Science.gov

Sample records for high solar activity

  1. Solar Energy Project, Activities: Junior High Science.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of the junior high science curriculum. Each unit presents an introduction; objectives; skills and knowledge needed; materials; methods; questions; recommendations for further work; and a teacher information sheet. The teacher…

  2. Background solar velocity spectrum at high and low phases of solar activity cycle

    NASA Astrophysics Data System (ADS)

    Régulo, C.; Roca Cortés, T.; Vázquez Ramió, H.

    2002-12-01

    Using GOLF/SOHO data a detailed analysis of the solar background spectrum has been performed at high and low phases of solar activity cycle. The analysis includes not only the non-periodic components of the background power spectrum but also the periodic ones. Apart from the solar activity, other causes produce similar effects in the data, particularly the different depths in the solar atmosphere where the measurements are done, because due to the sun-satellite relative velocity, we are observing at different positions in the line profile. Another effect is that different line wings are used in the observation at two different epochs, before and after SOHO loss and recovery which, unfortunately, coincide with minimum and maximum of solar activity. In this work we have tried to separate all these effects in order to really understand what is being seen in the data and ultimately extract the effects of solar activity on the acoustic background solar spectrum.

  3. Revisiting the question: Does high-latitude solar activity lead low-latitude solar activity in time phase?

    SciTech Connect

    Kong, D. F.; Qu, Z. N.; Guo, Q. L.

    2014-05-01

    Cross-correlation analysis and wavelet transform methods are used to investigate whether high-latitude solar activity leads low-latitude solar activity in time phase or not, using the data of the Carte Synoptique solar filaments archive from 1919 March to 1989 December. From the cross-correlation analysis, high-latitude solar filaments have a time lead of 12 Carrington solar rotations with respect to low-latitude ones. Both the cross-wavelet transform and wavelet coherence indicate that high-latitude solar filaments lead low-latitude ones in time phase. Furthermore, low-latitude solar activity is better correlated with high-latitude solar activity of the previous cycle than with that of the following cycle, which is statistically significant. Thus, the present study confirms that high-latitude solar activity in the polar regions is indeed better correlated with the low-latitude solar activity of the following cycle than with that of the previous cycle, namely, leading in time phase.

  4. Background solar irradiance spectrum at high and low phases of the solar activity cycle

    NASA Astrophysics Data System (ADS)

    Vázquez Ramió, H.; Roca Cortés, T.; Régulo, C.

    2002-12-01

    Two data series of disk integrated solar irradiance, taken by the Variability of the solar IRradiance and Gravity Oscillations (VIRGO) experiment on board the Solar and Heliospheric Observatory (SoHO) mission, corresponding to epochs of minimum and maximum solar activity have been analysed in order to study the background signal of the associated power spectra. We fit the most apparent convective structures that appear at low frequencies in the spectrum as well as non-periodic components. We aim to compare the results found in the three observed bands (centered in λ=402nm, λ=500nm and λ=862nm) as well as to find dependences of the non-periodic convective structures parameters with the solar cycle.

  5. Solar Activity and Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.

    2006-01-01

    Our Sun is a dynamic, ever-changing star. In general, its atmosphere displays major variation on an 11-year cycle. Throughout the cycle, the atmosphere occasionally exhibits large, sudden outbursts of energy. These "solar eruptions" manifest themselves in the form of solar flares, filament eruptions, coronal mass ejections (CMEs), and energetic particle releases. They are of high interest to scientists both because they represent fundamental processes that occur in various astrophysical context, and because, if directed toward Earth, they can disrupt Earth-based systems and satellites. Research over the last few decades has shown that the source of the eruptions is localized regions of energy-storing magnetic field on the Sun that become destabilized, leading to a release of the stored energy. Solar scientists have (probably) unraveled the basic outline of what happens in these eruptions, but many details are still not understood. In recent years we have been studying what triggers these magnetic eruptions, using ground-based and satellite-based solar observations in combination with predictions from various theoretical models. We will present an overview of solar activity and solar eruptions, give results from some of our own research, and discuss questions that remain to be explored.

  6. High Energy Phenomena on the Sun. [conference on solar activity effects and solar radiation

    NASA Technical Reports Server (NTRS)

    Ramaty, R. (Editor); Stone, R. G. (Editor)

    1973-01-01

    The proceedings of a symposium of high energy phenomena on the sun are presented. The subjects discussed include the following: (1) flare theories and optical observations, (2) microwave and hard X-ray observations, (3) ultraviolet and soft X-ray emissions, (4) nuclear reactions in solar flares, (5) energetic particles from the sun, (6) magnetic fields and particle storage, and (7) radio emissions in the corona and interplanetary space.

  7. Investigation of solar active regions at high resolution by balloon flights of the solar optical universal polarimeter, extended definition phase

    NASA Technical Reports Server (NTRS)

    Tarbell, Theodore D.

    1993-01-01

    Technical studies of the feasibility of balloon flights of the former Spacelab instrument, the Solar Optical Universal Polarimeter, with a modern charge-coupled device (CCD) camera, to study the structure and evolution of solar active regions at high resolution, are reviewed. In particular, different CCD cameras were used at ground-based solar observatories with the SOUP filter, to evaluate their performance and collect high resolution images. High resolution movies of the photosphere and chromosphere were successfully obtained using four different CCD cameras. Some of this data was collected in coordinated observations with the Yohkoh satellite during May-July, 1992, and they are being analyzed scientifically along with simultaneous X-ray observations.

  8. High Spatial Resolution Fe XII Observations of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Testa, Paola; De Pontieu, Bart; Hansteen, Viggo

    2016-08-01

    We use UV spectral observations of active regions with the Interface Region Imaging Spectrograph (IRIS) to investigate the properties of the coronal Fe xii 1349.4 Å emission at unprecedented high spatial resolution (˜0.33″). We find that by using appropriate observational strategies (i.e., long exposures, lossless compression), Fe xii emission can be studied with IRIS at high spatial and spectral resolution, at least for high-density plasma (e.g., post-flare loops and active region moss). We find that upper transition region (TR; moss) Fe xii emission shows very small average Doppler redshifts ({v}{{D}} ˜ 3 km s‑1) as well as modest non-thermal velocities (with an average of ˜24 km s‑1 and the peak of the distribution at ˜15 km s‑1). The observed distribution of Doppler shifts appears to be compatible with advanced three-dimensional radiative MHD simulations in which impulsive heating is concentrated at the TR footpoints of a hot corona. While the non-thermal broadening of Fe xii 1349.4 Å peaks at similar values as lower resolution simultaneous Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) measurements of Fe xii 195 Å, IRIS observations show a previously undetected tail of increased non-thermal broadening that might be suggestive of the presence of subarcsecond heating events. We find that IRIS and EIS non-thermal line broadening measurements are affected by instrumental effects that can only be removed through careful analysis. Our results also reveal an unexplained discrepancy between observed 195.1/1349.4 Å Fe xii intensity ratios and those predicted by the CHIANTI atomic database.

  9. High Spatial Resolution Fe XII Observations of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Testa, Paola; De Pontieu, Bart; Hansteen, Viggo

    2016-08-01

    We use UV spectral observations of active regions with the Interface Region Imaging Spectrograph (IRIS) to investigate the properties of the coronal Fe xii 1349.4 Å emission at unprecedented high spatial resolution (˜0.33″). We find that by using appropriate observational strategies (i.e., long exposures, lossless compression), Fe xii emission can be studied with IRIS at high spatial and spectral resolution, at least for high-density plasma (e.g., post-flare loops and active region moss). We find that upper transition region (TR; moss) Fe xii emission shows very small average Doppler redshifts ({v}{{D}} ˜ 3 km s-1) as well as modest non-thermal velocities (with an average of ˜24 km s-1 and the peak of the distribution at ˜15 km s-1). The observed distribution of Doppler shifts appears to be compatible with advanced three-dimensional radiative MHD simulations in which impulsive heating is concentrated at the TR footpoints of a hot corona. While the non-thermal broadening of Fe xii 1349.4 Å peaks at similar values as lower resolution simultaneous Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) measurements of Fe xii 195 Å, IRIS observations show a previously undetected tail of increased non-thermal broadening that might be suggestive of the presence of subarcsecond heating events. We find that IRIS and EIS non-thermal line broadening measurements are affected by instrumental effects that can only be removed through careful analysis. Our results also reveal an unexplained discrepancy between observed 195.1/1349.4 Å Fe xii intensity ratios and those predicted by the CHIANTI atomic database.

  10. Investigation of solar active regions at high resolution by balloon flights of the solar optical universal polarimeter, definition phase

    NASA Technical Reports Server (NTRS)

    Tarbell, Theodore D.; Topka, Kenneth P.

    1992-01-01

    The definition phase of a scientific study of active regions on the sun by balloon flight of a former Spacelab instrument, the Solar Optical Universal Polarimeter (SOUP) is described. SOUP is an optical telescope with image stabilization, tunable filter and various cameras. After the flight phase of the program was cancelled due to budgetary problems, scientific and engineering studies relevant to future balloon experiments of this type were completed. High resolution observations of the sun were obtained using SOUP components at the Swedish Solar Observatory in the Canary Islands. These were analyzed and published in studies of solar magnetic fields and active regions. In addition, testing of low-voltage piezoelectric transducers was performed, which showed they were appropriate for use in image stabilization on a balloon.

  11. Solar Energy Education. Renewable energy activities for junior high/middle school science

    SciTech Connect

    Not Available

    1985-01-01

    Some basic topics on the subject of solar energy are outlined in the form of a teaching manual. The manual is geared toward junior high or middle school science students. Topics include solar collectors, solar water heating, solar radiation, insulation, heat storage, and desalination. Instructions for the construction of apparatus to demonstrate the solar energy topics are provided. (BCS)

  12. Very high resolution UV and X-ray spectroscopy and imagery of solar active regions

    NASA Technical Reports Server (NTRS)

    Bruner, M.; Brown, W. A.; Haisch, B. M.

    1987-01-01

    A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft X-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the X-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical X-ray observations using this new technique.

  13. On the high correlation between long-term averages of solar wind speed and geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Crooker, N. U.; Feynman, J.; Gosling, J. T.

    1977-01-01

    Six-month and yearly averages of solar-wind speed from 1962 to 1975 are shown to be highly correlated with geomagnetic activity as measured by averages of the Ap index. On the same time scale the correlation between the southward component of the interplanetary magnetic field and geomagnetic activity is poor. Previous studies with hourly averages gave opposite results. The better correlation with the southward component on an hourly time scale is explained by its large variation compared with the relatively constant solar-wind speed. However, on a yearly time scale the magnitude of the variations in both parameters are about the same. This problem can be solved by invoking an energy transfer mechanism which is proportional to the first power of the southward component and a higher power of the solar-wind speed.

  14. Highly efficient graphene-based Cu(In, Ga)Se₂ solar cells with large active area.

    PubMed

    Yin, Ling; Zhang, Kang; Luo, Hailin; Cheng, Guanming; Ma, Xuhang; Xiong, Zhiyu; Xiao, Xudong

    2014-09-21

    Two-dimensional graphene has tremendous potential to be used as a transparent conducting electrode (TCE), owing to its high transparency and conductivity. To date graphene films have been applied to several kinds of solar cells except the Cu(In, Ga)Se₂ (CIGS) solar cell. In this work, we present a novel TCE structure consisting of a doped graphene film and a thin layer of poly(methyl methacrylate) (PMMA) to replace the ZnO:Al (AZO) electrode for CIGS. By optimizing the contact between graphene and intrinsic ZnO (i-ZnO), a high power conversion efficiency (PCE) of 13.5% has been achieved, which is among the highest efficiencies of graphene-based solar cells ever reported and approaching those of AZO-based solar cells. Besides, the active area of our solar cells reaches 45 mm(2), much larger than other highly efficient graphene-based solar cells (>10%) reported so far. Moreover, compared with AZO-based CIGS solar cells, the total reflectance of the graphene-based CIGS solar cells is decreased and the quantum efficiency of the graphene-based CIGS is enhanced in the near infrared region (NIR), which strongly support graphene as a competitive candidate material for the TCE in the CIGS solar cell. Furthermore, the graphene/PMMA film can protect the solar cell from moisture, making the graphene-based solar cells much more stable than the AZO-based solar cells.

  15. A SYSTEMATIC SURVEY OF HIGH-TEMPERATURE EMISSION IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Warren, Harry P.; Winebarger, Amy R.; Brooks, David H.

    2012-11-10

    The recent analysis of observations taken with the EUV Imaging Spectrometer and X-Ray Telescope instruments on Hinode suggests that well-constrained measurements of the temperature distribution in solar active regions can finally be made. Such measurements are critical for constraining theories of coronal heating. Past analysis, however, has suffered from limited sample sizes and large uncertainties at temperatures between 5 and 10 MK. Here we present a systematic study of the differential emission measure distribution in 15 active region cores. We focus on measurements in the 'inter-moss' region, that is, the region between the loop footpoints, where the observations are easier to interpret. To reduce the uncertainties at the highest temperatures we present a new method for isolating the Fe XVIII emission in the AIA/SDO 94 A channel. The resulting differential emission measure distributions confirm our previous analysis showing that the temperature distribution in an active region core is often strongly peaked near 4 MK. We characterize the properties of the emission distribution as a function of the total unsigned magnetic flux. We find that the amount of high-temperature emission in the active region core is correlated with the total unsigned magnetic flux, while the emission at lower temperatures, in contrast, is inversely related. These results provide compelling evidence that high-temperature active region emission is often close to equilibrium, although weaker active regions may be dominated by evolving million degree loops in the core.

  16. Solar activity variability in the IRI at high latitudes: Comparisons with GPS total electron content

    NASA Astrophysics Data System (ADS)

    Themens, David R.; Jayachandran, P. T.

    2016-04-01

    Total electron content (TEC) measurements from 10 dual-frequency GPS receivers in the Canadian High Arctic Ionospheric Network (CHAIN) are used to evaluate the performance of International Reference Ionosphere (IRI)-2007 within the Canadian sector. Throughout the region, we see systematic underestimation of daytime TEC, particularly at solar maximum, where summer and equinox root-mean-square errors reach as high as 14 total electron content units, 1 TECU = 1016 el m-2 (TECU). It is also shown that the use of a monthly IG index, in place of the IRI's standard IG12 index, leads to an improvement in TEC specification by up to 3 TECU in the polar cap and up to 6 TECU in the subauroral region during periods of short-term, large amplitude changes in solar activity. On diurnal timescales, variability in TEC is found to be underestimated by the IRI, during equinox periods, by up to 40% at subauroral latitudes and up to 70% in the polar cap region. During the winter, diurnal variations are overestimated by up to 40% in the subauroral region and are underestimated within the polar cap by up to 80%. Using collocated ionosonde data, we find IRI bottomside TEC to be within 1 TECU of observation with errors largest during the equinoxes. For the topside we find good agreement during the winter but significant underestimation of topside TEC by the IRI during summer and equinox periods, exceeding 6 TECU at times. By ingesting measured NmF2 into the IRI, we show that the topside thickness parameterization is the source of the bulk of the observed TEC errors.

  17. Interplanetary Scintiallation (IPS) of the Radio Source 3C48 During Periods of Low and High Solar Activity

    NASA Astrophysics Data System (ADS)

    Aguilar-Rodriguez, E.; Tyul'bashev, S. A.; Chashei, I. V.; Romero-Hernandez, E.

    2015-09-01

    We present a comparative study of three techniques used to estimate the scintillation index using interplanetary scintillation (IPS) observations carried out by the Big Scanning Array (BSA), which operates at a frequency of 111 MHz. These techniques are based on: rms analysis on-source and off-source (classic), Fourier, and wavelet transforms. IPS data are analyzed separately for the period of low solar activity (2007 - 2009), and for the year 2013, near the solar-activity maximum. Our results show that, in general, these methods are equivalent. We analyze the radial dependence of the scintillation index at meter wavelengths during these two periods. It is found that the observed radial dependence of the scintillation index during both periods of U.C. cycle 24 is flatter than the theoretical dependence expected for the case of solar-wind spherical symmetry. This flattening can be explained in terms of the influence of the heliospheric current sheet during the low solar-activity period, and the influence of solar disturbances, such as coronal mass ejections (CMEs), for the high solar-activity period.

  18. IPS of the Radio Source 3C48 During the Periods of Low and High Solar Activity

    NASA Astrophysics Data System (ADS)

    Aguilar-Rodriguez, E.; Tyul'bashev, S. A.; Chashei, I. V.; Romero-Hernandez, E.

    2015-12-01

    We present a comparative study of three techniques used to estimate the scintillation index (m) using interplanetary scintillation (IPS) observations carried out by the Big Scanning Array (BSA), that operates at a frequency of 111 MHz. These techniques are based on: rms analysis on-source and off-source (classic), Fourier and wavelet transforms. IPS data are analyzed separately for the period of low solar activity (2007-2009), and for the year 2013, near the solar activity maximum. Our results show that in general, these methods are equivalent. We analyze the radial dependence of scintillation index at meter wavelengths during these two periods. It is found that the observed radial dependence of scintillation index during both periods of the cycle 24 is more flat than the theoretical dependence expected for the case of solar wind spherical symmetry. This flattening can be explained in terms of the influence of the heliospheric current sheet during periods of low solar activity, and the influence of solar disturbances, such as coronal mass ejections (CMEs), for periods of high solar activity.

  19. Activities for Teaching Solar Energy.

    ERIC Educational Resources Information Center

    Mason, Jack Lee; Cantrell, Joseph S.

    1980-01-01

    Plans and activities are suggested for teaching elementary children about solar energy. Directions are included for constructing a flat plate collector and a solar oven. Activities for a solar field day are given. (SA)

  20. Procedures for minimizing the effects of high solar activity on satellite tracking and ephemeris generation

    NASA Technical Reports Server (NTRS)

    Bredvik, Gordon D.

    1990-01-01

    We are currently experiencing a period of high solar radiation combined with wide short-term fluctuations in the radiation. The short-term fluctuations, especially when combined with highly energetic solar flares, can adversely affect the mission of U.S. Space Command's Space Surveillance Center (SSC) which catalogs and tracks the satellites in orbit around the Earth. Rapidly increasing levels of solar electromagnetic and/or particle radiation (solar wind) causes atmospheric warming, which, in turn, causes the upper-most portions of the atmosphere to expand outward, into the regime of low altitude satellites. The increased drag on satellites from this expansion can cause large, unmodeled, in-track displacements, thus undermining the SSC's ability to track and predict satellite position. On 13 March 1989, high solar radiation levels, combined with a high-energy solar flare, caused an exceptional amount of short-term atmospheric warming. The SSC temporarily lost track of over 1300 low altitude satellites--nearly half of the low altitude satellite population. Observational data on satellites that became lost during the days following the 13 March 'solar event' was analyzed and compared with the satellites' last element set prior to the event (referred to as a geomagnetic storm because of the large increase in magnetic flux in the upper atmosphere). The analysis led to a set of procedures for reducing the impact of future geomagnetic storms. These procedures adjust selected software limit parameters in the differential correction of element sets and in the observation association process and must be manually initiated at the onset of a geomagnetic storm. Sensor tasking procedures must be adjusted to ensure that a minimum of four observations per day are received for low altitude satellites. These procedures have been implemented and, thus far, appear to be successful in minimizing the effect of subsequent geomagnetic storms on satellite tracking and ephemeris

  1. PCA Analysis of the Geomagnetic Field at Mid-Latitude Regions during High Solar Activity

    NASA Astrophysics Data System (ADS)

    Natali, Maria Paula; Meza, Amalia Margarita

    2016-07-01

    Our study is focused on the analysis of the geomagnetic variability of the H, D and Z components in the Northern hemisphere at mid-latitudes. We analyze two different local times, noon and night, recorded by 22 permanent observatories distributed over Europe and North America during a period of four years of high solar activity comprising 2000-2003. We used Principal Component Analysis (PCA) in order to identify the spatial and temporal variations of the geomagnetic field components. This technique produces a quite compact representation of the data by defining an orthonormal base derived from correlation within the data set. This helps us to identify possible causes of seasonal variations and anomalies, linking them with already observed currents. In fact, the analysis of PCA amplitudes and modes support our interpretation of the spectral and statistical features of the geomagnetic field. Using the first two modes we reconstruct more than 90% of the original signal for the European and North American region. The obtained results reconfirm the existence of a latitudinal dependence in the geomagnetic components during nighttime hours, associated with the ring current. During noon, the first mode represent the dominant component of the current originated by the ionosphere, while the second mode show the presence of a longitudinal variation at both sides of the longitudes with zero declination for Europe and North America.

  2. Origins of Solar Activity

    NASA Astrophysics Data System (ADS)

    Rust, David M.

    1996-05-01

    Work under the subject grant began in August 1992, when Mr. J. J. Blanchette began study and data analysis in the area of solar flare research. Mr. Blanchette passed all requirements toward a Ph.D., except for the thesis. Mr. Blanchette worked with the APL Flare Genesis Experiment team to build a balloon-borne solar vector magnetograph. Other work on the magnetograph was partially supported by AFOSR grant F49620-94-1-0079. Mr. Blanchette assisted the Flare Genesis team prepare the telescope and focal plane optical elements for a test flight. He participated in instrument integ ration and in launch preparations for the flight, which took place on January 23, 1994. Mr. Blanchette was awarded a Masters Degree in Astrophysics by the Johns Hopkins University in recognition of his achievements. Mr. Blanchette indicated a desire to suspend work on the Ph.D. degree, and he left the AASERT program on August 31, 1994. Under the guidance of his advisor at JHU/APL, Dr. David M. Rust, Mr. Blanchette gained enough background in solar physics so that he can contribute to observational, analytical, and presentation efforts in solar research. Beginning in August 1995, Mr. Ashok Kumar was supported by the grant. Mr. Kumar demonstrated remarkable theoretical insight into the problems of solar activity. He developed the concept of intrinsic scale magnetic flux ropes in the solar atmosphere and interplanetary space. His model can explain the heating of interplanetary magnetic clouds. Recently, his idea has been extended to explain solar wind heating. If the idea is confirmed by further comparison with observations, it will be a major breakthrough in space physics and it may lead to an explanation for why the solar corona's temperature is over a million degrees.

  3. Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia; Schrijver, Carolus J.; Klimchuk, James A.; Charbonneau, Paul; Fletcher, Lyndsay; Hasan, S. Sirajul; Hudson, Hugh S.; Kusano, Kanya; Mandrini, Cristina H.; Peter, Hardi; Vršnak, Bojan; Yan, Yihua

    2012-04-01

    Commission 10 of the International Astronomical Union has more than 650 members who study a wide range of activity phenomena produced by our nearest star, the Sun. Solar activity is intrinsically related to solar magnetic fields and encompasses events from the smallest energy releases (nano- or even picoflares) to the largest eruptions in the Solar System, coronal mass ejections (CMEs), which propagate into the Heliosphere reaching the Earth and beyond. Solar activity is manifested in the appearance of sunspot groups or active regions, which are the principal sources of activity phenomena from the emergence of their magnetic flux through their dispersion and decay. The period 2008-2009 saw an unanticipated extended solar cycle minimum and unprecedentedly weak polar-cap and heliospheric field. Associated with that was the 2009 historical maximum in galactic cosmic rays flux since measurements begun in the middle of the 20th Century. Since then Cycle 24 has re-started solar activity producing some spectacular eruptions observed with a fleet of spacecraft and ground-based facilities. In the last triennium major advances in our knowledge and understanding of solar activity were due to continuing success of space missions as SOHO, Hinode, RHESSI and the twin STEREO spacecraft, further enriched by the breathtaking images of the solar atmosphere produced by the Solar Dynamic Observatory (SDO) launched on 11 February 2010 in the framework of NASA's Living with a Star program. In August 2012, at the time of the IAU General Assembly in Beijing when the mandate of this Commission ends, we will be in the unique position to have for the first time a full 3-D view of the Sun and solar activity phenomena provided by the twin STEREO missions about 120 degrees behind and ahead of Earth and other spacecraft around the Earth and ground-based observatories. These new observational insights are continuously posing new questions, inspiring and advancing theoretical analysis and

  4. Solar Energy Project, Activities: General Solar Topics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of activities which introduce students to concepts and issues relating to solar energy. Lessons frequently presented in the context of solar energy as it relates to contemporary energy problems. Each unit presents an introduction; objectives; necessary skills and knowledge; materials; method;…

  5. On the Response of Polar Cap Dynamics to Its Solar Wind and Magnetotail Drivers at High Levels of Geomagnetic Activity

    NASA Astrophysics Data System (ADS)

    Gao, Ye

    In this thesis, I investigate how polar cap dynamics, quantified by the northern polar cap (PCN) index, respond to solar wind direct driving and magnetotail energy unloading during intervals of strong solar wind driving. Using 53 one to two-day intervals with high cross polar cap potential subintervals, I find that, among 11 candidate coupling functions including the electric field of Kan and Lee (1979) and the universal coupling function of Newell et al. (2007), the PCN index correlates most closely with the electric field (EK-R) of Kivelson and Ridley (2008), a form in which the electric field imposed on the ionosphere by low-latitude magnetopause reconnection saturates at high levels of geomagnetic activity. It is found that magnetotail activity, as represented by an unloading AL index (ALU), makes a significant contribution to the PCN index. A linear model is constructed to relate the PCN index to its solar wind and magnetotail drivers. Based on this model, it is estimated that the portion of the PCN index directly driven by the solar wind electric field outweighs the contribution arising from energy release in the magnetotail by roughly a factor of 2. The solar wind dynamic pressure (pdyn) does not play a key role in controlling the PCN index. However, under intense solar wind driving, the number density (n) can influence the solar wind-magnetosphere coupling by changing the solar wind Alfvén conductance, which is incorporated in EK-R. The validity of the linear model is verified by comparing its results with those obtained from a more general, non-linear model, termed additive model. It is found that, except in anomalous events during which the auroral oval expanded poleward to the latitude of the PCN index station and the index increased because of proximity to auroral zone currents, the linear model is a good approximation, since more than 70% of the variation in the PCN index is explained by the linear model. Thus, this linear model provides a useful tool

  6. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1973-01-01

    Some evidence that the weather is influenced by solar activity is reviewed. It appears that the solar magnetic sector structure is related to the circulation of the earth's atmosphere during local winter. About 31/2 days after the passage of a sector boundary the maximum effect is seen: apparently the height of all pressure surfaces increases in high latitudes leading to anticyclogenesis, whereas at midlatitudes the height of the pressure surfaces decreases leading to low pressure systems or to deepening of existing systems. This later effect is clearly seen as an increase in the area of the base of air with absolute vorticity exceeding a given threshold. Since the increase of geomagnetic activity generally is small at a sector boundary, it is speculated that geomagnetic activity as such is not the cause of the response to the sector structure, but that both weather and geomagnetic activity are influenced by the same (unknown) mechanism.

  7. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1974-01-01

    Some new evidence that the weather is influenced by solar activity is reviewed. It appears that the solar magnetic sector structure is related to the circulation of the earth's atmosphere during local winter. About 3 1/2 days after the passage of a sector boundary the maximum effect is seen; apparently the height of all pressure surfaces increases in high latitudes leading to anticyclogenesis, whereas at midlatitudes the height of the pressure surfaces decreases leading to low pressure systems or to deepening of existing systems. This later effect is clearly seen as an increase in the area of the base of air with absolute vorticity exceeding a given threshold. Since the increase of geomagnetic activity generally is small at a sector boundary it is speculated that geomagnetic activity as such is not the cause of the response to the sector structure but that both weather and geomagnetic activity are influenced by the same (unknown) mechanism.

  8. Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    Klimchuk, James A.; van Driel-Gesztelyi, Lidia; Schrijver, Carolus J.; Melrose, Donald B.; Fletcher, Lyndsay; Gopalswamy, Natchimuthuk; Harrison, Richard A.; Mandrini, Cristina H.; Peter, Hardi; Tsuneta, Saku; Vršnak, Bojan; Wang, Jing-Xiu

    Commission 10 deals with solar activity in all of its forms, ranging from the smallest nanoflares to the largest coronal mass ejections. This report reviews scientific progress over the roughly two-year period ending in the middle of 2008. This has been an exciting time in solar physics, highlighted by the launches of the Hinode and STEREO missions late in 2006. The report is reasonably comprehensive, though it is far from exhaustive. Limited space prevents the inclusion of many significant results. The report is divided into the following sections: Photosphere and chromosphere; Transition region; Corona and coronal heating; Coronal jets; flares; Coronal mass ejection initiation; Global coronal waves and shocks; Coronal dimming; The link between low coronal CME signatures and magnetic clouds; Coronal mass ejections in the heliosphere; and Coronal mass ejections and space weather. Primary authorship is indicated at the beginning of each section.

  9. Investigation of active regions at high resolution by balloon flights of the Solar Optical Universal Polarimeter (SOUP)

    NASA Technical Reports Server (NTRS)

    Tarbell, T.; Frank, Z.; Gilbreth, C.; Shine, R.; Title, A.; Topka, K.; Wolfson, J.

    1989-01-01

    SOUP is a versatile, visible-light solar observatory, built for space or balloon flight. It is designed to study magnetic and velocity fields in the solar atmosphere with high spatial resolution and temporal uniformity, which cannot be achieved from the surface of the earth. The SOUP investigation is carried out by the Lockheed Palo Alto Research Laboratory, under contract to NASA's Marshall Space Flight Center. Co-investigators include staff members at a dozen observatories and universities in the U.S. and Europe. The primary objectives of the SOUP experiment are: to measure vector magnetic and velocity fields in the solar atmosphere with much better spatial resolution than can be achieved from the ground; to study the physical processes that store magnetic energy in active regions and the conditions that trigger its release; and to understand how magnetic flux emerges, evolves, combines, and disappears on spatial scales of 400 to 100,000 km. SOUP is designed to study intensity, magnetic, and velocity fields in the photosphere and low chromosphere with 0.5 arcsec resolution, free of atmospheric disturbances. The instrument includes: a 30 cm Cassegrain telescope; an active mirror for image stabilization; broadband film and TV cameras; a birefringent filter, tunable over 5100 to 6600 A with 0.05 A bandpass; a 35 mm film camera and a digital CCD camera behind the filter; and a high-speed digital image processor.

  10. Solar Activities and Space Weather Hazards

    NASA Astrophysics Data System (ADS)

    Hady, Ahmed A.

    2013-03-01

    Geomagnetic storms have a good correlation with solar activity and solar radiation variability. Many proton events and geomagnetic storms have occurred during solar cycles21, 22, and 23. The solar activities during the last three cycles, gave us a good indication of the climatic change and its behavior during the 21st century. High energetic eruptive flares were recorded during the decline phase of the last three solar cycles. The appearances of the second peak on the decline phase of solar cycles have been detected. Halloween storms during Nov. 2003 and its effects on the geomagnetic storms have been studied analytically. The data of amplitude and phase of most common indicators of geomagnetic activities during solar cycle 23 have been analyzed.

  11. Midlatitude ionospheric responses to the 2013 SSW under high solar activity

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Wu, Chen; Zhang, Shaodong; Ning, Baiqi; Huang, Xueqin; Zhong, Dingkun; Qi, Hao; Wang, Jin; Huang, Liang

    2016-01-01

    Ionospheric responses to sudden stratospheric warming (SSW) are not well understood, particularly in the midlatitudes and under high solar conditions. During the 2013 SSW, ionospheric disturbances were observed in eight locations on the meridional chain from 30.5°N to 42.8°N in northern China. The midlatitude ionosphere responded strongly to the SSW despite being under high solar flux. The F2 layer maximum electric density increased by more than 80%, and the peak height was elevated more than 60 km. Well-set and organized semidiurnal variations were recorded in early and middle January during the SSW in eight observation locations. The expected foF2 decrease in the afternoon hours was not clearly discernible; however, nighttime enhancements occurred frequently. The time-period spectra of the average foF2 and zonal winds and meridional winds at altitudes of 86-95 km presented quasi-16 day planetary wave-like oscillations during the warming event. The coupling between the atmosphere and ionosphere may be strengthened by the quasi-16 day waves. The amplified diurnal, semidiurnal, and terdiurnal tides in foF2 were also recorded during the warming, in good agreement with earlier observations. Importantly, the variations in the semidiurnal tides included a 16 day periodic component, indicating that the modulated semidiurnal tides may transmit these 16 day planetary wave-like oscillations to the F region through wind dynamo. Although the PW-tide interaction theory is not novel, it is of significance in the midlatitude ionospheric response to SSW.

  12. Variations of daytime and nighttime electron temperature and heat flux in the upper ionosphere, topside ionosphere and lower plasmasphere for low and high solar activity

    NASA Astrophysics Data System (ADS)

    Truhlik, Vladimir; Triskova, Ludmila; Bilitza, Dieter; Podolska, Katerina

    2009-12-01

    A database of the electron temperature (Te) comprising of most of the available LEO satellite measurements is used for studying the solar activity variations of Te. The Te data are grouped for two levels of solar activity (low LSA and high HSA), five altitude ranges between 350 and 2000 km, and day and night. By fitting a theoretical expression to the Te values we obtain variation of Te along magnetic field lines and heat flux for LSA and HSA. We have found that Te increases with increase in solar activity at low and mid-latitudes during nighttime at all altitudes studied. During daytime the Te response to solar activity depends on latitude, altitude, and season. This analysis shows existence of anti-correlation between Te and solar activity at mid-latitudes below 700 km during the equinox and winter day hours. Heat fluxes show small latitudinal dependence for daytime but substantial for nighttime.

  13. Relationships between solar activity and climate change

    NASA Technical Reports Server (NTRS)

    Roberts, W. O.

    1975-01-01

    The relationship between recurrent droughts in the High Plains of the United States and the double sunspot cycle is discussed in detail. It is suggested that high solar activity is generally related to an increase in meridional circulation and blocking patterns at high and intermediate latitudes, especially in winter, and the effect is related to the sudden formation of cirrus clouds during strong geomagnetic activity that originates in the solar corpuscular emission.

  14. Monitoring Variations to the Near-Earth Space Environment during High Solar Activity Using Orbiting Rocket Bodies

    NASA Astrophysics Data System (ADS)

    Romero, V.; Ryan, W.; Ryan, E.

    A space object's general characteristics can be substantially influenced by changes in the magnetosphere, ionosphere, and thermosphere environments. These space weather effects can vary according to the space object's orbit, position relative to certain regions in space, the severity of solar activity, and many other factors. Outcomes can range from minor and easily recoverable to total breakdown. Further, technology has advanced such that satellite components have become smaller and smaller, and these micro-systems are increasingly more susceptible to the highly energetic solar particles associated with intense activity. Therefore, additional study of the significance of space weather events on Earth-orbiting objects would be beneficial. A rotating rocket body in orbit experiences a magnetic torque due to the Earth's magnetic field that results in an exponential decay of its rotational frequency and a variation on the axis of rotation. The Photometric Periods of Artificial Satellites (McCants, 2007) database consists of over 60,000 period measurements, mostly visually acquired, dating back to 1958. Although this database validates this predicted exponential decay in rotation rate, many anomalies have been observed, including increased rotational frequencies. Theories for the causes of these anomalies range from leaking fuel tanks to interaction with the local space environment. Our program aims to complement the current visual database through CCD and video photometric observations of rotating rocket bodies using a portable 0.35-meter telescope and the Magdalena Ridge Observatory's 2.4-meter telescope. The goal is to generate a detailed astrometric and photometric database for a small set of targets at different orbital altitudes in order to study the variability in orbital motion and the rotational angular momentum vector, particularly during times of high solar activity. The National Oceanic and Atmospheric Administration (NOAA) provides daily information and

  15. High Voltage Space Solar Arrays

    NASA Technical Reports Server (NTRS)

    Ferguson, D. C.; Hillard, G. B.; Vayner, B. V.; Galofaro, J. T.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Recent tests performed at the NASA Glenn Research Center and elsewhere have shown promise in the design and construction of high voltage (300-1000 V) solar arrays for space applications. Preliminary results and implications for solar array design will be discussed, with application to direct-drive electric propulsion and space solar power.

  16. A multi-stacked hyperporous silicon flake for highly active solar hydrogen production.

    PubMed

    Jang, Youn Jeong; Ryu, Jaegeon; Hong, Dongki; Park, Soojin; Lee, Jae Sung

    2016-08-11

    3D multi-stacked hyperporous silicon flakes (MHSFs) are prepared via a selective chemical reduction of natural clay minerals bearing MgO negative catalyst layers. The resultant MHSFs are used as a photocatalyst for solar-driven hydrogen evolution and exhibit the highest photocatalytic acitivty (1031 μmol H2 h(-1) g(-1) Si) coupled with a Pt cocatalyst. PMID:27383444

  17. Solar activity secular cycles

    NASA Astrophysics Data System (ADS)

    Kramynin, A. P.; Mordvinov, A. V.

    2013-12-01

    Long-term variations in solar activity secular cycles have been studied using a method for the expansion of reconstructed sunspot number series Sn( t) for 11400 years in terms of natural orthogonal functions. It has been established that three expansion components describe more than 98% of all Sn( t) variations. In this case, the contribution of the first expansion component is about 92%. The averaged form of the 88year secular cycle has been determined based on the form of the first expansion coordinate function. The quasi-periodicities modulating the secular cycle have been revealed based on the time function conjugate to the first function. The quasi-periodicities modulating the secular cycle coincide with those observed in the Sn( t) series spectrum. A change in the secular cycle form and the time variations in this form are described by the second and third expansion components, the contributions of which are about 4 and 2%, respectively. The variations in the steepness of the secular cycle branches are more pronounced in the 200-year cycle, and the secular cycle amplitude varies more evidently in the 2300-year cycle.

  18. A Graphene Composite Material with Single Cobalt Active Sites: A Highly Efficient Counter Electrode for Dye-Sensitized Solar Cells.

    PubMed

    Cui, Xiaoju; Xiao, Jianping; Wu, Yihui; Du, Peipei; Si, Rui; Yang, Huaixin; Tian, Huanfang; Li, Jianqi; Zhang, Wen-Hua; Deng, Dehui; Bao, Xinhe

    2016-06-01

    The design of catalysts that are both highly active and stable is always challenging. Herein, we report that the incorporation of single metal active sites attached to the nitrogen atoms in the basal plane of graphene leads to composite materials with superior activity and stability when used as counter electrodes in dye-sensitized solar cells (DSSCs). A series of composite materials based on different metals (Mn, Fe, Co, Ni, and Cu) were synthesized and characterized. Electrochemical measurements revealed that CoN4 /GN is a highly active and stable counter electrode for the interconversion of the redox couple I(-) /I3 (-) . DFT calculations revealed that the superior properties of CoN4 /GN are due to the appropriate adsorption energy of iodine on the confined Co sites, leading to a good balance between adsorption and desorption processes. Its superior electrochemical performance was further confirmed by fabricating DSSCs with CoN4  /GN electrodes, which displayed a better power conversion efficiency than the Pt counterpart. PMID:27089044

  19. A Graphene Composite Material with Single Cobalt Active Sites: A Highly Efficient Counter Electrode for Dye-Sensitized Solar Cells.

    PubMed

    Cui, Xiaoju; Xiao, Jianping; Wu, Yihui; Du, Peipei; Si, Rui; Yang, Huaixin; Tian, Huanfang; Li, Jianqi; Zhang, Wen-Hua; Deng, Dehui; Bao, Xinhe

    2016-06-01

    The design of catalysts that are both highly active and stable is always challenging. Herein, we report that the incorporation of single metal active sites attached to the nitrogen atoms in the basal plane of graphene leads to composite materials with superior activity and stability when used as counter electrodes in dye-sensitized solar cells (DSSCs). A series of composite materials based on different metals (Mn, Fe, Co, Ni, and Cu) were synthesized and characterized. Electrochemical measurements revealed that CoN4 /GN is a highly active and stable counter electrode for the interconversion of the redox couple I(-) /I3 (-) . DFT calculations revealed that the superior properties of CoN4 /GN are due to the appropriate adsorption energy of iodine on the confined Co sites, leading to a good balance between adsorption and desorption processes. Its superior electrochemical performance was further confirmed by fabricating DSSCs with CoN4  /GN electrodes, which displayed a better power conversion efficiency than the Pt counterpart.

  20. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.

    1975-01-01

    The attempts during the past century to establish a connection between solar activity and the weather are discussed; some critical remarks about the quality of much of the literature in this field are given. Several recent investigations are summarized. Use of the solar/interplanetary magnetic sector structure in future investigations is suggested to add an element of cohesiveness and interaction to these investigations.

  1. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.

    1974-01-01

    The attempts during the past century to establish a connection between solar activity and the weather are discussed. Some critical remarks about the quality of much of the literature in this field are given. Several recent investigations are summarized. Use of the solar interplanetary magnetic sector structure in future investigations is suggested to perhaps add an element of cohesiveness and interaction to these investigations.

  2. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.

    1975-01-01

    Attempts during the past century to establish a connection between solar activity and the weather are discussed. Some critical remarks about the quality of much of the literature in this field are given, and several recent investigations are summarized. Use of the solar-interplanetary magnetic sector structure in future investigations may add an element of cohesiveness and interaction to these investigations.

  3. Solar activity and myocardial infarction.

    PubMed

    Szczeklik, E; Mergentaler, J; Kotlarek-Haus, S; Kuliszkiewicz-Janus, M; Kucharczyk, J; Janus, W

    1983-01-01

    The correlation between the incidence of myocardial infarction, sudden cardiac death, the solar activity and geomagnetism in the period 1969-1976 was studied, basing on Wrocław hospitals material registered according to WHO standards; sudden death was assumed when a person died within 24 hours after the onset of the disease. The highest number of infarctions and sudden deaths was detected for 1975, which coincided with the lowest solar activity, and the lowest one for the years 1969-1970 coinciding with the highest solar activity. Such an inverse, statistically significant correlation was not found to exist between the studied biological phenomena and geomagnetism. PMID:6851574

  4. Low Latitude Aurora: Index of Solar Activity

    NASA Astrophysics Data System (ADS)

    Bekli, M. R.; Aissani, D.; Chadou, I.

    2010-10-01

    Observations of aurora borealis at low latitudes are rare, and are clearly associated with high solar activity. In this paper, we analyze some details of the solar activity during the years 1769-1792. Moreover, we describe in detail three low latitude auroras. The first event was reported by ash-Shalati and observed in North Africa (1770 AD). The second and third events were reported by l'Abbé Mann and observed in Europe (1770 and 1777 AD).

  5. Ionospheric Response to 2013 SSW under High Solar Activity in Middle Latitude Observed by an Ionosonde Chain in China

    NASA Astrophysics Data System (ADS)

    Wu, C.; Chen, G.

    2015-12-01

    Sudden stratospheric warming (SSW) in 2013 is a major warming event under moderate-high solar activity. Based on the observations of a meridianal chain of ionosondes covering a latitude range from 30.5°N to 42.8°N in China, we find ionospheric response to 2013 SSW is latitude dependent and comparable to that of low-latitude and equatorial region with f0F2 enhancement more than 80% and hmF2 elevation more than 60km. Typical semidiurnal variations are found consistently in all the 8 stations in early and middle January during SSW. However, the expected depressions in afternoon hours are not so impressive and the enhancements after sunset become more frequent and evident, which may be due to the higher F region Pedersen conductivity during high solar activity. Wavelet results show that f0F2 perturbations during SSW exhibit rich oscillations like tidal components especially semidiurnal tides and planetary waves (< 5 days), especially 3-day periodicities maybe associated to 'Ultra-fast' Kelvin waves (UFKW) in lower atmosphere and the average of f0F2 in 8-18LT displays 16-day planetary wave like oscillations, suggesting interaction of tides and planetary waves . Also, diurnal, semidiurnal and termidiurnal tides in f0F2 are amplified during the warming in good agreement with earlier studies. Importantly, the amplitudes of semidiurnal tides in f0F2 exhibit 16-day periodicities, confirming the theory that the modulated semidiurnal tides bring the 16-day planetary wave like oscillations to the F region through electrodynamic effects during the SSW event.

  6. Solar activity over different timescales

    NASA Astrophysics Data System (ADS)

    Obridko, Vladimir; Nagovitsyn, Yuri

    The report deals with the “General History of the Sun” (multi-scale description of the long-term behavior of solar activity): the possibility of reconstruction. Time scales: • 100-150 years - the Solar Service. • 400 - instrumental observations. • 1000-2000 years - indirect data (polar auroras, sunspots seen with the naked eye). • Over-millennial scale (Holocene) -14С (10Be) Overview and comparison of data sets. General approaches to the problem of reconstruction of solar activity indices on a large timescale. North-South asymmetry of the sunspot formation activity. 200-year cycle over the “evolution timescales”.The relative contribution of the large-scale and low-latitude. components of the solar magnetic field to the general geomagnetic activity. “Large-scale” and low-latitude sources of geomagnetic disturbances.

  7. The role of the traveling planetary wave ionospheric disturbances on the equatorial F region post-sunset height rise during the last extreme low solar activity and comparison with high solar activity

    NASA Astrophysics Data System (ADS)

    de Abreu, A. J.; Fagundes, P. R.; Bolzan, M. J. A.; de Jesus, R.; Pillat, V. G.; Abalde, J. R.; Lima, W. L. C.

    2014-06-01

    This investigation studies traveling planetary wave ionospheric disturbance (TPWID) type oscillations on the modulation of the F region post-sunset height rise during the electric field pre-reversal enhancement (PRE). The studied period, from January 2009 to April 2010, occurred during the extremely low solar activity, when the averaged F10.7 was 73 [W/m2 Hz]. In addition, the results are compared with those for a high solar activity period of 2003. We present ionospheric sounding observations carried out near equatorial region (Palmas 10.2°S, 48.2°W, dip latitude 5.5°S) and low latitude region (São José dos Campos 23.2°S, 45.9°W, dip latitude 17.6°S; located under the southern crest of the equatorial ionospheric anomaly) in the Brazilian sector. The studies found that the magnitude of the electric field during PRE time and consequently the day-to-day variations of the F region virtual height at equatorial region and low latitude are modulated by waves with periods of around 3-4, 5-6, 10-15, and 24-35 days. The observations show that during low solar activity, the TPWID oscillations are lower than during high solar activity, but with the same amplitude around 200 km. The TPWID long period oscillations of around 27 days present very distinct characteristics at the equatorial region and low latitude, indicating that these regions are not directly connected. Our study also shows that the response to the TPWID short period of around 3-4, 5-6, and 10-15 days at the equatorial region and low latitude present very clear coupling during January-February, 2009, possibly due to the sudden stratospheric warming and TPWID mechanisms.

  8. Carbon cycle dynamics and solar activity embedded in a high-resolution 14C speleothem record from Belize, Central America

    NASA Astrophysics Data System (ADS)

    Lechleitner, Franziska A.; Breitenbach, Sebastian F. M.; McIntyre, Cameron; Asmerom, Yemane; Prufer, Keith M.; Polyak, Victor; Culleton, Brendan J.; Kennett, Douglas J.; Eglinton, Timothy I.; Baldini, James U. L.

    2015-04-01

    Speleothem 14C has recently emerged as a potentially powerful proxy for climate reconstruction. Several studies have highlighted the link between karst hydrology and speleothem 14C content, and a number of possible causes for this relationship have been proposed, such as dripwater flow dynamics in the karst and changes in soil organic matter (SOM) turnover time (e.g. Griffiths et al., 2012). Here we present a high resolution 14C record for a stalagmite (YOK-I) from Yok Balum cave in southern Belize, Central America. YOK-I grew continuously over the last 2000 years, and has been dated very precisely with the U-Th method (40 dates, mean uncertainty < 10 years). The excellent chronological control for this stalagmite allows us to calculate 14C activity (a14C) at the time of speleothem deposition (a14Cinit), as well as the dead carbon fraction (DCF), predominantly a measure of the reservoir effect introduced by limestone dissolution in the karst (Genty et al., 2001). Both records show striking similarities to atmospheric a14C (IntCal13) and reconstructions of solar activity and 14C production rate. We infer close coupling between cave environment and atmosphere, with minimal signal dampening, an observation supported by monitoring data (Ridley et al., in press). DCF fluctuates between approximately 10% and 16% over the entire record, with distinctly lower DCF values and higher a14Cinit during a period of reduced rainfall between ca. 700-1100 AD (linked to the Classic Maya Collapse). This behavior is consistent with observations made elsewhere, and suggests that DCF responds to karst hydrological variability, specifically open-closed system transitions. YOK-I a14Cinit typically lags atmospheric values by 10-100 cal years. A shorter lag appears to be linked to periods of drought, suggesting a response of SOM dynamics above the cave to rainfall reduction. Specifically, drought is inferred to lead to reduced bioproductivity and soil carbon turnover, lowering contributions

  9. Deciphering Solar Magnetic Activity: On Grand Minima in Solar Activity

    NASA Astrophysics Data System (ADS)

    Mcintosh, Scott; Leamon, Robert

    2015-07-01

    The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been tremendous progress in the century since the discovery of solar magnetism - magnetism that ultimately drives the electromagnetic, particulate and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magnetism, perhaps even indicators of a significant downward trend, over recent decades. Are we entering a minimum in solar activity that is deeper and longer than a typical solar minimum, a "grand minimum"? How could we tell if we are? What is a grand minimum and how does the Sun recover? These are very pertinent questions for modern civilization. In this paper we present a hypothetical demonstration of entry and exit from grand minimum conditions based on a recent analysis of solar features over the past 20 years and their possible connection to the origins of the 11(-ish) year solar activity cycle.

  10. Ternary Blend Composed of Two Organic Donors and One Acceptor for Active Layer of High-Performance Organic Solar Cells.

    PubMed

    Lee, Jong Won; Choi, Yoon Suk; Ahn, Hyungju; Jo, Won Ho

    2016-05-01

    Ternary blends composed of two donor absorbers with complementary absorptions provide an opportunity to enhance the short-circuit current and thus the power conversion efficiency (PCE) of organic solar cells. In addition to complementary absorption of two donors, ternary blends may exhibit favorable morphology for high-performance solar cells when one chooses properly the donor pair. For this purpose, we develop a ternary blend with two donors (diketopyrrolopyrrole-based polymer (PTDPP2T) and small molecule ((TDPP)2Ph)) and one acceptor (PC71BM). The solar cell made of a ternary blend with 10 wt % (TDPP)2Ph exhibits higher PCE of 7.49% as compared with the solar cells with binary blends, PTDPP2T:PC71BM (6.58%) and (TDPP)2Ph:PC71BM (3.21%). The higher PCE of the ternary blend solar cell is attributed mainly to complementary absorption of two donors. However, a further increase in (TDPP)2Ph content in the ternary blend (>10 wt %) decreases the PCE. The ternary blend with 10 wt % (TDPP)2Ph exhibits well-developed morphology with narrow-sized fibrils while the blend with 15 wt % (TDPP)2Ph shows phase separation with large-sized domains, demonstrating that the phase morphology and compatibility of ternary blend are important factors to achieve a high-performance solar cell made of ternary blends.

  11. A solar high temperature kiln

    NASA Astrophysics Data System (ADS)

    Huettenhoelscher, N.; Bergmann, K.

    1981-11-01

    The feasibility of using solar energy in developing countries for baking ceramic construction materials was investigated. The solar high temperature kiln is described. It uses two parabolic concentrators which direct available radiation into the baking chamber. The Sun tracker has only one axis. Preliminary test results with the prototype kiln were satisfactory.

  12. High Radiation Resistance IMM Solar Cell

    NASA Technical Reports Server (NTRS)

    Pan, Noren

    2015-01-01

    Due to high launch costs, weight reduction is a key driver for the development of new solar cell technologies suitable for space applications. This project is developing a unique triple-junction inverted metamorphic multijunction (IMM) technology that enables the manufacture of very lightweight, low-cost InGaAsP-based multijunction solar cells. This IMM technology consists of indium (In) and phosphorous (P) solar cell active materials, which are designed to improve the radiation-resistant properties of the triple-junction solar cell while maintaining high efficiency. The intrinsic radiation hardness of InP materials makes them of great interest for building solar cells suitable for deployment in harsh radiation environments, such as medium Earth orbit and missions to the outer planets. NASA Glenn's recently developed epitaxial lift-off (ELO) process also will be applied to this new structure, which will enable the fabrication of the IMM structure without the substrate.

  13. TEC prediction performance of IRI-2012 model during a very low and a high solar activity phase over equatorial regions, Uganda

    NASA Astrophysics Data System (ADS)

    Tariku, Yekoye Asmare

    2015-07-01

    This paper examines the capacity of the latest version of the International Reference Ionosphere (IRI-2012) model in predicting the vertical total electron content (VTEC) variation over Uganda during a very low solar activity phase (2009) and a high solar activity (2012) phase. This has been carried out by comparing the ground-based Global Positioning System (GPS) VTEC inferred from dual-frequency GPS receivers installed at Entebbe (geographic latitude 0.038°N and longitude 32.44°E; geomagnetic latitude -9.53°N and longitude 104.06°E) and Mbarara (geographic latitude -0.60°N and longitude 30.74°E; geomagnetic latitude -10.02°N and longitude 102.36°E). In this work, the diurnal, monthly, and seasonal variations in the measured VTEC have been analyzed and compared with the VTEC derived from IRI-2012 model. It has been shown that the lowest diurnal peak GPS-VTEC values are observed in the June solstice months during both the low and the high solar activity phases. Similarly, the highest diurnal peak IRI-2012 VTEC values are observed in equinoctial months during both phases. The variability of the VTEC in both the experimental and model is minimal nearly at 03:00 UT (06:00 LT) and maximal mostly between 10:00 and 13:00 UT (13:00-16:00 LT) during both phases. The diurnal highest peak modeled VTEC value observed during the high solar activity phase is almost twice larger than the diurnal highest peak modeled VTEC value depicted during the low solar activity phase. Moreover, the highest monthly mean hourly measured VTEC value observed in October during the high solar activity phase is larger by more than twice the corresponding highest monthly mean hourly measured VTEC value observed in November during the low solar activity phase. Similarly, the lowest monthly measured VTEC value observed in July during the high solar activity phase is larger by more than twice the corresponding lowest measured monthly VTEC value observed in the same month during the low solar

  14. Climatic variables as indicators of solar activity

    NASA Astrophysics Data System (ADS)

    Balybina, A. S.; Karakhanyan, A. A.

    2012-12-01

    Tree-ring analysis is used successfully in studies of solar-terrestrial relations. We consider a linear dependence between the radial increment in conifers in Eastern Siberia and solar activity parameters: the length and amplitude of an 11-year solar cycle in the 20th century. It is shown that the increment in conifers in the region is larger in a longer and lower solar cycle than in a short and high one. A correlation between the increment in the width of annual rings of Pinus sylvestris and Siberian pine and the length of the ascending phase of an 11-year cycle is revealed: the longer the ascending phase, the larger the radial increment in conifers. The dynamics of the annual increment in conifers in the region is inversely related to the cycle amplitude and magnetic disturbances in the main solar cycle.

  15. High efficiency solar cell research for space applications

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1985-01-01

    A review is given of NASA photovoltaic research with emphasis on the activities of the Lewis Research Center. High efficiency solar cell research is discussed, as well as solar arrays, multi-junction cell bandgaps, and plasmon coupling.

  16. Statistical Properties of Extreme Solar Activity Intervals

    NASA Astrophysics Data System (ADS)

    Lioznova, A. V.; Blinov, A. V.

    2014-01-01

    A study of long-term solar variability reflected in indirect indices of past solar activity leads to stimulating results. We compare the statistics of intervals of very low and very high solar activity derived from two cosmogenic radionuclide records and look for consistency in their timing and physical interpretation. According to the applied criteria, the numbers of minima and of maxima are 61 and 68, respectively, from the 10Be record, and 42 and 46 from the 14C record. The difference between the enhanced and depressed states of solar activity becomes apparent in the difference in their statistical distributions. We find no correlation between the level or type (minimum or maximum) of an extremum and the level or type of the predecessor. The hypothesis of solar activity as a periodic process on the millennial time scale is not supported by the existing proxies. A new homogeneous series of 10Be measurements in polar ice covering the Holocene would be of great value for eliminating the existing discrepancy in the available solar activity reconstructions.

  17. Sources of solar wind over the solar activity cycle

    PubMed Central

    Poletto, Giannina

    2012-01-01

    Fast solar wind has been recognized, about 40 years ago, to originate in polar coronal holes (CHs), that, since then, have been identified with sources of recurrent high speed wind streams. As of today, however, there is no general consensus about whether there are, within CHs, preferential locations where the solar wind is accelerated. Knowledge of slow wind sources is far from complete as well. Slow wind observed in situ can be traced back to its solar source by backward extrapolation of magnetic fields whose field lines are streamlines of the outflowing plasma. However, this technique often has not the necessary precision for an indisputable identification of the region where wind originates. As the Sun progresses through its activity cycle, different wind sources prevail and contribute to filling the heliosphere. Our present knowledge of different wind sources is here summarized. Also, a Section addresses the problem of wind acceleration in the low corona, as inferred from an analysis of UV data, and illustrates changes between fast and slow wind profiles and possible signatures of changes along the solar cycle. A brief reference to recent work about the deep roots of solar wind and their changes over different solar cycles concludes the review. PMID:25685421

  18. Sources of solar wind over the solar activity cycle.

    PubMed

    Poletto, Giannina

    2013-05-01

    Fast solar wind has been recognized, about 40 years ago, to originate in polar coronal holes (CHs), that, since then, have been identified with sources of recurrent high speed wind streams. As of today, however, there is no general consensus about whether there are, within CHs, preferential locations where the solar wind is accelerated. Knowledge of slow wind sources is far from complete as well. Slow wind observed in situ can be traced back to its solar source by backward extrapolation of magnetic fields whose field lines are streamlines of the outflowing plasma. However, this technique often has not the necessary precision for an indisputable identification of the region where wind originates. As the Sun progresses through its activity cycle, different wind sources prevail and contribute to filling the heliosphere. Our present knowledge of different wind sources is here summarized. Also, a Section addresses the problem of wind acceleration in the low corona, as inferred from an analysis of UV data, and illustrates changes between fast and slow wind profiles and possible signatures of changes along the solar cycle. A brief reference to recent work about the deep roots of solar wind and their changes over different solar cycles concludes the review.

  19. High Performance Perovskite Solar Cells

    PubMed Central

    Tong, Xin; Lin, Feng; Wu, Jiang

    2015-01-01

    Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long‐term stable all‐solid‐state perovskite solar cell with a PCE of 9.7% in 2012, showing their promising potential towards future cost‐effective and high performance solar cells. Here, notable achievements of primary device configuration involving perovskite layer, hole‐transporting materials (HTMs) and electron‐transporting materials (ETMs) are reviewed. Numerous strategies for enhancing photovoltaic parameters of perovskite solar cells, including morphology and crystallization control of perovskite layer, HTMs design and ETMs modifications are discussed in detail. In addition, perovskite solar cells outside of HTMs and ETMs are mentioned as well, providing guidelines for further simplification of device processing and hence cost reduction.

  20. 10Be in ice at high resolution: Solar activity and climate signals observed and GCM-modeled in Law Dome ice cores

    NASA Astrophysics Data System (ADS)

    Pedro, Joel; Heikkilä, Ulla; van Ommen, T. D.; Smith, A. M.

    2010-05-01

    Changes in solar activity modulate the galactic cosmic ray flux, and in turn, the production rate of 10Be in the earth's atmosphere. The best archives of past changes in 10Be production rate are the polar ice cores. Key challenges in interpreting these archives as proxies for past solar activity lie in separating the useful solar activity (or production) signal from the interfering meteorological (or climate) signal, and furthermore, in determining the atmospheric source regions of 10Be deposited to the ice core site. In this study we use a new monthly resolution composite 10Be record, which spans the past decade, and a general circulation model (ECHAM5-HAM), to constrain both the production and climate signals in 10Be concentrations at the Law Dome ice core site, East Antarctica. This study differs from most previous work on 10Be in Antarctica due to the very high sample resolution achieved. This high resolution, through a time period where accurate instrumental measurements of solar activity and climate are available, allows us to examine the response of 10Be concentrations in ice to short-term (monthly to annual) variations in solar activity, and to short-term variations in climate, including seasonality. We find a significant correlation (r2 = 0.56, P < 0.005, n = 92) between observed 10Be concentrations and solar activity (represented by the neutron counting rate). The most pervasive climate influence is a seasonal cycle, which shows maximum concentrations in mid-to-late-summer and minimum concentrations in winter. Model results show reasonable agreement with observations; both a solar activity signal and seasonal cycle in 10Be are captured. However, the modeled snow accumulation rate is too high by approximately 60%. According to the model, the main atmospheric source region of 10Be deposited to Law Dome is the 30-90°S stratosphere (~50%), followed by the 30-90°S troposphere (~30%). An enhancement in the fraction of 10Be arriving to Law Dome from the

  1. High flux solar energy transformation

    DOEpatents

    Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

  2. High flux solar energy transformation

    DOEpatents

    Winston, Roland; Gleckman, Philip L.; O'Gallagher, Joseph J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

  3. Evidence of active region imprints on the solar wind structure

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.

    1995-01-01

    A common descriptive framework for discussing the solar wind structure in the inner heliosphere uses the global magnetic field as a reference: low density, high velocity solar wind emanates from open magnetic fields, with high density, low speed solar wind flowing outward near the current sheet. In this picture, active regions, underlying closed magnetic field structures in the streamer belt, leave little or no imprint on the solar wind. We present evidence from interplanetary scintillation measurements of the 'disturbance factor' g that active regions play a role in modulating the solar wind and possibly contribute to the solar wind mass output. Hence we find that the traditional view of the solar wind, though useful in understanding many features of solar wind structure, is oversimplified and possibly neglects important aspects of solar wind dynamics

  4. High Efficiency Cascade Solar Cells

    SciTech Connect

    Shuguang Deng, Seamus Curran, Igor Vasiliev

    2010-09-28

    This report summarizes the main work performed by New Mexico State University and University of Houston on a DOE sponsored project High Efficiency Cascade Solar Cells. The main tasks of this project include materials synthesis, characterization, theoretical calculations, organic solar cell device fabrication and test. The objective of this project is to develop organic nano-electronic-based photovoltaics. Carbon nanotubes and organic conjugated polymers were used to synthesize nanocomposites as the new active semiconductor materials that were used for fabricating two device architectures: thin film coating and cascade solar cell fiber. Chemical vapor deposition technique was employed to synthesized a variety of carbon nanotubes (single-walled CNT, doubled-walled CNT, multi-walled CNT, N-doped SWCNT, DWCNT and MWCNT, and B-doped SWCNT, DWCNT and MWCNT) and a few novel carbon structures (CNT-based nanolance, nanocross and supported graphene film) that have potential applications in organic solar cells. Purification procedures were developed for removing amorphous carbons from carbon nanotubes, and a controlled oxidation method was established for partial truncation of fullerene molecules. Carbon nanotubes (DWCNT and DWCNT) were functionalized with fullerenes and dyes covalently and used to form nanocomposites with conjugated polymers. Biologically synthesized Tellurium nanotubes were used to form composite with the conjugated polymers as well, which generated the highest reported optical limiting values from composites. Several materials characterization technique including SEM/TEM, Raman, AFM, UV-vis, adsorption and EDS were employed to characterize the physical and chemical properties of the carbon nanotubes, the functionalized carbon nanotubes and the nanocomposites synthesized in this project. These techniques allowed us to have a spectroscopic and morphological control of the composite formation and to understand the materials assembled. A parallel 136-CPU

  5. Solar active region display system

    NASA Astrophysics Data System (ADS)

    Golightly, M.; Raben, V.; Weyland, M.

    2003-04-01

    The Solar Active Region Display System (SARDS) is a client-server application that automatically collects a wide range of solar data and displays it in a format easy for users to assimilate and interpret. Users can rapidly identify active regions of interest or concern from color-coded indicators that visually summarize each region's size, magnetic configuration, recent growth history, and recent flare and CME production. The active region information can be overlaid onto solar maps, multiple solar images, and solar difference images in orthographic, Mercator or cylindrical equidistant projections. Near real-time graphs display the GOES soft and hard x-ray flux, flare events, and daily F10.7 value as a function of time; color-coded indicators show current trends in soft x-ray flux, flare temperature, daily F10.7 flux, and x-ray flare occurrence. Through a separate window up to 4 real-time or static graphs can simultaneously display values of KP, AP, daily F10.7 flux, GOES soft and hard x-ray flux, GOES >10 and >100 MeV proton flux, and Thule neutron monitor count rate. Climatologic displays use color-valued cells to show F10.7 and AP values as a function of Carrington/Bartel's rotation sequences - this format allows users to detect recurrent patterns in solar and geomagnetic activity as well as variations in activity levels over multiple solar cycles. Users can customize many of the display and graph features; all displays can be printed or copied to the system's clipboard for "pasting" into other applications. The system obtains and stores space weather data and images from sources such as the NOAA Space Environment Center, NOAA National Geophysical Data Center, the joint ESA/NASA SOHO spacecraft, and the Kitt Peak National Solar Observatory, and can be extended to include other data series and image sources. Data and images retrieved from the system's database are converted to XML and transported from a central server using HTTP and SOAP protocols, allowing

  6. High voltage solar array experiments

    NASA Technical Reports Server (NTRS)

    Kennerud, K. L.

    1974-01-01

    The interaction between the components of a high voltage solar array and a simulated space plasma is studied to obtain data for the design of a high voltage solar array capable of 15kW at 2 to 16kV. Testing was conducted in a vacuum chamber 1.5-m long by 1.5-m diameter having a plasma source which simulated the plasma conditions existing in earth orbit between 400 nautical miles and synchronous altitude. Test samples included solar array segments pinholes in insulation covering high voltage electrodes, and plain dielectric samples. Quantitative data are presented in the areas of plasma power losses, plasma and high voltage induced damage, and dielectric properties. Limitations of the investigation are described.

  7. Solar Energy Project, Activities: Biology.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of biology experiments. Each unit presents an introduction; objectives; skills and knowledge needed; materials; methods; questions; recommendations for further work; and a teacher information sheet. The teacher information…

  8. Highly Alfvenic Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Roberts, D. Aaron

    2010-01-01

    It is commonly thought that fast solar wind tends to be highly Alfvenic, with strong correlations between velocity and magnetic fluctuations, but examples have been known for over 20 years in which slow wind is both Alfvenic and has many other properties more typically expected of fast solar wind. This paper will present a search for examples of such flows from more recent data, and will begin to characterize the general characteristics of them. A very preliminary search suggests that such intervals are more common in the rising phase of the solar cycle. These intervals are important for providing constraints on models of solar wind acceleration, and in particular the role waves might or might not play in that process.

  9. Analyses of cosmic ray induced-neutron based on spectrometers operated simultaneously at mid-latitude and Antarctica high-altitude stations during quiet solar activity

    NASA Astrophysics Data System (ADS)

    Hubert, G.

    2016-10-01

    In this paper are described a new neutron spectrometer which operate in the Concordia station (Antarctica, Dome C) since December 2015. This instrument complements a network including neutron spectrometers operating in the Pic-du-Midi and the Pico dos Dias. Thus, this work present an analysis of cosmic ray induced-neutron based on spectrometers operated simultaneously in the Pic-du-Midi and the Concordia stations during a quiet solar activity. The both high station platforms allow for investigating the long period dynamics to analyze the spectral variation and effects of local and seasonal changes, but also the short term dynamics during solar flare events. A first part is devoted to analyze the count rates, the spectrum and the neutron fluxes, implying cross-comparisons between data obtained in the both stations. In a second part, measurements analyses were reinforced by modeling based on simulations of atmospheric cascades according to primary spectra which only depend on the solar modulation potential.

  10. Solar wind turbulence as a driver of geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Ikechukwu Ugwu, Ernest Benjamin; Nneka Okeke, Francisca; Ugonabo, Obiageli Josephine

    2016-07-01

    We carried out simultaneous analyses of interplanetary and geomagnetic datasets for the period of (solar Maunder) least (2009) and maximum (2002) solar activity to determine the nature of solar wind turbulence on geomagnetic activity using AE, ASY-D, and ASY-H indices. We determined the role played by Alfvénic fluctuations in the solar wind so as to find out the nature of the turbulence. Our analyses showed that solar wind turbulence play a role in geomagnetic processes at high latitudes during periods of low and high solaractivity but does not have any effect at mid-low latitudes.

  11. High Temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Raffaelle, Ryne P.; Merritt, Danielle

    2004-01-01

    The majority of satellites and near-earth probes developed to date have used photovoltaic arrays for power generation. If future mission to probe environments close to the sun will be able to use photovoltaic power, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. In this paper, we derive the optimum bandgap as a function of the operating temperature.

  12. Seismic Forecasting of Solar Activity

    NASA Technical Reports Server (NTRS)

    Braun, Douglas; Lindsey, Charles

    2001-01-01

    We have developed and improved helioseismic imaging techniques of the far-side of the Sun as part of a synoptic monitor of solar activity. In collaboration with the MIDI team at Stanford University we are routinely applying our analysis to images within 24 hours of their acquisition by SOHO. For the first time, real-time seismic maps of large active regions on the Sun's far surface are publicly available. The synoptic images show examples of active regions persisting for one or more solar rotations, as well as those initially detected forming on the solar far side. Until recently, imaging the far surface of the Sun has been essentially blind to active regions more than about 50 degrees from the antipode of disk center. In a paper recently accepted for publication, we have demonstrated how acoustic travel-time perturbations may be mapped over the entire hemisphere of the Sun facing away from the Earth, including the polar regions. In addition to offering significant improvements to ongoing space weather forecasting efforts, the procedure offers the possibility of local seismic monitoring of both the temporal and spatial variations in the acoustic properties of the Sun over the entire far surface.

  13. High-performance solar collector

    NASA Technical Reports Server (NTRS)

    Beekley, D. C.; Mather, G. R., Jr.

    1979-01-01

    Evacuated all-glass concentric tube collector using air or liquid transfer mediums is very efficient at high temperatures. Collector can directly drive existing heating systems that are presently driven by fossil fuel with relative ease of conversion and less expense than installation of complete solar heating systems.

  14. Colloidal synthesis of wurtz-stannite Cu2CdGeS4 nanocrystals with high catalytic activity toward iodine redox couples in dye-sensitized solar cells.

    PubMed

    Huang, Shoushuang; Zai, Jiantao; Ma, Dui; He, Qingquan; Liu, Yuanyuan; Qiao, Qiquan; Qian, Xuefeng

    2016-09-18

    Wurtz-stannite Cu2CdGeS4 nanocrystals were synthesized via a facile hot-injection method at a low temperature. They exhibited low charge transfer resistance at the electrolyte-electrode interface and high electrocatalytic activity for the reduction of I3(-) in dye-sensitized solar cells (DSSCs). Moreover, this DSSC showed a power conversion efficiency of 7.67%, comparable to the Pt-based device (7.54%). PMID:27524660

  15. Towards high performance inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Gong, Xiong

    2013-03-01

    Bulk heterojunction polymer solar cells that can be fabricated by solution processing techniques are under intense investigation in both academic institutions and industrial companies because of their potential to enable mass production of flexible and cost-effective alternative to silicon-based electronics. Despite the envisioned advantages and recent technology advances, so far the performance of polymer solar cells is still inferior to inorganic counterparts in terms of the efficiency and stability. There are many factors limiting the performance of polymer solar cells. Among them, the optical and electronic properties of materials in the active layer, device architecture and elimination of PEDOT:PSS are the most determining factors in the overall performance of polymer solar cells. In this presentation, I will present how we approach high performance of polymer solar cells. For example, by developing novel materials, fabrication polymer photovoltaic cells with an inverted device structure and elimination of PEDOT:PSS, we were able to observe over 8.4% power conversion efficiency from inverted polymer solar cells.

  16. Solar absorber material stability under high solar flux

    NASA Astrophysics Data System (ADS)

    Ignatiev, A.; Zajac, G.; Smith, G. B.

    1982-04-01

    Solar absorbing Black Chrome coatings have been exposed to high temperatures (350-400 C) under high solar fluxes (0.4 to 2.0 MW/sq m) to test for their stability under actual operating conditions. Field tests at the White Sands Solar Furnace have shown higher stability than expected from oven tested samples. Laboratory studies utilizing spectrally selective concentrated solar simulated radiation have indicated that the cause of the higher stability under solar irradiation is photo-stimulated desorption of oxygen bearing species at the absorber surface and resultant reduced oxidation of the absorber.

  17. Module greenhouse with high efficiency of transformation of solar energy, utilizing active and passive glass optical rasters

    SciTech Connect

    Korecko, J.; Jirka, V.; Sourek, B.; Cerveny, J.

    2010-10-15

    Since the eighties of the 20th century, various types of linear glass rasters for architectural usage have been developed in the Czech Republic made by the continuous melting technology. The development was focused on two main groups of rasters - active rasters with linear Fresnel lenses in fixed installation and with movable photo-thermal and/or photo-thermal/photo-voltaic absorbers. The second group are passive rasters based on total reflection of rays on an optical prism. During the last years we have been working on their standardization, exact measuring of their optical and thermal-technical characteristics and on creation of a final product that could be applied in solar architecture. With the project supported by the Ministry of Environment of the Czech Republic we were able to build an experimental greenhouse using these active and passive optical glass rasters. The project followed the growing number of technical objectives. The concept of the greenhouse consisted of interdependence construction - structural design of the greenhouse with its technological equipment securing the required temperature and humidity conditions in the interior of the greenhouse. This article aims to show the merits of the proposed scheme and presents the results of the mathematical model in the TRNSYS environment through which we could predict the future energy balance carried out similar works, thus optimizing the investment and operating costs. In this article description of various technology applications for passive and active utilization of solar radiation is presented, as well as some results of short-term and long-term experiments, including evaluation of 1-year operation of the greenhouse from the energy and interior temperature viewpoints. A comparison of the calculated energy flows in the greenhouse to real measured values, for verification of the installed model is also involved. (author)

  18. High temperature solar thermal receiver

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A design concept for a high temperature solar thermal receiver to operate at 3 atmospheres pressure and 2500 F outlet was developed. The performance and complexity of windowed matrix, tube-header, and extended surface receivers were evaluated. The windowed matrix receiver proved to offer substantial cost and performance benefits. An efficient and cost effective hardware design was evaluated for a receiver which can be readily interfaced to fuel and chemical processes or to heat engines for power generation.

  19. Coronal Streamers and Solar Activity

    NASA Astrophysics Data System (ADS)

    Delone, A. B.; Porfir'eva, G. A.; Smirnova, O. B.; Yakunina, G. V.

    2013-03-01

    We analyze the structure of the streamer belt and plasma ejection dynamics during the last two solar minima (1996-1997 and 2006-2009) using white light observations by SOHO and STEREO space observatories. We consider the role of activity centers and of the sectorial structure of the Sun's global magnetic field in the streamer belt topology. During the last minimum plasma was ejected from the streamer belt at a velocity several tens of km/s higher than that during the preceding minimum. We have used the data from Internet and papers published in science journals.

  20. Initiation of non-tropical thunderstorms by solar activity

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Goldberg, R. A.

    1978-01-01

    A theory of thunderstorm initiation is proposed to account for the statistical correlation between solar activity and thunderstorm occurrence in middle to high latitudes. It is suggested that cosmic ray decreases and/or high-energy solar protons associated with active solar events enhance the electric field at low heights so that, if appropriate meteorological conditions are present during a solar event, the atmospheric electric field enhancement may be sufficient to trigger thunderstorm development. Statistical correlations and atmospheric electric effects are described. The theory could be tested if the possible forcing functions and the responding atmospheric electrical and ionic species' characteristics were measured.

  1. High efficiency solar panel /HESP/

    NASA Technical Reports Server (NTRS)

    Stella, P. M.; Gay, C.; Uno, F.; Scott-Monck, J.

    1978-01-01

    A family of high efficiency, weldable silicon solar cells, incorporating nearly every feature of advanced cell technology developed in the past four years, was produced and subjected to space qualification testing. This matrix contained both field and non-field cells ranging in thickness from 0.10 mm to 0.30 mm, and in base resistivity from nominal two to one hundred ohm-cm. Initial power outputs as high as 20 mW/sq cm (14.8% AM0 efficiency) were produced by certain cell types within the matrix.

  2. Solar corona at high resolution

    NASA Technical Reports Server (NTRS)

    Golub, L.; Rosner, R.; Zombeck, M. V. Z.; Vaiana, G. S.

    1982-01-01

    The earth's surface is shielded from solar X rays almost completely by the atmosphere. It is, therefore, necessary to place X-ray detectors on rockets or orbiting satellites. Solar rays were detected for the first time in the late 1940's, using V-2 rockets. In 1960, the first true X-ray images of the sun were obtained with the aid of a simple pinhole camera. The spatial resolution of the X-ray images could be considerably improved by making use of reflective optics, operating at grazing incidence. Aspects of X-ray mirror developments are discussed along with the results obtained in coronal studies utilizing the new devices for the observation of solar X-ray emission. It is pointed out that the major achievements of the Skylab missions were due primarily to the unique opportunity to obtain data over an extended period of time. Attention is given to normal incidence X-ray optics, achievements possible by making use of high spatial resolution optics, and details of improved mirror design.

  3. Solar Eruptions Initiated in Sigmoidal Active Regions

    NASA Astrophysics Data System (ADS)

    Savcheva, Antonia

    2016-07-01

    active regions that have been shown to possess high probability for eruption. They present a direct evidence of the existence of flux ropes in the corona prior to the impulsive phase of eruptions. In order to gain insight into their eruptive behavior and how they get destabilized we need to know their 3D magnetic field structure. First, we review some recent observations and modeling of sigmoidal active regions as the primary hosts of solar eruptions, which can also be used as useful laboratories for studying these phenomena. Then, we concentrate on the analysis of observations and highly data-constrained non-linear force-free field (NLFFF) models over the lifetime of several sigmoidal active regions, where we have captured their magnetic field structure around the times of major flares. We present the topology analysis of a couple of sigmoidal regions pointing us to the probable sites of reconnection. A scenario for eruption is put forward by this analysis. We demonstrate the use of this topology analysis to reconcile the observed eruption features with the standard flare model. Finally, we show a glimpse of how such a NLFFF model of an erupting region can be used to initiate a CME in a global MHD code in an unprecedented realistic manner. Such simulations can show the effects of solar transients on the near-Earth environment and solar system space weather.

  4. Recurrence of solar activity - Evidence for active longitudes

    NASA Technical Reports Server (NTRS)

    Bogart, R. S.

    1982-01-01

    It is pointed out that the autocorrelation coefficients of the daily Wolf sunspot numbers over a period of 128 years reveal a number of interesting features of the variability of solar activity. Besides establishing periodicities for the solar rotation, solar activity cycle, and, perhaps, the 'Gleissberg Cycle', they suggest that active longitudes do exist, but with much greater strength and persistence in some solar cycles than in others. Evidence is adduced for a variation in the solar rotation period, as measured by sunspot number, of as much as two days between different solar cycles.

  5. Ionospheric response to the High Speed Solar Streams during last solar minimum

    NASA Astrophysics Data System (ADS)

    Mosna, Zbysek; Koucka Knizova, Petra; Georgieva, Katya

    Ionosphere is a highly variable system. Response of ionospheric plasma to the High Speed Solar Streams (HSS) by means of critical frequencies fof2, heights of maximum electron concentration hmf2 and the occurrence of sporadic E-layer during last prolonged solar minimum is presented and we compare it to previous studies. State of the ionosphere depends on the daytime, season, phase of solar cycle etc. The extent of ionospheric response to the solar event (HSS, CME etc.) is a subject of mentioned conditions and strength of solar event itself but it also significantly depends on the actual geomagnetic and ionospheric situation and the memory of the system, e.g. length of the preceding quiet or disturbed period. Ionospheric storms have been relatively widely studied. However, last solar minimum gives us an exceptional possibility to study ionospheric processes under conditions of unusually long time of low solar activity.

  6. Influence of solar activity on fibrinolysis and fibrinogenolysis. [statistical correlation between solar flare and blood coagulation indices

    NASA Technical Reports Server (NTRS)

    Marchenko, V. I.

    1974-01-01

    During periods of high solar activity fibrinolysis and fibrinogenolysis are increased. A direct correlative relationship is established between the indices of fibrinolysis, fibrinogenolysis and solar flares which were recorded two days before the blood was collected for analysis.

  7. Solar irradiance measurements - Minimum through maximum solar activity

    NASA Technical Reports Server (NTRS)

    Lee, R. B., III; Gibson, M. A.; Shivakumar, N.; Wilson, R.; Kyle, H. L.; Mecherikunnel, A. T.

    1991-01-01

    The Earth Radiation Budget Satellite (ERBS) and the NOAA-9 spacecraft solar monitors were used to measure the total solar irradiance during the period October 1984 to December 1989. Decreasing trends in the irradiance measurements were observed as sunspot activity decreased to minimum levels in 1986; after 1986, increasing trends were observed as sunspot activity increased. The magnitude of the irradiance variability was found to be approximately 0.1 percent between sunspot minimum and maximum (late 1989). When compared with the 1984 to 1989 indices of solar magnetic activity, the irradiance trends appear to be in phase with the 11-year sunspot cycle. Both irradiance series yielded 1,365/sq Wm as the mean value of the solar irradiance, normalized to the mean earth/sun distance. The monitors are electrical substitution, active-cavity radiometers with estimated measurement precisions and accuracies of less than 0.02 and 0.2 percent, respectively.

  8. Traveling planetary wave ionospheric disturbances and their role in the generation of equatorial spread-F and GPS phase fluctuations during the last extreme low solar activity and comparison with high solar activity

    NASA Astrophysics Data System (ADS)

    de Abreu, A. J.; Fagundes, P. R.; Bolzan, M. J. A.; Gende, M.; Brunini, C.; de Jesus, R.; Pillat, V. G.; Abalde, J. R.; Lima, W. L. C.

    2014-09-01

    This investigation studies traveling planetary wave ionospheric disturbance (TPWID) type oscillations on the modulation of the F region virtual height rise during the E×B electric field pre-reversal enhancement (PRE), near sunset hours. We also studied their role in the generation of equatorial spread F (ESF) and GPS phase fluctuations during periods of the last extreme low solar activity (LSA) of January 2009 to April 2010 (F10.7bar=73). A comparison is made with periods of high solar activity (HSA) in 2003 and 2004 near equatorial region. The ionospheric irregularities investigated are medium (bottom-side) and large (plasma bubble) scales. Ionospheric F region oscillations with period of days are due to the TPWIDs, which play an important role in producing favorable or unfavorable conditions for equatorial ionospheric irregularities, changing the electron vertical profile and F region height. In this paper, we present simultaneous ionospheric sounding (ionosonde) and GPS vertical total electron content (vTEC) observations carried out near equatorial region (Palmas 10.2°S, 48.2°W) and low latitude region (São José dos Campos 23.2°S, 45.9°W; located under the southern crest of the equatorial ionospheric anomaly), Brazil. Observations show that the occurrence of fresh ESF during LSA and HSA and fresh GPS phase fluctuations at equatorial region follow the trend of day-to-day variations in the F region virtual height, which are due to electric field PRE modulated by TPWID wave like oscillations. During LSA, the altitude of 250 km acts as a threshold height for the generation of fresh ionospheric irregularities, whereas during HSA, the threshold height is 300 km. The observations also found a strong increase in the generation of fresh ionospheric irregularities from October 2009 to March 2010 during LSA and from September 2003 to March 2004 during the HSA. Furthermore, in LSA, the period of fresh ionospheric irregularities was less than during HSA, though both

  9. Workshop on Solar Activity, Solar Wind, Terrestrial Effects, and Solar Acceleration

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A summary of the proceedings from the workshop are presented. The areas covered were solar activity, solar wind, terrestrial effects, and solar acceleration. Specific topics addressed include: (1) solar cycle manifestations, both large and small scale, as well as long-term and short-term changes, including transients such as flares; (2) sources of solar wind, as identified by interplanetary observations including coronal mass ejections (CME's) or x-ray bright points, and the theory for and evolution of large-scale and small-scale structures; (3) magnetosphere responses, as observed by spacecraft, to variable solar wind and transient energetic particle emissions; and (4) origin and propagation of solar cosmic rays as related to solar activity and terrestrial effects, and solar wind coronal-hole relationships and dynamics.

  10. Solar Flares and the High Energy Solar Spectroscopic Imager (HESSI)

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Solar flares are the biggest explosions in the solar system. They are important both for understanding explosive events in the Universe and for their impact on human technology and communications. The satellite-based HESSI is designed to study the explosive release of energy and the acceleration of electrons, protons, and other charged particles to high energies in solar flares. HESSI produces "color" movies of the Sun in high-energy X rays and gamma rays radiated by these energetic particles. HESSI's X-ray and gamma-ray images of flares are obtained using techniques similar to those used in radio interferometry. Ground-based radio observations of the Sun provide an important complement to the HESSI observations of solar flares. I will describe the HESSI Project and the high-energy aspects of solar flares, and how these relate to radio astronomy techniques and observations.

  11. Solar activity and oscillation frequency splittings

    NASA Technical Reports Server (NTRS)

    Woodard, M. F.; Libbrecht, K. G.

    1993-01-01

    Solar p-mode frequency splittings, parameterized by the coefficients through order N = 12 of a Legendre polynomial expansion of the mode frequencies as a function of m/L, were obtained from an analysis of helioseismology data taken at Big Bear Solar Observatory during the 4 years 1986 and 1988-1990 (approximately solar minimum to maximum). Inversion of the even-index splitting coefficients confirms that there is a significant contribution to the frequency splittings originating near the solar poles. The strength of the polar contribution is anti correlated with the overall level or solar activity in the active latitudes, suggesting a relation to polar faculae. From an analysis of the odd-index splitting coefficients we infer an uppor limit to changes in the solar equatorial near-surface rotatinal velocity of less than 1.9 m/s (3 sigma limit) between solar minimum and maximum.

  12. The NASA High Energy Solar Physics (HESP) mission for the next solar maximum.

    NASA Astrophysics Data System (ADS)

    Lin, R. P.; Dennis, B. R.; Ramaty, R.; Emslie, A. G.; Canfield, R.; Doschek, G.

    The NASA High Energy Solar Physics (HESP) mission offers the opportunity for major breakthroughs in the understanding of the fundamental energy release and particle acceleration processes at the core of the solar flare problem. Recently, the HESP mission has been adapted to Lightsats, lighter, smaller, cheaper spacecraft: the baseline HESP mission now includes two Pegasus-class spacecraft. A launch by the end of the year 2000 is desirable to be in time for the next solar activity maximum.

  13. Verification of high-speed solar wind stream forecasts using operational solar wind models

    NASA Astrophysics Data System (ADS)

    Reiss, Martin A.; Temmer, Manuela; Veronig, Astrid M.; Nikolic, Ljubomir; Vennerstrom, Susanne; Schöngassner, Florian; Hofmeister, Stefan J.

    2016-07-01

    High-speed solar wind streams emanating from coronal holes are frequently impinging on the Earth's magnetosphere causing recurrent, medium-level geomagnetic storm activity. Modeling high-speed solar wind streams is thus an essential element of successful space weather forecasting. Here we evaluate high-speed stream forecasts made by the empirical solar wind forecast (ESWF) and the semiempirical Wang-Sheeley-Arge (WSA) model based on the in situ plasma measurements from the Advanced Composition Explorer (ACE) spacecraft for the years 2011 to 2014. While the ESWF makes use of an empirical relation between the coronal hole area observed in Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) images and solar wind properties at the near-Earth environment, the WSA model establishes a link between properties of the open magnetic field lines extending from the photosphere to the corona and the background solar wind conditions. We found that both solar wind models are capable of predicting the large-scale features of the observed solar wind speed (root-mean-square error, RMSE ≈100 km/s) but tend to either overestimate (ESWF) or underestimate (WSA) the number of high-speed solar wind streams (threat score, TS ≈ 0.37). The predicted high-speed streams show typical uncertainties in the arrival time of about 1 day and uncertainties in the speed of about 100 km/s. General advantages and disadvantages of the investigated solar wind models are diagnosed and outlined.

  14. Sustainable Buildings. Using Active Solar Power

    SciTech Connect

    Sharp, M. Keith; Barnett, Russell

    2015-04-20

    The objective of this project is to promote awareness and knowledge of active solar energy technologies by installing and monitoring the following demonstration systems in Kentucky: 1) Pool heating system, Churchill Park School, 2) Water heating and daylighting systems, Middletown and Aiken Road Elementary Schools, 3) Photovoltaic street light comparison, Louisville Metro, 4) up to 25 domestic water heating systems across Kentucky. These tasks will be supported by outreach activities, including a solar energy installer training workshop and a Kentucky Solar Energy Conference.

  15. Dynamo theory prediction of solar activity

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1988-01-01

    The dynamo theory technique to predict decadal time scale solar activity variations is introduced. The technique was developed following puzzling correlations involved with geomagnetic precursors of solar activity. Based upon this, a dynamo theory method was developed to predict solar activity. The method was used successfully in solar cycle 21 by Schatten, Scherrer, Svalgaard, and Wilcox, after testing with 8 prior solar cycles. Schatten and Sofia used the technique to predict an exceptionally large cycle, peaking early (in 1990) with a sunspot value near 170, likely the second largest on record. Sunspot numbers are increasing, suggesting that: (1) a large cycle is developing, and (2) that the cycle may even surpass the largest cycle (19). A Sporer Butterfly method shows that the cycle can now be expected to peak in the latter half of 1989, consistent with an amplitude comparable to the value predicted near the last solar minimum.

  16. Validation of solar wind high-speed stream predictions

    NASA Astrophysics Data System (ADS)

    Reiss, Martin; Temmer, Manuela; Veronig, Astrid; Nikolic, Ljubomir; Schöngassner, Florian; Vennerstrøm, Susanne

    2016-04-01

    Solar wind high-speed streams emanating from coronal holes are frequently impinging on the Earth's magnetosphere causing recurrent, medium-level geomagnetic storm activity. As major contributors to space weather disturbances at times of low solar activity, prediction models of solar wind high-speed streams are becoming highly desirable. We present a verification analysis of two operational solar wind prediction models (empirical model, Wang-Sheeley-Arge like model) by comparing the model runs for the period 2011 to 2014 with in-situ plasma measurements from the ACE spacecraft located at 1 AU. We find that both prediction models achieve a similar accuracy but demonstrate the tendency to under-predict and over-predict events of solar wind high-speed streams, respectively. General advantages and disadvantages of both models are diagnosed and outlined.

  17. Nanoflare activity in the solar chromosphere

    SciTech Connect

    Jess, D. B.; Mathioudakis, M.; Keys, P. H.

    2014-11-10

    We use ground-based images of high spatial and temporal resolution to search for evidence of nanoflare activity in the solar chromosphere. Through close examination of more than 1 × 10{sup 9} pixels in the immediate vicinity of an active region, we show that the distributions of observed intensity fluctuations have subtle asymmetries. A negative excess in the intensity fluctuations indicates that more pixels have fainter-than-average intensities compared with those that appear brighter than average. By employing Monte Carlo simulations, we reveal how the negative excess can be explained by a series of impulsive events, coupled with exponential decays, that are fractionally below the current resolving limits of low-noise equipment on high-resolution ground-based observatories. Importantly, our Monte Carlo simulations provide clear evidence that the intensity asymmetries cannot be explained by photon-counting statistics alone. A comparison to the coronal work of Terzo et al. suggests that nanoflare activity in the chromosphere is more readily occurring, with an impulsive event occurring every ∼360 s in a 10,000 km{sup 2} area of the chromosphere, some 50 times more events than a comparably sized region of the corona. As a result, nanoflare activity in the chromosphere is likely to play an important role in providing heat energy to this layer of the solar atmosphere.

  18. Sunshot Initiative High Penetration Solar Portal

    DOE Data Explorer

    The DOE SunShot Initiative is a collaborative national initiative to make solar energy cost-competitive with other forms of energy by the end of the decade. Reducing the installed cost of solar energy systems by about 75% will drive widespread large-scale adoption of this renewable energy and restore U.S. leadership in the global clean energy race. The High Penetration Solar Portal was created as a resource to aggregate the most relevant and timely information related to high penetration solar scenarios and integrating solar into the grid. The site is designed so that utilities, grant awardees, regulators, researchers, and other solar professionals can easily share data, case studies, lessons learned, and demonstration project findings. [from https://solarhighpen.energy.gov/about_the_high_penetration_solar_portal

  19. Solar neutrinos, solar flares, solar activity cycle and the proton decay

    NASA Technical Reports Server (NTRS)

    Raychaudhuri, P.

    1985-01-01

    It is shown that there may be a correlation between the galactic cosmic rays and the solar neutrino data, but it appears that the neutrino flux which may be generated during the large solar cosmic ray events cannot in any way effect the solar neutrino data in Davis experiment. Only initial stage of mixing between the solar core and solar outer layers after the sunspot maximum in the solar activity cycle can explain the higher (run number 27 and 71) of solar neutrino data in Davis experiment. But solar flare induced atmospheric neutrino flux may have effect in the nucleon decay detector on the underground. The neutrino flux from solar cosmic rays may be a useful guide to understand the background of nucleon decay, magnetic monopole search, and the detection of neutrino flux in sea water experiment.

  20. Forecasting the solar activity cycle: new insights

    NASA Astrophysics Data System (ADS)

    Nandy, Dibyendu; Karak, Bidya Binay

    2013-07-01

    Having advance knowledge of solar activity is important because the Sun's magnetic output governs space weather and impacts technologies reliant on space. However, the irregular nature of the solar cycle makes solar activity predictions a challenging task. This is best achieved through appropriately constrained solar dynamo simulations and as such the first step towards predictions is to understand the underlying physics of the solar dynamo mechanism. In Babcock-Leighton type dynamo models, the poloidal field is generated near the solar surface whereas the toroidal field is generated in the solar interior. Therefore a finite time is necessary for the coupling of the spatially segregated source layers of the dynamo. This time delay introduces a memory in the dynamo mechanism which allows forecasting of future solar activity. Here we discuss how this forecasting ability of the solar cycle is affected by downward turbulent pumping of magnetic flux. With significant turbulent pumping the memory of the dynamo is severely degraded and thus long term prediction of the solar cycle is not possible; only a short term prediction of the next cycle peak may be possible based on observational data assimilation at the previous cycle minimum.

  1. Tsunami related to solar and geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino

    2016-04-01

    The authors of this study wanted to verify the existence of a correlation between earthquakes of high intensity capable of generating tsunami and variations of solar and Earth's geomagnetic activity. To confirming or not the presence of this kind of correlation, the authors analyzed the conditions of Spaceweather "near Earth" and the characteristics of the Earth's geomagnetic field in the hours that preceded the four earthquakes of high intensity that have generated tsunamis: 1) Japan M9 earthquake occurred on March 11, 2011 at 05:46 UTC; 2) Japan M7.1 earthquake occurred on October 25, 2013 at 17:10 UTC; 3) Chile M8.2 earthquake occurred on April 1, 2014 at 23:46 UTC; 4) Chile M8.3 earthquake occurred on September 16, 2015 at 22:54 UTC. The data relating to the four earthquakes were provided by the United States Geological Survey (USGS). The data on ion density used to realize the correlation study are represented by: solar wind ion density variation detected by ACE (Advanced Composition Explorer) Satellite, in orbit near the L1 Lagrange point, at 1.5 million of km from Earth, in direction of the Sun. The instrument used to perform the measurement of the solar wind ion density is the Electron, Proton, and Alpha Monitor (EPAM) instrument, equipped on the ACE Satellite. To conduct the study, the authors have taken in consideration the variation of the solar wind protons density of three different energy fractions: differential proton flux 1060-1900 keV (p/cm^2-sec-ster-MeV); differential proton flux 761-1220 keV (p/cm^2-sec-ster-MeV); differential proton flux 310-580 keV (p/cm^2-sec-ster-MeV). Geomagnetic activity data were provided by Tromsø Geomagnetic Observatory (TGO), Norway; by Scoresbysund Geomagnetic Observatory (SCO), Greenland, Denmark and by Space Weather Prediction Center of Pushkov Institute of terrestrial magnetism, ionosphere and radio wave propagation (IZMIRAN), Troitsk, Moscow Region. The results of the study, in agreement with what already

  2. On the Relationship Between Solar Wind Speed, Geomagnetic Activity, and the Solar Cycle Using Annual Values

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    The aa index can be decomposed into two separate components: the leading sporadic component due to solar activity as measured by sunspot number and the residual or recurrent component due to interplanetary disturbances, such as coronal holes. For the interval 1964-2006, a highly statistically important correlation (r = 0.749) is found between annual averages of the aa index and the solar wind speed (especially between the residual component of aa and the solar wind speed, r = 0.865). Because cyclic averages of aa (and the residual component) have trended upward during cycles 11-23, cyclic averages of solar wind speed are inferred to have also trended upward.

  3. Ionospheric effects of the extreme solar activity of February 1986

    NASA Technical Reports Server (NTRS)

    Boska, J.; Pancheva, D.

    1989-01-01

    During February 1986, near the minimum of the 11 year Solar sunspot cycle, after a long period of totally quiet solar activity (R sub z = 0 on most days in January) a period of a suddenly enhanced solar activity occurred in the minimum between solar cycles 21 and 22. Two proton flares were observed during this period. A few other flares, various phenomena accompanying proton flares, an extremely severe geomagnetic storm and strong disturbances in the Earth's ionosphere were observed in this period of enhanced solar activity. Two active regions appeared on the solar disc. The flares in both active regions were associated with enhancement of solar high energy proton flux which started on 4 February of 0900 UT. Associated with the flares, the magnetic storm with sudden commencement had its onset on 6 February 1312 UT and attained its maximum on 8 February (Kp = 9). The sudden enhancement in solar activity in February 1986 was accompanied by strong disturbances in the Earth's ionosphere, SIDs and ionospheric storm. These events and their effects on the ionosphere are discussed.

  4. Solar Spots - Activities to Introduce Solar Energy into the K-8 Curricula.

    ERIC Educational Resources Information Center

    Longe, Karen M.; McClelland, Michael J.

    Following an introduction to solar technology which reviews solar heating and cooling, passive solar systems (direct gain systems, thermal storage walls, sun spaces, roof ponds, and convection loops), active solar systems, solar electricity (photovoltaic and solar thermal conversion systems), wind energy, and biomass, activities to introduce solar…

  5. Transient flows of the solar wind associated with small-scale solar activity in solar minimum

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid

    The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme

  6. High efficiency, long life terrestrial solar panel

    NASA Technical Reports Server (NTRS)

    Chao, T.; Khemthong, S.; Ling, R.; Olah, S.

    1977-01-01

    The design of a high efficiency, long life terrestrial module was completed. It utilized 256 rectangular, high efficiency solar cells to achieve high packing density and electrical output. Tooling for the fabrication of solar cells was in house and evaluation of the cell performance was begun. Based on the power output analysis, the goal of a 13% efficiency module was achievable.

  7. Science Activities in Energy: Solar Energy II.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Included in this science activities energy package are 14 activities related to solar energy for secondary students. Each activity is outlined on a single card and is introduced by a question such as: (1) how much solar heat comes from the sun? or (2) how many times do you have to run water through a flat-plate collector to get a 10 degree rise in…

  8. Gap between active and passive solar heating

    SciTech Connect

    Balcomb, J.D.

    1985-01-01

    The gap between active and passive solar could hardly be wider. The reasons for this are discussed and advantages to narrowing the gap are analyzed. Ten years of experience in both active and passive systems are reviewed, including costs, frequent problems, performance prediction, performance modeling, monitoring, and cooling concerns. Trends are analyzed, both for solar space heating and for service water heating. A tendency for the active and passive technologies to be converging is observed. Several recommendations for narrowing the gap are presented.

  9. Castro Valley High School's Solar Panels

    NASA Astrophysics Data System (ADS)

    Lew, A.; Ham, S.; Shin, Y.; Yang, W.; Lam, J.

    2014-12-01

    Solar panels are photovoltaic cells that are designed to convert the sun's kinetic energy to generate usable energy in the form of electricity. Castro Valley High School has tried to offset the cost of electricity by installing solar panels, costing the district approximately 3.29 million dollars, but have been installed incorrectly and are not operating at peak efficency. By using trigonometry we deduced that Castro Valley High School's south facing solar panels were at an incline of 10o and that the east and west facing solar panels are at an incline of 5o. By taking the averages of the optimum angles for the months of September through May, roughly when school is in session, we found that the optimum angle for south facing solar panels should be roughly 46o. This shows that Castro Valley High School has not used it's budget to its full potential due to the fact that the solar panels were haphazardly installed.

  10. Boeing's High Voltage Solar Tile Test Results

    NASA Technical Reports Server (NTRS)

    Reed, Brian J.; Harden, David E.; Ferguson, Dale C.; Snyder, David B.

    2002-01-01

    Real concerns of spacecraft charging and experience with solar array augmented electrostatic discharge arcs on spacecraft have minimized the use of high voltages on large solar arrays despite numerous vehicle system mass and efficiency advantages. Boeing's solar tile (patent pending) allows high voltage to be generated at the array without the mass and efficiency losses of electronic conversion. Direct drive electric propulsion and higher power payloads (lower spacecraft weight) will benefit from this design. As future power demand grows, spacecraft designers must use higher voltage to minimize transmission loss and power cable mass for very large area arrays. This paper will describe the design and discuss the successful test of Boeing's 500-Volt Solar Tile in NASA Glenn's Tenney chamber in the Space Plasma Interaction Facility. The work was sponsored by NASA's Space Solar Power Exploratory Research and Technology (SERT) Program and will result in updated high voltage solar array design guidelines being published.

  11. History and Forecast of Solar Activity

    NASA Astrophysics Data System (ADS)

    Mikushina, O. V.; Klimenko, V. V.; Dovgalyuk, V. V.

    From a new reconstruction of the radiocarbon production rate in the atmosphere we obtain a long history of maximum Wolf sunspot numbers. Based on this reconstruction as well as on the history of other indicators of solar activity (10Be, aurora borealis), we derive a long-period trend which together with the results of spectral analysis of maximum Wolf numbers series (1506-1993) form a basis for prediction of solar activity up to 2100. The resulting trigonometric trend points to an essential decrease in solar activity in the coming decades.

  12. Solar collector manufacturing activity, 1992

    SciTech Connect

    Not Available

    1993-11-09

    This report presents data provided by US-based manufacturers and importers of solar collectors. Summary data on solar thermal collector shipments are presented for the years 1974 through 1992. Summary data on photovoltaic cell and module shipments are presented for the years 1982 through 1992. Detailed information for solar thermal collectors and photovoltaic cells and modules are presented for 1992. Appendix A describes the survey methodology. Appendix B contains the 1992 survey forms and instructions. Appendices C and D list the companies that responded to the 1992 surveys and granted permission for their names and addresses to appear in the report. Appendix E provides selected tables from this report with data shown in the International System of Units (SI) metric units. Appendix F provides an estimate of installed capacity and energy production from solar collectors for 1992.

  13. MASC: Magnetic Activity of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Auchere, Frederic; Fineschi, Silvano; Gan, Weiqun; Peter, Hardi; Vial, Jean-Claude; Zhukov, Andrei; Parenti, Susanna; Li, Hui; Romoli, Marco

    We present MASC, an innovative payload designed to explore the magnetic activity of the solar corona. It is composed of three complementary instruments: a Hard-X-ray spectrometer, a UV / EUV imager, and a Visible Light / UV polarimetric coronagraph able to measure the coronal magnetic field. The solar corona is structured in magnetically closed and open structures from which slow and fast solar winds are respectively released. In spite of much progress brought by two decades of almost uninterrupted observations from several space missions, the sources and acceleration mechanisms of both types are still not understood. This continuous expansion of the solar atmosphere is disturbed by sporadic but frequent and violent events. Coronal mass ejections (CMEs) are large-scale massive eruptions of magnetic structures out of the corona, while solar flares trace the sudden heating of coronal plasma and the acceleration of electrons and ions to high, sometimes relativistic, energies. Both phenomena are most probably driven by instabilities of the magnetic field in the corona. The relations between flares and CMEs are still not understood in terms of initiation and energy partition between large-scale motions, small-scale heating and particle acceleration. The initiation is probably related to magnetic reconnection which itself results magnetic topological changes due to e.g. flux emergence, footpoints motions, etc. Acceleration and heating are also strongly coupled since the atmospheric heating is thought to result from the impact of accelerated particles. The measurement of both physical processes and their outputs is consequently of major importance. However, despite its fundamental importance as a driver for the physics of the Sun and of the heliosphere, the magnetic field of our star’s outer atmosphere remains poorly understood. This is due in large part to the fact that the magnetic field is a very difficult quantity to measure. Our knowledge of its strength and

  14. Modified conducting polymer films having high catalytic activity for use as counter electrodes in rigid and flexible dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ke, Chun-Ren; Chang, Chih-Ching; Ting, Jyh-Ming

    2015-06-01

    We report replacing platinum based counter electrode (CE) in dye-sensitized solar cell (DSSC) with conducting polymer based CE. Conducting polymers are prepared through mixing poly-(3,4-ethylenedioxythio phene):poly-(styrene sulfonic acid) (PEDOT:PSS) with Triton. The polymer mixture is spin-coated on indium tin oxide (ITO)-coated glass substrate and ITO-coated polyethylene naphthalate plastic substrate to form a CE for use in both rigid and flexible DSSCs, respectively. The PEDOT:PSS-Triton polymer not only is transparent (up to 93%) and highly conductive but also exhibits better catalytic activity than the expensive platinum. The DSSC fabricated using the PEDOT:PSS-Triton conducting polymer CE shows better performance or higher power conversion efficiency than that using Pt-based CE, either rigid or flexible.

  15. Solar activities and Climate change hazards

    NASA Astrophysics Data System (ADS)

    Hady, A. A., II

    2014-12-01

    Throughout the geological history of Earth, climate change is one of the recurrent natural hazards. In recent history, the impact of man brought about additional climatic change. Solar activities have had notable effect on palaeoclimatic changes. Contemporary, both solar activities and building-up of green-house gases effect added to the climatic changes. This paper discusses if the global worming caused by the green-house gases effect will be equal or less than the global cooling resulting from the solar activities. In this respect, we refer to the Modern Dalton Minimum (MDM) which stated that starting from year 2005 for the next 40 years; the earth's surface temperature will become cooler than nowadays. However the degree of cooling, previously mentioned in old Dalton Minimum (c. 210 y ago), will be minimized by building-up of green-house gases effect during MDM period. Regarding to the periodicities of solar activities, it is clear that now we have a new solar cycle of around 210 years. Keywords: Solar activities; solar cycles; palaeoclimatic changes; Global cooling; Modern Dalton Minimum.

  16. Science Activities in Energy: Solar Energy.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 12 activities relating to solar energy. Activities are simple, concrete experiments for fourth, fifth, and sixth grades, which illustrate principles and problems relating to energy. Each activity is outlined on a single card which is introduced by a question. A teacher's supplement…

  17. Hinode Captures Images of Solar Active Region

    NASA Video Gallery

    In these images, Hinode's Solar Optical Telescope (SOT) zoomed in on AR 11263 on August 4, 2011, five days before the active region produced the largest flare of this cycle, an X6.9. We show images...

  18. Representing Solar Active Regions with Triangulations

    NASA Technical Reports Server (NTRS)

    Turmon, M. J.; Mukhtar, S.

    1998-01-01

    The solar chromosphere consists of three classes which contribute differently to ultraviolet radiation reaching the earth. We describe a data set of solar images, means of segmenting the images into the constituent classes, and novel high-level representation for compact objects based on a triangulation spatial 'membership function'.

  19. High resolution solar physics with Solar-B

    NASA Astrophysics Data System (ADS)

    Tsuneta, S.

    SOLAR-B satellite carries three advanced solar telescopes solar optical telescope SOT X-ray telescope and EUV imaging spectrometer In particular SOT provides us with continuous 24hrs high cadence diffraction-limited 0 2 stable images with fully-calibrated high polarimetric sensitivity Solar-B will be launched on September 2006 Current status of the mission preparation is excellent due to hard work of the international Solar-B team including NASA and UK PPARC over 6 years With SOLAR-B we are able to reach or be closer to the Promised Land of solar magneto-hydrodynamics where elemental magnetic fields higher convective flows higher electric-currents sharp distribution of magnetic and non-magnetic atmospheres various forms of MHD waves interplay each other For instance the Yohkoh and TRACE images show spatially-exclusive hot and cool quasi-steady loops With ASP we found clear difference in magnetic filling factor which was aerial fraction of magnetic atmosphere between hot and cool loops Katsukawa Tsuneta 2004 With Solar-B introduction of the filling factor may be no longer needed and is replaced with observations on real interactions of flow and fields the result of which would be coronal heating Parker proposed that coronal heating is due to reconnection of magnetic fields entangled by photospheric motion Whether this concept is true or not will be observationally answered by the long-term stable Lagrangian tracking of individual magnetic elements and G-band bright points from its creation through

  20. High efficiency solar photovoltaic power module concept

    NASA Technical Reports Server (NTRS)

    Bekey, I.

    1978-01-01

    The investigation of a preliminary concept for high efficiency solar power generation in space is presented. The concept was a synergistic combination of spectral splitting, tailored bandgap cells, high concentration ratios, and cool cell areas.

  1. 11 -year planetary index of solar activity

    NASA Astrophysics Data System (ADS)

    Okhlopkov, Victor

    In papers [1,2] introduced me parameter - the average difference between the heliocentric longitudes of planets ( ADL ) , which was used for comparison with solar activity. The best connection of solar activity ( Wolf numbers used ) was obtained for the three planets - Venus, Earth and Jupiter. In [1,2] has been allocated envelope curve of the minimum values ADL which has a main periodicity for 22 years and describes well the alternating series of solar activity , which also has a major periodicity of 22. It was shown that the minimum values of the envelope curve extremes ADL planets Venus, Earth and Jupiter are well matched with the 11- year solar activity cycle In these extremes observed linear configuration of the planets Venus, Earth and Jupiter both in their location on one side of the Sun ( conjunctions ) and at the location on the opposite side of the Sun ( three configurations ) This work is a continuation of the above-mentioned , and here for minimum ADL ( planets are in conjunction ) , as well as on the minimum deviation of the planets from a line drawn through them and Sun at the location of the planets on opposite sides of the Sun , compiled index (denoted for brevity as JEV ) that uniquely describes the 11- year solar cycle A comparison of the index JEV with solar activity during the time interval from 1000 to 2013 conducted. For the period from 1000 to 1699 used the Schove series of solar activity and the number of Wolf (1700 - 2013 ) During the time interval from 1000 to 2013 and the main periodicity of the solar activity and the index ADL is 11.07 years. 1. Okhlopkov V.P. Cycles of Solar Activity and the Configurations of Planets // Moscow University Physics Bulletin, 2012 , Vol. 67 , No. 4 , pp. 377-383 http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.3103/S0027134912040108. 2 Okhlopkov VP, Relationship of Solar Activity Cycles to Planetary Configurations // Bulletin of the Russian Academy of Sciences. Physics, 2013 , Vol. 77 , No. 5

  2. High-temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Merritt, Danielle; Raffaelle, Ryne P.; Scheiman, David

    2005-01-01

    The vast majority of space probes to date have relied upon photovoltaic power generation. If future missions designed to probe environments close to the sun (Figure 1) will be able to use such power generation, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. The significant problem is that solar cells lose performance at high temperatures.

  3. Very High Efficiency Solar Cell Modules

    SciTech Connect

    Barnett, A.; Kirkpatrick, D.; Honsberg, C.; Moore, D.; Wanlass, M.; Emery, K.; Schwartz, R.; Carlson, D.; Bowden, S.; Aiken, D.; Gray, A.; Kurtz, S.; Kazmerski, L., et al

    2009-01-01

    The Very High Efficiency Solar Cell (VHESC) program is developing integrated optical system - PV modules for portable applications that operate at greater than 50% efficiency. We are integrating the optical design with the solar cell design, and have entered previously unoccupied design space. Our approach is driven by proven quantitative models for the solar cell design, the optical design, and the integration of these designs. Optical systems efficiency with an optical efficiency of 93% and solar cell device results under ideal dichroic splitting optics summing to 42.7 {+-} 2.5% are described.

  4. An Analysis of Solar Global Activity

    NASA Astrophysics Data System (ADS)

    Mouradian, Zadig

    2013-02-01

    This article proposes a unified observational model of solar activity based on sunspot number and the solar global activity in the rotation of the structures, both per 11-year cycle. The rotation rates show a variation of a half-century period and the same period is also associated to the sunspot amplitude variation. The global solar rotation interweaves with the observed global organisation of solar activity. An important role for this assembly is played by the Grand Cycle formed by the merging of five sunspot cycles: a forgotten discovery by R. Wolf. On the basis of these elements, the nature of the Dalton Minimum, the Maunder Minimum, the Gleissberg Cycle, and the Grand Minima are presented.

  5. Solar Activity Studies using Microwave Imaging Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    We report on the status of solar cycle 24 based on polar prominence eruptions (PEs) and microwave brightness enhancement (MBE) information obtained by the Nobeyama radioheliograph. The north polar region of the Sun had near-zero field strength for more than three years (2012-2015) and ended only in September 2015 as indicated by the presence of polar PEs and the lack of MBE. The zero-polar-field condition in the south started only around 2013, but it ended by June 2014. Thus the asymmetry in the times of polarity reversal switched between cycle 23 and 24. The polar MBE is a good proxy for the polar magnetic field strength as indicated by the high degree of correlation between the two. The cross-correlation between the high- and low-latitude MBEs is significant for a lag of approximately 5.5 to 7.3 years, suggesting that the polar field of one cycle indicates the sunspot number of the next cycle in agreement with the Babcock-Leighton mechanism of solar cycles. The extended period of near-zero field in the north-polar region should result in a weak and delayed sunspot activity in the northern hemisphere in cycle 25.

  6. Thin solar concentrator with high concentration ratio

    NASA Astrophysics Data System (ADS)

    Lin, Jhe-Syuan; Liang, Chao-Wen

    2013-09-01

    Solar concentrators are often used in conjunction with III-V multi-junction solar cells for cost reduction and efficiency improvement purposes. High flux concentration ratio, high optical efficiency and high manufacture tolerance are the key features required for a successful solar concentrator design. This paper describes a novel solar concentrator that combines the concepts, and thus the advantages, of both the refractive type ad reflective type. The proposed concentrator design adopts the Etendue-cascading concept that allows the light beams from all the concentric annular entrance pupils to be collected and transferred to the solar cell with minimal loss. This concept enables the system to perform near its Etendue-Limit and have a high concentration ratio simultaneously. Thereby reducing the costs of solar cells and therefor achieves a better the per watts cost. The concentrator demonstrated has a thing aspect ratio of 0.19 with a zero back focal distance. The numerical aperture at the solar cell immersed inside the dielectric concentrator is as high as 1.33 achieving a unprecedented high optical concentration ratio design.

  7. High-Temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Raffaelle, Ryne P.; Merritt, Danielle

    2004-01-01

    The vast majority of satellites and near-earth probes developed to date have relied upon photovoltaic power generation. If future missions to probe environments close to the sun will be able to use photovoltaic power, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. For example, the equilibrium temperature of a Mercury surface station will be about 450 C, and the temperature of solar arrays on the proposed "Solar Probe" mission will extend to temperatures as high as 2000 C (although it is likely that the craft will operate on stored power rather than solar energy during the closest approach to the sun). Advanced thermal design principles, such as replacing some of the solar array area with reflectors, off-pointing, and designing the cells to reflect rather than absorb light out of the band of peak response, can reduce these operating temperature somewhat. Nevertheless, it is desirable to develop approaches to high-temperature solar cell design that can operate under temperature extremes far greater than today's cells. Solar cells made from wide bandgap (WBG) compound semiconductors are an obvious choice for such an application. In order to aid in the experimental development of such solar cells, we have initiated a program studying the theoretical and experimental photovoltaic performance of wide bandgap materials. In particular, we have been investigating the use of GaP, SiC, and GaN materials for space solar cells. We will present theoretical results on the limitations on current cell technologies and the photovoltaic performance of these wide-bandgap solar cells in a variety of space conditions. We will also give an overview of some of NASA's cell developmental efforts in this area and discuss possible future mission applications.

  8. Polarization aberrations in the solar activity measurements experiments (SAMEX) solar vector magnetograph

    NASA Technical Reports Server (NTRS)

    Mcguire, James P., Jr.; Chipman, Russell A.

    1989-01-01

    An optical design and polarization analysis of the Air Force/NASA Solar Activity Measurements Experiments solar vector magnetograph optical system is performed. Polarization aberration theory demonstrates that conventional telescope coating designs introduce unacceptably high levels of polarization aberrations into the optical system. Several ultralow polarization mirror and lens coatings designs for this instrument are discussed. Balancing of polarization aberrations at different surfaces is demonstrated.

  9. Solar activity and explosive transient eruptions

    NASA Astrophysics Data System (ADS)

    Ambastha, Ashok

    2016-07-01

    We discuss active and explosive behavior of the Sun observable in a wide range of wavelengths (or energies) and spatio-temporal scales that are not possible for any other star. On the longer time scales, the most notable form of solar activity is the well known so called 11-year solar activity cycle. On the other hand, at shorter time scales of a few minutes to several hours, spectacular explosive transient events, such as, solar flares, prominence eruptions, and coronal mass ejections (CMEs) occur in the outer layers of solar atmosphere. These solar activity cycle and explosive phenomena influence and disturb the space between the Sun and planets. The state of the interplanetary medium, including planetary and terrestrial surroundings, or "the space weather", and its forecasting has important practical consequences. The reliable forecasting of space weather lies in continuously observing of the Sun. We present an account of the recent developments in our understanding of these phenomena using both space-borne and ground-based solar observations.

  10. The solar activity measurements experiments (SAMEX) for improved scientific understanding of solar activity

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Solar Activity Measurements Experiments (SAMEX) mission is described. It is designed to provide a look at the interactions of magnetic fields and plasmas that create flares and other explosive events on the sun in an effort to understand solar activity and the nature of the solar magnetic field. The need for this mission, the instruments to be used, and the expected benefits of SAMEX are discussed.

  11. Temporal offsets among solar activity indicators

    NASA Astrophysics Data System (ADS)

    Ramesh, K. B.; Vasantharaju, N.

    2014-04-01

    Temporal offsets between the time series of solar activity indicators provide important clues regarding the physical processes responsible for the cyclic variability in the solar atmosphere. Hysteresis patterns generated between any two indicators were popularly used to study their morphological features and further to understand their inter relationships. We use time series of different solar indicators to understand the possible cause-and-effect criteria between their respective source regions. Sensitivity of the upper atmosphere to the activity underneath might play an important role in introducing different evolutionary patterns in the profiles of solar indicators and in turn cause temporal offsets between them. Limitations in the observations may also cause relative shifts in the time series.

  12. Prediciting Solar Activity: Today, Tomorrow, Next Year

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean

    2008-01-01

    Fleets of satellites circle the Earth collecting science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to space weather effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less fuel can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory. Energetic events at the Sun can produce crippling radiation storms. Predicting those events that will affect our assets in space includes a solar prediction and how the radiation will propagate through the solar system. I will talk our need for solar activity predictions and anticipate how those predictions could be made more accurate in the future.

  13. Active solar heating and cooling information user study

    SciTech Connect

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-01-01

    The results of a series of telephone interviews with groups of users of information on active solar heating and cooling (SHAC). An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from 19 SHAC groups respondents are analyzed in this report: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Manufacturers (4 groups), Distributors, Installers, Architects, Builders, Planners, Engineers (2 groups), Representatives of Utilities, Educators, Cooperative Extension Service County Agents, Building Owners/Managers, and Homeowners (2 groups). The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  14. Prominences: The Key to Understanding Solar Activity

    NASA Technical Reports Server (NTRS)

    Karpen, Judy T.

    2011-01-01

    Prominences are spectacular manifestations of both quiescent and eruptive solar activity. The largest examples can be seen with the naked eye during eclipses, making prominences among the first solar features to be described and catalogued. Steady improvements in temporal and spatial resolution from both ground- and space-based instruments have led us to recognize how complex and dynamic these majestic structures really are. Their distinguishing characteristics - cool knots and threads suspended in the hot corona, alignment along inversion lines in the photospheric magnetic field within highly sheared filament channels, and a tendency to disappear through eruption - offer vital clues as to their origin and dynamic evolution. Interpreting these clues has proven to be contentious, however, leading to fundamentally different models that address the basic questions: What is the magnetic structure supporting prominences, and how does so much cool, dense plasma appear in the corona? Despite centuries of increasingly detailed observations, the magnetic and plasma structures in prominences are poorly known. Routine measurements of the vector magnetic field in and around prominences have become possible only recently, while long-term monitoring of the underlying filament-channel formation process also remains scarce. The process responsible for prominence mass is equally difficult to establish, although we have long known that the chromosphere is the only plausible source. As I will discuss, however, the motions and locations of prominence material can be used to trace the coronal field, thus defining the magnetic origins of solar eruptions. A combination of observations, theory, and numerical modeling must be used to determine whether any of the competing theories accurately represents the physics of prominences. I will discuss the criteria for a successful prominence model, compare the leading models, and present in detail one promising, comprehensive scenario for

  15. High temperature solar selective coatings

    DOEpatents

    Kennedy, Cheryl E

    2014-11-25

    Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

  16. High-efficiency silicon solar cell research

    NASA Technical Reports Server (NTRS)

    Daud, T.

    1984-01-01

    Progress reports on research in high-efficiency silicon solar cells were presented by eight contractors and JPL. The presentations covered the issues of Bulk and Surface Loss, Modeling, Measurements, and Proof of Concept.

  17. Aqueous Solution Processed Photoconductive Cathode Interlayer for High Performance Polymer Solar Cells with Thick Interlayer and Thick Active Layer.

    PubMed

    Nian, Li; Chen, Zhenhui; Herbst, Stefanie; Li, Qingyuan; Yu, Chengzhuo; Jiang, Xiaofang; Dong, Huanli; Li, Fenghong; Liu, Linlin; Würthner, Frank; Chen, Junwu; Xie, Zengqi; Ma, Yuguang

    2016-09-01

    An aqueous-solution-processed photoconductive cathode interlayer is developed, in which the photoinduced charge transfer brings multiple advantages such as increased conductivity and electron mobility, as well as reduced work function. Average power conversion efficiency over 10% is achieved even when the thickness of the cathode interlayer and active layer is up to 100 and 300 nm, respectively.

  18. High voltage solar cell power generating system

    NASA Technical Reports Server (NTRS)

    Levy, E., Jr.; Opjorden, R. W.; Hoffman, A. C.

    1974-01-01

    A laboratory solar power system regulated by on-panel switches has been delivered for operating high power (3 kW), high voltage (15,000 volt) loads (communication tubes, ion thrusters). The modular system consists of 26 solar arrays, each with an integral light source and cooling system. A typical array contains 2,560 series-connected cells. Each light source consists of twenty 500-watt tungsten iodide lamps providing plus or minus 5 percent uniformity at one solar constant. An array temperature of less than 40 C is achieved using an infrared filter, a water-cooled plate, a vacuum hold-down system, and air flushing.

  19. Achieving High Performance Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Yang, Yang

    2015-03-01

    Recently, metal halide perovskite based solar cell with the characteristics of rather low raw materials cost, great potential for simple process and scalable production, and extreme high power conversion efficiency (PCE), have been highlighted as one of the most competitive technologies for next generation thin film photovoltaic (PV). In UCLA, we have realized an efficient pathway to achieve high performance pervoskite solar cells, where the findings are beneficial to this unique materials/devices system. Our recent progress lies in perovskite film formation, defect passivation, transport materials design, interface engineering with respect to high performance solar cell, as well as the exploration of its applications beyond photovoltaics. These achievements include: 1) development of vapor assisted solution process (VASP) and moisture assisted solution process, which produces perovskite film with improved conformity, high crystallinity, reduced recombination rate, and the resulting high performance; 2) examination of the defects property of perovskite materials, and demonstration of a self-induced passivation approach to reduce carrier recombination; 3) interface engineering based on design of the carrier transport materials and the electrodes, in combination with high quality perovskite film, which delivers 15 ~ 20% PCEs; 4) a novel integration of bulk heterojunction to perovskite solar cell to achieve better light harvest; 5) fabrication of inverted solar cell device with high efficiency and flexibility and 6) exploration the application of perovskite materials to photodetector. Further development in film, device architecture, and interfaces will lead to continuous improved perovskite solar cells and other organic-inorganic hybrid optoelectronics.

  20. Geomagnetic activity: Dependence on solar wind parameters

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1977-01-01

    Current ideas about the interaction between the solar wind and the earth's magnetosphere are reviewed. The solar wind dynamic pressure as well as the influx of interplanetary magnetic field lines are both important for the generation of geomagnetic activity. The influence of the geometry of the situation as well as the variability of the interplanetary magnetic field are both found to be important factors. Semi-annual and universal time variations are discussed as well as the 22-year cycle in geomagnetic activity. All three are found to be explainable by the varying geometry of the interaction. Long term changes in geomagnetic activity are examined.

  1. Correlations between solar activity and the atmosphere - An unphysical explanation

    NASA Astrophysics Data System (ADS)

    Salby, Murry L.; Shea, Dennis J.

    1991-12-01

    Attention is given to the behavior of atmospheric properties and to a nonphysical explanation of their relationship to solar activity. The relatively short lengths of atmospheric records limit the ability of cross-covariance properties to discriminate to solar activity and hence to distinguish them from other forms of interanual variability. The discrete nature of the cross spectrum with solar activity admits only a few statistical degrees of freedom, which limits the reliability with which correlations can be determined. Coherence and correlation with sea level pressure both decrease with increasing record length and fall beneath the 90-percent level of statistical significance when records are extended back to the turn of the 20th century. The physical significance of such properties is considered in statistics generated from artificial solar variability, which demonstrate that behavior like that observed is not unique to the solar period. Over a wide range of periods, false solar variability leads to correlations and coherences that are as high as or higher than those produced by actual solar variability.

  2. High-flux solar photon processes

    SciTech Connect

    Lorents, D.C.; Narang, S.; Huestis, D.C.; Mooney, J.L.; Mill, T.; Song, H.K.; Ventura, S.

    1992-06-01

    This study was commissioned by the National Renewable Energy Laboratory (NREL) for the purpose of identifying high-flux photoprocesses that would lead to beneficial national and commercial applications. The specific focus on high-flux photoprocesses is based on the recent development by NREL of solar concentrator technology capable of delivering record flux levels. We examined photolytic and photocatalytic chemical processes as well as photothermal processes in the search for processes where concentrated solar flux would offer a unique advantage. 37 refs.

  3. Methodologies for high efficiency perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Park, Nam-Gyu

    2016-06-01

    Since the report on long-term durable solid-state perovskite solar cell in 2012, perovskite solar cells based on lead halide perovskites having organic cations such as methylammonium CH3NH3PbI3 or formamidinium HC(NH2)2PbI3 have received great attention because of superb photovoltaic performance with power conversion efficiency exceeding 22 %. In this review, emergence of perovskite solar cell is briefly introduced. Since understanding fundamentals of light absorbers is directly related to their photovoltaic performance, opto-electronic properties of organo lead halide perovskites are investigated in order to provide insight into design of higher efficiency perovskite solar cells. Since the conversion efficiency of perovskite solar cell is found to depend significantly on perovskite film quality, methodologies for fabricating high quality perovskite films are particularly emphasized, including various solution-processes and vacuum deposition method.

  4. High efficiency silicon concentrator solar cells

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhua

    1990-06-01

    Techniques were investigated for improving the energy conversion efficiency of silicon concentrator solar cells. This aim was achieved with the demonstration of bifacially contacted silicon concentrator solar cells of markedly superior performance. An additional achievement was the demonstration of substantial improvements in the performance of non-concentrating, one-sun cells. The improvements in the one-sun cell area were achieved by optimization of the Passivated Emitter Solar Cell (PESC) technology. Aluminum gettering and emitter surface oxide-passivation played key roles for the PESC cells. The optimized PESC one-sun cell demonstrated an independently confirmed efficiency of 21.4 percent. The optimized PESC technology was also successfully applied to the fabrication of silicon concentrator cells on low resistivity substrates. The effects of metal contact resistance and heavy phosphorus diffusion were areas requiring additional careful investigation in this case. A concentrator cell after optimization demonstrated 23.4 percent efficiency at 100 suns, again independently confirmed. Although very high by normal standards, the efficiency was limited by the trade-off of the resistance and the shading of the front metal fingers. The need for the trade-off was eliminated by the application of prismatic covers, which steer the incident light onto the cell active areas avoiding metal fingers. The Passivated Emitter and Rear Cells (PERC) incorporating TCA (trichloro-ethane) processing improved the one-sun cell efficiency further to 21.8 percent. The improvement came from low recombination at surfaces and in the bulk resulting from the TCA processing and from reduced rear contact area. Antireflection coatings and prismatic cover design were also theoretically optimized. When combined with light trapping techniques, 27 percent efficiency silicon concentrator cell will be obtained with this approach in the near future.

  5. Solar activity; weather and climate: a review

    NASA Astrophysics Data System (ADS)

    Pudovkin, M. I.

    2003-04-01

    In the proposed review, experimental evidences on a close relationship between the solar activity and the weather are discussed. Solar radiation variations associated with various manifestation of the solar activity on the Sun's surface (sunspots, flocculae) during both the short-term disturbances and 11-year solar cycles are considered. A conclusion is arrived on the intensity of those variations to be insufficient to produce observed disturbances in the lower atmosphere state (Foukal, Lin and others). Changes of the atmosphere transmittance and cloudiness associated with solar flares and geomagnetic disturbances are discussed. There is shown that variations of the solar radiation observed at the Earth's surface during the disturbances mentioned above may explain quantitatively the observed changes in the lower atmosphere state. There is supposed that the observed variations of the cloudiness and atmosphere transparency may be caused by the intensity variations of the cosmic rays flux of the galactic and cosmic origin (Tinsley, Scherrer, Hilis, Deer, Pudovkin, Veretenenko, Friis-Christensen, Svensmark and others). Various mechanisms of the cosmic rays influence on the atmospheric transparency and cloudiness variations are considered. Some numerical models describing the state and dynamics of the lower atmosphere are discussed and the possibility of incorporating in them as input parameters the observed variations of the cloudiness and atmosphere's transparency is analyzed.

  6. Solar system events at high spatial resolution

    SciTech Connect

    Baines, K H; Gavel, D T; Getz, A M; Gibbartd, S G; MacIntosh, B; Max, C E; McKay, C P; Young, E F; de Pater, I

    1999-02-19

    Until relatively recent advances in technology, astronomical observations from the ground were limited in image resolution by the blurring effects of earth's atmosphere. The blur extent, ranging typically from 0.5 to 2 seconds of arc at the best astronomical sights, precluded ground-based observations of the details of the solar system's moons, asteroids, and outermost planets. With the maturing of a high resolution image processing technique called speckle imaging the resolution limitation of the atmosphere can now be largely overcome. Over the past three years they have used speckle imaging to observe Titan, a moon of Saturn with an atmospheric density comparable to Earth's, Io, the volcanically active innermost moon of Jupiter, and Neptune, a gas giant outer planet which has continually changing planet-encircling storms. These observations were made at the world's largest telescope, the Keck telescope in Hawaii and represent the highest resolution infrared images of these objects ever taken.

  7. Solar Energy Education. Home economics: student activities. Field test edition

    SciTech Connect

    Not Available

    1981-03-01

    A view of solar energy from the standpoint of home economics is taken in this book of activities. Students are provided information on solar energy resources while performing these classroom activities. Instructions for the construction of a solar food dryer and a solar cooker are provided. Topics for study include window treatments, clothing, the history of solar energy, vitamins from the sun, and how to choose the correct solar home. (BCS)

  8. The birth and evolution of solar active regions

    NASA Astrophysics Data System (ADS)

    Gaizauskas, V.

    1993-09-01

    The growth of solar active regions is a well-observed surface phenomenon with its origins concealed in the solar interior. We review the salient facts about the emergence of active regions and the consequences of their growth on the solar atmosphere. The most powerful flares, the ones which display a range of phenomena that still pose serious challenges for high-energy astrophysics, are associated with regions of high magnetic complexity. How does that degree of complexity arise when the vast majority of active regions are simple bipolar entities? In order to gain some insight into that problem, we compare the emergence of magnetic flux in ordinary regions with an instance when magnetic complexity is apparent from the very first appearance of a new region - clearly a subsurface prefabrication of complexity - and with others wherein a new region interacts with a pre-existing one to create the complexity in plain view.

  9. The HESP (High Energy Solar Physics) project

    NASA Technical Reports Server (NTRS)

    Kai, K.

    1986-01-01

    A project for space observations of solar flares for the coming solar maximum phase is briefly described. The main objective is to make a comprehensive study of high energy phenomena of flares through simultaneous imagings in both hard and soft X-rays. The project will be performed with collaboration from US scientists. The HESP (High Energy Solar Physics) WG of ISAS (Institute of Space and Astronautical Sciences) has extensively discussed future aspects of space observations of high energy phenomena of solar flares based on successful results of the Hinotori mission, and proposed a comprehensive research program for the next solar maximum, called the HESP (SOLAR-A) project. The objective of the HESP project is to make a comprehensive study of both high energy phenomena of flares and quiet structures including pre-flare states, which have been left uncovered by SMM and Hinotori. For such a study simultaneous imagings with better resolutions in space and time in a wide range of energy will be extremely important.

  10. The solar wind effect on cosmic rays and solar activity

    NASA Technical Reports Server (NTRS)

    Fujimoto, K.; Kojima, H.; Murakami, K.

    1985-01-01

    The relation of cosmic ray intensity to solar wind velocity is investigated, using neutron monitor data from Kiel and Deep River. The analysis shows that the regression coefficient of the average intensity for a time interval to the corresponding average velocity is negative and that the absolute effect increases monotonously with the interval of averaging, tau, that is, from -0.5% per 100km/s for tau = 1 day to -1.1% per 100km/s for tau = 27 days. For tau 27 days the coefficient becomes almost constant independently of the value of tau. The analysis also shows that this tau-dependence of the regression coefficiently is varying with the solar activity.

  11. Highly Crystalline Low Band Gap Polymer Based on Thieno[3,4-c]pyrrole-4,6-dione for High-Performance Polymer Solar Cells with a >400 nm Thick Active Layer.

    PubMed

    Jung, Jae Woong; Russell, Thomas P; Jo, Won Ho

    2015-06-24

    Two thieno[3,4-c]pyrrole-4,6-dione (TPD)-based copolymers combined with 2,2'-bithiophene (BT) or (E)-2-(2-(thiophen-2-yl)vinyl)thiophene (TV) have been designed and synthesized to investigate the effect of the introduction of a vinylene group in the polymer backbone on the optical, electrochemical, and photovoltaic properties of the polymers. Although both polymers have shown similar optical band gaps and frontier energy levels, regardless of the introduction of vinylene bridge, the introduction of a π-extended vinylene group in the polymer backbone substantially enhances the charge transport characteristics of the resulting polymer due to its strong tendency to self-assemble and thus to enhance the crystallinity. An analysis on charge recombination in the active layer of a solar cell device indicates that the outstanding charge transport (μ = 1.90 cm(2)·V(-1)·s(-1)) of PTVTPD with a vinylene group effectively suppresses the bimolecular recombination, leading to a high power conversion efficiency (PCE) up to 7.16%, which is 20% higher than that (5.98%) of the counterpart polymer without a vinylene group (PBTTPD). More importantly, PTVTPD-based devices do not show a large variation of photovoltaic performance with the active layer thickness; that is, the PCE remains at 6% as the active layer thickness increases up to 450 nm, demonstrating that the PTVTPD-based solar cell is very compatible with industrial processing.

  12. Solar Activity, Different Geomagnetic Activity Levels and Acute Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Dimitrova, Svetla; Jordanova, Malina; Stoilova, Irina; Taseva, Tatiana; Maslarov, Dimitar

    Results on revealing a possible relationship between solar activity (SA) and geomagnetic activity (GMA) and acute myocardial infarction (AMI) morbidity are presented. Studies were based on medical data covering the period from 1.12.1995 to 31.12.2004 and concerned daily distribution of patients with AMI diagnose (in total 1192 cases) from Sofia region on the day of admission at the hospital. Analysis of variance (ANOVA) was applied to check the significance of GMA intensity effect and the type of geomagnetic storms, those caused by Magnetic Clouds (MC) and by High Speed Solar Wind Streams (HSSWS), on AMI morbidity. Relevant correlation coefficients were calculated. Results revealed statistically significant positive correlation between considered GMA indices and AMI. ANOVA revealed that AMI number was signifi- cantly increased from the day before (-1st) till the day after (+1st) geomagnetic storms with different intensities. Geomagnetic storms caused by MC were related to significant increase of AMI number in comparison with the storms caused by HSSWS. There was a trend for such different effects even on -1st and +1st day.

  13. Solar activity geomagnetic field and terrestrial weather

    NASA Technical Reports Server (NTRS)

    Knight, J. W.; Sturrock, P. A.

    1976-01-01

    Spectral analysis is used as an independent test of the reported association between interplanetary-magnetic-field structure and terrestrial weather. Spectra of the Ap geomagnetic activity index and the vorticity area index for the years from 1964 to 1970 are examined for common features that may be associated with solar-related phenomena, specifically for peaks in the power spectra of both time series with periods near 27.1 days. The spectra are compared in three ways, and the largest peak with the smallest probability estimate is found to occur at a period of 27.49 days. This result is considered to be statistically significant at the 98% level. It is concluded that the period derived from the Ap spectrum is related to solar rotation and that the analysis provides supporting evidence for a connection between the vorticity area index and solar activity.

  14. Hot spots and active longitudes: Organization of solar activity as a probe of the interior

    NASA Technical Reports Server (NTRS)

    Bai, Taeil; Hoeksema, J. Todd; Scherrer, Phil H.

    1995-01-01

    In order to investigate how solar activity is organized in longitude, major solar flares, large sunspot groups, and large scale photospheric magnetic field strengths were analyzed. The results of these analyses are reported. The following results are discussed: hot spots, initially recognized as areas of high concentration of major flares, are the preferred locations for the emergence of big sunspot groups; double hot spots appear in pairs that rotate at the same rate separated by about 180 deg in longitude, whereas, single hot spots have no such companions; the northern and southern hemispheres behave differently in organizing solar activity in longitude; the lifetime of hot spots range from one to several solar cycles; a hot spot is not always active throughout its lifetime, but goes through dormant periods; and hot spots with different rotational periods coexist in the same hemisphere during the same solar cycle.

  15. Seismic Holography of Solar Activity

    NASA Technical Reports Server (NTRS)

    Lindsey, Charles

    2000-01-01

    The basic goal of the project was to extend holographic seismic imaging techniques developed under a previous NASA contract, and to incorporate phase diagnostics. Phase-sensitive imaging gives us a powerful probe of local thermal and Doppler perturbations in active region subphotospheres, allowing us to map thermal structure and flows associated with "acoustic moats" and "acoustic glories". These remarkable features were discovered during our work, by applying simple acoustic power holography to active regions. Included in the original project statement was an effort to obtain the first seismic images of active regions on the Sun's far surface.

  16. Solar Energy Project, Activities: Earth Science.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of earth science experiments. Each unit presents an introduction; objectives; skills and knowledge needed; materials; method; questions; recommendations for further study; and a teacher information sheet. The teacher…

  17. Solar Energy Project, Activities: Chemistry & Physics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of chemistry and physics experiments. Each unit presents an introduction to the unit; objectives; required skills and knowledge; materials; method; questions; recommendations for further work; and a teacher information sheet.…

  18. Recent Perplexing Behavior in Solar Activity Indices

    NASA Astrophysics Data System (ADS)

    Lopresto, James C.

    1997-05-01

    Calcium K and Hα and SOHO He II UV plage and sunspot ara have been monitored using images on the INTERNET since November of 1992. The purpose of the project is to determine the degree of correlation between changing plage area and solar irradiance changes (also obtained via the INTERNET). Also the project provides a low cost process to involve undergraduates in astronomy research. When using weighted weekly averages for both spot Hα plage pixel counts, we see the expected decline from the last maximum. The activity continues to decline, or at best, has flattened out over the past several months. In contrast, the K-line plage pixel count from both Big Bear and Sacramento Peak show an upswing since mid-1995 or earlier. The k2 measurments from both Kitt Peak and Sacramento Peak are in general agreement with the spot and Hα behavior, indicating wer are in, or barely passed minimum. Images high in the chromosphere, detailing the magnetic network, may be more senstive to smaller field changes. This might be a partial explanation for the earlier upswing in K line and He 304 activity, which are receiving radiation near or at the top of the chromosphere.

  19. Catawba Science Center solar activities. Final report

    SciTech Connect

    1983-01-01

    Two demonstration solar water heaters were built. One was to be used at the Science Center and the other with traveling programs. This was completed and both units are being used for these programs which continue. We were able to build a library of 99 solar energy books and booklets that are available to the public for reference. We also conducted programs for 683 students of all ages. The culminating activity was the planned Energy Awareness Festival. This was held on September 26, 1981 and attracted 450 area citizens. We offered free exhibit space and hosted 17 exhibitors.

  20. Division II: Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia; Scrijver, Karel J.; Klimchuk, James A.; Charbonneau, Paul; Fletcher, Lyndsay; Hasan, S. Sirajul; Hudson, Hugh S.; Kusano, Kanya; Mandrini, Cristina H.; Peter, Hardi; Vršnak, Bojan; Yan, Yihua

    2015-08-01

    The Business Meeting of Commission 10 was held as part of the Business Meeting of Division II (Sun and Heliosphere), chaired by Valentin Martínez-Pillet, the President of the Division. The President of Commission 10 (C10; Solar activity), Lidia van Driel-Gesztelyi, took the chair for the business meeting of C10. She summarised the activities of C10 over the triennium and the election of the incoming OC.

  1. Resonant Rossby waves and solar activity

    NASA Technical Reports Server (NTRS)

    Krivolutsky, A. A.; Loshkova, O. A.

    1989-01-01

    Large scale transient waves are an essential part of atmospheric dynamics. Some of these waves (like 27 day waves) could have a solar nature. The contribution of the 27 day planetary waves to a total long period spectrum of the atmospheric processes during one solar cycle was investigated. Ivanovsky and Krivolutsky proposed that the 27 day wave has a resonant nature. The real atmospheric processes were investigated. The method of 2-D wave analysis used is described by Krivolutsky. It was concluded that the resonant nature of the 27 day wave is not unicum. There are long periods waves (50 day wave) in stratosphere which belong to the resonant waves, too. It is a very interesting fact for the solar activity-weather problem.

  2. The dependence of solar energetic particle fluxes in the Earth-Mars-Earth route on solar activity period.

    PubMed

    Kuznetsov, N V; Nymmik, R A

    2002-01-01

    This report presents the results of analyzing the relative importance of particle fluxes of different origin in the Earth-Mars-Earth route during different solar activity periods. The analysis has been made in terms of the galactic cosmic ray and solar energetic particle flux models developed at Moscow State University. The results demonstrate the extreme importance of the high-energy solar particle fluxes in interplanetary space even during the years of "quiet" Sun.

  3. Forecasts of solar and geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Joselyn, Joann

    1987-01-01

    Forecasts of solar and geomagnetic activity are critical since these quantities are such important inputs to the thermospheric density models. At this time in the history of solar science there is no way to make such a forecast from first principles. Physical theory applied to the Sun is developing rapidly, but is still primitive. Techniques used for forecasting depend upon the observations over about 130 years, which is only twelve solar cycles. It has been noted that even-numbered cycles systematically tend to be smaller than the odd-numbered ones by about 20 percent. Another observation is that for the last 12 cycle pairs, an even-numbered sunspot cycle looks rather like the next odd-numbered cycle, but with the top cut off. These observations are examples of approximate periodicities that forecasters try to use to achieve some insight into the nature of an upcoming cycle. Another new and useful forecasting aid is a correlation that has been noted between geomagnetic indices and the size of the next solar cycle. Some best estimates are given concerning both activities.

  4. On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23

    SciTech Connect

    Herdiwijaya, Dhani; Arif, Johan; Nurzaman, Muhamad Zamzam; Astuti, Isna Kusuma Dewi

    2015-09-30

    Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth’s climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicate technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth’s global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.

  5. On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23

    NASA Astrophysics Data System (ADS)

    Herdiwijaya, Dhani; Arif, Johan; Nurzaman, Muhamad Zamzam; Astuti, Isna Kusuma Dewi

    2015-09-01

    Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth's climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicate technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth's global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.

  6. MAGNETIC ENERGY SPECTRA IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Abramenko, Valentyna; Yurchyshyn, Vasyl

    2010-09-01

    Line-of-sight magnetograms for 217 active regions (ARs) with different flare rates observed at the solar disk center from 1997 January until 2006 December are utilized to study the turbulence regime and its relationship to flare productivity. Data from the SOHO/MDI instrument recorded in the high-resolution mode and data from the BBSO magnetograph were used. The turbulence regime was probed via magnetic energy spectra and magnetic dissipation spectra. We found steeper energy spectra for ARs with higher flare productivity. We also report that both the power index, {alpha}, of the energy spectrum, E(k) {approx} k{sup -}{alpha}, and the total spectral energy, W = {integral}E(k)dk, are comparably correlated with the flare index, A, of an AR. The correlations are found to be stronger than those found between the flare index and the total unsigned flux. The flare index for an AR can be estimated based on measurements of {alpha} and W as A = 10{sup b}({alpha}W){sup c}, with b = -7.92 {+-} 0.58 and c = 1.85 {+-} 0.13. We found that the regime of the fully developed turbulence occurs in decaying ARs and in emerging ARs (at the very early stage of emergence). Well-developed ARs display underdeveloped turbulence with strong magnetic dissipation at all scales.

  7. Division E Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Fletcher, Lyndsay; van Driel-Gesztelyi, Lidia; Asai, Ayumi; Cally, Paul S.; Charbonneau, Paul; Gibson, Sarah E.; Gomez, Daniel; Hasan, Siraj S.; Veronig, Astrid M.; Yan, Yihua

    2016-04-01

    After more than half a century of community support related to the science of ``solar activity'', IAU's Commission 10 was formally discontinued in 2015, to be succeeded by C.E2 with the same area of responsibility. On this occasion, we look back at the growth of the scientific disciplines involved around the world over almost a full century. Solar activity and fields of research looking into the related physics of the heliosphere continue to be vibrant and growing, with currently over 2,000 refereed publications appearing per year from over 4,000 unique authors, publishing in dozens of distinct journals and meeting in dozens of workshops and conferences each year. The size of the rapidly growing community and of the observational and computational data volumes, along with the multitude of connections into other branches of astrophysics, pose significant challenges; aspects of these challenges are beginning to be addressed through, among others, the development of new systems of literature reviews, machine-searchable archives for data and publications, and virtual observatories. As customary in these reports, we highlight some of the research topics that have seen particular interest over the most recent triennium, specifically active-region magnetic fields, coronal thermal structure, coronal seismology, flares and eruptions, and the variability of solar activity on long time scales. We close with a collection of developments, discoveries, and surprises that illustrate the range and dynamics of the discipline.

  8. DASL-Data and Activities for Solar Learning

    NASA Technical Reports Server (NTRS)

    Jones, Harrison P.; Henney, Carl; Hill, Frank; Gearen, Michael; Pompca, Stephen; Stagg, Travis; Stefaniak, Linda; Walker, Connie

    2004-01-01

    DASL-Data and Activities for Solar Learning Data and Activities for Solar Learning (DASL) provides a classroom learning environment based on a twenty-five year record of solar magnetograms from the National Solar Observatory (NSO) at Kitt Peak, AZ. The data, together with image processing software for Macs or PCs, can be used to learn basic facts about the Sun and astronomy at the middle school level. At the high school level, students can study properties of the Sun's magnetic cycle with classroom exercises emphasizing data and error analysis and can participate in a new scientific study, Research in Active Solar Longitudes (RASL), in collaboration with classrooms throughout the country and scientists at NSO and NASA. We present a half-day course to train teachers in the scientific content of the project and its classroom use. We will provide a compact disc with the data and software and will demonstrate software installation and use, classroom exercises, and participation in RASL with computer projection.

  9. High efficiency solar cell processing

    NASA Technical Reports Server (NTRS)

    Ho, F.; Iles, P. A.

    1985-01-01

    At the time of writing, cells made by several groups are approaching 19% efficiency. General aspects of the processing required for such cells are discussed. Most processing used for high efficiency cells is derived from space-cell or concentrator cell technology, and recent advances have been obtained from improved techniques rather than from better understanding of the limiting mechanisms. Theory and modeling are fairly well developed, and adequate to guide further asymptotic increases in performance of near conventional cells. There are several competitive cell designs with promise of higher performance ( 20%) but for these designs further improvements are required. The available cell processing technology to fabricate high efficiency cells is examined.

  10. Geomagnetic responses to the solar wind and the solar activity

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1975-01-01

    Following some historical notes, the formation of the magnetosphere and the magnetospheric tail is discussed. The importance of electric fields is stressed and the magnetospheric convection of plasma and magnetic field lines under the influence of large-scale magnetospheric electric fields is outlined. Ionospheric electric fields and currents are intimately related to electric fields and currents in the magnetosphere and the strong coupling between the two regions is discussed. The energy input of the solar wind to the magnetosphere and upper atmosphere is discussed in terms of the reconnection model where interplanetary magnetic field lines merge or connect with the terrestrial field on the sunward side of the magnetosphere. The merged field lines are then stretched behind earth to form the magnetotail so that kinetic energy from the solar wind is converted into magnetic energy in the field lines in the tail. Localized collapses of the crosstail current, which is driven by the large-scale dawn/dusk electric field in the magnetosphere, divert part of this current along geomagnetic field lines to the ionosphere, causing substorms with auroral activity and magnetic disturbances. The collapses also inject plasma into the radiation belts and build up a ring current. Frequent collapses in rapid succession constitute the geomagnetic storm.

  11. High Efficiency Solar Integrated Roof Membrane Product

    SciTech Connect

    Partyka, Eric; Shenoy, Anil

    2013-05-15

    This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

  12. Relationships between solar activity and climate change. [sunspot cycle effects on lower atmosphere

    NASA Technical Reports Server (NTRS)

    Roberts, W. O.

    1974-01-01

    Recurrent droughts are related to the double sunspot cycle. It is suggested that high solar activity generally increases meridional circulations and blocking patterns at high and intermediate latitudes, especially in winter. This effect is related to the sudden formation of cirrus clouds during strong geomagnetic activity that originates in the solar corpuscular emission.

  13. Cosmic rays, solar activity and the climate

    NASA Astrophysics Data System (ADS)

    Sloan, T.; Wolfendale, A. W.

    2013-12-01

    Although it is generally believed that the increase in the mean global surface temperature since industrialization is caused by the increase in green house gases in the atmosphere, some people cite solar activity, either directly or through its effect on cosmic rays, as an underestimated contributor to such global warming. In this letter a simplified version of the standard picture of the role of greenhouse gases in causing the global warming since industrialization is described. The conditions necessary for this picture to be wholly or partially wrong are then introduced. Evidence is presented from which the contributions of either cosmic rays or solar activity to this warming is deduced. The contribution is shown to be less than 10% of the warming seen in the twentieth century.

  14. Solar activities at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Klimas, Paul C.; Hasti, David E.

    The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth's present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing and deploying many of these technologies over the last two decades. A common but special aspect of all of these activities is that they are all conducted in cooperation with various types of partners. Some of these partners have an interest in seeing these systems grow in the marketplace, while others are primarily concerned with economic benefits that can come from immediate use of these renewable energy systems. This paper describes solar thermal and photovoltaic technology activities at Sandia that are intended to accelerate the commercialization of these solar systems.

  15. The Little Ice Age and Solar Activity

    NASA Astrophysics Data System (ADS)

    Velasco Herrera, Victor Manuel; Leal Silva, C. M. Carmen; Velasco Herrera, Graciela

    We analyze the ice winter severity index on the Baltic region since 1501-1995. We found that the variability of this index is modulated among other factors by the secular solar activity. The little ice ages that have appeared in the North Hemisphere occurred during periods of low solar activity. Seemingly our star is experiencing a new quiet stage compared with Maunder or Dalton minimum, this is important because it is estimated that even small changes in weather can represent a great impact in ice index. These results are relevant since ice is a very important element in the climate system of the Baltic region and it can affect directly or indirectly many of the oceanographic, climatic, eco-logical, economical and cultural patterns.

  16. High-altitude solar power platform

    SciTech Connect

    Bailey, M.D.; Bower, M.V.

    1992-04-01

    Solar power is a preeminent alternative to conventional aircraft propulsion. With the continued advances in solar cells, fuel cells, and composite materials technology, the solar powered airplane is no longer a simple curiosity constrained to flights of several feet in altitude or minutes of duration. A high altitude solar powered platform (HASPP) has several potential missions, including communications and agriculture. In remote areas, a HASPP could be used as a communication link. In large farming areas, a HASPP could perform remote sensing of crops. The impact of HASPP in continuous flight for one year on agricultural monitoring mission is presented. This mission provides farmers with near real-time data twice daily from an altitude which allows excellant resolution on water conditions, crop diseases, and insect infestation. Accurate, timely data will enable farmers to increase their yield and efficiency. A design for HASPP for the foregoing mission is presented. In the design power derived from solar cells covering the wings is used for propulsion, avionics, and sensors. Excess power produced midday will be stored in fuel cells for use at night to maintain altitude and course.

  17. High efficiency low cost solar cell power

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Blocker, W.

    1978-01-01

    A concept for generating high-efficiency, low-cost, solar-cell power is outlined with reference to solar cell parameters, optical concentrators, and thermal control procedures. A design for a 12.5-kw power module for space operation is discussed noting the optical system, spectrum splitter, light conversion system, cell cooling, power conditioner, and tracking mechanism. It is found that for an unconcentrated array, efficiency approaches 60% when ten or more bandgaps are used. For a 12-band system, a computer program distributed bandgaps for maximum efficiency and equal cell currents. Rigid materials and thin films have been proposed for optical components and prisms, gratings, and dichroic mirrors have been recommended for spectrum splitting. Various radiator concepts are noted including that of Weatherston and Smith (1960) and Hedgepeth and Knapp (1978). The concept may be suitable for the Solar Power Satellite.

  18. Solar irradiance variations due to active regions

    SciTech Connect

    Oster, L.; Schatten, K.H.; Sofia, S.

    1982-05-15

    We have been able to reproduce the variations of the solar irradiance observed by ACRIM to an accuracy of better than +- 0.4 W m/sup -2/, assuming that during the 6 month observation period in 1980 the solar luminosity was constant. The improvement over previous attempts is primarily due to the inclusion of faculae. The reproduction scheme uses simple geometrical data on spot and facula areas, and conventional parameters for the respective fluxes and angular dependencies. The quality of reproduction is not very sensitive to most of the details of these parameters; nevertheless, there conventional parameters cannot be very different from their actual values in the solar atmosphere. It is interesting that the time average of the integrated excess emission (over directions) of the faculae cancels out the integrated deficit produced by the spots, within an accuracy of about 10%. If this behavior were maintained over longer periods of time, say, on the order of an activity cycle, active regions could be viewed as a kind of lighthouse where the energy deficit near the normal direction, associated with the spots, is primarily reemitted close to the tangential directions by the faculae. The currently available data suggest that energy ''storage'' associated with the redirection of flux near active regions on the Sun is comparable to the lifetime of the faculae.

  19. The Magnetic Origins of Solar Activity

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.

    2012-01-01

    The defining physical property of the Sun's corona is that the magnetic field dominates the plasma. This property is the genesis for all solar activity ranging from quasi-steady coronal loops to the giant magnetic explosions observed as coronal mass ejections/eruptive flares. The coronal magnetic field is also the fundamental driver of all space weather; consequently, understanding the structure and dynamics of the field, especially its free energy, has long been a central objective in Heliophysics. The main obstacle to achieving this understanding has been the lack of accurate direct measurements of the coronal field. Most attempts to determine the magnetic free energy have relied on extrapolation of photospheric measurements, a notoriously unreliable procedure. In this presentation I will discuss what measurements of the coronal field would be most effective for understanding solar activity. Not surprisingly, the key process for driving solar activity is magnetic reconnection. I will discuss, therefore, how next-generation measurements of the coronal field will allow us to understand not only the origins of space weather, but also one of the most important fundamental processes in cosmic and laboratory plasmas.

  20. Dependence of the amplitude of Pc5-band magnetic field variations on the solar wind and solar activity

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazue; Yumoto, Kiyohumi; Claudepierre, Seth G.; Sanchez, Ennio R.; Troshichev, Oleg A.; Janzhura, Alexander S.

    2012-04-01

    We have studied the dependence of the amplitude of magnetic field variations in the Pc5 band (1.6-6.7 mHz) on the solar wind and solar activity. Solar wind parameters considered are the bulk velocity Vsw and the variation of the solar wind dynamic pressure δPsw. The solar activity dependence is examined by contrasting observations made in 2001 (solar activity maximum) and 2006 (solar activity declining phase). We calculated hourly Pc5 amplitude using data from geostationary satellites at L = 6.8 and ground stations covering 1 < L < 9. The amplitude is positively correlated with both Vsw and δPsw, but the degree of correlation varies with L and magnetic local time. As measured by the correlation coefficient, the amplitude dependence on both Vsw and δPsw is stronger on the dayside than on the nightside, and the dependence on Vsw (δPsw) tends to be stronger at higher (lower) L, with the relative importance of the two solar wind parameters switching at L ˜ 5. We attribute the Vsw control to the Kelvin-Helmholtz instability on the magnetopause, occurring both at high and low latitudes, and the δPsw control to buffeting of the magnetosphere by variation of solar wind dynamic pressure. The GOES amplitude is higher at the solar maximum at all local times and the same feature is seen on the ground in the dawn sector at L > 6. A radial shift of the fast mode wave turning point, associated with the solar cycle variation of magnetosphere mass density, is a possible cause of this solar activity dependence.

  1. New approaches for high-efficiency solar cells. Final report

    SciTech Connect

    Bedair, S M; El-Masry, N A

    1997-12-01

    This report summarizes the activities carried out in this subcontract. These activities cover, first the atomic layer epitaxy (ALE) growth of GaAs, AlGaAs and InGaP at fairly low growth temperatures. This was followed by using ALE to achieve high levels of doping both n-type and p-type required for tunnel junctions (Tj) in the cascade solar cell structures. Then the authors studied the properties of AlGaAs/InGaP and AlGaAs/GaAs tunnel junctions and their performances at different growth conditions. This is followed by the use of these tunnel junctions in stacked solar cell structures. The effect of these tunnel junctions on the performance of stacked solar cells was studied at different temperatures and different solar fluences. Finally, the authors studied the effect of different types of black surface fields (BSF), both p/n and n/p GaInP solar cell structures, and their potential for window layer applications. Parts of these activities were carried in close cooperation with Dr. Mike Timmons of the Research Triangle Institute.

  2. Solar Spectral Irradiance, Solar Activity, and the Near-Ultra-Violet

    NASA Astrophysics Data System (ADS)

    Fontenla, J. M.; Stancil, P. C.; Landi, E.

    2015-08-01

    The previous calculations of the Solar Spectral Irradiance (SSI) by the Solar Radiation Physical Modeling, version 2 system, are updated in this work by including new molecular photodissociation cross-sections of important species, and many more levels and lines in its treatment of non-LTE radiative transfer. The current calculations including the new molecular photodissociation opacities produce a reduced over-ionizaton of heavy elements in the lower chromosphere and solve the problems with prior studies of the UV SSI in the wavelength range 160-400 nm and now reproduce the available observations with much greater accuracy. Calculations and observations of the near-UV at 0.1 nm resolution and higher are compared. The current set of physical models includes four quiet-Sun and five active-region components, from which radiance is computed for ten observing angles. These radiances are combined with images of the solar disk to obtain the SSI and Total Solar Irradiance and their variations. The computed SSI is compared with measurements from space at several nm resolution and agreement is found within the accuracy level of these measurements. An important result is that the near-UV SSI increase with solar activity is significant for the photodissociation of ozone in the terrestrial atmosphere because a number of highly variable upper chromospheric lines overlap the ozone Hartley band.

  3. The features of longitudinal distribution of solar spots during the last 13 solar activity minima

    NASA Astrophysics Data System (ADS)

    Kostuchenko, I. G.; Benevolenskaya, E. E.

    2015-12-01

    We analyzed the features of the longitudinal distribution of the areas of solar spots during the solar activity minima, from the 11th cycle to the last minimum, based on data provided by the Greenwich Observatory and the Marshall Research Center. We discovered that the solar spots evolved in one or two neighboring bands (in terms of longitude), the Carrington longitude of which smoothly displaced from the east to the west, in the phase of the deep minimum in all of the considered cases. The spots at the high latitudes associated with a "new" cycle evolved on the same longitude bands. All of this led to the noticeable longitudinal asymmetry of magnetic fluxes related to the spots and flocculi. Based on our research, we propose the hypothesis that a nonaxisymmetric component of the total magnetic flux of the Sun is generated, together with the dipole component, by the solar dynamo mechanism, which is a typical feature of the phase of a minimum between the solar activity cycles.

  4. High spectral resolution in the solar spectrum

    NASA Technical Reports Server (NTRS)

    Baret, F.; Green, R. O.

    1994-01-01

    A session dedicated to high spectral resolution in the solar spectrum, covering topics of calibration, atmospheric correction, geology/pedology, inland water, and vegetation, is reported. The session showed a high degree of diversity in the topics and the approaches used. It was highlighted that high spectral resolution data could provide atmospherically corrected ground level calibrated reflectance values. Important advances were shown in the use of radiative transfer models applied either on water bodies or vegetation. Several studies highlighted the high degree of redundancy contained in high spectral resolution data.

  5. High efficiency solar cells combining a perovskite and a silicon heterojunction solar cells via an optical splitting system

    SciTech Connect

    Uzu, Hisashi E-mail: npark@skku.edu; Ichikawa, Mitsuru; Hino, Masashi; Nakano, Kunihiro; Meguro, Tomomi; Yamamoto, Kenji; Hernández, José Luis; Kim, Hui-Seon; Park, Nam-Gyu E-mail: npark@skku.edu

    2015-01-05

    We have applied an optical splitting system in order to achieve very high conversion efficiency for a full spectrum multi-junction solar cell. This system consists of multiple solar cells with different band gap optically coupled via an “optical splitter.” An optical splitter is a multi-layered beam splitter with very high reflection in the shorter-wave-length range and very high transmission in the longer-wave-length range. By splitting the incident solar spectrum and distributing it to each solar cell, the solar energy can be managed more efficiently. We have fabricated optical splitters and used them with a wide-gap amorphous silicon (a-Si) solar cell or a CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cell as top cells, combined with mono-crystalline silicon heterojunction (HJ) solar cells as bottom cells. We have achieved with a 550 nm cutoff splitter an active area conversion efficiency of over 25% using a-Si and HJ solar cells and 28% using perovskite and HJ solar cells.

  6. Solar activity, the QBO, and tropospheric responses

    NASA Technical Reports Server (NTRS)

    Tinsley, Brian A.; Brown, Geoffrey M.; Scherrer, Philip H.

    1989-01-01

    The suggestion that galactic cosmic rays (GCR) as modulated by the solar wind are the carriers of the component of solar variability that affects weather and climate has been discussed in the literature for 30 years, and there is now a considerable body of evidence that supports it. Variations of GCR occur with the 11 year solar cycle, matching the time scale of recent results for atmospheric variations, as modulated by the quasibiennial oscillation of equatorial stratospheric winds (the QBO). Variations in GCR occur on the time scale of centuries with a well defined peak in the coldest decade of the little ice age. New evidence is presented on the meteorological responses to GCR variations on the time scale of a few days. These responses include changes in the vertical temperature profile in the troposphere and lower stratosphere in the two days following solar flare related high speed plasma streams and associated GCR decreases, and in decreases in Vorticity Area Index (VAI) following Forbush decreases of GCR. The occurrence of correlations of GCR and meteorological responses on all three time scales strengthens the hypothesis of GCR as carriers of solar variability to the lower atmosphere. Both short and long term tropospheric responses are understandable as changes in the intensity of cyclonic storms initiated by mechanisms involving cloud microphysical and cloud electrification processes, due to changes in local ion production from changes in GCR fluxes and other high energy particles in the MeV to low GeV range. The nature of these mechanisms remains undetermined. Possible stratospheric wind (particularly QBO) effects on the transport of HNO3 and other constituents incorporated in cluster ions and possible condensation and freezing nuclei are considered as relevant to the long term variations.

  7. Solar Energy Education. Renewable energy activities for earth science

    SciTech Connect

    Not Available

    1980-01-01

    A teaching manual is provided to aid teachers in introducing renewable energy topics to earth science students. The main emphasis is placed on solar energy. Activities for the student include a study of the greenhouse effect, solar gain for home heating, measuring solar radiation, and the construction of a model solar still to obtain fresh water. Instructions for the construction of apparatus to demonstrate a solar still, the greenhouse effect and measurement of the altitude and azimuth of the sun are included. (BCS)

  8. Influence of solar activity on Jupiter's atmosphere

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2016-05-01

    The influx of solar energy to different latitudes while Jupiter's orbital motion around the Sun varies significantly. This leads to a change in the optical and physical characteristics of its atmosphere. Analysis of the data for 1850-1991 on determination of the integral magnitude Mj Jupiter in the V filter, and a comparison with the changes of the Wolf numbers W, characterizing the variations of solar activity (SA) - showed that the change of Mj in maxima of the SA - has minima for odd, and maximums - for the even of SA cycles. That is, changing of the Jupiter brightness in visible light is much evident 22.3-year magnetic cycle, and not just about the 11.1-year cycle of solar activity. Analysis of the obtained in 1960-2015 data on the relative distribution of brightness along the central meridian of Jupiter, for which we calculated the ratio of the brightness Aj of northern to the southern part of the tropical and temperate latitudinal zones, allowed to approximate the change of Aj by sinusoid with a period of 11.91±0.07 earth years. Comparison of time variation of Aj from changes in the index of SA R, and the movement of the planet in its orbit - indicates the delay of response of the visible cloud layer in the atmosphere of the Sun's exposure mode for 6 years. This value coincides with the radiative relaxation of the hydrogen-helium atmosphere

  9. Evidence of plasma heating in solar microflares during the minimum of solar activity

    NASA Astrophysics Data System (ADS)

    Kirichenko, Alexey; Bogachev, Sergey

    We present a statistical study of 80 solar microflares observed during the deep minimum of solar activity between 23 and 24 solar cycles. Our analysis covers the following characteristics of the flares: thermal energy of flaring plasma, its temperature and its emission measure in soft X-rays. The data were obtained during the period from April to July of 2009, which was favorable for observations of weak events because of very low level of solar activity. The most important part of our analysis was an investigation of extremely weak microflares corresponding to X-ray class below A1.0. We found direct evidence of plasma heating in more than 90% of such events. Temperature of flaring plasma was determined under the isothermal approximation using the data of two solar instruments: imaging spectroheliometer MISH onboard Coronas-Photon spacecraft and X-ray spectrophotometer SphinX operating in energy range 0.8 - 15 keV. The main advantage of MISH is the ability to image high temperature plasma (T above 4 MK) without a low-temperature background. The SphinX data was selected due to its high sensitivity, which makes available the registration of X-ray emission from extremely weak microflares corresponding GOES A0.1 - A0.01 classes. The temperature we obtained lies in the range from 2.6 to 13.6 MK, emission measure, integrated over the range 1 - 8 Å - 2.7times10(43) - 4.9times10(47) cm (-3) , thermal energy of flaring region - 5times10(26) - 1.6times10(29) erg. We compared our results with the data obtained by Feldman et. al. 1996 and Ryan et. al. 2012 for solar flares with X-ray classes above A2.0 and conclude that the relation between X-ray class of solar flare and its temperature is strongly different for ordinary flares (above A2.0) and for weak microflares (A0.01 - A2.0). Our result supports the idea that weak solar events (microflares and nanoflares) may play significant a role in plasma heating in solar corona.

  10. Overview of solar detoxification activities in the United States

    SciTech Connect

    Mehos, M; Williams, T; Turchi, C

    1994-10-01

    The U.S. Department of Energy, through the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories, has been investigating a process that uses solar energy to destroy hazardous wastes in air and water. The process, photocatalytic oxidation, uses ultraviolet light in conjunction with the semiconductor titanium dioxide to generate highly reactive hydroxyl radicals. Early research and development activities have demonstrated that photocatalysis may be cost effective for some applications. The Department of Energy is currently working to establish a commercial industry that uses solar energy to destroy hazardous wastes in air, water, and soil. To achieve this objective, NREL and Sandia are bringing together environmental firms, solar manufacturers, and organizations that have waste or remediation problems.

  11. Preferred longitudes in solar and stellar activity

    NASA Astrophysics Data System (ADS)

    Berdyugina, S. V.

    An analysis of the distribution of starspots on the surfaces of very active stars, such as RS CVn- FK Com-type stars as well as young solar analogs, reveals preferred longitudes of spot formation and their quasi-periodic oscillations, i.e. flip-flop cycles. A non-linear migration of the preferred longitudes suggests the presence of the differential rotation and variations of mean spot latitudes. It enables recovering stellar butterfly diagrams. Such phenomena are found to persist in the sunspot activity as well. A comparison of the observed properties of preferred longitudes on the Sun with those detected on more active stars leads to the conclusion that we can learn fine details of the stellar dynamo by studying the Sun, while its global parameters on the evolutionary time scale are provided by a sample of active stars.

  12. Solar radiation monitoring for high altitude aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1981-01-01

    Ground-based and satellite-based ionizing radiation monitoring systems are considered as alternative methods for ensuring safe radiation levels for high-altitude aircraft. It is found that ground-based methods are of limited accuracy due to insensitivity to solar particles of energies between the riometer upper cutoff of about 50 MeV and the neutron monitor threshold of about 450 MeV. This energy range is demonstrated to be essential for atmospheric radiation monitoring at high altitude, and must be covered by satellite measurement. On the basis of presently available data, the accuracy to which the incident solar particle flux must be measured by satellite-borne detectors is examined and recommendations are made to establish minimum requirements.

  13. Solar radiation monitoring for high altitude aircraft

    NASA Astrophysics Data System (ADS)

    Wilson, J. W.

    1981-10-01

    Ground-based and satellite-based ionizing radiation monitoring systems are considered as alternative methods for ensuring safe radiation levels for high-altitude aircraft. It is found that ground-based methods are of limited accuracy due to insensitivity to solar particles of energies between the riometer upper cutoff of about 50 MeV and the neutron monitor threshold of about 450 MeV. This energy range is demonstrated to be essential for atmospheric radiation monitoring at high altitude, and must be covered by satellite measurement. On the basis of presently available data, the accuracy to which the incident solar particle flux must be measured by satellite-borne detectors is examined and recommendations are made to establish minimum requirements.

  14. Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells.

    PubMed

    Zhao, Yixin; Zhu, Kai

    2014-12-01

    Organic and inorganic hybrid perovskites (e.g., CH3NH3PbI3) have emerged as a revolutionary class of light-absorbing semiconductors that has demonstrated a rapid increase in efficiency within a few years of active research. Controlling perovskite morphology and composition has been found critical to developing high-performance perovskite solar cells. The recent development of solution chemistry engineering has led to fabrication of greater than 15-17%-efficiency solar cells by multiple groups, with the highest certified 17.9% efficiency that has significantly surpassed the best-reported perovskite solar cell by vapor-phase growth. In this Perspective, we review recent progress on solution chemistry engineering processes and various control parameters that are critical to the success of solution growth of high-quality perovskite films. We discuss the importance of understanding the impact of solution-processing parameters and perovskite film architectures on the fundamental charge carrier dynamics in perovskite solar cells. The cost and stability issues of perovskite solar cells will also be discussed.

  15. Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells.

    PubMed

    Zhao, Yixin; Zhu, Kai

    2014-12-01

    Organic and inorganic hybrid perovskites (e.g., CH3NH3PbI3) have emerged as a revolutionary class of light-absorbing semiconductors that has demonstrated a rapid increase in efficiency within a few years of active research. Controlling perovskite morphology and composition has been found critical to developing high-performance perovskite solar cells. The recent development of solution chemistry engineering has led to fabrication of greater than 15-17%-efficiency solar cells by multiple groups, with the highest certified 17.9% efficiency that has significantly surpassed the best-reported perovskite solar cell by vapor-phase growth. In this Perspective, we review recent progress on solution chemistry engineering processes and various control parameters that are critical to the success of solution growth of high-quality perovskite films. We discuss the importance of understanding the impact of solution-processing parameters and perovskite film architectures on the fundamental charge carrier dynamics in perovskite solar cells. The cost and stability issues of perovskite solar cells will also be discussed. PMID:26278951

  16. Design requirements for high-efficiency high concentration ratio space solar cells

    NASA Technical Reports Server (NTRS)

    Rauschenbach, H.; Patterson, R.

    1980-01-01

    A miniaturized Cassegrainian concentrator system concept was developed for low cost, multikilowatt space solar arrays. The system imposes some requirements on solar cells which are new and different from those imposed for conventional applications. The solar cells require a circular active area of approximately 4 mm in diameter. High reliability contacts are required on both front and back surfaces. The back area must be metallurgically bonded to a heat sink. The cell should be designed to achieve the highest practical efficiency at 100 AMO suns and at 80 C. The cell design must minimize losses due to nonuniform illumination intensity and nonnormal light incidence. The primary radiation concern is the omnidirectional proton environment.

  17. Automatic Tracking of Active Regions and Detection of Solar Flares in Solar EUV Images

    NASA Astrophysics Data System (ADS)

    Caballero, C.; Aranda, M. C.

    2014-05-01

    Solar catalogs are frequently handmade by experts using a manual approach or semi-automated approach. The appearance of new tools is very useful because the work is automated. Nowadays it is impossible to produce solar catalogs using these methods, because of the emergence of new spacecraft that provide a huge amount of information. In this article an automated system for detecting and tracking active regions and solar flares throughout their evolution using the Extreme UV Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO) spacecraft is presented. The system is quite complex and consists of different phases: i) acquisition and preprocessing; ii) segmentation of regions of interest; iii) clustering of these regions to form candidate active regions which can become active regions; iv) tracking of active regions; v) detection of solar flares. This article describes all phases, but focuses on the phases of tracking and detection of active regions and solar flares. The system relies on consecutive solar images using a rotation law to track the active regions. Also, graphs of the evolution of a region and solar evolution are presented to detect solar flares. The procedure developed has been tested on 3500 full-disk solar images (corresponding to 35 days) taken from the spacecraft. More than 75 % of the active regions are tracked and more than 85 % of the solar flares are detected.

  18. Endothelial Dysfunction and Blood Viscosity Inpatients with Unstable Angina in Different Periods of a Solar Activity

    NASA Astrophysics Data System (ADS)

    Parshina, S. S.; Tokaeva, L. K.; Dolgova, E. M.; Afanas'yeva, T. N.; Strelnikova, O. A.

    The origin of hemorheologic and endothelial defects in patients with unstable angina (comparing with healthy persons) is determined by a solar activity period: the blood viscosity increases in a period of high solar activity in the vessels of small, medium and macro diameters, a local decompensate dysfunction of small vessels endothelium had been fixed (microcirculation area). In the period of a low solar activity there is an increase of a blood viscosity in vessels of all diameters, generalized subcompensated endothelial dysfunction is developed (on the background of the III phase blood clotting activating). In the period of a high solar activity a higher blood viscosity had been fixed, comparing with the period of a low solar activity.

  19. Magnetic helicity in emerging solar active regions

    SciTech Connect

    Liu, Y.; Hoeksema, J. T.; Bobra, M.; Hayashi, K.; Sun, X.; Schuck, P. W.

    2014-04-10

    Using vector magnetic field data from the Helioseismic and Magnetic Imager instrument aboard the Solar Dynamics Observatory, we study magnetic helicity injection into the corona in emerging active regions (ARs) and examine the hemispheric helicity rule. In every region studied, photospheric shearing motion contributes most of the helicity accumulated in the corona. In a sample of 28 emerging ARs, 17 follow the hemisphere rule (61% ± 18% at a 95% confidence interval). Magnetic helicity and twist in 25 ARs (89% ± 11%) have the same sign. The maximum magnetic twist, which depends on the size of an AR, is inferred in a sample of 23 emerging ARs with a bipolar magnetic field configuration.

  20. Coronal Holes and Solar Wind High-Speed Streams: I. Forecasting the Solar Wind Parameters

    NASA Astrophysics Data System (ADS)

    Vršnak, Bojan; Temmer, Manuela; Veronig, Astrid M.

    2007-02-01

    We analyze the relationship between the coronal hole (CH) area/position and physical characteristics of the associated corotating high-speed stream (HSS) in the solar wind at 1 AU. For the analysis we utilize the data in the period DOY 25 125 of 2005, characterized by a very low coronal mass ejection (CME) activity. Distinct correlations between the daily averaged CH parameters and the solar wind characteristics are found, which allows us to forecast the solar wind velocity v, proton temperature T, proton density n, and magnetic field strength B, several days in advance in periods of low CME activity. The forecast is based on monitoring fractional areas A, covered by CHs in the meridional slices embracing the central meridian distance ranges [-40°,-20°], [-10°,10°], and [20°,40°]. On average, the peaks in the daily values of n, B, T, and v appear delayed by 1, 2, 3, and 4 days, respectively, after the area A attains its maximum in the central-meridian slice. The peak values of the solar wind parameters are correlated to the peak values of A, which provides also forecasting of the peak values of n, B, T, and v. The most accurate prediction can be obtained for the solar wind velocity, for which the average relative difference between the calculated and the observed peak values amounts to overline{\\vertδ\\vert}≈10 %. The forecast reliability is somewhat lower in the case of T, B, and n ( overline{\\vertδ\\vert}≈20 , 30, and 40%, respectively). The space weather implications are discussed, including the perspectives for advancing the real-time calculation of the Sun Earth transit times of coronal mass ejections and interplanetary shocks, by including more realistic real-time estimates of the solar wind characteristics.

  1. The impact of solar activities on the boreal winter climate and its decadal variation

    NASA Astrophysics Data System (ADS)

    Xiao, Z.; WANG, R.

    2015-12-01

    A lot of analysis revealed the relation between the variation of solar activity and climate over pole and high latitudes. Among them, Artic oscillation (AO) demonstrates a closely relationship with solar activity. Based on the F10.7cm solar radiant flux and NCEP reanalysis data sets from 1952 to 2011, we studied the impact of the variation of solar activity on the boreal winter climate over north hemisphere. Results show that solar activity closely related with the winter atmospheric circulation over East Asia. However, the relationship exhibits obviously differences between strong and weak solar activity periods. It suggests solar activity present an asymmetric influence on winter climate over East Asia. Further investigation indicates that the linkage between solar activity and East Asia winter climate is robust during active solar period but the connection is fairly weak during inactive phases. The more detail analysis reveals that the spacial characteristic of the atmospheric response to the solar variation is obviously different before and after later years 1970s. AO and F10.7cm flux appears a negative relation before 1978 but distinct positive relationship during the later years. During the period from 1952 to 1978, the variation of the solar activity is related to the sea surface temperature anomaly over Pacific and atmospheric zonal wind over tropical and low latitudes. On the other hand, it has a more closely relationship with temperature anomaly over Europe and Asian continent and the atmospheric circulation over mid-high latitudes during the time from 1979 to 2011. It is possibly caused by the climate condition transition in later 1970s and the solar radiant decadal variation influence on stratosphere and troposphere interaction.

  2. Comparison of peak characteristics of the F2 ionospheric layer obtained from the Cyprus Digisonde and IRI-2012 model during low and high solar activity period

    NASA Astrophysics Data System (ADS)

    Haralambous, Haris; Oikonomou, Christina

    2015-11-01

    We investigate first the climatology expressed by diurnal and seasonal variations of the critical frequency (foF2) and the peak height (hmF2) of the F2-layer derived from digital ionosonde measurements at the low-middle latitude European station in Nicosia, Cyprus (geographical coordinates: 35°N, 33°E, geomagnetic lat. 29.38°N, I = 51.7°). Monthly median hourly values of the F2-layer peak characteristics are obtained using manually scaled data during the 5-year period 2009-2013. The observational results are then compared with the International Reference Ionospheric Model (IRI-2012) predictions using both URSI and CCIR coefficients. It is shown that the semi-annual pattern of daytime foF2 characterized by higher values at equinoxes than either solstices as well as the winter anomaly phenomenon demonstrate strong solar activity dependence. An annual pattern of night-time foF2 is also detected with lower values in winter and higher in summer. The seasonal variation of daytime hmF2 is evident and peaks of hmF2 at pre-sunrise and post-sunset hours are identified during December. The IRI-2012 model is capable to capture the main diurnal and seasonal patterns of foF2 and hmF2. The highest overestimation of daytime foF2 is noted at equinoxes and solstices except from March, October, December of 2011, and June of 2013. Significant foF2 underestimation is observed at evening and after midnight during February and March of 2009. Large positive discrepancies between the modeled and observed hmF2 values are noticed during the deep solar minimum year 2009. Overall, IRI-model estimates are more accurate for hmF2 than foF2 over Cyprus and for the examined period.

  3. Long-term persistence of solar activity

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, Alexander; Feynman, Joan; Robinson, Paul

    1994-01-01

    We examine the question of whether or not the non-periodic variations in solar activity are caused by a white-noise, random process. The Hurst exponent, which characterizes the persistence of a time series, is evaluated for the series of C-14 data for the time interval from about 6000 BC to 1950 AD. We find a constant Hurst exponent, suggesting that solar activity in the frequency range from 100 to 3000 years includes an important continuum component in addition to the well-known periodic variations. The value we calculate, H approximately 0.8, is significantly larger than the value of 0.5 that would correspond to variations produced by a white-noise process. This value is in good agreement with the results for the monthly sunspot data reported elsewhere, indicating that the physics that produces the continuum is a correlated random process and that it is the same type of process over a wide range of time interval lengths.

  4. Solar Energy Education. Industrial arts: student activities. Field test edition

    SciTech Connect

    Not Available

    1981-02-01

    In this teaching manual several activities are presented to introduce students to information on solar energy through classroom instruction. Wind power is also included. Instructions for constructing demonstration models for passive solar systems, photovoltaic cells, solar collectors and water heaters, and a bicycle wheel wind turbine are provided. (BCS)

  5. High resolution reconstruction of solar prominence images observed by the New Vacuum Solar Telescope

    NASA Astrophysics Data System (ADS)

    Xiang, Yong-yuan; Liu, Zhong; Jin, Zhen-yu

    2016-11-01

    A high resolution image showing fine structures is crucial for understanding the nature of solar prominence. In this paper, high resolution imaging of solar prominence on the New Vacuum Solar Telescope (NVST) is introduced, using speckle masking. Each step of the data reduction especially the image alignment is discussed. Accurate alignment of all frames and the non-isoplanatic calibration of each image are the keys for a successful reconstruction. Reconstructed high resolution images from NVST also indicate that under normal seeing condition, it is feasible to carry out high resolution observations of solar prominence by a ground-based solar telescope, even in the absence of adaptive optics.

  6. Applications of nonimaging optics for very high solar concentrations

    SciTech Connect

    O`Gallagher, J.; Winston, R.

    1997-12-31

    Using the principles and techniques of nonimaging optics, solar concentrations that approach the theoretical maximum can be achieved. This has applications in solar energy collection wherever concentration is desired. In this paper, we survey recent progress in attaining and using high and ultrahigh solar fluxes. We review a number of potential applications for highly concentrated solar energy and the current status of the associated technology. By making possible new and unique applications for intense solar flux, these techniques have opened a whole new frontier for research and development of potentially economic uses of solar energy.

  7. High efficiency crystalline silicon solar cells

    NASA Technical Reports Server (NTRS)

    Sah, C. Tang

    1986-01-01

    A review of the entire research program since its inception ten years ago is given. The initial effort focused on the effects of impurities on the efficiency of silicon solar cells to provide figures of maximum allowable impurity density for efficiencies up to about 16 to 17%. Highly accurate experimental techniques were extended to characterize the recombination properties of the residual imputities in the silicon solar cell. A numerical simulator of the solar cell was also developed, using the Circuit Technique for Semiconductor Analysis. Recent effort focused on the delineation of the material and device parameters which limited the silicon efficiency to below 20% and on an investigation of cell designs to break the 20% barrier. Designs of the cell device structure and geometry can further reduce recombination losses as well as the sensitivity and criticalness of the fabrication technology required to exceed 20%. Further research is needed on the fundamental characterization of the carrier recombination properties at the chemical impurity and physical defect centers. It is shown that only single crystalline silicon cell technology can be successful in attaining efficiencies greater than 20%.

  8. Solar-terrestrial predictions proceedings. Volume 4: Prediction of terrestrial effects of solar activity

    NASA Technical Reports Server (NTRS)

    Donnelly, R. E. (Editor)

    1980-01-01

    Papers about prediction of ionospheric and radio propagation conditions based primarily on empirical or statistical relations is discussed. Predictions of sporadic E, spread F, and scintillations generally involve statistical or empirical predictions. The correlation between solar-activity and terrestrial seismic activity and the possible relation between solar activity and biological effects is discussed.

  9. The solar activity dependence of wave dynamical vertical coupling of atmospheres

    NASA Astrophysics Data System (ADS)

    Laskar, F. I.; Duggirala, P. R.; Lakshmi, T. V.; Reddy, M. A.; Veenadhari, B.; Chakrabarti, S.

    2014-12-01

    Analysis of oxygen dayglow emissions at OI 557.7, OI 630.0, and OI 777.4 nm showed that the wave dynamical vertical coupling of atmospheres is solar activity dependent. These emission intensities are obtained during January-March in the years 2011 and 2012 from Hyderabad (17.5oN, 78.5oE), India, using a high-spectral resolution multi-wavelength imaging echelle spectrograph (MISE). Spectral analysis of the variations revealed that oscillation periods near the atmospheric free-normal modes of 5, 10, 16, and 25 days (that are produced mainly in the troposphere) are found to register their presence in the upper atmospheric emission intensities. In an earlier study during high solar activity period (2001), the sunspot numbers (SSN) and the daily averaged OI 630.0 nm dayglow intensities were seen to be co-varying. In contrast, the variability in the dayglow emission intensities during relatively low solar activity period (2011) shows no or weaker correlation with that of the SSN but a greater similarity with that of the equatorial electrojet (EEJ) strength. Whereas, oscillations of both lower atmospheric normal modes and those related to sunspot are found during moderate solar activity (2012). These results suggest that the upper atmosphere responds mainly to lower atmospheric forcing during low solar activity, to solar forcing during high solar activity, and to both lower atmosphere and solar forcings during moderate solar activity level. A statistical study of the shorter period variations in the gravity wave regime showed they are present in greater numbers in the thermosphere during higher solar activity, which is ascribed to be due to decreasing wave dissipation with increasing solar activity. These results will be presented in the context of short- and long-period wave dynamics in the whole atmosphere.

  10. Magnetic observations during the recent declining phase of solar activity

    NASA Astrophysics Data System (ADS)

    Smith, E. J.

    Changes in the heliospheric magnetic field during the recent declining phase in solar activity are reviewed and compared with observations during past sunspot cycles. The study is based principally on data obtained by IMP-8 and Ulysses. The field magnitude is found to have increased during the declining phase until it reached a maximum value of 11.5nT in approximately 1991.5, approximately two years after sunspot maximum. The field of the sun's south pole became negative after a reversal in early 1990. The sector structure disappeared at Ulysses in April 1993 when the latitude of the spacecraft was -30 deg revealing a low inclination of the heliospheric current sheet. A large outburst of solar activity in March 1991 caused four Coronal Mass Ejections (CMEs) and numerious shocks at the location of Ulysses. Following a delay of more than a year, a series of recurrent high speed streams and Corotating Interaction Regions commenced in July 1992 which were observed by IMP-8, Ulysses and Voyager 2. In all these respects, the behavior of the magnetic field mimics that seen in the two earlier sunspot cycles. The comprehensive data set suggests a correlation between the absolute value of B and sunspot number. The major solar cycle variations in the radial component (and magnitude) of the field have been successfully reproduced by a recent model consisting of a tilted solar dipole, whose strength and tilt undergo characteristic changes over the sunspot cycle, and the heliospheric current sheet. The large outbursts of activity in mid-1972, mid-1982 and the first quarter of 1991 may represent a characteristic last 'gasp' of solar activity before the sun evolves to a different state. The recurrent high speed streams in 1973, 1984 and 1992 accompany the developemnt of large asymetrical polar coronal holes and the growth in intensity of the polar cap fields. After they endure for about one year, the polar coronal holes recede and the high speed streams are replaced by weaker

  11. Significantly high wave trains in cosmic rays and solar radio flux

    NASA Astrophysics Data System (ADS)

    Mishra, Rajesh Kumar; Agarwal, Rekha

    2016-07-01

    Magnetic field of the Sun disturbs the propagation of cosmic rays during their propagation through the Heliosphere, and introduces variations on time scales that range from hours to millennia. Changes in the heliosphere arising from fluctuations in the Sun's magnetic field mean that galactic cosmic rays are less able to reach the Earth when the Sun is more active so the cosmic ray flux is inversely related to solar activity. In the present work studies has been carried on the occurrence of a large number high amplitude wave train events in cosmic ray intensity and to identify a possible dependence on 10.7-cm solar radio flux (solar activity) using the hourly cosmic ray neutron monitor data for two different ground based neutron monitors. The phase for both high amplitude events as well as for all days is found to significantly deviate towards an earlier hour as compared to the corotational/azimuthal direction. The amplitude of first harmonic and 10.7-cm solar radio flux significantly deviates and reaches to its peak and phase remains in the corotational direction during the years close to solar activity maximum for these high amplitude events. The occurrence of high amplitude wave train events is dominant during solar activity minimum as well as maximum years. The amplitude as well as phase of the first harmonic of cosmic ray intensity during high amplitude events shows significant correlation with solar activity. However, the frequency of occurrence of high amplitude events shows a very nominal dependence on solar activity. Keywords: high amplitude wave trains, cosmic ray, solar activity, 10.7-cm solar radio flux, magnetic field.

  12. The influence of solar active region evolution on solar wind streams, coronal hole boundaries and geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Gold, R. E.; Dodson-Prince, H. W.; Hedeman, E. R.; Roelof, E. C.

    1982-01-01

    Solar and interplanetary data are examined, taking into account the identification of the heliographic longitudes of the coronal source regions of high speed solar wind (SW) streams by Nolte and Roelof (1973). Nolte and Roelof have 'mapped' the velocities measured near earth back to the sun using the approximation of constant radial velocity. The 'Carrington carpet' for rotations 1597-1616 is shown in a graph. Coronal sources of high speed streams appear in the form of solid black areas. The contours of the stream sources are laid on 'evolutionary charts' of solar active region histories for the Southern and Northern Hemispheres. Questions regarding the interplay of active regions and solar wind are investigated, giving attention to developments during the years 1973, 1974, and 1975.

  13. Occurrence of high-speed solar wind streams over the Grand Modern Maximum

    NASA Astrophysics Data System (ADS)

    Mursula, Kalevi; Lukianova, Renata; Holappa, Lauri

    2015-04-01

    In the declining phase of the solar cycle, when the new-polarity fields of the solar poles are strengthened by the transport of same-signed magnetic flux from lower latitudes, the polar coronal holes expand and form non-axisymmetric extensions toward the solar equator. These extensions enhance the occurrence of high-speed solar wind streams (HSS) and related co-rotating interaction regions in the low-latitude heliosphere, and cause moderate, recurrent geomagnetic activity in the near-Earth space. Here, using a novel definition of geomagnetic activity at high (polar cap) latitudes and the longest record of magnetic observations at a polar cap station, we calculate the annually averaged solar wind speeds as proxies for the effective annual occurrence of HSS over the whole Grand Modern Maximum (GMM) from 1920s onwards. We find that a period of high annual speeds (frequent occurrence of HSS) occurs in the declining phase of each solar cycle 16-23. For most cycles the HSS activity clearly maximizes during one year, suggesting that typically only one strong activation leading to a coronal hole extension is responsible for the HSS maximum. We find that the most persistent HSS activity occurred in the declining phase of solar cycle 18. This suggests that cycle 19, which marks the sunspot maximum period of the GMM, was preceded by exceptionally strong polar fields during the previous sunspot minimum. This gives interesting support for the validity of solar dynamo theory during this dramatic period of solar magnetism.

  14. Multijunction high voltage concentrator solar cells

    NASA Technical Reports Server (NTRS)

    Valco, G. J.; Kapoor, V. J.; Evans, J. C.; Chai, A.-T.

    1981-01-01

    The standard integrated circuit technology has been developed to design and fabricate new innovative planar multi-junction solar cell chips for concentrated sunlight applications. This 1 cm x 1 cm cell consisted of several voltage generating regions called unit cells which were internally connected in series within a single chip resulting in high open circuit voltages. Typical open-circuit voltages of 3.6 V and short-circuit currents of 90 ma were obtained at 80 AM1 suns. A dramatic increase in both short circuit current and open circuit voltage with increased light levels was observed.

  15. Orbiting solar observatory 8 high resolution ultraviolet spectrometer experiment

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Oscillations, physical properties of the solar atmosphere, motions in the quiet solar atmosphere, coronal holes, motions in solar active regions, solar flares, the structure of plage regions, an atlas, and aeronomy are summarized. Photometric sensitivity, scattered light, ghosts, focus and spectral resolution, wavelength drive, photometric sensitivity, and scattered light, are also summarized. Experiments are described according to spacecraft made and experiment type. Some of the most useful data reduction programs are described.

  16. High-power, ultralow-mass solar arrays: FY-77 solar arrays technology readiness assessment report, volume 2

    NASA Technical Reports Server (NTRS)

    Costogue, E. N.; Young, L. E.; Brandhorst, H. W., Jr.

    1978-01-01

    Development efforts are reported in detail for: (1) a lightweight solar array system for solar electric propulsion; (2) a high efficiency thin silicon solar cell; (3) conceptual design of 200 W/kg solar arrays; (4) fluorocarbon encapsulation for silicon solar cell array; and (5) technology assessment of concentrator solar arrays.

  17. Research on Magnetic Evolution in Solar Active Regions and Related Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Yan, X. L.

    2014-07-01

    Research on sunspot activity and solar eruptions is one of the key and difficult issues in solar physics. The relationship between sunspot formation and its magnetic field evolution, and solar eruptions is not well understood. Magnetic emergence, magnetic cancellation, and sunspot motion can greatly affect the upper solar atmosphere, and even produce flares, coronal mass ejections (CMEs), filament eruptions, surges, and so on. Especially, large solar eruptions toward the earth can exert a huge influence on the Sun-Earth space weather. The observations of the Sun have been developed from those at a single wavelength based on the ground station to those at multi-wavelengths based on both the ground and space stations. In particular, from the launch of rockets in 1940s---1950s to the launch of the current spacecraft, the great achievements have been made based on the multi-wavelength and high resolution observations. This thesis is dedicated to the study of the evolution of active regions and related solar eruptions, especially the exploration on the origin of solar activities by using a great many data obtained by space and ground-based telescopes. Chapter 1 introduces the basic knowledge of sunspots (formation, fine-structure, magnetic field, material flow, and periodicity), filaments (formation, theoretical models, and triggering mechanisms), flares (classification, and theoretical models), and CMEs (structures, and physical models). In chapter 2, we investigate the relationship between magnetic emergence, magnetic cancellation, flares, CMEs, and filament eruptions in active regions by using ground and space observational data. Half of filament eruptions in active regions in our examples are accompanied by CMEs. The occurrence and speed of CMEs have a close relationship with the associated flares accompanied by filament eruptions. The halo CMEs are associated with large flares (≥ M-class flares). Magnetic emergence and cancellation often appear in the active

  18. Active Vibration Damping of Solar Arrays

    NASA Astrophysics Data System (ADS)

    Reinicke, Gunar; Baier, Horst; Grillebeck, Anton; Scharfeld, Frank; Hunger, Joseph; Abou-El-Ela, A.; Lohberg, Andreas

    2012-07-01

    Current generations of large solar array panels are lightweight and flexible constructions to reduce net masses. They undergo strong vibrations during launch. The active vibration damping is one convenient option to reduce vibration responses and limit stresses in facesheets. In this study, two actuator concepts are used for vibration damping. A stack interface actuator replaces a panel hold down and is decoupled from bending moments and shear forces. Piezoelectric patch actuators are used as an alternative, where the number, position and size of actuators are mainly driven by controllability analyses. Linear Quadratic Gaussian control is used to attenuate vibrations of selected mode shapes with both actuators. Simulations as well as modal and acoustic tests show the feasibility of selected actuator concepts.

  19. Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output

    SciTech Connect

    Dinetta, L.C.; Hannon, M.H.

    1995-10-01

    Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products.

  20. Solar Activity Forecasting for use in Orbit Prediction

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth

    2001-01-01

    Orbital prediction for satellites in low Earth orbit (LEO) or low planetary orbit depends strongly on exospheric densities. Solar activity forecasting is important in orbital prediction, as the solar UV and EUV inflate the upper atmospheric layers of the Earth and planets, forming the exosphere in which satellites orbit. Geomagnetic effects also relate to solar activity. Because of the complex and ephemeral nature of solar activity, with different cycles varying in strength by more than 100%, many different forecasting techniques have been utilized. The methods range from purely numerical techniques (essentially curve fitting) to numerous oddball schemes, as well as a small subset, called 'Precursor techniques.' The situation can be puzzling, owing to the numerous methodologies involved, somewhat akin to the numerous ether theories near the turn of the last century. Nevertheless, the Precursor techniques alone have a physical basis, namely dynamo theory, which provides a physical explanation for why this subset seems to work. I discuss this solar cycle's predictions, as well as the Sun's observed activity. I also discuss the SODA (Solar Dynamo Amplitude) index, which provides the user with the ability to track the Sun's hidden, interior dynamo magnetic fields. As a result, one may then update solar activity predictions continuously, by monitoring the solar magnetic fields as they change throughout the solar cycle. This paper ends by providing a glimpse into what the next solar cycle (#24) portends.

  1. New high-efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Daud, T.; Crotty, G. T.

    1985-01-01

    A design for silicon solar cells was investigated as an approach to increasing the cell open-circuit voltage and efficiency for flat-plate terrestrial photovoltaic applications. This deviates from past designs, where either the entire front surface of the cell is covered by a planar junction or the surface is textured before junction formation, which results in an even greater (up to 70%) junction area. The heavily doped front region and the junction space charge region are potential areas of high recombination for generated and injected minority carriers. The design presented reduces junction area by spreading equidiameter dot junctions across the surface of the cell, spaced about a diffusion length or less from each other. Various dot diameters and spacings allowed variations in total junction area. A simplified analysis was done to obtain a first-order design optimization. Efficiencies of up to 19% can be obtained. Cell fabrication involved extra masking steps for selective junction diffusion, and made surface passivation a key element in obtaining good collection. It also involved photolithography, with line widths down to microns. A method is demonstrated for achieving potentially high open-circuit voltages and solar-cell efficiencies.

  2. Gettering and passivation of high efficiency multicrystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Rohatgi, A.; Narasimha, S.; Cai, L.

    1997-02-01

    A detailed study was conducted on aluminum and phosphorus gettering in HEM mc-Si and defect passivation by PECVD SiN in EFG mc-Si to achieve high efficiency solar cells on these promising photovoltaic materials. Solar cells with efficiencies as high as 18.6% (1 cm2 area) were achieved on multicrystalline silicon (mc-Si) grown by the heat exchanger method (HEM) by a process which implements impurity gettering, an effective back surface field, front surface passivation, and forming gas annealing. This represents the highest reported solar cell efficiency on mc-Si to date. PCD analysis revealed that the bulk lifetime in certain HEM samples after phosphorus gettering can be as high as 135 μs. By incorporating a deeper aluminum back surface field (Al-BSF), the back surface recombination velocity (Sb) for 0.65 Ω-cm HEM mc-Si solar cells was lowered from 10,000 cm/s to 2,000 cm/s resulting in the 18.6% efficient device. It was also observed that a screen-printed/RTP alloyed Al-BSF process could raise the efficiency of both float zone and relatively defect-free mc-Si solar cells by lowering Sb. However, this process was found to increase the electrical activity of extended defects so that mc-Si devices with a significant defect density showed an overall degradation in performance. In the case of EFG mc-Si, neural network modeling in conjunction with a study of post deposition annealing was used to provide guidelines for effective defect passivation by PECVD SiN films. Appropriate deposition and annealing conditions resulted in a 45% increase in cell efficiency due to AR coating and another 25-30% increase due to defect passivation by atomic hydrogen.

  3. Spring-fall asymmetry of substorm strength, geomagnetic activity and solar wind: Implications for semiannual variation and solar hemispheric asymmetry

    USGS Publications Warehouse

    Mursula, K.; Tanskanen, E.; Love, J.J.

    2011-01-01

    We study the seasonal variation of substorms, geomagnetic activity and their solar wind drivers in 1993-2008. The number of substorms and substorm mean duration depict an annual variation with maxima in Winter and Summer, respectively, reflecting the annual change of the local ionosphere. In contradiction, substorm mean amplitude, substorm total efficiency and global geomagnetic activity show a dominant annual variation, with equinoctial maxima alternating between Spring in solar cycle 22 and Fall in cycle 23. The largest annual variations were found in 1994 and 2003, in the declining phase of the two cycles when high-speed streams dominate the solar wind. A similar, large annual variation is found in the solar wind driver of substorms and geomagnetic activity, which implies that the annual variation of substorm strength, substorm efficiency and geomagnetic activity is not due to ionospheric conditions but to a hemispherically asymmetric distribution of solar wind which varies from one cycle to another. Our results imply that the overall semiannual variation in global geomagnetic activity has been seriously overestimated, and is largely an artifact of the dominant annual variation with maxima alternating between Spring and Fall. The results also suggest an intimate connection between the asymmetry of solar magnetic fields and some of the largest geomagnetic disturbances, offering interesting new pathways for forecasting disturbances with a longer lead time to the future. Copyright ?? 2011 by the American Geophysical Union.

  4. Spring-fall asymmetry of substorm strength, geomagnetic activity and solar wind: Implications for semiannual variation and solar hemispheric asymmetry

    USGS Publications Warehouse

    Marsula, K.; Tanskanen, E.; Love, J.J.

    2011-01-01

    We study the seasonal variation of substorms, geomagnetic activity and their solar wind drivers in 1993–2008. The number of substorms and substorm mean duration depict an annual variation with maxima in Winter and Summer, respectively, reflecting the annual change of the local ionosphere. In contradiction, substorm mean amplitude, substorm total efficiency and global geomagnetic activity show a dominant annual variation, with equinoctial maxima alternating between Spring in solar cycle 22 and Fall in cycle 23. The largest annual variations were found in 1994 and 2003, in the declining phase of the two cycles when high-speed streams dominate the solar wind. A similar, large annual variation is found in the solar wind driver of substorms and geomagnetic activity, which implies that the annual variation of substorm strength, substorm efficiency and geomagnetic activity is not due to ionospheric conditions but to a hemispherically asymmetric distribution of solar wind which varies from one cycle to another. Our results imply that the overall semiannual variation in global geomagnetic activity has been seriously overestimated, and is largely an artifact of the dominant annual variation with maxima alternating between Spring and Fall. The results also suggest an intimate connection between the asymmetry of solar magnetic fields and some of the largest geomagnetic disturbances, offering interesting new pathways for forecasting disturbances with a longer lead time to the future.

  5. Solar activity during the deep minimum of 2009

    NASA Astrophysics Data System (ADS)

    Sylwester, Janusz; Siarkowski, Marek; Gburek, Szymon; Gryciuk, Magdalena; Kepa, Anna; Kowaliński, Mirosław; Mrozek, Tomek; Phillips, Kenneth J. H.; Podgórski, Piotr; Sylwester, Barbara

    2014-12-01

    We discuss the character of the unusually deep solar activity minimum of 2009 between Solar Cycles 23 and 24. Levels of solar activity in various parts of the solar atmosphere -- photosphere, chromosphere, transition region, and corona -- were observed to be at their lowest for a century. The soft X-ray emission from the corona (hot outer part of the Sun's atmosphere) was measured throughout most of 2009 with the Polish-built SphinX spectrophotometer. Unlike other X-ray monitoring spacecraft, this sensitive spacecraft-borne instrument was able to continue measurements throughout this extended period of low activity.

  6. Solar air-conditioning-active, hybrid and passive

    SciTech Connect

    Yellott, J. I.

    1981-04-01

    After a discussion of summer air conditioning requirements in the United States, active, hybrid, and passive cooling systems are defined. Active processes and systems include absorption, Rankine cycle, and a small variety of miscellaneous systems. The hybrid solar cooling and dehumidification technology of desiccation is covered as well as evaporative cooling. The passive solar cooling processes covered include convective, radiative and evaporative cooling. Federal and state involvement in solar cooling is then discussed. (LEW)

  7. Solar Irradiance Variations on Active Region Time Scales

    NASA Technical Reports Server (NTRS)

    Labonte, B. J. (Editor); Chapman, G. A. (Editor); Hudson, H. S. (Editor); Willson, R. C. (Editor)

    1984-01-01

    The variations of the total solar irradiance is an important tool for studying the Sun, thanks to the development of very precise sensors such as the ACRIM instrument on board the Solar Maximum Mission. The largest variations of the total irradiance occur on time scales of a few days are caused by solar active regions, especially sunspots. Efforts were made to describe the active region effects on total and spectral irradiance.

  8. Impact of High Solar Penetration in the Western Interconnection

    SciTech Connect

    Lew, D.; Miller, N.; Clark, K.; Jordan, G.; Gao, Z.

    2010-12-01

    This paper presents an overview of the variable characteristics of solar power, as well as the accompanying grid dynamic performance and operational economics for a system with significant solar generation. The paper will show results of economic operational simulations of a very high solar generation future for the western half of the United States.

  9. High-Temperature, High-Concentration Solar Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Warren, Emily; Baranowski, Lauryn; Olsen, Michele; Ndione, Paul; Netter, Judy; Goodrich, Alan; Gray, Matthew; Parilla, Philip; Ginley, David; Toberer, Eric

    2014-03-01

    Solar thermoelectric generators (STEGs) powered with concentrated solar energy have potential for use as primary energy converters or as topping-cycles for more conventional concentrated solar power (CSP) technologies. Modeling based on current record modules from JPL suggests thermoelectric efficiencies of 18 % could be experimentally expected with a temperature gradient of 1000 - 100°C. Integrating these state-of-the-art TEGs with a concentrating solar receiver requires simultaneous optimization of optical, thermal, and thermoelectric systems. This talk will discuss the modeling, design, and experimental testing of STEG devices under concentrated sunlight. We have developed a model that combines thermal circuit modeling with optical ray tracing to design selective absorber coatings and cavities to minimize radiation losses from the system. We have fabricated selective absorber coatings and demonstrated that these selective absorber films can minimize blackbody radiation losses at high temperature and are stable after thermal cycling to 1000°C. On-sun testing of STEG devices and thermal simulators is ongoing and preliminary results will be discussed.

  10. Development of a system for accurate forecasting of solar activity. Final report, 15 Oct 87-14 Oct 90

    SciTech Connect

    Sofia, S.

    1991-07-11

    This is a continuing effort which has empirical, theoretical and experimental components related to the physics of solar activity. The empirical forecasting scheme, developed under this grant, has been very successful for solar cycle 22. Important elements of a highly sophisticated theoretical scheme to model the solar activity cycle have been produced and tested. The Solar Disk Sextant experiment is progressing well. In addition to the Principal Investigator, this work involves five students and two research associates.

  11. Periods of High Intensity Solar Proton Flux

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Thomas M.; Adams, James H.; Dietrich, William F.

    2012-01-01

    Analysis is presented for times during a space mission that specified solar proton flux levels are exceeded. This includes both total time and continuous time periods during missions. Results for the solar maximum and solar minimum phases of the solar cycle are presented and compared for a broad range of proton energies and shielding levels. This type of approach is more amenable to reliability analysis for spacecraft systems and instrumentation than standard statistical models.

  12. Apparent Relations Between Solar Activity and Solar Tides Caused by the Planets

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    2007-01-01

    A solar storm is a storm of ions and electrons from the Sun. Large solar storms are usually preceded by solar flares, phenomena that can be characterized quantitatively from Earth. Twenty-five of the thirty-eight largest known solar flares were observed to start when one or more tide-producing planets (Mercury, Venus, Earth, and Jupiter) were either nearly above the event positions (less than 10 deg. longitude) or at the opposing side of the Sun. The probability for this to happen at random is 0.039 percent. This supports the hypothesis that the force or momentum balance (between the solar atmospheric pressure, the gravity field, and magnetic field) on plasma in the looping magnetic field lines in solar corona could be disturbed by tides, resulting in magnetic field reconnection, solar flares, and solar storms. Separately, from the daily position data of Venus, Earth, and Jupiter, an 11-year planet alignment cycle is observed to approximately match the sunspot cycle. This observation supports the hypothesis that the resonance and beat between the solar tide cycle and nontidal solar activity cycle influences the sunspot cycle and its varying magnitudes. The above relations between the unpredictable solar flares and the predictable solar tidal effects could be used and further developed to forecast the dangerous space weather and therefore reduce its destructive power against the humans in space and satellites controlling mobile phones and global positioning satellite (GPS) systems.

  13. High voltage series connected tandem junction solar battery

    DOEpatents

    Hanak, Joseph J.

    1982-01-01

    A high voltage series connected tandem junction solar battery which comprises a plurality of strips of tandem junction solar cells of hydrogenated amorphous silicon having one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon, arranged in a tandem configuration, can have the same bandgap or differing bandgaps. The tandem junction strip solar cells are series connected to produce a solar battery of any desired voltage.

  14. Solar cosmic ray measurements at high heliocentric latitudes. [proposed space missions of solar probes to study solar physics

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.

    1976-01-01

    A brief review is presented of what might result from a program of solar cosmic ray observations on 'out-of-the-ecliptic' spacecraft. The following topics are discussed: (1) The magnetic fields of the sun at high latitudes, (2) propagation of fast charged particles in the solar corona and in interplanetary space at high latitudes, (3) origin of interplanetary particle populations and the solar wind, (4) other particle phenomena in interplanetary space (e.g., acceleration of shock waves), and (5) effect of spacecraft mission characteristics on solar cosmic ray studies at high latitudes. Maps of polar coronal magnetic fields are shown.

  15. Solar Forecasting Challenges and Opportunities for Enabling High Penetration of Solar Energy

    NASA Astrophysics Data System (ADS)

    Mishra, S.

    2015-12-01

    In 2011, DOE launched the SunShot Initiative to reduce the total cost of solar energy systems by about 75% to make them cost competitive with other forms of energy (without subsidies) by 2020. This translates to a total cost of installed solar energy at 1/Watt or 0.06/kWh, incentivizing high penetration of solar on the utility grid. In the past four years, the SunShot Initiative has catalyzed revolutionary advancements in solar technologies, stimulating significant growth and accelerating deployment of solar energy systems. However, as solar deployment increases, integrating solar energy into the utility grid poses difficult challenges due to the variability in solar resource and the impact of clouds and aerosols on surface irradiance. Accurate forecasting of solar resource and its variability at high temporal and spatial resolution at least a day ahead is crucial to large scale integration of solar energy into the utility grid. However, this is limited by current errors in forecasting that are as high as 25% for clear sky forecasts of Global Horizontal Irradiance (GHI), and as large as 40-80% for cloudy conditions. Forecasting errors are even higher for the direct normal irradiance (DNI). For solar energy to be seamlessly integrated into the utility grid under the scenarios of high penetration of solar, significant improvements in surface solar irradiance modeling and observations of both Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) are essential to accurately predict power outputs from photovoltaic (PV) and concentrating solar power (CSP) systems. Furthermore, forecasting improvements have to be closely tied to utility needs and operation timelines. Details about the ongoing research efforts supported through the SunShot initiative and the challenges and needs for solar forecasting improvements in regards to the SunShot Initiative will be presented at the conference.

  16. Multi-wavelength Observations of Solar Active Region NOAA 7154

    NASA Technical Reports Server (NTRS)

    Bruner, M. E.; Nitta, N. V.; Frank. Z. A.; Dame, L.; Suematsu, Y.

    2000-01-01

    We report on observations of a solar active region in May 1992 by the Solar Plasma Diagnostic Experiment (SPDE) in coordination with the Yohkoh satellite (producing soft X-ray images) and ground-based observatories (producing photospheric magnetograms and various filtergrams including those at the CN 3883 A line). The main focus is a study of the physical conditions of hot (T is approximately greater than 3 MK) coronal loops at their foot-points. The coronal part of the loops is fuzzy but what appear to be their footpoints in the transition region down to the photosphere are compact. Despite the morphological similarities, the footpoint emission at 10(exp 5) K is not quantitatively correlated with that at approximately 300 km above the tau (sub 5000) = 1 level, suggesting that the heat transport and therefore magnetic field topology in the intermediate layer is complicated. High resolution imaging observations with continuous temperature coverage are crucially needed.

  17. Free Magnetic Energy and Helicity in Active and Quiet Solar Regions and their role in Solar

    NASA Astrophysics Data System (ADS)

    Tziotziou, K.; Georgoulis, M. K.; Tsiropoula, G.; Moraitis, K.; Kontogiannis, I.

    2013-09-01

    We present a novel nonlinear force-free method designed to calculate the instantaneous free magnetic energy and relative magnetic helicity budgets of a solar region from a single photospheric/chromospheric vector magnetogram of the region. Our objective is to study the role of these quantities in solar eruptions and quiet-Sun dynamics. We apply the method to (1) derive the energy/helicity diagram of solar active regions from a sample of 162 vector magnetograms corresponding to 42 different active regions (ARs), suggesting that there exist 4 1031 erg and 2 1042 Mx2 thresholds in free energy and relative helicity, respectively, for ARs to enter eruptive territory, (2) study the dynamics of eruptive NOAA AR 11158 using a high-cadence 5-day time series of vector magnetograms, suggesting the formation of increasingly helical pre-eruption structures and a causal relation between flares and Coronal Mass Ejections (CMEs) and, (3) derive helicity and energy budgets in quiet Sun regions and construct the respective energy/helicity diagram. Our results highlight the importance of these two parameters in AR evolution and quiet-Sun dynamics and instigate further research including detailed analysis with synthetic, magnetohydrodynamical models. This work is supported by EU's Seventh Framework Programme via a Marie Curie Fellowship and by the Hellenic National Space Weather Research Network (HNSWRN) via the THALIS Programme.

  18. Near-Earth Solar Wind Flows and Related Geomagnetic Activity During more than Four Solar Cycles (1963-2011)

    NASA Technical Reports Server (NTRS)

    Richardson, Ian G.; Cane, Hilary V.

    2012-01-01

    In past studies, we classified the near-Earth solar wind into three basic flow types based on inspection of solar wind plasma and magnetic field parameters in the OMNI database and additional data (e.g., geomagnetic indices, energetic particle, and cosmic ray observations). These flow types are: (1) High-speed streams associated with coronal holes at the Sun, (2) Slow, interstream solar wind, and (3) Transient flows originating with coronal mass ejections at the Sun, including interplanetary coronal mass ejections and the associated upstream shocks and post-shock regions. The solar wind classification in these previous studies commenced with observations in 1972. In the present study, as well as updating this classification to the end of 2011, we have extended the classification back to 1963, the beginning of near-Earth solar wind observations, thereby encompassing the complete solar cycles 20 to 23 and the ascending phase of cycle 24. We discuss the cycle-to-cycle variations in near-Earth solar wind structures and l1e related geomagnetic activity over more than four solar cycles, updating some of the results of our earlier studies.

  19. High-latitude opportunities for flow measurements with the EUI instrument onboard Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Gissot, Samuel; Brajsa, Roman

    The Solar Orbiter mission will offer a unique out-of-ecliptic vantage point which represents an excellent opportunity to address the cyclic nature of solar magnetic activity and key questions for our understanding of solar dynamo such as transport of flux at high latitudes and the properties of the polar magnetic field. Our current knowledge of solar activity at high latitudes is limited by the ecliptic position of past and current instruments so that characterizing the solar flows remains difficult because of this ecliptic viewing angle. This is a major limitation to our knowledge of meridional circulation and differential rotation at all latitudes and radii. During the out-of-the-ecliptic phase of the mission, Solar Orbiter will reach heliographic latitudes of 25(°) during the nominal mission and as high as 34(°) during the extended mission and thus contribute to new constraints and understanding for solar dynamo models. Following past work on tracer tracking of coronal bright points and the inter-instrument measurements of flows, we will present the lessons learned to address these issues using the Solar Orbiter EUI and PHI remote sensing instruments. In particular, we will present a method for the detection and tracking of high-latitude tracers from which one can derive requirements on the specific high solar inclination science windows of Solar Orbiter. We will illustrate how this will contribute to refine our current knowledge of differential rotation and meridional flows and discuss how the successive Solar Orbiter passes at perihelion could extend these solar activity indices over cycle time scales.

  20. Overview of the Temperature Response in the Mesosphere and Lower Thermosphere to Solar Activity

    NASA Technical Reports Server (NTRS)

    Beig, Gufran; Scheer, Juergen; Mlynczak, Martin G.; Keckhut, Philippe

    2008-01-01

    The natural variability in the terrestrial mesosphere needs to be known to correctly quantify global change. The response of the thermal structure to solar activity variations is an important factor. Some of the earlier studies highly overestimated the mesospheric solar response. Modeling of the mesospheric temperature response to solar activity has evolved in recent years, and measurement techniques as well as the amount of data have improved. Recent investigations revealed much smaller solar signatures and in some case no significant solar signal at all. However, not much effort has been made to synthesize the results available so far. This article presents an overview of the energy budget of the mesosphere and lower thermosphere (MLT) and an up-to-date status of solar response in temperature structure based on recently available observational data. An objective evaluation of the data sets is attempted and important factors of uncertainty are discussed.

  1. Ulysses sees differences in solar wind at high, low latitudes

    NASA Astrophysics Data System (ADS)

    1995-06-01

    Scientists presenting results today of their data at the spring meeting of the American Geophysical Union in Baltimore, Md., said the speed of the solar wind over the southern pole is high, compared to its low velocity near the Sun's equator. The solar wind is the hot ionized gas that escapes from the solar corona and expands into interplanetary space. At the present minimum of the solar activity cycle, the angle between the Sun's rotational and magnetic equators has decreased -- in these conditions Ulysses found that the region of low-speed solar winds were confined more closely to the rotational equator than in earlier portions of the solar cycle. Now on its way to the northern solar pole, Ulysses is nearly 62 degrees north of the Sun's equator today. The second phase of the primary mission -- to explore the northern pole of the Sun -- will begin on June 19, when the spacecraft reaches 70 degrees north latitude, The spacecraft will reach a maximum northern latitude of 80,2 degrees on 31 July 1995. Ulysses' trajectory from 80 degrees south of the equator in September 1994, back down to the Sun's equator in March 1995, also brought the spacecraft within 1.3 astronomical units (121 million miles, 194 million km) of the Sun, the closest Ulysses would ever travel to the Sun since it was launched on October 6, 1990. The spacecraft picked up speed during this phase allowing the entire region to be scanned in just six months time. Scientists refer to this phase of the mapping as the "fast latitude scan", Ulysses had left the equatorial plane in early 1992 after a gravitational swingby of Jupiter, and had gradually climbed in latitude until reaching 80 degrees south in September 1994. Ulysses' observations during the fast latitude scan have shown that the solar wind being continuously emitted by the Sun is distinctly different at high and low latitudes, said Dr. Edward J. Smith, Ulysses project scientist at NASA's Jet Propulsion Laboratory, for the joint NASA

  2. A statistic study of ionospheric solar flare activity indicator

    NASA Astrophysics Data System (ADS)

    Xiong, Bo; Ding, Feng; Ning, Baiqi; Wan, Weixing; Yu, You; Hu, Lianhuan

    According to the Chapman ionization theory, an ionospheric solar flare activity indicator (ISFAI) is given by the solar zenith angle and the variation rate of ionospheric vertical total electron content, which is measured from a global network of dual-frequency GPS receivers. The ISFAI is utilized to statistically analyze the ionospheric responses to 1439 M-class and 126 X-class solar flares during solar cycle 23 (1996-2008). The statistical results show that the occurrence of ISFAI peak increases obviously at 3.2 total electron content unit (TECU)/h (1 TECU = 1016 elm-2) and reaches the maximum at 10 TECU/h during M-class flares and 10 TECU/h and 40 TECU/h for X-class flares. ISFAI is closely correlated with the 26-34 nm extreme ultraviolet flux but poorly related to the 0.1-0.8 nm X-ray flux. The central meridian distance (CMD) of flare location is an important reason for depressing relationship between ISFAI and X-ray Flux. Through the CMD effect modification, the ISFAI has a significant dependence on the X-ray flux with a correlation coefficient of 0.76. The ISFAI sensitivity enables to detect the extreme X-class flares, as well as the variations of one order of magnitude or even smaller (such as for C-class flares). Meanwhile, ISFAI is helpful to the calibration of the X-ray flux at 0.1-0.8 nm observed by GOES during some flares. In addition, statistical results demonstrate that ISFAI can detect 80% of all M-class flares and 92% for all X-class ones during 1996-2008. Owing to the high sensitivity and temporal resolution, ISFAI can be utilized as a solar flare detection parameter to monitor space weather.

  3. High performance organic solar cells with interface engineering

    NASA Astrophysics Data System (ADS)

    Park, Mi Hyae

    Polymer solar cells are considered a promising candidate for renewable energy with low-cost and high volume production capability. The main focus of this dissertation is to investigate the several approaches for improving the efficiency of polymer solar cells. These approaches include understanding of the physics, operation mechanisms, materials and device engineering and optimization of fabrication processes. A typical polymer solar cell has a sandwiched structure with anode, active material, and cathode. To improve device performances, it is often to introduce interfacial layers between the anode and cathode interfaces. These interfacial layers can be conductive polymers, metal oxides, and other nano-structure materials. In this thesis, we focus on a novel metaloxide derivative. Synthesizing metal oxides through the sol--gel process provides a convenient way of forming nanostructured wide band gap semiconductors. In this dissertation, a doped metal oxide functional interfacial layer is introduced for achieving high performance organic electronic devices. The role of dopants is found to modify the electronic property of the metal oxide. Polymer solar cells and polymer light emitting devices with this functional layer exhibited excellent characteristics. The improved device performance is attributed to an improved polymer/metal contact, more efficient electron extraction, and better hole blocking properties. Another aspect of polymer solar cells is the potential to double the efficiency by using the tandem structure. Hence, the research on the understanding of tandem structure has become one of the frontiers in the field of organic/polymer photovoltaics. This dissertation discusses the role of the inter-connection layer in the tandem cell. We focus on the understanding and improvement of the interfaces within the interconnection layer, and its role for charge collection and recombination. Based on this understanding, high efficiency tandem cell with a power

  4. High resolution solar X-ray studies

    NASA Technical Reports Server (NTRS)

    Blake, R. L.

    1974-01-01

    Two high resolution solar X-ray payloads and their launches on Aerobee rockets with pointing system are described. The payloads included 5 to 25A X-ray spectrometers, multiaperture X-ray cameras, and command box attitude control inflight by means of a television image radioed to ground. Spatial resolution ranged from five arc minutes to ten arc seconds and spectral resolution ranged from 500 to 3000. Several laboratory tasks were completed in order to achieve the desired resolution. These included (1) development of techniques to align grid collimators, (2) studies of the spectrometric properties of crystals, (3) measurements of the absorption coefficients of various materials used in X-ray spectrometers, (4) evaluation of the performance of multiaperture cameras, and (5) development of facilities.

  5. Highly efficient light management for perovskite solar cells

    PubMed Central

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-01

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells. PMID:26733112

  6. Highly efficient light management for perovskite solar cells.

    PubMed

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-06

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  7. Bayesian Infernce for Indentifying Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Pap, Judit; Turmon, Michael; Mukhtar, Saleem

    1997-01-01

    The solar chromosphere consists of three classes-- plage, network, background -- which contribute differently to ultraviolet radiation reaching the earth. Solar physicists are interested in relating plage area and intensity to UV irradiance, as well as understanding the spatial and temporal evolution of plage shapes.

  8. Heliospheric Consecuences of Solar Activity In Several Interplanetary Phenomena

    NASA Astrophysics Data System (ADS)

    Valdés-Galicia, J. F.; Mendoza, B.; Lara, A.; Maravilla, D.

    We have done an analysis of several phenomena related to solar activity such as the total magnetic flux, coronal hole area and sunspots, investigated its long trend evolu- tion over several solar cycles and its possible relationships with interplanetary shocks, sudden storm commencements at earth and cosmic ray variations. Our results stress the physical connection between the solar magnetic flux emergence and the interplan- etary medium dynamics, in particular the importance of coronal hole evolution in the structuring of the heliosphere.

  9. IPS activity observed as a precursor of solar induced terrestrial activity. [solar wind density fluctuations

    NASA Technical Reports Server (NTRS)

    Cronyn, W. M.; Shawhan, S. D.; Rickard, J. J.; Mitchell, D. G.; Roelof, E. C.; Gotwols, B. L.

    1978-01-01

    A radio telescope designed to exploit the interplanetary scintillation (IPS) technique and locate, map, and track solar wind disturbances which result in geomagnetic disturbances, thereby providing a forecast capability, is described. Preliminary results from operation of the telescope include: (1) evidence for a precursor signal in the IPS activity with a 1-2 day lead time with respect to density enhancements which frequently give rise to geomagnetic activity; (2) detection of a spectral broadening signature which also serves as a precursor of geomagnetic activity; (3) out-of-the-ecliptic plasma density enhancements which were not detected by near-Earth, ecliptic plane spacecraft; (4) detection of 12 corotating density enhancements;(5) detection of over 80 sources which give detectable scintillation of which 45 have been used for detailed synoptic analysis and 9 for spectral analysis; and (6) measurement of 0-lag coefficient of 0.56 between density and IPS activity enhancements.

  10. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    SciTech Connect

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  11. Solar activity at birth predicted infant survival and women's fertility in historical Norway.

    PubMed

    Skjærvø, Gine Roll; Fossøy, Frode; Røskaft, Eivin

    2015-02-22

    Ultraviolet radiation (UVR) can suppress essential molecular and cellular mechanisms during early development in living organisms and variations in solar activity during early development may thus influence their health and reproduction. Although the ultimate consequences of UVR on aquatic organisms in early life are well known, similar studies on terrestrial vertebrates, including humans, have remained limited. Using data on temporal variation in sunspot numbers and individual-based demographic data (N = 8662 births) from Norway between 1676 and 1878, while controlling for maternal effects, socioeconomic status, cohort and ecology, we show that solar activity (total solar irradiance) at birth decreased the probability of survival to adulthood for both men and women. On average, the lifespans of individuals born in a solar maximum period were 5.2 years shorter than those born in a solar minimum period. In addition, fertility and lifetime reproductive success (LRS) were reduced among low-status women born in years with high solar activity. The proximate explanation for the relationship between solar activity and infant mortality may be an effect of folate degradation during pregnancy caused by UVR. Our results suggest that solar activity at birth may have consequences for human lifetime performance both within and between generations. PMID:25567646

  12. Solar activity at birth predicted infant survival and women's fertility in historical Norway.

    PubMed

    Skjærvø, Gine Roll; Fossøy, Frode; Røskaft, Eivin

    2015-02-22

    Ultraviolet radiation (UVR) can suppress essential molecular and cellular mechanisms during early development in living organisms and variations in solar activity during early development may thus influence their health and reproduction. Although the ultimate consequences of UVR on aquatic organisms in early life are well known, similar studies on terrestrial vertebrates, including humans, have remained limited. Using data on temporal variation in sunspot numbers and individual-based demographic data (N = 8662 births) from Norway between 1676 and 1878, while controlling for maternal effects, socioeconomic status, cohort and ecology, we show that solar activity (total solar irradiance) at birth decreased the probability of survival to adulthood for both men and women. On average, the lifespans of individuals born in a solar maximum period were 5.2 years shorter than those born in a solar minimum period. In addition, fertility and lifetime reproductive success (LRS) were reduced among low-status women born in years with high solar activity. The proximate explanation for the relationship between solar activity and infant mortality may be an effect of folate degradation during pregnancy caused by UVR. Our results suggest that solar activity at birth may have consequences for human lifetime performance both within and between generations.

  13. Lyman-alpha line as a solar activity index for calculations of solar spectrum in the EUV region

    NASA Astrophysics Data System (ADS)

    Nusinov, Anatoliy; Kazachevskaya, Tamara; Katyushina, Valeria; Woods, Thomas

    It is investigated a possibility of retrieval of solar spectrum data using intensity observational data of the only solar spectral line L (Hydrogen Lyman-alpha, 121.6 nm).Using as an example spectra obtained by SEE instruments on TIMED satellite, it was shown, that both for lines and for continuum in the spectral range 27-105 nm, which is essential for ionization processes in the ionosphere, a correlation between their intensities and L was high. Therefore it becomes possible to use L measurements data as a natural solar activity index for calculations of EUV solar emission spectrum for solving aeronomical problems. It is noticed, that EUV model, obtained with using SEE data, does not allow to calculate correctly critical frequencies of ionospheric E-layer owing to low intensities of lines 97.7 and 102.6 nm, which produce the main part of ionization in ionospheric E-region.

  14. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings

    PubMed Central

    Steinhilber, Friedhelm; Beer, Jürg; Brunner, Irene; Christl, Marcus; Fischer, Hubertus; Heikkilä, Ulla; Kubik, Peter W.; Mann, Mathias; McCracken, Ken G.; Miller, Heinrich; Miyahara, Hiroko; Oerter, Hans

    2012-01-01

    Understanding the temporal variation of cosmic radiation and solar activity during the Holocene is essential for studies of the solar-terrestrial relationship. Cosmic-ray produced radionuclides, such as 10Be and 14C which are stored in polar ice cores and tree rings, offer the unique opportunity to reconstruct the history of cosmic radiation and solar activity over many millennia. Although records from different archives basically agree, they also show some deviations during certain periods. So far most reconstructions were based on only one single radionuclide record, which makes detection and correction of these deviations impossible. Here we combine different 10Be ice core records from Greenland and Antarctica with the global 14C tree ring record using principal component analysis. This approach is only possible due to a new high-resolution 10Be record from Dronning Maud Land obtained within the European Project for Ice Coring in Antarctica in Antarctica. The new cosmic radiation record enables us to derive total solar irradiance, which is then used as a proxy of solar activity to identify the solar imprint in an Asian climate record. Though generally the agreement between solar forcing and Asian climate is good, there are also periods without any coherence, pointing to other forcings like volcanoes and greenhouse gases and their corresponding feedbacks. The newly derived records have the potential to improve our understanding of the solar dynamics and to quantify the solar influence on climate. PMID:22474348

  15. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings.

    PubMed

    Steinhilber, Friedhelm; Abreu, Jose A; Beer, Jürg; Brunner, Irene; Christl, Marcus; Fischer, Hubertus; Heikkilä, Ulla; Kubik, Peter W; Mann, Mathias; McCracken, Ken G; Miller, Heinrich; Miyahara, Hiroko; Oerter, Hans; Wilhelms, Frank

    2012-04-17

    Understanding the temporal variation of cosmic radiation and solar activity during the Holocene is essential for studies of the solar-terrestrial relationship. Cosmic-ray produced radionuclides, such as (10)Be and (14)C which are stored in polar ice cores and tree rings, offer the unique opportunity to reconstruct the history of cosmic radiation and solar activity over many millennia. Although records from different archives basically agree, they also show some deviations during certain periods. So far most reconstructions were based on only one single radionuclide record, which makes detection and correction of these deviations impossible. Here we combine different (10)Be ice core records from Greenland and Antarctica with the global (14)C tree ring record using principal component analysis. This approach is only possible due to a new high-resolution (10)Be record from Dronning Maud Land obtained within the European Project for Ice Coring in Antarctica in Antarctica. The new cosmic radiation record enables us to derive total solar irradiance, which is then used as a proxy of solar activity to identify the solar imprint in an Asian climate record. Though generally the agreement between solar forcing and Asian climate is good, there are also periods without any coherence, pointing to other forcings like volcanoes and greenhouse gases and their corresponding feedbacks. The newly derived records have the potential to improve our understanding of the solar dynamics and to quantify the solar influence on climate.

  16. The Nitrate Content of Greenland Ice and Solar Activity

    NASA Astrophysics Data System (ADS)

    Kocharov, G. E.; Kudryavtsev, I. V.; Ogurtsov, M. G.; Sonninen, E.; Jungner, H.

    2000-12-01

    Past solar activity is studied based on analysis of data on the nitrate content of Greenland ice in the period from 1576 1991. Hundred-year (over the entire period) and quasi-five-year (in the middle of the 18th century) variations in the nitrate content are detected. These reflect the secular solar-activity cycle and cyclicity in the flare activity of the Sun.

  17. Solar Power for Near Sun, High-Temperature Missions

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2008-01-01

    Existing solar cells lose performance at the high temperatures encountered in Mercury orbit and inward toward the sun. For future missions designed to probe environments close to the sun, it is desirable to develop array technologies for high temperature and high light intensity. Approaches to solar array design for near-sun missions include modifying the terms governing temperature of the cell and the efficiency at elevated temperature, or use of techniques to reduce the incident solar energy to limit operating temperature. An additional problem is found in missions that involve a range of intensities, such as the Solar Probe + mission, which ranges from a starting distance of 1 AU from the sun to a minimum distance of 9.5 solar radii, or 0.044 AU. During the mission, the solar intensity ranges from one to about 500 times AM0. This requires a power system to operate over nearly three orders of magnitude of incident intensity.

  18. Solar wind and coronal rotation during an activity cycle

    NASA Astrophysics Data System (ADS)

    Pinto, Rui; Brun, Allan Sacha

    The properties of the solar wind flow are strongly affected by the time-varying strength and geometry of the global background magnetic field. The wind velocity and mass flux depend directly on the size and position of the wind sources at the surface, and on the geometry of the magnetic flux-tubes along which the wind flows. We address these problems by performing numerical simulations coupling a kinematic dynamo code (STELEM) evolve in a 2.5D axisymmetric coronal MHD code (DIP) covering an 11 yr activity cycle. The latitudinal distribution of the calculated wind velocities agrees with in-situ (ULYSSES, HELIO) and radio measurements (IPS). The transition from fast to slow wind flows can be explained in terms of the high overall flux-tube superradial expansion factors in the vicinities of coronal streamer boundaries. We found that the Alfvén radii and the global Sun's mass loss rate vary considerably throughout the cycle (by a factor 4.5 and 1.6, respectively), leading to strong temporal modulations of the global angular momentum flux and magnetic braking torque. The slowly varying magnetic topology introduces strong non-uniformities in the coronal rotation rate in the first few solar radii. Finally, we point out directions to assess the effects of surface transient phenomena on the global properties of the solar wind.

  19. Solar-collector manufacturing activity, July through December, 1981

    SciTech Connect

    1982-03-01

    Solar thermal collector and solar cell manufacturing activity is both summarized and tabulated. Data are compared for three survey periods (July through December, 1981; January through June, 1981; and July through December, 1980). Annual totals are also provided for the years 1979 through 1981. Data include total producer shipments, end use, market sector, imports and exports. (LEW)

  20. Solar Energy Education. Renewable energy activities for biology

    SciTech Connect

    Not Available

    1982-01-01

    An instructional aid for teachers is presented that will allow biology students the opportunity to learn about renewable energy sources. Some of the school activities include using leaves as collectors of solar energy, solar energy stored in wood, and a fuel value test for green and dry woods. A study of organic wastes as a source of fuel is included. (BCS)

  1. Solar energy education. Renewable energy activities for general science

    SciTech Connect

    Not Available

    1985-01-01

    Renewable energy topics are integrated with the study of general science. The literature is provided in the form of a teaching manual and includes such topics as passive solar homes, siting a home for solar energy, and wind power for the home. Other energy topics are explored through library research activities. (BCS)

  2. A Solar Cycle Dependence of Nonlinearity in Magnetospheric Activity

    SciTech Connect

    Johnson, Jay R; Wing, Simon

    2005-03-08

    The nonlinear dependencies inherent to the historical K(sub)p data stream (1932-2003) are examined using mutual information and cumulant based cost as discriminating statistics. The discriminating statistics are compared with surrogate data streams that are constructed using the corrected amplitude adjustment Fourier transform (CAAFT) method and capture the linear properties of the original K(sub)p data. Differences are regularly seen in the discriminating statistics a few years prior to solar minima, while no differences are apparent at the time of solar maximum. These results suggest that the dynamics of the magnetosphere tend to be more linear at solar maximum than at solar minimum. The strong nonlinear dependencies tend to peak on a timescale around 40-50 hours and are statistically significant up to one week. Because the solar wind driver variables, VB(sub)s and dynamical pressure exhibit a much shorter decorrelation time for nonlinearities, the results seem to indicate that the nonlinearity is related to internal magnetospheric dynamics. Moreover, the timescales for the nonlinearity seem to be on the same order as that for storm/ring current relaxation. We suggest that the strong solar wind driving that occurs around solar maximum dominates the magnetospheric dynamics suppressing the internal magnetospheric nonlinearity. On the other hand, in the descending phase of the solar cycle just prior to solar minimum, when magnetospheric activity is weaker, the dynamics exhibit a significant nonlinear internal magnetospheric response that may be related to increased solar wind speed.

  3. The dynamic solar chromosphere: recent advances from high resolution telescopes

    NASA Astrophysics Data System (ADS)

    Tziotziou, Konstantinos; Tsiropoula, Georgia

    This review focuses on the solar chromosphere, a very inhomogeneous and dynamic layer that exhibits phenomena on a large range of spatial and temporal scales. High-resolution observa-tions from existing telescopes (DST, SST, DOT), as well as long-duration observations with Hinode's SOT employing lines such as the Ca II infrared lines, the Ca II HK and above all the Hα line reveal an incredibly rich, dynamic and highly structured environment, both in quiet and active regions. The fine-structure chromosphere, is mainly constituted by fibrilar features that connect various parts of active regions or span across network cell interiors. We discuss this highly dynamical solar chromosphere, especially below the magnetic canopy, which is gov-erned by flows reflecting both the complex geometry and dynamics of the magnetic field and the propagation and dissipation of waves in the different atmospheric layers. A comprehensive view of the fine-structure chromosphere requires deep understanding of the physical processes involved, investigation of the intricate link with structures/processes at lower photospheric lev-els and analysis of its impact on the mass and energy transport to higher atmospheric layers through flows resulting from different physical processes such as magnetic reconnection and waves. Furthermore, we assess the challenges facing theory and numerical modelling which require the inclusion of several physical ingredients, such as non-LTE and three-dimensional numerical simulations.

  4. Analysis of regression methods for solar activity forecasting

    NASA Technical Reports Server (NTRS)

    Lundquist, C. A.; Vaughan, W. W.

    1979-01-01

    The paper deals with the potential use of the most recent solar data to project trends in the next few years. Assuming that a mode of solar influence on weather can be identified, advantageous use of that knowledge presumably depends on estimating future solar activity. A frequently used technique for solar cycle predictions is a linear regression procedure along the lines formulated by McNish and Lincoln (1949). The paper presents a sensitivity analysis of the behavior of such regression methods relative to the following aspects: cycle minimum, time into cycle, composition of historical data base, and unnormalized vs. normalized solar cycle data. Comparative solar cycle forecasts for several past cycles are presented as to these aspects of the input data. Implications for the current cycle, No. 21, are also given.

  5. Relationships among solar activity SEP occurrence frequency, and solar energetic particle event distribution function

    NASA Astrophysics Data System (ADS)

    Nymmik, Rikho

    The solar cycle 20-22 direct spacecraft measurement results are used to analyze the occurrence frequency and distribution function of solar energetic particle (SEP) events as dependent on solar activity. The analysis has shown that • the mean occurrence frequency of the SEP events with ≥30 MeV proton fluence sizes exceeding 106 is proportional to sunspot number, • the SEP event proton distribution functions for periods of different solar activity levels can be described to be power-law functions whose spectral form (spectral indices and cutoff values) are the same. The above results permit the following conclusions: a) to within statistical deviations, the total number of SEP events observed during any given time interval is proportional to the sum of mean-yearly sunspot numbers; b) large SEP events can occur to within quite a definite probability even during solar minima.

  6. Grand minima of solar activity and sociodynamics of culture

    NASA Astrophysics Data System (ADS)

    Vladimirsky, B. M.

    2012-12-01

    Indices of creative productivity introduced by C. Murrey were used to verify S. Ertel's conclusion about a global increase in creative productivity during the prolonged minimum of solar activity in 1640-1710. It was found that these indices for mathematicians, philosophers, and scientists increase in the Maunder era by factor of 1.6 in comparison with intervals of the same length before and after the minimum. A similar effect was obtained for mathematicians and philosophers for five earlier equitype minima in total (an increase by a factor of 1.9). The regularity that is revealed is confirmed by the fact that the most important achievements of high-ranking mathematicians and philosophers during the whole time period (2300 years) considered in this study fall on epochs of reduced levels of solar activity. The rise in the probability of the generation of rational ideas during grand minima is reflected also in the fact that they precede the appearance of written language and farming. Ultra-low-frequency electromagnetic fields appear to serve as a physical agent stimulating the activity of the brain's left hemisphere during the epochs of minima.

  7. High mortality of Red Sea zooplankton under ambient solar radiation.

    PubMed

    Al-Aidaroos, Ali M; El-Sherbiny, Mohsen M O; Satheesh, Sathianeson; Mantha, Gopikrishna; Agustī, Susana; Carreja, Beatriz; Duarte, Carlos M

    2014-01-01

    High solar radiation along with extreme transparency leads to high penetration of solar radiation in the Red Sea, potentially harmful to biota inhabiting the upper water column, including zooplankton. Here we show, based on experimental assessments of solar radiation dose-mortality curves on eight common taxa, the mortality of zooplankton in the oligotrophic waters of the Red Sea to increase steeply with ambient levels of solar radiation in the Red Sea. Responses curves linking solar radiation doses with zooplankton mortality were evaluated by exposing organisms, enclosed in quartz bottles, allowing all the wavelengths of solar radiation to penetrate, to five different levels of ambient solar radiation (100%, 21.6%, 7.2%, 3.2% and 0% of solar radiation). The maximum mortality rates under ambient solar radiation levels averaged (±standard error of the mean, SEM) 18.4±5.8% h(-1), five-fold greater than the average mortality in the dark for the eight taxa tested. The UV-B radiation required for mortality rates to reach ½ of maximum values averaged (±SEM) 12±5.6 h(-1)% of incident UVB radiation, equivalent to the UV-B dose at 19.2±2.7 m depth in open coastal Red Sea waters. These results confirm that Red Sea zooplankton are highly vulnerable to ambient solar radiation, as a consequence of the combination of high incident radiation and high water transparency allowing deep penetration of damaging UV-B radiation. These results provide evidence of the significance of ambient solar radiation levels as a stressor of marine zooplankton communities in tropical, oligotrophic waters. Because the oligotrophic ocean extends across 70% of the ocean surface, solar radiation can be a globally-significant stressor for the ocean ecosystem, by constraining zooplankton use of the upper levels of the water column and, therefore, the efficiency of food transfer up the food web in the oligotrophic ocean. PMID:25309996

  8. High mortality of Red Sea zooplankton under ambient solar radiation.

    PubMed

    Al-Aidaroos, Ali M; El-Sherbiny, Mohsen M O; Satheesh, Sathianeson; Mantha, Gopikrishna; Agustī, Susana; Carreja, Beatriz; Duarte, Carlos M

    2014-01-01

    High solar radiation along with extreme transparency leads to high penetration of solar radiation in the Red Sea, potentially harmful to biota inhabiting the upper water column, including zooplankton. Here we show, based on experimental assessments of solar radiation dose-mortality curves on eight common taxa, the mortality of zooplankton in the oligotrophic waters of the Red Sea to increase steeply with ambient levels of solar radiation in the Red Sea. Responses curves linking solar radiation doses with zooplankton mortality were evaluated by exposing organisms, enclosed in quartz bottles, allowing all the wavelengths of solar radiation to penetrate, to five different levels of ambient solar radiation (100%, 21.6%, 7.2%, 3.2% and 0% of solar radiation). The maximum mortality rates under ambient solar radiation levels averaged (±standard error of the mean, SEM) 18.4±5.8% h(-1), five-fold greater than the average mortality in the dark for the eight taxa tested. The UV-B radiation required for mortality rates to reach ½ of maximum values averaged (±SEM) 12±5.6 h(-1)% of incident UVB radiation, equivalent to the UV-B dose at 19.2±2.7 m depth in open coastal Red Sea waters. These results confirm that Red Sea zooplankton are highly vulnerable to ambient solar radiation, as a consequence of the combination of high incident radiation and high water transparency allowing deep penetration of damaging UV-B radiation. These results provide evidence of the significance of ambient solar radiation levels as a stressor of marine zooplankton communities in tropical, oligotrophic waters. Because the oligotrophic ocean extends across 70% of the ocean surface, solar radiation can be a globally-significant stressor for the ocean ecosystem, by constraining zooplankton use of the upper levels of the water column and, therefore, the efficiency of food transfer up the food web in the oligotrophic ocean.

  9. DSCOVR High Time Resolution Solar Wind Measurements

    NASA Technical Reports Server (NTRS)

    Szabo, Adam

    2012-01-01

    The Deep Space Climate Observatory (DSCOVR), previously known as Triana, spacecraft is expected to be launched in late 2014. It will carry a fluxgate magnetometer, Faraday Cup solar wind detector and a top-hat electron electrostatic analyzer. The Faraday Cup will provide an unprecedented 10 vectors/sec time resolution measurement of the solar wind proton and alpha reduced distribution functions. Coupled with the 40 vector/sec vector magnetometer measurements, the identification of specific wave modes in the solar wind will be possible for the first time. The science objectives and data products of the mission will be discussed.

  10. Variation of D-region nitric-oxide density with solar activity and season at the dip equator

    NASA Technical Reports Server (NTRS)

    Chakrabarty, D. K.; Pakhomov, S. V.; Beig, G.

    1989-01-01

    To study the solar control on electron density (N sub e) in the equatorial D region, a program was initiated with Soviet collaboration in 1979. A total of 31 rockets were launched during the high solar activity period, and 47 rockets during the low solar activity period, from Thumba to measure the N sub e profiles. Analysis of the data shows that the average values of N sub e for the high solar activity period are higher by a factor of about 2 to 3 compared to the low solar activity values. It was found that a single nitric oxide density, (NO), profile cannot reproduce all the observed N sub e profiles. An attempt was made to reproduce theoretically the observed N sub e profiles by introducing variation in (NO) for the different solar activity periods and seasons.

  11. High Lifetime Solar Cell Processing and Design

    NASA Technical Reports Server (NTRS)

    Swanson, R. M.

    1985-01-01

    In order to maximize efficiency a solar cell must: (1) absorb as much light as possible in electron-hole production, (2) transport as large a fraction as possible of the electrons to the n-type terminal and holes to the p-type terminal without their first recombining, and (3) produce as high as possible terminal voltage. Step (1) is largely fixed by the spectrum of sunlight and the fundamental absorption characteristics of silicon, although some improvements are possible through texturizing induced light trapping and back surface reflectors. Steps (2) and (3) are, however, dependent on the recombination mechanisms of the cell. The recombination, on the contrary, is strongly influenced by cell processing and design. Some of the lessons during the development of point-contact-cell are discussed. Cell dependence on recombination, surface recombination, and contact recombination are discussed. Results show the overwhelming influence of contact recombination on the operation of the cell when the other sources of recombination are reduced by careful processing.

  12. High heat flux engineering in solar energy applications

    SciTech Connect

    Cameron, C.P.

    1993-07-01

    Solar thermal energy systems can produce heat fluxes in excess of 10,000 kW/m{sup 2}. This paper provides an introduction to the solar concentrators that produce high heat flux, the receivers that convert the flux into usable thermal energy, and the instrumentation systems used to measure flux in the solar environment. References are incorporated to direct the reader to detailed technical information.

  13. Detrimental Effects of Extreme Solar Activity on Life on Earth

    NASA Astrophysics Data System (ADS)

    Airapetian, Vladimir; Glocer, Alex; Jackman, Charles

    2015-07-01

    Solar Coronal Mass Ejections (CMEs), the most energetic eruptions in the Solar System, represent large-scale disturbances forming with the solar corona and are associated with solar flares and Solar Energetic Particles (SEP) events. Current Kepler data from solar-like stars suggest that the frequency of occurrence of energetic flares and associated CMEs from the Sun can be as high as 1 per 1500 years. What effects would CME and associated SEPs have on Earth's habitability? We have performed a three-dimensional time-dependent global magnetohydrodynamic simulation of the magnetic interaction of such a CME cloud with the Earth's magnetosphere. We calculated the global structure of the perturbed magnetosphere and derive the latitude of the open-closed magnetic field boundary. We used a 2D GSFC atmospheric code to calculate the efficiency of ozone depletion in the Earth's atmosphere due to SEP events and its effects on our society and life on Earth.

  14. Influence of solar wind variability on geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Garrett, H. B.; Dessler, A. J.; Hill, T. W.

    1974-01-01

    A statistical study of solar wind data from the Explorer 33 satellite shows that interplanetary magnetic field irregularities are enhanced in the interaction region where a fast solar wind stream overtakes a slower solar wind stream. Comparison with geomagnetic AE and ap indexes further shows that these interplanetary irregularities enhance the level of geomagnetic disturbances. Thus while substorm occurrence is highly correlated with the dawn-dusk component of the solar wind electric field, the amplitude of the substorms is an increasing function of the variance in the interplanetary field. This result can be interpreted as a capacitative effect of the magnetopause that allows a time-varying solar wind electric field to penetrate the magnetosphere more effectively than a static solar wind electric field.

  15. Assessment of active solar systems in the residential sector of North Carolina, 1974 - 1995

    NASA Astrophysics Data System (ADS)

    Brown, D.; St. John, K.

    1981-02-01

    An evaluation is presented of the contribution active solar systems can make in North Carolina's residential sector over the next 15 years. The report is divided into 5 parts: introduction; current solar industry status; projected use of active solar systems to 1995; maximum potential for active solar systems to 1995; recommendations for state solar incentives. Information in the appendices includes: conversion methodology; square feet of collector to Btu; economic analysis of solar systems based on life costs; methodology for percentage breakdowns on projected solar system sales; North Carolina solar manufacturers/distributors and national manufacturers; solar legislation; economic analysis of solar systems; and data sources.

  16. Facile room-temperature synthesis of carboxylated graphene oxide-copper sulfide nanocomposite with high photodegradation and disinfection activities under solar light irradiation

    NASA Astrophysics Data System (ADS)

    Yu, Shuyan; Liu, Jincheng; Zhu, Wenyu; Hu, Zhong-Ting; Lim, Teik-Thye; Yan, Xiaoli

    2015-11-01

    Carboxylic acid functionalized graphene oxide-copper (II) sulfide nanoparticle composite (GO-COOH-CuS) was prepared from carboxylated graphene oxide and copper precursor in dimethyl sulfoxide (DMSO) by a facile synthesis process at room temperature. The high-effective combination, the interaction between GO-COOH sheets and CuS nanoparticles, and the enhanced visible light absorption were confirmed by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS) and Photoluminescence (PL) spectra. The as-synthesized GO-COOH-CuS nanocomposite exhibited excellent photocatalytic degradation performance of phenol and rhodamine B, high antibacterial activity toward E. coli and B. subtilis, and good recovery and reusability. The influence of CuS content, the synergistic reaction between CuS and GO-COOH, and the charge-transfer mechanism were systematically investigated. The facile and low-energy synthesis process combined with the excellent degradation and antibacterial performance signify that the GO-COOH-CuS has a great potential for water treatment application.

  17. Facile room-temperature synthesis of carboxylated graphene oxide-copper sulfide nanocomposite with high photodegradation and disinfection activities under solar light irradiation

    PubMed Central

    Yu, Shuyan; Liu, Jincheng; Zhu, Wenyu; Hu, Zhong-Ting; Lim, Teik-Thye; Yan, Xiaoli

    2015-01-01

    Carboxylic acid functionalized graphene oxide-copper (II) sulfide nanoparticle composite (GO-COOH-CuS) was prepared from carboxylated graphene oxide and copper precursor in dimethyl sulfoxide (DMSO) by a facile synthesis process at room temperature. The high-effective combination, the interaction between GO-COOH sheets and CuS nanoparticles, and the enhanced visible light absorption were confirmed by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS) and Photoluminescence (PL) spectra. The as-synthesized GO-COOH-CuS nanocomposite exhibited excellent photocatalytic degradation performance of phenol and rhodamine B, high antibacterial activity toward E. coli and B. subtilis, and good recovery and reusability. The influence of CuS content, the synergistic reaction between CuS and GO-COOH, and the charge-transfer mechanism were systematically investigated. The facile and low-energy synthesis process combined with the excellent degradation and antibacterial performance signify that the GO-COOH-CuS has a great potential for water treatment application. PMID:26553709

  18. Solar activity around AD 775 from aurorae and radiocarbon

    NASA Astrophysics Data System (ADS)

    Neuhäuser, R.; Neuhäuser, D. L.

    2015-04-01

    A large variation in 14C around AD 775 has been considered to be caused by one or more solar super-flares within one year. We critically review all known aurora reports from Europe as well as the Near, Middle, and Far East from AD 731 to 825 and find 39 likely true aurorae plus four more potential aurorae and 24 other reports about halos, meteors, thunderstorms etc., which were previously misinterpreted as aurorae or misdated; we assign probabilities for all events according to five aurora criteria. We find very likely true aurorae in AD 743, 745, 762, 765, 772, 773, 793, 796, 807, and 817. There were two aurorae in the early 770s observed near Amida (now Diyarbak\\i r in Turkey near the Turkish-Syrian border), which were not only red, but also green-yellow - being at a relatively low geomagnetic latitude, they indicate a relatively strong solar storm. However, it cannot be argued that those aurorae (geomagnetic latitude 43 to 50°, considering five different reconstructions of the geomagnetic pole) could be connected to one or more solar super-flares causing the 14C increase around AD 775: There are several reports about low- to mid-latitude aurorae at 32 to 44° geomagnetic latitude in China and Iraq; some of them were likely observed (quasi-)simultaneously in two of three areas (Europe, Byzantium/Arabia, East Asia), one lasted several nights, and some indicate a particularly strong geomagnetic storm (red colour and dynamics), namely in AD 745, 762, 793, 807, and 817 - always without 14C peaks. We use 39 likely true aurorae as well as historic reports about sunspots together with the radiocarbon content from tree rings to reconstruct the solar activity: From AD {˜ 733} to {˜ 823}, we see at least nine Schwabe cycles; instead of one of those cycles, there could be two short, weak cycles - reflecting the rapid increase to a high 14C level since AD 775, which lies at the end of a strong cycle. In order to show the end of the dearth of naked-eye sunspots, we

  19. Preliminary design activities for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information on the development of solar heating and cooling systems is presented. The major emphasis is placed on program organization, system size definition, site identification, system approaches, heat pump and equipment design, collector procurement, and other preliminary design activities.

  20. The NASA High-Energy Solar Physics Mission (HESP)

    NASA Astrophysics Data System (ADS)

    Dennis, B. R.; Emslie, A. G.; Canfield, R.; Doschek, G.; Lin, R. P.; Ramaty, R.

    1994-12-01

    The NASA High Energy Solar Physics (HESP) mission offers the opportunity for major breakthroughs in our understanding of the fundamental energy release and particle acceleration processes at the core of the solar flare problem. HESP's primary strawman instrument, the High Energy Imaging Spectrometer (HEISPEC), will provide X-ray and gamma-ray imaging spectroscopy, i.e., high-resolution spectroscopy at each spatial point in the image. It has the following unique capabilities: (1) high-resolution (~keV) spectroscopy from 2 keV-20 MeV to resolve flare gamma-ray lines and sharp features in the continuum; (2) hard X-ray imaging with 2` angular resolution and tens of millisecond temporal resolution, commensurate with the travel times and stopping distances for the accelerated electrons; (3) gamma-ray imaging with 4-8` resolution with the capability of imaging in specific lines or continuum regions; (4) moderate resolution measurements of energetic (20 MeV to ~1 GeV) gamma-rays and neutrons. Addtional strawman instruments include a Bragg crystal spectrometer for diagnostic information and a soft X-ray/XUV/UV imager to map the flare coronal magnetic field and plasma structure. The HESP mission also includes extensive ground-based observational and supporting theory programs. Recently, the HESP mission has been adapted to ``lightsats''-lighter, smaller, cheaper spacecraft that can be built faster-and the baseline plan now includes two Taurus-class and one Pegasus-class spacecraft. A launch by the end of the year 2000 is desirable to be in time for the next solar activity maximum.

  1. Solar activity dependence of nightside aurora in winter conditions

    NASA Astrophysics Data System (ADS)

    Zhou, Su; Luan, Xiaoli; Dou, Xiankang

    2016-02-01

    The dependence of the nightside (21:00-03:00 MLT; magnetic local time) auroral energy flux on solar activity was quantitatively studied for winter/dark and geomagnetically quiet conditions. Using data combined from Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Global Ultraviolet Imager and Defense Meteorological Satellite Program/Special Sensor Ultraviolet Spectrographic Imager observations, we separated the effects of geomagnetic activity from those of solar flux on the nightside auroral precipitation. The results showed that the nightside auroral power was reduced by ~42% in solar maximum (F10.7 = 200 sfu; solar flux unit 1 sfu = 10-22 W m-2 Hz-1) with respect to that under solar minimum (F10.7 = 70 sfu) for the Kp = 1 condition, and this change rate became less (~21%) for the Kp = 3 condition. In addition, the solar cycle dependence of nightside auroral power was similar with that from both the premidnight (21:00-23:00 MLT) and postmidnight (01:00-03:00 MLT) sectors. These results indicated that as the ionospheric ionization increases with the enhanced auroral and geomagnetic activities, the solar activity dependences of nightside auroral power become weaker, at least under geomagnetically quiet conditions.

  2. Effects of Low Activity Solar Cycle on Orbital Debris Lifetime

    NASA Technical Reports Server (NTRS)

    Cable, Samual B.; Sutton, Eric K.; Lin, chin S.; Liou, J.-C.

    2011-01-01

    Long duration of low solar activity in the last solar minimum has an undesirable consequence of extending the lifetime of orbital debris. The AFRL TacSat-2 satellite decommissioned in 2008 has finally re-entered into the atmosphere on February 5th after more than one year overdue. Concerning its demise we have monitored its orbital decay and monthly forecasted Tacsat-2 re-entry since September 2010 by using the Orbital Element Prediction (OEP) model developed by the AFRL Orbital Drag Environment program. The model combines estimates of future solar activity with neutral density models, drag coefficient models, and an orbit propagator to predict satellite lifetime. We run the OEP model with solar indices forecast by the NASA Marshall Solar Activity Future Estimation model, and neutral density forecast by the MSIS-00 neutral density model. Based on the two line elements in 2010 up to mid September, we estimated at a 50% confidence level TacSat-2's re-entry time to be in early February 2011, which turned out to be in good agreement with Tacsat-2's actual re-entry date. The potential space weather effects of the coming low activity solar cycle on satellite lifetime and orbital debris population are examined. The NASA long-term orbital debris evolutionary model, LEGEND, is used to quantify the effects of solar flux on the orbital debris population in the 200-600 km altitude environment. The results are discussed for developing satellite orbital drag application product.

  3. OBSERVING CASCADES OF SOLAR BULLETS AT HIGH RESOLUTION. II

    SciTech Connect

    Scullion, E.; Engvold, O.; Lin, Y.; Voort, L. Rouppe van der

    2015-12-01

    High resolution observations from the Swedish 1-m Solar Telescope revealed bright, discrete, blob-like structures (which we refer to as solar bullets) in the Hα 656.28 nm line core that appear to propagate laterally across the solar atmosphere as clusters in active regions (ARs). These small-scale structures appear to be field aligned and many bullets become triggered simultaneously and traverse collectively as a cluster. Here, we conduct a follow-up study on these rapidly evolving structures with coincident observations from the Solar Dynamics Observatory/Atmospheric Imaging Assembly. With the co-aligned data sets, we reveal (a) an evolving multithermal structure in the bullet cluster ranging from chromospheric to at least transition region temperatures, (b) evidence for cascade-like behavior and corresponding bidirectional motions in bullets within the cluster, which indicate that there is a common source of the initial instability leading to bullet formation, and (c) a direct relationship between co-incident bullet velocities observed in Hα and He ii 30.4 nm and an inverse relationship with respect to bullet intensity in these channels. We find evidence supporting that bullets are typically composed of a cooler, higher density core detectable in Hα with a less dense, hotter, and fainter co-moving outer sheath. Bullets unequivocally demonstrate the finely structured nature of the AR corona. We have no clear evidence for bullets being associated with locally heated (or cooled), fast flowing plasma. Fast MHD pulses (such as solitons) could best describe the dynamic properties of bullets whereas the presence of a multithermal structure is new.

  4. Detectability of active triangulation range finder: a solar irradiance approach.

    PubMed

    Liu, Huizhe; Gao, Jason; Bui, Viet Phuong; Liu, Zhengtong; Lee, Kenneth Eng Kian; Peh, Li-Shiuan; Png, Ching Eng

    2016-06-27

    Active triangulation range finders are widely used in a variety of applications such as robotics and assistive technologies. The power of the laser source should be carefully selected in order to satisfy detectability and still remain eye-safe. In this paper, we present a systematic approach to assess the detectability of an active triangulation range finder in an outdoor environment. For the first time, we accurately quantify the background noise of a laser system due to solar irradiance by coupling the Perez all-weather sky model and ray tracing techniques. The model is validated with measurements with a modeling error of less than 14.0%. Being highly generic and sufficiently flexible, the proposed model serves as a guide to define a laser system for any geographical location and microclimate.

  5. Detectability of active triangulation range finder: a solar irradiance approach.

    PubMed

    Liu, Huizhe; Gao, Jason; Bui, Viet Phuong; Liu, Zhengtong; Lee, Kenneth Eng Kian; Peh, Li-Shiuan; Png, Ching Eng

    2016-06-27

    Active triangulation range finders are widely used in a variety of applications such as robotics and assistive technologies. The power of the laser source should be carefully selected in order to satisfy detectability and still remain eye-safe. In this paper, we present a systematic approach to assess the detectability of an active triangulation range finder in an outdoor environment. For the first time, we accurately quantify the background noise of a laser system due to solar irradiance by coupling the Perez all-weather sky model and ray tracing techniques. The model is validated with measurements with a modeling error of less than 14.0%. Being highly generic and sufficiently flexible, the proposed model serves as a guide to define a laser system for any geographical location and microclimate. PMID:27410637

  6. Electric utility solar energy activities: 1980 survey

    NASA Astrophysics Data System (ADS)

    Wentworth, M. C.

    1980-12-01

    Brief descriptions of 839 projects being conducted by 236 utility companies are given. Also included are an index of projects by category, a statistical summary, a list of participating utilities with information contacts and addresses, a list of utilities with projects designated by category, a list of utilities organized by state, a list of available reports on utility sponsored projects, and a list of projects having multiple utility participants. Project categories include solar heating and cooling of buildings, wind energy conversion, solar thermal electric power, photovoltaics, biomass conversion, process heat, and ocean energy conversion.

  7. Photodegradation effects in materials exposed to high flux solar and solar simulated radiation

    SciTech Connect

    Ignatiev, A.

    1992-04-01

    This report contains study results about photodegradation effects in materials exposed to high flux solar and solar simulated radiation. The studies show that high flux photoirradiation of materials can result in significant changes in the stability of materials. Photodesorption and photo-enhanced oxidation were determined to be the major mechanisms. These mechanisms were shown to affect, in extremely adverse ways, the expected thermal stability of solar relevant materials, especially stainless steels, (It is expected that related high temperature alloy steels will be similarly affected.) An analytical expression was generated to predict the flux behavior of the steels using {number_sign}304 as a prototypical stainless steel system.

  8. High-energy particles associated with solar flares

    NASA Technical Reports Server (NTRS)

    Sakurai, K.; Klimas, A. J.

    1974-01-01

    High-energy particles, the so-called solar cosmic rays, are often generated in association with solar flares, and then emitted into interplanetary space. These particles, consisting of electrons, protons, and other heavier nuclei, including the iron-group, are accelerated in the vicinity of the flare. By studying the temporal and spatial varation of these particles near the earth's orbit, their storage and release mechanisms in the solar corona and their propagation mechanism can be understood. The details of the nuclear composition and the rigidity spectrum for each nuclear component of the solar cosmic rays are important for investigating the acceleration mechanism in solar flares. The timing and efficiency of the acceleration process can also be investigated by using this information. These problems are described in some detail by using observational results on solar cosmic rays and associated phenomena.

  9. Bringing Real Solar Physics to the High School Classroom

    NASA Astrophysics Data System (ADS)

    Seaton, Daniel

    2006-06-01

    UNH's Partnership for Research Opportunities to Benefit Education (PROBE) project sends graduate students into high school classrooms across New Hampshire in order to help introduce students to authentic scientific inquiry. As one of ten graduate fellows, I worked with students in in ninth through twelfth grades in physical science, physics, earth science, and astronomy classes; helping students carry out individual and class projects on physics and solar physics. Projects related to solar physics included the production and analysis of plasma using a microwave oven, measurement of the solar constant, measurement of the solar rotation rate, solar spectroscopy, analysis of data from TRACE and SOHO, and the construction of various solar-powered devices. This work was generously supported by a grant from the National Science Foundation's GK-12 initiative (NSF#0338277).

  10. Development of a high efficiency thin silicon solar cell

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.

    1975-01-01

    Progress is reported in an attempt to realize higher specific power output and radiation resistance from thin solar cells for space applications. The efforts applied to establishing the technological base for fabricating high efficiency thin solar cells are described. Progress is characterized by continuous improvements in all parameters of the space cell.

  11. Laboratory 15 kV high voltage solar array facility

    NASA Technical Reports Server (NTRS)

    Kolecki, J. C.; Gooder, S. T.

    1976-01-01

    The laboratory high voltage solar array facility is a photoelectric power generating system. Consisting of nine modules with over 23,000 solar cells, the facility is capable of delivering more than a kilowatt of power. The physical and electrical characteristics of the facility are described.

  12. Exploring Solar Power at Zion-Benton High

    ERIC Educational Resources Information Center

    Kasper, Rick

    1978-01-01

    Developed to provide students with actual hands-on experience in constructing energy-efficient homes and to increase the community's and students' knowledge of solar power as an alternate source of energy, a building trades program at a high school in Zion, Illinois has its students building single-family solar energy homes. (BM)

  13. High efficiency solar cells for laser power beaming applications

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, G. A.

    1995-01-01

    Understanding solar cell response to pulsed laser outputs is important for the evaluation of power beaming applications. The time response of high efficiency GaAs and silicon solar cells to a 25 nS monochromatic pulse input is described. The PC-1D computer code is used to analyze the cell current during and after the pulse for various conditions.

  14. On the Periodicity of Energy Release in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Goldvarg, T. B.; Nagovitsyn, Yu. A.; Solov'Ev, A. A.

    2005-06-01

    We investigate the periodic regimes of energy release on the Sun, namely, the recurrence of solar flares in active regions using the Solar Geophysical Data Journal on Hα flares from 1979 until 1981, which corresponds to the maximum of solar cycle 21. We obtained the following series of periods in the manifestation of flare activity bymeans of a correlation periodogram analysis, a self-similarity function, and a wavelet analysis: ˜1, 2, 3 h as well as ˜0.4, 1, 2, 5 days. We suggest a diffusive model for the quasi-periodic transfer of toroidal magnetic fields from under the photosphere to interpret the retrieved sequence of periods in the enhancement of flare activity. We estimated the typical spatial scales of the magnetic field variations in the solar convection zone: ˜17 000 km.

  15. Level and length of cyclic solar activity during the Maunder minimum as deduced from the active-day statistics

    NASA Astrophysics Data System (ADS)

    Vaquero, J. M.; Kovaltsov, G. A.; Usoskin, I. G.; Carrasco, V. M. S.; Gallego, M. C.

    2015-05-01

    Aims: The Maunder minimum (MM) of greatly reduced solar activity took place in 1645-1715, but the exact level of sunspot activity is uncertain because it is based, to a large extent, on historical generic statements of the absence of spots on the Sun. Using a conservative approach, we aim to assess the level and length of solar cycle during the MM on the basis of direct historical records by astronomers of that time. Methods: A database of the active and inactive days (days with and without recorded sunspots on the solar disc) is constructed for three models of different levels of conservatism (loose, optimum, and strict models) regarding generic no-spot records. We used the active day fraction to estimate the group sunspot number during the MM. Results: A clear cyclic variability is found throughout the MM with peaks at around 1655-1657, 1675, 1684, 1705, and possibly 1666, with the active-day fraction not exceeding 0.2, 0.3, or 0.4 during the core MM, for the three models. Estimated sunspot numbers are found to be very low in accordance with a grand minimum of solar activity. Conclusions: For the core MM (1650-1700), we have found that (1) A large portion of no-spot records, which correspond to the solar meridian observations, may be unreliable in the conventional database. (2) The active-day fraction remained low (below 0.3-0.4) throughout the MM, indicating the low level of sunspot activity. (3) The solar cycle appears clearly during the core MM. (4) The length of the solar cycle during the core MM appears for 9 ± 1 years, but this is uncertain. (5) The magnitude of the sunspot cycle during MM is assessed to be below 5-10 in sunspot numbers. A hypothesis of the high solar cycles during the MM is not confirmed.

  16. The risk characteristics of solar and geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Podolska, Katerina

    2016-04-01

    The main aim of this contribution is a deeper analysis of the influence of solar activity which is expected to have an impact on human health, and therefore on mortality, in particular civilization and degenerative diseases. We have constructed the characteristics that represent the risk of solar and geomagnetic activity on human health on the basis of our previous analysis of association between the daily numbers of death on diseases of the nervous system and diseases of the circulatory system and solar and geomagnetic activity in the Czech Republic during the years 1994 - 2013. We used long period daily time series of numbers of deaths by cause, long period time series of solar activity indices (namely R and F10.7), geomagnetic indicies (Kp planetary index, Dst) and ionospheric parameters (foF2 and TEC). The ionospheric parameters were related to the geographic location of the Czech Republic and adjusted for middle geographic latitudes. The risk characteristics were composed by cluster analysis in time series according to the phases of the solar cycle resp. the seasonal insolation at mid-latitudes or the daily period according to the impact of solar and geomagnetic activity on mortality by cause of death from medical cause groups of death VI. Diseases of the nervous system and IX. Diseases of the circulatory system mortality by 10th Revision of International Classification of Diseases WHO (ICD-10).

  17. The high energetic particles released during the decline phases of last five solar cycles

    NASA Astrophysics Data System (ADS)

    Hady, A. A., II

    2014-12-01

    During the decline phases of the last five solar cycles, new peak has appeared releasing high energetic particles. During October 2003 (so-called Halloween storms), a sudden increase of the solar activity occurred during the decline phase which has bigger than that occurred during the main peak of that Solar cycle 23. The same situation was repeated again for the solar cycle 24, during its decline phase, giving a new peak during January 2014 and release high energetic particles, which was bigger than that occurred during the mean peak of cycle 24. This means that the solar cycles starting from the cycle 20 have two peaks, the second peak always producing higher energetic flares which affects the Earth's magnetic field. The same situation happened in the cycles 21, and 22, but with lower release of energetic particle, compared with cycles 23 and 24. We will do descriptive studies of these events, according to data analysis, and compare the results. Keywords: Solar cycles; solar activities; solar energetic particles, Halloween storms, January 2014 storms.

  18. Observations of Hysteresis Among Indicators of Solar Activity

    NASA Astrophysics Data System (ADS)

    Bachmann, K. T.; Ranganath, A.

    1999-05-01

    We show that filtered time series of five indicators of solar activity exhibit significant solar-cycle-dependent differences in their relative variations. This study expands upon previous work by including data from recent NASA missions, indicating that the detected hysteresis patterns continue through the decline of solar cycle 22. Among the indicators that we study, we find that the hysteresis effects are approximately simple phase shifts that we present qualitatively via plots similar to Lissajous figures. These phase shifts correspond to time delays of less than three months behind the leading indicator, the International Sunspot Number, and are small compared to the typical eleven-year solar cycle. We believe that hysteresis represents a real delay in the onset and decline for changing solar emission at various wavelengths. Our research is funded by the Research Corporation and by the NASA Joint Venture (JOVE) program.

  19. An assessment of selected solar energy industry activities

    NASA Astrophysics Data System (ADS)

    Roessner, J. D.

    1980-11-01

    The past, present, and near-term conditions of four industries based on solar energy technologies are examined-solar heating; photovoltaics; concentrating solar collectors for process heat and electric power applications; and passive components such as skylights and greenhouses. The report identifies key, unresolved issues for government policies intended to influence future solar industrial development; assesses the past and current federal role in these industries; and draws tentative conclusions about how government policies have affected their evolution. This evolution is compared to the evolution of typical, innovation-based industries. For each of the four solar industries researched, the collected data are discussed as follows: characteristics of sales; the government role; investment strategies and R & D activities; near-term trends; and comparisons with other industries.

  20. Meteoritic evidence for the Maunder minimum in solar activity

    NASA Technical Reports Server (NTRS)

    Forman, M. A.; Schaeffer, O. A.; Schaeffer, G. A.

    1978-01-01

    Concentrations of argon-39 produced by cosmic rays in the metal in 30 meteorites are remarkably similar, but they are slightly higher than expected for the present solar-cycle-averaged flux of cosmic rays. This supports the idea suggested by Eddy (1976) that there were prolonged minima in solar activity before 1715 which caused the deVries maximum in carbon-14 in earth's atmosphere by reducing the amount of cosmic-ray modulation in interplanetary space. The observations are easily consistent with 180 years of 'sunspot minimum' modulation during the Maunder and Spoerer minima, and possibly with virtually no solar modulation at all during that time. This would indicate that the solar wind then contained very little magnetic turbulence or whatever it is in the solar wind that causes the modulation of galactic cosmic rays.

  1. Observations of hysteresis in solar cycle variations among seven solar activity indicators

    NASA Technical Reports Server (NTRS)

    Bachmann, Kurt T.; White, Oran R.

    1994-01-01

    We show that smoothed time series of 7 indices of solar activity exhibit significant solar cycle dependent differences in their relative variations during the past 20 years. In some cases these observed hysteresis patterns start to repeat over more than one solar cycle, giving evidence that this is a normal feature of solar variability. Among the indices we study, we find that the hysteresis effects are approximately simple phase shifts, and we quantify these phase shifts in terms of lag times behind the leading index, the International Sunspot Number. Our measured lag times range from less than one month to greater than four months and can be much larger than lag times estimated from short-term variations of these same activity indices during the emergence and decay of major active regions. We argue that hysteresis represents a real delay in the onset and decline of solar activity and is an important clue in the search for physical processes responsible for changing solar emission at various wavelengths.

  2. High throughput solar cell ablation system

    SciTech Connect

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2014-10-14

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  3. High performance polymer tandem solar cell

    NASA Astrophysics Data System (ADS)

    da Silva, Wilson Jose; Schneider, Fabio Kurt; Mohd Yusoff, Abd. Rashid Bin; Jang, Jin

    2015-12-01

    A power conversion efficiency of 9.02% is obtained for a fully solution-processed polymer tandem solar cell, based on the diketopyrrolopyrrole unit polymer as a low bandgap photoactive material in the rear subcell, in conjunction with a new robust interconnecting layer. This interconnecting layer is optically transparent, electrically conductive, and physically strong, thus, the charges can be collected and recombined in the interconnecting layer under illumination, while the charge is generated and extracted under dark conditions. This indicates that careful interface engineering of the charge-carrier transport layer is a useful approach to further improve the performance of polymer tandem solar cells.

  4. High temperature - low mass solar blanket

    NASA Technical Reports Server (NTRS)

    Mesch, H. G.

    1979-01-01

    Interconnect materials and designs for use with ultrathin silicon solar cells are discussed, as well as the results of an investigation of the applicability of parallel-gap resistance welding for interconnecting these cells. Data relating contact pull strength and cell electrical degradation to variations in welding parameters such as time, voltage and pressure are presented. Methods for bonding ultrathin cells to flexible substances and for bonding thin (75 micrometers) covers to these cells are described. Also, factors influencing fabrication yield and approaches for increasing yield are discussed. The results of vacuum thermal cycling and thermal soak tests on prototype ultrathin cell test coupons and one solar module blanket are presented.

  5. High throughput solar cell ablation system

    SciTech Connect

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2012-09-11

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  6. High performance polymer tandem solar cell.

    PubMed

    da Silva, Wilson Jose; Schneider, Fabio Kurt; Yusoff, Abd Rashid Bin Mohd; Jang, Jin

    2015-01-01

    A power conversion efficiency of 9.02% is obtained for a fully solution-processed polymer tandem solar cell, based on the diketopyrrolopyrrole unit polymer as a low bandgap photoactive material in the rear subcell, in conjunction with a new robust interconnecting layer. This interconnecting layer is optically transparent, electrically conductive, and physically strong, thus, the charges can be collected and recombined in the interconnecting layer under illumination, while the charge is generated and extracted under dark conditions. This indicates that careful interface engineering of the charge-carrier transport layer is a useful approach to further improve the performance of polymer tandem solar cells. PMID:26669577

  7. High performance polymer tandem solar cell

    PubMed Central

    da Silva, Wilson Jose; Schneider, Fabio Kurt; Mohd Yusoff, Abd. Rashid bin; Jang, Jin

    2015-01-01

    A power conversion efficiency of 9.02% is obtained for a fully solution-processed polymer tandem solar cell, based on the diketopyrrolopyrrole unit polymer as a low bandgap photoactive material in the rear subcell, in conjunction with a new robust interconnecting layer. This interconnecting layer is optically transparent, electrically conductive, and physically strong, thus, the charges can be collected and recombined in the interconnecting layer under illumination, while the charge is generated and extracted under dark conditions. This indicates that careful interface engineering of the charge-carrier transport layer is a useful approach to further improve the performance of polymer tandem solar cells. PMID:26669577

  8. Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output

    NASA Astrophysics Data System (ADS)

    Dinetta, L. C.; Hannon, M. H.

    1995-10-01

    Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual

  9. Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Hannon, M. H.

    1995-01-01

    Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual

  10. High temperature solar thermal technology: The North Africa Market

    SciTech Connect

    Not Available

    1990-12-01

    High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

  11. Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower

    SciTech Connect

    2012-01-11

    HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

  12. High-precision analysis of the solar twin HIP 100963

    NASA Astrophysics Data System (ADS)

    Yana Galarza, Jhon; Meléndez, Jorge; Ramírez, Ivan; Yong, David; Karakas, Amanda I.; Asplund, Martin; Liu, Fan

    2016-05-01

    Context. HIP 100963 was one of the first solar twins identified. Although some high-precision analyses are available, a comprehensive high-precision study of chemical elements from different nucleosynthetic sources is still lacking from which to obtain potential new insights on planets, stellar evolution, and Galactic chemical evolution (GCE). Aims: We analyze and investigate the origin of the abundance pattern of HIP 100963 in detail, in particular the pattern of the light element Li, the volatile and refractory elements, and heavy elements from the s- and r-processes. Methods: We used the HIRES spectrograph on the Keck I telescope to acquire high-resolution (R ≈ 70 000) spectra with a high signal-to-noise ratio (S/N ≈ 400-650 per pixel) of HIP 100963 and the Sun for a differential abundance analysis. We measured the equivalent widths (EWs) of iron lines to determine the stellar parameters by employing the differential spectroscopic equilibrium. We determined the composition of volatile, refractory, and neutron-capture elements through a differential abundance analysis with respect to the Sun. Results: The stellar parameters we found are Teff = 5818 ± 4 K, log g = 4.49 ± 0.01 dex, vt = 1.03 ± 0.01km s-1, and [Fe/H] = -0.003 ± 0.004 dex. These low errors allow us to compute a precise mass (1.03+0.02-0.01 M⊙) and age (2.0 ± 0.4 Gyr), obtained using Yonsei-Yale isochrones. Using our [Y/Mg] ratio, we have determined an age of 2.1 ± 0.4 Gyr, in agreement with the age computed using isochrones. Our isochronal age also agrees with the age determined from stellar activity (2.4 ± 0.3 Gyr). We study the abundance pattern with condensation temperature (Tcond) taking corrections by the GCE into account. We show that the enhancements of neutron-capture elements are explained by contributions from both the s- and r-process. The lithium abundance follows the tight Li-age correlation seen in other solar twins. Conclusions: We confirm that HIP 100963 is a solar twin

  13. The combined effects of electrojet strength and the geomagnetic activity (Kp-index) on the post sunset height rise of the F-layer and its role in the generation of ESF during high and low solar activity periods

    NASA Astrophysics Data System (ADS)

    Tulasi Ram, S.; Rama Rao, P. V. S.; Prasad, D. S. V. V. D.; Niranjan, K.; Raja Babu, A.; Sridharan, R.; Devasia, C. V.; Ravindran, Sudha

    2007-10-01

    the development of plasma bubbles is reduced from 405 km to 317 km as the solar activity decreases from March 2001 (mean Rz=113.5) to March 2005 (mean Rz=24.5). This decrease in threshold height with the decreasing solar activity is explained on the basis of changes in the local linear growth rate of the collisional Rayleigh-Taylor instability, due to the variability of various terms such as inverse density gradient scale length (L-1), ion-neutral collision frequency (νin) and recombination rate (R) with the changes in the solar activity.

  14. High voltage solar cell power generating system for regulated solar array development

    NASA Technical Reports Server (NTRS)

    Levy, E., Jr.; Hoffman, A. C.

    1973-01-01

    A laboratory solar power system regulated by on-panel switches has been delivered for operating high power (3 kw), high voltage (15,000 volt) loads (communication tubes, ion thrusters). The modular system consists of 26 solar arrays, each with an integral light source and cooling system. A typical array contains 2560 series-connected cells. Each light source consists of twenty 500 watt tungsten iodide lamps providing plus or minus 5 per cent uniformity at one solar constant. An array temperature of less than 40 C is achieved using an infrared filter, a water cooled plate, a vacuum hold-down system, and air flushing.

  15. Multifractal features of magnetospheric dynamics and their dependence on solar activity

    NASA Astrophysics Data System (ADS)

    Gopinath, Sumesh

    2016-09-01

    In the present study, novel wavelet leaders (WL) based multifractal analysis has been used to get a better knowledge of the self-organization phenomena inherent in complex magnetospheric dynamics during disturbance and quiescent periods, focusing mainly on the intermittent features of auroral electrojet (AE) index. The results derived from the analysis certainly exhibit the phase transition property of magnetosphere system with respect to variabilities in the driving conditions. By using the novel WL method, solar activity dependence/independence of intermittency of magnetospheric proxies such as AE, SYM-H and Dst indices have been compared. The results indicate that the multifractality of AE index does not follow the solar activity cycle while intermittent features of SYM-H and Dst indices show high degree of solar activity dependence. This shows that along with the external solar wind perturbations, certain complex phenomena of internal origin also significantly modulate the dynamics of geomagnetic fluctuations in the auroral region.

  16. Response of Solar Oscillations to Magnetic Activity in Cycle 24

    NASA Astrophysics Data System (ADS)

    Jain, K.; Tripathy, S. C.; Hill, F.

    2015-12-01

    Acoustic mode parameters are generally used to study the variability of the solar interior in response to changing magnetic activity. While oscillation frequencies do vary in phase with the solar activity, the mode amplitudes are anti-correlated. Now, continuous measurements from ground and space allow us study the origin of such variability in detail. Here we use intermediate-dgree mode frequencies computed from a ground-based 6-site network ( GONG), covering almost two solar cycles from the minimum of cycle 23 to the declining phase of cycle 24, to investigate the effect of remarkably low solar activity on the solar oscillations in current cycle and the preceding minimum; is the response of acoustic oscillations to magnetic activity in cycle 24 similar to cycle 23 or there are differences between cycles 23 and 24? In this paper, we analyze results for both solar cycles, and try to understand the origin of similarities/differences between them. We will also compare our findings with the contemporaneous observations from space (SOHO/MDI and SDO/HMI).

  17. HIGH LATITUDE ULYSSES OBSERVATIONS OF THE H/HE INTENSITY RATIO UNDER SOLAR MINIMUM AND SOLAR MAXIMUM CONDITIONS

    SciTech Connect

    J. GOSLING; D. LARIO; ET AL

    2001-03-01

    We analyze measurements of the 0.5-1.0 MeV/nucleon H/He intensity ratio from the Ulysses spacecraft during its first (1992-94) and second (1999-2000) ascent to southern high latitude regions of the heliosphere. These cover a broad range of heliocentric distances (from 5.2 to 2.0 AU) and out-of-ecliptic latitudes (from 18{degree}S to 80{degree}S). During Ulysses' first southern pass, the HI-SCALE instrument measured a series of enhanced particle fluxes associated with the passage of a recurrent corotating interaction region (CIR). Low values ({approximately}6) of the H/He ratio were observed in these recurrent corotating events, with a clear minimum following the passage of the corotating reverse shock. When Ulysses reached high southern latitudes (>40{degree}S), the H/He ratio always remained below {approximately}10 except during two transient solar events that brought the ratio to high (>20) values. Ulysses' second southern pass was characterized by a higher average value of the H/He ratio. No recurrent pattern was observed in the energetic ion intensity which was dominated by the occurrence of transient events of solar origin. Numerous CIRs, many of which were bounded by forward and reverse shock pairs, were still observed in the solar wind and magnetic field data. The arrival of those CIRs at Ulysses did not always result in a decrease of the H/He ratio; on the contrary, many CIRs showed a higher H/He ratio than some transient events. Within a CIR, however, the H/He ratio usually increased around the forward shock and decreased towards the reverse shock. Throughout the second ascent to southern heliolatitudes, the H/He ratio seldom decreased below {approximately}10 even at high latitudes (>40{degree}S). We interpret these higher values of the H/He ratio in terms of the increasing level of solar activity together with the poor definition and short life that corotating solar wind structures have under solar maximum conditions. The global filling of the heliosphere

  18. The biological effects of solar activity.

    PubMed

    Breus, T K; Pimenov, K Yu; Cornélissen, G; Halberg, E; Syutkina, E V; Baevsky, R M; Petrov, V M; Orth-Gómer, K; Akerstedt, T; Otsuka, K; Watanabe, Y; Chibisov, S M

    2002-01-01

    The synchronization of biological circadian and circannual rhythms is broadly viewed as a result of photic solar effects. Evidence for non-photic solar effects on biota is also slowly being recognized. The ultrastructure of cardiomyocytes from rabbits, the time structure of blood pressure and heart rate of neonates, and the heart rate variability of human adults on earth and in space were examined during magnetically disturbed and quiet days, as were morbidity statistics. Alterations in both the about-daily (circadian) and about-weekly (circaseptan) components are observed during disturbed vs. quite days. The about-weekly period of neonatal blood pressure correlates with that of the local geomagnetic disturbance index K. Circaseptans which are seen early in human life and in various other forms of life, including unicells, may provide information about the possible site(s) of life's origins from an integrative as well as adaptive evolutionary perspective. PMID:12653180

  19. Windowless High-Pressure Solar Reactor

    NASA Technical Reports Server (NTRS)

    Ramohalli, K. N. R.

    1985-01-01

    Obscuration by reaction products eliminated. Chemical reactor heated by Sunlight employs rocket technology to maintain internal pressure. Instead of keeping chamber tightly closed, pressure maintained by momentum balance between incoming and outgoing materials. Windowless solar reactor admits concentrated Sunlight through exhaust aperture. Pressure in reactor maintained dynamically.

  20. Investigation of relationships between parameters of solar nano-flares and solar activity

    NASA Astrophysics Data System (ADS)

    Safari, Hossein; Javaherian, Mohsen; Kaki, Bardia

    2016-07-01

    Solar flares are one of the important coronal events which are originated in solar magnetic activity. They release lots of energy during the interstellar medium, right after the trigger. Flare prediction can play main role in avoiding eventual damages on the Earth. Here, to interpret solar large-scale events (e.g., flares), we investigate relationships between small-scale events (nano-flares) and large-scale events (e.g., flares). In our method, by using simulations of nano-flares based on Monte Carlo method, the intensity time series of nano-flares are simulated. Then, the solar full disk images taken at 171 angstrom recorded by SDO/AIA are employed. Some parts of the solar disk (quiet Sun (QS), coronal holes (CHs), and active regions (ARs)) are cropped and the time series of these regions are extracted. To compare the simulated intensity time series of nano-flares with the intensity time series of real data extracted from different parts of the Sun, the artificial neural networks is employed. Therefore, we are able to extract physical parameters of nano-flares like both kick and decay rate lifetime, and the power of their power-law distributions. The procedure of variations in the power value of power-law distributions within QS, CH is similar to AR. Thus, by observing the small part of the Sun, we can follow the procedure of solar activity.

  1. Physical mechanisms of solar activity effects in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Ebel, A.

    1989-01-01

    A great variety of physical mechanisms of possibly solar induced variations in the middle atmosphere has been discussed in the literature during the last decades. The views which have been put forward are often controversial in their physical consequences. The reason may be the complexity and non-linearity of the atmospheric response to comparatively weak forcing resulting from solar activity. Therefore this review focuses on aspects which seem to indicate nonlinear processes in the development of solar induced variations. Results from observations and numerical simulations are discussed.

  2. Occurrence of High-speed Solar Wind Streams over the Grand Modern Maximum

    NASA Astrophysics Data System (ADS)

    Mursula, K.; Lukianova, R.; Holappa, L.

    2015-03-01

    In the declining phase of the solar cycle (SC), when the new-polarity fields of the solar poles are strengthened by the transport of same-signed magnetic flux from lower latitudes, the polar coronal holes expand and form non-axisymmetric extensions toward the solar equator. These extensions enhance the occurrence of high-speed solar wind (SW) streams (HSS) and related co-rotating interaction regions in the low-latitude heliosphere, and cause moderate, recurrent geomagnetic activity (GA) in the near-Earth space. Here, using a novel definition of GA at high (polar cap) latitudes and the longest record of magnetic observations at a polar cap station, we calculate the annually averaged SW speeds as proxies for the effective annual occurrence of HSS over the whole Grand Modern Maximum (GMM) from 1920s onward. We find that a period of high annual speeds (frequent occurrence of HSS) occurs in the declining phase of each of SCs 16-23. For most cycles the HSS activity clearly reaches a maximum in one year, suggesting that typically only one strong activation leading to a coronal hole extension is responsible for the HSS maximum. We find that the most persistent HSS activity occurred in the declining phase of SC 18. This suggests that cycle 19, which marks the sunspot maximum period of the GMM, was preceded by exceptionally strong polar fields during the previous sunspot minimum. This gives interesting support for the validity of solar dynamo theory during this dramatic period of solar magnetism.

  3. OCCURRENCE OF HIGH-SPEED SOLAR WIND STREAMS OVER THE GRAND MODERN MAXIMUM

    SciTech Connect

    Mursula, K.; Holappa, L.; Lukianova, R.

    2015-03-01

    In the declining phase of the solar cycle (SC), when the new-polarity fields of the solar poles are strengthened by the transport of same-signed magnetic flux from lower latitudes, the polar coronal holes expand and form non-axisymmetric extensions toward the solar equator. These extensions enhance the occurrence of high-speed solar wind (SW) streams (HSS) and related co-rotating interaction regions in the low-latitude heliosphere, and cause moderate, recurrent geomagnetic activity (GA) in the near-Earth space. Here, using a novel definition of GA at high (polar cap) latitudes and the longest record of magnetic observations at a polar cap station, we calculate the annually averaged SW speeds as proxies for the effective annual occurrence of HSS over the whole Grand Modern Maximum (GMM) from 1920s onward. We find that a period of high annual speeds (frequent occurrence of HSS) occurs in the declining phase of each of SCs 16-23. For most cycles the HSS activity clearly reaches a maximum in one year, suggesting that typically only one strong activation leading to a coronal hole extension is responsible for the HSS maximum. We find that the most persistent HSS activity occurred in the declining phase of SC 18. This suggests that cycle 19, which marks the sunspot maximum period of the GMM, was preceded by exceptionally strong polar fields during the previous sunspot minimum. This gives interesting support for the validity of solar dynamo theory during this dramatic period of solar magnetism.

  4. Highly stable tandem solar cell monolithically integrating dye-sensitized and CIGS solar cells

    NASA Astrophysics Data System (ADS)

    Chae, Sang Youn; Park, Se Jin; Joo, Oh-Shim; Jun, Yongseok; Min, Byoung Koun; Hwang, Yun Jeong

    2016-08-01

    A highly stable monolithic tandem solar cell was developed by combining the heterogeneous photovoltaic technologies of dye-sensitized solar cell (DSSC) and solution-processed CuInxGa1-xSeyS1-y (CIGS) thin film solar cells. The durability of the tandem cell was dramatically enhanced by replacing the redox couple from to [Co(bpy)3]2+ /[Co(bpy)3]3+), accompanied by a well-matched counter electrode (PEDOT:PSS) and sensitizer (Y123). A 1000 h durability test of the DSSC/CIGS tandem solar cell in ambient conditions resulted in only a 5% decrease in solar cell efficiency. Based on electrochemical impedance spectroscopy and photoelectrochemical cell measurement, the enhanced stability of the tandem cell is attributed to minimal corrosion by the cobalt-based polypyridine complex redox couple.

  5. Highly stable tandem solar cell monolithically integrating dye-sensitized and CIGS solar cells

    PubMed Central

    Chae, Sang Youn; Park, Se Jin; Joo, Oh-Shim; Jun, Yongseok; Min, Byoung Koun; Hwang, Yun Jeong

    2016-01-01

    A highly stable monolithic tandem solar cell was developed by combining the heterogeneous photovoltaic technologies of dye-sensitized solar cell (DSSC) and solution-processed CuInxGa1-xSeyS1-y (CIGS) thin film solar cells. The durability of the tandem cell was dramatically enhanced by replacing the redox couple from to [Co(bpy)3]2+ /[Co(bpy)3]3+), accompanied by a well-matched counter electrode (PEDOT:PSS) and sensitizer (Y123). A 1000 h durability test of the DSSC/CIGS tandem solar cell in ambient conditions resulted in only a 5% decrease in solar cell efficiency. Based on electrochemical impedance spectroscopy and photoelectrochemical cell measurement, the enhanced stability of the tandem cell is attributed to minimal corrosion by the cobalt-based polypyridine complex redox couple. PMID:27489138

  6. Impact of Solar Proton Events on High Latitude Ionospheric Conditions

    NASA Astrophysics Data System (ADS)

    Aslam, A. M.; Gwal, Ashok Kumar; Mansoori, Azad Ahmad

    2016-07-01

    We investigate the ionospheric response to the solar protons which are accelerated to different energies (MeV-GeV) and thought to be originated at the solar atmosphere during the various energetic phenomena knows as solar transients viz. Solar Flares, Coronal Mass Ejections (CMEs). These transients are believed to be a manifestation of same energy release processes from a highly complex condition in the magnetic field configuration on the solar surface. We have taken six solar proton events (SPE) of solar cycle 23rd for analysis in the various energy bands of the protons. In order to find the ionospheric responses to these incoming solar protons ionospheric total electron content (TEC) is taken as the characteristic parameter. We have taken the data observed by GOES satellites which provides the data for different energy channels (0.8-4 MeV, 4-9 MeV, 9-15 MeV, 15-40 MeV, 40-80 MeV, 80-165 MeV, and 165-500 MeV). The enhancement in peak TEC (∆TEC) was then obtained for the high latitude station Davis (Lat-68.35, Lon 77.58). To find the association of this enhancement with proton flux characteristics we derived the correspondence between spectral indices and ∆TEC. We obtained a strong correlation (0.84) to exist between the spectral indices and ∆TEC.

  7. Possible relationships between solar activity and meteorological phenomena

    NASA Technical Reports Server (NTRS)

    Bandeen, W. R. (Editor); Maran, S. P. (Editor)

    1975-01-01

    A symposium was conducted in which the following questions were discussed: (1) the evidence concerning possible relationships between solar activity and meteorological phenomena; (2) plausible physical mechanisms to explain these relationships; and (3) kinds of critical measurements needed to determine the nature of solar/meteorological relationships and/or the mechanisms to explain them, and which of these measurements can be accomplished best from space.

  8. Development of high-efficiency solar cells on silicon web

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Seidensticker, R. G.; Rai-Choudhury, P.

    1984-01-01

    The development of high efficiency solar cells on a silicon web is discussed. Heat treatment effects on web quality; the influence of twin plane lamellae, trace impurities and stress on minority carrier lifetime; and the fabrication of cells are discussed.

  9. Seismic Study of The Solar Interior: Inferences from SOI/MDI Observations during Solar Activity

    NASA Technical Reports Server (NTRS)

    Korzennik, Sylvain G.

    2003-01-01

    The principal investigator describes several types of solar research conducted during the reporting period and gives a statement of work to be performed in the following year. Research conducted during the reporting period includes: exhaustive analysis of observational and instrumental effects that might cause systematic errors in the characterization of high-degree p-modes; study of the structure, asphericity and dynamics of the solar interior from p-mode frequencies and frequency splittings; characterizing the solar rotation; Time-Distance inversion; and developing and using a new peak-fitting method for very long MDI time series at low degrees.

  10. High energetic solar proton flares at 26 and 28 October 2003

    NASA Astrophysics Data System (ADS)

    Mosalam Shaltout, M. A.; Hadey, A. A.

    During the period from 19 October to 4 November 2003, there are a sudden and high activity for the sun, where the sunspot area increased from 1110 10E-6 Hemisphere at 19 October to 5690 10E-6 Hemisphere at 30 October, then decreased to 1110 10 E-6 Hemisphere at 4 November 2003. Also, the radio flux on 10.7 cm increased from 120 sfu at 19 October to 298 sfu at 26 October, then decrease to 168 sfu at 4 November 2003. There are two eruptive solar proton flares released at 26 and 28 October 2003, where the last one is the most eruptive flare recorded since 1976 with importance X17/4B. The proton event affecting the earth environment with energy >10 MeV is 29.500 particle flux units at 29 October 2003 as recorded by spacecraft SOHO, due to the solar flares of 28 October. The coronal mass ejection which reach to the top of the earth's atmosphere from the mid of 29 to the mid of 31 October 2003 recorded high velocity of 950 km/sec. The peak of the solar cycle 21 was at 1979 but high energetic solar flares occurred at the declining phase at 1981, 1982, and 1984 before the solar activity minimum at 1986. Also, the peak of the solar cycle 22 was at 1989 but high energetic solar flares occurred at the declining phase at 1991, 1992, and 1994 before the solar activity minimum at 1996. The peak of the solar cycle 23 was at 2001. The secondary peak is 2 to 3 years after the first peak, as deduced from the last five solar cycles. We conclude the period of 19 October to 4 November 2003 is the second peak of the solar cycle 23. There are many terrestrial influences, due to the solar activity during October - November 2003. These influences are studded in details, specially the geomagnetic storms and their effects on humankind daily activity.

  11. High-energy continuum emission from solar flares

    NASA Technical Reports Server (NTRS)

    Vestrand, W. Thomas

    1988-01-01

    The properties of solar flare continuum emission at energies of greater than 300 keV have been determined from observations obtained during the 21st solar maximum by gamma-ray detectors aboard the SMM and Hinotori satellites. The temporal structure of the high-energy continuum is modeled by two-step acceleration and particle trapping. The results suggest that the very high-energy emission noted must be a mixture of pion-decay radiation and primary electron bremsstrahlung.

  12. Solar activity: The Sun as an X-ray star

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1981-01-01

    The existence and constant activity of the Sun's outer atmosphere are thought to be due to the continual emergence of magnetic fields from the Solar interior and the stressing of these fields at or near the surface layers of the Sun. The structure and activity of the corona are thus symptomatic of the underlying magnetic dynamo and the existence of an outer turbulent convective zone on the Sun. A sufficient condition for the existence of coronal activity on other stars would be the existence of a magnetic dynamo and an outer convective zone. The theoretical relationship between magnetic fields and coronal activity can be tested by Solar observations, for which the individual loop structures can be resolved. A number of parameters however, which enter into the alternative theoretical formulations remain fixed in all Solar observations. To determine whether these are truly parameters of the theory observations need to be extended to nearby stars on which suitable conditions may occur.

  13. Systematic process development towards high performance transferred thin silicon solar cells based on epitaxially grown absorbers

    NASA Astrophysics Data System (ADS)

    Murcia Salazar, Clara Paola

    The value of thin crystalline silicon (c-Si) solar cells is the potential for higher performance compared to conventional wafer approaches. Thin silicon solar cells can outperform thick cells with the same material properties because the smaller active volume causes a reduced bulk recombination leading to higher voltages while efficient light trapping structures ensure all photons are absorbed. Efficiencies above 20+% can be achieved with less than 20um of c-Si with current silicon solar cell processing technologies. In a thin solar cell, factors that will lead to high efficiency include high minority carrier lifetime, low surface recombination, and good optical confinement. Independently optimizing surface optical and electrical properties in a thin solar cell can achieve this higher performance. In addition, re-utilizing a c-Si wafer with a process that allows optimization of both surfaces is a path to higher performance at lower cost. The challenge in the fabrication of this high performance concept is to separately analyze critical parameters through fabrication and transfer and establish the design rules for high performance. This work contributes to the design and systematic fabrication approach of a 20 mum thick epitaxial silicon solar cell. State-of-the-art thin absorbers of less than 30um have reported 655mV (on a textured front surface with antireflection coating), and efficiencies near 17%. We report near 640mV (on a planar front surface with antireflection coating) for 20 mum thick absorbers. It is found that previously reported efficiencies are tightly related to solar cell's active thickness. In the case of transferred solar cells, the thinnest epitaxial transferred cell reported is near 24 mum thick with an efficiency of 15.4% (transparent front handle, textured with ARC and metallic back reflector). Recently, a c-Si transferred solar cell of 43 mum has reported 19.1% efficiency (with a front texture and ARC with localized back contact and reflector

  14. Observations of Cosmic Rays and Solar Energetic Particles from the Ulysses COSPIN High Energy Telescope Following Completion of the Solar Maximum Solar Polar Passes.*

    NASA Astrophysics Data System (ADS)

    McKibben, R. B.; Lopate, C.; Connell, J. J.; Posner, A.

    2003-04-01

    At the end of 2002, following its second pass over the Sun's north polar region, Ulysses had reached a radial distance of about 4.5 AU at a heliographic latitude of 24°N. While solar activity remained high, the modulated intensity of cosmic rays observed by Ulysses’ COSPIN High Energy Telescope had increased significantly from the levels observed early in 2001, which most likely represented the maximum modulation for this solar cycle. Despite continuing solar activity, the new qA<0 magnetic polarity of the Sun's dipole field was fully established for both poles since the change in the North Pole polarity in 2000. Although the current sheet tilt was still large (>40° as reported by the Wilcox Solar Observatory) and the solar wind was still frequently disturbed by solar activity, it is worthwhile to examine the recent increase in the quiet-time cosmic ray fluxes for evidence of the change in latitudinal gradients expected upon change of magnetic polarity. A difficulty is the lack of a well-matched 1 AU base-line to help distinguish spatial from temporal variations following the termination of IMP-8 operations in late 2001. We will summarize Ulysses observations of energetic (>~30 MeV/n) protons and helium through the most recent available data, and will discuss available options for determining baseline fluxes at 1 AU for studies of the radial and latitudinal gradients. **This work was supported in part by NASA/JPL Contract 955432, by NASA Grant NASA 5-28516 and by NSF grant ATM 99-12341.

  15. High-efficiency solar cells based on micro-nano scale structures

    NASA Astrophysics Data System (ADS)

    Dutta, Achyut K.; Olah, Robert; Mizuno, Genki; Sengupta, Rabi; Park, Jin-Hong; Wijewarnasuriya, Priyalal; Dhar, Nibir K.

    2010-04-01

    Higher efficiency solar cells are required to reduce solar array mass, stowed volume, and cost for numerous commercial and military applications. Conventional solar cell made of thin-film or crystal-Si (c-Si) or other thin films have limited conversion efficiency of 10 to 20% with the cost of 3-5/Wp. Current state-of-the-art crystalline multijunction solar cells are 30 % efficient with the cost of 30 to 40 /Wp. Increasing conversion efficiency of > 30% will enable to reduce the cost < $1/Wp and useful for various power platforms supporting mobile wireless, laptop, tent applications. Solar cell comprises with three dimensional blocks are shown to be higher conversion-efficiency than standard flat-type solar cell. Incorporating nano-scaled blocks in solar cell structures are shown to be increased performances due to (i) increase of the surface area to volume ratio, (ii) brining the junction closer to the carrier generation region which eliminate the carrier recombination , (iii) absorption of all incident photon flux, and (iv) broadening the absorption spectrum. Our activities on next generation high performance solar cells based on micro-nano scaled structures and various material systems will be presented. Details fabrication process of micro-nano scaled solar cell friendly to mass scale manufacturing will be also be described. We have achieved more than 20x optical performance enhancement for the solar cell based on micro-scaled structures, than that of flat-type (standard) solar cell, fabricated on the same Si substrate and same process. Simulation results showed that significant improvement in conversion efficiency more than 30% is possible for even c-Si solar cell based on the micro-nano scaled structures. Key issues and challenges for bringing it to the manufacturing will be discussed.

  16. Intraocular pressure (IOP) in relation to four levels of daily geomagnetic and extreme yearly solar activity

    NASA Astrophysics Data System (ADS)

    Stoupel, E.; Goldenfeld, M.; Shimshoni, M.; Siegel, R.

    1993-03-01

    The link between geomagnetic field activity (GMA), solar activity and intraocular pressure (IOP) in healthy individuals was investigated. The IOP of 485 patients (970 eyes) was recorded over three nonconsecutive years (1979, 1986, 1989) which were characterized by maximal solar activity (1979, 1989) or minimal solar activity (1986). The measurements were also correlated with four categories of GMA activity: quiet (level I0), unsettled (II0), active (III0), and stormy (IV0). Participants were also differentiated by age and sex. We found that IOP was lowest on days of level IV0 (stormy) GMA. The drop in IOP concomitant with a decrease in GMA level was more significant during periods of low solar activity and in persons over 65 years of age. There was a trend towards higher IOP values on days of levels II0 and IV0 GMA in years of high solar activity. Differences between the sexes and among individuals younger than 65 years were not significant. Our results show an interesting aspect of environmental influence on the healthy population.

  17. Intraocular pressure (IOP) in relation to four levels of daily geomagnetic and extreme yearly solar activity.

    PubMed

    Stoupel, E; Goldenfeld, M; Shimshoni, M; Siegel, R

    1993-02-01

    The link between geomagnetic field activity (GMA), solar activity and intraocular pressure (IOP) in healthy individuals was investigated. The IOP of 485 patients (970 eyes) was recorded over three nonconsecutive years (1979, 1986, 1989) which were characterized by maximal solar activity (1979, 1989) or minimal solar activity (1986). The measurements were also correlated with four categories of GMA activity: quiet (level I0), unsettled (II0), active (III0), and stormy (IV0). Participants were also differentiated by age and sex. We found that IOP was lowest on days of level IV0 (stromy) GMA. The drop in IOP concomitant with a decrease in GMA level was more significant during periods of low solar activity and in persons over 65 years of age. There was a trend towards higher IOP values on days of levels II0 and IV0 GMA in years of high solar activity. Differences between the sexes and among individuals younger than 65 years were not significant. Our results show an interesting aspect of environmental influence on the healthy population. PMID:8468099

  18. Variability of foE in the equatorial ionosphere with solar activity

    NASA Astrophysics Data System (ADS)

    Abe, O. E.; Rabiu, A. B.; Adeniyi, J. O.

    2013-01-01

    This research examined the variability of foE in the equatorial ionosphere with solar activity within the equatorial ionospheric anomaly region. Ionosonde data recorded at Ouagadougou (lat. 12.4°N, long. 1.5°W and magnetic dip 1.43°N) were engaged to study the transient variations of the critical frequency of the E-layer (foE) and its dependence on solar activity. The study revealed that foE increases with the increase in solar intensity of the sun. The variability of the foE decreases with increases in the solar activity. The maximum value of the foE is at local noon when the ionosphere is stable; the variability at this local time is minimal. The minimum value of the foE is at sunrise and sunset, at this period on local time the equatorial ionosphere recorded its maxima variability. Irrespective of the degree of solar activity, foE is observed to be maximum in June solstice, followed by the equinoxes and minimum in December solstice. Equinoctial asymmetry occurred in the variation of the relative standard deviation of foE with maximum in September/March equinox for low/high solar activity.

  19. High performance solar heating in the Rockies

    SciTech Connect

    Lichtwardt, M.

    2000-04-01

    Many industrial and commercial buildings require large amounts of ventilation air to maintain adequate indoor air quality and--as facility managers know--heating all that fresh air can be expensive. An innovative solar air heating technology offers an elegantly simple and cost-effective solution to the problem of heating makeup air, and helps protect the environment in the bargain by avoiding the release of greenhouse gases and other pollutants.

  20. High performance flat plate solar collector

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.; Reynolds, R.

    1976-01-01

    The potential use of porous construction is presented to achieve efficient heat removal from a power producing solid and is applied to solar air heaters. Analytical solutions are given for the temperature distribution within a gas-cooled porous flat plate having its surface exposed to the sun's energy. The extracted thermal energy is calculated for two different types of plate transparency. Results show the great improvement in performance obtained with porous flat plate collectors as compared with analogous nonporous types.

  1. High efficiency silicon solar cell review

    NASA Technical Reports Server (NTRS)

    Godlewski, M. P. (Editor)

    1975-01-01

    An overview is presented of the current research and development efforts to improve the performance of the silicon solar cell. The 24 papers presented reviewed experimental and analytic modeling work which emphasizes the improvment of conversion efficiency and the reduction of manufacturing costs. A summary is given of the round-table discussion, in which the near- and far-term directions of future efficiency improvements were discussed.

  2. Barriers to solar process heat projects: Fifteen highly promising (but cancelled) projects

    SciTech Connect

    Carwile, C; Hewett, R

    1994-10-01

    We analyzed technical, economic, and institutional barriers encountered by the solar industry in penetrating the market of solar thermal systems as applied in industry, commerce, and government. The barriers discussed are not theoretical or developed by conducting marketing research surveys of potential users. Rather, they are barriers that precluded implementing actual solar projects for 15 ``highly promising`` prospective users. The efforts to determine their technical and economic feasibility were funded by the US Department of Energy (DOE) Solar Process Heat (SPH) program. Each year, the SPH program conducts a prefeasibility studies activity -- an engineering assessment of the technical and economic feasibility of a solar system for a specific application for a specific end-user. These studies also assess institutional issues that impact the feasibility of the proposed project and develop an action plan for the project`s implementation. In FY 1991 and FY 1992, the program funded a total of 11 studies in which solar projects were investigated for 21 potential users. Of these 21 potential users, only three have made firm commitments to acquire solar systems, yielding a 14% success rate (decisions by three other companies are still pending). The low success rate is disappointing because the solar companies had complete freedom to select ``highly promising`` potential users. We therefore evaluated the reasons for the low success rate and the implications for market penetration.

  3. Relation Between Myocardial Infarction Deaths and Solar Activity in Mexico

    NASA Astrophysics Data System (ADS)

    Diaz-Sandoval, R.

    2002-05-01

    We study the daily incidence of myocardial infarction deaths in Mexico for 4 years (1996-99) with a total of 129 917 cases in all the country, collected at the General Directorate of Epidemiology (National Ministry of Health). We divided the cases by sex and age and perform two kinds of analysis. First, we did an spectral analysis using the Maximum Entropy Method, considering the complete period, and minimum and maximum epochs of solar activity. The results show that the most persistent periodicity at higher frequencies in the myocardial infarction death occurrence is that of seven days. Considering the solar cycle phases, we found that during solar minimum times some frequencies are not detectable compared with solar maximum epochs, particularly that of seven days. Biological rhythms close to seven days, the circaseptans, are in general thought to be only the result of the social organization of life. However, this cannot be the only explanation, because the 7-days periodicity has been encountered in lower organisms not related with our rhythms of life. Thus, it has been proposed that biological rhythms could be evolutionary adaptations to environmental conditions, particularly, solar activity. In the second analysis we compared two solar activity-related phenomena: the Forbush decreases of cosmic rays and the geomagnetic index Ap for various levels of geomagnetic perturbations. The results show that during decreases of cosmic ray fluxes, for most cases there is a higher average myocardial infarction deaths occurrence, compared with the average incidence in days of no decreases. For geomagnetic activity we find the same situation in most cases. Furthermore, this behavior is more pronounced as the level of the perturbation increases and in times of maximum solar activity.

  4. High-Precision Measurements of the Solar Diameter and Oblateness by the Solar Disk Sextant (SDS) Experiment

    NASA Astrophysics Data System (ADS)

    Egidi, A.; Caccin, B.; Sofia, S.; Heaps, W.; Hoegy, W.; Twigg, L.

    2006-05-01

    We reduce and analyze, in a uniform way, all of the data obtained by the Solar Disk Sextant (SDS) experiment, concerning high-precision measurements of the solar radius and oblateness, in the bandwidth 590 {-} 670 nm, made onboard stratospheric balloons during a series of flights carried out in 1992, 1994, 1995, and 1996. The measured radius value appears anti-correlated with the level of solar activity, ranging from about 959.5 to 959.7 arcsec. Its variation from year to year is outside the error range, which is mostly due to a systematic diurnal behavior, particularly evident in the 1996 flight. The oblateness shows an analogous temporal behavior, ranging from about (4.3 to 10.3) × 10-6.

  5. Short-term changes in solar oscillation frequencies and solar activity

    NASA Technical Reports Server (NTRS)

    Woodard, M. F.; Libbrecht, K. G.; Kuhn, J. R.; Murray, N.

    1991-01-01

    It is shown that the frequencies of solar rho-mode oscillations change significantly over periods as short as one month. These changes correlate significantly with variations in the strength of surface solar activity as measured by the average, over the sun's visible surface, of the magnitude of the line-of-sight magnetic field component from magnetograms. The frequency and mean magnetic variations are found to obey a linear relationship. It is seen that the mean frequency shift at any time depends on the history of solar activity over an interval of, at most, several months prior to the measurement and conclude that the dominant mechanism of the frequency shift is correlated with surface magnetic activity.

  6. High solar cycle spectral variations inconsistent with stratospheric ozone observations

    NASA Astrophysics Data System (ADS)

    Ball, W. T.; Haigh, J. D.; Rozanov, E. V.; Kuchar, A.; Sukhodolov, T.; Tummon, F.; Shapiro, A. V.; Schmutz, W.

    2016-03-01

    Solar variability can influence surface climate, for example by affecting the mid-to-high-latitude surface pressure gradient associated with the North Atlantic Oscillation. One key mechanism behind such an influence is the absorption of solar ultraviolet (UV) radiation by ozone in the tropical stratosphere, a process that modifies temperature and wind patterns and hence wave propagation and atmospheric circulation. The amplitude of UV variability is uncertain, yet it directly affects the magnitude of the climate response: observations from the SOlar Radiation and Climate Experiment (SORCE) satellite show broadband changes up to three times larger than previous measurements. Here we present estimates of the stratospheric ozone variability during the solar cycle. Specifically, we estimate the photolytic response of stratospheric ozone to changes in spectral solar irradiance by calculating the difference between a reference chemistry-climate model simulation of ozone variability driven only by transport (with no changes in solar irradiance) and observations of ozone concentrations. Subtracting the reference from simulations with time-varying irradiance, we can evaluate different data sets of measured and modelled spectral irradiance. We find that at altitudes above pressure levels of 5 hPa, the ozone response to solar variability simulated using the SORCE spectral solar irradiance data are inconsistent with the observations.

  7. Inferred flows of electric currents in solar active regions

    NASA Technical Reports Server (NTRS)

    Ding, Y. J.; Hong, Q. F.; Hagyard, M. J.; Deloach, A. C.

    1985-01-01

    Techniques to identify sources of major current systems in active regions and their channels of flow are explored. Measured photospheric vector magnetic fields together with high resolution white light and H-alpha photographs provide the data base to derive the current systems in the photosphere and chromosphere of a solar active region. Simple mathematical constructions of active region fields and currents are used to interpret these data under the assumptions that the fields in the lower atmosphere (below 200 km) may not be force free but those in the chromosphere and higher are. The results obtained for the complex active region AR 2372 are: (1) Spots exhibiting significant spiral structure in the penumbral filaments were the source of vertical currents at the photospheric surface; (2) Magnetic neutral lines where the transverse magnetic field was strongly sheared were channels along which a strong current system flowed; (3) The inferred current systems produced a neutral sheet and oppositely-flowing currents in the area of the magnetic delta configuration that was the site of flaring.

  8. Relation between solar activity and regional sub-continental climate

    NASA Astrophysics Data System (ADS)

    Ramesh, Rengaswamy

    2012-07-01

    Using stable oxygen isotopes in tree rings, speleothems from the subcontinent and foraminifera of marine sediments from the Indian ocean, we have deciphered the past variations on monsoon quantitatively. Many of the well known solar periodicities are found in these records. In this talk I plan to review the available evidence for quantitative and high resolution monsoon changes and their relation to solar variability. Causal mechanisms and climate models will also be discussed and our current understanding will be summarized. noindent

  9. Spatial Regularities of Solar Activity Effects in the Troposphere

    NASA Astrophysics Data System (ADS)

    Smirnov, R. V.

    1984-12-01

    Joint analysis of maps of density variations (or density dispersions) in the troposphere after geomagnetic disturbances and of maps of advection, wind velocity divergence, etc. makes it possible to put forward a concept of solar-induced centres of atmospheric action (SICA). Solar-disturbance transfer and planetary-wave development in the atmosphere are accomplished by means of SICA where the level of baroclinic instability is high. Infrasonic waves are considered as an agent connecting the lower thermosphere and the troposphere.

  10. IS THE CURRENT LACK OF SOLAR ACTIVITY ONLY SKIN DEEP?

    SciTech Connect

    Broomhall, A.-M.; Chaplin, W. J.; Elsworth, Y.; Fletcher, S. T.; New, R. E-mail: wjc@bison.ph.bham.ac.uk E-mail: S.Fletcher@shu.ac.uk

    2009-08-01

    The Sun is a variable star whose magnetic activity and total irradiance vary on a timescale of approximately 11 years. The current activity minimum has attracted considerable interest because of its unusual duration and depth. This raises the question: what might be happening beneath the surface where the magnetic activity ultimately originates? The surface activity can be linked to the conditions in the solar interior by the observation and analysis of the frequencies of the Sun's natural seismic modes of oscillation-the p modes. These seismic frequencies respond to changes in activity and are probes of conditions within the Sun. The Birmingham Solar-Oscillations Network (BiSON) has made measurements of p-mode frequencies over the last three solar activity cycles, and so is in a unique position to explore the current unusual and extended solar minimum. We show that the BiSON data reveal significant variations of the p-mode frequencies during the current minimum. This is in marked contrast to the surface activity observations, which show little variation over the same period. The level of the minimum is significantly deeper in the p-mode frequencies than in the surface observations. We observe a quasi-biennial signal in the p-mode frequencies, which has not previously been observed at mid- and low-activity levels. The stark differences in the behavior of the frequencies and the surface activity measures point to activity-related processes occurring in the solar interior, which are yet to reach the surface, where they may be attenuated.

  11. Summary of solar activity observed in the Mauna Loa Solar Observatory, 1980 - 1983

    NASA Astrophysics Data System (ADS)

    Rock, K.; Fisher, R.; Garcia, C.; Yasukawa, E.

    1983-11-01

    The following technical note summarizes solar activity observed during the first four years operation of the experiment systems of the Coronal Dynamics Project, which are located at the Mauna Loa Solar Observatory. This short report has been produced with the general aim of providing users of Mauna Loa observations with a summary of data for specific events. So that this table might be as useful as possible, a comprehensive review of three sources was performed. The plain language logs, identified as the so-called observer's logs, the now-discontinued activity logs, and the prominence monitor quality control logs were the sources from which the information in the following tables was obtained.

  12. NASA's New High Intensity Solar Environment Test Capability

    NASA Technical Reports Server (NTRS)

    Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H.

    2012-01-01

    Across the world, new spaceflight missions are being designed and executed that will place spacecraft and instruments into challenging environments throughout the solar system. To aid in the successful completion of these new missions, NASA has developed a new flexible space environment test platform. The High Intensity Solar Environment Test (HISET) capability located at NASA fs Marshall Space Flight Center provides scientists and engineers with the means to test spacecraft materials and systems in a wide range of solar wind and solar photon environments. Featuring a solar simulator capable of delivering approximately 1 MW/m2 of broad spectrum radiation at maximum power, HISET provides a means to test systems or components that could explore the solar corona. The solar simulator consists of three high-power Xenon arc lamps that can be operated independently over a range of power to meet test requirements; i.e., the lamp power can be greatly reduced to simulate the solar intensity at several AU. Integral to the HISET capability are charged particle sources that can provide a solar wind (electron and proton) environment. Used individually or in combination, the charged particle sources can provide fluxes ranging from a few nA/cm2 to 100s of nA/cm2 over an energy range of 50 eV to 100 keV for electrons and 100 eV to 30 keV for protons. Anchored by a high vacuum facility equipped with a liquid nitrogen cold shroud for radiative cooling scenarios, HISET is able to accommodate samples as large as 1 meter in diameter. In this poster, details of the HISET capability will be presented, including the wide ]ranging configurability of the system.

  13. Some problems in coupling solar activity to meteorological phenomena

    NASA Technical Reports Server (NTRS)

    Dessler, A. J.

    1975-01-01

    The development of a theory of coupling of solar activity to meteorological phenomena is hindered by the difficulties of devising a mechanism that can modify the behavior of the troposphere while employing only a negligible amount of energy compared with the energy necessary to drive the normal meteorological system, and determining how such a mechanism can effectively couple some relevant magnetospheric process into the troposphere in such a way as to influence the weather. A clue to the nature of the interaction between the weather and solar activity might be provided by the fact that most solar activity undergoes a definite 11-yr cycle, and meteorological phenomena undergo either no closely correlated variation, an 11-yr variation, or a 22-yr variation.

  14. Some problems in coupling solar activity to meteorological phenomena

    NASA Technical Reports Server (NTRS)

    Dessler, A. J.

    1974-01-01

    The development of a theory of coupling of solar activity to meteorological phenomena has to date foundered on the two difficulties of (1) devising a mechanism that can modify the behavior of the troposphere while employing only a negligible amount of energy compared with the energy necessary to drive the normal meteorological system; and (2) determining how such a mechanism can effectively couple some relevant magnetospheric process into the troposphere in such a way as to influence the weather. A clue to the nature of the interaction between the weather and solar activity might be provided by the fact that most solar activity undergoes a definite 11-year cycle, while meteorological phenomena undergo either no closely correlated variation, or an 11-year variation, or a 22-year variation.

  15. Correlation of nighttime MF signal strength with solar activity

    NASA Astrophysics Data System (ADS)

    Kohata, Hiroki; Kimura, Iwane; Wakai, Noboru; Ogawa, Tadahiko

    Observations of the signal strength of MF broadcasting signals (774/770 kHz) transmitted from Akita, Japan, on board the Japanese Antarctic ice breaker Fuji, bound from Japan to Syowa station, Antarctica, have revealed an interesting positive correlation between strengths of long distance signals propagating at night and solar activity. It is already known that MF propagation characteristics in North America show a negative correlation with solar activity. The present paper, interprets the results by using the multihop method with full-wave analysis. The difference in correlation with solar activity between the results of Fuji and those in North America can be elucidated if it is assumed that there is a ledge in the electron-density profile around an altitude range of 85 to 90 km and that the density of the ledge is smaller in the North American region than in the equatorial region.

  16. Variations in Solar Activity and Irradiance and Their Implications for Energy Input Into the Terrestrial Atmosphere

    NASA Astrophysics Data System (ADS)

    Parker, Daryl Gray

    This dissertation presents research into the question of how variations in the physical properties of resolved solar magnetic surface features combine to produce variations in the physical properties of the integrated Sun and the possible impacts of those variations on the terrestrial climate system. The core approach to the research was development of techniques to apply automated Bayesian statistical pattern recognition methods as implemented in the AutoClass software to magnetic and intensity-like solar images from the Mount Wilson Solar Observatory (MWO) 150 Foot Solar Telescope. The goals were to: (1) identify in an objective and quantifiable manner the solar surface features responsible for changes in solar irradiance, (2) enhance understanding of the evolution of these features and the resultant solar irradiance variations over the most recent solar cycles, (3) develop methods to identify the specific features responsible for variations in specific wavelengths, (4) use global observations of global solar irradiance indices to identify the spatially resolved features which contribute to them, (5) attempt to apply these results to specific topics of current interest in solar-stellar astronomy. Using these techniques, a method was developed to identify classes of features from thousands of MWO solar images based on the per pixel values of absolute magnetic field strength and an intensity measure known as a "ratio-gram" in MWO images. Using these classes along with observations from independent, usually satellite based, sources in different wavelengths, models were constructed of total solar irradiance (TSI) and solar UV indices. These models were able to reproduce with high correlations solar observations in a number of different solar wavelengths. These classes were also used to construct images mapping different wavelength emissions to the areas to the solar surface features from which they originated. These techniques proved able to reproduce with high

  17. Surface Texturing Investigated for a High Solar Absorptance Low Infrared Emittance Solar Collector

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    2001-01-01

    The objective of this work was to design, build, and vacuum test a high solar absorptance, low infrared emittance solar collector for heat engine and thermal switching applications. Mini-satellites proposed by the Applied Physics Laboratory for operation in environments that are subject to radiation threat may utilize a heat engine for power and a thermal bus for thermal control. To achieve this goal, a surface having high solar absorptance and low infrared emittance is needed. At the NASA Glenn Research Center, one concept being pursued to achieve this goal is texturing high thermal conductivity graphite epoxy composites using a directed atomic oxygen beam and then coating the textured surface with a reflective metallic coating. Coupons were successfully textured, coated, and evaluated. A variety of texturing conditions were explored, and textures were documented by scanning electron microscopy. Copper, gold, silver, iridium, and aluminum coatings were applied, and the highest solar absorptance to infrared emittance ratio was found to be 1.3. A full-sized solar collector was manufactured with this ratio, and the amount of heat collected was observed using an Inconel calorimeter installed in a bench-top vacuum chamber equipped with a solar simulator. Results to date indicate good heat flow through the system, with 9 W of heat flow measured by the calorimeter.

  18. Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.

    SciTech Connect

    Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

    2010-09-01

    Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

  19. Active region plasma outflows as sources of slow/intermediate solar wind

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia M.

    2015-08-01

    L. van Driel-Gesztelyi (1,2,3), D. Baker (1), P. Démoulin (2), Culhane, J.L. (1), M.L. DeRosa (4) C.H. Mandrini (5,6), D.H. Brooks (7), A.N. Fazakerley (1), L.K. Harra (1), L. Zhao (7), T.H. Zurbuchen (7), F.A. Nuevo (5,6), A.M. Vásquez (5,6), G.D. Cristiani (5,6) M. Pick (2)1) UCL/MSSL, UK, (2) Paris Observatory, LESIA, CNRS, France, (3) Konkoly Observatory, Hungary, (4) Lockheed Martin Solar and Astrophysics Laboratory, USA, (5) IAFE, CONICET-UBA, Argentina (6) FCEN, UBA, Argentina (7) Dept. of Atmospheric, Oceanic and Earth Sciences, Univ. of Michigan, USAWe analyse plasma upflows of tens of km/s from the edges of solar active regions discovered by Hinode/EIS and investigate whether or not they become outflows, i.e. find their way into the solar wind. We analyse two magnetic configurations: bipolar and quadrupolar and find that the active region plasma may be directly channeled into the solar wind via interchange reconnection at a high-altitude null point above the active region especially when active regions are located besides coronal holes or in a more complex way via multiple reconnections even from under a closed helmet streamer. We relate the solar observations to in-situ slow/intermediate solar wind streams.

  20. High Efficiency Large Area Polysilicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Johnson, S. M.; Winter, C.

    1985-01-01

    Large area (100 sq cm) polysilicon solar cells having efficiencies of up to 14.1% (100 mW/sq cm, 25 C) were fabricated and a detailed analysis was performed to identify the efficiency loss mechanisms. The 1-5 characteristics of the best cell were dominated by recombination in the quasi-neutral base due to the combination of minority carrier diffusion length and base resistivity. An analysis of the microstructural defects present in the material and their effect on the electrical properties is presented.

  1. Coronal activity cycles in solar analog stars

    NASA Astrophysics Data System (ADS)

    Favata, Fabio

    2013-10-01

    We propose continuation into AO13 of the ongoing long-term program for the monitoring of coronal cycles in a sample of five solar-type stars in three stellar systems. The targets have been monitored continuously since AO1, yielding the first unambiguous evidence of cyclic behavior in the X-ray emission from the coronae of cool stars. Thanks to the long-term monitoring our program is starting to show evidence of the complex behavior of stellar cycles, with significant cycle-to-cycle variability becoming apparent. The observations requested in AO-13 will allow us to capitalize on our long-term investment of XMM-Newton observing time and to continue assembling a unique long-term data set that is likely to remain unmatched for a long time.

  2. High efficiency nanostructured thin film solar cells for energy harvesting

    NASA Astrophysics Data System (ADS)

    Welser, Roger E.; Sood, Ashok K.; Lewis, Jay S.; Dhar, Nibir K.; Wijewarnasuriya, Priyalal S.

    2016-05-01

    Thin-film III-V materials are an attractive candidate material for solar energy harvesting devices capable of supplying portable and mobile power in both terrestrial and space environments. Nanostructured quantum well and quantum dot solar cells are being widely investigated as a means of extending infrared absorption and enhancing photovoltaic device performance. In this paper, we will review recent progress on realizing high-voltage InGaAs/GaAs quantum well solar cells that operate at or near the radiative limit of performance. These high-voltage nanostructured device designs provide a pathway to enhance the performance of existing device technologies, and can also be leveraged for next-generation solar cells.

  3. Highly Efficient Perovskite Solar Cells with Tunable Structural Color

    PubMed Central

    2015-01-01

    The performance of perovskite solar cells has been progressing over the past few years and efficiency is likely to continue to increase. However, a negative aspect for the integration of perovskite solar cells in the built environment is that the color gamut available in these materials is very limited and does not cover the green-to-blue region of the visible spectrum, which has been a big selling point for organic photovoltaics. Here, we integrate a porous photonic crystal (PC) scaffold within the photoactive layer of an opaque perovskite solar cell following a bottom-up approach employing inexpensive and scalable liquid processing techniques. The photovoltaic devices presented herein show high efficiency with tunable color across the visible spectrum. This now imbues the perovskite solar cells with highly desirable properties for cladding in the built environment and encourages design of sustainable colorful buildings and iridescent electric vehicles as future power generation sources. PMID:25650872

  4. Crystalline silicon solar cells with high resistivity emitter

    NASA Astrophysics Data System (ADS)

    Panek, P.; Drabczyk, K.; Zięba, P.

    2009-06-01

    The paper presents a part of research targeted at the modification of crystalline silicon solar cell production using screen-printing technology. The proposed process is based on diffusion from POCl3 resulting in emitter with a sheet resistance on the level of 70 Ω/□ and then, shaped by high temperature passivation treatment. The study was focused on a shallow emitter of high resistivity and on its influence on output electrical parameters of a solar cell. Secondary ion mass spectrometry (SIMS) has been employed for appropriate distinguishing the total donor doped profile. The solar cell parameters were characterized by current-voltage characteristics and spectral response (SR) methods. Some aspects playing a role in suitable manufacturing process were discussed. The situation in a photovoltaic industry with emphasis on silicon supply and current prices of solar cells, modules and photovoltaic (PV) systems are described. The economic and quantitative estimation of the PV world market is shortly discussed.

  5. Highly efficient perovskite solar cells with tunable structural color.

    PubMed

    Zhang, Wei; Anaya, Miguel; Lozano, Gabriel; Calvo, Mauricio E; Johnston, Michael B; Míguez, Hernán; Snaith, Henry J

    2015-03-11

    The performance of perovskite solar cells has been progressing over the past few years and efficiency is likely to continue to increase. However, a negative aspect for the integration of perovskite solar cells in the built environment is that the color gamut available in these materials is very limited and does not cover the green-to-blue region of the visible spectrum, which has been a big selling point for organic photovoltaics. Here, we integrate a porous photonic crystal (PC) scaffold within the photoactive layer of an opaque perovskite solar cell following a bottom-up approach employing inexpensive and scalable liquid processing techniques. The photovoltaic devices presented herein show high efficiency with tunable color across the visible spectrum. This now imbues the perovskite solar cells with highly desirable properties for cladding in the built environment and encourages design of sustainable colorful buildings and iridescent electric vehicles as future power generation sources.

  6. Multi-scale statistical analysis of coronal solar activity

    DOE PAGES

    Gamborino, Diana; del-Castillo-Negrete, Diego; Martinell, Julio J.

    2016-07-08

    Multi-filter images from the solar corona are used to obtain temperature maps that are analyzed using techniques based on proper orthogonal decomposition (POD) in order to extract dynamical and structural information at various scales. Exploring active regions before and after a solar flare and comparing them with quiet regions, we show that the multi-scale behavior presents distinct statistical properties for each case that can be used to characterize the level of activity in a region. Information about the nature of heat transport is also to be extracted from the analysis.

  7. High Voltage Solar Concentrator Experiment with Implications for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Mehdi, Ishaque S.; George, Patrick J.; O'Neill, Mark; Matson, Robert; Brockschmidt, Arthur

    2004-01-01

    This paper describes the design, development, fabrication, and test of a high performance, high voltage solar concentrator array. This assembly is believed to be the first ever terrestrial triple-junction-cell solar array rated at over 1 kW. The concentrator provides over 200 W/square meter power output at a nominal 600 Vdc while operating under terrestrial sunlight. Space-quality materials and fabrication techniques were used for the array, and the 3005 meter elevation installation below the Tropic of Cancer allowed testing as close as possible to space deployment without an actual launch. The array includes two concentrator modules, each with a 3 square meter aperture area. Each concentrator module uses a linear Fresnel lens to focus sunlight onto a photovoltaic receiver that uses 240 series-connected triple-junction solar cells. Operation of the two receivers in series can provide 1200 Vdc which would be adequate for the 'direct drive' of some ion engines or microwave transmitters in space. Lens aperture width is 84 cm and the cell active width is 3.2 cm, corresponding to a geometric concentration ratio of 26X. The evaluation includes the concentrator modules, the solar cells, and the materials and techniques used to attach the solar cells to the receiver heat sink. For terrestrial applications, a finned aluminum extrusion was used for the heat sink for the solar cells, maintaining a low cell temperature so that solar cell efficiency remains high.

  8. High Voltage Solar Concentrator Experiment with Implications for Future Space Missions - S6a-35

    NASA Astrophysics Data System (ADS)

    George, I. S. Mehdi P. J.; O'Neill, M.; Matson, R.; Borckschmidt, A.

    2004-12-01

    This paper describes the design, development, fabrication, and test of a high performance, high voltage solar concentrator array. This assembly is believed to be the first ever terrestrial triple-junction-cell solar array rated at over 1 kW. The concentrator provides over 200 W/square meter power output at a nominal 600 Vdc while operating under terrestrial sunlight. Space-quality materials and fabrication techniques were used for the array, and the 3005-meter elevation installation below the Tropic of Cancer allowed testing as close as possible to space deployment without an actual launch. The array includes two concentrator modules, each with a 3 square meter aperture area. Each concentrator module uses a linear Fresnel lens to focus sunlight onto a photovoltaic receiver that uses 240 series-connected triple-junction solar cells. Operation of the two receivers in series can provide 1200 Vdc which would be adequate for the "direct drive" of some ion engines or microwave transmitters in space. Lens aperture width is 84 cm and the cell active width is 3.2 cm, corresponding to a geometric concentration ratio of 26X. The evaluation includes the concentrator modules, the solar cells, and the materials and techniques used to attach the solar cells to the receiver heat sink. For terrestrial applications, a finned aluminum extrusion was used for the heat sink for the solar cells, maintaining a low cell temperature so that solar cell efficiency remains high.

  9. Improved High/Low Junction Silicon Solar Cell

    NASA Technical Reports Server (NTRS)

    Neugroschel, A.; Pao, S. C.; Lindholm, F. A.; Fossum, J. G.

    1986-01-01

    Method developed to raise value of open-circuit voltage in silicon solar cells by incorporating high/low junction in cell emitter. Power-conversion efficiency of low-resistivity silicon solar cell considerably less than maximum theoretical value mainly because open-circuit voltage is smaller than simple p/n junction theory predicts. With this method, air-mass-zero opencircuit voltage increased from 600 mV level to approximately 650 mV.

  10. The Solar System Ballet: A Kinesthetic Spatial Astronomy Activity

    NASA Astrophysics Data System (ADS)

    Heyer, Inge; Slater, T. F.; Slater, S. J.; Astronomy, Center; Education ResearchCAPER, Physics

    2011-05-01

    The Solar System Ballet was developed in order for students of all ages to learn about the planets, their motions, their distances, and their individual characteristics. To teach people about the structure of our Solar System can be revealing and rewarding, for students and teachers. Little ones (and some bigger ones, too) often cannot yet grasp theoretical and spatial ideas purely with their minds. Showing a video is better, but being able to learn with their bodies, essentially being what they learn about, will help them understand and remember difficult concepts much more easily. There are three segments to this activity, which can be done together or separately, depending on time limits and age of the students. Part one involves a short introductory discussion about what students know about the planets. Then students will act out the orbital motions of the planets (and also moons for the older ones) while holding a physical model. During the second phase we look at the structure of the Solar System as well as the relative distances of the planets from the Sun, first by sketching it on paper, then by recreating a scaled version in the class room. Again the students act out the parts of the Solar System bodies with their models. The third segment concentrates on recreating historical measurements of Earth-Moon-Sun system. The Solar System Ballet activity is suitable for grades K-12+ as well as general public informal learning activities.

  11. Solar Cycle Variations of the Occurrence of Coronal Type III Radio Bursts and a New Solar Activity Index

    NASA Astrophysics Data System (ADS)

    Lobzin, V. V.; Cairns, I. H.; Robinson, P. A.

    2011-12-01

    The results of studies of solar cycle variations of the occurrence rate of coronal type III radio bursts are presented. The radio spectra are provided by the Learmonth Solar Radio Observatory (Western Australia), part of the USAF Radio Solar Telescope Network (RSTN). It is found that the occurrence rate of type III bursts strongly correlates with solar activity. However, the profiles for the smoothed type III burst occurrence rate differ considerably from those for the sunspot number, 10.7 cm solar radio flux, and solar flare index. The type III burst occurrence rate (T3BOR) is proposed as a new index of solar activity. T3BOR provides complementary information about solar activity and should be useful in different studies including solar cycle predictions and searches for different periodicities in solar activity. This index can be estimated from daily results of the Automated Radio Burst Identification System (ARBIS). Access to data from other RSTN sites will allow processing 24-hour radio spectra in near-real time and estimating true daily values of this index. It is also shown that coronal type III bursts can even occur when there are no visible sunspots on the Sun. However, no evidence is found that the bursts are not associated with active regions. It is also concluded that the type III burst productivity of active regions exhibits solar cycle variations.

  12. SOLAR CYCLE VARIATIONS OF THE OCCURRENCE OF CORONAL TYPE III RADIO BURSTS AND A NEW SOLAR ACTIVITY INDEX

    SciTech Connect

    Lobzin, Vasili; Cairns, Iver H.; Robinson, Peter A.

    2011-07-20

    This Letter presents the results of studies of solar cycle variations of the occurrence rate of coronal type III radio bursts. The radio spectra are provided by the Learmonth Solar Radio Observatory (Western Australia), part of the USAF Radio Solar Telescope Network (RSTN). It is found that the occurrence rate of type III bursts strongly correlates with solar activity. However, the profiles for the smoothed type III burst occurrence rate differ considerably from those for the sunspot number, 10.7 cm solar radio flux, and solar flare index. The type III burst occurrence rate (T3BOR) is proposed as a new index of solar activity. T3BOR provides complementary information about solar activity and should be useful in different studies including solar cycle predictions and searches for different periodicities in solar activity. This index can be estimated from daily results of the Automated Radio Burst Identification System. Access to data from other RSTN sites will allow processing 24 hr radio spectra in near-real time and estimating true daily values of this index. It is also shown that coronal type III bursts can even occur when there are no visible sunspots on the Sun. However, no evidence is found that the bursts are not associated with active regions. It is also concluded that the type III burst productivity of active regions exhibits solar cycle variations.

  13. Flexible, highly efficient all-polymer solar cells

    PubMed Central

    Kim, Taesu; Kim, Jae-Han; Kang, Tae Eui; Lee, Changyeon; Kang, Hyunbum; Shin, Minkwan; Wang, Cheng; Ma, Biwu; Jeong, Unyong; Kim, Taek-Soo; Kim, Bumjoon J.

    2015-01-01

    All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices. PMID:26449658

  14. Multiple Exciton Generation for Highly Efficient Solar Cells

    NASA Astrophysics Data System (ADS)

    Nozik, Arthur

    2007-03-01

    In order to utilize solar power for the production of electricity and fuel on a massive scale, it will be necessary to develop solar photon conversion systems that have an appropriate combination of high efficiency and low capital cost (/m^2). One new potential approach to high solar cell efficiency is to utilize the unique properties of semiconductor quantum dot nanostructures to control the relaxation dynamics of photogenerated carriers to produce either enhanced photocurrent through efficient multiple exciton generation (MEG) or enhanced photopotential through hot electron transport and transfer processes. To achieve these desirable effects it is necessary to understand and control the dynamics of electron relaxation, cooling, multiple exciton generation , transport, and interfacial electron transfer of the photogenerated carriers with fs to ns time resolution. We have been studying these fundamental dynamics in bulk and nanoscale semiconductors (quantum dots, quantum wires, and quantum wells) using femtosecond transient absorption, photoluminescence, and THz spectroscopy. This work will be summarized and recent advances in creating multiple excitons from a single photon will be discussed, including a unique model to explain efficient MEG based on the coherent superposition of multiple excitonic states. Various possible configurations for quantum dot solar cells that could produce ultra-high conversion efficiencies for the production of electricity, as well as for producing solar fuels (for example, hydrogen from water splitting), will be discussed, along with associated thermodynamic calculations that show the increase in the maximum theoretical gain in solar photon conversion efficiency for both electricity and fuel production.

  15. Flexible, highly efficient all-polymer solar cells.

    PubMed

    Kim, Taesu; Kim, Jae-Han; Kang, Tae Eui; Lee, Changyeon; Kang, Hyunbum; Shin, Minkwan; Wang, Cheng; Ma, Biwu; Jeong, Unyong; Kim, Taek-Soo; Kim, Bumjoon J

    2015-01-01

    All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices.

  16. Flexible, highly efficient all-polymer solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Taesu; Kim, Jae-Han; Kang, Tae Eui; Lee, Changyeon; Kang, Hyunbum; Shin, Minkwan; Wang, Cheng; Ma, Biwu; Jeong, Unyong; Kim, Taek-Soo; Kim, Bumjoon J.

    2015-10-01

    All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices.

  17. Long-Range Solar Activity Predictions: A Reprieve from Cycle #24's Activity

    NASA Technical Reports Server (NTRS)

    Richon, K.; Schatten, K.

    2003-01-01

    We discuss the field of long-range solar activity predictions and provide an outlook into future solar activity. Orbital predictions for satellites in Low Earth Orbit (LEO) depend strongly on exospheric densities. Solar activity forecasting is important in this regard, as the solar ultra-violet (UV) and extreme ultraviolet (EUV) radiations inflate the upper atmospheric layers of the Earth, forming the exosphere in which satellites orbit. Rather than concentrate on statistical, or numerical methods, we utilize a class of techniques (precursor methods) which is founded in physical theory. The geomagnetic precursor method was originally developed by the Russian geophysicist, Ohl, using geomagnetic observations to predict future solar activity. It was later extended to solar observations, and placed within the context of physical theory, namely the workings of the Sun s Babcock dynamo. We later expanded the prediction methods with a SOlar Dynamo Amplitude (SODA) index. The SODA index is a measure of the buried solar magnetic flux, using toroidal and poloidal field components. It allows one to predict future solar activity during any phase of the solar cycle, whereas previously, one was restricted to making predictions only at solar minimum. We are encouraged that solar cycle #23's behavior fell closely along our predicted curve, peaking near 192, comparable to the Schatten, Myers and Sofia (1996) forecast of 182+/-30. Cycle #23 extends from 1996 through approximately 2006 or 2007, with cycle #24 starting thereafter. We discuss the current forecast of solar cycle #24, (2006-2016), with a predicted smoothed F10.7 radio flux of 142+/-28 (1-sigma errors). This, we believe, represents a reprieve, in terms of reduced fuel costs, etc., for new satellites to be launched or old satellites (requiring reboosting) which have been placed in LEO. By monitoring the Sun s most deeply rooted magnetic fields; long-range solar activity can be predicted. Although a degree of uncertainty

  18. GLOBAL DYNAMICS OF SUBSURFACE SOLAR ACTIVE REGIONS

    SciTech Connect

    Jouve, L.; Brun, A. S.

    2013-01-01

    We present three-dimensional numerical simulations of a magnetic loop evolving in either a convectively stable or unstable rotating shell. The magnetic loop is introduced into the shell in such a way that it is buoyant only in a certain portion in longitude, thus creating an {Omega}-loop. Due to the action of magnetic buoyancy, the loop rises and develops asymmetries between its leading and following legs, creating emerging bipolar regions whose characteristics are similar to those of observed spots at the solar surface. In particular, we self-consistently reproduce the creation of tongues around the spot polarities, which can be strongly affected by convection. We further emphasize the presence of ring-shaped magnetic structures around our simulated emerging regions, which we call 'magnetic necklace' and which were seen in a number of observations without being reported as of today. We show that those necklaces are markers of vorticity generation at the periphery and below the rising magnetic loop. We also find that the asymmetry between the two legs of the loop is crucially dependent on the initial magnetic field strength. The tilt angle of the emerging regions is also studied in the stable and unstable cases and seems to be affected both by the convective motions and the presence of a differential rotation in the convective cases.

  19. Solar-powered rocket engine optimization for high specific impulse

    NASA Astrophysics Data System (ADS)

    Pande, J. Bradley

    1993-11-01

    Hercules Aerospace is currently developing a solar-powered rocket engine (SPRE) design optimized for high specific impulse (Isp). The SPRE features a low loss geometry in its light-gathering cavity, which includes an integral secondary concentrator. The simple one-piece heat exchanger is made from refractory metal and/or ceramic open-celled foam. The foam's high surface-area-to-volume ratio will efficiently transfer the thermal energy to the hydrogen propellant. The single-pass flow of propellant through the heat exchanger further boosts thermal efficiency by regeneratively cooling surfaces near the entrance of the optical cavity. These surfaces would otherwise reradiate a significant portion of the captured solar energy back out of the solar entrance. Such design elements promote a high overall thermal efficiency and hence, a high operating Isp

  20. High Efficiency Solar Power via Separated Photo and Voltaic Pathways

    SciTech Connect

    Michael J. Naughton

    2009-02-17

    This project demonstrates a novel nanostructured solar cell architecture capable of achieving high efficiency levels that is relatively simple and inexpensive to manufacture. The high efficiency will be achieved by the novel structure that separates the path of the photons from the path of the generated charge carriers. In this way, the photon path can be long for maximum light absorption, while the path for carriers can be short for maximum electronic energy harvesting. The combination of maximum light absorption coupled with maximum carrier harvesting is the basis for the expected high efficiency. The project will develop high efficiency solar cell prototypes utilizing this unique nanostructured architecture. The project addresses the fundamental limitation inherent in all current solar cell designs, and which opens a pathway to development for high efficiency solar cells at low cost. Realizing this goal will result in a levelized cost of electricity in the range of 10¢/kWh, which would achieve the long-sought goal of making photovoltaic electricity cost competitive with fossil-fuel generated electricity without any governmental subsidies. This breakthrough would spur the already rapid growth in the photovoltaic industry to an explosive pace, with significant, widespread benefit to the national economy and the nation’s energy security. The initial target of the program is to develop single-junction solar cells using ultrathin amorphous silicon with the performance approaching that of single crystal silicon cells.

  1. Dynamo model for grand maxima of solar activity: can superflares occur on the Sun?

    NASA Astrophysics Data System (ADS)

    Kitchatinov, L. L.; Olemskoy, S. V.

    2016-07-01

    Recent data on superflares on Sun-like stars and radiocarbon data on solar activity in the past are both indicative of transient epochs of unusually high magnetic activity. We propose an explanation for the grand activity maxima in the framework of a solar dynamo model with fluctuating parameters. Solar-type dynamos are oscillatory because of the combination of the solar-type differential rotation with positive (in the Northern hemisphere) alpha-effect. An artificial reversal of the sign in the alpha-effect changes the dynamo to a steady regime with hundreds of times larger magnetic energy compared to the amplitude of the cyclic dynamo. Sufficiently large and durable fluctuations reversing the sign of the alpha-effect during the growth phase of a magnetic cycle can, therefore, cause a transient change to a steady dynamo with considerably increased magnetic energy. This qualitative scenario for grand activity maxima is supported by computations of the dynamo model with a fluctuating alpha-effect. The computed statistics of several thousand magnetic cycles gives examples of cycles with very high magnetic energy. Our preliminary estimations, however, suggest that the probability of solar superflares is extremely low.

  2. Solar Array Arcing Failure Mode and High Voltage Array Testing

    NASA Astrophysics Data System (ADS)

    Ferguson, Dale C.

    2002-10-01

    In 1998, a new failure mode for space solar arrays was discovered. A flowchart for this failure mode is presented. Since the discovery of this arc failure mode, many tactics have been used to defeat it. The arc thresholds and arc mitigation strategies must be determined in vacuum-plasma tank testing on Earth. Results from these tests must then be extrapolated to the space plasma environment. Thus, the test conditions on Earth must be adequate to reproduce the important aspects of the phenomenon in space. At Glenn Research Center, we have been testing solar arrays for their arc thresholds and sustained arcing thresholds. In this paper, we detail the test conditions for a specific set of tests-those aimed at qualifying the Boeing Solar Tile solar arrays to operate in space at very high voltages (300 V or more).

  3. CONDITIONED ANALYSIS OF HIGH-LATITUDE SOLAR WIND INTERMITTENCY

    SciTech Connect

    D'Amicis, R.; Consolini, G.; Bavassano, B.; Bruno, R.

    2012-08-10

    The solar wind is a turbulent medium displaying intermittency. Its intermittent features have been widely documented and studied, showing how the intermittent character is different in fast and slow wind. In this paper, a statistical conditioned analysis of the solar wind intermittency for a period of high-latitude fast solar wind is presented. In particular, the intermittent features are investigated as a function of the Alfvenic degree of fluctuations at a given scale. The results show that the main contribution to solar wind intermittency is due to non-Alfvenic structures, while Alfvenic increments are found to be characterized by a smaller level of intermittency than the previous ones. Furthermore, the lifetime statistics of Alfvenic periods are discussed in terms of a multiscale texture of randomly oriented flux tubes.

  4. Solar activity and its evolution across the corona: recent advances

    NASA Astrophysics Data System (ADS)

    Zuccarello, Francesca; Balmaceda, Laura; Cessateur, Gael; Cremades, Hebe; Guglielmino, Salvatore L.; Lilensten, Jean; Dudok de Wit, Thierry; Kretzschmar, Matthieu; Lopez, Fernando M.; Mierla, Marilena; Parenti, Susanna; Pomoell, Jens; Romano, Paolo; Rodriguez, Luciano; Srivastava, Nandita; Vainio, Rami; West, Matt; Zuccarello, Francesco P.

    2013-04-01

    Solar magnetism is responsible for the several active phenomena that occur in the solar atmosphere. The consequences of these phenomena on the solar-terrestrial environment and on Space Weather are nowadays clearly recognized, even if not yet fully understood. In order to shed light on the mechanisms that are at the basis of the Space Weather, it is necessary to investigate the sequence of phenomena starting in the solar atmosphere and developing across the outer layers of the Sun and along the path from the Sun to the Earth. This goal can be reached by a combined multi-disciplinary, multi-instrument, multi-wavelength study of these phenomena, starting with the very first manifestation of solar active region formation and evolution, followed by explosive phenomena (i.e., flares, erupting prominences, coronal mass ejections), and ending with the interaction of plasma magnetized clouds expelled from the Sun with the interplanetary magnetic field and medium. This wide field of research constitutes one of the main aims of COST Action ES0803: Developing Space Weather products and services in Europe. In particular, one of the tasks of this COST Action was to investigate the Progress in Scientific Understanding of Space Weather. In this paper we review the state of the art of our comprehension of some phenomena that, in the scenario outlined above, might have a role on Space Weather, focusing on the researches, thematic reviews, and main results obtained during the COST Action ES0803.

  5. Climate interaction mechanism between solar activity and terrestrial biota

    NASA Astrophysics Data System (ADS)

    Osorio-Rosales, J.; Mendoza, B.

    2012-07-01

    The solar activity has been proposed as one of the main factors of Earth's climate variability, however biological processes have been also proposed. Dimethylsulfide (DMS) is the main biogenic sulfur compound in the atmosphere. DMS is mainly produced by the marine biosphere and plays an important role in the atmospheric sulfur cycle. Currently it is accepted that terrestrial biota not only adapts to environmental conditions but influences them through regulations of the chemical composition of the atmosphere. In the present study we used different methods of analysis to investigate the relationship between the DMS, Low Clouds, Ultraviolet Radiation A (UVA) and Sea Surface Temperature (SST) in the Southern Hemisphere. We found that the series analyzed have different periodicities which can be associated with climatic and solar phenomena such as El Niño, the Quasi-Biennial Oscillation (QBO) and the changes in solar activity. Also, we found an anticorrelation between DMS and UVA, the relation between DMS and clouds is mainly non-linear and there is a correlation between DMS and SST. Then, our results suggest a positive feedback interaction among DMS, solar radiation and cloud at time-scales shorter than the solar cycle.

  6. Ulysses solar wind plasma observations at high latitudes

    SciTech Connect

    Riley, P.; Bame, S.J.; Barraclough, B.L.

    1996-10-01

    Ulysses reached its peak northerly heliolatitude of 80.2{degrees}N on July 31, 1995, and now is moving towards aphelion at 5.41 AU which it will reach in May, 1998. We summarize measurements from the solar wind plasma experiment, SWOOPS, emphasizing northern hemispheric observations but also providing southern and equatorial results for comparison. The solar wind momentum flux during Ulysses` fast pole-to- pole transit at solar minimum was significantly higher over the poles than at near-equatorial latitudes, suggesting a non-circular cross section for the heliosphere. Furthermore, modest asymmetries in the wind speed, density, and mass flux were observed between the two hemispheres during the fast latitude scan. The solar wind was faster and less dense in the north than in the south. These asymmetries persist in the most recent high- and mid-latitude data but are less pronounced. As of July 1, 1996 the northern fast solar wind has lacked any strong stream interactions or shocks and, although a comprehensive search has not yet been made, no CMEs have yet been identified during this interval. On the other hand, Alfv{acute e}nic, compressional, and pressure balanced features are abundant at high latitudes. The most recent data, at 4 AU and 32{degrees}N, has begun to show the effects of solar rotation modulated features in the form of recurrent compressed regions.

  7. Highly Flexible Dye-sensitized Solar Cells Produced by Sewing Textile Electrodes on Cloth

    NASA Astrophysics Data System (ADS)

    Yun, Min Ju; Cha, Seung I.; Seo, Seon Hee; Lee, Dong Y.

    2014-06-01

    Textile forms of solar cells possess special advantages over other types of solar cells, including their light weight, high flexibility, and mechanical robustness. Recent demand for wearable devices has promoted interest in the development of high-efficiency textile-based solar cells for energy suppliers. However, the weaving process occurs under high-friction, high-tension conditions that are not conducive to coated solar-cell active layers or electrodes deposited on the wire or strings. Therefore, a new approach is needed for the development of textile-based solar cells suitable for woven fabrics for wide-range application. In this report, we present a highly flexible, efficient DSSC, fabricated by sewing textile-structured electrodes onto casual fabrics such as cotton, silk, and felt, or paper, thereby forming core integrated DSSC structures with high energy-conversion efficiency (~5.8%). The fabricated textile-based DSSC devices showed high flexibility and high performance under 4-mm radius of curvature over thousands of deformation cycles. Considering the vast number of textile types, our textile-based DSSC devices offer a huge range of applications, including transparent, stretchable, wearable devices.

  8. Highly Flexible Dye-sensitized Solar Cells Produced by Sewing Textile Electrodes on Cloth

    PubMed Central

    Yun, Min Ju; Cha, Seung I.; Seo, Seon Hee; Lee, Dong Y.

    2014-01-01

    Textile forms of solar cells possess special advantages over other types of solar cells, including their light weight, high flexibility, and mechanical robustness. Recent demand for wearable devices has promoted interest in the development of high-efficiency textile-based solar cells for energy suppliers. However, the weaving process occurs under high-friction, high-tension conditions that are not conducive to coated solar-cell active layers or electrodes deposited on the wire or strings. Therefore, a new approach is needed for the development of textile-based solar cells suitable for woven fabrics for wide-range application. In this report, we present a highly flexible, efficient DSSC, fabricated by sewing textile-structured electrodes onto casual fabrics such as cotton, silk, and felt, or paper, thereby forming core integrated DSSC structures with high energy-conversion efficiency (~5.8%). The fabricated textile-based DSSC devices showed high flexibility and high performance under 4-mm radius of curvature over thousands of deformation cycles. Considering the vast number of textile types, our textile-based DSSC devices offer a huge range of applications, including transparent, stretchable, wearable devices. PMID:24957920

  9. Bimodal solar system based on a ultra-high-temperature TEC

    NASA Astrophysics Data System (ADS)

    Ogloblin, B. G.; Kirillov, E. Ya.; Klimov, A. V.; Shalaev, A. I.; Shumov, D. P.; Ender, A. Ya.; Kuznetsov, V. I.; Sitnov, V. I.

    1996-03-01

    The paper considers an ecological, solar, bimodal system with ultra-high temperature thermionic energy converter (TEC). The solar bimodal Space Electric Propulsion System (SEPS) characteristics are presented.

  10. Impact of variations in solar activity on hydrological decadal patterns in northern Italy

    NASA Astrophysics Data System (ADS)

    Zanchettin, D.; Rubino, A.; Traverso, P.; Tomasino, M.

    2008-06-01

    Using spectral and statistical analyses of discharges and basin average precipitation rates acquired over the Po River since the early 1800s, we investigate the impact of variations in solar activity on hydrological decadal patterns over northern Italy. Wet and dry periods appear to alternate in accordance with polarized sunspot cycles. Intriguingly, a solar signature on Po River discharges is detected to be highly significant since the late 1800s, before the onset of sunspots hyperactivity established by the middle 1900s. In particular, observed hydrological patterns over northern Italy are significantly correlated, under periods of quiet sunspot activity, with parameters characterizing the Sun's orbital motion, specifically with the time derivative of the solar angular momentum (τ) which is thought to modulate the strength of the solar wind and sunspot dynamics under weak sunspot activity. The North Atlantic Oscillation (NAO) is detected as potential link between the Sun and Po River discharges, since it is significantly correlated with both solar activity and the decadal variability in the north Italian climate. In particular, positive (negative) NAO anomalies, which are associated with comparatively lower (higher) Po River discharges, are assessed to alternatively correlate at decadal timescales either with τ or with the Earth's geomagnetic activity (GA), which closely follows sunspot activity. This changing correlation seems to be regulated by the strength of sunspot activity: under periods of quiet sunspot activity, a weakening of the GA-NAO connection and a reinforcement of the τ-NAO connection is observed. In this sense, the strength of solar activity apparently modulates the connection between the NAO and Po River discharges.

  11. A solar cycle timing predictor - The latitude of active regions

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1990-01-01

    A 'Spoerer butterfly' method is used to examine solar cycle 22. It is shown from the latitude of active regions that the cycle can now be expected to peak near November 1989 + or - 8 months, basically near the latter half of 1989.

  12. Analysis of Solar Magnetic Activity with the Wavelet Coherence Method

    NASA Astrophysics Data System (ADS)

    Velasco, V. M.; Perez-Peraza, J. A.; Mendoza, B. E.; Valdes-Galicia, J. F.; Sosa, O.; Alvarez-Madrigal, M.

    2007-05-01

    The origin, behavior and evolution of the solar magnetic field is one of the main challenges of observational and theoretical solar physics. Up to now the Dynamo theory gives us the best approach to the problem. However, it is not yet able to predict many features of the solar activity, which seems not to be strictly a periodical phenomenon. Among the indicators of solar magnetic variability there is the 11-years cycle of sunspots, as well as the solar magnetic cycle of 22 years (the Hale cycle). In order to provide more elements to the Dynamo theory that could help it in the predicting task, we analyze here the plausible existence of other periodicities associated with the solar magnetic field. In this preliminary work we use historical data (sunspots and aurora borealis), proxies (Be10 and C14) and modern instrumental data (Coronal Holes, Cosmic Rays, sunspots, flare indexes and solar radio flux at 10.7 cm). To find relationships between different time-frequency series we have employed the t Wavelet Coherence technique: this technique indicates if two time-series of solar activity have the same periodicities in a given time interval. If so, it determines whether such relation is a linear one or not. Such a powerful tool indicates that, if some periodicity at a given frequency has a confidence level below 95%, it appears very lessened or does not appear in the Wavelet Spectral Analysis, such periodicity does not exist . Our results show that the so called Glaisberg cycle of 80-90 years and the periodicity of 205 years (the Suess cycle) do not exist . It can be speculated that such fictitious periodicities hav been the result of using the Fourier transform with series with are not of stationary nature, as it is the case of the Be10 and C14 series. In contrast we confirm the presence of periodicities of 1.3, 1.7, 3.5, 5.5, 7, 60, 120 and 240 years. The concept of a Glaisberg cycle falls between those of 60 and 120 years. We conclude that the periodicity of 120 years

  13. The ionosphere under extremely prolonged low solar activity

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Chen, Yiding; Le, Huijun; Kurkin, Vladimir I.; Polekh, Nelya M.; Lee, Chien-Chih

    2011-04-01

    A critical question in ionospheric physics is the state of the ionosphere and relevant processes under extreme solar activities. The solar activity during 2007-2009 is extremely prolonged low, which offers us a unique opportunity to explore this issue. In this study, we collected the global ionosonde measurements of the F2 layer critical frequency (foF2), E layer critical frequency (foE), and F layer virtual height (h‧F) and the total electron content (TEC) maps produced by the Jet Propulsion Laboratory, which were retrieved from dual-frequency GPS receivers distributed worldwide, to investigate the ionospheric phenomena during solar minimum of cycle 23/24, particularly the difference in the ionosphere between solar minima of cycle 23/24 and the preceding cycles. The analysis indicates that the moving 1 year mean foF2 at most ionosonde stations and the global average TEC went to the lowest during cycle 23/24 minimum. The solar cycle differences in foF2 minima display local time dependence, being more negative during the daytime than at night. Furthermore, the cycle difference in daytime foF2 minima is about -0.5 MHz and even reaches to around -1.2 MHz. In contrast, a complex picture presents in global h‧F and foE. Evident reduction exists prevailingly in the moving 1 year mean h‧F at most stations, while no huge differences are detected at several stations. A compelling feature is the increase in foE at some stations, which requires independent data for further validation. Quantitative analysis indicates that record low foF2 and low TEC can be explained principally in terms of the decline in solar extreme ultraviolet irradiance recorded by SOHO/SEM, which suggests low solar EUV being the prevailing contributor to the unusual low electron density in the ionosphere during cycle 23/24 minimum. It also verifies that a quadratic fitting still reasonably captures the solar variability of foF2 and global average TEC at such low solar activity levels.

  14. Active region upflow plasma: its relation to small activity and the solar wind

    NASA Astrophysics Data System (ADS)

    Mandrini, Cristina H.; Culhane, J. Leonard; Cristiani, Germán; Vásquez, Alberto; Van Driel-Gesztelyi, Lidia; Baker, Deborah; Pick, Monique; Demoulin, Pascal; Nuevo, Federico

    Recent studies show that active region (AR) upflowing plasma, observed by the Hinode EUV Imaging Spectrometer (EIS), can gain access to open field lines and be released into the solar wind via magnetic interchange reconnection occurring below the source surface at magnetic null-points in pseudo-streamer configurations. When only one simple bipolar AR is present on the Sun and it is fully covered by the separatrix of a streamer, like AR 10978 on December 2007, it seems unlikely that the upflowing AR plasma could find its way into the slow solar wind. However, signatures of plasma with AR composition at 1 AU that appears to originate from the West of AR 10978 were recently found by Culhane and coworkers. We present a detailed topology analysis of AR 10978 based on a linear force-free magnetic field model at the AR scale, combined with a global PFSS model. This allows us, on one hand, to explain the variations observed in the upflows to the West of the AR as the result of magnetic reconnection at quasi-separatrix layers (QSLs). While at a global scale, we show that reconnection, occurring in at least two main steps, first at QSLs and later at a high-altitude coronal null-point, allows the AR plasma to get around the topological obstacle of the streamer separatrix and be released into the solar wind.

  15. Flat-plate solar array project. Volume 4: High-efficiency solar cells

    NASA Technical Reports Server (NTRS)

    Leipold, M.; Cheng, L.; Daud, T.; Mokashi, A.; Burger, D.; Christensen, E. (Editor); Murry, J. (Editor); Bengelsdorf, I. (Editor)

    1986-01-01

    The High Efficiency Solar Cell Task was assigned the objective of understanding and developing high efficiency solar cell devices that would meet the cost and performance goals of the Flat Plate Solar Array (FSA) Project. The need for research dealing with high efficiency devices was considered important because of the role efficiency plays in reducing price per watt of generated energy. The R&D efforts conducted during the 1982 to 1986 period are summarized to provide understanding and control of energy conversion losses associated with crystalline silicon solar cells. New levels of conversion efficiency were demonstrated. Major contributions were made both to the understanding and reduction of bulk and surface losses in solar cells. For example, oxides, nitrides, and polysilicon were all shown to be potentially useful surface passivants. Improvements in measurement techniques were made and Auger coefficients and spectral absorption data were obtained for unique types of silicon sheets. New modelling software was developed including a program to optimize a device design based on input characteristics of a cell.

  16. High-Efficiency Solar Thermal Vacuum Demonstration Completed for Refractive Secondary Concentrator

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2001-01-01

    Common to many of the space applications that utilize solar thermal energy--such as electric power conversion, thermal propulsion, and furnaces--is a need for highly efficient, solar concentration systems. An effort is underway at the NASA Glenn Research Center to develop the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, the refractive secondary concentrator enables very high system concentration ratios (10,000 to 1) and very high temperatures (>2000 K). The innovative refractive secondary concentrator offers significant advantages over all other types of secondary concentrators. The refractive secondary offers the highest throughput efficiency, provides for flux tailoring, requires no active cooling, relaxes the pointing and tracking requirements of the primary concentrator, and enables very high system concentration ratios. This technology has broad applicability to any system that requires the conversion of solar energy to heat. Glenn initiated the development of the refractive secondary concentrator in support of Shooting Star, a solar thermal propulsion flight experiment, and continued the development in support of Space Solar Power.

  17. Statistical analysis of solar energetic particle events and related solar activity

    NASA Astrophysics Data System (ADS)

    Dierckxsens, Mark; Patsou, Ioanna; Tziotziou, Kostas; Marsh, Michael; Lygeros, Nik; Crosby, Norma; Dalla, Silvia; Malandraki, Olga

    2013-04-01

    The FP7 COMESEP (COronal Mass Ejections and Solar Energetic Particles: forecasting the space weather impact) project is developing tools for forecasting geomagnetic storms and solar energetic particle (SEP) radiation storms. Here we present preliminary results on a statistical analysis of SEP events and their parent solar activity during Solar Cycle 23. The work aims to identify correlations between solar events and SEP events relevant for space weather, as well as to quantify SEP event probabilities for use within the COMESEP alert system. The data sample covers the SOHO era and is based on the SEPEM reference event list [http://dev.sepem.oma.be/]. Events are subdivided if separate enhancements are observed in higher energy channels as defined for the list of Cane et al (2010). Energetic Storm Particle (ESP) enhancements during these events are identified by associating ESP-like increases in the proton channels with shocks detected in ACE and WIND data. Their contribution has been estimated and subtracted from the proton fluxes. Relationships are investigated between solar flare parameters such as X-ray intensity and heliographic location on the one hand, and the probability of occurrence and strength of energetic proton flux increases on the other hand. The same exercise is performed using the velocity and width of coronal mass ejections to examine their SEP productiveness. Relationships between solar event characteristics and SEP event spectral indices and fluences are also studied, as well as enhancements in heavy ion fluxes measured by the SIS instrument on board the ACE spacecraft during the same event periods. This work has received funding from the European Commission FP7 Project COMESEP (263252).

  18. Ulysses Composition, Plasma and Magnetic Field Observations of High Speed Solar wind Streams

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1997-01-01

    During 1992-3 as the Ulysses spacecraft passed in and out of the southern high speed solar wind stream, the Solar Wind Ion Spectrometer, SWICS made continuous composition and temperature measurements of all major solar wind ions.

  19. Design for the fabrication of high efficiency solar cells

    DOEpatents

    Simmons, Joseph H.

    1998-01-01

    A method and apparatus for a photo-active region for generation of free carriers when a first surface is exposed to optical radiation. The photo-active region includes a conducting transparent matrix and clusters of semiconductor materials embedded within the conducting transparent matrix. The clusters are arranged in the matrix material so as to define at least a first distribution of cluster sizes ranging from those with the highest bandgap energy near a light incident surface of the photo-active region to those with the smallest bandgap energy near an opposite second surface of the photo-active region. Also disclosed is a method and apparatus for a solar cell. The solar cell includes a photo-active region containing a plurality of semiconductor clusters of varying sizes as described.

  20. Birthdates of patients affected by mental illness and solar activity: A study from Italy

    NASA Astrophysics Data System (ADS)

    Ventriglio, Antonio; Borelli, Albacenzina; Bellomo, Antonello; Lepore, Alberto

    2011-04-01

    PurposeThis epidemiologic study tested an hypothesized association between the year of birth of persons with major mental illnesses and solar activity over the past century. MethodsWe collected data on diagnoses and birthdates of psychiatric patients born between 1926 and 1975 (N = 1954) in south Italy for comparison to yearly solar activity as registered by the International Observatories. ResultsWe found a strong inverse correlation between high solar activity (HSA) and incidence of schizophrenia and bipolar disorder in a 20-year period whereas the incidence of non-affective/non-psychotic disorders was moderately associated with HSA in the same period. ConclusionsInterpretation of the observed correlations between HSA during years of birth and the incidence of mental illnesses remains unclear, but the findings encourage further study.

  1. An Alternative Measure of Solar Activity from Detailed Sunspot Datasets

    NASA Astrophysics Data System (ADS)

    Muraközy, J.; Baranyi, T.; Ludmány, A.

    2016-05-01

    The sunspot number is analyzed by using detailed sunspot data, including aspects of observability, sunspot sizes, and proper identification of sunspot groups as discrete entities of solar activity. The tests show that in addition to the subjective factors there are also objective causes of the ambiguities in the series of sunspot numbers. To introduce an alternative solar-activity measure, the physical meaning of the sunspot number has to be reconsidered. It contains two components whose numbers are governed by different physical mechanisms and this is one source of the ambiguity. This article suggests an activity index, which is the amount of emerged magnetic flux. The only long-term proxy measure is the detailed sunspot-area dataset with proper calibration to the magnetic flux. The Debrecen sunspot databases provide an appropriate source for the establishment of the suggested activity index.

  2. Impact of Magnetic Activity on Solar and Stellar Environments

    NASA Astrophysics Data System (ADS)

    Nandi, Dibyendu

    2015-08-01

    The variable activity of stars such as the Sun is mediated via stellar magnetic fields, radiative and energetic particle fluxes, stellar winds and magnetic storms. This activity influences planetary atmospheres, climate and habitability. Studies of this intimate relationship between the parent star, its astrosphere (i.e., the equivalent of the heliosphere) and the planets that it hosts have reached a certain level of maturity within our own solar system - fuelled both by advances in theoretical modelling and a host of satellites that observe the Sun-Earth system. Based on this understanding the first attempts are being made to characterize the interactions between stars and planets and their coupled evolution, which have relevance for habitability and the search for habitable planets. In this talk I will review recent findings in this context and highlight the activities of the IAU Inter-Division E-F Woking Group on “Impact of Magnetic Activity on Solar and Stellar Environments”.

  3. A Solar Station for Education and Research on Solar Activity at a National University in Peru

    NASA Astrophysics Data System (ADS)

    Ishitsuka, J. K.

    2006-11-01

    pepe@geo.igp.gob.pe Beginning in 1937, the Carnegie Institution of Washington made active regional observations with a spectro-helioscope at the Huancayo Observatory. In 1957, during the celebration of the International Geophysical Year Mutsumi Ishitsuka arrived at the Geophysical Institute of Peru and restarted solar observations from the Huancayo Observatory. Almost 69 years have passed and many contributions for the geophysical and solar sciences have been made. Now the Instituto Geofisico del Peru (IGP), in cooperation with the Faculty of Sciences of the Universidad Nacional San Luis Gonzaga de Ica (UNICA), and with the support of the National Astronomical Observatory of Japan, are planning to construct a solar station refurbishing a coelostat that worked for many years at the Huancayo Observatory. A 15 cm refractor telescope is already installed at the university, for the observation of sunspots. A solar Flare Monitor Telescope (FMT) from Hida Observatory of Kyoto University could be sent to Peru and installed at the solar station at UNICA. As the refurbished coelostat, FMT will become a good tool to improve education and research in sciences.

  4. Seismic Holography of the Solar Interior near the Maximum and Minimum of Solar Activity

    NASA Astrophysics Data System (ADS)

    Díaz Alfaro, M.; Pérez Hernández, F.; González Hernández, I.; Hartlep, T.

    2016-05-01

    The base of the convection zone and the tachocline play a major role in the study of the dynamics of the Sun, especially in the solar dynamo. Here, we present a phase-sensitive helioseismic holography method to infer changes in the sound-speed profile of the solar interior. We test the technique using numerically simulated data by Zhao et al. ( Astrophys. J. 702, 1150, 2009) with sound-speed perturbations at 0.7 R_{⊙}. The technique adequately recovers the perturbed sound-speed profile and is seen to be capable of detecting changes in the sound speed as low as 0.05 %. We apply the method to two GONG solar time series of approximately one year, each comprising 13 Bartels rotations, BR2295-BR2307 and BR2387-BR2399, near the maximum and at a minimum of solar activity, respectively. We successfully recover a sound-speed variation with respect to a standard solar model, consistent with previous results. However, we fail to recover a realistic sound-speed variation between maximum and minimum.

  5. Cosmic rays, solar activity, magnetic coupling, and lightning incidence

    NASA Technical Reports Server (NTRS)

    Ely, J. T. A.

    1984-01-01

    A theoretical model is presented and described that unifies the complex influence of several factors on spatial and temporal variation of lightning incidence. These factors include the cosmic radiation, solar activity, and coupling between geomagnetic and interplanetary (solar wind) magnetic fields. Atmospheric electrical conductivity in the 10 km region was shown to be the crucial parameter altered by these factors. The theory reconciles several large scale studies of lightning incidence previously misinterpreted or considered contradictory. The model predicts additional strong effects on variations in lightning incidence, but only small effects on the morphology and rate of thunderstorm development.

  6. Variations of Solar Activity and Irradiance (Julius Bartels Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Solanki, Sami K.

    2015-04-01

    Variations in solar activity and its fluctuating irradiance have been invoked as drivers of the Earth's space environment and its climate. Although, such variations and fluctuations have been followed for decades, partly even centuries, a number of important and basic questions surrounding them remain unanswered, or controversial. This also leads to significant uncertainties in the role played by the Sun in, e.g., driving climate change. In this lecture I provide an overview of our present knowledge and understanding of solar variability, covering both, commonly accepted and some of the more controversial aspects.

  7. Quasi-biennial modulation of solar neutrino flux: connections with solar activity

    NASA Astrophysics Data System (ADS)

    Vecchio, A.; Laurenza, M.; D'alessi, L.; Carbone, V.; Storini, M.

    2011-12-01

    A quasi-biennial periodicity has been recently found (Vecchio et al., 2010) in the solar neutrino flux, as detected at the Homestake experiment, as well as in the flux of solar energetic protons, by means of the Empirical Modes Decomposition technique. Moreover, both fluxes have been found to be significantly correlated at the quasi-biennial timescale, thus supporting the hypothesis of a connection between solar neutrinos and solar activity. The origin of this connection is investigated, by modeling how the standard Mikheyev-Smirnov-Wolfenstein (MSW) effect (the process for which the well-known neutrino flavor oscillations are modified in passing through the material) could be influenced by matter fluctuations. As proposed by Burgess et al., 2004, by introducing a background magnetic field in the helioseismic model, density fluctuations can be excited in the radiative zone by the resonance between helioseismic g-modes and Alfvén waves. In particular, with reasonable values of the background magnetic field (10-100 kG), the distance between resonant layers could be of the same order of neutrino oscillation length. We study the effect over this distance of a background magnetic field which is variable with a ~2 yr period, in agreement with typical variations of solar activity. Our findings suggest that the quasi-biennial modulation of the neutrino flux is theoretically possible as a consequence of the magnetic field variations in the solar interior. A. Vecchio, M. Laurenza, V. Carbone, M. Storini, The Astrophysical Journal Letters, 709, L1-L5 (2010). C. Burgess, N. S. Dzhalilov, T. I. Rashba, V., B.Semikoz, J. W. F. Valle, Mon. Not. R. Astron. Soc., 348, 609-624 (2004).

  8. Modeling of the atmospheric response to a strong decrease of the solar activity

    NASA Astrophysics Data System (ADS)

    Rozanov, Eugene V.; Egorova, Tatiana A.; Shapiro, Alexander I.; Schmutz, Werner K.

    2012-07-01

    We estimate the consequences of a potential strong decrease of the solar activity using the model simulations of the future driven by pure anthropogenic forcing as well as its combination with different solar activity related factors: total solar irradiance, spectral solar irradiance, energetic electron precipitation, solar protons and galactic cosmic rays. The comparison of the model simulations shows that introduced strong decrease of solar activity can lead to some delay of the ozone recovery and partially compensate greenhouse warming acting in the direction opposite to anthropogenic effects. The model results also show that all considered solar forcings are important in different atmospheric layers and geographical regions. However, in the global scale the solar irradiance variability can be considered as the most important solar forcing. The obtained results constitute probably the upper limit of the possible solar influence. Development of the better constrained set of future solar forcings is necessary to address the problem of future climate and ozone layer with more confidence.

  9. Refractive Secondary Solar Concentrator Demonstrated High-Temperature Operation

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2002-01-01

    Space applications that utilize solar thermal energy--such as electric power conversion systems, thermal propulsion systems, and furnaces--require highly efficient solar concentration systems. The NASA Glenn Research Center is developing the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, such as inflatable thin films, the refractive secondary concentrator enables very high system concentration ratios and very high temperatures. Last year, Glenn successfully demonstrated a secondary concentrator throughput efficiency of 87 percent, with a projected efficiency of 93 percent using an antireflective coating. Building on this achievement, Glenn recently successfully demonstrated high-temperature operation of the secondary concentrator when it was used to heat a rhenium receiver to 2330 F. The high-temperature demonstration of the concentrator was conducted in Glenn's 68-ft long Tank 6 thermal vacuum facility equipped with a solar simulator. The facility has a rigid panel primary concentrator that was used to concentrate the light from the solar simulator onto the refractive secondary concentrator. NASA Marshall Space Flight Center provided a rhenium cavity, part of a solar thermal propulsion engine, to serve as the high-temperature receiver. The prototype refractive secondary concentrator, measuring 3.5 in. in diameter and 11.2 in. long, is made of single-crystal sapphire. A water-cooled splash shield absorbs spillage light outside of the 3.5-in. concentrator aperture. Multilayer foil insulation composed of tungsten, molybdenum, and niobium is used to minimize heat loss from the hightemperature receiver. A liquid-cooled canister calorimeter is used to measure the heat loss through the multilayer foil insulation.

  10. The variations of prominence activities during solar cycle

    NASA Astrophysics Data System (ADS)

    Shimojo, Masumi

    The prominence activities (prominence eruption/disappearance) in the solar atmosphere closely relate with the CMEs that cause great influences on heliosphere and magnetosphere. Gopal-swarmy et al. (2003) reported that 72 The Nobeyama Radioheliograph (NoRH) is observing Sun in microwave (17 GHz) since 1992. At a flare, the main component of the microwave from Sun is emitted from non-thermal electrons that are accelerated by flare. On the other hand, the main component of the microwave is thermal emission when Sun is quiet, and a prominence is clearly observed in microwave because there is the prominence on the limb. We developed the automatic prominence activity detection program based on 17 GHz images observed by NoRH, and investigated the variation of the properties of the prominence activities that oc-curred from 1992 to the end of 2009. We found the following results. 1. The variation in the number of prominence activities is similar to that of sunspots during one solar cycle but there are differences between the peak times of prominence activities and sunspots. 2. The frequency distribution as a function of the magnitude of the prominence activities the size of activated prominences at each phase shows a power-law distribution. The power-law index of the distribution does not change except around the solar minimum. 3. The number of promi-nence activities has a dependence on the latitude On the other hand the average magnitude is independent of the latitude. In the paper, we will also discuss the relationship the other properties of prominence eruptions, solar cycle and the photospheric magnetic field.

  11. Singular year of high geomagnetic responses to the same solar wind input

    NASA Astrophysics Data System (ADS)

    Yamauchi, Masatoshi; Olsthoorn, Bart; Nicolaou, Georgios

    2016-04-01

    Using high-resolution (5 min) solar wind data and westward auroral electrojet index (AL) index since 1981, temporal variation of the Sun-Earth coupling efficiency (AL response to the solar wind electromagnetic energy/flux input) was examined. To separate the seasonal variation, 3-month averaged statistics is used. (1) The Sun-Earth coupling efficiency for moderate solar wind input occasionally increased beyond the seasonal variation for about half a year during the declining phase of solar cycles; (2) Excluding these singular years and seasonal variation, the Sun-Earth coupling efficiency for moderate or low solar wind input continuously decreased over the past three decades; (3) These temporal variations do not correlate with F10.7 index (proxy for the Solar UV flux). The results confirm some of the previous study using 1-hour resolution data with a better accuracy, and suggest that the existence of additional controlling mechanisms either at the Sun (e.g., magnetic field or solar cycle strength) or solar wind-magnetosphere-ionosphere coupling (e.g., through the solar wind composition). On the other hand, the Sun-Earth coupling efficiency for large solar wind input is very variable and the present correlation method is not sufficient to determine the conditions for large AL activities and its temporal variation. Acknowledgement: Auroral electrojet (AE) indices and sunspot numbers (RI) are official IAGA and IAA endorsed indices that are provided by World Data Center for Geomagnetism, Kyoto University, Japan (AE) and the Royal Observatory of Belgium, Brussels (RI). Including these indices, all data in 5-minutes values are obtained from NASA-GSFC/SPDF through OMNIWeb (http://omniweb.gsfc.nasa.gov/ow.html).

  12. High-efficiency GaAs solar cells

    SciTech Connect

    Knechtli, R.C.; Loo, R.Y.

    1984-05-01

    An updated review of the state of the art in the development of GaAs solar cells is provided, with emphasis on AlGaAs-GaAs cells suitable for space applications. A set of theoretically derived characteristics is given for this type of solar cell. Comparison of measured performance with theory shows excellent agreement. Data on the effects of radiation damage (high-energy electrons, protons, and neutrons) is also integrated into a form useful for evaluation purposes. Techniques for fabricating (AlGa)As-GaAs solar cells in quantities large enough for practical applications are discussed and are shown to have been demonstrated. The possibility of extending these techniques to the fabrication of very thin low-weight cells for space applications is also considered. Finally, the results obtained to date in the development of GaAs solar cells for applications requiring concentrated sunlight are reviewed, for terrestrial as well as for space applications. As a milestone toward the practical application of AlGaAs-GaAs solar cells in space systems, a brief account is provided on the development status of small experimental AlGaAs-GaAs solar-cell panels for specific space flights.

  13. High Performance Tandem Perovskite/Polymer Solar Cells

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Bag, Monojit; Page, Zachariah; Renna, Lawrence; Kim, Paul; Choi, Jaewon; Emrick, Todd; Venkataraman, D.; Russell, Thomas

    Combining perovskites with other inorganic materials, such as copper indium gallium diselenide (CIGS) or silicon, is enabling significant improvement in solar cell device performance. Here, we demonstrate a highly efficient hybrid tandem solar cell fabricated through a facile solution deposition approach to give a perovskite front sub-cell and a polymer:fullerene blend back sub-cell. This methodology eliminates the adverse effects of thermal annealing during perovskite fabrication on polymer solar cells. The record tandem solar cell efficiency of 15.96% is 40% greater than the corresponding perovskite-based single junction device and 65% greater than the polymer-based single junction device, while mitigating deleterious hysteresis effects often associated with perovskite solar cells. The hybrid tandem devices demonstrate the synergistic effects arising from the combination of perovskite and polymer-based materials for solar cells. This work was supported by the Department of Energy-supported Energy Frontier Research Center at the University of Massachusetts (DE-SC0001087). The authors acknowledge the W.M. Keck Electron Microscopy.

  14. Water Impacts of High Solar PV Electricity Penetration

    SciTech Connect

    Macknick, Jordan; Cohen, Stuart

    2015-09-01

    This analysis provides a detailed national and regional description of the water-related impacts and constraints of high solar electricity penetration scenarios in the U.S. in 2030 and 2050. A modified version of the Regional Energy Deployment System (ReEDS) model that incorporates water resource availability and costs as a constraint in each of its 134 Balancing Area (BA) regions was utilized to explore national and regional differences in water use impacts and solar deployment locations under different solar energy cost and water availability scenarios (Macknick et al. 2015). Water resource availability and cost data are from recently completed research at Sandia National Laboratories (Tidwell et al. 2013a). Scenarios analyzed include two business-as-usual solar energy cost cases, one with and one without considering available water resources, and four solar energy cost cases that meet the SunShot cost goals (i.e., $1/watt for utility-scale PV systems), with varying levels of water availability restrictions. This analysis provides insight into the role solar energy technologies have in the broader electricity sector under scenarios of water constraints.

  15. A High-Efficiency Refractive Secondary Solar Concentrator for High Temperature Solar Thermal Applications

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.; Macosko, Robert P.

    2000-01-01

    A refractive secondary solar concentrator is a non-imaging optical device that accepts focused solar energy from a primary concentrator and redirects that light, by means of refraction and total internal reflection (TIR) into a cavity where the solar energy is used for power and/or propulsion applications. This concept offers a variety of advantages compared to typical reflective secondary concentrators (or the use of no secondary at all): higher optical efficiency, minimal secondary cooling requirements, a smaller cavity aperture, a reduction of outgassing from the cavity and flux tailoring of the solar energy within the heat receiver. During the past 2 years, NASA Lewis has been aggressively developing this concept in support of the NASA Marshall Shooting Star Flight Experiment. This paper provides a brief overview of the advantages and technical challenges associated with the development of a refractive secondary concentrator and the fabrication of a working unit in support of the flight demonstration program.

  16. Major geomagnetic storm due to solar activity (2006-2013).

    NASA Astrophysics Data System (ADS)

    Tiwari, Bhupendra Kumar

    Major geomagnetic storm due to solar activity (2006-2013). Bhupendra Kumar Tiwari Department of Physics, A.P.S.University, Rewa(M.P.) Email: - btiwtari70@yahoo.com mobile 09424981974 Abstract- The geospace environment is dominated by disturbances created by the sun, it is observed that coronal mass ejection (CME) and solar flare events are the causal link to solar activity that produces geomagnetic storm (GMS).CMEs are large scale magneto-plasma structures that erupt from the sun and propagate through the interplanetary medium with speeds ranging from only a few km/s to as large as 4000 km/s. When the interplanetary magnetic field associated with CMEs impinges upon the earth’s magnetosphere and reconnect occur geomagnetic storm. Based on the observation from SOHO/LASCO spacecraft for solar activity and WDC for geomagnetism Kyoto for geomagnetic storm events are characterized by the disturbance storm time (Dst) index during the period 2006-2013. We consider here only intense geomagnetic storm Dst <-100nT, are 12 during 2006-2013.Geomagnetic storm with maximum Dst< -155nT occurred on Dec15, 2006 associated with halo CME with Kp-index 8+ and also verify that halo CME is the main cause to produce large geomagnetic storms.

  17. Grand minima of solar activity during the last millennia

    NASA Astrophysics Data System (ADS)

    Usoskin, Ilya G.; Solanki, Sami K.; Kovaltsov, Gennady A.

    2012-07-01

    In this review we discuss the occurrence and statistical properties of Grand minima based on the available data covering the last millennia. In particular, we consider the historical record of sunspot numbers covering the last 400 years as well as records of cosmogenic isotopes in natural terrestrial archives, used to reconstruct solar activity for up to the last 11.5 millennia, i.e. throughout the Holocene. Using a reconstruction of solar activity from cosmogenic isotope data, we analyze statistics of the occurrence of Grand minima. We find that: the Sun spends about most of the time at moderate activity, 1/6 in a Grand minimum and some time also in a Grand maximum state; Occurrence of Grand minima is not a result of long-term cyclic variations but is defined by stochastic/chaotic processes; There is a tendency for Grand minima to cluster with the recurrence rate of roughly 2000-3000 years, with a weak ~210-yr periodicity existing within the clusters. Grand minima occur of two different types: shorter than 100 years (Maunder-type) and long ~150 years (Spörer-type). It is also discussed that solar cycles (most possibly not sunspots cycle) could exist during the Grand minima, perhaps with stretched length and asymmetric sunspot latitudinal distribution. These results set new observational constraints on long-term solar and stellar dynamo models.

  18. Solar Energy Experiments for High School and College Students.

    ERIC Educational Resources Information Center

    Norton, Thomas W.; And Others

    This publication contains eighteen experiments and eight classroom activities. The experiments are of varying difficulty and cover the important aspects of solar energy utilization. Each experiment is self-contained, with its own introduction and background information. Energy measurements are emphasized and techniques for collector efficiency…

  19. The interaction of active comets with the solar wind

    SciTech Connect

    Neugebauer, M. )

    1990-11-01

    The interaction of the solar wind with active comets is investigated based on observations of cometary plasma processes and studies of comets using telescopes and photographic plates. Data were also collected when a spacecraft flew through the tail of Comet Giacobini-Zinner in 1985 and five spacecraft encountered Comet Halley in 1986. The solar wind is considered to be supersonic (thermal Mach number 2-10) and to carry a magnetic field twisted into an Archimedean spiral by the rotation of the sun. Since the wind can change its properties during the time a spacecraft is inside the ionosphere or magnetosphere of the body being studied, it is difficult to separate spatial from temporal effects. Photoionization results in addition of plasma to the solar wind. Between the outer and inner edges of the cometosheath, the increasing rate of ion pickup causes the flow to slow down until it stagnates, while the plasma density and the magnetic field strength increase.

  20. New Monolithic High Solar Rejection EUV Transmission Filter

    NASA Astrophysics Data System (ADS)

    Fleury-Frenette, Karl; Renotte, Etienne; Lenaerts, C.; Rossi, Laurence; Jacques, Lionel; Halain, Jean-Philippe; Rochus, Pierre

    A new high solar rejection transmission filter for the extreme UV has been developed for the Solar Orbiter Extreme Ultraviolet Imager (EUI). To provide enhanced resilience to high thermal load, a monolithic architecture approach has been taken in order to limit the thermal contact resistance between the filtering sub-micron thin film, its supporting mesh, and holding frame. Some aspects of the manufacturing process involving thin film deposition and photolithography will be presented along with optical performance and space environmental test results. New avenues for improving the thermo-optical properties of the filter will also be discussed.

  1. Theoretical Problems in High Resolution Solar Physics, 2

    NASA Technical Reports Server (NTRS)

    Athay, G. (Editor); Spicer, D. S. (Editor)

    1987-01-01

    The Science Working Group for the High Resolution Solar Observatory (HRSO) laid plans beginning in 1984 for a series of workshops designed to stimulate a broadbased input from the scientific community to the HRSO mission. These workshops have the dual objectives of encouraging an early start on the difficult theoretical problems in radiative transfer, magnetohydrodynamics, and plasma physics that will be posed by the HRSO data, and maintaining current discussions of results in high resolution solar studies. This workshop was the second in the series. The workshop format presented invited review papers during the formal sessions and contributed poster papers for discussions during open periods. Both are presented.

  2. Coronal mass ejections in the solar wind at high solar latitudes: An overview

    NASA Technical Reports Server (NTRS)

    Gosling, Jack T.

    1994-01-01

    Ulysses provided the first direct measurements of coronal mass ejections (CME's) in the solar wind at high heliographic latitudes. An overview of new results from the plasma experiment on Ulysses and magnetic field measurements, during the spacecraft's first excursion to high solar latitudes are summarized. A striking aspect of the high-latitude CME's observed is that they all had high speeds, with the overall average speed being 730 km/sec. A new class of forward-reverse shock pairs, associated with expansion of CME's was discovered at high latitudes. Of six certain CME's observed at high latitudes, three have associated shock pairs of this nature. Combined Ulysses and Yohkoh observations suggest that the flux rope topology characteristic of some CME's results from reconnection within the legs of neighboring magnetic loops embedded within the escaping CME's.

  3. Coronal mass ejections in the solar wind at high solar latitudes: An overview

    SciTech Connect

    Gosling, J.T.

    1994-10-01

    Ulysses has provided the first direct measurements of coronal mass ejections, CMES, in the solar wind at high heliographic latitudes. This paper provides an overview of new and unexpected results from the plasma experiment on Ulysses, supplemented with magnetic field measurements, during the spacecraft`s first excursion to high solar latitudes. A striking aspect of the high-latitude CMEs observed is that they all had high speeds, with the overall average speed being 730 km s{sup {minus}1}. A new class of forward-reverse shock pairs, associated with expansion of CMES, has been discovered at high latitudes. Of six certain CMEs observed at high latitudes, three have associated shock pairs of this nature. Combined Ulysses and Yohkoh observations suggest that the flux rope topology characteristic of some CMEs results from reconnection within the legs of neighboring magnetic loops embedded within the escaping CMES.

  4. Data Assimilation Approach for Forecast of Solar Activity Cycles

    NASA Astrophysics Data System (ADS)

    Kitiashvili, Irina N.

    2016-11-01

    Numerous attempts to predict future solar cycles are mostly based on empirical relations derived from observations of previous cycles, and they yield a wide range of predicted strengths and durations of the cycles. Results obtained with current dynamo models also deviate strongly from each other, thus raising questions about criteria to quantify the reliability of such predictions. The primary difficulties in modeling future solar activity are shortcomings of both the dynamo models and observations that do not allow us to determine the current and past states of the global solar magnetic structure and its dynamics. Data assimilation is a relatively new approach to develop physics-based predictions and estimate their uncertainties in situations where the physical properties of a system are not well-known. This paper presents an application of the ensemble Kalman filter method for modeling and prediction of solar cycles through use of a low-order nonlinear dynamo model that includes the essential physics and can describe general properties of the sunspot cycles. Despite the simplicity of this model, the data assimilation approach provides reasonable estimates for the strengths of future solar cycles. In particular, the prediction of Cycle 24 calculated and published in 2008 is so far holding up quite well. In this paper, I will present my first attempt to predict Cycle 25 using the data assimilation approach, and discuss the uncertainties of that prediction.

  5. Solar luminosity fluctuations and active region photometry

    SciTech Connect

    Chapman, G.A.; Herzog, A.D.; Lawrence, J.K.; Shelton, J.C.

    1984-07-15

    We present monochromatic observations, obtained with a 512 element diode array, of the irradiance fluctuations of the sunspots and faculae of an active region during its disk transit in 1982 August. Bolometric and stray light corrections are approximately equal in magnitude but opposite in sign, so they have not been applied. The maximum sunspot fluctuation, as a fraction of the quiet-Sun irradiance, is -800 parts per million (ppm). Faculae have a maximum irradiance fluctuation of about +200 ppm near the limbs. We find that the facular energy excess is more than 50% of the sunspot energy deficit, which is -5.8 x 10/sup 35/ ergs. These observations show that faculae are an important element in active region energy balance.

  6. Some Daytime Activities in Solar Astronomy

    NASA Astrophysics Data System (ADS)

    Burin, Michael J.

    2016-01-01

    This century's transits of Venus (2004, 2012) captured significant public attention, reminding us that the wonders of astronomy need not be confined to the night. And while nighttime telescope viewing gatherings (a.k.a. "star parties") are perennially popular, astronomy classes are typically held in the daytime. The logistics of coordinating students outside of class can often be problematic, leading to dark-sky activities that are relegated to extra credit for only those who can attend.

  7. High Energy Solar Spectroscopic Imager (HESSI) Team Investigations

    NASA Technical Reports Server (NTRS)

    Emslie, A. Gordon

    1998-01-01

    This report covers activities on the above grant for the period through the end of September 1997. The work originally proposed to be performed under a three-year award was converted at that time to a two-year award for the remainder of the period, and is now funded under award NAGS-4027 through Goddard Space Flight Center. The P.I. is a co-investigator on the High Energy Solar Spectroscopic Imager (HESSI) team, selected as a Small-Class Explorer (SNMX) mission in 1997. He has also been a participant in the Space Physics Roadmap Planning Group. Our research has been strongly influenced by the NASA mission opportunities related to these activities. The report is subdivided into four sections, each dealing with a different aspect of our research within this guiding theme. Personnel involved in this research at UAH include the P.I. and graduate students Michele Montgomery and Amy Winebarger. Much of the work has been carried out in collaboration with investigators at other institutions, as detailed below. Attachment: Laser wakefield acceleration and astrophysical applications.

  8. Seismic Study of the Solar Interior: Inferences from SOI/MDI Observations During Solar Activity

    NASA Technical Reports Server (NTRS)

    Korzennik, Sylvain G.; Wagner, William J. (Technical Monitor)

    2005-01-01

    Work on the structure, asphericity and dynamics of the solar interior from p-mode frequencies and frequency splittings was carried out primarily in collaboration with Dr. Eff-Darwich (University of La Laguna, Tenerife). This ongoing collaboration produced new results for the inversion of the internal solar rotation rate and further development in inversion methodologies. It also resulted in inferences on the solar stratification. Substantial progress towards the characterization of high-degree p-modes has been achieved. In collaboration with Drs. Rabello-Soares and Schou (Stanford University), we have gained a clear conceptual understanding of the various elements that affect the leakage matrix of the SOI/MDI instrument. This work has precise implications on the properties and the characterization of the HMI instrument being developed for the SDO mission.

  9. Why is the Sun No Longer Accelerating Particles to High Energy in Solar Cycle 24?

    NASA Astrophysics Data System (ADS)

    Mewaldt, R. A.; Cohen, C. M.; Li, G.; Mason, G. M.; Smith, C. W.; von Rosenvinge, T. T.; Vourlidas, A.

    2015-12-01

    Why is the Sun No Longer Accelerating Particles to High Energy in Solar Cycle 24?Measurements by ACE, STEREO, and GOES show that the number of large Solar Energetic Particle (SEP) events in solar cycle 24 is reduced by a factor of ~2 compared to this point of solar cycle 23, while the fluences of >10 MeV/nuc ions from H to Fe are reduced by factors ranging from ~4 to ~10. Compared to solar Cycle 22 and 23, the fluence of >100 MeV protons is reduced by factors of ~7 to ~10 in the current cycle. A common element of these observations is that the observed Cycle-24 energy spectra have "breaks" that suddenly steepen 2 to 4 times lower in energy/nucleon than in Cycle 23. We investigate the origin of these cycle-to-cycle spectral differences by evaluating possible factors that control the maximum energy of CME-shock-accelerated particles in the two cycles, including seed-particle densities of suprathermal ions, the interplanetary magnetic field strength and turbulence level, and properties of the associated CMEs. The effect of these conditions will be evaluated in the context of existing SEP acceleration models by comparing SEP data with simulations and with analytic evaluations of the maximum kinetic energy to which CME shocks can accelerate solar energetic ions from H to Fe. Understanding the properties that control the maximum kinetic energy of CME-shock accelerated particles has important implications for predicting future solar activity.

  10. The mechanism of burn-in loss in a high efficiency polymer solar cell.

    PubMed

    Peters, Craig H; Sachs-Quintana, I T; Mateker, William R; Heumueller, Thomas; Rivnay, Jonathan; Noriega, Rodigo; Beiley, Zach M; Hoke, Eric T; Salleo, Alberto; McGehee, Michael D

    2012-02-01

    Degradation in a high efficiency polymer solar cell is caused by the formation of states in the bandgap. These states increase the energetic disorder in the system. The power conversion efficiency loss does not occur when current is run through the device in the dark but occurs when the active layer is photo-excited.

  11. Process Development for High Voc CdTe Solar Cells

    SciTech Connect

    Ferekides, C. S.; Morel, D. L.

    2011-05-01

    This is a cumulative and final report for Phases I, II and III of this NREL funded project (subcontract # XXL-5-44205-10). The main research activities of this project focused on the open-circuit voltage of the CdTe thin film solar cells. Although, thin film CdTe continues to be one of the leading materials for large-scale cost-effective production of photovoltaics, the efficiency of the CdTe solar cells have been stagnant for the last few years. This report describes and summarizes the results for this 3-year research project.

  12. HIGH SPATIAL RESOLUTION OBSERVATIONS OF LOOPS IN THE SOLAR CORONA

    SciTech Connect

    Brooks, David H.; Ugarte-Urra, Ignacio; Warren, Harry P.; Winebarger, Amy R.

    2013-08-01

    Understanding how the solar corona is structured is of fundamental importance to determine how the Sun's upper atmosphere is heated to high temperatures. Recent spectroscopic studies have suggested that an instrument with a spatial resolution of 200 km or better is necessary to resolve coronal loops. The High Resolution Coronal Imager (Hi-C) achieved this performance on a rocket flight in 2012 July. We use Hi-C data to measure the Gaussian widths of 91 loops observed in the solar corona and find a distribution that peaks at about 270 km. We also use Atmospheric Imaging Assembly data for a subset of these loops and find temperature distributions that are generally very narrow. These observations provide further evidence that loops in the solar corona are often structured at a scale of several hundred kilometers, well above the spatial scale of many proposed physical mechanisms.

  13. Towards a high-temperature solar electric converter

    NASA Technical Reports Server (NTRS)

    Dunning, G. J.; Palmer, A. J.

    1981-01-01

    The concept of an ultrahigh-temperature solar electric heat-engine converter is examined in which an alkali plasma would serve as both the high-temperature collector of solar radiation and as the working fluid for a high-temperature working cycle. The working cycle would be a simple magnetohydrodynamic Rankine cycle. Theoretical and experimental results obtained to date are summarized. These include: (1) an experimental confirmation of the theoretical prediction that a plasma temperature of about 2800 K can be reached through heating cesium vapor by sunlight concentrated to approximately 300 W per sq cm; and (2) the establishment of a theoretical model of the complete solar heated plasma magnetohydrodynamic cycle.

  14. Potential high efficiency solar cells: Applications from space photovoltaic research

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1986-01-01

    NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.

  15. Calibration of solar cells using high-altitude aircraft.

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W., Jr.

    1971-01-01

    A high altitude airplane has been used to obtain the outer space short circuit current of solar cells. The solar cells are mounted in a collimating tube and are measured at approximately 5000 foot intervals between 12,000 and 47,000 feet. The air mass is calculated for each altitude using the standard formula and the resulting curve is extrapolated to air mass zero. The effects on the solar cell output of a haze layer located at the tropopause has been observed. It is necessary to fly above this layer to ensure accurate results. Airplane calibrations of several primary standard cells calibrated on high altitude balloons show agreement within 0.5 per cent. Prediction of the output of satellite power supplies using airplane calibrated cells shows an accuracy of better than 1 per cent.

  16. OM-VPE grown materials for high efficiency solar cells

    NASA Technical Reports Server (NTRS)

    Saxena, R.; Cooper, B., III; Ludowise, M.; Borden, P.; Gregory, P.

    1980-01-01

    Organometallic sources are available for all the III-V elements and a variety of dopants; thus it is possible to use the technique to grow a wide variety of semiconductor compounds. AlGaAsSb and AlGaInAs alloys for multijunction monolithic solar cells were grown by OM-VPE. While the effort concentrated on terrestrial applications, the success of OM-VPE grown GaAs/AlGaAs concentrator solar cells (23% at 400 suns) demonstrates that OM-VPE is suitable for growing high efficiency solar cells in large quantities for space applications. In addition, OM-VPE offers the potential for substantial cost reduction of photovoltaic devices with scale up and automation and due to high process yield from reproducible, uniform epitaxial growths with excellent surface morphology.

  17. Ulysses solar wind plasma observations at high southerly latitudes.

    PubMed

    Phillips, J L; Bame, S J; Feldman, W C; Gosling, J T; Hammond, C M; McComas, D J; Goldstein, B E; Neugebauer, M; Scime, E E; Suess, S T

    1995-05-19

    Solar wind plasma observations made by the Ulysses spacecraft through -80.2 degrees solar latitude and continuing equatorward to -40.1 degrees are summarized. Recurrent high-speed streams and corotating interaction regions dominated at middle latitudes. The speed of the solar wind was typically 700 to 800 kilometers per second poleward of -35 degrees . Corotating reverse shocks persisted farther south than did forward shocks because of the tilt of the heliomagnetic streamer belt. Sporadic coronal mass ejections were seen as far south as -60.5 degrees . Proton temperature was higher and the electron strahl was broader at higher latitudes. The high-latitude wind contained compressional, pressure-balanced, and Alfvénic structures.

  18. Development of advanced algorithms to detect, characterize and forecast solar activities

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan

    Study of the solar activity is an important part of space weather research. It is facing serious challenges because of large data volume, which requires application of state-of-the-art machine learning and computer vision techniques. This dissertation targets at two essential aspects in space weather research: automatic feature detection and forecasting of eruptive events. Feature detection includes solar filament detection and solar fibril tracing. A solar filament consists of a mass of gas suspended over the chromosphere by magnetic fields and seen as a dark, ribbon-shaped feature on the bright solar disk in Halpha (Hydrogen-alpha) full-disk solar images. In this dissertation, an automatic solar filament detection and characterization method is presented. The investigation illustrates that the statistical distribution of the Laplacian filter responses of a solar disk contains a special signature which can be used to identify the best threshold value for solar filament segmentation. Experimental results show that this property holds across different solar images obtained by different solar observatories. Evaluation of the proposed method shows that the accuracy rate for filament detection is more than 95% as measured by filament number and more than 99% as measured by filament area, which indicates that only a small fraction of tiny filaments are missing from the detection results. Comparisons indicate that the proposed method outperforms a previous method. Based on the proposed filament segmentation and characterization method, a filament tracking method is put forward, which is capable of tracking filaments throughout their disk passage. With filament tracking, the variation of filaments can be easily recorded. Solar fibrils are tiny dark threads of masses in Halpha images. It is generally believed that fibrils are magnetic field-aligned, primarily due to the reason that the high electrical conductivity of the solar atmosphere freezes the ionized mass in

  19. Collecting Solar Energy. Solar Energy Education Project.

    ERIC Educational Resources Information Center

    O'Brien, Alexander

    This solar energy learning module for use with junior high school students offers a list of activities, a pre-post test, job titles, basic solar energy vocabulary, and diagrams of solar energy collectors and installations. The purpose is to familiarize students with applications of solar energy and titles of jobs where this knowledge could be…

  20. Design of a high-power, high-brightness Nd:YAG solar laser.

    PubMed

    Liang, Dawei; Almeida, Joana; Garcia, Dário

    2014-03-20

    A simple high-power, high-brightness Nd:YAG solar laser pumping approach is presented in this paper. The incoming solar radiation is both collected and concentrated by four Fresnel lenses and redirected toward a Nd:YAG laser head by four plane-folding mirrors. A fused-silica secondary concentrator is used to compress the highly concentrated solar radiation to a laser rod. Optimum pumping conditions and laser resonator parameters are found through ZEMAX and LASCAD numerical analysis. Solar laser power of 96 W is numerically calculated, corresponding to the collection efficiency of 24  W/m². A record-high solar laser beam brightness figure of merit of 9.6 W is numerically achieved.

  1. Global patterns of solar influence on high cloud cover

    NASA Astrophysics Data System (ADS)

    Dima, Mihai; Voiculescu, Mirela

    2016-07-01

    One of the main sources of uncertainty in climate projections is represented by clouds, which have a profound influence on the Earth's radiation budget through the feedbacks in which they are involved. The improvement of clouds representation in General Circulation Models relies largely on constraints derived from observations and on correct identification of processes that influence cloud formation or lifetime. Here we identify solar forced high cloud cover (HCC) patterns in reanalysis and observed data extending over the 1871-2009 period, based on their associations with known fingerprints of the same forcing on surface air temperature, sea surface temperature (SST) and sea level pressure fields. The solar influence on HCC has maximum amplitudes over the Pacific basin, where HCC anomalies are distributed in bands of alternating polarities. The colocation of the HCC and SST anomalies bands indicates a thermal influence on high clouds through convection and an amplification of the HCC anomalies by a positive feedback of long-wave fluxes, which increases the solar signal. Consistent with numerical simulations, the solar forced HCC pattern appears to be generated through a constructive interference between the so-called "top-down" and "bottom-up" mechanisms of solar influence on climate and is amplified by ocean-atmosphere positive feedbacks.

  2. Antifouling property of highly oleophobic substrates for solar cell surfaces

    NASA Astrophysics Data System (ADS)

    Fukada, Kenta; Nishizawa, Shingo; Shiratori, Seimei

    2014-03-01

    Reduction of solar cell conversion efficiency by bird spoor or oil smoke is a common issue. Maintaining the surface of solar cells clean to retain the incident light is of utmost importance. In this respect, there has been growing interest in the area of superhydrophobicity for developing water repelling and self-cleaning surfaces. This effect is inspired by lotus leaves that have micro papillae covered with hydrophobic wax nanostructures. Superhydrophobic surfaces on transparent substrates have been developed for removing contaminants from solar cell surfaces. However, oil cannot be removed by superhydrophobic effect. In contrast, to prevent bird spoor, a highly oleophobic surface is required. In a previous study, we reported transparent-type fabrics comprising nanoparticles with a nano/micro hierarchical structure that ensured both oleophobicity and transparency. In the current study, we developed new highly oleophobic stripes that were constructed into semi-transparent oleophobic surfaces for solar cells. Solar cell performance was successfully maintained; the total transmittance was a key factor for determining conversion efficiency.

  3. High-efficiency solar cell and method for fabrication

    DOEpatents

    Hou, Hong Q.; Reinhardt, Kitt C.

    1999-01-01

    A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD).

  4. High-efficiency solar cell and method for fabrication

    DOEpatents

    Hou, H.Q.; Reinhardt, K.C.

    1999-08-31

    A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD). 4 figs.

  5. Long-term persistence of solar activity. [Abstract only

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, Alexander; Feynman, Joan; Robinson, Paul

    1994-01-01

    The solar irradiance has been found to change by 0.1% over the recent solar cycle. A change of irradiance of about 0.5% is required to effect the Earth's climate. How frequently can a variation of this size be expected? We examine the question of the persistence of non-periodic variations in solar activity. The Huerst exponent, which characterizes the persistence of a time series (Mandelbrot and Wallis, 1969), is evaluated for the series of C-14 data for the time interval from about 6000 BC to 1950 AD (Stuiver and Pearson, 1986). We find a constant Huerst exponent, suggesting that solar activity in the frequency range of from 100 to 3000 years includes an important continuum component in addition to the well-known periodic variations. The value we calculate, H approximately equal to 0.8, is significantly larger than the value of 0.5 that would correspond to variations produced by a white-noise process. This value is in good agreement with the results for the monthly sunspot data reported elsewhere, indicating that the physics that produces the continuum is a correlated random process (Ruzmaikin et al., 1992), and that is is the same type of process over a wide range of time interval lengths. We conclude that the time period over which an irradiance change of 0.5% can be expected to occur is significantly shorter than that which would be expected for variations produced by a white-noise process.

  6. Solar activity impact on the Earth's upper atmosphere

    NASA Astrophysics Data System (ADS)

    Kutiev, Ivan; Tsagouri, Ioanna; Perrone, Loredana; Pancheva, Dora; Mukhtarov, Plamen; Mikhailov, Andrei; Lastovicka, Jan; Jakowski, Norbert; Buresova, Dalia; Blanch, Estefania; Andonov, Borislav; Altadill, David; Magdaleno, Sergio; Parisi, Mario; Miquel Torta, Joan

    2013-02-01

    The paper describes results of the studies devoted to the solar activity impact on the Earth's upper atmosphere and ionosphere, conducted within the frame of COST ES0803 Action. Aim: The aim of the paper is to represent results coming from different research groups in a unified form, aligning their specific topics into the general context of the subject. Methods: The methods used in the paper are based on data-driven analysis. Specific databases are used for spectrum analysis, empirical modeling, electron density profile reconstruction, and forecasting techniques. Results: Results are grouped in three sections: Medium- and long-term ionospheric response to the changes in solar and geomagnetic activity, storm-time ionospheric response to the solar and geomagnetic forcing, and modeling and forecasting techniques. Section 1 contains five subsections with results on 27-day response of low-latitude ionosphere to solar extreme-ultraviolet (EUV) radiation, response to the recurrent geomagnetic storms, long-term trends in the upper atmosphere, latitudinal dependence of total electron content on EUV changes, and statistical analysis of ionospheric behavior during prolonged period of solar activity. Section 2 contains a study of ionospheric variations induced by recurrent CIR-driven storm, a case-study of polar cap absorption due to an intense CME, and a statistical study of geographic distribution of so-called E-layer dominated ionosphere. Section 3 comprises empirical models for describing and forecasting TEC, the F-layer critical frequency foF2, and the height of maximum plasma density. A study evaluates the usefulness of effective sunspot number in specifying the ionosphere state. An original method is presented, which retrieves the basic thermospheric parameters from ionospheric sounding data.

  7. Solar wind entry into the high-latitude terrestrial magnetosphere during geomagnetically quiet times.

    PubMed

    Shi, Q Q; Zong, Q-G; Fu, S Y; Dunlop, M W; Pu, Z Y; Parks, G K; Wei, Y; Li, W H; Zhang, H; Nowada, M; Wang, Y B; Sun, W J; Xiao, T; Reme, H; Carr, C; Fazakerley, A N; Lucek, E

    2013-01-01

    An understanding of the transport of solar wind plasma into and throughout the terrestrial magnetosphere is crucial to space science and space weather. For non-active periods, there is little agreement on where and how plasma entry into the magnetosphere might occur. Moreover, behaviour in the high-latitude region behind the magnetospheric cusps, for example, the lobes, is poorly understood, partly because of lack of coverage by previous space missions. Here, using Cluster multi-spacecraft data, we report an unexpected discovery of regions of solar wind entry into the Earth's high-latitude magnetosphere tailward of the cusps. From statistical observational facts and simulation analysis we suggest that these regions are most likely produced by magnetic reconnection at the high-latitude magnetopause, although other processes, such as impulsive penetration, may not be ruled out entirely. We find that the degree of entry can be significant for solar wind transport into the magnetosphere during such quiet times. PMID:23403567

  8. Nutation and precession control of the High Energy Solar Physics (HESP) satellite

    NASA Technical Reports Server (NTRS)

    Jayaraman, C. P.; Robertson, B. P.

    1993-01-01

    The High Energy Solar Physics (HESP) spacecraft is an intermediate class satellite proposed by NASA to study solar high-energy phenomena during the next cycle of high solar activity in the 1998 to 2005 time frame. The HESP spacecraft is a spinning satellite which points to the sun with stringent pointing requirements. The natural dynamics of a spinning satellite includes an undesirable effect: nutation, which is due to the presence of disturbances and offsets of the spin axis from the angular momentum vector. The proposed Attitude Control System (ACS) attenuates nutation with reaction wheels. Precessing the spacecraft to track the sun in the north-south and east-west directions is accomplished with the use of torques from magnetic torquer bars. In this paper, the basic dynamics of a spinning spacecraft are derived, control algorithms to meet HESP science requirements are discussed and simulation results to demonstrate feasibility of the ACS concept are presented.

  9. Solar wind entry into the high-latitude terrestrial magnetosphere during geomagnetically quiet times.

    PubMed

    Shi, Q Q; Zong, Q-G; Fu, S Y; Dunlop, M W; Pu, Z Y; Parks, G K; Wei, Y; Li, W H; Zhang, H; Nowada, M; Wang, Y B; Sun, W J; Xiao, T; Reme, H; Carr, C; Fazakerley, A N; Lucek, E

    2013-01-01

    An understanding of the transport of solar wind plasma into and throughout the terrestrial magnetosphere is crucial to space science and space weather. For non-active periods, there is little agreement on where and how plasma entry into the magnetosphere might occur. Moreover, behaviour in the high-latitude region behind the magnetospheric cusps, for example, the lobes, is poorly understood, partly because of lack of coverage by previous space missions. Here, using Cluster multi-spacecraft data, we report an unexpected discovery of regions of solar wind entry into the Earth's high-latitude magnetosphere tailward of the cusps. From statistical observational facts and simulation analysis we suggest that these regions are most likely produced by magnetic reconnection at the high-latitude magnetopause, although other processes, such as impulsive penetration, may not be ruled out entirely. We find that the degree of entry can be significant for solar wind transport into the magnetosphere during such quiet times.

  10. The October-November, 2003 Solar Activity and its Relationship to the "approximately 155 day" Solar Periodicity

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2005-01-01

    Periodicities of - 155 days in various solar and interplanetary phenomena were first discovered during solar cycle 21 and have been shown t o be intermittently present in other solar cycles. In the current solar cycle (23), they have been reported in solar energetic particle events and interplanetary coronal maSS ejections. We assess whether the "unexpected" October - November 2003 burst of solar activity during the late declining phase of the cycle may have been a manifestation of such a periodic behavior, and hence might have been to =me extent "predictable". If the pattern were to continue, episodes of enhanced activity might be expected around April - May and October, 2004. There was a mod- est increase activity increase in mid-April, 2004 which may conform to this pattern.

  11. The October-November, 2003 Solar Activity and its Relationship to the "approx. 155 day" Solar Periodicity

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2004-01-01

    Periodicities of approx. 155 days in various solar and interplanetary phenomena were first discovered during solar cycle 21 and have been shown to be intermittently present in other solar cycles. In the current solar cycle (23), they have been reported in solar energetic particle events and interplanetary coronal mass ejections. We assess whether the "unexpected" October - November 2003 burst of solar activity during the late declining phase of the cycle may have been a manifestation of such a periodic behavior, and hence might have been to some extent "predictable". If the pattern were to continue, episodes of enhanced activity might be expected around April - May and October, 2004. There was a modest increase activity increase in mid-April, 2004 which may conform to this pattern.

  12. How Large Scale Flows in the Solar Convection Zone may Influence Solar Activity

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.

    2004-01-01

    Large scale flows within the solar convection zone are the primary drivers of the Sun s magnetic activity cycle. Differential rotation can amplify the magnetic field and convert poloidal fields into toroidal fields. Poleward meridional flow near the surface can carry magnetic flux that reverses the magnetic poles and can convert toroidal fields into poloidal fields. The deeper, equatorward meridional flow can carry magnetic flux toward the equator where it can reconnect with oppositely directed fields in the other hemisphere. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun s rotation on convection produce velocity correlations that can maintain the differential rotation and meridional circulation. These convective motions can influence solar activity themselves by shaping the large-scale magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.

  13. Stellar activity as noise in exoplanet detection - I. Methods and application to solar-like stars and activity cycles

    NASA Astrophysics Data System (ADS)

    Korhonen, H.; Andersen, J. M.; Piskunov, N.; Hackman, T.; Juncher, D.; Järvinen, S. P.; Jørgensen, U. G.

    2015-04-01

    The detection of exoplanets using any method is prone to confusion due to the intrinsic variability of the host star. We investigate the effect of cool starspots on the detectability of the exoplanets around solar-like stars using the radial velocity method. For investigating this activity-caused `jitter' we calculate synthetic spectra using radiative transfer, known stellar atomic and molecular lines, different surface spot configurations and an added planetary signal. Here, the methods are described in detail, tested and compared to previously published studies. The methods are also applied to investigate the activity jitter in old and young solar-like stars, and over a solar-like activity cycles. We find that the mean full jitter amplitude obtained from the spot surfaces mimicking the solar activity varies during the cycle approximately between 1 and 9 m s-1. With a realistic observing frequency a Neptune-mass planet on a 1-yr orbit can be reliably recovered. On the other hand, the recovery of an Earth-mass planet on a similar orbit is not feasible with high significance. The methods developed in this study have a great potential for doing statistical studies of planet detectability, and also for investigating the effect of stellar activity on recovered planetary parameters.

  14. Modular High-Energy Systems for Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Carrington, Connie K.; Marzwell, Neville I.; Mankins, John C.

    2006-01-01

    Modular High-Energy Systems are Stepping Stones to provide capabilities for energy-rich infrastructure located in space to support a variety of exploration scenarios as well as provide a supplemental source of energy during peak demands to ground grid systems. Abundant renewable energy at lunar or other locations could support propellant production and storage in refueling scenarios that enable affordable exploration. Renewable energy platforms in geosynchronous Earth orbits can collect and transmit power to satellites, or to Earth-surface locations. Energy-rich space technologies also enable the use of electric-powered propulsion systems that could efficiently deliver cargo and exploration facilities to remote locations. A first step to an energy-rich space infrastructure is a 100-kWe class solar-powered platform in Earth orbit. The platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, electric propulsion, wireless avionics, autonomous in space rendezvous and docking, servicing, and robotic assembly. It would also provide an energy-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper summary a preliminary design concept for a 100-kWe solar-powered satellite system to demonstrate in-flight a variety of advanced technologies, each as a separate payload. These technologies include, but are not limited to state-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging to enable the 100-kW satellite feasible to launch on one existing launch vehicle. Higher voltage arrays and power distribution systems (PDS) reduce or eliminate the need for massive power converters, and could enable direct-drive of high-voltage solar electric thrusters.

  15. A method of predictions geomagnetic activity based on a coronal model of relations between solar and geomagnetic activities

    NASA Technical Reports Server (NTRS)

    Halenka, J.

    1979-01-01

    A method developed to predict both disturbed and quiet geomagnetic periods is described. The method uses solar situations along the CM with the key role of filaments, giving indirect evidence of types of directly unobservable coronal structures above them. The time lag, not to be interpreted in terms of propagation speed, between the CM activity and the commencement of the geomagnetic response is about one to two days. Solar phenomena serve as indicators within approximately 10 deg of the CM and up to the zone of high latitude filaments.

  16. Non-tracking solar concentrator with a high concentration ratio

    DOEpatents

    Hinterberger, Henry

    1977-01-01

    A nontracking solar concentrator with a high concentration ratio is provided. The concentrator includes a plurality of energy absorbers which communicate with a main header by which absorbed heat is removed. Undesired heat flow of those absorbers not being heated by radiant energy at a particular instant is impeded, improving the efficiency of the concentrator.

  17. Development of a high efficiency thin silicon solar cell

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.

    1975-01-01

    Specific power output and radiation resistance characteristics developed for thin film silicon solar cells are reported. The technological base for fabricating these high efficiency cells and limitations of cell photovoltage are included. In addition, optical and electronic measurement instrumentation and mathematical analyses aids are included. Antireflection coatings for these cells are discussed.

  18. Development of High Efficiency (14%) Solar Cell Array Module

    NASA Technical Reports Server (NTRS)

    Iles, P. A.; Khemthong, S.; Olah, S.; Sampson, W. J.; Ling, K. S.

    1979-01-01

    High efficiency solar cells required for the low cost modules was developed. The production tooling for the manufacture of the cells and modules was designed. The tooling consisted of: (1) back contact soldering machine; (2) vacuum pickup; (3) antireflective coating tooling; and (4) test fixture.

  19. Solar Activity and its Impact on Earth's Climate

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.

    2004-01-01

    The Sun's activity is now approaching an expected 2006 minimum, following the dramatic maximum of Solar Cycle 23, that included events such as the 2001 "Bastille Day" Coronal Mass Ejection, and the record-setting Oct-Nov 2003 solar flares, with their associated sunspots and variations in Total Solar Irradiance, or TSI. On Nov 4,2003 the largest X-ray flare ever detected (X-28) was observed in detail. We discuss recent satellite measurements of TSI by ACRIM 2 and 3 and Virgo, and new precision observations of TSI and SSI (Solar Spectral Irradiance) from the SORCE mission, that launched on January 25,2003. TSI variations recorded during the June 8,2004 transit of Venus show the unprecedented precision of the SORCE Total Irradiance Monitor (TIM) instrument, the first of its kind to employ phase-sensitive detection. The SORCE spectral instruments, XPS, Solstice, and SIM, record the Sun's changes over a wide range of wavelengths, from 1 to more than 2000 nanometers, for the first time covering the peak of the solar spectrum, including spectral components that provide energy inputs to key components of the climate system - ultraviolet (UV) into the upper atmospheric ozone layer, infrared (IR) into the lower atmosphere and clouds, and Visible into the Oceans and biosphere. Succeeding satellite missions are planned to monitor both TSI and SSI through Cycle 24. We summarize current ideas about decadal and longer solar variability, and associated potential impacts on Earth's climate on time scales from decades to centuries, especially highlighting the role of feedbacks in the climate system.

  20. Centennial Scale Variations in Lake Productivity Linked to Solar Activity

    NASA Astrophysics Data System (ADS)

    Englebrecht, A.; Bhattacharyya, S.; Guilderson, T. P.; Ingram, L.; Byrne, R.

    2012-12-01

    Solar variations on both decadal and centennial timescales have been associated with climate phenomena (van Loon et al., 2004; Hodell et al., 2001; White et al., 1997). The energy received by the Earth at the peak of the solar cycle increases by <0.1%; so the question has remained of how this could be amplified to produce an observable climate response. Recent modeling shows that the response of the Earth's climate system to the 11-year solar cycle may be amplified through stratosphere and ocean feedbacks and has the potential to impact climate variability on a multidecadal to centennial timescales (Meehl et al., 2009). Here, we report a 1000-year record of changes in the stratigraphy and carbon isotope composition of varved lake sediment from Isla Isabela (22°N, 106°W) in the subtropical northeast Pacific. Stable carbon isotopes and carbonate stratigraphy can be used to infer surface productivity in the lake. Our analysis shows variations in primary productivity on centennial timescales and suggests that solar activity may be an important component of Pacific climate variability. A possible response during solar maxima acts to keep the eastern equatorial Pacific cooler and drier than usual, producing conditions similar to a La Niña event. In the region around Isla Isabela peak solar years were characterized by decreased surface temperatures and suppressed precipitation (Meehl et al., 2009), which enhance productivity at Isabela (Kienel et al. 2011). In the future, we plan to analyze the data using advanced time series analysis techniques like the wavelets together with techniques to handle irregularly spaced time series data. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-571672

  1. Three dimensional structures of solar active regions

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.

    1986-01-01

    Three dimensional structure of an active region is determined from observations with the Very Large Array (VLA) at 2, 6, and 20 cm. This region exhibits a single magnetic loop of length approx. 10 to the 10th power cm. The 2 cm radiation is mostly thermal bremsstrahlung and originates from the footpoints of the loop. The 6 and 20 cm radiation is dominated by the low harmonic gyroresonance radiation and originates from the upper portion of the legs or the top of the loop. The loop broadens toward the apex. The top of the loop is not found to be the hottest point, but two temperature maxima on either side of the loop apex are observed, which is consistent with the model proposed for long loops. From 2 and 6 cm observations it can be concluded that the electron density and temperature cannot be uniform in a plane perpendicular to the axis of the loop; the density should decrease away from the axis of the loop.

  2. High-flux solar photon processes: Opportunities for applications

    SciTech Connect

    Steinfeld, J.I.; Coy, S.L.; Herzog, H.; Shorter, J.A.; Schlamp, M.; Tester, J.W.; Peters, W.A.

    1992-06-01

    The overall goal of this study was to identify new high-flux solar photon (HFSP) processes that show promise of being feasible and in the national interest. Electric power generation and hazardous waste destruction were excluded from this study at sponsor request. Our overall conclusion is that there is promise for new applications of concentrated solar photons, especially in certain aspects of materials processing and premium materials synthesis. Evaluation of the full potential of these and other possible applications, including opportunities for commercialization, requires further research and testing. 100 refs.

  3. Origin of photogenerated carrier recombination at the metal-active layer interface in polymer solar cells.

    PubMed

    Kumar, Mukesh; Dubey, Ashish; Reza, Khan Mamun; Adhikari, Nirmal; Qiao, Qiquan; Bommisetty, Venkat

    2015-11-01

    The role of the metal-active layer interface in photogenerated recombination has been investigated using nanoscale current sensing atomic force microscopy (CS-AFM) and intensity modulated photocurrent spectroscopy (IMPS) in as-deposited, pre-annealed and post-annealed bulk heterojunction (BHJ) solar cells. Aluminum (Al) confined post-annealed BHJ solar cells exhibited a significantly improved device efficiency compared to pre-annealed BHJ solar cells having similar photocarrier harvesting ability in the active layer. The nanoscale topography and CS-AFM results indicate a uniform PCBM rich phase at the metal-active layer interface in the post-annealed cells, but PCBM segregation in the pre-annealed cells. These two different annealing processes showed different carrier dynamics revealed using IMPS under various light intensities. The IMPS results suggest reduced photo generated carrier recombination in uniform PCBM rich post-annealed BHJ solar cells. This study reveals the importance of the metal-bend interface in BHJ solar cells in order to obtain efficient charge carrier extraction for high efficiency. PMID:26431263

  4. Periodic analysis of solar activity and its link with the Arctic oscillation phenomenon

    SciTech Connect

    Qu, Weizheng; Li, Chun; Du, Ling; Huang, Fei; Li, Yanfang

    2014-12-01

    Based on spectrum analysis, we provide the arithmetic expressions of the quasi 11 yr cycle, 110 yr century cycle of relative sunspot numbers, and quasi 22 yr cycle of solar magnetic field polarity. Based on a comparative analysis of the monthly average geopotential height, geopotential height anomaly, and temperature anomaly of the northern hemisphere at locations with an air pressure of 500 HPa during the positive and negative phases of AO (Arctic Oscillation), one can see that the abnormal warming period in the Arctic region corresponds to the negative phase of AO, while the anomalous cold period corresponds to its positive phase. This shows that the abnormal change in the Arctic region is an important factor in determining the anomalies of AO. In accordance with the analysis performed using the successive filtering method, one can see that the AO phenomenon occurring in January shows a clear quasi 88 yr century cycle and quasi 22 yr decadal cycle, which are closely related to solar activities. The results of our comparative analysis show that there is a close inverse relationship between the solar activities (especially the solar magnetic field index changes) and the changes in the 22 yr cycle of the AO occurring in January, and that the two trends are basically opposite of each other. That is to say, in most cases after the solar magnetic index MI rises from the lowest value, the solar magnetic field turns from north to south, and the high-energy particle flow entering the Earth's magnetosphere increases to heat the polar atmosphere, thus causing the AO to drop from the highest value; after the solar magnetic index MI drops from the highest value, the solar magnetic field turns from south to north, and the solar high-energy particle flow passes through the top of the Earth's magnetosphere rather than entering it to heat the polar atmosphere. Thus the polar temperature drops, causing the AO to rise from the lowest value. In summary, the variance contribution

  5. Online educative activities for solar ultraviolet radiation based on measurements of cloud amount and solar exposures.

    PubMed

    Parisi, A V; Downs, N; Turner, J; Amar, A

    2016-09-01

    A set of online activities for children and the community that are based on an integrated real-time solar UV and cloud measurement system are described. These activities use the functionality of the internet to provide an educative tool for school children and the public on the influence of cloud and the angle of the sun above the horizon on the global erythemal UV or sunburning UV, the diffuse erythemal UV, the global UVA (320-400nm) and the vitamin D effective UV. Additionally, the units of UV exposure and UV irradiance are investigated, along with the meaning and calculation of the UV index (UVI). This research will help ensure that children and the general public are better informed about sun safety by improving their personal understanding of the daily and the atmospheric factors that influence solar UV radiation and the solar UV exposures of the various wavebands in the natural environment. The activities may correct common misconceptions of children and the public about UV irradiances and exposure, utilising the widespread reach of the internet to increase the public's awareness of the factors influencing UV irradiances and exposures in order to provide clear information for minimizing UV exposure, while maintaining healthy, outdoor lifestyles.

  6. Study of Distribution and Asymmetry of Solar Active Prominences during Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Joshi, Navin Chandra; Bankoti, Neeraj Singh; Pande, Seema; Pande, Bimal; Pandey, Kavita

    2009-12-01

    In this article we present the results of a study of the spatial distribution and asymmetry of solar active prominences (SAP) for the period 1996 through 2007 (solar cycle 23). For more meaningful statistical analysis we analyzed the distribution and asymmetry of SAP in two subdivisions viz. Group1 (ADF, APR, DSF, CRN, CAP) and Group2 (AFS, ASR, BSD, BSL, DSD, SPY, LPS). The North - South (N - S) latitudinal distribution shows that the SAP events are most prolific in the 21° to 30° slice in the Northern and Southern Hemispheres; the East - West (E - W) longitudinal distribution study shows that the SAP events are most prolific (best observable) in the 81° to 90° slice in the Eastern and Western Hemispheres. It was found that the SAP activity during this cycle is low compared to previous solar cycles. The present study indicates that during the rising phase of the cycle the number of SAP events are roughly equal in the Northern and Southern Hemispheres. However, activity in the Southern Hemisphere has been dominant since 1999. Our statistical study shows that the N - S asymmetry is more significant then the E - W asymmetry.

  7. Online educative activities for solar ultraviolet radiation based on measurements of cloud amount and solar exposures.

    PubMed

    Parisi, A V; Downs, N; Turner, J; Amar, A

    2016-09-01

    A set of online activities for children and the community that are based on an integrated real-time solar UV and cloud measurement system are described. These activities use the functionality of the internet to provide an educative tool for school children and the public on the influence of cloud and the angle of the sun above the horizon on the global erythemal UV or sunburning UV, the diffuse erythemal UV, the global UVA (320-400nm) and the vitamin D effective UV. Additionally, the units of UV exposure and UV irradiance are investigated, along with the meaning and calculation of the UV index (UVI). This research will help ensure that children and the general public are better informed about sun safety by improving their personal understanding of the daily and the atmospheric factors that influence solar UV radiation and the solar UV exposures of the various wavebands in the natural environment. The activities may correct common misconceptions of children and the public about UV irradiances and exposure, utilising the widespread reach of the internet to increase the public's awareness of the factors influencing UV irradiances and exposures in order to provide clear information for minimizing UV exposure, while maintaining healthy, outdoor lifestyles. PMID:27450297

  8. Improved Modeling Tools Development for High Penetration Solar

    SciTech Connect

    Washom, Byron

    2014-12-11

    One of the significant objectives of the High Penetration solar research is to help the DOE understand, anticipate, and minimize grid operation impacts as more solar resources are added to the electric power system. For Task 2.2, an effective, reliable approach to predicting solar energy availability for energy generation forecasts using the University of California, San Diego (UCSD) Sky Imager technology has been demonstrated. Granular cloud and ramp forecasts for the next 5 to 20 minutes over an area of 10 square miles were developed. Sky images taken every 30 seconds are processed to determine cloud locations and cloud motion vectors yielding future cloud shadow locations respective to distributed generation or utility solar power plants in the area. The performance of the method depends on cloud characteristics. On days with more advective cloud conditions, the developed method outperforms persistence forecasts by up to 30% (based on mean absolute error). On days with dynamic conditions, the method performs worse than persistence. Sky Imagers hold promise for ramp forecasting and ramp mitigation in conjunction with inverter controls and energy storage. The pre-commercial Sky Imager solar forecasting algorithm was documented with licensing information and was a Sunshot website highlight

  9. High altitude solar power platform. [aircraft design analysis

    NASA Technical Reports Server (NTRS)

    Bailey, M. D.; Bower, M. V.

    1992-01-01

    Solar power is a preeminent alternative to conventional aircraft propulsion. With the continued advances in solar cells, fuel cells, and composite materials technology, the solar powered airplane is no longer a simple curiosity constrained to flights of several feet in altitude or minutes of duration. A high altitude solar powered platform (HASPP) has several potential missions, including communications and agriculture. In remote areas, a HASPP could be used as a communication link. In large farming areas, a HASPP could perform remote sensing of crops. The impact of HASPP in continuous flight for one year on agricultural monitoring mission is presented. This mission provides farmers with near real-time data twice daily from an altitude which allows excellant resolution on water conditions, crop diseases, and insect infestation. Accurate, timely data will enable farmers to increase their yield and efficiency. A design for HASPP for the foregoing mission is presented. In the design power derived from solar cells covering the wings is used for propulsion, avionics, and sensors. Excess power produced midday will be stored in fuel cells for use at night to maintain altitude and course.

  10. High-Power Solar Electric Propulsion for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Manzella, David; Hack, Kurt

    2014-01-01

    NASA has sought to utilize high-power solar electric propulsion as means of improving the affordability of in-space transportation for almost 50 years. Early efforts focused on 25 to 50 kilowatt systems that could be used with the Space Shuttle, while later efforts focused on systems nearly an order of magnitude higher power that could be used with heavy lift launch vehicles. These efforts never left the concept development phase in part because the technology required was not sufficiently mature. Since 2012 the NASA Space Technology Mission Directorate has had a coordinated plan to mature the requisite solar array and electric propulsion technology needed to implement a 30 to 50 kilowatt solar electric propulsion technology demonstration mission. Multiple solar electric propulsion technology demonstration mission concepts have been developed based on these maturing technologies with recent efforts focusing on an Asteroid Redirect Robotic Mission. If implemented, the Asteroid Redirect Vehicle will form the basis for a capability that can be cost-effectively evolved over time to provide solar electric propulsion transportation for a range of follow-on mission applications at power levels in excess of 100 kilowatts.

  11. High-resolution spectroscopy of a giant solar filament

    NASA Astrophysics Data System (ADS)

    Kuckein, Christoph; Denker, Carsten; Verma, Meetu

    2014-01-01

    High-resolution spectra of a giant solar quiescent filament were taken with the Echelle spectrograph at the Vacuum Tower Telescope (VTT; Tenerife, Spain). A mosaic of various spectroheliograms (Hα, Hα+/-0.5 Å and Na D2) were chosen to examine the filament at different heights in the solar atmosphere. In addition, full-disk images (He i 10830 Å and Ca ii K) of the Chromspheric Telescope and full-disk magnetograms of the Helioseismic and Magnetic Imager were used to complement the spectra. Preliminary results are shown of this filament, which had extremely large linear dimensions (~740'') and was observed in November 2011 while it traversed the northern solar hemisphere.

  12. Prediction of Solar Activity Based on Neuro-Fuzzy Modeling

    NASA Astrophysics Data System (ADS)

    Attia, Abdel-Fattah; Abdel-Hamid, Rabab; Quassim, Maha

    2005-03-01

    This paper presents an application of the neuro-fuzzy modeling to analyze the time series of solar activity, as measured through the relative Wolf number. The neuro-fuzzy structure is optimized based on the linear adapted genetic algorithm with controlling population size (LAGA-POP). Initially, the dimension of the time series characteristic attractor is obtained based on the smallest regularity criterion (RC) and the neuro-fuzzy model. Then the performance of the proposed approach, in forecasting yearly sunspot numbers, is favorably compared to that of other published methods. Finally, a comparison predictions for the remaining part of the 22nd and the whole 23rd cycle of the solar activity are presented.

  13. GRAND MINIMA AND NORTH-SOUTH ASYMMETRY OF SOLAR ACTIVITY

    SciTech Connect

    Olemskoy, S. V.; Kitchatinov, L. L.

    2013-11-01

    A solar-type dynamo model in a spherical shell is developed with allowance for random dependence of the poloidal field generation mechanism on time and latitude. The model shows repeatable epochs of a strongly decreased amplitude of magnetic cycles similar to the Maunder minimum of solar activity. Random dependence of dynamo parameters on latitude breaks the equatorial symmetry of generated fields. The model shows the correlation of the occurrence of grand minima with deviations in the dynamo field from dipolar parity. An increased north-south asymmetry of magnetic activity can, therefore, be an indicator of transitions to grand minima. Qualitative interpretation of this correlation is suggested. Statistics of grand minima in the model are close to the Poisson random process, indicating that the onset of a grand minimum is statistically independent of preceding minima.

  14. High voltage, high current Schottky barrier solar cell

    NASA Technical Reports Server (NTRS)

    Stirn, R. J. (Inventor)

    1977-01-01

    A Schottky barrier solar cell was described, which consists of a layer of wide band gap semiconductor material on which a very thin film of semitransparent metal was deposited to form a Schottky barrier. The layer of the wide band gap semiconductor material is on top of a layer of narrower band gap semiconductor material, to which one of the cell's contacts may be attached directly or through a substrate. The cell's other contact is a grid structure which is deposited on the thin metal film.

  15. High temperature helical tubular receiver for concentrating solar power system

    NASA Astrophysics Data System (ADS)

    Hossain, Nazmul

    In the field of conventional cleaner power generation technology, concentrating solar power systems have introduced remarkable opportunity. In a solar power tower, solar energy concentrated by the heliostats at a single point produces very high temperature. Falling solid particles or heat transfer fluid passing through that high temperature region absorbs heat to generate electricity. Increasing the residence time will result in more heat gain and increase efficiency. A novel design of solar receiver for both fluid and solid particle is approached in this paper which can increase residence time resulting in higher temperature gain in one cycle compared to conventional receivers. The helical tubular solar receiver placed at the focused sunlight region meets the higher outlet temperature and efficiency. A vertical tubular receiver is modeled and analyzed for single phase flow with molten salt as heat transfer fluid and alloy625 as heat transfer material. The result is compared to a journal paper of similar numerical and experimental setup for validating our modeling. New types of helical tubular solar receivers are modeled and analyzed with heat transfer fluid turbulent flow in single phase, and granular particle and air plug flow in multiphase to observe the temperature rise in one cyclic operation. The Discrete Ordinate radiation model is used for numerical analysis with simulation software Ansys Fluent 15.0. The Eulerian granular multiphase model is used for multiphase flow. Applying the same modeling parameters and boundary conditions, the results of vertical and helical receivers are compared. With a helical receiver, higher temperature gain of heat transfer fluid is achieved in one cycle for both single phase and multiphase flow compared to the vertical receiver. Performance is also observed by varying dimension of helical receiver.

  16. Development and Testing of High-Temperature Solar Selective Coatings

    SciTech Connect

    Kennedy, C.; Price, H.

    2005-01-01

    The Solar Energy Technologies Program is working to reduce the cost of parabolic trough solar power technology. System studies show that increasing the operating temperature of the solar field from 390 to >450 C will result in improved performance and cost reductions. This requires the development of new more-efficient selective coatings that have both high solar absorptance (>0.96) and low thermal emittance (<0.07) and are thermally stable above 450 C, ideally in air. Potential selective coatings were modeled, identified for laboratory prototyping, and manufactured at NREL. Optimization of the samples and high-temperature durability testing will be performed. Development of spectrally selective materials depends on reliable characterization of their optical properties. Protocols for testing the thermal/optical properties of selective coatings were developed and a round-robin experiment was conducted to verify and document the reflectance and high-temperature emittance measurements. The development, performance, and durability of these materials and future work will be described.

  17. Solar Activity-driven Variability of Instrumental Data Quality

    NASA Astrophysics Data System (ADS)

    Martayan, C.; Smette, A.; Hanuschik, R.; van Der Heyden, P.; Mieske, S.

    2016-06-01

    The unexplained variability of the data quality from Very Large Telescope instruments and the frequency of power cuts have been investigated. Origins for the variability in ambient temperature variations, software, data reduction pipelines and internal to hardware could be discarded. The most probable cause appears to be correlated with the evolution of the cosmic ray rate, and also with solar and terrestrial geomagnetic activity. We report on the consequences of such variability and describe how the observatory infrastructure, instruments and data are affected.

  18. Grand minima and maxima of solar activity: new observational constraints

    NASA Astrophysics Data System (ADS)

    Usoskin, I. G.; Solanki, S. K.; Kovaltsov, G. A.

    2007-08-01

    Aims:Using a reconstruction of sunspot numbers stretching over multiple millennia, we analyze the statistics of the occurrence of grand minima and maxima and set new observational constraints on long-term solar and stellar dynamo models. Methods: We present an updated reconstruction of sunspot number over multiple millennia, from 14C data by means of a physics-based model, using an updated model of the evolution of the solar open magnetic flux. A list of grand minima and maxima of solar activity is presented for the Holocene (since 9500 BC) and the statistics of both the length of individual events as well as the waiting time between them are analyzed. Results: The occurrence of grand minima/maxima is driven not by long-term cyclic variability, but by a stochastic/chaotic process. The waiting time distribution of the occurrence of grand minima/maxima deviates from an exponential distribution, implying that these events tend to cluster together with long event-free periods between the clusters. Two different types of grand minima are observed: short (30-90 years) minima of Maunder type and long (>110 years) minima of Spörer type, implying that a deterministic behaviour of the dynamo during a grand minimum defines its length. The duration of grand maxima follows an exponential distribution, suggesting that the duration of a grand maximum is determined by a random process. Conclusions: These results set new observational constraints upon the long-term behaviour of the solar dynamo.

  19. SOLAR ROTATION RATE DURING THE CYCLE 24 MINIMUM IN ACTIVITY

    SciTech Connect

    Antia, H. M.; Basu, Sarbani E-mail: sarbani.basu@yale.ed

    2010-09-01

    The minimum of solar cycle 24 is significantly different from most other minima in terms of its duration as well as its abnormally low levels of activity. Using available helioseismic data that cover epochs from the minimum of cycle 23 to now, we study the differences in the nature of the solar rotation between the minima of cycles 23 and 24. We find that there are significant differences between the rotation rates during the two minima. There are differences in the zonal-flow pattern too. We find that the band of fast rotating region close to the equator bifurcated around 2005 and recombined by 2008. This behavior is different from that during the cycle 23 minimum. By autocorrelating the zonal-flow pattern with a time shift, we find that in terms of solar dynamics, solar cycle 23 lasted for a period of 11.7 years, consistent with the result of Howe et al. (2009). The autocorrelation coefficient also confirms that the zonal-flow pattern penetrates through the convection zone.

  20. Dayside Auroral Activity During Solar Maximum and Minimum Periods

    NASA Astrophysics Data System (ADS)

    Rawie, M.; Fasel, G. J.; Flicker, J.; Angelo, A.; Bender, S.; Alyami, M.; Sibeck, D. G.; Sigernes, F.; Lorentzen, D. A.; Green, D.

    2014-12-01

    It is well documented that the dayside auroral oval shifts equatorward when the interplanetary magnetic field (IMF) Bz-component turns southward [Burch, 1973; Akasofu, 1977; Horwitz and Akasofu, 1977; Sandholt et al., 1986, 1988]. During these periods of oval expansion dayside transients are observed to move away from the poleward edge of the auroral oval and drift poleward. These poleward-moving auroral forms are believed to be ionospheric signatures of dayside merging. The dayside auroral oval usually begins to contract when the interplanetary magnetic field turns sharply northward, Bz>0. Eighteen years of meridian scanning photometer (MSP) data from the Kjell Henriksen Observatory in Longyearbyen, Norway are analyzed. During the boreal winter the Sun is several degrees below the horizon. This permits optical observations throughout the daytime period. The MSP Data is selected two hours before and after local noon in Longyearbeyn. Solar wind data (solar wind pressure and speed, along with the IMF Bx, By, Bz components) are collected for each interval and combined with the MSP observations. This data is then separated using solar maximum and minimum periods. Auroral activity (oval expansions and contractions along with the frequency and number of poleward-moving auroral forms) is documented for both solar maximum and minimum periods.

  1. Forecasting the Peak of the Present Solar Activity Cycle

    NASA Astrophysics Data System (ADS)

    Hamid, Rabab; Marzouk, Beshir

    2016-07-01

    Solar forecasting of the level of sun Activity is very important subject for all space programs. Most predictions are based on the physical conditions prevailing at or before the solar cycle minimum preceding the maximum in question. Our aim is to predict the maximum peak of cycle 24 using precursor techniques in particular those using spotless event, geomagnetic aa min. index and solar flux F10.7. Also prediction of exact date of the maximum (Tr) is taken in consideration. A study of variation over previous spotless event for cycles 7-23 and that for even cycles (8-22) are carried out for the prediction. Linear correlation between RM and spotless event around the preceding minimum gives RM24t = 101.9with rise time Tr = 4.5 Y. For the even cycles RM24e = 108.3 with rise time Tr = 3.9 Y. Based on the average aa min. index for the year of sunspot minimum cycles (13 - 23), we estimate the expected amplitude for cycle 24 to be RMaa = 116.5 for both the total and even cycles. Application of the data of solar flux F10.7 which cover only cycles (19-23) was taken in consideration and gives predicted maximum amplitude R24 10.7 = 146, which are over estimation. Our result indicating a somewhat weaker cycle 24 as compared to cycles 21-23.

  2. How Large Scales Flows May Influence Solar Activity

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.

    2004-01-01

    Large scale flows within the solar convection zone are the primary drivers of the Sun's magnetic activity cycle and play important roles in shaping the Sun's magnetic field. Differential rotation amplifies the magnetic field through its shearing action and converts poloidal field into toroidal field. Poleward meridional flow near the surface carries magnetic flux that reverses the magnetic poles at about the time of solar maximum. The deeper, equatorward meridional flow can carry magnetic flux back toward the lower latitudes where it erupts through the surface to form tilted active regions that convert toroidal fields into oppositely directed poloidal fields. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun's rotation on convection produce velocity correlations that can maintain both the differential rotation and the meridional circulation. These convective motions can also influence solar activity directly by shaping the magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.

  3. Improved Power Conversion Efficiency of Inverted Organic Solar Cells by Incorporating Au Nanorods into Active Layer.

    PubMed

    He, Yeyuan; Liu, Chunyu; Li, Jinfeng; Zhang, Xinyuan; Li, Zhiqi; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2015-07-29

    This Research Article describes a cooperative plasmonic effect on improving the performance of organic solar cells. When Au nanorods(NRs) are incorporated into the active layers, the designed project shows superior enhanced light absorption behavior comparing with control devices, which leads to the realization of organic solar cell with power conversion efficiency of 6.83%, accounting for 18.9% improvement. Further investigations unravel the influence of plasmonic nanostructures on light trapping, exciton generation, dissociation, and charge recombination and transport inside the thin films devices. Moreover, the introduction of high-conductivity Au NRs improves electrical conductivity of the whole device, which contributes to the enhanced fill factor.

  4. Active other worlds in the Solar System and beyond

    NASA Astrophysics Data System (ADS)

    Forget, François

    2016-04-01

    Over the past decades, space exploration has moved planetology from the field of astronomy to the disciplines of geosciences. A fleet of spacecrafts have discovered and study tens of worlds in our solar system and beyond. Everywhere, we have been surprised by the diversity and the vigour of the geophysical activity, from volcanic eruptions to plasma waves... Every scientists present at EGU could -and should- be interested in the extraterrestrial processes that are discovered and analyzed elsewhere. In our solar system, a variety of clouds and fluid dynamical phenomena can be studied in six terrestrial atmospheres and on four giant planets. Active glaciers are found on Mars and Pluto. Rivers and lakes have sculpted the surface of Titan and Mars. Sometime, we can even study geophysical activity with no equivalent on our planet: ice caps made of frozen atmosphere that erupt in geysers, hazes formed by organic polymers which can completely shroud a moon, etc. We study these active worlds because we are curious and wish to understand our universe and our origins. However, more than ever, two specific motivations drive solar system geosciences in 2016: Firstly, as we become more and more familiar with the other worlds around us, we can use them to better understand our own planet. Throughout the solar system, we can access to data that are simply not available on the Earth, or study active processes that are subtle on Earth but of greater importance elsewhere, so that we can better understand them. Many geophysical concepts and tools developed for the Earth can also be tested on other planets. For instance the numerical Climate Models used to assess Earth's future climate change are applied to other planets. Much is learned from such experiments. Secondly, the time has come to generalize the fundamental lessons that we have learned from the examples in the solar system (including the Earth) to address the countless scientific questions that are -and will be- raised by

  5. Prediction of Solar Activity from Solar Background Magnetic Field Variations in Cycles 21-23

    NASA Astrophysics Data System (ADS)

    Shepherd, Simon J.; Zharkov, Sergei I.; Zharkova, Valentina V.

    2014-11-01

    A comprehensive spectral analysis of both the solar background magnetic field (SBMF) in cycles 21-23 and the sunspot magnetic field in cycle 23 reported in our recent paper showed the presence of two principal components (PCs) of SBMF having opposite polarity, e.g., originating in the northern and southern hemispheres, respectively. Over a duration of one solar cycle, both waves are found to travel with an increasing phase shift toward the northern hemisphere in odd cycles 21 and 23 and to the southern hemisphere in even cycle 22. These waves were linked to solar dynamo waves assumed to form in different layers of the solar interior. In this paper, for the first time, the PCs of SBMF in cycles 21-23 are analyzed with the symbolic regression technique using Hamiltonian principles, allowing us to uncover the underlying mathematical laws governing these complex waves in the SBMF presented by PCs and to extrapolate these PCs to cycles 24-26. The PCs predicted for cycle 24 very closely fit (with an accuracy better than 98%) the PCs derived from the SBMF observations in this cycle. This approach also predicts a strong reduction of the SBMF in cycles 25 and 26 and, thus, a reduction of the resulting solar activity. This decrease is accompanied by an increasing phase shift between the two predicted PCs (magnetic waves) in cycle 25 leading to their full separation into the opposite hemispheres in cycle 26. The variations of the modulus summary of the two PCs in SBMF reveals a remarkable resemblance to the average number of sunspots in cycles 21-24 and to predictions of reduced sunspot numbers compared to cycle 24: 80% in cycle 25 and 40% in cycle 26.

  6. Prediction of solar activity from solar background magnetic field variations in cycles 21-23

    SciTech Connect

    Shepherd, Simon J.; Zharkov, Sergei I.; Zharkova, Valentina V. E-mail: s.zharkov@hull.ac.uk

    2014-11-01

    A comprehensive spectral analysis of both the solar background magnetic field (SBMF) in cycles 21-23 and the sunspot magnetic field in cycle 23 reported in our recent paper showed the presence of two principal components (PCs) of SBMF having opposite polarity, e.g., originating in the northern and southern hemispheres, respectively. Over a duration of one solar cycle, both waves are found to travel with an increasing phase shift toward the northern hemisphere in odd cycles 21 and 23 and to the southern hemisphere in even cycle 22. These waves were linked to solar dynamo waves assumed to form in different layers of the solar interior. In this paper, for the first time, the PCs of SBMF in cycles 21-23 are analyzed with the symbolic regression technique using Hamiltonian principles, allowing us to uncover the underlying mathematical laws governing these complex waves in the SBMF presented by PCs and to extrapolate these PCs to cycles 24-26. The PCs predicted for cycle 24 very closely fit (with an accuracy better than 98%) the PCs derived from the SBMF observations in this cycle. This approach also predicts a strong reduction of the SBMF in cycles 25 and 26 and, thus, a reduction of the resulting solar activity. This decrease is accompanied by an increasing phase shift between the two predicted PCs (magnetic waves) in cycle 25 leading to their full separation into the opposite hemispheres in cycle 26. The variations of the modulus summary of the two PCs in SBMF reveals a remarkable resemblance to the average number of sunspots in cycles 21-24 and to predictions of reduced sunspot numbers compared to cycle 24: 80% in cycle 25 and 40% in cycle 26.

  7. [Solar activity, dynamics of the ozone layer and possible role of ultraviolet radiation in heliobiology].

    PubMed

    Vladimirskiĭ, B M

    1982-01-01

    Solar activity influences the ozonosphere thickness, thus changing the intensity of the near-Earth ultraviolet radiation in the B band. In certain regions the radiation may change by 10--15%, with solar activity varying from its maximum to minimum. The variations in the ultraviolet intensity are very likely to be environmentally important. Thus, solar ultraviolet radiation at lambda = 290 -- 340 nm acts as one more physical agent transferring the effect of solar activity into the biosphere.

  8. Solar activity and climate change during the 1750 A.D. solar minimum

    NASA Astrophysics Data System (ADS)

    Bard, Edouard; Baroni, Mélanie; Aster Team

    2015-04-01

    The number of sunspots and other characteristics have been widely used to reconstruct the solar activity beyond the last three decades of accurate satellite measurements. It has also been possible to reconstruct the long-term solar behavior by measuring the abundance on Earth of cosmogenic nuclides such as carbon 14 and beryllium 10. These isotopes are formed by the interaction of galactic cosmic rays with atmospheric molecules. Accelerator mass spectrometry is used to measure the abundance of these isotopes in natural archives such as polar ice (for 10Be), tree rings and corals (for 14C). Over the last millennium, the solar activity has been dominated by alternating active and quiet periods, such as the Maunder Minimum, which occurred between 1645 and 1715 A.D. The climate forcing of this solar variability is the subject of intense research, both because the exact scaling in terms of irradiance is still a matter of debate and because other solar variations may have played a role in amplifying the climatic response. Indeed, the past few decades of accurate solar measurements do not include conditions equivalent to an extended solar minimum. A further difficulty of the analysis lies in the presence of other climate forcings during the last millennium, which are superimposed on the solar variations. Finally, the inherent precision of paleotemperature proxies are close to the signal amplitude retrieved from various paleoclimate archives covering the last millennium. Recent model-data comparisons for the last millennium have led to the conclusion that the solar forcing during this period was minor in comparison to volcanic eruptions and greenhouse gas concentrations (e.g. Schurer et al. 2013 J. Clim., 2014 Nat. Geo.). In order to separate the different forcings, it is useful to focus on a temperature change in phase with a well-documented solar minimum so as to maximize the response to this astronomical forcing. This is the approach followed by Wagner et al. (2005 Clim

  9. Simultaneous Solar Maximum Mission (SMM) and Very Large Array (VLA) observations of solar active regions

    NASA Technical Reports Server (NTRS)

    Willson, Robert F.

    1991-01-01

    Very Large Array observations at 20 cm wavelength can detect the hot coronal plasma previously observed at soft x ray wavelengths. Thermal cyclotron line emission was detected at the apex of coronal loops where the magnetic field strength is relatively constant. Detailed comparison of simultaneous Solar Maximum Mission (SMM) Satellite and VLA data indicate that physical parameters such as electron temperature, electron density, and magnetic field strength can be obtained, but that some coronal loops remain invisible in either spectral domain. The unprecedent spatial resolution of the VLA at 20 cm wavelength showed that the precursor, impulsive, and post-flare components of solar bursts originate in nearby, but separate loops or systems of loops.. In some cases preburst heating and magnetic changes are observed from loops tens of minutes prior to the impulsive phase. Comparisons with soft x ray images and spectra and with hard x ray data specify the magnetic field strength and emission mechanism of flaring coronal loops. At the longer 91 cm wavelength, the VLA detected extensive emission interpreted as a hot 10(exp 5) K interface between cool, dense H alpha filaments and the surrounding hotter, rarefield corona. Observations at 91 cm also provide evidence for time-correlated bursts in active regions on opposite sides of the solar equator; they are attributed to flare triggering by relativistic particles that move along large-scale, otherwise-invisible, magnetic conduits that link active regions in opposite hemispheres of the Sun.

  10. High efficiency silicon solar cell based on asymmetric nanowire

    PubMed Central

    Ko, Myung-Dong; Rim, Taiuk; Kim, Kihyun; Meyyappan, M.; Baek, Chang-Ki

    2015-01-01

    Improving the efficiency of solar cells through novel materials and devices is critical to realize the full potential of solar energy to meet the growing worldwide energy demands. We present here a highly efficient radial p-n junction silicon solar cell using an asymmetric nanowire structure with a shorter bottom core diameter than at the top. A maximum short circuit current density of 27.5 mA/cm2 and an efficiency of 7.53% were realized without anti-reflection coating. Changing the silicon nanowire (SiNW) structure from conventional symmetric to asymmetric nature improves the efficiency due to increased short circuit current density. From numerical simulation and measurement of the optical characteristics, the total reflection on the sidewalls is seen to increase the light trapping path and charge carrier generation in the radial junction of the asymmetric SiNW, yielding high external quantum efficiency and short circuit current density. The proposed asymmetric structure has great potential to effectively improve the efficiency of the SiNW solar cells. PMID:26152914

  11. The solar radio emission during the minimum between the 23-24 cycles of solar activity

    NASA Astrophysics Data System (ADS)

    Mendoza-Torres, J. E.; Palacios-Fonseca, J. S.

    2016-11-01

    We analyze the total intensity (I) and circularly-polarized (V) RATAN-600 radio scans obtained at the 3.3-17.0 GHz range during the 23-24 minimum of solar activity. It is found that, in the 3.37-6.8 GHz range, the circular polarization varies linearly with the EW position. The slope is measured at different frequencies and different times. The value of the slope for a given frequency varies with time indicating a dependence with P and B solar angles. It is not clear what could be the reason of such behavior. A possible interpretation of this dependence could be made in terms of the variation of the magnetic field component along the line of sight, which plays an important role in the polarized flux observed in the case of Bremsstrahlung emission.

  12. Spearfish High School, Sparfish, South Dakota solar energy system performance evaluation, September 1980-June 1981

    SciTech Connect

    Howard, B.D.

    1981-01-01

    Spearfish High School in South Dakota contains 43,000 square feet of conditioned space. Its active solar energy system is designed to supply 57% of the space heating and 50% of the hot water demand. The system is equipped with 8034 square feet of flat plate collectors, 4017 cubic feet of rock bin sensible heat storage, and auxiliary equipment including 8 heat pumps, 6 of which are solar supplied and instrumented, air conditioning units, and natural-gas-fired boilers. Performance data are given for the system including the solar fraction, solar savings ratio, conventional fuel savings, system performance factor and solar system coefficient of performance. Insolation, solar energy utilization and operation data are also given. The performance of the collector, storage, domestic hot water and space heating subsystems, the operating energy, energy savings, and weather conditions are also evaluated. Appended are a system description, performance evaluation techniques and equations, site history, long-term weather data, sensor technology, and typical monthly data. (LEW)

  13. Using high frequency consumption data to identify demand response potential for solar energy integration

    NASA Astrophysics Data System (ADS)

    Jin, L.; Borgeson, S.; Fredman, D.; Hans, L.; Spurlock, A.; Todd, A.

    2015-12-01

    California's renewable portfolio standard (2012) requires the state to get 33% of its electricity from renewable sources by 2020. Increased share of variable renewable sources such as solar and wind in the California electricity system may require more grid flexibility to insure reliable power services. Such grid flexibility can be potentially provided by changes in end use electricity consumptions in response to grid conditions (demand-response). In the solar case, residential consumption in the late afternoon can be used as reserve capacity to balance the drop in solar generation. This study presents our initial attempt to identify, from a behavior perspective, residential demand response potentials in relation to solar ramp events using a data-driven approach. Based on hourly residential energy consumption data, we derive representative daily load shapes focusing on discretionary consumption with an innovative clustering analysis technique. We aggregate the representative load shapes into behavior groups in terms of the timing and rhythm of energy use in the context of solar ramp events. Households of different behavior groups that are active during hours with high solar ramp rates are identified for capturing demand response potential. Insights into the nature and predictability of response to demand-response programs are provided.

  14. Experimental Study of Arcing on High-voltage Solar Arrays

    NASA Technical Reports Server (NTRS)

    Vayner, Boris; Galofaro, Joel; Ferguson, Dale

    2005-01-01

    The main obstacle to the implementation of a high-voltage solar array in space is arcing on the conductor-dielectric junctions exposed to the surrounding plasma. One obvious solution to this problem would be the installation of fully encapsulated solar arrays which were not having exposed conductors at all. However, there are many technological difficulties that must be overcome before the employment of fully encapsulated arrays will turn into reality. An alternative solution to raise arc threshold by modifications of conventionally designed solar arrays looks more appealing, at least in the nearest future. A comprehensive study of arc inception mechanism [1-4] suggests that such modifications can be done in the following directions: i) to insulate conductor-dielectric junction from a plasma environment (wrapthrough interconnects); ii) to change a coverglass geometry (overhang); iii) to increase a coverglass thickness; iiii) to outgas areas of conductor-dielectric junctions. The operation of high-voltage array in LEO produces also the parasitic current power drain on the electrical system. Moreover, the current collected from space plasma by solar arrays determines the spacecraft floating potential that is very important for the design of spacecraft and its scientific apparatus. In order to verify the validity of suggested modifications and to measure current collection five different solar array samples have been tested in large vacuum chamber. Each sample (36 silicon based cells) consists of three strings containing 12 cells connected in series. Thus, arc rate and current collection can be measured on every string independently, or on a whole sample when strings are connected in parallel. The heater installed in the chamber provides the possibility to test samples under temperature as high as 80 C that simulates the LEO operational temperature. The experimental setup is described below.

  15. Experimental Study of Arcing on High-Voltage Solar Arrays

    NASA Technical Reports Server (NTRS)

    Vayner, Boris; Galofaro, Joel; Ferguson, Dale

    2003-01-01

    The main obstacle to the implementation of a high-voltage solar array in space is arcing on the conductor-dielectric junctions exposed to the surrounding plasma. One obvious solution to this problem would be the installation of fully encapsulated solar arrays which were not having exposed conductors at all. However, there are many technological difficulties that must be overcome before the employment of fully encapsulated arrays will turn into reality. An alternative solution to raise arc threshold by modifications of conventionally designed solar arrays looks more appealing, at least in the nearest future. A comprehensive study of arc inception mechanism suggests that such modifications can be done in the following directions: 1) To insulate conductor-dielectric junction from a plasma environment (wrapthrough interconnects); 2) To change a coverglass geometry (overhang); 3) To increase a coverglass thickness; 4) To outgas areas of conductor-dielectric junctions. The operation of high-voltage array in LEO produces also the parasitic current power drain on the electrical system. Moreover, the current collected from space plasma by solar arrays determines the spacecraft floating potential that is very important for the design of spacecraft and its scientific apparatus. In order to verify the validity of suggested modifications and to measure current collection five different solar array samples have been tested in a large vacuum chamber. Each sample (36 silicon based cells) consists of three strings containing 12 cells connected in series. Thus, arc rate and current collection can be measured on every string independently, or on a whole sample when strings are connected in parallel. The heater installed in the chamber provides the possibility to test samples under temperature as high as 80 C that stimulates the LEO operational temperature. The experimental setup is described below.

  16. A Geomagnetic Precursor Technique for Predicting the Solar Activity Cycle

    NASA Astrophysics Data System (ADS)

    Sobel, E. I.; Rabin, D. M.

    2015-12-01

    The Western hemisphere has been recording sunspot numbers since Galileo discovered sunspots in the early 17th century, and the roughly 11-year solar cycle has been recognized since the 19th century. However, predicting the strength of any particular cycle remains a relatively imprecise task. This project's aim was to update and improve a forecasting technique based on geomagnetic precursors of future solar activity The model is a refinement of R. J. Thompson's 1993 paper that relates the number of geomagnetically disturbed days, as defined by the aa and Ap indices, to the sum of the sunspot number in the current and the previous cycle, Rn + Rn-1.[1] The method exploits the fact that two cycles coexist for some period on the Sun near solar minimum and therefore that the number of sunspots and disturbed days during the declining phase of one cycle gives an indication of the following cycle's strength. We wrote and updated IDL software procedures to define disturbed days with varying threshold values and graphed Rn + Rn-1 against them. The aa threshold was derived from the Ap threshold. After comparing the graphs for Ap values from 20 to 50, an Ap threshold of 30 and the corresponding aa threshold of 44 were chosen as yielding the best correlation. Confidence regions were computed to provide a quantitative uncertainty on future predictions. The 80% confidence region gives a range of ±40 in sunspot number. [1] Thompson, R. J. (1993). A technique for predicting the amplitude of the solar cycle. Solar Physics, 148, 2, 383-388.

  17. NASDA activities in space solar power system research, development and applications

    NASA Technical Reports Server (NTRS)

    Matsuda, Sumio; Yamamoto, Yasunari; Uesugi, Masato

    1993-01-01

    NASDA activities in solar cell research, development, and applications are described. First, current technologies for space solar cells such as Si, GaAs, and InP are reviewed. Second, future space solar cell technologies intended to be used on satellites of 21st century are discussed. Next, the flight data of solar cell monitor on ETS-V is shown. Finally, establishing the universal space solar cell calibration system is proposed.

  18. High Performance Ultrathin GaAs Solar Cells Enabled with Heterogeneously Integrated Dielectric Periodic Nanostructures.

    PubMed

    Lee, Sung-Min; Kwong, Anthony; Jung, Daehwan; Faucher, Joseph; Biswas, Roshni; Shen, Lang; Kang, Dongseok; Lee, Minjoo Larry; Yoon, Jongseung

    2015-10-27

    Due to their favorable materials properties including direct bandgap and high electron mobilities, epitaxially grown III-V compound semiconductors such as gallium arsenide (GaAs) provide unmatched performance over silicon in solar energy harvesting. Nonetheless, their large-scale deployment in terrestrial photovoltaics remains challenging mainly due to the high cost of growing device quality epitaxial materials. In this regard, reducing the thickness of constituent active materials under appropriate light management schemes is a conceptually viable option to lower the cost of GaAs solar cells. Here, we present a type of high efficiency, ultrathin GaAs solar cell that incorporates bifacial photon management enabled by techniques of transfer printing to maximize the absorption and photovoltaic performance without compromising the optimized electronic configuration of planar devices. Nanoimprint lithography and dry etching of titanium dioxide (TiO2) deposited directly on the window layer of GaAs solar cells formed hexagonal arrays of nanoscale posts that serve as lossless photonic nanostructures for antireflection, diffraction, and light trapping in conjunction with a co-integrated rear-surface reflector. Systematic studies on optical and electrical properties and photovoltaic performance in experiments, as well as numerical modeling, quantitatively describe the optimal design rules for ultrathin, nanostructured GaAs solar cells and their integrated modules.

  19. 10.7-cm solar radio flux and the magnetic complexity of active regions

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Moore, Ronald L.; Rabin, Douglas

    1987-01-01

    During sunspot cycles 20 and 21, the maximum in smoothed 10.7-cm solar radio flux occurred about 1.5 yr after the maximum smoothed sunspot number, whereas during cycles 18 and 19 no lag was observed. Thus, although 10.7-cm radio flux and Zurich sunspot number are highly correlated, they are not interchangeable, especially near solar maximum. The 10.7-cm flux more closely follows the number of sunspots visible on the solar disk, while the Zurich sunspot number more closely follows the number of sunspot groups. The number of sunspots in an active region is one measure of the complexity of the magnetic structure of the region, and the coincidence in the maxima of radio flux and number of sunspots apparently reflects higher radio emission from active regions of greater magnetic complexity. The presence of a lag between sunspot-number maximum and radio-flux maximum in some cycles but not in others argues that some aspect of the average magnetic complexity near solar maximum must vary from cycle to cycle. A speculative possibility is that the radio-flux lag discriminates between long-period and short-period cycles, being another indicator that the solar cycle switches between long-period and short-period modes.

  20. Coronal Radio Sounding Experiments with Mars Express: Scintillation Spectra during Low Solar Activity

    SciTech Connect

    Efimov, A. I.; Lukanina, L. A.; Samoznaev, L. N.; Rudash, V. K.; Chashei, I. V.; Bird, M. K.; Paetzold, M.; Tellmann, S.

    2010-03-25

    Coronal radio sounding observations were carried out with the radio science experiment MaRS on the ESA spacecraft Mars Express during the period from 25 August to 22 October 2004. Differential frequency and log-amplitude fluctuations of the dual-frequency signals were recorded during a period of low solar activity. The data are applicable to low heliographic latitudes, i.e. to slow solar wind. The mean frequency fluctuation and power law index of the frequency fluctuation temporal spectra are determined as a function of heliocentric distance. The radial dependence of the frequency fluctuation spectral index alpha reflects the previously documented flattening of the scintillation power spectra in the solar wind acceleration region. Temporal spectra of S-band and X-band normalized log-amplitude fluctuations were investigated over the range of fluctuation frequencies 0.01 Hzhigh solar activity. Ranging measurements are presented and compared with frequency and log-amplitude scintillation data. Evidence for a weak increase in the fractional electron density turbulence level is obtained in the range 10-40 solar radii.