant responses only for increased food consumption and minimal correlated responses in body mass and composition. We assessed the molecular correlates of selection responses by DNA and RNA sequencing of the selection lines. The high and low selection lines had variants with significantly divergent allele frequencies within or near 2,081 genes and 3,526 differentially expressed genes in one or both sexes. A total of 519 genes were both genetically divergent and differentially expressed between the divergent selection lines. We performed functional analyses of the effects of RNAi suppression of gene expression and induced mutations for 27 of these candidate genes that have human orthologs and the strongest statistical support, and confirmed that 25 (93%) affected the mean and/or variance of food consumption. PMID:27704301

  4. Mechanisms of peripheral phylogeographic divergence in the indo-Pacific: lessons from the spiny lobster Panulirus homarus.

    PubMed

    Farhadi, Ahmad; Jeffs, Andrew G; Farahmand, Hamid; Rejiniemon, Thankappan Sarasam; Smith, Greg; Lavery, Shane D

    2017-08-18

    There is increasing recognition of the concordance between marine biogeographic and phylogeographic boundaries. However, it is still unclear how population-level divergence translates into species-level divergence, and what are the principal factors that first initiate that divergence, and then maintain reproductive isolation. This study examines the likely forces driving population and lineage divergences in the broadly-distributed Indo-Pacific spiny lobster Panulirus homarus, which has peripheral divergent lineages in the west and east. The study focuses particularly on the West Indian Ocean, which is emerging as a region of unexpected diversity. Mitochondrial control region (mtCR) and COI sequences as well as genotypes of 9 microsatellite loci were examined in 410 individuals from 17 locations grouped into 7 regions from South Africa in the west, and eastward across to Taiwan and the Marquesas Islands. Phylogenetic and population-level analyses were used to test the significance and timing of divergences and describe the genetic relationships among populations. Analyses of the mtCR revealed high levels of divergence among the seven regions (Ф ST  = 0.594, P < 0.001). Microsatellite analyses also revealed significant divergence among regions, but at a much lower level (F ST  = 0.066, P < 0.001). The results reveal different patterns of mtCR v. nDNA divergence between the two distinct peripheral lineages: a subspecies in South Africa and Madagascar, and a phylogeographically diverged population in the Marquesas. The results also expose a number of other more fine-scale population divergences, particularly in the Indian Ocean. The divergence of peripheral lineages in the west and east of the species' range appear to have been initiated and maintained by very different processes. The pattern of mitochondrial and nuclear divergence of the western lineage, implicates processes of parapatric isolation, secondary contact and introgression, and suggests possible maintenance through adaptation and behavioural reproductive isolation. In contrast, the eastern lineage appears to have diverged through a rare colonisation event, maintained through long-term isolation, and matches expectations of the core-periphery hypothesis. The process of active peripheral speciation may be a common force in the Indo-Pacific that helps drive some of the regions' recognized biogeographic boundaries.

  5. Divergently expressed gene identification and interaction prediction of long noncoding RNA and mRNA involved in duck reproduction.

    PubMed

    Ren, Jindong; Du, Xue; Zeng, Tao; Chen, Li; Shen, Junda; Lu, Lizhi; Hu, Jianhong

    2017-10-01

    Long noncoding RNAs (lncRNAs) and divergently expressed genes exist widely in different tissues of mammals and birds, in which they are involved in various biological processes. However, there is limited information on their role in the regulation of normal biological processes during differentiation, development, and reproduction in birds. In this study, whole transcriptome strand-specific RNA sequencing of the ovary from young ducks (60days), first-laying ducks (160days), and old ducks, i.e., ducks that stopped laying eggs (490days) was performed. The lncRNAs and mRNAs from these ducks were systematically analyzed and identified by duck genome sequencing in the three study groups. The transcriptome from the duck ovary comprised 15,011 protein-coding genes and 2905 lncRNAs; all the lncRNAs were identified as novel long noncoding transcripts. The comparison of transcriptome data from different study groups identified 2240 divergent transcription genes and 135 divergently expressed lncRNAs, which differed among the groups; most of them were significantly downregulated with age. Among the divergent genes, 38 genes were related to the reproductive process and 6 genes were upregulated. Further prediction analysis revealed that 52 lncRNAs were closely correlated with divergent reproductive mRNAs. More importantly, 6 remarkable lncRNAs were correlated significantly with the conversion of the ovary in different phases. Our results aid in the understanding of the divergent transcriptome of duck ovary in different phases and the underlying mechanisms that drive the specificity of protein-coding genes and lncRNAs in duck ovary. Copyright © 2017. Published by Elsevier B.V.

  6. A Two-Locus Global DNA Barcode for Land Plants: The Coding rbcL Gene Complements the Non-Coding trnH-psbA Spacer Region

    PubMed Central

    Kress, W. John; Erickson, David L.

    2007-01-01

    Background A useful DNA barcode requires sufficient sequence variation to distinguish between species and ease of application across a broad range of taxa. Discovery of a DNA barcode for land plants has been limited by intrinsically lower rates of sequence evolution in plant genomes than that observed in animals. This low rate has complicated the trade-off in finding a locus that is universal and readily sequenced and has sufficiently high sequence divergence at the species-level. Methodology/Principal Findings Here, a global plant DNA barcode system is evaluated by comparing universal application and degree of sequence divergence for nine putative barcode loci, including coding and non-coding regions, singly and in pairs across a phylogenetically diverse set of 48 genera (two species per genus). No single locus could discriminate among species in a pair in more than 79% of genera, whereas discrimination increased to nearly 88% when the non-coding trnH-psbA spacer was paired with one of three coding loci, including rbcL. In silico trials were conducted in which DNA sequences from GenBank were used to further evaluate the discriminatory power of a subset of these loci. These trials supported the earlier observation that trnH-psbA coupled with rbcL can correctly identify and discriminate among related species. Conclusions/Significance A combination of the non-coding trnH-psbA spacer region and a portion of the coding rbcL gene is recommended as a two-locus global land plant barcode that provides the necessary universality and species discrimination. PMID:17551588

  7. Composite conserved promoter-terminator motifs (PeSLs) that mediate modular shuffling in the diverse T4-like myoviruses.

    PubMed

    Comeau, André M; Arbiol, Christine; Krisch, Henry M

    2014-06-19

    The diverse T4-like phages (Tquatrovirinae) infect a wide array of gram-negative bacterial hosts. The genome architecture of these phages is generally well conserved, most of the phylogenetically variable genes being grouped together in a series hyperplastic regions (HPRs) that are interspersed among large blocks of conserved core genes. Recent evidence from a pair of closely related T4-like phages has suggested that small, composite terminator/promoter sequences (promoterearly stem loop [PeSLs]) were implicated in mediating the high levels of genetic plasticity by indels occurring within the HPRs. Here, we present the genome sequence analysis of two T4-like phages, PST (168 kb, 272 open reading frames [ORFs]) and nt-1 (248 kb, 405 ORFs). These two phages were chosen for comparative sequence analysis because, although they are closely related to phages that have been previously sequenced (T4 and KVP40, respectively), they have different host ranges. In each case, one member of the pair infects a bacterial strain that is a human pathogen, whereas the other phage's host is a nonpathogen. Despite belonging to phylogenetically distant branches of the T4-likes, these pairs of phage have diverged from each other in part by a mechanism apparently involving PeSL-mediated recombination. This analysis confirms a role of PeSL sequences in the generation of genomic diversity by serving as a point of genetic exchange between otherwise unrelated sequences within the HPRs. Finally, the palette of divergent genes swapped by PeSL-mediated homologous recombination is discussed in the context of the PeSLs' potentially important role in facilitating phage adaption to new hosts and environments. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Protein sequences and redox titrations indicate that the electron acceptors in reaction centers from heliobacteria are similar to Photosystem I

    NASA Technical Reports Server (NTRS)

    Trost, J. T.; Brune, D. C.; Blankenship, R. E.

    1992-01-01

    Photosynthetic reaction centers isolated from Heliobacillus mobilis exhibit a single major protein on SDS-PAGE of 47 000 Mr. Attempts to sequence the reaction center polypeptide indicated that the N-terminus is blocked. After enzymatic and chemical cleavage, four peptide fragments were sequenced from the Heliobacillus mobilis apoprotein. Only one of these sequences showed significant specific similarity to any of the protein and deduced protein sequences in the GenBank data base. This fragment is identical with 56% of the residues, including both cysteines, found in highly conserved region that is proposed to bind iron-sulfur center Fx in the Photosystem I reaction center peptide that is the psaB gene product. The similarity to the psaA gene product in this region is 48%. Redox titrations of laser-flash-induced photobleaching with millisecond decay kinetics on isolated reaction centers from Heliobacterium gestii indicate a midpoint potential of -414 mV with n = 2 titration behavior. In membranes, the behavior is intermediate between n = 1 and n = 2, and the apparent midpoint potential is -444 mV. This is compared to the behavior in Photosystem I, where the intermediate electron acceptor A1, thought to be a phylloquinone molecule, has been proposed to undergo a double reduction at low redox potentials in the presence of viologen redox mediators. These results strongly suggest that the acceptor side electron transfer system in reaction centers from heliobacteria is indeed analogous to that found in Photosystem I. The sequence similarities indicate that the divergence of the heliobacteria from the Photosystem I line occurred before the gene duplication and subsequent divergence that lead to the heterodimeric protein core of the Photosystem I reaction center.

  9. Defining and predicting structurally conserved regions in protein superfamilies

    PubMed Central

    Huang, Ivan K.; Grishin, Nick V.

    2013-01-01

    Motivation: The structures of homologous proteins are generally better conserved than their sequences. This phenomenon is demonstrated by the prevalence of structurally conserved regions (SCRs) even in highly divergent protein families. Defining SCRs requires the comparison of two or more homologous structures and is affected by their availability and divergence, and our ability to deduce structurally equivalent positions among them. In the absence of multiple homologous structures, it is necessary to predict SCRs of a protein using information from only a set of homologous sequences and (if available) a single structure. Accurate SCR predictions can benefit homology modelling and sequence alignment. Results: Using pairwise DaliLite alignments among a set of homologous structures, we devised a simple measure of structural conservation, termed structural conservation index (SCI). SCI was used to distinguish SCRs from non-SCRs. A database of SCRs was compiled from 386 SCOP superfamilies containing 6489 protein domains. Artificial neural networks were then trained to predict SCRs with various features deduced from a single structure and homologous sequences. Assessment of the predictions via a 5-fold cross-validation method revealed that predictions based on features derived from a single structure perform similarly to ones based on homologous sequences, while combining sequence and structural features was optimal in terms of accuracy (0.755) and Matthews correlation coefficient (0.476). These results suggest that even without information from multiple structures, it is still possible to effectively predict SCRs for a protein. Finally, inspection of the structures with the worst predictions pinpoints difficulties in SCR definitions. Availability: The SCR database and the prediction server can be found at http://prodata.swmed.edu/SCR. Contact: 91huangi@gmail.com or grishin@chop.swmed.edu Supplementary information: Supplementary data are available at Bioinformatics Online PMID:23193223

  10. Divergence, hybridization, and recombination in the mitochondrial genome of the human pathogenic yeast Cryptococcus gattii.

    PubMed

    Xu, Jianping; Yan, Zhun; Guo, Hong

    2009-06-01

    The inheritance of mitochondrial genes and genomes are uniparental in most sexual eukaryotes. This pattern of inheritance makes mitochondrial genomes in natural populations effectively clonal. Here, we examined the mitochondrial population genetics of the emerging human pathogenic fungus Cryptococcus gattii. The DNA sequences for five mitochondrial DNA fragments were obtained from each of 50 isolates belonging to two evolutionary divergent lineages, VGI and VGII. Our analyses revealed a greater sequence diversity within VGI than that within VGII, consistent with observations of the nuclear genes. The combined analyses of all five gene fragments indicated significant divergence between VGI and VGII. However, the five individual genealogies showed different relationships among the isolates, consistent with recent hybridization and mitochondrial gene transfer between the two lineages. Population genetic analyses of the multilocus data identified evidence for predominantly clonal mitochondrial population structures within both lineages. Interestingly, there were clear signatures of recombination among mitochondrial genes within the VGII lineage. Our analyses suggest historical mitochondrial genome divergence within C. gattii, but there is evidence for recent hybridization and recombination in the mitochondrial genome of this important human yeast pathogen.

  11. Molecular and morphological differentiation of Secret Toad-headed agama, Phrynocephalus mystaceus, with the description of a new subspecies from Iran (Reptilia, Agamidae).

    PubMed

    Solovyeva, Evgeniya N; Dunayev, Evgeniy N; Nazarov, Roman A; Mehdi Radjabizadeh; Poyarkov, Nikolay A

    2018-01-01

    The morphological and genetic variation of a wide-ranging Secret Toad-headed agama, Phrynocephalus mystaceus that inhabits sand deserts of south-eastern Europe, Middle East, Middle Asia, and western China is reviewed. Based on the morphological differences and high divergence in COI (mtDNA) gene sequences a new subspecies of Ph. mystaceus is described from Khorasan Razavi Province in Iran. Partial sequences of COI mtDNA gene of 31 specimens of Ph. mystaceus from 17 localities from all major parts of species range were analyzed. Genetic distances show a deep divergence between Ph. mystaceus khorasanus ssp. n. from Khorasan Razavi Province and all other populations of Ph. mystaceus . The new subspecies can be distinguished from other populations of Ph. mystaceus by a combination of several morphological features. Molecular and morphological analyses do not support the validity of other Ph. mystaceus subspecies described from Middle Asia and Caspian basin. Geographic variations in the Ph. mystaceus species complex and the status of previously described subspecies were discussed.

  12. Evaluating, Comparing, and Interpreting Protein Domain Hierarchies

    PubMed Central

    2014-01-01

    Abstract Arranging protein domain sequences hierarchically into evolutionarily divergent subgroups is important for investigating evolutionary history, for speeding up web-based similarity searches, for identifying sequence determinants of protein function, and for genome annotation. However, whether or not a particular hierarchy is optimal is often unclear, and independently constructed hierarchies for the same domain can often differ significantly. This article describes methods for statistically evaluating specific aspects of a hierarchy, for probing the criteria underlying its construction and for direct comparisons between hierarchies. Information theoretical notions are used to quantify the contributions of specific hierarchical features to the underlying statistical model. Such features include subhierarchies, sequence subgroups, individual sequences, and subgroup-associated signature patterns. Underlying properties are graphically displayed in plots of each specific feature's contributions, in heat maps of pattern residue conservation, in “contrast alignments,” and through cross-mapping of subgroups between hierarchies. Together, these approaches provide a deeper understanding of protein domain functional divergence, reveal uncertainties caused by inconsistent patterns of sequence conservation, and help resolve conflicts between competing hierarchies. PMID:24559108

  13. Genome Sequences of Akhmeta Virus, an Early Divergent Old World Orthopoxvirus.

    PubMed

    Gao, Jinxin; Gigante, Crystal; Khmaladze, Ekaterine; Liu, Pengbo; Tang, Shiyuyun; Wilkins, Kimberly; Zhao, Kun; Davidson, Whitni; Nakazawa, Yoshinori; Maghlakelidze, Giorgi; Geleishvili, Marika; Kokhreidze, Maka; Carroll, Darin S; Emerson, Ginny; Li, Yu

    2018-05-12

    Annotated whole genome sequences of three isolates of the Akhmeta virus (AKMV), a novel species of orthopoxvirus (OPXV), isolated from the Akhmeta and Vani regions of the country Georgia, are presented and discussed. The AKMV genome is similar in genomic content and structure to that of the cowpox virus (CPXV), but a lower sequence identity was found between AKMV and Old World OPXVs than between other known species of Old World OPXVs. Phylogenetic analysis showed that AKMV diverged prior to other Old World OPXV. AKMV isolates formed a monophyletic clade in the OPXV phylogeny, yet the sequence variability between AKMV isolates was higher than between the monkeypox virus strains in the Congo basin and West Africa. An AKMV isolate from Vani contained approximately six kb sequence in the left terminal region that shared a higher similarity with CPXV than with other AKMV isolates, whereas the rest of the genome was most similar to AKMV, suggesting recombination between AKMV and CPXV in a region containing several host range and virulence genes.

  14. A Large Pseudoautosomal Region on the Sex Chromosomes of the Frog Silurana tropicalis

    PubMed Central

    Bewick, Adam J.; Chain, Frédéric J.J.; Zimmerman, Lyle B.; Sesay, Abdul; Gilchrist, Michael J.; Owens, Nick D.L.; Seifertova, Eva; Krylov, Vladimir; Macha, Jaroslav; Tlapakova, Tereza; Kubickova, Svatava; Cernohorska, Halina; Zarsky, Vojtech; Evans, Ben J.

    2013-01-01

    Sex chromosome divergence has been documented across phylogenetically diverse species, with amphibians typically having cytologically nondiverged (“homomorphic”) sex chromosomes. With an aim of further characterizing sex chromosome divergence of an amphibian, we used “RAD-tags” and Sanger sequencing to examine sex specificity and heterozygosity in the Western clawed frog Silurana tropicalis (also known as Xenopus tropicalis). Our findings based on approximately 20 million genotype calls and approximately 200 polymerase chain reaction-amplified regions across multiple male and female genomes failed to identify a substantially sized genomic region with genotypic hallmarks of sex chromosome divergence, including in regions known to be tightly linked to the sex-determining region. We also found that expression and molecular evolution of genes linked to the sex-determining region did not differ substantially from genes in other parts of the genome. This suggests that the pseudoautosomal region, where recombination occurs, comprises a large portion of the sex chromosomes of S. tropicalis. These results may in part explain why African clawed frogs have such a high incidence of polyploidization, shed light on why amphibians have a high rate of sex chromosome turnover, and raise questions about why homomorphic sex chromosomes are so prevalent in amphibians. PMID:23666865

  15. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution.

    PubMed

    Melters, Daniël P; Bradnam, Keith R; Young, Hugh A; Telis, Natalie; May, Michael R; Ruby, J Graham; Sebra, Robert; Peluso, Paul; Eid, John; Rank, David; Garcia, José Fernando; DeRisi, Joseph L; Smith, Timothy; Tobias, Christian; Ross-Ibarra, Jeffrey; Korf, Ian; Chan, Simon W L

    2013-01-30

    Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data. Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution. While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes.

  16. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution

    PubMed Central

    2013-01-01

    Background Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data. Results Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution. Conclusions While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes. PMID:23363705

  17. CNL Disease Resistance Genes in Soybean and Their Evolutionary Divergence

    PubMed Central

    Nepal, Madhav P; Benson, Benjamin V

    2015-01-01

    Disease resistance genes (R-genes) encode proteins involved in detecting pathogen attack and activating downstream defense molecules. Recent availability of soybean genome sequences makes it possible to examine the diversity of gene families including disease-resistant genes. The objectives of this study were to identify coiled-coil NBS-LRR (= CNL) R-genes in soybean, infer their evolutionary relationships, and assess structural as well as functional divergence of the R-genes. Profile hidden Markov models were used for sequence identification and model-based maximum likelihood was used for phylogenetic analysis, and variation in chromosomal positioning, gene clustering, and functional divergence were assessed. We identified 188 soybean CNL genes nested into four clades consistent to their orthologs in Arabidopsis. Gene clustering analysis revealed the presence of 41 gene clusters located on 13 different chromosomes. Analyses of the Ks-values and chromosomal positioning suggest duplication events occurring at varying timescales, and an extrapericentromeric positioning may have facilitated their rapid evolution. Each of the four CNL clades exhibited distinct patterns of gene expression. Phylogenetic analysis further supported the extrapericentromeric positioning effect on the divergence and retention of the CNL genes. The results are important for understanding the diversity and divergence of CNL genes in soybean, which would have implication in soybean crop improvement in future. PMID:25922568

  18. CNL Disease Resistance Genes in Soybean and Their Evolutionary Divergence.

    PubMed

    Nepal, Madhav P; Benson, Benjamin V

    2015-01-01

    Disease resistance genes (R-genes) encode proteins involved in detecting pathogen attack and activating downstream defense molecules. Recent availability of soybean genome sequences makes it possible to examine the diversity of gene families including disease-resistant genes. The objectives of this study were to identify coiled-coil NBS-LRR (= CNL) R-genes in soybean, infer their evolutionary relationships, and assess structural as well as functional divergence of the R-genes. Profile hidden Markov models were used for sequence identification and model-based maximum likelihood was used for phylogenetic analysis, and variation in chromosomal positioning, gene clustering, and functional divergence were assessed. We identified 188 soybean CNL genes nested into four clades consistent to their orthologs in Arabidopsis. Gene clustering analysis revealed the presence of 41 gene clusters located on 13 different chromosomes. Analyses of the K s-values and chromosomal positioning suggest duplication events occurring at varying timescales, and an extrapericentromeric positioning may have facilitated their rapid evolution. Each of the four CNL clades exhibited distinct patterns of gene expression. Phylogenetic analysis further supported the extrapericentromeric positioning effect on the divergence and retention of the CNL genes. The results are important for understanding the diversity and divergence of CNL genes in soybean, which would have implication in soybean crop improvement in future.

  19. DNA copy number changes define spatial patterns of heterogeneity in colorectal cancer

    PubMed Central

    Mamlouk, Soulafa; Childs, Liam Harold; Aust, Daniela; Heim, Daniel; Melching, Friederike; Oliveira, Cristiano; Wolf, Thomas; Durek, Pawel; Schumacher, Dirk; Bläker, Hendrik; von Winterfeld, Moritz; Gastl, Bastian; Möhr, Kerstin; Menne, Andrea; Zeugner, Silke; Redmer, Torben; Lenze, Dido; Tierling, Sascha; Möbs, Markus; Weichert, Wilko; Folprecht, Gunnar; Blanc, Eric; Beule, Dieter; Schäfer, Reinhold; Morkel, Markus; Klauschen, Frederick; Leser, Ulf; Sers, Christine

    2017-01-01

    Genetic heterogeneity between and within tumours is a major factor determining cancer progression and therapy response. Here we examined DNA sequence and DNA copy-number heterogeneity in colorectal cancer (CRC) by targeted high-depth sequencing of 100 most frequently altered genes. In 97 samples, with primary tumours and matched metastases from 27 patients, we observe inter-tumour concordance for coding mutations; in contrast, gene copy numbers are highly discordant between primary tumours and metastases as validated by fluorescent in situ hybridization. To further investigate intra-tumour heterogeneity, we dissected a single tumour into 68 spatially defined samples and sequenced them separately. We identify evenly distributed coding mutations in APC and TP53 in all tumour areas, yet highly variable gene copy numbers in numerous genes. 3D morpho-molecular reconstruction reveals two clusters with divergent copy number aberrations along the proximal–distal axis indicating that DNA copy number variations are a major source of tumour heterogeneity in CRC. PMID:28120820

  20. Functionally conserved enhancers with divergent sequences in distant vertebrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Song; Oksenberg, Nir; Takayama, Sachiko

    To examine the contributions of sequence and function conservation in the evolution of enhancers, we systematically identified enhancers whose sequences are not conserved among distant groups of vertebrate species, but have homologous function and are likely to be derived from a common ancestral sequence. In conclusion, our approach combined comparative genomics and epigenomics to identify potential enhancer sequences in the genomes of three groups of distantly related vertebrate species.

  1. Functionally conserved enhancers with divergent sequences in distant vertebrates

    DOE PAGES

    Yang, Song; Oksenberg, Nir; Takayama, Sachiko; ...

    2015-10-30

    To examine the contributions of sequence and function conservation in the evolution of enhancers, we systematically identified enhancers whose sequences are not conserved among distant groups of vertebrate species, but have homologous function and are likely to be derived from a common ancestral sequence. In conclusion, our approach combined comparative genomics and epigenomics to identify potential enhancer sequences in the genomes of three groups of distantly related vertebrate species.

  2. Mitochondrial Genomes Reveal Slow Rates of Molecular Evolution and the Timing of Speciation in Beavers (Castor), One of the Largest Rodent Species

    PubMed Central

    Horn, Susanne; Durka, Walter; Wolf, Ronny; Ermala, Aslak; Stubbe, Annegret; Stubbe, Michael; Hofreiter, Michael

    2011-01-01

    Background Beavers are one of the largest and ecologically most distinct rodent species. Little is known about their evolution and even their closest phylogenetic relatives have not yet been identified with certainty. Similarly, little is known about the timing of divergence events within the genus Castor. Methodology/Principal Findings We sequenced complete mitochondrial genomes from both extant beaver species and used these sequences to place beavers in the phylogenetic tree of rodents and date their divergence from other rodents as well as the divergence events within the genus Castor. Our analyses support the phylogenetic position of beavers as a sister lineage to the scaly tailed squirrel Anomalurus within the mouse related clade. Molecular dating places the divergence time of the lineages leading to beavers and Anomalurus as early as around 54 million years ago (mya). The living beaver species, Castor canadensis from North America and Castor fiber from Eurasia, although similar in appearance, appear to have diverged from a common ancestor more than seven mya. This result is consistent with the hypothesis that a migration of Castor from Eurasia to North America as early as 7.5 mya could have initiated their speciation. We date the common ancestor of the extant Eurasian beaver relict populations to around 210,000 years ago, much earlier than previously thought. Finally, the substitution rate of Castor mitochondrial DNA is considerably lower than that of other rodents. We found evidence that this is correlated with the longer life span of beavers compared to other rodents. Conclusions/Significance A phylogenetic analysis of mitochondrial genome sequences suggests a sister-group relationship between Castor and Anomalurus, and allows molecular dating of species divergence in congruence with paleontological data. The implementation of a relaxed molecular clock enabled us to estimate mitochondrial substitution rates and to evaluate the effect of life history traits on it. PMID:21307956

  3. Genotype imputation in a coalescent model with infinitely-many-sites mutation

    PubMed Central

    Huang, Lucy; Buzbas, Erkan O.; Rosenberg, Noah A.

    2012-01-01

    Empirical studies have identified population-genetic factors as important determinants of the properties of genotype-imputation accuracy in imputation-based disease association studies. Here, we develop a simple coalescent model of three sequences that we use to explore the theoretical basis for the influence of these factors on genotype-imputation accuracy, under the assumption of infinitely-many-sites mutation. Employing a demographic model in which two populations diverged at a given time in the past, we derive the approximate expectation and variance of imputation accuracy in a study sequence sampled from one of the two populations, choosing between two reference sequences, one sampled from the same population as the study sequence and the other sampled from the other population. We show that under this model, imputation accuracy—as measured by the proportion of polymorphic sites that are imputed correctly in the study sequence—increases in expectation with the mutation rate, the proportion of the markers in a chromosomal region that are genotyped, and the time to divergence between the study and reference populations. Each of these effects derives largely from an increase in information available for determining the reference sequence that is genetically most similar to the sequence targeted for imputation. We analyze as a function of divergence time the expected gain in imputation accuracy in the target using a reference sequence from the same population as the target rather than from the other population. Together with a growing body of empirical investigations of genotype imputation in diverse human populations, our modeling framework lays a foundation for extending imputation techniques to novel populations that have not yet been extensively examined. PMID:23079542

  4. Genotyping by sequencing resolves shallow population structure to inform conservation of Chinook salmon (Oncorhynchus tshawytscha)

    PubMed Central

    Larson, Wesley A; Seeb, Lisa W; Everett, Meredith V; Waples, Ryan K; Templin, William D; Seeb, James E

    2014-01-01

    Recent advances in population genomics have made it possible to detect previously unidentified structure, obtain more accurate estimates of demographic parameters, and explore adaptive divergence, potentially revolutionizing the way genetic data are used to manage wild populations. Here, we identified 10 944 single-nucleotide polymorphisms using restriction-site-associated DNA (RAD) sequencing to explore population structure, demography, and adaptive divergence in five populations of Chinook salmon (Oncorhynchus tshawytscha) from western Alaska. Patterns of population structure were similar to those of past studies, but our ability to assign individuals back to their region of origin was greatly improved (>90% accuracy for all populations). We also calculated effective size with and without removing physically linked loci identified from a linkage map, a novel method for nonmodel organisms. Estimates of effective size were generally above 1000 and were biased downward when physically linked loci were not removed. Outlier tests based on genetic differentiation identified 733 loci and three genomic regions under putative selection. These markers and genomic regions are excellent candidates for future research and can be used to create high-resolution panels for genetic monitoring and population assignment. This work demonstrates the utility of genomic data to inform conservation in highly exploited species with shallow population structure. PMID:24665338

  5. Evidence for Ancient Origins of Bowman-Birk Inhibitors from Selaginella moellendorffii

    PubMed Central

    James, Amy M.; Jayasena, Achala S.; Zhang, Jingjing; Secco, David; Knott, Gavin J.; Whelan, James

    2017-01-01

    Bowman-Birk Inhibitors (BBIs) are a well-known family of plant protease inhibitors first described 70 years ago. BBIs are known only in the legume (Fabaceae) and cereal (Poaceae) families, but peptides that mimic their trypsin-inhibitory loops exist in sunflowers (Helianthus annuus) and frogs. The disparate biosynthetic origins and distant phylogenetic distribution implies these loops evolved independently, but their structural similarity suggests a common ancestor. Targeted bioinformatic searches for the BBI inhibitory loop discovered highly divergent BBI-like sequences in the seedless, vascular spikemoss Selaginella moellendorffii. Using de novo transcriptomics, we confirmed expression of five transcripts in S. moellendorffii whose encoded proteins share homology with BBI inhibitory loops. The most highly expressed, BBI3, encodes a protein that inhibits trypsin. We needed to mutate two lysine residues to abolish trypsin inhibition, suggesting BBI3’s mechanism of double-headed inhibition is shared with BBIs from angiosperms. As Selaginella belongs to the lycopod plant lineage, which diverged ∼200 to 230 million years before the common ancestor of angiosperms, its BBI-like proteins imply there was a common ancestor for legume and cereal BBIs. Indeed, we discovered BBI sequences in six angiosperm families outside the Fabaceae and Poaceae. These findings provide the evolutionary missing links between the well-known legume and cereal BBI gene families. PMID:28298518

  6. Insights into the genome evolution of Yersinia pestis through whole genome comparison with Yersinia pseudotuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza, B; Stoutland, P; Derbise, A

    2004-01-24

    Yersinia pestis, the causative agent of plague, is a highly uniform clone that diverged recently from the enteric pathogen Yersinia pseudotuberculosis. Despite their close genetic relationship, they differ radically in their pathogenicity and transmission. Here we report the complete genomic sequence of Y. pseudotuberculosis IP32953 and its use for detailed genome comparisons to available Y. pestis sequences. Analyses of identified differences across a panel of Yersinia isolates from around the world reveals 32 Y. pestis chromosomal genes that, together with the two Y. pestis-specific plasmids, represent the only new genetic material in Y. pestis acquired since the divergence from Y.more » pseudotuberculosis. In contrast, 149 new pseudogenes (doubling the previous estimate) and 317 genes absent from Y. pestis were detected, indicating that as many as 13% of Y. pseudotuberculosis genes no longer function in Y. pestis. Extensive IS-mediated genome rearrangements and reductive evolution through massive gene loss, resulting in elimination and modification of pre-existing gene expression pathways appear to be more important than acquisition of new genes in the evolution of Y. pestis. These results provide a sobering example of how a highly virulent epidemic clone can suddenly emerge from a less virulent, closely related progenitor.« less

  7. Complete genome sequence of a divergent strain of Japanese yam mosaic virus from China

    USDA-ARS?s Scientific Manuscript database

    A novel strain of Japanese yam mosaic virus (JYMV-CN) was identified in a yam plant with foliar mottle symptoms in China. The complete genomic sequence of JYMV-CN was determined. Its genomic sequence of 9701 nucleotides encodes a polyprotein of 3247 amino acids. Its organization was virtually identi...

  8. DNA barcoding for molecular identification of Demodex based on mitochondrial genes.

    PubMed

    Hu, Li; Yang, YuanJun; Zhao, YaE; Niu, DongLing; Yang, Rui; Wang, RuiLing; Lu, Zhaohui; Li, XiaoQi

    2017-12-01

    There has been no widely accepted DNA barcode for species identification of Demodex. In this study, we attempted to solve this issue. First, mitochondrial cox1-5' and 12S gene fragments of Demodex folloculorum, D. brevis, D. canis, and D. caprae were amplified, cloned, and sequenced for the first time; intra/interspecific divergences were computed and phylogenetic trees were reconstructed. Then, divergence frequency distribution plots of those two gene fragments were drawn together with mtDNA cox1-middle region and 16S obtained in previous studies. Finally, their identification efficiency was evaluated by comparing barcoding gap. Results indicated that 12S had the higher identification efficiency. Specifically, for cox1-5' region of the four Demodex species, intraspecific divergences were less than 2.0%, and interspecific divergences were 21.1-31.0%; for 12S, intraspecific divergences were less than 1.4%, and interspecific divergences were 20.8-26.9%. The phylogenetic trees demonstrated that the four Demodex species clustered separately, and divergence frequency distribution plot showed that the largest intraspecific divergence of 12S (1.4%) was less than cox1-5' region (2.0%), cox1-middle region (3.1%), and 16S (2.8%). The barcoding gap of 12S was 19.4%, larger than cox1-5' region (19.1%), cox1-middle region (11.3%), and 16S (13.0%); the interspecific divergence span of 12S was 6.2%, smaller than cox1-5' region (10.0%), cox1-middle region (14.1%), and 16S (11.4%). Moreover, 12S has a moderate length (517 bp) for sequencing at once. Therefore, we proposed mtDNA 12S was more suitable than cox1 and 16S to be a DNA barcode for classification and identification of Demodex at lower category level.

  9. Use of DNA barcodes to identify flowering plants

    PubMed Central

    Kress, W. John; Wurdack, Kenneth J.; Zimmer, Elizabeth A.; Weigt, Lee A.; Janzen, Daniel H.

    2005-01-01

    Methods for identifying species by using short orthologous DNA sequences, known as “DNA barcodes,” have been proposed and initiated to facilitate biodiversity studies, identify juveniles, associate sexes, and enhance forensic analyses. The cytochrome c oxidase 1 sequence, which has been found to be widely applicable in animal barcoding, is not appropriate for most species of plants because of a much slower rate of cytochrome c oxidase 1 gene evolution in higher plants than in animals. We therefore propose the nuclear internal transcribed spacer region and the plastid trnH-psbA intergenic spacer as potentially usable DNA regions for applying barcoding to flowering plants. The internal transcribed spacer is the most commonly sequenced locus used in plant phylogenetic investigations at the species level and shows high levels of interspecific divergence. The trnH-psbA spacer, although short (≈450-bp), is the most variable plastid region in angiosperms and is easily amplified across a broad range of land plants. Comparison of the total plastid genomes of tobacco and deadly nightshade enhanced with trials on widely divergent angiosperm taxa, including closely related species in seven plant families and a group of species sampled from a local flora encompassing 50 plant families (for a total of 99 species, 80 genera, and 53 families), suggest that the sequences in this pair of loci have the potential to discriminate among the largest number of plant species for barcoding purposes. PMID:15928076

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denef, Vincent; Shah, Manesh B; Verberkmoes, Nathan C

    The recent surge in microbial genomic sequencing, combined with the development of high-throughput liquid chromatography-mass-spectrometry-based (LC/LC-MS/MS) proteomics, has raised the question of the extent to which genomic information of one strain or environmental sample can be used to profile proteomes of related strains or samples. Even with decreasing sequencing costs, it remains impractical to obtain genomic sequence for every strain or sample analyzed. Here, we evaluate how shotgun proteomics is affected by amino acid divergence between the sample and the genomic database using a probability-based model and a random mutation simulation model constrained by experimental data. To assess the effectsmore » of nonrandom distribution of mutations, we also evaluated identification levels using in silico peptide data from sequenced isolates with average amino acid identities (AAI) varying between 76 and 98%. We compared the predictions to experimental protein identification levels for a sample that was evaluated using a database that included genomic information for the dominant organism and for a closely related variant (95% AAI). The range of models set the boundaries at which half of the proteins in a proteomic experiment can be identified to be 77-92% AAI between orthologs in the sample and database. Consistent with this prediction, experimental data indicated loss of half the identifiable proteins at 90% AAI. Additional analysis indicated a 6.4% reduction of the initial protein coverage per 1% amino acid divergence and total identification loss at 86% AAI. Consequently, shotgun proteomics is capable of cross-strain identifications but avoids most crossspecies false positives.« less

  11. The chicken skeletal alpha-actin gene promoter region exhibits partial dyad symmetry and a capacity to drive bidirectional transcription.

    PubMed Central

    Grichnik, J M; French, B A; Schwartz, R J

    1988-01-01

    The chicken skeletal alpha-actin gene promoter region (-202 to -12) provides myogenic transcriptional specificity. This promoter contains partial dyad symmetry about an axis at nucleotide -108 and in transfection experiments is capable of directing transcription in a bidirectional manner. At least three different transcription initiation start sites, oriented toward upstream sequences, were mapped 25 to 30 base pairs from TATA-like regions. The opposing transcriptional activity was potentiated upon the deletion of sequences proximal to the alpha-actin transcription start site. Thus, sequences which serve to position RNA polymerase for alpha-actin transcription may allow, in their absence, the selection of alternative and reverse-oriented start sites. Nuclear runoff transcription assays of embryonic muscle indicated that divergent transcription may occur in vivo but with rapid turnover of nuclear transcripts. Divergent transcriptional activity enabled us to define the 3' regulatory boundary of the skeletal alpha-actin promoter which retains a high level of myogenic transcriptional activity. The 3' regulatory border was detected when serial 3' deletions bisected the element (-91 CCAAA TATGG -82) which reduced transcriptional activity by 80%. Previously we showed that disruption of its upstream counterpart (-127 CCAAAGAAGG -136) resulted in about a 90% decrease in activity. These element pairs, which we describe as CCAAT box-associated repeats, are conserved in all sequenced vertebrate sarcomeric actin genes and may act in a cooperative manner to facilitate transcription in myogenic cells. Images PMID:3211124

  12. Cryptic genetic diversity, population structure, and gene flow in the Mojave rattlesnake (Crotalus scutulatus).

    PubMed

    Schield, Drew R; Adams, Richard H; Card, Daren C; Corbin, Andrew B; Jezkova, Tereza; Hales, Nicole R; Meik, Jesse M; Perry, Blair W; Spencer, Carol L; Smith, Lydia L; García, Gustavo Campillo; Bouzid, Nassima M; Strickland, Jason L; Parkinson, Christopher L; Borja, Miguel; Castañeda-Gaytán, Gamaliel; Bryson, Robert W; Flores-Villela, Oscar A; Mackessy, Stephen P; Castoe, Todd A

    2018-06-15

    The Mojave rattlesnake (Crotalus scutulatus) inhabits deserts and arid grasslands of the western United States and Mexico. Despite considerable interest in its highly toxic venom and the recognition of two subspecies, no molecular studies have characterized range-wide genetic diversity and population structure or tested species limits within C. scutulatus. We used mitochondrial DNA and thousands of nuclear loci from double-digest restriction site associated DNA sequencing to infer population genetic structure throughout the range of C. scutulatus, and to evaluate divergence times and gene flow between populations. We find strong support for several divergent mitochondrial and nuclear clades of C. scutulatus, including splits coincident with two major phylogeographic barriers: the Continental Divide and the elevational increase associated with the Central Mexican Plateau. We apply Bayesian clustering, phylogenetic inference, and coalescent-based species delimitation to our nuclear genetic data to test hypotheses of population structure. We also performed demographic analyses to test hypotheses relating to population divergence and gene flow. Collectively, our results support the existence of four distinct lineages within C. scutulatus, and genetically defined populations do not correspond with currently recognized subspecies ranges. Finally, we use approximate Bayesian computation to test hypotheses of divergence among multiple rattlesnake species groups distributed across the Continental Divide, and find evidence for co-divergence at this boundary during the mid-Pleistocene. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Genetic structuring of European anchovy (Engraulis encrasicolus) populations through mitochondrial DNA sequences.

    PubMed

    Keskin, Emre; Atar, Hasan Huseyin

    2012-04-01

    Mitochondrial DNA sequence variation in 655 bpfragments of the cytochrome oxidase c subunit I gene, known as the DNA barcode, of European anchovy (Engraulis encrasicolus) was evaluated by analyzing 1529 individuals representing 16 populations from the Black Sea, through the Marmara Sea and the Aegean Sea to the Mediterranean Sea. A total of 19 (2.9%) variable sites were found among individuals, and these defined 10 genetically diverged populations with an overall mean distance of 1.2%. The highest nucleotide divergence was found between samples of eastern Mediterranean and northern Aegean (2.2%). Evolutionary history analysis among 16 populations clustered the Mediterranean Sea clades in one main branch and the other clades in another branch. Diverging pattern of the European anchovy populations correlated with geographic dispersion supports the genetic structuring through the Black Sea-Marmara Sea-Aegean Sea-Mediterranean Sea quad.

  14. Seeing chordate evolution through the Ciona genome sequence

    PubMed Central

    Cañestro, Cristian; Bassham, Susan; Postlethwait, John H

    2003-01-01

    A draft sequence of the compact genome of the sea squirt Ciona intestinalis, a non-vertebrate chordate that diverged very early from other chordates, including vertebrates, illuminates how chordates originated and how vertebrate developmental innovations evolved. PMID:12620098

  15. Phylogeographic patterns of genetic diversity in eastern Mediterranean water frogs have been determined by geological processes and climate change in the Late Cenozoic.

    PubMed

    Akın, Ciğdem; Bilgin, C Can; Beerli, Peter; Westaway, Rob; Ohst, Torsten; Litvinchuk, Spartak N; Uzzell, Thomas; Bilgin, Metin; Hotz, Hansjürg; Guex, Gaston-Denis; Plötner, Jörg

    2010-11-01

    AIM: Our aims were to assess the phylogeographic patterns of genetic diversity in eastern Mediterranean water frogs and to estimate divergence times using different geological scenarios. We related divergence times to past geological events and discuss the relevance of our data for the systematics of eastern Mediterranean water frogs. LOCATION: The eastern Mediterranean region. METHODS: Genetic diversity and divergence were calculated using sequences of two protein-coding mitochondrial (mt) genes: ND2 (1038 bp, 119 sequences) and ND3 (340 bp, 612 sequences). Divergence times were estimated in a Bayesian framework under four geological scenarios representing alternative possible geological histories for the eastern Mediterranean. We then compared the different scenarios using Bayes factors and additional geological data. RESULTS: Extensive genetic diversity in mtDNA divides eastern Mediterranean water frogs into six main haplogroups (MHG). Three MHGs were identified on the Anatolian mainland; the most widespread MHG with the highest diversity is distributed from western Anatolia to the northern shore of the Caspian Sea, including the type locality of Pelophylax ridibundus. The other two Anatolian MHGs are restricted to south-eastern Turkey, occupying localities west and east of the Amanos mountain range. One of the remaining three MHGs is restricted to Cyprus; a second to the Levant; the third was found in the distribution area of European lake frogs (P. ridibundus group), including the Balkans. MAIN CONCLUSIONS: Based on geological evidence and estimates of genetic divergence we hypothesize that the water frogs of Cyprus have been isolated from the Anatolian mainland populations since the end of the Messinian salinity crisis (MSC), i.e. since c. 5.5-5.3 Ma, while our divergence time estimates indicate that the isolation of Crete from the mainland populations (Peloponnese, Anatolia) most likely pre-dates the MSC. The observed rates of divergence imply a time window of c. 1.6-1.1 million years for diversification of the largest Anatolian MHG; divergence between the two other Anatolian MHGs may have begun about 3.0 Ma, apparently as a result of uplift of the Amanos Mountains. Our mtDNA data suggest that the Anatolian water frogs and frogs from Cyprus represent several undescribed species.

  16. Sex Chromosome Turnover Contributes to Genomic Divergence between Incipient Stickleback Species

    PubMed Central

    Yoshida, Kohta; Makino, Takashi; Yamaguchi, Katsushi; Shigenobu, Shuji; Hasebe, Mitsuyasu; Kawata, Masakado; Kume, Manabu; Mori, Seiichi; Peichel, Catherine L.; Toyoda, Atsushi; Fujiyama, Asao; Kitano, Jun

    2014-01-01

    Sex chromosomes turn over rapidly in some taxonomic groups, where closely related species have different sex chromosomes. Although there are many examples of sex chromosome turnover, we know little about the functional roles of sex chromosome turnover in phenotypic diversification and genomic evolution. The sympatric pair of Japanese threespine stickleback (Gasterosteus aculeatus) provides an excellent system to address these questions: the Japan Sea species has a neo-sex chromosome system resulting from a fusion between an ancestral Y chromosome and an autosome, while the sympatric Pacific Ocean species has a simple XY sex chromosome system. Furthermore, previous quantitative trait locus (QTL) mapping demonstrated that the Japan Sea neo-X chromosome contributes to phenotypic divergence and reproductive isolation between these sympatric species. To investigate the genomic basis for the accumulation of genes important for speciation on the neo-X chromosome, we conducted whole genome sequencing of males and females of both the Japan Sea and the Pacific Ocean species. No substantial degeneration has yet occurred on the neo-Y chromosome, but the nucleotide sequence of the neo-X and the neo-Y has started to diverge, particularly at regions near the fusion. The neo-sex chromosomes also harbor an excess of genes with sex-biased expression. Furthermore, genes on the neo-X chromosome showed higher non-synonymous substitution rates than autosomal genes in the Japan Sea lineage. Genomic regions of higher sequence divergence between species, genes with divergent expression between species, and QTL for inter-species phenotypic differences were found not only at the regions near the fusion site, but also at other regions along the neo-X chromosome. Neo-sex chromosomes can therefore accumulate substitutions causing species differences even in the absence of substantial neo-Y degeneration. PMID:24625862

  17. The Most Deeply Conserved Noncoding Sequences in Plants Serve Similar Functions to Those in Vertebrates Despite Large Differences in Evolutionary Rates[W

    PubMed Central

    Burgess, Diane; Freeling, Michael

    2014-01-01

    In vertebrates, conserved noncoding elements (CNEs) are functionally constrained sequences that can show striking conservation over >400 million years of evolutionary distance and frequently are located megabases away from target developmental genes. Conserved noncoding sequences (CNSs) in plants are much shorter, and it has been difficult to detect conservation among distantly related genomes. In this article, we show not only that CNS sequences can be detected throughout the eudicot clade of flowering plants, but also that a subset of 37 CNSs can be found in all flowering plants (diverging ∼170 million years ago). These CNSs are functionally similar to vertebrate CNEs, being highly associated with transcription factor and development genes and enriched in transcription factor binding sites. Some of the most highly conserved sequences occur in genes encoding RNA binding proteins, particularly the RNA splicing–associated SR genes. Differences in sequence conservation between plants and animals are likely to reflect differences in the biology of the organisms, with plants being much more able to tolerate genomic deletions and whole-genome duplication events due, in part, to their far greater fecundity compared with vertebrates. PMID:24681619

  18. Population histories of right whales (Cetacea: Eubalaena) inferred from mitochondrial sequence diversities and divergences of their whale lice (Amphipoda: Cyamus).

    PubMed

    Kaliszewska, Zofia A; Seger, Jon; Rowntree, Victoria J; Barco, Susan G; Benegas, Rafael; Best, Peter B; Brown, Moira W; Brownell, Robert L; Carribero, Alejandro; Harcourt, Robert; Knowlton, Amy R; Marshall-Tilas, Kim; Patenaude, Nathalie J; Rivarola, Mariana; Schaeff, Catherine M; Sironi, Mariano; Smith, Wendy A; Yamada, Tadasu K

    2005-10-01

    Right whales carry large populations of three 'whale lice' (Cyamus ovalis, Cyamus gracilis, Cyamus erraticus) that have no other hosts. We used sequence variation in the mitochondrial COI gene to ask (i) whether cyamid population structures might reveal associations among right whale individuals and subpopulations, (ii) whether the divergences of the three nominally conspecific cyamid species on North Atlantic, North Pacific, and southern right whales (Eubalaena glacialis, Eubalaena japonica, Eubalaena australis) might indicate their times of separation, and (iii) whether the shapes of cyamid gene trees might contain information about changes in the population sizes of right whales. We found high levels of nucleotide diversity but almost no population structure within oceans, indicating large effective population sizes and high rates of transfer between whales and subpopulations. North Atlantic and Southern Ocean populations of all three species are reciprocally monophyletic, and North Pacific C. erraticus is well separated from North Atlantic and southern C. erraticus. Mitochondrial clock calibrations suggest that these divergences occurred around 6 million years ago (Ma), and that the Eubalaena mitochondrial clock is very slow. North Pacific C. ovalis forms a clade inside the southern C. ovalis gene tree, implying that at least one right whale has crossed the equator in the Pacific Ocean within the last 1-2 million years (Myr). Low-frequency polymorphisms are more common than expected under neutrality for populations of constant size, but there is no obvious signal of rapid, interspecifically congruent expansion of the kind that would be expected if North Atlantic or southern right whales had experienced a prolonged population bottleneck within the last 0.5 Myr.

  19. Molecular Epidemiological Survey and Genetic Characterization of Anaplasma Species in Mongolian Livestock.

    PubMed

    Ochirkhuu, Nyamsuren; Konnai, Satoru; Odbileg, Raadan; Murata, Shiro; Ohashi, Kazuhiko

    2017-08-01

    Anaplasma species are obligate intracellular rickettsial pathogens that cause great economic loss to the animal industry. Few studies on Anaplasma infections in Mongolian livestock have been conducted. This study examined the prevalence of Anaplasma marginale, Anaplasma ovis, Anaplasma phagocytophilum, and Anaplasma bovis by polymerase chain reaction assay in 928 blood samples collected from native cattle and dairy cattle (Bos taurus), yaks (Bos grunniens), sheep (Ovis aries), and goats (Capra aegagrus hircus) in four provinces of Ulaanbaatar city in Mongolia. We genetically characterized positive samples through sequencing analysis based on the heat-shock protein groEL, major surface protein 4 (msp4), and 16S rRNA genes. Only A. ovis was detected in Mongolian livestock (cattle, yaks, sheep, and goats), with 413 animals (44.5%) positive for groEL and 308 animals (33.2%) positive for msp4 genes. In the phylogenetic tree, we separated A. ovis sequences into two distinct clusters based on the groEL gene. One cluster comprised sequences derived mainly from sheep and goats, which was similar to that in A. ovis isolates from other countries. The other divergent cluster comprised sequences derived from cattle and yaks and appeared to be newly branched from that in previously published single isolates in Mongolian cattle. In addition, the msp4 gene of A. ovis using same and different samples with groEL gene of the pathogen demonstrated that all sequences derived from all animal species, except for three sequences derived from cattle and yak, were clustered together, and were identical or similar to those in isolates from other countries. We used 16S rRNA gene sequences to investigate the genetically divergent A. ovis and identified high homology of 99.3-100%. However, the sequences derived from cattle did not match those derived from sheep and goats. The results of this study on the prevalence and molecular characterization of A. ovis in Mongolian livestock can facilitate the control of infectious diseases in livestock.

  20. Molecular evolution of Adh and LEAFY and the phylogenetic utility of their introns in Pyrus (Rosaceae)

    PubMed Central

    2011-01-01

    Background The genus Pyrus belongs to the tribe Pyreae (the former subfamily Maloideae) of the family Rosaceae, and includes one of the most important commercial fruit crops, pear. The phylogeny of Pyrus has not been definitively reconstructed. In our previous efforts, the internal transcribed spacer region (ITS) revealed a poorly resolved phylogeny due to non-concerted evolution of nrDNA arrays. Therefore, introns of low copy nuclear genes (LCNG) are explored here for improved resolution. However, paralogs and lineage sorting are still two challenges for applying LCNGs in phylogenetic studies, and at least two independent nuclear loci should be compared. In this work the second intron of LEAFY and the alcohol dehydrogenase gene (Adh) were selected to investigate their molecular evolution and phylogenetic utility. Results DNA sequence analyses revealed a complex ortholog and paralog structure of Adh genes in Pyrus and Malus, the pears and apples. Comparisons between sequences from RT-PCR and genomic PCR indicate that some Adh homologs are putatively nonfunctional. A partial region of Adh1 was sequenced for 18 Pyrus species and three subparalogs representing Adh1-1 were identified. These led to poorly resolved phylogenies due to low sequence divergence and the inclusion of putative recombinants. For the second intron of LEAFY, multiple inparalogs were discovered for both LFY1int2 and LFY2int2. LFY1int2 is inadequate for phylogenetic analysis due to lineage sorting of two inparalogs. LFY2int2-N, however, showed a relatively high sequence divergence and led to the best-resolved phylogeny. This study documents the coexistence of outparalogs and inparalogs, and lineage sorting of these paralogs and orthologous copies. It reveals putative recombinants that can lead to incorrect phylogenetic inferences, and presents an improved phylogenetic resolution of Pyrus using LFY2int2-N. Conclusions Our study represents the first phylogenetic analyses based on LCNGs in Pyrus. Ancient and recent duplications lead to a complex structure of Adh outparalogs and inparalogs in Pyrus and Malus, resulting in neofunctionalization, nonfunctionalization and possible subfunctionalization. Among all investigated orthologs, LFY2int2-N is the best nuclear marker for phylogenetic reconstruction of Pyrus due to suitable sequence divergence and the absence of lineage sorting. PMID:21917170

  1. Subgenome-specific assembly of vitamin E biosynthesis genes and expression patterns during seed development provide insight into the evolution of oat genome.

    PubMed

    Gutierrez-Gonzalez, Juan J; Garvin, David F

    2016-11-01

    Vitamin E is essential for humans and thus must be a component of a healthy diet. Among the cereal grains, hexaploid oats (Avena sativa L.) have high vitamin E content. To date, no gene sequences in the vitamin E biosynthesis pathway have been reported for oats. Using deep sequencing and orthology-guided assembly, coding sequences of genes for each step in vitamin E synthesis in oats were reconstructed, including resolution of the sequences of homeologs. Three homeologs, presumably representing each of the three oat subgenomes, were identified for the main steps of the pathway. Partial sequences, likely representing pseudogenes, were recovered in some instances as well. Pairwise comparisons among homeologs revealed that two of the three putative subgenome-specific homeologs are almost identical for each gene. Synonymous substitution rates indicate the time of divergence of the two more similar subgenomes from the distinct one at 7.9-8.7 MYA, and a divergence between the similar subgenomes from a common ancestor 1.1 MYA. A new proposed evolutionary model for hexaploid oat formation is discussed. Homeolog-specific gene expression was quantified during oat seed development and compared with vitamin E accumulation. Homeolog expression largely appears to be similar for most of genes; however, for some genes, homoeolog-specific transcriptional bias was observed. The expression of HPPD, as well as certain homoeologs of VTE2 and VTE4, is highly correlated with seed vitamin E accumulation. Our findings expand our understanding of oat genome evolution and will assist efforts to modify vitamin E content and composition in oats. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Billions of basepairs of recently expanded, repetitive sequences are eliminated from the somatic genome during copepod development.

    PubMed

    Sun, Cheng; Wyngaard, Grace; Walton, D Brian; Wichman, Holly A; Mueller, Rachel Lockridge

    2014-03-11

    Chromatin diminution is the programmed deletion of DNA from presomatic cell or nuclear lineages during development, producing single organisms that contain two different nuclear genomes. Phylogenetically diverse taxa undergo chromatin diminution--some ciliates, nematodes, copepods, and vertebrates. In cyclopoid copepods, chromatin diminution occurs in taxa with massively expanded germline genomes; depending on species, germline genome sizes range from 15 - 75 Gb, 12-74 Gb of which are lost from pre-somatic cell lineages at germline--soma differentiation. This is more than an order of magnitude more sequence than is lost from other taxa. To date, the sequences excised from copepods have not been analyzed using large-scale genomic datasets, and the processes underlying germline genomic gigantism in this clade, as well as the functional significance of chromatin diminution, have remained unknown. Here, we used high-throughput genomic sequencing and qPCR to characterize the germline and somatic genomes of Mesocyclops edax, a freshwater cyclopoid copepod with a germline genome of ~15 Gb and a somatic genome of ~3 Gb. We show that most of the excised DNA consists of repetitive sequences that are either 1) verifiable transposable elements (TEs), or 2) non-simple repeats of likely TE origin. Repeat elements in both genomes are skewed towards younger (i.e. less divergent) elements. Excised DNA is a non-random sample of the germline repeat element landscape; younger elements, and high frequency DNA transposons and LINEs, are disproportionately eliminated from the somatic genome. Our results suggest that germline genome expansion in M. edax reflects explosive repeat element proliferation, and that billions of base pairs of such repeats are deleted from the somatic genome every generation. Thus, we hypothesize that chromatin diminution is a mechanism that controls repeat element load, and that this load can evolve to be divergent between tissue types within single organisms.

  3. Billions of basepairs of recently expanded, repetitive sequences are eliminated from the somatic genome during copepod development

    PubMed Central

    2014-01-01

    Background Chromatin diminution is the programmed deletion of DNA from presomatic cell or nuclear lineages during development, producing single organisms that contain two different nuclear genomes. Phylogenetically diverse taxa undergo chromatin diminution — some ciliates, nematodes, copepods, and vertebrates. In cyclopoid copepods, chromatin diminution occurs in taxa with massively expanded germline genomes; depending on species, germline genome sizes range from 15 – 75 Gb, 12–74 Gb of which are lost from pre-somatic cell lineages at germline – soma differentiation. This is more than an order of magnitude more sequence than is lost from other taxa. To date, the sequences excised from copepods have not been analyzed using large-scale genomic datasets, and the processes underlying germline genomic gigantism in this clade, as well as the functional significance of chromatin diminution, have remained unknown. Results Here, we used high-throughput genomic sequencing and qPCR to characterize the germline and somatic genomes of Mesocyclops edax, a freshwater cyclopoid copepod with a germline genome of ~15 Gb and a somatic genome of ~3 Gb. We show that most of the excised DNA consists of repetitive sequences that are either 1) verifiable transposable elements (TEs), or 2) non-simple repeats of likely TE origin. Repeat elements in both genomes are skewed towards younger (i.e. less divergent) elements. Excised DNA is a non-random sample of the germline repeat element landscape; younger elements, and high frequency DNA transposons and LINEs, are disproportionately eliminated from the somatic genome. Conclusions Our results suggest that germline genome expansion in M. edax reflects explosive repeat element proliferation, and that billions of base pairs of such repeats are deleted from the somatic genome every generation. Thus, we hypothesize that chromatin diminution is a mechanism that controls repeat element load, and that this load can evolve to be divergent between tissue types within single organisms. PMID:24618421

  4. Vorticity and divergence in the solar photosphere

    NASA Technical Reports Server (NTRS)

    Wang, YI; Noyes, Robert W.; Tarbell, Theodore D.; Title, Alan M.

    1995-01-01

    We have studied an outstanding sequence of continuum images of the solar granulation from Pic du Midi Observatory. We have calculated the horizontal vector flow field using a correlation tracking algorithm, and from this determined three scalar field: the vertical component of the curl; the horizontal divergence; and the horizontal flow speed. The divergence field has substantially longer coherence time and more power than does the curl field. Statistically, curl is better correlated with regions of negative divergence - that is, the vertical vorticity is higher in downflow regions, suggesting excess vorticity in intergranular lanes. The average value of the divergence is largest (i.e., outflow is largest) where the horizontal speed is large; we associate these regions with exploding granules. A numerical simulation of general convection also shows similar statistical differences between curl and divergence. Some individual small bright points in the granulation pattern show large local vorticities.

  5. Rat hepatitis E virus: geographical clustering within Germany and serological detection in wild Norway rats (Rattus norvegicus).

    PubMed

    Johne, Reimar; Dremsek, Paul; Kindler, Eveline; Schielke, Anika; Plenge-Bönig, Anita; Gregersen, Henrike; Wessels, Ute; Schmidt, Katja; Rietschel, Wolfram; Groschup, Martin H; Guenther, Sebastian; Heckel, Gerald; Ulrich, Rainer G

    2012-07-01

    Zoonotic hepatitis E virus (HEV) infection in industrialised countries is thought to be caused by transmission from wild boar, domestic pig and deer as reservoir hosts. The detection of HEV-specific antibodies in rats and other rodents has suggested that these animals may represent an additional source for HEV transmission to human. Recently, a novel HEV (ratHEV) was detected in Norway rats from Hamburg, Germany, showing the typical genome organisation but a high nucleotide and amino acid sequence divergence to other mammalian and to avian HEV strains. Here we describe the multiple detection of ratHEV RNA and HEV-specific antibodies in Norway rats from additional cities in north-east and south-west Germany. The complete genome analysis of two novel strains from Berlin and Stuttgart confirmed the association of ratHEV to Norway rats. The present data indicated a continuing existence of this virus in the rat populations from Berlin and Hamburg. The phylogenetic analysis of a short segment of the open reading frame 1 confirmed a geographical clustering of the corresponding sequences. Serological investigations using recombinant ratHEV and genotype 3 capsid protein derivatives demonstrated antigenic differences which might be caused by the high amino acid sequence divergence in the immunodominant region. The high amount of animals showing exclusively ratHEV RNA or anti-ratHEV antibodies suggested a non-persistent infection in the Norway rat. Future studies have to prove the transmission routes of the virus in rat populations and its zoonotic potential. The recombinant ratHEV antigen generated here will allow future seroepidemiological studies to differentiate ratHEV and genotype 3 infections in humans and animals. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Transcriptome-based differentiation of closely-related Miscanthus lines.

    PubMed

    Chouvarine, Philippe; Cooksey, Amanda M; McCarthy, Fiona M; Ray, David A; Baldwin, Brian S; Burgess, Shane C; Peterson, Daniel G

    2012-01-01

    Distinguishing between individuals is critical to those conducting animal/plant breeding, food safety/quality research, diagnostic and clinical testing, and evolutionary biology studies. Classical genetic identification studies are based on marker polymorphisms, but polymorphism-based techniques are time and labor intensive and often cannot distinguish between closely related individuals. Illumina sequencing technologies provide the detailed sequence data required for rapid and efficient differentiation of related species, lines/cultivars, and individuals in a cost-effective manner. Here we describe the use of Illumina high-throughput exome sequencing, coupled with SNP mapping, as a rapid means of distinguishing between related cultivars of the lignocellulosic bioenergy crop giant miscanthus (Miscanthus × giganteus). We provide the first exome sequence database for Miscanthus species complete with Gene Ontology (GO) functional annotations. A SNP comparative analysis of rhizome-derived cDNA sequences was successfully utilized to distinguish three Miscanthus × giganteus cultivars from each other and from other Miscanthus species. Moreover, the resulting phylogenetic tree generated from SNP frequency data parallels the known breeding history of the plants examined. Some of the giant miscanthus plants exhibit considerable sequence divergence. Here we describe an analysis of Miscanthus in which high-throughput exome sequencing was utilized to differentiate between closely related genotypes despite the current lack of a reference genome sequence. We functionally annotated the exome sequences and provide resources to support Miscanthus systems biology. In addition, we demonstrate the use of the commercial high-performance cloud computing to do computational GO annotation.

  7. Using intron sequence comparisons in the triose-phosphate isomerase gene to study the divergence of the fall armyworm host strains

    USDA-ARS?s Scientific Manuscript database

    The Noctuid moth, Spodoptera frugiperda (the fall armyworm), is endemic to the Western Hemisphere and appears to be undergoing sympatric speciation to produce two subpopulations that differ in their choice of host plants. The diverging “rice strain” and “corn strain” are morphologically indistinguis...

  8. Random Amplification and Pyrosequencing for Identification of Novel Viral Genome Sequences

    PubMed Central

    Hang, Jun; Forshey, Brett M.; Kochel, Tadeusz J.; Li, Tao; Solórzano, Víctor Fiestas; Halsey, Eric S.; Kuschner, Robert A.

    2012-01-01

    ssRNA viruses have high levels of genomic divergence, which can lead to difficulty in genomic characterization of new viruses using traditional PCR amplification and sequencing methods. In this study, random reverse transcription, anchored random PCR amplification, and high-throughput pyrosequencing were used to identify orthobunyavirus sequences from total RNA extracted from viral cultures of acute febrile illness specimens. Draft genome sequence for the orthobunyavirus L segment was assembled and sequentially extended using de novo assembly contigs from pyrosequencing reads and orthobunyavirus sequences in GenBank as guidance. Accuracy and continuous coverage were achieved by mapping all reads to the L segment draft sequence. Subsequently, RT-PCR and Sanger sequencing were used to complete the genome sequence. The complete L segment was found to be 6936 bases in length, encoding a 2248-aa putative RNA polymerase. The identified L segment was distinct from previously published South American orthobunyaviruses, sharing 63% and 54% identity at the nucleotide and amino acid level, respectively, with the complete Oropouche virus L segment and 73% and 81% identity at the nucleotide and amino acid level, respectively, with a partial Caraparu virus L segment. The result demonstrated the effectiveness of a sequence-independent amplification and next-generation sequencing approach for obtaining complete viral genomes from total nucleic acid extracts and its use in pathogen discovery. PMID:22468136

  9. The pipid root.

    PubMed

    Bewick, Adam J; Chain, Frédéric J J; Heled, Joseph; Evans, Ben J

    2012-12-01

    The estimation of phylogenetic relationships is an essential component of understanding evolution. Accurate phylogenetic estimation is difficult, however, when internodes are short and old, when genealogical discordance is common due to large ancestral effective population sizes or ancestral population structure, and when homoplasy is prevalent. Inference of divergence times is also hampered by unknown and uneven rates of evolution, the incomplete fossil record, uncertainty in relationships between fossil and extant lineages, and uncertainty in the age of fossils. Ideally, these challenges can be overcome by developing large "phylogenomic" data sets and by analyzing them with methods that accommodate features of the evolutionary process, such as genealogical discordance, recurrent substitution, recombination, ancestral population structure, gene flow after speciation among sampled and unsampled taxa, and variation in evolutionary rates. In some phylogenetic problems, it is possible to use information that is independent of fossils, such as the geological record, to identify putative triggers for diversification whose associated estimated divergence times can then be compared a posteriori with estimated relationships and ages of fossils. The history of diversification of pipid frog genera Pipa, Hymenochirus, Silurana, and Xenopus, for instance, is characterized by many of these evolutionary and analytical challenges. These frogs diversified dozens of millions of years ago, they have a relatively rich fossil record, their distributions span continental plates with a well characterized geological record of ancient connectivity, and there is considerable disagreement across studies in estimated evolutionary relationships. We used high throughput sequencing and public databases to generate a large phylogenomic data set with which we estimated evolutionary relationships using multilocus coalescence methods. We collected sequence data from Pipa, Hymenochirus, Silurana, and Xenopus and the outgroup taxon Rhinophrynus dorsalis from coding sequence of 113 autosomal regions, averaging ∼300 bp in length (range: 102-1695 bp) and also a portion of the mitochondrial genome. Analysis of these data using multiple approaches recovers strong support for the ((Xenopus, Silurana)(Pipa, Hymenochirus)) topology, and geologically calibrated divergence time estimates that are consistent with estimated ages and phylogenetic affinities of many fossils. These results provide new insights into the biogeography and chronology of pipid diversification during the breakup of Gondwanaland and illustrate how phylogenomic data may be necessary to tackle tough problems in molecular systematics. [Coalescence; gene tree; high-throughout sequencing; lineage sorting; pipid; species tree; Xenopus.].

  10. The Fusarium Graminearum Genome Reveals a Link Between Localized Polymorphism and Pathogen Specialization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuomo, Christina A.; Guldener, Ulrich; Xu, Jin Rong

    2007-09-07

    We sequenced and annotated the genome of the filamentous fungus Fusarium graminearum, a major pathogen of cultivated cereals. Very few repetitive sequences were detected, and the process of repeat-induced point mutation, in which duplicated sequences are subject to extensive mutation, may partially account for the reduced repeat content and apparent low number of paralogous (ancestrally duplicated) genes. A second strain of F. graminearum contained more than 10,000 single-nucleotide polymorphisms, which were frequently located near telomeres and within other discrete chromosomal segments. Many highly polymorphic regions contained sets of genes implicated in plant-fungus interactions and were unusually divergent, with higher ratesmore » of recombination. These regions of genome innovation may result from selection due to interactions of F. graminearum with its plant hosts.« less

  11. The genome sequence of taurine cattle: a window to ruminant biology and evolution.

    PubMed

    Elsik, Christine G; Tellam, Ross L; Worley, Kim C; Gibbs, Richard A; Muzny, Donna M; Weinstock, George M; Adelson, David L; Eichler, Evan E; Elnitski, Laura; Guigó, Roderic; Hamernik, Debora L; Kappes, Steve M; Lewin, Harris A; Lynn, David J; Nicholas, Frank W; Reymond, Alexandre; Rijnkels, Monique; Skow, Loren C; Zdobnov, Evgeny M; Schook, Lawrence; Womack, James; Alioto, Tyler; Antonarakis, Stylianos E; Astashyn, Alex; Chapple, Charles E; Chen, Hsiu-Chuan; Chrast, Jacqueline; Câmara, Francisco; Ermolaeva, Olga; Henrichsen, Charlotte N; Hlavina, Wratko; Kapustin, Yuri; Kiryutin, Boris; Kitts, Paul; Kokocinski, Felix; Landrum, Melissa; Maglott, Donna; Pruitt, Kim; Sapojnikov, Victor; Searle, Stephen M; Solovyev, Victor; Souvorov, Alexandre; Ucla, Catherine; Wyss, Carine; Anzola, Juan M; Gerlach, Daniel; Elhaik, Eran; Graur, Dan; Reese, Justin T; Edgar, Robert C; McEwan, John C; Payne, Gemma M; Raison, Joy M; Junier, Thomas; Kriventseva, Evgenia V; Eyras, Eduardo; Plass, Mireya; Donthu, Ravikiran; Larkin, Denis M; Reecy, James; Yang, Mary Q; Chen, Lin; Cheng, Ze; Chitko-McKown, Carol G; Liu, George E; Matukumalli, Lakshmi K; Song, Jiuzhou; Zhu, Bin; Bradley, Daniel G; Brinkman, Fiona S L; Lau, Lilian P L; Whiteside, Matthew D; Walker, Angela; Wheeler, Thomas T; Casey, Theresa; German, J Bruce; Lemay, Danielle G; Maqbool, Nauman J; Molenaar, Adrian J; Seo, Seongwon; Stothard, Paul; Baldwin, Cynthia L; Baxter, Rebecca; Brinkmeyer-Langford, Candice L; Brown, Wendy C; Childers, Christopher P; Connelley, Timothy; Ellis, Shirley A; Fritz, Krista; Glass, Elizabeth J; Herzig, Carolyn T A; Iivanainen, Antti; Lahmers, Kevin K; Bennett, Anna K; Dickens, C Michael; Gilbert, James G R; Hagen, Darren E; Salih, Hanni; Aerts, Jan; Caetano, Alexandre R; Dalrymple, Brian; Garcia, Jose Fernando; Gill, Clare A; Hiendleder, Stefan G; Memili, Erdogan; Spurlock, Diane; Williams, John L; Alexander, Lee; Brownstein, Michael J; Guan, Leluo; Holt, Robert A; Jones, Steven J M; Marra, Marco A; Moore, Richard; Moore, Stephen S; Roberts, Andy; Taniguchi, Masaaki; Waterman, Richard C; Chacko, Joseph; Chandrabose, Mimi M; Cree, Andy; Dao, Marvin Diep; Dinh, Huyen H; Gabisi, Ramatu Ayiesha; Hines, Sandra; Hume, Jennifer; Jhangiani, Shalini N; Joshi, Vandita; Kovar, Christie L; Lewis, Lora R; Liu, Yih-Shin; Lopez, John; Morgan, Margaret B; Nguyen, Ngoc Bich; Okwuonu, Geoffrey O; Ruiz, San Juana; Santibanez, Jireh; Wright, Rita A; Buhay, Christian; Ding, Yan; Dugan-Rocha, Shannon; Herdandez, Judith; Holder, Michael; Sabo, Aniko; Egan, Amy; Goodell, Jason; Wilczek-Boney, Katarzyna; Fowler, Gerald R; Hitchens, Matthew Edward; Lozado, Ryan J; Moen, Charles; Steffen, David; Warren, James T; Zhang, Jingkun; Chiu, Readman; Schein, Jacqueline E; Durbin, K James; Havlak, Paul; Jiang, Huaiyang; Liu, Yue; Qin, Xiang; Ren, Yanru; Shen, Yufeng; Song, Henry; Bell, Stephanie Nicole; Davis, Clay; Johnson, Angela Jolivet; Lee, Sandra; Nazareth, Lynne V; Patel, Bella Mayurkumar; Pu, Ling-Ling; Vattathil, Selina; Williams, Rex Lee; Curry, Stacey; Hamilton, Cerissa; Sodergren, Erica; Wheeler, David A; Barris, Wes; Bennett, Gary L; Eggen, André; Green, Ronnie D; Harhay, Gregory P; Hobbs, Matthew; Jann, Oliver; Keele, John W; Kent, Matthew P; Lien, Sigbjørn; McKay, Stephanie D; McWilliam, Sean; Ratnakumar, Abhirami; Schnabel, Robert D; Smith, Timothy; Snelling, Warren M; Sonstegard, Tad S; Stone, Roger T; Sugimoto, Yoshikazu; Takasuga, Akiko; Taylor, Jeremy F; Van Tassell, Curtis P; Macneil, Michael D; Abatepaulo, Antonio R R; Abbey, Colette A; Ahola, Virpi; Almeida, Iassudara G; Amadio, Ariel F; Anatriello, Elen; Bahadue, Suria M; Biase, Fernando H; Boldt, Clayton R; Carroll, Jeffery A; Carvalho, Wanessa A; Cervelatti, Eliane P; Chacko, Elsa; Chapin, Jennifer E; Cheng, Ye; Choi, Jungwoo; Colley, Adam J; de Campos, Tatiana A; De Donato, Marcos; Santos, Isabel K F de Miranda; de Oliveira, Carlo J F; Deobald, Heather; Devinoy, Eve; Donohue, Kaitlin E; Dovc, Peter; Eberlein, Annett; Fitzsimmons, Carolyn J; Franzin, Alessandra M; Garcia, Gustavo R; Genini, Sem; Gladney, Cody J; Grant, Jason R; Greaser, Marion L; Green, Jonathan A; Hadsell, Darryl L; Hakimov, Hatam A; Halgren, Rob; Harrow, Jennifer L; Hart, Elizabeth A; Hastings, Nicola; Hernandez, Marta; Hu, Zhi-Liang; Ingham, Aaron; Iso-Touru, Terhi; Jamis, Catherine; Jensen, Kirsty; Kapetis, Dimos; Kerr, Tovah; Khalil, Sari S; Khatib, Hasan; Kolbehdari, Davood; Kumar, Charu G; Kumar, Dinesh; Leach, Richard; Lee, Justin C-M; Li, Changxi; Logan, Krystin M; Malinverni, Roberto; Marques, Elisa; Martin, William F; Martins, Natalia F; Maruyama, Sandra R; Mazza, Raffaele; McLean, Kim L; Medrano, Juan F; Moreno, Barbara T; Moré, Daniela D; Muntean, Carl T; Nandakumar, Hari P; Nogueira, Marcelo F G; Olsaker, Ingrid; Pant, Sameer D; Panzitta, Francesca; Pastor, Rosemeire C P; Poli, Mario A; Poslusny, Nathan; Rachagani, Satyanarayana; Ranganathan, Shoba; Razpet, Andrej; Riggs, Penny K; Rincon, Gonzalo; Rodriguez-Osorio, Nelida; Rodriguez-Zas, Sandra L; Romero, Natasha E; Rosenwald, Anne; Sando, Lillian; Schmutz, Sheila M; Shen, Libing; Sherman, Laura; Southey, Bruce R; Lutzow, Ylva Strandberg; Sweedler, Jonathan V; Tammen, Imke; Telugu, Bhanu Prakash V L; Urbanski, Jennifer M; Utsunomiya, Yuri T; Verschoor, Chris P; Waardenberg, Ashley J; Wang, Zhiquan; Ward, Robert; Weikard, Rosemarie; Welsh, Thomas H; White, Stephen N; Wilming, Laurens G; Wunderlich, Kris R; Yang, Jianqi; Zhao, Feng-Qi

    2009-04-24

    To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.

  12. Characterization of the uncertainty of divergence time estimation under relaxed molecular clock models using multiple loci.

    PubMed

    Zhu, Tianqi; Dos Reis, Mario; Yang, Ziheng

    2015-03-01

    Genetic sequence data provide information about the distances between species or branch lengths in a phylogeny, but not about the absolute divergence times or the evolutionary rates directly. Bayesian methods for dating species divergences estimate times and rates by assigning priors on them. In particular, the prior on times (node ages on the phylogeny) incorporates information in the fossil record to calibrate the molecular tree. Because times and rates are confounded, our posterior time estimates will not approach point values even if an infinite amount of sequence data are used in the analysis. In a previous study we developed a finite-sites theory to characterize the uncertainty in Bayesian divergence time estimation in analysis of large but finite sequence data sets under a strict molecular clock. As most modern clock dating analyses use more than one locus and are conducted under relaxed clock models, here we extend the theory to the case of relaxed clock analysis of data from multiple loci (site partitions). Uncertainty in posterior time estimates is partitioned into three sources: Sampling errors in the estimates of branch lengths in the tree for each locus due to limited sequence length, variation of substitution rates among lineages and among loci, and uncertainty in fossil calibrations. Using a simple but analogous estimation problem involving the multivariate normal distribution, we predict that as the number of loci ([Formula: see text]) goes to infinity, the variance in posterior time estimates decreases and approaches the infinite-data limit at the rate of 1/[Formula: see text], and the limit is independent of the number of sites in the sequence alignment. We then confirmed the predictions by using computer simulation on phylogenies of two or three species, and by analyzing a real genomic data set for six primate species. Our results suggest that with the fossil calibrations fixed, analyzing multiple loci or site partitions is the most effective way for improving the precision of posterior time estimation. However, even if a huge amount of sequence data is analyzed, considerable uncertainty will persist in time estimates. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society of Systematic Biologists.

  13. Characterization of the transcriptome of an ecologically important avian species, the Vinous-throated Parrotbill Paradoxornis webbianus bulomachus (Paradoxornithidae; Aves)

    PubMed Central

    2012-01-01

    Background Adaptive divergence driven by environmental heterogeneity has long been a fascinating topic in ecology and evolutionary biology. The study of the genetic basis of adaptive divergence has, however, been greatly hampered by a lack of genomic information. The recent development of transcriptome sequencing provides an unprecedented opportunity to generate large amounts of genomic data for detailed investigations of the genetics of adaptive divergence in non-model organisms. Herein, we used the Illumina sequencing platform to sequence the transcriptome of brain and liver tissues from a single individual of the Vinous-throated Parrotbill, Paradoxornis webbianus bulomachus, an ecologically important avian species in Taiwan with a wide elevational range of sea level to 3100 m. Results Our 10.1 Gbp of sequences were first assembled based on Zebra Finch (Taeniopygia guttata) and chicken (Gallus gallus) RNA references. The remaining reads were then de novo assembled. After filtering out contigs with low coverage (<10X), we retained 67,791 of 487,336 contigs, which covered approximately 5.3% of the P. w. bulomachus genome. Of 7,779 contigs retained for a top-hit species distribution analysis, the majority (about 86%) were matched to known Zebra Finch and chicken transcripts. We also annotated 6,365 contigs to gene ontology (GO) terms: in total, 122 GO-slim terms were assigned, including biological process (41%), molecular function (32%), and cellular component (27%). Many potential genetic markers for future adaptive genomic studies were also identified: 8,589 single nucleotide polymorphisms, 1,344 simple sequence repeats and 109 candidate genes that might be involved in elevational or climate adaptation. Conclusions Our study shows that transcriptome data can serve as a rich genetic resource, even for a single run of short-read sequencing from a single individual of a non-model species. This is the first study providing transcriptomic information for species in the avian superfamily Sylvioidea, which comprises more than 1,000 species. Our data can be used to study adaptive divergence in heterogeneous environments and investigate other important ecological and evolutionary questions in parrotbills from different populations and even in other species in the Sylvioidea. PMID:22530590

  14. A divergent spirochete strain isolated from a resident of the southeastern United States was identified by multilocus sequence typing as Borrelia bissettii.

    PubMed

    Golovchenko, Maryna; Vancová, Marie; Clark, Kerry; Oliver, James H; Grubhoffer, Libor; Rudenko, Nataliia

    2016-02-04

    Out of 20 spirochete species from Borrelia burgdorferi sensu lato (s.l.) complex recognized to date some are considered to have a limited distribution, while others are worldwide dispersed. Among those are Borrelia burgdorferi sensu stricto (s.s.) and Borrelia bissettii which are distributed both in North America and in Europe. While B. burgdorferi s.s. is recognized as a cause of Lyme borreliosis worldwide, involvement of B. bissettii in human Lyme disease was not so definite yet. Multilocus sequence typing of spirochete isolates originating from residents of Georgia and Florida, USA, revealed the presence of two Borrelia burgdorferi sensu stricto strains highly similar to those from endemic Lyme borreliosis regions of the northeastern United States, and an unusual strain that differed from any previously described in Europe or North America. Based on phylogenetic analysis of eight chromosomally located housekeeping genes divergent strain clustered between Borrelia bissettii and Borrelia carolinensis, two species from the B.burgdorferi s.l. complex, widely distributed among the multiple hosts and vector ticks in the southeastern United States. The genetic distance analysis showed a close relationship of the diverged strain to B. bissettii. Here, we present the analysis of the first North American human originated live spirochete strain that revealed close relatedness to B. bissettii. The potential of B. bissettii to cause human disease, even if it is infrequent, is of importance for clinicians due to the extensive range of its geographic distribution.

  15. Improvisation in evolution of genes and genomes: whose structure is it anyway?

    PubMed

    Shakhnovich, Boris E; Shakhnovich, Eugene I

    2008-06-01

    Significant progress has been made in recent years in a variety of seemingly unrelated fields such as sequencing, protein structure prediction, and high-throughput transcriptomics and metabolomics. At the same time, new microscopic models have been developed that made it possible to analyze the evolution of genes and genomes from first principles. The results from these efforts enable, for the first time, a comprehensive insight into the evolution of complex systems and organisms on all scales--from sequences to organisms and populations. Every newly sequenced genome uncovers new genes, families, and folds. Where do these new genes come from? How do gene duplication and subsequent divergence of sequence and structure affect the fitness of the organism? What role does regulation play in the evolution of proteins and folds? Emerging synergism between data and modeling provides first robust answers to these questions.

  16. Finding a (pine) needle in a haystack: chloroplast genome sequence divergence in rare and widespread pines

    Treesearch

    J.B. Whittall; J. Syring; M. Parks; J. Buenrostro; C. Dick; A. Liston; R. Cronn

    2010-01-01

    Critical to conservation efforts and other investigations at low taxonomic levels, DNA sequence data offer important insights into the distinctiveness, biogeographic partitioning, and evolutionary histories of species. The resolving power of DNA sequences is often limited by insufficient variability at the intraspecific level. This is particularly true of studies...

  17. Genome Sequence of the Yeast Clavispora lusitaniae Type Strain CBS 6936.

    PubMed

    Durrens, Pascal; Klopp, Christophe; Biteau, Nicolas; Fitton-Ouhabi, Valérie; Dementhon, Karine; Accoceberry, Isabelle; Sherman, David J; Noël, Thierry

    2017-08-03

    Clavispora lusitaniae , an environmental saprophytic yeast belonging to the CTG clade of Candida , can behave occasionally as an opportunistic pathogen in humans. We report here the genome sequence of the type strain CBS 6936. Comparison with sequences of strain ATCC 42720 indicates conservation of chromosomal structure but significant nucleotide divergence. Copyright © 2017 Durrens et al.

  18. Genome Sequence of the Yeast Clavispora lusitaniae Type Strain CBS 6936

    PubMed Central

    Klopp, Christophe; Biteau, Nicolas; Fitton-Ouhabi, Valérie; Dementhon, Karine; Accoceberry, Isabelle; Sherman, David J.; Noël, Thierry

    2017-01-01

    ABSTRACT Clavispora lusitaniae, an environmental saprophytic yeast belonging to the CTG clade of Candida, can behave occasionally as an opportunistic pathogen in humans. We report here the genome sequence of the type strain CBS 6936. Comparison with sequences of strain ATCC 42720 indicates conservation of chromosomal structure but significant nucleotide divergence. PMID:28774979

  19. Mammalian evolution: timing and implications from using the LogDeterminant transform for proteins of differing amino acid composition.

    PubMed

    Penny, D; Hasegawa, M; Waddell, P J; Hendy, M D

    1999-03-01

    We explore the tree of mammalian mtDNA sequences, using particularly the LogDet transform on amino acid sequences, the distance Hadamard transform, and the Closest Tree selection criterion. The amino acid composition of different species show significant differences, even within mammals. After compensating for these differences, nearest-neighbor bootstrap results suggest that the tree is locally stable, though a few groups show slightly greater rearrangements when a large proportion of the constant sites are removed. Many parts of the trees we obtain agree with those on published protein ML trees. Interesting results include a preference for rodent monophyly. The detection of a few alternative signals to those on the optimal tree were obtained using the distance Hadamard transform (with results expressed as a Lento plot). One rearrangement suggested was the interchange of the position of primates and rodents on the optimal tree. The basic stability of the tree, combined with two calibration points (whale/cow and horse/rhinoceros), together with a distant secondary calibration from the mammal/bird divergence, allows inferences of the times of divergence of putative clades. Allowing for sampling variances due to finite sequence length, most major divergences amongst lineages leading to modern orders, appear to occur well before the Cretaceous/Tertiary (K/T) boundary. Implications arising from these early divergences are discussed, particularly the possibility of competition between the small dinosaurs and the new mammal clades.

  20. Biological function in the twilight zone of sequence conservation.

    PubMed

    Ponting, Chris P

    2017-08-16

    Strong DNA conservation among divergent species is an indicator of enduring functionality. With weaker sequence conservation we enter a vast 'twilight zone' in which sequence subject to transient or lower constraint cannot be distinguished easily from neutrally evolving, non-functional sequence. Twilight zone functional sequence is illuminated instead by principles of selective constraint and positive selection using genomic data acquired from within a species' population. Application of these principles reveals that despite being biochemically active, most twilight zone sequence is not functional.

  1. Prediction of industrial tomato hybrids from agronomic traits and ISSR molecular markers.

    PubMed

    Figueiredo, A S T; Resende, J T V; Faria, M V; Da-Silva, P R; Fagundes, B S; Morales, R G F

    2016-05-13

    Heterosis is a highly relevant phenomenon in plant breeding. This condition is usually established in hybrids derived from crosses of highly divergent parents. The success of a breeder in obtaining heterosis is directly related to the correct identification of genetically contrasting parents. Currently, the diallel cross is the most commonly used methodology to detect contrasting parents; however, it is a time- and cost-consuming procedure. Therefore, new tools capable of performing this task quickly and accurately are required. Thus, the purpose of this study was to estimate the genetic divergence in industrial tomato lines, based on agronomic traits, and to compare with estimates obtained using inter-simple sequence repeat (ISSR) molecular markers. The genetic divergence among 10 industrial tomato lines, based on nine morphological characters and 12 ISSR primers was analyzed. For data analysis, Pearson and Spearman correlation coefficients were calculated between the genetic dissimilarity measures estimated by Mahalanobis distance and Jaccard's coefficient of genetic dissimilarity from the heterosis estimates, combining ability, and means of important traits of industrial tomato. The ISSR markers efficiently detected contrasting parents for hybrid production in tomato. Parent RVTD-08 was indicated as the most divergent, both by molecular and morphological markers, that positively contributed to increased heterosis and by the specific combining ability in the crosses in which it participated. The genetic dissimilarity estimated by ISSR molecular markers aided the identification of the best hybrids of the experiment in terms of total fruit yield, pulp yield, and soluble solids content.

  2. Proteomics on the rims; insights into the biology of the nuclear envelope and flagellar pocket of trypanosomes

    PubMed Central

    Field, Mark C.; Adung’a, Vincent; Obado, Samson; Chait, Brian T.; Rout, Michael P.

    2014-01-01

    SUMMERY Trypanosomatids represent the causative agents of major diseases in humans, livestock and plants, with inevitable suffering and economic hardship as a result. They are also evolutionarily highly divergent organisms, and the many unique aspects of trypanosome biology provide opportunities in terms of identification of drug targets, the challenge of exploiting these putative targets, and at the same time significant scope for exploration of novel and divergent cell biology. We can estimate from genome sequences that the degree of divergence of trypanosomes from animals and fungi is extreme, with perhaps one third to one half of predicted trypanosome proteins having no known function based on homology or recognizable protein domains/architecture. Two highly important aspects of trypanosome biology are the flagellar pocket and the nuclear envelope, where in silico analysis clearly suggests great potential divergence in the proteome. The flagellar pocket is the sole site of endo- and exocytosis in trypanosomes and plays important roles in immune evasion via variant surface glycoprotein (VSG) trafficking and providing a location for sequestration of various invariant receptors. The trypanosome nuclear envelope has been largely unexplored, but by analogy with higher eukaryotes, roles in the regulation of chromatin and most significantly, in controlling VSG gene expression are expected. Here we discuss recent successful proteomics-based approaches towards characterization of the nuclear envelope and the endocytic apparatus, the identification of conserved and novel trypanosomatid-specific features, and the implications of these findings. PMID:22309600

  3. Diversity and divergence of the glioma-infiltrating T-cell receptor repertoire

    PubMed Central

    Sims, Jennifer S.; Grinshpun, Boris; Feng, Yaping; Ung, Timothy H.; Neira, Justin A.; Samanamud, Jorge L.; Canoll, Peter; Shen, Yufeng; Sims, Peter A.; Bruce, Jeffrey N.

    2016-01-01

    Although immune signaling has emerged as a defining feature of the glioma microenvironment, how the underlying structure of the glioma-infiltrating T-cell population differs from that of the blood from which it originates has been difficult to measure directly in patients. High-throughput sequencing of T-cell receptor (TCR) repertoires (TCRseq) provides a population-wide statistical description of how T cells respond to disease. We have defined immunophenotypes of whole repertoires based on TCRseq of the α- and β-chains from glioma tissue, nonneoplastic brain tissue, and peripheral blood from patients. Using information theory, we partitioned the diversity of these TCR repertoires into that from the distribution of VJ cassette combinations and diversity due to VJ-independent factors, such as selection due to antigen binding. Tumor-infiltrating lymphocytes (TILs) possessed higher VJ-independent diversity than nonneoplastic tissue, stratifying patients according to tumor grade. We found that the VJ-independent components of tumor-associated repertoires diverge more from their corresponding peripheral repertoires than T-cell populations in nonneoplastic brain tissue, particularly for low-grade gliomas. Finally, we identified a “signature” set of TCRs whose use in peripheral blood is associated with patients exhibiting low TIL divergence and is depleted in patients with highly divergent TIL repertoires. This signature is detectable in peripheral blood, and therefore accessible noninvasively. We anticipate that these immunophenotypes will be foundational to monitoring and predicting response to antiglioma vaccines and immunotherapy. PMID:27261081

  4. Divergence of Iron Metabolism in Wild Malaysian Yeast

    PubMed Central

    Lee, Hana N.; Mostovoy, Yulia; Hsu, Tiffany Y.; Chang, Amanda H.; Brem, Rachel B.

    2013-01-01

    Comparative genomic studies have reported widespread variation in levels of gene expression within and between species. Using these data to infer organism-level trait divergence has proven to be a key challenge in the field. We have used a wild Malaysian population of S. cerevisiae as a test bed in the search to predict and validate trait differences based on observations of regulatory variation. Malaysian yeast, when cultured in standard medium, activated regulatory programs that protect cells from the toxic effects of high iron. Malaysian yeast also showed a hyperactive regulatory response during culture in the presence of excess iron and had a unique growth defect in conditions of high iron. Molecular validation experiments pinpointed the iron metabolism factors AFT1, CCC1, and YAP5 as contributors to these molecular and cellular phenotypes; in genome-scale sequence analyses, a suite of iron toxicity response genes showed evidence for rapid protein evolution in Malaysian yeast. Our findings support a model in which iron metabolism has diverged in Malaysian yeast as a consequence of a change in selective pressure, with Malaysian alleles shifting the dynamic range of iron response to low-iron concentrations and weakening resistance to extreme iron toxicity. By dissecting the iron scarcity specialist behavior of Malaysian yeast, our work highlights the power of expression divergence as a signpost for biologically and evolutionarily relevant variation at the organismal level. Interpreting the phenotypic relevance of gene expression variation is one of the primary challenges of modern genomics. PMID:24142925

  5. Divergence of iron metabolism in wild Malaysian yeast.

    PubMed

    Lee, Hana N; Mostovoy, Yulia; Hsu, Tiffany Y; Chang, Amanda H; Brem, Rachel B

    2013-12-09

    Comparative genomic studies have reported widespread variation in levels of gene expression within and between species. Using these data to infer organism-level trait divergence has proven to be a key challenge in the field. We have used a wild Malaysian population of S. cerevisiae as a test bed in the search to predict and validate trait differences based on observations of regulatory variation. Malaysian yeast, when cultured in standard medium, activated regulatory programs that protect cells from the toxic effects of high iron. Malaysian yeast also showed a hyperactive regulatory response during culture in the presence of excess iron and had a unique growth defect in conditions of high iron. Molecular validation experiments pinpointed the iron metabolism factors AFT1, CCC1, and YAP5 as contributors to these molecular and cellular phenotypes; in genome-scale sequence analyses, a suite of iron toxicity response genes showed evidence for rapid protein evolution in Malaysian yeast. Our findings support a model in which iron metabolism has diverged in Malaysian yeast as a consequence of a change in selective pressure, with Malaysian alleles shifting the dynamic range of iron response to low-iron concentrations and weakening resistance to extreme iron toxicity. By dissecting the iron scarcity specialist behavior of Malaysian yeast, our work highlights the power of expression divergence as a signpost for biologically and evolutionarily relevant variation at the organismal level. Interpreting the phenotypic relevance of gene expression variation is one of the primary challenges of modern genomics.

  6. Mitochondrial genomes reveal the extinct Hippidion as an outgroup to all living equids.

    PubMed

    Der Sarkissian, Clio; Vilstrup, Julia T; Schubert, Mikkel; Seguin-Orlando, Andaine; Eme, David; Weinstock, Jacobo; Alberdi, Maria Teresa; Martin, Fabiana; Lopez, Patricio M; Prado, Jose L; Prieto, Alfredo; Douady, Christophe J; Stafford, Tom W; Willerslev, Eske; Orlando, Ludovic

    2015-03-01

    Hippidions were equids with very distinctive anatomical features. They lived in South America 2.5 million years ago (Ma) until their extinction approximately 10 000 years ago. The evolutionary origin of the three known Hippidion morphospecies is still disputed. Based on palaeontological data, Hippidion could have diverged from the lineage leading to modern equids before 10 Ma. In contrast, a much later divergence date, with Hippidion nesting within modern equids, was indicated by partial ancient mitochondrial DNA sequences. Here, we characterized eight Hippidion complete mitochondrial genomes at 3.4-386.3-fold coverage using target-enrichment capture and next-generation sequencing. Our dataset reveals that the two morphospecies sequenced (H. saldiasi and H. principale) formed a monophyletic clade, basal to extant and extinct Equus lineages. This contrasts with previous genetic analyses and supports Hippidion as a distinct genus, in agreement with palaeontological models. We date the Hippidion split from Equus at 5.6-6.5 Ma, suggesting an early divergence in North America prior to the colonization of South America, after the formation of the Panamanian Isthmus 3.5 Ma and the Great American Biotic Interchange. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. Mitochondrial genomes reveal the extinct Hippidion as an outgroup to all living equids

    PubMed Central

    Der Sarkissian, Clio; Vilstrup, Julia T.; Schubert, Mikkel; Seguin-Orlando, Andaine; Eme, David; Weinstock, Jacobo; Alberdi, Maria Teresa; Martin, Fabiana; Lopez, Patricio M.; Prado, Jose L.; Prieto, Alfredo; Douady, Christophe J.; Stafford, Tom W.; Willerslev, Eske; Orlando, Ludovic

    2015-01-01

    Hippidions were equids with very distinctive anatomical features. They lived in South America 2.5 million years ago (Ma) until their extinction approximately 10 000 years ago. The evolutionary origin of the three known Hippidion morphospecies is still disputed. Based on palaeontological data, Hippidion could have diverged from the lineage leading to modern equids before 10 Ma. In contrast, a much later divergence date, with Hippidion nesting within modern equids, was indicated by partial ancient mitochondrial DNA sequences. Here, we characterized eight Hippidion complete mitochondrial genomes at 3.4–386.3-fold coverage using target-enrichment capture and next-generation sequencing. Our dataset reveals that the two morphospecies sequenced (H. saldiasi and H. principale) formed a monophyletic clade, basal to extant and extinct Equus lineages. This contrasts with previous genetic analyses and supports Hippidion as a distinct genus, in agreement with palaeontological models. We date the Hippidion split from Equus at 5.6–6.5 Ma, suggesting an early divergence in North America prior to the colonization of South America, after the formation of the Panamanian Isthmus 3.5 Ma and the Great American Biotic Interchange. PMID:25762573

  8. The minimal kinome of Giardia lamblia illuminates early kinase evolution and unique parasite biology

    PubMed Central

    2011-01-01

    Background The major human intestinal pathogen Giardia lamblia is a very early branching eukaryote with a minimal genome of broad evolutionary and biological interest. Results To explore early kinase evolution and regulation of Giardia biology, we cataloged the kinomes of three sequenced strains. Comparison with published kinomes and those of the excavates Trichomonas vaginalis and Leishmania major shows that Giardia's 80 core kinases constitute the smallest known core kinome of any eukaryote that can be grown in pure culture, reflecting both its early origin and secondary gene loss. Kinase losses in DNA repair, mitochondrial function, transcription, splicing, and stress response reflect this reduced genome, while the presence of other kinases helps define the kinome of the last common eukaryotic ancestor. Immunofluorescence analysis shows abundant phospho-staining in trophozoites, with phosphotyrosine abundant in the nuclei and phosphothreonine and phosphoserine in distinct cytoskeletal organelles. The Nek kinase family has been massively expanded, accounting for 198 of the 278 protein kinases in Giardia. Most Neks are catalytically inactive, have very divergent sequences and undergo extensive duplication and loss between strains. Many Neks are highly induced during development. We localized four catalytically active Neks to distinct parts of the cytoskeleton and one inactive Nek to the cytoplasm. Conclusions The reduced kinome of Giardia sheds new light on early kinase evolution, and its highly divergent sequences add to the definition of individual kinase families as well as offering specific drug targets. Giardia's massive Nek expansion may reflect its distinctive lifestyle, biphasic life cycle and complex cytoskeleton. PMID:21787419

  9. Isolation and characterization of a highly evolved type 3 vaccine-derived poliovirus in China.

    PubMed

    Zhang, Xiaowei; Qin, Chong; Li, Wei; Zheng, Zhenhua; Wang, Hanzhong; Cui, Zongqiang

    2017-06-15

    In this study, we report the identification and characterization of a highly evolved type 3 vaccine-derived poliovirus (VDPV) strain designated as WIV14, isolated in 2014 from a 4-year-old child suspected of having an enteroviral infection in China. Complete genome sequence of WIV14 revealed multiple nucleotide substitutions when compared with the attenuated poliovirus (PV) Sabin 3, including the reversion of three major attenuation sites to wild type. From the nucleotide divergence for the P1/capsid region, we estimated that the evolution time of WIV14 was more than 7 years, indicating the possible long time of replication. WIV14 strain seemed to have differences in biological characteristics compared with attenuated PV strains, such as being non-temperature-sensitive and producing large plaques. The current isolation of a highly divergent type 3 VDPV gives an idea of the risk of emergent VDPV strains, and emphasizes the importance of maintaining high vaccination coverage and herd immunity against PVs in China. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Phylogeography of Rhodiola kirilowii (Crassulaceae): a story of Miocene divergence and quaternary expansion.

    PubMed

    Zhang, Jian-Qiang; Meng, Shi-Yong; Rao, Guang-Yuan

    2014-01-01

    The evolution and current distribution of the Sino-Tibetan flora have been greatly affected by historical geological events, such as the uplift of the Qinghai-Tibetan Plateau (QTP), and Quaternary climatic oscillations. Rhodiola kirilowii, a perennial herb with its distribution ranging from the southeastern QTP and the Hengduan Mountains (HM) to adjacent northern China and central Asia, provides an excellent model to examine and disentangle the effect of both geological orogeny and climatic oscillation on the evolutionary history of species with such distribution patterns. We here conducted a phylogeographic study using sequences of two chloroplast fragments (trnL-F and trnS-G) and internal transcribed spacers in 29 populations of R. kirilowii. A total of 25 plastid haplotypes and 12 ITS ribotypes were found. Molecular clock estimation revealed deep divergence between the central Asian populations and other populations from the HM and northern China; this split occurred ca. 2.84 million year ago. The majority of populations from the mountains of northern China were dominated by a single haplotype or ribotype, while populations of the HM harbored both high genetic diversity and high haplotype diversity. This distribution pattern indicates that HM was either a diversification center or a refugium for R. kirilowii during the Quaternary climatic oscillations. The present distribution of this species on mountains in northern China may have resulted from a rapid glacial population expansion from the HM. This expansion was confirmed by the mismatch distribution analysis and negative Tajima's D and Fu's FS values, and was dated to ca. 168 thousand years ago. High genetic diversity and population differentiation in both plastid and ITS sequences were revealed; these imply restricted gene flow between populations. A distinct isolation-by-distance pattern was suggested by the Mantel test. Our results show that in old lineages, populations may harbour divergent genetic forms that are sufficient to maintain or even increase overall genetic diversity despite fragmentation and low within-population variation.

  11. Phylogeography of Rhodiola kirilowii (Crassulaceae): A Story of Miocene Divergence and Quaternary Expansion

    PubMed Central

    Zhang, Jian-Qiang; Meng, Shi-Yong; Rao, Guang-Yuan

    2014-01-01

    The evolution and current distribution of the Sino-Tibetan flora have been greatly affected by historical geological events, such as the uplift of the Qinghai-Tibetan Plateau (QTP), and Quaternary climatic oscillations. Rhodiola kirilowii, a perennial herb with its distribution ranging from the southeastern QTP and the Hengduan Mountains (HM) to adjacent northern China and central Asia, provides an excellent model to examine and disentangle the effect of both geological orogeny and climatic oscillation on the evolutionary history of species with such distribution patterns. We here conducted a phylogeographic study using sequences of two chloroplast fragments (trnL-F and trnS-G) and internal transcribed spacers in 29 populations of R. kirilowii. A total of 25 plastid haplotypes and 12 ITS ribotypes were found. Molecular clock estimation revealed deep divergence between the central Asian populations and other populations from the HM and northern China; this split occurred ca. 2.84 million year ago. The majority of populations from the mountains of northern China were dominated by a single haplotype or ribotype, while populations of the HM harbored both high genetic diversity and high haplotype diversity. This distribution pattern indicates that HM was either a diversification center or a refugium for R. kirilowii during the Quaternary climatic oscillations. The present distribution of this species on mountains in northern China may have resulted from a rapid glacial population expansion from the HM. This expansion was confirmed by the mismatch distribution analysis and negative Tajima's D and Fu's F S values, and was dated to ca. 168 thousand years ago. High genetic diversity and population differentiation in both plastid and ITS sequences were revealed; these imply restricted gene flow between populations. A distinct isolation-by-distance pattern was suggested by the Mantel test. Our results show that in old lineages, populations may harbour divergent genetic forms that are sufficient to maintain or even increase overall genetic diversity despite fragmentation and low within-population variation. PMID:25389750

  12. Hybridization and polyploidy enable genomic plasticity without sex in the most devastating plant-parasitic nematodes

    PubMed Central

    Perfus-Barbeoch, Laetitia; Da Rocha, Martine; Sallet, Erika; Bailly-Bechet, Marc; Castagnone-Sereno, Philippe; Flot, Jean-François; Kozlowski, Djampa K.; Cazareth, Julie; Couloux, Arnaud; Da Silva, Corinne; Guy, Julie; Kim-Jo, Yu-Jin; Rancurel, Corinne; Abad, Pierre; Wincker, Patrick

    2017-01-01

    Root-knot nematodes (genus Meloidogyne) exhibit a diversity of reproductive modes ranging from obligatory sexual to fully asexual reproduction. Intriguingly, the most widespread and devastating species to global agriculture are those that reproduce asexually, without meiosis. To disentangle this surprising parasitic success despite the absence of sex and genetic exchanges, we have sequenced and assembled the genomes of three obligatory ameiotic and asexual Meloidogyne. We have compared them to those of relatives able to perform meiosis and sexual reproduction. We show that the genomes of ameiotic asexual Meloidogyne are large, polyploid and made of duplicated regions with a high within-species average nucleotide divergence of ~8%. Phylogenomic analysis of the genes present in these duplicated regions suggests that they originated from multiple hybridization events and are thus homoeologs. We found that up to 22% of homoeologous gene pairs were under positive selection and these genes covered a wide spectrum of predicted functional categories. To biologically assess functional divergence, we compared expression patterns of homoeologous gene pairs across developmental life stages using an RNAseq approach in the most economically important asexually-reproducing nematode. We showed that >60% of homoeologous gene pairs display diverged expression patterns. These results suggest a substantial functional impact of the genome structure. Contrasting with high within-species nuclear genome divergence, mitochondrial genome divergence between the three ameiotic asexuals was very low, signifying that these putative hybrids share a recent common maternal ancestor. Transposable elements (TE) cover a ~1.7 times higher proportion of the genomes of the ameiotic asexual Meloidogyne compared to the sexual relative and might also participate in their plasticity. The intriguing parasitic success of asexually-reproducing Meloidogyne species could be partly explained by their TE-rich composite genomes, resulting from allopolyploidization events, and promoting plasticity and functional divergence between gene copies in the absence of sex and meiosis. PMID:28594822

  13. Complete chloroplast DNA sequence from a Korean endemic genus, Megaleranthis saniculifolia, and its evolutionary implications.

    PubMed

    Kim, Young-Kyu; Park, Chong-wook; Kim, Ki-Joong

    2009-03-31

    The chloroplast DNA sequences of Megaleranthis saniculifolia, an endemic and monotypic endangered plant species, were completed in this study (GenBank FJ597983). The genome is 159,924 bp in length. It harbors a pair of IR regions consisting of 26,608 bp each. The lengths of the LSC and SSC regions are 88,326 bp and 18,382 bp, respectively. The structural organizations, gene and intron contents, gene orders, AT contents, codon usages, and transcription units of the Megaleranthis chloroplast genome are similar to those of typical land plant cp DNAs. However, the detailed features of Megaleranthis chloroplast genomes are substantially different from that of Ranunculus, which belongs to the same family, the Ranunculaceae. First, the Megaleranthis cp DNA was 4,797 bp longer than that of Ranunculus due to an expanded IR region into the SSC region and duplicated sequence elements in several spacer regions of the Megaleranthis cp genome. Second, the chloroplast genomes of Megaleranthis and Ranunculus evidence 5.6% sequence divergence in the coding regions, 8.9% sequence divergence in the intron regions, and 18.7% sequence divergence in the intergenic spacer regions, respectively. In both the coding and noncoding regions, average nucleotide substitution rates differed markedly, depending on the genome position. Our data strongly implicate the positional effects of the evolutionary modes of chloroplast genes. The genes evidencing higher levels of base substitutions also have higher incidences of indel mutations and low Ka/Ks ratios. A total of 54 simple sequence repeat loci were identified from the Megaleranthis cp genome. The existence of rich cp SSR loci in the Megaleranthis cp genome provides a rare opportunity to study the population genetic structures of this endangered species. Our phylogenetic trees based on the two independent markers, the nuclear ITS and chloroplast matK sequences, strongly support the inclusion of the Megaleranthis to the Trollius. Therefore, our molecular trees support Ohwi's original treatment of Megaleranthis saniculiforia to Trollius chosenensis Ohwi.

  14. Whole-genome analysis of piscine reovirus (PRV) shows PRV represents a new genus in family Reoviridae and its genome segment S1 sequences group it into two separate sub-genotypes.

    PubMed

    Kibenge, Molly J T; Iwamoto, Tokinori; Wang, Yingwei; Morton, Alexandra; Godoy, Marcos G; Kibenge, Frederick S B

    2013-07-11

    Piscine reovirus (PRV) is a newly discovered fish reovirus of anadromous and marine fish ubiquitous among fish in Norwegian salmon farms, and likely the causative agent of heart and skeletal muscle inflammation (HSMI). HSMI is an increasingly economically significant disease in Atlantic salmon (Salmo salar) farms. The nucleotide sequence data available for PRV are limited, and there is no genetic information on this virus outside of Norway and none from wild fish. RT-PCR amplification and sequencing were used to obtain the complete viral genome of PRV (10 segments) from western Canada and Chile. The genetic diversity among the PRV strains and their relationship to Norwegian PRV isolates were determined by phylogenetic analyses and sequence identity comparisons. PRV is distantly related to members of the genera Orthoreovirus and Aquareovirus and an unambiguous new genus within the family Reoviridae. The Canadian and Norwegian PRV strains are most divergent in the segment S1 and S4 encoded proteins. Phylogenetic analysis of PRV S1 sequences, for which the largest number of complete sequences from different "isolates" is available, grouped Norwegian PRV strains into a single genotype, Genotype I, with sub-genotypes, Ia and Ib. The Canadian PRV strains matched sub-genotype Ia and Chilean PRV strains matched sub-genotype Ib. PRV should be considered as a member of a new genus within the family Reoviridae with two major Norwegian sub-genotypes. The Canadian PRV diverged from Norwegian sub-genotype Ia around 2007 ± 1, whereas the Chilean PRV diverged from Norwegian sub-genotype Ib around 2008 ± 1.

  15. Whole-genome analysis of piscine reovirus (PRV) shows PRV represents a new genus in family Reoviridae and its genome segment S1 sequences group it into two separate sub-genotypes

    PubMed Central

    2013-01-01

    Background Piscine reovirus (PRV) is a newly discovered fish reovirus of anadromous and marine fish ubiquitous among fish in Norwegian salmon farms, and likely the causative agent of heart and skeletal muscle inflammation (HSMI). HSMI is an increasingly economically significant disease in Atlantic salmon (Salmo salar) farms. The nucleotide sequence data available for PRV are limited, and there is no genetic information on this virus outside of Norway and none from wild fish. Methods RT-PCR amplification and sequencing were used to obtain the complete viral genome of PRV (10 segments) from western Canada and Chile. The genetic diversity among the PRV strains and their relationship to Norwegian PRV isolates were determined by phylogenetic analyses and sequence identity comparisons. Results PRV is distantly related to members of the genera Orthoreovirus and Aquareovirus and an unambiguous new genus within the family Reoviridae. The Canadian and Norwegian PRV strains are most divergent in the segment S1 and S4 encoded proteins. Phylogenetic analysis of PRV S1 sequences, for which the largest number of complete sequences from different “isolates” is available, grouped Norwegian PRV strains into a single genotype, Genotype I, with sub-genotypes, Ia and Ib. The Canadian PRV strains matched sub-genotype Ia and Chilean PRV strains matched sub-genotype Ib. Conclusions PRV should be considered as a member of a new genus within the family Reoviridae with two major Norwegian sub-genotypes. The Canadian PRV diverged from Norwegian sub-genotype Ia around 2007 ± 1, whereas the Chilean PRV diverged from Norwegian sub-genotype Ib around 2008 ± 1. PMID:23844948

  16. Complex alternative splicing of acetylcholinesterase transcripts in Torpedo electric organ; primary structure of the precursor of the glycolipid-anchored dimeric form.

    PubMed Central

    Sikorav, J L; Duval, N; Anselmet, A; Bon, S; Krejci, E; Legay, C; Osterlund, M; Reimund, B; Massoulié, J

    1988-01-01

    In this paper, we show the existence of alternative splicing in the 3' region of the coding sequence of Torpedo acetylcholinesterase (AChE). We describe two cDNA structures which both diverge from the previously described coding sequence of the catalytic subunit of asymmetric (A) forms (Schumacher et al., 1986; Sikorav et al., 1987). They both contain a coding sequence followed by a non-coding sequence and a poly(A) stretch. Both of these structures were shown to exist in poly(A)+ RNAs, by S1 mapping experiments. The divergent region encoded by the first sequence corresponds to the precursor of the globular dimeric form (G2a), since it contains the expected C-terminal amino acids, Ala-Cys. These amino acids are followed by a 29 amino acid extension which contains a hydrophobic segment and must be replaced by a glycolipid in the mature protein. Analyses of intact G2a AChE showed that the common domain of the protein contains intersubunit disulphide bonds. The divergent region of the second type of cDNA consists of an adjacent genomic sequence, which is removed as an intron in A and Ga mRNAs, but may encode a distinct, less abundant catalytic subunit. The structures of the cDNA clones indicate that they are derived from minor mRNAs, shorter than the three major transcripts which have been described previously (14.5, 10.5 and 5.5 kb). Oligonucleotide probes specific for the asymmetric and globular terminal regions hybridize with the three major transcripts, indicating that their size is determined by 3'-untranslated regions which are not related to the differential splicing leading to A and Ga forms. Images PMID:3181125

  17. Molecular Identification of Sibling Species of Sclerodermus (Hymenoptera: Bethylidae) That Parasitize Buprestid and Cerambycid Beetles by Using Partial Sequences of Mitochondrial DNA Cytochrome Oxidase Subunit 1 and 28S Ribosomal RNA Gene

    PubMed Central

    Jiang, Yuan; Yang, Zhongqi; Wang, Xiaoyi; Hou, Yuxia

    2015-01-01

    The species belonging to Sclerodermus (Hymenoptera: Bethylidae) are currently the most important insect natural enemies of wood borer pests, mainly buprestid and cerambycid beetles, in China. However, some sibling species of this genus are very difficult to distinguish because of their similar morphological features. To address this issue, we conducted phylogenetic and genetic analyses of cytochrome oxidase subunit I (COI) and 28S RNA gene sequences from eight species of Sclerodermus reared from different wood borer pests. The eight sibling species were as follows: S. guani Xiao et Wu, S. sichuanensis Xiao, S. pupariae Yang et Yao, and Sclerodermus spp. (Nos. 1–5). A 594-bp fragment of COI and 750-bp fragment of 28S were subsequently sequenced. For COI, the G-C content was found to be low in all the species, averaging to about 30.0%. Sequence divergences (Kimura-2-parameter distances) between congeneric species averaged to 4.5%, and intraspecific divergences averaged to about 0.09%. Further, the maximum sequence divergences between congeneric species and Sclerodermus sp. (No. 5) averaged to about 16.5%. All 136 samples analyzed were included in six reciprocally monophyletic clades in the COI neighbor-joining (NJ) tree. The NJ tree inferred from the 28S rRNA sequence yielded almost identical results, but the samples from S. guani, S. sichuanensis, S. pupariae, and Sclerodermus spp. (Nos. 1–4) clustered together and only Sclerodermus sp. (No. 5) clustered separately. Our findings indicate that the standard barcode region of COI can be efficiently used to distinguish morphologically similar Sclerodermus species. Further, we speculate that Sclerodermus sp. (No. 5) might be a new species of Sclerodermus. PMID:25782000

  18. Identification of a divergent genotype of equine arteritis virus from South American donkeys.

    PubMed

    Rivas, J; Neira, V; Mena, J; Brito, B; Garcia, A; Gutierrez, C; Sandoval, D; Ortega, R

    2017-12-01

    A novel equine arteritis virus (EAV) was isolated and sequenced from feral donkeys in Chile. Phylogenetic analysis indicates that the new virus and South African asinine strains diverged at least 100 years from equine EAV strains. The results indicate that asinine strains belonged to a different EAV genotype. © 2017 Blackwell Verlag GmbH.

  19. Evolution of the arginase fold and functional diversity

    PubMed Central

    Dowling, Daniel P.; Costanzo, Luigi Di; Gennadios, Heather A.; Christianson, David W.

    2009-01-01

    The large number of protein structures deposited in the Protein Data Bank allows for the identification of novel structural superfamilies based on conservation of fold in addition to conservation of amino acid sequence. Since sequence diverges more rapidly than fold in protein evolution, proteins with little or no significant sequence identity are occasionally observed to adopt similar folds, thereby reflecting unanticipated evolutionary relationships. Here, we review the unique α/β fold first observed in the manganese metalloenzyme rat liver arginase, consisting of a parallel 8 stranded β-sheet surrounded by several helices, and its evolutionary relationship with the zinc-requiring and/or iron-requiring histone deacetylases and acetylpolyamine amidohydrolases. Structural comparisons reveal key features of the core α/β fold that contribute to the divergent metal ion specificity and stoichiometry required for the chemical and biological functions of these enzymes. PMID:18360740

  20. Whole Genome Sequences of Three Treponema pallidum ssp. pertenue Strains: Yaws and Syphilis Treponemes Differ in Less than 0.2% of the Genome Sequence

    PubMed Central

    Chen, Lei; Pospíšilová, Petra; Strouhal, Michal; Qin, Xiang; Mikalová, Lenka; Norris, Steven J.; Muzny, Donna M.; Gibbs, Richard A.; Fulton, Lucinda L.; Sodergren, Erica; Weinstock, George M.; Šmajs, David

    2012-01-01

    Background The yaws treponemes, Treponema pallidum ssp. pertenue (TPE) strains, are closely related to syphilis causing strains of Treponema pallidum ssp. pallidum (TPA). Both yaws and syphilis are distinguished on the basis of epidemiological characteristics, clinical symptoms, and several genetic signatures of the corresponding causative agents. Methodology/Principal Findings To precisely define genetic differences between TPA and TPE, high-quality whole genome sequences of three TPE strains (Samoa D, CDC-2, Gauthier) were determined using next-generation sequencing techniques. TPE genome sequences were compared to four genomes of TPA strains (Nichols, DAL-1, SS14, Chicago). The genome structure was identical in all three TPE strains with similar length ranging between 1,139,330 bp and 1,139,744 bp. No major genome rearrangements were found when compared to the four TPA genomes. The whole genome nucleotide divergence (dA) between TPA and TPE subspecies was 4.7 and 4.8 times higher than the observed nucleotide diversity (π) among TPA and TPE strains, respectively, corresponding to 99.8% identity between TPA and TPE genomes. A set of 97 (9.9%) TPE genes encoded proteins containing two or more amino acid replacements or other major sequence changes. The TPE divergent genes were mostly from the group encoding potential virulence factors and genes encoding proteins with unknown function. Conclusions/Significance Hypothetical genes, with genetic differences, consistently found between TPE and TPA strains are candidates for syphilitic treponemes virulence factors. Seventeen TPE genes were predicted under positive selection, and eleven of them coded either for predicted exported proteins or membrane proteins suggesting their possible association with the cell surface. Sequence changes between TPE and TPA strains and changes specific to individual strains represent suitable targets for subspecies- and strain-specific molecular diagnostics. PMID:22292095

  1. Molecular characterization and distribution of a 145-bp tandem repeat family in the genus Populus.

    PubMed

    Rajagopal, J; Das, S; Khurana, D K; Srivastava, P S; Lakshmikumaran, M

    1999-10-01

    This report aims to describe the identification and molecular characterization of a 145-bp tandem repeat family that accounts for nearly 1.5% of the Populus genome. Three members of this repeat family were cloned and sequenced from Populus deltoides and P. ciliata. The dimers of the repeat were sequenced in order to confirm the head-to-tail organization of the repeat. Hybridization-based analysis using the 145-bp tandem repeat as a probe on genomic DNA gave rise to ladder patterns which were identified to be a result of methylation and (or) sequence heterogeneity. Analysis of the methylation pattern of the repeat family using methylation-sensitive isoschizomers revealed variable methylation of the C residues and lack of methylation of the A residues. Sequence comparisons between the monomers revealed a high degree of sequence divergence that ranged between 6% and 11% in P. deltoides and between 4.2% and 8.3% in P. ciliata. This indicated the presence of sub-families within the 145-bp tandem family of repeats. Divergence was mainly due to the accumulation of point mutations and was concentrated in the central region of the repeat. The 145-bp tandem repeat family did not show significant homology to known tandem repeats from plants. A short stretch of 36 bp was found to show homology of 66.7% to a centromeric repeat from Chironomus plumosus. Dot-blot analysis and Southern hybridization data revealed the presence of the repeat family in 13 of the 14 Populus species examined. The absence of the 145-bp repeat from P. euphratica suggested that this species is relatively distant from other members of the genus, which correlates with taxonomic classifications. The widespread occurrence of the tandem family in the genus indicated that this family may be of ancient origin.

  2. Mitochondrial DNA Variation and the Evolution of Robertsonian Chromosomal Races of House Mice, Mus Domesticus

    PubMed Central

    Nachman, M. W.; Boyer, S. N.; Searle, J. B.; Aquadro, C. F.

    1994-01-01

    The house mouse, Mus domesticus, includes many distinct Robertsonian (Rb) chromosomal races with diploid numbers from 2n = 22 to 2n = 38. Although these races are highly differentiated karyotypically, they are otherwise indistinguishable from standard karyotype (i.e., 2n = 40) mice, and consequently their evolutionary histories are not well understood. We have examined mitochondrial DNA (mtDNA) sequence variation from the control region and the ND3 gene region among 56 M. domesticus from Western Europe, including 15 Rb populations and 13 standard karyotype populations, and two individuals of the sister species, Mus musculus. mtDNA exhibited an average sequence divergence of 0.84% within M. domesticus and 3.4% between M. domesticus and M. musculus. The transition/transversion bias for the regions sequenced is 5.7:1, and the overall rate of sequence evolution is approximately 10% divergence per million years. The amount of mtDNA variation was as great among different Rb races as among different populations of standard karyotype mice, suggesting that different Rb races do not derive from a single recent maternal lineage. Phylogenetic analysis of the mtDNA sequences resulted in a parsimony tree which contained six major clades. Each of these clades contained both Rb and standard karyotype mice, consistent with the hypothesis that Rb races have arisen independently multiple times. Discordance between phylogeny and geography was attributable to ancestral polymorphism as a consequence of the recent colonization of Western Europe by mice. Two major mtDNA lineages were geographically localized and contained both Rb and standard karyotype mice. The age of these lineages suggests that mice have moved into Europe only within the last 10,000 years and that Rb populations in different geographic regions arose during this time. PMID:8005418

  3. CRAWview: for viewing splicing variation, gene families, and polymorphism in clusters of ESTs and full-length sequences.

    PubMed

    Chou, A; Burke, J

    1999-05-01

    DNA sequence clustering has become a valuable method in support of gene discovery and gene expression analysis. Our interest lies in leveraging the sequence diversity within clusters of expressed sequence tags (ESTs) to model gene structure for the study of gene variants that arise from, among other things, alternative mRNA splicing, polymorphism, and divergence after gene duplication, fusion, and translocation events. In previous work, CRAW was developed to discover gene variants from assembled clusters of ESTs. Most importantly, novel gene features (the differing units between gene variants, for example alternative exons, polymorphisms, transposable elements, etc.) that are specialized to tissue, disease, population, or developmental states can be identified when these tools collate DNA source information with gene variant discrimination. While the goal is complete automation of novel feature and gene variant detection, current methods are far from perfect and hence the development of effective tools for visualization and exploratory data analysis are of paramount importance in the process of sifting through candidate genes and validating targets. We present CRAWview, a Java based visualization extension to CRAW. Features that vary between gene forms are displayed using an automatically generated color coded index. The reporting format of CRAWview gives a brief, high level summary report to display overlap and divergence within clusters of sequences as well as the ability to 'drill down' and see detailed information concerning regions of interest. Additionally, the alignment viewing and editing capabilities of CRAWview make it possible to interactively correct frame-shifts and otherwise edit cluster assemblies. We have implemented CRAWview as a Java application across windows NT/95 and UNIX platforms. A beta version of CRAWview will be freely available to academic users from Pangea Systems (http://www.pangeasystems.com). Contact :

  4. Nuclear 28S rDNA phylogeny supports the basal placement of Noctiluca scintillans (Dinophyceae; Noctilucales) in dinoflagellates.

    PubMed

    Ki, Jang-Seu

    2010-05-01

    Noctiluca scintillans (Macartney) Kofoid et Swezy, 1921 is an unarmoured heterotrophic dinoflagellate with a global distribution, and has been considered as one of the ancestral taxa among dinoflagellates. Recently, 18S rDNA, actin, alpha-, beta-tubulin, and Hsp90-based phylogenies have shown the basal position of the noctilucids. However, the relationships of dinoflagellates in the basal lineages are still controversial. Although the nuclear rDNA (e.g. 18S, ITS-5.8S, and 28S) contains much genetic information, DNA sequences of N. scintillans rDNA molecules were insufficiently characterized as yet. Here the author sequenced a long-range nuclear rDNA, spanning from the 18S to the D5 region of the 28S rDNA, of N. scintillans. The present N. scintillans had a nearly identical genotype (>99.0% similarity) compared to other Noctiluca sequences from different geographic origins. Nucleotide divergence in the partial 28S rDNA was significantly high (p<0.05) as compared to the 18S rDNA, demonstrating that the information from 28S rDNA is more variable. The 28S rDNA phylogeny of 17 selected dinoflagellates, two perkinsids, and two apicomplexans as outgroups showed that N. scintillans and Oxyrrhis marina formed a clade that diverged separately from core dinoflagellates. Copyright (c) 2009 Elsevier GmbH. All rights reserved.

  5. Complete Genome Sequence of Treponema paraluiscuniculi, Strain Cuniculi A: The Loss of Infectivity to Humans Is Associated with Genome Decay

    PubMed Central

    Šmajs, David; Zobaníková, Marie; Strouhal, Michal; Čejková, Darina; Dugan-Rocha, Shannon; Pospíšilová, Petra; Norris, Steven J.; Albert, Tom; Qin, Xiang; Hallsworth-Pepin, Kym; Buhay, Christian; Muzny, Donna M.; Chen, Lei; Gibbs, Richard A.; Weinstock, George M.

    2011-01-01

    Treponema paraluiscuniculi is the causative agent of rabbit venereal spirochetosis. It is not infectious to humans, although its genome structure is very closely related to other pathogenic Treponema species including Treponema pallidum subspecies pallidum, the etiological agent of syphilis. In this study, the genome sequence of Treponema paraluiscuniculi, strain Cuniculi A, was determined by a combination of several high-throughput sequencing strategies. Whereas the overall size (1,133,390 bp), arrangement, and gene content of the Cuniculi A genome closely resembled those of the T. pallidum genome, the T. paraluiscuniculi genome contained a markedly higher number of pseudogenes and gene fragments (51). In addition to pseudogenes, 33 divergent genes were also found in the T. paraluiscuniculi genome. A set of 32 (out of 84) affected genes encoded proteins of known or predicted function in the Nichols genome. These proteins included virulence factors, gene regulators and components of DNA repair and recombination. The majority (52 or 61.9%) of the Cuniculi A pseudogenes and divergent genes were of unknown function. Our results indicate that T. paraluiscuniculi has evolved from a T. pallidum-like ancestor and adapted to a specialized host-associated niche (rabbits) during loss of infectivity to humans. The genes that are inactivated or altered in T. paraluiscuniculi are candidates for virulence factors important in the infectivity and pathogenesis of T. pallidum subspecies. PMID:21655244

  6. Complete Columbian mammoth mitogenome suggests interbreeding with woolly mammoths

    PubMed Central

    2011-01-01

    Background Late Pleistocene North America hosted at least two divergent and ecologically distinct species of mammoth: the periglacial woolly mammoth (Mammuthus primigenius) and the subglacial Columbian mammoth (Mammuthus columbi). To date, mammoth genetic research has been entirely restricted to woolly mammoths, rendering their genetic evolution difficult to contextualize within broader Pleistocene paleoecology and biogeography. Here, we take an interspecific approach to clarifying mammoth phylogeny by targeting Columbian mammoth remains for mitogenomic sequencing. Results We sequenced the first complete mitochondrial genome of a classic Columbian mammoth, as well as the first complete mitochondrial genome of a North American woolly mammoth. Somewhat contrary to conventional paleontological models, which posit that the two species were highly divergent, the M. columbi mitogenome we obtained falls securely within a subclade of endemic North American M. primigenius. Conclusions Though limited, our data suggest that the two species interbred at some point in their evolutionary histories. One potential explanation is that woolly mammoth haplotypes entered Columbian mammoth populations via introgression at subglacial ecotones, a scenario with compelling parallels in extant elephants and consistent with certain regional paleontological observations. This highlights the need for multi-genomic data to sufficiently characterize mammoth evolutionary history. Our results demonstrate that the use of next-generation sequencing technologies holds promise in obtaining such data, even from non-cave, non-permafrost Pleistocene depositional contexts. PMID:21627792

  7. Sequencing of Pax6 Loci from the Elephant Shark Reveals a Family of Pax6 Genes in Vertebrate Genomes, Forged by Ancient Duplications and Divergences

    PubMed Central

    Gautier, Philippe; Loosli, Felix; Tay, Boon-Hui; Tay, Alice; Murdoch, Emma; Coutinho, Pedro; van Heyningen, Veronica; Brenner, Sydney; Venkatesh, Byrappa; Kleinjan, Dirk A.

    2013-01-01

    Pax6 is a developmental control gene essential for eye development throughout the animal kingdom. In addition, Pax6 plays key roles in other parts of the CNS, olfactory system, and pancreas. In mammals a single Pax6 gene encoding multiple isoforms delivers these pleiotropic functions. Here we provide evidence that the genomes of many other vertebrate species contain multiple Pax6 loci. We sequenced Pax6-containing BACs from the cartilaginous elephant shark (Callorhinchus milii) and found two distinct Pax6 loci. Pax6.1 is highly similar to mammalian Pax6, while Pax6.2 encodes a paired-less Pax6. Using synteny relationships, we identify homologs of this novel paired-less Pax6.2 gene in lizard and in frog, as well as in zebrafish and in other teleosts. In zebrafish two full-length Pax6 duplicates were known previously, originating from the fish-specific genome duplication (FSGD) and expressed in divergent patterns due to paralog-specific loss of cis-elements. We show that teleosts other than zebrafish also maintain duplicate full-length Pax6 loci, but differences in gene and regulatory domain structure suggest that these Pax6 paralogs originate from a more ancient duplication event and are hence renamed as Pax6.3. Sequence comparisons between mammalian and elephant shark Pax6.1 loci highlight the presence of short- and long-range conserved noncoding elements (CNEs). Functional analysis demonstrates the ancient role of long-range enhancers for Pax6 transcription. We show that the paired-less Pax6.2 ortholog in zebrafish is expressed specifically in the developing retina. Transgenic analysis of elephant shark and zebrafish Pax6.2 CNEs with homology to the mouse NRE/Pα internal promoter revealed highly specific retinal expression. Finally, morpholino depletion of zebrafish Pax6.2 resulted in a “small eye” phenotype, supporting a role in retinal development. In summary, our study reveals that the pleiotropic functions of Pax6 in vertebrates are served by a divergent family of Pax6 genes, forged by ancient duplication events and by independent, lineage-specific gene losses. PMID:23359656

  8. Phylogeography of the South China Field Mouse (Apodemus draco) on the Southeastern Tibetan Plateau Reveals High Genetic Diversity and Glacial Refugia

    PubMed Central

    Liu, Yang; Liao, Lihuan; Zhang, Xiuyue; Yue, Bisong

    2012-01-01

    The southeastern margin of the Tibetan Plateau (SEMTP) is a particularly interesting region due to its topographic complexity and unique geologic history, but phylogeographic studies that focus on this region are rare. In this study, we investigated the phylogeography of the South China field mouse, Apodemus draco, in order to assess the role of geologic and climatic events on the Tibetan Plateau in shaping its genetic structure. We sequenced mitochondrial cytochrome b (cyt b) sequences in 103 individuals from 47 sampling sites. In addition, 23 cyt b sequences were collected from GenBank for analyses. Phylogenetic, demographic and landscape genetic methods were conducted. Seventy-six cyt b haplotypes were found and the genetic diversity was extremely high (π = 0.0368; h = 0.989). Five major evolutionary clades, based on geographic locations, were identified. Demographic analyses implied subclade 1A and subclade 1B experienced population expansions at about 0.052-0.013 Mya and 0.014-0.004 Mya, respectively. The divergence time analysis showed that the split between clade 1 and clade 2 occurred 0.26 Mya, which fell into the extensive glacial period (EGP, 0.5-0.17 Mya). The divergence times of other main clades (2.20-0.55 Mya) were congruent with the periods of the Qingzang Movement (3.6-1.7 Mya) and the Kun-Huang Movement (1.2-0.6 Mya), which were known as the most intense uplift events in the Tibetan Plateau. Our study supported the hypothesis that the SEMTP was a large late Pleistocene refugium, and further inferred that the Gongga Mountain Region and Hongya County were glacial refugia for A. draco in clade 1. We hypothesize that the evolutionary history of A. draco in the SEMTP primarily occurred in two stages. First, an initial divergence would have been shaped by uplift events of the Tibetan Plateau. Then, major glaciations in the Pleistocene added complexity to its demographic history and genetic structure. PMID:22666478

  9. Detection of a divergent variant of grapevine virus F by next-generation sequencing.

    PubMed

    Molenaar, Nicholas; Burger, Johan T; Maree, Hans J

    2015-08-01

    The complete genome sequence of a South African isolate of grapevine virus F (GVF) is presented. It was first detected by metagenomic next-generation sequencing of field samples and validated through direct Sanger sequencing. The genome sequence of GVF isolate V5 consists of 7539 nucleotides and contains a poly(A) tail. It has a typical vitivirus genome arrangement that comprises five open reading frames (ORFs), which share only 88.96 % nucleotide sequence identity with the existing complete GVF genome sequence (JX105428).

  10. Population genomics provide insights into the evolution and adaptation of the eastern honey bee (Apis cerana).

    PubMed

    Chen, Chao; Wang, Huihua; Liu, Zhiguang; Chen, Xiao; Tang, Jiao; Meng, Fanming; Shi, Wei

    2018-06-20

    The mechanisms by which organisms adapt to variable environments are a fundamental question in evolutionary biology and are important to protect important species in response to a changing climate. An interesting candidate to study this question is the honey bee Apis cerana, a keystone pollinator with a wide distribution throughout a large variety of climates, that exhibits rapid dispersal. Here, we re-sequenced the genome of 180 A. cerana individuals from eighteen populations throughout China. Using a population genomics approach, we observed considerable genetic variation in A. cerana. Patterns of genetic differentiation indicate high divergence at the subspecies level, and physical barriers rather than distance are the driving force for population divergence. Estimations of divergence time suggested that the main branches diverged between 300 and 500 ka. Analyses of the population history revealed a substantial influence of the Earth's climate on the effective population size of A. cerana, as increased population sizes were observed during warmer periods. Further analyses identified candidate genes under natural selection that are potentially related to honey bee cognition, temperature adaptation, and olfactory. Based on our results, A. cerana may have great potential in response to climate change. Our study provides fundamental knowledge of the evolution and adaptation of A. cerana.

  11. [A study on identification of edible bird's nests by DNA barcodes].

    PubMed

    Chen, Yue-Juan; Liu, Wen-Jian; Chen, Dan-Na; Chieng, Sing-Hock; Jiang, Lin

    2017-12-01

    To provide theoretical basis for the traceability and quality evaluation of edible bird's nests (EBNs), the Cytb sequence was applied to identify the origin of EBNs. A total of 39 experiment samples were collected from Malaysia, Indonesia, Vietnam and Thailand. Genomic DNA was extracted for the PCR reaction. The amplified products were sequenced. 36 sequences were downloaded from Gen Bank including edible nest swiftlet, black nest swiftlet, mascarene swiftlet, pacific swiftlet and germain's swiftlet. MEGA 7.0 was used to analyze the distinction of sequences by the method of calculating the distances in intraspecific and interspecific divergences and constructing NJ and UPMGA phylogenetic tree based on Kimera-2-parameter model. The results showed that 39 samples were from three kinds of EBNs. Interspecific divergences were significantly greater than the intraspecific one. Samples could be successfully distinguished by NJ and UPMGA phylogenetic tree. In conclusion, Cytb sequence could be used to distinguish the origin of EBNs and it is efficient for tracing the origin species of EBNs. Copyright© by the Chinese Pharmaceutical Association.

  12. Analysis of Complete Nucleotide Sequences of 12 Gossypium Chloroplast Genomes: Origin and Evolution of Allotetraploids

    PubMed Central

    Xu, Qin; Xiong, Guanjun; Li, Pengbo; He, Fei; Huang, Yi; Wang, Kunbo; Li, Zhaohu; Hua, Jinping

    2012-01-01

    Background Cotton (Gossypium spp.) is a model system for the analysis of polyploidization. Although ascertaining the donor species of allotetraploid cotton has been intensively studied, sequence comparison of Gossypium chloroplast genomes is still of interest to understand the mechanisms underlining the evolution of Gossypium allotetraploids, while it is generally accepted that the parents were A- and D-genome containing species. Here we performed a comparative analysis of 13 Gossypium chloroplast genomes, twelve of which are presented here for the first time. Methodology/Principal Findings The size of 12 chloroplast genomes under study varied from 159,959 bp to 160,433 bp. The chromosomes were highly similar having >98% sequence identity. They encoded the same set of 112 unique genes which occurred in a uniform order with only slightly different boundary junctions. Divergence due to indels as well as substitutions was examined separately for genome, coding and noncoding sequences. The genome divergence was estimated as 0.374% to 0.583% between allotetraploid species and A-genome, and 0.159% to 0.454% within allotetraploids. Forty protein-coding genes were completely identical at the protein level, and 20 intergenic sequences were completely conserved. The 9 allotetraploids shared 5 insertions and 9 deletions in whole genome, and 7-bp substitutions in protein-coding genes. The phylogenetic tree confirmed a close relationship between allotetraploids and the ancestor of A-genome, and the allotetraploids were divided into four separate groups. Progenitor allotetraploid cotton originated 0.43–0.68 million years ago (MYA). Conclusion Despite high degree of conservation between the Gossypium chloroplast genomes, sequence variations among species could still be detected. Gossypium chloroplast genomes preferred for 5-bp indels and 1–3-bp indels are mainly attributed to the SSR polymorphisms. This study supports that the common ancestor of diploid A-genome species in Gossypium is the maternal source of extant allotetraploid species and allotetraploids have a monophyletic origin. G. hirsutum AD1 lineages have experienced more sequence variations than other allotetraploids in intergenic regions. The available complete nucleotide sequences of 12 Gossypium chloroplast genomes should facilitate studies to uncover the molecular mechanisms of compartmental co-evolution and speciation of Gossypium allotetraploids. PMID:22876273

  13. Genetic diversity of Taenia asiatica from Thailand and other geographical locations as revealed by cytochrome c oxidase subunit 1 sequences.

    PubMed

    Anantaphruti, Malinee Thairungroj; Thaenkham, Urusa; Watthanakulpanich, Dorn; Phuphisut, Orawan; Maipanich, Wanna; Yoonuan, Tippayarat; Nuamtanong, Supaporn; Pubampen, Somjit; Sanguankiat, Surapol

    2013-02-01

    Twelve 924 bp cytochrome c oxidase subunit 1 (cox1) mitochondrial DNA sequences from Taenia asiatica isolates from Thailand were aligned and compared with multiple sequence isolates from Thailand and 6 other countries from the GenBank database. The genetic divergence of T. asiatica was also compared with Taenia saginata database sequences from 6 different countries in Asia, including Thailand, and 3 countries from other continents. The results showed that there were minor genetic variations within T. asiatica species, while high intraspecies variation was found in T. saginata. There were only 2 haplotypes and 1 polymorphic site found in T. asiatica, but 8 haplotypes and 9 polymorphic sites in T. saginata. Haplotype diversity was very low, 0.067, in T. asiatica and high, 0.700, in T. saginata. The very low genetic diversity suggested that T. asiatica may be at a risk due to the loss of potential adaptive alleles, resulting in reduced viability and decreased responses to environmental changes, which may endanger the species.

  14. Genetic Diversity of Taenia asiatica from Thailand and Other Geographical Locations as Revealed by Cytochrome c Oxidase Subunit 1 Sequences

    PubMed Central

    Thaenkham, Urusa; Watthanakulpanich, Dorn; Phuphisut, Orawan; Maipanich, Wanna; Yoonuan, Tippayarat; Nuamtanong, Supaporn; Pubampen, Somjit; Sanguankiat, Surapol

    2013-01-01

    Twelve 924 bp cytochrome c oxidase subunit 1 (cox1) mitochondrial DNA sequences from Taenia asiatica isolates from Thailand were aligned and compared with multiple sequence isolates from Thailand and 6 other countries from the GenBank database. The genetic divergence of T. asiatica was also compared with Taenia saginata database sequences from 6 different countries in Asia, including Thailand, and 3 countries from other continents. The results showed that there were minor genetic variations within T. asiatica species, while high intraspecies variation was found in T. saginata. There were only 2 haplotypes and 1 polymorphic site found in T. asiatica, but 8 haplotypes and 9 polymorphic sites in T. saginata. Haplotype diversity was very low, 0.067, in T. asiatica and high, 0.700, in T. saginata. The very low genetic diversity suggested that T. asiatica may be at a risk due to the loss of potential adaptive alleles, resulting in reduced viability and decreased responses to environmental changes, which may endanger the species. PMID:23467439

  15. Evolutionary Analysis of Heterochromatin Protein Compatibility by Interspecies Complementation in Saccharomyces

    PubMed Central

    Zill, Oliver A.; Scannell, Devin R.; Kuei, Jeffrey; Sadhu, Meru; Rine, Jasper

    2012-01-01

    The genetic bases for species-specific traits are widely sought, but reliable experimental methods with which to identify functionally divergent genes are lacking. In the Saccharomyces genus, interspecies complementation tests can be used to evaluate functional conservation and divergence of biological pathways or networks. Silent information regulator (SIR) proteins in S. bayanus provide an ideal test case for this approach because they show remarkable divergence in sequence and paralog number from those found in the closely related S. cerevisiae. We identified genes required for silencing in S. bayanus using a genetic screen for silencing-defective mutants. Complementation tests in interspecies hybrids identified an evolutionarily conserved Sir-protein-based silencing machinery, as defined by two interspecies complementation groups (SIR2 and SIR3). However, recessive mutations in S. bayanus SIR4 isolated from this screen could not be complemented by S. cerevisiae SIR4, revealing species-specific functional divergence in the Sir4 protein despite conservation of the overall function of the Sir2/3/4 complex. A cladistic complementation series localized the occurrence of functional changes in SIR4 to the S. cerevisiae and S. paradoxus branches of the Saccharomyces phylogeny. Most of this functional divergence mapped to sequence changes in the Sir4 PAD. Finally, a hemizygosity modifier screen in the interspecies hybrids identified additional genes involved in S. bayanus silencing. Thus, interspecies complementation tests can be used to identify (1) mutations in genetically underexplored organisms, (2) loci that have functionally diverged between species, and (3) evolutionary events of functional consequence within a genus. PMID:22923378

  16. The impact of the rate prior on Bayesian estimation of divergence times with multiple Loci.

    PubMed

    Dos Reis, Mario; Zhu, Tianqi; Yang, Ziheng

    2014-07-01

    Bayesian methods provide a powerful way to estimate species divergence times by combining information from molecular sequences with information from the fossil record. With the explosive increase of genomic data, divergence time estimation increasingly uses data of multiple loci (genes or site partitions). Widely used computer programs to estimate divergence times use independent and identically distributed (i.i.d.) priors on the substitution rates for different loci. The i.i.d. prior is problematic. As the number of loci (L) increases, the prior variance of the average rate across all loci goes to zero at the rate 1/L. As a consequence, the rate prior dominates posterior time estimates when many loci are analyzed, and if the rate prior is misspecified, the estimated divergence times will converge to wrong values with very narrow credibility intervals. Here we develop a new prior on the locus rates based on the Dirichlet distribution that corrects the problematic behavior of the i.i.d. prior. We use computer simulation and real data analysis to highlight the differences between the old and new priors. For a dataset for six primate species, we show that with the old i.i.d. prior, if the prior rate is too high (or too low), the estimated divergence times are too young (or too old), outside the bounds imposed by the fossil calibrations. In contrast, with the new Dirichlet prior, posterior time estimates are insensitive to the rate prior and are compatible with the fossil calibrations. We re-analyzed a phylogenomic data set of 36 mammal species and show that using many fossil calibrations can alleviate the adverse impact of a misspecified rate prior to some extent. We recommend the use of the new Dirichlet prior in Bayesian divergence time estimation. [Bayesian inference, divergence time, relaxed clock, rate prior, partition analysis.]. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  17. Comparative phylogeography reveals deep lineages and regional evolutionary hotspots in the Mojave and Sonoran Deserts

    USGS Publications Warehouse

    Wood, Dustin A.; Vandergast, Amy G.; Barr, Kelly R.; Inman, Richard D.; Esque, Todd C.; Nussear, Kenneth E.; Fisher, Robert N.

    2013-01-01

    Aim: We explored lineage diversification within desert-dwelling fauna. Our goals were (1) to determine whether phylogenetic lineages and population expansions were consistent with younger Pleistocene climate fluctuation hypotheses or much older events predicted by pre-Pleistocene vicariance hypotheses, (2) to assess concordance in spatial patterns of genetic divergence and diversity among species and (3) to identify regional evolutionary hotspots of divergence and diversity and assess their conservation status. Location: Mojave, Colorado, and Sonoran Deserts, USA. Methods: We analysed previously published gene sequence data for twelve species. We used Bayesian gene tree methods to estimate lineages and divergence times. Within each lineage, we tested for population expansion and age of expansion using coalescent approaches. We mapped interpopulation genetic divergence and intra-population genetic diversity in a GIS to identify hotspots of highest genetic divergence and diversity and to assess whether protected lands overlapped with evolutionary hotspots. Results: In seven of the 12 species, lineage divergence substantially predated the Pleistocene. Historical population expansion was found in eight species, but expansion events postdated the Last Glacial Maximum (LGM) in only four. For all species assessed, six hotspots of high genetic divergence and diversity were concentrated in the Colorado Desert, along the Colorado River and in the Mojave/Sonoran ecotone. At least some proportion of the land within each recovered hotspot was categorized as protected, yet four of the six also overlapped with major areas of human development. Main conclusions: Most of the species studied here diversified into distinct Mojave and Sonoran lineages prior to the LGM – supporting older diversification hypotheses. Several evolutionary hotspots were recovered but are not strategically paired with areas of protected land. Long-term preservation of species-level biodiversity would entail selecting areas for protection in Mojave and Sonoran Deserts to retain divergent genetic diversity and ensure connectedness across environmental gradients.

  18. Transcriptional analysis of abdominal fat in chickens divergently selected on bodyweight at two ages reveals novel mechanisms controlling adiposity: validating visceral adipose tissue as a dynamic endocrine and metabolic organ.

    PubMed

    Resnyk, C W; Carré, W; Wang, X; Porter, T E; Simon, J; Le Bihan-Duval, E; Duclos, M J; Aggrey, S E; Cogburn, L A

    2017-08-16

    Decades of intensive genetic selection in the domestic chicken (Gallus gallus domesticus) have enabled the remarkable rapid growth of today's broiler (meat-type) chickens. However, this enhanced growth rate was accompanied by several unfavorable traits (i.e., increased visceral fatness, leg weakness, and disorders of metabolism and reproduction). The present descriptive analysis of the abdominal fat transcriptome aimed to identify functional genes and biological pathways that likely contribute to an extreme difference in visceral fatness of divergently selected broiler chickens. We used the Del-Mar 14 K Chicken Integrated Systems microarray to take time-course snapshots of global gene transcription in abdominal fat of juvenile [1-11 weeks of age (wk)] chickens divergently selected on bodyweight at two ages (8 and 36 wk). Further, a RNA sequencing analysis was completed on the same abdominal fat samples taken from high-growth (HG) and low-growth (LG) cockerels at 7 wk, the age with the greatest divergence in body weight (3.2-fold) and visceral fatness (19.6-fold). Time-course microarray analysis revealed 312 differentially expressed genes (FDR ≤ 0.05) as the main effect of genotype (HG versus LG), 718 genes in the interaction of age and genotype, and 2918 genes as the main effect of age. The RNA sequencing analysis identified 2410 differentially expressed genes in abdominal fat of HG versus LG chickens at 7 wk. The HG chickens are fatter and over-express numerous genes that support higher rates of visceral adipogenesis and lipogenesis. In abdominal fat of LG chickens, we found higher expression of many genes involved in hemostasis, energy catabolism and endocrine signaling, which likely contribute to their leaner phenotype and slower growth. Many transcription factors and their direct target genes identified in HG and LG chickens could be involved in their divergence in adiposity and growth rate. The present analyses of the visceral fat transcriptome in chickens divergently selected for a large difference in growth rate and abdominal fatness clearly demonstrate that abdominal fat is a very dynamic metabolic and endocrine organ in the chicken. The HG chickens overexpress many transcription factors and their direct target genes, which should enhance in situ lipogenesis and ultimately adiposity. Our observation of enhanced expression of hemostasis and endocrine-signaling genes in diminished abdominal fat of LG cockerels provides insight into genetic mechanisms involved in divergence of abdominal fatness and somatic growth in avian and perhaps mammalian species, including humans.

  19. A Delicate Balance Between Repair and Replication Factors Regulates Recombination Between Divergent DNA Sequences in Saccharomyces cerevisiae

    PubMed Central

    Chakraborty, Ujani; George, Carolyn M.; Lyndaker, Amy M.; Alani, Eric

    2016-01-01

    Single-strand annealing (SSA) is an important homologous recombination mechanism that repairs DNA double strand breaks (DSBs) occurring between closely spaced repeat sequences. During SSA, the DSB is acted upon by exonucleases to reveal complementary sequences that anneal and are then repaired through tail clipping, DNA synthesis, and ligation steps. In baker’s yeast, the Msh DNA mismatch recognition complex and the Sgs1 helicase act to suppress SSA between divergent sequences by binding to mismatches present in heteroduplex DNA intermediates and triggering a DNA unwinding mechanism known as heteroduplex rejection. Using baker’s yeast as a model, we have identified new factors and regulatory steps in heteroduplex rejection during SSA. First we showed that Top3-Rmi1, a topoisomerase complex that interacts with Sgs1, is required for heteroduplex rejection. Second, we found that the replication processivity clamp proliferating cell nuclear antigen (PCNA) is dispensable for heteroduplex rejection, but is important for repairing mismatches formed during SSA. Third, we showed that modest overexpression of Msh6 results in a significant increase in heteroduplex rejection; this increase is due to a compromise in Msh2-Msh3 function required for the clipping of 3′ tails. Thus 3′ tail clipping during SSA is a critical regulatory step in the repair vs. rejection decision; rejection is favored before the 3′ tails are clipped. Unexpectedly, Msh6 overexpression, through interactions with PCNA, disrupted heteroduplex rejection between divergent sequences in another recombination substrate. These observations illustrate the delicate balance that exists between repair and replication factors to optimize genome stability. PMID:26680658

  20. Assembly of the Lactuca sativa, L. cv. Tizian draft genome sequence reveals differences within major resistance complex 1 as compared to the cv. Salinas reference genome.

    PubMed

    Verwaaijen, Bart; Wibberg, Daniel; Nelkner, Johanna; Gordin, Miriam; Rupp, Oliver; Winkler, Anika; Bremges, Andreas; Blom, Jochen; Grosch, Rita; Pühler, Alfred; Schlüter, Andreas

    2018-02-10

    Lettuce (Lactuca sativa, L.) is an important annual plant of the family Asteraceae (Compositae). The commercial lettuce cultivar Tizian has been used in various scientific studies investigating the interaction of the plant with phytopathogens or biological control agents. Here, we present the de novo draft genome sequencing and gene prediction for this specific cultivar derived from transcriptome sequence data. The assembled scaffolds amount to a size of 2.22 Gb. Based on RNAseq data, 31,112 transcript isoforms were identified. Functional predictions for these transcripts were determined within the GenDBE annotation platform. Comparison with the cv. Salinas reference genome revealed a high degree of sequence similarity on genome and transcriptome levels, with an average amino acid identity of 99%. Furthermore, it was observed that two large regions are either missing or are highly divergent within the cv. Tizian genome compared to cv. Salinas. One of these regions covers the major resistance complex 1 region of cv. Salinas. The cv. Tizian draft genome sequence provides a valuable resource for future functional and transcriptome analyses focused on this lettuce cultivar. Copyright © 2017 Elsevier B.V. All rights reserved.

Top