Science.gov

Sample records for high shear blood

  1. Red blood cell dynamics under high shear rates: in vitro experimental investigations

    NASA Astrophysics Data System (ADS)

    Lanotte, Luca; Claudet, Cyrille; Fromental, Jean-Marc; Abkarian, Manouk

    2014-11-01

    The full understanding of red blood cell (RBC) dynamics is an intriguing challenge that involves transversal branches of science. Despite the potential impact that it could have on medical research and industrial applications, a systematic study of RBCs response under significant shear rates (200 < γ˙ < 3000 s-1) is still lacking in scientific literature. In this work, in vitro experiments of microfluidics and rheometric measurements are combined to investigate mechanical properties of highly sheared RBCs. By high-speed microscopy, we investigated RBCs flow through rectangular channels in unconfined conditions. In parallel, RBCs suspensions of different hematocrits have been processed by a cone-plate rheometer and subsequently observed by optical microscopy to ensure reliability to the experimental results. The outcomes of both microfluidics and rheological approaches clearly show the presence of strongly deformed shapes, in addition to the expected elongated ellipsoids. Plausible explanations for formation and stability of these striking highly deformed shapes are here proposed.

  2. Chronic high blood flow potentiates shear stress-induced release of NO in arteries of aged rats

    PubMed Central

    Yan, Changdong; Huang, An; Kaley, Gabor; Sun, Dong

    2011-01-01

    Aging impairs shear-stress-dependent dilation of arteries via increased superoxide production, decreased SOD activity, and decreased activation of endothelial nitric oxide (NO) synthase (eNOS). In the present study, we investigated whether chronic increases in shear stress, elicited by increases in blood flow, would improve vascular endothelial function of aged rats. To this end, second-order mesenteric arteries of young (6 mo) and aged (24 mo) male Fischer-344 rats were selectively ligated for 3 wk to elevate blood flow in a first-order artery [high blood flow (HF)]. An in vitro study was then conducted on first-order arteries with HF and normal blood flow (NF) to assess shear stress (1, 10, and 20 dyn/cm2)-induced release of NO into the perfusate. In HF arteries of both age groups, shear stress-induced NO production increased significantly. In 24-mo-old rats, the reduced shear stress-induced NO production in NF arteries was normalized by HF to a level similar to that in NF arteries of 6-mo-old rats. The increased NO production in HF arteries of 24-mo-old rats was associated with increased shear stress-induced dilation, expression of eNOS protein, and shear stress-induced eNOS phosphorylation. Wortmannin, a phosphatidylinositol 3-kinase inhibitor, reduced shear stress-induced eNOS phosphorylation and vasodilation. Superoxide production decreased significantly in HF compared with NF arteries in 24-mo-old rats. The decreased superoxide production was associated with significant increases in CuZn-SOD and extracellular SOD protein expressions and total SOD activity. These results suggest that stimulation with chronic HF restores shear-stress-induced activation of eNOS and antioxidant ability in aged arteries. PMID:17873019

  3. Role of red blood cells in the anemia-associated bleeding under high shear conditions.

    PubMed

    Yaoi, H; Shida, Y; Ogiwara, K; Hosokawa, K; Shima, M; Nogami, K

    2017-09-01

    Red blood cells (RBCs) contribute to hemostasis under blood-flow, and anemia might contribute to a hemorrhagic diathesis. The majority of current laboratory techniques to assess hemostasis do not consider the effects of RBCs. An assay to determine the role of RBCs in hemostasis could be beneficial for clinical management. To investigate the influence of RBCs in hemostasis. Hemostasis was investigated using a novel microchip flow-chamber system (T-TAS(®) ) in an anemic patient with von Willebrand disease. Subsequently, the effects of RBCs in total thrombus analysis system (T-TAS) were examined using reconstituted whole blood at various hematocrit levels. In vivo: When the patient was anemic and demonstrated persisted hemorrhagic symptoms despite the maintained adequate von Willebrand factor ristocetin cofactor activity levels, thrombus formation determined by T-TAS was delayed. However, transfusions of RBCs resolved bleeding symptom and, accordingly, the thrombus formation in T-TAS improved. In vitro: Thrombus formation determined by T-TAS at 1000 s(-1) was dose-dependent on hematocrit (the time to reach 10 kPa (T10 ): 10.0 ± 0, 9.5 ± 1.4, 6.7 ± 2.4, 2.8 ± 1.6 min at hematocrits of 0%, 12.5%, 25% and 50%, respectively). Markedly defective thrombus formation (T10 >10 min) was confirmed at a hematocrit <25% at 2000 s(-1) . Red blood cells play an essential role in hemostasis under high shear, and RBC transfusions could be effective for refractory bleeding in patients with anemia. T-TAS measurements appear to reflect the hemostatic consequences of diminished red cell numbers under blood-flow, and could provide a valuable means for monitoring patients. © 2017 John Wiley & Sons Ltd.

  4. A new look on blood shear thinning

    NASA Astrophysics Data System (ADS)

    Abkarian, Manouk; Lanotte, Luca; Fromental, Jean-Marc; Mendez, Simon; Fedosov, Dmitry; Gompper, Gerhard; Mauer, Johannes; Claveria, Viviana

    2015-11-01

    Blood is a shear-thinning fluid. At shear rates γ˙ < 1 s-1 , its drop of viscosity has been related primarily to the breaking-up of networks of ``rouleaux'' formed by stacked red blood cells (RBCs). For higher γ˙ in the range 10 - 1000 s-1 , where RBCs flow as single elements, studies demonstrated that RBCs suspended in a viscous fluid mimicking the viscosity of whole blood, deformed into ellipsoids aligned steadily in the direction of the flow, while their membrane rotated about their center of mass like a tank-tread. Such drop-like behavior seemed to explain shear-thinning. Here, using rheometers, microfluidics and simulations, we show that the dynamics of single RBCs in plasma-like fluids display a different sequence of deformation for increasing shear rates going from discocytes to successively, stomatocytes, folded stomatocytes, trilobes and tetralobes, but never ellipsoids. This result is also identical for physiological hematocrits. We correlate this shape diagram to the different regimes in blood rheology for high shear rates and propose a new-look on the interpretation of blood shear-thinning behavior.

  5. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation.

    PubMed

    Bhagat, Ali Asgar S; Hou, Han Wei; Li, Leon D; Lim, Chwee Teck; Han, Jongyoon

    2011-06-07

    Blood is a highly complex bio-fluid with cellular components making up >40% of the total volume, thus making its analysis challenging and time-consuming. In this work, we introduce a high-throughput size-based separation method for processing diluted blood using inertial microfluidics. The technique takes advantage of the preferential cell focusing in high aspect-ratio microchannels coupled with pinched flow dynamics for isolating low abundance cells from blood. As an application of the developed technique, we demonstrate the isolation of cancer cells (circulating tumor cells (CTCs)) spiked in blood by exploiting the difference in size between CTCs and hematologic cells. The microchannel dimensions and processing parameters were optimized to enable high throughput and high resolution separation, comparable to existing CTC isolation technologies. Results from experiments conducted with MCF-7 cells spiked into whole blood indicate >80% cell recovery with an impressive 3.25 × 10(5) fold enrichment over red blood cells (RBCs) and 1.2 × 10(4) fold enrichment over peripheral blood leukocytes (PBL). In spite of a 20× sample dilution, the fast operating flow rate allows the processing of ∼10(8) cells min(-1) through a single microfluidic device. The device design can be easily customized for isolating other rare cells from blood including peripheral blood leukocytes and fetal nucleated red blood cells by simply varying the 'pinching' width. The advantage of simple label-free separation, combined with the ability to retrieve viable cells post enrichment and minimal sample pre-processing presents numerous applications for use in clinical diagnosis and conducting fundamental studies.

  6. Dynamic modes of red blood cells in oscillatory shear flow.

    PubMed

    Noguchi, Hiroshi

    2010-06-01

    The dynamics of red blood cells (RBCs) in oscillatory shear flow was studied using differential equations of three variables: a shape parameter, the inclination angle θ, and phase angle ϕ of the membrane rotation. In steady shear flow, three types of dynamics occur depending on the shear rate and viscosity ratio. (i) tank-treading (TT): ϕ rotates while the shape and θ oscillate. (ii) tumbling (TB): θ rotates while the shape and ϕ oscillate. (iii) intermediate motion: both ϕ and θ rotate synchronously or intermittently. In oscillatory shear flow, RBCs show various dynamics based on these three motions. For a low shear frequency with zero mean shear rate, a limit-cycle oscillation occurs, based on the TT or TB rotation at a high or low shear amplitude, respectively. This TT-based oscillation well explains recent experiments. In the middle shear amplitude, RBCs show an intermittent or synchronized oscillation. As shear frequency increases, the vesicle oscillation becomes delayed with respect to the shear oscillation. At a high frequency, multiple limit-cycle oscillations coexist. The thermal fluctuations can induce transitions between two orbits at very low shear amplitudes. For a high mean shear rate with small shear oscillation, the shape and θ oscillate in the TT motion but only one attractor exists even at high shear frequencies. The measurement of these oscillatory modes is a promising tool for quantifying the viscoelasticity of RBCs, synthetic capsules, and lipid vesicles.

  7. Dynamic modes of red blood cells in oscillatory shear flow

    NASA Astrophysics Data System (ADS)

    Noguchi, Hiroshi

    2010-06-01

    The dynamics of red blood cells (RBCs) in oscillatory shear flow was studied using differential equations of three variables: a shape parameter, the inclination angle θ , and phase angle ϕ of the membrane rotation. In steady shear flow, three types of dynamics occur depending on the shear rate and viscosity ratio. (i) tank-treading (TT): ϕ rotates while the shape and θ oscillate. (ii) tumbling (TB): θ rotates while the shape and ϕ oscillate. (iii) intermediate motion: both ϕ and θ rotate synchronously or intermittently. In oscillatory shear flow, RBCs show various dynamics based on these three motions. For a low shear frequency with zero mean shear rate, a limit-cycle oscillation occurs, based on the TT or TB rotation at a high or low shear amplitude, respectively. This TT-based oscillation well explains recent experiments. In the middle shear amplitude, RBCs show an intermittent or synchronized oscillation. As shear frequency increases, the vesicle oscillation becomes delayed with respect to the shear oscillation. At a high frequency, multiple limit-cycle oscillations coexist. The thermal fluctuations can induce transitions between two orbits at very low shear amplitudes. For a high mean shear rate with small shear oscillation, the shape and θ oscillate in the TT motion but only one attractor exists even at high shear frequencies. The measurement of these oscillatory modes is a promising tool for quantifying the viscoelasticity of RBCs, synthetic capsules, and lipid vesicles.

  8. Yield shear stress and disaggregating shear stress of human blood

    NASA Astrophysics Data System (ADS)

    Jung, Jinmu; Lee, Byoung-Kwon; Shin, Sehyun

    2014-05-01

    This review presents two distinct rheological parameters of blood that have the potential to indicate blood circulation adequacy: yield shear stress (YSS) and disaggregating shear stress (DSS). YSS and DSS reflect the strength of red blood cell (RBC) aggregation in suspension under static and dynamic conditions, respectively. YSS, defined as the critical stress to disperse RBC aggregates under static conditions, was found to be dependent upon hematocrit, fibrinogen, and red cell deformability, but not temperature. DSS, defined as the minimum shear stress to disperse RBC aggregates under dynamic conditions, is dependent upon fibrinogen, red cell deformability, and temperature but not hematocrit. Owing to recent advances in measurement technology, these two parameters can be easily measured, and thus, their clinical significance in blood circulation can be verified.

  9. Thrombus Formation at High Shear Rates.

    PubMed

    Casa, Lauren D C; Ku, David N

    2017-06-21

    The final common pathway in myocardial infarction and ischemic stroke is occlusion of blood flow from a thrombus forming under high shear rates in arteries. A high-shear thrombus forms rapidly and is distinct from the slow formation of coagulation that occurs in stagnant blood. Thrombosis at high shear rates depends primarily on the long protein von Willebrand factor (vWF) and platelets, with hemodynamics playing an important role in each stage of thrombus formation, including vWF binding, platelet adhesion, platelet activation, and rapid thrombus growth. The prediction of high-shear thrombosis is a major area of biofluid mechanics in which point-of-care testing and computational modeling are promising future directions for clinically relevant research. Further research in this area will enable identification of patients at high risk for arterial thrombosis, improve prevention and treatment based on shear-dependent biological mechanisms, and improve blood-contacting device design to reduce thrombosis risk.

  10. Differential light scattering cuvettes for the measurement of thromboemboli in high shear blood flow systems

    SciTech Connect

    Reynolds, L.O.; Solen, K.A.; Mohammad, S.F.; Pantalos, G.M.; Kim, J. )

    1990-07-01

    Newly developed optical scattering cuvettes were constructed as a modification of our existing 1.0 mm and 3.0 mm internal diameter (ID) cuvettes to facilitate the measurement of platelet microemboli ranging from 20 microns to 1,000 microns diameter in whole blood in 0.9 mm ID flows ranging from 250 to 4,000 ml/min. A perturbation solution to the one-speed radiative transport equation was used in the design and calibration of these cuvettes. A series of tests were performed with these cuvettes in an extracorporeal left ventricular assist device bovine model, and in a recirculating closed-loop flow system containing anticoagulated whole baboon blood, to determine to what extent they affect platelet and erythrocyte function ex vivo and in vitro. Serial hemolysis tests, thromboxane radioimmunoassay measurements, platelet counts, and activated partial thromboplastin times were measured. All of these tests with cuvettes in the extracorporeal and in vitro circuits were statistically indistinguishable from baseline measurements, suggesting the usefulness of this system for the measurement of microemboli in blood-contacting materials of extracorporeal circuits and cardiac assist devices.

  11. Two-dimensional strain-hardening membrane model for large deformation behavior of multiple red blood cells in high shear conditions.

    PubMed

    Ye, Swe Soe; Ng, Yan Cheng; Tan, Justin; Leo, Hwa Liang; Kim, Sangho

    2014-05-13

    Computational modeling of Red Blood Cell (RBC) flow contributes to the fundamental understanding of microhemodynamics and microcirculation. In order to construct theoretical RBC models, experimental studies on single RBC mechanics have presented a material description for RBC membranes based on their membrane shear, bending and area moduli. These properties have been directly employed in 3D continuum models of RBCs but practical flow analysis with 3D models have been limited by their computationally expensive nature. As such, various researchers have employed 2D models to efficiently and qualitatively study microvessel flows. Currently, the representation of RBC dynamics using 2D models is a limited methodology that breaks down at high shear rates due to excessive and unrealistic stretching. We propose a localized scaling of the 2D elastic moduli such that it increases with RBC local membrane strain, thereby accounting for effects such as the Poisson effect and membrane local area incompressibility lost in the 2D simplification. Validation of our 2D Large Deformation (2D-LD) RBC model was achieved by comparing the predicted RBC deformation against the 3D model from literature for the case of a single RBC in simple shear flow under various shear rates (dimensionless shear rate G = 0.05, 0.1, 0.2, 0.5). The multi-cell flow of RBCs (38% Hematocrit) in a 20 μm width microchannel under varying shear rates (50, 150, 150 s-1) was then simulated with our proposed model and the popularly-employed 2D neo-Hookean model in order to evaluate the efficacy of our proposed 2D-LD model. The validation set indicated similar RBC deformation for both the 2D-LD and the 3D models across the studied shear rates, highlighting the robustness of our model. The multi-cell simulation indicated that the 2D neo-Hookean model predicts noodle-like RBC shapes at high shear rates (G = 0.5) whereas our 2D-LD model maintains sensible RBC deformations. The ability of the 2D-LD model to

  12. Two-dimensional strain-hardening membrane model for large deformation behavior of multiple red blood cells in high shear conditions

    PubMed Central

    2014-01-01

    Background Computational modeling of Red Blood Cell (RBC) flow contributes to the fundamental understanding of microhemodynamics and microcirculation. In order to construct theoretical RBC models, experimental studies on single RBC mechanics have presented a material description for RBC membranes based on their membrane shear, bending and area moduli. These properties have been directly employed in 3D continuum models of RBCs but practical flow analysis with 3D models have been limited by their computationally expensive nature. As such, various researchers have employed 2D models to efficiently and qualitatively study microvessel flows. Currently, the representation of RBC dynamics using 2D models is a limited methodology that breaks down at high shear rates due to excessive and unrealistic stretching. Methods We propose a localized scaling of the 2D elastic moduli such that it increases with RBC local membrane strain, thereby accounting for effects such as the Poisson effect and membrane local area incompressibility lost in the 2D simplification. Validation of our 2D Large Deformation (2D-LD) RBC model was achieved by comparing the predicted RBC deformation against the 3D model from literature for the case of a single RBC in simple shear flow under various shear rates (dimensionless shear rate G = 0.05, 0.1, 0.2, 0.5). The multi-cell flow of RBCs (38% Hematocrit) in a 20 μm width microchannel under varying shear rates (50, 150, 150 s-1) was then simulated with our proposed model and the popularly-employed 2D neo-Hookean model in order to evaluate the efficacy of our proposed 2D-LD model. Results The validation set indicated similar RBC deformation for both the 2D-LD and the 3D models across the studied shear rates, highlighting the robustness of our model. The multi-cell simulation indicated that the 2D neo-Hookean model predicts noodle-like RBC shapes at high shear rates (G = 0.5) whereas our 2D-LD model maintains sensible RBC deformations. Conclusion

  13. Quantitative characterization of endothelial cell morphologies depending on shear stress in different blood vessels of domestic pigs using a focused ion beam and high resolution scanning electron microscopy (FIB-SEM).

    PubMed

    Pham, Tam Thanh; Maenz, Stefan; Lüdecke, Claudia; Schmerbauch, Christoph; Settmacher, Utz; Jandt, Klaus D; Bossert, Jörg; Zanow, Jürgen

    2015-04-01

    Microstructured surfaces mimicking the endothelial cell (EC) morphology is a new approach to improve the blood compatibility of synthetic vascular grafts. The ECs are capable of changing their shapes depending on different shear conditions. However, the quantitative correlation between EC morphology and shear stress has not yet been investigated statistically. The aim of this study was to quantitatively investigate the morphology of ECs in dependence on the shear stress. Blood flow rates in different types of natural blood vessels (carotid, renal, hepatic and iliac arteries) originated from domestic pigs were first measured in vivo to calculate the shear stresses. The EC morphologies were quantitatively characterized ex vivo by imaging with high resolution scanning electron microscopy (SEM) and cross-sectioning of the cells using a state-of-the-art focused ion beam (FIB). The relationships between EC geometrical parameters and shear stress were statistically analyzed and found to be exponential. ECs under high shear stress conditions had a longer length and narrower width, i.e. a higher aspect ratio, while the cell height was smaller compared to low shear conditions. Based on these results, suitable and valid geometrical parameters of microstructures mimicking EC can be derived for various shear conditions in synthetic vascular grafts to optimize blood compatibility. Copyright © 2015. Published by Elsevier Ltd.

  14. Full dynamics of a red blood cell in shear flow.

    PubMed

    Dupire, Jules; Socol, Marius; Viallat, Annie

    2012-12-18

    At the cellular scale, blood fluidity and mass transport depend on the dynamics of red blood cells in blood flow, specifically on their deformation and orientation. These dynamics are governed by cellular rheological properties, such as internal viscosity and cytoskeleton elasticity. In diseases in which cell rheology is altered genetically or by parasitic invasion or by changes in the microenvironment, blood flow may be severely impaired. The nonlinear interplay between cell rheology and flow may generate complex dynamics, which remain largely unexplored experimentally. Under simple shear flow, only two motions, "tumbling" and "tank-treading," have been described experimentally and relate to cell mechanics. Here, we elucidate the full dynamics of red blood cells in shear flow by coupling two videomicroscopy approaches providing multidirectional pictures of cells, and we analyze the mechanical origin of the observed dynamics. We show that contrary to common belief, when red blood cells flip into the flow, their orientation is determined by the shear rate. We discuss the "rolling" motion, similar to a rolling wheel. This motion, which permits the cells to avoid energetically costly deformations, is a true signature of the cytoskeleton elasticity. We highlight a hysteresis cycle and two transient dynamics driven by the shear rate: an intermittent regime during the "tank-treading-to-flipping" transition and a Frisbee-like "spinning" regime during the "rolling-to-tank-treading" transition. Finally, we reveal that the biconcave red cell shape is highly stable under moderate shear stresses, and we interpret this result in terms of stress-free shape and elastic buckling.

  15. Role of high shear rate in thrombosis.

    PubMed

    Casa, Lauren D C; Deaton, David H; Ku, David N

    2015-04-01

    Acute arterial occlusions occur in high shear rate hemodynamic conditions. Arterial thrombi are platelet-rich when examined histologically compared with red blood cells in venous thrombi. Prior studies of platelet biology were not capable of accounting for the rapid kinetics and bond strengths necessary to produce occlusive thrombus under these conditions where the stasis condition of the Virchow triad is so noticeably absent. Recent experiments elucidate the unique pathway and kinetics of platelet aggregation that produce arterial occlusion. Large thrombi form from local release and conformational changes in von Willebrand factor under very high shear rates. The effect of high shear hemodynamics on thrombus growth has profound implications for the understanding of all acute thrombotic cardiovascular events as well as for vascular reconstructive techniques and vascular device design, testing, and clinical performance. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  16. Design optimization of blood shearing instrument by computational fluid dynamics.

    PubMed

    Wu, Jingchun; Antaki, James F; Snyder, Trevor A; Wagner, William R; Borovetz, Harvey S; Paden, Bradley E

    2005-06-01

    Rational design of blood-wetted devices requires a careful consideration of shear-induced trauma and activation of blood elements. Critical levels of shear exposure may be established in vitro through the use of devices specifically designed to prescribe both the magnitude and duration of shear exposure. However, it is exceptionally difficult to create a homogeneous shear-exposure history by conventional means. This study was undertaken to develop a Blood Shearing Instrument (BSI) with an optimized flow path which localized shear exposure within a rotating outer ring and a stationary conical spindle. By adjustment of the rotational speed and the gap dimension, the BSI is designed to generate shear stress magnitudes up to 1500 Pa for exposure time between 0.0015 and 0.20 s with a pressure drop of 100 mm Hg. Computational fluid dynamics (CFD) revealed that a flow path designed by first-order analysis and intuition exhibited unfavorable pressure gradient, vortices, and undesirable regions of reverse flow. An optimized design was evolved utilizing a parameterized geometric model and automatic mesh generation to eliminate vortices and reversal flow and to avoid unfavorable pressure gradients. Analysis of the flow and shear fields for the extreme limits of the shear gap demonstrated an improvement in homogeneity due to shape optimization and the limitations of an annular shear device for achieving completely uniform shear exposure.

  17. Shear jamming in highly strained granular system without shear banding

    NASA Astrophysics Data System (ADS)

    Zhao, Yiqiu; Barés, Jonathan; Zheng, Hu; Behringer, Robert

    2016-11-01

    Bi et al. have shown that, if sheared, a granular material can jam even if its packing fraction (ϕ) is lower than the critical isotropic jamming point ϕJ. They have introduced a new critical packing fraction value ϕS such that for ϕS< ϕ< ϕJ the system jams if sheared. Nevertheless, the value of ϕS as a function of the shear profile or the strain necessary to observe jamming remain poorly understood because of the experimental complexity to access high strain without shear band. We present a novel 2D periodic shear apparatus made of 21 independent, aligned and mirrored glass rings. Each ring can be moved independently which permits us to impose any desired shear profile. The circular geometry allows access to any strain value. The forces between grains are measured using reflective photoelasticity. By performing different shear profiles for different packing fractions we explored the details of jamming diagram including the location of the yield surface. This work is supported by NSF No.DMR1206351, NASA No.NNX15AD38G and W. M. Keck Foundation.

  18. Dynamic shear deformation in high purity Fe

    SciTech Connect

    Cerreta, Ellen K; Bingert, John F; Trujillo, Carl P; Lopez, Mike F; Gray, George T

    2009-01-01

    The forced shear test specimen, first developed by Meyer et al. [Meyer L. et al., Critical Adiabatic Shear Strength of Low Alloyed Steel Under Compressive Loading, Metallurgical Applications of Shock Wave and High Strain Rate Phenomena (Marcel Decker, 1986), 657; Hartmann K. et al., Metallurgical Effects on Impact Loaded Materials, Shock Waves and High Strain rate Phenomena in Metals (Plenum, 1981), 325-337.], has been utilized in a number of studies. While the geometry of this specimen does not allow for the microstructure to exactly define the location of shear band formation and the overall mechanical response of a specimen is highly sensitive to the geometry utilized, the forced shear specimen is useful for characterizing the influence of parameters such as strain rate, temperature, strain, and load on the microstructural evolution within a shear band. Additionally, many studies have utilized this geometry to advance the understanding of shear band development. In this study, by varying the geometry, specifically the ratio of the inner hole to the outer hat diameter, the dynamic shear localization response of high purity Fe was examined. Post mortem characterization was performed to quantify the width of the localizations and examine the microstructural and textural evolution of shear deformation in a bcc metal. Increased instability in mechanical response is strongly linked with development of enhanced intergranular misorientations, high angle boundaries, and classical shear textures characterized through orientation distribution functions.

  19. Red blood cell damage by shear stress for different blood types

    NASA Astrophysics Data System (ADS)

    Arwatz, Gilad; Bedkowski, Katherine; Smits, Alexander

    2011-11-01

    In surgical practice, blood damage caused by medical devices is often a limiting factor in the duration of an acute procedure or in chronic exposures such as hemodialysis. In order to establish guidelines for designing medical devices, a study was conducted to determine the relationship between shear stress and damage to red blood cells using a concentric Couette device. By measuring the hemolysis level for various shear stresses and exposure times, a non-dimensional relationship between shear stress and blood damage for different blood types was established. Funding provided by Princeton University's Project X.

  20. Structure of turbulence at high shear rate

    NASA Technical Reports Server (NTRS)

    Lee, Moon Joo; Kim, John; Moin, Parviz

    1990-01-01

    The structure of homogeneous turbulence subject to high shear rate has been investigated by using three-dimensional, time-dependent numerical simulations of the Navier-Stokes equations. This study indicates that high shear rate alone is sufficient for generation of the streaky structures, and that the presence of a solid boundary is not necessary. Evolution of the statistical correlations is examined to determine the effect of high shear rate on the development of anisotropy in turbulence. It is shown that the streamwise fluctuating motions are enhanced so profoundly that a highly anisotropic turbulence state with a 'one-component' velocity field and 'two-component' vorticity field develops asymptotically as total shear increases. Because of high-shear rate, rapid distortion theory predicts remarkably well the anisotropic behavior of the structural quantities.

  1. Shear induced diffusion in a red blood cell suspension

    NASA Astrophysics Data System (ADS)

    Podgorski, Thomas; Grandchamp, Xavier; Srivastav, Aparna; Coupier, Gwennou

    2012-11-01

    In the microcirculation, blood exhibits an inhomogeneous structure which results in the well know Fahraeus-Lindqvist effect : the apparent viscosity decreases when the diameter of the capillary decreases due to the formation of a marginal cell depletion layer (known as plasma skimming). This structure is a consequence of several phenomena, which include i) the migration of cells aways from walls due to lift forces and gradients of shear and ii) shear induced diffusion due to collisions and interactions among cells. We investigated these phenomena through experiments in simple shear and microchannel flows, with dilute suspensions of vesicles and blood cells. Pairwise interactions between suspended objects result in non-linear and flow-dependent diffusion, whose properties have been measured in different experiments for vesicles and blood cells. The injection of a sheet of concentrated blood cell suspension in a microchannel with a rectangular cross-section allows, through the measurement of its widening along the channel, to measure the diffusivity of blood cells, both in the local plane of shear and in the vorticity direction.

  2. Turbulence structure at high shear rate

    NASA Technical Reports Server (NTRS)

    Lee, Moon Joo; Kim, John; Moin, Parviz

    1987-01-01

    The structure of homogeneous turbulence in the presence of a high shear rate is studied using results obtained from three-dimensional time-dependent numerical simulations of the Navier-Stokes equations on a grid of 512 x 128 x 128 node points. It is shown that high shear rate enhances the streamwise fluctuating motion to such an extent that a highly anisotropic turbulence state with a one-dimensional velocity field and two-dimensional small-scale turbulence develops asymptotically as total shear increases. Instantaneous velocity fields show that high shear rate in homogeneous turbulent shear flow produces structures which are similar to the streaks present in the viscous sublayer of turbulent boundary layers.

  3. Tension of red blood cell membrane in simple shear flow.

    PubMed

    Omori, T; Ishikawa, T; Barthès-Biesel, D; Salsac, A-V; Imai, Y; Yamaguchi, T

    2012-11-01

    When a red blood cell (RBC) is subjected to an external flow, it is deformed by the hydrodynamic forces acting on its membrane. The resulting elastic tensions in the membrane play a key role in mechanotransduction and govern its rupture in the case of hemolysis. In this study, we analyze the motion and deformation of an RBC in a simple shear flow and the resulting elastic tensions on the membrane. The large deformation of the red blood cell is modelled by coupling a finite element method to solve the membrane mechanics and a boundary element method to solve the flows of the internal and external liquids. Depending on the capillary number Ca, ratio of the viscous to elastic forces, we observe three kinds of RBC motion: tumbling at low Ca, swinging at larger Ca, and breathing at the transitions. In the swinging regime, the region of the high principal tensions periodically oscillates, whereas that of the high isotropic tensions is almost unchanged. Due to the strain-hardening property of the membrane, the deformation is limited but the membrane tension increases monotonically with the capillary number. We have quantitatively compared our numerical results with former experimental results. It indicates that a membrane isotropic tension O(10{-6} N/m) is high enough for molecular release from RBCs and that the typical maximum membrane principal tension for haemolysis would be O(10{-4} N/m). These findings are useful to clarify not only the membrane rupture but also the mechanotransduction of RBCs.

  4. Mathematical Modeling of Intravascular Blood Coagulation under Wall Shear Stress

    PubMed Central

    Rukhlenko, Oleksii S.; Dudchenko, Olga A.; Zlobina, Ksenia E.; Guria, Georgy Th.

    2015-01-01

    Increased shear stress such as observed at local stenosis may cause drastic changes in the permeability of the vessel wall to procoagulants and thus initiate intravascular blood coagulation. In this paper we suggest a mathematical model to investigate how shear stress-induced permeability influences the thrombogenic potential of atherosclerotic plaques. Numerical analysis of the model reveals the existence of two hydrodynamic thresholds for activation of blood coagulation in the system and unveils typical scenarios of thrombus formation. The dependence of blood coagulation development on the intensity of blood flow, as well as on geometrical parameters of atherosclerotic plaque is described. Relevant parametric diagrams are drawn. The results suggest a previously unrecognized role of relatively small plaques (resulting in less than 50% of the lumen area reduction) in atherothrombosis and have important implications for the existing stenting guidelines. PMID:26222505

  5. Simulation of red blood cell aggregation in shear flow.

    PubMed

    Lim, B; Bascom, P A; Cobbold, R S

    1997-01-01

    A simulation model has been developed for red blood cell (RBC) aggregation in shear flow. It is based on a description of the collision rates of RBC, the probability of particles sticking together, and the breakage of aggregates by shear forces. The influence of shear rate, hematocrit, aggregate fractal dimension, and binding strength on aggregation kinetics were investigated and compared to other theoretical and experimental results. The model was used to simulate blood flow in a long large diameter tube under steady flow conditions at low Reynolds numbers. The time and spatial distribution of the state of aggregation are shown to be in qualitative agreement with previous B-mode ultrasound studies in which a central region of low echogenicity was noted. It is suggested that the model can provide a basis for interpreting prior measurements of ultrasound echogenicity and may help relate them to the local state of aggregation.

  6. Prediction of Anomalous Blood Viscosity in Confined Shear Flow

    NASA Astrophysics Data System (ADS)

    Thiébaud, Marine; Shen, Zaiyi; Harting, Jens; Misbah, Chaouqi

    2014-06-01

    Red blood cells play a major role in body metabolism by supplying oxygen from the microvasculature to different organs and tissues. Understanding blood flow properties in microcirculation is an essential step towards elucidating fundamental and practical issues. Numerical simulations of a blood model under a confined linear shear flow reveal that confinement markedly modifies the properties of blood flow. A nontrivial spatiotemporal organization of blood elements is shown to trigger hitherto unrevealed flow properties regarding the viscosity η, namely ample oscillations of its normalized value [η]=(η-η0)/(η0ϕ) as a function of hematocrit ϕ (η0=solvent viscosity). A scaling law for the viscosity as a function of hematocrit and confinement is proposed. This finding can contribute to the conception of new strategies to efficiently detect blood disorders, via in vitro diagnosis based on confined blood rheology. It also constitutes a contribution for a fundamental understanding of rheology of confined complex fluids.

  7. Shear wave elastography quantification of blood elasticity during clotting.

    PubMed

    Bernal, Miguel; Gennisson, Jean-Luc; Flaud, Patrice; Tanter, Mickael

    2012-12-01

    Deep venous thrombosis (DVT) affects millions of people worldwide. A fatal complication occurs when the thrombi detach and create a pulmonary embolism. The diagnosis and treatment of DVT depends on clot's age. The elasticity of thrombi is closely related to its age. Blood was collected from pigs and anticoagulated using ethylenediaminetetraacetic acid (EDTA). Coagulation was initiated using calcium ions. Supersonic shear wave imaging was used to generate shear waves using 100 μs tone bursts of 8 MHz. Tracking of the shear waves was done by ultrafast imaging. Postprocessing of the data was done using Matlab(®). Two-dimensional (2-D) maps of elasticity were obtained by calculating the speed of shear wave propagation. Elasticity varied with time from around 50 Pa at coagulation to 1600 Pa at 120 min after which the elasticity showed a natural decreased (17%) because of thrombolytic action of plasmin. Ejection of the serum from the clot showed a significant decrease in the elasticity of the clot next to the liquid pool (65% decrease), corresponding to the detachment of the clot from the beaker wall. The use of a thrombolytic agent (Urokinase) on the coagulated blood decreased the shear elasticity close to the point of injection, which varied with time and distance. Supersonic imaging proved to be useful mapping the 2-D clot's elasticity. It allowed the visualization of the heterogeneity of mechanical properties of thrombi and has potential use in predicting thrombi breakage as well as in monitoring thrombolytic therapy.

  8. Characterization at the individual cell level and in whole blood samples of shear stress preventing red blood cells aggregation.

    PubMed

    Lee, K; Kinnunen, M; Danilina, A V; Ustinov, V D; Shin, S; Meglinski, I; Priezzhev, A V

    2016-05-03

    The aggregation of red blood cells (RBC) is an intrinsic feature of blood that has a strong impact on its microcirculation. For a number of years it has been attracting a great attention in basic research and clinical studies. Here, we study a relationship between the RBC aggregation parameters measured at the individual cell level and in a whole blood sample. The home made optical tweezers were used to measure the aggregating and disaggregating forces for a pair of interacting RBCs, at the individual cell level, in order to evaluate the corresponding shear stresses. The RheoScan aggregometer was used for the measurements of critical shear stress (CSS) in whole blood samples. The correlation between CSS and the shear stress required to stop an RBC pair from aggregating was found. The shear stress required to disaggregate a pair of RBCs using the double channel optical tweezers appeared to be about 10 times higher than CSS. The correlation between shear stresses required to prevent RBCs from aggregation at the individual cell level and in whole blood samples was estimated and assessed quantitatively. The experimental approach developed has a high potential for advancing hemorheological studies.

  9. High Blood Pressure

    MedlinePlus

    ... version of this page please turn Javascript on. High Blood Pressure What Is High Blood Pressure? High blood pressure is a common disease in ... the heart, kidneys, brain, and eyes. Types of High Blood Pressure There are two main types of high blood ...

  10. Pressure and wall shear stress in blood hammer - Analytical theory.

    PubMed

    Mei, Chiang C; Jing, Haixiao

    2016-10-01

    We describe an analytical theory of blood hammer in a long and stiffened artery due to sudden blockage. Based on the model of a viscous fluid in laminar flow, we derive explicit expressions of oscillatory pressure and wall shear stress. To examine the effects on local plaque formation we also allow the blood vessel radius to be slightly nonuniform. Without resorting to discrete computation, the asymptotic method of multiple scales is utilized to deal with the sharp contrast of time scales. The effects of plaque and blocking time on blood pressure and wall shear stress are studied. The theory is validated by comparison with existing water hammer experiments. Copyright © 2016. Published by Elsevier Inc.

  11. High blood pressure medicines

    MedlinePlus

    Hypertension - medicines ... blood vessel diseases. You may need to take medicines to lower your blood pressure if lifestyle changes ... blood pressure to the target level. WHEN ARE MEDICINES FOR HIGH BLOOD PRESSURE USED Most of the ...

  12. High Blood Pressure

    MedlinePlus

    ... normal blood pressure 140/90 or higher is high blood pressure Between 120 and 139 for the top number, ... prehypertension. Prehypertension means you may end up with high blood pressure, unless you take steps to prevent it. High ...

  13. High Blood Pressure (Hypertension)

    MedlinePlus

    ... Print Page Text Size: A A A Listen High Blood Pressure (Hypertension) Nearly 1 in 3 American adults has ... weight. How Will I Know if I Have High Blood Pressure? High blood pressure is a silent problem — you ...

  14. Structural analysis of red blood cell aggregates under shear flow.

    PubMed

    Chesnutt, J K W; Marshall, J S

    2010-03-01

    A set of measures of red blood cell (RBC) aggregates are developed and applied to examine the aggregate structure under plane shear and channel flows. Some of these measures are based on averages over the set of red blood cells which are in contact with each other at a given time. Other measures are developed by first fitting an ellipse to the planar projection of the aggregate, and then examining the area and aspect ratio of the fit ellipse as well as the orientations of constituent RBCs with respect to the fit ellipse axes. The aggregate structural measures are illustrated using a new mesoscale computational model for blood cell transport, collision and adhesion. The sensitivity of this model to change in adhesive surface energy density and shear rate on the aggregate structure is examined. It is found that the mesoscale model predictions exhibit reasonable agreement with experimental and theoretical data for blood flow in plane shear and channel flows. The new structural measures are used to examine the differences between predictions of two- and three-dimensional computations of the aggregate formation, showing that two-dimensional computations retain some of the important aspects of three-dimensional computations.

  15. Shear-induced hemolysis: effects of blood chemistry (including aging in storage) and shearing surfaces.

    PubMed

    Offeman, R D; Williams, M C

    1976-01-01

    Rotating disks were used to hemolyze blood under low-stress laminar flow conditions. In the first sequence of tests, kinetic hemolysis curves (KHC) were obtained with polyethylene disks for three well-characterized bloods and repeated over a period of four weeks. Each blood had a KHC with different shape, which maintained its characteristics while aging. Correlations were sought between D6000 (percent of complete hemolysis, after 6000 sec of shear) and D0 (measured before shear) by two means of data analysis, in terms of blood chemistry. It was found that uric acid and very-low-density lipoprotein levels were most useful in predicting the characteristic D6000 vs. D0 relation for each blood, and that glucose levels correlated the rate of aging as measured by hemolysis. Other chemical factors are also displayed in terms of their influence on D0. The second series of tests consisted of comparing the KHC for four disk materials using a fourth blood, then repeating with a fifth blood. Hemolytic rankings of the materials were the same with these two blood, although the KHC shapes differed. The rankings were: polyvinyl chloride greater than Silastic approximately equal to polyethylene greater than polyether urethane, with PVC most hemolytic. In another sequence for examining materials effects, five different bloods were used to compare the hemolytic properties of Teflon, nylon, and polyethylene disks. Although the KHC for the three disks bore different relationships to each other with each different blood, extrapolation of data beyond 6000 sec suggests a ranking of Teflon greater than nylon greater than polyethylene.

  16. Duration of exposure to high fluid shear stress is critical in shear-induced platelet activation-aggregation.

    PubMed

    Zhang, Jian-ning; Bergeron, Angela L; Yu, Qinghua; Sun, Carol; McBride, Latresha; Bray, Paul F; Dong, Jing-fei

    2003-10-01

    Platelet functions are increasingly measured under flow conditions to account for blood hydrodynamic effects. Typically, these studies involve exposing platelets to high shear stress for periods significantly longer than would occur in vivo. In the current study, we demonstrate that the platelet response to high shear depends on the duration of shear exposure. In response to a 100 dyn/cm2 shear stress for periods less than 10-20 sec, platelets in PRP or washed platelets were aggregated, but minimally activated as demonstrated by P-selectin expression and binding of the activation-dependent alphaIIbbeta3 antibody PAC-1 to sheared platelets. Furthermore, platelet aggregation under such short pulses of high shear was subjected to rapid disaggregation. The disaggregated platelets could be re-aggregated by ADP in a pattern similar to unsheared platelets. In comparison, platelets that are exposed to high shear for longer than 20 sec are activated and aggregated irreversibly. In contrast, platelet activation and aggregation were significantly greater in whole blood with significantly less disaggregation. The enhancement is likely via increased collision frequency of platelet-platelet interaction and duration of platelet-platelet association due to high cell density. It may also be attributed to the ADP release from other cells such as red blood cells because increased platelet aggregation in whole blood was partially inhibited by ADP blockage. These studies demonstrate that platelets have a higher threshold for shear stress than previously believed. In a pathologically relevant timeframe, high shear alone is likely to be insufficient in inducing platelet activation and aggregation, but acts synergistically with other stimuli.

  17. High blood pressure

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000468.htm High blood pressure To use the sharing features on this page, ... body. Hypertension is the term used to describe high blood pressure. Blood pressure readings are given as two numbers. ...

  18. Hypertension (High Blood Pressure)

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Hypertension (High Blood Pressure) KidsHealth > For Teens > Hypertension (High Blood Pressure) A ... rest temperature diet emotions posture medicines Why Is High Blood Pressure Bad? High blood pressure means a person's heart ...

  19. Dynamics of model blood cells in shear flow

    NASA Astrophysics Data System (ADS)

    Podgorski, Thomas; Callens, Natacha; Minetti, Christophe; Coupier, Gwennou; Dubois, Frank; Misbah, Chaouqi

    The dynamics of a vesicle suspension in shear flow was investigated by digital holographic microscopy [1] in parabolic flights and in the MASER 11 sounding rocket. Vesicles are lipid membranes which mimic the mechanical behaviour of cells, such as red blood cells in flow. In a simple shear flow between parallel walls, a lift force of purely viscous origin pushes vesicles away from walls. Our parabolic flight experiments [2] reveal that the lift velocity in a dilute suspen-sion is well described by theoretical predictions by Olla. As vesicles gather near the center of the flow chamber due to lift forces from both walls, one expects hydrodynamic interactions of pairs of vesicles to result in shear induced diffusion in the suspension. The BIOMICS experi-ment in the MASER 11 sounding rocket revealed a complex spatial structure of a polydisperse vesicle suspension due to the interplay between lift forces from the walls and hydrodynamic interactions. These phenomena have a strong impact on the structure and rheology of blood in small vessels, and a precise knowledge of the dynamics of migration and diffusion of soft particles in flow can lead to alternative ways to separate and sort blood cells. 1. Dubois, F., Schockaert, C., Callens, N., Yourrassowsky, C., "Focus plane detection criteria in digital holography microscopy by amplitude analysis", Opt. Express, Vol. 14, pp 5895-5908, 2006 2. Callens, N., Minetti, C., Coupier, G., Mader, M.-A., Dubois, F., Misbah, C., Podgorski, T., "Hydrodynamics lift of vesicles under shear flow in microgravity", Europhys. Lett., Vol. 83, p. 24002, 2008

  20. Shear thinning effects on blood flow in straight and curved tubes

    NASA Astrophysics Data System (ADS)

    Cherry, Erica M.; Eaton, John K.

    2013-07-01

    Simulations were performed to determine the magnitude and types of errors one can expect when approximating blood in large arteries as a Newtonian fluid, particularly in the presence of secondary flows. This was accomplished by running steady simulations of blood flow in straight and curved tubes using both Newtonian and shear-thinning viscosity models. In the shear-thinning simulations, the viscosity was modeled as a shear rate-dependent function fit to experimental data. Simulations in straight tubes were modeled after physiologically relevant arterial flows, and flow parameters for the curved tube simulations were chosen to examine a variety of secondary flow strengths. The diameters ranged from 1 mm to 10 mm and the Reynolds numbers from 24 to 1500. Pressure and velocity data are reported for all simulations. In the straight tube simulations, the shear-thinning flows had flattened velocity profiles and higher pressure gradients compared to the Newtonian simulations. In the curved tube flows, the shear-thinning simulations tended to have blunted axial velocity profiles, decreased secondary flow strengths, and decreased axial vorticity compared to the Newtonian simulations. The cross-sectionally averaged pressure drops in the curved tubes were higher in the shear-thinning flows at low Reynolds number but lower at high Reynolds number. The maximum deviation in secondary flow magnitude averaged over the cross sectional area was 19% of the maximum secondary flow and the maximum deviation in axial vorticity was 25% of the maximum vorticity.

  1. High blood pressure - infants

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007329.htm High blood pressure - infants To use the sharing features on this page, please enable JavaScript. High blood pressure (hypertension) is an increase in the force of ...

  2. High Blood Pressure Prevention

    MedlinePlus

    ... version of this page please turn Javascript on. High Blood Pressure Prevention Steps You Can Take You can take steps to prevent high blood pressure by adopting these healthy lifestyle habits. Follow a ...

  3. Hypertension (High Blood Pressure)

    MedlinePlus

    ... Visitor Information RePORT NIH Fact Sheets Home > Hypertension (High Blood Pressure) Small Text Medium Text Large Text Hypertension (High Blood Pressure) YESTERDAY Hypertension is a silent killer because it ...

  4. Scaling of shear-induced diffusion and clustering in a blood-like suspension

    NASA Astrophysics Data System (ADS)

    Mountrakis, L.; Lorenz, E.; Hoekstra, A. G.

    2016-04-01

    The transport of cells and substances in dense suspensions like blood heavily depends on the microstructure and the dynamics arising from their interactions with red blood cells (RBCs). Computer simulations are used to probe into the detailed transport-related characteristics of a blood-like suspension, for a wide range of volume fractions and shear rates. The shear-induced diffusion of RBCs does not follow the established linear scaling with shear rate for higher volume fractions. The properties directly related to RBC deformability —stretching and flow orientation— are not sufficient to explain this departure according to the model of Breedveld, pointing to the dominance of collective effects in the suspension. A cluster size analysis confirms that collective effects dominate high volume fractions, as the mean cluster size is above 2 and the number of “free RBCs” is significantly decreased in denser suspensions. The mean duration of RBC contacts in clusters is increased in the high volume fraction and shear rate cases, showing that these clusters live longer.

  5. 'Slings' enable neutrophil rolling at high shear.

    PubMed

    Sundd, Prithu; Gutierrez, Edgar; Koltsova, Ekaterina K; Kuwano, Yoshihiro; Fukuda, Satoru; Pospieszalska, Maria K; Groisman, Alex; Ley, Klaus

    2012-08-16

    Most leukocytes can roll along the walls of venules at low shear stress (1 dyn cm−2), but neutrophils have the ability to roll at tenfold higher shear stress in microvessels in vivo. The mechanisms involved in this shear-resistant rolling are known to involve cell flattening and pulling of long membrane tethers at the rear. Here we show that these long tethers do not retract as postulated, but instead persist and appear as 'slings' at the front of rolling cells. We demonstrate slings in a model of acute inflammation in vivo and on P-selectin in vitro, where P-selectin-glycoprotein-ligand-1 (PSGL-1) is found in discrete sticky patches whereas LFA-1 is expressed over the entire length on slings. As neutrophils roll forward, slings wrap around the rolling cells and undergo a step-wise peeling from the P-selectin substrate enabled by the failure of PSGL-1 patches under hydrodynamic forces. The 'step-wise peeling of slings' is distinct from the 'pulling of tethers' reported previously. Each sling effectively lays out a cell-autonomous adhesive substrate in front of neutrophils rolling at high shear stress during inflammation.

  6. High Blood Pressure (Hypertension)

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women High Blood Pressure (Hypertension) Share Tweet Linkedin Pin it More sharing ... En Español Who is at risk? How is high blood pressure treated? Understanding your blood pressure: What do the ...

  7. High Blood Pressure in Pregnancy

    MedlinePlus

    ... The Health Information Center High Blood Pressure in Pregnancy What Is High Blood Pressure? Blood pressure is ... Are the Effects of High Blood Pressure in Pregnancy? Although many pregnant women with high blood pressure ...

  8. Measurement of the temperature-dependent threshold shear-stress of red blood cell aggregation

    NASA Astrophysics Data System (ADS)

    Lim, Hyun-Jung; Nam, Jeong-Hun; Lee, Yong-Jin; Shin, Sehyun

    2009-09-01

    Red blood cell (RBC) aggregation is becoming an important hemorheological parameter, which typically exhibits temperature dependence. Quite recently, a critical shear-stress was proposed as a new dimensional index to represent the aggregative and disaggregative behaviors of RBCs. The present study investigated the effect of the temperature on the critical shear-stress that is required to keep RBC aggregates dispersed. The critical shear-stress was measured at various temperatures (4, 10, 20, 30, and 37 °C) through the use of a transient microfluidic aggregometry. The critical shear-stress significantly increased as the blood temperature lowered, which accorded with the increase in the low-shear blood viscosity with the lowering of the temperature. Furthermore, the critical shear-stress also showed good agreement with the threshold shear-stress, as measured in a rotational Couette flow. These findings assist in rheologically validating the critical shear-stress, as defined in the microfluidic aggregometry.

  9. Embolization: critical thrombus height, shear rates, and pulsatility. Patency of blood vessels.

    PubMed

    Basmadjian, D

    1989-11-01

    The present article builds on elementary fluid dynamics and previous analyses by the author to delineate approximate boundaries of mural thrombus height Hp, maximum shear rate gamma Max, and flow pulsatility beyond which thrombi are subject to either very high or very low probabilities of embolization. A thrombus height of approximately 0.1 mm emerges as a critical dividing line: Below it, the maximum embolizing shear stress tau s is independent of thrombus height and varies only linearly with shear rate. Above it, tau s quickly approaches a strong quadratic dependence on both thrombus height and shear rate: tau s approximately (Hp gamma)2, significantly increasing the likelihood of an embolizing event. By contrast, convective-diffusive removal of blood components during the initial stages of thrombus formation varies only weakly with gamma 1/3 in all but the smallest vessels. These maximum embolizing stresses are due principally to fluid drag. Acceleration (pulsatile) forces only begin to make their presence felt at gamma less than 500 s-1 and reach parity with fluid drag at gamma approximately 10 s-1, i.e., at a level where the presence of pulsatility is questionable. The results are used to provide maps of domains with high and low probabilities of an embolytic event and of vessel patency. The maps reveal that relatively modest changes in shear rate and/or vessel lumen can cause shifts from high to low likelihood of vessel patency, opening up possible ways of controlling blockage by manipulation of these variables.

  10. Large scale simulation of red blood cell aggregation in shear flows.

    PubMed

    Xu, Dong; Kaliviotis, Efstathios; Munjiza, Ante; Avital, Eldad; Ji, Chunning; Williams, John

    2013-07-26

    Aggregation of highly deformable red blood cells (RBCs) significantly affects the blood flow in the human circulatory system. To investigate the effect of deformation and aggregation of RBCs in blood flow, a mathematical model has been established by coupling the interaction between the fluid and the deformable solids. The model includes a three-dimensional finite volume method solver for incompressible viscous flows, the combined finite-discrete element method for computing the deformation of the RBCs, a JKR model-Johnson, Kendall and Roberts (1964-1971) (Johnson et al., 1971) to take account of the adhesion forces between different RBCs and an iterative direct-forcing immersed boundary method to couple the fluid-solid interactions. The flow of 49,512 RBCs at 45% concentration under the influence of aggregating forces was examined, improving the existing knowledge on simulating flow and structural characteristics of blood at a large scale: previous studies on the particular issue were restricted to simulating the flow of 13,000 aggregative ellipsoidal particles at a 10% concentration. The results are in excellent agreement with experimental studies. More specifically, both the experimental and the simulation results show uniform RBC distributions under high shear rates (60-100/s) whereas large aggregation structures were observed under a lower shear rate of 10/s. The statistical analysis of the simulation data also shows that the shear rate has significant influence on both the flow velocity profiles and the frequency distribution of the RBC orientation angles.

  11. Chaotic dynamics of red blood cells in oscillating shear flow

    NASA Astrophysics Data System (ADS)

    Bagchi, Prosenjit; Cordasco, Daniel

    2015-11-01

    A 3D computational study of deformable red blood cells in dilute suspension and subject to sinusoidally oscillating shear flow is considered. It is observed that the cell exhibits either a periodic motion or a chaotic motion. In the periodic motion, the cell reverses its orientation either about the flow direction or about the flow gradient, depending on the initial conditions. In certain parameter range, the initial conditions are forgotten and the cells become entrained in the same sequence of horizontal reversals. The chaotic dynamics is characterized by a nonperiodic sequence of horizontal and vertical reversals, and swings. The study provides the first conclusive evidence of the chaotic dynamics of fully deformable cells in oscillating flow using a deterministic numerical model without the introduction of any stochastic noise. An analysis of the chaotic dynamics shows that chaos is only possible in certain frequency bands when the cell membrane can rotate by a certain amount allowing the cells to swing near the maximum shear rate. We make a novel observation that the occurrence of the vertical or horizontal reversal depends only on whether a critical angle, that is independent of the flow frequency, is exceeded at the instant of flow reversal.

  12. High-shear-rate capillary viscometer for inkjet inks

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Carr, Wallace W.; Bucknall, David G.; Morris, Jeffrey F.

    2010-06-01

    A capillary viscometer developed to measure the apparent shear viscosity of inkjet inks at high apparent shear rates encountered during inkjet printing is described. By using the Weissenberg-Rabinowitsch equation, true shear viscosity versus true shear rate is obtained. The device is comprised of a constant-flow generator, a static pressure monitoring device, a high precision submillimeter capillary die, and a high stiffness flow path. The system, which is calibrated using standard Newtonian low-viscosity silicone oil, can be easily operated and maintained. Results for measurement of the shear-rate-dependent viscosity of carbon-black pigmented water-based inkjet inks at shear rates up to 2×105 s-1 are discussed. The Cross model was found to closely fit the experimental data. Inkjet ink samples with similar low-shear-rate viscosities exhibited significantly different shear viscosities at high shear rates depending on particle loading.

  13. High-shear-rate capillary viscometer for inkjet inks

    SciTech Connect

    Wang Xi; Carr, Wallace W.; Bucknall, David G.; Morris, Jeffrey F.

    2010-06-15

    A capillary viscometer developed to measure the apparent shear viscosity of inkjet inks at high apparent shear rates encountered during inkjet printing is described. By using the Weissenberg-Rabinowitsch equation, true shear viscosity versus true shear rate is obtained. The device is comprised of a constant-flow generator, a static pressure monitoring device, a high precision submillimeter capillary die, and a high stiffness flow path. The system, which is calibrated using standard Newtonian low-viscosity silicone oil, can be easily operated and maintained. Results for measurement of the shear-rate-dependent viscosity of carbon-black pigmented water-based inkjet inks at shear rates up to 2x10{sup 5} s{sup -1} are discussed. The Cross model was found to closely fit the experimental data. Inkjet ink samples with similar low-shear-rate viscosities exhibited significantly different shear viscosities at high shear rates depending on particle loading.

  14. High strength semi-active energy absorbers using shear- and mixedmode operation at high shear rates

    NASA Astrophysics Data System (ADS)

    Becnel, Andrew C.

    This body of research expands the design space of semi-active energy absorbers for shock isolation and crash safety by investigating and characterizing magnetorheological fluids (MRFs) at high shear rates ( > 25,000 1/s) under shear and mixed-mode operation. Magnetorheological energy absorbers (MREAs) work well as adaptive isolators due to their ability to quickly and controllably adjust to changes in system mass or impact speed while providing fail-safe operation. However, typical linear stroking MREAs using pressure-driven flows have been shown to exhibit reduced controllability as impact speed (shear rate) increases. The objective of this work is to develop MREAs that improve controllability at high shear rates by using pure shear and mixed shear-squeeze modes of operation, and to present the fundamental theory and models of MR fluids under these conditions. A proof of concept instrument verified that the MR effect persists in shear mode devices at shear rates corresponding to low speed impacts. This instrument, a concentric cylinder Searle cell magnetorheometer, was then used to characterize three commercially available MRFs across a wide range of shear rates, applied magnetic fields, and temperatures. Characterization results are presented both as flow curves according to established practice, and as an alternate nondimensionalized analysis based on Mason number. The Mason number plots show that, with appropriate correction coefficients for operating temperature, the varied flow curve data can be collapsed to a single master curve. This work represents the first shear mode characterization of MRFs at shear rates over 10 times greater than available with commercial rheometers, as well as the first validation of Mason number analysis to high shear rate flows in MRFs. Using the results from the magnetorheometer, a full scale rotary vane MREA was developed as part of the Lightweight Magnetorheological Energy Absorber System (LMEAS) for an SH-60 Seahawk helicopter

  15. Micro-Viscometer for Measuring Shear-Varying Blood Viscosity over a Wide-Ranging Shear Rate

    PubMed Central

    Kim, Byung Jun; Lee, Seung Yeob; Jee, Solkeun; Atajanov, Arslan; Yang, Sung

    2017-01-01

    In this study, a micro-viscometer is developed for measuring shear-varying blood viscosity over a wide-ranging shear rate. The micro-viscometer consists of 10 microfluidic channel arrays, each of which has a different micro-channel width. The proposed design enables the retrieval of 10 different shear rates from a single flow rate, thereby enabling the measurement of shear-varying blood viscosity with a fixed flow rate condition. For this purpose, an optimal design that guarantees accurate viscosity measurement is selected from a parametric study. The functionality of the micro-viscometer is verified by both numerical and experimental studies. The proposed micro-viscometer shows 6.8% (numerical) and 5.3% (experimental) in relative error when compared to the result from a standard rotational viscometer. Moreover, a reliability test is performed by repeated measurement (N = 7), and the result shows 2.69 ± 2.19% for the mean relative error. Accurate viscosity measurements are performed on blood samples with variations in the hematocrit (35%, 45%, and 55%), which significantly influences blood viscosity. Since the blood viscosity correlated with various physical parameters of the blood, the micro-viscometer is anticipated to be a significant advancement for realization of blood on a chip. PMID:28632151

  16. Micro-Viscometer for Measuring Shear-Varying Blood Viscosity over a Wide-Ranging Shear Rate.

    PubMed

    Kim, Byung Jun; Lee, Seung Yeob; Jee, Solkeun; Atajanov, Arslan; Yang, Sung

    2017-06-20

    In this study, a micro-viscometer is developed for measuring shear-varying blood viscosity over a wide-ranging shear rate. The micro-viscometer consists of 10 microfluidic channel arrays, each of which has a different micro-channel width. The proposed design enables the retrieval of 10 different shear rates from a single flow rate, thereby enabling the measurement of shear-varying blood viscosity with a fixed flow rate condition. For this purpose, an optimal design that guarantees accurate viscosity measurement is selected from a parametric study. The functionality of the micro-viscometer is verified by both numerical and experimental studies. The proposed micro-viscometer shows 6.8% (numerical) and 5.3% (experimental) in relative error when compared to the result from a standard rotational viscometer. Moreover, a reliability test is performed by repeated measurement (N = 7), and the result shows 2.69 ± 2.19% for the mean relative error. Accurate viscosity measurements are performed on blood samples with variations in the hematocrit (35%, 45%, and 55%), which significantly influences blood viscosity. Since the blood viscosity correlated with various physical parameters of the blood, the micro-viscometer is anticipated to be a significant advancement for realization of blood on a chip.

  17. Quantifying the effects of external shear loads on arterial and venous blood flow: implications for pressure ulcer development.

    PubMed

    Manorama, Abinand; Meyer, Ronald; Wiseman, Robert; Bush, Tamara Reid

    2013-06-01

    Forces applied to the skin cause a decrease in regional blood flow. This decrease in blood flow can cause tissue necrosis and lead to the formation of deep, penetrating wounds called pressure ulcers. These wounds are detrimental to individuals with compromised health, such as the elderly and spinal-cord injured. Although surface pressure is known to be a primary risk factor for developing a pressure ulcer, a seated individual rarely experiences pressure alone but rather combined loading which includes pressure as well as shear force on the skin. However, little research has been conducted to quantify the effects of shear forces on blood flow. Fifteen men were tested in a magnetic resonance imaging scanner under no load, a normal load, and a combination of normal and shear loads. Changes in arterial and venous blood flow in the forearm were measured using magnetic resonance angiography phase-contrast imaging. The blood flow in the anterior interosseous artery and basilic vein of the forearm decreased with the application of normal loads, and decreased further with the addition of shear loads. Marginal to significant differences at a 90% confidence level (P=0.08, 0.10) were observed, and medium to high effect sizes (0.3 to 0.5) were obtained. Based on these results, shear force is an important factor to consider in relation to pressure ulcer propagation and prevention, and hence, future prevention approaches should also focus on mitigating shear loads. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Effects of shear rate on propagation of blood clotting determined using microfluidics and numerical simulations.

    PubMed

    Runyon, Matthew K; Kastrup, Christian J; Johnson-Kerner, Bethany L; Ha, Thuong G Van; Ismagilov, Rustem F

    2008-03-19

    This paper describes microfluidic experiments with human blood plasma and numerical simulations to determine the role of fluid flow in the regulation of propagation of blood clotting. We demonstrate that propagation of clotting can be regulated by different mechanisms depending on the volume-to-surface ratio of a channel. In small channels, propagation of clotting can be prevented by surface-bound inhibitors of clotting present on vessel walls. In large channels, where surface-bound inhibitors are ineffective, propagation of clotting can be prevented by a shear rate above a threshold value, in agreement with predictions of a simple reaction-diffusion mechanism. We also demonstrate that propagation of clotting in a channel with a large volume-to-surface ratio and a shear rate below a threshold shear rate can be slowed by decreasing the production of thrombin, an activator of clotting. These in vitro results make two predictions, which should be experimentally tested in vivo. First, propagation of clotting from superficial veins to deep veins may be regulated by shear rate, which might explain the correlation between superficial thrombosis and the development of deep vein thrombosis (DVT). Second, nontoxic thrombin inhibitors with high binding affinities could be locally administered to prevent recurrent thrombosis after a clot has been removed. In addition, these results demonstrate the utility of simplified mechanisms and microfluidics for generating and testing predictions about the dynamics of complex biochemical networks.

  19. Dynamic adhesion of umbilical cord blood endothelial progenitor cells under laminar shear stress.

    PubMed

    Angelos, Mathew G; Brown, Melissa A; Satterwhite, Lisa L; Levering, Vrad W; Shaked, Natan T; Truskey, George A

    2010-12-01

    Late outgrowth endothelial progenitor cells (EPCs) represent a promising cell source for rapid reendothelialization of damaged vasculature after expansion ex vivo and injection into the bloodstream. We characterized the dynamic adhesion of umbilical-cord-blood-derived EPCs (CB-EPCs) to surfaces coated with fibronectin. CB-EPC solution density affected the number of adherent cells and larger cells preferentially adhered at lower cell densities. The number of adherent cells varied with shear stress, with the maximum number of adherent cells and the shear stress at maximum adhesion depending upon fluid viscosity. CB-EPCs underwent limited rolling, transiently tethering for short distances before firm arrest. Immediately before arrest, the instantaneous velocity decreased independent of shear stress. A dimensional analysis indicated that adhesion was a function of the net force on the cells, the ratio of cell diffusion to sliding speed, and molecular diffusivity. Adhesion was not limited by the settling rate and was highly specific to α(5)β(1) integrin. Total internal reflection fluorescence microscopy showed that CB-EPCs produced multiple contacts of α(5)β(1) with the surface and the contact area grew during the first 20 min of attachment. These results demonstrate that CB-EPC adhesion from blood can occur under physiological levels of shear stress.

  20. Simulation of erythrocyte deformation in a high shear flow.

    PubMed

    Nakamura, Masanori; Bessho, Sadao; Wada, Shigeo

    2009-01-01

    Deformation of a red blood cell (RBC) in a high-shear flow was investigated. The RBC was modeled as a closed shell membrane consisting of spring networks in the framework of the energy minimum concept. The simulation of RBC in a parallel shear flow showed deformation parameters of RBC were well agreed with experimental results. The simulation of RBC behavior in various flow fields demonstrated that the shape was determined not only by instantaneous fluid force acting on it but also its deformation history. No consistency was found between the maximum of the first principal strain and conventionally used hemolysis index. Those results addressed the importance of considering an RBC deformation for accurately predicting hemolysis.

  1. A simple model to understand the role of membrane shear elasticity and stress-free shape on the motion of red blood cells in shear flow

    NASA Astrophysics Data System (ADS)

    Viallat, Annie; Abkarian, Manouk; Dupire, Jules

    2015-11-01

    The analytical model presented by Keller and Skalak on the dynamics of red blood cells in shear flow described the cell as a fluid ellipsoid of fixed shape. It was extended to introduce shear elasticity of the cell membrane. We further extend the model when the cell discoid physiological shape is not a stress-free shape. We show that spheroid stress-free shapes enables fitting experimental data with values of shear elasticity typical to that found with micropipettes and optical tweezers. For moderate shear rates (when RBCs keep their discoid shape) this model enables to quantitatively determine an effective cell viscosity, that combines membrane and hemoglobin viscosities and an effective shear modulus of the membrane that combines shear modulus and stress-free shape. This model allows determining RBC mechanical parameters both in the tanktreading regime for cells suspended in a high viscosity medium, and in the tumbling regime for cells suspended in a low viscosity medium. In this regime,a transition is predicted between a rigid-like tumbling motion and a fluid-like tumbling motion above a critical shear rate, which is directly related to the mechanical parameters of the cell. A*MIDEX (n ANR-11-IDEX-0001-02) funded by the ''Investissements d'Avenir'', Region Languedoc-Roussillon, Labex NUMEV (ANR-10-LABX-20), BPI France project DataDiag.

  2. Shear Stress induced Stretching of Red Blood Cells by Oscillating Bubbles within a Narrow Gap

    NASA Astrophysics Data System (ADS)

    Li, Fenfang; Mohammadzadeh, Milad; Ohl, Claus-Dieter; Claus-Dieter Ohl Team

    2013-11-01

    The flow pattern, especially the boundary layer caused by the expanding/contracting bubble in a narrow gap (15 μm) and the resultant stretching of red blood cells is investigated in this work. High speed recordings show that a red blood cell (biconcave shape, thickness of 1-2 μm) can be elongated to five times its original length by a laser-induced cavitation bubble within the narrow gap. However, flexible cancer cells in suspension (RKO, spherical shape, diameter of 10-15 μm) are hardly elongated under the same experimental condition. We hypothesize that the shear stress at the boundary layer is crucial for this elongation to occur. Therefore, in order to resolve the related fluid dynamics, we conducted numerical simulations using the finite element method (Fluent). The rapidly expanding/contracting vapor bubble is successfully modeled by employing viscosity and surface tension. The transient pressure inside the bubble and the velocity profile of the flow is obtained. We observe strong shear near the upper and lower boundary during the bubble oscillation. The flow fields are compared with analytical solutions to transient and pulsating flows in 2D. In the experiment the red blood cells sit within the lower boundary layer, thus are probably elongated by this strong shear flow. In contrast, the spherical cancer cells are of comparable size to the gap height so that they are lesser affected by this boundary layer flow.

  3. In vitro thrombogenesis resulting from decreased shear rate and blood coagulability.

    PubMed

    Maruyama, Osamu; Kosaka, Ryo; Nishida, Masahiro; Yamane, Takashi; Tatsumi, Eisuke; Taenaka, Yoshiyuki

    2016-06-15

    In vitro antithrombogenic testing with mock circulation is a useful type of pre-evaluation in ex vivo testing of mechanical assist devices. For effective in vitro testing, we have been developing a clear quantitative thrombogenesis model based on shear stress and blood coagulability. Bovine blood was used as the test medium. The activating clotting time (ACT) was adjusted with trisodium citrate and calcium chloride from 200 to 1,000 seconds. The blood was then applied to a rheometer and subjected to shear at 50 to 2,880 s-1. Blood coagulation time and degree of thrombogenesis were measured by the torque sensor of the rheometer. Prothrombin time (PT) and activated partial thromboplastin time (APTT) of the test blood were also measured after the application of shear. Blood coagulation time increased, and the degree of thrombogenesis decreased, with increases in shear rate to between 50 and 2,880 s-1. for test bloods with ACTs of 200 to 250 seconds. An ACT of 200 to 250 seconds is thus appropriate for in vitro antithrombogenic testing under a shear rate of 2,880 s-1. APTT was prolonged, whereas PT did not change, with increasing shear rate: that is, increasing the shear rate reduced thrombogenesis related to the intrinsic clotting pathway. An ACT of 200 to 250 seconds was suitable for in vitro antithrombogenic testing, and increasing the shear stress generated in the mechanical assist device reduced thrombogenesis via the intrinsic clotting pathway.

  4. High Shear Stresses under Exercise Condition Destroy Circulating Tumor Cells in a Microfluidic System

    PubMed Central

    Regmi, Sagar; Fu, Afu; Luo, Kathy Qian

    2017-01-01

    Circulating tumor cells (CTCs) are the primary targets of cancer treatment as they cause distal metastasis. However, how CTCs response to exercise-induced high shear stress is largely unknown. To study the effects of hemodynamic microenvironment on CTCs, we designed a microfluidic circulatory system that produces exercise relevant shear stresses. We explore the effects of shear stresses on breast cancer cells with different metastatic abilities, cancer cells of ovarian, lung and leukemic origin. Three major findings were obtained. 1) High shear stress of 60 dynes/cm2 achievable during intensive exercise killed more CTCs than low shear stress of 15 dynes/cm2 present in human arteries at the resting state. 2) High shear stress caused necrosis in over 90% of CTCs within the first 4 h of circulation. More importantly, the CTCs that survived the first 4 h-circulation, underwent apoptosis during 16–24 h of post-circulation incubation. 3) Prolonged high shear stress treatment effectively reduced the viability of highly metastatic and drug resistant breast cancer cells. As high shear stress had much less damaging effects on leukemic cells mimicking the white blood cells, we propose that intensive exercise may be a good strategy for generating high shear stress that can destroy CTCs and prevent cancer metastasis. PMID:28054593

  5. PEG-albumin supraplasma expansion is due to increased vessel wall shear stress induced by blood viscosity shear thinning.

    PubMed

    Sriram, Krishna; Tsai, Amy G; Cabrales, Pedro; Meng, Fantao; Acharya, Seetharama A; Tartakovsky, Daniel M; Intaglietta, Marcos

    2012-06-15

    We studied the extreme hemodilution to a hematocrit of 11% induced by three plasma expanders: polyethylene glycol (PEG)-conjugated albumin (PEG-Alb), 6% 70-kDa dextran, and 6% 500-kDa dextran. The experimental component of our study relied on microelectrodes and cardiac output to measure both the rheological properties of plasma-expander blood mixtures and nitric oxide (NO) bioavailability in vessel walls. The modeling component consisted of an analysis of the distribution of wall shear stress (WSS) in the microvessels. Our experiments demonstrated that plasma expansion with PEG-Alb caused a state of supraperfusion with cardiac output 40% above baseline, significantly increased NO vessel wall bioavailability, and lowered peripheral vascular resistance. We attributed this behavior to the shear thinning nature of blood and PEG-Alb mixtures. To substantiate this hypothesis, we developed a mathematical model of non-Newtonian blood flow in a vessel. Our model used the Quemada rheological constitutive relationship to express blood viscosity in terms of both hematocrit and shear rate. The model revealed that the net effect of the hemodilution induced by relatively low-viscosity shear thinning PEG-Alb plasma expanders is to reduce overall blood viscosity and to increase the WSS, thus intensifying endothelial NO production. These changes act synergistically, significantly increasing cardiac output and perfusion due to lowered overall peripheral vascular resistance.

  6. Theory to predict shear stress on cells in turbulent blood flow.

    PubMed

    Morshed, Khandakar Niaz; Bark, David; Forleo, Marcio; Dasi, Lakshmi Prasad

    2014-01-01

    Shear stress on blood cells and platelets transported in a turbulent flow dictates the fate and biological activity of these cells. We present a theoretical link between energy dissipation in turbulent flows to the shear stress that cells experience and show that for the case of physiological turbulent blood flow: (a) the Newtonian assumption is valid, (b) turbulent eddies are universal for the most complex of blood flow problems, and (c) shear stress distribution on turbulent blood flows is possibly universal. Further we resolve a long standing inconsistency in hemolysis between laminar and turbulent flow using the theoretical framework. This work demonstrates that energy dissipation as opposed to bulk shear stress in laminar or turbulent blood flow dictates local mechanical environment of blood cells and platelets universally.

  7. Measurements of gap pressure and wall shear stress of a blood pump model.

    PubMed

    Chua, L P; Akamatsu, T

    2000-04-01

    The centrifugal blood pump with a magnetically suspended impeller has shown its superiority as compared to other artificial hearts. However, there is still insufficient understanding of fluid mechanics related issues in the clearance gap. The design nature of the pump requires sufficient washout in the clearance between the impeller and stationary surfaces. As the gap is only 0.2 mm in width, it is very difficult to conduct measurements with present instrumentation. An enlarged model with 5:1 ratio of the pump has been designed and constructed according to specifications. Dimensionless gap pressure measurements of the model are very close to the prototype. The measurements of wall shear stress of the fluid flow in the clearance gap between the impeller face and inlet casing of a blood pump model were accomplished through hot-wire anemometry and rotating disk apparatus. Regions of relatively high and low shear stresses are identified. These correspond to spots where the likelihood of hemolysis and thrombus formation is high. With the use of dimensional analysis, it is found that the highest wall shear stress is equivalent to 146 Pa which is much lower than the threshold value of 400 Pa for hemolysis reported in the literature.

  8. Studying solutions at high shear rates: a dedicated microfluidics setup.

    PubMed

    Wieland, D C F; Garamus, V M; Zander, T; Krywka, C; Wang, M; Dedinaite, A; Claesson, P M; Willumeit-Römer, R

    2016-03-01

    The development of a dedicated small-angle X-ray scattering setup for the investigation of complex fluids at different controlled shear conditions is reported. The setup utilizes a microfluidics chip with a narrowing channel. As a consequence, a shear gradient is generated within the channel and the effect of shear rate on structure and interactions is mapped spatially. In a first experiment small-angle X-ray scattering is utilized to investigate highly concentrated protein solutions up to a shear rate of 300000 s(-1). These data demonstrate that equilibrium clusters of lysozyme are destabilized at high shear rates.

  9. Prevention of High Blood Pressure

    MedlinePlus

    ... page from the NHLBI on Twitter. Prevention of High Blood Pressure Healthy lifestyle habits, proper use of medicines, and ... prevent high blood pressure or its complications. Preventing High Blood Pressure Onset Healthy lifestyle habits can help prevent high ...

  10. Experimental study on shear stress distributions in a centrifugal blood pump.

    PubMed

    Mizunuma, Hiroshi; Nakajima, Ryou

    2007-07-01

    Wall shear stress on the pump casing cover was measured using a surface-mounted hot-film sensor. In addition, the shear stress distribution in the pump was qualitatively investigated by means of oil-film visualization. The characteristics of shear stress in the pump are discussed, including the results on the oil-film visualization. The centrifugal blood pump used was a Nikkiso HPM-15 (Nikkiso Co., Ltd, Tokyo, Japan). The hot-film measurement indicated that the shear stress was approximately proportional to the rotating speed, and exceeded 300 Pa when r/R > 0.5 at 3000 rpm. The circumferential average shear stress on the casing cover was of the same order as the characteristic stress sigma obtained from the pump axial torque. These results suggest that the shear stress on the casing cover can be used to evaluate the characteristic shear stress in the pump.

  11. Spatial variation of blood viscosity: modelling using shear fields measured by a μPIV based technique.

    PubMed

    Kaliviotis, Efstathios; Dusting, Jonathan; Balabani, Stavroula

    2011-09-01

    The spatial characteristics of blood viscosity were investigated by combining a newly developed constitutive equation with shear deformation fields calculated from velocity measurements obtained by a μPIV based technique. Blood at physiological hematocrit levels and in the presence of aggregation was sheared in a narrow gap plate-plate geometry and the velocity and aggregation characteristics were determined from images captured using a high resolution camera. Changes in the microstructure of blood caused by aggregation were observed to affect the flow characteristics. At low shear rates, high aggregation and network formation caused the RBC motion to become essentially two-dimensional. The measured velocity fields were used to estimate the magnitude of shear which was subsequently used in conjunction with the new model to assess the spatial variation of viscosity across the flow domain. It was found that the non-uniform microstructural characteristics of blood influence its viscosity distribution accordingly. The viscosity of blood estimated in the core of the examined flow, using a zero-gradient core velocity profile assumption, was found to be significantly higher than the overall effective viscosity determined using other velocity profile assumptions. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Lift and down-gradient shear-induced diffusion in red blood cell suspensions.

    PubMed

    Grandchamp, Xavier; Coupier, Gwennou; Srivastav, Aparna; Minetti, Christophe; Podgorski, Thomas

    2013-03-08

    The distribution of red blood cells (RBCs) in a confined channel flow is inhomogeneous and shows a marked depletion near the walls due to a competition between migration away from the walls and shear-induced diffusion resulting from interactions between particles. We investigated the lift of RBCs in a shear flow near a wall and measured a significant lift velocity despite the tumbling motion of cells. We also provide values for the collective and anisotropic shear-induced diffusion of a cloud of RBCs, both in the direction of shear and in the direction of vorticity. A generic down-gradient subdiffusion characterized by an exponent 1/3 is highlighted.

  13. What Causes High Blood Pressure?

    MedlinePlus

    ... can cause high blood pressure. Renin-Angiotensin-Aldosterone System The renin-angiotensin-aldosterone system makes angiotensin and ... blood volumes and high blood pressure. Sympathetic Nervous System Activity The sympathetic nervous system has important functions ...

  14. High Red Blood Cell Count

    MedlinePlus

    Symptoms High red blood cell count By Mayo Clinic Staff A high red blood cell count is an increase in oxygen-carrying cells in your bloodstream. Red blood cells transport oxygen from your lungs to tissues throughout ...

  15. Comparison of low shear, high shear, and fluid bed granulation during low dose tablet process development.

    PubMed

    Hausman, Debra S

    2004-03-01

    Three processing methods were compared to develop a low dose (0.1%) immediate release tablet. Similar formulations were used to evaluate low shear, high shear, and fluid bed granulation methods. For each granulation process, the drug was dissolved or suspended in the granulating fluid and sprayed into the granulator. Both water and methanol were evaluated as granulating fluids. The low shear granulation was performed in a Patterson-Kelley V-Blender with I-bar. The high shear granulation was performed in a GRAL (top entry impeller) and a Diosna (bottom mounted impeller). Fluid bed granulation was also performed using top-spray. Acceptable content uniformity was obtained using each technology. The type of granulator and granulating solvent affected the granulation particle size distributions and bulk/tap densities. However, the addition of extragranular microcrystalline cellulose minimized the effect of variable granulation properties and allowed similar tablets to be produced from each granulation process.

  16. Multiscale approach to link red blood cell dynamics, shear viscosity, and ATP release

    PubMed Central

    Forsyth, Alison M.; Wan, Jiandi; Owrutsky, Philip D.; Abkarian, Manouk; Stone, Howard A.

    2011-01-01

    RBCs are known to release ATP, which acts as a signaling molecule to cause dilation of blood vessels. A reduction in the release of ATP from RBCs has been linked to diseases such as type II diabetes and cystic fibrosis. Furthermore, reduced deformation of RBCs has been correlated with myocardial infarction and coronary heart disease. Because ATP release has been linked to cell deformation, we undertook a multiscale approach to understand the links between single RBC dynamics, ATP release, and macroscopic viscosity all at physiological shear rates. Our experimental approach included microfluidics, ATP measurements using a bioluminescent reaction, and rheology. Using microfluidics technology with high-speed imaging, we visualize the deformation and dynamics of single cells, which are known to undergo motions such as tumbling, swinging, tanktreading, and deformation. We report that shear thinning is not due to cellular deformation as previously believed, but rather it is due to the tumbling-to-tanktreading transition. In addition, our results indicate that ATP release is constant at shear stresses below a threshold (3 Pa), whereas above the threshold ATP release is increased and accompanied by large cellular deformations. Finally, performing experiments with well-known inhibitors, we show that the Pannexin 1 hemichannel is the main avenue for ATP release both above and below the threshold, whereas, the cystic fibrosis transmembrane conductance regulator only contributes to deformation-dependent ATP release above the stress threshold. PMID:21690355

  17. Multiscale approach to link red blood cell dynamics, shear viscosity, and ATP release.

    PubMed

    Forsyth, Alison M; Wan, Jiandi; Owrutsky, Philip D; Abkarian, Manouk; Stone, Howard A

    2011-07-05

    RBCs are known to release ATP, which acts as a signaling molecule to cause dilation of blood vessels. A reduction in the release of ATP from RBCs has been linked to diseases such as type II diabetes and cystic fibrosis. Furthermore, reduced deformation of RBCs has been correlated with myocardial infarction and coronary heart disease. Because ATP release has been linked to cell deformation, we undertook a multiscale approach to understand the links between single RBC dynamics, ATP release, and macroscopic viscosity all at physiological shear rates. Our experimental approach included microfluidics, ATP measurements using a bioluminescent reaction, and rheology. Using microfluidics technology with high-speed imaging, we visualize the deformation and dynamics of single cells, which are known to undergo motions such as tumbling, swinging, tanktreading, and deformation. We report that shear thinning is not due to cellular deformation as previously believed, but rather it is due to the tumbling-to-tanktreading transition. In addition, our results indicate that ATP release is constant at shear stresses below a threshold (3 Pa), whereas above the threshold ATP release is increased and accompanied by large cellular deformations. Finally, performing experiments with well-known inhibitors, we show that the Pannexin 1 hemichannel is the main avenue for ATP release both above and below the threshold, whereas, the cystic fibrosis transmembrane conductance regulator only contributes to deformation-dependent ATP release above the stress threshold.

  18. Elevated Low-Shear Blood Viscosity is Associated with Decreased Pulmonary Blood Flow in Children with Univentricular Heart Defects.

    PubMed

    Cheng, Andrew L; Takao, Cheryl M; Wenby, Rosalinda B; Meiselman, Herbert J; Wood, John C; Detterich, Jon A

    2016-04-01

    After the Fontan procedure, patients with univentricular hearts can experience long-term complications due to chronic low-shear non-pulsatile pulmonary blood flow. We sought to evaluate hemorheology and its relationship to hemodynamics in children with univentricular hearts. We hypothesized that low-shear blood viscosity and red blood cell (RBC) aggregation would be associated with increased pulmonary vascular resistance (PVR) and decreased pulmonary blood flow (PBF). We performed a cross-sectional analysis of 62 children undergoing cardiac catheterization-20 with isolated atrial septal defect (ASD), 22 status post Glenn procedure (Glenn), and 20 status post Fontan procedure (Fontan). Shear-dependent blood viscosity, RBC aggregation and deformability, complete blood count, coagulation panel, metabolic panel, fibrinogen, and erythrocyte sedimentation rate were measured. PVR and PBF were calculated using the Fick equation. Group differences were analyzed by ANOVA and correlations by linear regression. Blood viscosity at all shear rates was higher in Glenn and Fontan, partially due to normocytic anemia in ASD. RBC aggregation and deformability were similar between all groups. Low-shear viscosity negatively correlated with PBF in Glenn and Fontan only (R (2) = 0.27, p < 0.001); it also negatively correlated with pulmonary artery pressure in Glenn (R (2) = 0.15, p = 0.01), and positively correlated with PVR in Fontan (R (2) = 0.28, p = 0.02). Our data demonstrate that elevated low-shear blood viscosity is associated with negative hemodynamic perturbations in a passive univentricular pulmonary circulation, but not in a pulsatile biventricular pulmonary circulation.

  19. Living with High Blood Pressure

    MedlinePlus

    ... page from the NHLBI on Twitter. Living With High Blood Pressure If you have high blood pressure, the best thing to do is to talk ... help you track your blood pressure. Pregnancy Planning High blood pressure can cause problems for mother and baby. High ...

  20. High-speed high-stress ring shear tests on granular sods and clayey soils

    Treesearch

    Hiroshi Fukuoka; Kyoji Sassa

    1991-01-01

    The purposes of this study is to obtain exact knowledge of the influences on friction angle during shear by shearing speeds. Ring shear tests on sandy and clayey materials have been carried out with a newly developed High-speed High-Stress Ring Shear Apparatus to examine if there are some changes in the frictional behaviors of these materials at high shearing speeds of...

  1. Dynamics of High Pressure Reacting Shear Flows

    DTIC Science & Technology

    2013-12-17

    and supercritical acoustic-jet interactions to reacting flow in a canonical coaxial shear flow configuration – Emphasis on the flame holding region...unlimited. PA#13554 11 Coaxial Jets Initial...PA#13554 12 Forced Coaxial Jets 1. Transverse Acoustic mode from chamber

  2. In vitro blood flow model with physiological wall shear stress for hemocompatibility testing-An example of coronary stent testing.

    PubMed

    Engels, Gerwin Erik; Blok, Sjoerd Leendert Johannes; van Oeveren, Willem

    2016-09-18

    Hemocompatibility of blood contacting medical devices has to be evaluated before their intended application. To assess hemocompatibility, blood flow models are often used and can either consist of in vivo animal models or in vitro blood flow models. Given the disadvantages of animal models, in vitro blood flow models are an attractive alternative. The in vitro blood flow models available nowadays mostly focus on generating continuous flow instead of generating a pulsatile flow with certain wall shear stress, which has shown to be more relevant in maintaining hemostasis. To address this issue, the authors introduce a blood flow model that is able to generate a pulsatile flow and wall shear stress resembling the physiological situation, which the authors have coined the "Haemobile." The authors have validated the model by performing Doppler flow measurements to calculate velocity profiles and (wall) shear stress profiles. As an example, the authors evaluated the thrombogenicity of two drug eluting stents, one that was already on the market and one that was still under development. After identifying proper conditions resembling the wall shear stress in coronary arteries, the authors compared the stents with each other and often used reference materials. These experiments resulted in high contrast between hemocompatible and incompatible materials, showing the exceptional testing capabilities of the Haemobile. In conclusion, the authors have developed an in vitro blood flow model which is capable of mimicking physiological conditions of blood flow as close as possible. The model is convenient in use and is able to clearly discriminate between hemocompatible and incompatible materials, making it suitable for evaluating the hemocompatible properties of medical devices.

  3. In vitro shear stress-induced platelet activation: sensitivity of human and bovine blood.

    PubMed

    Lu, Qijin; Hofferbert, Bryan V; Koo, Grace; Malinauskas, Richard A

    2013-10-01

    As platelet activation plays a critical role in physiological hemostasis and pathological thrombosis, it is important in the overall hemocompatibility evaluation of new medical devices and biomaterials to assess their effects on platelet function. However, there are currently no widely accepted in vitro test methods to perform this assessment. In an effort to develop effective platelet tests for potential use in medical device evaluation, this study compared the sensitivity of platelet responses to shear stress stimulation of human and bovine blood using multiple platelet activation markers. Fresh whole blood samples anticoagulated with heparin or anticoagulant citrate dextrose, solution A (ACDA) were exposed to shear stresses up to 40 Pa for 2 min using a cone-and-plate rheometer model. Platelet activation was characterized by platelet counts, platelet surface P-selectin expression, and serotonin release into blood plasma. The results indicated that exposure to shear stresses above 20 Pa caused significant changes in all three of the platelet markers for human blood and that the changes were usually greater with ACDA anticoagulation than with heparin. In contrast, for bovine blood, the markers did not change with shear stress stimulation except for plasma serotonin in heparin anticoagulated blood. The differences observed between human and bovine platelet responses suggest that the value of using bovine blood for in vitro platelet testing to evaluate devices may be limited.

  4. Shear stress variation induced by red blood cell motion in microvessel.

    PubMed

    Xiong, Wenjuan; Zhang, Junfeng

    2010-08-01

    We simulated red blood cells flowing in microvessel to examine the induced wall shear stress variation. A typical peak-valley-peak structure is observed, and it is analyzed in terms of its magnitude, spatial influencing range, and temporal elapsed duration. Effects of red cell deformability, microvessel size, and flow velocity have been investigated. The corresponding variation characters have also been related to cell deformation and flow field. Simulation results show that the variation magnitude is mainly determined by the gap size between cell and vessel wall, while the spatial range of the shear stress variation depends on the cell length as well as the microvessel size. For a certain point on the vessel wall, the shear stress variation lasts a short time at a higher flow velocity, and vice versa. As the cell concentration in the microvessel increases, the shear stress variation structure changes accordingly with the two peaks from two close cells merging together, and eventually only one peak is observed at a hematocrit of 30.72%. However, the effect of hematocrit on the variation magnitude of shear stress is less obvious, and the dynamic nature of shear stress is still significant. This represents the first attempt to study the dynamic shear stress variation on microvessel as red blood cells flow by, and the information obtained in this study could be valuable to relevant research, for example, the mechanotransduction in the endothelia glycocalyx layer.

  5. [Blood viscosity and triglyceridemia. Findings using a co-axial cylindrical viscosimeter at low "shear rates"].

    PubMed

    Bartoli, V; Pasquini, G; Dorigo, B

    1977-09-22

    Examination of blood viscosity at low shear rates using a co-axial cylinder viscometer showed a significant difference between the means of values observed in hypertrigliceridemic patients compared with that of control subjects. This result differs from what has been reported by most workers although generally greater shear rates have been used. Calculation of the "r" coefficient and plotting of the regression line for each shear rate showed that there is no linear correlation between blood viscosity and triglyceridaemia, whose variations occur quite independently. It is suggested that the absence of a correlation between the two parameters examined may depend on various factors, of which the most important are those pertaining to the rheological properties of red blood cells and to the structure and chemical and physical characteristics of the triglyceride molecule and of the lipoproteins and chylomicrons which transport them.

  6. High Blood Pressure Fact Sheet

    MedlinePlus

    ... this? Submit What's this? Submit Button Related CDC Web Sites Heart Disease Stroke High Blood Pressure Salt ... Prevent and Control Chronic Diseases Million Hearts® WISEWOMAN Web Sites with More Information About High Blood Pressure ...

  7. High blood pressure and diet

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007483.htm High blood pressure and diet To use the sharing features on ... diet is a proven way to help control high blood pressure . These changes can also help you lose weight ...

  8. Modeling of the blood rheology in steady-state shear flows

    SciTech Connect

    Apostolidis, Alex J.; Beris, Antony N.

    2014-05-15

    We undertake here a systematic study of the rheology of blood in steady-state shear flows. As blood is a complex fluid, the first question that we try to answer is whether, even in steady-state shear flows, we can model it as a rheologically simple fluid, i.e., we can describe its behavior through a constitutive model that involves only local kinematic quantities. Having answered that question positively, we then probe as to which non-Newtonian model best fits available shear stress vs shear-rate literature data. We show that under physiological conditions blood is typically viscoplastic, i.e., it exhibits a yield stress that acts as a minimum threshold for flow. We further show that the Casson model emerges naturally as the best approximation, at least for low and moderate shear-rates. We then develop systematically a parametric dependence of the rheological parameters entering the Casson model on key physiological quantities, such as the red blood cell volume fraction (hematocrit). For the yield stress, we base our description on its critical, percolation-originated nature. Thus, we first determine onset conditions, i.e., the critical threshold value that the hematocrit has to have in order for yield stress to appear. It is shown that this is a function of the concentration of a key red blood cell binding protein, fibrinogen. Then, we establish a parametric dependence as a function of the fibrinogen and the square of the difference of the hematocrit from its critical onset value. Similarly, we provide an expression for the Casson viscosity, in terms of the hematocrit and the temperature. A successful validation of the proposed formula is performed against additional experimental literature data. The proposed expression is anticipated to be useful not only for steady-state blood flow modeling but also as providing the starting point for transient shear, or more general flow modeling.

  9. Effect of aggregation and shear rate on the dispersion of red blood cells flowing in venules.

    PubMed

    Bishop, Jeffrey J; Popel, Aleksander S; Intaglietta, Marcos; Johnson, Paul C

    2002-11-01

    Previous in vitro studies of blood flow in small glass tubes have shown that red blood cells exhibit significant erratic deviations in the radial position in the laminar flow regime. The purpose of the present study was to assess the magnitude of this variability and that of velocity in vivo and the effect of red blood cell aggregation and shear rate upon them. With the use of a gated image intensifier and fluorescently labeled red blood cells in tracer quantities, we obtained multiple measurements of red blood cell radial and longitudinal positions at time intervals as short as 5 ms within single venous microvessels (diameter range 45-75 microm) of the rat spinotrapezius muscle. For nonaggregating red blood cells in the velocity range of 0.3-14 mm/s, the mean coefficient of variation of velocity was 16.9 +/- 10.5% and the SD of the radial position was 1.98 +/- 0.98 microm. Both quantities were inversely related to shear rate, and the former was significantly lowered on induction of red blood cell aggregation by the addition of Dextran 500 to the blood. The shear-induced random movements observed in this study may increase the radial transport of particles and solutes within the bloodstream by orders of magnitude.

  10. Shear stress paradigm for perinatal fractal arterial network remodeling in lambs with pulmonary hypertension and increased pulmonary blood flow.

    PubMed

    Ghorishi, Zahra; Milstein, Jay M; Poulain, Francis R; Moon-Grady, Anita; Tacy, Theresa; Bennett, Stephen H; Fineman, Jeffery R; Eldridge, Marlowe W

    2007-06-01

    Congenital heart disease with increased blood flow commonly leads to the development of increased pulmonary vascular reactivity and pulmonary arterial hypertension by mechanisms that remain unclear. We hypothesized a shear stress paradigm of hemodynamic reactivity and network remodeling via the persistence and/or exacerbation of a fetal diameter bifurcation phenotype [parent diameter d(0) and daughters d(1) >or= d(2) with alpha < 2 in (d(1)/d(0))(alpha) + (d(2)/d(0))(alpha) and area ratio beta < 1 in beta = (d(1)(2)+ d(2)(2))/ d(0)(2)] that mechanically acts as a high resistance magnifier/shear stress amplifier to blood flow. Evidence of a hemodynamic influence on network remodeling was assessed with a lamb model of high-flow-induced secondary pulmonary hypertension in which an aortopulmonary graft was surgically placed in one twin in utero (Shunt twin) but not in the other (Control twin). Eight weeks after birth arterial casts were made of the left pulmonary arterial circulation. Bifurcation diameter measurements down to 0.010 mm in the Shunt and Control twins were then compared with those of an unoperated fetal cast. Network organization, cumulative resistance, and pressure/shear stress distributions were evaluated via a fractal model whose dimension D(0) approximately alpha delineates hemodynamic reactivity. Fetus and Control twin D(0) differed: fetus D(0)=1.72, a high-resistance/shear stress amplifying condition; control twin D(0) = 2.02, an area-preserving transport configuration. The Shunt twin (D(0)=1.72) maintained a fetal design but paradoxically remodeled diameter geometry to decrease cumulative resistance relative to the Control twin. Our results indicate that fetal/neonatal pulmonary hemodynamic reactivity remodels in response to shear stress, but the response to elevated blood flow and pulmonary hypertension involves the persistence and exacerbation of a fetal diameter bifurcation phenotype that facilitates endothelial dysfunction/injury.

  11. High Blood Pressure - Multiple Languages

    MedlinePlus

    ... Well-Being 8 - High Blood Pressure - العربية (Arabic) MP3 Siloam Family Health Center High Blood Pressure - العربية ( ... Being 8 - High Blood Pressure - myanma bhasa (Burmese) MP3 Siloam Family Health Center Chinese, Simplified (Mandarin dialect) ( ...

  12. Controlling your high blood pressure

    MedlinePlus

    ... medlineplus.gov/ency/patientinstructions/000101.htm Controlling your high blood pressure To use the sharing features on this page, ... JavaScript. Hypertension is another term used to describe high blood pressure. High blood pressure can lead to: Stroke Heart ...

  13. Neutrophil rolling at high shear: flattening, catch bond behavior, tethers and slings

    PubMed Central

    Sundd, Prithu; Pospieszalska, Maria K.; Ley, Klaus

    2012-01-01

    Neutrophil recruitment to sites of inflammation involves neutrophil rolling along the inflamed endothelium in the presence of shear stress imposed by blood flow. Neutrophil rolling in post-capillary venules in vivo is primarily mediated by P-selectin on the endothelium binding to P-selectin glycoprotein ligand-1 (PSGL-1) constitutively expressed on neutrophils. Blood flow exerts a hydrodynamic drag on the rolling neutrophil which is partially or fully balanced by the adhesive forces generated in the P-selectin-PSGL-1 bonds. Rolling is the result of rapid formation and dissociation of P-selectin-PSGL-1 bonds at the center and rear of the rolling cell, respectively. Neutrophils roll stably on P-selectin in post-capillary venules in vivo and flow chambers in vitro at wall shear stresses greater than 6 dyn cm−2. However, the mechanisms that enable neutrophils to roll at such high shear stress are not completely understood. In vitro and in vivo studies have led to the discovery of four potential mechanisms, viz. cell flattening, catch bond behavior, membrane tethers, and slings. Rolling neutrophils undergo flattening at high shear stress, which not only increases the size of the cell footprint but also reduces the hydrodynamic drag experienced by the rolling cell. P-selectin-PSGL-1 bonds behave as catch bonds at small detachment forces and thus become stronger with increasing force. Neutrophils rolling at high shear stress form membrane tethers which can be longer than the cell diameter and promote the survival of P-selectin-PSGL-1 bonds. Finally, neutrophils rolling at high shear stress form slings, which act as cell autonomous adhesive substrates and support step-wise peeling. Tethers and slings act together and contribute to the forces balancing the hydrodynamic drag. How the synergy between the four mechanisms leads to stable rolling at high shear stress is an area that needs further investigation. PMID:23141302

  14. Mitigation of Shear-Induced Blood Damage of Mechanical Bileaflet Heart Valves using Embedded Vortex Generators

    NASA Astrophysics Data System (ADS)

    Hidalgo, Pablo; Arjunon, Sivakkumar; Saikrishnan, Neelakantan; Yoganathan, Ajit; Glezer, Ari

    2012-11-01

    The strong transitory shear stress generated during the time-periodic closing of the mechanical prosthetic bileaflet aortic heart valve, is considered to be one of the main factors responsible for complications, associated with thrombosis and thromboembolism. These flow transients are investigated using phase and time-averaged PIV in a low-volume (about 150 ml) test setup that simulates the pulsatile physiological conditions associated with a 23 mm St. Jude Medical valve. The PIV measurements are accompanied by continuous monitoring of the ventricular and aortic pressures and valve flow rate. Following the valve closure, the leakage flow between the valve leaflets is caused by the pressure buildup across the leaflets, leading to the formation of a regurgitation jet starting from the BMHV B-datum line. As in a typical starting jet, a counter-rotating vortex pair is formed along each leaflet edge and the vorticity sheet is associated with high shear stress that may be result in blood platelet activation. The present investigation demonstrates that the placement of arrays of mm-scale vortex generators near the edges of the leaflets diffuses the vortex sheet and suppresses the formation of these vortices, weakening the local velocity gradients and small-scale vortical structures. Supported by NIH and NSF.

  15. Dynamics of a single red blood cell in simple shear flow

    NASA Astrophysics Data System (ADS)

    Sinha, Kushal; Graham, Michael D.

    2015-10-01

    This work describes simulations of a red blood cell (RBC) in simple shear flow, focusing on the dependence of the cell dynamics on the spontaneous curvature of the membrane. The results show that an oblate spheroidal spontaneous curvature maintains the dimple of the RBC during tank-treading dynamics as well as exhibits off-shear-plane tumbling consistent with the experimental observations of Dupire et al. [J. Dupire, M. Socol, and A. Viallat, Proc. Natl. Acad. Sci. USA 109, 20808 (2012), 10.1073/pnas.1210236109] and their hypothesis of an inhomogeneous spontaneous shape. As the flow strength (capillary number Ca ) is increased at a particular viscosity ratio between inner and outer fluid, the dynamics undergo transitions in the following sequence: tumbling, kayaking or rolling, tilted tank-treading, oscillating-swinging, swinging, and tank-treading. The tilted tank-treading (or spinning frisbee) regime has been previously observed in experiments but not in simulations. Two distinct classes of regime are identified: a membrane reorientation regime, where the part of membrane that is at the dimple at rest moves to the rim and vice versa, is observed in motions at high Ca such as tilted tank-treading, oscillating-swinging, swinging, and tank-treading, and a nonreorientation regime, where the part of the membrane starting from the dimple stays at the dimple, is observed in motions at low Ca such as rolling, tumbling, kayaking, and flip-flopping.

  16. Red Blood Cell Deformation Under Shear Flow: The Effect of Changing Cell Properties

    NASA Astrophysics Data System (ADS)

    Forsyth, Alison M.; Wan, Jiandi; Ristenpart, William D.; Stone, Howard A.

    2008-11-01

    The deformability of red blood cells plays a major role in the pathology of several diseases, including malaria, sickle cell anemia and spherocytosis. Moreover, deformations are believed to trigger the release of adenosine triphosphate, which helps regulate vascular tone and is consequently an important factor in various vascular diseases. Here we investigate single-cell viscoelastic responses to increased shear stress in poly(dimethylsiloxane) channels with a single constriction 2-4 times larger than a typical erythrocyte. These channels mimic arteriole-sized vessels, and have the advantage that the cell membrane is not in contact with the channel walls which have vastly different mechanical and material properties than living tissue. High-speed video and image analysis were used to quantify the trajectories and deformations of cells exposed to varied doses of diamide, a chemical known to ``rigidify'' erythrocytes. Our results show that (i) deformation is proportional to shear rate and (ii) the deformability of diamide-treated cells is greater than that of untreated cells. The latter is an unforeseen result because micropipette aspiration experiments have shown the opposite. We expect that the experimental procedure described here will be useful for characterizing the effect of different therapeutic agents on cellular deformability.

  17. Improved determination of vascular blood-flow shear rate using Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Farison, James B.; Begeman, Garett A.; Salles-Cunha, Sergio X.; Beebe, Hugh G.

    1997-05-01

    Shear rate has been linked to endothelial and smooth muscle cell function, neointimal hyperplasia, poststenotic dilation and progression of atherosclerotic plaque. In vivo studies of shear rate have been limited in humans due to the lack of a truly accurate noninvasive method of measuring blood flow. In clinical vascular laboratories, the primary method of wall shear rate estimation is the scaled ratio between the center line systolic velocity and the local arterial radius. The present study compares this method with the shear rate calculated directly from data collected using a Doppler ultrasound scanner. Blood flow in the superficial femoral artery of 20 subjects was measured during three stages of distal resistance. Analysis and display programs were written for use with the MATLAB image processing software package. The experimental values of shear rate were calculated using the formal definition and then compared to the standard estimate. In all three states of distal resistance, the experimental values were significantly higher than the estimated values by a factor of approximately 1.57. These results led to the conclusion that the direct method of measuring shear rate is more precise and should replace the estimation model in the clinical laboratory.

  18. Pore-Scale Modeling of Non-Newtonian Shear-Thinning Fluids in Blood Oxygenator Design.

    PubMed

    Low, Kenny W Q; van Loon, Raoul; Rolland, Samuel A; Sienz, Johann

    2016-05-01

    This paper reviews and further develops pore-scale computational flow modeling techniques used for creeping flow through orthotropic fiber bundles used in blood oxygenators. Porous model significantly reduces geometrical complexity by taking a homogenization approach to model the fiber bundles. This significantly simplifies meshing and can avoid large time-consuming simulations. Analytical relationships between permeability and porosity exist for Newtonian flow through regular arrangements of fibers and are commonly used in macroscale porous models by introducing a Darcy viscous term in the flow momentum equations. To this extent, verification of analytical Newtonian permeability-porosity relationships has been conducted for parallel and transverse flow through square and staggered arrangements of fibers. Similar procedures are then used to determine the permeability-porosity relationship for non-Newtonian blood. The results demonstrate that modeling non-Newtonian shear-thinning fluids in porous media can be performed via a generalized Darcy equation with a porous medium viscosity decomposed into a constant term and a directional expression through least squares fitting. This concept is then investigated for various non-Newtonian blood viscosity models. The proposed methodology is conducted with two different porous model approaches, homogeneous and heterogeneous, and validated against a high-fidelity model. The results of the heterogeneous porous model approach yield improved pressure and velocity distribution which highlights the importance of wall effects.

  19. Dynamic deformation and recovery response of red blood cells to a cyclically reversing shear flow: Effects of frequency of cyclically reversing shear flow and shear stress level.

    PubMed

    Watanabe, Nobuo; Kataoka, Hiroyuki; Yasuda, Toshitaka; Takatani, Setsuo

    2006-09-01

    Dynamic deformation and recovery responses of red blood cells (RBCs) to a cyclically reversing shear flow generated in a 30-microm clearance, with the peak shear stress of 53, 108, 161, and 274 Pa at the frequency of 1, 2, 3, and 5 Hz, respectively, were studied. The RBCs' time-varying velocity varied after the glass plate velocity without any time lag, whereas the L/W change, where L and W were the major and minor axes of RBCs' ellipsoidal shape, exhibited a rapid increase and gradual decay during the deformation and recovery phase. The time of minimum L/W occurrence lagged behind the zero-velocity time of the glass plate (zero stress), and the delay time normalized to the one-cycle duration remained constant at 8.0%. The elongation of RBCs at zero stress time became larger with the reversing frequency. A simple mechanical model consisting of an elastic linear element during a rapid elongation period and a parallel combination of elements such as a spring and dashpot during the nonlinear recovery phase was suggested. The dynamic response behavior of RBCs under a cyclically reversing shear flow was different from the conventional shape change where a steplike force was applied to and completely released from the RBCs.

  20. Analysis of red blood cell deformation under fast shear flow for better estimation of hemolysis.

    PubMed

    Nakamura, Masanori; Bessho, Sadao; Wada, Shigeo

    2014-01-01

    We examined the deformation behavior of a red blood cell (RBC) in various flow fields to determine whether the extent of RBC deformation is correlated with the shear stress used as a hemolysis index. The RBC model was introduced to a simple shear flow (Couette flow) and to slightly complex flows (unsteady shear flows and stenosed flows). The RBC deformation was assessed by the maximum first principal strain over the RBC membrane and compared with the shear stress. Although the results were consistent under steady Couette flow, this was not the case under unsteady Couette flow or stenosed flow due to the viscoelastic nature of the RBC deformation caused by fluid forces. These results suggest that there is a limitation in accurately estimating the mechanical damage of RBCs solely from a macroscopic flow field, indicating the necessity of taking into account the dynamic deformation of RBCs to provide a better estimation of hemolysis. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Non-Newtonian Flow of Blood in Arterioles: Consequences for Wall Shear Stress Measurements

    PubMed Central

    SRIRAM, Krishna; INTAGLIETTA, Marcos; TARTAKOVSKY, Daniel M.

    2014-01-01

    We model blood in a microvessel as an inhomogeneous non-Newtonian fluid, whose viscosity varies with hematocrit and shear rate in accordance with the Quemada rheological relation. The flow is assumed to consist of two distinct, immiscible and homogeneous fluid layers: an inner region densely packed with red blood cells, and an outer cell-free layer whose thickness depends on discharge hematocrit. We demonstrate that the proposed model provides a realistic description of velocity profiles, tube hematocrit, core hematocrit and apparent viscosities over a wide range of vessel radii and discharge hematocrits. Our analysis reveals the importance of incorporating this complex blood rheology into estimates of wall shear stress in micro-vessels. The latter is accomplished by specifying a correction factor, which accounts for the deviation of blood flow from the Poiseuille law. PMID:24703006

  2. [Determining wall shear stress in artificial blood pumps of heart assist devices].

    PubMed

    Debaene, P; Aguilera, D; Kertzscher, U; Affeld, K

    2002-01-01

    The walls in blood pumps are made of artificial material and thus are thrombogenic to a lesser or larger degree. Also the flow plays a role: a blood flow with no flow separations and stagnation zones is required to avoid the generation of thrombi. A precondition for solving this problem is the assessment of the wall shear rate. However this parameter is difficult to assess because of the deformability of the walls and the pulsation of the flow. Two methods are proposed to estimate the wall shear stress in bloodpumps. The paint erosion method allows a characterisation of the flow near the wall. The second method is a special development of standard Particle Image Velocimetry (PIV). A vector field of the flow close to the wall results. Both methods should permit the assessment of the wall shear stress in bloodpumps.

  3. What Is High Blood Pressure?

    MedlinePlus

    ... consistently too high. How your blood pressure and circulatory system work In order to survive and function properly, ... and organs need the oxygenated blood that your circulatory system carries throughout the body. When the heart beats, ...

  4. High Blood Pressure in Pregnancy

    MedlinePlus

    ... of the baby. Controlling your blood pressure during pregnancy and getting regular prenatal care are important for ... your baby. Treatments for high blood pressure in pregnancy may include close monitoring of the baby, lifestyle ...

  5. Role of fluid shear stress in regulating VWF structure, function and related blood disorders.

    PubMed

    Gogia, Shobhit; Neelamegham, Sriram

    2015-01-01

    Von Willebrand factor (VWF) is the largest glycoprotein in blood. It plays a crucial role in primary hemostasis via its binding interaction with platelet and endothelial cell surface receptors, other blood proteins and extra-cellular matrix components. This protein is found as a series of repeat units that are disulfide bonded to form multimeric structures. Once in blood, the protein multimer distribution is dynamically regulated by fluid shear stress which has two opposing effects: it promotes the aggregation or self-association of multiple VWF units, and it simultaneously reduces multimer size by facilitating the force-dependent cleavage of the protein by various proteases, most notably ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type repeats, motif 1 type 13). In addition to these effects, fluid shear also controls the solution and substrate-immobilized structure of VWF, the nature of contact between blood platelets and substrates, and the biomechanics of the GpIbα-VWF bond. These features together regulate different physiological and pathological processes including normal hemostasis, arterial and venous thrombosis, von Willebrand disease, thrombotic thrombocytopenic purpura and acquired von Willebrand syndrome. This article discusses current knowledge of VWF structure-function relationships with emphasis on the effects of hydrodynamic shear, including rapid methods to estimate the nature and magnitude of these forces in selected conditions. It shows that observations made by many investigators using solution and substrate-based shearing devices can be reconciled upon considering the physical size of VWF and the applied mechanical force in these different geometries.

  6. Shear and shear friction of ultra-high performance concrete bridge girders

    NASA Astrophysics Data System (ADS)

    Crane, Charles Kennan

    Ultra-High Performance Concrete (UHPC) is a new class of concrete characterized by no coarse aggregate, steel fiber reinforcement, low w/c, low permeability, compressive strength exceeding 29,000 psi (200 MPa), tensile strength ranging from 1,200 to 2,500 psi (8 to 17 MPa), and very high toughness. These properties make prestressed precast UHPC bridge girders a very attractive replacement material for steel bridge girders, particularly when site demands require a comparable beam depth to steel and a 100+ year life span is desired. In order to efficiently utilize UHPC in bridge construction, it is necessary to create new design recommendations for its use. The interface between precast UHPC girder and cast-in-place concrete decks must be characterized in order to safely use composite design methods with this new material. Due to the lack of reinforcing bars, all shear forces in UHPC girders have to be carried by the concrete and steel fibers. Current U.S. codes do not consider fiber reinforcement in calculating shear capacity. Fiber contribution must be accurately accounted for in shear equations in order to use UHPC. Casting of UHPC may cause fibers to orient in the direction of casting. If fibers are preferentially oriented, physical properties of the concrete may also become anisotropic, which must be considered in design. The current research provides new understanding of shear and shear friction phenomena in UHPC including: (1) Current AASHTO codes provide a non-conservative estimate of interface shear performance of smooth UHPC interfaces with and without interface steel. (2) Fluted interfaces can be created by impressing formliners into the surface of plastic UHPC. AASHTO and ACI codes for roughened interfaces are conservative for design of fluted UHPC interfaces.(3) A new equation for the calculation of shear capacity of UHPC girders is presented which takes into account the contribution of steel fiber reinforcement. (4) Fibers are shown to preferentially

  7. High Blood Pressure

    MedlinePlus

    ... is at rest between beats Health care workers write blood pressure numbers with the systolic number above ... available to discuss recent findings and ongoing research projects about health conditions and social determinants that disproportionately ...

  8. High Blood Pressure (Hypertension)

    MedlinePlus

    ... Practice healthy coping techniques, such as muscle relaxation, deep breathing or meditation. Getting regular physical activity and ... blood pressure at home. Practice relaxation or slow, deep breathing. Practice taking deep, slow breaths to help ...

  9. High Blood Pressure (Hypertension)

    MedlinePlus

    ... can improve your health in other ways. Mastering stress management techniques can lead to other behavior changes — including those that reduce your blood pressure. When looking for ways to manage stress, remember that you have many options. For example: ...

  10. High shear flow induces migration of adherent human platelets.

    PubMed

    Kraemer, Bjoern F; Schmidt, Christine; Urban, Benjamin; Bigalke, Boris; Schwanitz, Laura; Koch, Miriam; Seizer, Peter; Schaller, Martin; Gawaz, Meinrad; Lindemann, Stephan

    2011-01-01

    Shear forces are generated in all parts of the vascular system and contribute directly and indirectly to vascular disease progression. Endothelial cells are able to adapt to flow conditions, and are known to polarize and migrate in response to shear forces. Platelets exposed to shear stress are activated and release bioactive molecules from their alpha granules. So far, platelets have been considered to be static cells that do not leave the site of tight adhesion. However, we have recently been able to demonstrate the capacity of platelets to migrate in response to stromal derived factor-1 (SDF-1). In this project, we have demonstrated that platelets accumulate in areas with a high concentration of SDF-1 under flow conditions and respond to high shear stress by cellular polarization, cytoskeletal reorganisation, and flow-directed migration. In this context, we have shown increased Wiskott-Aldrich Syndrome protein (WASP) phosphorylation and intracellular redistribution of focal adhesion kinase (FAK) under high-shear stress conditions. The effect of flow-induced platelet migration has not previously been recognized and offers a new role for platelets as mobile cells. Their migratory potential may enable platelets to cover intimal lesions and contribute to vascular repair.

  11. Characteristics of a magnetorheological fluid in high shear rate

    NASA Astrophysics Data System (ADS)

    Kikuchi, Takehito; Abe, Isao; Inoue, Akio; Iwasaki, Akihiko; Okada, Katsuhiko

    2016-11-01

    The information on the properties of the magnetorheological fluid (MRF) in high shear rate, in particular a shear rate greater than 10 000 s-1, is important for the design of devices utilizing the MRF with very narrow fluid gaps, which are used in high-speed applications. However, very little research has been conducted on this subject. The objective of this study is to provide such information. MRF-140CG (Lord Corp.) is chosen as an example MRF. The plastic viscosity, thermal sensitivity, and durability of the fluid, especially under a shear rate greater than 10 000 s-1, are reported. The plastic viscosity is almost constant under a wide range of magnetic input. In contrast, MRF-140CG is sensitive to the shear rate; its sensitivity is relatively low at high shear rates. The thermal sensitivity shows negative values, and the effect of temperature decreases with increasing magnetic input. According to the result of the duration test at 30 000 s-1 and at a temperature of 120 °C, the lifetime dissipation energy is 5.48 MJ ml-1.

  12. High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis

    PubMed Central

    Wang, Yi; Qiu, Juhui; Luo, Shisui; Xie, Xiang; Zheng, Yiming; Zhang, Kang; Ye, Zhiyi; Liu, Wanqian; Gregersen, Hans; Wang, Guixue

    2016-01-01

    Rupture of atherosclerotic plaques causing thrombosis is the main cause of acute coronary syndrome and ischemic strokes. Inhibition of thrombosis is one of the important tasks developing biomedical materials such as intravascular stents and vascular grafts. Shear stress (SS) influences the formation and development of atherosclerosis. The current review focuses on the vulnerable plaques observed in the high shear stress (HSS) regions, which localizes at the proximal region of the plaque intruding into the lumen. The vascular outward remodelling occurs in the HSS region for vascular compensation and that angiogenesis is a critical factor for HSS which induces atherosclerotic vulnerable plaque formation. These results greatly challenge the established belief that low shear stress is important for expansive remodelling, which provides a new perspective for preventing the transition of stable plaques to high-risk atherosclerotic lesions. PMID:27482467

  13. Blood contamination effect on shear bond strength of an orthodontic hydrophilic resin

    PubMed Central

    da CUNHA, Taís de Morais Alves; BEHRENS, Bruna Ariela; NASCIMENTO, Denise; RETAMOSO, Luciana Borges; LON, Luís Filipe Siu; TANAKA, Orlando; GUARIZA FILHO, Odilon

    2012-01-01

    Objective The aim of this study was to assess the impact of blood contamination on shear bond strength (SBS) and bond failure pattern of metallic brackets bonded using a new hydrophilic resin. Material and Methods Eighty human premolars were randomly allocated into 4 groups (n=20) according to the bonding material and contamination pattern. GI: brackets bonded with the Transbond XT conventional system without contamination; GII: brackets bonded with the Transbond XT conventional system with blood contamination; GIII: brackets bonded with the Transbond Self Etching Primer and Transbond Plus Color without contamination; GIV: brackets bonded with the Transbond Self Etching Primer and Transbond Plus Color with blood contamination. The specimens were stored in distilled water at 37ºC for 24 h and then submitted to SBS test at a crosshead speed of 0.5 mm/min. After bond failure, the enamel surfaces were observed under an optical microscope at 40x magnification. Results Blood contamination decreased (P<0.05) shear bond strength when both the hydrophobic (GII) and the hydrophilic resin (GIV) were used. However, the bond strength of Transbond Color Change group was significantly higher (P<0.05) than that of the Transbond XT conventional system group under blood contamination condition. Under dry conditions no difference was observed between the hydrophobic and hydrophilic resin groups. Regarding the bond failure pattern, when blood contaminated the enamel, the adhesive remnant index (ARI) showed predominance of scores 0 and 1, which indicates low adhesion to enamel. Conclusions Although there was a significant decrease in the shear bond strength for both adhesive systems under blood contamination, the hydrophilic system showed significantly higher bond strength than the hydrophobic resin adhesive. Therefore, it is advisable to use the hydrophilic resin under risk of blood contamination. PMID:22437684

  14. Shear Load Transfer in High and Low Stress Tendons

    PubMed Central

    Kondratko-Mittnacht, Jaclyn; Duenwald-Kuehl, Sarah; Lakes, Roderic; Vanderby, Ray

    2016-01-01

    Background Tendon is an integral part of joint movement and stability, as it functions to transmit load from muscle to bone. It has an anisotropic, fibrous hierarchical structure that is generally loaded in the direction of its fibers/fascicles. Internal load distributions are altered when joint motion rotates an insertion site or when local damage disrupts fibers/fascicles, potentially causing inter-fiber (or inter-fascicular) shear. Tendons with different microstructure (helical versus linear) may redistribute loads differently. Method of Approach This study explored how shear redistributes axial loads in rat tail tendon (low stress tendons with linear microstructure) and porcine flexor tendon (high stress with helical microstructure) by creating lacerations on opposite sides of the tendon, ranging from about 20-60% of the tendon width, to create various magnitudes of shear. Differences in fascicular orientation were quantified using polarized light microscopy. Results and Conclusions Unexpectedly, both tendon types maintained about 20% of pre-laceration stress values after overlapping cuts of 60% of tendon width (no intact fibers end to end) suggesting that shear stress transfer can contribute more to overall tendon strength and stiffness than previously reported. All structural parameters for both tendon types decreased linearly with increasing laceration depth. The tail tendon had a more rapid decline in post-laceration elastic stress and modulus parameters as well as a more linear and less tightly packed fascicular structure, suggesting that positional tendons may be less well suited to redistribute loads via a shear mechanism. PMID:25700261

  15. High resolution weak lensing mass mapping combining shear and flexion

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Starck, J.-L.; Leonard, A.; Pires, S.

    2016-06-01

    Aims: We propose a new mass mapping algorithm, specifically designed to recover small-scale information from a combination of gravitational shear and flexion. Including flexion allows us to supplement the shear on small scales in order to increase the sensitivity to substructures and the overall resolution of the convergence map without relying on strong lensing constraints. Methods: To preserve all available small scale information, we avoid any binning of the irregularly sampled input shear and flexion fields and treat the mass mapping problem as a general ill-posed inverse problem, which is regularised using a robust multi-scale wavelet sparsity prior. The resulting algorithm incorporates redshift, reduced shear, and reduced flexion measurements for individual galaxies and is made highly efficient by the use of fast Fourier estimators. Results: We tested our reconstruction method on a set of realistic weak lensing simulations corresponding to typical HST/ACS cluster observations and demonstrate our ability to recover substructures with the inclusion of flexion, which are otherwise lost if only shear information is used. In particular, we can detect substructures on the 15'' scale well outside of the critical region of the clusters. In addition, flexion also helps to constrain the shape of the central regions of the main dark matter halos. Our mass mapping software, called Glimpse2D, is made freely available at http://www.cosmostat.org/software/glimpse

  16. Shear load transfer in high and low stress tendons.

    PubMed

    Kondratko-Mittnacht, Jaclyn; Duenwald-Kuehl, Sarah; Lakes, Roderic; Vanderby, Ray

    2015-05-01

    Tendon is an integral part of joint movement and stability, as it functions to transmit load from muscle to bone. It has an anisotropic, fibrous hierarchical structure that is generally loaded in the direction of its fibers/fascicles. Internal load distributions are altered when joint motion rotates an insertion site or when local damage disrupts fibers/fascicles, potentially causing inter-fiber (or inter-fascicular) shear. Tendons with different microstructures (helical versus linear) may redistribute loads differently. This study explored how shear redistributes axial loads in rat tail tendon (low stress tendons with linear microstructure) and porcine flexor tendon (high stress with helical microstructure) by creating lacerations on opposite sides of the tendon, ranging from about 20% to 60% of the tendon width, to create various magnitudes of shear. Differences in fascicular orientation were quantified using polarized light microscopy. Unexpectedly, both tendon types maintained about 20% of pre-laceration stress values after overlapping cuts of 60% of tendon width (no intact fibers end to end) suggesting that shear stress transfer can contribute more to overall tendon strength and stiffness than previously reported. All structural parameters for both tendon types decreased linearly with increasing laceration depth. The tail tendon had a more rapid decline in post-laceration elastic stress and modulus parameters as well as a more linear and less tightly packed fascicular structure, suggesting that positional tendons may be less well suited to redistribute loads via a shear mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Stroke and High Blood Pressure

    MedlinePlus

    ... Disease Venous Thromboembolism Aortic Aneurysm More How High Blood Pressure Can Lead to Stroke Updated:May 3,2017 ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  18. Managing High Blood Pressure Medications

    MedlinePlus

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Managing High Blood Pressure Medications Updated:Jan 3,2017 When your doctor ... health. This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  19. High Blood Pressure and Women

    MedlinePlus

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More High Blood Pressure and Women Updated:Dec 14,2016 Pregnancy and ... Women . This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  20. Platelet adhesion from shear blood flow is controlled by near-wall rebounding collisions with erythrocytes.

    PubMed

    Tokarev, A A; Butylin, A A; Ataullakhanov, F I

    2011-02-16

    The efficacy of platelet adhesion in shear flow is known to be substantially modulated by the physical presence of red blood cells (RBCs). The mechanisms of this regulation remain obscure due to the complicated character of platelet interactions with RBCs and vascular walls. To investigate this problem, we have created a mathematical model that takes into account shear-induced transport of platelets across the flow, platelet expulsion by the RBCs from the near-wall layer of the flow onto the wall, and reversible capture of platelets by the wall and their firm adhesion to it. This model analysis allowed us to obtain, for the first time to our knowledge, an analytical determination of the platelet adhesion rate constant as a function of the wall shear rate, hematocrit, and average sizes of platelets and RBCs. This formula provided a quantitative description of the results of previous in vitro adhesion experiments in perfusion chambers. The results of the simulations suggest that under a wide range of shear rates and hematocrit values, the rate of platelet adhesion from the blood flow is mainly limited by the frequency of their near-wall rebounding collisions with RBCs. This finding reveals the mechanism by which erythrocytes physically control platelet hemostasis.

  1. Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress.

    PubMed

    Lee, Myung Gwon; Shin, Joong Ho; Bae, Chae Yun; Choi, Sungyoung; Park, Je-Kyun

    2013-07-02

    We report a contraction-expansion array (CEA) microchannel device that performs label-free high-throughput separation of cancer cells from whole blood at low Reynolds number (Re). The CEA microfluidic device utilizes hydrodynamic field effect for cancer cell separation, two kinds of inertial effects: (1) inertial lift force and (2) Dean flow, which results in label-free size-based separation with high throughput. To avoid cell damages potentially caused by high shear stress in conventional inertial separation techniques, the CEA microfluidic device isolates the cells with low operational Re, maintaining high-throughput separation, using nondiluted whole blood samples (hematocrit ~45%). We characterized inertial particle migration and investigated the migration of blood cells and various cancer cells (MCF-7, SK-BR-3, and HCC70) in the CEA microchannel. The separation of cancer cells from whole blood was demonstrated with a cancer cell recovery rate of 99.1%, a blood cell rejection ratio of 88.9%, and a throughput of 1.1 × 10(8) cells/min. In addition, the blood cell rejection ratio was further improved to 97.3% by a two-step filtration process with two devices connected in series.

  2. Red blood cell: from its mechanics to its motion in shear flow.

    PubMed

    Viallat, A; Abkarian, M

    2014-06-01

    There is a number of publications on red blood cell deformability, that is, on the remarkable cell ability to change its shape in response to an external force and to pass through the narrowest blood capillaries and splenic sinuses. Cell deformability is postulated to be a major determinant of impaired perfusion, increase of blood viscosity, and occlusion in microvessels. Current deformability tests like ektacytometry measure global parameters, related to shape changes at the whole cell scale. Despite strong advances in our understanding of the molecular organization of red blood cells, the relationships between the rheology of each element of the cell composite structure, the global deformability tests, and the cell behavior in microflows are still not elucidated. This review describes recent advances in the description of the dynamics of red blood cells in shear flow and in the mechanistic understanding of this dynamics at the scale of the constitutive rheological and structural elements of the cell. These developments could open up new horizons for the determination of red blood cell mechanical parameters by analyzing their motion under low shear flows.

  3. Medications for High Blood Pressure

    MedlinePlus

    ... Products For Consumers Home For Consumers Consumer Updates Medications for High Blood Pressure Share Tweet Linkedin Pin ... all their lives. back to top Types of Medications FDA has approved many medications to treat high ...

  4. What Causes High Blood Cholesterol?

    MedlinePlus

    ... this page from the NHLBI on Twitter. What Causes High Blood Cholesterol? Many factors can affect the ... in families. An inherited condition called familial hypercholesterolemia causes very high LDL cholesterol. (“Inherited” means the condition ...

  5. Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear

    DOEpatents

    Westerfield, C.L.; Morris, J.S.; Agnew, S.F.

    1997-01-14

    Diamond anvil cell is described for spectroscopic investigation of materials at high temperature, high pressure and shear. A cell is described which, in combination with Fourier transform IR spectroscopy, permits the spectroscopic investigation of boundary layers under conditions of high temperature, high pressure and shear. 4 figs.

  6. Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear

    DOEpatents

    Westerfield, Curtis L.; Morris, John S.; Agnew, Stephen F.

    1997-01-01

    Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear. A cell is described which, in combination with Fourier transform IR spectroscopy, permits the spectroscopic investigation of boundary layers under conditions of high temperature, high pressure and shear.

  7. Mitigation of Shear-Induced Blood Damage by Mechanical Bileaflet Heart Valves

    NASA Astrophysics Data System (ADS)

    Zakharin, Boris; Arjunon, Sivakkumar; Saikrishnan, Neelakantan; Yoganathan, Ajit; Glezer, Ari

    2010-11-01

    The strong transitory shear stress generated during the time-periodic closing of bileaflet mechanical heart valves that is associated with the formation of counter-rotating vortices near the leaflet edges may be damaging to blood elements and may result in platelet activation and therefore thrombosis and thromboembolism complications. These flow transients are investigated using fluorescent PIV in a new, low-volume test setup that reproduces the pulsatile physiological conditions associated with a 25 mm St. Jude Medical valve. The flow transients are partially suppressed and the platelet activation is minimized using miniature vortex generator arrays that are embedded on the surface of the leaflets. Measurements of the ensuing flow taken phase-locked to the leaflet motion demonstrate substantial modification of the transient vertical structures and concomitant reduction of Reynolds shear stresses. Human blood experiments validated the effectiveness of miniature vortex generators in reducing thrombus formation by over 42 percent.

  8. Role of fluid shear stress in regulating VWF structure, function and related blood disorders

    PubMed Central

    Gogia, Shobhit; Neelamegham, Sriram

    2015-01-01

    Von Willebrand factor (VWF) is the largest glycoprotein in blood. It plays a crucial role in primary hemostasis via its binding interaction with platelet and endothelial cell surface receptors, other blood proteins and extra-cellular matrix components. This protein is found as a series of repeat units that are disulfide bonded to form multimeric structures. Once in blood, the protein multimer distribution is dynamically regulated by fluid shear stress which has two opposing effects: it promotes the aggregation or self-association of multiple VWF units, and it simultaneously reduces multimer size by facilitating the force-dependent cleavage of the protein by various proteases, most notably ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type repeats, motif 1 type 13). In addition to these effects, fluid shear also controls the solution and substrate-immobilized structure of VWF, the nature of contact between blood platelets and substrates, and the biomechanics of the GpIbα–VWF bond. These features together regulate different physiological and pathological processes including normal hemostasis, arterial and venous thrombosis, von Willebrand disease, thrombotic thrombocytopenic purpura and acquired von Willebrand syndrome. This article discusses current knowledge of VWF structure–function relationships with emphasis on the effects of hydrodynamic shear, including rapid methods to estimate the nature and magnitude of these forces in selected conditions. It shows that observations made by many investigators using solution and substrate-based shearing devices can be reconciled upon considering the physical size of VWF and the applied mechanical force in these different geometries. PMID:26600266

  9. Impact of blood rheology on wall shear stress in a model of the middle cerebral artery

    PubMed Central

    Bernabeu, Miguel O.; Nash, Rupert W.; Groen, Derek; Carver, Hywel B.; Hetherington, James; Krüger, Timm; Coveney, Peter V.

    2013-01-01

    Perturbations to the homeostatic distribution of mechanical forces exerted by blood on the endothelial layer have been correlated with vascular pathologies, including intracranial aneurysms and atherosclerosis. Recent computational work suggests that, in order to correctly characterize such forces, the shear-thinning properties of blood must be taken into account. To the best of our knowledge, these findings have never been compared against experimentally observed pathological thresholds. In this work, we apply the three-band diagram (TBD) analysis due to Gizzi et al. (Gizzi et al. 2011 Three-band decomposition analysis of wall shear stress in pulsatile flows. Phys. Rev. E 83, 031902. (doi:10.1103/PhysRevE.83.031902)) to assess the impact of the choice of blood rheology model on a computational model of the right middle cerebral artery. Our results show that, in the model under study, the differences between the wall shear stress predicted by a Newtonian model and the well-known Carreau–Yasuda generalized Newtonian model are only significant if the vascular pathology under study is associated with a pathological threshold in the range 0.94–1.56 Pa, where the results of the TBD analysis of the rheology models considered differs. Otherwise, we observe no significant differences. PMID:24427534

  10. Shear-induced in-vitro haemostasis/thrombosis tests: the benefit of using native blood.

    PubMed

    Yamamoto, Junichiro; Kovacs, Iren B

    2003-12-01

    The historical development of in-vitro bleeding time tests, using solely shear forces to initiate haemostatic plug formation, in the absence of the vessel wall or its components, is described. Techniques that have no potential for routine use in clinical practice, such as flow chambers and cone-and-plate viscometers, are excluded. The problems related to the use of citrated blood in platelet function tests are discussed. In light of the pivotal role of thrombin and platelet-dependent thrombin generation in haemostasis/thrombosis, the advantage and clinical benefits of testing unadulterated native blood is discussed.

  11. Effect of Blood Shear Forces on Platelet Mediated Thrombosis Inside Arterial Stenosis.

    NASA Astrophysics Data System (ADS)

    Maalej, Nabil

    Shear induced activation of platelets plays a major role in the onset of thrombosis in atherosclerotic arteries. Blood hemodynamics and its effect on platelet kinetics has been studied mainly in in vitro and in ex vivo experiments. We designed new in vivo methods to study blood hemodynamic effects on platelet kinetics in canine stenosed carotid arteries. A carotid artery-jugular vein anastomotic shunt was produced. Intimal damage and controlled variations in the degree of stenosis were produced on the artery. An inflatable cuff was placed around the jugular vein to control vascular resistance. An electromagnetic flowmeter was used to measure blood flow. Doppler ultrasound crystals were used to measure the velocity profiles inside and distal to the stenosis. Stenosis geometry was obtained using digital subtraction angiography and quantitative arteriography. Using these measurements we calculated the wall shear stress using the finite difference solution of the Navier-Stokes equations. To study platelet kinetics, autologous platelets were labeled with Indium Oxine and injected IV. A collimated Nal gamma counter was placed over the stenosis to detect radio-labeled platelet accumulation as platelet mediated thrombi formed in the stenosis. The radioactive count rate increased in an inverse parallel fashion to the decline in flow rate during thrombus formation. The platelet accumulation increased with the increase of percent stenosis and was maximal at the narrow portion of the stenosis. Acute thrombus formation leading to arterial occlusion was only observed for stenosis higher than 70 +/- 5%. Platelet accumulation rate was not significant until the pressure gradient across the stenosis exceeded 40 +/- 10 mmHg. Totally occlusive thrombus formation was only observed for shear stresses greater than a critical value of 100 +/- 10 Pa. Beyond this critical value acute platelet thrombus formation increased exponentially with shear. Increased shear stresses were found to

  12. Feedback control in high shear granulation of pharmaceutical powders.

    PubMed

    Watano, S; Numa, T; Koizumi, I; Osako, Y

    2001-11-01

    A novel system has been developed to control granule growth in high shear granulation. The system basically consisted of an image-processing device and a fuzzy control system. A computer-controlled image processor, an air purge unit, a high-energy xenon lighting system and an image probe with a CCD camera comprised the image processing device. A fuzzy control system using a linguistic algorithm employing if-then rules with a process lag element taken into consideration has been developed to accurately control granule growth without any excessive growth. This newly developed system was applied to actual high shear granulation of pharmaceutical powders and validity of the system was investigated. It was found that the system could control granule growth with high accuracy, regardless of changes in physical properties of starting materials and the operating conditions.

  13. Winged inclusions under high-strain simple shear

    NASA Astrophysics Data System (ADS)

    Grasemann, Bernhard; Dabrowski, Marcin

    2014-05-01

    In this study we investigate pinch-and-swell objects, which have been subjected to layer parallel shear deformation. We use a high-resolution mechanical numerical model, which allows to model finite strains up to γ = 40. The developing structures have been called winged inclusions, which have geometrically similarities with δ-clast systems and rolling structures. However, our model results suggest markedly different mechanical evolution for winged inclusions, which has to be considered when these structures are used as shear sense indicator or finite strain gauge. During the early stages of formation winged inclusions may resemble mirror images of sigmoidal objects and miss-interpretations will lead to a wrong interpretation of the shear sense. During high-shear strain, the structures may be approximately described as consisting of a pulsating faster rotating core and thinning tails that experience differential slower rotation. The viscosity ratio and the shape of the winged inclusion have a significant influence on the rotation rate. The tails are subject to ptygmatic folding when they rotate through the field of instantaneous shortening and may unfold again in the field of instantaneous stretching. During on-going shearing the trailing wing may become the leading wing and finally unfold after rotation of 180° resulting again in a pinch and swell shaped objects. Therefore winged inclusions record little information about the finite strain. Rootless intrafolial folds with opposing closures have geometrically strong similarities with winged inclusions. It is speculated that the formation of winged inclusions might be an efficient mechanisms to produce rootless intrafolial folds, which might influence the rheological behaviour of natural highly strained rocks.

  14. High Blood Pressure Increasing Worldwide

    MedlinePlus

    ... other ways to control blood pressure, including healthy lifestyle choices and maintaining a normal weight, Roth said. Murray said some of the factors responsible for the worldwide increase in high blood pressure are unhealthy diets and obesity. In addition, in developing countries, more people are ...

  15. Investigation of the shear response and geometrically necessary dislocation densities in shear localization in high-purity titanium

    DOE PAGES

    Zhu, Chaoyi; Livescu, Veronica; Harrington, Tyler; ...

    2017-03-31

    The influence of microstructural anisotropy on shear response of high-purity titanium was studied using the compact forced-simple-shear specimen (CFSS) loaded under quasi-static loading conditions. Post-mortem characterization reveals significant difference in shear response of different directions in the same material due to material crystallographic texture anisotropy. Shear bands are narrower in specimens in which the shear zone is aligned along the direction with a strong {0001} basal texture. Twinning was identified as an active mechanism to accommodate strains in the shear region in both orientations. This paper confirms the applicability of the CFSS design for the investigation of differences in themore » shear response of materials as a function of process-induced crystallographic texture. A detailed, systematic approach to quantifying shear band evolution by evaluating geometrically necessary dislocations (GND) associated with crystallographic anisotropy is presented. Finally, the results show that: i) line average GND density profiles, for Ti samples that possess a uniform equiaxed-grain structure, but with strong crystallographic anisotropy, exhibit significant differences in GND density close to the shear band center; ii) GND profiles decrease steadily away from the shear band as the plastic strain diminishes, in agreement with Ashby's theory of work hardening, where the higher GND density in the through-thickness (TT) orientation is a result of restricted < a > type slip in the shear band compared with in-plane (IP) samples; iii) the anisotropy in deformation response is derived from initial crystallographic texture of the materials, where GND density of < a > GNDs are higher adjacent to the shear band in the through-thickness sample oriented away from easy slip, but the density of < c+a > type GNDs are very similar in these two samples; and iv) the increase in grain average GND density was determined to have strong correlation to an increase in the

  16. Probe Oscillation Shear Elastography (PROSE): A High Frame-Rate Method for Two-Dimensional Ultrasound Shear Wave Elastography.

    PubMed

    Mellema, Daniel C; Song, Pengfei; Kinnick, Randall R; Urban, Matthew W; Greenleaf, James F; Manduca, Armando; Chen, Shigao

    2016-09-01

    Ultrasound shear wave elastography (SWE) utilizes the propagation of induced shear waves to characterize the shear modulus of soft tissue. Many methods rely on an acoustic radiation force (ARF) "push beam" to generate shear waves. However, specialized hardware is required to generate the push beams, and the thermal stress that is placed upon the ultrasound system, transducer, and tissue by the push beams currently limits the frame-rate to about 1 Hz. These constraints have limited the implementation of ARF to high-end clinical systems. This paper presents Probe Oscillation Shear Elastography (PROSE) as an alternative method to measure tissue elasticity. PROSE generates shear waves using a harmonic mechanical vibration of an ultrasound transducer, while simultaneously detecting motion with the same transducer under pulse-echo mode. Motion of the transducer during detection produces a "strain-like" compression artifact that is coupled with the observed shear waves. A novel symmetric sampling scheme is proposed such that pulse-echo detection events are acquired when the ultrasound transducer returns to the same physical position, allowing the shear waves to be decoupled from the compression artifact. Full field-of-view (FOV) two-dimensional (2D) shear wave speed images were obtained by applying a local frequency estimation (LFE) technique, capable of generating a 2D map from a single frame of shear wave motion. The shear wave imaging frame rate of PROSE is comparable to the vibration frequency, which can be an order of magnitude higher than ARF based techniques. PROSE was able to produce smooth and accurate shear wave images from three homogeneous phantoms with different moduli, with an effective frame rate of 300 Hz. An inclusion phantom study showed that increased vibration frequencies improved the accuracy of inclusion imaging, and allowed targets as small as 6.5 mm to be resolved with good contrast (contrast-to-noise ratio ≥ 19 dB) between the target and

  17. Effects of shear rate and suspending viscosity on deformation and frequency of red blood cells tank-treading in shear flows.

    PubMed

    Oulaid, Othmane; Saad, Abdul-Khalik W; Aires, Pedro S; Zhang, Junfeng

    2016-01-01

    The tank-treading rotation of red blood cells (RBCs) in shear flows has been studied extensively with experimental, analytical, and numerical methods. Even for this relatively simple system, complicated motion and deformation behaviors have been observed, and some of the underlying mechanisms are still not well understood. In this study, we attempt to advance our knowledge of the relationship among cell motion, deformation, and flow situations with a numerical model. Our simulation results agree well with experimental data, and confirm the experimental finding of the decrease in frequency/shear-rate ratio with shear rate and the increase of frequency with suspending viscosity. Moreover, based on the detailed information from our simulations, we are able to interpret the frequency dependency on shear rate and suspending viscosity using a simple two-fluid shear model. The information obtained in this study thus is useful for understanding experimental observations of RBCs in shear and other flow situations; the good agreement to experimental measurements also shows the potential usefulness of our model for providing reliable results for microscopic blood flows.

  18. High Blood Pressure and Pregnancy

    MedlinePlus

    ... damage. Some women with gestational hypertension eventually develop preeclampsia. Chronic hypertension. Chronic hypertension is high blood pressure ... determine when it began. Chronic hypertension with superimposed preeclampsia. This condition occurs in women with chronic hypertension ...

  19. Phase Diagram and Breathing Dynamics of Red Blood Cell Motion in Shear Flow

    NASA Astrophysics Data System (ADS)

    Bagchi, Prosenjit; Yazdani, Alireza

    2011-11-01

    We present phase diagrams of red blood cell dynamics in shear flow using three-dimensional numerical simulations. By considering a wide range of shear rate and interior-to-exterior fluid viscosity ratio, it is shown that the cell dynamics is often more complex than the well-known tank-treading, tumbling and swinging motion, and is characterized by an extreme variation of the cell shape. We identify such complex shape dynamics as `breathing' dynamics. During the breathing motion, the cell either completely aligns with the flow direction and the membrane folds inward forming two cusps, or, it undergoes large swinging motion while deep, crater-like dimples periodically emerge and disappear. At lower bending rigidity, the breathing motion occurs over a wider range of shear rates, and is often characterized by the emergence of a quad-concave shape. The effect of the breathing dynamics on the tank-treading-to-tumbling transition is illustrated by detailed phase diagrams which appear to be more complex and richer than those of vesicles. In a remarkable departure from classical theory of nondeformable cells, we find that there exists a critical viscosity ratio below which the transition is dependent on shear rate only. Supported by NSF.

  20. Tank Treading of Optically Trapped Red Blood Cells in Shear Flow

    PubMed Central

    Basu, Himanish; Dharmadhikari, Aditya K.; Dharmadhikari, Jayashree A.; Sharma, Shobhona; Mathur, Deepak

    2011-01-01

    Tank-treading (TT) motion is established in optically trapped, live red blood cells (RBCs) held in shear flow and is systematically investigated under varying shear rates, temperature (affecting membrane viscosity), osmolarity (resulting in changes in RBC shape and cytoplasmic viscosity), and viscosity of the suspending medium. TT frequency is measured as a function of membrane and cytoplasmic viscosity, the former being four times more effective in altering TT frequency. TT frequency increases as membrane viscosity decreases, by as much as 10% over temperature changes of only 4°C at a shear rate of ∼43 s−1. A threshold shear rate (1.5 ± 0.3 s−1) is observed below which the TT frequency drops to zero. TT motion is also observed in shape-engineered (spherical) RBCs and those with cholesterol-depleted membranes. The TT threshold is less evident in both cases but the TT frequency increases in the latter cells. Our findings indicate that TT motion is pervasive even in folded and deformed erythrocytes, conditions that occur when such erythrocytes flow through narrow capillaries. PMID:21961586

  1. High temperature steady shear and oscillatory rheometry of basaltic melt

    NASA Astrophysics Data System (ADS)

    Petford, N.; English, R.; Williams, R.; Rogers, N.

    2012-04-01

    There is a paucity of linear viscoelastic data on low viscosity (basaltic) silicate melts. We report here the initial results of a rheometrical characterisation (steady rotation, small angle oscillation) study on a geochemically well constrained aphyric basalt from Ethiopia (SiO2 48.51 wt.%, Mg# 0.44), in the temperature range 1200-1400 Celsius. Experiments were done using a recently developed commercial instrument (Anton Paar FRS 1600) and a wide gap Couette geometry. To the best of our knowledge these are the first reported silicate melt viscosity data obtained using small amplitude oscillatory shear and a rheometer with a high performance electrically commutated actuator. Results show that in the temperature range the system was very fluid, with the measured shear viscosity falling to ~ 2.3 Pa s at T = 1400 C. The melt exhibited a linear (Newtonian) response, with the shear viscosity remaining constant across two decades of deformation rate. As expected for a Newtonian fluid, the phase angle was 90 degrees across the entire range of angular frequencies studied. Correspondingly, the storage modulus (G') was zero and the loss modulus finite exhibiting a linear increase with frequency. The complex viscosity (oscillation) and shear viscosity (steady rotation) were equal in magnitude ('Cox-Merz' equivalence). These data are best interpreted in terms of a system with relatively low 'connectivity'/polymeric character and rapid relaxation dynamics, consistent with the mafic composition of the melt. As detailed compositional data are available the experimentally determined shear viscosity values are compared with those predicted from multicomponent chemical models in the literature. Discrepancies between the experimental and theoretical values are discussed.

  2. Red Blood Cell Aggregation and Dissociation in Shear Flows Simulated by Lattice Boltzmann Method

    PubMed Central

    Zhang, Junfeng; Johnson, Paul C.; Popel, Aleksander S.

    2008-01-01

    In this paper we develop a lattice Boltzmann algorithm to simulate red blood cell (RBC) behavior in shear flows. The immersed boundary method is employed to incorporate the fluid-membrane interaction between the flow field and deformable cells. The cell membrane is treated as a neo-Hookean viscoelastic material and a Morse potential is adopted to model the intercellular interaction. Utilizing the available mechanical properties of RBCs, multiple cells have been studied in shear flows using a two-dimensional approximation. These cells aggregate and form a rouleau under the action of intercellular interaction. The equilibrium configuration is related to the interaction strength. The end cells exhibit concave shapes under weak interaction and convex shapes under strong interaction. In shear flows, such a rouleau-like aggregate will rotate or be separated, depending on the relative strengths of the intercellular interaction and hydrodynamic viscous forces. These behaviors are qualitatively similar to experimental observations and show the potential of this numerical scheme for future studies of blood flow in microvessels. PMID:17888442

  3. When Blood Sugar is Too High

    MedlinePlus

    ... Real Lifesaver Kids Talk About: Coaches When Blood Sugar Is Too High KidsHealth > For Kids > When Blood ... balancing act. continue The Causes of High Blood Sugar In general, higher than normal blood glucose levels ...

  4. Local shear texture formation in adiabatic shear bands by high rate compression of high manganese TRIP steels

    NASA Astrophysics Data System (ADS)

    Li, J.; Yang, P.; Mao, W. M.; Cui, F. E.

    2015-04-01

    Local shear textures in ASBs of high manganese TRIP steels under high rate straining are determined and the influences of initial microstructure is analyzed using EBSD technique. It is seen that even at the presence of majority of two types of martensite before deformation, ASB is preferred to evolve in austenite, rather than in martenite, due to reverse transformation. Ultrafine grains of thress phases due to dynamic recrystallization are formed and all show shear textures. The less ε-martensite in ASB is distributed as islands and its preferred orientation can be found to originate from the variants in matrix. The grain orientation rotation around ASB in multi-phase alloy reveals significant influence of α'- martensite on texture in ASB. The mechanism of local texture formation in ASB of high manganese TRIP steel is proposed in terms of the interaction of early TRIP and later reverse transformation.

  5. Numerical simulations of deformation and aggregation of red blood cells in shear flow.

    PubMed

    Low, Hong-Tong; Ju, M; Sui, Y; Nazir, T; Namgung, B; Kim, Sangho

    2013-01-01

    This article reviews numerical simulations of red blood cells (RBCs) mainly using the lattice Boltzmann method (LBM), focusing on the 2-dimensional deformation and aggregation of the cells in simple shear flow. We outline the incorporation of the immersed boundary method into the LBM, in which the membrane forces are obtained from the membrane model. The RBCs are simulated as a single biconcave capsule and as a doublet of biconcave capsules. The transition from swinging to tumbling motions of the RBCs, as induced by reducing the shear rate or increasing the membrane bending stiffness, is discussed. Also discussed is the aggregation tendency of the doublet of RBCs, for which homogenous deformability maintained RBC aggregation, whereas an increased deformability difference resulted in RBC dissociation.

  6. Rheometrical Studies of Blood Clot Formation by Oscillatory Shear, Thromboelastography, Sonoclot Analysis and Free Oscillation Rheometry

    NASA Astrophysics Data System (ADS)

    Evans, P. Adrian; Hawkins, Karl M.; Lawrence, Matthew J.; Williams, P. Rhodri; Williams, Rhodri L.

    2008-07-01

    We report studies of the coagulation of samples of whole human blood by oscillatory shear techniques, including Fourier Transform Mechanical Spectroscopy (FTMS). These techniques are used herein to identify the Gel Point of coagulating blood in terms of the Chambon-Winter Gel Point criterion which provides a rheometrical basis for detecting the establishment of an incipient clot. A comparison of the results of FTMS with those obtained from measurements involving a Thromboelastograph (TEG), a Sonoclot Analyzer and a Free Oscillation Rheometer (FOR) indicate that the latter techniques are not capable of detecting the incipient clot, whose establishment occurs several minutes prior to TEG or FOR-based assessments of clot formation time. The results of the present study suggest that FTMS is a useful tool in blood clotting research, being capable of providing a global coagulation profile in addition to detecting the instant of incipient clot formation.

  7. Wall morphology, blood flow and wall shear stress: MR findings in patients with peripheral artery disease.

    PubMed

    Galizia, Mauricio S; Barker, Alex; Liao, Yihua; Collins, Jeremy; Carr, James; McDermott, Mary M; Markl, Michael

    2014-04-01

    To investigate the influence of atherosclerotic plaques on femoral haemodynamics assessed by two-dimensional (2D) phase-contrast (PC) magnetic resonance imaging (MRI) with three-directional velocity encoding. During 1 year, patients with peripheral artery disease and an ankle brachial index <1.00 were enrolled. After institutional review board approval and written informed consent, 44 patients (age, 70 ± 12 years) underwent common femoral artery MRI. Patients with contra-indications for MRI were excluded. Sequences included 2D time-of-flight, proton-density, T1-weighted and T2-weighted MRI. Electrocardiogram (ECG)-gated 2D PC-MRI with 3D velocity encoding was acquired. A radiologist classified images in five categories. Blood flow, velocity and wall shear stress (WSS) along the vessel circumference were quantified from the PC-MRI data. The acquired images were of good quality for interpretation. There were no image quality problems related to poor ECG-gating or slice positioning. Velocities, oscillatory shear stress and total flow were similar between patients with normal arteries and wall thickening/plaque. Patients with plaques demonstrated regionally increased peak systolic WSS and enhanced WSS eccentricity. Combined multi-contrast morphological imaging of the peripheral arterial wall with PC-MRI with three-directional velocity encoding is a feasible technique. Further study is needed to determine whether flow is an appropriate marker for altered endothelial cell function, vascular remodelling and plaque progression. • Femoral plaques are associated with altered dynamics of peripheral blood flow. • Multi-contrast MRI can investigate the presence and type of atherosclerotic plaques. • Three-dimensional velocity-encoding phase-contrast MRI can investigate flow and wall shear stress. • Atherosclerotic peripheral arteries demonstrate increased systolic velocities and wall shear stress.

  8. On the effect of dynamic flow conditions on blood microstructure investigated with optical shearing microscopy and rheometry.

    PubMed

    Kaliviotis, E; Yianneskis, M

    2007-11-01

    Red blood cell (RBC) aggregation affects significantly the flow of blood at low shear rates. Increased RBC aggregation is associated with various pathological conditions; hence an accurate quantification and better understanding of the phenomenon is important. The present study aims to improve understanding of the effect of dynamic flow conditions on aggregate formation; whole blood samples from healthy volunteers, adjusted at 0.45 haematocrit were tested in different flow conditions with a plate-plate optical shearing system, image analysis, and a double-walled Couette rheometric cell. Results are presented in terms of aggregation index Aa, aggregate size index As and number of aggregates, which are shown to vary with shear rate gamma and with different shear rate variations with time gamma. The aggregation index Aa was observed to increase as the shear rate decreased between 10 and 3 s(-1). Above 10 s(-1), Aa was found to have a minimum value indicating minimal aggregation while, at approximately 3 s(-1), Aa reaches a maximum. The aggregation size index As, the number of aggregates, and the blood viscosity were found to vary considerably when the same sample was examined over the same shear rate range, but for different variations of shear rate with time, gamma.

  9. Dynamic evaluation and control of blood clotting using a microfluidic platform for high-throughput diagnostics

    NASA Astrophysics Data System (ADS)

    Combariza, Miguel E.; Yu, Xinghuo; Nesbitt, Warwick; Tovar-Lopez, Francisco; Rabus, Dominik G.; Mitchell, Arnan

    2015-12-01

    Microfluidic technology has the potential to revolutionise blood-clotting diagnostics by incorporating key physiological blood flow conditions like shear rate. In this paper we present a customised dynamic microfluidic system, which evaluates the blood clotting response to multiple conditions of shear rate on a single microchannel. The system can achieve high-throughput testing through use of an advanced fluid control system, which provides with rapid and precise regulation of the blood flow conditions in the platform. We present experimental results that demonstrate the potential of this platform to develop into a high-throughput, low-cost, blood-clotting diagnostics device.

  10. High blood sugar - self-care

    MedlinePlus

    ... High blood glucose - self care; Diabetes - high blood sugar ... Symptoms of high blood sugar can include: Being very thirsty or having a dry mouth Having blurry vision Having dry skin Feeling weak or tired ...

  11. Anxiety: A Cause of High Blood Pressure?

    MedlinePlus

    ... Conditions High blood pressure (hypertension) Can anxiety cause high blood pressure? Answers from Sheldon G. Sheps, M.D. Anxiety doesn't cause long-term high blood pressure (hypertension). But episodes of anxiety can cause dramatic, ...

  12. High Blood Pressure: Medicines to Help You

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women High Blood Pressure--Medicines to Help You Share Tweet Linkedin Pin ... Click here for the Color Version (PDF 533KB) High blood pressure is a serious illness. High blood pressure is ...

  13. Influence of wall shear rate on parameters of blood compatibility of intravascular catheters.

    PubMed

    Rhodes, N P; Kumary, T V; Williams, D F

    1996-10-01

    Three polymeric materials (silicone, PVC and nylon) were compared in an in vitro perfusion model, whereby 5 ml whole blood were perfused along 1 m lengths of polymeric tubing of 1 mm internal diameter at wall shear rates of up to 1000 s-1. Perfusion took place at 37 degrees C for 30 min. The polymers were investigated for platelet activation, granulocyte secretion, complement activation and contact phase activation. These parameters were also analysed in static contact for comparison. All the parameters measured displayed a dependence on wall shear rate. In all the materials studied, platelet adhesion and platelet activation increased with increasing flow rate. Granulocyte elastase release increased slightly with increasing flow rate up to 300 s-1. Complement activation was greatest for PVC at 1000 s-1, greatest for nylon at 100 s-1, but there was no measurable difference at either rate for silicone. All samples caused an increase in clotting time with increasing wall shear rate. PVC was the most platelet compatible material, nylon the worst. Silicone caused least contact phase activation, PVC and nylon the most.

  14. Wall Shear Stress in Aorta with Coarctation and Post-Stenotic Dilatation - Scale Resolved Simulation of Pulsatile Blood Flow

    NASA Astrophysics Data System (ADS)

    Gardhagen, Roland; Karlsson, Matts

    2012-11-01

    Large eddy simulations of pulsating blood flow in an idealized model of a human aorta with a coarctation and a post-stenotic dilatation were conducted before and after treatment of the stenosis using Ansys Fluent. The aim was to study wall shear stress (WSS), which influences the function of endothelial cells, and turbulence, which may play a role in thrombus formation. Phase average values of WSS before the treatment revealed high shear in the stenosis at peak systole, as expected, but also at the end of the dilatation. In the dilatation backflow causes a negative peak. Diastolic WSS is characterized by low amplitude oscillations, which promotes atherogenesis. Also noticeable is the asymmetric pattern between the inner and outer sides of the vessel caused by the arch upstream of the stenosis. Thus, large spatial, temporal, and probably asymmetric WSS gradients in the already diseased region suggest increased risk for further endothelial dysfunction. This reflects a complex, partly turbulent, flow pattern that may disturb the blood flow in the abdominal aorta. After treatment of the stenosis, but not the dilatation, fluctuations of velocity and WSS were still found, thus harmful flow conditions still exist.

  15. Exercise intensity modulates brachial artery retrograde blood flow and shear rate during leg cycling in hypoxia

    PubMed Central

    Iwamoto, Erika; Katayama, Keisho; Ishida, Koji

    2015-01-01

    The purpose of this study was to elucidate the effect of exercise intensity on retrograde blood flow and shear rate (SR) in an inactive limb during exercise under normoxic and hypoxic conditions. The subjects performed two maximal exercise tests on a semi-recumbent cycle ergometer to estimate peak oxygen uptake (O2peak) while breathing normoxic (inspired oxygen fraction [FIO2 = 0.21]) and hypoxic (FIO2 = 0.12 or 0.13) gas mixtures. Subjects then performed four exercise bouts at the same relative intensities (30 and 60% O2peak) for 30 min under normoxic or hypoxic conditions. Brachial artery diameter and blood velocity were simultaneously recorded, using Doppler ultrasonography. Retrograde SR was enhanced with increasing exercise intensity under both conditions at 10 min of exercise. Thereafter, retrograde blood flow and SR in normoxia returned to pre-exercise levels, with no significant differences between the two exercise intensities. In contrast, retrograde blood flow and SR in hypoxia remained significantly elevated above baseline and was significantly greater at 60% than at 30% O2peak. We conclude that differences in exercise intensity affect brachial artery retrograde blood flow and SR during prolonged exercise under hypoxic conditions. PMID:26038470

  16. Exercise intensity modulates brachial artery retrograde blood flow and shear rate during leg cycling in hypoxia.

    PubMed

    Iwamoto, Erika; Katayama, Keisho; Ishida, Koji

    2015-06-01

    The purpose of this study was to elucidate the effect of exercise intensity on retrograde blood flow and shear rate (SR) in an inactive limb during exercise under normoxic and hypoxic conditions. The subjects performed two maximal exercise tests on a semi-recumbent cycle ergometer to estimate peak oxygen uptake (V˙O2peak) while breathing normoxic (inspired oxygen fraction [FIO2 = 0.21]) and hypoxic (FIO2 = 0.12 or 0.13) gas mixtures. Subjects then performed four exercise bouts at the same relative intensities (30 and 60% V˙O2peak) for 30 min under normoxic or hypoxic conditions. Brachial artery diameter and blood velocity were simultaneously recorded, using Doppler ultrasonography. Retrograde SR was enhanced with increasing exercise intensity under both conditions at 10 min of exercise. Thereafter, retrograde blood flow and SR in normoxia returned to pre-exercise levels, with no significant differences between the two exercise intensities. In contrast, retrograde blood flow and SR in hypoxia remained significantly elevated above baseline and was significantly greater at 60% than at 30% V˙O2peak. We conclude that differences in exercise intensity affect brachial artery retrograde blood flow and SR during prolonged exercise under hypoxic conditions. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  17. Effects of shear rate, confinement, and particle parameters on margination in blood flow.

    PubMed

    Mehrabadi, Marmar; Ku, David N; Aidun, Cyrus K

    2016-02-01

    The effects of flow and particle properties on margination of particles in red blood cell (RBC) suspensions is investigated using direct numerical simulation (DNS) of cellar blood flow. We focus on margination of particles in the flow of moderately dense suspensions of RBCs. We hypothesize that margination rate in nondilute suspensions is mainly driven by the RBC-enhanced diffusion of marginating particles in the RBC-filled region. We derive a scaling law for margination length in a straight channel. Margination length increases cubically with channel height and is independent of shear rate. We verify this scaling law for margination length by DNS of flowing RBCs and marginating particles. We also show that rigidity and size both lead to particle margination with rigidity having a more significant effect compared to size within the range of parameters in this study.

  18. Shear Thickening Electrolytes for High Impact Resistant Batteries

    DOE PAGES

    Veith, Gabriel M.; Armstrong, Beth L.; Wang, Hsin; ...

    2017-08-16

    In this paper, we demonstrate a shear thickening electrolyte that stiffens into a solid-like barrier during a high energy event, like a car crash. This barrier prevents the electrodes from shorting during an impact, reducing the risk of fire or catastrophic safety events. In addition, we have demonstrated the ability to cycle NMC/graphite lithium ion cells over 200 cycles with no loss of capacity after formation. Finally, this chemistry introduces multifunctionality to a material previously feared due to its flammability.

  19. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Deformation and Motion of a Red Blood Cell in a Shear Flow Simulated by a Lattice Boltzmann Model

    NASA Astrophysics Data System (ADS)

    Shi, Juan; Qiu, Bing; Tan, Hui-Li

    2009-06-01

    A lattice Boltzmann model is presented to simulate the deformation and motions of a red blood cell (RBC) in a shear flow. The curvatures of the membrane of a static RBC with different chemical potential drops calculated by our model agree with those computed by a shooting method very well. Our simulation results show that in a shear flow, a biconcave RBC becomes highly flattened and undergoes tank-treading motion. With intrinsically parallel dynamics, this lattice Boltzmann method is expected to find wide applications to both single and multi-vesicles suspension as well as complex open membranes in various fluid flows for a wide range of Reynolds numbers.

  20. Treatment of oily wastes using high-shear rotary ultrafiltration

    SciTech Connect

    Reed, B.E.; Viadero, R. Jr.; Young, J.; Lin, W.

    1997-12-01

    The high-shear rotary ultrafiltration (UF) system uses membrane rotation to provide the turbulence required to minimize concentration polarization and flux decline. The high-shear UF system was effective in concentrating oily wastes from about 5% to as high as 65%. The decoupling of turbulence promotion from feed pressurization/recirculation by rotating the membrane was the primary reason for the improvement in performance over that observed with conventional UF systems. Transitional and gel layer oil concentrations (20% and 50--59%, respectively) were higher than values reported in the literature. Permeate flux was dependent on the temperature and rotational speed. Flux increased by about 45% when the temperature was increased from 43 to 60 C. A larger decrease in waste viscosity, over that predicted for water alone, and increased oil droplet diffusivity were hypothesized as reasons for the stronger than expected flux-temperature relationship. The flux-rotational speed ({omega}) relationship was described by J = f({omega}){sup 0.90}; however, the gel layer exhibited stability with increasing {omega}. The ceramic membrane was superior to the polymeric membrane in regards to permeate flux and quality as well as cleaning and durability.

  1. When Blood Sugar Is Too High

    MedlinePlus

    ... Sport for You Healthy School Lunch Planner When Blood Sugar Is Too High KidsHealth > For Teens > When ... it often can be unhealthy. What Is High Blood Sugar? The blood glucose level is the amount ...

  2. High blood pressure and eye disease

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000999.htm High blood pressure and eye disease To use the sharing features on this page, please enable JavaScript. High blood pressure can damage blood vessels in the retina . The ...

  3. Disinclusion of unerupted teeth by mean of self-ligating brackets: Effect of blood contamination on shear bond strength

    PubMed Central

    Sfondrini, Maria F.; Gatti, Sara; Gandini, Paola

    2013-01-01

    Objectives: The aim of this study was to assess the effect of blood contamination on the shear bond strength and failure site of three different orthodontic self-ligating brackets. Study Design: 240 bovine permanent mandibular incisors were randomly divided into 12 groups of 20 specimens each. Orthodontic self-ligating brackets were tested under four different enamel surface conditions: a) dry, b) blood contamination before priming, c) blood contamination after priming, d) blood contamination before and after priming. Brackets were bonded to the teeth and subsequently tested using a Instron universal testing machine. Shear bond strength values and adhesive failure rate were recorded. Statistical analysis was performed using ANOVA and Tukey tests (strength values), and Chi squared test (ARI Scores). Results: Non-contaminated enamel surfaces showed highest bond strengths for all self ligating brackets. Under blood-contamination shear bond strengths lowered for all brackets tested. Groups contaminated before and after primer application showed the lowest shear bond strength. Significant differences in debond locations were found among the groups under the various enamel surface conditions. Conclusions: Blood contamination of enamel during the bonding procedure lowers bond strength values of self ligating brackets, expecially when contamination occur in different times of the bonding procedure. Key words:Disinclusion, self ligating brackets, blood, contamination, enamel, orthodontics, oral surgery. PMID:23229253

  4. Influence of non-Newtonian Properties of Blood on the Wall Shear Stress in Human Atherosclerotic Right Coronary Arteries

    PubMed Central

    Liu, Biyue; Tang, Dalin

    2011-01-01

    The objective of this work is to investigate the effect of non-Newtonian properties of blood on the wall shear stress (WSS) in atherosclerotic coronary arteries using both Newtonian and non-Newtonian models. Numerical simulations were performed to examine how the spatial and temporal WSS distributions are influenced by the stenosis size, blood viscosity, and flow rate. The computational results demonstrated that blood viscosity properties had considerable effect on the magnitude of the WSS, especially where disturbed flow was observed. The WSS distribution is highly non-uniform both temporally and spatially, especially in the stenotic region. The maximum WSS occurred at the proximal side of the stenosis, near the outer wall in the curved artery with no stenosis. The lumen area near the inner wall distal to the stenosis region experienced a lower WSS during the entire cardiac cycle. Among the factors of stenosis size, blood viscosity, and flow rate, the size of the stenosis has the most significant effect on the spatial and temporal WSS distributions qualitatively and quantitatively. PMID:21379375

  5. High-Energy-Density Shear Flow and Instability Experiments

    NASA Astrophysics Data System (ADS)

    Doss, F. W.; Flippo, K. A.; Merritt, E. C.; di Stefano, C. A.; Devolder, B. G.; Kurien, S.; Kline, J. L.

    2016-10-01

    High-energy-density shear experiments have been performed by LANL at the OMEGA Laser Facility and National Ignition Facility (NIF). The experiments have been simulated using the LANL radiation-hydrocode RAGE and have been used to assess turbulence models' ability to function in the high-energy-density, inertial-fusion-relevant regime. Beginning with the basic configuration of two counter-oriented shock-driven flows of > 100 km/s, which initiate a strong shear instability across an initially solid-density, 20 μm thick Al plate, variations of the experiment to details of the initial conditions have been performed. These variations have included increasing the fluid densities (by modifying the plate material from Al to Ti and Cu), imposing sinusoidal seed perturbations on the plate, and directly modifying the plate's intrinsic surface roughness. Radiography of the unseeded layer has revealed the presence of emergent Kelvin-Helmholtz structures which may be analyzed to infer fluid-mechanical properties including turbulent energy density. This work is conducted by the US DOE by LANL under contract DE-AC52-06NA25396.

  6. High-frequency shear-horizontal surface acoustic wave sensor

    DOEpatents

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  7. High-frequency shear-horizontal surface acoustic wave sensor

    DOEpatents

    Branch, Darren W

    2014-03-11

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  8. Hydrodynamic lubrication in nanoscale bearings under high shear velocity

    NASA Astrophysics Data System (ADS)

    Chen, Yunfei; Li, Deyu; Jiang, Kai; Yang, Juekuan; Wang, Xiaohui; Wang, Yujuan

    2006-08-01

    The setting up process in a nanoscale bearing has been modeled by molecular dynamics simulation. Contrary to the prediction from the classical Reynolds' theory, simulation results show that the load capacity of the nanoscale bearing does not increase monotonically with the operation speed. This is attributed to the change of the local shear rate, which will decrease with the shear velocity of the bearing as the shear velocity exceeds a critical value, i.e., the local shear rate has an upper limit. A simple nonlinear dynamic model indicates that the momentum exchange between the liquid and the solid wall is reduced with the shear velocity when the shear velocity is above a critical value. The weak momentum exchange results in a decrease of the local shear rate, which in turn causes a sharp increase of the slip length.

  9. High Blood Pressure (Hypertension) (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old High Blood Pressure (Hypertension) KidsHealth > For Parents > High Blood Pressure (Hypertension) A ... posture, and medications. continue Long-Term Effects of High Blood Pressure When someone has high blood pressure, the heart ...

  10. Comminution of Ceramic Materials Under High-Shear Dynamic Compaction

    NASA Astrophysics Data System (ADS)

    Homel, Michael; Loiseau, Jason; Higgins, Andrew; Herbold, Eric; Hogan, Jamie

    The post-failure ``granular flow'' response of high-strength lightweight ceramics has important implications on the materials' effectiveness for ballistic protection. We study the dynamic compaction and shear flow of ceramic fragments and powders using computational and experimental analysis of a collapsing thick-walled cylinder geometry. Using newly developed tools for mesoscale simulation of brittle materials, we study the effect of fracture, comminution, shear-enhanced dilatation, and frictional contact on the continuum compaction response. Simulations are directly validated through particle Doppler velocimetry measurements at the inner surface of the cylindrical powder bed. We characterize the size distribution and morphologies of the initial and compacted material fragments to both validate the computational model and to elucidate the dominant failure processes. A portion of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. LLNL-ABS-678862.

  11. Deformability of human red blood cells exposed to a uniform shear stress as measured by a cyclically reversing shear flow generator.

    PubMed

    Watanabe, Nobuo; Arakawa, Yasuyuki; Sou, Atsushi; Kataoka, Hiroyuki; Ohuchi, Katsuhiro; Fujimoto, Tetsuo; Takatani, Setsuo

    2007-05-01

    Red blood cells (RBCs) suspended in a dextran solution were at first loaded with a uniform shear stress of 21, 43 and 64 Pa for the duration of 0, 10, 20, 30, 45 and 60 min, respectively, followed with measurement of the dynamic deformation in terms of stretching and recovery, using a cyclically reversing sinusoidal shear flow with the peak stress of 128 Pa at 2 Hz. The L/W value, where L and W were the major and minor axis length of the RBC images, was derived to compare the effects of the uniform shear stress level and the exposure time. The exposure to the uniform shear stress of 21 Pa for the duration of as long as 60 min caused statistically insignificant L/W change in comparison to the control RBCs with L/W of 4.6 +/- 0.1. The exposure to 43 and 64 Pa for longer than 45 and 20 min, respectively, induced statistically significant change in the maximal L/W when compared to that of 21 Pa (p < 0.05). The composition of the maximal L/W values varied depending on the stress level and exposure time; with 21 Pa, the majority of cells exhibited the maximal L/W larger than 4.0 and few cells less than 2.0, whereas with the increase in the stress level to 43 and 64 Pa, cells having less than 2.0 exceeded 50%. Cyclic reversing shear flow is a useful means to measure dynamic deformation capability of RBCs which may be sub-hemolytically sheared without lysis.

  12. Rheology of red blood cells under flow in highly confined microchannels: I. effect of elasticity.

    PubMed

    Lázaro, Guillermo R; Hernández-Machado, Aurora; Pagonabarraga, Ignacio

    2014-10-07

    We analyze the rheology of dilute red blood cell suspensions in pressure driven flows at low Reynolds number, in terms of the morphologies and elasticity of the cells. We focus on narrow channels of width similar to the cell diameter, when the interactions with the walls dominate the cell dynamics. The suspension presents a shear-thinning behaviour, with a Newtonian-behaviour at low shear rates, an intermediate region of strong decay of the suspension viscosity, and an asymptotic regime at high shear rates in which the effective viscosity converges to that of the solvent. We identify the relevant aspects of cell elasticity that contribute to the rheological response of blood at high confinement. In a second paper, we will explore the focusing of red blood cells while flowing at high shear rates and how this effect is controlled by the geometry of the channel.

  13. The effect of turbulent viscous shear stress on red blood cell hemolysis.

    PubMed

    Yen, Jen-Hong; Chen, Sheng-Fu; Chern, Ming-Kai; Lu, Po-Chien

    2014-06-01

    Non-physiologic turbulent flow occurs in medical cardiovascular devices resulting in hemodynamic stresses that may damage red blood cells (RBC) and cause hemolysis. Hemolysis was previously thought to result from Reynolds shear stress (RSS) in turbulent flows. A more recent hypothesis suggests that turbulent viscous shear stresses (TVSS) at spatial scales similar in size to RBCs are related to their damage. We applied two-dimensional digital particle image velocimetry to measure the flow field of a free-submerged axisymmetric jet that was utilized to hemolyze porcine RBCs in selected locations. Assuming a dynamic equilibrium for the sub-grid scale (SGS) energy flux between the resolved and the sub-grid scales, the SGS energy flux was calculated from the strain rate tensor computed from the resolved velocity fields. The SGS stress was determined by the Smagorinsky model, from which the turbulence dissipation rate and then TVSS were estimated. Our results showed the hemolytic threshold of the Reynolds stresses was up to 517 Pa, and the TVSSs were at least an order of magnitude less than the RSS. The results provide further insight into the relationship between turbulence and RBC damage.

  14. Inertia-dependent dynamics of three-dimensional vesicles and red blood cells in shear flow.

    PubMed

    Luo, Zheng Yuan; Wang, Shu Qi; He, Long; Xu, Feng; Bai, Bo Feng

    2013-10-28

    A three-dimensional (3D) simulation study of the effect of inertia on the dynamics of vesicles and red blood cells (RBCs) has not been reported. Here, we developed a 3D model based on the front tracking method to investigate how inertia affects the dynamics of spherical/non-spherical vesicles and biconcave-shaped RBCs with the Reynolds number ranging from 0.1 to 10. The results showed that inertia induced non-spherical vesicles transitioned from tumbling to swinging, which was not observed in previous 2D models. The critical viscosity ratio of inner/outer fluids for the tumbling–swinging transition remarkably increased with an increasing Reynolds number. The deformation of vesicles was greatly enhanced by inertia, and the frequency of tumbling and tank-treading was significantly decreased by inertia. We also found that RBCs can transit from tumbling to steady tank-treading through the swinging regime when the Reynolds number increased from 0.1 to 10. These results indicate that inertia needs to be considered at moderate Reynolds number (Re ~ 1) in the study of blood flow in the human body and the flow of deformable particle suspension in inertial microfluidic devices. The developed 3D model provided new insights into the dynamics of RBCs under shear flow, thus holding great potential to better understand blood flow behaviors under normal/disease conditions.

  15. Shape Recovery of Elastic Red Blood Cells from Shear Flow Induced Deformation in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Peng, Yan; Gounley, John

    2015-11-01

    Red blood cells undergo substantial shape changes in vivo. Modeled as an elastic capsule, the shape recovery of a three dimensional biconcave capsule from shear flow is studied for different preferred elastic and bending configuration. The fluid-structure interaction is modeled using the multiple-relaxation time lattice Boltzmann (LBM) and immersed boundary (IBM) methods. Based on the studies of the limited shape memory observed in three dimensions, the shape recovery is caused by the preferred elastic configuration, at least when paired with a constant spontaneous curvature. For these capsules, the incompleteness of the shape recovery observed precludes any conjecture about whether a single or multiple phase(s) are necessary to describe the recovery process. Longer simulations and a more stable methodology will be necessary. Y. Peng acknowledges support from Old Dominion University Research Foundation Grant #503921 and National Science Foundation Grant DMS-1319078.

  16. The high-energy-density counterpropagating shear experiment and turbulent self-heating

    SciTech Connect

    Doss, F. W.; Fincke, J. R.; Loomis, E. N.; Welser-Sherrill, L.; Flippo, K. A.

    2013-12-06

    The counterpropagating shear experiment has previously demonstrated the ability to create regions of shockdriven shear, balanced symmetrically in pressure and experiencing minimal net drift. This allows for the creation of a high-Mach-number high-energy-density shear environment. New data from the counterpropagating shear campaign is presented, and both hydrocode modeling and theoretical analysis in the context of a Reynolds-averaged-Navier-Stokes model suggest turbulent dissipation of energy from the supersonic flow bounding the layer is a significant driver in its expansion. A theoretical minimum shear flow Mach number threshold is suggested for substantial thermal-turbulence coupling.

  17. The high-energy-density counterpropagating shear experiment and turbulent self-heating

    SciTech Connect

    Doss, F. W.; Fincke, J. R.; Loomis, E. N.; Welser-Sherrill, L.; Flippo, K. A.

    2013-12-15

    The counterpropagating shear experiment has previously demonstrated the ability to create regions of shock-driven shear, balanced symmetrically in pressure, and experiencing minimal net drift. This allows for the creation of a high-Mach-number high-energy-density shear environment. New data from the counterpropagating shear campaign is presented, and both hydrocode modeling and theoretical analysis in the context of a Reynolds-averaged-Navier-Stokes model suggest turbulent dissipation of energy from the supersonic flow bounding the layer is a significant driver in its expansion. A theoretical minimum shear flow Mach number threshold is suggested for substantial thermal-turbulence coupling.

  18. Monitoring high-shear granulation using sound and vibration measurements.

    PubMed

    Briens, L; Daniher, D; Tallevi, A

    2007-02-22

    Sound and vibration measurements were investigated as monitoring methods for high-shear granulation. Five microphones and one accelerometer were placed at different locations on a 10 and a 25 l granulator and compared to find the optimum location and the effect of scale. The granulation process could be monitored using the mean frequency and root mean square sound pressure levels from acoustic emissions measured using a microphone in the filtered air exhaust of the granulators. These acoustic monitoring methods were successful for both the 10 and the 25 l granulation scales. The granulation phases, however, were more clearly defined for the larger scale granulation. The root mean square acceleration level from vibration measurements was also able to monitor the granulation, but only for the larger 25 l granulator.

  19. High spin spectroscopy and shears mechanism in {sup 107}In

    SciTech Connect

    Negi, D.; Mohanto, G.; Kumar, R.; Singh, R. P.; Muralithar, S.; Bhowmik, R. K.; Trivedi, T.; Dhal, A.; Kumar, S.; Kumar, V.; Roy, S.; Raju, M. K.; Appannababu, S.; Kaur, J.; Bhati, A. K.; Sinha, R. K.; Pancholi, S. C.

    2010-05-15

    High spin states of {sup 107}In have been investigated using the reaction {sup 94}Mo({sup 16}O,p2n){sup 107}In at a beam energy of 70 MeV. A total of 62 new gamma transitions have been placed in the level scheme and several DELTAI=1 sequences and one DELTAI=2 sequence have been found. Lifetime measurements using the Doppler-shift attenuation method (DSAM) have been carried out for band states of DELTAI=1 and DELTAI=2. A decreasing trend of B(M1) strengths with increasing spin deduced for the DELTAI=1 band indicates the presence of a shears mechanism. The experimental data for this band are compared with the tilted axis cranking (TAC) calculations. The DELTAI=2 band has been found to be a deformed band with beta{sub 2}approx0.2.

  20. Seismic Radiation in High-Velocity Shear Experiments

    NASA Astrophysics Data System (ADS)

    Zu, X.; Carpenter, B. M.; Reches, Z.

    2016-12-01

    High-speed rotary shear experiments allow to monitor co-seismic weakening along experimental faults, and to observe near source fault behavior. We used a system of 3D accelerometers during high-velocity shear experiments, and present our preliminary observations of the seismic radiation. The experimental faults were composed of solid igneous (diorite, gabbro) and sedimentary rocks (dolomite, sandstone), and slip area is a ring-shaped zone. The faults were loaded under constant velocity, and under controlled power density, in which slip occurs spontaneously and is controlled by the properties of the fault. The four 3D accelerometers were mounted 2 cm away from the experimental fault, recorded waveforms at 1 MHz, and accelerations up to 500 g.Preliminary results show hundreds of acoustic emission (AE) events in a single slip event with varied amplitudes, up to 500 g, and durations of up to 100 milliseconds. The hypocenter location in a given experiment revealed that AE initiated at two sites that are interpreted as strong asperities which were broken first to facilitate slip of the entire fault. Spectrograms of the AEs show multi-component patterns with the influence of both rock attributes and machine artifact. We also ran bi-material fault experiments (Carpenter et al, this meeting) in which the fault was composed of contrasting rock types. In a sandstone/gabbro fault, the arrival of the AEs was emergent, i.e., it had a low acceleration phase before a more impulsive acceleration. In contrast, the diorite/diorite fault displayed only the impulsive acceleration phase without a preceding low acceleration. Future analyses will focus on refinement of event source location patterns, spectral analysis, and the relationship between acoustic and mechanical properties of the faults.

  1. High blood pressure tests (image)

    MedlinePlus

    ... factors. These lab tests include urinalysis, blood cell count, blood chemistry (potassium, sodium, creatinine, fasting glucose, total cholesterol and HDL cholesterol), and an ECG (electrocardiogram). ...

  2. Effect of shear stress on the high-pressure behaviour of nitromethane: Raman spectroscopy in a shear diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Hebert, Philippe; Isambert, Aude; Petitet, Jean-Pierre; Zerr, Andreas

    2009-06-01

    A detailed description of the reaction mechanisms occurring in shock-induced decomposition of condensed energetic materials is very important for a comprehensive understanding of detonation. Besides pressure and temperature effects, shear stress has also been proposed to play an important role in the initiation and decomposition mechanisms. In order to study this effect, a Shear Diamond Anvil Cell (SDAC) has been developed. It is actually a classical DAC with the upper diamond anvil rotating about the compression axis relative to the opposite anvil. In this paper, we present a Raman spectroscopy study of the effect of shear stress on the high-pressure behaviour of nitromethane. Two major effects of shear stress are observed in our experiments. The first one is a lowering of the pressures at which the different structural modifications that nitromethane undergoes are observed. The second effect is observed at 28 GPa where sudden decomposition of the sample occurs just after shear application. Observation of the sample after decomposition shows the presence of a black residue which is composed of carbon as indicated by the Raman spectrum. [1] Manaa, M. R., Fried, L. E., and Reed, E. J., Journal of Computer-Aided Materials Design, 10, pp 75-97, 2003.

  3. Manufacture of concentrated, lipid-based oxygen microbubble emulsions by high shear homogenization and serial concentration.

    PubMed

    Thomson, Lindsay M; Polizzotti, Brian D; McGowan, Frances X; Kheir, John N

    2014-05-26

    Gas-filled microbubbles have been developed as ultrasound contrast and drug delivery agents. Microbubbles can be produced by processing surfactants using sonication, mechanical agitation, microfluidic devices, or homogenization. Recently, lipid-based oxygen microbubbles (LOMs) have been designed to deliver oxygen intravenously during medical emergencies, reversing life-threatening hypoxemia, and preventing subsequent organ injury, cardiac arrest, and death. We present methods for scaled-up production of highly oxygenated microbubbles using a closed-loop high-shear homogenizer. The process can produce 2 L of concentrated LOMs (90% by volume) in 90 min. Resulting bubbles have a mean diameter of ~2 μm, and a rheologic profile consistent with that of blood when diluted to 60 volume %. This technique produces LOMs in high capacity and with high oxygen purity, suggesting that this technique may be useful for translational research labs.

  4. Hemodynamic Analysis in an Idealized Artery Tree: Differences in Wall Shear Stress between Newtonian and Non-Newtonian Blood Models

    PubMed Central

    Weddell, Jared C.; Kwack, JaeHyuk; Imoukhuede, P. I.; Masud, Arif

    2015-01-01

    Development of many conditions and disorders, such as atherosclerosis and stroke, are dependent upon hemodynamic forces. To accurately predict and prevent these conditions and disorders hemodynamic forces must be properly mapped. Here we compare a shear-rate dependent fluid (SDF) constitutive model, based on the works by Yasuda et al in 1981, against a Newtonian model of blood. We verify our stabilized finite element numerical method with the benchmark lid-driven cavity flow problem. Numerical simulations show that the Newtonian model gives similar velocity profiles in the 2-dimensional cavity given different height and width dimensions, given the same Reynolds number. Conversely, the SDF model gave dissimilar velocity profiles, differing from the Newtonian velocity profiles by up to 25% in velocity magnitudes. This difference can affect estimation in platelet distribution within blood vessels or magnetic nanoparticle delivery. Wall shear stress (WSS) is an important quantity involved in vascular remodeling through integrin and adhesion molecule mechanotransduction. The SDF model gave a 7.3-fold greater WSS than the Newtonian model at the top of the 3-dimensional cavity. The SDF model gave a 37.7-fold greater WSS than the Newtonian model at artery walls located immediately after bifurcations in the idealized femoral artery tree. The pressure drop across arteries reveals arterial sections highly resistive to flow which correlates with stenosis formation. Numerical simulations give the pressure drop across the idealized femoral artery tree with the SDF model which is approximately 2.3-fold higher than with the Newtonian model. In atherosclerotic lesion models, the SDF model gives over 1 Pa higher WSS than the Newtonian model, a difference correlated with over twice as many adherent monocytes to endothelial cells from the Newtonian model compared to the SDF model. PMID:25897758

  5. Hemodynamic analysis in an idealized artery tree: differences in wall shear stress between Newtonian and non-Newtonian blood models.

    PubMed

    Weddell, Jared C; Kwack, JaeHyuk; Imoukhuede, P I; Masud, Arif

    2015-01-01

    Development of many conditions and disorders, such as atherosclerosis and stroke, are dependent upon hemodynamic forces. To accurately predict and prevent these conditions and disorders hemodynamic forces must be properly mapped. Here we compare a shear-rate dependent fluid (SDF) constitutive model, based on the works by Yasuda et al in 1981, against a Newtonian model of blood. We verify our stabilized finite element numerical method with the benchmark lid-driven cavity flow problem. Numerical simulations show that the Newtonian model gives similar velocity profiles in the 2-dimensional cavity given different height and width dimensions, given the same Reynolds number. Conversely, the SDF model gave dissimilar velocity profiles, differing from the Newtonian velocity profiles by up to 25% in velocity magnitudes. This difference can affect estimation in platelet distribution within blood vessels or magnetic nanoparticle delivery. Wall shear stress (WSS) is an important quantity involved in vascular remodeling through integrin and adhesion molecule mechanotransduction. The SDF model gave a 7.3-fold greater WSS than the Newtonian model at the top of the 3-dimensional cavity. The SDF model gave a 37.7-fold greater WSS than the Newtonian model at artery walls located immediately after bifurcations in the idealized femoral artery tree. The pressure drop across arteries reveals arterial sections highly resistive to flow which correlates with stenosis formation. Numerical simulations give the pressure drop across the idealized femoral artery tree with the SDF model which is approximately 2.3-fold higher than with the Newtonian model. In atherosclerotic lesion models, the SDF model gives over 1 Pa higher WSS than the Newtonian model, a difference correlated with over twice as many adherent monocytes to endothelial cells from the Newtonian model compared to the SDF model.

  6. Effects of arterial blood flow on walls of the abdominal aorta: distributions of wall shear stress and oscillatory shear index determined by phase-contrast magnetic resonance imaging.

    PubMed

    Sughimoto, Koichi; Shimamura, Yoshiaki; Tezuka, Chie; Tsubota, Ken'ichi; Liu, Hao; Okumura, Kenichiro; Masuda, Yoshitada; Haneishi, Hideaki

    2016-07-01

    Although abdominal aortic aneurysms (AAAs) occur mostly inferior to the renal artery, the mechanism of the development of AAA in relation to its specific location is not yet clearly understood. The objective of this study was to evaluate the hypothesis that even healthy volunteers may manifest specific flow characteristics of blood flow and alter wall shear or oscillatory shear stress in the areas where AAAs commonly develop. Eight healthy male volunteers were enrolled in this prospective study, aged from 24 to 27. Phase-contrast magnetic resonance imaging (MRI) was performed with electrocardiographic triggering. Flow-sensitive four-dimensional MR imaging of the abdominal aorta, with three-directional velocity encoding, including simple morphological image acquisition, was performed. Information on specific locations on the aortic wall was applied to the flow encodes to calculate wall shear stress (WSS) and oscillatory shear index (OSI). While time-framed WSS showed the highest peak of 1.14 ± 0.25 Pa in the juxtaposition of the renal artery, the WSS plateaued to 0.61 Pa at the anterior wall of the abdominal aorta. The OSI peaked distal to the renal arteries at the posterior wall of the abdominal aorta of 0.249 ± 0.148, and was constantly elevated in the whole abdominal aorta at more than 0.14. All subjects were found to have elevated OSI in regions where AAAs commonly occur. These findings indicate that areas of constant peaked oscillatory shear stress in the infra-renal aorta may be one of the factors that lead to morphological changes over time, even in healthy individuals.

  7. Wall Shear Stress-Based Model for Adhesive Dynamics of Red Blood Cells in Malaria

    PubMed Central

    Fedosov, Dmitry A.; Caswell, Bruce; Karniadakis, George Em

    2011-01-01

    Red blood cells (RBCs) infected by the Plasmodium falciparum (Pf-RBCs) parasite lose their membrane deformability and they also exhibit enhanced cytoadherence to vascular endothelium and other healthy and infected RBCs. The combined effect may lead to severe disruptions of normal blood circulation due to capillary occlusions. Here we extend the adhesion model to investigate the adhesive dynamics of Pf-RBCs as a function of wall shear stress (WSS) and other parameters using a three-dimensional, multiscale RBC model. Several types of adhesive behavior are identified, including firm adhesion, flipping dynamics, and slow slipping along the wall. In particular, the flipping dynamics of Pf-RBCs observed in experiments appears to be due to the increased stiffness of infected cells and the presence of the solid parasite inside the RBC, which may cause an irregular adhesion behavior. Specifically, a transition from crawling dynamics to flipping behavior occurs at a Young's modulus approximately three times larger than that of healthy RBCs. The simulated dynamics of Pf-RBCs is in excellent quantitative agreement with available microfluidic experiments if the force exerted on the receptors and ligands by an existing bond is modeled as a nonlinear function of WSS. PMID:21539775

  8. Wall shear stress-based model for adhesive dynamics of red blood cells in malaria.

    PubMed

    Fedosov, Dmitry A; Caswell, Bruce; Karniadakis, George Em

    2011-05-04

    Red blood cells (RBCs) infected by the Plasmodium falciparum (Pf-RBCs) parasite lose their membrane deformability and they also exhibit enhanced cytoadherence to vascular endothelium and other healthy and infected RBCs. The combined effect may lead to severe disruptions of normal blood circulation due to capillary occlusions. Here we extend the adhesion model to investigate the adhesive dynamics of Pf-RBCs as a function of wall shear stress (WSS) and other parameters using a three-dimensional, multiscale RBC model. Several types of adhesive behavior are identified, including firm adhesion, flipping dynamics, and slow slipping along the wall. In particular, the flipping dynamics of Pf-RBCs observed in experiments appears to be due to the increased stiffness of infected cells and the presence of the solid parasite inside the RBC, which may cause an irregular adhesion behavior. Specifically, a transition from crawling dynamics to flipping behavior occurs at a Young's modulus approximately three times larger than that of healthy RBCs. The simulated dynamics of Pf-RBCs is in excellent quantitative agreement with available microfluidic experiments if the force exerted on the receptors and ligands by an existing bond is modeled as a nonlinear function of WSS. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Study of blood viscosity at low shear rate and its flow through viscoelastic tubes and ducts

    NASA Astrophysics Data System (ADS)

    Misra, N.; Sarkar, A.; Srinivas, A.; Kapusetti, G.

    2012-02-01

    A nonlinear mathematical model is developed analytically to study the flow characteristics of visco-elastic fluid through a visco-elastic pipe when it is subjected to external body acceleration. The equations governing the motion of the system are solved analytically with the use of appropriate boundary conditions. For the present scope of study the flow of visco-elastic fluid (blood) in smaller artery which is visco-elastic in nature has been taken. The artery is assumed to be a flexible cylindrical tube containing a non-Newtonian fluid. The unsteady flow mechanism in the artery is subjected to a pulsatile pressure gradient arising from the normal functioning of the heart and also the external body acceleration. Numerical models have finally been developed for Newtonian and Non-Newtonian fluid in order to have a thorough quantitative measure of the effects of body acceleration on the flow velocity, volume flow rate and the wall shear stress of blood in normal human artery and when the artery gets stiffer, just to validate the applicability of the present mathematical model.

  10. Visualization of Simulated Endothelial Shear Stress and Blood Flow in Coronary Arteries

    NASA Astrophysics Data System (ADS)

    Borkin, Michelle; Feldman, Charles L.; Pfister, Hanspeter; Melchionna, Simone; Kaxiras, Efthimios

    2010-11-01

    Low endothelial shear stress (ESS) identifies areas of atherosclerotic disease lesion formation in the coronary arteries. However, it is impossible to directly measure ESS in vivo for an entire arterial tree. As part of the Multiscale Hemodynamics Project, computed tomography angiography (CTA) data is being used to obtain patient specific heart and coronary system geometries and then MUPHY, a multi-physics and multi-scale simulation code combining microscopic Molecular Dynamics (MD) with a hydro-kinetic Lattice Boltzmann (LB) method, is applied in order to simulate blood flow through the coronary arteries. Having effective visualizations of the simulation's multidimensional output, including ESS, is vital for the quick and thorough non-invasive evaluation of the patient. To this end, we have developed new visualization tools and techniques to make the simulation's output useful in a clinical diagnostic setting, examined the effectiveness of 2D versus 3D representations, and explored blood flow representations. The visualization methods developed are also applicable to other areas of fluid dynamics.

  11. Effect of shear stress in the flow through the sampling needle on concentration of nanovesicles isolated from blood.

    PubMed

    Štukelj, Roman; Schara, Karin; Bedina-Zavec, Apolonija; Šuštar, Vid; Pajnič, Manca; Pađen, Ljubiša; Krek, Judita Lea; Kralj-Iglič, Veronika; Mrvar-Brečko, Anita; Janša, Rado

    2017-02-15

    During harvesting of nanovesicles (NVs) from blood, blood cells and other particles in blood are exposed to mechanical forces which may cause activation of platelets, changes of membrane properties, cell deformation and shedding of membrane fragments. We report on the effect of shear forces imposed upon blood samples during the harvesting process, on the concentration of membrane nanovesicles in isolates from blood. Mathematical models of blood flow through the needle during sampling with vacuumtubes and with free flow were constructed, starting from the Navier-Stokes formalism. Blood was modeled as a Newtonian fluid. Work of the shear stress was calculated. In experiments, nanovesicles were isolated by repeated centrifugation (up to 17,570×g) and washing, and counted by flow cytometry. It was found that the concentration of nanovesicles in the isolates positively corresponded with the work by the shear forces in the flow of the sample through the needle. We have enhanced the effect of the shear forces by shaking the samples prior to isolation with glass beads. Imaging of isolates by scanning electron microscopy revealed closed globular structures of a similar size and shape as those obtained from unshaken plasma by repetitive centrifugation and washing. Furthermore, the sizes and shapes of NVs obtained by shaking erythrocytes corresponded to those isolated from shaken platelet-rich plasma and from unshaken platelet rich plasma, and not to those induced in erythrocytes by exogenously added amphiphiles. These results are in favor of the hypothesis that a significant pool of nanovesicles in blood isolates is created during their harvesting. The identity, shape, size and composition of NVs in isolates strongly depend on the technology of their harvesting. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The characterization of a non-Newtonian blood analog in natural- and shear-layer-induced transitional flow.

    PubMed

    Li, Lin; Walker, Andrew M; Rival, David E

    2014-01-01

    Although a blood analog of aqueous glycerol and xanthan gum was found to replicate the viscoelastic behavior of blood, measurements were restricted to laminar flow. To expand the characterization of a non-Newtonian blood analog of aqueous glycerol and xanthan gum to transitional Reynolds numbers to quantify its behavior as a function of both natural and shear-layer-induced mechanisms. A Newtonian analog and a shear-thinning aqueous glycerol, xanthan gum solution were circulated through an in vitro flow loop replicating both a straight and obstructed artery where transition was initiated through natural and shear-layer-induced mechanisms respectively. Steady and pulsatile pressure drop measurements for both fluids were acquired across a range of Reynolds numbers up to 7600 and Womersley numbers of 4 and 6. In steady and pulsatile straight flow, the non-Newtonian analog presented with reduced pressure drops and prolonged laminar flow to Reynolds numbers of 3200 and 3800 respectively. Upon blockage inclusion, non-Newtonian minor losses were comparable to Newtonian in steady flow and greater in pulsatile flow suggesting an elongation of downstream non-Newtonian recirculation. Although non-Newtonian total system pressure drops in both straight and obstructed flows were lower, the ratio of pressure drop difference between the two fluids decreased through shear-layer-induced transition. These findings not only demonstrated the suitability of using a xanthan gum analog to model blood flow in transitional regimes, but also presented the respective differences in analog behavior as a function of transition mechanism.

  13. A low-volume, single pass in-vitro system of high shear thrombosis in a stenosis.

    PubMed

    Para, Andrea N; Ku, David N

    2013-05-01

    Arterial thrombosis leading to heart attack and stroke requires the rapid accumulation of millions of platelets under pathologically high shear. Previous in vitro systems studying platelets typically use endpoints that emphasize platelet-surface effects rather than large-scale platelet-platelet accumulation that precedes occlusion. Further, most platelet tests do not recreate shear rates present during arterial occlusion. We present an alternative flow system to study large thrombus formation under pathologic shear conditions in an anatomic stenosis with reasonable volumes of human blood. An in-vitro system using a syringe pump was created to subject low volume (<30 mLs), whole blood samples to very high shear rates (>3,500 s(-1)) through a stenosis. Thrombus was quantified using an optical microscope from initial deposition to large scale accumulation. Images were taken using a high definition camera in real time. Occlusive thrombus blocks the collagen-coated lumen with millions of platelets using human whole, heparinized blood. Rapid Platelet Accumulation rates in human blood are 4.5±2.4 μm(3)/μm(2)/min (n=21). There is an initial lag time of 7.4±3.8 min (n=21) before the onset of large scale thrombosis. The rates of platelet accumulation in vitro are consistent with the clinical timescale of coronary or carotid artery occlusion. Porcine blood has a faster accumulation rate of 9.6±6.1 μm(3)/μm(2)/min (n=7, p<0.05) and a shorter lag time of 2.7±0.5 min (n=7, p<0.05). The long lag time for large thrombus formation suggests that some in-vitro assays will miss the main mechanism creating thrombotic occlusion. Copyright © 2013. Published by Elsevier Ltd.

  14. High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography.

    PubMed

    van Leeuwen, T G; Kulkarni, M D; Yazdanfar, S; Rollins, A M; Izatt, J A

    1999-11-15

    Color Doppler optical coherence tomography (CDOCT) is capable of precise velocity mapping in turbid media. Previous CDOCT systems based on the short-time Fourier transform have been limited to maximum flow velocities of the order of tens of millimeters per second. We describe a technique, based on interference signal demodulation at multiple frequencies, to extend the physiological relevance of CDOCT by increasing the dynamic range of measurable velocities to hundreds of millimeters per second. The physiologically important parameter of shear rate is also derived from CDOCT measurements. The measured flow-velocity profiles and shear-rate distributions correlate very well with theoretical predictions. The multiple demodulation technique, therefore, may be useful to monitor blood flow in vivo and to identify regions with high and low shear rates.

  15. Response of a Concentrated Monoclonal Antibody Formulation to High Shear

    PubMed Central

    Bee, Jared S.; Stevenson, Jennifer L.; Mehta, Bhavya; Svitel, Juraj; Pollastrini, Joey; Platz, Robert; Freund, Erwin; Carpenter, John F.

    2009-01-01

    There is concern that shear could cause protein unfolding or aggregation during commercial biopharmaceutical production. In this work we exposed two concentrated immunoglobulin-G1 (IgG1) monoclonal antibody (mAb, at >100 mg/mL) formulations to shear rates of between 20,000 and 250,000 s-1 for between 5 minutes and 30 ms using a parallel-plate and capillary rheometer respectively. The maximum shear and force exposures were far in excess of those expected during normal processing operations (20,000 s-1 and 0.06 pN respectively). We used multiple characterization techniques to determine if there was any detectable aggregation. We found that shear alone did not cause aggregation, but that prolonged exposure to shear in the stainless steel parallel-plate rheometer caused a very minor reversible aggregation (<0.3%). Additionally, shear did not alter aggregate populations in formulations containing 17% preformed heat-induced aggregates of a mAb. We calculate that that the forces applied to a protein by production shear exposures (<0.06 pN) are small when compared with the 140 pN force expected at the air-water interface or the 20 to 150 pN forces required to mechanically unfold proteins described in the atomic force microscope (AFM) literature. Therefore, we suggest that in many cases air-bubble entrainment, adsorption to solid surfaces (with possible shear synergy), contamination by particulates, or pump cavitation stresses could be much more important causes of aggregation than shear exposure during production. PMID:19370772

  16. Quantification of red blood cell deformation at high-hematocrit blood flow in microvessels.

    PubMed

    Alizadehrad, Davod; Imai, Yohsuke; Nakaaki, Keita; Ishikawa, Takuji; Yamaguchi, Takami

    2012-10-11

    The deformation of red blood cells in microvessels was investigated numerically for various vessel diameters, hematocrits, and shear rates. We simulated blood flow in circular channels with diameters ranging from 9 to 50 μm, hematocrits from 20% to 45%, and shear rates from 20 to 150 s(-1) using a particle-based model with parallel computing. The apparent viscosity predicted by the simulation was in good agreement with previous experimental results. We quantified the deformation of red blood cells as a function of radial position. The numerical results demonstrated that because of the shape transition in response to local shear stress and the wall effect, the radial variation of red blood cell deformation in relatively large microvessels could be classified into three different regions: near-center, middle, and near-wall regions. Effects of the local shear stress and wall varied with vessel diameter, hematocrit, and shear rate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Avoid the Consequences of High Blood Pressure

    MedlinePlus

    ... Aneurysm More Avoid the Consequences of High Blood Pressure Infographic Updated:Oct 31,2016 View a downloadable version of this infographic High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  18. Comparison of two platelet activation markers using flow cytometry after in vitro shear stress exposure of whole human blood.

    PubMed

    Lu, Qijin; Malinauskas, Richard A

    2011-02-01

    Platelet activation is the initiating step to thromboembolic complications in blood-contacting medical devices. Currently, there are no widely accepted testing protocols or relevant metrics to assess platelet activation during the in vitro evaluation of new medical devices. In this article, two commonly used platelet activation marker antibodies, CD62P (platelet surface P-selectin) and PAC1 (activated GP IIb/IIIa), were evaluated using flow cytometry. Anticoagulant citrate dextrose solution A (ACDA) and heparin anticoagulated human blood from healthy donors were separately exposed to shear stresses of 0, 10, 15, and 20 Pa for 120 s using a cone-plate rheometer model, and immediately mixed with the platelet marker antibodies for analysis. To monitor for changes in platelet reactivity between donors and over time, blood samples were also evaluated after exposure to 0, 2, and 20 µM of adenosine diphosphate (ADP). Following ADP stimulation, the percentage of both CD62P and PAC1 positive platelets increased in a dose dependent fashion, even 8 h after the blood was collected. After shear stress stimulation, both CD62P and PAC1 positive platelets increased significantly at shear stress levels of 15 and 20 Pa when ACDA was used as the anticoagulant. However, for heparinized blood, the PAC1 positive platelets decreased with increasing shear stress, while the CD62P positive platelets increased. Besides the anticoagulant effect, the platelet staining buffer also impacted PAC1 response, but had little effect on CD62P positive platelets. These data suggest that CD62P is a more reliable marker compared with PAC1 for measuring shear-dependent platelet activation and it has the potential for use during in vitro medical device testing.

  19. Compositional evolution of high-temperature sheared Iherzolite PHN 1611

    NASA Astrophysics Data System (ADS)

    Smith, D.; Griffin, W. L.; Ryan, C. G.

    1993-02-01

    The evolution of fertile mantle was studied by proton microprobe (PIXE) analysis of minerals of a high-temperature sheared xenolith form the Thaba Putsoa kimberlite in Lesotho. Minerals analyzed included Ni, Cu, Zn, Ga, Sr, Y, and Zr. Compositional gradients in peridotite xenoliths provide insight into the compositional evolution of the mantle and constrain the processes of peridotite enrichment and thermal history. Compositional zonation, intercrystalline gradients, and bulk chemistry of PHN 1611 are discussed. Infiltration of a silica-unsaturated melt is documented by enrichment of Zr, Y, and Fe in garnet rims. High Fe compositions indicate that the metasomatic melt did not infiltrate through typical mantle and steep concentration gradients of Zn and Fe show that the xenolith was sampled from near a melt conduit. Concentration gradients found in olivine and clinopyroxene composition show that mechanical mixing may have occurred concurrently with melt infiltration. Mantle temperature changes occurred before or over a longer period than melt infiltration. Enrichment processes may have produced xenolith compositions similar to those proposed for primitive mantle but have different implications for mantle evolution.

  20. Thermoplastic encapsulation of waste surrogates by high-shear mixing

    SciTech Connect

    Lageraaen, P.R.; Kalb, P.D.; Patel, B.R.

    1995-12-01

    Brookhaven National Laboratory (BNL) has developed a robust, extrusion-based polyethylene encapsulation process applicable to a wide range of solid and aqueous low-level radioactive, hazardous and mixed wastes. However, due to the broad range of physical and chemical properties of waste materials, pretreatment of these wastes is often required to make them amenable to processing with polyethylene. As part of the scope of work identified in FY95 {open_quotes}Removal and Encapsulation of Heavy Metals from Ground Water,{close_quotes} EPA SERDP No. 387, that specifies a review of potential thermoplastic processing techniques, and in order to investigate possible pretreatment alternatives, BNL conducted a vendor test of the Draiswerke Gelimat (thermokinetic) mixer on April 25, 1995 at their test facility in Mahwah, NJ. The Gelimat is a batch operated, high-shear, high-intensity fluxing mixer that is often used for mixing various materials and specifically in the plastics industry for compounding additives such as stabilizers and/or colorants with polymers.

  1. Whole blood of mammalian species in the oscillating shear field: influence of erythrocyte aggregation

    NASA Astrophysics Data System (ADS)

    Windberger, U.; Pöschl, Ch; Peters, S.; Huber, J.; van den Hoven, R.

    2017-02-01

    This is the rheologicalanalysis of mammalian blood of species with a high (horse), medium (man), and low (sheep) erythrocyte (RBC) aggregability by small amplitude oscillation technique. Amplitude and frequency sweep tests in linear mode were performed with blood from healthy adult volunteers, horses, and sheep in CSS-mode. Blood samples were hematocrit (HCT) adjusted (40%, 50%, 60%) and tested at 7°C, 22°C, and 37°C. Storage modulus (G‧) increased with HCT and decreased with temperature in each species, but the gradient of this increase was species-specific. The lower dependency of G‧ on the equine HCT value could be a benefit during physical performance when high numbers of RBCs are released from the spleen in the horse. In sheep, a HCT-threshold had to be overcome before elasticity of the blood sample could be measured, suggesting that the cohesive forces between RBCs, and between RBCs and plasma molecules must be very low. The frequencies for tests under quasi-staticcondition were in a narrow range around the physiologic heart rate of the species. In horse, time-dependent influences concurred at frequencies lower than 3 rad.s-1 probably due to sedimentation of RBC aggregates. In conclusion, elasticity of blood depends not only on the amount of blood cells, but also on their mechanical and functional properties.

  2. Effects of seasonal changes and shearing on thermoregulation, blood constituents and semen characteristics of desert rams (Ovis aries).

    PubMed

    Suhair, S Mohammed; Abdalla, M Abdelatif

    2013-12-15

    This experiment was designed to study the effects of shearing in different seasons (winter vs. summer) on thermoregulation, blood parameters and semen characteristics of desert rams. Eight intact healthy rams were randomly assigned into two groups (n = 4). The control group was kept unshorn (UN) with intact pelage, the mean length of hair left was approximately 1.5 cm and the treated group was shorn (SH). Rectal temperature (Tr) and Respiration Rate (RR) measurements were carried out twice daily throughout the experimental period. Blood samples were collected once weekly for the evaluation of Packed Cell Volume (PCV), Total (TLC) and Differential (DLC) leukocyte count, Serum Total Protein (STP), Serum Albumin (SA), Serum Urea (SU) and Plasma Glucose (PG) concentration. Semen samples were collected once weekly for the determination of Ejaculate Volume (EV), Sperm Mass (SM) and individual (SIM) motility, Sperm Cell Concentration (SCC), live (LSP) and abnormal (ABS) sperm percent and semen pH. Scrotal Circumference (SC) measurements were performed weekly. Shearing of desert rams significantly lowered the morning Tr in both seasons and the afternoon Tr during summer, while RR was significantly lower in both seasons in the afternoon. The PCV was significantly lower in shorn rams during summer compared to winter and PG was significantly higher during winter compared to summer. In both seasons shearing significantly lowered SIM. It is concluded that shearing significantly affected thermoregulation, blood composition and semen characteristics during winter and summer. It is concluded that shearing in different season significantly affected thermoregulation, blood parameters and seminal traits of Desert Hamari rams.

  3. Quantifying the deformation of the red blood cell skeleton in shear flow

    NASA Astrophysics Data System (ADS)

    Peng, Zhangli; Zhu, Qiang

    2012-02-01

    To quantitatively predict the response of red blood cell (RBC) membrane in shear flow, we carried out multiphysics simulations by coupling a three-level multiscale approach of RBC membranes with a Boundary Element Method (BEM) for surrounding flows. Our multiscale approach includes a model of spectrins with the domain unfolding feature, a molecular-based model of the junctional complex with detailed protein connectivity and a whole cell Finite Element Method (FEM) model with the bilayer-skeleton friction derived from measured transmembrane protein diffusivity based on the Einstein-Stokes relation. Applying this approach, we investigated the bilayer-skeleton slip and skeleton deformation of healthy RBCs and RBCs with hereditary spherocytosis anemia during tank-treading motion. Compared with healthy cells, cells with hereditary spherocytosis anemia sustain much larger skeleton-bilayer slip and area deformation of the skeleton due to deficiency of transmembrane proteins. This leads to extremely low skeleton density and large bilayer-skeleton interaction force, both of which may cause bilayer loss. This finding suggests a possible mechanism of the development of hereditary spherocytosis anemia.

  4. Compositional evolution of high-temperature sheared lherzolite PHN 1611

    SciTech Connect

    Smith, D. ); Griffin, W.L.; Ryan, C.G. )

    1993-02-01

    The evolution of fertile' mantle has been studied by proton microprobe (PIXE) analysis of minerals of a high-temperature sheared xenolith from the Thaba Putsoa kimerlite in Lesotho, southern Africa. Analyzed elements include Ni, Cu, Zn, Ga, Sr, Y, and Zr. Garnets are homogeneous in Ni and Zn but have rims enriched relative to cores in Zr and Y. Compositions of olivine neoblasts define intergranular gradients of Fe, Zn, and Ni; Fe-rich olivine is relatively Zn-rich but Ni-poore. Although individual clinopyroxene grains are nearly homogeneous, clinopyroxene associated with Fe-rich olivine is relatively Fe- and Zn-rich but Sr- and Cr-poor. The trace-element abundances and compositional gradients constrain the processes of periodotite enrichment and the thermal history. Enrichment of Zr, Y, and Fe in garnet rims documents infiltration of a silica-undersaturated melt. The Fe-rich olivine compositions and the Zn and Fe gradients establish that the xenolith was sampled from near a melt conduit. Mechanical mixing of inhomogeneous peridotite and melt infiltration may have been concurrent. Because garnets appear homogeneous in Ni, mantle temperature changes affecting PHN 1611 occurred before or over a longer period than the melt infiltration. Measured and calculated abundances of many incompatible trace elements in the rock are similar to those proposed for primitive mantle. Calculated chondrite-normalized abundances of Sr, Ti, Zr, and Y are like those of appropriate REE. Enrichment processes in PHN 1611 proceeded at unusually high recorded temperature and in the apparent absence of minor phases common in lower-temperature metasomatized rocks, but similar processes may be common. In particular, mechanical mixing near mantle dikes may frequently occur. These enrichment mechanisms may produce xenolith compositions that resemble some proposed for primitive mantle but that have different implications for mantle evolution. 61 refs., 7 figs., 2 tabs.

  5. Risk Factors for High Blood Pressure

    MedlinePlus

    ... to achieve target blood pressure goals with treatment. Overweight You are more likely to develop prehypertension or high blood pressure if you’re overweight or obese . The terms “overweight” and “obese” refer ...

  6. Preeclampsia and High Blood Pressure During Pregnancy

    MedlinePlus

    ... thrombophilia , or lupus • are obese •had in vitro fertilization What are the risks for my baby if ... blood cells. Hypertension: High blood pressure. In Vitro Fertilization: A procedure in which an egg is removed ...

  7. Preeclampsia and High Blood Pressure During Pregnancy

    MedlinePlus

    ... mellitus , thrombophilia , or lupus • are obese •had in vitro fertilization What are the risks for my baby if ... red blood cells. Hypertension: High blood pressure. In Vitro Fertilization: A procedure in which an egg is removed ...

  8. Evaluation of shear stress accumulation on blood components in normal and dysfunctional bileaflet mechanical heart valves using smoothed particle hydrodynamics.

    PubMed

    Shahriari, S; Maleki, H; Hassan, I; Kadem, L

    2012-10-11

    Evaluating shear induced hemodynamic complications is one of the major concerns in design of the mechanical heart valves (MHVs). The monitoring of these events relies on both numerical simulations and experimental measurements. Currently, numerical approaches are mainly based on a combined Eulerian-Lagrangian approach. A more straightforward evaluation can be based on the Lagrangian analysis of the whole blood. As a consequence, Lagrangian meshfree methods are more adapted to such evaluation. In this study, smoothed particle hydrodynamics (SPH), a fully meshfree particle method originated to simulate compressible astrophysical flows, is applied to study the flow through a normal and a dysfunctional bileaflet mechanical heart valves (BMHVs). The SPH results are compared with the reference data. The accumulation of shear stress patterns on blood components illustrates the important role played by non-physiological flow patterns and mainly vortical structures in this issue. The statistical distribution of particles with respect to shear stress loading history provides important information regarding the relative number of blood components that can be damaged. This can be used as a measure of the response of blood components to the presence of the valve implant or any implantable medical device. This work presents the first attempt to simulate pulsatile flow through BMHVs using SPH method.

  9. FE Analysis on Shear Deformation for Asymmetrically Hot-Rolled High-Manganese Steel Strip

    NASA Astrophysics Data System (ADS)

    Sui, Feng-Li; Wang, Xin; Li, Chang-Sheng; Zhao, Jun

    2016-11-01

    Shear deformation along the longitudinal cross section of the high-manganese steel strip has been analyzed in hot asymmetrical rolling process using rigid-plastic finite element model. The friction coefficient between the rolls and the strip surfaces, the diameter of the work rolls, the speed ratio for the lower/upper rolls, the reduction rate and the initial temperature of the billet were all taken into account. Influence of these process parameters on the shear stress, the shear strain and the related shear strain energy in the center layer of the hot-rolled strip was analyzed. It is indicated that increasing the speed ratio, the reduction rate and the work roll diameter is an effective way to accumulate more shear strain energy in the strip center. A mathematical model reflecting the relationship between the shear strain energy and the process parameters has been established.

  10. Transition in high-speed free shear layers

    NASA Technical Reports Server (NTRS)

    Demetriades, A.

    1990-01-01

    The laminar free-shear layers considered in the study are formed by combinations of the velocities and momentum thicknesses of two adjacent parallel flows. Transition in wakes, pure free-shear layers of the Chapman type, and separate and partition flows are discussed. A stability-transition connection is emphasized, and it is suggested that a recurring deficiency in some stability calculations is the use of overly simplified laminar profiles. It is also noted that physical principles can be used for estimating the transition location or providing the factors affecting it. One such approach, a threshold theory, is discussed by way of example.

  11. Application of Dissipative Particle Dynamics to the Study of a Red Blood Cell in Simple Shear Flow

    NASA Astrophysics Data System (ADS)

    Ye, Ting; Phan-Thien, Nhan; Khoo, Boo Cheong; Lim, Chwee Teck

    2014-11-01

    The present work reports an attempt to apply the dissipative particle dynamics (DPD) method to study the dynamic behaviors of a red blood cell (RBC) in simple shear flow. The simulation system is discretized into four types of particles, namely wall particles, fluid particles, membrane particles and internal particles. The particle interaction is modeled by the DPD method, and the membrane particles are connected into a viscoelastic triangular network to represent the RBC membrane. As benchmarking tests, we simulate the deformation of a spherical capsule in shear flow and compare it with the past study, and also examine the effect of computational domain size. After that, we investigate the dynamics of a RBC in shear flow at different membrane shear and bending moduli. Our simulations reproduce the tank-treading, trembling and tumbling motions of the RBC at the shear modulus Es = 6, 60 and 600 μN/m, respectively. Moreover, we find that the RBC undergoes a trembling motion when its bending modulus is large enough, where the obvious stretching and smoothing of the RBC occur alternately in shape.

  12. The effects of non-Newtonian viscosity on the deformation of red blood cells in a shear flow

    NASA Astrophysics Data System (ADS)

    Sesay, Juldeh

    2005-11-01

    The analyses of the effects of non-Newtonian viscosity on the membrane of red blood cells (RBCs) suspended in a shear flow are presented. The specific objective is to investigate the mechanical deformation on the surfaces of an ellipsoidal particle model. The hydrodynamic stresses and other forces on the surface of the particle are used to determine the cell deformation. We extended previous works, which were based on the Newtonian fluid models, to the non-Newtonian case, and focus on imposed shear rate values between 1 and 100 per second. Two viscosity models are investigated, which respectively correspond to a normal person and a patient with cerebrovascular accident (CVA). The results are compared with those obtained assuming a Newtonian model. We observed that the orientation of the cell influences the deformation and the imposed shear rate drives the local shear rate distribution along the particle surface. The integral particle deformation for the non-Newtonian models in the given shear rate regime is higher than that for the Newtonian reference model. Finally, the deformation of the cell surface decreases as the dissipation ratio increases.

  13. Effect of cytoskeleton stress-free state on red blood cell responses in low shear rate flows

    NASA Astrophysics Data System (ADS)

    Zhu, Qiang; Peng, Zhangli; Mashayekh, Adel

    2013-11-01

    Inspired by the recent experiment on erythrocytes (red blood cells, or RBCs) in weak shear flows (Dupire et al. 2012), we conduct a numerical investigation to study the dynamics of RBCs in low shear rate flows by applying a multiscale fluid-structure interaction model. By employing a spheroidal stress-free state in the cytoskeleton we are able to numerically predict an important feature that the cell maintains its biconcave shape during tank treading motions. This has not been achieved by any existing models. Furthermore, we numerically confirm the hypothesis that as the stress-free state approaches a sphere, the threshold shear rates corresponding to the establishment of tank treading decrease. By comparing with the experimental measurements, our study suggests that the stress-free state of RBCs is a spheroid which is close to a sphere, rather than a biconcave shape applied in existing models (the implication is that the RBC skeleton is prestressed in its natural biconcave state). It also suggests that the response of RBCs in low shear rate flows may provide a measure to quantitatively determine the distribution of shear stress in RBC cytoskeleton at the natural state.

  14. Exact two-dimensional zonal wavefront reconstruction with high spatial resolution in lateral shearing interferometry

    NASA Astrophysics Data System (ADS)

    Dai, Fengzhao; Li, Jie; Wang, Xiangzhao; Bu, Yang

    2016-05-01

    A novel zonal method is proposed for exact discrete reconstruction of a two-dimensional wavefront with high spatial resolution for lateral shearing interferometry. Four difference wavefronts measured in the x and y shear directions are required. Each of the two shear directions is measured twice with different shear amounts. The shear amounts of the second measurements of the x and y directions are Sx+1 pixels and Sy+1 pixels, where Sx pixels and Sy pixels are the shear amounts of the first measurements in the x and y directions, respectively. The shear amount in each direction can be chosen freely, provided that it is below a maximum value determined by the pupil shape and the number of samples N in that direction; thus, the choices are not limited by the more stringent condition required by previous methods, namely, that the shear amounts must be divisors of N. This method can exactly reconstruct any wavefront at evaluation points up to an arbitrary constant if the data is noiseless, and high spatial resolution can be achieved even with large shear amounts. The method is applicable not only to square pupils, but also to general pupil shapes if a sufficient number of Gerchberg iterations are employed. In this study, the validity and capability of the method were confirmed by numerical experiments. In addition, the experiments demonstrated that the method is stable with respect to noise in the difference wavefronts.

  15. Shear melting and high temperature embrittlement: theory and application to machining titanium.

    PubMed

    Healy, Con; Koch, Sascha; Siemers, Carsten; Mukherji, Debashis; Ackland, Graeme J

    2015-04-24

    We describe a dynamical phase transition occurring within a shear band at high temperature and under extremely high shear rates. With increasing temperature, dislocation deformation and grain boundary sliding are supplanted by amorphization in a highly localized nanoscale band, which allows for massive strain and fracture. The mechanism is similar to shear melting and leads to liquid metal embrittlement at high temperature. From simulation, we find that the necessary conditions are lack of dislocation slip systems, low thermal conduction, and temperature near the melting point. The first two are exhibited by bcc titanium alloys, and we show that the final one can be achieved experimentally by adding low-melting-point elements: specifically, we use insoluble rare earth metals (REMs). Under high shear, the REM becomes mixed with the titanium, lowering the melting point within the shear band and triggering the shear-melting transition. This in turn generates heat which remains localized in the shear band due to poor heat conduction. The material fractures along the shear band. We show how to utilize this transition in the creation of new titanium-based alloys with improved machinability.

  16. High blood pressure in women.

    PubMed

    Calhoun, D A; Oparil, S

    1997-01-01

    There is a sexual dimorphism in blood pressure of humans and experimental animals: males tend to have higher blood pressure than females with functional ovaries, while ovariectomy or menopause tends to abolish the sexual dimorphism and cause females to develop a "male" pattern of blood pressure. Hypertensive male laboratory animals tend to have NaCl-sensitive blood pressure, while females are NaCl resistant unless their ovaries are removed, in which case NaCl sensitivity appears. The hormonal basis of NaCl sensitivity of blood pressure and of the sexual dimorphism of hypertension remains to be defined. Synthetic estrogens and progestins, as found in oral contraceptives, tend to elevate blood pressure, while naturally occurring estrogens lower it, or have no effect. Hypertension increases cardiovascular risk in women, as well as men, although the benefits of antihypertensive treatment have been more difficult to demonstrate in women. In the population of the United States, women are more aware of their hypertension, more likely to be treated medically, and more likely to have their blood pressure controlled.

  17. High Shear Homogenization of Lignin to Nanolignin and Thermal Stability of Nanolignin-Polyvinyl Alcohol Blends

    Treesearch

    Sandeep S. Nair; Sudhir Sharma; Yunqiao Pu; Qining Sun; Shaobo Pan; J.Y. Zhu; Yulin Deng; Art J. Ragauskas

    2014-01-01

    A new method to prepare nanolignin using a simple high shear homogenizer is presented. The kraft lignin particles with a broad distribution ranging from large micron- to nano-sized particles were completely homogenized to nanolignin particles with sizes less than 100 nm after 4 h of mechanical shearing. The 13C nuclear magnetic resonance (NMR)...

  18. Structure of Highly Sheared Tropical Storm Chantal during CAMEX-4

    NASA Technical Reports Server (NTRS)

    Heymsfield, G. M.; Halverson, J.; Ritchie, E.; Simpson, Joanne; Molinari, J.; Tian, L.

    2006-01-01

    Tropical Storm Chantal during August 2001 was a storm that failed to intensify over the few days prior to making landfall on the Yucatan Peninsula. An observational study of Tropical Storm Chantal is presented using a diverse dataset including remote and in situ measurements from the NASA ER-2 and DC-8 and the NOAA WP-3D N42RF aircraft and satellite. The authors discuss the storm structure from the larger-scale environment down to the convective scale. Large vertical shear (850-200-hPa shear magnitude range 8-15 m/s) plays a very important role in preventing Chantal from intensifying. The storm had a poorly defined vortex that only extended up to 5-6-km altitude, and an adjacent intense convective region that comprised a mesoscale convective system (MCS). The entire low-level circulation center was in the rain-free western side of the storm, about 80 km to the west-southwest of the MCS. The MCS appears to have been primarily the result of intense convergence between large-scale, low-level easterly flow with embedded downdrafts, and the cyclonic vortex flow. The individual cells in the MCS such as cell 2 during the period of the observations were extremely intense, with reflectivity core diameters of 10 km and peak updrafts exceeding 20 m/s. Associated with this MCS were two broad subsidence (warm) regions, both of which had portions over the vortex. The first layer near 700 hPa was directly above the vortex and covered most of it. The second layer near 500 hPa was along the forward and right flanks of cell 2 and undercut the anvil divergence region above. There was not much resemblance of these subsidence layers to typical upper-level warm cores in hurricanes that are necessary to support strong surface winds and a low central pressure. The observations are compared to previous studies of weakly sheared storms and modeling studies of shear effects and intensification. The configuration of the convective updrafts, low-level circulation, and lack of vertical

  19. Structure of Highly Sheared Tropical Storm Chantal during CAMEX-4

    NASA Technical Reports Server (NTRS)

    Heymsfield, G. M.; Halverson, J.; Ritchie, E.; Simpson, Joanne; Molinari, J.; Tian, L.

    2006-01-01

    Tropical Storm Chantal during August 2001 was a storm that failed to intensify over the few days prior to making landfall on the Yucatan Peninsula. An observational study of Tropical Storm Chantal is presented using a diverse dataset including remote and in situ measurements from the NASA ER-2 and DC-8 and the NOAA WP-3D N42RF aircraft and satellite. The authors discuss the storm structure from the larger-scale environment down to the convective scale. Large vertical shear (850-200-hPa shear magnitude range 8-15 m/s) plays a very important role in preventing Chantal from intensifying. The storm had a poorly defined vortex that only extended up to 5-6-km altitude, and an adjacent intense convective region that comprised a mesoscale convective system (MCS). The entire low-level circulation center was in the rain-free western side of the storm, about 80 km to the west-southwest of the MCS. The MCS appears to have been primarily the result of intense convergence between large-scale, low-level easterly flow with embedded downdrafts, and the cyclonic vortex flow. The individual cells in the MCS such as cell 2 during the period of the observations were extremely intense, with reflectivity core diameters of 10 km and peak updrafts exceeding 20 m/s. Associated with this MCS were two broad subsidence (warm) regions, both of which had portions over the vortex. The first layer near 700 hPa was directly above the vortex and covered most of it. The second layer near 500 hPa was along the forward and right flanks of cell 2 and undercut the anvil divergence region above. There was not much resemblance of these subsidence layers to typical upper-level warm cores in hurricanes that are necessary to support strong surface winds and a low central pressure. The observations are compared to previous studies of weakly sheared storms and modeling studies of shear effects and intensification. The configuration of the convective updrafts, low-level circulation, and lack of vertical

  20. Observations of transient high temperature vortical microstructures in solids during adiabatic shear banding

    NASA Astrophysics Data System (ADS)

    Guduru, P. R.; Ravichandran, G.; Rosakis, A. J.

    2001-09-01

    By using a unique infrared high-speed camera especially constructed for recording highly transient temperature fields at the microscale, we are able to reveal the spatial and temporal microstructure within dynamically growing shear bands in metals. It is found that this structure is highly nonuniform and possesses a transient, short range periodicity in the direction of shear band growth in the form of an array of intense ``hot spots'' reminiscent of the well-known, shear-induced hydrodynamic instabilities in fluids. This is contrary to the prevailing classical view that describes the deformations and the temperatures within shear bands as being essentially one-dimensional fields. These observations are also reminiscent of the nonuniform structure of localized shear regions believed to exist, at an entirely different length scale, in the earth's lower crust and upper mantle.

  1. Self-assembled core-polyethylene glycol-lipid shell nanoparticles demonstrate high stability in shear flow.

    PubMed

    Shen, Zhiqiang; Ye, Huilin; Kröger, Martin; Li, Ying

    2017-05-24

    A core-polyethylene glycol-lipid shell (CPLS) nanoparticle consists of an inorganic core coated with polyethylene glycol (PEG) polymers, surrounded by a lipid bilayer shell. It can be self-assembled from a PEGylated core with surface-tethered PEG chains, where all the distal ends are covalently bonded to lipid molecules. Upon adding free lipids, a complete lipid bilayer shell can be formed on the surface driven by the hydrophobic nature of lipid tails, leading to the formation of a CPLS nanoparticle. The stability of CPLS nanoparticles in shear flow has been systematically studied through large scale dissipative particle dynamics simulations. CPLS nanoparticles demonstrate higher stability and less deformation in shear flow, compared with lipid vesicles. Burst leakage of drug molecules inside lipid vesicles and CPLS NPs can be induced by the large pores at their tips. These pores are initiated by the maximum stress in the waist region. It further grows along with the tank-treading motion of vesicles or CPLS NPs in shear flow. However, due to the constraints applied by PEG polymers, CPLS NPs are less deformed than vesicles with comparable size under the same flow conditions. Thus, the less deformed CPLS NPs express a smaller maximum stress at waists, demonstrating higher stability. Pore formation at waists, evolving into large pores on vesicles, leads to the burst leakage of drug molecules and complete rupture of vesicles. In contrast, although similar drug leakage in CPLS nanoparticles can occur at high shear rates, pores initiated at moderate shear rates tend to be short-lived and close due to the constraints mediated by PEG polymers. This kind of 'self-healing' capability can be observed over a wide range of shear rates for CPLS nanoparticles. Our results suggest self-assembled CPLS nanoparticles to exhibit high stability during blood circulation without rapid drug leakage. These features make CPLS nanoparticles candidates for a promising drug delivery platform.

  2. Nanometric Gouge in High-Speed Shearing Experiments: Superplasticity?

    NASA Astrophysics Data System (ADS)

    Green, H. W.; Lockner, D. A.; Bozhilov, K. N.; Maddon, A.; Beeler, N. M.; Reches, Z.

    2010-12-01

    High-speed shearing experiments on solid rock samples typically generate a gouge with sub-micron grain size that appears to control the frictional resistance at velocities approaching 1 m/s (Reches & Lockner, Nature, in press). We conducted experiments on Kasota dolomite samples and observed profound weakening (friction drops from ~0.8 to ~ 0.2) under earthquake conditions (up to slip-velocity ~ 0.95 m/s and normal stress 28.4 MPa). During these runs the experimental fault had T ≥ 800°C and developed a shining, dark surface. We report here analysis of such a surface with scanning electron microscopy (SEM) and atomic force microscopy (AFM). SEM analysis shows a slickensided gouge made up of particles all ≤ 50nm with a large fraction ≤ 20nm. The spacing of the slickenside striations is less than 1 µm. Over large areas of the slickensided surface the nanometric gouge has been replaced by an undeformed, interlocking crystalline pavement of 100-300 nm grain size. Qualitative chemical analysis of this pavement surface by energy-dispersive X-ray spectroscopy reveals only a weak carbon peak, suggesting that the dolomite has been decarbonated. The development of a “pavement” of grain size ~200 nm in our experiments is remarkably similar to the observations of Han et al. (JGR, 2010, Fig. 14(d)). However, their experiments either did not develop such a nanometric gouge or it was completely replaced by the coarser pavement. These present observations of nanometric gouge that recrystallizes during the short time interval of elevated temperature following termination of deformation are reminiscent of the nanometric “gouge” produced in very high-pressure experiments (1-14 GPa) that have failed by transformation-induced faulting during the olivine-spinel transformation (Green and Burnley, Nature, 1989; Green et al., Nature, 1990). In the high-pressure experiments, the gouge consists of a nanocrystalline aggregate of the spinel phase that flowed at very high strain

  3. Effects of shear forces and pressure on blood vessel function and metabolism in a perfusion bioreactor.

    PubMed

    Hoenicka, Markus; Wiedemann, Ludwig; Puehler, Thomas; Hirt, Stephan; Birnbaum, Dietrich E; Schmid, Christof

    2010-12-01

    Bovine saphenous veins (BSV) were incubated in a perfusion bioreactor to study vessel wall metabolism and wall structure under tissue engineering conditions. Group 1 vessels were perfused for 4 or 8 days. The viscosity of the medium was increased to that of blood in group 2. Group 3 vessels were additionally strained with luminal pressure. Groups 1-d through 3-d were similar except that BSV were endothelium-denuded before perfusion. Groups 1-a through 3-a used native vessels at elevated flow rates. Group 3 vessels responded significantly better to noradrenaline on day 4, whereas denuded vessels showed attenuated responses (p < 0.001). Tetrazolium dye reduction did not depend on perfusion conditions or time except for denuded vessels. pO₂ gradients across the vessels were independent of time and significantly higher in group 2 (p < 0.001). BSV converted glucose stoichiometrically to lactate except vessels of groups 3, 1-d, and 3-d which released more lactate than glucose could supply (p < 0.001). Group 1 vessels as well as all vessels perfused with elevated flow rates showed a loss of endothelial cells after 4 days, whereas group 2 and 3 vessels retained most of the endothelium. These data suggest that vessel metabolism was not limited by oxygen supply. Shear forces did not affect glucose metabolism but increased oxygen consumption and endothelial cell survival. Luminal pressure caused the utilization of energy sources other than glucose, as long as the endothelium was intact. Therefore, vessel metabolism needs to be monitored during tissue engineering procedures which challenge the constructs with mechanical stimuli.

  4. `Sausage string' patterns in blood vessels at high blood pressures

    NASA Astrophysics Data System (ADS)

    Alstrøm, Preben; Eguíluz, Victor M.; Gustafsson, Finn; Holstein-Rathlou, Niels-Henrik

    A new Rayleigh-type instability is proposed to explain the `sausage-string' pattern of alternating constrictions and dialtations formed in blood vessels at high blood pressure conditions. Our theory involves the nonlinear stress-strain characteristics of the vessel wall, and provides predictions for the conditions under which the normal cylindrical geometry of a blood vessel becomes unstable. The theory explains key features observed experimentally, e.g. the limited occurrence of the sausage-string pattern to small arteries and large arterioles, and only in those with small wall-to-lumen ratios.

  5. Shear wave measurements in shock-induced, high-pressure phases

    SciTech Connect

    Aidun, J.B.

    1993-01-01

    Structural phase transformations under shock loading are of considerable interest for understanding the response of solids under nonhydrostatic stresses and at high strain-rates. Examining shock-induced transformations from continuum level measurements is fundamentally constrained by the inability to directly identify microscopic processes, and also by the limited number of material properties that can be directly measured. ne latter limitation can be reduced by measuring both shear and compression waves using Lagrangian gauges in combined, compression and shear loading. The shear wave serves as an important, real-time probe of the shocked state and unloading response. Using results from a recent study of CaCO[sub 3], the unique information obtained from the shear wave speed and the detailed structure of the shear wave are shown to be useful for distinguishing the effects of phase transformations from yielding, as well as in characterizing the high-pressure phases and the yielding process under shock loading.

  6. Shear wave measurements in shock-induced, high-pressure phases

    SciTech Connect

    Aidun, J.B.

    1993-07-01

    Structural phase transformations under shock loading are of considerable interest for understanding the response of solids under nonhydrostatic stresses and at high strain-rates. Examining shock-induced transformations from continuum level measurements is fundamentally constrained by the inability to directly identify microscopic processes, and also by the limited number of material properties that can be directly measured. ne latter limitation can be reduced by measuring both shear and compression waves using Lagrangian gauges in combined, compression and shear loading. The shear wave serves as an important, real-time probe of the shocked state and unloading response. Using results from a recent study of CaCO{sub 3}, the unique information obtained from the shear wave speed and the detailed structure of the shear wave are shown to be useful for distinguishing the effects of phase transformations from yielding, as well as in characterizing the high-pressure phases and the yielding process under shock loading.

  7. Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow

    NASA Astrophysics Data System (ADS)

    Yazdani, Alireza Z. K.; Bagchi, Prosenjit

    2011-08-01

    We present phase diagrams of the single red blood cell and biconcave capsule dynamics in dilute suspension using three-dimensional numerical simulations. The computational geometry replicates an in vitro linear shear flow apparatus. Our model includes all essential properties of the cell membrane, namely, the resistance against shear deformation, area dilatation, and bending, as well as the viscosity difference between the cell interior and suspending fluids. By considering a wide range of shear rate and interior-to-exterior fluid viscosity ratio, it is shown that the cell dynamics is often more complex than the well-known tank-treading, tumbling, and swinging motion and is characterized by an extreme variation of the cell shape. As a result, it is often difficult to clearly establish whether the cell is swinging or tumbling. Identifying such complex shape dynamics, termed here as “breathing” dynamics, is the focus of this article. During the breathing motion at moderate bending rigidity, the cell either completely aligns with the flow direction and the membrane folds inward, forming two cusps, or it undergoes large swinging motion while deep, craterlike dimples periodically emerge and disappear. At lower bending rigidity, the breathing motion occurs over a wider range of shear rates, and is often characterized by the emergence of a quad-concave shape. The effect of the breathing dynamics on the tank-treading-to-tumbling transition is illustrated by detailed phase diagrams which appear to be more complex and richer than those of vesicles. In a remarkable departure from the vesicle dynamics, and from the classical theory of nondeformable cells, we find that there exists a critical viscosity ratio below which the transition is independent of the viscosity ratio, and dependent on shear rate only. Further, unlike the reduced-order models, the present simulations do not predict any intermittent dynamics of the red blood cells.

  8. Extrusion granulation and high shear granulation of different grades of lactose and highly dosed drugs: a comparative study.

    PubMed

    Keleb, E I; Vermeire, A; Vervaet, C; Remon, Jean Paul

    2004-07-01

    Formulations containing different lactose grades, paracetamol, and cimetidine were granulated by extrusion granulation and high shear granulation. Granules were evaluated for yield, friability, and compressibility. Tablets were prepared from those granules and evaluated for tensile strength, friability, disintegration time, and dissolution. The different lactose grades had an important effect on the extrusion granulation process. Particle size and morphology affected powder feeding and power consumption, but had only a minor influence on the granule and tablet properties obtained by extrusion granulation. In contrast, the lactose grades had a major influence on the granule properties obtained by high shear granulation. Addition of polyvinylpyrrolidone (PVP) was required to process pure paracetamol and cimetidine by high shear granulation, whereas it was feasible to granulate these drugs without PVP by extrusion granulation. Granules prepared by extrusion granulation exhibited a higher yield and a lower friability than those produced by high shear granulation. Paracetamol and cimetidine tablets compressed from granules prepared by extrusion granulation showed a higher tensile strength, lower friability, and lower disintegration time than those prepared from granules produced by high shear granulation. Paracetamol tablets obtained via extrusion granulation exhibited faster dissolution than those obtained via high shear granulation. For all lactose grades studied, extrusion granulation resulted in superior granule and tablet properties in comparison with those obtained by high shear granulation. These results indicate that extrusion granulation is more efficient than high shear granulation.

  9. The unexpected stability of multiwall nanotubes under high pressure and shear deformation

    SciTech Connect

    Pashkin, E. Y.; Pankov, A. M.; Kulnitskiy, B. A.; Mordkovich, V. Z.; Perezhogin, I. A.; Karaeva, A. R.; Popov, M. Y.; Sorokin, P. B.; Blank, V. D.

    2016-08-22

    The behavior of multiwall carbon nanotubes under a high pressure (up to 55 GPa) combined with shear deformation was studied by experimental and theoretical methods. The unexpectedly high stability of the nanotubes' structure under high stresses was observed. After the pressure was released, we observed that the nanotubes had restored their shapes. Atomistic simulations show that the hydrostatic and shear stresses affect the nanotubes' structure in a different way. It was found that the shear stress load in the multiwall nanotubes' outer walls can induce their connection and formation of an amorphized sp{sup 3}-hybridized region but internal core keeps the tubular structure.

  10. Molecular cloud formation in high-shear, magnetized colliding flows

    NASA Astrophysics Data System (ADS)

    Fogerty, E.; Frank, A.; Heitsch, F.; Carroll-Nellenback, J.; Haig, C.; Adams, M.

    2016-08-01

    The colliding flows (CF) model is a well-supported mechanism for generating molecular clouds. However, to-date most CF simulations have focused on the formation of clouds in the normal-shock layer between head-on colliding flows. We performed simulations of magnetized colliding flows that instead meet at an oblique-shock layer. Oblique shocks generate shear in the post-shock environment, and this shear creates inhospitable environments for star formation. As the degree of shear increases (i.e. the obliquity of the shock increases), we find that it takes longer for sink particles to form, they form in lower numbers, and they tend to be less massive. With regard to magnetic fields, we find that even a weak field stalls gravitational collapse within forming clouds. Additionally, an initially oblique collision interface tends to reorient over time in the presence of a magnetic field, so that it becomes normal to the oncoming flows. This was demonstrated by our most oblique shock interface, which became fully normal by the end of the simulation.

  11. High content evaluation of shear dependent platelet function in a microfluidic flow assay.

    PubMed

    Hansen, Ryan R; Wufsus, Adam R; Barton, Steven T; Onasoga, Abimbola A; Johnson-Paben, Rebecca M; Neeves, Keith B

    2013-02-01

    The high blood volume requirements and low throughput of conventional flow assays for measuring platelet function are unsuitable for drug screening and clinical applications. In this study, we describe a microfluidic flow assay that uses 50 μL of whole blood to measure platelet function on ~300 micropatterned spots of collagen over a range of physiologic shear rates (50-920 s(-1)). Patterning of collagen thin films (CTF) was achieved using a novel hydrated microcontact stamping method. CTF spots of 20, 50, and 100 μm were defined on glass substrates and consisted of a dense mat of nanoscale collagen fibers (3.74 ± 0.75 nm). We found that a spot size of greater than 20 μm was necessary to support platelet adhesion under flow, suggesting a threshold injury size is necessary for stable platelet adhesion. Integrating 50 μm CTF microspots into a multishear microfluidic device yielded a high content assay from which we extracted platelet accumulation metrics (lag time, growth rate, total accumulation) on the spots using Hoffman modulation contrast microscopy. This method has potential broad application in identifying platelet function defects and screening, monitoring, and dosing antiplatelet agents.

  12. High content evaluation of shear dependent platelet function in a microfluidic flow assay

    PubMed Central

    Hansen, Ryan R.; Wufsus, Adam R.; Barton, Steven T.; Onasoga, Abimbola A.; Johnson-Paben, Rebecca M.; Neeves, Keith B.

    2012-01-01

    The high blood volume requirements and low throughput of conventional flow assays for measuring platelet function are unsuitable for drug screening and clinical applications. In this study, we describe a microfluidic flow assay that uses 50 μL of whole blood to measure platelet function on ~300 micropatterned spots of collagen over a range of physiologic shear rates (50–920 s−1). Patterning of collagen thin films (CTF) was achieved using a novel hydrated microcontact stamping method. CTF spots of 20, 50, and 100 μm were defined on glass substrates and consisted of a dense mat of nanoscale collagen fibers (3.74 ± 0.75 nm). We found that a spot size of greater than 20 μm was necessary to support platelet adhesion under flow, suggesting a threshold injury is necessary for stable platelet adhesion. Integrating 50 μm CTF microspots into a multishear microfluidic device yielded a high content assay from which we extracted platelet accumulation metrics (lag time, growth rate, total accumulation) on the spots using Hoffman modulation contrast microscopy. This method has potential broad application in identifying platelet function defects and screening, monitoring and dosing antiplatelet agents. PMID:23001359

  13. Elevation in blood flow and shear rate prevents hyperglycemia-induced endothelial dysfunction in healthy subjects and those with type 2 diabetes.

    PubMed

    Greyling, Arno; Schreuder, Tim H A; Landman, Thijs; Draijer, Richard; Verheggen, Rebecca J H M; Hopman, Maria T E; Thijssen, Dick H J

    2015-03-01

    Hyperglycemia, commonly present after a meal, causes transient impairment in endothelial function. We examined whether increases in blood flow (BF) protect against the hyperglycemia-mediated decrease in endothelial function in healthy subjects and patients with type 2 diabetes mellitus (T2DM). Ten healthy subjects and 10 age- and sex-matched patients with T2DM underwent simultaneous bilateral assessment of brachial artery endothelial function by means of flow-mediated dilation (FMD) using high-resolution echo-Doppler. FMD was examined before and 60, 120, and 150 min after a 75-g oral glucose challenge. We unilaterally manipulated BF by heating one arm between minute 30 and minute 60. Oral glucose administration caused a statistically significant, transient increase in blood glucose in both groups (P < 0.001). Forearm skin temperature, brachial artery BF, and shear rate significantly increased in the heated arm (P < 0.001), and to a greater extent compared with the nonheated arm in both groups (interaction effect P < 0.001). The glucose load caused a transient decrease in FMD% (P < 0.05), whereas heating significantly prevented the decline (interaction effect P < 0.01). Also, when correcting for changes in diameter and shear rate, we found that the hyperglycemia-induced decrease in FMD can be prevented by local heating (P < 0.05). These effects on FMD were observed in both groups. Our data indicate that nonmetabolically driven elevation in BF and shear rate can similarly prevent the hyperglycemia-induced decline in conduit artery endothelial function in healthy volunteers and in patients with type 2 diabetes. Additional research is warranted to confirm that other interventions that increase BF and shear rate equally protect the endothelium when challenged by hyperglycemia. Copyright © 2015 the American Physiological Society.

  14. High speed all optical shear wave imaging optical coherence elastography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; O'Donnell, Matthew; Wang, Ruikang K.

    2016-03-01

    Optical Coherence Elastography (OCE) is a non-invasive testing modality that maps the mechanical property of soft tissues with high sensitivity and spatial resolution using phase-sensitive optical coherence tomography (PhS-OCT). Shear wave OCE (SW-OCE) is a leading technique that relies on the speed of propagating shear waves to provide a quantitative elastography. Previous shear wave imaging OCT techniques are based on repeated M-B scans, which have several drawbacks such as long acquisition time and repeated wave stimulations. Recent developments of Fourier domain mode-locked high-speed swept-source OCT system has enabled enough speed to perform KHz B-scan rate OCT imaging. Here we propose ultra-high speed, single shot shear wave imaging to capture single-shot transient shear wave propagation to perform SW-OCE. The frame rate of shear wave imaging is 16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of high-frequency shear wave of up to 8 kHz. The shear wave is generated photothermal-acoustically, by ultra-violet pulsed laser, which requires no contact to OCE subjects, while launching high frequency shear waves that carries rich localized elasticity information. The image acquisition and processing can be performed at video-rate, which enables real-time 3D elastography. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine ocular tissue. This approach opens up the feasibility to perform real-time 3D SW-OCE in clinical applications, to obtain high-resolution localized quantitative measurement of tissue biomechanical property.

  15. High shear enrichment improves the performance of the anodophilic microbial consortium in a microbial fuel cell

    PubMed Central

    Pham, Hai The; Boon, Nico; Aelterman, Peter; Clauwaert, Peter; De Schamphelaire, Liesje; Van Oostveldt, Patrick; Verbeken, Kim; Rabaey, Korneel; Verstraete, Willy

    2008-01-01

    Summary In many microbial bioreactors, high shear rates result in strong attachment of microbes and dense biofilms. In this study, high shear rates were applied to enrich an anodophilic microbial consortium in a microbial fuel cell (MFC). Enrichment at a shear rate of about 120 s−1 resulted in the production of a current and power output two to three times higher than those in the case of low shear rates (around 0.3 s−1). Biomass and biofilm analyses showed that the anodic biofilm from the MFC enriched under high shear rate conditions, in comparison with that under low shear rate conditions, had a doubled average thickness and the biomass density increased with a factor 5. The microbial community of the former, as analysed by DGGE, was significantly different from that of the latter. The results showed that enrichment by applying high shear rates in an MFC can result in a specific electrochemically active biofilm that is thicker and denser and attaches better, and hence has a better performance. PMID:21261869

  16. High-Sensitivity Optical Pulse Characterization Using Sagnac Electro-Optic Spectral Shearing Interferometry

    SciTech Connect

    Dorrer, C.; Bromage, J.

    2010-05-04

    An electro-optic spectral shearing interferometer for high-sensitivity optical pulse characterization is described. Two replicas of the test pulse counterpropagate in a Sagnac interferometer with orthogonal polarization states, resulting in two relatively sheared copolarized replicas after temporal phase modulation. The polarization interferometer is intrinsically stable, and its birefringence sets the delay between interfering replicas to reduce the spectrometer resolution requirement. Experimental implementations demonstrate real-time pulse characterization at average powers as low as 1 nWwith spectral shears as high as 280 GHz.

  17. Shear dependent nonlinear vibration in a high quality factor single crystal silicon micromechanical resonator

    NASA Astrophysics Data System (ADS)

    Zhu, H.; Shan, G. C.; Shek, C. H.; Lee, J. E.-Y.

    2012-07-01

    The frequency response of a single crystal silicon resonator under nonlinear vibration is investigated and related to the shear property of the material. The shear stress-strain relation of bulk silicon is studied using a first-principles approach. By incorporating the calculated shear property into a device-level model, our simulation closely predicts the frequency response of the device obtained by experiments and further captures the nonlinear features. These results indicate that the observed nonlinearity stems from the material's mechanical property. Given the high quality factor (Q) of the device reported here (˜2 × 106), this makes it highly susceptible to such mechanical nonlinear effects.

  18. Strain localization in direct shear experiments on Solnhofen limestone at high temperature Effects of transpression

    NASA Astrophysics Data System (ADS)

    Llana-Fúnez, Sergio; Rutter, Ernest H.

    2008-11-01

    Some features of natural shear zones formed under non-coaxial strain geometries, including some effects of transpression, can be simulated in the laboratory by using the direct shear experimental configuration. Slices of ˜1 mm thick Solnhofen limestone were deformed in direct shear between two stronger forcing blocks of cores of Tennessee sandstone pre-cut at 45° to the cylinder axis. Experiments were run dry at 600 °C, 200 MPa confining pressure and bulk shear strain rates of ˜5 × 10 -3 s -1, at which conditions Solnhofen limestone deformed by dislocation creep with a stress exponent of 4.7. When loaded, strain concentrates in the limestone band, producing non-coaxial deformation as one pre-cut block slides past the other. The orientation and intensity of the shape fabric developed in calcite grains indicate that strain is heterogeneous across the specimen, with the formation of two high-strain shear bands close to the limestone-sandstone interface, separated by a central zone of low strain. Crystallographic preferred orientation patterns in the calcite grains measured by electron backscatter diffraction are consistent with a switch in deformation geometry from flattening-dominated in the middle of the specimen towards shear-dominated in the high-strain bands. From tests on thin slices of the same material compressed axisymmetrically (without shearing) normal to the layer, heterogeneous thinning of the slice develops, from a maximum in the centre of the slice to zero at the edges. The formation of the paired shear zones observed in the sheared experiments is interpreted in terms of superposed strain fields, with shearing in the centre of the slice being inhibited by the strain hardening that accompanies the higher flattening strain in the centre of the specimen.

  19. CHRONOBIOLOGY OF HIGH BLOOD PRESSURE

    PubMed Central

    Cornélissen, G.; Halberg, F.; Bakken, E. E.; Wang, Z.; Tarquini, R.; Perfetto, F.; Laffi, G.; Maggioni, C.; Kumagai, Y.; Homolka, P.; Havelková, A.; Dušek, J.; Svačinová, H.; Siegelová, J.; Fišer, B.

    2008-01-01

    BIOCOS, the project aimed at studying BIOlogical systems in their COSmos, has obtained a great deal of expertise in the fields of blood pressure (BP) and heart rate (HR) monitoring and of marker rhythmometry for the purposes of screening, diagnosis, treatment, and prognosis. Prolonging the monitoring reduces the uncertainty in the estimation of circadian parameters; the current recommendation of BIOCOS requires monitoring for at least 7 days. The BIOCOS approach consists of a parametric and a non-parametric analysis of the data, in which the results from the individual subject are being compared with gender- and age-specified reference values in health. Chronobiological designs can offer important new information regarding the optimization of treatment by timing its administration as a function of circadian and other rhythms. New technological developments are needed to close the loop between the monitoring of blood pressure and the administration of antihypertensive drugs. PMID:19122770

  20. High temperature and deformation field measurements at the vicinity of dynamically growing shear bands

    SciTech Connect

    Rosakis, A.J.; Ravichandran, G.; Zhou, M.

    1995-12-31

    The phenomenon of dynamic initiation and propagation of adiabatic shear bands is experimentally and numerically investigated. Pre-notched metal plates are subjected to asymmetric impact load histories (dynamic mode-II loading). Dynamic shear bands emanate from the notch tip and propagate rapidly in a direction nearly parallel to the direction of the impact. Real time temperature histories along a line intersecting and perpendicular to the shear band paths are recorded by means of a high-speed infrared detector system. The materials studied are C-300 (a maraging steel) and Ti - 6 Al - 4 V alloy. Experiments show that the peak temperatures inside the propagating shear bands are approaching 90% of the melting point for C-300 and are significantly lower for the titanium alloy (up to 600{degrees}C). Additionally, measured distances of shear band propagation indicate stronger resistance to shear banding by the Ti - 6Al - 4V alloy. Deformation fields around the propagating shear bands are recorded using high-speed photography. Shear band speeds are found to strongly depend on impact velocities, and are as high as 1200 m/s for C-300 steels. Finite Element simulations of the experiments are carried out under the context of plane strain, considering finite deformations, inertia, heat conduction, thermal softening, strain hardening and strain-rate hardening. In the simulations, the shear band propagation is assumed to be governed by a critical plastic strain criterion. The results are compared with experimental measurements obtained using the high-speed infrared detectors and high-speed photography.

  1. High Blood Pressure Often Undiagnosed, Untreated

    MedlinePlus

    ... Health, or the U.S. Department of Health and Human Services. More Health News on: Heart Attack High Blood Pressure Stroke Recent Health News Related MedlinePlus Health Topics Heart Attack High Blood Pressure Stroke ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated ...

  2. Melt Conditioning of Light Metals by Application of High Shear for Improved Microstructure and Defect Control

    NASA Astrophysics Data System (ADS)

    Patel, Jayesh B.; Yang, Xinliang; Mendis, Chamini L.; Fan, Zhongyun

    2017-04-01

    Casting is the first step toward the production of majority of metal products whether the final processing step is casting or other thermomechanical processes such as extrusion or forging. The high shear melt conditioning provides an easily adopted pathway to producing castings with a more uniform fine-grained microstructure along with a more uniform distribution of the chemical composition leading to fewer defects as a result of reduced shrinkage porosities and the presence of large oxide films through the microstructure. The effectiveness of high shear melt conditioning in improving the microstructure of processes used in industry illustrates the versatility of the high shear melt conditioning technology. The application of high shear process to direct chill and twin roll casting process is demonstrated with examples from magnesium melts.

  3. In Situ Observation of Deformation in Semi-solid Fe-C Alloys at High Shear Rate

    NASA Astrophysics Data System (ADS)

    Nagira, Tomoya; Morita, Shugo; Yokota, Hiroyoshi; Yasuda, Hideyuki; Gourlay, Christopher M.; Yoshiya, Masato; Sugiyama, Akira; Uesugi, Kentaro; Takeuchi, Akihisa; Suzuki, Yoshio

    2014-11-01

    Synchrotron X-ray radiography at 125 frames per second was used to study deformation mechanisms in semi-solid Fe-C alloys at high solid fraction and shear strain rates of 10-1/s. An image correlation approach was also used to quantify the shear strain fields and study shear-induced dilation and the origin of shear cracking. It was shown that, at high solid fraction (90 to 93 pct solid), rearrangement including rotation and translation of solid particles became restricted and shear strain localized into narrow liquid-filled channels/fissures. Shear cracking was shown to originate from inadequate liquid flow into the expanding spaces between solid particles caused by shear-induced dilation. At lower solid fraction (~85 pct solid), solid particles rearranged with a significantly higher component of rotation leading to more shear-induced dilation and a wider shear band.

  4. High shear stress relates to intraplaque haemorrhage in asymptomatic carotid plaques.

    PubMed

    Tuenter, A; Selwaness, M; Arias Lorza, A; Schuurbiers, J C H; Speelman, L; Cibis, M; van der Lugt, A; de Bruijne, M; van der Steen, A F W; Franco, O H; Vernooij, M W; Wentzel, J J

    2016-08-01

    Carotid artery plaques with vulnerable plaque components are related to a higher risk of cerebrovascular accidents. It is unknown which factors drive vulnerable plaque development. Shear stress, the frictional force of blood at the vessel wall, is known to influence plaque formation. We evaluated the association between shear stress and plaque components (intraplaque haemorrhage (IPH), lipid rich necrotic core (LRNC) and/or calcifications) in relatively small carotid artery plaques in asymptomatic persons. Participants (n = 74) from the population-based Rotterdam Study, all with carotid atherosclerosis assessed on ultrasound, underwent carotid MRI. Multiple MRI sequences were used to evaluate the presence of IPH, LRNC and/or calcifications in plaques in the carotid arteries. Images were automatically segmented for lumen and outer wall to obtain a 3D reconstruction of the carotid bifurcation. These reconstructions were used to calculate minimum, mean and maximum shear stresses by applying computational fluid dynamics with subject-specific inflow conditions. Associations between shear stress measures and plaque composition were studied using generalized estimating equations analysis, adjusting for age, sex and carotid wall thickness. The study group consisted of 93 atherosclerotic carotid arteries of 74 participants. In plaques with higher maximum shear stresses, IPH was more often present (OR per unit increase in maximum shear stress (log transformed) = 12.14; p = 0.001). Higher maximum shear stress was also significantly associated with the presence of calcifications (OR = 4.28; p = 0.015). Higher maximum shear stress is associated with intraplaque haemorrhage and calcifications. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Highly Efficient Prion Transmission by Blood Transfusion

    PubMed Central

    Andréoletti, Olivier; Litaise, Claire; Simmons, Hugh; Corbière, Fabien; Lugan, Séverine; Costes, Pierrette; Schelcher, François; Vilette, Didier; Grassi, Jacques; Lacroux, Caroline

    2012-01-01

    It is now clearly established that the transfusion of blood from variant CJD (v-CJD) infected individuals can transmit the disease. Since the number of asymptomatic infected donors remains unresolved, inter-individual v-CJD transmission through blood and blood derived products is a major public health concern. Current risk assessments for transmission of v-CJD by blood and blood derived products by transfusion rely on infectious titers measured in rodent models of Transmissible Spongiform Encephalopathies (TSE) using intra-cerebral (IC) inoculation of blood components. To address the biological relevance of this approach, we compared the efficiency of TSE transmission by blood and blood components when administrated either through transfusion in sheep or by intra-cerebral inoculation (IC) in transgenic mice (tg338) over-expressing ovine PrP. Transfusion of 200 µL of blood from asymptomatic infected donor sheep transmitted prion disease with 100% efficiency thereby displaying greater virulence than the transfusion of 200 mL of normal blood spiked with brain homogenate material containing 103ID50 as measured by intracerebral inoculation of tg338 mice (ID50 IC in tg338). This was consistent with a whole blood titer greater than 103.6 ID50 IC in tg338 per mL. However, when the same blood samples were assayed by IC inoculation into tg338 the infectious titers were less than 32 ID per mL. Whereas the transfusion of crude plasma to sheep transmitted the disease with limited efficacy, White Blood Cells (WBC) displayed a similar ability to whole blood to infect recipients. Strikingly, fixation of WBC with paraformaldehyde did not affect the infectivity titer as measured in tg338 but dramatically impaired disease transmission by transfusion in sheep. These results demonstrate that TSE transmission by blood transfusion can be highly efficient and that this efficiency is more dependent on the viability of transfused cells than the level of infectivity measured by IC

  6. High-speed imaging of remotely induced shear waves using phase-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Le, Nhan Minh; Huang, Zhihong; Wang, Ruikang K.

    2015-03-01

    Shear wave optical coherence elastography (SW-OCE) is a quantitative approach to assess tissue structures and elasticity with high resolution, based on OCT. Shear wave imaging (SWI) is the foundation of shear wave elasticity imaging (SWEI), which is a quantitative approach to assess tissue structures and pathological status. In order to enhance elastography resolution to micron scale, the shear waves needs to be highly localized, with short wavelength and high frequency (second order of kHz), which also places stricter requirement on the temporal resolution requirements of SWI device. In this paper, we introduced two approaches to remotely induce high frequency shear waves within tissue samples: ultrasound acoustic radiation force impulse (ARFI), and high energy nanosecond pulsed laser. The maximum frequency of pulsed laser induced shear waves in tissue-mimicking phantoms can go up to 25 kHz, which is not possible to be captured and tracked by other SWI modalities. We use a custom-built SWI-OCT system to visualize and capture the nanometer scale shear waves, achieving a spatial resolution up to 15 um and frame rate of up to 92 kHz. The dynamic wave propagation data was then used for the reconstruction of localized wave velocity and elasticity. This study demonstrates the non-contact shear wave generation with pulsed laser source, and ultra-fast, high-resolution sectional acoustical wave tracking with remarkable sensitivity, promising a future clinical application for a high-resolution quantitative mapping of elasticity in vivo, non-contact and real time in OCT-accessible tissue, especially in ocular tissues.

  7. Deformation and fragmentation of human red blood cells in turbulent shear flow.

    PubMed Central

    Sutera, S P; Mehrjardi, M H

    1975-01-01

    By means of glutaraldehyde fixation, human erythrocytes are "frozen" while suspended in turbulent shear flow. As the shearing is increased in steps from 100 to 2,500 dyn/cm2, the deformed cells evolve gradually toward a smooth ellipsoidal shape. At stresses above 2,500 dyn/cm2, approximately, fragmentation of the cells occurs with a concomitant increase in free hemoglobin content of the suspending medium. The photographic evidence suggests that the cells rupture in tension in the bulk flow. Images FIGURE 1 FIGURE 2 FIGURE 6 PMID:1174639

  8. Turbulence Decorrelation via Controlled Ex B Shear in High-Performance Plasmas

    NASA Astrophysics Data System (ADS)

    McKee, G. R.

    2015-11-01

    Multi-scale spatiotemporal turbulence properties are significantly altered as toroidal rotation and resulting ExB shearing rate profile are systematically varied in advanced-inductive H-mode plasmas on DIII-D (βN ~ 2.7, q95=5.1). Density, electron and ion temperature profiles and dimensionless parameters (βN, q95, ν*, ρ*, and Te/Ti) are maintained nearly fixed during the rotation scan. Low-wavenumber turbulence (k⊥ρS < 1), measured with Beam Emission Spectroscopy, exhibits increased decorrelation rates (reduced eddy lifetime) as the ExB shear rises across the radial zone of maximum shearing rate (0.55 < ρ < 0 . 75), while the fluctuation amplitude undergoes little change. The poloidal wavenumber is reduced at higher shear, indicating a change in the wavenumber spectrum: eddies elongate in the direction orthogonal to shear and field. At both low and high shear, the 2D turbulence correlation function exhibits a tilted structure, consistent with flow shear. At mid-radius (ρ ~ 0.5), low-k density fluctuations show localized amplitude reduction, consistent with linear GYRO growth rates and ωExB shearing rates. Intermediate and high wavenumber fluctuations measured with Doppler Back-Scattering (k⊥ρS ~ 2.5-3.5) at ρ=0.7 and Phase Contrast Imaging (k⊥ρS > 5) exhibit decreasing amplitude at higher rotation. The energy confinement time increases from 105 ms to 150 ms as the toroidal Mach number (M=vTOR / vth , i) increases to Mo ~ 0.5, while transport decreases. TGLF calculations match the Ti profile with modest discrepancies in the Te and ne profiles. These results clarify the complex mechanisms by which ExB shear affects turbulence. Work supported in part by the US DOE under DE-FG02-08ER54999, DE-FC02-04ER54698.

  9. A Crystal Plasticity Approach for Shear Banding in Hot Rolled High-Strength Steels

    NASA Astrophysics Data System (ADS)

    Lindroos, Matti; Laukkanen, Anssi; Kuokkala, Veli-Tapani

    2017-08-01

    A crystal plasticity approach with a phenomenological shear banding mechanism incorporated in a conventional dislocation crystal plasticity model is presented. In the developed framework, the hardening and softening relations are considered both within and between the deformation mechanisms. The study aims to increase the understanding of the importance of hot rolling texture to the shear banding propensity in martensitic steels. In the single crystal simulations performed for selected common rolling textures, it was found that shear band activation and the magnitude of softening are dependent on the initial orientation of the crystal. In general, softening-related shear banding in single crystals was shown to be well reproduced by the model at high plastic strains and high strain rates.

  10. Experimental Reacting Hydrogen Shear Layer Data at High Subsonic Mach Number

    NASA Technical Reports Server (NTRS)

    Chang, C. T.; Marek, C. J.; Wey, C.; Wey, C. C.

    1996-01-01

    The flow in a planar shear layer of hydrogen reacting with hot air was measured with a two-component laser Doppler velocimeter (LDV) system, a schlieren system, and OH fluorescence imaging. It was compared with a similar air-to-air case without combustion. The high-speed stream's flow speed was about 390 m/s, or Mach 0.71, and the flow speed ratio was 0.34. The results showed that a shear layer with reaction grows faster than one without; both cases are within the range of data scatter presented by the established data base. The coupling between the streamwise and the cross-stream turbulence components inside the shear layers was low, and reaction only increased it slightly. However, the shear layer shifted laterally into the lower speed fuel stream, and a more organized pattern of Reynolds stress was present in the reaction shear layer, likely as a result of the formation of a larger scale structure associated with shear layer corrugation from heat release. Dynamic pressure measurements suggest that coherent flow perturbations existed inside the shear layer and that this flow became more chaotic as the flow advected downstream. Velocity and thermal variable values are listed in this report for a computational fluid dynamics (CFD) benchmark.

  11. How Is High Blood Pressure Treated?

    MedlinePlus

    ... secondary high blood pressure, he or she will work to treat the other condition or change the medicine suspected of causing your ... when the medications they are taking do not work well for them or another medical condition is leading to uncontrolled blood pressure. Health care ...

  12. High spatial resolution PIV and CH-PLIF measurements of a Shear Layer Stabilized Flame

    NASA Astrophysics Data System (ADS)

    Foley, Christopher; Chterev, Ianko; Seitzman, Jerry; Lieuwen, Tim

    2014-11-01

    In practical combustors, flames stabilize in thin shear layers with very high strain rates, which alter the flame burning rate - either enhancing or diminishing reaction rates, and even leading to extinction. Therefore, the bulk velocity that provides stable operation in these combustors is limited, presumably due to the associated maximum stretch rate that the flame is able to withstand. The focus of this work is to develop a deeper understanding of the interaction between flow and flame for a shear layer stabilized, premixed flame. This study consists of planar, high resolution, simultaneous PIV and CH-PLIF measurements, in a 8 x 6 mm plane with 0.11 mm and 0.16 mm PIV vector and CH-PLIF image resolution, respectively, of the flame stabilization region in a swirling jet. The hydrodynamic strain induced stretch rate along the high CH concentration layer of the flame front is calculated from these measurements. In addition, this study elucidates the unsteady behavior of the flame in the thin shear layer. The measured flame stretch is highly spatially and temporally dependent, and dominated by contributions from normal and shear strain terms of axial velocity. Although normal strain is much greater than shear, the near horizontal flame orientation results in neither strain term dominating flame stretch. Furthermore, the flame angle changes the sign of the shear strain contributions as observed experimentally, an important implication for reduced order modeling approaches.

  13. Shallow Water Sediment Properties Derived from High-Frequency Shear and Interface Waves

    DTIC Science & Technology

    1992-04-10

    FREQUENCY SHEAR ONR N00014-88-C-1238 AND INTERFACE WAVES 6. AUTHOR(S) JOHN EWING, JERRY A. CARTER, GEORGE H. SUTTON AND NOEL BARSTOW 7. PERFORMING...B4. PAGES 4739--4762. APRIL 10. 1992 Shallow Water Sediment Properties Derived From High-Frequency Shear and Interface Waves JOHN EWING Woods Hole...calculating thickness. The amplitude falloff with range establishes a Q velocity gradients and penetration depths [ Nettleton . 19401 estimate of 40 in

  14. Stretching Behavior of Red Blood Cells at High Strain Rates

    NASA Astrophysics Data System (ADS)

    Mancuso, Jordan; Ristenpart, William

    2016-11-01

    Most work on the mechanical behavior of red blood cells (RBCs) has focused on simple shear flows. Relatively little work has examined RBC deformations in the physiologically important extensional flow that occurs at the entrance to a constriction. In particular, previous work suggests that RBCs rapidly stretch out and then retract upon entering the constriction, but to date no model predicts this behavior for the extremely high strain rates typically experienced there. In this work, we use high speed video to perform systematic measurements of the dynamic stretching behavior of RBCs as they enter a microfluidic constriction. We demonstrate that a simple viscoelastic model captures the observed stretching dynamics, up to strain rates as high as 1000 s-1. The results indicate that the effective elastic modulus of the RBC membrane at these strain rates is an order of magnitude larger than moduli measured by micropipette aspiration or other low strain rate techniques.

  15. Effects of unidirectional flow shear stresses on the formation, fractal microstructure and rigidity of incipient whole blood clots and fibrin gels

    PubMed Central

    Badiei, N.; Sowedan, A.M.; Curtis, D.J.; Brown, M.R.; Lawrence, M.J.; Campbell, A.I.; Sabra, A.; Evans, P.A.; Weisel, J.W.; Chernysh, I.N.; Nagaswami, C.; Williams, P.R.; Hawkins, K.

    2015-01-01

    Abstract Incipient clot formation in whole blood and fibrin gels was studied by the rheometric techniques of controlled stress parallel superposition (CSPS) and small amplitude oscillatory shear (SAOS). The effects of unidirectional shear stress on incipient clot microstructure, formation kinetics and elasticity are reported in terms of the fractal dimension (df) of the fibrin network, the gel network formation time (TGP) and the shear elastic modulus, respectively. The results of this first haemorheological application of CSPS reveal the marked sensitivity of incipient clot microstructure to physiologically relevant levels of shear stress, these being an order of magnitude lower than have previously been studied by SAOS. CSPS tests revealed that exposure of forming clots to increasing levels of shear stress produces a corresponding elevation in df, consistent with the formation of tighter, more compact clot microstructures under unidirectional flow. A corresponding increase in shear elasticity was recorded. The scaling relationship established between shear elasticity and df for fibrin clots and whole blood confirms the fibrin network as the dominant microstructural component of the incipient clot in terms of its response to imposed stress. Supplementary studies of fibrin clot formation by rheometry and microscopy revealed the substantial additional network mass required to increase df and provide evidence to support the hypothesis that microstructural changes in blood clotted under unidirectional shear may be attributed to flow enhanced thrombin generation and activation. CSPS also identified a threshold value of unidirectional shear stress above which no incipient clot formation could be detected. CSPS was shown to be a valuable haemorheological tool for the study of the effects of physiological and pathological levels of shear on clot properties. PMID:25624413

  16. Effects of unidirectional flow shear stresses on the formation, fractal microstructure and rigidity of incipient whole blood clots and fibrin gels.

    PubMed

    Badiei, N; Sowedan, A M; Curtis, D J; Brown, M R; Lawrence, M J; Campbell, A I; Sabra, A; Evans, P A; Weisel, J W; Chernysh, I N; Nagaswami, C; Williams, P R; Hawkins, K

    2015-01-01

    Incipient clot formation in whole blood and fibrin gels was studied by the rheometric techniques of controlled stress parallel superposition (CSPS) and small amplitude oscillatory shear (SAOS). The effects of unidirectional shear stress on incipient clot microstructure, formation kinetics and elasticity are reported in terms of the fractal dimension (df) of the fibrin network, the gel network formation time (TGP) and the shear elastic modulus, respectively. The results of this first haemorheological application of CSPS reveal the marked sensitivity of incipient clot microstructure to physiologically relevant levels of shear stress, these being an order of magnitude lower than have previously been studied by SAOS. CSPS tests revealed that exposure of forming clots to increasing levels of shear stress produces a corresponding elevation in df, consistent with the formation of tighter, more compact clot microstructures under unidirectional flow. A corresponding increase in shear elasticity was recorded. The scaling relationship established between shear elasticity and df for fibrin clots and whole blood confirms the fibrin network as the dominant microstructural component of the incipient clot in terms of its response to imposed stress. Supplementary studies of fibrin clot formation by rheometry and microscopy revealed the substantial additional network mass required to increase df and provide evidence to support the hypothesis that microstructural changes in blood clotted under unidirectional shear may be attributed to flow enhanced thrombin generation and activation. CSPS also identified a threshold value of unidirectional shear stress above which no incipient clot formation could be detected. CSPS was shown to be a valuable haemorheological tool for the study of the effects of physiological and pathological levels of shear on clot properties.

  17. Suppression of endothelial t-PA expression by prolonged high laminar shear stress

    SciTech Connect

    Ulfhammer, Erik; Carlstroem, Maria; Bergh, Niklas; Larsson, Pia; Karlsson, Lena; Jern, Sverker

    2009-02-06

    Primary hypertension is associated with an impaired capacity for acute release of endothelial tissue-type plasminogen activator (t-PA), which is an important local protective response to prevent thrombus extension. As hypertensive vascular remodeling potentially results in increased vascular wall shear stress, we investigated the impact of shear on regulation of t-PA. Cultured human endothelial cells were exposed to low ({<=}1.5 dyn/cm{sup 2}) or high (25 dyn/cm{sup 2}) laminar shear stress for up to 48 h in two different experimental models. Using real-time RT-PCR and ELISA, shear stress was observed to time and magnitude-dependently suppress t-PA transcript and protein secretion to approximately 30% of basal levels. Mechanistic experiments revealed reduced nuclear protein binding to the t-PA specific CRE element (EMSA) and an almost completely abrogated shear response with pharmacologic JNK inhibition. We conclude that prolonged high laminar shear stress suppresses endothelial t-PA expression and may therefore contribute to the enhanced risk of arterial thrombosis in hypertensive disease.

  18. On vortex pairing in several free shear layer containing high Reynolds number flows

    NASA Astrophysics Data System (ADS)

    Samimy, Mo; Crawley, Michael

    2015-11-01

    There are several free shear flows with-well known Kevin Helmholtz instability, which contain an additional instability mechanism. For example, a jet has shear layer and jet column instabilities, a stalled airfoil has shear layer and wake instabilities, and a cavity flow has a shear layer instability and Rossiter modes. The shear layer's most amplified frequency is normally several times larger than that of the other instability. Typically, the structures associated with the lower frequency instability are observed in the experiments. There is not much information in the literature, especially in high Reynolds number flows, on whether these structures are generated directly or by multiple merging of smaller structures generated by the shear layer instability. Single or multiple merging has been shown in the literature in only low Reynolds number flows (e.g. in jets). Our recent experimental results in high Reynolds number flows excited by plasma actuators seem to show the occurrence of multiple merging events before the observation of lower frequency large-scale coherent structures. The experimental PIV images obtained in jets using reconstructed flow and in stalled airfoils obtained using phase averaging. Supported by AFOSR, ARO, AFRL.

  19. Modification of wheat straw in a high-shear mixer

    SciTech Connect

    Carr, M.E.; Doane, W.M.

    1984-01-01

    Wheat straw (WS) was treated in a pilot-scale continuous mixer to disrupt the lignin-hemicellulose-cellulose (LHC) complex. An efficient and practical method was desired to remove lignin and hemicellulose (pentosans) rapidly and efficiently from the lignocellulose complex and to make the cellulose accessible to enzymatic hydrolysis. Milled WS in the presence of various chemicals in aqueous solutions was extruded from the mixer under several processing conditions. Chemicals used were sodium hydroxide (NaOH), sodium sulfide (Na/sub 2/S), anthraquinone (AQ), anthrahydroquinone (AHQ), hexamethylenediamine (HMDA), hexamethylenetetramine (HMTA), hydrogen peroxide (H/sub 2/O/sub 2/), and ferrous ammonium sulfate (FAS), which were used alone and in selected combinations. Concomitantly, WS was treated in laboratory batches using similar reaction conditions, except for mixing shearing. In extrusion treatments of WS at 20% concentration at 97/sup 0/C for 5.5 min with NaOH (15.7%, dry WS basis), NaOH (15.7%) + AHQ (0.3%), and NaOH (12.7%) + Na/sub 2/S (5.0%), 64-72% of the WS lignin and 36-43% of the pentosans were removed from aqueously washed extrudates (residues). This compares with 46-56% and 23-27%, respectively, for batch treatments. AHQ and Na/sub 2/S enhanced delignification. Cellulase treatment of the residues, which contai

  20. Membrane stress and internal pressure in a red blood cell freely suspended in a shear flow.

    PubMed Central

    Tran-Son-Tay, R; Sutera, S P; Zahalak, G I; Rao, P R

    1987-01-01

    Presented is an algorithm for the approximate calculation of the membrane stress distribution and the internal pressure of a steadily tank-treading red cell. The algorithm is based on an idealized ellipsoidal model of the tank-treading cell (Keller, S.R., and R. Skalak, 1982, J. Fluid Mech., 120:27-47) joined with experimental observations of projected length, width, and tank-treading frequency. The results are inexact because the membrane shape and velocity are assumed a priori, rather than being determined via appropriate material constitutive relations for the membrane; these results are, nevertheless, believed to be approximately correct, and show that internal pressure builds up slowly as cell elongation increases, rising more rapidly as the deformed cell approaches the limiting geometry of a prolate ellipsoid. The maximum shear stress resultant in the membrane was found to be below but approaching the yield point range at the highest shear rate applied. Images FIGURE 1 PMID:3607212

  1. Intermittency and Synchronized Tumbling and Tank-treading in Red Blood Cell Dynamics in Steady and Oscillatory Shear Flows

    NASA Astrophysics Data System (ADS)

    Bagchi, Prosenjit; Cordasco, Daniel

    2014-11-01

    Red blood cells are known to exhibit a variety of rich and complex dynamics when subjected to a shear flow. Of particular interest is the intermittent behavior that is characterized by coexistence of the tumbling motion, and the tank-treading motion. Several reduced-order theoretical models assuming fixed cell shape emerged that either supported or rejected the possibility of such dynamics, although no full-scale computer simulation of deformable cells has conclusively observed such dynamics. Here we present the first computational evidence of intermittent dynamics of red blood cells in steady and oscillatory shear flows. Our model fully resolves the cell deformation taking in to consideration all essential properties of the cell membrane and internal fluid, and hence, contradicts the notion that intermittency is suppressed in deformable cells. For the intermittent dynamics, we observe sequences of tumbling interrupted by swinging, as well as sequences of swinging interrupted by tumbling. In the synchronized dynamics, the tumbling and membrane rotation occur simultaneously with integer ratio of rotational frequencies. These dynamics are shown to be dependent on the stress-free state of the cytoskeleton, and are explained based on the cell membrane energy landscape. Supported by NSF.

  2. Measurements in the annular shear layer of high subsonic and under-expanded round jets

    NASA Astrophysics Data System (ADS)

    Feng, Tong; McGuirk, James J.

    2016-01-01

    An experimental study has been undertaken to document compressibility effects in the annular shear layers of axisymmetric jets. Comparison is made of the measured flow development with the well-documented influence of compressibility in planar mixing layers. High Reynolds number (~106) and high Mach number jets issuing from a convergent nozzle at nozzle pressure ratios (NPRs) from 1.28 to 3.0 were measured using laser Doppler anemometry instrumentation. Detailed radial profile data are reported, particularly within the potential core region, for mean velocity, turbulence rms, and turbulence shear stress. For supercritical NPRs the presence of the pressure waves in the inviscid shock cell region as the jet expanded back to ambient pressure was found to exert a noticeable effect on shear layer location, causing this to shift radially outwards at high supercritical NPR conditions. After a boundary layer to free shear layer transition zone, the turbulence development displayed a short region of similarity before adjustment to near-field merged jet behaviour. Peak turbulence rms reduction due to compressibility was similar to that observed in planar layers with radial rms suppression much stronger than axial. Comparison of the compressibility-modified annular shear layer growth rate with planar shear layer data on the basis of the convective Mach number ( M C) showed notable differences; in the annular shear layer, compressibility effects began at lower M C and displayed a stronger reduction in growth. For high Mach number aerospace propulsion applications involving round jets, the current measurements represent a new data set for the calibration/validation of compressibility-affected turbulence models.

  3. High wall shear stress and high-risk plaque: an emerging concept.

    PubMed

    Eshtehardi, Parham; Brown, Adam J; Bhargava, Ankit; Costopoulos, Charis; Hung, Olivia Y; Corban, Michel T; Hosseini, Hossein; Gogas, Bill D; Giddens, Don P; Samady, Habib

    2017-01-10

    In recent years, there has been a significant effort to identify high-risk plaques in vivo prior to acute events. While number of imaging modalities have been developed to identify morphologic characteristics of high-risk plaques, prospective natural-history observational studies suggest that vulnerability is not solely dependent on plaque morphology and likely involves additional contributing mechanisms. High wall shear stress (WSS) has recently been proposed as one possible causative factor, promoting the development of high-risk plaques. High WSS has been shown to induce specific changes in endothelial cell behavior, exacerbating inflammation and stimulating progression of the atherosclerotic lipid core. In line with experimental and autopsy studies, several human studies have shown associations between high WSS and known morphological features of high-risk plaques. However, despite increasing evidence, there is still no longitudinal data linking high WSS to clinical events. As the interplay between atherosclerotic plaque, artery, and WSS is highly dynamic, large natural history studies of atherosclerosis that include WSS measurements are now warranted. This review will summarize the available clinical evidence on high WSS as a possible etiological mechanism underlying high-risk plaque development.

  4. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.

    PubMed

    Swillens, Abigail; Degroote, Joris; Vierendeels, Jan; Lovstakken, Lasse; Segers, Patrick

    2010-08-01

    Ultrasound (US) is a commonly used vascular imaging tool when screening for patients at high cardiovascular risk. However, current blood flow and vessel wall imaging methods are hampered by several limitations. When optimizing and developing new ultrasound modalities, proper validation is required before clinical implementation. Therefore, the authors present a simulation environment integrating ultrasound and fluid-structure interaction (FSI) simulations, allowing construction of synthetic ultrasound images based on physiologically realistic behavior of an artery. To demonstrate the potential of the model for vascular ultrasound research, the authors studied clinically relevant imaging modalities of arterial function related to both vessel wall deformation and arterial hemodynamics: Arterial distension (related to arterial stiffness) and wall shear rate (related to the development of atherosclerosis) imaging. An in-house code ("TANGO") was developed to strongly couple the flow solver FLUENT and structural solver ABAQUS using an interface quasi-Newton technique. FIELD II was used to model realistic transducer and scan settings. The input to the FSI-US model is a scatterer phantom on which the US waves reflect, with the scatterer displacement derived from the FSI flow and displacement fields. The authors applied the simulation tool to a 3D straight tube, representative of the common carotid artery (length: 5 cm; and inner and outer radius: 3 and 4 mm). A mass flow inlet boundary condition, based on flow measured in a healthy subject, was applied. A downstream pressure condition, based on a noninvasively measured pressure waveform, was chosen and scaled to simulate three different degrees of arterial distension (1%, 4%, and 9%). The RF data from the FSI-US coupling were further processed for arterial wall and flow imaging. Using an available wall tracking algorithm, arterial distensibility was assessed. Using an autocorrelation estimator, blood velocity and shear

  5. Texture Development in High-Silicon Iron Sheet Produced by Simple Shear Deformation

    NASA Astrophysics Data System (ADS)

    Kustas, Andrew B.; Sagapuram, Dinakar; Trumble, Kevin P.; Chandrasekar, Srinivasan

    2016-06-01

    Sheet processing of high Si-Fe alloys (up to 6.5 wt pct Si) is demonstrated by application of highly confined shear deformation in cutting-extrusion. This alloy system, of major interest to electromagnetic applications, is characterized by poor workability. By a suitable interactive combination of simple shear, high strain rates, near-adiabatic heating, and large hydrostatic pressure in the deformation zone, flow localization, and cracking inherent to this alloy system are suppressed. This enables creation of sheet and foil forms from bulk ingots, cast or wrought, in a single deformation step, unlike rolling. The sheet is characterized by strong shear textures, described by partial {110} and <111> fibers, and fine-grained microstructures ( 20 µm grain size). The orientation (inclination) of these fibers, with respect to the sheet surface, can be varied over a range of 35 deg through selection of the deformation path. In contrast to rolling textures, the current shear deformation textures are negligibly influenced by recrystallization annealing. A recovery-based continuous recrystallization mechanism is proposed to explain the texture retention. Some general implications for shear-based processing of alloys of limited workability are discussed.

  6. High Shear Deformation to Produce High Strength and Energy Absorption in Mg Alloys

    SciTech Connect

    Joshi, Vineet V.; Jana, Saumyadeep; Li, Dongsheng; Garmestani, Hamid; Nyberg, Eric A.; Lavender, Curt A.

    2014-02-01

    Magnesium alloys have the potential to reduce the mass of transportation systems however to fully realize the benefits it must be usable in more applications including those that require higher strength and ductility. It has been known that fine grain size in Mg alloys leads to high strength and ductility. However, the challenge is how to achieve this optimal microstructure in a cost effective way. This work has shown that by using optimized high shear deformation and second phase particles of Mg2Si and MgxZnZry the energy absorption of the extrusions can exceed that of AA6061. The extrusion process under development described in this presentation appears to be scalable and cost effective. In addition to process development a novel modeling approach to understand the roles of strain and state-of-strain on particle fracture and grain size control has been developed

  7. Influence of high deformation rate, brain region, transverse compression, and specimen size on rat brain shear stress morphology and magnitude.

    PubMed

    Haslach, Henry W; Gipple, Jenna M; Leahy, Lauren N

    2017-01-26

    An external mechanical insult to the brain, such as a blast, may create internal stress and deformation waves, which have shear and longitudinal components that can induce combined shear and compression of the brain tissue. To isolate the consequences of such interactions for the shear stress and to investigate the role of the extracellular fluid in the mechanical response, translational shear stretch at 10/s, 60/s, and 100/s translational shear rates under either 0% or 33% fixed transverse compression is applied without preconditioning to rat brain specimens. The specimens from the cerebrum, the cerebellum grey matter, and the brainstem white matter are nearly the full length of their respective regions. The translational shear stress response to translational shear deformation is characterized by the effect that each of four factors, high deformation rate, brain region, transverse compression, and specimen size, have on the shear stress magnitude averaged over ten specimens for each combination of factors. Increasing the deformation rate increases the magnitude of the shear stress at a given translational shear stretch, and as tested by ANOVAs so does applying transverse fixed compression of 33% of the thickness. The stress magnitude differs by the region that is the specimen source: cerebrum, cerebellum or brainstem. The magnitude of the shear stress response at a given deformation rate and stretch depends on the specimen length, called a specimen size effect. Surprisingly, under no compression a shorter length specimen requires more shear stress, but under 33% compression a shorter length specimen requires less shear stress, to meet a required shear deformation rate. The shear specimen size effect calls into question the applicability of the classical shear stress definition to hydrated soft biological tissue.

  8. Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range

    NASA Astrophysics Data System (ADS)

    Cimalla, Peter; Walther, Julia; Mittasch, Matthaeus; Koch, Edmund

    2011-11-01

    The optical inhomogeneity of flowing blood, which appears as a waisted double fan-shaped intensity pattern inside vessels in cross-sectional optical coherence tomography (OCT) images, was investigated for the first time. High resolution spectral domain OCT in the 1.3 μm wavelength region is used to assess this inhomogeneous intravascular backscattering of light in an in vivo mouse model and flow phantom measurements. Based on a predicted alignment of the red blood cells toward laminar shear flow, an angular modulation of the corresponding backscattering cross-section inside the vessels is assumed. In combination with the signal attenuation in depth by absorption and scattering, a simple model of the intravascular intensity modulation is derived. The suitability of the model is successfully demonstrated in the in vivo experiments and confirmed by the in vitro measurements. The observed effect appears in flowing blood only and shows a strong dependency on the shear rate. In conclusion, the shear-induced red blood cell alignment in conjunction with the vessel geometry is responsible for the observed intensity distribution. This inherent effect of blood imaging has to be considered in attenuation measurements performed with OCT. Furthermore, the analysis of the intravascular intensity pattern might be useful to evaluate flow characteristics.

  9. Microturbulence and Flow Shear in High-performance JET ITB Plasma

    SciTech Connect

    R.V. Budny; A. Andre; A. Bicoulet; C. Challis; G.D. Conway; W. Dorland; D.R. Ernst; T.S. Hahm; T.C. Hender; D. McCune; G. Rewoldt; S.E. Sharapov

    2001-12-05

    The transport, flow shear, and linear growth rates of microturbulence are studied for a Joint European Torus (JET) plasma with high central q in which an internal transport barrier (ITB) forms and grows to a large radius. The linear microturbulence growth rates of the fastest growing (most unstable) toroidal modes with high toroidal mode number are calculated using the GS2 and FULL gyrokinetic codes. These linear growth rates, gamma (subscript lin) are large, but the flow-shearing rates, gamma (subscript ExB) (dominated by the toroidal rotation contribution) are also comparably large when and where the ITB exists.

  10. Dynamic characteristics of Bridgestone low shear modulus-high damping seismic isolation bearings

    SciTech Connect

    Chang, Y.W.; Seidensticker, R.W.

    1993-06-01

    Bridgestone Company of Japan is one of the leading seismic bearing manufacturers in the world. Their bearings have very good performance records. It appears that Bridgestone`s high damping bearings are made of a blend of filled natural and synthetic rubbers with fillers and plastizers whereas in the United States, the high damping compound is a carbon filled natural rubber. To compare the properties of the two different kinds of high damping compounds, Argonne National Laboratory (ANL) purchased eight bearings from Bridgestone: four of which were made of high shear modulus-high damping rubber compound KL401; the other four were made of low shear modulus-high damping rubber compounds: two with KL301 elastomer and two with KL302 elastomer. Tests of the Bridgestone bearings were performed at the Earthquake Engineering Research Center. The dynamic characteristics of the high shear modulus Bridgestone bearings, KL401, are described in ANL/Shimizu Report ANL-003. This report describes the dynamic and failure characteristics of the low shear modulus Bridgestone bearings, KL301 and KL302.

  11. Probing the dynamics of high-viscosity entangled polymers under shear using Neutron Spin Echo spectroscopy

    NASA Astrophysics Data System (ADS)

    Kawecki, M.; Gutfreund, P.; Adlmann, F. A.; Lindholm, E.; Longeville, S.; Lapp, A.; Wolff, M.

    2016-09-01

    Neutron Spin Echo spectroscopy provides unique insight into molecular and submolecular dynamics as well as intra- and inter-molecular interactions in soft matter. These dynamics may change drastically under shear flow. In particular in polymer physics a stress plateau is observed, which might be explained by an entanglement-disentanglement transition. However, such a transition is difficult to identify directly by experiments. Neutron Spin Echo has been proven to provide information about entanglement length and degree by probing the local dynamics of the polymer chains. Combining shear experiments and neutron spin echo is challenging since, first the beam polarisation has to be preserved during scattering and second, Doppler scattered neutrons may cause inelastic scattering. In this paper we present a new shear device adapted for these needs. We demonstrate that a high beam polarisation can be preserved and present first data on an entangled polymer solution under shear. To complement the experiments on the dynamics we present novel SANS data revealing shear- induced conformational changes in highly entangled polymers.

  12. Too Many Americans Have High Blood Pressure, Doctors Warn

    MedlinePlus

    ... news/fullstory_163468.html Too Many Americans Have High Blood Pressure, Doctors Warn With February designated National Heart Month, ... physicians warns that too many Americans struggle with high blood pressure. High blood pressure is a major risk factor ...

  13. Gas-Enhanced Ultra-High Shear Mixing: A Concept and Applications

    NASA Astrophysics Data System (ADS)

    Czerwinski, Frank; Birsan, Gabriel

    2016-12-01

    The processes of mixing, homogenizing, and deagglomeration are of paramount importance in many industries for modifying properties of liquids or liquid-based dispersions at room temperature and treatment of molten or semi-molten alloys at high temperatures, prior to their solidification. To implement treatments, a variety of technologies based on mechanical, electromagnetic, and ultrasonic principles are used commercially or tested at the laboratory scale. In a large number of techniques, especially those tailored toward metallurgical applications, the vital role is played by cavitation, generation of gas bubbles, and their interaction with the melt. This paper describes a novel concept exploring an integration of gas injection into the shear zone with ultra-high shear mixing. As revealed via experiments with a prototype of the cylindrical rotor-stator apparatus and transparent media, gases injected radially through the high-speed rotor generate highly refined bubbles of high concentration directly in the shear zone of the mixer. It is believed that an interaction of large volume of fine gas bubbles with the liquid, superimposed on ultra-high shear, will enhance mixing capabilities and cause superior refining and homogenizing of the liquids or solid-liquid slurries, thus allowing their effective property modification.

  14. Gas-Enhanced Ultra-High Shear Mixing: A Concept and Applications

    NASA Astrophysics Data System (ADS)

    Czerwinski, Frank; Birsan, Gabriel

    2017-04-01

    The processes of mixing, homogenizing, and deagglomeration are of paramount importance in many industries for modifying properties of liquids or liquid-based dispersions at room temperature and treatment of molten or semi-molten alloys at high temperatures, prior to their solidification. To implement treatments, a variety of technologies based on mechanical, electromagnetic, and ultrasonic principles are used commercially or tested at the laboratory scale. In a large number of techniques, especially those tailored toward metallurgical applications, the vital role is played by cavitation, generation of gas bubbles, and their interaction with the melt. This paper describes a novel concept exploring an integration of gas injection into the shear zone with ultra-high shear mixing. As revealed via experiments with a prototype of the cylindrical rotor-stator apparatus and transparent media, gases injected radially through the high-speed rotor generate highly refined bubbles of high concentration directly in the shear zone of the mixer. It is believed that an interaction of large volume of fine gas bubbles with the liquid, superimposed on ultra-high shear, will enhance mixing capabilities and cause superior refining and homogenizing of the liquids or solid-liquid slurries, thus allowing their effective property modification.

  15. Increase in blood viscosity in the sprinting horse: can it account for the high pulmonary arterial pressure?

    PubMed

    Fedde, M R; Erickson, H H

    1998-07-01

    Blood was taken from 49 Thoroughbred horses before and after racing at the track to determine if frusemide modified the apparent viscosity of the blood and to determine the effects of changes in shear rate and packed cell volume (PCV), associated with strenuous exercise, on apparent and relative viscosities. Small increases in apparent viscosity of the blood (at a specified PCV and shear rate) occurred in horses given frusemide compared to those receiving no frusemide; however, no differences were seen in relative viscosity. Although 2 groups of horses, those receiving frusemide before racing and those not receiving this drug were studied, the results suggest no influence of frusemide on any red blood cell variable that might modify apparent blood viscosity. Apparent viscosity of the blood was slightly (but significantly) higher after racing than before racing at any given PCV and shear rate, but relative viscosity was lower in the post race than in the prerace blood sample. The most important contributing factor to the increase in apparent viscosity in blood during racing is the increase in PCV, because the blood becomes nearly shear rate independent at shear rates likely to exist in the cardiovascular system during exercise. With an increase in PCV from 40 to 65% at shear rates above 225/s, apparent viscosity approximately doubled. However, this increase alone cannot account for the elevated pulmonary vascular pressure in the running horse, and additional factors, especially those causing the high left atrial pressure, must be considered. The cause of the elevated pressure may be multifactorial in nature.

  16. Method for obtaining simple shear material properties of the intervertebral disc under high strain rates.

    PubMed

    Ott, Kyle A; Armiger, Robert S; Wickwire, Alexis C; Carneal, Catherine M; Trexler, Morgana M; Lennon, Andrew M; Zhang, Jiangyue; Merkle, Andrew C

    2012-01-01

    Predicting spinal injury under high rates of vertical loading is of interest, but the success of computational models in modeling this type of loading scenario is highly dependent on the material models employed. Understanding the response of these biological materials at high strain rates is critical to accurately model mechanical response of tissue and predict injury. While data exists at lower strain rates, there is a lack of the high strain rate material data that are needed to develop constitutive models. The Split Hopkinson Pressure Bar (SHPB) has been used for many years to obtain properties of various materials at high strain rates. However, this apparatus has mainly been used for characterizing metals and ceramics and is difficult to apply to softer materials such as biological tissue. Recently, studies have shown that modifications to the traditional SHPB setup allow for the successful characterization of mechanical properties of biological materials at strain rates and peak strain values that exceed alternate soft tissue testing techniques. In this paper, the previously-reported modified SHPB technique is applied to characterize human intervertebral disc material under simple shear. The strain rates achieved range from 5 to 250 strain s-1. The results demonstrate the sensitivity to the disc composition and structure, with the nucleus pulposus and annulus fibrosus exhibiting different behavior under shear loading. Shear tangent moduli are approximated at varying strain levels from 5 to 20% strain. This data and technique facilitates determination of mechanical properties of intervertebral disc materials under shear loading, for eventual use in constitutive models.

  17. High Temperature Superconductor Production Using Externally Induced Shear

    DTIC Science & Technology

    1990-02-18

    system entitled the Thermastress Miniplant D Technology (TMT), have been found to be applicable to the C) ultimately contemplated Continuous Production...ferrous and non-ferrous miniplants ) it will make possible continuous uninterrupted production of a high temperature superconductor. After due...which have already been developed for the manufacture of superstrength steel wire in the novel Thermastress Miniplant Technology (TMT) approach. The

  18. High Rate Plasticity under Pressure using a Windowed Pressure-Shear Impact Experiment

    SciTech Connect

    Florando, J N; Jiao, T; Grunschel, S E; Clifton, R J; Ferranti, L; Becker, R C; Minich, R W; Bazan, G

    2009-07-29

    An experimental technique has been developed to study the strength of materials under conditions of moderate pressures and high shear strain rates. The technique is similar to the traditional pressure-shear plate-impact experiments except that window interferometry is used to measure both the normal and transverse particle velocities at a sample-window interface. Experimental and simulation results on vanadium samples backed with a sapphire window show the utility of the technique to measure the flow strength under dynamic loading conditions. The results show that the strength of the vanadium is 600 MPa at a pressure of 4.5 GPa and a plastic strain of 1.7%.

  19. Dissipative heating effects and end corrections for viscous Newtonian flow in high shear capillary tube viscometry

    NASA Technical Reports Server (NTRS)

    Jakobsen, J.; Winer, W. O.

    1974-01-01

    The effect of dissipation heating on the apparent viscosity measured in capillary tube viscometry is described in this paper. Conditions of low Reynolds number and high shear are assumed. End corrections to the tube flow are incorporated. The flow curves show decreasing apparent viscosity when the shear stress increases. The configuration of the flow curves plotted in logarithmic presentation are found to be identical for fluids with Newtonian behavior. Convection is the predominant mechanism in removal of the heat in short capillary tube. The estimated upper bound for the shear stress obtainable in short length capillary tubes appears to be of the order of magnitude of 10 MPa limited primarily by the pressure drop associated with the constant end correction from the flat ended inlet and exit of the tube.

  20. Non-Modal Stability Analysis of High Strain-Rate Plastic Shear Flow

    NASA Astrophysics Data System (ADS)

    Nassiri, Ali; Chini, Gregory; Kinsey, Brad

    2014-11-01

    High-speed oblique impact of two metal plates results in the development of an intense shear region at their interface, which leads to interfacial profile distortion and interatomic bonding. If the relative velocity is sufficient, a wavy pattern with a well-defined wavelength and amplitude is observed. The wavy structure has similarities to shear instabilities observed in fluid dynamics and predicted by hydrodynamic stability theories. However, since the impact is a short-time transient dynamical phenomenon, non-modal stability analysis presumably is more relevant than conventional eigenvalue analysis. Here, a non-modal shear flow stability analysis of a perfectly plastic material is performed to investigate the transient growth of disturbances and to assess if a connection exists with the corresponding predictions obtained from modal analysis.

  1. Investigation of shear stress on a shock front in solid high explosives (HE)

    SciTech Connect

    Bat'kov, Y.V.; Fishman, N.D.; Novikov, S.A.

    1983-11-01

    This article gives results of an experimental investigation of the dependence of the critical shear stress at the shock front in cast TNT and in a cast TH 50/50 composite on the magnitude of the shock compression pressure in a range to 4.0 GPa (e.g. to the beginning of excitation of the explosive transformation). The principal stresses were measured by manganin sensors located in the high explosive under investigation in two mutually perpendicular directions in the tests. Stationary shocks were produced in the explosive specimens under investigation by using an explosive apparatus of the ''laminate'' type. It is determined that the magnitude of the shear stress grows linearly for the cast explosives investigated as the pressure grows, and exceeds considerably the static values of the shear strength.

  2. Impact of triacylglycerol composition on shear-induced textural changes in highly saturated fats.

    PubMed

    Gregersen, Sandra B; Andersen, Morten D; Hammershøj, Marianne; Wiking, Lars

    2017-01-15

    This study demonstrates a strong interaction between triacylglycerol (TAG) composition and effects of shear rate on the microstructure and texture of fats. Cocoa butter alternatives with similar saturated fat content, but different major TAGs (PPO-, PSO-, SSO-, POP- and SOS-rich blends) were evaluated. Results show how shear can create a harder texture in fat blends based on symmetric monounsaturated TAGs (up to ∼200%), primarily due to reduction in crystal size, whereas shear has little effect on hardness of asymmetric monounsaturated TAGs. Such differences could not be ascribed to differences in the degree of supercooling, but was found to be a consequence of differences in the crystallisation behaviour of different TAGs. The fractal dimension was evaluated by dimensional detrended fluctuation analysis and Fourier transformation of microscopy images. However, the concept of fractal patterns was found to be insufficient to describe microstructural changes of fat blends with high solid fat content.

  3. Optical Properties of Compressible Inhomogeneous Shear Layers Relevant to High Power Lasers.

    DTIC Science & Technology

    1987-04-30

    191 615 OPTICAL PROPERTIES OF COMPRESSIBLE INb4ONOGENEOUS SHEAR 1/1 LAYERS RELEVANT TO HIGH PONER LASERS(U) WASHINGTON UNIV SEATTLE II H...so that a near-diffraction- limited laser beam may be attained. With the general trend of laser development towards shorter wavelengths, the fluid

  4. Kinetic theory for strong uniform shear flow of granular media at high density

    NASA Astrophysics Data System (ADS)

    Kranz, W. Till; Sperl, Matthias

    2017-06-01

    We discuss the uniform shear flow of a fluidized granular bed composed of monodisperse Hertzian spheres. Considering high densities around the glass transition density of inelastic Hertzian spheres, we report kinetic theory expressions for the Newtonian viscosity as well as the Bagnold coefficient. We discuss the dependence of the transport coefficients on density and coefficient of restitution.

  5. Measurement and interpretation of shear viscosities at high pressures

    NASA Astrophysics Data System (ADS)

    Abramson, Evan

    2013-06-01

    High pressures employed in the study of fluids allow density and temperature to be used as independent, experimental variables, providing extensive and clear comparison with theory. Measurements of the viscosities of simple fluids in the diamond-anvil cell have allowed confirmation of a hypothesized relation between viscosity and entropy, and a more general exploration of ``isomorphs'' as well as fluid-mixing rules. Densities and temperatures at which viscosities can be measured statically overlap those achievable by dynamic compression; inferences of viscosity from observations using, e.g., shock compression can thus be tested for accuracy.

  6. The plane strain shear fracture of the advanced high strength steels

    NASA Astrophysics Data System (ADS)

    Sun, Li

    2013-12-01

    The "shear fracture" which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of "shear fracture" phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a "shear fracture" in the component.

  7. The plane strain shear fracture of the advanced high strength steels

    SciTech Connect

    Sun, Li

    2013-12-16

    The “shear fracture” which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of “shear fracture” phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a “shear fracture” in the component.

  8. Sleep Deprivation: A Cause of High Blood Pressure?

    MedlinePlus

    ... High blood pressure (hypertension) Is it true that sleep deprivation can cause high blood pressure? Answers from ... be linked to increased blood pressure. People who sleep five hours or less a night may be ...

  9. High Speed Blood and Fluid Transfusion Equipment

    DTIC Science & Technology

    2010-06-01

    it stores energy for heating fluid when not attached to an external power source, (2) that it provides for high heating and infusion rates, up to...8217 % High Speed Blood and Fluid Transfusion Equipment Final Report Prepared by: Rocky Research 1598 Foothill Drive Boulder City, NV 89005...University of Nevada School of Medicine Trauma Institute Department of Surgery 2040 W. Charleston Blvd #302 Las Vegas, NV 89102 Principal

  10. Crack initiation observation and local stress analysis in shear fracture tests of ultra-high strength steels

    NASA Astrophysics Data System (ADS)

    Ma, Ninshu; Takada, Kenji; Sugimoto, Nao

    2016-08-01

    To investigate the local strain and stress at the crack initiation position in shear fracture test pieces of ultra-high strength steels, a butterfly shear fracture specimen was employed. The crack initiation position and propagation direction were observed during shear fracture tests by high speed cameras and investigated through analysing the fracture surface by scanning electron microscope. Further, the finite element method was employed and the stress-triaxiality at the crack initiation position was investigated. It can be obtained that the crack initiated at the position where the stress state is close to uniaxial tensile state or plane strain state more than pure shear stress state.

  11. Traction and nonequilibrium phase behavior of confined sheared liquids at high pressure

    NASA Astrophysics Data System (ADS)

    Gattinoni, Chiara; Heyes, David M.; Lorenz, Christian D.; Dini, Daniele

    2013-11-01

    Nonequilibrium molecular dynamics simulations of confined model liquids under pressure and sheared by the relative sliding of the boundary walls have been carried out. The relationship between the time-dependent traction coefficient, μ(t), and the state of internal structure of the film is followed from commencement of shear for various control parameters, such as applied load, global shear rate, and solid-liquid atom interaction parameters. Phase diagrams, velocity and temperature profiles, and traction coefficient diagrams are analyzed for pure Lennard-Jones (LJ) liquids and a binary LJ mixture. A single component LJ liquid is found to form semicrystalline arrangements with high-traction coefficients, and stick-slip behavior is observed for high pressures and low-shear velocities, which is shown to involve periodic deformation and stress release of the wall atoms and slip in the solid-liquid boundary region. A binary mixture, which discourages crystallization, gives a more classical tribological response with the larger atoms preferentially adsorbing commensurate with the wall. The results obtained are analyzed in the context of tribology: the binary mixture behaves like a typical lubricant, whereas the monatomic system behaves like a traction fluid. It is discussed how this type of simulation can give insights on the tribological behavior of realistic systems.

  12. Numerical analysis of non-Newtonian blood flow and wall shear stress in realistic single, double and triple aorto-coronary bypasses.

    PubMed

    Vimmr, J; Jonášová, A; Bublík, O

    2013-10-01

    Considering the fact that hemodynamics plays an important role in the patency and overall performance of implanted bypass grafts, this work presents a numerical investigation of pulsatile non-Newtonian blood flow in three different patient-specific aorto-coronary bypasses. The three bypass models are distinguished from each other by the number of distal side-to-side and end-to-side anastomoses and denoted as single, double and triple bypasses. The mathematical model in the form of time-dependent nonlinear system of incompressible Navier-Stokes equations is coupled with the Carreau-Yasuda model describing the shear-thinning property of human blood and numerically solved using the principle of the SIMPLE algorithm and cell-centred finite volume method formulated for hybrid unstructured tetrahedral grids. The numerical results computed for non-Newtonian and Newtonian blood flow in the three aorto-coronary bypasses are compared and analysed with emphasis placed on the distribution of cycle-averaged wall shear stress and oscillatory shear index. As shown in this study, the non-Newtonian blood flow in all of the considered bypass models does not significantly differ from the Newtonian one. Our observations further suggest that, especially in the case of sequential grafts, the resulting flow field and shear stimulation are strongly influenced by the diameter of the vessels involved in the bypassing. Copyright © 2013 John Wiley & Sons, Ltd.

  13. The evolution of barotropically unstable, high-Rossby number vortices in shear

    NASA Astrophysics Data System (ADS)

    Ryglicki, David R.

    The role of mesovortices in the eyewalls of sheared unstable, high-Rossby number vortices is investigated. A high-resolution numerical model is used to simulate dry vortices in an attempt to unite ideas from previous works. The simulations are used to investigate the dynamical, adiabatic interactions between potential vorticity (PV) mixing dynamics and shear forcings of barotropically unstable, high-Rossby number barotropic vortices. Previous work has investigated barotropic vortices in shear, while other previous work has studied barotropically unstable ring vortices. This work will combine those two avenues of research by shearing barotropically unstable barotropic ring vortices because ring vortices are more representative of tropical cyclones. Quantitative and qualitative analysis of the tilt and of the internal dynamics are presented. Using such as metrics as PV power spectra, PV palinstrophy, and a linear energy equation that incorporates the effects of the shear forcing, it is found that impact of the shear forcing on the initial breakdown of the ring is merely slight; however, the breakdown of the ring of high PV into smaller mesovortices---and the subsequent rearrangement of PV into a monopolar structure---is quite significant when considering the tilt evolution. As the vortex mixes, the storm weakens. This acts as a detriment to the ability of the vortex to keep itself upright and resistant to the shear forcing, as the penetration depth of each layer of the vortex decreases to below the scale height after mixing. In terms of the energetics, it is found that the barotropic energy conversion term is consistently the largest, which is expected. When sheared, the shear forcing acts to generally counteract the effects of mixing and reduce eddy kinetic energy. Additionally, it is found that the shear forcing induces a trochoidal oscillation at levels of highest background flow. The sensitivity of the results is investigated by comparing and contrasting two

  14. Analysing calcium signalling of cells under high shear flows using discontinuous dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Soffe, Rebecca; Baratchi, Sara; Tang, Shi-Yang; Nasabi, Mahyar; McIntyre, Peter; Mitchell, Arnan; Khoshmanesh, Khashayar

    2015-07-01

    Immobilisation of cells is an important feature of many cellular assays, as it enables the physical/chemical stimulation of cells; whilst, monitoring cellular processes using microscopic techniques. Current approaches for immobilising cells, however, are hampered by time-consuming processes, the need for specific antibodies or coatings, and adverse effects on cell integrity. Here, we present a dielectrophoresis-based approach for the robust immobilisation of cells, and analysis of their responses under high shear flows. This approach is quick and label-free, and more importantly, minimises the adverse effects of electric field on the cell integrity, by activating the field for a short duration of 120 s, just long enough to immobilise the cells, after which cell culture media (such as HEPES) is flushed through the platform. In optimal conditions, at least 90% of the cells remained stably immobilised, when exposed to a shear stress of 63 dyn/cm2. This approach was used to examine the shear-induced calcium signalling of HEK-293 cells expressing a mechanosensitive ion channel, transient receptor potential vaniloid type 4 (TRPV4), when exposed to the full physiological range of shear stress.

  15. Phase field simulations of plastic strain-induced phase transformations under high pressure and large shear

    NASA Astrophysics Data System (ADS)

    Javanbakht, Mahdi; Levitas, Valery I.

    2016-12-01

    Pressure and shear strain-induced phase transformations (PTs) in a nanograined bicrystal at the evolving dislocations pile-up have been studied utilizing a phase field approach (PFA). The complete system of PFA equations for coupled martensitic PT, dislocation evolution, and mechanics at large strains is presented and solved using the finite element method (FEM). The nucleation pressure for the high-pressure phase (HPP) under hydrostatic conditions near a single dislocation was determined to be 15.9 GPa. Under shear, a dislocation pile-up that appears in the left grain creates strong stress concentration near its tip and significantly increases the local thermodynamic driving force for PT, which causes nucleation of HPP even at zero pressure. At pressures of 1.59 and 5 GPa and shear, a major part of a grain transforms to HPP. When dislocations are considered in the transforming grain as well, they relax stresses and lead to a slightly smaller stationary HPP region than without dislocations. However, they strongly suppress nucleation of HPP and require larger shear. Unexpectedly, the stationary HPP morphology is governed by the simplest thermodynamic equilibrium conditions, which do not contain contributions from plasticity and surface energy. These equilibrium conditions are fulfilled either for the majority of points of phase interfaces or (approximately) in terms of stresses averaged over the HPP region or for the entire grain, despite the strong heterogeneity of stress fields. The major part of the driving force for PT in the stationary state is due to deviatoric stresses rather than pressure. While the least number of dislocations in a pile-up to nucleate HPP linearly decreases with increasing applied pressure, the least corresponding shear strain depends on pressure nonmonotonously. Surprisingly, the ratio of kinetic coefficients for PT and dislocations affect the stationary solution and the nanostructure. Consequently, there are multiple stationary solutions

  16. Flush mounted hot film anemometer measurement of wall shear stress distal to a tri-leaflet valve for Newtonian and non-Newtonian blood analog fluids.

    PubMed

    Nandy, S; Tarbell, J M

    1987-01-01

    Wall shear stress has been measured by flush-mounted hot film anemometry distal to an Ionescu-Shiley tri-leaflet valve under pulsatile flow conditions. Both Newtonian (aqueous glycerol) and non-Newtonian (aqueous polyacrylamide) blood analog fluids were investigated. Significant differences in the axial distribution of wall shear stress between the two fluids are apparent in flows having nearly identical Reynolds numbers. The Newtonian fluid exhibits a (peak) wall shear rate which is maximized near the valve seat (30 mm) and then decays to a fully developed flow value (by 106 mm). In contrast, the shear rate of the non-Newtonian fluid at 30 mm is less than half that of the Newtonian fluid and at 106 mm is more than twice that of the Newtonian fluid. It is suggested that non-Newtonian rheology influences valve flow patterns either through alterations in valve opening associated with low shear separation zones behind valve leaflets, or because of variations in the rate of jet spreading. More detailed studies are required to clarify the mechanisms. The Newtonian wall shear stresses for this valve are low. The highest value observed anywhere in the aortic chamber was 2.85 N/m2 at a peak Reynolds number of 3694.

  17. High-frequency photoacoustic imaging of erythrocyte aggregation and oxygen saturation: probing hemodynamic relations under pulsatile blood flow

    NASA Astrophysics Data System (ADS)

    Bok, Tae-Hoon; Hysi, Eno; Kolios, Michael C.

    2015-03-01

    In this paper, we investigate the feasibility of high-frequency photoacoustic (PA) imaging to study the shear rate dependent relationship between red blood cell (RBC) aggregation and oxygen saturation (SO2) in a simulated blood flow system. The PA signal amplitude increased during the formation of aggregates and cyclically varied at intervals corresponding to the beat rate (30, 60, 120, 180 and 240 bpm) for all optical wavelengths of illumination (750 and 850 nm).The SO2 also cyclically varied in phase with the PA signal amplitude for all beat rates. In addition, the mean blood flow velocity cyclically varied at the same interval of beat rate, and the shear rate (i.e. the radial gradient of flow velocity) also cyclically varied. On the other hand, the phase of the cyclic variation in the shear rate was reversed compared to that in the PA signal amplitude. This study indicates that RBC aggregation induced by periodic changes in the shear rate can be correlated with the SO2 under pulsatile blood flow. Furthermore, PA imaging of flowing blood may be capable of providing a new biomarker for the clinical application in terms of monitoring blood viscosity, oxygen delivery and their correlation.

  18. Menopause and High Blood Pressure: What's the Connection?

    MedlinePlus

    ... blood pressure (hypertension) Is there a connection between menopause and high blood pressure? Answers from Shannon K. ... Tommaso, M.D. Blood pressure generally increases after menopause. Some doctors think this increase suggests that hormonal ...

  19. Observations of subsonic and supersonic shear flows in laser driven high-energy-density plasmas

    NASA Astrophysics Data System (ADS)

    Harding, E. C.

    2009-11-01

    Shear layers containing strong velocity gradients appear in many high-energy-density (HED) systems and play important roles in mixing and the transition to turbulence. Yet few laboratory experiments have been carried out to study their detailed evolution in this extreme environment where plasmas are compressible, actively ionizing, often involve strong shock waves and have complex material properties. Many shear flows produce the Kelvin-Helmholtz (KH) instability, which initiates the mixing at a fluid interface. We present results from two dedicated shear flow experiments that produced overall subsonic and supersonic flows using novel target designs. In the subsonic case, the Omega laser was used to drive a blast wave along a rippled interface between plastic and foam, shocking both the materials to produce two fluids separated by a sharp shear layer. The interface subsequently rolled-upped into large KH vortices that were accompanied by bubble-like structures of unknown origin. This was the first time the evolution of a well-resolved KH instability was observed in a HED plasma in the laboratory. We have analyzed the properties and dynamics of the plasma based on the data and fundamental models, without resorting to simulated values. In the second, supersonic experiment the Nike laser was used to drive a supersonic flow of Al plasma along a rippled, low-density foam surface. Here again the flowing plasma drove a shock into the second material, so that two fluids were separated by a shear layer. In contrast to the subsonic case, the flow developed shocks around the ripples in response to the supersonic flow of Al. Collaborators: R.P. Drake, O.A. Hurricane, J.F. Hansen, Y. Aglitskiy, T. Plewa, B.A. Remington, H.F. Robey, J.L. Weaver, A.L. Velikovich, R.S. Gillespie, M.J. Bono, M.J. Grosskopf, C.C. Kuranz, A. Visco.

  20. High Blood Pressure and Kidney Disease

    MedlinePlus

    ... Kidney disease is diagnosed with urine and blood tests. Health care providers measure blood pressure with a blood pressure ... the sample to a lab for analysis. A health care provider may order a blood test to estimate how much blood the kidneys filter ...

  1. On the Origin of High Shear Wave Velocities in the Deep Roots of Cratons

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Duncan, M. S.; Garber, J. M.; Hernandez, J. A.; Maurya, S.; Zhang, H.; Faul, U.; McCammon, C. A.; Montagner, J. P.; Moresi, L. N.; Romanowicz, B. A.; Rudnick, R. L.; Stixrude, L. P.

    2016-12-01

    Some seismic models derived from tomographic studies indicate very high shear wave velocities around 150 km depth, which cannot be explained by standard cratonic peridotite compositions derived from kimberlites, even under the assumption of very cold geotherms (i.e. 28mW/m3 surface heat flux). We present the results of a multi-disciplinary study conducted at the CIDER Summer 2016 program in Santa Barbara (CA), in which we have reviewed various geophysical and petrological constraints on the nature of cratonic roots (seismic velocities, electrical conductivity, gravity, lithologies) and explored a range of possible solutions. We find that matching the high shear wave velocities requires a large proportion of eclogite that is not matched by observed eclogite proportions in kimberlite samples. The high shear velocity of diamond makes it a viable candidate to account for such high velocities, in a proportion that is compatible with the global carbon budget. Our most recent results will be presented as well as suggestions for possible mechanisms for diamond formation and emplacement.

  2. Dietary spermidine for lowering high blood pressure

    PubMed Central

    Zimmermann, Andreas; Schroeder, Sabrina; Pendl, Tobias; Harger, Alexandra; Stekovic, Slaven; Schipke, Julia; Magnes, Christoph; Schmidt, Albrecht; Ruckenstuhl, Christoph; Dammbrueck, Christopher; Gross, Angelina S; Herbst, Viktoria; Carmona-Gutierrez, Didac; Pietrocola, Federico; Pieber, Thomas R; Sigrist, Stephan J; Linke, Wolfgang A; Mühlfeld, Christian; Sadoshima, Junichi; Dengjel, Joern; Kiechl, Stefan; Kroemer, Guido; Sedej, Simon; Madeo, Frank

    2017-01-01

    Loss of cardiac macroautophagy/autophagy impairs heart function, and evidence accumulates that an increased autophagic flux may protect against cardiovascular disease. We therefore tested the protective capacity of the natural autophagy inducer spermidine in animal models of aging and hypertension, which both represent major risk factors for the development of cardiovascular disease. Dietary spermidine elicits cardioprotective effects in aged mice through enhancing cardiac autophagy and mitophagy. In salt-sensitive rats, spermidine supplementation also delays the development of hypertensive heart disease, coinciding with reduced arterial blood pressure. The high blood pressure-lowering effect likely results from improved global arginine bioavailability and protection from hypertension-associated renal damage. The polyamine spermidine is naturally present in human diets, though to a varying amount depending on food type and preparation. In humans, high dietary spermidine intake correlates with reduced blood pressure and decreased risk of cardiovascular disease and related death. Altogether, spermidine represents a cardio- and vascular-protective autophagy inducer that can be readily integrated in common diets. PMID:28118075

  3. Effect of blood contamination on shear bond strength of brackets bonded with a self-etching primer combined with a resin-modified glass ionomer.

    PubMed

    Cacciafesta, Vittorio; Sfondrini, Maria Francesca; Scribante, Andrea; De Angelis, Marco; Klersy, Catherine

    2004-12-01

    This study assessed the effect of blood contamination on the shear bond strength and bond failure site of a resin-modified glass ionomer (Fuji Ortho LC, GC Europe, Leuven, Belgium) used with 3 enamel conditioners (10% polyacrylic acid, 37% phosphoric acid, and self-etching primer). One hundred twenty bovine permanent mandibular incisors were randomly divided into 8 groups; each group consisted of 15 specimens. Two enamel surface conditions were studied: dry and contaminated with blood. One hundred twenty stainless steel brackets were bonded with the resin-modified glass ionomer. After bonding, all samples were stored in distilled water for 24 hours and then tested in shear mode on a testing machine. The groups conditioned with self-etching primer and 37% phosphoric acid had the highest bond strengths for both dry and blood-contaminated enamel. The groups conditioned with 10% polyacrylic acid showed significantly lower shear bond strength value, and the unconditioned groups had the lowest bond strengths. For each enamel conditioner, no significant difference was reported between dry and blood-contaminated groups. Significant differences in debond locations were found among the groups bonded with the different conditioners. Blood contamination of enamel during the bonding procedure of Fuji Ortho LC did not affect its bond strength values, no matter which enamel conditioner was used.

  4. Experimental and numerical study of plastic shear instability under high-speed loading conditions

    SciTech Connect

    Sokovikov, Mikhail E-mail: naimark@icmm.ru; Chudinov, Vasiliy E-mail: naimark@icmm.ru; Bilalov, Dmitry E-mail: naimark@icmm.ru; Oborin, Vladimir E-mail: naimark@icmm.ru; Uvarov, Sergey E-mail: naimark@icmm.ru; Plekhov, Oleg E-mail: naimark@icmm.ru; Terekhina, Alena E-mail: naimark@icmm.ru; Naimark, Oleg E-mail: naimark@icmm.ru

    2014-11-14

    The behavior of specimens dynamically loaded during the split Hopkinson (Kolsky) bar tests in a regime close to simple shear conditions was studied. The lateral surface of the specimens was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. The process of target perforation involving plug formation and ejection was examined using a high-speed infra-red camera and a VISAR velocity measurement system. The microstructure of tested specimens was analyzed using an optical interferometer-profilometer and a scanning electron microscope. The development of plastic shear instability regions has been simulated numerically.

  5. High blood pressure and visual sensitivity

    NASA Astrophysics Data System (ADS)

    Eisner, Alvin; Samples, John R.

    2003-09-01

    The study had two main purposes: (1) to determine whether the foveal visual sensitivities of people treated for high blood pressure (vascular hypertension) differ from the sensitivities of people who have not been diagnosed with high blood pressure and (2) to understand how visual adaptation is related to standard measures of systemic cardiovascular function. Two groups of middle-aged subjects-hypertensive and normotensive-were examined with a series of test/background stimulus combinations. All subjects met rigorous inclusion criteria for excellent ocular health. Although the visual sensitivities of the two subject groups overlapped extensively, the age-related rate of sensitivity loss was, for some measures, greater for the hypertensive subjects, possibly because of adaptation differences between the two groups. Overall, the degree of steady-state sensitivity loss resulting from an increase of background illuminance (for 580-nm backgrounds) was slightly less for the hypertensive subjects. Among normotensive subjects, the ability of a bright (3.8-log-td), long-wavelength (640-nm) adapting background to selectively suppress the flicker response of long-wavelength-sensitive (LWS) cones was related inversely to the ratio of mean arterial blood pressure to heart rate. The degree of selective suppression was also related to heart rate alone, and there was evidence that short-term changes of cardiovascular response were important. The results suggest that (1) vascular hypertension, or possibly its treatment, subtly affects visual function even in the absence of eye disease and (2) changes in blood flow affect retinal light-adaptation processes involved in the selective suppression of the flicker response from LWS cones caused by bright, long-wavelength backgrounds.

  6. Enhanced Actuation Performance and Reduced Heat Generation in Shear-Bending Mode Actuator at High Temperature.

    PubMed

    Chen, Jianguo; Liu, Guoxi; Cheng, Jinrong; Dong, Shuxiang

    2016-08-01

    The actuation performance, strain hysteresis, and heat generation of the shear-bending mode actuators based on soft and hard BiScO3-PbTiO3 (BS-PT) ceramics were investigated under different thermal (from room temperature to 300 °C) and electrical loadings (from 2 to 10 kV/cm and from 1 to 1000 Hz). The actuator based on both soft and hard BS-PT ceramics worked stably at the temperature as high as 300 °C. The maximum working temperature of this shear-bending actuators is 150 °C higher than those of the traditional piezoelectric actuators based on commercial Pb(Zr, Ti)O3 materials. Furthermore, although the piezoelectric properties of soft-type ceramics based on BS-PT ceramics were superior to those of hard ceramics, the maximum displacement of the actuator based on hard ceramics was larger than that fabricated by soft ceramics at high temperature. The maximum displacement of the actuator based on hard ceramics was [Formula: see text] under an applied electric field of 10 kV/cm at 300 °C. The strain hysteresis and heat generation of the actuator based on hard ceramics was smaller than those of the actuator based on soft ceramics in the wide temperature range. These results indicated that the shear-bending actuator based on hard piezoelectric ceramics was more suitable for high-temperature piezoelectric applications.

  7. Exposure of human megakaryocytes to high shear rates accelerates platelet production.

    PubMed

    Dunois-Lardé, Claire; Capron, Claude; Fichelson, Serge; Bauer, Thomas; Cramer-Bordé, Elisabeth; Baruch, Dominique

    2009-08-27

    Platelets originate from megakaryocytes (MKs) by cytoplasmic elongation into proplatelets. Direct platelet release is not seen in bone marrow hematopoietic islands. It was suggested that proplatelet fragmentation into platelets can occur intravascularly, yet evidence of its dependence on hydrodynamic forces is missing. Therefore, we investigated whether platelet production from MKs could be up-regulated by circulatory forces. Human mature MKs were perfused at a high shear rate on von Willebrand factor. Cells were observed in real time by videomicroscopy, and by confocal and electron microscopy after fixation. Dramatic cellular modifications followed exposure to high shear rates: 30% to 45% adherent MKs were converted into proplatelets and released platelets within 20 minutes, contrary to static conditions that required several hours, often without platelet release. Tubulin was present in elongated proplatelets and platelets, thus ruling out membrane tethers. By using inhibitors, we demonstrated the fundamental roles of microtubule assembly and MK receptor GPIb. Secretory granules were present along the proplatelet shafts and in shed platelets, as shown by P-selectin labeling. Platelets generated in vitro were functional since they responded to thrombin by P-selectin expression and cytoskeletal reorganization. In conclusion, MK exposure to high shear rates promotes platelet production via GPIb, depending on microtubule assembly and elongation.

  8. High-strain shear deformation of olivine aggregates with different iron contents

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zimmerman, M. E.; Kohlstedt, D. L.

    2006-12-01

    High-strain deformation experiments were conducted at high temperature and high pressure on olivine aggregates with two different iron contents in order to investigate both the mechanical behavior and the microstructural development. Torsion experiments were conducted in a gas-medium deformation apparatus under anhydrous conditions to shear strains of ~4 at a constant angular velocity, a temperature of 1473K, and a confining pressure of 300MPa. The compositions of the aggregates were Fo50 and Fo70. The applied shear strain rate ranged from 10-4 to 10^{-5} s-1, yielding shear stresses supported by the sample of ~100 MPa. To examine microstructural development, a series of parallel sections were examined. The first section was cut near the outside margin and the last section was cut along the central plane of the cyllindrical sample. Olivine samples deformed in the dislocation creep regime strain weakened before approaching steady state. A strong lattice preferred orientation (LPO) dominated the microstructure along with significant grain flattening, elongation, and dynamic recrystallization. The LPO indicates that slip occurred primarily on the (0kl)[100] slip system. This observation is consistent with the LPO observed by Bystricky et al. (2000) for samples of Fo90 that were also deformed in torsion. Bystricky, M., K. Kunze, L. Burlini, J.-P. Burg, Science, 290:1564-1567 (2000).

  9. Evaluation of Aortic Blood Flow and Wall Shear Stress in Aortic Stenosis and Its Association With Left Ventricular Remodeling

    PubMed Central

    von Knobelsdorff-Brenkenhoff, Florian; Karunaharamoorthy, Achudhan; Trauzeddel, Ralf Felix; Barker, Alex J; Blaszczyk, Edyta; Markl, Michael; Schulz-Menger, Jeanette

    2016-01-01

    Background Aortic stenosis (AS) leads to variable stress for the left ventricle (LV) and consequently a broad range of LV remodeling. Study aim was to describe blood flow patterns in the ascending aorta of AS patients and determine their association with remodeling. Methods and Results Thirty-seven patients with AS (14 mild, 8 moderate, 15 severe; age 63±13 years) and 37 healthy controls (age 60±10 years) underwent 4D-flow MRI. Helical and vortical flow formations and flow eccentricity were assessed in the ascending aorta. Normalized flow displacement from the vessel center and peak systolic wall shear stress (WSSpeak) in the ascending aorta were quantified. LV remodeling was assessed based on LV mass index (LVMI-I) and the ratio of LV mass to enddiastolic volume (relative wall mass; RWM). Marked helical and vortical flow formation and eccentricity were more prevalent in patients with AS than in healthy subjects, and AS patients exhibited an asymmetric and elevated distribution of WSSpeak. In AS, aortic orifice area was strongly negatively associated with vortical flow formation (p=0.0274), eccentricity (p=0.0070) and flow displacement (p=0.0021). Bicuspid aortic valve was associated with more intense helical (p=0.0098) and vortical flow formation (p=0.0536), higher flow displacement (p=0.11) and higher WSSpeak (p=0.0926). LVM-I and RWM were significantly associated with aortic orifice area (p=0.0611, p=0.0058) and flow displacement (p=0.0058, p=0.0283). Conclusions In this pilot study, AS leads to abnormal blood flow pattern and WSSpeak in the ascending aorta. In addition to aortic orifice area, normalized flow displacement was significantly associated with LV remodeling. PMID:26917824

  10. High blood pressure in children and adolescents.

    PubMed

    Riley, Margaret; Bluhm, Brian

    2012-04-01

    High blood pressure in children and adolescents is a growing health problem that is often overlooked by physicians. Normal blood pressure values for children and adolescents are based on age, sex, and height, and are available in standardized tables. Prehypertension is defined as a blood pressure in at least the 90th percentile, but less than the 95th percentile, for age, sex, and height, or a measurement of 120/80 mm Hg or greater. Hypertension is defined as blood pressure in the 95th percentile or greater. A secondary etiology of hypertension is much more likely in children than in adults, with renal parenchymal disease and renovascular disease being the most common. Overweight and obesity are strongly correlated with primary hypertension in children. A history and physical examination are needed for all children with newly diagnosed hypertension to help rule out underlying medical disorders. Children with hypertension should also be screened for other risk factors for cardiovascular disease, including diabetes mellitus and hyperlipidemia, and should be evaluated for target organ damage with a retinal examination and echocardiography. Hypertension in children is treated with lifestyle changes, including weight loss for those who are overweight or obese; a healthy, low-sodium diet; regular physical activity; and avoidance of tobacco and alcohol. Children with symptomatic hypertension, secondary hypertension, target organ damage, diabetes, or persistent hypertension despite nonpharmacologic measures should be treated with antihypertensive medications. Thiazide diuretics, angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, beta blockers, and calcium channel blockers are safe, effective, and well tolerated in children.

  11. High shear homogenization of lignin to nanolignin and thermal stability of nanolignin-polyvinyl alcohol blends.

    PubMed

    Nair, Sandeep S; Sharma, Sudhir; Pu, Yunqiao; Sun, Qining; Pan, Shaobo; Zhu, J Y; Deng, Yulin; Ragauskas, Art J

    2014-12-01

    A new method to prepare nanolignin using a simple high shear homogenizer is presented. The kraft lignin particles with a broad distribution ranging from large micron- to nano-sized particles were completely homogenized to nanolignin particles with sizes less than 100 nm after 4 h of mechanical shearing. The (13) C nuclear magnetic resonance (NMR) and (31) P NMR analysis showed that there were no major changes in the chemical composition between the starting kraft lignin particles and the nanolignin obtained after 4 h of mechanical treatment. The nanolignin particles did not show any change in molecular weight distribution and polydispersity compared to the original lignin particles. The nanolignin particles when used with polyvinyl alcohol (PVA) increased the thermal stability of nanolignin/PVA blends more effectively compared to the original lignin/PVA blends. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The change in orientation of subsidiary shears near faults containing pore fluid under high pressure

    USGS Publications Warehouse

    Byerlee, J.

    1992-01-01

    Byerlee, J., 1992. The change in orientation of subsidiary shears near faults containing pore fluid under high pressure. In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics, 211: 295-303. The mechanical effects of a fault containing near-lithostatic fluid pressure in which fluid pressure decreases monotonically from the core of the fault zone to the adjacent country rock is considered. This fluid pressure distribution has mechanical implications for the orientation of subsidiary shears around a fault. Analysis shows that the maximum principal stress is oriented at a high angle to the fault in the country rock where the pore pressure is hydrostatic, and rotates to 45?? to the fault within the fault zone where the pore pressure is much higher. This analysis suggests that on the San Andreas fault, where heat flow constraints require that the coefficient of friction for slip on the fault be less than 0.1, the pore fluid pressure on the main fault is 85% of the lithostatic pressure. The observed geometry of the subsidiary shears in the creeping section of the San Andreas are broadly consistent with this model, with differences that may be due to the heterogeneous nature of the fault. ?? 1992.

  13. Design and simulation of high-energy-density shear experiments on OMEGA and the NIF

    NASA Astrophysics Data System (ADS)

    Doss, F. W.; Devolder, B.; di Stefano, C.; Flippo, K. A.; Kline, J. L.; Kot, L.; Loomis, E. N.; Merritt, E. C.; Perry, T. S.; MacLaren, S. A.; Wang, P.; Zhou, Y. K.

    2015-11-01

    High-energy-density shear experiments have been performed by LANL at the OMEGA Laser Facility and National Ignition Facility (NIF). The experiments have been simulated using the LANL radiation-hydrocode RAGE and have been used to assess turbulence models' ability to function in the high-energy-density, inertial-fusion-relevant regime. Beginning with the basic configuration of two counter-oriented shock-driven flows of > 100 km/s, which initiate a strong shear instability across an initially solid density, 20 micron thick Al plate, variations of the experiment have been performed and are studied. These variations have included increasing the fluid density (by modifying the metal plate material from Al to Ti), imposing sinusoidal perturbations on the plate, and directly modifying the plate's intrinsic surface roughness. In addition to examining the shear-induced mixing, the simulations reveal other physics, such as how the interaction of our indirect-drive halfraums with a mated shock tube's ablator impedes a stagnation-driven shock. This work is conducted by the US DOE by LANL under contract DE-AC52-06NA25396, and NIF facility operations by LLNL under contract DE-AC52-07NA27344.

  14. [Hypertensive urgency or high blood pressure variability?

    PubMed

    Rodionov, A V

    2017-01-01

    Hypertensive urgency (HU) is a common reason particularly for elderly patients to seek medical advice. Severe asymptomatic hypertension and situational high blood pressure (BP) in patients with its high variability is frequently taken as HU. The use of short-acting antihypertensive drugs is not only indicated in these situations, but it may also increase the risk of cardiovascular events (CVE). Over the past decade, increased BP variability is an independent predictor for a higher risk of CVE. Among the major groups of antihypertensive drugs, there are calcium antagonists, mainly amlodipine, which has the greatest potential to reduce BP variability. Thus, calcium antagonists can be considered as first-line drugs for patients with high BP variability.

  15. Measurement of whole blood of different mammalian species in the oscillating shear field: influence of erythrocyte aggregation

    NASA Astrophysics Data System (ADS)

    Windberger, U.; Pöschl, Ch; Peters, S.; Huber, J.; van den Hoven, R.

    2017-01-01

    This is the first systematic analysis of mammalian blood of species with a high (horse), medium (man), and low (sheep) erythrocyte (RBC) aggregability by small amplitude oscillation technique. Amplitude and frequency sweep tests (linear viscoelastic mode) were performed with blood from healthy adult volunteers, horses, and sheep in CSS-mode. Blood samples were hematocrit (HCT) adjusted (40%, 50%, 60%) and tested at 7°C, 22°C, and 37°C. Generally, storage modulus (G´) increased with HCT and decreased with temperature in each species, but the gradient of this increase was species-specific. The lower dependency of G´ on the equine HCT value could be a benefit during physical performance when high numbers of RBCs are released from the spleen. In sheep, an HCT-threshold had to be overcome before the desired quasi-static condition of the blood sample could be achieved, suggesting that the contact between RBCs, and between RBCs and plasma molecules must be very low. The frequencies for tests under linear viscoelastic condition were in a narrow range around the physiologic heart rate of the species. In horse, time-dependent influences concurred at frequencies lower than 3 rad.s-1probably due to sedimentation of RBC aggregates. In conclusion, blood is a fragile suspension that shows its best stability around the resting heart rate of the species.

  16. A Study of the Unstable Modes in High Mach Number Gaseous Jets and Shear Layers

    NASA Astrophysics Data System (ADS)

    Bassett, Gene Marcel

    1993-01-01

    Instabilities affecting the propagation of supersonic gaseous jets have been studied using high resolution computer simulations with the Piecewise-Parabolic-Method (PPM). These results are discussed in relation to jets from galactic nuclei. These studies involve a detailed treatment of a single section of a very long jet, approximating the dynamics by using periodic boundary conditions. Shear layer simulations have explored the effects of shear layers on the growth of nonlinear instabilities. Convergence of the numerical approximations has been tested by comparing jet simulations with different grid resolutions. The effects of initial conditions and geometry on the dominant disruptive instabilities have also been explored. Simulations of shear layers with a variety of thicknesses, Mach numbers and densities perturbed by incident sound waves imply that the time for the excited kink modes to grow large in amplitude and disrupt the shear layer is taug = (546 +/- 24) (M/4)^{1.7 } (Apert/0.02) ^{-0.4} delta/c, where M is the jet Mach number, delta is the half-width of the shear layer, and A_ {pert} is the perturbation amplitude. For simulations of periodic jets, the initial velocity perturbations set up zig-zag shock patterns inside the jet. In each case a single zig-zag shock pattern (an odd mode) or a double zig-zag shock pattern (an even mode) grows to dominate the flow. The dominant kink instability responsible for these shock patterns moves approximately at the linear resonance velocity, nu_ {mode} = cextnu_ {relative}/(cjet + c_ {ext}). For high resolution simulations (those with 150 or more computational zones across the jet width), the even mode dominates if the even penetration is higher in amplitude initially than the odd perturbation. For low resolution simulations, the odd mode dominates even for a stronger even mode perturbation. In high resolution simulations the jet boundary rolls up and large amounts of external gas are entrained into the jet. In low

  17. Monitoring of high-intensity focused ultrasound treatment by shear wave elastography induced by two-dimensional-array therapeutic transducer

    NASA Astrophysics Data System (ADS)

    Iwasaki, Ryosuke; Takagi, Ryo; Nagaoka, Ryo; Jimbo, Hayato; Yoshizawa, Shin; Saijo, Yoshifumi; Umemura, Shin-ichiro

    2016-07-01

    Shear wave elastography (SWE) is expected to be a noninvasive monitoring method of high-intensity focused ultrasound (HIFU) treatment. However, conventional SWE techniques encounter difficulty in inducing shear waves with adequate displacements in deep tissue. To observe tissue coagulation at the HIFU focal depth via SWE, in this study, we propose using a two-dimensional-array therapeutic transducer for not only HIFU exposure but also creating shear sources. The results show that the reconstructed shear wave velocity maps detected the coagulated regions as the area of increased propagation velocity even in deep tissue. This suggests that “HIFU-push” shear elastography is a promising solution for the purpose of coagulation monitoring in deep tissue, because push beams irradiated by the HIFU transducer can naturally reach as deep as the tissue to be coagulated by the same transducer.

  18. Understanding High Recession Rates of Carbon Ablators Seen in Shear Tests in an Arc Jet

    NASA Technical Reports Server (NTRS)

    Driver, David M.; Olson, Michael W.; Barnhardt, Michael D.; MacLean, Matthew

    2010-01-01

    High rates of recession in arc jet shear tests of Phenolic Impregnated Carbon Ablator (PICA) inspired a series of tests and analysis on FiberForm (a carbon preform used in the fabrication of PICA). Arc jet tests were performed on FiberForm in both air and pure nitrogen for stagnation and shear configurations. The nitrogen tests showed little or no recession, while the air tests of FiberForm showed recession rates similar to that of PICA (when adjusted for the difference in density). While mechanical erosion can not be ruled out, this is the first step in doing so. Analysis using a carbon oxidation boundary condition within DPLR was used to predict the recession rate of FiberForm. The analysis indicates that much of the anomalous recession behavior seen in shear tests may simply be an artifact of the non-flight like test configuration (copper upstream of the test article) a result of dissimilar enthalpy and oxygen concentration profiles on the copper. Shape change effects were also investigated and shown to be relatively small.

  19. Ductility of Advanced High-Strength Steel in the Presence of a Sheared Edge

    NASA Astrophysics Data System (ADS)

    Ruggles, Tim; Cluff, Stephen; Miles, Michael; Fullwood, David; Daniels, Craig; Avila, Alex; Chen, Ming

    2016-07-01

    The ductility of dual-phase (DP) 980 and transformation-induced plasticity (TRIP) assisted bainitic ferritic (TBF) 980 steels was studied in the presence of a sheared edge. Specimens were tested in uniaxial tension in a standard test frame as well as in situ in the scanning electron microscope (SEM). Incremental tensile straining was done in the SEM with images taken at each strain increment. Then digital image correlation (DIC) was used to compute the effective strain at the level of the individual phases in the microstructure. Shear banding across multiple phases was seen in strained TBF specimens, while the DP specimens exhibited more of a patchwork strain pattern, with high strains concentrated in ferrite and low strains observed in the martensite. Two-point statistics were applied to the strain data from the DIC work and the corresponding microstructure images to evaluate the effect of phase hardness on localization and fracture. It was observed that the DP 980 material had a greater tendency for localization around hard phases compared to the TBF 980. This at least partially explains the greater ductility of the TBF material, especially in specimens where a sheared edge was present.

  20. Simulation of three-dimensional shear flow around a nozzle-afterbody at high speeds

    SciTech Connect

    Baysal, O.; Hoffman, W.B. )

    1992-06-01

    In this paper, turbulent shear flows at supersonic and hypersonic speeds around a nozzle-afterbody are simulated. The three-dimensional, Reynolds-averaged Navier-Stokes equations are solved by a finite-volume and implicit method. The convective and the pressure terms are differenced by an upwind-biased algorithm. The effect of turbulence is incorporated by a modified Baldwin-Lomax eddy viscosity model. The success of the standard Baldwin-Lomax model for this flow type is shown by comparing it to a laminar case. These modifications made to the model are also shown to improve flow prediction when compared to the standard Baldwin-Lomax model. These modifications to the model reflect the effects of high compressibility, multiple walls, vortices near walls, and turbulent memory effects in the shear layer. This numerically simulated complex flowfield includes a supersonic duct flow, a hypersonic flow over an external double corner, a flow through a non-axisymmetric, internal-external nozzle, and a three-dimensional shear layer. The specific application is for the flow around the nozzle-afterbody of a generic hypersonic vehicle powered by a scramjet engine. The computed pressure distributions compared favorably with the experimentally obtained surface and off-surface flow surveys.

  1. Stability of LAPONITE®-stabilized high internal phase Pickering emulsions under shear.

    PubMed

    Dinkgreve, M; Velikov, K P; Bonn, D

    2016-08-17

    Colloidal particles are often used to make Pickering emulsions that are reported to be very stable. Commonly the stabilization is a combined effect of particle adsorbing at the fluid interface and a particle network in the continuous phase; the contribution of each to the overall stability is difficult to assess. We investigate the role of LAPONITE® particles on high internal phase emulsion stability by considering three different situations: emulsion stabilization by surfactant only, by surfactant plus clay particles, and finally clay particles only. To clarify the structure of the emulsion and the role of the clay particles, we have succeeded in fluorescently labelling the clay particles by adsorbing the dye onto the particle surfaces. This allows us to show directly using confocal microscopy, that the clay particles are not only located at the interface but also aggregate and form a gel in the continuous aqueous phase. We show that the emulsions in the presence of surfactant (with or without clay) are stable to coalescence and shear. Without surfactant (with only LAPONITE® as stabilizer) the emulsions are stable to coalescence for several weeks, however they destabilize rapidly under shear. Our results suggest that the formation of the emulsions is mostly due to gel formation of the clay particles in the continuous phase, rather than that the clay is an emulsifier. This gel formation also accounts for the instability of the emulsions to shear that we observe caused by shear thinning of the continuous gel and inability of the adsorbed particles to rearrange effectively around the droplets due to their attractive nature.

  2. Diverse forms of pulmonary hypertension remodel the arterial tree to a high shear phenotype.

    PubMed

    Allen, Roblee P; Schelegle, Edward S; Bennett, Stephen H

    2014-08-01

    Pulmonary hypertension (PH) is associated with progressive changes in arterial network complexity. An allometric model is derived that integrates diameter branching complexity between pulmonary arterioles of generation n and the main pulmonary artery (MPA) via a power-law exponent (X) in dn = dMPA2(-n/X) and the arterial area ratio β = 2(1-2/X). Our hypothesis is that diverse forms of PH demonstrate early decrements in X independent of etiology and pathogenesis, which alters the arteriolar shear stress load from a low-shear stress (X > 2, β > 1) to a high-shear stress phenotype (X < 2, β < 1). Model assessment was accomplished by comparing theoretical predictions to retrospective morphometric and hemodynamic measurements made available from a total of 221 PH-free and PH subjects diagnosed with diverse forms (World Health Organization; WHO groups I-IV) of PH: mitral stenosis, congenital heart disease, chronic obstructive pulmonary lung disease, chronic thromboembolism, idiopathic pulmonary arterial hypertension (IPAH), familial (FPAH), collagen vascular disease, and methamphetamine exposure. X was calculated from pulmonary artery pressure (PPA), cardiac output (Q) and body weight (M), utilizing an allometric power-law prediction of X relative to a PH-free state. Comparisons of X between PAH-free and PAH subjects indicates a characteristic reduction in area that elevates arteriolar shear stress, which may contribute to mechanisms of endothelial dysfunction and injury before clinically defined thresholds of pulmonary vascular resistance and PH. We conclude that the evaluation of X may be of use in identifying reversible and irreversible phases of PH in the early course of the disease process.

  3. Scaling a High-Energy-Density Shear Experiment from Omega to the National Ignition Facility (NIF)

    NASA Astrophysics Data System (ADS)

    Doss, Forrest W.

    2014-10-01

    Shear instability in high-energy-density (HED) physics is important for elucidating issues in compressible turbulence and in understanding the late time quenching of, for example, inertial fusion capsules. A counterflowing shear experiment initially designed for the Omega Laser Facility studies shear instability in isolation by launching 100+ km/s shocks into opposite sides of a foam-filled shock tube bisected by an Al tracer plate. When the shocks cross at the tube center, a region of intense shear is created (~ 150 km/s velocity difference from one side of the plate to the other). As the tracer layer goes unstable it mixes with the surrounding foam and expands into the tube volume. Radiography recording the spreading of the mixing layer is compared to simulations using the LANL hydrocode RAGE. Analysis of this data demonstrated the likely presence of features, such as strong coupling between the thermodynamics and turbulence during the experiment, of special or unique importance to the HED regime. However, the Omega experiments are limited to 1 ns impulsive drive, compared to the 16 ns of observation times, and are dominated by transients, barely if at all reaching the state of developed turbulence. Our recent shots on the NIF take the experiment to larger volumes, to faster speeds, and to the use of indirect drive halfraums to launch steadily supported shocks. These improvements take advantage of the increased energy of the NIF to eliminate transients and drive more steadily the approach to turbulent transition. Analysis of radiographs confirms our ability to model the hydrodynamic drive and evolution, while comparing images of the developing turbulence between the two facilities suggests morphological differences related possibly to the change in drive conditions. This work was supported by the US DOE and operated by LANS under Contract No. DE-AC52-06NA25396.

  4. A Nutritional Strategy for the Treatment of High Blood Pressure.

    ERIC Educational Resources Information Center

    Podell, Richard N.

    1984-01-01

    Some physicians wonder if high blood pressure can be controlled without the use of drugs and their potential side effects. Current findings concerning nutrition and high blood pressure are presented. (RM)

  5. High blood pressure - what to ask your doctor

    MedlinePlus

    What to ask your doctor about high blood pressure; Hypertension - what to ask your doctor ... problems? What medicines am I taking to treat high blood pressure? Do they have any side effects? What should ...

  6. High Blood Pressure, Afib and Your Risk of Stroke

    MedlinePlus

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More High Blood Pressure, AFib and Your Risk of Stroke Updated:Aug ... have a stroke for the first time have high blood pressure . And an irregular atrial heart rhythm — a condition ...

  7. A Nutritional Strategy for the Treatment of High Blood Pressure.

    ERIC Educational Resources Information Center

    Podell, Richard N.

    1984-01-01

    Some physicians wonder if high blood pressure can be controlled without the use of drugs and their potential side effects. Current findings concerning nutrition and high blood pressure are presented. (RM)

  8. High Blood Pressure, Afib and Your Risk of Stroke

    MedlinePlus

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More High Blood Pressure, Afib and Your Risk of Stroke Updated:Sep ... have a stroke for the first time have high blood pressure . And an irregular atrial heart rhythm — a condition ...

  9. Shallow water sediment properties derived from high-frequency shear and interface waves

    NASA Astrophysics Data System (ADS)

    Ewing, John; Carter, Jerry A.; Sutton, George H.; Barstow, Noel

    1992-04-01

    Low-frequency sound propagation in shallow water environments is not restricted to the water column but also involves the subbottom. Thus, as well as being important for geophysical description of the seabed, subbottom velocity/attenuation structure is essential input for predictive propagation models. To estimate this structure, bottom-mounted sources and receivers were used to make measurements of shear and compressional wave propagation in shallow water sediments of the continental shelf, usually where boreholes and high-resolution reflection profiles give substantial supporting geologic information about the subsurface. This colocation provides an opportunity to compare seismically determined estimates of physical properties of the seabed with the "ground truth" properties. Measurements were made in 1986 with source/detector offsets up to 200 m producing shear wave velocity versus depth profiles of the upper 30-50 m of the seabed (and P wave profiles to lesser depths). Measurements in 1988 were made with smaller source devices designed to emphasize higher frequencies and recorded by an array of 30 sensors spaced at 1-m intervals to improve spatial sampling and resolution of shallow structure. These investigations with shear waves have shown that significant lateral and vertical variations in the physical properties of the shallow seabed are common and are principally created by erosional and depositional processes associated with glacial cycles and sea level oscillations during the Quaternary. When the seabed structure is relatively uniform over the length of the profiles, the shear wave fields are well ordered, and the matching of the data with full waveform synthetics has been successful, producing velocity/attenuation models consistent with the subsurface lithology indicated by coring results. Both body waves and interface waves have been modeled for velocity/attenuation as a function of depth with the aid of synthetic seismograms and other analytical

  10. Rotational and magnetic shear stabilization of magnetohydrodynamic modes and turbulence in DIII-D high performance discharges

    SciTech Connect

    Lao, L.L.; Burrell, K.H.; Casper, T.S.

    1996-08-01

    The confinement and the stability properties of the DIII-D tokamak high performance discharges are evaluated in terms of rotational and magnetic shear with emphasis on the recent experimental results obtained from the negative central magnetic shear (NCS) experiments. In NCS discharges, a core transport barrier is often observed to form inside the NCS region accompanied by a reduction in core fluctuation amplitudes. Increasing negative magnetic shear contributes to the formation of this core transport barrier, but by itself is not sufficient to fully stabilize the toroidal drift mode (trapped- electron-{eta}{sub i}mode) to explain this formation. Comparison of the Doppler shift shear rate to the growth rate of the {eta}{sub i} mode suggests that the large core {bold E x B} flow shear can stabilize this mode and broaden the region of reduced core transport . Ideal and resistive stability analysis indicates the performance of NCS discharges with strongly peaked pressure profiles is limited by the resistive interchange mode to low {Beta}{sub N} {lt} 2.3. This mode is insensitive to the details of the rotational and the magnetic shear profiles. A new class of discharges which has a broad region of weak or slightly negative magnetic shear (WNS) is described. The WNS discharges have broader pressure profiles and higher values than the NCS discharges together with high confinement and high fusion reactivity.

  11. Venous levels of shear support neutrophil-platelet adhesion and neutrophil aggregation in blood via P-selectin and beta2-integrin

    NASA Technical Reports Server (NTRS)

    Konstantopoulos, K.; Neelamegham, S.; Burns, A. R.; Hentzen, E.; Kansas, G. S.; Snapp, K. R.; Berg, E. L.; Hellums, J. D.; Smith, C. W.; McIntire, L. V.; Simon, S. I.

    1998-01-01

    BACKGROUND: After activation, platelets adhere to neutrophils via P-selectin and beta2-integrin. The molecular mechanisms and adhesion events in whole blood exposed to venous levels of hydrodynamic shear in the absence of exogenous activation remain unknown. METHODS AND RESULTS: Whole blood was sheared at approximately 100 s(-1). The kinetics of neutrophil-platelet adhesion and neutrophil aggregation were measured in real time by flow cytometry. P-selectin was upregulated to the platelet surface in response to shear and was the primary factor mediating neutrophil-platelet adhesion. The extent of neutrophil aggregation increased linearly with platelet adhesion to neutrophils. Blocking either P-selectin, its glycoprotein ligand PSGL-1, or both simultaneously by preincubation with a monoclonal antibody resulted in equivalent inhibition of neutrophil-platelet adhesion (approximately 30%) and neutrophil aggregation (approximately 70%). The residual amount of neutrophil adhesion was blocked with anti-CD11b/CD18. Treatment of blood with prostacyclin analogue ZK36374, which raises cAMP levels in platelets, blocked P-selectin upregulation and neutrophil aggregation to baseline. Complete abrogation of platelet-neutrophil adhesion required both ZK36374 and anti-CD18. Electron microscopic observations of fixed blood specimens revealed that platelets augmented neutrophil aggregation both by forming bridges between neutrophils and through contact-mediated activation. CONCLUSIONS: The results are consistent with a model in which venous levels of shear support platelet adherence to neutrophils via P-selectin binding PSGL-1. This interaction alone is sufficient to mediate neutrophil aggregation. Abrogation of platelet adhesion and aggregation requires blocking Mac-1 in addition to PSGL-1 or P-selectin. The described mechanisms are likely of key importance in the pathogenesis and progression of thrombotic disorders that are exacerbated by leukocyte-platelet aggregation.

  12. Venous levels of shear support neutrophil-platelet adhesion and neutrophil aggregation in blood via P-selectin and beta2-integrin

    NASA Technical Reports Server (NTRS)

    Konstantopoulos, K.; Neelamegham, S.; Burns, A. R.; Hentzen, E.; Kansas, G. S.; Snapp, K. R.; Berg, E. L.; Hellums, J. D.; Smith, C. W.; McIntire, L. V.; hide

    1998-01-01

    BACKGROUND: After activation, platelets adhere to neutrophils via P-selectin and beta2-integrin. The molecular mechanisms and adhesion events in whole blood exposed to venous levels of hydrodynamic shear in the absence of exogenous activation remain unknown. METHODS AND RESULTS: Whole blood was sheared at approximately 100 s(-1). The kinetics of neutrophil-platelet adhesion and neutrophil aggregation were measured in real time by flow cytometry. P-selectin was upregulated to the platelet surface in response to shear and was the primary factor mediating neutrophil-platelet adhesion. The extent of neutrophil aggregation increased linearly with platelet adhesion to neutrophils. Blocking either P-selectin, its glycoprotein ligand PSGL-1, or both simultaneously by preincubation with a monoclonal antibody resulted in equivalent inhibition of neutrophil-platelet adhesion (approximately 30%) and neutrophil aggregation (approximately 70%). The residual amount of neutrophil adhesion was blocked with anti-CD11b/CD18. Treatment of blood with prostacyclin analogue ZK36374, which raises cAMP levels in platelets, blocked P-selectin upregulation and neutrophil aggregation to baseline. Complete abrogation of platelet-neutrophil adhesion required both ZK36374 and anti-CD18. Electron microscopic observations of fixed blood specimens revealed that platelets augmented neutrophil aggregation both by forming bridges between neutrophils and through contact-mediated activation. CONCLUSIONS: The results are consistent with a model in which venous levels of shear support platelet adherence to neutrophils via P-selectin binding PSGL-1. This interaction alone is sufficient to mediate neutrophil aggregation. Abrogation of platelet adhesion and aggregation requires blocking Mac-1 in addition to PSGL-1 or P-selectin. The described mechanisms are likely of key importance in the pathogenesis and progression of thrombotic disorders that are exacerbated by leukocyte-platelet aggregation.

  13. [High blood pressure and physical exercise].

    PubMed

    Sosner, P; Gremeaux, V; Bosquet, L; Herpin, D

    2014-06-01

    High blood pressure is a frequent pathology with many cardiovascular complications. As highlighted in guidelines, the therapeutic management of hypertension relies on non-pharmacological measures, which are diet and regular physical activity, but both patients and physicians are reluctant to physical activity prescription. To acquire the conviction that physical activity is beneficial, necessary and possible, we can take into account some fundamental and clinical studies, as well as the feedback of our clinical practice. Physical inactivity is a major risk factor for cardiovascular morbidity and mortality, and hypertension contributes to increase this risk. Conversely, regular practice of physical activity decreases very significantly the risk by up to 60%. The acute blood pressure changes during exercise and post-exercise hypotension differs according to the dynamic component (endurance or aerobic and/or strength exercises), but the repetition of the sessions leads to the chronic hypotensive benefit of physical activity. Moreover, physical activity prescription must take into account the assessment of global cardiovascular risk, the control of the hypertension, and the opportunities and desires of the patient in order to promote good adherence and beneficial lifestyle change. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. What about African Americans and High Blood Pressure?

    MedlinePlus

    ... whites. • Heredity —A tendency to have high blood pressure runs in families. • Age — In general, the older you get, the greater your chance of developing high blood pressure. • Sex — Men tend to develop high blood pressure ...

  15. Effect of high molecular weight plasticizers on the gelatinization of starch under static and shear conditions.

    PubMed

    Taghizadeh, Ata; Favis, Basil D

    2013-02-15

    Starch gelatinization in the presence of high molecular weight polyol plasticizers and water was studied under static and dynamic conditions and was compared to a glycerol reference. For static gelatinization, glycerol, sorbitol, diglycerol and polyglycerol were examined using polarized light microscopy and differential scanning calorimetry. A wide range of starch/water/plasticizer compositions were prepared to explore the gelatinization regime for each plasticizer. The plasticizers show that the onset and conclusion temperatures for sorbitol and glycerol are in the same range and are lower than the other two plasticizers. On the other hand, polyglycerol shows a higher gelatinization temperature than diglycerol because of its higher molecular weight and viscosity. The results indicate that in the case of all plasticizers, increasing the water content tends to decrease the gelatinization temperature and, except for polyglycerol, increasing the plasticizer content increases the gelatinization temperature. In the case of polyglycerol, however, increasing the plasticizer content had the opposite effect and this was found to be related to the borderline solubility of polyglycerol in water. When the polyglycerol/water solubility was increased by increasing the temperature of the water/plasticizer/starch slurry, the gelatinization temperature dependence was found to be similar to the other polyols. A rheological technique was developed to study the dynamic gelatinization process by tracking the influence of shear on the complex viscosity in a couette flow system. Glycerol, diglycerol and sorbitol were subjected to different dynamic gelatinization treatments and the results were compared with static gelatinization. It is quantitatively shown that shear has a major effect on the gelatinization process. The conclusion temperature of gelatinization is significantly diminished (up to 21 °C) in the presence of shear whereas the onset temperature of gelatinization remains

  16. Analysis of blood flow through a viscoelastic artery using the Cosserat continuum with the large-amplitude oscillatory shear deformation model.

    PubMed

    Sedaghatizadeh, N; Atefi, G; Fardad, A A; Barari, A; Soleimani, Soheil; Khani, S

    2011-10-01

    In this investigation, semiempirical and numerical studies of blood flow in a viscoelastic artery were performed using the Cosserat continuum model. The large-amplitude oscillatory shear deformation model was used to quantify the nonlinear viscoelastic response of blood flow. The finite difference method was used to solve the governing equations, and the particle swarm optimization algorithm was utilized to identify the non-Newtonian coefficients (k(υ) and γ(υ)). The numerical results agreed well with previous experimental results. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. An Investigation on the Aggregation and Rheodynamics of Human Red Blood Cells Using High Performance Computations.

    PubMed

    Xu, Dong; Ji, Chunning; Avital, Eldad; Kaliviotis, Efstathios; Munjiza, Ante; Williams, John

    2017-01-01

    Studies on the haemodynamics of human circulation are clinically and scientifically important. In order to investigate the effect of deformation and aggregation of red blood cells (RBCs) in blood flow, a computational technique has been developed by coupling the interaction between the fluid and the deformable RBCs. Parallelization was carried out for the coupled code and a high speedup was achieved based on a spatial decomposition. In order to verify the code's capability of simulating RBC deformation and transport, simulations were carried out for a spherical capsule in a microchannel and multiple RBC transport in a Poiseuille flow. RBC transport in a confined tube was also carried out to simulate the peristaltic effects of microvessels. Relatively large-scale simulations were carried out of the motion of 49,512 RBCs in shear flows, which yielded a hematocrit of 45%. The large-scale feature of the simulation has enabled a macroscale verification and investigation of the overall characteristics of RBC aggregations to be carried out. The results are in excellent agreement with experimental studies and, more specifically, both the experimental and simulation results show uniform RBC distributions under high shear rates (60-100/s) whereas large aggregations were observed under a lower shear rate of 10/s.

  18. Application of MMC model on simulation of shearing process of thick hot-rolled high strength steel plate

    NASA Astrophysics Data System (ADS)

    Dong, Liang; Li, Shuhui; Yang, Bing; Gao, Yongsheng

    2013-12-01

    Shear operation is widely used as the first step in sheet metal forming to cut the sheet or plate into the required size. The shear of thick hot-rolled High Strength Steel (HSS) requires large shearing force and the sheared edge quality is relatively poor because of the large thickness and high strength compared with the traditional low carbon steel. Bad sheared edge quality will easily lead to edge cracking during the post-forming process. This study investigates the shearing process of thick hot-rolled HSS plate metal, which is generally exploited as the beam of heavy trucks. The Modified Mohr-Coulomb fracture criterion (MMC) is employed in numerical simulation to calculate the initiation and propagation of cracks during the process evolution. Tensile specimens are designed to obtain various stress states in tension. Equivalent fracture strains are measured with Digital Image Correlation (DIC) equipment to constitute the fracture locus. Simulation of the tension test is carried out to check the fracture model. Then the MMC model is applied to the simulation of the shearing process, and the simulation results show that the MMC model predicts the ductile fracture successfully.

  19. Demonstration of high performance negative central magnetic shear discharges on the DIII-D tokamak

    SciTech Connect

    Rice, B.W.; Burrell, K.H.; Lao, L.L.

    1996-01-01

    Reliable operation of discharges with negative central magnetic shear has led to significant increases in plasma performance and reactivity in both low confinement, L-mode, and high confinement, H-mode, regimes in the DIII-D tokamak. Using neutral beam injection early in the initial current ramp, a large range of negative shear discharges have been produced with durations lasting up to 3.2 s. The total non- inductive current (beam plus bootstrap) ranges from 50% to 80% in these discharges. In the region of shear reversal, significant peaking of the toroidal rotation [f{sub {phi}} {approx} 30-60 kHz] and ion temperature [T{sub i}(0) {approx} 15-22 keV] profiles are observed. In high power discharges with an L-mode edge, peaked density profiles are also observed. Confinement enhancement factors up to H {equivalent_to} {tau}{sub E}/{tau}{sub ITER-89P} {approx} 2.5 with an L-mode edge, and H {approx} 3.3 in an Edge Localized Mode (ELM)-free H-mode, are obtained. Transport analysis shows both ion thermal diffusivity and particle diffusivity to be near or below standard neoclassical values in the core. Large pressure peaking in L- mode leads to high disruptivity with {Beta}{sub N} {equivalent_to} {Beta}{sub T}/(I/aB) {<=} 2.3, while broader pressure profiles in H- mode gives low disruptivity with {Beta}{sub N} {<=} 4.2.

  20. [Quality by design based high shear wet granulation process development for the microcrystalline cellulose].

    PubMed

    Luo, Gan; Xu, Bing; Sun, Fei; Cui, Xiang-long; Shi, Xin-yuan; Qiao, Yan-jiang

    2015-03-01

    The design space of the high shear wet granulation process was established and validated within the framework of quality by design (QbD). The system of microcrystalline cellulose-de-ioned water was used in this study. The median granule size and bulk density of granules were identified as critical quality attributes. Plackeet-Burmann experimental design was used to screen these factors as follows: dry mixing time, the impeller and chopper speed of dry mixing, water amount, water addition time, wet massing time, the impeller and chopper speed of wet massing and drying time. And the optimization was implemented with the central composite experimental design based on screened critical process parameters. The design space of the high shear wet granulation process was established based on the quadratic polynomial regression model. Since the P-values of both models were less than 0.05 and values of lack of fit were more than 0.1, the relationship between critical quality attributes and critical process parameters could be well described by the two models. The reliability of design space, illustrated by overlay plot, was improved with the addition of 95% confidence interval. For those granules whose process parameters were in the design space, the granule size could be controlled within 250 to 355 μm, and the bulk density could be controlled within a range of 0.4 to 0.6 g x cm(-3). The robustness and flexibility of the high shear wet granulation process have been enhanced via the establishment of the design space based on the QbD concept.

  1. Simulation of 3-D shear flows around a nozzle-afterbody at high speeds

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Hoffman, Wendy B.

    1991-01-01

    3D, compressible, unsteady, Reynolds-averaged Navier-Stokes equations are presently solved by a finite-volume and alternating-direction-implicit method in order to simulate supersonic and hypersonic turbulent shear flows. The effect of turbulence is incorporated via a modified Baldwin-Lomax eddy viscosity model which reflects the influence of high-speed compressibility, multiple walls, near-wall vortices, and turbulent memory effects, as well as local equilibrium effects. Attention is given to the simulation of the flow around the nozzle-afterbody of a generic, scramjet-propelled hypersonic vehicle; computed pressure distributions are consonant with experimental surface and off-surface flow surveys.

  2. Turbulence measurement in a reacting and non-reacting shear layer at a high subsonic Mach number

    NASA Technical Reports Server (NTRS)

    Chang, C. T.; Marek, C. J.; Wey, C.; Jones, R. A.; Smith, M. J.

    1993-01-01

    The results of two component velocity and turbulence measurements are presented which were obtained on a planar reacting shear layer burning hydrogen. Quantitative LDV and temperature measurements are presented with and without chemical reaction within the shear layer at a velocity ratio of 0.34 and a high speed Mach number of 0.7. The comparison showed that the reacting shear layer grew faster than that without reaction. Using a reduced width coordinate, the reacting and non-reacting profiles were very similar. The peak turbulence for both cases was 20 percent.

  3. Dissolution and reconstitution of casein micelle containing dairy powders by high shear using ultrasonic and physical methods.

    PubMed

    Chandrapala, Jayani; Martin, Gregory J O; Kentish, Sandra E; Ashokkumar, Muthupandian

    2014-09-01

    The effect of shear on the solubilization of a range of dairy powders was investigated. The rate of solubilization of low solubility milk protein concentrate and micellar casein powders was examined during ultrasonication, high pressure homogenization and high-shear rotor-stator mixing and compared to low-shear overhead stirring. The high shear techniques were able to greatly accelerate the solubilization of these powders by physically breaking apart the powder agglomerates and accelerating the release of individual casein micelles into solution. This was achieved without affecting the structure of the solubilized proteins. The effect of high shear on the re-establishment of the mineral balance between the casein micelles and the serum was examined by monitoring the pH of the reconstituted skim milk powder after prior exposure to ultrasonication. Only minor differences in the re-equilibration of the pH were observed after sonication for up to 3 min, suggesting that the localized high shear forces exerted by sonication did not significantly affect the mass transfer of minerals from within the casein micelles. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. ‘Sausage-string’ deformations of blood vessels at high blood pressures

    NASA Astrophysics Data System (ADS)

    Alstrøm, P.; Mikkelsen, R.; Gustafsson, F.; Holstein-Rathlou, N.-H.

    1999-12-01

    A new instability is proposed to explain the ‘sausage-string’ patterns of alternating constrictions and dilatations formed in blood vessels at high blood pressure conditions. Our theory provides predictions for the conditions under which the cylindrical geometry of a blood vessel becomes unstable. The theory is related to experimental observations in rats, where high blood pressure is induced by intravenous infusion of angiotensin II.

  5. Platelet dysfunction detected at high shear in patients with heart valve disease.

    PubMed

    Francis, J L

    2000-05-01

    Whether patients with valvular heart disease have a defect of platelet function has been unclear. Despite evidence that these individuals have an abnormality detectable only under conditions of high shear stress, no methods have been widely available to adequately assess platelet function under such conditions. The Platelet Function Analyzer (PFA)-100 measures platelet function in a high shear environment and is well suited to the detection of platelet dysfunction in the clinical laboratory. The instrument records the time for platelets to occlude a membrane coated with collagen and either epinephrine (CEPI) or ADP (CADP). We studied the PFA-100 in 398 patients before open heart surgery; 308 for coronary artery bypass grafting (CABG) and 90 for aortic or mitral valve replacement (VR). Patients were classified as normal (CEPI < or = 153 s); 'aspirin effect' (CEPI > 153 s but CADP < or = 109 s) or abnormal (CEPI > 153 s and CADP > 109 s). In the CABG group, 41.2% were classified as normal, 43.2% as 'aspirin effect' and 15.6% as abnormal. In contrast, in patients undergoing VR, these values were 6.7, 11.1 and 82.4%, respectively. Patients with valvular disease had significantly longer closure times for both CEPI and CADP tests (P < 0.001). In addition, the valvular disease group had a significantly higher proportion of patients with markedly prolonged (> 150 s) closure times in the CADP cartridge (43.3 vs. 3.6%, respectively). Only one (0.3%) patient in the CABG group had non-closure (> 300 s) in the CADP test compared to seven (7.8%) in the valvular disease group. Three of six patients in the latter group bled excessively during surgery. We conclude that abnormal CADP closure is much more frequent among patients with aortic or mitral valve disease compared to those with coronary artery disease. This may reflect pre-existing high-shear damage to platelets that renders them refractory to subsequent shear activation and aggregation in the PFA-100 system. Further studies

  6. Are integrin alpha(2)beta(1), glycoprotein Ib and vWf levels correlated with their contributions to platelet adhesion on collagen under high-shear flow?

    PubMed

    Jung, Stephanie M; Sonoda, Mamiko; Tsuji, Kayoko; Jimi, Atsuo; Nomura, Shosaku; Kanaji, Taisuke; Moroi, Masaaki

    2010-01-01

    Platelets in flowing blood at high-shear stress are recruited to exposed subendothelial collagen of injured vessels by GPIb-von Willebrand factor (vWf) and integrin alpha(2)beta(1) (alpha(2)beta(1))-collagen interactions. Platelet adhesion to type I collagen depends mainly on the alpha(2)beta(1)-collagen interaction and that to type III collagen depends on the GPIb-vWf interaction due to vWf's weak affinity for type I collagen. Contributions of these two interactions would differ depending on expressions of alpha(2)beta(1), vWf, or GPIb. We quantitated platelet adhesion to low- and high-density collagen under high-shear flow conditions in the presence of anti-alpha(2)beta(1) (Gi9) and anti-GPIb (NNKY5-5) antibodies to determine if their inhibitory effects were correlated with the amounts of alpha(2)beta(1), GPIb and vWf. Gi9 inhibition of adhesion to type I collagen was decreased in platelets with more integrin alpha(2)beta(1). Gi9 and NNKY5-5 are more inhibitory against adhesion to low-density type III and I, respectively. Higher alpha(2)beta(1) expression decreases adhesion to low-density type III and increases Gi9 inhibition of adhesion to high-density type III, suggesting crosstalk between the alpha(2)beta(1)-collagen and GPIb-vWf interactions in adhesion to type III. Integrin alpha(2)beta(1)-collagen and GPIb-vWf interactions both contribute to platelet adhesion to collagen under high-shear flow. In adhesion under high-shear stress, the two interactions would compensate for each other, when there is a deficiency in one or the other. The alpha(2)beta(1)-collagen interaction was also suggested to have an inhibitory effect on platelet adhesion to type III collagen, through a yet undefined mechanism.

  7. High temperature gradient micro-sensor for wall shear stress and flow direction measurements

    NASA Astrophysics Data System (ADS)

    Ghouila-Houri, C.; Claudel, J.; Gerbedoen, J.-C.; Gallas, Q.; Garnier, E.; Merlen, A.; Viard, R.; Talbi, A.; Pernod, P.

    2016-12-01

    We present an efficient and high-sensitive thermal micro-sensor for near wall flow parameters measurements. By combining substrate-free wire structure and mechanical support using silicon oxide micro-bridges, the sensor achieves a high temperature gradient, with wires reaching 1 mm long for only 3 μm wide over a 20 μm deep cavity. Elaborated to reach a compromise solution between conventional hot-films and hot-wire sensors, the sensor presents a high sensitivity to the wall shear stress and to the flow direction. The sensor can be mounted flush to the wall for research studies such as turbulence and near wall shear flow analysis, and for technical applications, such as flow control and separation detection. The fabrication process is CMOS-compatible and allows on-chip integration. The present letter describes the sensor elaboration, design, and micro-fabrication, then the electrical and thermal characterizations, and finally the calibration experiments in a turbulent boundary layer wind tunnel.

  8. Turbulence modeling of free shear layers for high-performance aircraft

    NASA Technical Reports Server (NTRS)

    Sondak, Douglas L.

    1993-01-01

    The High Performance Aircraft (HPA) Grand Challenge of the High Performance Computing and Communications (HPCC) program involves the computation of the flow over a high performance aircraft. A variety of free shear layers, including mixing layers over cavities, impinging jets, blown flaps, and exhaust plumes, may be encountered in such flowfields. Since these free shear layers are usually turbulent, appropriate turbulence models must be utilized in computations in order to accurately simulate these flow features. The HPCC program is relying heavily on parallel computers. A Navier-Stokes solver (POVERFLOW) utilizing the Baldwin-Lomax algebraic turbulence model was developed and tested on a 128-node Intel iPSC/860. Algebraic turbulence models run very fast, and give good results for many flowfields. For complex flowfields such as those mentioned above, however, they are often inadequate. It was therefore deemed that a two-equation turbulence model will be required for the HPA computations. The k-epsilon two-equation turbulence model was implemented on the Intel iPSC/860. Both the Chien low-Reynolds-number model and a generalized wall-function formulation were included.

  9. Turbulent mixing due to Holmboe wave instability in stratified shear flows at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Salehipour, Hesam; Caulfield, Colm-Cille; Peltier, W. Richard

    2015-11-01

    We consider numerically the transition to turbulence and associated mixing in parallel stratified shear flows with hyperbolic tangent initial velocity and density distributions. When the characteristic length scale of density variation is sufficiently sharper than that of the velocity variation, this flow is primarily susceptible to Holmboe wave instability (HWI) which perturbs the interface to exhibit characteristic cusped interfacial waves. Unlike previous low- Re experimental and numerical studies, in the high- Re regime in which our DNS analyses are performed, the primary HWI triggers a vigorous yet markedly more long-lived turbulent event compared to its better known relative, the Kelvin-Helmholtz instability (KHI). HWI `scours' the primary density interface, leading to substantial irreversible mixing and vertical transport of density displaced above and below the (robust) primary density interface which is comparable in both absolute terms and relative efficiency to the mixing associated with an equivalent KHI. Our results establish categorically that, provided the Reynolds number is high enough, shear layers with sharp density interfaces and associated locally high values of the gradient Richardson number are sites of substantial and efficient irreversible mixing. H.S. is grateful to the David Crighton Fellowship from DAMTP, University of Cambridge.

  10. Effect of moisture, saliva, and blood contamination on the shear bond strength of brackets bonded with a conventional bonding system and self-etched bonding system

    PubMed Central

    Prasad, Mandava; Mohamed, Shamil; Nayak, Krishna; Shetty, Sharath Kumar; Talapaneni, Ashok Kumar

    2014-01-01

    Background: The success of bonding brackets to enamel with resin bonding systems is negatively affected by contamination with oral fluids such as blood and saliva. The new self-etch primer systems combine conditioning and priming agents into a single application, making the procedure more cost effective. Objective: The purpose of the study was to investigate the effect of moisture, saliva and blood contamination on shear bond strength of orthodontic brackets bonded with conventional bonding system and self-etch bonding system. Materials and Methods: Each system was examined under four enamel surface conditions (dry, water, saliva, and blood), and 80 human teeth were divided into two groups with four subgroups each of 10 according to enamel surface condition. Group 1 used conventional bonding system and Group 2 used self-etched bonding system. Subgroups 1a and 2a under dry enamel surface conditions; Subgroups 1b and 2b under moist enamel surface condition; Subgroups 3a and 3b under saliva enamel surface condition and Subgroup 4a and 4b under blood enamel surface condition. Brackets were bonded, and all the samples were then submitted to a shear bond test with a universal testing machine with a cross head speed of 1mm/sec. Results: The results showed that the contamination reduced the shear bond strength of all groups. In self-etch bonding system water and saliva had significantly higher bond strength when compared to other groups. Conclusion: It was concluded that the blood contamination showed lowest bond strength from both bonding systems. Self-etch bonding system resulted in higher bond strength than conventional bonding system under all conditions except the dry enamel surface. PMID:24678210

  11. Novel high bandwidth wall shear stress sensor for ultrasonic cleaning applications

    NASA Astrophysics Data System (ADS)

    Gonzalez-Avila, S. Roberto; Prabowo, Firdaus; Ohl, Claus-Dieter

    2010-11-01

    Ultrasonic cleaning is due to the action of cavitation bubbles. The details of the cleaning mechanisms are not revealed or confirmed experimentally, yet several studies suggest that the wall shear stresses generated are very high, i.e. of the order of several thousand Pascal. Ultrasonic cleaning applications span a wide range from semiconductor manufacturing, to low pressure membrane cleaning, and the in the medical field cleaning of surgical instruments. We have developed a novel sensor to monitor and quantify cleaning activity which is (1) very sturdy, (2) has a high bandwidth of several megahertz, (3) is cheap in manufacturing costs, and (4) of very small size. We analyze the sensor signal by comparing its response time correlated to single laser induced cavitation bubbles using high-speed photography. Additionally, we will present first measurements in ultrasonic cleaning bathes using again high-speed photography. A preliminary discussion on the working mechanism of the sensor will be presented.

  12. High-order face-shear modes of relaxor-PbTiO3 crystals for piezoelectric motor applications

    NASA Astrophysics Data System (ADS)

    Ci, Penghong; Liu, Guoxi; Chen, Zhijiang; Zhang, Shujun; Dong, Shuxiang

    2014-06-01

    The face-shear vibration modes of [011] poled Zt ± 45° cut relaxor-PT crystals and their applications for linear piezoelectric motors were investigated. Unlike piezoelectric ceramics, the rotated crystal was found to exhibit asymmetric face-shear deformations, and its two high-order face-shear modes degraded into two non-isomorphic modes. As an application example, a standing wave ultrasonic linear motor (10 × 10 × 2 mm3) operating in high-order face-shear vibration modes was developed. The motor exhibits a large driving force (1.5 N) under a low driving voltage (22 Vpp). These findings could provide guidance for design of crystal resonance devices.

  13. Microstructural characteristics of adiabatic shear localization in a metastable beta titanium alloy deformed at high strain rate and elevated temperatures

    SciTech Connect

    Zhan, Hongyi; Zeng, Weidong; Wang, Gui; Kent, Damon; Dargusch, Matthew

    2015-04-15

    The microstructural evolution and grain refinement within adiabatic shear bands in the Ti6554 alloy deformed at high strain rates and elevated temperatures have been characterized using transmission electron microscopy. No stress drops were observed in the corresponding stress–strain curve, indicating that the initiation of adiabatic shear bands does not lead to the loss of load capacity for the Ti6554 alloy. The outer region of the shear bands mainly consists of cell structures bounded by dislocation clusters. Equiaxed subgrains in the core area of the shear band can be evolved from the subdivision of cell structures or reconstruction and transverse segmentation of dislocation clusters. It is proposed that dislocation activity dominates the grain refinement process. The rotational recrystallization mechanism may operate as the kinetic requirements for it are fulfilled. The coexistence of different substructures across the shear bands implies that the microstructural evolution inside the shear bands is not homogeneous and different grain refinement mechanisms may operate simultaneously to refine the structure. - Graphical abstract: Display Omitted - Highlights: • The microstructure within the adiabatic shear band was characterized by TEM. • No stress drops were observed in the corresponding stress–strain curve. • Dislocation activity dominated the grain refinement process. • The kinetic requirements for rotational recrystallization mechanism were fulfilled. • Different grain refinement mechanisms operated simultaneously to refine the structure.

  14. How High Blood Pressure Can Lead to Stroke

    MedlinePlus

    ... Thromboembolism Aortic Aneurysm More How High Blood Pressure Can Lead to Stroke Updated:May 3,2017 Stroke ... your risk of stroke by understanding those you can control. Popular Articles 1 Understanding Blood Pressure Readings ...

  15. Ultrafast Harmonic Coherent Compound (UHCC) imaging for high frame rate echocardiography and Shear Wave Elastography

    PubMed Central

    Correia, Mafalda; Provost, Jean; Chatelin, Simon; Villemain, Olivier; Tanter, Mickael; Pernot, Mathieu

    2016-01-01

    Transthoracic shear wave elastography of the myocardium remains very challenging due to the poor quality of transthoracic ultrafast imaging and the presence of clutter noise, jitter, phase aberration, and ultrasound reverberation. Several approaches, such as, e.g., diverging-wave coherent compounding or focused harmonic imaging have been proposed to improve the imaging quality. In this study, we introduce ultrafast harmonic coherent compounding (UHCC), in which pulse-inverted diverging-waves are emitted and coherently compounded, and show that such an approach can be used to enhance both Shear Wave Elastography (SWE) and high frame rate B-mode Imaging. UHCC SWE was first tested in phantoms containing an aberrating layer and was compared against pulse-inversion harmonic imaging and against ultrafast coherent compounding (UCC) imaging at the fundamental frequency. In-vivo feasibility of the technique was then evaluated in six healthy volunteers by measuring myocardial stiffness during diastole in transthoracic imaging. We also demonstrated that improvements in imaging quality could be achieved using UHCC B-mode imaging in healthy volunteers. The quality of transthoracic images of the heart was found to be improved with the number of pulse-inverted diverging waves with reduction of the imaging mean clutter level up to 13.8-dB when compared against UCC at the fundamental frequency. These results demonstrated that UHCC B-mode imaging is promising for imaging deep tissues exposed to aberration sources with a high frame-rate. PMID:26890730

  16. A quality by design approach to scale-up of high-shear wet granulation process.

    PubMed

    Pandey, Preetanshu; Badawy, Sherif

    2016-01-01

    High-shear wet granulation is a complex process that in turn makes scale-up a challenging task. Scale-up of high-shear wet granulation process has been studied extensively in the past with various different methodologies being proposed in the literature. This review article discusses existing scale-up principles and categorizes the various approaches into two main scale-up strategies - parameter-based and attribute-based. With the advent of quality by design (QbD) principle in drug product development process, an increased emphasis toward the latter approach may be needed to ensure product robustness. In practice, a combination of both scale-up strategies is often utilized. In a QbD paradigm, there is also a need for an increased fundamental and mechanistic understanding of the process. This can be achieved either by increased experimentation that comes at higher costs, or by using modeling techniques, that are also discussed as part of this review.

  17. The effect of process parameters on audible acoustic emissions from high-shear granulation.

    PubMed

    Hansuld, Erin M; Briens, Lauren; Sayani, Amyn; McCann, Joe A B

    2013-02-01

    Product quality in high-shear granulation is easily compromised by minor changes in raw material properties or process conditions. It is desired to develop a process analytical technology (PAT) that can monitor the process in real-time and provide feedback for quality control. In this work, the application of audible acoustic emissions (AAEs) as a PAT tool was investigated. A condenser microphone was placed at the top of the air exhaust on a PMA-10 high-shear granulator to collect AAEs for a design of experiment (DOE) varying impeller speed, total binder volume and spray rate. The results showed the 10 Hz total power spectral densities (TPSDs) between 20 and 250 Hz were significantly affected by the changes in process conditions. Impeller speed and spray rate were shown to have statistically significant effects on granulation wetting, and impeller speed and total binder volume were significant in terms of process end-point. The DOE results were confirmed by a multivariate PLS model of the TPSDs. The scores plot showed separation based on impeller speed in the first component and spray rate in the second component. The findings support the use of AAEs to monitor changes in process conditions in real-time and achieve consistent product quality.

  18. Structure of the Highly Sheared Tropical Storm Chantal During CAMEX-4

    NASA Technical Reports Server (NTRS)

    Heymsfield, G. M.; Halverson, J.; Ritchie, E.; Simpson, Joanne; Molinari, J.; Tian, L.

    2004-01-01

    NASA's 4th Convection and Moisture Experiment (CAMEX-4) focused on Atlantic hurricanes during the 2001 hurricane season and it involved both NASA and NOAA participation. The NASA ER-2 and DC-8 aircraft were instrumented with unique remote sensing instruments to help increase the overall understanding of hurricanes. This paper is concerned about one of the storms studied, Tropical Storm Chantal, that was a weak storm which failed to intense into a hurricane. One of the practical questions of high importance is why some tropical stoins intensify into hurricanes, and others remain weak or die altogether. The magnitude of the difference between the horizontal winds at lower levels and upper altitudes in a tropical storm, i.e., the wind shear, is one important quantity that can affect the intensification of a tropical storm. Strong shear as was present during Tropical Storm Chantal s lifetime and it was detrimental to its intensification. The paper presents an analysis of unique aircraft observations collected from Chantal including an on-board radar, radiometers, dropsondes, and flight level measurements. These measurements have enabled us to examine the internal structure of the winds and thermal structure of Chantal. Most of the previous studies have involved intense hurricanes that overcame the effects of shear and this work has provided new insights into what prevents a weaker storm from intensifying. The storm had extremely intense thunderstorms and rainfall, yet its main circulation was confined to low levels of the atmosphere. Chantal's thermal structure was not configured properly for the storm to intensify. It is most typical that huricanes have a warm core structure where warm temperatures in upper levels of a storm s circulation help intensify surface winds and lower its central pressure. Chantal had two weaker warm layers instead of a well-defined warm core. These layers have been related to the horizontal and vertical winds and precipitation structure and

  19. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.

    PubMed

    Tsubota, Ken-Ichi; Wada, Shigeo; Liu, Hao

    2014-08-01

    Direct numerical simulations of the mechanics of a single red blood cell (RBC) were performed by considering the nonuniform natural state of the elastic membrane. A RBC was modeled as an incompressible viscous fluid encapsulated by an elastic membrane. The in-plane shear and area dilatation deformations of the membrane were modeled by Skalak constitutive equation, while out-of-plane bending deformation was formulated by the spring model. The natural state of the membrane with respect to in-plane shear deformation was modeled as a sphere ([Formula: see text]), biconcave disk shape ([Formula: see text]) and their intermediate shapes ([Formula: see text]) with the nonuniformity parameter [Formula: see text], while the natural state with respect to out-of-plane bending deformation was modeled as a flat plane. According to the numerical simulations, at an experimentally measured in-plane shear modulus of [Formula: see text] and an out-of-plane bending rigidity of [Formula: see text] of the cell membrane, the following results were obtained. (i) The RBC shape at equilibrium was biconcave discoid for [Formula: see text] and cupped otherwise; (ii) the experimentally measured fluid shear stress at the transition between tumbling and tank-treading motions under shear flow was reproduced for [Formula: see text]; (iii) the elongation deformation of the RBC during tank-treading motion from the simulation was consistent with that from in vitro experiments, irrespective of the [Formula: see text] value. Based on our RBC modeling, the three phenomena (i), (ii), and (iii) were mechanically consistent for [Formula: see text]. The condition [Formula: see text] precludes a biconcave discoid shape at equilibrium (i); however, it gives appropriate fluid shear stress at the motion transition under shear flow (ii), suggesting that a combined effect of [Formula: see text] and the natural state with respect to out-of-plane bending deformation is necessary for understanding details of the

  20. Rheology of embryonic avian blood.

    PubMed

    Al-Roubaie, Sarah; Jahnsen, Espen D; Mohammed, Masud; Henderson-Toth, Caitlin; Jones, Elizabeth A V

    2011-12-01

    Shear stress, a mechanical force created by blood flow, is known to affect the developing cardiovascular system. Shear stress is a function of both shear rate and viscosity. While established techniques for measuring shear rate in embryos have been developed, the viscosity of embryonic blood has never been known but always assumed to be like adult blood. Blood is a non-Newtonian fluid, where the relationship between shear rate and shear stress is nonlinear. In this work, we analyzed the non-Newtonian behavior of embryonic chicken blood using a microviscometer and present the apparent viscosity at different hematocrits, different shear rates, and at different stages during development from 4 days (Hamburger-Hamilton stage 22) to 8 days (about Hamburger-Hamilton stage 34) of incubation. We chose the chicken embryo since it has become a common animal model for studying hemodynamics in the developing cardiovascular system. We found that the hematocrit increases with the stage of development. The viscosity of embryonic avian blood in all developmental stages studied was shear rate dependent and behaved in a non-Newtonian manner similar to that of adult blood. The range of shear rates and hematocrits at which non-Newtonian behavior was observed is, however, outside the physiological range for the larger vessels of the embryo. Under low shear stress conditions, the spherical nucleated blood cells that make up embryonic blood formed into small aggregates of cells. We found that the apparent blood viscosity decreases at a given hematocrit during embryonic development, not due to changes in protein composition of the plasma but possibly due to the changes in cellular composition of embryonic blood. This decrease in apparent viscosity was only visible at high hematocrit. At physiological values of hematocrit, embryonic blood viscosity did not change significantly with the stage of development.

  1. Developments in dynamic MR elastography for in vitro biomechanical assessment of hyaline cartilage under high-frequency cyclical shear.

    PubMed

    Lopez, Orlando; Amrami, Kimberly K; Manduca, Armando; Rossman, Phillip J; Ehman, Richard L

    2007-02-01

    The design, construction, and evaluation of a customized dynamic magnetic resonance elastography (MRE) technique for biomechanical assessment of hyaline cartilage in vitro are described. For quantification of the dynamic shear properties of hyaline cartilage by dynamic MRE, mechanical excitation and motion sensitization were performed at frequencies in the kilohertz range. A custom electromechanical actuator and a z-axis gradient coil were used to generate and image shear waves throughout cartilage at 1000-10,000 Hz. A radiofrequency (RF) coil was also constructed for high-resolution imaging. The technique was validated at 4000 and 6000 Hz by quantifying differences in shear stiffness between soft ( approximately 200 kPa) and stiff ( approximately 300 kPa) layers of 5-mm-thick bilayered phantoms. The technique was then used to quantify the dynamic shear properties of bovine and shark hyaline cartilage samples at frequencies up to 9000 Hz. The results demonstrate that one can obtain high-resolution shear stiffness measurements of hyaline cartilage and small, stiff, multilayered phantoms at high frequencies by generating robust mechanical excitations and using large magnetic field gradients. Dynamic MRE can potentially be used to directly quantify the dynamic shear properties of hyaline and articular cartilage, as well as other cartilaginous materials and engineered constructs. (c) 2007 Wiley-Liss, Inc.

  2. Identification of high shears and compressive discontinuities in the inner heliosphere

    SciTech Connect

    Greco, A.; Perri, S.

    2014-04-01

    Two techniques, the Partial Variance of Increments (PVI) and the Local Intermittency Measure (LIM), have been applied and compared using MESSENGER magnetic field data in the solar wind at a heliocentric distance of about 0.3 AU. The spatial properties of the turbulent field at different scales, spanning the whole inertial range of magnetic turbulence down toward the proton scales have been studied. LIM and PVI methodologies allow us to identify portions of an entire time series where magnetic energy is mostly accumulated, and regions of intermittent bursts in the magnetic field vector increments, respectively. A statistical analysis has revealed that at small time scales and for high level of the threshold, the bursts present in the PVI and the LIM series correspond to regions of high shear stress and high magnetic field compressibility.

  3. Deformation and failure of OFHC copper under high strain rate shear compression

    NASA Astrophysics Data System (ADS)

    Ruggiero, Andrew; Testa, Gabriel; Bonora, Nicola; Iannitti, Gianluca; Persechino, Italo; Colliander, Magnus Hörnqvist

    2017-01-01

    Hat-shaped specimen geometries were developed to generate high strain, high-strain-rates deformation under prescribed conditions. These geometries offer also the possibility to investigate the occurrence of ductile rupture under low or negative stress triaxiality, where most failure models fail. In this work, three tophat geometries were designed, by means of extensive numerical simulation, to obtain desired stress triaxiality values within the shear region that develops across the ligament. Material failure was simulated using the Continuum Damage Model (CDM) formulation with a unilateral condition for damage accumulation and validated by comparing with quasi-static and high strain rate compression tests results on OFHC copper. Preliminary results seem to indicate that ductile tearing initiates at the specimen corner location where positive stress triaxiality occurs because of local rotation and eventually propagates along the ligament.

  4. Identification of High Shears and Compressive Discontinuities in the Inner Heliosphere

    NASA Astrophysics Data System (ADS)

    Greco, A.; Perri, S.

    2014-04-01

    Two techniques, the Partial Variance of Increments (PVI) and the Local Intermittency Measure (LIM), have been applied and compared using MESSENGER magnetic field data in the solar wind at a heliocentric distance of about 0.3 AU. The spatial properties of the turbulent field at different scales, spanning the whole inertial range of magnetic turbulence down toward the proton scales have been studied. LIM and PVI methodologies allow us to identify portions of an entire time series where magnetic energy is mostly accumulated, and regions of intermittent bursts in the magnetic field vector increments, respectively. A statistical analysis has revealed that at small time scales and for high level of the threshold, the bursts present in the PVI and the LIM series correspond to regions of high shear stress and high magnetic field compressibility.

  5. High Temperature Shear Horizontal Electromagnetic Acoustic Transducer for Guided Wave Inspection

    PubMed Central

    Kogia, Maria; Gan, Tat-Hean; Balachandran, Wamadeva; Livadas, Makis; Kappatos, Vassilios; Szabo, Istvan; Mohimi, Abbas; Round, Andrew

    2016-01-01

    Guided Wave Testing (GWT) using novel Electromagnetic Acoustic Transducers (EMATs) is proposed for the inspection of large structures operating at high temperatures. To date, high temperature EMATs have been developed only for thickness measurements and they are not suitable for GWT. A pair of water-cooled EMATs capable of exciting and receiving Shear Horizontal (SH0) waves for GWT with optimal high temperature properties (up to 500 °C) has been developed. Thermal and Computational Fluid Dynamic (CFD) simulations of the EMAT design have been performed and experimentally validated. The optimal thermal EMAT design, material selection and operating conditions were calculated. The EMAT was successfully tested regarding its thermal and GWT performance from ambient temperature to 500 °C. PMID:27110792

  6. Development of K-Basin High-Strength Homogeneous Sludge Simulants and Correlations Between Unconfined Compressive Strength and Shear Strength

    SciTech Connect

    Onishi, Yasuo; Baer, Ellen BK; Chun, Jaehun; Yokuda, Satoru T.; Schmidt, Andrew J.; Sande, Susan; Buchmiller, William C.

    2011-02-20

    K-Basin sludge will be stored in the Sludge Transport and Storage Containers (STSCs) at an interim storage location on Central Plateau before being treated and packaged for disposal. During the storage period, sludge in the STSCs may consolidate/agglomerate, potentially resulting in high-shear-strength material. The Sludge Treatment Project (STP) plans to use water jets to retrieve K-Basin sludge after the interim storage. STP has identified shear strength to be a key parameter that should be bounded to verify the operability and performance of sludge retrieval systems. Determining the range of sludge shear strength is important to gain high confidence that a water-jet retrieval system can mobilize stored K-Basin sludge from the STSCs. The shear strength measurements will provide a basis for bounding sludge properties for mobilization and erosion. Thus, it is also important to develop potential simulants to investigate these phenomena. Long-term sludge storage tests conducted by Pacific Northwest National Laboratory (PNNL) show that high-uranium-content K-Basin sludge can self-cement and form a strong sludge with a bulk shear strength of up to 65 kPa. Some of this sludge has 'paste' and 'chunks' with shear strengths of approximately 3-5 kPa and 380-770 kPa, respectively. High-uranium-content sludge samples subjected to hydrothermal testing (e.g., 185 C, 10 hours) have been observed to form agglomerates with a shear strength up to 170 kPa. These high values were estimated by measured unconfined compressive strength (UCS) obtained with a pocket penetrometer. Due to its ease of use, it is anticipated that a pocket penetrometer will be used to acquire additional shear strength data from archived K-Basin sludge samples stored at the PNNL Radiochemical Processing Laboratory (RPL) hot cells. It is uncertain whether the pocket penetrometer provides accurate shear strength measurements of the material. To assess the bounding material strength and potential for erosion, it

  7. Frictional strength of wet- and dry- talc gouge in high-velocity shear experiments

    NASA Astrophysics Data System (ADS)

    Chen, X.; Reches, Z.; Elwood Madden, A. S.

    2015-12-01

    The strength of the creeping segment of the San Andres fault may be controlled by the distinct weakness and stability of talc (Moore & Rymer, 2007). We analyze talc frictional strength at high slip-velocity of 0.002 - 0.66 m/s, long slip-distances of 0.01 m to 33 m, and normal stresses up to 4.1 MPa. This analysis bridges the gap between nucleation stage of low velocity/distance, and the frictional behavior during large earthquakes. We tested wet and dry samples of pure talc gouge in a confined rotary cell, and continuously monitored the slip-velocity, stresses, dilation and temperature. We run 29 experiments of single and stepped velocities to obtain 243 values of quasi-static frictional coefficients. Dry talc gouge showed distinct slip-strengthening: friction coefficient of µ ~0.4 at short slip-distances of D < 0.1 m, and it increased systematically to µ ~0.8 at slip-distances of D = 0.1- 1 m; at D > 1 m, the frictional strength saturated at µ= 0.8 - 1 level. Wet talc gouge (16-20% water) displayed low frictional strength of µ= 0.1-0.3, in agreement with published triaxial tests. The stepped-velocity runs revealed a consistent velocity-strengthening trend. For a velocity jump from V1 to V2, we used VD = (µ2 -µ1)/ln (V2/V1), and found that on average VD = 0.06 and 0.03 for dry and wet talc, respectively, and for slip distances shorter than 1 m. Microstructural analysis of post-shearing wet talc gouge revealed extreme slip localization to a principal-slip-zone of a few microns, and significant shear compaction of 10-30%. In contrast, dry talc gouge exhibited distributed shear in a wide zone and systematic shear dilation (10-50%). We propose slip along weak interlayer talc plates and thermal-pressurization as the possible weakening mechanisms for wet talc. The development of distributed secondary fault network along with substantial grain crushing is responsible for slip-strengthening in dry condition. Fig. 1. Friction maps of talc gouge as function of slip

  8. Experimental analysis of the effect of vegetation on flow and bed shear stress distribution in high-curvature bends

    NASA Astrophysics Data System (ADS)

    Termini, Donatella

    2016-12-01

    The cross-sectional circulation, which develops in meandering bends, exerts an important role in velocity and the boundary shear stress redistributions. This paper considers the effect of vegetation on cross-sectional flow and bed shear distribution along a high-curvature bend. The analysis is conducted with the aid of data collected in a large-amplitude meandering flume during a reference experiment without vegetation and an experiment with vegetation on the bed. The results show that the presence of vegetation modifies the curvature-induced flow pattern and the directionality of turbulent structures. In fact, in the presence of vegetation, the turbulent structures tend to develop within and between the vegetated elements. The pattern of cross-sectional flow, modified by the presence of vegetation, affects the bed shear stress distribution along the bend so that the core of the highest value of the bed shear stress does not reach the outer bank.

  9. Experimental and Computational Study of the Shearing Resistance of Polyurea at High Pressures and High Strain Rates

    NASA Astrophysics Data System (ADS)

    Grujicic, Mica; Yavari, R.; Snipes, J. S.; Ramaswami, S.; Jiao, T.; Clifton, R. J.

    2015-02-01

    Mechanical response of polyurea, a nanophase segregated elastomeric co-polymer, is investigated using all-atom, equilibrium, molecular-dynamics methods and tools. Specifically, the effects of high pressure (1-30 GPa) and high strain rate (105-106 s-1) on the shearing resistance of polyurea are examined. Such loading conditions are encountered by polyurea coatings subjected to impact by high-velocity projectiles, shell shrapnel, and improvised explosive device fragments. Computed results are compared with their experimental counterparts obtained using the so-called pressure-shear plate impact experiments. Computed results have also been rationalized in terms of the nanosegregated polyurea microstructure consisting of rod-shaped, discrete, the so-called hard domains embedded in a highly compliant, the so-called soft matrix. By analyzing molecular-level microstructure and its evolution during high-rate deformation and under high imposed pressures, an attempt is made to identify and quantify main phenomena in viscous/inelastic deformation and microstructure-reorganization processes that are most likely responsible for the observed mechanical response of polyurea.

  10. Highly Permeable Silicon Membranes for Shear Free Chemotaxis and Rapid Cell Labeling

    PubMed Central

    Chung, Henry H.; Chan, Charles K.; Khire, Tejas S.; Marsh, Graham A.; Clark, Alfred; Waugh, Richard E.; McGrath, James L.

    2015-01-01

    Microfluidic systems are powerful tools for cell biology studies because they enable the precise addition and removal of solutes in small volumes. However, the fluid forces inherent in the use of microfluidics for cell cultures are sometimes undesirable. An important example is chemotaxis systems where fluid flow creates well-defined and steady chemotactic gradients but also pushes cells downstream. Here we demonstrate a chemotaxis system in which two chambers are separated by a molecularly thin (15 nm), transparent, and nanoporous silicon membrane. One chamber is a microfluidic channel that carries a flow-generated gradient while the other chamber is a shear-free environment for cell observation. The molecularly thin membranes provide effectively no resistance to molecular diffusion between the two chambers, making them ideal elements for creating flow-free chambers in microfluidic systems. Analytical and computational flow models that account for membrane and chamber geometry, predict shear reduction of more than five orders of magnitude. This prediction is confirmed by observing the pure diffusion of nanoparticles in the cell-hosting chamber despite high input flow (Q = 10 µL min−1; vavg ~45 mm min−1) in the flow chamber only 15 nm away. Using total internal reflection fluorescence (TIRF) microscopy, we show that a flow-generated molecular gradient will pass through the membrane into the quiescent cell chamber. Finally we demonstrate that our device allows us to expose migrating neutrophils to a chemotactic gradient or fluorescent label without any influence from flow. PMID:24850320

  11. Highly permeable silicon membranes for shear free chemotaxis and rapid cell labeling.

    PubMed

    Chung, Henry H; Chan, Charles K; Khire, Tejas S; Marsh, Graham A; Clark, Alfred; Waugh, Richard E; McGrath, James L

    2014-07-21

    Microfluidic systems are powerful tools for cell biology studies because they enable the precise addition and removal of solutes in small volumes. However, the fluid forces inherent in the use of microfluidics for cell cultures are sometimes undesirable. An important example is chemotaxis systems where fluid flow creates well-defined and steady chemotactic gradients but also pushes cells downstream. Here we demonstrate a chemotaxis system in which two chambers are separated by a molecularly thin (15 nm), transparent, and nanoporous silicon membrane. One chamber is a microfluidic channel that carries a flow-generated gradient while the other chamber is a shear-free environment for cell observation. The molecularly thin membranes provide effectively no resistance to molecular diffusion between the two chambers, making them ideal elements for creating flow-free chambers in microfluidic systems. Analytical and computational flow models that account for membrane and chamber geometry, predict shear reduction of more than five orders of magnitude. This prediction is confirmed by observing the pure diffusion of nanoparticles in the cell-hosting chamber despite high input flow (Q = 10 μL min(-1); vavg ~ 45 mm min(-1)) in the flow chamber only 15 nm away. Using total internal reflection fluorescence (TIRF) microscopy, we show that a flow-generated molecular gradient will pass through the membrane into the quiescent cell chamber. Finally we demonstrate that our device allows us to expose migrating neutrophils to a chemotactic gradient or fluorescent label without any influence from flow.

  12. Lower hybrid current drive in FTU high density shear reversed discharges

    NASA Astrophysics Data System (ADS)

    Tuccillo, A. A.; Barbato, E.; Crisanti, F.; Panaccione, L.; Pericoli, V.; Podda, S.; Cirant, S.; Acitelli, L.; Alladio, F.; Amadeo, P.; Angelini, B.; Apicella, M. L.; Apruzzese, G.; Bertocchi, A.; Borra, M.; Bracco, G.; Bruschi, A.; Buceti, G.; Buratti, P.; Cardinali, A.; Centioli, C.; Cesario, R.; Ciattaglia, S.; Ciotti, M.; Cocilovo, V.; De Angelis, R.; De Marco, F.; Esposito, B.; Frigione, D.; Gabellieri, L.; Gatti, G.; Giovannozzi, E.; Gourlan, C.; Granucci, G.; Grolli, M.; Imparato, A.; Kroegler, H.; Leigheb, M.; Lovisetto, L.; Maddaluno, G.; Maffia, G.; Mancuso, A.; Marinucci, M.; Mazzitelli, G.; Micozzi, P.; Mirizzi, F.; Orsitto, P.; Pacella, D.; Panella, M.; Pieroni, L.; Righetti, G. B.; Romanelli, F.; Santini, F.; Simonetto, A.; Sozzi, C.; Sternini, S.; Tudisco, O.; Valente, F.; Vitale, V.; Vlad, G.; Zanza, V.; Zerbini, M.

    1997-04-01

    Results are reported of the 8 GHz Lower Hybrid experiments on FTU after the installation of the new toroidal limiter. A figure of merit of the Current Drive efficiency ηCD≈0.11ṡ1020 A/Wm2 is estimated for plasma density n¯e=1020 m-3 and no appreciable broadening of the launched frequency is detected. In low density experiments sawteeth are stabilised and m=1 activity is present in the plasma. Shear reversed discharges with large reversal radius, rs/a≈0.5, are obtained at higher density, lower temperature, BT=4 T, qa≈5.5, by off-axis LH CD. The reversed configurations exhibit high central temperature coexisting with regular m=2, n=1 relaxations of large amplitude and are maintained up to LH switch off. At higher magnetic field, B=5.2 T, qa≈7, irregular DTM crashes are present during the whole LH pulse. Confinement time of radiofrequency heated discharges (PLH=0.5÷2ṡPOH) exhibits the same behaviour of FTU ohmic discharges following the ITER89-P scaling. Preliminary results of central 140 GHz Electron Cyclotron Resonant Heating (ECRH) during the plasma current ramp-up, aimed at obtaining shear reversed configurations are also reported.

  13. Calculation of high frequency ultrasonic signals for shear wave insonification in solid material.

    PubMed

    Schmitz, V; Langenberg, K J; Chakhlov, S

    2004-04-01

    The goal of the theoretical part is to simulate an automatic ultrasonic inspection with contact technique shear wave probes, where the high frequency signals are captured and used to perform a reconstruction based on the synthetic aperture focusing method "SAFT". Therefore the ultrasonic probe, the scanning path and the defects are parameters in a CAD model. The scattering behavior of the defect is calculated by the Kirchhoff approximation in its elastodynamic version. The result of the simulation--the high frequency data--and the result of the SAFT-reconstructions are compared with experimental results on a steel test block with side drilled and flat bottom holes. The model is validated by the experiment. One of the applications of the model is to identify multiple reflections.

  14. High-spin states in {sup 205}Rn: A new shears band structure?

    SciTech Connect

    Novak, J.R.; Beausang, C.W.; Casten, R.F.; Cata Danil, G.; Cooper, J.R.; Juutinen, S.; Kruecken, R.; Liu, B.; Socci, T.; Thomas, J.T.; Zamfir, N.V.; Zhang, J.; Amzal, N.; Greenlees, P.T.; Cata Danil, G.; Zamfir, N.V.; Cocks, J.F.; Greenlees, P.T.; Helariutta, K.; Jones, P.; Julin, R.; Kankaanpaeae, H.; Kettunen, H.; Kuusiniemi, P.; Leino, M.; Muikku, M.; Savelius, A.; Hannachi, F.; Zamfir, N.V.; Zhang, J.; Frauendorf, S.

    1999-06-01

    The high-spin structure of {sup 205}Rn has been investigated for the first time following the {sup 170}Er({sup 40}Ar,5n) and {sup 197}Au({sup 14}N,6n) reactions at beam energies of 183 MeV and 90{endash}110 MeV, respectively, using the Jurosphere and YRAST Ball arrays. Two new cascades have been identified which dominate the high-spin decay. One of these, consisting of ten stretched M1 transitions with unobserved E2 crossover transitions, is interpreted as a shears structure based on the {nu}i{sub 13/2}{sup {minus}1}{circle_times}{pi}i{sub 13/2}{sup 2} (or {nu}i{sub 13/2}{sup {minus}1}{circle_times}{pi}h{sub 9/2}i{sub 13/2}) configuration. {copyright} {ital 1999} {ital The American Physical Society}

  15. Numerical modelling of the evolution of conglomerate deformation up to high simple-shear strain

    NASA Astrophysics Data System (ADS)

    Ran, Hao; Bons, Paul D.; Wang, Genhou; Steinbach, Florian; Finch, Melanie; Ran, Shuming; Liang, Xiao; Zhou, Jie

    2017-04-01

    Deformed conglomerates have been widely used to investigate deformation history and structural analysis, using strain analyses techniques, such as the Rf-Φ and Fry methods on deformed pebbles. Although geologists have focused on the study of deformed conglomerates for several decades, some problems of the process and mechanism of deformation, such as the development of structures in pebbles and matrix, are still not understand well. Numerical modelling provides a method to investigate the process of deformation, as a function of different controlling parameters, up to high strains at conditions that cannot be achieved in the laboratory. We use the 2D numerical modelling platform Elle coupled to the full field crystal visco-plasticity code (VPFFT) to simulate the deformation of conglomerates under simple shear conditions, achieving high finite strains of ≥10. Probably for the first time, we included the effect of an anisotropy, i.e. mica-rich matrix. Our simulations show the deformation of pebbles not only depends on the viscosity contrast between pebbles and matrix but emphasises the importance of interaction between neighbouring pebbles. Under the same finite strain shearing the pebbles of conglomerates with high pebble densities show higher Rf and lower Φ than those of conglomerates with a low density pebbles. Strain localisation can be observed at both the margin of strong pebbles and in the bridging area between the pebbles. At low to medium finite strain, local areas show the opposite (antithetic) shear sense because of the different relative rotation and movement of pebbles or clusters of pebbles. Very hard pebbles retain their original shape and may rotate, depending on the anisotropy of the matrix. σ-clasts are formed by pebbles with moderate viscosity contrast between pebble and a softer matrix. By contrast, δ-clasts are not observed in our simulations with both isotropic and anisotropic matrices, which is consistent with their relative scarcity in

  16. What Is High Blood Pressure Medicine?

    MedlinePlus

    ... make the other lifestyle changes that will help reduce blood pressure, including: reaching and maintaining a healthy weight, lowering sodium (salt) intake, eating a heart-healthy diet, being more regularly physically active, and limiting alcohol ...

  17. High Blood Pressure (Hypertension) (For Parents)

    MedlinePlus

    ... pumps blood into the arteries and through the circulatory system, and the other is from the arteries as ... For Parents MORE ON THIS TOPIC Heart and Circulatory System Your Child's Weight A Primer on Preemies Kidney ...

  18. How to Prevent High Blood Pressure

    MedlinePlus

    ... provider will use a gauge, a stethoscope or electronic sensor, and a blood pressure cuff. For most ... pressure. Stress management techniques include exercising, listening to music, focusing on something calm or peaceful, and meditating. ...

  19. New Membrane Concept Applied to the Analysis of Fluid Shear- and Micropipette-Deformed Red Blood Cells

    PubMed Central

    Evans, E. A.

    1973-01-01

    A two-dimensional elastomer material concept of the red cell membrane is applied to the analysis of fluid shear-deformed, point-attached red cells and micropipette aspiration of red cell disks. The elastic constant (corresponding to the “shear” modulus multiplied by the membrane thickness) is of the order 10-2 dyn/cm for both cases. Additional experimental observations are in agreement with the membrane model, e.g. teardrop and “tether” formation of the sheared disks, pressure difference vs. aspirated length of the cell for micropipette experiments, etc PMID:4733701

  20. Announcement: National High Blood Pressure Education Month - May 2016.

    PubMed

    2016-05-27

    May is National High Blood Pressure Education Month. High blood pressure (hypertension) is a major contributor to heart disease and stroke, two leading causes of death in the United States.* High blood pressure affects one third of U.S. adults, or approximately 75 million persons, yet approximately 11 million of these persons are not aware they have hypertension, and approximately 18 million are not being treated (unpublished data) (1,2).

  1. Hydrodynamic interaction between two red blood cells in simple shear flow: its impact on the rheology of a semi-dilute suspension

    NASA Astrophysics Data System (ADS)

    Omori, Toshihiro; Ishikawa, Takuji; Imai, Yohsuke; Yamaguchi, Takami

    2014-10-01

    Blood is a suspension of red blood cells (RBCs) and its rheology is important when discussing the physiology of the cardiovascular system. In this study, we performed a numerical investigation of the rheological properties of an RBC suspension from the dilute to semi-dilute regime. RBCs were modelled as a capsule with a two-dimensional hyperelastic membrane. Large deformation of the thin membrane was calculated by a finite element method. Due to the small size of the RBC, fluid motion around the RBC was assumed to follow Stokes flow and was solved by a boundary element method. In the dilute limit, cell-cell interactions were omitted and the bulk stress of the suspension was calculated by the stresslet generated on a single RBC. Interestingly, the effective shear viscosity of the dilute suspension decreased with increasing viscosity of the internal liquid. In the semi-dilute regime, cells can be considered as showing pairwise interactions. The effective shear viscosity of the semi-dilute suspension shows a quadratic increase with respect to the volume fraction. These findings are important for understanding the complex phenomena of blood rheology.

  2. Time-dependent hardening of blood clots quantitatively measured in vivo with shear-wave ultrasound imaging in a rabbit model of venous thrombosis.

    PubMed

    Mfoumou, Etienne; Tripette, Julien; Blostein, Mark; Cloutier, Guy

    2014-02-01

    Provide in vivo blood clot hardening evolution with ultrasound using supersonic imaging of shear waves. We conducted a prospective study in flow stasis-induced venous thrombosis within jugular veins of white female New Zealand rabbits. Blood clot elasticity was noninvasively measured in vivo using the Young's modulus (in kilopascals), on a 2-hour and a 2-week periods after thrombus induction. Monitoring was followed by a necropsy and ex vivo mechanical characterization to validate the existence and elasticity of explanted thrombi. Stagnant blood in the region of interest underwent clotting and progressive hardening with thrombus aging. The mean Young's moduli varied from 1.0 ± 0.6 kPa (at 10 min) to 5.3 ± 1.6 kPa (at 2 hours), then to 25.0 ± 6.8 kPa (at 14 days) post-surgery. Mean ex vivo moduli of 6.2 ± 0.7 kPa at 2 hours and 29.0 ± 2.4 kPa at 2 weeks agreed with in vivo measures. Supersonic imaging of shear waves provides consistent quantitative non-invasive elasticity measurements not available with standard compression ultrasound imaging for diagnosing and following venous thromboembolism. This information translatable to humans could aid in determining whether continued anticoagulant treatment is necessary, especially in the setting of unprovoked venous thromboembolism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Vortex Formation in a High Speed Dust Flow with Large Velocity Shear in RF Plasmas

    SciTech Connect

    Iizuka, Satoru; Gohda, Takuma

    2008-09-07

    We have investigated a rotation of a dust cloud disc with strong velocity shear in a radio frequency (RF) plasma. The flow pattern of the dusts was evaluated by the Navier Stokes Equation with shear viscosity due to the Coulomb interactions. We have clarified dynamic behaviors of the dusts and observed generation of micro-vortices around rotational center, when the velocity shear is enhanced.

  4. Rotational and magnetic shear stabilization of magnetohydrodynamic modes and turbulence in DIII-D high performance discharges

    SciTech Connect

    Lao, L.L.; Burrell, K.H.; Casper, T.S.; Chan, V.S.; Chu, M.S.; DeBoo, J.C.; Doyle, E.J.; Durst, R.D.; Forest, C.B.; Greenfield, C.M.; Groebner, R.J.; Hinton, F.L.; Kawano, Y.; Lazarus, E.A.; Lin-Liu, Y.R.; Mauel, M.E.; Meyer, W.H.; Miller, R.L.; Navratil, G.A.; Osborne, T.H.; Peng, Q.; Rettig, C.L.; Rewoldt, G.; Rhodes, T.L.; Rice, B.W.; Schissel, D.P.; Stallard, B.W.; Strait, E.J.; Tang, W.M.; Taylor, T.S.; Turnbull, A.D.; Waltz, R.E.; the DIII-D Team

    1996-05-01

    The confinement and the stability properties of the DIII-D tokamak [{ital Plasma} {ital Physics} {ital and} {ital Controlled} {ital Nuclear} {ital Fusion} {ital Research} 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159] high-performance discharges are evaluated in terms of rotational and magnetic shear, with an emphasis on the recent experimental results obtained from the negative central magnetic shear (NCS) experiments. In NCS discharges, a core transport barrier is often observed to form inside the NCS region accompanied by a reduction in core fluctuation amplitudes. Increasing negative magnetic shear contributes to the formation of this core transport barrier, but by itself is not sufficient to fully stabilize the toroidal drift mode (trapped-electron-{eta}{sub {ital i}} mode) to explain this formation. Comparison of the Doppler shift shear rate to the growth rate of the {eta}{sub {ital i}} mode suggests that the large core {ital E}{times}{ital B} flow shear can stabilize this mode and broaden the region of reduced core transport. Ideal and resistive stability analysis indicates the performance of NCS discharges with strongly peaked pressure profiles is limited by the resistive interchange mode to low {beta}{sub {ital N}}{le}2.3. This mode is insensitive to the details of the rotational and the magnetic shear profiles. A new class of discharges, which has a broad region of weak or slightly negative magnetic shear (WNS), is described. The WNS discharges have broader pressure profiles and higher {beta} values than the NCS discharges, together with high confinement and high fusion reactivity. {copyright} {ital 1996 American Institute of Physics.}

  5. High frequency sound emission from moving point multipole sources embedded in arbitrary transversely sheared mean flows

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.

    1982-01-01

    Formulas are derived for the high frequency sound emission from moving point multipole sources embedded in an arbitrary unidirectional transversely sheared mean flow. The results are used to study the sound generated by non-axisymmetric turbulent jets. The effect of the asymmetry in both the mean flow and the source distribution is accounted for by a 'circumferential directivity factor', which is easily calculated from the solution of a second order ordinary differential equation in the general case and from an explicit formula when the mean flow is symmetric but the source location is not. This factor is used to assess the potential of employing asymmetric velocity profiles that redirect the sound upward to reduce the noise radiation below the flight path of a jet aircraft.

  6. Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum.

    PubMed

    Comba, Silvia; Sethi, Rajandrea

    2009-08-01

    Nanoscale zerovalent iron (NZVI) particles have recently become subject of great interest in the field of groundwater remediation for their ability to treat a wide variety of organic and inorganic contaminants. However, the field application of this technology is strongly hindered by the lack of stability of NZVI water suspensions. This study demonstrates that highly concentrated NZVI slurries (15g/L) can be stabilized for more than 10 days adding 6g/L of xanthan gum biopolymer. Stability against aggregation and sedimentation was achieved in the range of ionic strength 6 x 10(-3)-12 mM and is mainly due to the formation of a viscous gel characterized by shear-thinning behaviour.

  7. Demonstration of repeatability in a high-energy-density planar shear mixing layer experiment

    NASA Astrophysics Data System (ADS)

    Merritt, E. C.; Doss, F. W.; Di Stefano, C. A.; Flippo, K. A.; Rasmus, A. M.; Schmidt, D. W.

    2017-06-01

    On laser-driven platforms the assumption of experiment repeatability is particularly important due to a typically low data acquisition rate that doesn't often allow for data redundancy. If the platform is repeatable, then measurements of the repeatable dynamics from multiple experiments can be treated as measurements of the same system. In high-energy-density hydrodynamic instability experiments the interface growth is assumed to be one of the repeatable aspects of the system. In this paper we demonstrate the repeatability of the instability growth in the counter-propagating shear experiment at the OMEGA laser facility, where the instability growth is characterized by the tracer layer thickness or mix-width evolution. In our previous experiment campaigns we have assumed the instability growth was repeatable enough to identify trends, but in this work we explicitly show that the mix-width measurements for nominally identical experiments are repeatable within the measurement error bars.

  8. The surface shape and structure of the high magnetic and velocity shear magnetopause: CLUSTER observations

    NASA Astrophysics Data System (ADS)

    Budnik, E.; Fedorov, A.; Louarn, P.; Reme, H.; Dunlop, M.

    2003-04-01

    In case when 4 Cluster satellites spend relatively long time in the vicinity of the magnetopause, the relative motion of the satellites and the magnetopause current layer allows to reconstruct the shape of the magnetopause surface. The properties of ion distribution and magnetic field across the magnetopause show that high magnetic and velocity shear magnetopause is a wide layer of open field lines dragged tailward with different velocities. Rapidly moving flux tubes pass in the external layer while slowly convecting ones are located deeper in the boundary layer. We show that such a behavior can be explained in terms of spatial distribution of the entered magnetosheath plasma along reconnected field lines and successive bending of magnetospheric parts of reconnected lines. This "distributed line bending" causes the observed distribution of plasma velocity in the BL.

  9. CDC Vital Signs: High Blood Pressure and Cholesterol

    MedlinePlus

    ... 1.36 MB] Read the MMWR Science Clips High Blood Pressure and Cholesterol Out of Control Recommend on Facebook ... by County http://apps.nccd.cdc.gov/GISCVH2/ High Blood Pressure and High Cholesterol Among US Adults SOURCES: National ...

  10. Structure of the Highly Sheared Tropical Storm Chantal During CAMEX -4

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Halverson, J.; Black, M.; Marks, F.; Zipser, E.; Tian, L.; Belcher, L.; Bui, P.; Im, E.; Starr, David OC. (Technical Monitor)

    2002-01-01

    On 20 August 2001 during the Convection and Moisture Experiment 4 (CAMEX-4) and NOAA Hurricane Field Program (HFP2001), the NASA high-altitude ER-2 and medium-altitude DC-8, and lower-altitude NOAA P3 aircraft conducted a coordinated Quantitative Precipitation Estimation (QPE) mission focused on convection in Tropical Storm Chantal. This storm first became a depression on 14 August, a tropical storm on 17 August, and it maintained maximum winds of about 65-70 mph during 19-20 August with minimum pressures ranging from 1008 mb on 19 August to 1001 mb late on 20 August. The storm was westward moving and was forecasted to intensify and landfall near the Yucatan-Belize border late on 20 August. Chanter failed to intensify and instead exhibited a highly sheared structure with an open low-level circulation and intense convection well to the northeast of this circulation center. The NASA ER-2 and DC-8 aircraft were closely coordinated with the NOAA P3 (NOAA-42). The NASA aircraft collected remote sensing and in situ data sets, while the P3 collected lower level in situ and radar data; both the DC-8 and P3 released 7 and 24 dropsondes, respectively. These aircraft measurements provided a unique opportunity to examine the structure of a sheared system and why it did not develop as forecasted a few days earlier. This paper will describe a preliminary study of the precipitation and wind structure provided by the NASA aircraft within the context of the NOAA P3 measurements.

  11. Enhancement of USM3D Unstructured Flow Solver for High-Speed High-Temperature Shear Flows

    NASA Technical Reports Server (NTRS)

    Pandya, Mohagna J.; Abdol-Hamid, Khaled S.; Frink, Neal T.

    2009-01-01

    Large temperature and pressure fluctuations have a profound effect on turbulence development in transonic and supersonic jets. For high-speed, high-temperature jet flows, standard turbulence models lack the ability to predict the observed mixing rate of a shear layer. Several proposals to address this deficiency have been advanced in the literature to modify the turbulence transport equations in a variety of ways. In the present study, some of the most proven and simple modifications to two-equation turbulence models have been selected and implemented in NASA's USM3D tetrahedral Navier-Stokes flow solver. The modifications include the addition of compressibility correction and pressure dilatation terms in the turbulence transport equations for high-speed flows, and the addition of a simple modification to the Boussinesq's closure model coefficient for high-temperature jets. The efficacy of the extended models is demonstrated by comparison with experimental data for two supersonic axisymmetric jet test cases at design pressure ratio.

  12. High rate shear strain of three-dimensional neural cell cultures: a new in vitro traumatic brain injury model.

    PubMed

    LaPlaca, Michelle C; Cullen, D Kacy; McLoughlin, Justin J; Cargill, Robert S

    2005-05-01

    The fidelity of cell culture simulations of traumatic brain injury (TBI) that yield tolerance and mechanistic information relies on both the cellular models and mechanical insult parameters. We have designed and characterized an electro-mechanical cell shearing device in order to produce a controlled high strain rate injury (up to 0.50 strain, 30 s(-1) strain rate) that deforms three-dimensional (3-D) neural cultures (neurons or astrocytes in an extracellular matrix scaffold). Theoretical analysis revealed that these parameters generate a heterogeneous 3-D strain field throughout the cultures that is dependent on initial cell orientation within the matrix, resulting in various combinations of normal and shear strain. The ability to create a linear shear strain field over a range of input parameters was verified by tracking fluorescent microbeads in an acellular matrix during maximal displacement for a range of strains and strain rates. In addition, cell death was demonstrated in rat cortical astrocytes and neurons in response to high rate, high magnitude shear strain. Furthermore, cell response within the 3-D neuronal cultures depended on orientation, with higher predicted shear strain correlating with an increased loss of neurites, indicating that culture configuration may be an important factor in the mechanical, and hence cellular, response to traumatic insults. Collectively, these results suggest that differential responses exist within a 3-D culture subjected to mechanical insult, perhaps mimicking the in vivo environment, and that this new model can be used to investigate the complex cellular mechanisms associated with TBI.

  13. Earthquake Energy Dissipation in Light of High-Velocity, Slip-Pulse Shear Experiments

    NASA Astrophysics Data System (ADS)

    Reches, Z.; Liao, Z.; Chang, J. C.

    2014-12-01

    We investigated the energy dissipation during earthquakes by analysis of high-velocity shear experiments conducted on room-dry, solid samples of granite, tonalite, and dolomite sheared at slip-velocity of 0.0006-1m/s, and normal stress of 1-11.5MPa. The experimental fault were loaded in one of three modes: (1) Slip-pulse of abrupt, intense acceleration followed by moderate deceleration; (2) Impact by a spinning, heavy flywheel (225 kg); and (3) Constant velocity loading. We refer to energy dissipation in terms of power-density (PD=shear stress*slip-velocity; units of MW/m^2), and Coulomb-energy-density (CED= mechanical energy/normal stress; units of m). We present two aspects: Relative energy dissipation of the above loading modes, and relative energy dissipation between impact experiments and moderate earthquakes. For the first aspect, we used: (i) the lowest friction coefficient of the dynamic weakening; (ii) the work dissipated before reaching the lowest friction; and (iii) the cumulative mechanical work during the complete run. The results show that the slip-pulse/impact modes are energy efficient relatively to the constant-velocity mode as manifested by faster, more intense weakening and 50-90% lower energy dissipation. Thus, for a finite amount of pre-seismic crustal energy, the efficiency of slip-pulse would amplify earthquake instability. For the second aspect, we compare the experimental CED of the impact experiments to the reported breakdown energy (EG) of moderate earthquakes, Mw = 5.6 to 7.2 (Chang et al., 2012). In is commonly assumed that the seismic EG is a small fraction of the total earthquake energy, and as expected in 9 out of 11 examined earthquakes, EG was 0.005 to 0.07 of the experimental CED. We thus speculate that the experimental relation of Coulomb-energy-density to total slip distance, D, CED = 0.605 × D^0.933, is a reasonable estimate of total earthquake energy, a quantity that cannot be determined from seismic data.

  14. When Blood Sugar is Too High

    MedlinePlus

    ... the body gets desperate for a source of fuel. The body wants to use glucose (sugar). But without insulin, that glucose stays stuck in the blood — and isn't available to the cells — so the body uses fat instead. But that ...

  15. When Blood Sugar Is Too High

    MedlinePlus

    ... stored fat instead in an attempt to provide fuel to hungry cells. Feeling tired: Because the body can't use ... blood and can't get into the body's cells to be used for energy. This can ... body can't use glucose for fuel, it starts to use fat. When this happens, ...

  16. High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: Remarkable resistance to shear failure

    PubMed Central

    Li, Z.; Zhao, S.; Diao, H.; Liaw, P. K.; Meyers, M. A.

    2017-01-01

    The mechanical behavior of a single phase (fcc) Al0.3CoCrFeNi high-entropy alloy (HEA) was studied in the low and high strain-rate regimes. The combination of multiple strengthening mechanisms such as solid solution hardening, forest dislocation hardening, as well as mechanical twinning leads to a high work hardening rate, which is significantly larger than that for Al and is retained in the dynamic regime. The resistance to shear localization was studied by dynamically-loading hat-shaped specimens to induce forced shear localization. However, no adiabatic shear band could be observed. It is therefore proposed that the excellent strain hardening ability gives rise to remarkable resistance to shear localization, which makes this material an excellent candidate for penetration protection applications such as armors. PMID:28210000

  17. High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: Remarkable resistance to shear failure

    DOE PAGES

    Li, Z.; Zhao, S.; Diao, H.; ...

    2017-02-17

    Here, the mechanical behavior of a single phase (fcc) Al0.3CoCrFeNi high-entropy alloy (HEA) was studied in the low and high strain-rate regimes. The combination of multiple strengthening mechanisms such as solid solution hardening, forest dislocation hardening, as well as mechanical twinning leads to a high work hardening rate, which is significantly larger than that for Al and is retained in the dynamic regime. The resistance to shear localization was studied by dynamically-loading hat-shaped specimens to induce forced shear localization. However, no adiabatic shear band could be observed. It is therefore proposed that the excellent strain hardening ability gives rise tomore » remarkable resistance to shear localization, which makes this material an excellent candidate for penetration protection applications such as armors.« less

  18. High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: Remarkable resistance to shear failure.

    PubMed

    Li, Z; Zhao, S; Diao, H; Liaw, P K; Meyers, M A

    2017-02-17

    The mechanical behavior of a single phase (fcc) Al0.3CoCrFeNi high-entropy alloy (HEA) was studied in the low and high strain-rate regimes. The combination of multiple strengthening mechanisms such as solid solution hardening, forest dislocation hardening, as well as mechanical twinning leads to a high work hardening rate, which is significantly larger than that for Al and is retained in the dynamic regime. The resistance to shear localization was studied by dynamically-loading hat-shaped specimens to induce forced shear localization. However, no adiabatic shear band could be observed. It is therefore proposed that the excellent strain hardening ability gives rise to remarkable resistance to shear localization, which makes this material an excellent candidate for penetration protection applications such as armors.

  19. High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: Remarkable resistance to shear failure

    NASA Astrophysics Data System (ADS)

    Li, Z.; Zhao, S.; Diao, H.; Liaw, P. K.; Meyers, M. A.

    2017-02-01

    The mechanical behavior of a single phase (fcc) Al0.3CoCrFeNi high-entropy alloy (HEA) was studied in the low and high strain-rate regimes. The combination of multiple strengthening mechanisms such as solid solution hardening, forest dislocation hardening, as well as mechanical twinning leads to a high work hardening rate, which is significantly larger than that for Al and is retained in the dynamic regime. The resistance to shear localization was studied by dynamically-loading hat-shaped specimens to induce forced shear localization. However, no adiabatic shear band could be observed. It is therefore proposed that the excellent strain hardening ability gives rise to remarkable resistance to shear localization, which makes this material an excellent candidate for penetration protection applications such as armors.

  20. Magnetically applied pressure-shear : a new technique for direct strength measurement at high pressure (final report for LDRD project 117856).

    SciTech Connect

    Lamppa, Derek C.; Haill, Thomas A.; Alexander, C. Scott; Asay, James Russell

    2010-09-01

    A new experimental technique to measure material shear strength at high pressures has been developed for use on magneto-hydrodynamic (MHD) drive pulsed power platforms. By applying an external static magnetic field to the sample region, the MHD drive directly induces a shear stress wave in addition to the usual longitudinal stress wave. Strength is probed by passing this shear wave through a sample material where the transmissible shear stress is limited to the sample strength. The magnitude of the transmitted shear wave is measured via a transverse VISAR system from which the sample strength is determined.

  1. Vorticity Based (External) Intermittency measurements in a High Rθ Single-Stream Shear Layer

    NASA Astrophysics Data System (ADS)

    Foss, John F.; Hellum, Aren

    2006-11-01

    The MSU four-sensor (transverse) vorticity probe has been used to determine the intermittency function (I(t)=0,1) in a single-stream shear layer. The measurements were taken in the self-preserving region (x/θ(0)=484) with R[θ(x)=9x10^4]. The I(t) signal permits conditionally sampled measures of the intermittent turbulence field. The mean intermittency distribution is compared with that previously reported (1) and (2). It is also compared with the distribution created from the use of an advanced surrogate method (3). Distinctive conditionally sampled results include: i) a constant [mean(u'v')]/[σ(u)σ(v)] distribution for the I=1 condition, ii) clear evidence of fluid from both high- and low-speed irrotational streams to the peak location (u/Uo=0.5), and iii) robust dissipation even as -> for large values of [(y-y/2)/θ(x)]. 1. Wygnanski, I. and Fiedler, H. E., (1970). ``The two-dimensional mixing region''. JFM, Vol. 41, pp. 327-361. 2. R.C. Haw, J.K. Foss and J.F. Foss, ``Vorticity Based Intermittency Measurements in a Single Stream Shear Layer'' proc. Second European Turb. Conf. Advance in Turbulence 2, Ed. H.H. Fernholz and H.E. Fiedler Spring Verlag, Berlin (1989). 3. Hedley, T.B., and Keffer, J.F., (1974). ``Turbulent/non-turbulent decisions in an intermittent flow''. JFM, Vol. 64, pp. 625-644

  2. In-Plane Shear Testing of Medium and High Modulus Woven Graphite Fiber Reinforced/Polyimide Composites

    NASA Technical Reports Server (NTRS)

    Gentz, M.; Armentrout, D.; Rupnowski, P.; Kumosa, L.; Shin, E.; Sutter, J. K.; Kumosa, M.

    2004-01-01

    Iosipescu shear tests were performed at room temperature and at 316 C (600 F) o woven composites with either M40J or M60J graphite fibers and PMR-II-50 polyimide resin matrix. The composites were tested as supplied and after thermo-cycling, with the thermo-cycled composites being tested under dry and wet conditions. Acoustic emission (AE) was monitored during the room and high temperature Iosipescu experiments. The shear stresses at the maximum loads and the shear stresses at the significant onset of AE were determined for the composites as function of temperature and conditioning. The combined effects of thermo-cycling and moisture on the strength and stiffness properties of the composites were evaluated. It was determined that the room and high temperature shear stresses at the maximum loads were unaffected by conditioning. However, at room temperature the significant onset of AE was affected by conditioning; the thermal conditioned wet specimens showed the highest shear stress at the onset of AE followed by thermal-conditioned and then as received specimens. Also, at igh temperature the significant onset of AE occurred in some specimens after the maximum load due to the viscoelastoplastic nature of the matrix material.

  3. Late Oligocene high-temperature shear zones in the core of the Higher Himalayan Crystallines (Lower Dolpo, western Nepal)

    NASA Astrophysics Data System (ADS)

    Carosi, R.; Montomoli, C.; Rubatto, D.; Visonã, D.

    2010-08-01

    A high-temperature shear zone, Toijem shear zone, with a top-to-the-SW sense of shear affects the core of the Higher Himalayan Crystallines (HHC) in western Nepal. The shear zone developed during the decompression, in the sillimanite stability field, of rocks that previously underwent relatively high-pressure metamorphism deformed under the kyanite stability field. PT conditions indicate that the footwall experienced higher pressure (˜9 kbar) than the hanging wall (˜7 kbar) and similar temperatures (675°-700°C). Monazite growth constrains the initial activity of the shear zone at 25.8 ± 0.3 Ma, before the onset of the Main Central Thrust zone, whereas the late intrusion of a crosscutting granitic dike at 17 ± 0.2 Ma limits its final activity. Monazites in kyanite-bearing gneisses from the footwall record prograde metamorphism in the HHC from ˜43 to 33 Ma. The new data confirm that exhumation of the HHC started earlier in western Nepal than in other portions of the belt and before the activity of both the South Tibetan Detachment System (STDS) and Main Central Thrust (MCT) zones. As a consequence, western Nepal represents a key area where the channel-flow-driven mechanism of exhumation, supposed to be active from Bhutan to central-eastern Nepal, does terminate. In this area, exhumation of crystalline units occurred by foreland propagation of ductile and, subsequently, brittle deformation.

  4. Rapid distortion analysis of high speed homogeneous turbulence subject to periodic shear

    NASA Astrophysics Data System (ADS)

    Bertsch, Rebecca L.; Girimaji, Sharath S.

    2015-12-01

    The effect of unsteady shear forcing on small perturbation growth in compressible flow is investigated. In particular, flow-thermodynamic field interaction and the resulting effect on the phase-lag between applied shear and Reynolds stress are examined. Simplified linear analysis of the perturbation pressure equation reveals crucial differences between steady and unsteady shear effects. The analytical findings are validated with numerical simulations of inviscid rapid distortion theory (RDT) equations. In contrast to steadily sheared compressible flows, perturbations in the unsteady (periodic) forcing case do not experience an asymptotic growth phase. Further, the resonance growth phenomenon found in incompressible unsteady shear turbulence is absent in the compressible case. Overall, the stabilizing influence of both unsteadiness and compressibility is compounded leading to suppression of all small perturbations. The underlying mechanisms are explained.

  5. Rapid distortion analysis of high speed homogeneous turbulence subject to periodic shear

    SciTech Connect

    Bertsch, Rebecca L.; Girimaji, Sharath S.

    2015-12-30

    The effect of unsteady shear forcing on small perturbation growth in compressible flow is investigated. In particular, flow-thermodynamic field interaction and the resulting effect on the phase-lag between applied shear and Reynolds stress are examined. Simplified linear analysis of the perturbation pressure equation reveals crucial differences between steady and unsteady shear effects. The analytical findings are validated with numerical simulations of inviscid rapid distortion theory (RDT) equations. In contrast to steadily sheared compressible flows, perturbations in the unsteady (periodic) forcing case do not experience an asymptotic growth phase. Further, the resonance growth phenomenon found in incompressible unsteady shear turbulence is absent in the compressible case. Overall, the stabilizing influence of both unsteadiness and compressibility is compounded leading to suppression of all small perturbations. As a result, the underlying mechanisms are explained.

  6. Rapid distortion analysis of high speed homogeneous turbulence subject to periodic shear

    DOE PAGES

    Bertsch, Rebecca L.; Girimaji, Sharath S.

    2015-12-30

    The effect of unsteady shear forcing on small perturbation growth in compressible flow is investigated. In particular, flow-thermodynamic field interaction and the resulting effect on the phase-lag between applied shear and Reynolds stress are examined. Simplified linear analysis of the perturbation pressure equation reveals crucial differences between steady and unsteady shear effects. The analytical findings are validated with numerical simulations of inviscid rapid distortion theory (RDT) equations. In contrast to steadily sheared compressible flows, perturbations in the unsteady (periodic) forcing case do not experience an asymptotic growth phase. Further, the resonance growth phenomenon found in incompressible unsteady shear turbulence ismore » absent in the compressible case. Overall, the stabilizing influence of both unsteadiness and compressibility is compounded leading to suppression of all small perturbations. As a result, the underlying mechanisms are explained.« less

  7. Rapid distortion analysis of high speed homogeneous turbulence subject to periodic shear

    SciTech Connect

    Bertsch, Rebecca L. Girimaji, Sharath S.

    2015-12-15

    The effect of unsteady shear forcing on small perturbation growth in compressible flow is investigated. In particular, flow-thermodynamic field interaction and the resulting effect on the phase-lag between applied shear and Reynolds stress are examined. Simplified linear analysis of the perturbation pressure equation reveals crucial differences between steady and unsteady shear effects. The analytical findings are validated with numerical simulations of inviscid rapid distortion theory (RDT) equations. In contrast to steadily sheared compressible flows, perturbations in the unsteady (periodic) forcing case do not experience an asymptotic growth phase. Further, the resonance growth phenomenon found in incompressible unsteady shear turbulence is absent in the compressible case. Overall, the stabilizing influence of both unsteadiness and compressibility is compounded leading to suppression of all small perturbations. The underlying mechanisms are explained.

  8. Late-Time Mixing Sensitivity to Initial Broadband Surface Roughness in High-Energy-Density Shear Layers

    DOE PAGES

    Flippo, K. A.; Doss, F. W.; Kline, J. L.; ...

    2016-11-23

    While using a large volume high-energy-density fluid shear experiment ( 8.5 cm 3 ) at the National Ignition Facility, we have demonstrated for the first time the ability to significantly alter the evolution of a supersonic sheared mixing layer by controlling the initial conditions of that layer. Furthermore, by altering the initial surface roughness of the tracer foil, we demonstrate the ability to transition the shear mixing layer from a highly ordered system of coherent structures to a randomly ordered system with a faster growing mix layer, indicative of strong mixing in the layer at a temperature of several tensmore » of electron volts and at near solid density. Moreover, simulations using a turbulent-mix model show good agreement with the experimental results and poor agreement without turbulent mix.« less

  9. Late-Time Mixing Sensitivity to Initial Broadband Surface Roughness in High-Energy-Density Shear Layers

    NASA Astrophysics Data System (ADS)

    Flippo, K. A.; Doss, F. W.; Kline, J. L.; Merritt, E. C.; Capelli, D.; Cardenas, T.; DeVolder, B.; Fierro, F.; Huntington, C. M.; Kot, L.; Loomis, E. N.; MacLaren, S. A.; Murphy, T. J.; Nagel, S. R.; Perry, T. S.; Randolph, R. B.; Rivera, G.; Schmidt, D. W.

    2016-11-01

    Using a large volume high-energy-density fluid shear experiment (8.5 cm3 ) at the National Ignition Facility, we have demonstrated for the first time the ability to significantly alter the evolution of a supersonic sheared mixing layer by controlling the initial conditions of that layer. By altering the initial surface roughness of the tracer foil, we demonstrate the ability to transition the shear mixing layer from a highly ordered system of coherent structures to a randomly ordered system with a faster growing mix layer, indicative of strong mixing in the layer at a temperature of several tens of electron volts and at near solid density. Simulations using a turbulent-mix model show good agreement with the experimental results and poor agreement without turbulent mix.

  10. Late-Time Mixing Sensitivity to Initial Broadband Surface Roughness in High-Energy-Density Shear Layers

    SciTech Connect

    Flippo, K. A.; Doss, F. W.; Kline, J. L.; Merritt, E. C.; Capelli, D.; Cardenas, T.; DeVolder, B.; Fierro, F.; Huntington, C. M.; Kot, L.; Loomis, E. N.; MacLaren, S. A.; Murphy, T. J.; Nagel, S. R.; Perry, T. S.; Randolph, R. B.; Rivera, G.; Schmidt, D. W.

    2016-11-23

    Using a large volume high-energy-density fluid shear experiment (8.5 cm3) at the National Ignition Facility, we have demonstrated for the first time the ability to significantly alter the evolution of a supersonic sheared mixing layer by controlling the initial conditions of that layer. By altering the initial surface roughness of the tracer foil, we demonstrate the ability to transition the shear mixing layer from a highly ordered system of coherent structures to a randomly ordered system with a faster growing mix layer, indicative of strong mixing in the layer at a temperature of several tens of electron volts and at near solid density. Simulations using a turbulent-mix model show good agreement with the experimental results and poor agreement without turbulent mix.

  11. Shear deformation of lawsonite blueschist at high pressures and implications for earthquakes in the subduction zones

    NASA Astrophysics Data System (ADS)

    Jung, Haemyeong; Choi, Seungsoon; Jung, Sejin

    2017-04-01

    Recent seismological observations indicate that many earthquakes occur at the top of subducting slabs where oceanic crust is transformed to blueschist facies rocks under high pressure and temperature conditions. Episodic slip and tremor (ETS) events and low frequency earthquakes (LFEs) and intermediate-depth earthquakes in cold subduction zones often occur where lawsonite blueschist is stable at the top of the subducting slab, but the mechanism of these earthquakes is still poorly constrained because of a lack of laboratory measurements of rock properties (i.e., lawsonite blueschist) in shear experiments at various conditions reflecting the source region of these earthquakes. Here we report the results of experimental deformation of lawsonite blueschist under high pressure and temperature conditions consistent with the stability field of lawsonite blueschist. Our data show that lawsonite blueschist deforms cataclastically at high pressures (1-2 GPa), producing faults and slip weakening through the formation of nanoparticles and amorphous phases along highly localized faults. Our results have important implications for the understanding of seismogenesis and the mechanism behind ETS/LFEs and intermediate-depth earthquakes in cold subduction zones.

  12. Crustal intrinsic and scattering attenuation of high-frequency shear waves in the contiguous United States

    NASA Astrophysics Data System (ADS)

    Eulenfeld, Tom; Wegler, Ulrich

    2017-06-01

    We use 10 years of data of the USArray project to estimate the areal distribution of crustal intrinsic and scattering attenuation of shear waves for frequencies between 1 Hz and 20 Hz in the contiguous United States. Additionally, we report energy site amplification factors and estimate moment magnitudes for small earthquakes (M 1.5 to M 3.5). The Qopen method is used to invert for intrinsic and scattering attenuation for each event and nearby stations. Observations are collected for around 25,000 events, averaged at each station and interpolated between station locations. In a second inversion, energy site amplifications and moment magnitudes are corrected by assuming that site amplifications for one station and frequency are the same for different earthquakes. We observe a west-east decline of intrinsic attenuation for high frequencies which reflects the west-east transition from young, hot to old and cold crust. Scattering attenuation for high frequencies is stronger in the east with an extraordinary high attenuation around the southern part of the Appalachian Highlands and the Interior Low Plateaus. Results at low frequencies do not show clear trends. A large site amplification is observed at high frequencies in parts of the eastern United States. Estimated moment magnitudes show a good agreement to moment magnitudes independently derived from moment tensor inversion. Moment magnitudes in the west are higher than in the east for the same Richter magnitudes.

  13. Frictional properties of DFDP-1 Alpine Fault rocks under hydrothermal conditions and high shear strain

    NASA Astrophysics Data System (ADS)

    Niemeijer, André R.; Boulton, Carolyn; Toy, Virginia; Townend, John; Sutherland, Rupert

    2015-04-01

    The Alpine Fault, New Zealand, is a major plate-bounding fault that accommodates 65-75% of the total relative motion between the Australian and Pacific plates. Paleoseismic evidence of large-displacement surface-rupturing events, as well as an absence of measurable contemporary surface deformation, indicates that the fault slips mostly in quasi-periodic large-magnitude earthquakes (< Mw 8.0). To understand the mechanics of earthquakes, it is important to study the evolution of frictional properties of the fault rocks under conditions representative of the potential hypocentral depth. Here, we present data obtained on drill core samples of rocks that surround the principal slip zone(s) (PSZ) of the Alpine Fault and the PSZ itself. The drill core samples were obtained during phase 1 of the Deep Fault Drilling Project (DFDP-1) in 2011 at relatively shallow depths (down to ~150 m). Simulated fault gouges were sheared under elevated pressure and temperature conditions in a hydrothermal ring shear apparatus. We performed experiments at temperatures of 25, 150, 300, 450 ° C, and 600 oC. Using the shallow geothermal gradient of 63 ° C/km determined in DFDP-1, our highest temperature corresponds to a depth of ~7 km (Sutherland et al. 2012); it would correspond to 10 km depth using a more moderate geotherm of 45 oC/km (Toy et al. 2010). All samples show a transition from velocity-strengthening behavior, i.e. a positive value of (a-b), to velocity-weakening behavior, i.e. a negative value of (a-b) at a temperature of 150 ° C. The transition depends on the absolute value of sliding velocity, with velocity-weakening dominating at lower sliding velocities. At 600 oC, velocity-strengthening dominates at low sliding velocity, whereas the high-velocity steps are all velocity-weakening. Moreover, shear stress depends linearly on effective normal stress at 600 oC, indicating that shearing is essentially frictional and that no transition to ductile (normal stress independent) flow

  14. High Blood Pressure in Pregnancy - Multiple Languages: MedlinePlus

    MedlinePlus

    ... الدم أثناء الحمل - العربية Bilingual PDF Health Information Translations Bosnian (Bosanski) High Blood Pressure in Pregnancy Visok ... u trudnoći - Bosanski (Bosnian) Bilingual PDF Health Information Translations Chinese - Simplified (简体中文) High Blood Pressure in Pregnancy ...

  15. Heart and Artery Damage and High Blood Pressure

    MedlinePlus

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More How High Blood Pressure Can Lead to a Heart Attack Updated:Dec ... sheet This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  16. Americans with High Blood Pressure Still Eating Too Much Salt

    MedlinePlus

    ... medlineplus.gov/news/fullstory_163977.html Americans With High Blood Pressure Still Eating Too Much Salt Average sodium intake ... March 8, 2017 (HealthDay News) -- For Americans with high blood pressure, cutting back on salt is an important way ...

  17. High temperature pseudotachylytes and ductile shear zones in dry rocks from the continental lower crust (Lofoten, Norway)

    NASA Astrophysics Data System (ADS)

    Menegon, Luca; Pennacchioni, Giorgio; Harris, Katherine; Wood, Elliot

    2014-05-01

    Understanding the mechanisms of initiation and growth of shear zones under lower crustal conditions is of fundamental importance when assessing lithosphere rheology and strength. In this study we investigate brittle-ductile shear zones developed under lower crustal conditions in anorthosites from Nusfjord, Lofoten (northern Norway). Steep ductile shear zones trend E-W to ESE-WSW and have a stretching lineation plunging steeply to the SSW or SSE. The shear sense is normal (south block down to the south) as indicated by SC and SC' fabrics and sigmoidal foliations. The shear zone show a mylonitic to ultramylonitic fabric, sharp boundaries to the host anorthosites, and abundant anastomosing dark fine-grained layers along the main foliation. The fine-grained layers localized much of the strain. Relatively lower strain domains within or adjacent to shear zones indicate that the fine dark bands of mylonites represent transposed pseudotachylyte which still locally preserve the pristine structures such as chilled margins, breccia textures with angular clasts of the host rock and injection veins; intersecting veins of pseudotachylyte record multiple stages of seismic slip. The orientation of injection veins and marker offset along the most preserved pseudotachylyte fault veins indicate approximately a sinistral strike slip kinematic during faulting event responsible for the friction-induced melting. These observations indicate that ductile shear zones exploited pre-existing brittle fault zones including a network of pseudotachylytes, and that the fine-grained "ultramylonites" derive from former fine-grained pseudotachylytes. The pseudotachylyte microstructure is dominated by plagioclase microlites dispersed in a groundmass of fine-grained clinopyroxene. Clinopyroxene recrystallizes in the damage zone flanking the pseudotachylytes, indicating high metamorphic grade during pseudotachylyte formation. Small idioblastic or cauliflower garnet are scattered through the matrix and

  18. Differential roles for endothelial ICAM-1, ICAM-2, and VCAM-1 in shear-resistant T cell arrest, polarization, and directed crawling on blood-brain barrier endothelium.

    PubMed

    Steiner, Oliver; Coisne, Caroline; Cecchelli, Roméo; Boscacci, Rémy; Deutsch, Urban; Engelhardt, Britta; Lyck, Ruth

    2010-10-15

    Endothelial ICAM-1 and ICAM-2 were shown to be essential for T cell diapedesis across the blood-brain barrier (BBB) in vitro under static conditions. Crawling of T cells prior to diapedesis was only recently revealed to occur preferentially against the direction of blood flow on the endothelial surface of inflamed brain microvessels in vivo. Using live cell-imaging techniques, we prove that Th1 memory/effector T cells predominantly crawl against the direction of flow on the surface of BBB endothelium in vitro. Analysis of T cell interaction with wild-type, ICAM-1-deficient, ICAM-2-deficient, or ICAM-1 and ICAM-2 double-deficient primary mouse brain microvascular endothelial cells under physiological flow conditions allowed us to dissect the individual contributions of endothelial ICAM-1, ICAM-2, and VCAM-1 to shear-resistant T cell arrest, polarization, and crawling. Although T cell arrest was mediated by endothelial ICAM-1 and VCAM-1, T cell polarization and crawling were mediated by endothelial ICAM-1 and ICAM-2 but not by endothelial VCAM-1. Therefore, our data delineate a sequential involvement of endothelial ICAM-1 and VCAM-1 in mediating shear-resistant T cell arrest, followed by endothelial ICAM-1 and ICAM-2 in mediating T cell crawling to sites permissive for diapedesis across BBB endothelium.

  19. Fluid-loss control for high-permeability rocks in hydraulic fracturing under realistic shear conditions

    SciTech Connect

    Navarrete, R.C.; Mitchell, J.P.

    1995-12-31

    A study is presented on the effectiveness of different combinations of fluid and fluid-loss additives to control fluid loss in high-permeability formations under high shear rates. The impact on matrix damage and proppant-pack damage is also studied. Borate-crosslinked guars, hydroxyethylcellulose (HEC) and a surfactant water-base gravel packing fluid were investigated. The fluid-loss additive considered was silica flour. All fluid-loss tests were run in dynamic fluid-loss cells. To properly test high-permeability cores, new long core dynamic fluid-loss cells were used. The matrix damage caused by the invasion of the fluid was determined using pressure taps along the core. Conductivity tests were also run to determine the damage to the proppant pack. Results show that the effectiveness of particulate fluid-loss additives under dynamic conditions is strongly dependent on the initial leakoff rate, which depends on the pressure gradient across the core, permeability of the core and viscosity of the invading fluid. The use of silica flour helps matrix flowback, and it has a minimal effect on proppant-pack conductivity in clean fluids (e.g., surfactant water-base gravel packing fluid). With the exception of the borate-crosslinked guar with no fluid-loss additive, the variety of fluids used in these tests (with and without silica flour) have a negligible effect on postproduction.

  20. Frictional processes in smectite-rich gouges sheared at slow to high slip rates

    NASA Astrophysics Data System (ADS)

    Aretusini, Stefano; Mittempergher, Silvia; Gualtieri, Alessandro; Di Toro, Giulio

    2015-04-01

    The slipping zones of shallow sections of megathrusts and of large landslides are often smectite-rich (e.g., montmorillonite type). Consequently, similar "frictional" processes operating at high slip rates (> 1 m/s) might be responsible of the large slips estimated in megathrust (50 m for the 2011 Tohoku Mw 9.1 earthquake) and measured in large landslides (500 m for the 1963 Vajont slide, Italy). At present, only rotary shear apparatuses can reproduce simultaneously the large slips and slip rates of these events. Noteworthy, the frictional processes proposed so far (thermal and thermochemical pressurization, etc.) remain rather obscure. Here we present preliminary results obtained with the ROtary Shear Apparatus (ROSA) installed at Padua University. Thirty-one experiments were performed at ambient conditions on pure end-members of (1) smectite-rich standard powders (STx-1b: ~68 wt% Ca-montmorillonite, ~30 wt% opal-CT and ~2 wt% quartz), (2) quartz powders (qtz) and (3) on 80:20 = Stx-1b:qtz mixtures. The gouges were sandwiched between two (1) hollow (25/15 mm external/internal diameter) or (2) solid (25 mm in diameter) stainless-steel made cylinders and confined by inner and outer Teflon rings (only outer for solid cylinders). Gouges were sheared at a normal stress of 5 MPa, slip rates V from 300 μm/s to 1.5 m/s and total slip of 3 m. The deformed gouges were investigated with quantitative (Rietveld method with internal standard) X-ray powder diffraction (XRPD) and Scanning Electron Microscopy (SEM). In the smectite-rich standard endmember, (1) for 300 μm/s ≤ V ≤ 0.1 m/s, initial friction coefficient (μi) was 0.6±0.05 whereas the steady-state friction coefficient (μss) was velocity and slip strengthening (μss 0.85±0.05), (2) for 0.1 m/s < V < 0.3 m/s, velocity and slip neutral (μi = μss = 0.62±0.08) and (3) for V > 0.8 m/s, velocity and slip weakening (μi = 0.7±0.1 and μss = 0.25±0.05). In the 80:20 Stx-1b:qtz mixtures, (1) for 300 μm/s ≤ V

  1. Shear deformation and division of cylindrical walls in free-standing nematic films under high electric fields.

    PubMed

    Tadapatri, Pramod; Krishnamurthy, K S

    2008-10-30

    We report on the behavior of cylindrical walls formed in a substrate-free nematic film of PCH5 under the action of an in-plane ac field. In the film, with vertical molecular alignment at all the limiting surfaces, annular Brochard-Leger walls are induced well above the bend-Freedericksz threshold. They exhibit, at high field strengths, a new type of instability not encountered in sandwich, or any other, cell configuration. It manifests as a shearing of the loop-wall between the opposite free-surfaces. The shear strain is measured as a function of time, field strength, frequency, and temperature. Significantly, the strain is linear in field strength. The origin of shear and its dependence on field variables are explained through an adaptation of the Carr-Helfrich mechanism of charge separation. The sheared wall is stable against pincement up to several times the threshold field, and divides itself into two fragments under a large enough strain. With the shear distortion, linear defects appear in the opposite splay-bend regions, just as Neel lines in Bloch walls of magnetic systems. At very low frequencies, flexoelectric influence on distortion is revealed.

  2. Prediction of the Peak Shear Strength of Sandstone and Mudstone Joints Infilled with High Water-Cement Ratio Grouts

    NASA Astrophysics Data System (ADS)

    Ma, Hao; Liu, Quansheng

    2017-08-01

    There are very few studies on the peak shear strength of cement-infilled joints, despite it being a key parameter in the grouting technique. To quantify this strength, the average elastic modulus of hardened cement pastes with a high water-cement ratio (w/c) has been determined by using a homogenization method, in which the bleeding ratio is includes. Based on a scanning electron microscope analysis of the micromorphology of the rock joint surface and study of the interfacial transition zone, the mechanisms of the microscopic bond shear failure at the interfaces between the cement pastes and rocks have been deduced, in which the effect of the macroscopic roughness has not been taken into consideration. Based on the JRC-JCS model of unfilled joints, which takes the macroscopic roughness into consideration, together with the microscopic bond shear model, a model has been developed that can predict the peak shear strength of cement-infilled joints of sandstone and mudstone. The predictions have been verified by experimental results. The results show that if the w/ c is too low, then the grouting can weaken the rock mass. If the w/ c is appropriate, then the increase to the peak shear strength can be determined by the model.

  3. Comminution of solids caused by kinetic energy of high shear strain rate, with implications for impact, shock, and shale fracturing.

    PubMed

    Bazant, Zdenek P; Caner, Ferhun C

    2013-11-26

    Although there exists a vast literature on the dynamic comminution or fragmentation of rocks, concrete, metals, and ceramics, none of the known models suffices for macroscopic dynamic finite element analysis. This paper outlines the basic idea of the macroscopic model. Unlike static fracture, in which the driving force is the release of strain energy, here the essential idea is that the driving force of comminution under high-rate compression is the release of the local kinetic energy of shear strain rate. The density of this energy at strain rates >1,000/s is found to exceed the maximum possible strain energy density by orders of magnitude, making the strain energy irrelevant. It is shown that particle size is proportional to the -2/3 power of the shear strain rate and the 2/3 power of the interface fracture energy or interface shear stress, and that the comminution process is macroscopically equivalent to an apparent shear viscosity that is proportional (at constant interface stress) to the -1/3 power of this rate. A dimensionless indicator of the comminution intensity is formulated. The theory was inspired by noting that the local kinetic energy of shear strain rate plays a role analogous to the local kinetic energy of eddies in turbulent flow.

  4. Influence of loading-rate and steel fibers on the shear strength of ultra high performance concrete

    NASA Astrophysics Data System (ADS)

    Bratislav, Lukic; Pascal, Forquin

    2015-09-01

    The paper describes quasi-static and dynamic experimental methods used to examine the confined shear strength of an Ultra High Performance Concrete, with and without the presence of steel fibers in the concrete composition. An experimental setup was created to investigate the concrete shear strength under quasi-static loading regime using a hydraulic press Schenk while dynamic shear strength was characterized by subjecting concrete samples to dynamic loading through a modified Split Hopkinson Pressure Bar. Both methods are based on a Punch Through Shear (PTS) test with a well-instrumented aluminum passive confinement ring that allows measuring the change of radial stress in the shear ligament throughout the test. Firstly, four equally distributed radial notches have been performed in order to deduce the radial stress by suppressing a self-confinement of the sample peripheral part. However, by analyzing the strain gauge data from the confinement ring, it has been noticed that these were apparently insufficient, especially for fiber-reinforced samples, resulting in subsequently practicing eight radial notches through the sample peripheral part. The results obtained from both procedures are reported and discussed.

  5. Investigation of high-speed free shear flows using improved pressure-strain correlated Reynolds stress turbulence model

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Lakshmanan, B.

    1993-01-01

    A high-speed shear layer is studied using compressibility corrected Reynolds stress turbulence model which employs newly developed model for pressure-strain correlation. MacCormack explicit prediction-corrector method is used for solving the governing equations and the turbulence transport equations. The stiffness arising due to source terms in the turbulence equations is handled by a semi-implicit numerical technique. Results obtained using the new model show a sharper reduction in growth rate with increasing convective Mach number. Some improvements were also noted in the prediction of the normalized streamwise stress and Reynolds shear stress. The computed results are in good agreement with the experimental data.

  6. Simultaneous measurement of red blood cell aggregation and whole blood coagulation using high-frequency ultrasound.

    PubMed

    Nam, Kweon-Ho; Yeom, Eunseop; Ha, Hojin; Lee, Sang Joon

    2012-03-01

    This study aims to investigate the feasibility of using high-frequency ultrasound (HFUS) for simultaneous monitoring of blood coagulation and red blood cell (RBC) aggregation. Using a 35-MHz ultrasound scanner, ultrasound speckle data were acquired from whole blood samples of three experimental groups of rats, including 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS)-treated, noncoagulation and normal control groups. The variations of blood echogenicity, the shape parameters of probability distribution of speckle intensity (skewness and kurtosis) and the correlation coefficient between two consecutive speckle data were calculated as a function of time starting from immediately after taking blood. The blood echogenicity increases rapidly to plateaus at the early stage of measurement for all the experimental groups caused by the formation of RBC aggregates. The DIDS-treated group exhibits the lowest echogenicity level due to the inhibitory effect of DIDS on RBC aggregation. The correlation analysis between consecutive speckle patterns seems to be useful to examine the variation of blood fluidity and the progress of clot formation. Whole blood coagulation is observed to be accelerated by DIDS treatment. In addition, the results of skewness and kurtosis analysis indicated that RBC aggregates may be disrupted during blood coagulation. The present study suggests that HFUS has good potential for simultaneous monitoring of RBC aggregation and blood coagulation to examine the relationship between them. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. High-speed ultrasound imaging in dense suspensions reveals impact-activated solidification due to dynamic shear jamming

    NASA Astrophysics Data System (ADS)

    Han, Endao; Peters, Ivo R.; Jaeger, Heinrich M.

    2016-07-01

    A remarkable property of dense suspensions is that they can transform from liquid-like at rest to solid-like under sudden impact. Previous work showed that this impact-induced solidification involves rapidly moving jamming fronts; however, details of this process have remained unresolved. Here we use high-speed ultrasound imaging to probe non-invasively how the interior of a dense suspension responds to impact. Measuring the speed of sound we demonstrate that the solidification proceeds without a detectable increase in packing fraction, and imaging the evolving flow field we find that the shear intensity is maximized right at the jamming front. Taken together, this provides direct experimental evidence for jamming by shear, rather than densification, as driving the transformation to solid-like behaviour. On the basis of these findings we propose a new model to explain the anisotropy in the propagation speed of the fronts and delineate the onset conditions for dynamic shear jamming in suspensions.

  8. Effects of cavitation-enhanced heating in high-intensity focused ultrasound treatment on shear wave imaging

    NASA Astrophysics Data System (ADS)

    Iwasaki, Ryosuke; Nagaoka, Ryo; Takagi, Ryo; Goto, Kota; Yoshizawa, Shin; Saijo, Yoshifumi; Umemura, Shin-ichiro

    2015-07-01

    High-intensity focused ultrasound (HIFU) therapy is a less invasive method of cancer treatment, in which ultrasound is generated outside the body and focused at the tumor tissue to be thermally coagulated. To enhance the safety, accuracy, and efficiency of HIFU therapy, “multiple-triggered HIFU” has been proposed as a method of cavitation-enhanced heating to shorten treatment time. In this study, we also propose shear wave elastography (SWE) to noninvasively monitor the cavitation-enhanced heating. Results show that the increase in shear wave velocity was observed in the coagulation area, but it was significantly slower when cavitation occurred. This suggests that the cavitation-enhanced heating requires a significantly longer cooling time before the accurate measurement of shear modulus than heating without generating bubbles.

  9. Microfluidic Pipette Tip for High-Purity and High-Throughput Blood Plasma Separation from Whole Blood.

    PubMed

    Kim, Byeongyeon; Oh, Sein; You, Dongwon; Choi, Sungyoung

    2017-02-07

    Blood plasma separation from whole blood is often limited by numerous blood cells which can compromise separation processes and thus deteriorate separation performance such as purity and throughput. To address this challenge, we present a microfluidic pipet tip composed of slant array ridges that enable autonomous blood cell focusing without significant deviation as well as facilitating a high degree of parallelization without compromising separation purity. With these advantages, we achieved high-purity (99.88%) and high-throughput (904.3 μL min(-1)) plasma separation from whole blood. In combination with a smart pipet, we successfully demonstrated rapid, inexpensive, and equipment-free blood plasma preparation for pretransfusion testing.

  10. Timing of strain localization in high-pressure low-temperature shear zones: The argon isotopic record

    NASA Astrophysics Data System (ADS)

    Laurent, Valentin; Scaillet, Stéphane; Jolivet, Laurent; Augier, Romain

    2017-04-01

    The complex interplay between rheology, temperature and deformation profoundly influences how crustal-scale shear zones form and then evolve across a deforming lithosphere. Understanding early exhumation processes in subduction zones requires quantitative age constraints on the timing of strain localization within high-pressure shear zones. Using both the in situ laser ablation and conventional step-heating 40Ar/39Ar dating (on phengite single grains and populations) methods, this study aims at quantifying the duration of ductile deformation and the timing of strain localization within HP-LT shear zones of the Cycladic Blueschist Unit (CBU, Greece). The rate of this progressive strain localization is unknown, and in general, poorly known in similar geological contexts. Critical to retrieve realistic estimates of rates of strain localization during exhumation, dense 40Ar/39Ar age transects were sampled along shear zones recently identified on Syros and Sifnos islands. There, field observations suggest that deformation progressively localized downward in the CBU during exhumation. In parallel, these shear zones are characterized by different degrees of retrogression from blueschist-facies to greenschist-facies P-T conditions overprinting eclogite-facies record throughout the CBU. Results show straightforward correlations between the degree of retrogression, the finite strain intensity and 40Ar/39Ar ages; the most ductilely deformed and retrograded rocks yielded the youngest 40Ar/39Ar ages. The possible effects of strain localization during exhumation on the record of the argon isotopic system in HP-LT shear zones are addressed. Our results show that strain has localized in shear zones over a 30 Ma long period and that individual shear zones evolve during 7-15 Ma. We also discuss these results at small-scale to see whether deformation and fluid circulations, channelled within shear bands, can homogenize chemical compositions and reset the 40Ar/39Ar isotopic record

  11. Ultrafast Harmonic Coherent Compound (UHCC) Imaging for High Frame Rate Echocardiography and Shear-Wave Elastography.

    PubMed

    Correia, Mafalda; Provost, Jean; Chatelin, Simon; Villemain, Olivier; Tanter, Mickael; Pernot, Mathieu

    2016-03-01

    Transthoracic shear-wave elastography (SWE) of the myocardium remains very challenging due to the poor quality of transthoracic ultrafast imaging and the presence of clutter noise, jitter, phase aberration, and ultrasound reverberation. Several approaches, such as diverging-wave coherent compounding or focused harmonic imaging, have been proposed to improve the imaging quality. In this study, we introduce ultrafast harmonic coherent compounding (UHCC), in which pulse-inverted diverging waves are emitted and coherently compounded, and show that such an approach can be used to enhance both SWE and high frame rate (FR) B-mode Imaging. UHCC SWE was first tested in phantoms containing an aberrating layer and was compared against pulse-inversion harmonic imaging and against ultrafast coherent compounding (UCC) imaging at the fundamental frequency. In vivo feasibility of the technique was then evaluated in six healthy volunteers by measuring myocardial stiffness during diastole in transthoracic imaging. We also demonstrated that improvements in imaging quality could be achieved using UHCC B-mode imaging in healthy volunteers. The quality of transthoracic images of the heart was found to be improved with the number of pulse-inverted diverging waves with a reduction of the imaging mean clutter level up to 13.8 dB when compared against UCC at the fundamental frequency. These results demonstrated that UHCC B-mode imaging is promising for imaging deep tissues exposed to aberration sources with a high FR.

  12. Remotely-Controlled Shear for Dismantling Highly Radioactive Tools In Rokkasho Vitrification Facility - 12204

    SciTech Connect

    Mitsui, Takashi; Sawa, Shusuke; Sadaki, Akira; Awano, Toshihiko; Cole, Matt; Miura, Yasuhiko; Ino, Tooru

    2012-07-01

    A high-level liquid waste vitrification facility in the Japanese Rokkasho Reprocessing Plant (RRP) is right in the middle of hot commissioning tests toward starting operation in fall of 2012. In these tests, various tools were applied to address issues occurring in the vitrification cell. Because of these tools' unplanned placement in the cell it has been necessary to dismantle and dispose of them promptly. One of the tools requiring removal is a rod used in the glass melter to improve glass pouring. It is composed of a long rod made of Inconel 601 or 625 and has been highly contaminated. In order to dismantle these tools and to remotely put them in a designated waste basket, a custom electric shear machine was developed. It was installed in a dismantling area of the vitrification cell by remote cranes and manipulators and has been successfully operated. It can be remotely dismantled and placed in a waste basket for interim storage. This is a very good example of a successful deployment of a specialty remote tool in a hot cell environment. This paper also highlights how commissioning and operations are done in the Japanese Rokkasho Reprocessing Plant. (authors)

  13. Optimization of curcumin loaded lipid nanoparticles formulated using high shear homogenization (HSH) and ultrasonication (US) methods.

    PubMed

    Puglia, Carmelo; Offerta, Alessia; Rizza, Luisa; Zingale, Giuseppe; Bonina, Francesco; Ronsisvalle, Simone

    2013-10-01

    Lipid nanoparticles (LN) are drug carriers possessing advantages with respect to stability, drug release profile, and biocompatibility. There are several production methods for lipid nanoparticles. Recently high shear homogenization (HSH) and ultrasound (US) techniques have been used to produce these systems in a cheaper and easier way. The objective of the present study was to evaluate the effect of same important instrumental parameters, such as homogenization time (HT) and ultrasonication time (UT), on particle size (MD) and polydispersity index (PDI) of LNs obtained by HSH-US techniques. Curcumin was used as a model drug to be incapsulated in the LNs. LN were prepared by HSH-US technique using tripalmitin (Dynasan 116) and poloxamer 188 (Lutrol F68) as solid lipid and surfactant, respectively. The preparations were characterized and then evaluated using a factorial design study. From the results obtained, LNs produced by HSH-US method were characterized by nanodimension, high homogeneity and encapsulation efficiency. US technology plays an important role in controlling the final dimension of LN dispersion, while longer times of HSH seem mainly to exert a positive effect on the final homogeneity of particle dispersion. Additional studies are in progress to evaluate drug release profile from LNs, for further in vitro/in vivo correlation studies.

  14. Low-shear Viscosity and Diffusion of Hard-sphere Dispersion at High Concentration

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengdong; Chaikin, P. M.; Phan, See-Eng; Zhu, Jixiang; Russel, W. B.

    1997-03-01

    We are interested in the rheology of hard-sphere dispersion at high concentration, especially the asymptotic behavior near the glass transition, which is the ideal place to test various theories.(J.F. Brady, J. Chem. phys. 99(1993)567) (M. Tokuyama and I. Oppenheim, Phys. Rev. E. 50(1994)R16) The dispersion studied is silica in Ethylene glycol/Glycerol/NaCl. Low-shear viscosity is measured by a Zimm viscometer. The data are consistent with recent PMMA measurement at low concentration(P.N. Segreet. al.), Phys. Rev. Lett. 75(1995)958; 76(1996)585 (See-eng Phan et. al.), Phys. rev. E., to be published., and at high concentration (metastable state) are better described by the Doolittle equation as in earlier experiments (L. Marshall, C.F. Zukoski IV, J. Phys. Chem. 94(1990)1164) (L.V. Woodcock, C.A. Angell, Phys. Rev. Lett. 47(1981)1129)). No theory yet gives a complete interpretion of the data. Dynamic light scattering (ensemble averaged) is used to measure self diffusion.

  15. Shear wave splitting, mantle flow, and young tectonomagmatism in the High Lava Plains of Oregon

    NASA Astrophysics Data System (ADS)

    Long, M. D.; Klaus, A.; Fouch, M. J.; James, D. E.; Wagner, L. S.

    2008-12-01

    The High Lava Plains (HLP) of southeastern and central Oregon represents a young (< 15 Ma), bimodal volcanic province that exhibits an age progression in rhyolitic volcanism towards the northwest, along with widespread basaltic volcanic activity. The age progression in the rhyolites is oblique to plate motion and approximately mirrors that of the presumed Yellowstone hotspot track, as inferred from Snake River Plain volcanism. Several models have been proposed to explain volcanic activity in the HLP; these variously invoke interactions between the tail of the inferred Yellowstone plume and asthenospheric corner flow, the rollback and steepening of the Cascadia slab, and/or significant lithospheric extension, perhaps associated with the Basin and Range province to the south. A temporary array of broadband seismometers (the High Lava Plains experiment, jointly operated by the Carnegie Institution of Washington and Arizona State University) was deployed in the region beginning in 2006. As of fall 2008 118 sites have been occupied as part of the HLP seismic experiment (with 104 currently operating), in addition to the broadband stations operated here as part of the USArray Transportable Array (TA). Here we present a data set of shear wave splitting measurements for SKS phases recorded at ~ 150 stations during the period 2006-2008. SKS splitting is used to characterize upper mantle anisotropy and when properly interpreted can place constraints on the geometry of upper mantle flow associated with tectonic processes. Stations in the HLP exhibit significant shear wave splitting, with average split times between ~ 0.8 seconds and ~ 3.0 seconds and average fast directions near N80°E. Although the backazimuthal coverage for SKS is not ideal, there is little evidence for backazimuthal variations in splitting parameters that might suggest complex anisotropic structure. The average split time in the HLP is ~ 1.8 sec, well above the global average of ~ 1 sec for continental

  16. Baseline climatology of extremely high vertical wind shears' values over Europe based on ERA-Interim reanalysis

    NASA Astrophysics Data System (ADS)

    Palarz, Angelika; Celiński-Mysław, Daniel

    2017-04-01

    The dominant role in the development of deep convection is played by kinematic and thermodynamic conditions, as well as atmospheric circulation, land cover and local relief. Severe thunderstorms are considerably more likely to form in environments with large values of convective available potential energy (CAPE) and significant magnitude of vertical wind shears (VWSs). According to the most recent research, the tropospheric wind shears have an important influence on intensity, longevity and organisation of the primary convective systems - bow echoes, squall lines and supercell thunderstorms. This study, in turn, examines the role of wind structure in controlling the spatial and temporal variability of VWSs over Europe. Considering the importance of the kinematic conditions for the convective systems formation, research is limited exclusively to 0-1 km, 0-3 km and 0-6 km wind shears. In order to compute the VWS' values, the data derived from ERA-Interim reanalysis for the period 1981-2015 was applied. It consisted of U and V wind components with 12-hourly sampling and horizontal resolution of 0.75×0.75°. The VWS' values were calculated as wind difference between two levels - this entails that the hodograph's shape was not considered (e.g. Clark 2013, Pucik et. al 2015). We have analysed both VWS' mean values (MN) and frequency of VWSs exceeding assumed thresholds (FQ). Taking into account previous studies (e.g. Rasmussen & Blanchard 1998, Schneider et al. 2006, Schaumann & Przybylinski 2012), the thresholds for extremely high values of vertical wind shears were set at 10 m/s for 0-1 km shear, 15 m/s for 0-3 km shear and 18 m/s for 0-6 km shear. Both MN and FQ values were characterised by strong temporal variability, as well as significant spatial differentiation over the research area. A clear diurnal cycle was identified in the case of 0-1 km shear, while seasonal variability was typical for 0-3 km and 0-6 km shears. Regardless of the season, 0-1 km shear reached

  17. Comparison of reacting and non-reacting shear layers at a high subsonic Mach number

    NASA Technical Reports Server (NTRS)

    Chang, C. T.; Marek, C. J.; Wey, C.; Jones, R. A.; Smith, M. J.

    1993-01-01

    The flow field in a hydrogen-fueled planar reacting shear layer was measured with an LDV system and is compared with a similar air to air case without combustion. Measurements were made with a speed ratio of 0.34 with the highspeed stream at Mach 0.71. They show that the shear layer with reaction grows faster than one without, and both cases are within the range of data scatter presented by the established database. The coupling between the streamwise and the cross-stream turbulence components inside the shear layer is slow, and reaction only increased it slightly. However, a more organized pattern of the Reynolds stress is present in the reacting shear layer, possibly as a result of larger scale structure formation in the layer associated with heat release.

  18. Adiabatic Shear Band Formation in Intermetallic WHA at High Strain Rates and Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Duprey, K. E.; Clifton, R. J.; Griffo, A.; German, R. M.

    1997-07-01

    A novel tungsten-based composite is being developed at The Pennsylvania State University to enhance shear banding by introducing a strong thermo-plastic instability. This liquid phase sintered composite consists of tungsten grains embedded in an intermetallic alloy matrix which has the property that its flow stress increases with increasing temperature up to a critical temperature at which rapid thermal softening begins. Pressure-shear plate impact experiments are being used to subject thin plates of this composite to shearing at strain rates of 10^5 s-1 to 10^6 s-1 at pressures of 6 - 8 GPa, and temperatures up to 650 ^o C. The experiments, combined with computer simulation, are being conducted to determine the effects of the thermal properties of the matrix on the initiation and propagation of adiabatic shear bands.

  19. Timing of initiation of left-lateral shearing along the Ailao Shan-Red River shear zone: microstructural and geochronological constraints from high temperature mylonites in Diancang Shan, SW China

    NASA Astrophysics Data System (ADS)

    Cao, S.; Liu, J.; Leiss, B.; Neubauer, F.; Genser, J.

    2009-04-01

    The high grade metamorphic massifs (e.g. Xuelong Shan, Diancang Shan, Ailao Shan in China and Day Nui Con Voi metamorphic massif in Vietnam) along the Ailao Shan-Red River shear zone in Southwestern China bear much information on the large-scale left-lateral strike-slip shearing in eastern Tibet during Indian-Eurasian plate collision and post-collisional accommodation process in late Oligocene-early Miocene. The metamorphic massifs are narrow zones bounded by brittle faults. Low-grade metamorphic rocks are lying on the west and sedimentary rocks to the east. Rocks in these massifs are partly sheared with widespread occurrence of high temperature mylonites that have subhorizontal stretching lineations. Left-lateral shearing is indicated by mesoscale and microscale shear indicators in the mylonites. Debates exist on the timing of initiation and duration of left-lateral shearing, and mechanism of exhumation of the high grade metamorphic rocks along Ailao Shan Red River shear zone. The Diancang Shan complex, a typical metamorphic massif, is constituted by three units, i.e. a central high strain shear zone, a western low-grade metamorphic volcanic-sedimentary sequence in the Lanping basin, and an eastern superimposed retrograde metamorphic belt. The central high grade metamorphic complex consists of metamorphic rocks of amphibolite facies conditions. High-grade metamorphic mineral assemblages and structural elements indicate a deep level crustal metamorphism and deformation of the rocks. L-tectonites are typical indicators of high-temperature deformation in the highly sheared granitic mylonites. Widespread occurrence of different shear criteria (e.g. sheared veins, sigmoid and delta -porphyroclasts) suggests that these gneisses experienced very intensive high-temperature progressive left-lateral strike-slip shearing. A large synkinematic augen monzogranitic intrusion is recognized in the central belt by the present work. The intrusion has an obvious porphyritic texture

  20. Supersonic shear wave elastography of in vivo pig kidney: influence of blood pressure, urinary pressure and tissue anisotropy.

    PubMed

    Gennisson, Jean-Luc; Grenier, Nicolas; Combe, Christian; Tanter, Mickaël

    2012-09-01

    The in vivo influence of renal anisotropy and of urinary and vascular pressure on elasticity values using ultrasonic supersonic shear wave elastography was studied in pigs. Experiments were conducted in agreement with the European Commission guidelines and directives of the French Research Ministry. Six kidneys in three pigs were studied in vivo. Elasticity of renal cortex and medulla was quantified through the shear modulus (μ) by using the supersonic shear imaging technique with an 8 MHz linear ultrasound probe. All measurements were done peroperatively both in the axis and perpendicular to the main axis of pyramids, in normal condition, after progressive increase of urinary pressure, and after renal artery and renal vein ligation. In normal conditions, cortical (C) and medullary (M) elasticity values were always higher when acquisitions were realized with the ultrasound main axis perpendicular to main pyramid axis (C(//): 7.7 ± 2.3 kPa; M(//): 8.7 ± 2.5 kPa) than parallel (C(⊥): 6.9 ± 1.4 kPa; M(⊥): 6.6 ± 2.3 kPa), demonstrating an effect of renal anisotropy. In renal cortex, two bands were separated, inner cortex showing higher elasticity values (IC(⊥): 8.1 ± 1.9 kPa) than outer cortex (OC(⊥): 6.9 ± 1.4 kPa). Renal artery and renal vein ligation induced a decrease and an increase of elasticity respectively. Parenchymal elasticity increased linearly with elevation of urinary pressure. Intrarenal elasticity values vary with tissue anisotropy and, with vascular and urinary pressure levels. These parameters have to be taken into account for interpretation of tissue changes. Separation of outer and inner cortex could be attributable to perfusion differences.

  1. Deformation and Shear Band Development in an Ultrahigh Carbon Steel During High Strain Rate Deformation

    SciTech Connect

    Lesuer, D R; Syn, C K; Sherby, O D

    2004-07-06

    The mechanical response of a pearlitic UHCS-1.3C steel deformed at approximately 4000 s{sup -1} to large strains ({var_epsilon} = -0.9) has been studied. Failure, at both the macroscopic and the microscopic levels has been evaluated, and the ability of the material to absorb energy in compression has been examined. Failure occurred by the development of a shear band. However before failure, extensive buckling of the carbide plates was observed and the UHCS-1.3C material exhibited significant potential for compressive ductility and energy absorption due to the distributed buckling of these plates. Strain localization during adiabatic shear band development resulted in the formation of austenite. Subsequent cooling produced a divorced-eutectoid transformation with associated deformation, which resulted in a microstructure consisting of 50 to 100 nm sized grains. The stress-strain behavior within the shear band has also been determined. The results are used to critically evaluate the maximum shear stress criterion of shear band development. New criteria for the development of shear bands are developed based on a strain energy concept.

  2. Concentration Polarization of High-Density Lipoprotein and Its Relation with Shear Stress in an In Vitro Model

    PubMed Central

    Meng, Wei; Yu, Fengxu; Chen, Huaiqing; Zhang, Jianmin; Zhang, Eryong; Dian, Ke; Shi, Yingkang

    2009-01-01

    The purpose of this study was to determine the concentration polarization of high-density lipoprotein (HDL) at the surface of the carotid artery under conditions of steady flow and to establish its relationship with shear stress using an in vitro vascular simulation model of carotid bifurcation. Shear stress, HDL concentration at the surface, and the ratio of HDL concentration at the surface to concentration in bulk flow were measured at different locations within the model under high-speed (1.451 m/s) and low-speed (0.559 m/s) flow. HDL showed concentration polarization at the surface of the carotid artery model, particularly in the internal carotid artery sinus. With decreasing flow velocity, the shear stress at the surface also decreased, and HDL concentration polarization increased. The concentration polarization of HDL was negatively and strongly correlated with shear stress at both low- (r = −0.872, P < .001) and high-speed flow (r = −0.592, P = .0018). PMID:19753319

  3. Concentration polarization of high-density lipoprotein and its relation with shear stress in an in vitro model.

    PubMed

    Meng, Wei; Yu, Fengxu; Chen, Huaiqing; Zhang, Jianmin; Zhang, Eryong; Dian, Ke; Shi, Yingkang

    2009-01-01

    The purpose of this study was to determine the concentration polarization of high-density lipoprotein (HDL) at the surface of the carotid artery under conditions of steady flow and to establish its relationship with shear stress using an in vitro vascular simulation model of carotid bifurcation. Shear stress, HDL concentration at the surface, and the ratio of HDL concentration at the surface to concentration in bulk flow were measured at different locations within the model under high-speed (1.451 m/s) and low-speed (0.559 m/s) flow. HDL showed concentration polarization at the surface of the carotid artery model, particularly in the internal carotid artery sinus. With decreasing flow velocity, the shear stress at the surface also decreased, and HDL concentration polarization increased. The concentration polarization of HDL was negatively and strongly correlated with shear stress at both low- (r = -0.872, P < .001) and high-speed flow (r = -0.592, P = .0018).

  4. Hexagonal-structured epsilon-NbN. Ultra-incompressibility, high shear rigidity, and a possible hard superconducting material

    DOE PAGES

    Zou, Y.; Wang, X.; Chen, T.; ...

    2015-06-01

    Exploring the structural stability and elasticity of hexagonal ε-NbN helps discover correlations among its physical properties for scientific and technological applications. Here, for the first time, we measured the ultra-incompressibility and high shear rigidity of polycrystalline hexagonal ε-NbN using ultrasonic interferometry and in situ X-ray diffraction, complemented with first-principles density-functional theory calculations up to 30 GPa in pressure. Using a finite strain equation of state approach, the elastic bulk and shear moduli, as well as their pressure dependences are derived from the measured velocities and densities, yielding BS0 = 373.3(15) GPa, G0 = 200.5(8) GPa, ∂BS/∂P = 3.81(3) and ∂G/∂Pmore » = 1.67(1). The hexagonal ε-NbN possesses a very high bulk modulus, rivaling that of superhard material cBN (B0 = 381.1 GPa). The high shear rigidity is comparable to that for superhard γ-B (G0 = 227.2 GPa). We found that the crystal structure of transition-metal nitrides and the outmost electrons of the corresponding metals may dominate their pressure dependences in bulk and shear moduli. In addition, the elastic moduli, Vickers hardness, Debye temperature, melting temperature and a possible superconductivity of hexagonal ε-NbN all increase with pressures, suggesting its exceptional suitability for applications under extreme conditions.« less

  5. Hexagonal-structured ε-NbN: ultra-incompressibility, high shear rigidity, and a possible hard superconducting material.

    PubMed

    Zou, Yongtao; Wang, Xuebing; Chen, Ting; Li, Xuefei; Qi, Xintong; Welch, David; Zhu, Pinwen; Liu, Bingbing; Cui, Tian; Li, Baosheng

    2015-06-01

    Exploring the structural stability and elasticity of hexagonal ε-NbN helps discover correlations among its physical properties for scientific and technological applications. Here, for the first time, we measured the ultra-incompressibility and high shear rigidity of polycrystalline hexagonal ε-NbN using ultrasonic interferometry and in situ X-ray diffraction, complemented with first-principles density-functional theory calculations up to 30 GPa in pressure. Using a finite strain equation of state approach, the elastic bulk and shear moduli, as well as their pressure dependences are derived from the measured velocities and densities, yielding BS0 = 373.3(15) GPa, G0 = 200.5(8) GPa, ∂BS/∂P = 3.81(3) and ∂G/∂P = 1.67(1). The hexagonal ε-NbN possesses a very high bulk modulus, rivaling that of superhard material cBN (B0 = 381.1 GPa). The high shear rigidity is comparable to that for superhard γ-B (G0 = 227.2 GPa). We found that the crystal structure of transition-metal nitrides and the outmost electrons of the corresponding metals may dominate their pressure dependences in bulk and shear moduli. In addition, the elastic moduli, Vickers hardness, Debye temperature, melting temperature and a possible superconductivity of hexagonal ε-NbN all increase with pressures, suggesting its exceptional suitability for applications under extreme conditions.

  6. Hexagonal-structured epsilon-NbN. Ultra-incompressibility, high shear rigidity, and a possible hard superconducting material

    SciTech Connect

    Zou, Y.; Wang, X.; Chen, T.; Li, X.; Qi, X; Welch, D.; Zhu, P.; Liu, B.; Cui, T.; Li, B.

    2015-06-01

    Exploring the structural stability and elasticity of hexagonal ε-NbN helps discover correlations among its physical properties for scientific and technological applications. Here, for the first time, we measured the ultra-incompressibility and high shear rigidity of polycrystalline hexagonal ε-NbN using ultrasonic interferometry and in situ X-ray diffraction, complemented with first-principles density-functional theory calculations up to 30 GPa in pressure. Using a finite strain equation of state approach, the elastic bulk and shear moduli, as well as their pressure dependences are derived from the measured velocities and densities, yielding BS0 = 373.3(15) GPa, G0 = 200.5(8) GPa, ∂BS/∂P = 3.81(3) and ∂G/∂P = 1.67(1). The hexagonal ε-NbN possesses a very high bulk modulus, rivaling that of superhard material cBN (B0 = 381.1 GPa). The high shear rigidity is comparable to that for superhard γ-B (G0 = 227.2 GPa). We found that the crystal structure of transition-metal nitrides and the outmost electrons of the corresponding metals may dominate their pressure dependences in bulk and shear moduli. In addition, the elastic moduli, Vickers hardness, Debye temperature, melting temperature and a possible superconductivity of hexagonal ε-NbN all increase with pressures, suggesting its exceptional suitability for applications under extreme conditions.

  7. PRODUCTION OF HIGHLY-ALIGNED COLLAGEN LAMELLAE BY COMBINING SHEAR FORCE AND THIN-FILM CONFINEMENT

    PubMed Central

    Saeidi, Nima; Sander, Edward A.; Zareian, Ramin

    2012-01-01

    Load-bearing tissues owe their mechanical strength to their highly-anisotropic collagenous structure. To date, attempts to engineer mechanically strong connective tissue have failed mainly due to the lack of the ability to reproduce native collagen organization in constructs synthesized by cultured cells in vitro. The ability to influence the direction of the self-assembling collagen molecules and produce highly anisotropic structures has applications ranging from de novo engineering of complex tissues to the production of organized scaffolds for cell culture contact guidance. In this investigation we have used the simple technique of spin coating to produce highly-aligned arrays of collagen fibrils. By a simple modification of the method we have also successfully produced orthogonal collagen lamellae. Alternating collagen lamellae are frequently seen in load-bearing tissues such as cornea, annulus fibrosus, and cortical bone. Culturing of corneal fibroblasts onto aligned collagen shows that the cells adopt the organization of the fibrils. In this investigation, we observed the reversal of fibrillar growth direction or “hook” formation similar to those seen previously in a microfluidic shear-flow chamber. Although the results of this investigation clearly show that it is possible to produce small areas (O) 1 cm2 of collagen fibrils with enough alignment to guide fibroblasts, there is evidence that thin film instabilities are likely to be a significant barrier to producing organized collagen fibrils over larger areas. Successful application of this method to produce highly-controlled and organized collagenous structures will require the development of techniques to control thin film instability and will be the subject of the future work. PMID:21362500

  8. Motivating Factors and Potential Deterrents to Blood Donation in High School Aged Blood Donors

    PubMed Central

    Phan-Tang, Michelle

    2016-01-01

    Background. To ensure an adequate supply of blood, collection centers must design campaigns that successfully recruit and maintain an active donor pool. Understanding factors that motivate and deter individuals from donating may help centers develop targeted recruitment campaigns. These factors among high school aged blood donors have not yet been fully investigated. Study Design and Methods. A voluntary, anonymous survey was administered to student donors at high school mobile blood drives. The survey instrument asked the students to rate several potential motivating factors in their importance in the decision to donate blood and several potential deterring factors in their future decision whether or not to donate blood again. The survey also asked the students to rate the desirability of several potential incentives. Results. Motivating factors that reflected prosocial, empathetic, and altruistic thoughts and beliefs were rated highly by students. Pain from phlebotomy was most commonly chosen as potential deterrent. Movie tickets and cookies/snacks at the drive were rated as the most attractive incentives. Conclusion. High school aged blood donors are similar to other donor groups in their expressed motives for donating blood. This group may be unique in the factors that deter them from donating and in their preferences for different incentives. PMID:27293985

  9. Demonstration of repeatability in a high-energy-density planar shear mixing layer experiment

    DOE PAGES

    Merritt, Elizabeth Catherine; Doss, Forrest William; Di Stefano, Carlos A.; ...

    2017-03-11

    On laser-driven platforms the assumption of experiment repeatability is particularly important due to a typically low data acquisition rate that doesn’t often allow for data redundancy. If the platform is repeatable, then measurements of the repeatable dynamics from multiple experiments can be treated as measurements of the same system. In high-energy-density hydrodynamic instability experiments the interface growth is assumed to be one of the repeatable aspects of the system. In this paper we demonstrate the repeatability of the instability growth in the counter-propagating shear experiment at the OMEGA laser facility, where the instability growth is characterized by the tracer layermore » thickness or mix-width evolution. Furthermore, in our previous experiment campaigns we have assumed the instability growth was repeatable enough to identify trends, but in this work we explicitly show that the mix-width measurements for nominally identical experiments are repeatable within the measurement error bars.« less

  10. Evidence for a high slip rate of the Calico fault in the Eastern California Shear Zone

    NASA Astrophysics Data System (ADS)

    Xie, S.; Wetmore, P. H.; Owen, L. A.; Gallant, E.; Dixon, T. H.

    2016-12-01

    Fault slip rates provide important constraint on seismic hazard assessments. Geologic and geodetic estimates of slip rates across the Eastern California Shear Zone (ECSZ) reveal a discrepancy between the two data sets. Most studies attempting to reconcile the discrepancy have focused on off-fault deformation and the technique limitation of short-term geodetic measurements, while there is less concern about the relatively small number of cited geologic slip rates. The Calico fault is central fault in the Mojave Desert portion of the ECSZ, where published geologic slip rates are between 1 and 2 mm/yr. We determine new geologic slip rates of the Calico fault by dating two offset alluvial fans near the town of Newberry Springs, California. Correlation of the offset fans was based on geomorphic and soil development characteristics. Offset magnitudes are based on high-resolution topography and orthoimagery, and by cropping and matching the alluvial fans along the fault trace. Surface displacements of the two offset fans are 80 m and 1120 m. Surface exposure ages of alluvial fan samples are dated using the production of 10Be terrestrial cosmogenic nuclide (TCN). The fan with an 80 m offset produced an age of 40 ka, yielding a slip rate of 2 mm/yr, consistent with previous studies. The fan with displacement of 1120 m produced an age of 290 ka, yielding a slip rate of 4 mm/yr, indicating that the Calico fault likely had a much higher slip rate early and has decreased more recently.

  11. Particle-turbulence-acoustic interactions in high-speed free-shear flows

    NASA Astrophysics Data System (ADS)

    Shallcross, Gregory; Buchta, David; Capecelatro, Jesse

    2016-11-01

    Experimental studies have shown that the injection of micro-water droplets in turbulent flows can be used to reduce the intensity of near-field pressure fluctuations. In this study, direct numerical simulation (DNS) is used to evaluate the effects of particle-turbulence-acoustic coupling for the first time. Simulations of temporally developing mixing layers are conducted for a range of Mach numbers and mass loadings. Once the turbulence reaches a self-similar state, the air-density shear layer is seeded with a random distribution of mono disperse water-density droplets. For M =0.9 to M =1.75, preliminary results show reductions in the near-field pressure fluctuations for moderate mass loadings, consistent with experimental studies under similar conditions. At high speed, the principle reduction of the normal velocity fluctuations, which increases with particle mass loading, appears to correlate to the reduction of the near-field radiated pressure fluctuations. These findings demonstrate that the DNS reproduces the observed particle-turbulence-acoustic phenomenology, and its complete space-time database can be used to further understand their interactions.

  12. Analysis of the origins of content non-uniformity in high-shear wet granulation.

    PubMed

    Oka, Sarang; Smrčka, David; Kataria, Anjali; Emady, Heather; Muzzio, Fernando; Štěpánek, František; Ramachandran, Rohit

    2017-08-07

    In this study, the origins of granule content non-uniformity in the high-shear wet granulation of a model two-component pharmaceutical blend were investigated. Using acetaminophen as the active pharmaceutical ingredient (API) and microcrystalline cellulose as the excipient, the distribution of the API across the granule size classes was measured for a range of conditions that differed in the duration of the initial dry mixing stage, the overall composition of the blend and the wet massing time. The coarse granule fractions were found to be systematically sub-potent, while the fines were enriched in the API. The extent of content non-uniformity was found to be dependent on two factors - powder segregation during dry mixing and redistribution of the API between the granule size fractions during the wet massing phase. The latter was demonstrated in an experiment where the excipient was pre-granulated, the API was added later and wet massed. The content non-uniformity in this case was comparable to that obtained when both components were present in the granulator from the beginning. With increasing wet massing time, the extent of content non-uniformity decreased, indicating that longer wet massing times might be a solution for systems with a natural tendency for component segregation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Optimization of β-carotene loaded solid lipid nanoparticles preparation using a high shear homogenization technique

    NASA Astrophysics Data System (ADS)

    Triplett, Michael D.; Rathman, James F.

    2009-04-01

    Using statistical experimental design methodologies, the solid lipid nanoparticle design space was found to be more robust than previously shown in literature. Formulation and high shear homogenization process effects on solid lipid nanoparticle size distribution, stability, drug loading, and drug release have been investigated. Experimentation indicated stearic acid as the optimal lipid, sodium taurocholate as the optimal cosurfactant, an optimum lecithin to sodium taurocholate ratio of 3:1, and an inverse relationship between mixing time and speed and nanoparticle size and polydispersity. Having defined the base solid lipid nanoparticle system, β-carotene was incorporated into stearic acid nanoparticles to investigate the effects of introducing a drug into the base solid lipid nanoparticle system. The presence of β-carotene produced a significant effect on the optimal formulation and process conditions, but the design space was found to be robust enough to accommodate the drug. β-Carotene entrapment efficiency averaged 40%. β-Carotene was retained in the nanoparticles for 1 month. As demonstrated herein, solid lipid nanoparticle technology can be sufficiently robust from a design standpoint to become commercially viable.

  14. Fractal properties of isovelocity surfaces in high Reynolds number laboratory shear flows

    NASA Astrophysics Data System (ADS)

    Praskovsky, Alexander A.; Foss, John F.; Kleis, Stanley J.; Karyakin, Mikhail Yu.

    1993-08-01

    The fractal properties of isovelocity surfaces are studied in three high Reynolds number (Rλ≊2.0×102-3.2×103) laboratory shear flows using the standard box-counting method. The fractal dimension D=-d(log Nr)/d(log r) was estimated within the range of box sizes r from several Kolmogorov scales up to several integral scales (Nr is the number of boxes with size r required to cover the line intersection of an isovelocity surface). The inertial subrange was of particular interest in this investigation. Measurements were carried out for external intermittency factors γ≊0.6-1.0. The data were processed using threshold levels U±2.5u' (U and u' denote mean and rms values of longitudinal velocity). Over the parameters studied, no wide range of constant fractal dimension was found. On the other hand, the accuracy of constant fractal dimension approximation with D≊0.4 over the inertial subranges was shown to be similar to that of the Kolmogorov [Dokl. Akad. Nauk SSSR 30, 301 (1941)] ``two-thirds law.''

  15. Dynamic response of shear thickening fluid reinforced with SiC nanowires under high strain rates

    NASA Astrophysics Data System (ADS)

    Tan, Zhuhua; Ge, Jianhao; Zhang, Hang; Zhai, Pengcheng; Li, Weihua

    2017-07-01

    In this letter, SiC nanowires were adopted to reinforce the nanoparticle-based shear thickening fluid (STF) to improve its rheological properties. The reinforced STF showed a significant increase in viscosity. A Split-Hopkinson pressure bar was implemented to evaluate the dynamic response of STF at strain rates in the range of 3 × 103-1.2 × 104/s. For the pure STF, the flow stress reaches a saturation value with increasing strain rates and shows almost no strain rate sensitivity, whereas the flow stress of the reinforced STF increases with strain rates, and the strain rate sensitivity to flow stress is obvious owing to the resistance of nanowires. The essence of this study is to reveal that there is a limiting value of the flow stress of traditional nanoparticle-based STF at high strain rates due to the lubrication force among particles. SiC nanowires can be used to break this limitation of the nanoparticle-based STF.

  16. High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics.

    PubMed

    Zhang, Jun; Yuan, Dan; Sluyter, Ronald; Yan, Sheng; Zhao, Qianbin; Xia, Huanming; Tan, Say Hwa; Nguyen, Nam-Trung; Li, Weihua

    2017-08-29

    White blood cells (WBCs) constitute only about 0.1% of human blood cells, yet contain rich information about the immune status of the body; thus, separation of WBCs from the whole blood is an indispensable and critical sample preparation step in many scientific, clinical, and diagnostic applications. In this paper, we developed a continuous and high-throughput microfluidic WBC separation platform utilizing the differential inertial focusing of particles in serpentine microchannels. First, separation performance of the proposed method is characterized and evaluated using polystyrene beads in the serpentine channel. The purity of 10-μm polystyrene beads is increased from 0.1% to 80.3% after two cascaded processes, with an average enrichment ratio of 28 times. Next, we investigated focusing and separation properties of Jurkat cells spiked in the blood to mimic the presence of WBCs in whole blood. Finally, separation of WBCs from human whole blood was conducted and separation purity of WBCs was measured by the flow cytometry. The results show that the purity of WBCs can be increased to 48% after two consecutive processes, with an average enrichment ratio of ten times. Meanwhile, a parallelized inertial microfluidic device was designed to provide a high processing flow rate of 288 ml/h for the diluted (×1/20) whole blood. The proposed microfluidic device can potentially work as an upstream component for blood sample preparation and analysis in the integrated microfluidic systems.

  17. Geographical and socioeconomic distribution of high blood pressure and borderline high blood pressure in a Swedish rural county.

    PubMed

    Haglund, B J

    1985-01-01

    This report on "high" blood pressure (HBP) and "borderline high" blood pressure (BHBP) is based on a cross-sectional study in a rural Swedish county. The study was initiated in the Spring of 1977, selecting 7986 individuals aged 25-75 years, in 5-year intervals, in the 16 municipalities of Skaraborg County. A combination of health examination and a survey using polling of the population by interview was used. The blood pressure values that are presented are based on a casual measurement taken after a 5-minute rest period. The limits of HBP and BHBP correspond to the Swedish standard limits. Only a few researchers in Sweden have focused on the correlation between socioeconomic factors and hypertension. Moreover, few examinations have been made internationally concerning the correlation between socioeconomic factors and borderline hypertension. There was a significant variation in mean values of high blood pressure when comparing socioeconomic groups and comparing occupations. These differences associated with educational level were more pronounced for women than for men. Workers, especially men and persons with less formal education, had the highest mean blood pressure. Significant differences between socioeconomic groups existed even after adjustment for age, sex, weight index, smoking and treatment of hypertension. The socioeconomic differences constitute the most plausible explanation of differences seen between municipalities. "Borderline high" blood pressure was more prevalent than "high" blood pressure. Socioeconomic differences were greater within the borderline high blood pressure group than in the high blood pressure group. i.e., the differences between workers and civil servants were somewhat greater in the borderline high blood pressure group. Since there are socioeconomic differences, it might be possible to concentrate preventive activities in local communities on risk groups.

  18. Shear bond strengths of pressed and layered veneering ceramics to high-noble alloy and zirconia cores.

    PubMed

    Ishibe, Motoaki; Raigrodski, Ariel J; Flinn, Brian D; Chung, Kwok-Hung; Spiekerman, Charles; Winter, Robert R

    2011-07-01

    Heat-pressed ceramics to metal alloys and zirconia have been available for some time. However, information regarding their shear bond strengths is limited. The purpose of this study was to evaluate the shear bond strengths of heat-pressed and layered ceramics with regard to their corresponding high-noble alloy and zirconia cores. Forty cylinders (approx. 5 mm in diameter) of high-noble alloy (Olympia) were cast and divided into 4 groups (n=10). Metal cylinders were veneered with ceramics to produce shear test specimens: Group PMI with IPS InLine POM; Group LMI with IPS InLine; Group PMC with Pulse press-to-metal; and Group LMC with Authentic Pulse Metal ceramic. Forty cylinders (approx. 5 mm in diameter) of zirconia (Lava) were obtained and divided into 4 groups (n=10). These cylinders were veneered with ceramics to produce shear test specimens: Group PZI with IPS e.max ZirPress; Group LZI with IPS e.max. Ceram; Group PZV with VITA PM9; and Group LZV with VITA VM9. The veneering ceramics, 3 mm in thickness, were either pressed or layered to their corresponding cylinders. Thermal cycling was performed at 5°C and 55°C for 20,000 cycles with a 20 second dwell time. Shear bond strength testing was conducted in a universal testing machine, and the failure strengths were recorded. Fracture surfaces were characterized visually, under a stereomicroscope, and with a scanning electron microscope (SEM). Data were analyzed using rank-based Kruskal-Wallis and Mann-Whitney tests with Bonferroni correction to adjust for multiple comparisons (α=.05). For metal ceramic specimens, the mean (SD) shear bond strengths ranged from 37.8 (20.6) MPa to 66.4 (22.1) MPa. There were significant differences between Groups PMI and PMC and between Groups LMI and PMC, in which Groups PMI and LMI had significantly higher strength values than Group PMC (P=.041). For zirconia ceramic specimens, the mean (SD) shear bond strengths ranged from 30.03 (9.49) MPa to 47.2 (13.0) MPa, with Group LZV

  19. Studies of wall shear and mass transfer in a large scale model of neonatal high-frequency jet ventilation.

    PubMed

    Muller, W J; Gerjarusek, S; Scherer, P W

    1990-01-01

    The problem of endotracheal erosion associated with neonatal high-frequency jet ventilation (HFJV) is investigated through measurement of air velocity profiles in a scaled up model of the system. Fluid mechanical scaling principles are applied in order to construct a model within which velocity profiles are measured by hot-wire anemometry. The effects of two different jet geometries are investigated. Velocity gradients measured near the tracheal wall are used to measure the shear stresses caused by the jet flow on the wall. The Chilton-Colburn analogy between the transport of momentum and mass is applied to investigate tracheal drying caused by the high shear flow. Shear forces are seen to be more than two times higher for jets located near the endotracheal tube wall than for those located axisymmetrically in the center of the tube. Since water vapor fluxes are dependent on these shears, they are also higher for the asymmetric case. Fluxes are shown to be greatly dependent on the temperature and relative humidity of the inspired gas. Water from the tracheal surface may be depleted within one second if inspired gases are inadequately heated and humidified. It is recommended that the design of neonatal HFJV devices include delivery of heated (near body temperature), humidified (as close to 100% humidity as possible) gases through an axisymmetric jet to best avoid the problem of endotracheal erosion.

  20. Effective Blending of Ultrahigh Molecular Weight Polyethylene with High-Density Polyethylene via Solid-State Shear Pulverization (SSSP)

    NASA Astrophysics Data System (ADS)

    Diop, Mirian; Torkelson, John

    2014-03-01

    Compared with conventional polyolefins, ultrahigh molecular weight polyethylene (UHMWPE) possesses outstanding mechanical properties, including impact strength and crack resistance, that make it it highly desirable for applications ranging from body armor to implants. Unfortunately, UHMWPE has an ultrahigh melt viscosity that renders common melt processes ineffective for making products from UHMWPE. Attempts to overcome this problem by blending UHMWPE with polyethylene (PE) by conventional melt mixing have been unsuccessful because of the enormous viscosity mismatch between blend components and have led to large suspensions of UHMWPE particles within a PE matrix. Here, we show the utility of solid-state shear pulverization (SSSP) in achieving effectively and intimately mixed UHMWPE/PE blends. For blends with up to 50 wt% UHMWPE we observe only slight increases in viscosity (η) at high shear rates but major increases in η with increasing UHMWPE content at low shear rates. Using extensional rheology, we confirm the strain hardening behavior of SSSP blends. Additionally, shear rheology and differential scanning calorimetry data indicate that the degree of mixing between UHMWPE and HDPE domains can be increased dramatically with subsequent passes of SSSP and single screw extrusion. Finally, blends prepared via SSSP show dramatic increases in impact strength; e.g., for a 30/70 wt% UHMWPE/HDPE blend, impact strength increases by about 300 % (relative to the parent neat HDPE).

  1. High-Power Characteristics of Thickness Shear Mode for Textured SrBi2Nb2O9 Ceramics

    NASA Astrophysics Data System (ADS)

    Ogawa, Hirozumi; Kawada, Shinichiro; Kimura, Masahiko; Higuchi, Yukio; Takagi, Hiroshi

    2009-09-01

    The high-power piezoelectric characteristics of the thickness shear mode for <00l> oriented ceramics of bismuth layer structured ferroelectrics (BLSF), SrBi2Nb2O9 (SBN), were studied by the constant current driving method. These textured ceramics were fabricated by the templated grain growth (TGG) method, and the Lotgering factor was 95%. The vibration of the thickness shear mode in the textured SBN ceramics was stable at the vibration velocity of 2.0 m/s. The resonant frequency was almost constant with increasing vibration velocity in the textured SBN ceramics, however, it decreased with increasing vibration velocity in the randomly oriented SBN ceramics. In the case of Pb(Mn,Nb)O3-Pb(Zr,Ti)O3 ceramics, the vibration velocity of the thickness shear mode was saturated at more than 0.3 m/s, and the resonant frequency decreased at lower vibration velocity than in the case of SBN ceramics. The dissipation power density of the textured SBN ceramics was the lowest among those of the randomly oriented SBN and Pb(Mn,Nb)O3-PZT ceramics. The thickness shear mode of textured SBN ceramics is a good candidate for high-power piezoelectric applications.

  2. The Republic of Georgia High Blood Pressure Control Program.

    PubMed

    Barbakadze, Vakhtang Y; Koblianidze, Levan G; Kipshidze, Nodar N; Grim, Clarence E; Grim, Carlene M; Tavill, Frederick

    2006-01-01

    52% of adults have uncontrolled hypertension in the Republic of Georgia. We incorporated a blood pressure control program into an existing primary healthcare system in an attempt to improve the rate of blood pressure control. We conducted standardized trainings of rural primary care providers--doctors and nurses--in accurate measurement of blood pressure according to the Shared Care Method of Training and Certification. Our attention was focused especially on patient management based on Joint National Committee on the Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC) guidelines. Antihypertensive treatment was implemented by a stepped-care approach; hydrochlorothiazide and atenolol were given to patients at follow-up visits at no cost. The treatment goal was < 140/ 90 mm Hg based on the office blood pressure. A total of 251 patients with uncontrolled hypertension were enrolled in the program; 32% had stage I hypertension, 41% had stage II hypertension, and 27% had stage III, as defined by JNC VI. During the first 30 months of followup, blood pressure decreased gradually from 170/95 to 140/ 82 mm Hg. The rate of high blood pressure control increased progressively up to 59%. We conclude that hypertension control can be improved in all groups of patients, even in a healthcare system with limited resources. We emphasize that Georgia or any other healthcare system should not wait for universal health care to improve high blood pressure control. It can be incorporated into whatever system exists today.

  3. Blood flow regulation and oxygen uptake during high-intensity forearm exercise.

    PubMed

    Nyberg, S K; Berg, O K; Helgerud, J; Wang, E

    2017-04-01

    The vascular strain is very high during heavy handgrip exercise, but the intensity and kinetics to reach peak blood flow, and peak oxygen uptake, are uncertain. We included 9 young (25 ± 2 yr) healthy males to evaluate blood flow and oxygen uptake responses during continuous dynamic handgrip exercise with increasing intensity. Blood flow was measured using Doppler-ultrasound, and venous blood was drawn from a deep forearm vein to determine arteriovenous oxygen difference (a-vO2diff) during 6-min bouts of 60, 80, and 100% of maximal work rate (WRmax), respectively. Blood flow and oxygen uptake increased (P < 0.05) from 60%WRmax [557 ± 177(SD) ml/min; 56.0 ± 21.6 ml/min] to 80%WRmax (679 ± 190 ml/min; 70.6 ± 24.8 ml/min), but no change was seen from 80%WRmax to 100%WRmax Blood velocity (49.5 ± 11.5 to 58.1 ± 11.6 cm/s) and brachial diameter (0.49 ± 0.05 to 0.50 ± 0.06 cm) showed concomitant increases (P < 0.05) with blood flow from 60% to 80%WRmax, whereas no differences were observed in a-vO2diff Shear rate also increased (P < 0.05) from 60% (822 ± 196 s(-1)) to 80% (951 ± 234 s(-1)) of WRmax The mean response time (MRT) was slower (P < 0.05) for blood flow (60%WRmax 50 ± 22 s; 80%WRmax 51 ± 20 s; 100%WRmax 51 ± 23 s) than a-vO2diff (60%WRmax 29 ± 9 s; 80%WRmax 29 ± 5 s; 100%WRmax 20 ± 5 s), but not different from oxygen uptake (60%WRmax 44 ± 25 s; 80%WRmax 43 ± 14 s; 100%WRmax 41 ± 32 s). No differences were observed in MRT for blood flow or oxygen uptake with increased exercise intensity. In conclusion, when approaching maximal intensity, oxygen uptake appeared to reach a critical level at ~80% of WRmax and be regulated by blood flow. This implies that high, but not maximal, exercise intensity may be an optimal stimulus for shear stress-induced small muscle mass training adaptations.NEW & NOTEWORTHY This study evaluated blood flow regulation and oxygen uptake during small muscle mass forearm exercise with high to maximal intensity. Despite

  4. Blood characteristics for high altitude adaptation in Tibetan chickens.

    PubMed

    Zhang, H; Wu, C X; Chamba, Y; Ling, Y

    2007-07-01

    Tibetan chickens, a unique chicken breed native to high altitude, have good adaptation to hypoxia. The experiment was conducted to determine the adaptive blood characteristics in Tibetan chickens. Fertile eggs from Tibetan and Dwarf Recessive White chickens were incubated, and the chicks were reared until 10 wk of age at low altitude (100 m) and high altitude (2,900 m). At 1 d and 2, 6, and 10 wk of age, the hematological characteristics, blood gas value, and blood volume were measured. Tibetan chickens had more red blood cells (RBC), smaller mean cell volume, lower pH and partial pressure of oxygen, and higher partial pressure of carbon dioxide at high altitude and had lower blood volume, erythrocyte volume, and plasma volume at low and high altitude than Dwarf Recessive White chickens. Tibetan chickens reared at high altitude retained a high level of RBC and a stable level of hematocrit from younger to older, but Dwarf Recessive White chickens reared at high altitude presented an increase in RBC and hematocrit values. It was concluded the adaptation was achieved in Tibetan chickens by increase in RBC and blood oxygen affinity, decrease in mean cell volume, and reducing susceptivity to hypocapnia.

  5. Yoga Called Good Medicine for High Blood Pressure

    MedlinePlus

    ... fullstory_162446.html Yoga Called Good Medicine for High Blood Pressure People who added this practice to a healthy ... in people who are at risk for developing hypertension, a new study finds. "Patients with pre-hypertension [ ...

  6. High Blood Pressure and Sex: Overcome the Challenges

    MedlinePlus

    ... achieve and maintain erections — often referred to as erectile dysfunction. The problem is fairly common. High blood pressure ... have similar effects. Even a single episode of erectile dysfunction can cause anxiety. Fears that it will happen ...

  7. How Potassium Can Help Control High Blood Pressure

    MedlinePlus

    ... heart-healthy benefits of potassium Foods that are rich in potassium are important in managing high blood ... mashed sweet potatoes has 475 mg. Other potassium-rich foods include: Apricots and apricot juice Cantaloupe and ...

  8. PVP immobilized SiO2 nanospheres for high-performance shear thickening fluid

    NASA Astrophysics Data System (ADS)

    Liu, Mei; Chen, Qian; Wang, Sheng; Bai, Linfeng; Sang, Min; Jiang, Wanquan; Xuan, Shouhu; Gong, Xinglong

    2017-07-01

    We develop a modified method to improve the rheological performance of SiO2-based shear thickening fluid (STF). Directly adding surfactant into STF is the most common method to improve the rheological performance of SiO2-based STF. However, the final viscosity increases quickly with the increase of shear rate, which is against for the practical applications. In this work, SiO2 nanospheres are firstly modified by PVP K30 through an ethanol refluxing method and the modified SiO2 nanospheres are used to prepare PVP@SiO2-STF. Compared with the unmodified SiO2 based STF (SiO2-STF), the PVP@SiO2-STF presents an obvious increase of shear thickening (ST) effects and the maximum viscosity increases by 7 times and the critical shear rates decrease about 10 times approximately. A reasonable explanation is proposed to interpret the influence of the modification methods on the rheological properties of STF. This work provides a new way to control the shear thickening behavior and also contributes to understand the mechanism of ST effect, which has an important significance to develop controllable STF.

  9. Stability of DIII-D high-performance, negative central shear discharges

    DOE PAGES

    Hanson, Jeremy M.; Berkery, John W.; Bialek, James M.; ...

    2017-03-20

    Tokamak plasma experiments on the DIII-D device demonstrate high-performance, negative central shear (NCS) equilibria with enhanced stability when the minimum safety factor qmin exceeds 2, qualitatively confirming theoretical predictions of favorable stability in the NCS regime. The discharges exhibit good confinement with an L-mode enhancement factor H89 = 2.5, and are ultimately limited by the ideal-wall external kink stability boundary as predicted by ideal MHD theory, as long as tearing mode (TM) locking events, resistive wall modes (RWMs), and internal kink modes are properly avoided or controlled. Although the discharges exhibit rotating TMs, locking events are avoided as long asmore » a threshold minimum safety factor value qmin > 2 is maintained. Fast timescale magnetic feedback control ameliorates RWM activity, expanding the stable operating space and allowing access to βN values approaching the ideal-wall limit. Quickly growing and rotating instabilities consistent with internal kink mode dynamics are encountered when the ideal-wall limit is reached. The RWM events largely occur between the no- and ideal-wall pressure limits predicted by ideal MHD. However, evaluating kinetic contributions to the RWM dispersion relation results in a prediction of passive stability in this regime due to high plasma rotation. In addition, the ideal MHD stability analysis predicts that the ideal-wall limit can be further increased to βN > 4 by broadening the current profile. Furthermore, this path toward improved stability has the potential advantage of being compatible with the bootstrap-dominated equilibria envisioned for advanced tokamak (AT) fusion reactors.« less

  10. Multiple MHD instabilities in high-β N toroidal plasmas with reversed magnetic shear

    NASA Astrophysics Data System (ADS)

    Liu, T.; Yang, J. F.; Hao, G. Z.; Liu, Y. Q.; Wang, Z. X.; Zheng, S.; Wang, A. K.; He, H. D.

    2017-06-01

    The toroidal magnetohydrodynamic (MHD) code MARS-F (Liu et al 2000 Phys. Plasmas 7 3681) is applied to numerically investigate multiple MHD instabilities in high-β N (β N is the beta normalized) toroidal plasmas with reversed magnetic shear, and with different radial separations {{Δ }}{r}s between the two q = 2 rational surfaces. A resistive wall is also taken into account. In the small {{Δ }}{r}s regime, it is found that a finite β N leads to multiple branches of the double tearing mode (DTM). The beta normalized has a stabilizing effect on the most unstable branch. There exists a critical value β Nc , above which the real frequency of the most unstable mode becomes finite due to the favorable average curvature effect (Glasser et al 1975 Phys. Fluids 18 875). Moreover, the critical value β Nc decreases with increasing plasma resistivity η . In the large {{Δ }}{r}s regime, on the other hand, finite beta normalized can help to transform the two DTM branches into an external kink mode (EKM). Increasing β N can also couple two single tearing modes, forming a DTM. In the intermediate {{Δ }}{r}s regime, interestingly, a new branch with EKM structure appears, which successively couples with the other two branches as {{Δ }}{r}s increases, recovering the EKM found in the large {{Δ }}{r}s limit. Characteristics of the eigenmode structures in different {{Δ }}{r}s regimes are compared and analyzed in detail. Furthermore, the properties of the high-β N MHD instabilities, with higher toroidal mode number n, are also investigated. It is found that, in the small {{Δ }}{r}s limit, the growth rate always first increases and then decreases with n, forming a broad n spectrum. The critical value {β }Nc decreases with n. In the large {{Δ }}{r}s limit, however, the growth rate of the n = 2 mode is strongly reduced with increasing β N .

  11. Stability of DIII-D high-performance, negative central shear discharges

    NASA Astrophysics Data System (ADS)

    Hanson, J. M.; Berkery, J. W.; Bialek, J.; Clement, M.; Ferron, J. R.; Garofalo, A. M.; Holcomb, C. T.; La Haye, R. J.; Lanctot, M. J.; Luce, T. C.; Navratil, G. A.; Olofsson, K. E. J.; Strait, E. J.; Turco, F.; Turnbull, A. D.

    2017-05-01

    Tokamak plasma experiments on the DIII-D device (Luxon et al 2005 Fusion Sci. Tech. 48 807) demonstrate high-performance, negative central shear (NCS) equilibria with enhanced stability when the minimum safety factor {{q}\\text{min}} exceeds 2, qualitatively confirming theoretical predictions of favorable stability in the NCS regime. The discharges exhibit good confinement with an L-mode enhancement factor H 89  =  2.5, and are ultimately limited by the ideal-wall external kink stability boundary as predicted by ideal MHD theory, as long as tearing mode (TM) locking events, resistive wall modes (RWMs), and internal kink modes are properly avoided or controlled. Although the discharges exhibit rotating TMs, locking events are avoided as long as a threshold minimum safety factor value {{q}\\text{min}}>2 is maintained. Fast timescale magnetic feedback control ameliorates RWM activity, expanding the stable operating space and allowing access to {β\\text{N}} values approaching the ideal-wall limit. Quickly growing and rotating instabilities consistent with internal kink mode dynamics are encountered when the ideal-wall limit is reached. The RWM events largely occur between the no- and ideal-wall pressure limits predicted by ideal MHD. However, evaluating kinetic contributions to the RWM dispersion relation results in a prediction of passive stability in this regime due to high plasma rotation. In addition, the ideal MHD stability analysis predicts that the ideal-wall limit can be further increased to {β\\text{N}}>4 by broadening the current profile. This path toward improved stability has the potential advantage of being compatible with the bootstrap-dominated equilibria envisioned for advanced tokamak (AT) fusion reactors.

  12. Experimental study of laminar blood flow through an artery treated by a stent implantation: characterisation of intra-stent wall shear stress.

    PubMed

    Benard, Nicolas; Coisne, Damien; Donal, Erwan; Perrault, Robert

    2003-07-01

    The stimulation of endothelial cells by arterial wall shear stress (WSS) plays a central role in restenosis. The fluid-structure interaction between stent wire and blood flow alters the WSS, particularly between stent struts. We have designed an in vitro model of struts of an intra-vascular prosthesis to study blood flow through a 'stented' section. The experimental artery consisted of a transparent square section test vein, which reproduced the strut design (100x magnifying power). A programmable pump was used to maintain a steady blood flow. Particle image velocimetry method was used to measure the flow between and over the stent branches, and to quantify WSS. Several prosthesis patterns that were representative of the total stent strut geometry were studied in a greater detail. We obtained WSS values of between -1.5 and 1.5Pa in a weak SS area which provided a source of endothelial stimulation propitious to restenosis. We also compared two similar patterns located in two different flow areas (one at the entry of the stent and one further downstream). We only detected a slight difference between the weakest SS levels at these two sites. As the endothelial proliferation is greatly influenced by the SS, knowledge of the SS modification induced by the stent implantation could be of importance for intra-vascular prostheses design optimisation and thus can help to reduce the restenosis incidence rate.

  13. Climatological characteristics of high altitude wind shear and lapse rate layers

    NASA Technical Reports Server (NTRS)

    Ehernberger, L. J.; Guttman, N. B.

    1981-01-01

    Indications of the climatological distribution of wind shear and temperature lapse and inversion rates as observed by rawinsonde measurements over the western United States are recorded. Frequencies of the strongest shear, lapse rates, and inversion layer strengths were observed for a 1 year period of record and were tabulated for the lower troposphere, the upper troposphere, and five altitude intervals in the lower stratosphere. Selected bivariate frequencies were also tabulated. Strong wind shears, lapse rates, and inversion are observed less frequently as altitude increases from 175 millibars to 20 millibars. On a seasonal basis the frequencies were higher in winter than in summer except for minor influences due to increased tropopause altitude in summer and the stratospheric wind reversal in the spring and fall.

  14. A shear gradient-activated microfluidic device for automated monitoring of whole blood haemostasis and platelet function.

    PubMed

    Jain, Abhishek; Graveline, Amanda; Waterhouse, Anna; Vernet, Andyna; Flaumenhaft, Robert; Ingber, Donald E

    2016-01-06

    Accurate assessment of blood haemostasis is essential for the management of patients who use extracorporeal devices, receive anticoagulation therapy or experience coagulopathies. However, current monitoring devices do not measure effects of haemodynamic forces that contribute significantly to platelet function and thrombus formation. Here we describe a microfluidic device that mimics a network of stenosed arteriolar vessels, permitting evaluation of blood clotting within small sample volumes under pathophysiological flow. By applying a clotting time analysis based on a phenomenological mathematical model of thrombus formation, coagulation and platelet function can be accurately measured in vitro in patient blood samples. When the device is integrated into an extracorporeal circuit in pig endotoxemia or heparin therapy models, it produces real-time readouts of alterations in coagulation ex vivo that are more reliable than standard clotting assays. Thus, this disposable device may be useful for personalized diagnostics and for real-time surveillance of antithrombotic therapy in clinic.

  15. A shear gradient-activated microfluidic device for automated monitoring of whole blood haemostasis and platelet function

    PubMed Central

    Jain, Abhishek; Graveline, Amanda; Waterhouse, Anna; Vernet, Andyna; Flaumenhaft, Robert; Ingber, Donald E.

    2016-01-01

    Accurate assessment of blood haemostasis is essential for the management of patients who use extracorporeal devices, receive anticoagulation therapy or experience coagulopathies. However, current monitoring devices do not measure effects of haemodynamic forces that contribute significantly to platelet function and thrombus formation. Here we describe a microfluidic device that mimics a network of stenosed arteriolar vessels, permitting evaluation of blood clotting within small sample volumes under pathophysiological flow. By applying a clotting time analysis based on a phenomenological mathematical model of thrombus formation, coagulation and platelet function can be accurately measured in vitro in patient blood samples. When the device is integrated into an extracorporeal circuit in pig endotoxemia or heparin therapy models, it produces real-time readouts of alterations in coagulation ex vivo that are more reliable than standard clotting assays. Thus, this disposable device may be useful for personalized diagnostics and for real-time surveillance of antithrombotic therapy in clinic. PMID:26733371

  16. Observation and modeling of mixing-layer development in high-energy-density, blast-wave-driven shear flow

    SciTech Connect

    Di Stefano, C. A. Kuranz, C. C.; Klein, S. R.; Drake, R. P.; Malamud, G.; Henry de Frahan, M. T.; Johnsen, E.; Shimony, A.; Shvarts, D.; Smalyuk, V. A.; Martinez, D.

    2014-05-15

    In this work, we examine the hydrodynamics of high-energy-density (HED) shear flows. Experiments, consisting of two materials of differing density, use the OMEGA-60 laser to drive a blast wave at a pressure of ∼50 Mbar into one of the media, creating a shear flow in the resulting shocked system. The interface between the two materials is Kelvin-Helmholtz unstable, and a mixing layer of growing width develops due to the shear. To theoretically analyze the instability's behavior, we rely on two sources of information. First, the interface spectrum is well-characterized, which allows us to identify how the shock front and the subsequent shear in the post-shock flow interact with the interface. These observations provide direct evidence that vortex merger dominates the evolution of the interface structure. Second, simulations calibrated to the experiment allow us to estimate the time-dependent evolution of the deposition of vorticity at the interface. The overall result is that we are able to choose a hydrodynamic model for the system, and consequently examine how well the flow in this HED system corresponds to a classical hydrodynamic description.

  17. Study of the strength of molybdenum under high pressure using electromagnetically applied compression-shear ramp loading

    NASA Astrophysics Data System (ADS)

    Ding, Jow; Alexander, C. Scott; Asay, James

    2015-06-01

    MAPS (Magnetically Applied Pressure Shear) is a new technique that has the potential to study material strength under mega-bar pressures. By applying a mixed-mode pressure-shear loading and measuring the resultant material responses, the technique provides explicit and direct information on material strength under high pressure. In order to apply sufficient shear traction to the test sample, the driver must have substantial strength. Molybdenum was selected for this reason along with its good electrical conductivity. In this work, the mechanical behavior of molybdenum under MAPS loading was studied. To understand the experimental data, a viscoplasticity model with tension-compression asymmetry was also developed. Through a combination of experimental characterization, model development, and numerical simulation, many unique insights were gained on the inelastic behavior of molybdenum such as the effects of strength on the interplay between longitudinal and shear stresses, potential interaction between the magnetic field and molybdenum strength, and the possible tension-compression asymmetry of the inelastic material response. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  18. EXTREMELY RAPID STAR CLUSTER DISRUPTION IN HIGH-SHEAR CIRCUMNUCLEAR STARBURST RINGS: THE UNUSUAL CASE OF NGC 7742

    SciTech Connect

    De Grijs, Richard; Anders, Peter E-mail: anders@pku.edu.cn

    2012-10-10

    All known mass distributions of recently formed star cluster populations resemble a 'universal' power-law function. Here we assess the impact of the extremely disruptive environment in NGC 7742's circumnuclear starburst ring on the early evolution of the galaxy's high-mass ({approx}10{sup 5}-10{sup 7} M{sub Sun }) star cluster population. Surprisingly, and contrary to expectations, at all ages-including the youngest, {approx}< 15 Myr-the cluster mass functions are robustly and verifiably represented by lognormal distributions that resemble those commonly found only for old, evolved globular cluster systems in the local universe. This suggests that the high-shear conditions in the NGC 7742 starburst ring may significantly speed up dynamical star cluster destruction. This enhanced mass-dependent disruption rate at very young ages might be caused by a combination of the starburst ring's high density and the shear caused by the counterrotating gas disk.

  19. Effect of electrolyzed high-pH alkaline water on blood viscosity in healthy adults.

    PubMed

    Weidman, Joseph; Holsworth, Ralph E; Brossman, Bradley; Cho, Daniel J; St Cyr, John; Fridman, Gregory

    2016-01-01

    Previous research has shown fluid replacement beverages ingested after exercise can affect hydration biomarkers. No specific hydration marker is universally accepted as an ideal rehydration parameter following strenuous exercise. Currently, changes in body mass are used as a parameter during post-exercise hydration. Additional parameters are needed to fully appreciate and better understand rehydration following strenuous exercise. This randomized, double-blind, parallel-arm trial assessed the effect of high-pH water on four biomarkers after exercise-induced dehydration. One hundred healthy adults (50 M/50 F, 31 ± 6 years of age) were enrolled at a single clinical research center in Camden, NJ and completed this study with no adverse events. All individuals exercised in a warm environment (30 °C, 70% relative humidity) until their weight was reduced by a normally accepted level of 2.0 ± 0.2% due to perspiration, reflecting the effects of exercise in producing mild dehydration. Participants were randomized to rehydrate with an electrolyzed, high-pH (alkaline) water or standard water of equal volume (2% body weight) and assessed for an additional 2-h recovery period following exercise in order to assess any potential variations in measured parameters. The following biomarkers were assessed at baseline and during their recovery period: blood viscosity at high and low shear rates, plasma osmolality, bioimpedance, and body mass, as well as monitoring vital signs. Furthermore, a mixed model analysis was performed for additional validation. After exercise-induced dehydration, consumption of the electrolyzed, high-pH water reduced high-shear viscosity by an average of 6.30% compared to 3.36% with standard purified water (p = 0.03). Other measured biomarkers (plasma osmolality, bioimpedance, and body mass change) revealed no significant difference between the two types of water for rehydration. However, a mixed model analysis validated the effect of high

  20. Nitric oxide generation by endothelial cells exposed to shear stress in glass tubes perfused with red blood cell suspensions: role of aggregation.

    PubMed

    Yalcin, Ozlem; Ulker, Pinar; Yavuzer, Ugur; Meiselman, Herbert J; Baskurt, Oguz K

    2008-05-01

    Endothelial function is modulated by wall shear stress acting on the vessel wall, which is determined by fluid velocity and the local viscosity near the vessel wall. Red blood cell (RBC) aggregation may affect the local viscosity by favoring axial migration. The aim of this study was to investigate the role of RBC aggregation, with or without altered plasma viscosity, in the mechanically induced nitric oxide (NO)-related mechanisms of endothelial cells. Human umbilical vein endothelial cells (HUVEC) were cultured on the inner surface of cylindrical glass capillaries that were perfused with RBC suspensions having normal and increased aggregation at a nominal shear stress of 15 dyn/cm(2). RBC aggregation was enhanced by two different approaches: 1) poloxamer-coated RBC suspended in normal, autologous plasma, resulting in enhanced aggregation but unchanged plasma viscosity and 2) normal RBC suspended in autologous plasma containing 0.5% dextran (mol mass 500 kDa), with a similar level of RBC aggregation but higher plasma viscosity. Compared with normal cells in unmodified plasma, perfusion with suspensions of poloxamer-coated RBC in normal plasma resulted in decreased levels of NO metabolites and serine 1177 phosphorylation of endothelial nitric oxide synthase (eNOS). Perfusion with normal RBC in plasma containing dextran resulted in a NO level that remained elevated, whereas only a modest decrease of phosphorylated eNOS level was observed. The results of this study suggest that increases of RBC aggregation tendency affect endothelial cell functions by altering local blood composition, especially if the alterations of RBC aggregation are due to modified cellular properties and not to plasma composition changes.

  1. Rat muscle blood flows during high-speed locomotion

    SciTech Connect

    Armstrong, R.B.; Laughlin, M.H.

    1985-10-01

    We previously studied blood flow distribution within and among rat muscles as a function of speed from walking (15 m/min) through galloping (75 m/min) on a motor-driven treadmill. The results showed that muscle blood flows continued to increase as a function of speed through 75 m/min. The purpose of the present study was to have rats run up to maximal treadmill speeds to determine if blood flows in the muscles reach a plateau as a function of running speed over the animals normal range of locomotory speeds. Muscle blood flows were measured with radiolabeled microspheres at 1 min of running at 75, 90, and 105 m/min in male Sprague-Dawley rats. The data indicate that even at these relatively high treadmill speeds there was still no clear evidence of a plateau in blood flow in most of the hindlimb muscles. Flows in most muscles continued to increase as a function of speed. These observed patterns of blood flow vs. running speed may have resulted from the rigorous selection of rats that were capable of performing the high-intensity exercise and thus only be representative of a highly specific population of animals. On the other hand, the data could be interpreted to indicate that the cardiovascular potential during exercise is considerably higher in laboratory rats than has normally been assumed and that inadequate blood flow delivery to the muscles does not serve as a major limitation to their locomotory performance.

  2. High blood pressure in acute ischemic stroke and underlying disorders.

    PubMed

    Toyoda, Kazunori; Okada, Yasushi; Jinnouchi, Juro; Gotoh, Seiji; Yokoyama, Yoko; Fujimoto, Shigeru; Ibayashi, Setsuro

    2006-01-01

    The Acute Candesartan Cilexetil Therapy in Stroke Survivors (ACCESS) study indicated that early treatment with an angiotensin type 1 receptor blocker in acute stroke patients who had relatively high blood pressure improved cardiovascular morbidity and mortality in the chronic stage. To better interpret the findings of this study, we determined whether stroke patients with high acute blood pressure had specific underlying conditions. We divided 712 consecutive patients who were hospitalized within 48 h after the onset of brain infarction into two groups: 77 patients with high acute blood pressure that met the criteria of the ACCESS study and the 635 remaining patients. Underlying risk factors and comorbidities, stroke characteristics, as well as mortality, vascular events, and disability at 3 weeks were compared between the two groups. Patients with high acute blood pressure more frequently had diabetes mellitus (p < 0.01), intracranial arterial stenosis (p < 0.02), higher levels of hemoglobin A1c (p < 0.005), higher creatinine levels (p < 0.005), and tended to more frequently have ischemic heart disease (p < 0.09) and infarcts <1.5 cm in diameter (p < 0.09) than the other patients. On multivariate analysis, high levels of hemoglobin A1c, high creatinine levels, and intracranial arterial stenosis were independently predictive of high acute blood pressure. At 3 weeks after the stroke onset, patients with high acute blood pressure were more dependent in their daily living activities (p < 0.02) and more frequently developed vascular events or death (p < 0.005) than the other patients. Poorly controlled diabetes mellitus and advanced renal damage appeared to correlate with acute hypertension after stroke. Since intracranial arterial stenosis also seemed to contribute to high acute blood pressure, one should be careful not to induce cerebral hypoperfusion by the early use of antihypertensives. Copyright (c) 2006 S. Karger AG, Basel.

  3. Highly sensitive Escherichia coli shear horizontal surface acoustic wave biosensor with silicon dioxide nanostructures.

    PubMed

    Ten, S T; Hashim, U; Gopinath, S C B; Liu, W W; Foo, K L; Sam, S T; Rahman, S F A; Voon, C H; Nordin, A N

    2017-07-15

    Surface acoustic wave mediated transductions have been widely used in the sensors and actuators applications. In this study, a shear horizontal surface acoustic wave (SHSAW) was used for the detection of food pathogenic Escherichia coli O157:H7 (E.coli O157:H7), a dangerous strain among 225 E. coli unique serotypes. A few cells of this bacterium are able to cause young children to be most vulnerable to serious complications. Presence of higher than 1cfu E.coli O157:H7 in 25g of food has been considered as a dangerous level. The SHSAW biosensor was fabricated on 64° YX LiNbO3 substrate. Its sensitivity was enhanced by depositing 130.5nm thin layer of SiO2 nanostructures with particle size lesser than 70nm. The nanostructures act both as a waveguide as well as a physical surface modification of the sensor prior to biomolecular immobilization. A specific DNA sequence from E. coli O157:H7 having 22 mers as an amine-terminated probe ssDNA was immobilized on the thin film sensing area through chemical functionalization [(CHO-(CH2)3-CHO) and APTES; NH2-(CH2)3-Si(OC2H5)3]. The high-performance of sensor was shown with the specific oligonucleotide target and attained the sensitivity of 0.6439nM/0.1kHz and detection limit was down to 1.8femto-molar (1.8×10(-15)M). Further evidence was provided by specificity analysis using single mismatched and complementary oligonucleotide sequences. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. High shear treatment of concentrates and drying conditions influence the solubility of milk protein concentrate powders.

    PubMed

    Augustin, Mary Ann; Sanguansri, Peerasak; Williams, Roderick; Andrews, Helen

    2012-11-01

    The solubility of milk protein concentrate (MPC) powders was influenced by the method used for preparing the concentrate, drying conditions, and the type of dryer used. Increasing total solids of the ultrafiltered concentrates (23% total solids, TS) by diafiltration to 25% TS or evaporation to 31% TS decreased the solubility of MPC powders (80-83% protein, w/w dry basis), with ultrafiltration followed by evaporation to higher total solids having the greater detrimental effect on solubility. High shear treatment (homogenisation at 350/100 bar, microfluidisation at 800 bar or ultrasonication at 24 kHz, 600 watts) of ultrafiltered and diafiltered milk protein concentrates prior to spray drying increased the nitrogen solubility of MPC powders (82% protein, w/w dry basis). Of the treatments applied, microfluidisation was the most effective for increasing nitrogen solubility of MPC powders after manufacture and during storage. Manufacture of MPC powders (91% protein, w/w dry basis) prepared on two different pilot-scale dryers (single stage or two stage) from milk protein concentrates (20% TS) resulted in powders with different nitrogen solubility and an altered response to the effects of microfluidisation. Microfluidisation (400, 800 and 1200 bar) of the concentrate prior to drying resulted in increased long term solubility of MPC powders that were prepared on a single stage dryer but not those produced on a two stage spray dryer. This work demonstrates that microfluidisation can be used as a physical intervention for improving MPC powder solubility. Interactions between the method of preparation and treatment of concentrate prior to drying, the drying conditions and dryer type all influence MPC solubility characteristics.

  5. Identification of highly active flocculant proteins in bovine blood.

    PubMed

    Piazza, George J; Nuñez, Alberto; Garcia, Rafael A

    2012-03-01

    Synthetic polymeric flocculants are used extensively for wastewater remediation, soil stabilization, and reduction in water leakage from unlined canals. Sources of highly active, inexpensive, renewable flocculants are needed to replace synthetic flocculants. High kaolin flocculant activity was documented for bovine blood (BB) and blood plasma with several anticoagulant treatments. BB serum also had high flocculant activity. To address the hypothesis that some blood proteins have strong flocculating activity, the BB proteins were separated by SEC. Then, the major proteins of the flocculant-active fractions were separated by SDS-PAGE. Identity of the major protein components was determined by tryptic digestion and peptide analysis by MALDI TOF MS. The sequence of selected peptides was confirmed using TOF/TOF-MS/MS fragmentation. Hemoglobin dimer (subunits α and β) was identified as the major protein component of the active fraction in BB; its high flocculation activity was confirmed by testing a commercial sample of hemoglobin. In the same manner, three proteins from blood plasma (fibrinogen, γ-globulin, α-2-macroglobulin) were found to be highly active flocculants, but bovine serum albumin, α-globulin, and β-globulin were not flocculants. On a mass basis, hemoglobin, γ-globulin, α-2-macroglobulin were as effective as anionic polyacrylamide (PAM), a widely used synthetic flocculant. The blood proteins acted faster than PAM, and unlike PAM, the blood proteins flocculants did not require calcium salts for their activity.

  6. Shearing stability of lubricants

    NASA Technical Reports Server (NTRS)

    Shiba, Y.; Gijyutsu, G.

    1984-01-01

    Shearing stabilities of lubricating oils containing a high mol. wt. polymer as a viscosity index improver were studied by use of ultrasound. The oils were degraded by cavitation and the degradation generally followed first order kinetics with the rate of degradation increasing with the intensity of the ultrasonic irradiation and the cumulative energy applied. The shear stability was mainly affected by the mol. wt. of the polymer additive and could be determined in a short time by mechanical shearing with ultrasound.

  7. SIP Shear Walls: Cyclic Performance of High-Aspect-Ratio Segments and Perforated Walls

    Treesearch

    Vladimir Kochkin; Douglas R. Rammer; Kevin Kauffman; Thomas Wiliamson; Robert J. Ross

    2015-01-01

    Increasing stringency of energy codes and the growing market demand for more energy efficient buildings gives structural insulated panel (SIP) construction an opportunity to increase its use in commercial and residential buildings. However, shear wall aspect ratio limitations and lack of knowledge on how to design SIPs with window and door openings are barriers to the...

  8. Dynamic thermal field-induced gradient soft-shear for highly oriented block copolymer thin films.

    PubMed

    Singh, Gurpreet; Yager, Kevin G; Berry, Brian; Kim, Ho-Cheol; Karim, Alamgir

    2012-11-27

    As demand for smaller, more powerful, and energy-efficient devices continues, conventional patterning technologies are pushing up against fundamental limits. Block copolymers (BCPs) are considered prime candidates for a potential solution via directed self-assembly of nanostructures. We introduce here a facile directed self-assembly method to rapidly fabricate unidirectionally aligned BCP nanopatterns at large scale, on rigid or flexible template-free substrates via a thermally induced dynamic gradient soft-shear field. A localized differential thermal expansion at the interface between a BCP film and a confining polydimethylsiloxane (PDMS) layer due to a dynamic thermal field imposes the gradient soft-shear field. PDMS undergoes directional expansion (along the annealing direction) in the heating zone and contracts back in the cooling zone, thus setting up a single cycle of oscillatory shear (maximum lateral shear stress ∼12 × 10(4) Pa) in the system. We successfully apply this process to create unidirectional alignment of BCP thin films over a wide range of thicknesses (nm to μm) and processing speeds (μm/s to mm/s) using both a flat and patterned PDMS layer. Grazing incidence small-angle X-ray scattering measurements show absolutely no sign of isotropic population and reveal ≥99% aligned orientational order with an angular spread Δθ(fwhm) ≤ 5° (full width at half-maximum). This method may pave the way to practical industrial use of hierarchically patterned BCP nanostructures.

  9. High magnetic shear gain in a liquid sodium stable couette flow experiment A prelude to an alpha - omega dynamo

    SciTech Connect

    Colgate, Stirling; Li, Jui; Finn, John; Pariev, Vladimir; Beckley, Howard; Si, Jiahe; Martinic, Joe; Westpfahl, David; Slutz, James; Westrom, Zeb; Klein, Brianna

    2010-11-08

    The {Omega}-phase of the liquid sodium {alpha}-{Omega} dynamo experiment at NMIMT in cooperation with LANL has successfully demonstrated the production of a high toroidal field, B{sub {phi}} {approx_equal} 8 x B{sub r} from the radial component of an applied poloidal magnetic field, B{sub r}. This enhanced toroidal field is produced by rotational shear in stable Couette Row within liquid sodium at Rm {approx_equal} 120. The small turbulence in stable Taylor-Couette Row is caused by Ekman Row where ({delta}v/v){sup 2} {approx} 10{sup -3}. This high {Omega}-gain in low turbulence flow contrasts with a smaller {Omega}-gain in higher turbulence, Helmholtz-unstable shear flows. This result supports the ansatz that large scale astrophysical magnetic fields are created within semi-coherent large scale motions in which turbulence plays a diffusive role that enables magnetic flux linkage.

  10. Effect of starch 1500 as a binder and disintegrant in lamivudine tablets prepared by high shear wet granulation.

    PubMed

    Rahman, Bytul M; Ibne-Wahed, Mir Imam; Khondkar, Proma; Ahmed, Maruf; Islam, Robiul; Barman, Ranjan K; Islam, M Anwarul

    2008-10-01

    High shear wet granulation is a preferred manufacturing method of tablets. It allowed for rapid production of compressible granulations. The resultant granulation characteristics depend on a combination of formulation properties and processing parameters. Fully pregelatinized starches are currently being used as binders in wet granulated formulations. But due to the gelatinization, much of the disintegration properties are lost. Partially pregelatinized starches (starch 1,500) have a mixture of properties of both native and fully gelatinized starches; made them useful as both a binder and a disintegrant in wet granulated formulations. Starch 1,500 performed as an excellent binder producing a granulation that was compressible and produced lamivudine tablets of improved hardness and friability compared with those prepared with povidone. The formulation of lamivudine tablets with starch 1,500 exceeded the disintegration and dissolution performance of the povidone formulation that utilized a super disintegrant. High shear wet granulation is also well suited for the use of partially pregelatinized starches.

  11. The Malaria-High Blood Pressure Hypothesis

    PubMed Central

    Smeeth, Liam; Cruickshank, J. Kennedy; Scott, J. Anthony G.

    2016-01-01

    Rationale: Several studies have demonstrated links between infectious diseases and cardiovascular conditions. Malaria and hypertension are widespread in many low- and middle-income countries, but the possible link between them has not been considered. Objective: In this article, we outline the basis for a possible link between malaria and hypertension and discuss how the hypothesis could be confirmed or refuted. Methods and Results: We reviewed published literature on factors associated with hypertension and checked whether any of these were also associated with malaria. We then considered various study designs that could be used to test the hypothesis. Malaria causes low birth weight, malnutrition, and inflammation, all of which are associated with hypertension in high-income countries. The hypothetical link between malaria and hypertension can be tested through the use of ecological, cohort, or Mendelian randomization studies, each of which poses specific challenges. Conclusions: Confirmation of the existence of a causative link with malaria would be a paradigm shift in efforts to prevent and control hypertension and would stimulate wider research on the links between infectious and noncommunicable disease. PMID:27151400

  12. High-shear effects on the nano-dispersed structure of the PVDF/PA11 blends.

    PubMed

    Shimizu, Hiroshi; Li, Yongjin; Kaito, Akira; Sano, Hironari

    2006-12-01

    The fabrication of miscible or nanostructured polymer blends or alloys raises much hope, but poses significant scientific and industrial challenges over the past several decades. Here, we propose a novel strategy using high-shear processing and demonstrate the high-shear effects on the nanodispersed structure formed in the poly(vinylidene fluoride) (PVDF)/polyamide 11 (PAll) blends, in which PA11 domains with a size of several tens of nanometers are dispersed in the PVDF phase. For the blend of PVDF/PA11 = 65/35, the TEM image shows that many nanometer-sized PAl1 particles are dispersed in the PVDF domain to form a special type of domain-in-domain morphology. In contrast, no PVDF nano-dispersion was observed in the PA11 phase. The effects of both the screw rotation speed and the mixing time on the blend structure were systematically studied. It shows that the extruder screw rotation speed and the mixing time are two critical factors to prepare the nanostructured blends. In addition, the investigations on the thermal behavior of the obtained blends indicate the improved miscibility between PVDF and PAl1 by the high shear processing.

  13. A High Energy Density Shock Driven Kelvin-Helmholtz Shear Layer Experiment

    NASA Astrophysics Data System (ADS)

    Hurricane, Omar

    2008-11-01

    In 2002, a high energy density Kelvin-Helmholtz (KH) instability experiment was designed (O.A. Hurricane, High Energy Density Phys., 2008) for the National Ignition Facility (NIF) Early Light experiment. However, the long backlighter delay, required for the experiments success, could not be accommodated by NIF at that time. In early 2008, this experiment proposal was resurrected by our team, the target was fabricated at Livermore with final assembly at the University of Michigan, and then fielded at the Omega laser facility. The data return from the four shots of the experiment series exceeded expectation. In this paper, we describe the theory and simulation behind the experiment design, the unusual target construction, and present the radiographic data from the Omega experiment in raw form and a preliminary analysis of the data. Discussion of the target design theory and simulations focuses on the key role played by baroclinic vorticity production in the functioning of the target and also illuminates the key design parameters. The data shows the complete evolution of large distinct KH eddies, from formation to turbulent break-up. The data appears to graphically confirm a theoretical fluid dynamics conjecture about the existence of supersonic bubbles over the vortical structure [transonic convective Mach numbers (D. Papamoschou and A. Roshko, J. Fluid Mech., 197, 1988)] that support localized shocks (shocklets) not extending into the free-stream^ (P.E. Dimotakis, AIAA 91-1724, Proc. 22^nd Fluid Dyn., Plasma Dyn., & Lasers Conf., 1991). The consequences of these observations on understanding the turbulent transition, growth-rates and mixing in compressible supersonic turbulent shear layers will be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. A National Laser Users Facility grant also supported this work. Collaborators: J.F. Hansen, E.C. Harding , R

  14. Hexagonal-structured ε-NbN: ultra-incompressibility, high shear rigidity, and a possible hard superconducting material

    PubMed Central

    Zou, Yongtao; Wang, Xuebing; Chen, Ting; Li, Xuefei; Qi, Xintong; Welch, David; Zhu, Pinwen; Liu, Bingbing; Cui, Tian; Li, Baosheng

    2015-01-01

    Exploring the structural stability and elasticity of hexagonal ε-NbN helps discover correlations among its physical properties for scientific and technological applications. Here, for the first time, we measured the ultra-incompressibility and high shear rigidity of polycrystalline hexagonal ε-NbN using ultrasonic interferometry and in situ X-ray diffraction, complemented with first-principles density-functional theory calculations up to 30 GPa in pressure. Using a finite strain equation of state approach, the elastic bulk and shear moduli, as well as their pressure dependences are derived from the measured velocities and densities, yielding BS0 = 373.3(15) GPa, G0 = 200.5(8) GPa, ∂BS/∂P = 3.81(3) and ∂G/∂P = 1.67(1). The hexagonal ε-NbN possesses a very high bulk modulus, rivaling that of superhard material cBN (B0 = 381.1 GPa). The high shear rigidity is comparable to that for superhard γ-B (G0 = 227.2 GPa). We found that the crystal structure of transition-metal nitrides and the outmost electrons of the corresponding metals may dominate their pressure dependences in bulk and shear moduli. In addition, the elastic moduli, Vickers hardness, Debye temperature, melting temperature and a possible superconductivity of hexagonal ε-NbN all increase with pressures, suggesting its exceptional suitability for applications under extreme conditions. PMID:26028439

  15. Conductometric study of shear-dependent processes in red cell suspensions. I. Effect of red blood cell aggregate morphology on blood conductance.

    PubMed

    Pribush, A; Meyerstein, D; Meyerstein, N

    2004-01-01

    The conductance and capacitance of flowing and quiescent red blood cell (RBC) suspensions were measured at a frequency of 0.2 MHz. The results demonstrate that the time-dependent changes in the conductance recorded during the aggregation process differ in nature for suspensions of short linear rouleaux, branched aggregates and RBC networks. It is shown that the conductance of RBC suspensions measured during the aggregation and disaggregation processes follows the morphological transformations of the RBC aggregates. Thus, this method enables characterization of the morphology of RBC aggregates formed in whole blood and in suspensions with physiological hematocrits both under flow conditions and in stasis. These results in combination with previous ones suggest that this technique can be used for studies of dynamic RBC aggregation and probably for diagnostic use.

  16. A high-quality annotated transcriptome of swine peripheral blood

    USDA-ARS?s Scientific Manuscript database

    Background: High throughput gene expression profiling assays of peripheral blood are widely used in biomedicine, as well as in animal genetics and physiology research. Accurate, comprehensive, and precise interpretation of such high throughput assays relies on well-characterized reference genomes an...

  17. Localization of toroidal motion and shear heating in 3-D high Rayleigh number convection with temperature-dependent viscosity

    NASA Technical Reports Server (NTRS)

    Balachandar, S.; Yuen, D. A.; Reuteler, D. M.

    1995-01-01

    We have applied spectral-transform methods to study three-dimensional thermal convection with temperature-dependent viscosity. The viscosity varies exponentially with the form exp(-BT), where B controls the viscosity contrast and T is temperature. Solutions for high Rayleigh numbers, up to an effective Ra of 6.25 x 10(exp 6), have been obtained for an aspect-ratio of 5x5x1 and a viscosity contrast of 25. Solutions show the localization of toroidal velocity fields with increasing vigor of convection to a coherent network of shear-zones. Viscous dissipation increases with Rayleigh number and is particularly strong in regions of convergent flows and shear deformation. A time-varying depth-dependent mean-flow is generated because of the correlation between laterally varying viscosity and velocity gradients.

  18. Frictional Behavior of Amphibolite at Seismic Slip Rates from High-velocity Rotary Shear Experiments

    NASA Astrophysics Data System (ADS)

    Jung, S.; Ree, J.; Hirose, T.; Lee, S.

    2012-12-01

    Gabbroic rocks of oceanic crust transform into amphibolite with depth at subduction zone, and thus frictional property of amphibolite may be important for a better understanding of subduction zone earthquakes. We report preliminary results of high-velocity rotary shear experiments on amphibolite at a seismic slip rate (~1.05 m/s) and normal stresses of 2-15 MPa. Amphibolite from the Imjingang belt of South Korea is composed of hornblende (0.5-1.5 mm) and plagioclase (0.25-0.5 mm) with rare occurrence of quartz. The frictional behavior of the amphibolite is characterized by two phases of unstable slip weakening separated by strengthening, followed by a final weakening with a very low steady-state friction coefficient of 0.07. The average coefficient of the first, second and final peak frictions is 0.48, 0.36 and 0.22, respectively. The fault zone consists of a principal slip zone (PSZ, 200-300 μm thick) with molten material mantled by damage zone (1-3 mm thick). In the damage zone, the color of hornblende grains becomes darker toward the PSZ and thin, black stripes occur along cleavage planes of hornblende in plane-polarized light. Also fracture density of hornblende and plagioclase increases relative to those of wall rock. The PSZ comprises molten material and mineral clasts (25-50 μm) and the clasts tend to concentrate along the center of the PSZ. The surface temperature of the fault zones measured by a radiation thermography during experiments is about 1060°C and the internal temperature of the fault zones could be higher than the measured temperature in view of the melting of hornblende and plagioclase. The frictional behavior of amphibolite is much different from that of gabbro where the overall friction is much higher with the final peak friction of 0.84-1.09 and steady-state friction of ~0.6 (Hirose and Shimamoto, 2005 in Journal of Geophysical Research). This difference may be due to dehydration of hornblende by frictional heating and lower viscosity of

  19. Scalable shear-exfoliation of high-quality phosphorene nanoflakes with reliable electrochemical cycleability in nano batteries

    DOE PAGES

    Xu, Feng; Ge, Binghui; Chen, Jing; ...

    2016-03-30

    Atomically thin black phosphorus (called phosphorene) holds great promise as an alternative to graphene and other two-dimensional transition-metal dichalcogenides as an anode material for lithium-ion batteries (LIBs). But, bulk black phosphorus (BP) suffers from rapid capacity fading and poor rechargeable performance. This work reports for the first time the use of in situ transmission electron microscopy (TEM) to construct nanoscale phosphorene LIBs. This enables direct visualization of the mechanisms underlying capacity fading in thick multilayer phosphorene through real-time capture of delithiation-induced structural decomposition, which serves to reduce electrical conductivity thus causing irreversibility of the lithiated phases. Furthermore, we demonstrate thatmore » few-layer-thick phosphorene successfully circumvents the structural decomposition and holds superior structural restorability, even when subject to multi-cycle lithiation/delithiation processes and concomitant huge volume expansion. This finding provides breakthrough insights into thickness-dependent lithium diffusion kinetics in phosphorene. More importantly, a scalable liquid-phase shear exfoliation route has been developed to produce high-quality ultrathin phosphorene using simple means such as a high-speed shear mixer or even a household kitchen blender with the shear rate threshold of ~1.25 × 104 s-1. Our results reported here will pave the way for industrial-scale applications of rechargeable phosphorene LIBs.« less

  20. Scalable shear-exfoliation of high-quality phosphorene nanoflakes with reliable electrochemical cycleability in nano batteries

    SciTech Connect

    Xu, Feng; Ge, Binghui; Chen, Jing; Nathan, Arokia; Xin, Linhuo L.; Ma, Hongyu; Zhu, Chongyang; Xia, Weiwei; Li, Zhengrui; Li, Shengli; Yu, Kaihao; Wu, Lijun; Cui, Yiping; Sun, Litao; Zhu, Yimei

    2016-03-30

    Atomically thin black phosphorus (called phosphorene) holds great promise as an alternative to graphene and other two-dimensional transition-metal dichalcogenides as an anode material for lithium-ion batteries (LIBs). But, bulk black phosphorus (BP) suffers from rapid capacity fading and poor rechargeable performance. This work reports for the first time the use of in situ transmission electron microscopy (TEM) to construct nanoscale phosphorene LIBs. This enables direct visualization of the mechanisms underlying capacity fading in thick multilayer phosphorene through real-time capture of delithiation-induced structural decomposition, which serves to reduce electrical conductivity thus causing irreversibility of the lithiated phases. Furthermore, we demonstrate that few-layer-thick phosphorene successfully circumvents the structural decomposition and holds superior structural restorability, even when subject to multi-cycle lithiation/delithiation processes and concomitant huge volume expansion. This finding provides breakthrough insights into thickness-dependent lithium diffusion kinetics in phosphorene. More importantly, a scalable liquid-phase shear exfoliation route has been developed to produce high-quality ultrathin phosphorene using simple means such as a high-speed shear mixer or even a household kitchen blender with the shear rate threshold of ~1.25 × 104 s-1. Our results reported here will pave the way for industrial-scale applications of rechargeable phosphorene LIBs.