Solar Radiation on Mars: Tracking Photovoltaic Array
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Flood, Dennis J.; Crutchik, Marcos
1994-01-01
A photovoltaic power source for surface-based operation on Mars can offer many advantages. Detailed information on solar radiation characteristics on Mars and the insolation on various types of collector surfaces are necessary for effective design of future planned photovoltaic systems. In this article we have presented analytical expressions for solar radiation calculation and solar radiation data for single axis (of various types) and two axis tracking surfaces and compared the insulation to horizontal and inclined surfaces. For clear skies (low atmospheric dust load) tracking surfaces resulted in higher insolation than stationary surfaces, whereas for highly dusty atmospheres, the difference is small. The insolation on the different types of stationary and tracking surfaces depend on latitude, season and optical depth of the atmosphere, and the duration of system operation. These insolations have to be compared for each mission.
Impact of sunlight on the age of onset of bipolar disorder
Bauer, Michael; Glenn, Tasha; Alda, Martin; Andreassen, Ole A; Ardau, Raffaella; Bellivier, Frank; Berk, Michael; Bjella, Thomas D; Bossini, Letizia; Zompo, Maria Del; Dodd, Seetal; Fagiolini, Andrea; Frye, Mark A; Gonzalez-Pinto, Ana; Henry, Chantal; Kapczinski, Flávio; Kliwicki, Sebastian; König, Barbara; Kunz, Mauricio; Lafer, Beny; Lopez-Jaramillo, Carlos; Manchia, Mirko; Marsh, Wendy; Martinez-Cengotitabengoa, Mónica; Melle, Ingrid; Morken, Gunnar; Munoz, Rodrigo; Nery, Fabiano G; O’Donovan, Claire; Pfennig, Andrea; Quiroz, Danilo; Rasgon, Natalie; Reif, Andreas; Rybakowski, Janusz; Sagduyu, Kemal; Simhandl, Christian; Torrent, Carla; Vieta, Eduard; Zetin, Mark; Whybrow, Peter C
2012-01-01
Objective Although bipolar disorder has high heritability, the onset occurs during several decades of life, suggesting that social and environmental factors may have considerable influence on disease onset. This study examined the association between the age of onset and sunlight at the location of onset. Method Data were obtained from 2414 patients with a diagnosis of bipolar I disorder, according to DSM-IV criteria. Data were collected at 24 sites in 13 countries spanning latitudes 6.3 to 63.4 degrees from the equator, including data from both hemispheres. The age of onset and location of onset were obtained retrospectively, from patient records and/or direct interviews. Solar insolation data, or the amount of electromagnetic energy striking the surface of the earth, were obtained from the NASA Surface Meteorology and Solar Energy (SSE) database for each location of onset. Results The larger the maximum monthly increase in solar insolation at the location of onset, the younger the age of onset (coefficient= −4.724, 95% CI: −8.124 to −1.323, p = 0.006), controlling for each country’s median age. The maximum monthly increase in solar insolation occurred in springtime. No relationships were found between the age of onset and latitude, yearly total solar insolation, and the maximum monthly decrease in solar insolation. The largest maximum monthly increases in solar insolation occurred in diverse environments, including Norway, arid areas in California, and Chile. Conclusion The large maximum monthly increase in sunlight in springtime may have an important influence on the onset of bipolar disorder. PMID:22612720
NASA Astrophysics Data System (ADS)
Yeom, Jong-Min; Han, Kyung-Soo; Kim, Jae-Jin
2012-05-01
Solar surface insolation (SSI) represents how much solar radiance reaches the Earth's surface in a specified area and is an important parameter in various fields such as surface energy research, meteorology, and climate change. This study calculates insolation using Multi-functional Transport Satellite (MTSAT-1R) data with a simplified cloud factor over Northeast Asia. For SSI retrieval from the geostationary satellite data, the physical model of Kawamura is modified to improve insolation estimation by considering various atmospheric constituents, such as Rayleigh scattering, water vapor, ozone, aerosols, and clouds. For more accurate atmospheric parameterization, satellite-based atmospheric constituents are used instead of constant values when estimating insolation. Cloud effects are a key problem in insolation estimation because of their complicated optical characteristics and high temporal and spatial variation. The accuracy of insolation data from satellites depends on how well cloud attenuation as a function of geostationary channels and angle can be inferred. This study uses a simplified cloud factor that depends on the reflectance and solar zenith angle. Empirical criteria to select reference data for fitting to the ground station data are applied to suggest simplified cloud factor methods. Insolation estimated using the cloud factor is compared with results of the unmodified physical model and with observations by ground-based pyranometers located in the Korean peninsula. The modified model results show far better agreement with ground truth data compared to estimates using the conventional method under overcast conditions.
Lightweight Phase-Change Material For Solar Power
NASA Technical Reports Server (NTRS)
Stark, Philip
1993-01-01
Lightweight panels containing phase-change materials developed for use as heat-storage elements of compact, lightweight, advanced solar dynamic power system. During high insolation, heat stored in panels via latent heat of fusion of phase-change material; during low insolation, heat withdrawn from panels. Storage elements consist mainly of porous carbon-fiber structures imbued with germanium. Developed for use aboard space station in orbit around Earth, also adapted to lightweight, compact, portable solar-power systems for use on Earth.
Paech, S.J.; Mecikalski, J.R.; Sumner, D.M.; Pathak, C.S.; Wu, Q.; Islam, S.; Sangoyomi, T.
2009-01-01
Estimates of incoming solar radiation (insolation) from Geostationary Operational Environmental Satellite observations have been produced for the state of Florida over a 10-year period (1995-2004). These insolation estimates were developed into well-calibrated half-hourly and daily integrated solar insolation fields over the state at 2 km resolution, in addition to a 2-week running minimum surface albedo product. Model results of the daily integrated insolation were compared with ground-based pyranometers, and as a result, the entire dataset was calibrated. This calibration was accomplished through a three-step process: (1) comparison with ground-based pyranometer measurements on clear (noncloudy) reference days, (2) correcting for a bias related to cloudiness, and (3) deriving a monthly bias correction factor. Precalibration results indicated good model performance, with a station-averaged model error of 2.2 MJ m-2/day (13%). Calibration reduced errors to 1.7 MJ m -2/day (10%), and also removed temporal-related, seasonal-related, and satellite sensor-related biases. The calibrated insolation dataset will subsequently be used by state of Florida Water Management Districts to produce statewide, 2-km resolution maps of estimated daily reference and potential evapotranspiration for water management-related activities. ?? 2009 American Water Resources Association.
Yeang, Hoong-Yeet
2007-01-01
How tropical trees flower synchronously near the equator in the absence of significant day length variation or other meteorological cues has long been a puzzle. The rubber tree (Hevea brasiliensis) is used as a model to investigate this phenomenon. The annual cycle of solar radiation intensity is shown to correspond closely with the flowering of the rubber tree planted near the equator and in the subtropics. Unlike in temperate regions, where incoming solar radiation (insolation) is dependent on both day length and radiation intensity, insolation at the equator is due entirely to the latter. Insolation at the upper atmosphere peaks twice a year during the spring and autumn equinoxes, but the actual solar radiation that reaches the ground is attenuated to varying extents in different localities. The rubber tree shows one or two flowering seasons a year (with major and minor seasons in the latter) in accordance with the solar radiation intensity received. High solar radiation intensity, and in particular bright sunshine (as distinct from prolonged diffuse radiation), induces synchronous anthesis and blooming in Hevea around the time of the equinoxes. The same mechanism may be operational in other tropical tree species.
Testing competing forms of the Milankovitch hypothesis: A multivariate approach
NASA Astrophysics Data System (ADS)
Kaufmann, Robert K.; Juselius, Katarina
2016-02-01
We test competing forms of the Milankovitch hypothesis by estimating the coefficients and diagnostic statistics for a cointegrated vector autoregressive model that includes 10 climate variables and four exogenous variables for solar insolation. The estimates are consistent with the physical mechanisms postulated to drive glacial cycles. They show that the climate variables are driven partly by solar insolation, determining the timing and magnitude of glaciations and terminations, and partly by internal feedback dynamics, pushing the climate variables away from equilibrium. We argue that the latter is consistent with a weak form of the Milankovitch hypothesis and that it should be restated as follows: internal climate dynamics impose perturbations on glacial cycles that are driven by solar insolation. Our results show that these perturbations are likely caused by slow adjustment between land ice volume and solar insolation. The estimated adjustment dynamics show that solar insolation affects an array of climate variables other than ice volume, each at a unique rate. This implies that previous efforts to test the strong form of the Milankovitch hypothesis by examining the relationship between solar insolation and a single climate variable are likely to suffer from omitted variable bias.
Nonlinear Insolation Forcing: A Physical Mechanism for Climate Change
NASA Technical Reports Server (NTRS)
Liu, H. S.
1998-01-01
This paper focuses on recent advances in the understanding of nonlinear insolation forcing for climate change. The amplitude-frequency resonances in the insolation variations induced by the Earth's changing obliquity are emergent and may provide a physical mechanism to drive the glaciation cycles. To establish the criterion that nonlinear insolation forcing is responsible for major climate changes, the cooperative phenomena between the frequency and amplitude of the insolation are defined as insolation pulsation. Coupling of the insolation frequency and amplitude variations has established an especially new and interesting series of insolation pulses. These pulses would modulate the insolation in such a way that the mode of insolation variations could be locked to generate the 100-kyr ice age cycle which is a long-time geophysical puzzle. The nonlinear behavior of insolation forcing is tested by energy balance and ice sheet climate models and the physical mechanism behind this forcing is explained in terms of pulse duration in the incoming solar radiation. Calculations of the solar energy flux at the top of the atmosphere show that the duration of the negative and positive insolation pulses is about 2 thousand years which is long enough to prolong glaciation into deep ice ages and cause rapid melting of large ice sheets in the high latitudes of the northern hemisphere. We have performed numerical simulations of climate response to nonlinear insolation forcing for the past 2 million years. Our calculated results of temperature fluctuations are in good agreement with the climate cycles as seen in the terrestrial biogenic silica (BDP-96-2) data as well as in the marine oxygen isotope (delta(sup 18)O) records.
Solar energy microclimate as determined from satellite observations
NASA Technical Reports Server (NTRS)
Vonder Haar, T. H.; Ellis, J. S.
1975-01-01
A method is presented for determining solar insolation at the earth's surface using satellite broadband visible radiance and cloud imagery data, along with conventional in situ measurements. Conventional measurements are used to both tune satellite measurements and to develop empirical relationships between satellite observations and surface solar insolation. Cloudiness is the primary modulator of sunshine. The satellite measurements as applied in this method consider cloudiness both explicitly and implicitly in determining surface solar insolation at space scales smaller than the conventional pyranometer network.
NASA Technical Reports Server (NTRS)
Mckenney, D. B.; Beauchamp, W. T.
1975-01-01
It has become apparent in recent years that solar energy can be used for electric power production by several methods. Because of the diffuse nature of the solar insolation, the area involved in any central power plant design can encompass several square miles. A detailed design of these large area collection systems will require precise knowledge of the local solar insolation. Detailed information will also be needed concerning the temporal nature of the insolation and the local spatial distribution. Therefore, insolation data was collected and analyzed for a network of sensors distributed over an area of several square kilometers in Arizona. The analyses of this data yielded probability distributions of cloud size, velocity, and direction of motion which were compared with data obtained from the National Weather Service. Microclimatological analyses were also performed for suitable modeling parameters pertinent to large scale electric power plant design. Instrumentation used to collect the data is described.
ASHMET: A computer code for estimating insolation incident on tilted surfaces
NASA Technical Reports Server (NTRS)
Elkin, R. F.; Toelle, R. G.
1980-01-01
A computer code, ASHMET, was developed by MSFC to estimate the amount of solar insolation incident on the surfaces of solar collectors. Both tracking and fixed-position collectors were included. Climatological data for 248 U. S. locations are built into the code. The basic methodology used by ASHMET is the ASHRAE clear-day insolation relationships modified by a clearness index derived from SOLMET-measured solar radiation data to a horizontal surface.
NASA Technical Reports Server (NTRS)
Smith, J. H.
1994-01-01
This computer program, SOLINS, was developed to aid engineers and solar system designers in the accurate modeling of the average hourly solar insolation on a surface of arbitrary orientation. The program can be used to study insolation problems specific to residential and commercial applications where the amount of space available for solar collectors is limited by shadowing problems, energy output requirements, and costs. For tandem rack arrays, SOLINS will accommodate the use of augmentation reflectors built into the support structure to increase insolation values at the collector surface. As the use of flat plate solar collectors becomes more prevalent in the building industry, the engineer and designer must have the capability to conduct extensive sensitivity analyses on the orientation and location of solar collectors. SOLINS should prove to be a valuable aid in this area of engineering. SOLINS uses a modified version of the National Bureau of Standards model to calculate the direct, diffuse, and reflected components of total insolation on a tilted surface with a given azimuthal orientation. The model is based on the work of Liu and Jordan with corrections by Kusuda and Ishii to account for early morning and late afternoon errors. The model uses a parametric description of the average day solar climate to generate monthly average day profiles by hour of the insolation level on the collector surface. The model includes accommodation of user specified ground and landscape reflectivities at the collector site. For roof or ground mounted, tilted arrays, SOLINS will calculate insolation including the effects of shadowing and augmentation reflectors. The user provides SOLINS with data describing the array design, array orientation, the month, the solar climate parameter, the ground reflectance, and printout control specifications. For the specified array and environmental conditions, SOLINS outputs the hourly insolation the array will receive during an average day during the month specified, along with the total insolation the collector surface will receive over an average 24-hour period. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 computer with a central memory requirement of approximately 46K of 8 bit bytes. The SOLINS routines were developed in 1979.
Data challenges in estimating the capacity value of solar photovoltaics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gami, Dhruv; Sioshansi, Ramteen; Denholm, Paul
We examine the robustness of solar capacity-value estimates to three important data issues. The first is the sensitivity to using hourly averaged as opposed to subhourly solar-insolation data. The second is the sensitivity to errors in recording and interpreting load data. The third is the sensitivity to using modeled as opposed to measured solar-insolation data. We demonstrate that capacity-value estimates of solar are sensitive to all three of these factors, with potentially large errors in the capacity-value estimate in a particular year. If multiple years of data are available, the biases introduced by using hourly averaged solar-insolation can be smoothedmore » out. Multiple years of data will not necessarily address the other data-related issues that we examine. Our analysis calls into question the accuracy of a number of solar capacity-value estimates relying exclusively on modeled solar-insolation data that are reported in the literature (including our own previous works). Lastly, our analysis also suggests that multiple years’ historical data should be used for remunerating solar generators for their capacity value in organized wholesale electricity markets.« less
Data Challenges in Estimating the Capacity Value of Solar Photovoltaics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gami, Dhruv; Sioshansi, Ramteen; Denholm, Paul
We examine the robustness of solar capacity-value estimates to three important data issues. The first is the sensitivity to using hourly averaged as opposed to subhourly solar-insolation data. The second is the sensitivity to errors in recording and interpreting load data. The third is the sensitivity to using modeled as opposed to measured solar-insolation data. We demonstrate that capacity-value estimates of solar are sensitive to all three of these factors, with potentially large errors in the capacity-value estimate in a particular year. If multiple years of data are available, the biases introduced by using hourly averaged solar-insolation can be smoothedmore » out. Multiple years of data will not necessarily address the other data-related issues that we examine. Our analysis calls into question the accuracy of a number of solar capacity-value estimates relying exclusively on modeled solar-insolation data that are reported in the literature (including our own previous works). Our analysis also suggests that multiple years' historical data should be used for remunerating solar generators for their capacity value in organized wholesale electricity markets.« less
Data challenges in estimating the capacity value of solar photovoltaics
Gami, Dhruv; Sioshansi, Ramteen; Denholm, Paul
2017-04-30
We examine the robustness of solar capacity-value estimates to three important data issues. The first is the sensitivity to using hourly averaged as opposed to subhourly solar-insolation data. The second is the sensitivity to errors in recording and interpreting load data. The third is the sensitivity to using modeled as opposed to measured solar-insolation data. We demonstrate that capacity-value estimates of solar are sensitive to all three of these factors, with potentially large errors in the capacity-value estimate in a particular year. If multiple years of data are available, the biases introduced by using hourly averaged solar-insolation can be smoothedmore » out. Multiple years of data will not necessarily address the other data-related issues that we examine. Our analysis calls into question the accuracy of a number of solar capacity-value estimates relying exclusively on modeled solar-insolation data that are reported in the literature (including our own previous works). Lastly, our analysis also suggests that multiple years’ historical data should be used for remunerating solar generators for their capacity value in organized wholesale electricity markets.« less
Feasibility of solar power for Mars
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Landis, Geoffrey A.
1991-01-01
NASA, through Project Pathfinder, has put in place an advanced technology program to address future needs of manned space exploration. Included in the missions under study is the establishment of outposts on the surface of Mars. The Surface Power program in Pathfinder is aimed at providing photovoltaic array technology for such an application (as well as for the lunar surface). Another important application is for unmanned precursor missions, such as the photovoltaic-power aircraft, which will scout landing sites and investigate Mars geology for a 1 to 2 year mission without landing on the surface. Effective design and utilization of solar energy depend to a large extent on adequate knowledge of solar radiation characteristics in the region of solar energy system operation. The two major climatic components needed for photovoltaic system designs are the distributions of solar insolation and ambient temperature. These distributions for the Martian climate are given at the two Viking lander locations but can also be used, to the first approximation, for other latitudes. One of the most important results is that there is a large diffuse component of the insolation, even at high optical depth, so that solar energy system operation is still possible. If the power system is to continue to generate power even on high optical opacity days, it is thus important that the photovoltaic system be designed to collect diffuse irradiance as well as direct. In absence of long term insolation and temperature data for Mars, the data presented can be used until updated data are available. The ambient temperature data are given as measured directly by the temperature sensor; the insolation data are calculated from optical depth measurements of the atmosphere.
Urban air pollution and solar energy
NASA Technical Reports Server (NTRS)
Gammon, R. B.; Huning, J. R.; Reid, M. S.; Smith, J. H.
1981-01-01
The design and performance of solar energy systems for many potential applications (industrial/residential heat, electricity generation by solar concentration and photovoltaics) will be critically affected by local insolation conditions. The effects of urban air pollution are considered and reviewed. A study of insolation data for Alhambra, California (9 km south of Pasadena) shows that, during a recent second-stage photochemical smog alert (greater than or equal to 0.35 ppm ozone), the direct-beam insolation at solar noon was reduced by 40%, and the total global by 15%, from clean air values. Similar effects have been observed in Pasadena, and are attributable primarily to air pollution. Effects due to advecting smog have been detected 200 km away, in the Mojave Desert. Preliminary performance and economic simulations of solar thermal and photovoltaic power systems indicate increasing nonlinear sensitivity of life cycle plant cost to reductions in insolation levels due to pollution.
Determination of Martian Northern Polar Insolation Levels Using a Geodetic Elevation Model
NASA Technical Reports Server (NTRS)
Arrell, J. R.; Zuber, M. T.
2000-01-01
Solar insolation levels at the Martian polar caps bear significantly on the seasonal and climatic cycling of volatiles on that planet. In the northern hemisphere, the Martian surface slopes downhill from the equator to the pole such that the north polar cap is situated in a 5-km-deep hemispheric-scale depression. This large-scale topographic setting plays an important role in the insolation of the northern polar cap. Elevations measured by the Mars Orbiter Laser Altimeter (MOLA) provide comprehensive, high-accuracy topographical information required to precisely determine polar insolation. In this study, we employ a geodetic elevation model to quantify the north polar insolation and consider implications for seasonal and climatic changes. Additional information is contained in original extended abstract.
Associations of blood pressure, sunlight, and vitamin D in community-dwelling adults.
Rostand, Stephen G; McClure, Leslie A; Kent, Shia T; Judd, Suzanne E; Gutiérrez, Orlando M
2016-09-01
Vitamin D deficiency/insufficiency is associated with hypertension. Blood pressure (BP) and circulating vitamin D concentrations vary with the seasons and distance from the equator suggesting BP varies inversely with the sunshine available (insolation) for cutaneous vitamin D photosynthesis. To determine if the association between insolation and BP is partly explained by vitamin D, we evaluated 1104 participants in the Reasons for Racial and Geographic Differences in Stroke study whose BP and plasma 25-hydroxyvitamin D [25(OH)D] concentrations were measured. We found a significant inverse association between SBP and 25(OH)D concentration and an inverse association between insolation and BP in unadjusted analyses. After adjusting for other confounding variables, the association of solar insolation and BP was augmented, -0.3.5 ± SEM 0.01 mmHg/1 SD higher solar insolation, P = 0.01. The greatest of effects of insolation on SBP were observed in whites (-5.2 ± SEM 0.92 mmHg/1 SD higher solar insolation, P = 0.005) and in women (-3.8 ± SEM 1.7 mmHg, P = 0.024). We found that adjusting for 25(OH)D had no effect on the association of solar insolation with SBP. We conclude that although 25(OH)D concentration is inversely associated with SBP, it did not explain the association of greater sunlight exposure with lower BP.
Noise in pressure transducer readings produced by variations in solar radiation
Cain, S. F.; Davis, G.A.; Loheide, Steven P.; Butler, J.J.
2004-01-01
Variations in solar radiation can produce noise in readings from gauge pressure transducers when the transducer cable is exposed to direct sunlight. This noise is a result of insolation-induced heating and cooling of the air column in the vent tube of the transducer cable. A controlled experiment was performed to assess the impact of variations in solar radiation on transducer readings. This experiment demonstrated that insolation-induced fluctuations in apparent pressure head can be as large as 0.03 m. The magnitude of these fluctuations is dependent on cable color, the diameter of the vent tube, and the length of the transducer cable. The most effective means of minimizing insolation-induced noise is to use integrated transducer-data logger units that fit within a well. Failure to address this source of noise can introduce considerable uncertainty into analyses of hydraulic tests when the head change is relatively small, as is often the case for tests in highly permeable aquifers or for tests using distant observation wells.
Noise in pressure transducer readings produced by variations in solar radiation.
Cain, Samuel F; Davis, Gregory A; Loheide, Steven P; Butler, James J
2004-01-01
Variations in solar radiation can produce noise in readings from gauge pressure transducers when the transducer cable is exposed to direct sunlight. This noise is a result of insolation-induced heating and cooling of the air column in the vent tube of the transducer cable. A controlled experiment was performed to assess the impact of variations in solar radiation on transducer readings. This experiment demonstrated that insolation-induced fluctuations in apparent pressure head can be as large as 0.03 m. The magnitude of these fluctuations is dependent on cable color, the diameter of the vent tube, and the length of the transducer cable. The most effective means of minimizing insolation-induced noise is to use integrated transducer-data logger units that fit within a well. Failure to address this source of noise can introduce considerable uncertainty into analyses of hydraulic tests when the head change is relatively small, as is often the case for tests in highly permeable aquifers or for tests using distant observation wells.
Solar insolation in springtime influences age of onset of bipolar I disorder.
Bauer, M; Glenn, T; Alda, M; Aleksandrovich, M A; Andreassen, O A; Angelopoulos, E; Ardau, R; Ayhan, Y; Baethge, C; Bharathram, S R; Bauer, R; Baune, B T; Becerra-Palars, C; Bellivier, F; Belmaker, R H; Berk, M; Bersudsky, Y; Bicakci, Ş; Birabwa-Oketcho, H; Bjella, T D; Bossini, L; Cabrera, J; Cheung, E Y W; Del Zompo, M; Dodd, S; Donix, M; Etain, B; Fagiolini, A; Fountoulakis, K N; Frye, M A; Gonzalez-Pinto, A; Gottlieb, J F; Grof, P; Harima, H; Henry, C; Isometsä, E T; Janno, S; Kapczinski, F; Kardell, M; Khaldi, S; Kliwicki, S; König, B; Kot, T L; Krogh, R; Kunz, M; Lafer, B; Landén, M; Larsen, E R; Lewitzka, U; Licht, R W; Lopez-Jaramillo, C; MacQueen, G; Manchia, M; Marsh, W; Martinez-Cengotitabengoa, M; Melle, I; Meza-Urzúa, F; Yee Ming, M; Monteith, S; Morken, G; Mosca, E; Munoz, R; Mythri, S V; Nacef, F; Nadella, R K; Nery, F G; Nielsen, R E; O'Donovan, C; Omrani, A; Osher, Y; Østermark Sørensen, H; Ouali, U; Pica Ruiz, Y; Pilhatsch, M; Pinna, M; da Ponte, F D R; Quiroz, D; Ramesar, R; Rasgon, N; Reddy, M S; Reif, A; Ritter, P; Rybakowski, J K; Sagduyu, K; Scippa, Â M; Severus, E; Simhandl, C; Stein, D J; Strejilevich, S; Subramaniam, M; Sulaiman, A H; Suominen, K; Tagata, H; Tatebayashi, Y; Tondo, L; Torrent, C; Vaaler, A E; Veeh, J; Vieta, E; Viswanath, B; Yoldi-Negrete, M; Zetin, M; Zgueb, Y; Whybrow, P C
2017-12-01
To confirm prior findings that the larger the maximum monthly increase in solar insolation in springtime, the younger the age of onset of bipolar disorder. Data were collected from 5536 patients at 50 sites in 32 countries on six continents. Onset occurred at 456 locations in 57 countries. Variables included solar insolation, birth-cohort, family history, polarity of first episode and country physician density. There was a significant, inverse association between the maximum monthly increase in solar insolation at the onset location, and the age of onset. This effect was reduced in those without a family history of mood disorders and with a first episode of mania rather than depression. The maximum monthly increase occurred in springtime. The youngest birth-cohort had the youngest age of onset. All prior relationships were confirmed using both the entire sample, and only the youngest birth-cohort (all estimated coefficients P < 0.001). A large increase in springtime solar insolation may impact the onset of bipolar disorder, especially with a family history of mood disorders. Recent societal changes that affect light exposure (LED lighting, mobile devices backlit with LEDs) may influence adaptability to a springtime circadian challenge. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Bulk Insolation Models as Predictors for Locations for High Lunar Hydrogen Concentrations
NASA Technical Reports Server (NTRS)
Mcclanahan, T. P.; Mitrofanov, I.G.; Boynton, W. V.; Chin, G.; Starr, R. D.; Evans, L. G.; Sanin, A.; Livengood, T.; Sagdeev, R.; Milikh, G.
2013-01-01
In this study we consider the bulk effects of surface illumination on topography (insolation) and the possible thermodynamic effects on the Moon's hydrogen budget. Insolation is important as one of the dominant loss processes governing distributions of hydrogen volatiles on the Earth, Mars and most recently Mercury. We evaluated three types of high latitude > 65 deg., illumination models that were derived from the Lunar Observing Laser Altimetry (LOLA) digital elevation models (DEM)'s. These models reflect varying accounts of solar flux interactions with the Moon's near-surface. We correlate these models with orbital collimated epithermal neutron measurements made by the Lunar Exploration Neutron Detector (LEND). LEND's measurements derive the Moon's spatial distributions of hydrogen concentration. To perform this analysis we transformed the topographic model into an insolation model described by two variables as each pixels 1) slope and 2) slope angular orientation with respect to the pole. We then decomposed the illumination models and epithermal maps as a function of the insolation model and correlate the datasets.
NASA Astrophysics Data System (ADS)
Cionco, Rodolfo Gustavo; Valentini, José Ernesto; Quaranta, Nancy Esther; Soon, Willie W.-H.
2018-01-01
We present a new set of solar radiation forcing that now incorporated not only the gravitational perturbation of the Sun-Earth-Moon geometrical orbits but also the intrinsic solar magnetic modulation of the total solar irradiance (TSI). This new dataset, covering the past 2000 years as well as a forward projection for about 100 years based on recent result by Velasco-Herrera et al. (2015), should provide a realistic basis to examine and evaluate the role of external solar forcing on Earth climate on decadal, multidecadal to multicentennial timescales. A second goal of this paper is to propose both in situ insolation forcing variable and the latitudinal insolation gradients (LIG) as two key metrics that are subjected to a deterministic modulation by lunar nodal cycle which are often confused with tidal forcing impacts as assumed and interpreted in previous studies of instrumental and paleoclimatic records. Our new results and datasets are made publicly available for all at PANGAEA site.
Local effects of partly-cloudy skies on solar and emitted radiations
NASA Technical Reports Server (NTRS)
Whitney, D. A.; Griffin, T. J.
1983-01-01
Atmospheric aerosol and turbidity measurements were analyzed and the results are presented. The correlation of global insolation with cloud cover fractions for the first complete year's data set was completed. A theoretical model was developed to parameterize the effects of local aerosols upon insolation received at the ground using satellite radiometric data and insolation measurements under clear sky conditions. A February data set, composed of one minute integrated global insolation and direct solar irradiances, cloud cover fractions, meteorological data from nearby weather stations, and GOES East satellite radiometric data was collected to test the model and used to calculate the effects of local aerosols.
View-limiting shrouds for insolation radiometers
NASA Technical Reports Server (NTRS)
Dennison, E. W.; Trentelman, G. F.
1985-01-01
Insolation radiometers (normal incidence pyrheliometers) are used to measure the solar radiation incident on solar concentrators for calibrating thermal power generation measurements. The measured insolation value is dependent on the atmospheric transparency, solar elevation angle, circumsolar radiation, and radiometer field of view. The radiant energy entering the thermal receiver is dependent on the same factors. The insolation value and the receiver input will be proportional if the concentrator and the radiometer have similar fields of view. This report describes one practical method for matching the field of view of a radiometer to that of a solar concentrator. The concentrator field of view can be calculated by optical ray tracing methods and the field of view of a radiometer with a simple shroud can be calculated by using geometric equations. The parameters for the shroud can be adjusted to provide an acceptable match between the respective fields of view. Concentrator fields of view have been calculated for a family of paraboloidal concentrators and receiver apertures. The corresponding shroud parameters have also been determined.
Solar Insolation Effect on the Local Distribution of Lunar Hydroxyl
NASA Astrophysics Data System (ADS)
Kim, Suyeon; Yi, Yu; Hong, Ik-Seon; Sohn, Jongdae
2018-03-01
Moon mineralogy mapper (M3)'s work proved that the moon is not completely dry but has some hydroxyl/water. M3's data confirmed that the amount of hydroxyl on the lunar surface is inversely related to the measured signal brightness, suggesting the lunar surface is sensitive to temperature by solar insolation. We tested the effect of solar insolation on the local distribution of hydroxyl by using M3 data, and we found that most craters had more hydroxyl in shade areas than in sunlit areas. This means that the local distribution of hydroxyl is absolutely influenced by the amount of sunshine. We investigated the factors affecting differences in hydroxyl; we found that the higher the latitude, the larger the difference during daytime. We also measured the pyroxene content and found that pyroxene affects the amount of hydroxyl, but it does not affect the difference in hydroxyl between sunlit and shaded areas. Therefore, we confirmed that solar insolation plays a significant role in the local distribution of hydroxyl, regardless of surface composition.
Variation of solar cell sensitivity and solar radiation on tilted surfaces
NASA Technical Reports Server (NTRS)
Klucher, T. M.
1978-01-01
An empirical study was performed (1) to evaluate the validity of various insolation models used to compute solar radiation incident on tilted surfaces from global data measured on horizontal surfaces and (2) to determine the variation of solar cell sensitivity to solar radiation over a wide range of atmospheric condition. Evaluation of the insolation data indicates that the isotropic sky model of Liu and Jordan underestimates the amount of solar radiation falling on tilted surfaces by as much as 10%. An anisotropic-clear-sky model proposed by Temps and Coulson was also evaluated and found to be deficient under cloudy conditions. A new model, formulated herein, reduced the deviations between measured and predicted insolation to less than 3%. Evaluation of solar cell sensitivity data indicates small change (2-3%) in sensitivity from winter to summer for tilted cells. The feasibility of using such global data as a means for calibrating terrestrial solar cells as done by Treble is discussed.
NASA Technical Reports Server (NTRS)
Latta, A. F.; Bowyer, J. M.; Fujita, T.; Richter, P. H.
1980-01-01
The performance and cost of four 10 MWe advanced solar thermal electric power plants sited in various regions of the continental United States was studied. Each region has different insolation characteristics which result in varying collector field areas, plant performance, capital costs and energy costs. The regional variation in solar plant performance was assessed in relation to the expected rise in the future cost of residential and commercial electricity supplied by conventional utility power systems in the same regions. A discussion of the regional insolation data base is presented along with a description of the solar systems performance and costs. A range for the forecast cost of conventional electricity by region and nationally over the next several decades is given.
Global and Arctic climate engineering: numerical model studies.
Caldeira, Ken; Wood, Lowell
2008-11-13
We perform numerical simulations of the atmosphere, sea ice and upper ocean to examine possible effects of diminishing incoming solar radiation, insolation, on the climate system. We simulate both global and Arctic climate engineering in idealized scenarios in which insolation is diminished above the top of the atmosphere. We consider the Arctic scenarios because climate change is manifesting most strongly there. Our results indicate that, while such simple insolation modulation is unlikely to perfectly reverse the effects of greenhouse gas warming, over a broad range of measures considering both temperature and water, an engineered high CO2 climate can be made much more similar to the low CO2 climate than would be a high CO2 climate in the absence of such engineering. At high latitudes, there is less sunlight deflected per unit albedo change but climate system feedbacks operate more powerfully there. These two effects largely cancel each other, making the global mean temperature response per unit top-of-atmosphere albedo change relatively insensitive to latitude. Implementing insolation modulation appears to be feasible.
NASA Technical Reports Server (NTRS)
Latta, A. F.; Bowyer, J. M.; Fujita, T.
1979-01-01
This paper presents the performance and cost of four 10-MWe advanced solar thermal electric power plants sited in various regions of the continental United States. Each region has different insolation characteristics which result in varying collector field areas, plant performance, capital costs, and energy costs. The paraboloidal dish, central receiver, cylindrical parabolic trough, and compound parabolic concentrator (CPC) comprise the advanced concepts studied. This paper contains a discussion of the regional insolation data base, a description of the solar systems' performances and costs, and a presentation of a range for the forecast cost of conventional electricity by region and nationally over the next several decades.
NASA Technical Reports Server (NTRS)
Smith, J. H.
1980-01-01
A quick reference for obtaining estimates of available solar insolation for numerous locations and array angles is presented. A model and a computer program are provided which considered the effects of array shadowing reflector augmentation as design variables.
USAF solar thermal applications overview
NASA Technical Reports Server (NTRS)
Hauger, J. S.; Simpson, J. A.
1981-01-01
Process heat applications were compared to solar thermal technologies. The generic process heat applications were analyzed for solar thermal technology utilization, using SERI's PROSYS/ECONOMAT model in an end use matching analysis and a separate analysis was made for solar ponds. Solar technologies appear attractive in a large number of applications. Low temperature applications at sites with high insolation and high fuel costs were found to be most attractive. No one solar thermal technology emerges as a clearly universal or preferred technology, however,, solar ponds offer a potential high payoff in a few, selected applications. It was shown that troughs and flat plate systems are cost effective in a large number of applications.
Simulating 3-D radiative transfer effects over the Sierra Nevada Mountains using WRF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Y.; Liou, K. N.; Lee, W. -L.
2012-01-01
A surface solar radiation parameterization based on deviations between 3-D and conventional plane-parallel radiative transfer models has been incorporated into the Weather Research and Forecasting (WRF) model to understand the solar insolation over mountain/snow areas and to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on land-surface processes. Using the Sierra-Nevada in the western United States as a testbed, we show that mountain effect could produce up to -50 to + 50 W m -2 deviations in the surface solar fluxes over the mountain areas, resulting in a temperature increase of up tomore » 1 °C on the sunny side. Upward surface sensible and latent heat fluxes are modulated accordingly to compensate for the change in surface solar fluxes. Snow water equivalent and surface albedo both show decreases on the sunny side of the mountains, indicating more snowmelt and hence reduced snow albedo associated with more solar insolation due to mountain effect. Soil moisture increases on the sunny side of the mountains due to enhanced snowmelt, while decreases on the shaded side. Substantial differences are found in the morning hours from 8–10 a.m. and in the afternoon around 3–5 p.m., while differences around noon and in the early morning and late afternoon are comparatively smaller. Variation in the surface energy balance can also affect atmospheric processes, such as cloud fields, through the modulation of vertical thermal structure. Negative changes of up to -40 g m -2 are found in the cloud water path, associated with reductions in the surface insolation over the cloud region. The day-averaged deviations in the surface solar flux are positive over the mountain areas and negative in the valleys, with a range between -12~12 W m -2. Changes in sensible and latent heat fluxes and surface skin temperature follow the solar insolation pattern. Differences in the domain-averaged diurnal variation over the Sierras show that the mountain area receives more solar insolation during early morning and late afternoon, resulting in enhanced upward sensible heat and latent heat fluxes from the surface and a corresponding increase in surface skin temperature. During the middle of the day, however, the surface insolation and heat fluxes show negative changes, indicating a cooling effect. Hence overall, the diurnal variations of surface temperature and surface fluxes in the Sierra-Nevada are reduced through the interactions of radiative transfer and mountains. Finally, the hourly differences of the surface solar insolation in higher elevated regions, however, show smaller magnitude in negative changes during the middle of the day and possibly more solar fluxes received during the whole day.« less
Variation of solar cell sensitivity and solar radiation on tilted surfaces
NASA Technical Reports Server (NTRS)
Klucher, T. M.
1978-01-01
The validity is studied that one of various insolation models used to compute solar radiation incident on tilted surfaces from global data measured on horizontal surfaces. The variation of solar cell sensitivity to solar radiation is determined over a wide range of atmospheric condition. A new model was formulated that reduced the deviations between measured and predicted insolation to less than 3 percent. Evaluation of solar cell sensitivity data indicates small change (2-3 percent) in sensitivity from winter to summer for tilted cells. The feasibility of using such global data as a means for calibrating terrestrial solar cells is discussed.
Theitler, Dana Jennifer; Nasser, Abid; Gerchman, Yoram; Kribus, Abraham; Mamane, Hadas
2012-12-01
The response of a representative virus and indicator bacteria to heating, solar irradiation, or their combination, was investigated in a controlled solar simulator and under real sun conditions. Heating showed higher inactivation of Escherichia coli compared to the bacteriophage MS2. Heating combined with natural or simulated solar irradiation demonstrated a synergistic effect on the inactivation of E. coli, with up to 3-log difference for 50 °C and natural sun insolation of 2,000 kJ m(-2) (compared to the sum of the separate treatments). Similar synergistic effect was also evident when solar-UV induced DNA damage to E. coli was assessed using the endonuclease sensitive site assay (ESS). MS2 was found to be highly resistant to irradiation and heat, with a slightly synergistic effect observed only at 59 °C and natural sun insolation of 5,580 kJ m(-2). Heat treatment also hindered light-dependent recovery of E. coli making the treatment much more effective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sittler, O.D.; Agogino, M.M.
1979-05-01
This project was undertaken to improve the data base for estimating solar energy influx in eastern New Mexico. A precision pyranometer station has been established at Eastern New Mexico University in Portales. A program of careful calibration and data management procedures is conducted to maintain high standards of precision and accuracy. Data from the first year of operation were used to upgrade insolation data of moderate accuracy which had been obtained at this site with an inexpensive pyranograph. Although not as accurate as the data expected from future years of operation of this station, these upgraded pyranograph measurements show thatmore » eastern New Mexico receives somewhat less solar energy than would be expected from published data. A detailed summary of these upgraded insolation data is included.« less
NASA Technical Reports Server (NTRS)
Latta, A. F.; Bowyer, J. M.; Fujita, T.; Richter, P. H.
1979-01-01
The performance and cost of the 10 MWe advanced solar thermal electric power plants sited in various regions of the continental United States were determined. The regional insolation data base is discussed. A range for the forecast cost of conventional electricity by region and nationally over the next several cades are presented.
Reconciling Consumer and Utility Objectives in the Residential Solar PV Market
NASA Astrophysics Data System (ADS)
Arnold, Michael R.
Today's energy market is facing large-scale changes that will affect all market players. Near the top of that list is the rapid deployment of residential solar photovoltaic (PV) systems. Yet that growing trend will be influenced multiple competing interests between various stakeholders, namely the utility, consumers and technology provides. This study provides a series of analyses---utility-side, consumer-side, and combined analyses---to understand and evaluate the effect of increases in residential solar PV market penetration. Three urban regions have been selected as study locations---Chicago, Phoenix, Seattle---with simulated load data and solar insolation data at each locality. Various time-of-use pricing schedules are investigated, and the effect of net metering is evaluated to determine the optimal capacity of solar PV and battery storage in a typical residential home. The net residential load profile is scaled to assess system-wide technical and economic figures of merit for the utility with an emphasis on intraday load profiles, ramp rates and electricity sales with increasing solar PV penetration. The combined analysis evaluates the least-cost solar PV system for the consumer and models the associated system-wide effects on the electric grid. Utility revenue was found to drop by 1.2% for every percent PV penetration increase, net metering on a monthly or annual basis improved the cost-effectiveness of solar PV but not battery storage, the removal of net metering policy and usage of an improved the cost-effectiveness of battery storage and increases in solar PV penetration reduced the system load factor. As expected, Phoenix had the most favorable economic scenario for residential solar PV, primarily due to high solar insolation. The study location---solar insolation and load profile---was also found to affect the time of year at which the largest net negative system load was realized.
Projected techno-economic improvements for advanced solar thermal power plants
NASA Technical Reports Server (NTRS)
Fujita, T.; Manvi, R.; Roschke, E. J.
1979-01-01
The projected characteristics of solar thermal power plants (with outputs up to 10 MWe) employing promising advanced technology subsystems/components are compared to current (or pre-1985) steam-Rankine systems. Improvements accruing to advanced technology development options are delineated. The improvements derived from advanced systems result primarily from achieving high efficiencies via solar collector systems which (1) capture a large portion of the available insolation and (2) concentrate this captured solar flux to attain high temperatures required for high heat engine/energy conversion performance. The most efficient solar collector systems employ two-axis tracking. Attractive systems include the central receiver/heliostat and the parabolic dish.
Yard, M.D.; Bennett, G.E.; Mietz, S.N.; Coggins, L.G.; Stevens, L.E.; Hueftle, S.; Blinn, D.W.
2005-01-01
Rugged topography along the Colorado River in Glen and Grand Canyons, exemplifies features common to canyon-bound streams and rivers of the arid southwest. Physical relief influences regulated river systems, especially those that are altered, and have become partially reliant on aquatic primary production. We measured and modeled instantaneous solar flux in a topographically complex environment to determine where differences in daily, seasonal and annual solar insolation occurred in this river system. At a system-wide scale, topographic complexity generates a spatial and temporal mosaic of varying solar insolation. This solar variation is a predictable consequence of channel orientation, geomorphology, elevation angles and viewshed. Modeled estimates for clear conditions corresponded closely with observed measurements for both instantaneous photosynthetic photon flux density (PPFD: ??mol m-2 s-1) and daily insolation levels (relative error 2.3%, CI ??0.45, S.D. 0.3, n = 29,813). Mean annual daily insolation levels system-wide were estimated to be 36 mol m-2 d -1 (17.5 S.D.), and seasonally varied on average from 13.4-57.4 mol m-2 d-1, for winter and summer, respectively. In comparison to identical areas lacking topographic effect (idealized plane), mean daily insolation levels were reduced by 22% during summer, and as much as 53% during winter. Depending on outlying topography, canyon bound regions having east-west (EW) orientations had higher seasonal variation, averaging from 8.1 to 61.4 mol m-2 d-1, for winter and summer, respectively. For EW orientations, 70% of mid-channel sites were obscured from direct incidence during part of the year; and of these sites, average diffuse light conditions persisted for 19.3% of the year (70.5 days), and extended upwards to 194 days. This predictive model has provided an initial quantitative step to estimate and determine the importance of autotrophic production for this ecosystem, as well as a broader application for other canyon systems. ?? 2004 Published by Elsevier B.V.
A Simple Modeling Tool and Exercises for Incoming Solar Radiation Demonstrations
ERIC Educational Resources Information Center
Werts, Scott; Hinnov, Linda
2011-01-01
We present a MATLAB script INSOLATE.m that calculates insolation at the top of the atmosphere and the total amount of daylight during the year (and other quantities) with respect to geographic latitude and Earth's obliquity (axial tilt). The script output displays insolation values for an entire year on a three-dimensional graph. This tool…
Influence of the Solar Luminosity on the Glaciations, sea Level Changes and Resulting Earthquakes.
NASA Astrophysics Data System (ADS)
Shopov, Y. Y.; Stoykova, D. A.; Tsankov, L. T.; Sanabria, M. E.; Georgieva, D. I.; Ford, D. C.; Georgiev, L. N.
2002-12-01
Glaciations were attributed to variations of the Earth's orbit (Milankovitch cycles). But the best ever dated paleoclimatic record (from Devils Hole, Nevada) demonstrated that the end of the last glacial period (termination II) happened 10 000 years before the one suggested by the orbital variations, i.e. the result appeared before the reason. This fact suggests that there is something wrong in the theory. Calcite speleothems luminescence of organics depends exponentially upon soil temperatures that are determined primarily by the solar radiation. So the microzonality of luminescence of speleothems may be used as an indirect Solar Insolation (radiation) proxy index. We obtained luminescence solar insolation proxy records in speleothems (from Jewel Cave, South Dakota, US and Duhlata cave, Bulgaria). These records exhibit very rapid increasing of the solar insolation at 139 kyrs BP responsible for the termination II (the end of the last glaciation) and demonstrate that solar luminosity variations contribute to Earth's heating almost as much as the orbital variations of the Earth's orbit (Milankovitch cycles). The most powerful cycle of the solar luminosity (11500 yrs) is responsible for almost 1/2 of the variations in solar insolation experimental records. Changes in the speed of Earth's rotation during glacial- interglacial transitions produce fracturing of the Earth's crust and major earthquakes along the fractures. The intensity of this process is as higher as faster is the change of the sea level and as higher is its amplitude. Glaciations and deglaciations drive changes of the sea level. Much higher dimensions of this process should be caused by eruptive increasing of solar luminosity, which may be caused only by collision of large asteroids with the Sun. We demonstrate that such collision may cause "Bible Deluge" type of event.
NASA Astrophysics Data System (ADS)
Hart, E. K.; Jacobson, M. Z.; Dvorak, M. J.
2008-12-01
Time series power flow analyses of the California electricity grid are performed with extensive addition of intermittent renewable power. The study focuses on the effects of replacing non-renewable and imported (out-of-state) electricity with wind and solar power on the reliability of the transmission grid. Simulations are performed for specific days chosen throughout the year to capture seasonal fluctuations in load, wind, and insolation. Wind farm expansions and new wind farms are proposed based on regional wind resources and time-dependent wind power output is calculated using a meteorological model and the power curves of specific wind turbines. Solar power is incorporated both as centralized and distributed generation. Concentrating solar thermal plants are modeled using local insolation data and the efficiencies of pre-existing plants. Distributed generation from rooftop PV systems is included using regional insolation data, efficiencies of common PV systems, and census data. The additional power output of these technologies offsets power from large natural gas plants and is balanced for the purposes of load matching largely with hydroelectric power and by curtailment when necessary. A quantitative analysis of the effects of this significant shift in the electricity portfolio of the state of California on power availability and transmission line congestion, using a transmission load-flow model, is presented. A sensitivity analysis is also performed to determine the effects of forecasting errors in wind and insolation on load-matching and transmission line congestion.
Insolation-oriented model of photovoltaic module using Matlab/Simulink
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Huan-Liang
2010-07-15
This paper presents a novel model of photovoltaic (PV) module which is implemented and analyzed using Matlab/Simulink software package. Taking the effect of sunlight irradiance on the cell temperature, the proposed model takes ambient temperature as reference input and uses the solar insolation as a unique varying parameter. The cell temperature is then explicitly affected by the sunlight intensity. The output current and power characteristics are simulated and analyzed using the proposed PV model. The model verification has been confirmed through an experimental measurement. The impact of solar irradiation on cell temperature makes the output characteristic more practical. In addition,more » the insolation-oriented PV model enables the dynamics of PV power system to be analyzed and optimized more easily by applying the environmental parameters of ambient temperature and solar irradiance. (author)« less
Short-term solar irradiance forecasting via satellite/model coupling
Miller, Steven D.; Rogers, Matthew A.; Haynes, John M.; ...
2017-12-01
The short-term (0-3 h) prediction of solar insolation for renewable energy production is a problem well-suited to satellite-based techniques. The spatial, spectral, temporal and radiometric resolution of instrumentation hosted on the geostationary platform allows these satellites to describe the current cloud spatial distribution and optical properties. These properties relate directly to the transient properties of the downwelling solar irradiance at the surface, which come in the form of 'ramps' that pose a central challenge to energy load balancing in a spatially distributed network of solar farms. The short-term evolution of the cloud field may be approximated to first order simplymore » as translational, but care must be taken in how the advection is handled and where the impacts are assigned. In this research, we describe how geostationary satellite observations are used with operational cloud masking and retrieval algorithms, wind field data from Numerical Weather Prediction (NWP), and radiative transfer calculations to produce short-term forecasts of solar insolation for applications in solar power generation. The scheme utilizes retrieved cloud properties to group pixels into contiguous cloud objects whose future positions are predicted using four-dimensional (space + time) model wind fields, selecting steering levels corresponding to the cloud height properties of each cloud group. The shadows associated with these clouds are adjusted for sensor viewing parallax displacement and combined with solar geometry and terrain height to determine the actual location of cloud shadows. For mid/high-level clouds at mid-latitudes and high solar zenith angles, the combined displacements from these geometric considerations are non-negligible. The cloud information is used to initialize a radiative transfer model that computes the direct and diffuse-sky solar insolation at both shadow locations and intervening clear-sky regions. Here, we describe the formulation of the algorithm and validate its performance against Surface Radiation (SURFRAD; Augustine et al., 2000, 2005) network observations. Typical errors range from 8.5% to 17.2% depending on the complexity of cloud regimes, and an operational demonstration outperformed persistence-based forecasting of Global Horizontal Irradiance (GHI) under all conditions by ~10 W/m2.« less
Short-term solar irradiance forecasting via satellite/model coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Steven D.; Rogers, Matthew A.; Haynes, John M.
The short-term (0-3 h) prediction of solar insolation for renewable energy production is a problem well-suited to satellite-based techniques. The spatial, spectral, temporal and radiometric resolution of instrumentation hosted on the geostationary platform allows these satellites to describe the current cloud spatial distribution and optical properties. These properties relate directly to the transient properties of the downwelling solar irradiance at the surface, which come in the form of 'ramps' that pose a central challenge to energy load balancing in a spatially distributed network of solar farms. The short-term evolution of the cloud field may be approximated to first order simplymore » as translational, but care must be taken in how the advection is handled and where the impacts are assigned. In this research, we describe how geostationary satellite observations are used with operational cloud masking and retrieval algorithms, wind field data from Numerical Weather Prediction (NWP), and radiative transfer calculations to produce short-term forecasts of solar insolation for applications in solar power generation. The scheme utilizes retrieved cloud properties to group pixels into contiguous cloud objects whose future positions are predicted using four-dimensional (space + time) model wind fields, selecting steering levels corresponding to the cloud height properties of each cloud group. The shadows associated with these clouds are adjusted for sensor viewing parallax displacement and combined with solar geometry and terrain height to determine the actual location of cloud shadows. For mid/high-level clouds at mid-latitudes and high solar zenith angles, the combined displacements from these geometric considerations are non-negligible. The cloud information is used to initialize a radiative transfer model that computes the direct and diffuse-sky solar insolation at both shadow locations and intervening clear-sky regions. Here, we describe the formulation of the algorithm and validate its performance against Surface Radiation (SURFRAD; Augustine et al., 2000, 2005) network observations. Typical errors range from 8.5% to 17.2% depending on the complexity of cloud regimes, and an operational demonstration outperformed persistence-based forecasting of Global Horizontal Irradiance (GHI) under all conditions by ~10 W/m2.« less
Receiver For Solar Air Turbine
NASA Technical Reports Server (NTRS)
Kofal, A.; Shannon, R.; Zimmerman, D. K.
1985-01-01
Solar receiver heats air to temperature high enough to drive gas turbine. Receiver has thermal output of about 70 kilowatts. Pointing downward at focal position of solar reflector, proposed receiver accepts intense concentrated sunlight. Although temperatures in receiver may rise to 1,500 degrees F (816 degrees C) or more, calculations show receiver loses less than 10 percent of insolation by convection through aperture. Receiver designed for 30-year life without scheduled maintenance or replacement.
NASA Astrophysics Data System (ADS)
Ji, Junfeng; Balsam, William; Shen, Ji; Wang, Man; Wang, Hongtao; Chen, Jun
2009-06-01
The productivity of anoxygenic phototrophic bacteria (APB) can be inferred in the sediments of Qinghai Lake from the changing abundance of bacteriophaeophytin a (Bph- a). Using diffuse reflectance spectroscopy (DRS), we identified Bph- a in Qinghai Lake sediments from the late glacial period through the Holocene with a resolution of one sample every 30-50 years. The Bph- a profile of Qinghai Lake demonstrates that in the last 18,000 years APB were only present between 4.2 and 14 ka BP, a period of high rainfall and high summer solar insolation. All the APB blooming events correspond to times of enhanced freshwater influx as revealed by percent redness, an indicator of the input of iron oxide minerals. Our data suggest that solar insolation sets the stage for APB blooms, which are then promoted by increased summer monsoon rainfall and nutrients resulting in the development of a chemocline in the lake. The blooming of APB in Qinghai Lake appears as discrete centennial-scale APB events likely linked to solar activities. Our results suggest the presence of solar-induced, century-long, intense summer monsoon episodes in the middle and early Holocene and the late glacial period.
Local effects of partly-cloudy skies on solar and emitted radiation
NASA Technical Reports Server (NTRS)
Whitney, D. A.; Venable, D. D.
1982-01-01
A computer automated data acquisition system for atmospheric emittance, and global solar, downwelled diffuse solar, and direct solar irradiances is discussed. Hourly-integrated global solar and atmospheric emitted radiances were measured continuously from February 1981 and hourly-integrated diffuse solar and direct solar irradiances were measured continuously from October 1981. One-minute integrated data are available for each of these components from February 1982. The results of the correlation of global insolation with fractional cloud cover for the first year's data set. A February data set, composed of one-minute integrated global insolation and direct solar irradiance, cloud cover fractions, meteorological data from nearby weather stations, and GOES East satellite radiometric data, was collected to test the theoretical model of satellite radiometric data correlation and develop the cloud dependence for the local measurement site.
Determination of the cumulus size distribution from LANDSAT pictures
NASA Technical Reports Server (NTRS)
Karg, E.; Mueller, H.; Quenzel, H.
1983-01-01
Varying insolation causes undesirable thermic stress to the receiver of a solar power plant. The rapid change of insolation depends on the size distribution of the clouds; in order to measure these changes, it is suitable to determine typical cumulus size distributions. For this purpose, LANDSAT-images are adequate. Several examples of cumulus size distributions will be presented and their effects on the operation of a solar power plant are discussed.
Solar panel parallel mounting configuration
NASA Technical Reports Server (NTRS)
Mutschler, Jr., Edward Charles (Inventor)
1998-01-01
A spacecraft includes a plurality of solar panels interconnected with a power coupler and an electrically operated device to provide power to the device when the solar cells are insolated. The solar panels are subject to bending distortion when entering or leaving eclipse. Spacecraft attitude disturbances are reduced by mounting each of the solar panels to an elongated boom made from a material with a low coefficient of thermal expansion, so that the bending of one panel is not communicated to the next. The boom may be insulated to reduce its bending during changes in insolation. A particularly advantageous embodiment mounts each panel to the boom with a single mounting, which may be a hinge. The single mounting prevents transfer of bending moments from the panel to the boom.
NASA Astrophysics Data System (ADS)
Huang, Yu
Solar energy becomes one of the major alternative renewable energy options for its huge abundance and accessibility. Due to the intermittent nature, the high demand of Maximum Power Point Tracking (MPPT) techniques exists when a Photovoltaic (PV) system is used to extract energy from the sunlight. This thesis proposed an advanced Perturbation and Observation (P&O) algorithm aiming for relatively practical circumstances. Firstly, a practical PV system model is studied with determining the series and shunt resistances which are neglected in some research. Moreover, in this proposed algorithm, the duty ratio of a boost DC-DC converter is the object of the perturbation deploying input impedance conversion to achieve working voltage adjustment. Based on the control strategy, the adaptive duty ratio step size P&O algorithm is proposed with major modifications made for sharp insolation change as well as low insolation scenarios. Matlab/Simulink simulation for PV model, boost converter control strategy and various MPPT process is conducted step by step. The proposed adaptive P&O algorithm is validated by the simulation results and detail analysis of sharp insolation changes, low insolation condition and continuous insolation variation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Recognizing a need for a coordinated approach to resolve energy problems, certain members of the Organization for Economic Cooperation and Development (OECD) met in September 1974 and agreed to develop an International Energy Program. The International Energy Agency (IEA) was established within the OECD to administer, monitor and execute this International Energy Program. In July 1975, Solar Heating and Cooling was selected as one of the sixteen technology fields for multilateral cooperation. Five project areas, called tasks, were identified for cooperative activities within the IEA Program to Develop and Test Solar Heating and Cooling Systems. The objective of one taskmore » was to obtain improved basic resource information for the design and operation of solar heating and cooling systems through a better understanding of the required insolation (solar radiation) and related weather data, and through improved techniques for measurement and evaluation of such data. At the February 1976 initial experts meeting in Norrkoeping, Sweden, the participants developed the objective statement into two subtasks. (1) an insolation handbook; and (2) a portable meteorological instrument package. This handbook is the product of the first subtask. The objective of this handbook is to provide a basis for a dialogue between solar scientists and meteorologists. Introducing the solar scientist to solar radiation and related meteorological data enables him to better express his scientific and engineering needs to the meteorologist; and introducing the meteorologist to the special solar radiation and meteorological data applications of the solar scientist enables him to better meet the needs of the solar energy community.« less
High altitude current-voltage measurement of GaAs/Ge solar cells
NASA Astrophysics Data System (ADS)
Hart, Russell E., Jr.; Brinker, David J.; Emery, Keith A.
Measurements of high-voltage (Voc of 1.2 V) gallium arsenide on germanium tandem junction solar cells at air mass 0.22 showed that the insolation in the red portion of the solar spectrum is insufficient to obtain high fill factor. On the basis of measurements in the LeRC X-25L solar simulator, these cells were believed to be as efficient as 21.68 percent AM0. Solar simulator spectrum errors in the red end allowed the fill factor to be as high as 78.7 percent. When a similar cell's current-voltage characteristic was measured at high altitude in the NASA Lear Jet Facility, a loss of 15 percentage points in fill factor was observed. This decrease was caused by insufficient current in the germanium bottom cell of the tandem stack.
Studies of humid continental haze during SPACE
NASA Technical Reports Server (NTRS)
Bowdle, D. A.; Greene, W. A.
1985-01-01
A concept for a solar radiometer network to provide supporting data during the Satellite Preciptiation and Cloud Experiment (SPACE) was developed. Each of the 9 prime and 10 supplementary SPACE ground sites will be equipped with an upward pointing global solar pyranometer. About half of the sites will also be equipped with upward pointing diffuse (shade ring) solar pyranometers, and a downward pointing global albedo pyranometer. These radiometers will be used to monitor the spatial and temporal variability of solar insolation and haze optical depth. The insolation data will ultimately be input to numerical models of the pre-storm and near-storm boundary layer. The optical depth data will be compared with simultaneous measurements from airborne and satellite-based passive visible radiometers and airborne lidars.
Enhanced solar energy options using earth-orbiting mirrors
NASA Technical Reports Server (NTRS)
Gilbreath, W. P.; Billman, K. W.; Bowen, S. W.
1978-01-01
A system of orbiting space reflectors is described, analyzed, and shown to economically provide nearly continuous insolation to preselected ground sites, producing benefits hitherto lacking in conventional solar farms and leading to large reductions in energy costs for such installations. Free-flying planar mirrors of about 1 sq km are shown to be optimum and can be made at under 10 g/sq m of surface, thus minimizing material needs and space transportation costs. Models are developed for both the design of such mirrors and for the analysis of expected ground insolation as a function of orbital parameters, time, and site location. Various applications (agricultural, solar-electric production, weather enhancement, etc.) are described.
Abdelzaher, Amir M.; Wright, Mary E.; Ortega, Cristina; Solo-Gabriele, Helena M.; Miller, Gary; Elmir, Samir; Newman, Xihui; Shih, Peter; Bonilla, J. Alfredo; Bonilla, Tonya D.; Palmer, Carol J.; Scott, Troy; Lukasik, Jerzy; Harwood, Valerie J.; McQuaig, Shannon; Sinigalliano, Chris; Gidley, Maribeth; Plano, Lisa R. W.; Zhu, Xiaofang; Wang, John D.; Fleming, Lora E.
2010-01-01
Swimming in ocean water, including ocean water at beaches not impacted by known point sources of pollution, is an increasing health concern. This study was an initial evaluation of the presence of indicator microbes and pathogens and the association among the indicator microbes, pathogens, and environmental conditions at a subtropical, recreational marine beach in south Florida impacted by non-point sources of pollution. Twelve water and eight sand samples were collected during four sampling events at high or low tide under elevated or reduced solar insolation conditions. The analyses performed included analyses of fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli, enterococci, and Clostridium perfringens), human-associated microbial source tracking (MST) markers (human polyomaviruses [HPyVs] and Enterococcus faecium esp gene), and pathogens (Vibrio vulnificus, Staphylococcus aureus, enterovirus, norovirus, hepatitis A virus, Cryptosporidium spp., and Giardia spp.). The enterococcus concentrations in water and sand determined by quantitative PCR were greater than the concentrations determined by membrane filtration measurement. The FIB concentrations in water were below the recreational water quality standards for three of the four sampling events, when pathogens and MST markers were also generally undetectable. The FIB levels exceeded regulatory guidelines during one event, and this was accompanied by detection of HPyVs and pathogens, including detection of the autochthonous bacterium V. vulnificus in sand and water, detection of the allochthonous protozoans Giardia spp. in water, and detection of Cryptosporidium spp. in sand samples. The elevated microbial levels were detected at high tide and under low-solar-insolation conditions. Additional sampling should be conducted to further explore the relationships between tidal and solar insolation conditions and between indicator microbes and pathogens in subtropical recreational marine waters impacted by non-point source pollution. PMID:19966020
Bauer, Michael; Glenn, Tasha; Alda, Martin; Andreassen, Ole A; Angelopoulos, Elias; Ardau, Raffaella; Baethge, Christopher; Bauer, Rita; Bellivier, Frank; Belmaker, Robert H; Berk, Michael; Bjella, Thomas D; Bossini, Letizia; Bersudsky, Yuly; Cheung, Eric Yat Wo; Conell, Jörn; Del Zompo, Maria; Dodd, Seetal; Etain, Bruno; Fagiolini, Andrea; Frye, Mark A; Fountoulakis, Kostas N; Garneau-Fournier, Jade; González-Pinto, Ana; Harima, Hirohiko; Hassel, Stefanie; Henry, Chantal; Iacovides, Apostolos; Isometsä, Erkki T; Kapczinski, Flávio; Kliwicki, Sebastian; König, Barbara; Krogh, Rikke; Kunz, Mauricio; Lafer, Beny; Larsen, Erik R; Lewitzka, Ute; Lopez-Jaramillo, Carlos; MacQueen, Glenda; Manchia, Mirko; Marsh, Wendy; Martinez-Cengotitabengoa, Mónica; Melle, Ingrid; Monteith, Scott; Morken, Gunnar; Munoz, Rodrigo; Nery, Fabiano G; O'Donovan, Claire; Osher, Yamima; Pfennig, Andrea; Quiroz, Danilo; Ramesar, Raj; Rasgon, Natalie; Reif, Andreas; Ritter, Philipp; Rybakowski, Janusz K; Sagduyu, Kemal; Scippa, Ângela M; Severus, Emanuel; Simhandl, Christian; Stein, Dan J; Strejilevich, Sergio; Sulaiman, Ahmad Hatim; Suominen, Kirsi; Tagata, Hiromi; Tatebayashi, Yoshitaka; Torrent, Carla; Vieta, Eduard; Viswanath, Biju; Wanchoo, Mihir J; Zetin, Mark; Whybrow, Peter C
2014-01-01
The onset of bipolar disorder is influenced by the interaction of genetic and environmental factors. We previously found that a large increase in sunlight in springtime was associated with a lower age of onset. This study extends this analysis with more collection sites at diverse locations, and includes family history and polarity of first episode. Data from 4037 patients with bipolar I disorder were collected at 36 collection sites in 23 countries at latitudes spanning 3.2 north (N) to 63.4 N and 38.2 south (S) of the equator. The age of onset of the first episode, onset location, family history of mood disorders, and polarity of first episode were obtained retrospectively, from patient records and/or direct interview. Solar insolation data were obtained for the onset locations. There was a large, significant inverse relationship between maximum monthly increase in solar insolation and age of onset, controlling for the country median age and the birth cohort. The effect was reduced by half if there was no family history. The maximum monthly increase in solar insolation occurred in springtime. The effect was one-third smaller for initial episodes of mania than depression. The largest maximum monthly increase in solar insolation occurred in northern latitudes such as Oslo, Norway, and warm and dry areas such as Los Angeles, California. Recall bias for onset and family history data. A large springtime increase in sunlight may have an important influence on the onset of bipolar disorder, especially in those with a family history of mood disorders. Copyright © 2014 Elsevier B.V. All rights reserved.
An inverter/controller subsystem optimized for photovoltaic applications
NASA Technical Reports Server (NTRS)
Pickrell, R. L.; Osullivan, G.; Merrill, W. C.
1978-01-01
Conversion of solar array dc power to ac power stimulated the specification, design, and simulation testing of an inverter/controller subsystem tailored to the photovoltaic power source characteristics. Optimization of the inverter/controller design is discussed as part of an overall photovoltaic power system designed for maximum energy extraction from the solar array. The special design requirements for the inverter/ controller include: a power system controller (PSC) to control continuously the solar array operating point at the maximum power level based on variable solar insolation and cell temperatures; and an inverter designed for high efficiency at rated load and low losses at light loadings to conserve energy.
Solar and temporal effects on Escherichia coli concentration at a Lake Michigan swimming beach
Whitman, Richard L.; Nevers, Meredith B.; Korinek, Ginger C.; Byappanahalli, Muruleedhara N.
2004-01-01
Studies on solar inactivation of Escherichia coli in freshwater and in situ have been limited. At 63rd St. Beach, Chicago, Ill., factors influencing the daily periodicity of culturable E. coli, particularly insolation, were examined. Water samples for E. coli analysis were collected twice daily between April and September 2000 three times a week along five transects in two depths of water. Hydrometeorological conditions were continuously logged: UV radiation, total insolation, wind speed and direction, wave height, and relative lake level. On 10 days, transects were sampled hourly from 0700 to 1500 h. The effect of sunlight on E. coliinactivation was evaluated with dark and transparent in situ mesocosms and ambient lake water. For the study, the number of E. coli samples collected (n) was 2,676. During sunny days, E. coli counts decreased exponentially with day length and exposure to insolation, but on cloudy days, E. coli inactivation was diminished; the E. coli decay rate was strongly influenced by initial concentration. In situ experiments confirmed that insolation primarily inactivated E. coli; UV radiation only marginally affected E. coliconcentration. The relationship between insolation and E. coli density is complicated by relative lake level, wave height, and turbidity, all of which are often products of wind vector. Continuous importation and nighttime replenishment of E. coli were evident. These findings (i) suggest that solar inactivation is an important mechanism for natural reduction of indicator bacteria in large freshwater bodies and (ii) have implications for management strategies of nontidal waters and the use of E. coli as an indicator organism.
NASA Technical Reports Server (NTRS)
Smith, J. H.
1980-01-01
Average hourly and daily total insolation estimates for 235 United States locations are presented. Values are presented for a selected number of array tilt angles on a monthly basis. All units are in kilowatt hours per square meter.
Determination of the Solar Energy Microclimate of the United States Using Satellite Data
NASA Technical Reports Server (NTRS)
Vonderharr, T. H.; Ellis, J. S.
1978-01-01
The determination of total solar energy reaching the ground over the United States using measurements from meteorological satellites as the basic data set is examined. The methods of satellite data processing are described. Uncertainty analysis and comparison of results with well calibrated surface pyranometers are used to estimate the probable error in the satellite-based determination of ground insolation. It is 10 to 15 percent for daily information, and about 5 percent for monthly values. However, the natural space and time variability of insolation is much greater than the uncertainty in the method. The most important aspect of the satellite-based technique is the ability to determine the solar energy reaching the ground over small areas where no other measurements are available. Thus, it complements the widely spaced solar radiation measurement network of ground stations.
Khalid Hussein
2012-02-01
This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma
Khalid Hussein
2012-02-01
This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma
Khalid Hussein
2012-02-01
This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma
Khalid Hussein
2012-02-01
This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.
Impacts of stratospheric sulfate geoengineering on tropospheric ozone
NASA Astrophysics Data System (ADS)
Xia, Lili; Nowack, Peer J.; Tilmes, Simone; Robock, Alan
2017-10-01
A range of solar radiation management (SRM) techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air pollution. In conclusion, surface ozone and tropospheric chemistry would likely be affected by SRM, but the overall effect is strongly dependent on the SRM scheme. Due to the health and economic impacts of surface ozone, all these impacts should be taken into account in evaluations of possible consequences of SRM.
Definition study for photovoltaic residential prototype system
NASA Technical Reports Server (NTRS)
Imamura, M. S.; Hulstrom, R. L.; Cookson, C.; Waldman, B. H.; Lane, R. A.
1976-01-01
A parametric sensitivity study and definition of the conceptual design is presented. A computer program containing the solar irradiance, solar array, and energy balance models was developed to determine the sensitivities of solar insolation and the corresponding solar array output at five sites selected for this study as well as the performance of several solar array/battery systems. A baseline electrical configuration was chosen, and three design options were recommended. The study indicates that the most sensitive parameters are the solar insolation and the inverter efficiency. The baseline PST selected is comprised of a 133 sg m solar array, 250 ampere hour battery, one to three inverters, and a full shunt regulator to limit the upper solar array voltage. A minicomputer controlled system is recommended to provide the overall control, display, and data acquisition requirements. Architectural renderings of two photovoltaic residential concepts, one above ground and the other underground, are presented. The institutional problems were defined in the areas of legal liabilities during and after installation of the PST, labor practices, building restrictions and architectural guides, and land use.
NASA Astrophysics Data System (ADS)
Volobuev, D. M.; Makarenko, N. G.
2014-12-01
Because of the small amplitude of insolation variations (1365.2-1366.6 W m-2 or 0.1%) from the 11-year solar cycle minimum to the cycle maximum and the structural complexity of the climatic dynamics, it is difficult to directly observe a solar signal in the surface temperature. The main difficulty is reduced to two factors: (1) a delay in the temperature response to external action due to thermal inertia, and (2) powerful internal fluctuations of the climatic dynamics suppressing the solar-driven component. In this work we take into account the first factor, solving the inverse problem of thermal conductivity in order to calculate the vertical heat flux from the measured temperature near the Earth's surface. The main model parameter—apparent thermal inertia—is calculated from the local seasonal extremums of temperature and albedo. We level the second factor by averaging mean annual heat fluxes in a latitudinal belt. The obtained mean heat fluxes significantly correlate with a difference between the insolation and optical depth of volcanic aerosol in the atmosphere, converted into a hindered heat flux. The calculated correlation smoothly increases with increasing latitude to 0.4-0.6, and the revealed latitudinal dependence is explained by the known effect of polar amplification.
Simple device measures solar radiation
NASA Technical Reports Server (NTRS)
Humphries, W. R.
1977-01-01
Simple inexpensive thermometer, insolated from surroundings by transparent glass or plastic encasement, measures intensities of solar radiation, or radiation from other sources such as furnaces or ovens. Unit can be further modified to accomplish readings from remote locations.
NASA Astrophysics Data System (ADS)
Luccini, E.; Cede, A.; Piacentini, R. D.
The analysis of ground-based measurements of solar erythemal ultraviolet (UV) irradiance with a Solar Light 501 biometer, and total (300-3000nm) irradiance with an Eppley B&W pyranometer at the Argentine Antarctic Base ``Almirante Brown'', Paradise Bay (64.9°S, 62.9°W, 10ma.s.l.) is presented. Measurement period extends from February 16 to March 28 2000. A relatively high mean albedo and a very clean atmosphere characterise the place. Sky conditions were of generally high cloud cover percentage. Clear-sky irradiance for each day was estimated with model calculations, and the effect of the cloudiness was studied through the ratio of measured to clear-sky value (r). Two particular cases were analysed: overcast sky without precipitation and overcast sky with rain or slight snowfall, the last one presenting frequently dense fog. Total irradiance was more attenuated than UV by the homogeneous cloudiness, obtaining mean r values of 0.54 for erythemal irradiance and 0.30 for total irradiance in the first case (without precipitation) and 0.27 and 0.17 respectively in the second case (with precipitation). Mean r values for the complete period were 0.58 for erythemal irradiance and 0.43 for total irradiance. Erythemal and total daily insolations reduce quickly at this epoch due to the increase of the noon solar zenith angle and the decrease of daylight time. Additionally, they were strongly modulated by cloudiness. Measured maxima were 2.71kJ/m2 and 18.42MJ/m2 respectively. Measurements were compared with satellite data. TOMS-inferred erythemal daily insolation shows the typical underestimation with respect to ground measurements at regions of high mean albedo. Measured mean total daily insolation agrees with climatological satellite data for the months of the campaign.
Theory of chaotic orbital variations confirmed by Cretaceous geological evidence
NASA Astrophysics Data System (ADS)
Ma, Chao; Meyers, Stephen R.; Sageman, Bradley B.
2017-02-01
Variations in the Earth’s orbit and spin vector are a primary control on insolation and climate; their recognition in the geological record has revolutionized our understanding of palaeoclimate dynamics, and has catalysed improvements in the accuracy and precision of the geological timescale. Yet the secular evolution of the planetary orbits beyond 50 million years ago remains highly uncertain, and the chaotic dynamical nature of the Solar System predicted by theoretical models has yet to be rigorously confirmed by well constrained (radioisotopically calibrated and anchored) geological data. Here we present geological evidence for a chaotic resonance transition associated with interactions between the orbits of Mars and the Earth, using an integrated radioisotopic and astronomical timescale from the Cretaceous Western Interior Basin of what is now North America. This analysis confirms the predicted chaotic dynamical behaviour of the Solar System, and provides a constraint for refining numerical solutions for insolation, which will enable a more precise and accurate geological timescale to be produced.
Theory of chaotic orbital variations confirmed by Cretaceous geological evidence.
Ma, Chao; Meyers, Stephen R; Sageman, Bradley B
2017-02-22
Variations in the Earth's orbit and spin vector are a primary control on insolation and climate; their recognition in the geological record has revolutionized our understanding of palaeoclimate dynamics, and has catalysed improvements in the accuracy and precision of the geological timescale. Yet the secular evolution of the planetary orbits beyond 50 million years ago remains highly uncertain, and the chaotic dynamical nature of the Solar System predicted by theoretical models has yet to be rigorously confirmed by well constrained (radioisotopically calibrated and anchored) geological data. Here we present geological evidence for a chaotic resonance transition associated with interactions between the orbits of Mars and the Earth, using an integrated radioisotopic and astronomical timescale from the Cretaceous Western Interior Basin of what is now North America. This analysis confirms the predicted chaotic dynamical behaviour of the Solar System, and provides a constraint for refining numerical solutions for insolation, which will enable a more precise and accurate geological timescale to be produced.
Airborne Measurement of Insolation Impact on the Atmospheric Surface Boundary Layer
NASA Astrophysics Data System (ADS)
Jacob, Jamey; Chilson, Phil; Houston, Adam; Detweiler, Carrick; Bailey, Sean; Cloud-Map Team
2017-11-01
Atmospheric surface boundary layer measurements of wind and thermodynamic parameters are conducted during variable insolation conditions, including the 2017 eclipse, using an unmanned aircraft system. It is well known that the air temperatures can drop significantly during a total solar eclipse as has been previously observed. In past eclipses, these observations have primarily been made on the ground. We present results from airborne measurements of the near surface boundary layer using a small unmanned aircraft with high temporal resolution wind and thermodynamic observations. Questions that motivate the study include: How does the temperature within the lower atmospheric boundary vary during an eclipse? What impact does the immediate removal of radiative heating on the ground have on the lower ABL? Do local wind patterns change during an eclipse event and if so why? Will there be a manifestation of the nocturnal boundary layer wind maximum? Comparisons are made with the DOE ARM SGP site that experiences a lower but still significant insolation. Supported by the National Science Foundation under Award Number 1539070.
Khalid Hussein
2012-02-01
This layer contains areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies) Note: 'o' is used in this description to represent lowercase sigma.
Decentralized solar photovoltaic energy systems
NASA Astrophysics Data System (ADS)
Krupka, M. C.
1980-09-01
Emphasis was placed upon the selection and use of a model residential photovoltaic system to develop and quantify the necessary data. The model consists of a reference home located in Phoenix, AZ utilizing a unique solar cell array roof shingle combination. Silicon solar cells, rated at 13.5 percent efficiency at 28 C and 100 mW/sq cm insolation are used to generate 10 kW (peak). An all electric home is considered with lead acid battery storage, DC AC inversion and utility backup. The reference home is compared to others in regions of different insolation. It is suggested that solar cell materials production and fabrication may have the major environmental impact when comparing all facets of photovoltaic system usage. Fabrication of the various types of solar cell systems involves the need, handling, and transportation of many toxic and hazardous chemicals with attendant health and safety impacts. Increases in production of such materials as lead, antimony, sulfuric acid, copper, plastics, cadmium and gallium will be required should large scale usage of photovoltaic systems be implemented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buzra, Urim, E-mail: rimibuzra@yahoo.com; Berberi, Pellumb; Mitrushi, Driada
Change of irradiative properties of the atmosphere during clear days is an indicator, among others, of existence of atmospheric aerosols and can be used as an indicator for assessment both air pollution and local modifications of solar energy potentials. The main objective of this study is estimation of influence of anthropogenic aerosols on solar energy falling in a horizontal surface during a cloudless day. We have analyzed and quantified the effect of aerosols on reducing the amount of solar energy that falls on the horizontal ground surface in cloudless sky conditions, estimating temporal evolution, both in daily and hour scale,more » considering also, side effects caused by relative humidity of the air wind speed and geometric factor. As an indicator of concentration of aerosols in atmosphere, we agreed to use the attenuation of solar radiation after the last rainy day. All data were corrected by factors such as, variations of relative humidity, wind speed and daily change of incident angle of solar radiation. We studied the change of solar insolation in three sites with different traffic intensity, one in city of Shkodra and two in city of Tirana. Fifteen days after last rainy day, approximate time needed to achieve saturation, the insolation drops only 3.1% in the city of Shkodra, while in two sites in city of Tirana are 8.5 % and 18.4%. These data show that reduction of solar insolation is closely related with anthropogenic activity, mainly traffic around the site of the meteorological station. The day to day difference tends to decrease with increasing of number of days passed from the last rainy day, which is an evidence of a trend toward a dynamic equilibrium between decantation process of aerosols during the night and their generation during the day.« less
NASA Astrophysics Data System (ADS)
Wan, Naijung; Chung, Weiling; Li, Hong-Chun; Lin, Huilin; Ku, Teh-Lung; Shen, Chuan-Chou; Yuan, Daoxian; Zhang, Meiliang; Lin, Yushi
2011-04-01
Four 230Th-dated δ 18O records in three stalagmites: one from Dragon Spring (stalagmite L12) and two from Golden Lion Caves (stalagmites JSD-01 and JSD-02) located in Libo County, southeast Guizhou, China, are presented. These records cover age ranges of 0.75-2 ka (late Holocene), 9-9.6 ka (early Holocene), 87.9-88.2 ka and 93.8-95.2 ka (late Pleistocene). They fit well with the published Dongge Cave record from the same area, where the climate has been much influenced by the East Asian Monsoon. The agreement reinforces the role of stalagmite δ 18O as a proxy for regional precipitation or monsoon strength. On millennial or longer time scales, the δ 18O record of Dongge Cave resembles those of Sanbao Cave in Hubei and Hulu Cave in Jiangsu of China. The matching of these records with the northern hemisphere solar-insolation variations points to the importance of insolation in affecting the East Asian Summer Monsoon strength on 10 3-10 4-yr scales. While the monsoon variations as depicted by these Chinese speleothem δ 18O records show a strong coupling to insolation's precession component (23-kyr period), other climate records of global significance extracted from oceanic and terrestrial deposits (e.g., deep-sea sediments, polar ice cores, cave deposits from non-monsoonal regions) do not. Although the latter records were thought to be also influenced by the large changes in global ice volume, they show variations modulated chiefly by insolation due to earth's eccentricity change (100-kyr period). It is hypothesized that precession variations control the distribution of solar insolation between the northern and southern hemispheres, the ITCZ position and the modulation of low-latitude summer monsoon variability. Increasing rainfall and/or summer/winter precipitation ratio brought about by strong summer monsoons leads to δ 18O depletion in stalagmites grown in monsoonal regions. One should use caution to compare speleothem δ 18O records with other paleoclimate records reflecting Pleistocene ice ages on 10 4-10 5-yr timescales.
The Mars climate for a photovoltaic system operation
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Flood, Dennis J.
1989-01-01
Detailed information on the climatic conditions on Mars are very desirable for the design of photovoltaic systems for establishing outposts on the Martian surface. The distribution of solar insolation (global, direct and diffuse) and ambient temperature is addressed. This data are given at the Viking lander's locations and can also be used, to a first approximation, for other latitudes. The insolation data is based on measured optical depth of the Martian atmosphere derived from images taken of the sun with a special diode on the Viking cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation. The ambient temperature (diurnal and yearly distribution) is based on direct measurements with a thermocouple at 1.6 m above the ground at the Viking lander locations. The insolation and ambient temperature information are short term data. New information about Mars may be forthcoming in the future from new analysis of previously collected data or from future flight missions. The Mars climate data for photovoltaic system operation will thus be updated accordingly.
NASA Astrophysics Data System (ADS)
Abdulsalam, Alrowashed; Idris, Azni Bin; Ahmad, Thamer; Ahsan, Amimul
2017-01-01
This work overviews the solar radiation basics and insolation of different surfaces is presented. A complete solar radiation modelling and investigation on the effect of horizontal plate, yearly tilt, monthly tilt, and single-axis and double-axis tracking surface on the insolation are carried out to conduct performance evaluation using the case study in Dhahran city of Saudi Arabia. The increments received by insolation for the yearly tilt, monthly tilt, and single-axis and dual-axis tracking surface with respect to traditional flat-plate collector is estimated. The results show that the yearly optimal tilt angle due to the south is close to the 0.913 time latitude of Dhahran. It is found that the yearly irradiation gains using yearly and monthly optimal tilts relative to flat panel installation are 7% and 14%, respectively. The yearly insulation gains made by single-axis and dual-axis continuous tracking surfaces are 33% and 48%, respectively.
Development of flat-plate solar collectors for the heating and cooling of buildings
NASA Technical Reports Server (NTRS)
Ramsey, J. W.; Borzoni, J. T.; Holland, T. H.
1975-01-01
The relevant design parameters in the fabrication of a solar collector for heating liquids were examined. The objective was to design, fabricate, and test a low-cost, flat-plate solar collector with high collection efficiency, high durability, and requiring little maintenance. Computer-aided math models of the heat transfer processes in the collector assisted in the design. The preferred physical design parameters were determined from a heat transfer standpoint and the absorber panel configuration, the surface treatment of the absorber panel, the type and thickness of insulation, and the number, spacing and material of the covers were defined. Variations of this configuration were identified, prototypes built, and performance tests performed using a solar simulator. Simulated operation of the baseline collector configuration was combined with insolation data for a number of locations and compared with a predicted load to determine the degree of solar utilization.
NASA Astrophysics Data System (ADS)
Belica, L.; Petras, V.; Iiames, J. S., Jr.; Caldwell, P.; Mitasova, H.; Nelson, S. A. C.
2016-12-01
Water temperature is a key aspect of water quality and understanding how the thermal regimes of forested headwater streams may change in response to climatic and land cover changes is increasingly important to scientists and resource managers. In recent years, the forested mountain watersheds of the Southeastern U.S. have experienced changing climatic patterns as well as the loss of a keystone riparian tree species and anticipated hydrologic responses include lower summer stream flows and decreased stream shading. Solar radiation is the main source of thermal energy to streams and a key parameter in heat-budget models of stream temperature; a decrease in flow volume combined with a reduction in stream shading during summer have the potential to increase stream temperatures. The high spatial variability of forest canopies and the high spatio-temporal variability in sky conditions make estimating the solar radiation reaching small forested headwater streams difficult. The Subcanopy Solar Radiation Model (SSR) (Bode et al. 2014) is a GIS model that generates high resolution, spatially explicit estimates of solar radiation by incorporating topographic and vegetative shading with a light penetration index derived from leaf-on airborne LIDAR data. To evaluate the potential of the SSR model to provide estimates of stream insolation to parameterize heat-budget models, it was applied to the Coweeta Basin in the Southern Appalachians using airborne LIDAR (NCALM 2009, 1m resolution). The LIDAR derived canopy characteristics were compared to current hyperspectral images of the canopy for changes and the SSR estimates of solar radiation were compared with pyranometer measurements of solar radiation at several subcanopy sites during the summer of 2016. Preliminary results indicate the SSR model was effective in identifying variations in canopy density and light penetration, especially in areas associated with road and stream corridors and tree mortality. Current LIDAR data and more solar radiation measurements are needed to fully validate the accuracy of the SSR model in Southern Appalachian forests, but initial results suggest the high resolution, spatially explicit estimates of solar radiation can improve solar radiation parameter estimates in deterministic models of stream temperature in forested landscapes.
NASA Astrophysics Data System (ADS)
Beck, W.; Zhou, W.; Cheng, L.; Wu, Z.; Xian, F.; Kong, X.; Cottam, T.; An, Z.; White, L.
2017-12-01
We show that atmospheric 10Be flux is a quantitative proxy for rainfall, and use it to derive a 530Ka-long record of East Asian summer monsoon rainfall from Chinese Loess. Our record strongly resembles the Red Sea paleosea level and LR04 benthic foram δ18O records, with 53% & 45% of its variance reflected in each of these two global ice volume proxies. This suggests EASM intensity is closely coupled to ice volume by some mechanism. At first glance, this seems to support the claim based on strongly correlated Chinese cave δ18O and 65°N summer solar insolation that Asian monsoon intensity is controlled by high northern latitude insolation. Nevertheless, our 10Be-proxy has only 17% common variance with cave δ18O. Furthermore, Chinese cave δ18O records are very poorly correlated with sea-level/global ice volume, conflicting with both our proxy and Milankovitch theory, if interpreted as a monsoon intensity proxy. We argue that cave δ18O is instead a mixing proxy for monsoon moisture derived from (δ18O depleted) Indian vs Pacific monsoon sectors. We suggest both this mixing ratio and EASM intensity are not governed by high northern latitude insolation, but rather by orbital forcing of the low latitude interhemispheric insolation gradient, which mimics the 65°N insolation pattern. We show this gradient regulates the ratio of Asian monsoon outflow to the Indian vs. North Pacific subtropical highs, providing a coupling to both Hadley and Walker circulations. When outflow strengthens in one of these sectors it weakens in the other, regulating the relative strength of the Trade and Westerly winds in each sector. Trade wind coupling to monsoon strength in each sector controls the ISM/Pacific monsoon moisture mixing ratio and EASM intensity, although intensity is also influenced by other factors. This model provides mechanisms by which the monsoons may influence ice volume. Westerlies strength adjacent to the North Pacific Subtropical High strongly regulates transient eddy energy transport to the north polar region. Likewise, the Trades and Westerlies in the Indian Ocean both influence AMOC strength by regulating Agulhas leakage into the Atlantic, or can influence air/sea CO2 fluxes. These mechanisms may all strongly influence northern hemisphere ice volume, begging the question: Where does global climate control originate?
NASA Astrophysics Data System (ADS)
Shukla, Ashish K.; Yadav, Vinayak M.; Kumar, Akash; Palani, I. A.; Manivannan, Anbarasu
2018-01-01
Polyimide (PI) offers promising features such as high strength and excellent thermal stability for flexible solar panels. The flexible solar cell demands maximum absorption of solar insolation through stacked layers to enhance its performance. However, the fluorescence emission (FE) in inactive polyimide substrate hinders the absorption of irradiated solar energy. In this research work, an attempt has been made to generate rippled morphology on PI substrate using laser processing that enhances the absorption and moderates the FE. These changes are confirmed by calculating the Urbach energy (Eu) of the rippled structure, which is found to be 2.5 times that of the pristine substrate. Furthermore, to reduce the FE, tungsten (W) was coated on the rippled structure of the laser-processed PI, and a significant reduction of 70% FE is achieved compared to the FE of unprocessed PI. These enhanced characteristics of PI obtained by laser processing will be highly helpful for improving the overall performance of flexible solar cells.
Mercury Conditions for the MESSENGER Mission Simulated in High- Solar-Radiation Vacuum Tests
NASA Technical Reports Server (NTRS)
Wong, Wayne A.
2003-01-01
The MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) spacecraft, planned for launch in March 2004, will perform two flybys of Mercury before entering a year-long orbit of the planet in September 2009. The mission will provide opportunities for detailed characterization of the surface, interior, atmosphere, and magnetosphere of the closest planet to the Sun. The NASA Glenn Research Center and the MESSENGER spacecraft integrator, the Johns Hopkins University Applied Physics Laboratory, have partnered under a Space Act Agreement to characterize a variety of critical components and materials under simulated conditions expected near Mercury. Glenn's Vacuum Facility 6, which is equipped with a solar simulator, can simulate the vacuum and high solar radiation anticipated in Mercury orbit. The MESSENGER test hardware includes a variety of materials and components that are being characterized during the Tank 6 vacuum tests, where the hardware will be exposed to up to 11 suns insolation, simulating conditions expected in Mercury orbit. In 2002, ten solar vacuum tests were conducted, including beginning of life, end of life, backside exposure, and solar panel thermal shock cycling tests. Components tested include candidate solar array panels, sensors, thermal shielding materials, and communication devices. As an example, for the solar panel thermal shock cycling test, two candidate solar array panels were suspended on a lift mechanism that lowered the panels into a liquid-nitrogen-cooled box. After reaching -140 C, the panels were then lifted out of the box and exposed to the equivalent of 6 suns (8.1 kilowatts per square meters). After five cold soak/heating cycles were completed successfully, there was no apparent degradation in panel performance. An anticipated 100-hr thermal shield life test is planned for autumn, followed by solar panel flight qualification tests in winter. Glenn's ongoing support to the MESSENGER program has been instrumental in identifying design solutions and validating thermal performance models under a very aggressive development schedule. The test data have assisted Johns Hopkins engineers in selecting a flight solar array vendor and a thermal shield design. MESSENGER is one in a series of missions in NASA's Discovery Program. Infrared thermography provides data on the thermal gradients in the MESSENGER components during high solar insolation vacuum testing.
A comparative study of satellite estimation for solar insolation in Albania with ground measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitrushi, Driada, E-mail: driadamitrushi@yahoo.com; Berberi, Pëllumb, E-mail: pellumb.berberi@gmail.com; Muda, Valbona, E-mail: vmuda@hotmail.com
The main objective of this study is to compare data provided by Database of NASA with available ground data for regions covered by national meteorological net NASA estimates that their measurements of average daily solar radiation have a root-mean-square deviation RMSD error of 35 W/m{sup 2} (roughly 20% inaccuracy). Unfortunately valid data from meteorological stations for regions of interest are quite rare in Albania. In these cases, use of Solar Radiation Database of NASA would be a satisfactory solution for different case studies. Using a statistical method allows to determine most probable margins between to sources of data. Comparison of meanmore » insulation data provided by NASA with ground data of mean insulation provided by meteorological stations show that ground data for mean insolation results, in all cases, to be underestimated compared with data provided by Database of NASA. Converting factor is 1.149.« less
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in northern Saguache Counties identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in northern Saguache Counties identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.
Areas with Surface Thermal Anomalies as Detected by ASTER and LANDSAT Data in Ouray, Colorado
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Ouray identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature around south Steamboat Springs as identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in northern Saguache Counties identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.
NASA Astrophysics Data System (ADS)
Raymond, M.
1982-06-01
The Karasek Home is a single family Massachusetts residence whose active-solar-energy system is equipped with 640 square feet of trickle-down liquid flat-plate collectors, storage in a 300-gallon tank and a 2000-gallon tank embedded in a rock bin in the basement, and an oil-fired glass-lined 40-gallon domestic hot water tank for auxiliary water and space heating. Monthly performance data are tabulated for the overall system and for the collector, storage, space heating, and domestic hot water subsystems. For each month a graph is presented of collector array efficiency versus the difference between the inlet water temperature and ambient temperature divided by insolation. Typical system operation is illustrated by graphs of insolation and temperatures at different parts of the system versus time for a typical day. The typical system operating sequence for a day is also graphed as well as solar energy utilization and heat losses.
A 3D Visualization and Analysis Model of the Earth Orbit, Milankovitch Cycles and Insolation.
NASA Astrophysics Data System (ADS)
Kostadinov, Tihomir; Gilb, Roy
2013-04-01
Milankovitch theory postulates that periodic variability of Earth's orbital elements is a major climate forcing mechanism. Although controversies remain, ample geologic evidence supports the major role of the Milankovitch cycles in climate, e.g. glacial-interglacial cycles. There are three Milankovitch orbital parameters: orbital eccentricity (main periodicities of ~100,000 and ~400,000 years), precession (quantified as the longitude of perihelion, main periodicities 19,000-24,000 years) and obliquity of the ecliptic (Earth's axial tilt, main periodicity 41,000 years). The combination of these parameters controls the spatio-temporal patterns of incoming solar radiation (insolation) and the timing of the seasons with respect to perihelion, as well as season duration. The complex interplay of the Milankovitch orbital parameters on various time scales makes assessment and visualization of Earth's orbit and insolation variability challenging. It is difficult to appreciate the pivotal importance of Kepler's laws of planetary motion in controlling the effects of Milankovitch cycles on insolation patterns. These factors also make Earth-Sun geometry and Milankovitch theory difficult to teach effectively. Here, an astronomically precise and accurate Earth orbit visualization model is presented. The model offers 3D visualizations of Earth's orbital geometry, Milankovitch parameters and the ensuing insolation forcings. Both research and educational uses are envisioned for the model, which is developed in Matlab® as a user-friendly graphical user interface (GUI). We present the user with a choice between the Berger et al. (1978) and Laskar et al. (2004) astronomical solutions for eccentricity, obliquity and precession. A "demo" mode is also available, which allows the three Milankovitch parameters to be varied independently of each other (and over much larger ranges than the naturally occurring ones), so the user can isolate the effects of each parameter on orbital geometry, the seasons, and insolation. Users select a calendar date and the Earth is placed in its orbit using Kepler's laws; the calendar can be started on either vernal equinox (March 20) or perihelion (Jan. 3). Global insolation is computed as a function of latitude and day of year, using the chosen Milankovitch parameters. 3D surface plots of insolation and insolation anomalies (with respect to J2000) are then produced. Insolation computations use the model's own orbital geometry with no additional a-priori input other than the Milankovitch parameter solutions. Insolation computations are successfully validated against Laskar et al. (2004) values. The model outputs other relevant parameters as well, e.g. Earth's radius-vector length, solar declination and day length for the chosen date and latitude. Time-series plots of the Milankovitch parameters and EPICA ice core CO2 and temperature data can be produced. Envisioned future developments include computational efficiency improvements, more options for insolation plots on user-chosen spatio-temporal scales, and overlaying additional paleoclimatological proxy data.
NASA Astrophysics Data System (ADS)
Eames, P. C.; Norton, B.
A numerical simulation model was employed to investigate the effects of ambient temperature and insolation on the efficiency of compound parabolic concentrating solar energy collectors. The limitations of presently-used collector performance characterization curves were investigated and a new approach proposed.
Physics-Based GOES Product for Use in NREL's National Solar Radiation Database: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Manajit; Habte, Aron; Gotseff, Peter
The Global Solar Insolation Project (GSIP) is an operational physical model from the National Oceanic and Atmospheric Administration (NOAA) that computes global horizontal radiation (GHI) using the visible and infrared channel measurements from geostationary operational environmental satellites (GOES). GSIP uses a two-stage scheme that retrieves cloud properties and uses those properties in the Satellite Algorithm for Surface Radiation Budget (SASRAB) model to calculate surface radiation. The National Renewable Energy Laboratory, University of Wisconsin, and NOAA have recently collaborated to adapt GSIP to create a high-temporal and spatial resolution data set. The data sets are currently being incorporated into the widelymore » used National Solar Radiation Data Base.« less
Solar Energy Education. Renewable energy: a background text. [Includes glossary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-01-01
Some of the most common forms of renewable energy are presented in this textbook for students. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the sun and the solar energy that it yields. Discussions on the sun's composition and the relationship between the earth, sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy. (BCS)
Guidebook for solar process-heat applications
NASA Astrophysics Data System (ADS)
Fazzolare, R.; Mignon, G.; Campoy, L.; Luttmann, F.
1981-01-01
The potential for solar process heat in Arizona and some of the general technical aspects of solar, such as insolation, siting, and process analysis are explored. Major aspects of a solar plant design are presented. Collectors, storage, and heat exchange are discussed. Reducing hardware costs to annual dollar benefits is also discussed. Rate of return, cash flow, and payback are discussed as they relate to solar systems. Design analysis procedures are presented. The design cost optimization techniques using a yearly computer simulation of a solar process operation is demonstrated.
Solar collector performance evaluated outdoors at NASA-Lewis Research Center
NASA Technical Reports Server (NTRS)
Vernon, R. W.
1974-01-01
The study of solar reflector performance reported is related to a project in which solar collectors are to be provided for the solar heating and cooling system of an office building at NASA's Langley Research Center. The solar collector makes use of a liquid consisting of 50% ethylene glycol and 50% water. A conventional air-liquid heat exchanger is employed. Collector performance and solar insolation data are recorded along with air temperature, wind speed and direction, and relative humidity.
Results of heating mode performance tests of a solar-assisted heat pump
NASA Technical Reports Server (NTRS)
Jones, C. B.; Smetana, F. O.
1979-01-01
The performance of a heat pump, utilizing 8.16 square meters of low-cost solar collectors as the evaporator in a Freon-114 refrigeration cycle, was determined under actual insolation conditions during the summer and fall of 1976. C.O.P.'s (coefficient of performance) greater than 3 were obtained with condensing temperatures around 78 C and evaporating temperatures around 27 C. Ambient temperatures were about 3 C above evaporating temperatures. Similar performance levels were obtained at other insolation and temperature conditions. Experience with the system has identified some component and system changes which should increase the obtainable C.O.P. to about 4.0. These are described along with the system's design rationale. The accumulated data are presented as an appendix.
Techniques and Analysis of Thermal Infrared Camouflage in Foliated Backgrounds
1977-01-06
is the long wavelength (terrestial) insolation J is the solar wavelength radiosity of the ith surface J is the terrestial wavelength radiosity of the...reflectance Pt is the terrestial wavelength reflectance and J T is the solar wavelength transmittance. The radiosities were evaluated in terms of the boundary
An inverter/controller subsystem optimized for photovoltaic applications
NASA Technical Reports Server (NTRS)
Pickrell, R. L.; Merrill, W. C.; Osullivan, G.
1978-01-01
Conversion of solar array dc power to ac power stimulated the specification, design, and simulation testing of an inverter/controller subsystem tailored to the photovoltaic power source characteristics. This paper discusses the optimization of the inverter/controller design as part of an overall Photovoltaic Power System (PPS) designed for maximum energy extraction from the solar array. The special design requirements for the inverter/controller include: (1) a power system controller (PSC) to control continuously the solar array operating point at the maximum power level based on variable solar insolation and cell temperatures; and (2) an inverter designed for high efficiency at rated load and low losses at light loadings to conserve energy. It must be capable of operating connected to the utility line at a level set by an external controller (PSC).
Accurate spin axes and solar system dynamics: Climatic variations for the Earth and Mars
NASA Astrophysics Data System (ADS)
Edvardsson, S.; Karlsson, K. G.; Engholm, M.
2002-03-01
Celestial mechanical simulations from a purely classical point of view of the solar system, including our Moon and the Mars moons - Phobos and Deimos - are carried out for 2 millions of years before present. Within the classical approximation, the results are derived at a very high level of accuracy. Effects from general relativity for a number of variables are investigated and found to be small. For climatic studies of about 1 Myr, general relativity can safely be ignored. Three different and independent integration schemes are used in order to exclude numerical anomalies. The converged results from all methods are found to be in complete agreement. For verification, a number of properties such as spin axis precession, nutation, and orbit inclination for Earth and Mars have been calculated. Times and positions of equinoxes and solstices are continously monitored. As also observed earlier, the obliquity of the Earth is stabilized by the Moon. On the other hand, the obliquity of Mars shows dramatic variations. Climatic influences due to celestial variables for the Earth and Mars are studied. Instead of using mean insolation as in the usual applications of Milankovitch theory, the present approach focuses on the instantaneous solar radiation power (insolation) at each summer solstice. Solar radiation power is compared to the derivative of the icevolume and these quantities are found to be in excellent agreement. Orbital precessions for the inner planets are studied as well. In the case of Mercury, it is investigated in detail.
NASA Astrophysics Data System (ADS)
Sanchez, A.; Calbó, J.; González, J. A.
2012-04-01
Since the end of XIX century, the Campbell-Stokes recorder (CSR) has been the instrument used to measure the insolation (hours of sunshine during per day). Due to the large number of records that exist worldwide (some of them extending over more than 100 years), valuable climatic information can be extracted from them. There are various articles that relate the insolation with the cloudiness and the global solar irradiation (Angstrom-Prescott type formulas). Theoretically, the insolation is defined as the number of hours that direct solar irradiance (DSI) exceeds 120 W/m2, thus corresponding to the total length of the burning in the bands. The width of the burn has not been well studied, so the aim of this research is to relate this width, first with the DSI and then, with other variables. The research was carried out in Girona (NE Spain) for a period extending since February 2011. A CSR from Thies Clima and a pyrheliometer from Kipp&Zonen were used to measure insolation and the direct solar irradiance. Other meteorological variables were also stored for the study. For each band, we made two independent measurements of the width of the burn every 10 minutes: first, we measured directly the width of the perforated portion of the burn; second, we measured the width of the burn after applying a digital image process that increases the contrast of the burn. The burn in a band has a direct relationship with the DSI. Specifically, correlation coefficients of the perforation width and the burning width with DSI were 0.838 and 0.864 respectively. However, we found that there are times when despite of DSI is as high as 400 W/m2 (i.e. much greater than 120 W/m2), there is no burn in the band. Contrarily, sometimes a burn occurs with almost no DSI. Furthermore, a higher DSI does not always correspond to a wider burn of the band. Because of this, we consider that characteristics of band burns must also depend on other meteorological variables (temperature, humidity...). The physical characteristics of the heliograph and of the cardboard from which the bands are made may also have an important role in this relationship. The method was applied to a limited series of bands so the results and conclusions are preliminary. The first conclusion is the lack of accuracy that has the threshold value of 120 W/m2 and the difficulty of giving a single value of this threshold. The sudden changes and intermittent weather conditions, combined with the poor temporal resolution of the measure of the burn width, reduce the correlation between burn and DSI. For further research aimed at the study of the behavior of the insolation due to the changing concentration of aerosols in the atmosphere, we need to increase the number of burned sunshine bands and to describe with more accuracy the limitations of heliographs.
Air Force Logistics Command (AFLC) solar thermal plant
NASA Technical Reports Server (NTRS)
1983-01-01
The plant proved its capability to deliver the desired energy product in a USAF industrial environment. The collector proved capable of energy conversion at insolation levels up to 25% below design minimum. The plant and the project were negatively affected by severe winter weather, with total insolation during the test period 60 percent less than the expected value. Environmental effects reduced plant availability to 55 percent. Only five, minimally good operating days were experienced during the test period. The subsequent lack of performance data prohibits the drawing of general conclusions regarding system performance. System operability was rated generally high. The only inhibiting factor was the difficulty in procuring replacement parts for rapid repair under USAF stockage and procurement policies. No inherently serious system failures were recorded, although a thermostatic valve malfunction in the freeze protection system ultimately took 30 days to repair.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled"warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.
Thermo-electronic solar power conversion with a parabolic concentrator
NASA Astrophysics Data System (ADS)
Olukunle, Olawole C.; De, Dilip K.
2016-02-01
We consider the energy dynamics of the power generation from the sun when the solar energy is concentrated on to the emitter of a thermo-electronic converter with the help of a parabolic mirror. We use the modified Richardson-Dushman equation. The emitter cross section is assumed to be exactly equal to the focused area at a height h from the base of the mirror to prevent loss of efficiency. We report the variation of output power with solar insolation, height h, reflectivity of the mirror, and anode temperature, initially assuming that there is no space charge effect. Our methodology allows us to predict the temperature at which the anode must be cooled in order to prevent loss of efficiency of power conversion. Novel ways of tackling the space charge problem have been discussed. The space charge effect is modeled through the introduction of a parameter f (0 < f < 1) in the thermos-electron emission equation. We find that the efficiency of the power conversion depends on solar insolation, height h, apart from radii R of the concentrator aperture and emitter, and the collector material properties. We have also considered solar thermos electronic power conversion by using single atom-layer graphene as an emitter.
CNRS interdisciplinary research program for solar energy development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The contributions of CNRS to the French national solar energy R and D program are reviewed. The three principal processes in which solar radiation is converted into other, directly usable energy forms are discussed in detail. These include thermodynamic conversion, photovoltaic conversion, and bioconversion to produce a substitute fuel. Related research on insolation and the weather is mentioned and relations with the industrial sector are considered. French collaboration with other countries in solar energy is discussed.
Viscoelastic shoe insoles: their use in aerobic dancing.
Clark, J E; Scott, S G; Mingle, M
1989-01-01
To determine whether use of viscoelastic insoles would significantly decrease the frequency of musculoskeletal overuse injury in aerobic dancers, 139 high-level aerobic dancers were divided randomly into two groups. The control group received placebo foam insoles and test subjects were fitted with viscoelastic insoles. Subjects used these insoles during dance class for 15 weeks. Injury rates were low in both groups and no statistical difference was found. Pain syndromes were fewer in the group using viscoelastic insoles, but the difference was not statistically significant. About a third of dancers fitted with viscoelastic insoles and a tenth of placebo insert wearers found that the insoles made their shoes too tight to be comfortable. No conclusion can be drawn on whether shock-absorbing insoles decrease injuries from aerobic dancing, but use of viscoelastic insoles may improve comfort and provide pain relief for some high-level aerobic dancers if proper fit is achieved.
Hybrid solar converters for maximum exergy and inexpensive dispatchable electricity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branz, Howard M.; Regan, William; Gerst, Kacy J.
Photovoltaic (PV) solar energy systems are being deployed at an accelerating rate to supply low-carbon electricity worldwide. However, PV is unlikely to economically supply much more than 10% of the world's electricity unless there is a dramatic reduction in the cost of electricity storage. There is an important scientific and technological opportunity to address the storage challenge by developing inexpensive hybrid solar converters that collect solar heat at temperatures between about 200 and 600 °C and also incorporate PV. Since heat can be stored and converted to electricity at relatively low cost, collection of high exergy content (high temperature) solarmore » heat can provide energy that is dispatchable on demand to meet loads that are not well matched to solar insolation. However, PV cells can collect and convert much of the solar spectrum to electricity more efficiently and inexpensively than solar thermal systems. Advances in spectrum-splitting optics, high-temperature PV cells, thermal management and system design are needed for transformational hybrid converters. We propose that maximizing the exergy output from the solar converters while minimizing the cost of exergy can help propel solar energy toward a higher contribution to carbon-free electricity in the long term than the prevailing paradigm of maximizing the energy output while minimizing the cost of energy« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goltz, G.; Kaiser, L.M.; Weiner, H.
A major mission of the U.S. Coast Guard is the task of providing and maintaining Maritime Aids to Navigation. These aids are located on and near the coastline and inland waters of the United States and its possessions. A computer program, Design Synthesis and Performance Analysis (DSPA), has been developed by the Jet Propulsion Laboratory to demonstrate the feasibility of low-cost solar array/battery power systems for use on flashing lamp buoys. To provide detailed, realistic temperature, wind, and solar insolation data for analysis of the flashing lamp buoy power systems, the two DSPA support computer program sets: MERGE and STATmore » were developed. A general description of these two packages is presented in this program summary report. The MERGE program set will enable the Coast Guard to combine temperature and wind velocity data (NOAA TDF-14 tapes) with solar insolation data (NOAA DECK-280 tapes) onto a single sequential MERGE file containing up to 12 years of hourly observations. This MERGE file can then be used as direct input to the DSPA program. The STAT program set will enable a statistical analysis to be performed of the MERGE data and produce high or low or mean profiles of the data and/or do a worst case analysis. The STAT output file consists of a one-year set of hourly statistical weather data which can be used as input to the DSPA program.« less
NASA Technical Reports Server (NTRS)
Berman, P. A.
1972-01-01
Three major options for wide-scale generation of photovoltaic energy for terrestrial use are considered: (1) rooftop array, (2) solar farm, and (3) satellite station. The rooftop array would use solar cell arrays on the roofs of residential or commercial buildings; the solar farm would consist of large ground-based arrays, probably in arid areas with high insolation; and the satellite station would consist of an orbiting solar array, many square kilometers in area. The technology advancement requirements necessary for each option are discussed, including cost reduction of solar cells and arrays, weight reduction, resistance to environmental factors, reliability, and fabrication capability, including the availability of raw materials. The majority of the technology advancement requirements are applicable to all three options, making possible a flexible basic approach regardless of the options that may eventually be chosen. No conclusions are drawn as to which option is most advantageous, since the feasibility of each option depends on the success achieved in the technology advancement requirements specified.
Solar energy system economic evaluation for Solaron Akron, Akron, Ohio
NASA Technical Reports Server (NTRS)
1980-01-01
The economic analysis of the solar energy system that was installed at Akron, Ohio is developed for this and four other sites typical of a wide range of environmental and economic conditions. The analysis is accomplished based on the technical and economic models in the f chart design procedure with inputs based on the characteristics of the installed parameters of present worth of system cost over a projected twenty year life: life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated. Results show that only in Albuquerque, New Mexico, where insolation is 1828 Btu/sq ft/day and the conventional energy cost is high, is this solar energy system marginally profitable.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature around South Canyon Hot Springs as identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, R.L.; Chen, J.H.; Ku, T.L.
1987-06-19
The development of mass spectrometric techniques for determination of STTh abundance has made it possible to reduce analytical errors in STYU-STUU-STTh dating of corals even with very small samples. Samples of 6 x 10Y atoms of STTh can be measured to an accuracy of +/- 3% (2sigma) and 3 x 10 atoms of STTh can be measured to an accuracy of +/- 0.2%. The time range over which useful age data on corals can be obtained now ranges from about 50 to about 500,000 years. For young corals, this approach may be preferable to UC dating. The precision should makemore » it possible to critically test the Milankovitch hypothesis concerning Pleistocene climate fluctuations. Analyses of a number of corals that grew during the last interglacial period yield ages of 122,000 to 130,000 years. The ages coincide with, or slightly postdate, the summer solar insolation high at 65N latitude which occurred 128,000 years ago. This supports the idea that changes in Pleistocene climate can be the result of variations in the distribution of solar insolation caused by changes in the geometry of the earth's orbit and rotation axis.« less
Analysis of Global Horizontal Irradiance in Version 3 of the National Solar Radiation Database.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Clifford; Martin, Curtis E.; Guay, Nathan Gene
We report an analysis that compares global horizontal irradiance (GHI) estimates from version 3 of the National Solar Radiation Database (NSRDB v3) with surface measurements of GHI at a wide variety of locations over the period spanning from 2005 to 2012. The NSRDB v3 estimate of GHI are derived from the Physical Solar Model (PSM) which employs physics-based models to estimate GHI from measurements of reflected visible and infrared irradiance collected by Geostationary Operational Environment Satellites (GOES) and several other data sources. Because the ground measurements themselves are uncertain our analysis does not establish the absolute accuracy for PSM GHI.more » However by examining the comparison for trends and for consistency across a large number of sites, we may establish a level of confidence in PSM GHI and identify conditions which indicate opportunities to improve PSM. We focus our evaluation on annual and monthly insolation because these quantities directly relate to prediction of energy production from solar power systems. We find that generally, PSM GHI exhibits a bias towards overestimating insolation, on the order of 5% when all sky conditions are considered, and somewhat less (-3%) when only clear sky conditions are considered. The biases persist across multiple years and are evident at many locations. In our opinion the bias originates with PSM and we view as less credible that the bias stems from calibration drift or soiling of ground instruments. We observe that PSM GHI may significantly underestimate monthly insolation in locations subject to broad snow cover. We found examples of days where PSM GHI apparently misidentified snow cover as clouds, resulting in significant underestimates of GHI during these days and hence leading to substantial understatement of monthly insolation. Analysis of PSM GHI in adjacent pixels shows that the level of agreement between PSM GHI and ground data can vary substantially over distances on the order of 2 km. We conclude that the variance most likely originates from dramatic contrasts in the ground's appearance over these distances.« less
Solar power satellite status report
NASA Technical Reports Server (NTRS)
Davis, H. P.
1977-01-01
The development of a solar power satellite program is considered. It is suggested that the solar power satellite is an engineering rather than a science program - that is, that no scientific breakthroughs are required before initiating the project. Available technology is examined, and several key questions are discussed: how efficient is microwave transfer of energy; how feasible is construction in space; and will the advantages of continuous insolation compensate for the costs of building a solar power plant in synchronous orbit 23,000 miles above the earth.
Energy sources for triton's geyser-like plumes
Brown, R.H.; Kirk, R.L.; Johnson, T.V.; Soderblom, L.A.
1990-01-01
Four geyser-like plumes were discovered near Triton's south pole in areas now in permanent sunlight. Because Triton's southern hemisphere is nearing a maximum summer solstice, insolation as a driver or a trigger for Triton's geyser-like plumes is an attractive hypothesis. Trapping of solar radiation in a translucent, low-conductivity surface layer (in a solid-state greenhouse), which is subsequently released in the form of latent heat of sublimation, could provide the required energy. Both the classical solid-state greenhouse consisting of exponentially absorbed insolation in a gray, translucent layer of solid nitrogen, and the "super" greenhouse consisting of a relatively transparent solid-nitrogen layer over an opaque, absorbing layer are plausible candidates. Geothermal heat may also play a part if assisted by the added energy input of seasonal cycles of insolation.
Solar radiation for Mars power systems
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Landis, Geoffrey A.
1991-01-01
Detailed information about the solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data from which the diurnally and daily variation of the global, direct (or beam), and diffuse insolation on Mars are calculated, are presented. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the Sun with a special diode on the Viking Lander cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Flood, Dennis J.
1989-01-01
Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. Presented here is a procedure and solar radiation related data from which the diurnally, hourly and daily variation of the global, direct beam and diffuse insolation on Mars are calculated. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the sun with a special diode on the Viking cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Flood, Dennis J.
1990-01-01
Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. Presented here is a procedure and solar radiation related data from which the diurnally, hourly and daily variation of the global, direct beam and diffuse insolation on Mars are calculated. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the sun with a special diode on the Viking cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.
Solar Pumped Lasers and Their Applications
NASA Technical Reports Server (NTRS)
Lee, Ja H.
1991-01-01
Since 1980, NASA has been pursuing high power solar lasers as part of the space power beaming program. Materials in liquid, solid, and gas phases have been evaluated against the requirements for solar pumping. Two basic characteristics of solar insolation, namely its diffuse irradiance and 5800 K blackbody-like spectrum, impose rather stringent requirements for laser excitation. However, meeting these requirements is not insurmountable as solar thermal energy technology has progressed today, and taking advantage of solar pumping lasers is becoming increasingly attractive. The high density photons of concentrated solar energy have been used for mainly electric power generation and thermal processing of materials by the DOE Solar Thermal Technologies Program. However, the photons can interact with materials through many other direct kinetic paths, and applications of the concentrated photons could be extended to processes requiring photolysis, photosynthesis, and photoexcitation. The use of solar pumped lasers on Earth seems constrained by economics and sociopolitics. Therefore, prospective applications may be limited to those that require use of quantum effects and coherency of the laser in order to generate extremely high value products and services when conventional and inexpensive means are ineffective or impossible. The new applications already proposed for concentrated solar photons, such as destruction of hazardous waste, production of renewable fuel, production of fertilizer, and air/water pollution controls, may benefit from the use of inexpensive solar pumped laser matched with the photochemical kinetics of these processes.
Central Plant Optimization for Waste Energy Reduction (CPOWER)
2016-12-01
data such as windspeed and solar radiation is recorded in CPOWER. For these periods, the following data fields from the CPOWER database and the weather...The solar radiation data did not appear reliable in the weather dataset for the location, and hence we did not use this. The energy consumption...that several factors affect the total energy consumption of the chiller plant and additional data and additional factors (e.g., solar insolation) may be
Destruction of Sun-Grazing Comet C-2011 N3 (SOHO) Within the Low Solar Corona
NASA Technical Reports Server (NTRS)
Schrijver, C. J.; Brown, J. C.; Battams, K.; Saint-Hilaire, P.; Liu, W.; Hudson, H.; Pesnell, W. D.
2012-01-01
Observations of comets in Sun-grazing orbits that survive solar insolation long enough to penetrate into the Suns inner corona provide information on the solar atmosphere and magnetic field as well as on the makeup of the comet. On 6 July 2011, the Solar Dynamics Observatory (SDO) observed the demise of comet C2011 N3 (SOHO) within the low solar corona in five wavelength bands in the extreme ultraviolet (EUV). The comet penetrated to within 0.146 solarradius (100,000 kilometers) of the solar surface before its EUV signal disappeared.
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Singer, S.
1989-01-01
Direct current (dc) motors are used in terrestrial photovoltaic (PV) systems such as in water-pumping systems for irrigation and water supply. Direct current motors may also be used for space applications. Simple and low weight systems including dc motors may be of special interest in space where the motors are directly coupled to the solar cell array (with no storage). The system will operate only during times when sufficient insolation is available. An important performance characteristic of electric motors is the starting to rated torque ratio. Different types of dc motors have different starting torque ratios. These ratios are dictated by the size of solar cell array, and the developed motor torque may not be sufficient to overcome the load starting torque. By including a maximum power point tracker (MPPT) in the PV system, the starting to rated torque ratio will increase, the amount of which depends on the motor type. The starting torque ratio is calculated for the permanent magnet, series and shunt excited dc motors when powered by solar cell arrays for two cases: with and without MPPT's. Defining a motor torque magnification by the ratio of the motor torque with an MPPT to the motor torque without an MPPT, a magnification of 3 was obtained for the permanent magnet motor and a magnification of 7 for both the series and shunt motors. The effect of the variation of solar insolation on the motor starting torque was covered. All motor types are less sensitive to insolation variation in systems including MPPT's as compared to systems with MPPT's. The analysis of this paper will assist the PV system designed to determine whether or not to include an MPPT in the system for a specific motor type.
Impact of Geoengineering Schemes on the Global Hydrological Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bala, G; Duffy, P; Taylor, K
2007-12-07
The rapidly rising CO{sub 2} level in the atmosphere has led to proposals of climate stabilization via 'Geoengineering' schemes that would mitigate climate change by intentionally reducing the solar radiation incident on earth's surface. In this paper, we address the impact of these climate stabilization schemes on the global hydrological cycle, using equilibrium simulations from an atmospheric general circulation model coupled to a slab ocean model. We show that insolation reductions sufficient to offset global-scale temperature increases lead to a decrease in the intensity of the global hydrologic cycle. This occurs because solar forcing is more effective in driving changesmore » in global mean evaporation than is CO{sub 2} forcing of a similar magnitude. In the model used here, the hydrologic sensitivity, defined as the percentage change in global mean precipitation per degree warming, is 2.4% for solar forcing, but only 1.5% for CO{sub 2} forcing. Although other models and the climate system itself may differ quantitatively from this result, the conclusion can be understood based on simple considerations of the surface energy budget and thus is likely to be robust. Compared to changing temperature by altering greenhouse gas concentrations, changing temperature by varying insolation results in larger changes in net radiative fluxes at the surface; these are compensated by larger changes in latent and sensible heat fluxes. Hence the hydrological cycle is more sensitive to temperature adjustment via changes in insolation than changes in greenhouse gases. This implies that an alteration in solar forcing might offset temperature changes or hydrological changes from greenhouse warming, but could not cancel both at once.« less
NASA Astrophysics Data System (ADS)
Welch, K. M.
1981-09-01
The Loyola University site is a student dormitory in New Orleans, Louisiana whose active solar energy system is designed to supply 52% of the hot water demand. The system is equipped with 4590 square feet of flat-plate collectors, a 5000-gallon water tank, auxiliary water supplied at high temperature and pressure from a central heating plant with a gas-fired boiler, and a differential controller that selects from 5 operating modes. System performance data are given, including the solar fraction, solar savings ratio, conventional fuel savings, system performance factor, and system coefficient of performance. The solar fraction is well below the design goal; this is attributed to great fluctuations in demand. Insolation, temperature, operation and solar energy utilization data are also presented. The performance of the collector, storage, and domestic hot water subsystems, the system operating energy, energy savings, and weather conditions are also evaluated. Appended are a system description, performance evaluation techniques and equations, site history, sensor technology, and typical monthly data.
Chardon, Nathalie I.; Cornwell, William K.; Flint, Lorraine E.; Flint, Alan L.; Ackerly, David D.
2015-01-01
With changing climate, many species are projected to move poleward or to higher elevations to track suitable climates. The prediction that species will move poleward assumes that geographically marginal populations are at the edge of the species' climatic range. We studied Pinus coulteri from the center to the northern (poleward) edge of its range, and examined three scenarios regarding the relationship between the geographic and climatic margins of a species' range. We used herbarium and iNaturalist.org records to identify P. coulteri sites, generated a species distribution model based on temperature, precipitation, climatic water deficit, and actual evapotranspiration, and projected suitability under future climate scenarios. In fourteen populations from the central to northern portions of the range, we conducted field studies and recorded elevation, slope and aspect (to estimate solar insolation) to examine relationships between local and regional distributions. We found that northern populations of P. coulteri do not occupy the cold or wet edge of the species' climatic range; mid-latitude, high elevation populations occupy the cold margin. Aspect and insolation of P. coulteri populations changed significantly across latitudes and elevations. Unexpectedly, northern, low-elevation stands occupy north-facing aspects and receive low insolation, while central, high-elevation stands grow on more south-facing aspects that receive higher insolation. Modeled future climate suitability is projected to be highest in the central, high elevation portion of the species range, and in low-lying coastal regions under some scenarios, with declining suitability in northern areas under most future scenarios. For P. coulteri, the lack of high elevation habitat combined with a major dispersal barrier may limit northward movement in response to a warming climate. Our analyses demonstrate the importance of distinguishing geographically vs. climatically marginal populations, and the importance of quantitative analysis of the realized climate space to understand species range limits.
Development of an integrated heat pipe-thermal storage system for a solar receiver
NASA Technical Reports Server (NTRS)
Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.
1987-01-01
The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.
Survey of quantitative data on the solar energy and its spectra distribution
NASA Technical Reports Server (NTRS)
Thekaekara, M. P.
1976-01-01
This paper presents a survey of available quantitative data on the total and spectral solar irradiance at ground level and outside the atmosphere. Measurements from research aircraft have resulted in the currently accepted NASA/ASTM standards of the solar constant and zero air mass solar spectral irradiance. The intrinsic variability of solar energy output and programs currently under way for more precise measurements from spacecraft are discussed. Instrumentation for solar measurements and their reference radiation scales are examined. Insolation data available from the records of weather stations are reviewed for their applicability to solar energy conversion. Two alternate methods of solarimetry are briefly discussed.
Development of electro-optic systems for self cleaning concentrated solar reflectors
NASA Astrophysics Data System (ADS)
Stark, Jeremy W.
The current demand for energy usage in the world is increasing at a rapid pace; in China alone, the electricity usage has increased by 12% per year from 2006-2010, where more than 75% of electrical power is produced by coal burning facilities. Numerous studies have shown the effects of carbon dioxide emissions on global climate change, and even showing the permanence of high carbon dioxide levels after emissions cease. Current trends away from carbon emitting power facilities are pushing solar energy into a position for many new solar power plants to be constructed. Terrestrial solar energy at AM1.5 is generally given at 1kW/m2, which is a vast free source of energy that can be be harvested to meet the global demand for electricity. Aside from some areas receiving intermittent levels of solar insolation, one of the largest hindrances to large scale solar power production is obscuration of sunlight on solar collectors caused by dust deposition. In areas with the highest average solar insolation, dust deposition is a major problem for maintaining a constant maximum power output. The southern Negev desert in Israel receives on average 17g/m2 per month in dust deposition on solar installations, which in turn causes losses of a third of the total power output of the installation. In these areas, water is a scarce commodity, which can only be used to clean solar installations at a prohibitive cost. To resolve this problem, a cost effective solution would be the application of electrodynamic screens (EDS), which can be implemented by embedding a set of parallel electrodes into the sun facing surface of solar collectors, including concentrating mirrors or photovoltaic (PV) modules, and applying a low frequency pulsed voltage to these electrodes. Three major contributions made in the course of this research in advancing (EDS) for self-cleaning solar mirrors are: (1) development of non-contact specular reflectometer for solar mirrors that allows measurement of reflectance loss as a function of dust deposition, (2) development of a dust deposition analyzer capable of measuring size distribution of deposited dust and provides mass concentration of dust on the surface of the mirror, and (3) optimization of electrode geometry of EDS film for minimizing optical reflection losses caused by the lamination of the film on the mirror surface while maintaining high reflection efficiency with high dust removal efficiency. The non-contact specular reflectometer and the dust deposition analyzer allowed experimental investigation of reflection losses as functions of surface mass concentration of dust on mirrors for validation of the optical model presented in this study.
Surface meteorology and Solar Energy
NASA Technical Reports Server (NTRS)
Stackhouse, Paul W. (Principal Investigator)
The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].
Shear-reducing insoles to prevent foot ulceration in high-risk diabetic patients.
Lavery, Lawrence A; LaFontaine, Javier; Higgins, Kevin R; Lanctot, Dan R; Constantinides, George
2012-11-01
To enhance the learner's competence with knowledge of the effectiveness of shear-reducing insoles for prevention of foot ulceration in patients with high-risk diabetes. This continuing education activity is intended for physicians and nurses with an interest in skin and wound care. After participating in this educational activity, the participant should be better able to:1. Demonstrate knowledge of foot ulceration risk, risk factors, incidence, and prevention.2. Apply knowledge gained from reviewing this study and a literature review about the use of shear-reducing insoles to patient scenarios. The objective of this study was to evaluate the effectiveness of a shear-reducing insole compared with a standard insole design to prevent foot ulceration in high-risk patients with diabetes. A total of 299 patients with diabetic neuropathy and loss of protective sensation, foot deformity, or history of foot ulceration were randomized into a standard therapy group (n = 150) or a shear-reducing insole group (n = 149). Patients were evaluated for 18 months. Standard therapy group consisted of therapeutic footwear, diabetic foot education, and regular foot evaluation by a podiatrist. The shear-reducing insole group included a novel insole designed to reduce both pressure and shear on the sole of the foot. Insoles were replaced every 4 months in both groups. The primary clinical outcome was foot ulceration. The authors used Cox proportional hazards regression to evaluate time to ulceration. There were 2 significant factors from the Cox regression model: insole treatment and history of a foot complication. The standard therapy group was about 3.5 times more likely to develop an ulcer compared with shear-reducing insole group (hazard ratio, 3.47; 95% confidence interval, 0.96-12.67). These results suggest that a shear-reducing insole is more effective than traditional insoles to prevent foot ulcers in high-risk persons with diabetes.
Residential heating costs: A comparison of geothermal solar and conventional resources
NASA Astrophysics Data System (ADS)
Bloomster, C. H.; Garrett-Price, B. A.; Fassbender, L. L.
1980-08-01
The costs of residential heating throughout the United States using conventional, solar, and geothermal energy were determined under current and projected conditions. These costs are very sensitive to location, being dependent on the local prices of conventional energy supplies, local solar insolation, climate, and the proximity and temperature of potential geothermal resources. The sharp price increases in imported fuels during 1979 and the planned decontrol of domestic oil and natural gas prices have set the stage for geothermal and solar market penetration in the 1980's.
Cloud Forecasting and 3-D Radiative Transfer Model Validation using Citizen-Sourced Imagery
NASA Astrophysics Data System (ADS)
Gasiewski, A. J.; Heymsfield, A.; Newman Frey, K.; Davis, R.; Rapp, J.; Bansemer, A.; Coon, T.; Folsom, R.; Pfeufer, N.; Kalloor, J.
2017-12-01
Cloud radiative feedback mechanisms are one of the largest sources of uncertainty in global climate models. Variations in local 3D cloud structure impact the interpretation of NASA CERES and MODIS data for top-of-atmosphere radiation studies over clouds. Much of this uncertainty results from lack of knowledge of cloud vertical and horizontal structure. Surface-based data on 3-D cloud structure from a multi-sensor array of low-latency ground-based cameras can be used to intercompare radiative transfer models based on MODIS and other satellite data with CERES data to improve the 3-D cloud parameterizations. Closely related, forecasting of solar insolation and associated cloud cover on time scales out to 1 hour and with spatial resolution of 100 meters is valuable for stabilizing power grids with high solar photovoltaic penetrations. Data for cloud-advection based solar insolation forecasting with requisite spatial resolution and latency needed to predict high ramp rate events obtained from a bottom-up perspective is strongly correlated with cloud-induced fluctuations. The development of grid management practices for improved integration of renewable solar energy thus also benefits from a multi-sensor camera array. The data needs for both 3D cloud radiation modelling and solar forecasting are being addressed using a network of low-cost upward-looking visible light CCD sky cameras positioned at 2 km spacing over an area of 30-60 km in size acquiring imagery on 30 second intervals. Such cameras can be manufactured in quantity and deployed by citizen volunteers at a marginal cost of 200-400 and operated unattended using existing communications infrastructure. A trial phase to understand the potential utility of up-looking multi-sensor visible imagery is underway within this NASA Citizen Science project. To develop the initial data sets necessary to optimally design a multi-sensor cloud camera array a team of 100 citizen scientists using self-owned PDA cameras is being organized to collect distributed cloud data sets suitable for MODIS-CERES cloud radiation science and solar forecasting algorithm development. A low-cost and robust sensor design suitable for large scale fabrication and long term deployment has been developed during the project prototyping phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, A.; Sengupta, M.; Wilcox, S.
Models to compute Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) have been in development over the last 3 decades. These models can be classified as empirical or physical, based on the approach. Empirical models relate ground based observations with satellite measurements and use these relations to compute surface radiation. Physical models consider the radiation received from the earth at the satellite and create retrievals to estimate surface radiation. While empirical methods have been traditionally used for computing surface radiation for the solar energy industry the advent of faster computing has made operational physical models viable. The Global Solarmore » Insolation Project (GSIP) is an operational physical model from NOAA that computes GHI using the visible and infrared channel measurements from the GOES satellites. GSIP uses a two-stage scheme that first retrieves cloud properties and uses those properties in a radiative transfer model to calculate surface radiation. NREL, University of Wisconsin and NOAA have recently collaborated to adapt GSIP to create a 4 km GHI and DNI product every 30 minutes. This paper presents an outline of the methodology and a comprehensive validation using high quality ground based solar data from the National Oceanic and Atmospheric Administration (NOAA) Surface Radiation (SURFRAD) (http://www.srrb.noaa.gov/surfrad/sitepage.html) and Integrated Surface Insolation Study (ISIS) http://www.srrb.noaa.gov/isis/isissites.html), the Solar Radiation Research Laboratory (SRRL) at National Renewable Energy Laboratory (NREL), and Sun Spot One (SS1) stations.« less
Analysis of AC and DC Lighting Systems with 150-Watt Peak Solar Panel in Denpasar Based on NASA Data
NASA Astrophysics Data System (ADS)
Narottama, A. A. N. M.; Amerta Yasa, K.; Suwardana, I. W.; Sapteka, A. A. N. G.; Priambodo, P. S.
2018-01-01
Solar energy on the Earth’s surface has different magnitudes on every longitude and latitude. National Aeronautics and Space Administration (NASA) provides surface meteorology and solar energy database which can be accessed openly online. This database delivers information about Monthly Averaged Insolation Incident On A Horizontal Surface, Monthly Averaged Insolation Incident On A Horizontal Surface At Indicated GMT Times and also data about Equivalent Number Of No-Sun Or Black Days for any latitude and longitude. Therefore, we investigate the lighting systems with 150-Watt peak solar panel in Denpasar City, the capital province of Bali. Based on NASA data, we analyse the received wattage by a unit of 150-Watt peak solar panel in Denpasar City and the sustainability of 150-Watt peak solar panel to supply energy for 432-Watt hour/day AC and 360-Watt hour/day DC lighting systems using 1.2 kWh battery. The result shows that the maximum received wattage by a unit of 150-Watt peak solar panel is 0.76 kW/day in October. We concluded that the 1.2 kWh installed battery has higher capacity than the battery capacity needed in March, the month with highest no-sun days, for both AC and DC lighting systems. We calculate that the installed battery can be used to store the sustainable energy from sun needed by AC and DC lighting system for about 2.78 days and 3.51 days, consecutively.
Development of an integrated heat pipe-thermal storage system for a solar receiver
NASA Technical Reports Server (NTRS)
Keddy, E.; Sena, J. Tom; Merrigan, M.; Heidenreich, Gary; Johnson, Steve
1988-01-01
An integrated heat pipe-thermal storage system was developed as part of the Organic Rankine Cycle Solar Dynamic Power System solar receiver for space station application. The solar receiver incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain thermal energy storage (TES) canisters within the vapor space with a toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the heat pipe. Part of this thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of earth orbit, the stored energy in the TES units is transferred by the potassium vapor to the toluene heater tube. A developmental heat pipe element was constructed that contains axial arteries and a distribution wick connecting the toluene heater and the TES units to the solar insolation surface of the heat pipe. Tests were conducted to demonstrate the heat pipe, TES units, and the heater tube operation. The heat pipe element was operated at design input power of 4.8 kW. Thermal cycle tests were conducted to demonstrate the successful charge and discharge of the TES units. Axial power flux levels up to 15 watts/sq cm were demonstrated and transient tests were conducted on the heat pipe element. Details of the heat pipe development and test procedures are presented.
Natural heat storage in a brine-filled solar pond in the Tully Valley of central New York
Hayhurst, Brett; Kappel, William M.
2014-01-01
The Tully Valley, located in southern Onondaga County, New York, has a long history of unusual natural hydrogeologic phenomena including mudboils (Kappel, 2009), landslides (Tamulonis and others, 2009; Pair and others, 2000), landsurface subsidence (Hackett and others, 2009; Kappel, 2009), and a brine-filled sinkhole or “Solar pond” (fig. 1), which is documented in this report. A solar pond is a pool of salty water (brine) which stores the sun’s energy in the form of heat. The saltwater naturally forms distinct layers with increasing density between transitional zones (haloclines) of rapidly changing specific conductance with depth. In a typical solar pond, the top layer has a low salt content and is often times referred to as the upper convective zone (Lu and others, 2002). The bottom layer is a concentrated brine that is either convective or temperature stratified dependent on the surrounding environment. Solar insolation is absorbed and stored in the lower, denser brine while the overlying halocline acts as an insulating layer and prevents heat from moving upwards from the lower zone (Lu and others, 2002). In the case of the Tully Valley solar pond, water within the pond can be over 90 degrees Fahrenheit (°F) in late summer and early fall. The purpose of this report is to summarize observations at the Tully Valley brine-filled sinkhole and provide supplemental climate data which might affect the pond salinity gradients insolation (solar energy).
Thermal buffering of receivers for parabolic dish solar thermal power plants
NASA Technical Reports Server (NTRS)
Manvi, R.; Fujita, T.; Gajanana, B. C.; Marcus, C. J.
1980-01-01
A parabolic dish solar thermal power plant comprises a field of parabolic dish power modules where each module is composed of a two-axis tracking parabolic dish concentrator which reflects sunlight (insolation) into the aperture of a cavity receiver at the focal point of the dish. The heat generated by the solar flux entering the receiver is removed by a heat transfer fluid. In the dish power module, this heat is used to drive a small heat engine/generator assembly which is directly connected to the cavity receiver at the focal point. A computer analysis is performed to assess the thermal buffering characteristics of receivers containing sensible and latent heat thermal energy storage. Parametric variations of the thermal inertia of the integrated receiver-buffer storage systems coupled with different fluid flow rate control strategies are carried out to delineate the effect of buffer storage, the transient response of the receiver-storage systems and corresponding fluid outlet temperature. It is concluded that addition of phase change buffer storage will substantially improve system operational characteristics during periods of rapidly fluctuating insolation due to cloud passage.
Khalid Hussein
2012-02-01
Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1o and 2o were considered ASTER modeled warm surface exposures (thermal anomalies) Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1o and 2o were considered ASTER modeled warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies) Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1o and 2o were considered ASTER modeled warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.
Balancing autonomy and utilization of solar power and battery storage for demand based microgrids
NASA Astrophysics Data System (ADS)
Lawder, Matthew T.; Viswanathan, Vilayanur; Subramanian, Venkat R.
2015-04-01
The growth of intermittent solar power has developed a need for energy storage systems in order to decouple generation and supply of energy. Microgrid (MG) systems comprising of solar arrays with battery energy storage studied in this paper desire high levels of autonomy, seeking to meet desired demand at all times. Large energy storage capacity is required for high levels of autonomy, but much of this expensive capacity goes unused for a majority of the year due to seasonal fluctuations of solar generation. In this paper, a model-based study of MGs comprised of solar generation and battery storage shows the relationship between system autonomy and battery utilization applied to multiple demand cases using a single particle battery model (SPM). The SPM allows for more accurate state-of-charge and utilization estimation of the battery than previous studies of renewably powered systems that have used empirical models. The increased accuracy of battery state estimation produces a better assessment of system performance. Battery utilization will depend on the amount of variation in solar insolation as well as the type of demand required by the MG. Consumers must balance autonomy and desired battery utilization of a system within the needs of their grid.
NASA Technical Reports Server (NTRS)
Li, Zhanqing; Whitlock, Charles H.; Charlock, Thomas P.
1995-01-01
Global sets of surface radiation budget (SRB) have been obtained from satellite programs. These satellite-based estimates need validation with ground-truth observations. This study validates the estimates of monthly mean surface insolation contained in two satellite-based SRB datasets with the surface measurements made at worldwide radiation stations from the Global Energy Balance Archive (GEBA). One dataset was developed from the Earth Radiation Budget Experiment (ERBE) using the algorithm of Li et al. (ERBE/SRB), and the other from the International Satellite Cloud Climatology Project (ISCCP) using the algorithm of Pinker and Laszlo and that of Staylor (GEWEX/SRB). Since the ERBE/SRB data contain the surface net solar radiation only, the values of surface insolation were derived by making use of the surface albedo data contained GEWEX/SRB product. The resulting surface insolation has a bias error near zero and a root-mean-square error (RMSE) between 8 and 28 W/sq m. The RMSE is mainly associated with poor representation of surface observations within a grid cell. When the number of surface observations are sufficient, the random error is estimated to be about 5 W/sq m with present satellite-based estimates. In addition to demonstrating the strength of the retrieving method, the small random error demonstrates how well the ERBE derives from the monthly mean fluxes at the top of the atmosphere (TOA). A larger scatter is found for the comparison of transmissivity than for that of insolation. Month to month comparison of insolation reveals a weak seasonal trend in bias error with an amplitude of about 3 W/sq m. As for the insolation data from the GEWEX/SRB, larger bias errors of 5-10 W/sq m are evident with stronger seasonal trends and almost identical RMSEs.
Three computer codes to read, plot and tabulate operational test-site recorded solar data
NASA Technical Reports Server (NTRS)
Stewart, S. D.; Sampson, R. S., Jr.; Stonemetz, R. E.; Rouse, S. L.
1980-01-01
Computer programs used to process data that will be used in the evaluation of collector efficiency and solar system performance are described. The program, TAPFIL, reads data from an IBM 360 tape containing information (insolation, flowrates, temperatures, etc.) from 48 operational solar heating and cooling test sites. Two other programs, CHPLOT and WRTCNL, plot and tabulate the data from the direct access, unformatted TAPFIL file. The methodology of the programs, their inputs, and their outputs are described.
Meteorological Sensor Array (MSA) - Phase I Volume 1 (Proof of Concept Overview)
2014-09-01
ND250QCS 250W) solar photovoltaic (PV) panel. The PV panel charged the batteries during the day. A Cotek S300-112 Pure Sine Wave l DC to AC power ...around a large Solar Photovoltaic Farm in southern NM; b) measurements of pressure, temperature (2 m/10 m), relative humidity (2 m), insolation (2 m...and winds (2 m/10 m); c) solar- powered instrumentation; and d) wireless data download, monitoring, and time synchronization. The MSA data processing
Hori, Masako; Sano, Yuji; Ishida, Akizumi; Takahata, Naoto; Shirai, Kotaro; Watanabe, Tsuyoshi
2015-01-01
Insolation is an important component of meteorological data because solar energy is the primary and direct driver of weather and climate. Previous analyses of cultivated giant clam shells revealed diurnal variation in the Sr/Ca ratio, which might reflect the influence of the daily light cycle. We applied proxy method to sample from prehistoric era, a fossil giant clam shell collected at Ishigaki Island in southern Japan. The specimen was alive during the middle Holocene and thus exposed to the warmest climate after the last glacial period. This bivalve species is known to form a growth line each day, as confirmed by the analysis of the Sr enrichment bands using EPMA and facilitated age-model. We analyzed the Sr/Ca, Mg/Ca and Ba/Ca ratios along the growth axis, measuring a 2-μm spot size at 2-μm interval using NanoSIMS. The Sr/Ca ratios in the winter layers are characterized by a striking diurnal cycle consisting of narrow growth lines with high Sr/Ca ratios and broad growth bands with low Sr/Ca ratios. These variations, which are consistent with those of the cultivated clam shell, indicate the potential for the reconstruction of the variation in solar insolation during the middle Holocene at a multi-hourly resolution. PMID:25736488
Progress of the Mars Array Technology Experiment (MATE) on the '01 Lander
NASA Technical Reports Server (NTRS)
Scheiman, D. A.; Baraona, C. R.; Jenkins, P.; Wilt, D.; Krasowski, M.; Greer, L.; Lekki, J.; Spina, D.
1999-01-01
Future missions to Mars will rely heavily on solar power from the sun, various solar cell types and structures must be evaluated to find the optimum. Sunlight on the surface of Mars is altered by air-borne dust that fluctuates in density from day to day. The dust affects both the intensity and spectral content of the sunlight. The MATE flight experiment was designed for this purpose and will fly on the Mars 2001 Surveyor Lander as part of the Mars In-Situ Propellant Production Precursor (MIP) package. MATE will measure the performance of several solar cell technologies and characterize the Martian environment in terms of solar power. This will be done by measuring full IV curves on solar cells, direct and global insolation, temperature, and spectral content. The Lander is is scheduled to launch in April 2001 and arrive on Mars in January of 2002. The site location has not been identified but will be near the equator and last from 100 to 300 days. The intent of this of this paper is to describe and update the progress on MATE. MATE has four main objectives for its mission to Mars. First is to measure the performance of solar cells daily on the surface of Mars, this will determine the day to day fluctuations in sunlight and temperature and provide a nominal power output. Second, in addition to measuring solar cell performance, it will allow for an intercomparison of different solar cell technologies. Third, It will study the long term effects of dust on the solar cells. Fourth and last, it will characterize the mars environment as viewed by the solar cell, measuring spectrum, insolation, and temperature. Additional information is contained in the original extended abstract.
Design of long-endurance unmanned airplanes incorporating solar and fuel cell propulsion
NASA Technical Reports Server (NTRS)
Youngblood, J. W.; Talay, T. A.; Pegg, R. J.
1984-01-01
Attention is given to the design features and operational capabilities of a class of unmanned flight vehicles possessing multiday mission endurance capabilities, based on the use of a mixed-mode electric power system which incorporates solar cells for diurnal energy production and a nonregenerative H2-O2 fuel cell for nocturnal energy supply. Energy is thereby provided for not only propulsion, but also the operation of the payload and the vehicle's avionics. The excess solar energy available during high insolation portions of the diurnal period may be used for climb/maneuvering or payload-related functions. Empirical structure scaling algorithms are combined with low Reynolds number aerodynamics algorithms to estimate requisite size and geometry for the chosen mission. Wing loadings will be of the order of 0.9-1.3 lb/sq ft.
NASA Technical Reports Server (NTRS)
Frouin, Robert
1993-01-01
Current satellite algorithms to estimate photosynthetically available radiation (PAR) at the earth' s surface are reviewed. PAR is deduced either from an insolation estimate or obtained directly from top-of-atmosphere solar radiances. The characteristics of both approaches are contrasted and typical results are presented. The inaccuracies reported, about 10 percent and 6 percent on daily and monthly time scales, respectively, are useful to model oceanic and terrestrial primary productivity. At those time scales variability due to clouds in the ratio of PAR and insolation is reduced, making it possible to deduce PAR directly from insolation climatologies (satellite or other) that are currently available or being produced. Improvements, however, are needed in conditions of broken cloudiness and over ice/snow. If not addressed properly, calibration/validation issues may prevent quantitative use of the PAR estimates in studies of climatic change. The prospects are good for an accurate, long-term climatology of PAR over the globe.
Long-range Weather Prediction and Prevention of Climate Catastrophes: A Status Report
DOE R&D Accomplishments Database
Caldeira, K.; Caravan, G.; Govindasamy, B.; Grossman, A.; Hyde, R.; Ishikawa, M.; Ledebuhr, A.; Leith, C.; Molenkamp, C.; Teller, E.; Wood, L.
1999-08-18
As the human population of Earth continues to expand and to demand an ever-higher quality-of-life, requirements for ever-greater knowledge--and then control--of the future of the state of the terrestrial biosphere grow apace. Convenience of living--and, indeed, reliability of life itself--become ever more highly ''tuned'' to the future physical condition of the biosphere being knowable and not markedly different than the present one. Two years ago, we reported at a quantitative albeit conceptual level on technical ways-and-means of forestalling large-scale changes in the present climate, employing practical means of modulating insolation and/or the Earth's mean albedo. Last year, we reported on early work aimed at developing means for creating detailed, high-fidelity, all-Earth weather forecasts of two weeks duration, exploiting recent and anticipated advances in extremely high-performance digital computing and in atmosphere-observing Earth satellites bearing high-technology instrumentation. This year, we report on recent progress in both of these areas of endeavor. Preventing the commencement of large-scale changes in the current climate presently appears to be a considerably more interesting prospect than initially realized, as modest insolation reductions are model-predicted to offset the anticipated impacts of ''global warming'' surprisingly precisely, in both space and time. Also, continued study has not revealed any fundamental difficulties in any of the means proposed for insolation modulation and, indeed, applicability of some of these techniques to other planets in the inner Solar system seems promising. Implementation of the high-fidelity, long-range weather-forecasting capability presently appears substantially easier with respect to required populations of Earth satellites and atmospheric transponders and data-processing systems, and more complicated with respect to transponder lifetimes in the actual atmosphere; overall, the enterprise seems more technically feasible than originally anticipated.
Anderson, Lesleigh
2012-01-01
Over the period of instrumental records, precipitation maximum in the headwaters of the Colorado Rocky Mountains has been dominated by winter snow, with a substantial degree of interannual variability linked to Pacific ocean–atmosphere dynamics. High-elevation snowpack is an important water storage that is carefully observed in order to meet increasing water demands in the greater semi-arid region. The purpose here is to consider Rocky Mountain water trends during the Holocene when known changes in earth's energy balance were caused by precession-driven insolation variability. Changes in solar insolation are thought to have influenced the variability and intensity of the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and North American Monsoon and the seasonal precipitation balance between rain and snow at upper elevations. Holocene records are presented from two high elevation lakes located in northwest Colorado that document decade-to-century scale precipitation seasonality for the past ~ 7000 years. Comparisons with sub-tropical records of ENSO indicate that the snowfall-dominated precipitation maxima developed ~ 3000 and 4000 years ago, coincident with evidence for enhanced ENSO/PDO dynamics. During the early-to-mid Holocene the records suggest a more monsoon affected precipitation regime with reduced snowpack, more rainfall, and net moisture deficits that were more severe than recent droughts. The Holocene perspective of precipitation indicates a far broader range of variability than that of the past century and highlights the non-linear character of hydroclimate in the U.S. west.
Solar excitation of CdS/Cu2S photovoltaic cells
NASA Technical Reports Server (NTRS)
Boer, K. W.
1976-01-01
Solar radiation of five typical clear weather days and under a variety of conditions is used to determine the spectral distribution of the photonflux at different planes of a CdS/Cu2S solar cell. The fractions of reflected and absorbed flux are determined at each of the relevant interfaces and active volume elements of the solar cell. The density of absorbed photons is given in respect to spectral and spatial distribution. The variance of the obtained distribution, with changes in insolation and absorption spectra of the active solar cell layers, is indicated. A catalog of typical examples is given in the appendix.
1985-08-01
include an assessment ofI available solar insolation at the various sites and potential applica ton"-’ at new ANG facilities for (active solar ) hot-water...out. Diapers . I wan, to find a .- new way of building airplanes." he 205 sari I 205 I -- I 240 Talud Terrace Camarillo, Calif. 930L0 PRC Engineering
NASA Technical Reports Server (NTRS)
Rosenberg, L. S.; Revere, W. R.; Selcuk, M. K.
1981-01-01
Small solar thermal power systems (up to 10 MWe in size) were tested. The solar thermal power plant ranking study was performed to aid in experiment activity and support decisions for the selection of the most appropriate technological approach. The cost and performance were determined for insolation conditions by utilizing the Solar Energy Simulation computer code (SESII). This model optimizes the size of the collector field and energy storage subsystem for given engine generator and energy transport characteristics. The development of the simulation tool, its operation, and the results achieved from the analysis are discussed.
Optical design considerations for high-concentration photovoltaics
NASA Astrophysics Data System (ADS)
Garboushian, Vahan; Gordon, Robert
2006-08-01
Over the past 15 years, major advances in Concentrating Photovoltaics (CPV) have been achieved. Ultra-efficient Si solar cells have produced commercial concentration systems which are being fielded today and are competitively priced. Advanced research has primarily focused on significantly more efficient multi-junction solar cells for tomorrow's systems. This effort has produced sophisticated solar cells that significantly improve power production. Additional performance and cost improvements, especially in the optical system area and system integration, must be made before CPV can realize its ultimate commercial potential. Structural integrity and reliability are vital for commercial success. As incremental technical improvements are made in solar cell technologies, evaluation and 'fine-tuning' of optical systems properly matched to the solar cell are becoming increasingly necessary. As we move forward, it is increasingly important to optimize all of the interrelated elements of a CPV system for high performance without sacrificing the marketable cost and structural requirements of the system. Areas such as wavelength absorption of refractive optics need to be carefully matched to the solar cell technology employed. Reflective optics require advanced engineering models to insure uniform flux distribution without excessive losses. In Situ measurement of the 'fine-grain' improvements are difficult as multiple variables such as solar insolation, temperature, wind, altitude, etc. infringe on analytical data. This paper discusses design considerations based on 10 years of field trials of high concentration systems and their relevance for tomorrow's advanced CPV systems.
Use of satellites to determine optimum locations for solar power stations
NASA Technical Reports Server (NTRS)
Hiser, H. W.; Senn, H. V.
1976-01-01
Ground measurements of solar radiation are too sparse to determine important mesoscale differences that can be of major significance in solar power station locations. Cloud images in the visual spectrum from the SMS/GOES geostationary satellites are used to determine the hourly distribution of sunshine on a mesoscale in the continental United States excluding Alaska. Cloud coverage and density as a function of time of day and season are considered through the use of digital data processing techniques. Low density cirrus clouds are less detrimental to solar energy collection than other types; and clouds in the morning and evening are less detrimental than those during midday hours of maximum insolation. The seasonal geographic distributions of sunshine are converted to Langleys of solar radiation received at the earth's surface through the use of transform equations developed from long-term measurements of these two parameters at 18 widely distributed stations. The high correlation between measurements of sunshine and radiation makes this possible. The output product will be maps showing the geographic distribution of total solar radiation on the mesoscale which is received at the earth's surface during each season.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welch, K.M.
1981-01-01
The Loyola University site is a student dormitory in New Orleans, Louisiana whose active solar energy system is designed to supply 52% of the hot water demand. The system is equipped with 4590 square feet of flat-plate collectors, a 5000-gallon water tank, auxiliary water supplied at high temperature and pressure from a central heating plant with a gas-fired boiler, and a differential controller that selects from 5 operating modes. System performance data are given, including the solar fraction, solar savings ratio, conventional fuel savings, system performance factor, and system coefficient of performance. The solar fraction is well below the designmore » goal; this is attributed to great fluctuations in demand. Insolation, temperature, operation and solar energy utilization data are also presented. The performance of the collector, storage, and domestic hot water subsystems, the system operating energy, energy savings, and weather conditions are also evaluated. Appended are a system description, performance evaluation techniques and equations, site history, sensor technology, and typical monthly data. (LEW)« less
The 25 kWe solar thermal Stirling hydraulic engine system: Conceptual design
NASA Technical Reports Server (NTRS)
White, Maurice; Emigh, Grant; Noble, Jack; Riggle, Peter; Sorenson, Torvald
1988-01-01
The conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to a 11 meter test bed concentrator is documented. A manufacturing cost assessment for 10,000 units per year was made. The design meets all program objectives including a 60,000 hr design life, dynamic balancing, fully automated control, more than 33.3 percent overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk.
Solar radiation on Mars: Update 1990
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Flood, Dennis J.
1990-01-01
Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. The authors present a procedure and solar radiation related data from which the diurnally and daily variation of the global, direct beam and diffuse insolation on Mars are calculated. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the Sun with a special diode on the Viking Lander cameras and computation based on multiple wavelength and multiple scattering of the solar radiation. This work is an update to NASA-TM-102299 and includes a refinement of the solar radiation model.
Plantar pressure with and without custom insoles in patients with common foot complaints.
Stolwijk, Niki M; Louwerens, Jan Willem K; Nienhuis, Bart; Duysens, Jacques; Keijsers, Noël L W
2011-01-01
Although many patients with foot complaints receive customized insoles, the choice for an insole design can vary largely among foot experts. To investigate the variety of insole designs used in daily practice, the insole design and its effect on plantar pressure distribution were investigated in a large group of patients. Mean, peak, and pressure-time-integral per sensor for 204 subjects with common foot complaints for walking with and without insoles was measured with the footscan® insole system (RSscan International). Each insole was scanned twice (precision3D), after which the insole height along the longitudinal and transversal cross section was calculated. Subjects were assigned to subgroups based on complaint and medial arch height. Data were analyzed for the total group and for the separate subgroups (forefoot or heel pain group and flat, normal or high medial arch group). The mean pressure significantly decreased under the metatarsal heads II-V and the calcaneus and significantly increased under the metatarsal bones and the lateral foot (p<0.0045) due to the insoles. However, similar redistribution patterns were found for the different foot complaints and arch heights. There was a slight difference in insole design between the subgroups; the heel cup was significantly higher and the midfoot support lower for the heel pain group compared to the forefoot pain group. The midfoot support was lowest in the flat arch group compared to the high and normal arch group (p<0.05). Although the insole shape was specific for the kind of foot complaint and arch height, the differences in shape were very small and the plantar pressure redistribution was similar for all groups. This study indicates that it might be sufficient to create basic insoles for particular patient groups.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawder, Matthew T.; Viswanathan, Vilayanur V.; Subramanian, Venkat R.
The growth of intermittent solar power has developed a need for energy storage systems in order to decouple generation and supply of energy. Microgrid (MG) systems comprising of solar arrays with battery energy storage studied in this paper desire high levels of autonomy, seeking to meet desired demand at all times. Large energy storage capacity is required for high levels of autonomy, but much of this expensive capacity goes unused for a majority of the year due to seasonal fluctuations of solar generation. In this paper, a model-based study of MGs comprised of solar generation and battery storage shows themore » relationship between system autonomy and battery utilization applied to multiple demand cases using a single particle battery model (SPM). The SPM allows for more accurate state-of-charge and utilization estimation of the battery than previous studies of renewably powered systems that have used empirical models. The increased accuracy of battery state estimation produces a better assessment of system performance. Battery utilization will depend on the amount of variation in solar insolation as well as the type of demand required by the MG. Consumers must balance autonomy and desired battery utilization of a system within the needs of their grid.« less
Early Results from Solar Dynamic Space Power System Testing
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Mason, Lee S.
1996-01-01
A government/industry team designed, built and tested a 2-kWe solar dynamic space power system in a large thermal vacuum facility with a simulated Sun at the NASA Lewis Research Center. The Lewis facility provides an accurate simulation of temperatures, high vacuum and solar flux as encountered in low-Earth orbit. The solar dynamic system includes a Brayton power conversion unit integrated with a solar receiver which is designed to store energy for continuous power operation during the eclipse phase of the orbit. This paper reviews the goals and status of the Solar Dynamic Ground Test Demonstration project and describes the initial testing, including both operational and performance data. System testing to date has accumulated over 365 hours of power operation (ranging from 400 watts to 2.0-W(sub e)), including 187 simulated orbits, 16 ambient starts and 2 hot restarts. Data are shown for an orbital startup, transient and steady-state orbital operation and shutdown. System testing with varying insolation levels and operating speeds is discussed. The solar dynamic ground test demonstration is providing the experience and confidence toward a successful flight demonstration of the solar dynamic technologies on the Space Station Mir in 1997.
NASA Technical Reports Server (NTRS)
1979-01-01
The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.
Insolation measurements with a portable CuS-CdS radiometer
NASA Technical Reports Server (NTRS)
Windawi, H. M.
1976-01-01
Solar radiation measurements were carried out with a portable Cu2S-Cds radiometer. The measurements were found to be accurate to better than 5% (better than 3% when sophisticated metering is employed). Calibration to an Eppley precision pyranometer is discussed.
Integrally regulated solar array demonstration using an Intel 8080 microprocessor
NASA Technical Reports Server (NTRS)
Petrik, E. J.
1977-01-01
A concept for regulating the voltage of a solar array by using a microprocessor to effect discrete voltage changes was demonstrated. Eight shorting switches were employed to regulate a simulated array at set-point voltages between 10,000 and 15,000 volts. The demonstration showed that the microprocessor easily regulated the solar array output voltage independently of whether or not the switched cell groups were binary sized in voltage. In addition, the microprocessor provided logic memory capability to perform additional tasks such as locating and insolating a faulty switch.
Criteria for the evaluation of laser solar energy converter systems
NASA Technical Reports Server (NTRS)
Harries, W. L.
1985-01-01
Assuming that a parabolic insolation-collection mirror-based solar pumped laser has a collector and heat emitter whose weights are proportional to their areas, and that the weight of the laser is negligible by comparison, the output power/unit weight can be expressed in terms of the efficiencies and working temperatures of the system. This ratio appears to be several times higher for an IBr laser than for one operating on C3F7I, because the solar utilization efficiency is greater for the former despite its lower working temperature.
Irrigation market for solar thermal parabolic dish systems
NASA Technical Reports Server (NTRS)
Habib-Agahi, H.; Jones, S. C.
1981-01-01
The potential size of the onfarm-pumped irrigation market for solar thermal parabolic dish systems in seven high-insolation states is estimated. The study is restricted to the displacement of three specific fuels: gasoline, diesel and natural gas. The model was developed to estimate the optimal number of parabolic dish modules per farm based on the minimum cost mix of conventional and solar thermal energy required to meet irrigation needs. The study concludes that the potential market size for onfarm-pumped irrigation applications ranges from 101,000 modules when a 14 percent real discount rate is assumed to 220,000 modules when the real discount rate drops to 8 percent. Arizona, Kansas, Nebraska, New Mexico and Texas account for 98 percent of the total demand for this application, with the natural gas replacement market accounting for the largest segment (71 percent) of the total market.
Holocene climatic fluctuations and periodic changes in the Asian southwest monsoon region
NASA Astrophysics Data System (ADS)
Zhang, Wenxiang; Niu, Jie; Ming, Qingzhong; Shi, Zhengtao; Lei, Guoliang; Huang, Linpei; Long, Xian'e.; Chang, Fengqin
2018-05-01
Climatic changes in the Asian southwest monsoon (ASWM) during the Holocene have become a topic of recent studies. It is important to understand the patterns and causes of Holocene climatic changes and their relationship with global changes. Based on the climate proxies and wavelet analysis of Lugu Lake in the ASWM region, the climatic fluctuations and periodic changes in the ASWM region during the Holocene have been reconstructed with a high-precision chronology. The results indicate the intensification of ASWM began to increase with Northern Hemisphere low-latitude solar insolation (LSI) and solar activity during the early Holocene, and gradually decreased during the late Holocene, exhibiting an apparent synchrony with numerous records of ASWM region. Meanwhile, an apparent 1000-a quasi-periodic signal is present in the environment proxies, and it demonstrates that the environmental change in the ASWM region has been driven mainly by LSI and solar activity.
Validation of the solar heating and cooling high speed performance (HISPER) computer code
NASA Technical Reports Server (NTRS)
Wallace, D. B.
1980-01-01
Developed to give a quick and accurate predictions HISPER, a simplification of the TRNSYS program, achieves its computational speed by not simulating detailed system operations or performing detailed load computations. In order to validate the HISPER computer for air systems the simulation was compared to the actual performance of an operational test site. Solar insolation, ambient temperature, water usage rate, and water main temperatures from the data tapes for an office building in Huntsville, Alabama were used as input. The HISPER program was found to predict the heating loads and solar fraction of the loads with errors of less than ten percent. Good correlation was found on both a seasonal basis and a monthly basis. Several parameters (such as infiltration rate and the outside ambient temperature above which heating is not required) were found to require careful selection for accurate simulation.
Progress in passive solar energy systems. Volume 8. Part 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, J.; Andrejko, D.A.
1983-01-01
This book presents the papers given at a conference sponsored by the US DOE, the Solar Energy Research Institute, SolarVision, Inc., and the Southern California Solar Energy Society. The topics considered at the conference included sizing solar energy systems for agricultural applications, a farm scale ethanol production plant, the EEC wind energy RandD program, the passive solar performance assessment of an earth-sheltered house, the ARCO 1 MW photovoltaic power plant, the performance of a dendritic web photovoltaic module, second generation point focused concentrators, linear fresnel lens concentrating photovoltaic collectors, photovoltaic conversion efficiency, amorphous silicon thin film solar cells, a photovoltaicmore » system for a shopping center, photovoltaic power generation for the utility industry, spectral solar radiation, and the analysis of insolation data.« less
Evaporation of ice in planetary atmospheres: Ice-covered rivers on Mars
NASA Technical Reports Server (NTRS)
Wallace, D.; Sagan, C.
1978-01-01
The evaporation rate of water ice on the surface of a planet with an atmosphere involves an equilibrium between solar heating and radiative and evaporative cooling of the ice layer. The thickness of the ice is governed principally by the solar flux which penetrates the ice layer and then is conducted back to the surface. Evaporation from the surface is governed by wind and free convection. In the absence of wind, eddy diffusion is caused by the lower density of water vapor in comparison to the density of the Martian atmosphere. For mean martian insolations, the evaporation rate above the ice is approximately 10 to the minus 8th power gm/sq cm/s. Evaporation rates are calculated for a wide range of frictional velocities, atmospheric pressures, and insolations and it seems clear that at least some subset of observed Martian channels may have formed as ice-chocked rivers. Typical equilibrium thicknesses of such ice covers are approximately 10m to 30 m; typical surface temperatures are 210 to 235 K.
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1984-01-01
The CONC/11 computer program designed for calculating the performance of dish-type solar thermal collectors and power systems is discussed. This program is intended to aid the system or collector designer in evaluating the performance to be expected with possible design alternatives. From design or test data on the characteristics of the various subsystems, CONC/11 calculates the efficiencies of the collector and the overall power system as functions of the receiver temperature for a specified insolation. If desired, CONC/11 will also determine the receiver aperture and the receiver temperature that will provide the highest efficiencies at a given insolation. The program handles both simple and compound concentrators. The CONC/11 is written in Athena Extended FORTRAN (similar to FORTRAN 77) to operate primarily in an interactive mode on a Sperry 1100/81 computer. It could also be used on many small computers. A user's manual is also provided for this program.
Onset of deglacial warming in West Antarctica driven by local orbital forcing.
2013-08-22
The cause of warming in the Southern Hemisphere during the most recent deglaciation remains a matter of debate. Hypotheses for a Northern Hemisphere trigger, through oceanic redistributions of heat, are based in part on the abrupt onset of warming seen in East Antarctic ice cores and dated to 18,000 years ago, which is several thousand years after high-latitude Northern Hemisphere summer insolation intensity began increasing from its minimum, approximately 24,000 years ago. An alternative explanation is that local solar insolation changes cause the Southern Hemisphere to warm independently. Here we present results from a new, annually resolved ice-core record from West Antarctica that reconciles these two views. The records show that 18,000 years ago snow accumulation in West Antarctica began increasing, coincident with increasing carbon dioxide concentrations, warming in East Antarctica and cooling in the Northern Hemisphere associated with an abrupt decrease in Atlantic meridional overturning circulation. However, significant warming in West Antarctica began at least 2,000 years earlier. Circum-Antarctic sea-ice decline, driven by increasing local insolation, is the likely cause of this warming. The marine-influenced West Antarctic records suggest a more active role for the Southern Ocean in the onset of deglaciation than is inferred from ice cores in the East Antarctic interior, which are largely isolated from sea-ice changes.
Onset of deglacial warming in West Antarctica driven by local orbital forcing
WAIS Divide Project Members,; Fudge, T. J.; Steig, Eric J.; Markle, Bradley R.; Schoenemann, Spruce W.; Ding, Qinghua; Taylor, Kendrick C.; McConnell, Joseph R.; Brook, Edward J.; Sowers, Todd; White, James W. C.; Alley, Richard B.; Cheng, Hai; Clow, Gary D.; Cole-Dai, Jihong; Conway, Howard; Cuffey, Kurt M.; Edwards, Jon S.; Edwards, R. Lawrence; Edwards, Ross; Fegyveresi, John M.; Ferris, David; Fitzpatrick, Joan J.; Johnson, Jay; Hargreaves, Geoffrey; Lee, James E.; Maselli, Olivia J.; Mason, William; McGwire, Kenneth C.; Mitchell, Logan E.; Mortensen, Nicolai B.; Neff, Peter; Orsi, Anais J.; Popp, Trevor J.; Schauer, Andrew J.; Severinghaus, Jeffrey P.; Sigl, Michael; Spencer, Matthew K.; Vaughn, Bruce H.; Voigt, Donald E.; Waddington, Edwin D.; Wang, Xianfeng; Wong, Gifford J.
2013-01-01
The cause of warming in the Southern Hemisphere during the most recent deglaciation remains a matter of debate. Hypotheses for a Northern Hemisphere trigger, through oceanic redistributions of heat, are based in part on the abrupt onset of warming seen in East Antarctic ice cores and dated to 18,000 years ago, which is several thousand years after high-latitude Northern Hemisphere summer insolation intensity began increasing from its minimum, approximately 24,000 years ago. An alternative explanation is that local solar insolation changes cause the Southern Hemisphere to warm independently. Here we present results from a new, annually resolved ice-core record from West Antarctica that reconciles these two views. The records show that 18,000 years ago snow accumulation in West Antarctica began increasing, coincident with increasing carbon dioxide concentrations, warming in East Antarctica and cooling in the Northern Hemisphere associated with an abrupt decrease in Atlantic meridional overturning circulation. However, significant warming in West Antarctica began at least 2,000 years earlier. Circum-Antarctic sea-ice decline, driven by increasing local insolation, is the likely cause of this warming. The marine-influenced West Antarctic records suggest a more active role for the Southern Ocean in the onset of deglaciation than is inferred from ice cores in the East Antarctic interior, which are largely isolated from sea-ice changes.
Solar energy system economic evaluation: Contemporary Newman, Georgia
NASA Technical Reports Server (NTRS)
1980-01-01
An economic evaluation of performance of the solar energy system (based on life cycle costs versus energy savings) for five cities considered to be representative of a broad range of environmental and economic conditions in the United States is discussed. The considered life cycle costs are: hardware, installation, maintenance, and operating costs for the solar unique components of the total system. The total system takes into consideration long term average environmental conditions, loads, fuel costs, and other economic factors applicable in each of five cities. Selection criteria are based on availability of long term weather data, heating degree days, cold water supply temperature, solar insolation, utility rates, market potential, and type of solar system.
Solar energy system economic evaluation: Contemporary Newman, Georgia
NASA Astrophysics Data System (ADS)
1980-09-01
An economic evaluation of performance of the solar energy system (based on life cycle costs versus energy savings) for five cities considered to be representative of a broad range of environmental and economic conditions in the United States is discussed. The considered life cycle costs are: hardware, installation, maintenance, and operating costs for the solar unique components of the total system. The total system takes into consideration long term average environmental conditions, loads, fuel costs, and other economic factors applicable in each of five cities. Selection criteria are based on availability of long term weather data, heating degree days, cold water supply temperature, solar insolation, utility rates, market potential, and type of solar system.
Increased insolation threshold for runaway greenhouse processes on Earth-like planets
NASA Astrophysics Data System (ADS)
Leconte, Jérémy; Forget, Francois; Charnay, Benjamin; Wordsworth, Robin; Pottier, Alizée
2013-12-01
The increase in solar luminosity over geological timescales should warm the Earth's climate, increasing water evaporation, which will in turn enhance the atmospheric greenhouse effect. Above a certain critical insolation, this destabilizing greenhouse feedback can `run away' until the oceans have completely evaporated. Through increases in stratospheric humidity, warming may also cause evaporative loss of the oceans to space before the runaway greenhouse state occurs. The critical insolation thresholds for these processes, however, remain uncertain because they have so far been evaluated using one-dimensional models that cannot account for the dynamical and cloud feedback effects that are key stabilizing features of the Earth's climate. Here we use a three-dimensional global climate model to show that the insolation threshold for the runaway greenhouse state to occur is about 375 W m-2, which is significantly higher than previously thought. Our model is specifically developed to quantify the climate response of Earth-like planets to increased insolation in hot and extremely moist atmospheres. In contrast with previous studies, we find that clouds have a destabilizing feedback effect on the long-term warming. However, subsident, unsaturated regions created by the Hadley circulation have a stabilizing effect that is strong enough to shift the runaway greenhouse limit to higher values of insolation than are inferred from one-dimensional models. Furthermore, because of wavelength-dependent radiative effects, the stratosphere remains sufficiently cold and dry to hamper the escape of atmospheric water, even at large fluxes. This has strong implications for the possibility of liquid water existing on Venus early in its history, and extends the size of the habitable zone around other stars.
Increased insolation threshold for runaway greenhouse processes on Earth-like planets.
Leconte, Jérémy; Forget, Francois; Charnay, Benjamin; Wordsworth, Robin; Pottier, Alizée
2013-12-12
The increase in solar luminosity over geological timescales should warm the Earth's climate, increasing water evaporation, which will in turn enhance the atmospheric greenhouse effect. Above a certain critical insolation, this destabilizing greenhouse feedback can 'run away' until the oceans have completely evaporated. Through increases in stratospheric humidity, warming may also cause evaporative loss of the oceans to space before the runaway greenhouse state occurs. The critical insolation thresholds for these processes, however, remain uncertain because they have so far been evaluated using one-dimensional models that cannot account for the dynamical and cloud feedback effects that are key stabilizing features of the Earth's climate. Here we use a three-dimensional global climate model to show that the insolation threshold for the runaway greenhouse state to occur is about 375 W m(-2), which is significantly higher than previously thought. Our model is specifically developed to quantify the climate response of Earth-like planets to increased insolation in hot and extremely moist atmospheres. In contrast with previous studies, we find that clouds have a destabilizing feedback effect on the long-term warming. However, subsident, unsaturated regions created by the Hadley circulation have a stabilizing effect that is strong enough to shift the runaway greenhouse limit to higher values of insolation than are inferred from one-dimensional models. Furthermore, because of wavelength-dependent radiative effects, the stratosphere remains sufficiently cold and dry to hamper the escape of atmospheric water, even at large fluxes. This has strong implications for the possibility of liquid water existing on Venus early in its history, and extends the size of the habitable zone around other stars.
Evaluation of initial collector field performance at the Langley Solar Building Test Facility
NASA Technical Reports Server (NTRS)
Boyle, R. J.; Jensen, R. N.; Knoll, R. H.
1977-01-01
The thermal performance of the solar collector field for the NASA Langley Solar Building Test Facility is given for October 1976 through January 1977. A 1,180 square meter solar collector field with seven collector designs helped to provide hot water for the building heating system and absorption air conditioner. The collectors were arranged in 12 rows with nominally 51 collectors per row. Heat transfer rates for each row were calculated and recorded along with sensor, insolation, and weather data every five minutes using a minicomputer. The agreement between the experimental and predicted collector efficiencies was generally within five percentage points.
Evaluation of initial collector field performance at the Langley Solar Building Test Facility
NASA Technical Reports Server (NTRS)
Boyle, R. J.; Knoll, R. H.; Jensen, R. N.
1977-01-01
The thermal performance of the solar collector field for the NASA Langley Solar Building Test Facility is given for October 1976 through January 1977. An 1180 square meter solar collector field with seven collector designs helped to provide hot water for the building heating system and absorption air conditioner. The collectors were arranged in 12 rows with nominally 51 collectors per row. Heat transfer rates for each row are calculated and recorded along with sensor, insolation, and weather data every 5 minutes using a mini-computer. The agreement between the experimental and predicted collector efficiencies was generally within five percentage points.
NASA Astrophysics Data System (ADS)
Morgan, Gareth A.; Head, James W.; Forget, François; Madeleine, Jean-Baptiste; Spiga, Aymeric
2010-08-01
The unusual 80 km diameter Noachian-aged Asimov crater in Noachis Terra (46°S, 5°E) is characterized by extensive Noachian-Hesperian crater fill and a younger superposed annulus of valleys encircling the margins of the crater floor. These valleys provide an opportunity to study the relationships of gully geomorphology as a function of changing slope orientation relative to solar insolation. We found that the level of development of gullies was highly correlated with slope orientation and solar insolation. The largest and most complex gully systems, with the most well-developed fluvial landforms, are restricted to pole-facing slopes. In contrast, gullies on equator-facing slopes are smaller, more poorly developed and integrated, more highly degraded, and contain more impact craters. We used a 1D version of the Laboratoire de Météorologie Dynamique GCM, and slope geometries (orientation and angle), driven by predicted spin-axis/orbital parameter history, to assess the distribution and history of surface temperatures in these valleys during recent geological history. Surface temperatures on pole-facing slopes preferential for water ice accumulation and subsequent melting are predicted to occur as recently as 0.5-2.1 Ma, which is consistent with age estimates of gully activity elsewhere on Mars. In contrast, the 1D model predicts that water ice cannot accumulate on equator-facing slopes until obliquities exceed 45°, suggesting they are unlikely to have been active over the last 5 Ma. The correlation of the temperature predictions and the geological evidence for age differences suggests that there were two phases of gully formation in the last few million years: an older phase in which top-down melting occurred on equator-facing slopes and a younger more robust phase on pole-facing slopes. The similarities of small-scale fluvial erosion features seen in the gullies on Mars and those observed in gullies cut by seasonal and perennial snowmelt in the Antarctic Dry Valleys supports a top-down melting origin for these gullies on Mars.
Design considerations for Mars photovoltaic power systems
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Appelbaum, Joseph
1990-01-01
Considerations for operation of a photovoltaic power system on Mars are discussed with reference to Viking Lander data. The average solar insolation at Mars is 590 W/sq m, which is reduced yet further by atmospheric dust. Of major concern are dust storms, which have been observed to occur on local as well as on global scales, and their effect on solar array output. While atmospheric opacity may rise to values ranging from 3 to 9, depending on storm severity, there is still an appreciable large diffuse illumination, even at high opacities, so that photovoltaic operation is still possible. If the power system is to continue to generate power even on high-optical-opacity (i.e., dusty atmosphere) days, it is important that the photovoltaic system be designed to collect diffuse irradiance as well as direct. Energy storage will be required for operation during the night. Temperature and wind provide additional considerations for array design.
Millennial-scale Asian summer monsoon variations in South China since the last deglaciation
NASA Astrophysics Data System (ADS)
Wang, Xisheng; Chu, Guoqiang; Sheng, Mei; Zhang, Shuqin; Li, Jinhua; Chen, Yun; Tang, Ling; Su, Youliang; Pei, Junling; Yang, Zhenyu
2016-10-01
Characterizing spatiotemporal variability of the Asian summer monsoon (ASM) is critical for full understanding of its behavior, dynamics, and future impacts. The present knowledge about ASM variations since the last glaciation in South China largely relies on several precisely-dated speleothem stable oxygen isotope (δ18 O) records. Although these speleothem δ18 O signals provide useful evidence for regional past environmental changes, their validity for denoting ASM intensity remains a great controversy. The Huguangyan Maar Lake (HML) provides one of the most complete archives of environmental and climatic changes in the tropical-subtropical South and East Asia since the last glaciation. Here we document a continuous centennial- to millennial-scale ASM record over the past 16 ky BP from the high-sedimentation-rate HML sediments. In contrast with the low-amplitude variations of Chinese speleothem-derived δ18 O signals and the Chinese loess-based monsoon precipitation proxy indexes, our multi-proxy records reveal a pattern of high-amplitude regional climatic fluctuations, including fine-scale oscillations during the Bølling-Allerød warming, the 8.2 ka cooling event, and an abrupt climate shift from 6.5-5.9 ka. The existence of Bond-like cold/dry events indicates a distinct influence of the North Atlantic circulation on low-latitude monsoon changes. The broad comparability between the HML paleo-proxies, Chinese speleothem δ18 O records, and the northern hemisphere summer insolation throughout the Holocene, suggests that solar insolation exerts a profound influence on ASM changes. These findings reinforce a model of combined insolation and glacial forcing of the ASM.
Central Plant Optimization for Waste Energy Reduction (CPOWER). ESTCP Cost and Performance Report
2016-12-01
in the regression models. The solar radiation data did not appear reliable in the weather dataset for the location, and hence it was not used. The...and additional factors (e.g., solar insolation) may be needed to obtain a better model. 2. Inputs to optimizer: During several periods of...Location: North Carolina Energy Consumption Cost Savings $ 443,698.00 Analysis Type: FEMP PV of total savings 215,698.00$ Base Date: April 1
Development and testing of shingle-type solar cell molecules
NASA Technical Reports Server (NTRS)
Shepard, N. F.
1978-01-01
The details of a shingle module design which produces in excess of 97 watts/sq m of module area at 1 kW/sq m insolation and at 60 C are reported. This selected design employs a tempered glass coverplate to provide the primary solar cell structural support. The fabrication and testing of a preproduction module of this design has demonstrated that this selected approach will meet the environmental testing requirements imposed by the contract.
Atmospheric Energy Limits on Subsurface Life on Mars
NASA Technical Reports Server (NTRS)
Weiss, B. P.; Yung, Y. L.; Nealson, K. H.
1999-01-01
It has been suggested that the terrestrial biomass of subterranean organisms may equal or exceed that at the surface. Taken as a group, these organisms can live in heavily saline conditions at temperatures from 115 C to as low as -20 C. Such conditions might exist on Mars beneath the surface oxidant in an aquifer or hydrothermal system, where the surrounding rock would also protect against the solar ultraviolet radiation. The way that such systems could obtain energy and carbon is not completely clear, although it is believed that on Earth, energy flows from the interaction of highly reduced basalt with groundwater produce H2, while carbon is derived from CO2 dissolved in the groundwater. Another potential source is the Martian atmosphere, acting as a photochemical conduit of solar insolation.
Investigation and Taguchi Optimization of Microbial Fuel Cell Salt Bridge Dimensional Parameters
NASA Astrophysics Data System (ADS)
Sarma, Dhrupad; Barua, Parimal Bakul; Dey, Nabendu; Nath, Sumitro; Thakuria, Mrinmay; Mallick, Synthia
2018-01-01
One major problem of two chamber salt bridge microbial fuel cells (MFCs) is the high resistance offered by the salt bridge to anion flow. Many researchers who have studied and optimized various parameters related to salt bridge MFC, have not shed much light on the effect of salt bridge dimensional parameters on the MFC performance. Therefore, the main objective of this research is to investigate the effect of length and cross sectional area of salt bridge and the effect of solar radiation and atmospheric temperature on MFC current output. An experiment has been designed using Taguchi L9 orthogonal array, taking length and cross sectional area of salt bridge as factors having three levels. Nine MFCs were fabricated as per the nine trial conditions. Trials were conducted for 3 days and output current of each of the MFCs along with solar insolation and atmospheric temperature were recorded. Analysis of variance shows that salt bridge length has significant effect both on mean (with 53.90% contribution at 95% CL) and variance (with 56.46% contribution at 87% CL), whereas the effect of cross sectional area of the salt bridge and the interaction of these two factors is significant on mean only (with 95% CL). Optimum combination was found at 260 mm salt bridge length and 506.7 mm2 cross sectional area with 4.75 mA of mean output current. The temperature and solar insolation data when correlated with each of the MFCs average output current, revealed that both external factors have significant impact on MFC current output but the correlation coefficient varies from MFC to MFC depending on salt bridge dimensional parameters.
Integrated solar energy system optimization
NASA Astrophysics Data System (ADS)
Young, S. K.
1982-11-01
The computer program SYSOPT, intended as a tool for optimizing the subsystem sizing, performance, and economics of integrated wind and solar energy systems, is presented. The modular structure of the methodology additionally allows simulations when the solar subsystems are combined with conventional technologies, e.g., a utility grid. Hourly energy/mass flow balances are computed for interconnection points, yielding optimized sizing and time-dependent operation of various subsystems. The program requires meteorological data, such as insolation, diurnal and seasonal variations, and wind speed at the hub height of a wind turbine, all of which can be taken from simulations like the TRNSYS program. Examples are provided for optimization of a solar-powered (wind turbine and parabolic trough-Rankine generator) desalinization plant, and a design analysis for a solar powered greenhouse.
NASA Astrophysics Data System (ADS)
Gates, W. R.
1983-02-01
Estimated future energy cost savings associated with the development of cost-competitive solar thermal technologies (STT) are discussed. Analysis is restricted to STT in electric applications for 16 high-insolation/high-energy-price states. Three fuel price scenarios and three 1990 STT system costs are considered, reflecting uncertainty over future fuel prices and STT cost projections. Solar thermal technology research and development (R&D) is found to be unacceptably risky for private industry in the absence of federal support. Energy cost savings were projected to range from $0 to $10 billion (1990 values in 1981 dollars), depending on the system cost and fuel price scenario. Normal R&D investment risks are accentuated because the Organization of Petroleum Exporting Countries (OPEC) cartel can artificially manipulate oil prices and undercut growth of alternative energy sources. Federal participation in STT R&D to help capture the potential benefits of developing cost-competitive STT was found to be in the national interest. Analysis is also provided regarding two federal incentives currently in use: The Federal Business Energy Tax Credit and direct R&D funding.
NASA Technical Reports Server (NTRS)
Gates, W. R.
1983-01-01
Estimated future energy cost savings associated with the development of cost-competitive solar thermal technologies (STT) are discussed. Analysis is restricted to STT in electric applications for 16 high-insolation/high-energy-price states. Three fuel price scenarios and three 1990 STT system costs are considered, reflecting uncertainty over future fuel prices and STT cost projections. Solar thermal technology research and development (R&D) is found to be unacceptably risky for private industry in the absence of federal support. Energy cost savings were projected to range from $0 to $10 billion (1990 values in 1981 dollars), depending on the system cost and fuel price scenario. Normal R&D investment risks are accentuated because the Organization of Petroleum Exporting Countries (OPEC) cartel can artificially manipulate oil prices and undercut growth of alternative energy sources. Federal participation in STT R&D to help capture the potential benefits of developing cost-competitive STT was found to be in the national interest. Analysis is also provided regarding two federal incentives currently in use: The Federal Business Energy Tax Credit and direct R&D funding.
NASA Astrophysics Data System (ADS)
Raynaud, D.; Duval, P.; Lemieux-Dudon, B.; Lipenkov, V.; Parrenin, F.
2006-12-01
Air content of polar ice, V, depends primarily on air pressure, temperature and pore volume at close-off prevailing at the site of ice formation. Here we present the recently measured V record of the EPICA DC (EDC) Antarctic ice core covering the last 650,000 years. The first 440,000 years remarkably displays the fundamental Milankovitch orbital frequencies. The 100 kyr period, corresponding to the eccentricity of the Earth's orbit and found in the V record, likely reflects essentially the pressure/elevation signature of V. But most of the variations observed in the V record cannot be explained neither by air pressure nor by temperature changes, and then should reflect properties influencing the porosity at close-off other than temperature. A wavelet analysis indicates a dominant period around 41 kyr, the period characteristic of the obliquity variations of the Earth's axis. We propose that the local insolation, via the solar radiation absorbed by the snow, leaves its imprint on the snow structure, then affects the snow-firn transition, and therefore is one of the controlling factors for the porosity at close-off. Such mechanism could account for the observed anti-correlation between local insolation and V. We estimate the variations of the absorbed solar flux in the near-surface snow layers on the basis of a simple albedo model (Lemieux-Dudon et al., this session). We compare the dating of the ice obtained using the local insolation signal deduced from the V record with a chronology based on ice flow modelling. We discuss the glaciological implications of the comparison between the two chronologies, as well as the potential of local insolation markers for approaching an absolute dating of ice core. The latest results covering the period 440-650 kyr BP will also be presented.
Forney, William M.; Soulard, Christopher E.; Chickadel, C. Christopher
2013-01-01
The U.S. Geological Survey is studying approaches to characterize the thermal regulation of water and the dynamics of cold water refugia. High temperatures have physiological impacts on anadromous fish species. Factors affecting the presence, variability, and quality of thermal refugia are known, such as riverine and watershed processes, hyporheic flows, deep pools and bathymetric factors, thermal stratification of reservoirs, and other broader climatic considerations. This research develops a conceptual model and methodological techniques to quantify the change in solar insolation load to the Klamath River caused by riparian and floodplain vegetation, the morphology of the river, and the orientation and topographic characteristics of its watersheds. Using multiple scales of input data from digital elevation models and airborne light detection and ranging (LiDAR) derivatives, different analysis methods yielded three different model results. These models are correlated with thermal infrared imagery for ground-truth information at the focal confluence with the Scott River. Results from nonparametric correlation tests, geostatistical cross-covariograms, and cross-correlograms indicate that statistical relationships between the insolation models and the thermal infrared imagery exist and are significant. Furthermore, the use of geostatistics provides insights to the spatial structure of the relationships that would not be apparent otherwise. To incorporate a more complete representation of the temperature dynamics in the river system, other variables including the factors mentioned above, and their influence on solar loading, are discussed. With similar datasets, these methods could be applied to any river in the United States—especially those listed as temperature impaired under Section 303(d) of the Clean Water Act—or international riverine systems. Considering the importance of thermal refugia for aquatic species, these methods can help investigate opportunities for riparian restoration, identify problematic reaches unlikely to provide good habitat, and simulate changes to solar loading estimates from alternative landscape configurations.
Satellite mirror systems for providing terrestrial power - System concept
NASA Technical Reports Server (NTRS)
Billman, K. W.; Gilbreath, W. P.; Bowen, S. W.
1978-01-01
A system of orbiting reflectors, SOLARES, has been studied as a possible means of providing terrestrial power with a space system of minimum mass and complexity. The key impact that such a system, providing continuous and slightly concentrated insolation, makes on the economic viability of solar farming is demonstrated. New developments in solar sailing are incorporated to reduce mirror mass and transportation cost. The system is compatible with incremental implementation and continual expansion to produce the world's power needs. Key technology, environmental, and economic issues and payoffs are identified. SOLARES appears to be economically superior to other advanced, and even conventional, energy systems and could be scaled to completely abate our fossil fuel usage for power generation.
Experimenting with concentrated sunlight using the DLR solar furnace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neumann, A.; Groer, U.
1996-10-01
The high flux solar furnace that is operated by the Deutsche Forschungsanstalt fuer Luft- und Raumfahrt (DLR) at Cologne was inaugurated in June 1994 and we are now able to look back onto one year of successful operation. The solar furnace project was founded by the government of the State Northrhine Westfalia within the Study Group AG Solar. The optical design is a two-stage off-axis configuration which uses a flat 52 m{sup 2} heliostat and a concentrator composed of 147 spherical mirror facets. The heliostat redirects the solar light onto the concentrator which focuses the beam out of the opticalmore » axis of the system into the laboratory building. At high insolation levels (>800W/m{sup 2}) it is possible to collect a total power of 20 kW with peak flux densities of 4 MW/m{sup 2}. Sixteen different experiment campaigns were carried out during this first year of operation. The main research fields for these experiments were material science, component development and solar chemistry. The furnace also has its own research program leading to develop sophisticated measurement techniques like remote infrared temperature sensing and flux mapping. Another future goal to be realized within the next five years is the improvement of the performance of the furnace itself. 6 refs., 9 figs., 1 tab.« less
Geoengineering as a design problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravitz, Ben; MacMartin, Douglas G.; Wang, Hailong
2016-01-01
Understanding the climate impacts of solar geoengineering is essential for evaluating its benefits and risks. Most previous simulations have prescribed a particular strategy and evaluated its modeled effects. Here we turn this approach around by first choosing example climate objectives and then designing a strategy to meet those objectives in climate models. There are four essential criteria for designing a strategy: (i) an explicit specification of the objectives, (ii) defining what climate forcing agents to modify so the objectives are met, (iii) a method for managing uncertainties, and (iv) independent verification of the strategy in an evaluation model. We demonstrate this design perspective throughmore » two multi-objective examples. First, changes in Arctic temperature and the position of tropical precipitation due to CO 2 increases are offset by adjusting high-latitude insolation in each hemisphere independently. Second, three different latitude-dependent patterns of insolation are modified to offset CO 2-induced changes in global mean temperature, interhemispheric temperature asymmetry, and the Equator-to-pole temperature gradient. In both examples, the "design" and "evaluation" models are state-of-the-art fully coupled atmosphere–ocean general circulation models.« less
NASA Technical Reports Server (NTRS)
1973-01-01
A variety of technologies were investigated to determine the benefits to be derived from space activities. The subjects accepted for product development are: (1) eutectics for cold cathodes, (2) higher putiry fiber optics, (3) fluidic wafers, (4) large germanium wafers for gamma ray camera, (5) improved batteries and capacitors, (6) optical filters, (7) corrosion resistant electrodes, (8) high strength carbon-based filaments for plastic reinforcement, and (9) new antibiotics. In addition, three ideas for services, involving disposal of radioactive wastes, blood analysis, and enhanced solar insolation were proposed.
Toda, Y; Segal, N; Kato, A; Yamamoto, S; Irie, M
2001-12-01
To assess the efficacy of a lateral wedge insole with elastic strapping of the subtalar joint for conservative treatment of osteoarthritis (OA) of the knee. The efficacy of a novel insole with elastic subtalar strapping and a traditional shoe insert wedge insole was compared. Ninety female outpatients with OA of the knee were treated with wedge insoles for 8 weeks. Randomization was performed according to birth date. Standing radiographs with unilateral insole use were used to analyze the femorotibial and talar tilt angles for each patient with and without their respective insole. Visual analog scale (VAS) score for subjective knee pain at the final assessment was compared with that at baseline in both groups. Participants wearing the elastically strapped insole (n = 46) had significantly decreased femorotibial angle (p < 0.0001) and talar tilt angle (p = 0.005) and significantly improved VAS pain score (p = 0.045) in comparison with baseline assessments. These significant differences were not found in the group with the inserted insole (n = 44). The novel strapped insole leads to valgus angulation of the talus, resulting in correction of the femorotibial angle in patients with knee OA with varus deformity, and may have a therapeutic effect similar to that of high tibial osteotomy.
Luminescent Solar Concentrator Daylighting
NASA Astrophysics Data System (ADS)
Bornstein, Jonathan G.
1984-11-01
Various systems that offer potential solutions to the problem of interior daylighting have been discussed in the literature. Virtually all of these systems rely on some method of tracking the sun along its azimuth and elevation, i.e., direct imaging of the solar disk. A simpler approach, however, involves a nontracking nonimaging device that effectively eliminates moving parts and accepts both the diffuse and direct components of solar radiation. Such an approach is based on a system that combines in a common luminaire the light emitted by luminescent solar concentrators (LSC), of the three primary colors, with a highly efficient artificial point source (HID metal halide) that automatically compensates for fluctuations in the LSC array via a daylight sensor and dimming ballast. A preliminary analysis suggests that this system could supply 90% of the lighting requirement, over the course of an 8 hour day, strictly from the daylight component under typical insolation con-ditions in the Southwest United States. In office buildings alone, the total aggregate energy savings may approach a half a quad annually. This indicates a very good potential for the realization of substantial savings in building electric energy consumption.
Geometry and the Physics of Seasons
ERIC Educational Resources Information Center
Khavrus, Vyacheslav; Shelevytsky, Ihor
2012-01-01
By means of a simple mathematical model recently developed by the authors (2010 "Phys. Educ." 45 641), the passage of the seasons on the Earth is simulated for arbitrary latitudes, taking into account sunlight attenuation in the atmosphere. The method developed can be used to predict a realistic value of the solar energy input (insolation) that…
A program for the calculation of paraboloidal-dish solar thermal power plant performance
NASA Technical Reports Server (NTRS)
Bowyer, J. M., Jr.
1985-01-01
A program capable of calculating the design-point and quasi-steady-state annual performance of a paraboloidal-concentrator solar thermal power plant without energy storage was written for a programmable calculator equipped with suitable printer. The power plant may be located at any site for which a histogram of annual direct normal insolation is available. Inputs required by the program are aperture area and the design and annual efficiencies of the concentrator; the intercept factor and apparent efficiency of the power conversion subsystem and a polynomial representation of its normalized part-load efficiency; the efficiency of the electrical generator or alternator; the efficiency of the electric power conditioning and transport subsystem; and the fractional parasitic loses for the plant. Losses to auxiliaries associated with each individual module are to be deducted when the power conversion subsystem efficiencies are calculated. Outputs provided by the program are the system design efficiency, the annualized receiver efficiency, the annualized power conversion subsystem efficiency, total annual direct normal insolation received per unit area of concentrator aperture, and the system annual efficiency.
Steinberg, Nili; Waddington, Gordon; Adams, Roger; Karin, Janet; Tirosh, Oren
2015-12-01
Ballet dancers require a high level of postural balance (PB) and proprioception ability during performance. As textured insoles inserted into ballet shoes were found to improve proprioception ability, and better proprioceptive acuity was associated with better PB, the aim of the present study was to investigate whether the association between ankle inversion movement discrimination (AIMD) and PB changed following wearing textured insoles in young male and female dancers. Forty-four dancers from the Australian Ballet School, ages 14-19 yrs, were tested for static and dynamic PB and AIMD under two conditions: in ballet shoes, and in ballet shoes with textured insoles inserted. Female dancers demonstrated a significant inverse relationship between AIMD and static PB in the medio-lateral direction when wearing ballet shoes, but not when wearing textured insoles. Male dancers showed a non-monotonic relationship when tested with ballet shoes only, but a significant inverse relationship between AIMD and dynamic PB in the vertical direction and with the waist/head cross-correlation acceleration in the three movement directions when they were tested with textured insoles. Male dancers demonstrated an improved association between dynamic PB and proprioception ability when using textured insoles, suggesting that the increased afferent information from the plantar surface had a beneficial effect on proprioception feedback about their PB. Conversely, for female dancers, that association was present when wearing ballet shoes, but not when using textured insoles, suggesting that the increased afferent information for female dancers who already had high proprioception ability was "overloaded" by wearing the textured insoles.
Sypka, Przemysław; Starzak, Rafał; Owsiak, Krzysztof
2016-12-01
Solar radiation reaching densely forested slopes is one of the main factors influencing the water balance between the atmosphere, tree stands and the soil. It also has a major impact on site productivity, spatial arrangement of vegetation structure as well as forest succession. This paper presents a methodology to estimate variations in solar radiation reaching tree stands in a small mountain valley. Measurements taken in three inter-forest meadows unambiguously showed the relationship between the amount of solar insolation and the shading effect caused mainly by the contour of surrounding tree stands. Therefore, appropriate knowledge of elevation, aspect and tilt angles of the analysed planes had to be taken into consideration during modelling. At critical times, especially in winter, the diffuse and reflected components of solar radiation only reached some of the sites studied as the beam component of solar radiation was totally blocked by the densely forested mountain slopes in the neighbourhood. The cross-section contours and elevation angles of all obstructions are estimated from a digital surface model including both digital elevation model and the height of tree stands. All the parameters in a simplified, empirical model of the solar insolation reaching a given horizontal surface within the research valley are dependent on the sky view factor (SVF). The presented simplified, empirical model and its parameterisation scheme should be easily adaptable to different complex terrains or mountain valleys characterised by diverse geometry or spatial orientation. The model was developed and validated (R 2 = 0.92 , σ = 0.54) based on measurements taken at research sites located in the Silesian Beskid Mountain Range. A thorough understanding of the factors determining the amount of solar radiation reaching woodlands ought to considerably expand the knowledge of the water exchange balance within forest complexes as well as the estimation of site productivity.
Progressing Deployment of Solar Photovoltaic Installations in the United States
NASA Astrophysics Data System (ADS)
Kwan, Calvin Lee
2011-07-01
This dissertation evaluates the likelihood of solar PV playing a larger role in national and state level renewable energy portfolios. I examine the feasibility of large-scale solar PV arrays on college campuses, the financials associated with large-scale solar PV arrays and finally, the influence of environmental, economic, social and political variables on the distribution of residential solar PV arrays in the United States. Chapter two investigates the challenges and feasibility of college campuses adopting a net-zero energy policy. Using energy consumption data, local solar insolation data and projected campus growth, I present a method to identify the minimum sized solar PV array that is required for the City College campus of the Los Angeles Community College District to achieve net-zero energy status. I document how current energy demand can be reduced using strategic demand side management, with remaining energy demand being met using a solar PV array. Chapter three focuses on the financial feasibility of large-scale solar PV arrays, using the proposed City College campus array as an example. I document that even after demand side energy management initiatives and financial incentives, large-scale solar PV arrays continue to have ROIs greater than 25 years. I find that traditional financial evaluation methods are not suitable for environmental projects such as solar PV installations as externalities are not taken into account and therefore calls for development of alternative financial valuation methods. Chapter four investigates the influence of environmental, social, economic and political variables on the distribution of residential solar PV arrays across the United States using ZIP code level data from the 2000 US Census. Using data from the National Renewable Energy Laboratory's Open PV project, I document where residential solar PVs are currently located. A zero-inflated negative binomial model was run to evaluate the influence of selected variables. Using the same model, predicted residential solar PV shares were generated and illustrated using GIS software. The results of this model indicate that solar insolation, state energy deregulation and cost of electricity are statistically significant factors positively correlated with the adoption of residential solar PV arrays. With this information, policymakers at the towns and cities level can establish effective solar PV promoting policies and regulations for their respective locations.
Orbital Drivers of Climate Change on Earth and Mars
NASA Astrophysics Data System (ADS)
Zent, A. P.
Oscillations of orbital elements and spin axis orientation affect the climate of both Earth and Mars by redistributing solar power both latitudinally and seasonally, often resulting in secondary changes in reflected and emitted radiation (radiative forcing). Multiple feedback loops between different climatic elements operate on both planets, with the result that climate response is generally nonlinear with simple changes in solar energy. Both insolation history and geochemical climate proxies can be treated as time series data, and analyzed in terms of component frequencies. The correspondence between frequencies measured in climate proxies and orbital oscillations is the key to relating orbital cause and climatic effect. Discussions of both Earth and Mars focus on the last 5-10 m.y., because this is the period in which the orbital history and geologic record are best understood. The terrestrial climate is an extraordinarily complex system, and a vast amount of data is available for analysis. While the geologic record strongly supports the role of Milankovitch cycles as the underlying cause of glacial cycles, orbitally driven insolation changes alone cannot explain the observations in detail. Early Pleistocene glacial cycles responded linearly to the 41-k.y. oscillations in obliquity. However, over the last 1 m.y., glacial/interglacial oscillations have become more extreme as the climate has cooled. Long cooling intervals marked by an oscillating buildup of ice sheets are now followed by brief, intense periods of warming. At the same time, glacial/interglacial cycles have shifted from 41 k.y. to ~100 k.y. No such changes occurred in the solar forcing due to orbital oscillations. While orbital oscillations still appear to pace glacial cycles, their subtle interplay with ice-sheet dynamics and shifts in ocean circulation have come to dominate the late Pleistocene climate system. In contrast to Earth, the martian climate is ostensibly a much simpler system about which we have almost no quantitative data. Lacking climate proxies and chronological data, we are forced to rely on climate modeling and whatever constraints can be extracted from the predominantly remote sensing data available. Obliquity oscillations account for most of the power in historical insolation. Unfortunately, the last 5 m.y. are an anomalous period in Mars' climate history due to a secular decrease in Mars' obliquity. Subsequent to that, however, models and observations are consistent with the hypothesis that during periods of higher obliquity, enhanced polar summer insolation increases atmospheric water vapor and dust content, and ice stability shifted toward the equator. Polar caps become thermodynamically unstable, and much of the surface H2O inventory migrates from high latitudes to the tropics. As obliquity decreases, ice returns to the poles, leaving unstable ice-rich deposits in the mid latitudes that are mantled by dust. Low-obliquity periods entail — at least on occasion — collapse of the atmosphere onto the poles and high-latitude CO2 glaciers. During protracted nodes in obliquity, mid-latitude ice undergoes slow but sustained sublimation and redistribution to the poles. Because of the tremendous breadth of the subject matter, this chapter necessarily presents a high-level overview, and the reader will be compelled to investigate the copious references for a more rigorous explanation of most topics.
Implication of mountain shading and topographic scaling on energy for snowmelt
NASA Astrophysics Data System (ADS)
Marsh, C.; Pomeroy, J. W.; Spiteri, R.
2011-12-01
In many parts of the world, snowmelt energetics are dominated by incoming solar radiation. This is the case in the Canadian Rockies, where sunny winters result in high insolation. Solar irradiance on the snow surface is affected by the atmosphere, the slope and aspect of the immediate topography, and shading from surrounding terrain. Errors in estimating solar irradiation are cumulative over a season and can lead to large errors in snowmelt predictions. Adaptive triangular meshes, a type of unstructured triangular mesh that can adapt to fine-scale processes during model runtime, are more efficient in their use of DEM data than fixed grids when producing solar irradiance maps. An experimental design to calculate the effect of changes in DEM resolution on adaptive mesh irradiation calculations and implication for snowmelt is presented. As part of this experiment, the accuracy of these techniques is compared to measurements of mountain shadows and solar irradiance collected in Marmot Creek Research Basin, Alberta. Time-lapse digital cameras and networks of radiometers provide datasets for diagnosis of model accuracy. Further improvements in computational efficiency are achieved by taking advantage of parallel processing using graphical processing units (GPUs) is also discussed.
EEC focuses new energy budget on solar and conservation R and D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-12-17
Solar energy, followed by conservation and geothermal energy, will have top priority for the European Economic Community's (ECC) $142 million energy research budget through 1983. Proposals for the cost-shared projects, of which EEC will pay half, are being accepted by eligible companies and research organizations. Committees for each technology advise the European Commission on which proposals to accept and suggest an appropriate funding level. The EEC also funds demonstrations of promising research to determine economic feasibility. Major emphasis will be placed during the present four-year budget for solar research on photovoltaics. Other projects include a European solar-insolation atlas and solar-heatingmore » manual, advanced batteries, and energy storage systems. Geothermal projects will focus on resource mapping, exploratory drilling, hydrogen production, and energy forecasting. (DCK)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crago, Christine Lasco; Chernyakhovskiy, Ilya
State incentives for solar power have grown significantly in the past several years. This paper examines the effectiveness of policy incentives to increase residential solar photovoltaic (PV) capacity. We use county-level panel data and control for demographic characteristics, solar resources, and pro-environmental preferences. Results show that among financial incentives, rebates have the most impact with an additional $1 per watt rebate increasing annual PV capacity additions by close to 50%. Factors that affect financial returns to solar PV such as electricity price and solar insolation are also found to be significant. Results also point to a significant positive relationship betweenmore » hybrid vehicle sales and residential PV capacity growth, indicating the importance of pro-environmental preferences as a predictor of solar PV demand. Back of the envelope calculations suggest that the cost of carbon mitigation through rebates is around $184 per ton of CO2.« less
Analysis of Orientation-dependence of Martian Gullies
NASA Technical Reports Server (NTRS)
Mohan, S.; Bridges, N. T.
2004-01-01
The recent discovery of small Martian gullies has stimulated debate about the role that water plays on the Martian surface under current or recent conditions. Of critical importance in evaluating various gully hypotheses is reliable morphometric and orientation data. The former centers on such questions as whether the water (or another fluid) emanated from a surface or sub-surface source and the duration of flow. The latter ties into whether solar insolation has an important effect on formation of the initial water source and subsequent mobilization. Initial studies of gullies indicated a poleward orientation dependence, an observation which has recently been challenged. Herein we investigate the orientation of Martian gullies and the dependence of various parameters on the orientation. Whereas previous studies have been global or through most of the southern hemisphere, we focus on several specific regions. This approach offers some advantages in that regional variations are factored out, such that of lithology, ground water table depth (if any), surface thermal properties, and other parameters are more or less the same in a given region. Differences in gully attributes as a function of orientation within a region can more easily be attributable to solar insolation effects than is the case for global statistics. We use the orientation to constrain several classes of gully formation hypotheses. 1) A favored orientation toward the pole across all regions could indicate a process dominated by melting of cold trapped ice, snow, or condensed volatiles from incident sunlight during summer under current conditions. 2) Variations among all regions would be more consistent with mechanisms less strongly tied to current solar insolation, such as geothermal heating of ice. 3) Favored orientations within specific regions, but differing among regions, could indicate a preference for poleward ices and melting, with orientation being a function of age and dependent on variations in obliquity and precision. We find that the gullies fall into either categories 2 or 3, but not 1, indicating the recent melting of cold trapped condensates is unlikely the sole formation mechanism.
Sinton, L W; Davies-Colley, R J; Bell, R G
1994-01-01
Inactivation in sunlight of fecal coliforms (FC) and enterococci (Ent) from sewage and meatworks effluents was measured in 300-liter effluent-seawater mixtures (2% vol/vol) held in open-topped chambers. Dark inactivation rates (kDs) were measured (from log-linear survival curves) in enclosed chambers and 6-liter pots. The kD for FC was 2 to 4 times that for Ent, and inactivation was generally slower at lower temperatures. Sunlight inactivation was described in terms of shoulder size (n) and the slope (k) of the log-linear portion of the survival curve as a function of global solar insolation and UV-B fluence. The n values tended to be larger for Ent than for FC, and the k values for FC were around twice those for Ent in both effluent-seawater mixtures. The combined sunlight data showed a general inactivation rate (k) ranking in effluent-seawater mixtures of meatworks FC > sewage FC > meatworks Ent > sewage Ent. Describing 90% inactivation in terms of insolation (S90) gave far less seasonal variation than T90 (time-dependent) values. However, there were significant differences in inactivation rates between experiments, indicating the contribution to inactivation of factors other than insolation. Inactivation rates under different long-pass optical filters decreased with the increase in the spectral cutoff wavelength (lambda 50) of the filters and indicated little contribution by UV-B to total inactivation. Most inactivation appeared to be caused by two main regions of the solar spectrum--between 318 and 340 nm in the UV region and > 400 nm in the visible region. PMID:8031097
Fundamentals and techniques of nonimaging optics for solar energy concentration
NASA Astrophysics Data System (ADS)
Winston, R.; Ogallaher, J. J.
1980-09-01
Recent progress in basic research into the theoretical understanding of nonimaging optical systems and their application to the design of practical solar concentration was reviewed. Work was done to extend the previously developed geometrical vector flux formalism with the goal of applying it to the analysis of nonideal concentrators. Both phase space and vector flux representation for traditional concentrators were generated. Understanding of the thermodynamically derived relationship between concentration and cavity effects led to the design of new lossless and low loss concentrators for absorbers with gaps. Quantitative measurements of the response of real collector systems and the distribution of diffuse insolation shows that in most cases performance exceeds predictions in solar applications. These developments led to improved nonimaging solar concentrator designs and applications.
The 1-kW solar Stirling experiment
NASA Technical Reports Server (NTRS)
Giandomenico, A.
1981-01-01
The objective of this experiment was to demonstrate electrical power generation using a small free-piston Stirling engine and linear alternator in conjunction with a parabolic solar collector. A test bed collector, formerly used at the JPL Table Mountain Observatory, was renovated and used to obtain practical experience and to determine test receiver performance. The collector was mounted on a two-axis tracker, with a cold water calorimeter mounted on the collector to measure its efficiency, while a separate, independently tracking radiometer was used to measure solar insolation. The solar receiver was designed to absorb energy from the collector, then transfer the resulting thermal energy to the Stirling engine. Successful testing of receiver/collector assembly yielded valuable inputs for design of the Stirling engine heater head.
The Status and Outlook for the Photovoltaics Industry
NASA Astrophysics Data System (ADS)
Carlson, David
2006-03-01
The first silicon solar cell was made at Bell Labs in 1954, and over the following decades, shipments of photovoltaic (PV) modules increased at a rate of about 18% annually. In the last several years, the annual growth rate has increased to ˜ 35% due largely to government-supported programs in Japan and Germany. Silicon technology has dominated the PV industry since its inception, and in 2005 about 65% of all solar cells were made from polycrystalline (or multicrystalline) silicon, 24% from monocrystalline silicon and ˜ 4% from ribbon silicon. While conversion efficiencies as high as 24.7% have been obtained in the laboratory for silicon solar cells, the best efficiencies for commercial PV modules are in the range of 17 18% (the efficiency limit for a silicon solar cell is ˜ 29%). A number of companies are commercializing solar cells based on other materials such as amorphous silicon, microcrystalline silicon, cadmium telluride, copper-indium-gallium-diselenide (CIGS), gallium arsenide (and related compounds) and dye- sensitized titanium oxide. Thin film CIGS solar cells have been fabricated with conversion efficiencies as high as 19.5% while efficiencies as high as 39% have been demonstrated for a GaInP/Ga(In)As/Ge triple-junction cell operating at a concentration of 236 suns. Thin film solar cells are being used in consumer products and in some building-integrated applications, while PV concentrator systems are being tested in grid-connected arrays located in high solar insolation areas. Nonetheless, crystalline silicon PV technology is likely to dominate the terrestrial market for at least the next decade with module efficiencies > 20% and module prices of < 1/Wp expected by 2020, which in turn should allow significant penetration of the utility grid market. However, crystalline silicon solar cells may be challenged in the next decade or two by new low-cost, high performance devices based on organic materials and nanotechnology.
Thermal energy storage for organic Rankine cycle solar dynamic space power systems
NASA Astrophysics Data System (ADS)
Heidenreich, G. R.; Parekh, M. B.
An organic Rankine cycle-solar dynamic power system (ORC-SDPS) comprises a concentrator, a radiator, a power conversion unit, and a receiver with a thermal energy storage (TES) subsystem which charges and discharges energy to meet power demands during orbital insolation and eclipse periods. Attention is presently given to the criteria used in designing and evaluating an ORC-SDPS TES, as well as the automated test facility employed. It is found that a substantial data base exists for the design of an ORC-SDPS TES subsystem.
NASA Technical Reports Server (NTRS)
Kolyer, J. M.; Mann, N. R.
1978-01-01
Inherent weatherability is controlled by the three weather factors common to all exposure sites: insolation, temperature, and humidity. Emphasis was focused on the transparent encapsulant portion of miniature solar cell arrays by eliminating weathering effects on the substrate and circuitry (which are also parts of the encapsulant system). The most extensive data were for yellowing, which were measured conveniently and precisely. Considerable data also were obtained on tensile strength. Changes in these two properties after outdoor exposure were predicted very well from accelerated exposure data.
Insolation-sunshine relation with site elevation and latitude
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raja, I.A.
1994-07-01
Data from six meteorological stations dispersed widely over Pakistan have been used to produce a correlation between the monthly means of easily measured sunshine duration and the less frequently recorded global solar radiation, taking into account the site elevation above sea level and the latitude. The relation is shown to be valuable for other regions too.
Evolutionary transformation of communal thermal-power engineering
NASA Astrophysics Data System (ADS)
Nakorchevskii, A. I.
2013-01-01
A solution is given to the problem of heat supply to multi-storied residential and office buildings with the use of solar insolation as the principal energy source making it possible to do away with the district heating of towns and settlements and to reduce expenditure of energy on heating and hot water supply by more than 85%.
Dinosaurs on the North Slope, Alaska: High latitude, latest cretaceous environments
Brouwers, E.M.; Clemens, W.A.; Spicer, R.A.; Ager, T.A.; Carter, L.D.; Sliter, W.V.
1987-01-01
Abundant skeletal remains demonstrate that lambeosaurine hadrosaurid, tyrannosaurid, and troodontid dinosaurs lived on the Alaskan North Slope during late Campanian-early Maestrichtian time (about 66 to 76 million years ago) in a deltaic environment dominated by herbaceous vegetation. The high ground terrestrial plant community was a mild- to cold-temperate forest composed of coniferous and broad leaf trees. The high paleolatitude (about 70?? to 85?? North) implies extreme seasonal variation in solar insolation, temperature, and herbivore food supply. Great distances of migration to contemporaneous evergreen floras and the presence of both juvenile and adult hadrosaurs suggest that they remained at high latitudes year-round. This challenges the hypothesis that short-term periods of darkness and temperature decrease resulting from a bolide impact caused dinosaurian extinction.
Solar thermal technologies benefits assessment: Objectives, methodologies and results for 1981
NASA Technical Reports Server (NTRS)
Gates, W. R.
1982-01-01
The economic and social benefits of developing cost competitive solar thermal technologies (STT) were assessed. The analysis was restricted to STT in electric applications for 16 high insolation/high energy price states. Three fuel price scenarios and three 1990 STT system costs were considered, reflecting uncertainty over fuel prices and STT cost projections. After considering the numerous benefits of introducing STT into the energy market, three primary benefits were identified and evaluated: (1) direct energy cost savings were estimated to range from zero to $50 billion; (2) oil imports may be reduced by up to 9 percent, improving national security; and (3) significant environmental benefits can be realized in air basins where electric power plant emissions create substantial air pollution problems. STT research and development was found to be unacceptably risky for private industry in the absence of federal support. The normal risks associated with investments in research and development are accentuated because the OPEC cartel can artificially manipulate oil prices and undercut the growth of alternative energy sources.
NASA Technical Reports Server (NTRS)
Gates, W. R.
1983-01-01
Estimated future energy cost savings associated with the development of cost-competitive solar thermal technologies (STT) are discussed. Analysis is restricted to STT in electric applications for 16 high-insolation/high-energy-price states. The fuel price scenarios and three 1990 STT system costs are considered, reflecting uncertainty over future fuel prices and STT cost projections. STT R&D is found to be unacceptably risky for private industry in the absence of federal support. Energy cost savings were projected to range from $0 to $10 billion (1990 values in 1981 dollars), dependng on the system cost and fuel price scenario. Normal R&D investment risks are accentuated because the Organization of Petroleum Exporting Countries (OPEC) cartel can artificially manipulate oil prices and undercut growth of alternative energy sources. Federal participation in STT R&D to help capture the potential benefits of developing cost-competitive STT was found to be in the national interest.
NASA Astrophysics Data System (ADS)
Gates, W. R.
1983-02-01
Estimated future energy cost savings associated with the development of cost-competitive solar thermal technologies (STT) are discussed. Analysis is restricted to STT in electric applications for 16 high-insolation/high-energy-price states. The fuel price scenarios and three 1990 STT system costs are considered, reflecting uncertainty over future fuel prices and STT cost projections. STT R&D is found to be unacceptably risky for private industry in the absence of federal support. Energy cost savings were projected to range from $0 to $10 billion (1990 values in 1981 dollars), dependng on the system cost and fuel price scenario. Normal R&D investment risks are accentuated because the Organization of Petroleum Exporting Countries (OPEC) cartel can artificially manipulate oil prices and undercut growth of alternative energy sources. Federal participation in STT R&D to help capture the potential benefits of developing cost-competitive STT was found to be in the national interest.
Solar thermal technologies benefits assessment: Objectives, methodologies and results for 1981
NASA Astrophysics Data System (ADS)
Gates, W. R.
1982-07-01
The economic and social benefits of developing cost competitive solar thermal technologies (STT) were assessed. The analysis was restricted to STT in electric applications for 16 high insolation/high energy price states. Three fuel price scenarios and three 1990 STT system costs were considered, reflecting uncertainty over fuel prices and STT cost projections. After considering the numerous benefits of introducing STT into the energy market, three primary benefits were identified and evaluated: (1) direct energy cost savings were estimated to range from zero to $50 billion; (2) oil imports may be reduced by up to 9 percent, improving national security; and (3) significant environmental benefits can be realized in air basins where electric power plant emissions create substantial air pollution problems. STT research and development was found to be unacceptably risky for private industry in the absence of federal support. The normal risks associated with investments in research and development are accentuated because the OPEC cartel can artificially manipulate oil prices and undercut the growth of alternative energy sources.
NASA Astrophysics Data System (ADS)
Nilsson, Martin; Jamot, Jakob; Malm, Tommy
2017-06-01
To field test its Stirling-dish unit, Cleanergy AB of Sweden in Q1 2015 built a ten unit demo park in Dubai. The first STE (Solar Thermal Energy) generation of its Stirling genset, the C11S, had at its core an 11 kWel Stirling engine/generator combination. The genset was mated with a parabolic concentrator developed for the genset by a supplier. Local weather conditions in Dubai provide opportunities to test performance in an environment with high insolation and high ambient temperature. In addition, the conditions in Dubai are windy, salty, humid and dusty, historically challenging for solar technologies [1]. In Q1 2016 one of the C11S Stirling-dish units was replaced by the first prototype of Cleanergy's second generation Stirling genset, the Sunbox, and an in-house developed parabolic concentrator. Operational data from field testing during the spring of 2016 are presented and discussed and show the large performance improvement achieved with the Sunbox unit.
Shaw, Kathryn E; Charlton, Jesse M; Perry, Christina K L; de Vries, Courtney M; Redekopp, Matthew J; White, Jordan A; Hunt, Michael A
2018-02-01
The effect of shoe-worn insoles on biomechanical variables in people with medial knee osteoarthritis has been studied extensively. The majority of research has focused specifically on the effect of lateral wedge insoles at the knee. The aim of this systematic review and meta-analysis was to summarise the known effects of different shoe-worn insoles on all biomechanical variables during level walking in this patient population to date. Four electronic databases were searched to identify studies containing biomechanical data using shoe-worn insole devices in the knee osteoarthritis population. Methodological quality was assessed and a random effects meta-analysis was performed on biomechanical variables reported in three or more studies for each insole. Twenty-seven studies of moderate-to-high methodological quality were included in this review. The primary findings were consistent reductions in the knee adduction moment with lateral wedge insoles, although increases in ankle eversion with these insoles were also found. Lateral wedge insoles produce small reductions in knee adduction angles and external moments, and moderate increases in ankle eversion. The addition of an arch support to a lateral wedge minimises ankle eversion change, and also minimises adduction moment reductions. The paucity of available data on other insole types and other biomechanical outcomes presents an opportunity for future research. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Numerical and experimental investigation of direct solar crop dryer for farmers
NASA Astrophysics Data System (ADS)
Kareem, M. W.; Habib, Khairul; Sulaiman, S. A.
2015-07-01
This article presents a theoretical and experimental investigation on effects of weather on direct solar crop drying technique. The SIMULINK tool was employed to analyze the energy balance equations of the transient system model. A prototype of the drying system was made and data were collected between the months of June and July in Perak, Malaysia. The contribution of intense sunny days was encouraging despite the wet season, and the wind velocity was dynamic during the period of investigation. However, high percentage of relative humidity was observed. This constitutes a hindrance to efficient drying process. The reported studies were silent on the effect of thick atmospheric moisture content on drying rate of agricultural products in tropic climate. This finding has revealed the mean values of insolation, wind speed, moisturized air, system performance efficiency and chili microscopy image morphology. The predicted and measured results were compared with good agreement.
The role of earth radiation budget studies in climate and general circulation research
NASA Technical Reports Server (NTRS)
Ramanathan, V.
1987-01-01
The use of earth radiation budget (ERB) data for climate and general circulation research is studied. ERB measurements obtained in the 1960's and 1970's have provided data on planetary brightness, planetary global energy balances, the greenhouse effect, solar insolation, meridional heat transport by oceans and atmospheres, regional forcing, climate feedback processes, and the computation of albedo values in low latitudes. The role of clouds in governing climate, in influencing the general circulation, and in determining the sensitivity of climate to external perturbations needs to be researched; a procedure for analyzing the ERB data, which will address these problems, is described. The approach involves estimating the clear-sky fluxes from the high spatial resolution scanner measurement and defining a cloud radiative forcing; the global average of the sum of the solar and long-wave cloud forcing yields the net radiative effect of clouds on the climate.
Solar radiation on Mars: Update 1991
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Landis, Geoffrey A.
1991-01-01
Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data are presented from which the daily variation of the global, direct beam and diffuse insolation on Mars are calculated. Given the optical depth of the Mars atmosphere, the global radiation is calculated from the normalized net flux function based on multiple wavelength and multiple scattering of the solar radiation. The direct beam was derived from the optical depth using Beer's law, and the diffuse component was obtained from the difference of the global and the direct beam radiation. The optical depths of the Mars atmosphere were derived from images taken of the Sun with a special diode on the cameras used on the two Viking Landers.
Early-Holocene decoupled summer temperature and monsoon precipitation in southwest China
NASA Astrophysics Data System (ADS)
Wu, D.; Chen, F.; Chen, X.; Lv, F.; Zhou, A.; Chen, J.; Abbott, M. B.; Yu, J.
2017-12-01
Proxy based reconstructions of Holocene temperature have shown that both the timing and magnitude of the thermal maximum vary substantially between different regions; the simulations results from climate models also show that summers were substantially cooler over regions directly influenced by the presence of the Laurentide ice sheet during the early Holocene, whereas other regions of the Northern Hemisphere were dominated by orbital forcing. However, for lack of summer temperature reconstruction in the low latitude regions like southwestern China dominated by the Indian summer monsoon, the Holocene summer temperature variations and it underlying forcing mechanism are ambiguous. Here we present a well-dated record of pollen-based quantitative summer temperature (mean July; MJT) over the last 14000 years from Xingyun Lake, Yunnan Province, southwest China. It was found that MJT decreased during the YD event, then increased slowly until 7400 yr BP, and decreased thereafter. The MJT shows a pattern with middle Holocene maximum of MJT, indicating a different changing pattern with the carbonate oxygen isotope record (d18O) from the same core during the early Holocene (11500-7400 yr BP), which has the similar variation with speleothem d18O record from Dongge cave, both indicate the variation of monsoon precipitation with the highest precipitation occurred during the early Holocene. Therefore, we propose that the variation of summer temperature and precipitation in southwest China was decoupled during the early Holocene. However, both MJT and monsoon precipitation decreased after the middle Holocene following the boreal summer insolation. We suggest that the high precipitation with strong summer monsoon and hence higher cloud cover may depress the temperature increasing forced by increasing summer insolation during the early Holocene; while melting ice-sheet in the high latitude regions had strongly influenced the summer temperature increase during the deglacial period, which weakened northward heat transport by the ocean. In addition, the high concentration of atmospheric aerosol during the early Holocene may also have partly contribution to the cool summer temperature by weakening solar insolation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, B.; Valdes, P.J.
The U.K. University Global Atmospheric Modeling Programme GCM is used to investigate whether the growth of Northern Hemisphere ice sheets could have been initiated by changes of orbital parameters and sea surface temperatures. Two different orbital configurations, corresponding to the present day and 115 kyr BP are used. The reduced summer solar insolation in the Northern Hemisphere results in a decrease of the surface temperature by 4{degrees} to 10{degrees}C in the northern continents and to perennial snow in some high-latitude regions. Therefore, the model results support the hypothesis that a deficit of summer insolation can create conditions favorable for initiationmore » of ice sheet growth in the Northern Hemisphere. A decreased sea surface temperature northward of 65{degrees}N during the Northern Hemisphere summer may contribute to the maintenance of ice sheets. A simple mixed-layer ocean model coupled to the GCM indicates that the changes of sea surface temperature and extension of sea ice due to insolation changes play an important role in inception of the Fennoscandian, Laurentide, and Cordilleran ice sheets. The model results suggest that the regions of greatest sensitivity for ice initiation are the Canadian Archipelago, Baffin Island, Tibetan Plateau, Scandinavia, Siberia, Alaska, and Keewatin, where changing orbital parameters to 115 kyr BP results in the snow cover remaining throughout the warmer summer, leading to long-term snow accumulation. The model results are in general agreement with geological evidence and are the first time that a GCM coupled with a mixed layer ocean has reproduced the inception of the Northern Hemisphere ice sheets. 69 refs., 21 figs., 3 tabs.« less
Development and Testing of Shingle-type Solar Cell Modules
NASA Technical Reports Server (NTRS)
Shepard, N. F., Jr.
1979-01-01
The design, development, fabrication and testing of a shingle-type terrestrial solar cell module which produces 98 watts/sq m of exposed module area at 1 kW/sq m insolation and 61 C are reported. These modules make it possible to easily incorporate photovoltaic power generation into the sloping roofs of residential or commercial buildings by simply nailing the modules to the plywood roof sheathing. This design consists of nineteen series-connected 53 mm diameter solar cells arranged in a closely packed hexagon configuration. These cells are individually bonded to the embossed surface of a 3 mm thick thermally tempered hexagon-shaped piece of glass. Polyvinyl butyral is used as the laminating adhesive.
Owings, Tammy M; Woerner, Julie L; Frampton, Jason D; Cavanagh, Peter R; Botek, Georgeanne
2008-05-01
The purpose of this study was to determine whether custom insoles tailored to contours of the barefoot pressure distribution and shape of a patient's foot can reduce plantar pressures in the metatarsal head (MTH) region to a greater extent than conventional custom insoles. Seventy regions of elevated barefoot pressures (mean peak 834 kPa under MTHs) were identified in 20 subjects with diabetes. Foam box impressions of their feet were sent to three different orthotic supply companies for fabrication of custom insoles. One company was also given plantar pressure data, which were incorporated into the insole design. Measurements of in-shoe plantar pressures were recorded during gait for the three custom insoles in a flexible and a rocker-bottom shoe. Peak pressure and force-time integral were extracted for analysis. In 64 of 70 regions, the shape-plus-pressure-based insole in the flexible shoe achieved superior unloading compared with the two shape-based insoles. On average, peak pressure was reduced by 32 and 21% (both P
Estimation of available global solar radiation using sunshine duration over South Korea
NASA Astrophysics Data System (ADS)
Das, Amrita; Park, Jin-ki; Park, Jong-hwa
2015-11-01
Besides designing a solar energy system, accurate insolation data is also a key component for many biological and atmospheric studies. But solar radiation stations are not widely available due to financial and technical limitations; this insufficient number affects the spatial resolution whenever an attempt is made to construct a solar radiation map. There are several models in literature for estimating incoming solar radiation using sunshine fraction. Seventeen of such models among which 6 are linear and 11 non-linear, have been chosen for studying and estimating solar radiation on a horizontal surface over South Korea. The better performance of a non-linear model signifies the fact that the relationship between sunshine duration and clearness index does not follow a straight line. With such a model solar radiation over 79 stations measuring sunshine duration is computed and used as input for spatial interpolation. Finally monthly solar radiation maps are constructed using the Ordinary Kriging method. The cross validation results show good agreement between observed and predicted data.
NASA Astrophysics Data System (ADS)
Oke, Shinichiro; Kemmoku, Yoshishige; Takikawa, Hirofumi; Sakakibara, Tateki
The reduction effect of life cycle CO2 emission is examined in case of introducing a PV/solar heat/cogeneration system into public welfare facilities(hotel and hospital). Life cycle CO2 emission is calculated as the sum of that when operating and that when manufacturing equipments. The system is operated with the dynamic programming method, into which hourly data of electric and heat loads, solar insolation, and atmospheric temperature during a year are input. The proposed system is compared with a conventional system and a cogeneration system. The life cycle CO2 emission of the PV/solar heat/cogeneration system is lower than that of the conventional system by 20% in hotel and by 14% in hospital.
NASA Astrophysics Data System (ADS)
Yarwindran, M.; Ibrahim, M.; Raveverma, P.
2017-04-01
There are many important roles of the orthotic insoles, such as for the convenience purpose of diabetic patient's foot problem, and also to enhance athlete's performance in sports. Therefore, highly customised insoles were in demand, where it has to be fabricated by moulding plaster of Paris on the person's leg to customise the insole. The main purpose of the paper is to study the ability to implement additive manufacturing technology in the fabrication process of customised orthotics insole. The recent invention of flexible material (Filaflex) in Fused Deposition Modelling is the most significant reason that makes this fabrication process possible. By implementing a new approach to the 3D scanning of the foot, we produced the computer-aided drafting (CAD) drawing which was able to modify to desired shape and dimension. After the editing has been completed, the file was converted to Stereolithography format file (STL) as to enable it to be printed using Makerware or any other related software by sending command (G-code) to Flashforge 3D printer. The printed insole was tested its fit, form and function (also known as 3F). In the end, printed insole performs the function test which measures the plantar pressure of the foot compared with bare foot. The results show that the insole distributes pressure well throughout the foot surface, in which it reduced the peak pressure to half from 218KPa to 109KPa. Hence, it is concluded that the method proposed in this paper can produce a functional insole so that it can be the alternative way to make customised orthotic insoles.
Assessing the Utility of Temporally Dynamic Terrain Indices in Alaskan Moose Resource Selection
NASA Astrophysics Data System (ADS)
Jennewein, J. S.; Hebblewhite, M.; Meddens, A. J.; Gilbert, S.; Vierling, L. A.; Boelman, N.; Eitel, J.
2017-12-01
The accelerated warming in arctic and boreal regions impacts ecosystem structure and plant species distribution, which have secondary effects on wildlife. In summer months, moose (Alces alces) are especially vulnerable to changes in the availability and quality of forage and foliage cover due to their thermoregulatory needs and high energetic demands post calving. Resource selection functions (RSFs) have been used with great success to model such tradeoffs in habitat selection. Recently, RSFs have expanded to include more dynamic representations of habitat selection through the use of time-varying covariates such as dynamic habitat indices. However, to date few studies have investigated dynamic terrain indices, which incorporate long-term, highly-dynamic meteorological data (e.g., albedo, air temperature) and their utility in modeling habitat selection. The purpose of this study is to compare two dynamic terrain indices (i.e., solar insolation and topographic wetness) to their static counterparts in Alaskan moose resource selection over a ten-year period (2008-2017). Additionally, the utility of a dynamic wind-shelter index is assessed. Three moose datasets (n=130 total), spanning a north-to-south gradient in Alaska, are analyzed independently to assess location-specific resource selection. The newly-released, high-resolution Arctic Digital Elevation Model (5m2) is used as the terrain input into both dynamic and static indices. Dynamic indices are programmed with meteorological data from the North American Regional Analysis (NARR) and NASA's Goddard Earth Sciences Data and Information Services Center (GES-DISC) databases. Static wetness and solar insolation indices are estimated using only topographic parameters (e.g., slope, aspect). Preliminary results from pilot analyses suggest that dynamic terrain indices may provide novel insights into resource selection of moose that could not be gained when using static counterparts. Future applications of such dynamic terrain indices that incorporate time-varying meteorological data may be increasingly important in modelling habitat selection under continued climate change scenarios.
NASA Astrophysics Data System (ADS)
El-Shobokshy, Mohammad S.; Al-Saedi, Yaseen G.
This paper investigates some of the air pollution problems which have been created as a result of the Gulf war in early 1991. Temporary periods of increased dust storm activity have been observed in Saudi Arabia. This is presumably due to disturbance of the desert surface by the extremely large number of tanks and other war machines before and during the war. The concentrations of inhalable dust particles (<15 μm) increased during the months just after the war by a factor of about 1.5 of their values during the same months of the previous year, 1990. The total horizontal solar energy flux in Riyadh has been significantly reduced during dry days with no clouds. This is attributed to the presence of soot particles, which have been generated at an extremely high rate from the fired oil fields in Kuwait. The direct normal solar insolation were also measured at the photovoltaic solar power plant in Riyadh during these days and significant reductions were observed due to the effective absorption of solar radiation by soot particles. The generated power from the plant has been reduced during days with a polluted atmosphere by about 50-80% of the expected value for such days, if the atmosphere were dry and clear.
Effects of Textured Insoles on Balance in People with Parkinson’s Disease
Qiu, Feng; Cole, Michael H.; Davids, Keith W.; Hennig, Ewald M.; Silburn, Peter A.; Netscher, Heather; Kerr, Graham K.
2013-01-01
Background Degradation of the somatosensory system has been implicated in postural instability and increased falls risk for older people and Parkinson’s disease (PD) patients. Here we demonstrate that textured insoles provide a passive intervention that is an inexpensive and accessible means to enhance the somatosensory input from the plantar surface of the feet. Methods 20 healthy older adults (controls) and 20 participants with PD were recruited for the study. We evaluated effects of manipulating somatosensory information from the plantar surface of the feet using textured insoles. Participants performed standing tests, on two different surfaces (firm and foam), under three footwear conditions: 1) barefoot; 2) smooth insoles; and 3) textured insoles. Standing balance was evaluated using a force plate yielding data on the range of anterior-posterior and medial-lateral sway, as well as standard deviations for anterior-posterior and medial-lateral sway. Results On the firm surface with eyes open both the smooth and textured insoles reduced medial-lateral sway in the PD group to a similar level as the controls. Only the textured insole decreased medial-lateral sway and medial-lateral sway standard deviation in the PD group on both surfaces, with and without visual input. Greatest benefits were observed in the PD group while wearing the textured insoles, and when standing on the foam surface with eyes closed. Conclusions Data suggested that textured insoles may provide a low-cost means of improving postural stability in high falls-risk groups, such as people with PD. PMID:24349486
A solar thermal electric power plant for small communities
NASA Technical Reports Server (NTRS)
Holl, R. J.
1979-01-01
A solar power plant has been designed with a rating of 1000-kW electric and a 0.4 annual capacity factor. It was configured as a prototype for plants in the 1000 to 10,000-kWe size range for application to small communities or industrial users either grid-connected or isolated from a utility grid. A small central receiver was selected for solar energy collection after being compared with alternative distributed collectors. Further trade studies resulted in the selection of Hitec (heat transfer salt composed of 53 percent KNO3, 40 percent NaNO2, 7 percent NaNO3) as both the receiver coolant and the sensible heat thermal stroage medium and the steam Rankine cycle for power conversion. The plant is configured with road-transportable units to accommodate remote sites and minimize site assembly requirements. Results of the analyses indicate that busbar energy costs are competitive with diesel-electric plants in certain situations, e.g., off-grid, remote regions with high insolation. Sensitivity of energy costs to plant power rating and system capacity factor are given.
Simulated Effect of Carbon Cycle Feedback on Climate Response to Solar Geoengineering
NASA Astrophysics Data System (ADS)
Cao, Long; Jiang, Jiu
2017-12-01
Most modeling studies investigate climate effects of solar geoengineering under prescribed atmospheric CO2, thereby neglecting potential climate feedbacks from the carbon cycle. Here we use an Earth system model to investigate interactive feedbacks between solar geoengineering, global carbon cycle, and climate change. We design idealized sunshade geoengineering simulations to prevent global warming from exceeding 2°C above preindustrial under a CO2 emission scenario with emission mitigation starting from middle of century. By year 2100, solar geoengineering reduces the burden of atmospheric CO2 by 47 PgC with enhanced carbon storage in the terrestrial biosphere. As a result of reduced atmospheric CO2, consideration of the carbon cycle feedback reduces required insolation reduction in 2100 from 2.0 to 1.7 W m-2. With higher climate sensitivity the effect from carbon cycle feedback becomes more important. Our study demonstrates the importance of carbon cycle feedback in climate response to solar geoengineering.
Regional comparisons of on-site solar potential in the residential and industrial sectors
NASA Astrophysics Data System (ADS)
Gatzke, A. E.; Skewes-Cox, A. O.
1980-10-01
Regional and subregional differences in the potential development of decentralized solar technologies are studied. Two sectors of the economy were selected for intensive analysis: the residential and industrial sectors. The sequence of analysis follows the same general steps: (1) selection of appropriate prototypes within each land use sector disaggregated by census region; (2) characterization of the end-use energy demand of each prototype in order to match an appropriate decentralized solar technology to the energy demand; (3) assessment of the energy conservation potential within each prototype limited by land use patterns, technology efficiency, and variation in solar insolation; and (4) evaluation of the regional and subregional differences in the land use implications of decentralized energy supply technologies that result from the combination of energy demand, energy supply potential, and the subsequent addition of increasingly more restrictive policies to increase the percent contribution of on-site solar energy.
Self-organization, transformity, and information.
Odum, H T
1988-11-25
Ecosystems and other self-organizing systems develop system designs and mathematics that reinforce energy use, characteristically with alternate pulsing of production and consumption, increasingly recognized as the new paradigm. Insights from the energetics of ecological food chains suggest the need to redefine work, distinguishing kinds of energy with a new quantity, the transformity (energy of one type required per unit of another). Transformities may be used as an energy-scaling factor for the hierarchies of the universe including information. Solar transformities in the biosphere, expressed as solar emjoules per joule, range from one for solar insolation to trillions for categories of shared information. Resource contributions multiplied by their transformities provide a scientifically based value system for human service, environmental mitigation, foreign trade equity, public policy alternatives, and economic vitality.
The development of an air Brayton and a steam Rankine solar receiver
NASA Technical Reports Server (NTRS)
Greeven, M. V.
1980-01-01
An air Brayton and a steam Rankine solar receiver now under development are described. These cavity receivers accept concentrated insolation from a single point focus, parabolic concentrator, and use this energy to heat the working fluid. Both receivers were designed for a solar input of 85 kw. The air Brayton receiver heats the air to 816 C. A metallic plate-fin heat transfer surface is used in this unit to effect the energy transfer. The steam Rankine receiver was designed as a once-through boiler with reheat. The receiver heats the water to 704 C to produce steam at 17.22 MPa in the boiler section. The reheat section operates at 1.2 MPA, reheating the steam to 704 C.
Turbine sizing of a solar thermal power plant
NASA Technical Reports Server (NTRS)
Manvi, R.; Fujita, T.
1979-01-01
Since the insolation is intermittent, thermal energy storage is necessary to extend the time of power generation with solar heat past sunset. There are two approaches to specifying the size of turbine-generator units depending on the system operation. In the first approach, the turbine operates at its full capacity when operating on direct solar heat, and at reduced capacity when operating on collected heat out of energy storage. In the second approach, the turbine will always operate at a uniform level either on derated energy from the receiver or from energy storage. Both of these approaches have certain advantages and disadvantages. In this paper, a simple analysis is outlined and exercised to compare the performance and economics of these two approaches.
NASA Technical Reports Server (NTRS)
Hiser, H. W.; Senn, H. V.; Bukkapatnam, S. T.; Akyuzlu, K.
1977-01-01
The use of cloud images in the visual spectrum from the SMS/GOES geostationary satellites to determine the hourly distribution of sunshine on a mesoscale in the continental United States excluding Alaska is presented. Cloud coverage and density as a function of time of day and season are evaluated through the use of digital data processing techniques. Low density cirrus clouds are less detrimental to solar energy collection than other types; and clouds in the morning and evening are less detrimental than those during midday hours of maximum insolation. Seasonal geographic distributions of cloud cover/sunshine are converted to langleys of solar radiation received at the earth's surface through relationships developed from long term measurements at six widely distributed stations.
NASA Technical Reports Server (NTRS)
Yanow, Gilbert
1996-01-01
Pyranometer generates output potential of about 300 mV in maximum sunlight. Designed to monitor insolation at accuracy within 5 percent of accuracy of instruments ordinarily used for this purpose. Suitable for use in school laboratories and perhaps in commercial facilities where expense of more precise instrument not justified. Slightly more complex pyranometer intended primarily for use in agricultural setting described in "Inexpensive Meter For Total Solar Radiation" (NPO-16741).
NASA Technical Reports Server (NTRS)
Billman, Kenneth W.; Gilbreath, William P.; Bowen, Stuart W.
1978-01-01
A system of orbiting, large-area, low mass density reflector satellites which provide nearly continuous solar energy to a world-distributed set of conversion sites is examined under the criteria for any potential new energy system: technical feasibility, significant and renewable energy impact, economic feasibility and social/political acceptability. Although many technical issues need further study, reasonable advances in space technology appear sufficient to implement the system. The enhanced insolation is shown to greatly improve the economic competitiveness of solar-electric generation to circa 1995 fossil/nuclear alternatives. The system is shown to have the potential for supplying a significant fraction of future domestic and world energy needs. Finally, the environmental and social issues, including a means for financing such a large shift to a world solar energy dependence, is addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michaels, A.I.; Sillman, S.; Baylin, F.
1983-05-01
A central solar-heating plant with seasonal heat storage in a deep underground aquifer is designed by means of a solar-seasonal-storage-system simulation code based on the Solar Energy Research Institute (SERI) code for Solar Annual Storage Simulation (SASS). This Solar Seasonal Storage Plant is designed to supply close to 100% of the annual heating and domestic-hot-water (DHW) load of a hypothetical new community, the Fox River Valley Project, for a location in Madison, Wisconsin. Some analyses are also carried out for Boston, Massachusetts and Copenhagen, Denmark, as an indication of weather and insolation effects. Analyses are conducted for five different typesmore » of solar collectors, and for an alternate system utilizing seasonal storage in a large water tank. Predicted seasonal performance and system and storage costs are calculated. To provide some validation of the SASS results, a simulation of the solar system with seasonal storage in a large water tank is also carried out with a modified version of the Swedish Solar Seasonal Storage Code MINSUN.« less
NASA Astrophysics Data System (ADS)
Brines, M.; Dall'Osto, M.; Beddows, D. C. S.; Harrison, R. M.; Gómez-Moreno, F.; Núñez, L.; Artíñano, B.; Costabile, F.; Gobbi, G. P.; Salimi, F.; Morawska, L.; Sioutas, C.; Querol, X.
2015-05-01
Road traffic emissions are often considered the main source of ultrafine particles (UFP, diameter smaller than 100 nm) in urban environments. However, recent studies worldwide have shown that - in high-insolation urban regions at least - new particle formation events can also contribute to UFP. In order to quantify such events we systematically studied three cities located in predominantly sunny environments: Barcelona (Spain), Madrid (Spain) and Brisbane (Australia). Three long-term data sets (1-2 years) of fine and ultrafine particle number size distributions (measured by SMPS, Scanning Mobility Particle Sizer) were analysed. Compared to total particle number concentrations, aerosol size distributions offer far more information on the type, origin and atmospheric evolution of the particles. By applying k-means clustering analysis, we categorized the collected aerosol size distributions into three main categories: "Traffic" (prevailing 44-63% of the time), "Nucleation" (14-19%) and "Background pollution and Specific cases" (7-22%). Measurements from Rome (Italy) and Los Angeles (USA) were also included to complement the study. The daily variation of the average UFP concentrations for a typical nucleation day at each site revealed a similar pattern for all cities, with three distinct particle bursts. A morning and an evening spike reflected traffic rush hours, whereas a third one at midday showed nucleation events. The photochemically nucleated particles' burst lasted 1-4 h, reaching sizes of 30-40 nm. On average, the occurrence of particle size spectra dominated by nucleation events was 16% of the time, showing the importance of this process as a source of UFP in urban environments exposed to high solar radiation. Nucleation events lasting for 2 h or more occurred on 55% of the days, this extending to > 4 h in 28% of the days, demonstrating that atmospheric conditions in urban environments are not favourable to the growth of photochemically nucleated particles. In summary, although traffic remains the main source of UFP in urban areas, in developed countries with high insolation urban nucleation events are also a main source of UFP. If traffic-related particle concentrations are reduced in the future, nucleation events will likely increase in urban areas, due to the reduced urban condensation sinks.
NASA Astrophysics Data System (ADS)
Czirjak, Daniel
2017-04-01
Remote sensing platforms have consistently demonstrated the ability to detect, and in some cases identify, specific targets of interest, and photovoltaic solar panels are shown to have a unique spectral signature that is consistent across multiple manufacturers and construction methods. Solar panels are proven to be detectable in hyperspectral imagery using common statistical target detection methods such as the adaptive cosine estimator, and false alarms can be mitigated through the use of a spectral verification process that eliminates pixels that do not have the key spectral features of photovoltaic solar panel reflectance spectrum. The normalized solar panel index is described and is a key component in the false-alarm mitigation process. After spectral verification, these solar panel arrays are confirmed on openly available literal imagery and can be measured using numerous open-source algorithms and tools. The measurements allow for the assessment of overall solar power generation capacity using an equation that accounts for solar insolation, the area of solar panels, and the efficiency of the solar panels conversion of solar energy to power. Using a known location with readily available information, the methods outlined in this paper estimate the power generation capabilities within 6% of the rated power.
Modeling North American Ice Sheet Response to Changes in Precession and Obliquity
NASA Astrophysics Data System (ADS)
Tabor, C.; Poulsen, C. J.; Pollard, D.
2012-12-01
Milankovitch theory proposes that changes in insolation due to orbital perturbations dictate the waxing and waning of the ice sheets (Hays et al., 1976). However, variations in solar forcing alone are insufficient to produce the glacial oscillations observed in the climate record. Non-linear feedbacks in the Earth system likely work in concert with the orbital cycles to produce a modified signal (e.g. Berger and Loutre, 1996), but the nature of these feedbacks remain poorly understood. To gain a better understand of the ice dynamics and climate feedbacks associated with changes in orbital configuration, we use a complex Earth system model consisting of the GENESIS GCM and land surface model (Pollard and Thompson, 1997), the Pennsylvania State University ice sheet model (Pollard and DeConto, 2009), and the BIOME vegetation model (Kaplan et al., 2001). We began this study by investigating ice sheet sensitivity to a range of commonly used ice sheet model parameters, including mass balance and albedo, to optimize simulations for Pleistocene orbital cycles. Our tests indicate that choice of mass balance and albedo parameterizations can lead to significant differences in ice sheet behavior and volume. For instance, use of an insolation-temperature mass balance scheme (van den Berg, 2008) allows for a larger ice sheet response to orbital changes than the commonly employed positive degree-day method. Inclusion of a large temperature dependent ice albedo, representing phenomena such as melt ponds and dirty ice, also enhances ice sheet sensitivity. Careful tuning of mass balance and albedo parameterizations can help alleviate the problem of insufficient ice sheet retreat during periods of high summer insolation (Horton and Poulsen, 2007) while still accurately replicating the modern climate. Using our optimized configuration, we conducted a series of experiments with idealized transient orbits in an asynchronous coupling scheme to investigate the influence of obliquity and precession on the Laurentide and Cordillera ice sheets of North America. Preliminary model results show that the ice sheet response to changes in obliquity are larger than for precession despite providing a smaller direct insolation variation in the Northern Hemisphere high latitudes. A combination of enhanced Northern Hemisphere mid-latitude temperature gradient and longer cycle duration allow for a larger ice sheet response to obliquity than would be expected from insolation forcing alone. Conversely, a shorter duration dampens the ice sheet response to precession. Nevertheless, the precession cycle does cause significant changes in ice volume, a feature not observed in the Early Pleistocene δ18O records (Raymo and Nisancioglu, 2003). Future work will examine the climate response to an idealized transient orbit that includes concurrent variations in obliquity, precession, and eccentricity.
Achievement of ultrahigh solar concentration with potential for efficient laser pumping.
Gleckman, P
1988-11-01
Measurements are reported of the irradiance produced by a two-stage solar concentrator designed to approach the thermodynamic limit. Sunlight is collected by a 40.6-cm diam parabolic primary which forms a 0.98-cm diam image. The image is reconcentrated by a nonimaging refracting secondary with index n = 1.53 to a final aperture 1.27 mm in diameter. Thus the geometrical concentration ratio is 102, 000. The highest irradiance value achieved was 4.4 +/- 0.2 kW cm(-2), or 56,000 +/- 5000 suns, relative to a solar disk insolation of 800 W m(-2). This is greater than the previous peak solar irradiance record by nearly a factor of 3, and it is 68% of that existing at the solar surface itself. The efficiency with which we concentrated 55 W of sunlight to a small spot suggests that our two-stage system would be an excellent candidate for solar pumping of solid state lasers.
Storage requirement definition study
NASA Technical Reports Server (NTRS)
Stacy, L. E.; Wesling, G. C.; Zimmerman, W. F.
1980-01-01
A dish Stirling solar receiver (DSSR) and a heat pipe solar receiver with TES (HPSR) for a 25 kWe dish Stirling solar power system are described. The thermal performance and cost effectiveness of each are analyzed minute by minute over the equivalent of one year of solar insolation. Existing designs of these two systems were used as a basis for the study; TES concepts for the DSSR and alternative TES concepts for the HPSR are presented. Parametric performance and cost studies were performed to determine the operating and cost characteristics of these systems. Data are reported for systems (1) without TES and with varying amounts of TES, (2) with and without a fossil fuel combustor, (3) with varying solar to fossil power input, and (4) with different system control assumptions. The principal effects of TES duration, collector area, engine efficiency, and fuel cost sensitivity are indicated. Development needs for each of the systems are discussed and the need and nature of possible future TES solar modular experiments are presented and discussed.
Evaporation of ice in planetary atmospheres - Ice-covered rivers on Mars
NASA Technical Reports Server (NTRS)
Wallace, D.; Sagan, C.
1979-01-01
The existence of ice covered rivers on Mars is considered. It is noted that the evaporation rate of water ice on the surface of a planet with an atmosphere involves an equilibrium between solar heating and radiative and evaporative cooling of the ice layer. It is determined that even with a mean Martian insolation rate above the ice of approximately 10 to the -8th g per sq cm/sec, a flowing channel of liquid water will be covered by ice which evaporates sufficiently slowly that the water below can flow for hundreds of kilometers even with modest discharges. Evaporation rates are calculated for a range of frictional velocities, atmospheric pressures, and insolations and it is suggested that some subset of observed Martian channels may have formed as ice-choked rivers. Finally, the exobiological implications of ice covered channels or lakes on Mars are discussed.
Synchronous interhemispheric Holocene climate trends in the tropical Andes
Polissar, Pratigya J.; Abbott, Mark B.; Wolfe, Alexander P.; Vuille, Mathias; Bezada, Maximiliano
2013-01-01
Holocene variations of tropical moisture balance have been ascribed to orbitally forced changes in solar insolation. If this model is correct, millennial-scale climate evolution should be antiphased between the northern and southern hemispheres, producing humid intervals in one hemisphere matched to aridity in the other. Here we show that Holocene climate trends were largely synchronous and in the same direction in the northern and southern hemisphere outer-tropical Andes, providing little support for the dominant role of insolation forcing in these regions. Today, sea-surface temperatures in the equatorial Pacific Ocean modulate rainfall variability in the outer tropical Andes of both hemispheres, and we suggest that this mechanism was pervasive throughout the Holocene. Our findings imply that oceanic forcing plays a larger role in regional South American climate than previously suspected, and that Pacific sea-surface temperatures have the capacity to induce abrupt and sustained shifts in Andean climate. PMID:23959896
NASA Astrophysics Data System (ADS)
Nelson, R. M.; Boryta, M. D.; Hapke, B. W.; Manatt, K. S.; Shkuratov, Y.; Vandervoort, K.; Vides, C.; Quinones, J.
2017-12-01
We report reflectance phase curves of selected materials, including several that, if distributed as particulate aerosols, might regulate solar insolation and hence reduce Earth's surface temperature. (See e.g. Teller et al., 1997). We have identified several materials that have phase functions that are remarkably backscattering at very small phase angles (Nelson et al., 2017). When these materials are of appropriately small particle size and in the form of dispersed discrete random media, they are highly reflective at ultraviolet and visual wavelengths. Particles of less than 0.5 microns in diameter are transparent in the infrared. The most promising of these is the mineral halite (NaCl). NaCl and its sister materials exhibit this property due to their simple cubic crystal structure. In crystalline form they are `corner cube' reflectors similar to those on bicycle reflectors used throughout the world, and in arrays deployed by astronauts on the Moon for precise distance determination. As aerosols distributed in relatively small quantities, NaCl might reduce the solar forcing function by several W/m2, the amount estimated by the IPCC to be the anthropogenic contribution to global warming. Furthermore, NaCl is environmentally benign and, as a particulate aerosol, it would have short residence time in the atmosphere. With great trepidation, we suggest potential use in these areas: Temporary regional application to mitigate short-term, life-threatening conditions in areas where extreme temperature events are expected on timescales of days, and Global application for immediate relief during a near-term transition period to an atmosphere that is generally free of anthropogenic greenhouse gas. We offer this as a temporary relief measure and not a solution, somewhat analogous to the application of morphine in a medical situation. This work partially supported by NASA's Cassini Orbiter Program
Seasonal/Latitudinal Models of Stratospheric Photochemistry on Saturn
NASA Astrophysics Data System (ADS)
Moses, J. I.; Greathouse, T. K.
2004-11-01
To date, most investigations of stratospheric photochemistry on the outer planets have involved one-dimensional (1-D) ``global-average'' or single-latitude models for a single season. With Cassini CIRS poised to map hydrocarbon distributions across Saturn, and with advances in detector technology and telescope size for Earth-based observations allowing composition and temperatures to be derived as a function of latitude, we are now in a position to evaluate the effectiveness of 1-D models in describing the stratospheric composition. Are 2-D models that include meridional transport necessary to reproduce the observed hydrocarbon latitudinal distributions, or can 1-D seasonal models provide an accurate description? In order to evaluate these questions, we have developed a realistic, time-variable, 1-D seasonal model for stratospheric photochemistry on Saturn. The model accounts for variations in orbital position and in ultraviolet flux due to solar-cycle variations and ring-shadow effects. The results for one Saturnian year, starting at Ls = 0o in 1980 and running until the next vernal equinox in 2009, are presented for numerous latitudes. Due to the long vertical diffusion time scale at pressures greater than ˜1 mbar, we find that seasonal effects are more pronounced at high altitudes. In addition, a phase lag between insolation and chemical response increases with increasing pressure. In the summer hemisphere, hydrocarbon abundances do not exhibit much variation with latitude because the increase in the length of the day with increasing latitude counterbalances the increasing solar zenith angle, causing the daily-averaged insolation to remain nearly constant over a wide range of latitudes. Latitudinal variations are more pronounced during other seasons. We compare our model results with various observations.
Modeling a solar-heated anaerobic digester for the developing world using system dynamics
NASA Astrophysics Data System (ADS)
Bentley, Johanna Lynn
Much of the developing world lacks access to a dependable source of energy. Agricultural societies such as Mozambique and Papua New Guinea could sustain a reliable energy source through the microbacterial decomposition of animal and crop waste. Anaerobic digestion produces methane, which can be used directly for heating, cooking, and lighting. Adding a solar component to the digester provides a catalyst for bacteria activity, accelerating digestion and increasing biogas production. Using methane decreases the amount of energy expended by collecting and preparing firewood, eliminates hazardous health effects linked to inhalation of particles, and provides energy close to where it is needed. The purpose of this work is two fold: initial efforts focus on the development and validation of a computer-based system dynamics model that combines elements of the anaerobic digestion process in order to predict methane output; second, the model is flexed to explore how the addition of a solar component increases robustness of the design, examines predicted biogas generation as a function of varying input conditions, and determines how best to configure such systems for use in varying developing world environments. Therefore, the central components of the system: solar insolation, waste feedstock, bacteria population and consumption rates, and biogas production are related both conceptually and mathematically through a serious of equations, conversions, and a causal loop and feedback diagram. Given contextual constraints and initial assumptions for both locations, it was determined that solar insolation and subsequent digester temperature control, amount of waste, and extreme weather patterns had the most significant impact on the system as a whole. Model behavior was both reproducible and comparable to that demonstrated in existing experimental systems. This tool can thus be flexed to fit specific contexts within the developing world to improve the standard of living of many people, without significantly altering everyday activities.
Solar radiation on a catenary collector
NASA Technical Reports Server (NTRS)
Crutchik, M.; Appelbaum, J.
1992-01-01
A tent-shaped structure with a flexible photovoltaic blanket acting as a catenary collector is presented. The shadow cast by one side of the collector produces a shadow on the other side of the collector. This self-shading effect is analyzed. The direct beam, the diffuse, and the albedo radiation on the collector are determined. An example is given for the insolation on the collector operating on Viking Lander 1 (VL1).
Thermal-stress analysis for wood composite blade. [horizontal axis wind turbines
NASA Technical Reports Server (NTRS)
Fu, K. C.; Harb, A.
1984-01-01
The thermal-stress induced by solar insolation on a wood composite blade of a Mod-OA wind turbine was investigated. The temperature distribution throughout the blade (a heat conduction problem) was analyzed and the thermal-stress distribution of the blades caused by the temperature distribution (a thermal-stress analysis problem) was then determined. The computer programs used for both problems are included along with output examples.
Managing a Solar Sensor Array Project: Analyzing Insolation & Motivation
2011-01-01
good, for ourselves and our society. Abraham Maslow (1943) established a prominent theory of motivation with his needs hierarchy. According to...approach combines Maslow ?s needs hierarchy with prosocial behavior theory to encourage team members to motivate themselves and build self-confidence. The...affiliation, and recognition identified by Maslow . There is much satisfaction to be found in serving others and in creating a greater good. When workers are
Ash loading and insolation at Hanford, Washington during and after the eruption of Mount St. Helens
NASA Technical Reports Server (NTRS)
Laulainen, N. S.
1982-01-01
The effects of volcanic ash suspended in the atmosphere on the incident solar radiation was monitored at the Hanford Meteorological Station (HMS) subsequent to the major eruption of Mount St. Helens on May 18, 1980. Passage of the ash plume over Hanford resulted in a very dramatic decrease of solar radiation intensity to zero. A reduction in visibility to less than 1 km was observed, as great quantities of ash fell out of the plume onto the ground. Ash loading in the atmosphere remained very high for several days following the eruption, primarily as a result of resuspension from the surface. Visibilities remained low (2 to 8 km) during this period. Estimates of atmospheric turbidity were made from the ratio of diffuse-to-direct solar radiation; these turbidities were used to estimate extinction along a horizontal path, a quantity which can be related to visibility. Comparisons of observed and estimated visibilities were very good, in spite of the rather coarse approximations used in the estimates. Atmospheric clarity and visibility improved to near pre-eruption conditions following a period of rain showers. The diffuse-to-direct ratio of solar radiation provided a useful index for estimating volcanic ash loading of the atmosphere.
NASA Astrophysics Data System (ADS)
Zernial, W.
1982-12-01
The industrial productibility of a selective absorbing thin film was investigated on the basis of reactive cathodic sputtering of Ni. On substrates of 1.8 sq m of Al, Cu, steel and stainless steel, solar absorption values up to 97% were achieved at emissivities of 5 to 10%. A prototype flat plate collector for high temperatures with two covers and hermetical sealing was developed. The technical data of the collector were measured, dependent on the selectivity of the absorber, gas fillings of dry air, argon or SF6 and the geometry and were compared with those of an evacuated flat plate collector. A hermetical sealed double flat plate collector for low temperatures was developed which has the advantage of lower no load temperatures and higher energy gain for heating swimming pool water compared with a conventional flat plate collector. The insolation values on collectors were measured and were used for a calculation of the energy gains of different collector types.
Small solar thermal electric power plants with early commercial potential
NASA Technical Reports Server (NTRS)
Jones, H. E.; Bisantz, D. J.; Clayton, R. N.; Heiges, H. H.; Ku, A. C.
1979-01-01
Cost-effective small solar thermal electric power plants (1- to 10-MW nominal size) offer an attractive way of helping the world meet its future energy needs. The paper describes the characteristics of a conceptual near-term plant (about 1 MW) and a potential 1990 commercial version. The basic system concept is one in which steam is generated using two-axis tracking, parabolic dish, and point-focusing collectors. The steam is transported through low-loss piping to a central steam turbine generator unit where it is converted to electricity. The plants have no energy storage and their output power level varies with the solar insolation level. This system concept, which is firmly based on state-of-the-art technology, is projected to offer one of the fastest paths for U.S. commercialization of solar thermal electric power plants through moderate technology advances and mass production.
NASA Astrophysics Data System (ADS)
Purdue, James R.
1989-11-01
White-tailed deer ( Odocoileus virginianus) from central Illinois varied in size during the Holocene. The record, which extends back to 8450 yr B.P., indicates small deer through the mid-Holocene until 3650 yr B.P., after which size increases. Although influences of winter climate, seasonality, anthropogenic effects, and other ecological factors should not be discounted, an intriguing possible cause of the deer size shifts is insolation-driven summer climate and its influence on food resources. In the Holocene, small deer size is correlated with high summer insolation and with low winter insolation. Climatic models indicate that in spite of changes in insolation, Holocene winters did not vary greatly through time, especially in contrast to summers, which were dynamic. Physiological constraints peculiar to O. virginianus make critical the quality of summer forage for determining final adult size. Summer temperature averaged 2°C warmer than present during the middle Holocene, which increased evaporation and probably reduced the period of availability of high-quality forage low in fiber and high in protein. Consequently, less fuel for growth was consumed by mid-Holocene deer and only small body size was achieved. Other possible causes (e.g., Bergmann's rule, seasonality) of clinal variation are considered with reference to central Illinois deer, but at present the most parsimonious explanation appears to be the summer insolation hypothesis.
Oceanic Tidal Mixing As a Contributor to Milankovitch-scale Climate Change
NASA Technical Reports Server (NTRS)
Munk, Walter; Bills, Bruce
2004-01-01
We propose that changes in the magnitude of oceanic tidal mixing on long time scales is an important, but previously unrecognized, contributor to global climate change. it is well known that Earth's orbital and rotational state changes significantly on 10(exp 4)-10(exp 5) year time scales, and that this influences the spatial and temporal pattern of incident radiation. It is widely supposed that climatic variations on these same time scales are, in large part, a response of the ocean-atmosphere-cryosphere system to this radiative forcing. Our proposal is that variations in the luni-solar tidal potential, induced by these same orbital and rotational variations, influences oceanic mixing and thus modulates meridional heat transport, by amounts which are competitive with the radiative forcing. There are some obvious differences between tidal potential and insolation. First is that the Sun and Moon both contribute to tides, whereas the radiation is entirely of solar origin. Second is that the Earth is transparent to gravity but opaque to radiation. Clipping associated with this opacity makes the radiation pattern temporal spectrum rather more complex than the tidal spectrum. A third point is that solar radiation directly delivers energy to Earth's surface whereas tidal mixing will only expedite lateral transport of heat in association with oceanic thermohaline circulation. The diurnal average insolation pattern is best parameterized via a Fourier series in time of year and Legendre polynomials in sine of latitude. Our present focus will be on the annual average terms. The Legendre degree n=0 term describes the global average insolation, and is nearly constant. The degree n=l term describes differences between northern and southern hemispheres, and the annual mean is zero. The degree n=2 term is the main contributor to the equator to pole variations, and varies with obliquity and orbital eccentricity, with the obliquity variation dominating. The lowest order decomposition of the tidal potential recognizes 3 constituents: semi-diurnal, diurnal, and long period, with solar and lunar contributions to each. Our present focus will be on long term variations in the mean square amplitude of the semi-diurnal constituent, with averaging over all the short period variations. For the solar tide that includes the day and year. For the lunar tide it includes the day, month, year, and the apsidal (8.85 year) and nodal (18.6 year) periods. We present calculations of the variations in radiative and tidal forcing for the past 3 million years. The two signals are quite similar. Both vary by approximately 1% of their respective mean values, are dominated by obliquity variations, and exhibit only secondary influence from orbital eccentricity.
Oceanic Tidal Mixing as a Contributor to Milankovitch-scale Climate Change
NASA Astrophysics Data System (ADS)
Munk, W.; Bills, B. G.
2004-12-01
We propose that changes in the magnitude of oceanic tidal mixing on long time scales is an important, but previously unrecognized, contributor to global climate change. It is well known that Earth's orbital and rotational state changes significantly on 104-105 year time scales, and that this influences the spatial and temporal pattern of incident radiation. It is widely supposed that climatic variations on these same time scales are, in large part, a response of the ocean-atmosphere-cryosphere system to this radiative forcing. Our proposal is that variations in the luni-solar tidal potential, induced by these same orbital and rotational variations, influences oceanic mixing and thus modulates meridional heat transport, by amounts which are competitive with the radiative forcing. There are some obvious differences between tidal potential and insolation. First is that the Sun and Moon both contribute to tides, whereas the radiation is entirely of solar origin. Second is that the Earth is transparent to gravity but opaque to radiation. Clipping associated with this opacity makes the radiation pattern temporal spectrum rather more complex than the tidal spectrum. A third point is that solar radiation directly delivers energy to Earth's surface whereas tidal mixing will only expedite lateral transport of heat in association with oceanic thermo-haline circulation. The diurnal average insolation pattern is best parameterized via a Fourier series in time of year and Legendre polynomials in sine of latitude. Our present focus will be on the annual average terms. The Legendre degree n=0 term describes the global average insolation, and is nearly constant. The degree n=1 term describes differences between northern and southern hemispheres, and the annual mean is zero. The degree n=2 term is the main contributor to the equator to pole variations, and varies with obliquity and orbital eccentricity, with the obliquity variation dominating. The lowest order decomposition of the tidal potential recognizes 3 constituents: semi-diurnal, diurnal, and long period, with solar and lunar contributions to each. Our present focus will be on long term variations in the mean square amplitude of the semi-diurnal constituent, with averaging over all the short period variations. For the solar tide that includes the day and year. For the lunar tide it includes the day, month, year, and the apsidal (8.85 year) and nodal (18.6 year) periods. We present calculations of the variations in radiative and tidal forcing for the past 3 million years. The two signals are quite similar. Both vary by ~1% of their respective mean values, are dominated by obliquity variations, and exhibit only secondary influence from orbital eccentricity.
Replicating the Ice-Volume Signal of the Early Pleistocene with a Complex Earth System Model
NASA Astrophysics Data System (ADS)
Tabor, C. R.; Poulsen, C. J.; Pollard, D.
2013-12-01
Milankovitch theory proposes high-latitude summer insolation intensity paces the ice ages by controlling perennial snow cover amounts (Milankovitch, 1941). According to theory, the ~21 kyr cycle of precession should dominate the ice-volume records since it has the greatest influence on high-latitude summer insolation. Modeling experiments frequently support Milankovitch theory by attributing the majority of Northern Hemisphere high-latitude summer snowmelt to changes in the cycle of precession (e.g. Jackson and Broccoli, 2003). However, ice-volume proxy records, especially those of the Early Pleistocene (2.6-0.8 Ma), display variability with a period of ~41 kyr (Raymo and Lisiecki, 2005), indicative of insolation forcing from obliquity, which has a much smaller influence on summer insolation intensity than precession. Several hypotheses attempt to explain the discrepancies between Milkankovitch theory and the proxy records by invoking phenomena such as insolation gradients (Raymo and Nisancioglu, 2003), hemispheric offset (Raymo et al., 2006; Lee and Poulsen, 2009), and integrated summer energy (Huybers, 2006); however, all of these hypotheses contain caveats (Ruddiman, 2006) and have yet to be supported by modeling studies that use a complex GCM. To explore potential solutions to this '41 kyr problem,' we use an Earth system model composed of the GENESIS GCM and Land Surface model, the BIOME4 vegetation model, and the Pennsylvania State ice-sheet model. Using an asynchronous coupling technique, we run four idealized transient combinations of obliquity and precession, representing the orbital extremes of the Pleistocene (Berger and Loutre, 1991). Each experiment is run through several complete orbital cycles with a dynamic ice domain spanning North America and Greenland, and fixed preindustrial greenhouse-gas concentrations. For all orbital configurations, model results produce greater ice-volume spectral power at the frequency of obliquity despite significantly greater summer insolation variability from the cycle of precession. We find obliquity enhances the climate sensitivity to direct insolation forcing through positive high-latitude surface feedbacks between vegetation, sea-ice, and mean-annual insolation while the seasonal dichotomy of precessional forcing leads to climate counterbalancing that dampens the annual ice-volume response. Longer cycle duration further amplifies the ice-volume response to obliquity. Our results help remedy the discrepancies between Milankovitch theory and the ice-volume proxy records. However, summer insolation intensity remains the most important factor for determining ice-volume rate-of-change in our experiments. Consequently, we still find a significant ice-volume response to precession, which is inconsistent with the Early Pleistocene records. The disconnect is likely attributable to climate phenomena not accounted for in the model or our choice of initial conditions, which are poorly constrained for the Early Pleistocene and ice-sheet modeling in general. Future work will examine the importance of initial climate conditions on ice-volume response.
The specification of personalised insoles using additive manufacturing.
Salles, André S; Gyi, Diane E
2012-01-01
Research has been conducted to explore a process that delivers insoles for personalised footwear for the high street using additive manufacturing (AM) and to evaluate the use of such insoles in terms of discomfort. Therefore, the footwear personalisation process was first identified: (1) foot capture; (2) anthropometric measurements; (3) insole design; and (4) additive manufacturing. In order to explore and evaluate this process, recreational runners were recruited. They had both feet scanned and 15 anthropometric measurements taken. Personalised insoles were designed from the scans and manufactured using AM. Participants were fitted with footwear under two experimental conditions: personalised and control, which were compared in terms of discomfort. The mean ratings for discomfort variables were generally low for both conditions and no significant differences were detected between conditions. In general, the personalisation process showed promise in terms of the scan data, although the foot capture position may not be considered 'gold standard'. Polyamide, the material used for the insoles, demonstrated positive attributes: visual inspection revealed no signs of breaking. The footwear personalisation process described and explored in this study shows potential and can be considered a good starting point for designer and researchers.
Climates of Oblique Exoplanets
NASA Astrophysics Data System (ADS)
Dobrovolskis, A. R.
2008-12-01
A previous paper (Dobrovolskis 2007; Icarus 192, 1-23) showed that eccentricity can have profound effects on the climate, habitability, and detectability of extrasolar planets. This complementary study shows that obliquity can have comparable effects. The known exoplanets exhibit a wide range of orbital eccentricities, but those within several million km of their suns are generally in near-circular orbits. This fact is widely attributed to the dissipation of tides in the planets, which is particularly effective for solid/liquid bodies like "Super-Earths". Along with friction between a solid mantle and a liquid core, tides also are expected to despin a planet until it is captured in the synchronous resonance, so that its rotation period is identical to its orbital period. The canonical example of synchronous spin is the way that our Moon always keeps nearly the same hemisphere facing the Earth. Tides also tend to reduce the planet's obliquity (the angle between its spin and orbital angular velocities). However, orbit precession can cause the rotation to become locked in a "Cassini state", where it retains a nearly constant non-zero obliquity. For example, our Moon maintains an obliquity of about 6.7° with respect to its orbit about the Earth. For comparison, stable Cassini states can exist for practically any obliquity up to 180° for planets of binary stars, or in multi-planet systems with high mutual inclinations, such as are produced by scattering or by the Kozai mechanism. This work considers planets in synchronous rotation with circular orbits. For obliquities greater than 90°, the ground track of the sub-solar point wraps around all longitudes on the surface of such a planet. For smaller obliquities, the sub-solar track takes the figure-8 shape of an analemma. This can be visualized as the intersection of the planet's spherical surface with a right circular cylinder, parallel to the spin axis and tangent to the equator from the inside. The excursion of the sub-solar point in latitude is equal to the obliquity β, while the corresponding libration in longitude is smaller (±arcsin(tan2(β/2))). Obliquity thus affects the distribution of insolation over the planet's surface, particularly near its poles. For β = 0, one hemisphere bakes in permanent sunshine, while the opposite hemisphere experiences eternal darkness. As β increases, the region of permanent daylight and the antipodal realm of endless night both shrink, while a more temperate area of alternating day and night spreads in longitude, and especially in latitude. The regions of permanent day or night disappear at β = 90°. The insolation regime passes through several more transitions as β continues to increase toward 180°, but the surface distribution of insolation remains non-uniform in both latitude and longitude.
Development of inexpensive prosthetic feet for high-heeled shoes using simple shoe insole model.
Meier, Margrit R; Tucker, Kerice A; Hansen, Andrew H
2014-01-01
The large majority of prosthetic feet are aimed at low-heeled shoes, with a few models allowing a heel height of up to 5 cm. However, a survey by the American Podiatric Medical Association indicates that most women wear heels over 5 cm; thus, current prosthetic feet limit most female prosthesis users in their choice. Some prosthetic foot components are heel-height adjustable; however, their plantar surface shapes do not change to match the insole shapes of the shoes with different heel heights. The aims of the study were therefore (1) to develop a model that allows prediction of insole shape for various heel height shoes in combination with different shoe sizes and (2) to develop and field-test low-cost prototypes of prosthetic feet whose insole shapes were based on the new model. An equation was developed to calculate insole shapes independent of shoe size. Field testing of prototype prosthetic feet fabricated based on the equation was successful and demonstrated the utility of the equation.
Chen, Wen-Ming; Lee, Sung-Jae; Lee, Peter Vee Sin
2015-02-26
Therapeutic footwear with specially-made insoles is often used in people with diabetes and rheumatoid arthritis to relieve ulcer risks and pain due to high pressures from areas beneath bony prominences of the foot, in particular to the metatarsal heads (MTHs). In a three-dimensional finite element study of the foot and footwear with sensitivity analysis, effects of geometrical variations of a therapeutic insole, in terms of insole thicknesses and metatarsal pad (MP) placements, on local peak plantar pressure under MTHs and stress/strain states within various forefoot tissues, were determined. A validated musculoskeletal finite element model of the human foot was employed. Analyses were performed in a simulated muscle-demanding instant in gait. For many design combinations, increasing insole thicknesses consistently reduce peak pressures and internal tissue strain under MTHs, but the effects reach a plateau when insole becomes very thick (e.g., a value of 12.7mm or greater). Altering MP placements, however, showed a proximally- and a distally-placed MP could result in reverse effects on MTH pressure-relief. The unsuccessful outcome due to a distally-placed MP may attribute to the way it interacts with plantar tissue (e.g., plantar fascia) adjacent to the MTH. A uniform pattern of tissue compression under metatarsal shaft is necessary for a most favorable pressure-relief under MTHs. The designated functions of an insole design can best be achieved when the insole is very thick, and when the MP can achieve a uniform tissue compression pattern adjacent to the MTH. Copyright © 2015 Elsevier Ltd. All rights reserved.
Solar radiation on a catenary collector
NASA Technical Reports Server (NTRS)
Crutchik, M.; Appelbaum, J.
1992-01-01
A tent-shaped structure with a flexible photovoltaic blanket acting as a catenary collector is presented. The shadow cast by one side of the collector on the other side producing a self shading effect is analyzed. The direct beam, the diffuse and the albedo radiation on the collector are determined. An example is given for the insolation on the collector operating on the martian surface for the location of Viking Lander 1 (VL1).
Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, B.; Hummon, M.; Cochran, J.
2014-04-01
India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minutemore » irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.« less
NASA Astrophysics Data System (ADS)
Nfaoui, M.; El-Hami, K.
2018-02-01
The study or applications of solar energy at a given site are dependent on more complete and detailed data on the solar radiation of this site, the aim of this work is presented the method used in the calculation and describe the available data by trying to extract some useful information. We present the method used in the calculation and describe the available data by trying to extract some useful information. In our study we use programs through MATLAB to estimate the totality of the solar radiation on any inclined surface. Moreover, we will study in the last part the influence of exposure (orientation and inclination) on the amount of solar radiation received on a surface of 1m2. Then in order to study the theoretical solar field available in Khouribga, a series of insolation and irradiation data calculate, and then we apply the same strategy of this work to the 20 Moroccan cities in different time scales (every 3min, every day, every month and all year).
Solar electricity supply isolines of generation capacity and storage.
Grossmann, Wolf; Grossmann, Iris; Steininger, Karl W
2015-03-24
The recent sharp drop in the cost of photovoltaic (PV) electricity generation accompanied by globally rapidly increasing investment in PV plants calls for new planning and management tools for large-scale distributed solar networks. Of major importance are methods to overcome intermittency of solar electricity, i.e., to provide dispatchable electricity at minimal costs. We find that pairs of electricity generation capacity G and storage S that give dispatchable electricity and are minimal with respect to S for a given G exhibit a smooth relationship of mutual substitutability between G and S. These isolines between G and S support the solving of several tasks, including the optimal sizing of generation capacity and storage, optimal siting of solar parks, optimal connections of solar parks across time zones for minimizing intermittency, and management of storage in situations of far below average insolation to provide dispatchable electricity. G-S isolines allow determining the cost-optimal pair (G,S) as a function of the cost ratio of G and S. G-S isolines provide a method for evaluating the effect of geographic spread and time zone coverage on costs of solar electricity.
Solar electricity supply isolines of generation capacity and storage
Grossmann, Wolf; Grossmann, Iris; Steininger, Karl W.
2015-01-01
The recent sharp drop in the cost of photovoltaic (PV) electricity generation accompanied by globally rapidly increasing investment in PV plants calls for new planning and management tools for large-scale distributed solar networks. Of major importance are methods to overcome intermittency of solar electricity, i.e., to provide dispatchable electricity at minimal costs. We find that pairs of electricity generation capacity G and storage S that give dispatchable electricity and are minimal with respect to S for a given G exhibit a smooth relationship of mutual substitutability between G and S. These isolines between G and S support the solving of several tasks, including the optimal sizing of generation capacity and storage, optimal siting of solar parks, optimal connections of solar parks across time zones for minimizing intermittency, and management of storage in situations of far below average insolation to provide dispatchable electricity. G−S isolines allow determining the cost-optimal pair (G,S) as a function of the cost ratio of G and S. G−S isolines provide a method for evaluating the effect of geographic spread and time zone coverage on costs of solar electricity. PMID:25755261
NASA Technical Reports Server (NTRS)
Appelbaum, J.; Singer, S.
1989-01-01
A calculation of the starting torque ratio of permanent magnet, series, and shunt-excited dc motors powered by solar cell arrays is presented for two cases, i.e., with and without a maximum-power-point tracker (MPPT). Defining motor torque magnification by the ratio of the motor torque with an MPPT to the motor torque without an MPPT, a magnification of 3 for the permanent magnet motor and a magnification of 7 for both the series and shunt motors are obtained. The study also shows that all motor types are less sensitive to solar insolation variation in systems including MPPTs as compared to systems without MPPTs.
Surface Meteorology and Solar Energy (SSE) Data Release 5.1
NASA Technical Reports Server (NTRS)
Stackhouse, Paul W. (Principal Investigator)
The Surface meteorology and Solar Energy (SSE) data set contains over 200 parameters formulated for assessing and designing renewable energy systems.The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree].
Buffer thermal energy storage for a solar thermal powered 1-MW sub e electrical plant
NASA Astrophysics Data System (ADS)
Polzien, R. E.
The application of a latent heat thermal energy buffer storage (TEBS) subsystem to the small community solar thermal power experiment (SCSE) is discussed. The SCSE is a 1-MW sub e solar thermal electric plant consisting of multiple paraboloidal concentrators with an organic Rankine cycle power conversion unit mounted at the focus of each concentrator. Objective of the TEBS is to minimize plant shutdowns during intermittent cloud coverage thereby improving life expectancy of major subsystems. An SCSE plant performance model is used with time varying insolation to show that 70 to 80 percent of the potential engine shutdowns may be averted with the TEBS system. Parametric variation of engine life dependency on start/stop cycles shows the potential for a 4 percent reduction in levelized bus bar energy cost using TEBS.
NASA Astrophysics Data System (ADS)
Sharma, Nikesh; Pareek, Smita; Chaturvedi, Nitin; Dahiya, Ratna
2018-03-01
Solar photovoltaic (SPV) systems are steadily rising and considered as the best alternatives to meet the rising demand of energy. In developing countries like India, SPV’s contribution being a clean energy is the most favourable. However, experiences have shown that produced power of these systems is usually affected due to day, night, seasonal variations, insolation, partial shading conditions etc. Among these parameters, partial shading causes a huge reduction in output power of PV systems. This results in lack of confidence for this technology among users. Thus, it is important and a major challenge in PV systems to minimize the effect of partial shading on their energy production. The work in this paper aims to propose solutions for reconfiguration of solar photovoltaic arrays in order to reduce partial shading losses and thus to enhance power generation.
Validating an operational physical method to compute surface radiation from geostationary satellites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Manajit; Dhere, Neelkanth G.; Wohlgemuth, John H.
We developed models to compute global horizontal irradiance (GHI) and direct normal irradiance (DNI) over the last three decades. These models can be classified as empirical or physical based on the approach. Empirical models relate ground-based observations with satellite measurements and use these relations to compute surface radiation. Physical models consider the physics behind the radiation received at the satellite and create retrievals to estimate surface radiation. Furthermore, while empirical methods have been traditionally used for computing surface radiation for the solar energy industry, the advent of faster computing has made operational physical models viable. The Global Solar Insolation Projectmore » (GSIP) is a physical model that computes DNI and GHI using the visible and infrared channel measurements from a weather satellite. GSIP uses a two-stage scheme that first retrieves cloud properties and uses those properties in a radiative transfer model to calculate GHI and DNI. Developed for polar orbiting satellites, GSIP has been adapted to NOAA's Geostationary Operation Environmental Satellite series and can run operationally at high spatial resolutions. Our method holds the possibility of creating high quality datasets of GHI and DNI for use by the solar energy industry. We present an outline of the methodology and results from running the model as well as a validation study using ground-based instruments.« less
NASA Astrophysics Data System (ADS)
Hafiz Burhan, Mohd; Nor, Nik Hisyamudin Muhd; Yarwindran, Mogan; Ibrahim, Mustaffa; Fahrul Hassan, Mohd; Azwir Azlan, Mohd; Turan, Faiz Mohd; Johan, Kartina
2017-08-01
Healthcare and medical is one of the most expensive field in the modern world. In order to fulfil medical requirement, this study aimed to design an orthotic insole by using Kinect Xbox Gaming Sensor Scanner and CAE softwares. The accuracy of the Kinect® XBOX 360 gaming sensor is capable of producing 3D reconstructed geometry with the maximum and minimum error of 3.78% (2.78mm) and 1.74% (0.46mm) respectively. The orthotic insole design process had been done by using Autodesk Meshmixer 2.6 and Solidworks 2014 software. Functionality of the orthotic insole designed was capable of reducing foot pressure especially in the metatarsal area. Overall, the proposed method was proved to be highly potential in the design of the insole where it promises low cost, less time consuming, and efficiency in regards that the Kinect® XBOX 360 device promised low price compared to other digital 3D scanner since the software needed to run the device can be downloaded for free.
Dettinger, Michael D.
2013-01-01
Recent projections of global climate changes in response to increasing greenhouse-gas concentrations in the atmosphere include warming in the Southwestern US and, especially, in the vicinity of Lake Tahoe of from about +3°C to +6°C by end of century and changes in precipitation on the order of 5-10 % increases or (more commonly) decreases, depending on the climate model considered. Along with these basic changes, other climate variables like solar insolation, downwelling (longwave) radiant heat, and winds may change. Together these climate changes may result in changes in the hydrology of the Tahoe basin and potential changes in lake overturning and ecological regimes. Current climate projections, however, are generally spatially too coarse (with grid cells separated by 1 to 2° latitude and longitude) for direct use in assessments of the vulnerabilities of the much smaller Tahoe basin. Thus, daily temperatures, precipitation, winds, and downward radiation fluxes from selected global projections have been downscaled by a statistical method called the constructed-analogues method onto 10 to 12 km grids over the Southwest and especially over Lake Tahoe. Precipitation, solar insolation and winds over the Tahoe basin change only moderately (and with indeterminate signs) in the downscaled projections, whereas temperatures and downward longwave fluxes increase along with imposed increases in global greenhouse-gas concentrations.
NASA Astrophysics Data System (ADS)
Eldrett, James S.; Ma, Chao; Bergman, Steven C.; Ozkan, Aysen; Minisini, Daniel; Lutz, Brendan; Jackett, Sarah-Jane; Macaulay, Calum; Kelly, Amy E.
2015-08-01
We present an integrated multidisciplinary study of limestone-marlstone couplets from a continuously cored section including parts of the upper Buda Limestone, the entire Eagle Ford Group (Boquillas Formation) and lower Austin Chalk from the Shell Iona-1 research borehole (Texas, USA), which provides a >8 million year (myr) distal, clastic sediment-starved, intrashelf basin record of the early Cenomanian to the earliest Coniacian Stages. Results show that despite variable yet minimal diagenetic overprints, several unambiguous primary environmental signals are preserved and support greater water-mass ventilation and current activity promoting increased silica/carbonate productivity during the deposition of limestone beds compared to deposition of marlstone beds which reflect greater organic matter productivity and preservation. Furthermore, our astronomical analyses demonstrate that the limestone-marlstone couplets in the Iona-1 core reflect climatic forcing driven by solar insolation resulting from integrated Milankovitch periodicities. In particular, we propose that obliquity and precession forcing on the latitudinal distribution of solar insolation may have been responsible for the observed lithological and environmental variations through the Cenomanian, Turonian and Coniacian in this mid-latitude epicontinental sea setting. Our data also suggests that rhythmic lithological alternations deposited in Greenhouse periods, in general, may simply reflect climate-driven cycles related to Earth-Sun dynamics without the need to invoke significant sea-level variations.
NASA Technical Reports Server (NTRS)
Chao, Winston C.; Chen, Baode; Einaudi, Franco (Technical Monitor)
2001-01-01
It has been known for more than a decade that an aqua-planet model with globally uniform sea surface temperature and solar insolation angle can generate ITCZ (intertropical convergence zone). Previous studies have shown that the ITCZ under such model settings can be changed between a single ITCZ over the equator and a double ITCZ straddling the equator through one of several measures. These measures include switching to a different cumulus parameterization scheme, changes within the cumulus parameterization scheme, and changes in other aspects of the model design such as horizontal resolution. In this paper an interpretation for these findings is offered. The latitudinal location of the ITCZ is the latitude where the balance of two types of attraction on the ITCZ, both due to earth's rotation, exists. The first type is equator-ward and is directly related to the earth's rotation and thus not sensitive to model design changes. The second type is poleward and is related to the convective circulation and thus is sensitive to model design changes. Due to the shape of the attractors, the balance of the two types of attractions is reached either at the equator or more than 10 degrees away from the equator. The former case results in a single ITCZ over the equator and the latter case a double ITCZ straddling the equator.
NASA Astrophysics Data System (ADS)
Loubere, Paul; Creamer, Winifred; Haas, Jonathan
2013-01-01
South American lake sediment records indicate that El Nino events in the eastern equatorial Pacific (EEP) became more frequent after 3000 calendar years BP. The reason for this evolution of ENSO behavior remains in question. An important trigger for ocean-atmosphere state switching in the tropical ocean is the annual cycle of sea surface temperature south of the equator along the margin of South America. This annual cycle can be reconstructed from the oxygen isotope records of the surf clam Mesodesma donacium. We provide evidence that these isotope records, as preserved in archeological deposits in coastal central Peru, reflect seasonal paleo-SST. We find that the annual SST cycle in the eastern equatorial Pacific became larger over the 4500-2500 calendar year BP interval. This is consistent with increased ENSO variability. The magnification of the annual SST cycle can be attributed to changing insolation, indicating that ENSO is sensitive to the intensity and seasonal timing of solar heating of the southern EEP.
Performance of Emcore Third Generation CPV Modules in the Low Latitude Marine Environment of Hawaii
NASA Astrophysics Data System (ADS)
Hoffman, Richard; Buie, Damien; King, David; Glesne, Thomas
2011-12-01
Emcore third generation concentrating photovoltaic (CPV) modules were evaluated in the low latitude location of Kihei, Hawaii. For comparison, the best available monocrystalline silicon flat panel modules were included in both dual-axis tracked and fixed mount configurations. The daily DC uncorrected efficiency value for the CPV modules averaged over the six-month performance period was 25.9% compared to 16% to 17% for the flat panels. Higher daily energy was obtained from CPV modules than tracked flat panels when daily direct solar insolation was greater than 5 kWh/m2 and more than fixed mount flat panel when direct insolation was greater than 3 kWh/m2. The module energy conversion performance was demonstrated to be predictable using a parametric model developed by Sandia National Laboratory. Soiling accumulation on module entrance surface was surprisingly rapid in the local environment. Measured energy loss rate due to soiling were two to six times larger for CPV compared to flat panel losses.
Toda, Y
2001-06-01
We assessed the clinical efficacy of a lateral wedged insole with elastic fixation of the subtalar joint for conservative treatment of osteoarthritis of the knee. Novel insoles with elastic subtalar fixation (fixed insole) and a traditional shoe insert wedged insoles (inserted insole) were prepared. Seventy-one new female outpatients with osteoarthritis of the knee (knee OA) were treated with wedged insoles for 3 months. Randomization was performed according to birth date. The Severity Index of Lequesne, et al at the final assessment was compared with that at baseline in both the inserted and fixed insole groups. There were 37 participants in the inserted group and 34 participants in the fixed insole group. Regarding discomfort during nocturnal bed rest, 21 out of 34 (61%) participants were positive at the baseline assessment, however, only 8 out of 34 (27%) were positive at the final assessment in the fixed insole group (P = 0.033). In the fixed insole group, the number of participants complained immediate pain after walking was decreased from 28 (82%) at the baseline assessment to 17 (50%) at the final assessments (P = 0.0104). These significant differences were not found in the group with the inserted insole. Thus, clinical efficacy of lateral wedged insole may be emphasized with elastic fixation of the subtalar joint.
Boosting CSP Production with Thermal Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denholm, P.; Mehos, M.
2012-06-01
Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PVmore » electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high-efficiency TES, which turns CSP into a partially dispatchable resource. The addition of TES produces additional value by shifting the delivery of solar energy to periods of peak demand, providing firm capacity and ancillary services, and reducing integration challenges. Given the dispatchability of CSP enabled by TES, it is possible that PV and CSP are at least partially complementary. The dispatchability of CSP with TES can enable higher overall penetration of the grid by solar energy by providing solar-generated electricity during periods of cloudy weather or at night, when PV-generated power is unavailable. Such systems also have the potential to improve grid flexibility, thereby enabling greater penetration of PV energy (and other variable generation sources such as wind) than if PV were deployed without CSP.« less
NASA Astrophysics Data System (ADS)
Hamilton, Douglas P.
2015-11-01
The locations of large deposits of frozen volatiles on planetary surfaces are largely coincident with areas receiving the minimum annual influx of solar energy; familiar examples include the polar caps of Earth and Mars. For planets tilted by more than 45 degrees, however, the poles actually receive more energy than some other latitudes. Pluto, with its current obliquity of 119 degrees, has minima in its average annual insolation at +/- 27 degrees latitude, with ~1.5% more energy flux going to the equator and ~15% more to the poles. Remarkably, the fraction of annual solar energy incident on different latitudes depends only on the obliquity of the planet and not on any of its orbital parameters.Over millions of years, Pluto's obliquity varies sinusoidally from 102-126 degrees, significantly affecting the latitudinal profile of solar energy deposition. Roughly 1Myr ago, the poles received 15% more energy that today while the equator received 13% less. The energy flux to latitudes between 25-35 degrees is far more stable, remaining low over the presumably billions of years since Pluto acquired its current spin properties. Like the poles at Earth, these mid latitudes on Pluto should be favored for the long-term deposition of volatile ices. This is, indeed, the location of the bright icy heart of Pluto, Sputnik Planum.Reflected light and emitted thermal radiation from Charon increases annual insolation to one side of Pluto by of order 0.02%. Although small, the bulk of the energy is delivered at night to Pluto's cold equatorial regions. Furthermore, Charon's thermal infrared radiation is easily absorbed by icy deposits on Pluto, slowing deposition and facilitating sublimation of volatiles. We argue that the slight but persistent preference for ices to form and survive in the anti-Charon Pluto's heart.
Relationship of Solar Energy Installation Permits to Renewable Portfolio Standards and Insolation
NASA Astrophysics Data System (ADS)
Butler, Kirt Gordon
Legislated renewable portfolio standards (RPSs) may not be the key to ensure forecast energy demands are met. States without a legislated RPS and with efficient permitting procedures were found to have approved and issued 28.57% more permits on average than those with a legislated RPS. Assessment models to make informed decisions about the need and effect of legislated RPSs do not exist. Decision makers and policy creators need to use empirical data and a viable model to resolve the debate over a nationally legislated RPS. The purpose of this cross-sectional study was to determine if relationships between the independent variables of RPS and insolation levels and the dependent variable of the percentage of permits approved would prove to be a viable model. The research population was 68 cities in the United States, of which 55 were used in this study. The return on investment economic decision model provided the theoretical framework for this study and the model generated. The output of multiple regression analysis indicated a weak to medium positive relationship among the variables. None of these relationships were statistically significant at the 0.05 level. A model using site specific data might yield significant results and be useful for determining which solar energy projects to pursue and where to implement them without Federal or State mandated RPSs. A viable model would bring about efficiency gains in the permitting process and effectiveness gains in promoting installations of solar energy-based systems. Research leading to the development of a viable model would benefit society by encouraging the development of sustainable energy sources and helping to meet forecast energy demands.
Design and integration of a solar AMTEC power system with an advanced global positioning satellite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, G.; Hunt, M.E.; Determan, W.R.
1996-12-31
A 1,200-W solar AMTEC (alkali metal thermal-to-electric conversion) power system concept was developed and integrated with an advanced global positioning system (GPS) satellite. The critical integration issues for the SAMTEC with the GPS subsystems included (1) packaging within the Delta 2 launch vehicle envelope, (2) deployment and start-up operations for the SAMTEC, (3) SAMTEC operation during all mission phases, (4) satellite field of view restrictions with satellite operations, and (5) effect of the SAMTEC requirements on other satellite subsystems. The SAMTEC power system was compared with a conventional planar solar array/battery power system to assess the differences in system weight,more » size, and operations. Features of the design include the use of an advanced multitube, vapor anode AMTEC cell design with 24% conversion efficiency, and a direct solar insolation receiver design with integral LiF salt canisters for energy storage to generate power during the maximum solar eclipse cycle. The modular generator design consists of an array of multitube AMTEC cells arranged into a parallel/series electrical network with built-in cell redundancy. The preliminary assessment indicates that the solar generator design is scalable over a 500 to 2,500-W range. No battery power is required during the operational phase of the GPS mission. SAMTEC specific power levels greater than 5 We/kg and 160 We/m{sup 2} are anticipated for a mission duration of 10 to 12 yr in orbits with high natural radiation backgrounds.« less
Thermal control system and method for a passive solar storage wall
Ortega, Joseph K. E.
1984-01-01
The invention provides a system and method for controlling the storing and elease of thermal energy from a thermal storage wall wherein said wall is capable of storing thermal energy from insolation of solar radiation. The system and method includes a device such as a plurality of louvers spaced a predetermined distance from the thermal wall for regulating the release of thermal energy from the thermal wall. This regulating device is made from a material which is substantially transparent to the incoming solar radiation so that when it is in any operative position, the thermal storage wall substantially receives all of the impacting solar radiation. The material in the regulating device is further capable of being substantially opaque to thermal energy so that when the device is substantially closed, thermal release of energy from the storage wall is substantially minimized. An adjustment device is interconnected with the regulating mechanism for selectively opening and closing it in order to regulate the release of thermal energy from the wall.
Terrestrial cooling and solar variability
NASA Technical Reports Server (NTRS)
Agee, E. M.
1982-01-01
Observational evidence from surface temperature records is presented and discussed which suggests a significant cooling trend over the Northern Hemisphere from 1940 to the present. This cooling trend is associated with an increase of the latitudinal gradient of temperature and the lapse rate, as predicted by climate models with decreased solar input and feedback mechanisms. Evidence suggests that four of these 80- to 100-year cycles of global surface temperature fluctuation may have occurred, and in succession, from 1600 to the present. Interpretation of sunspot activity were used to infer a direct thermal response of terrestrial temperature to solar variability on the time scale of the Gleissberg cycle (90 years, an amplitude of the 11-year cycles). A physical link between the sunspot activity and the solar parameter is hypothesized. Observations of sensible heat flux by stationary planetary waves and transient eddies, as well as general circulation modeling results of these processes, were examined from the viewpoint of the hypothesis of cooling due to reduced insolation.
NASA Astrophysics Data System (ADS)
Klise, G. T.; Tidwell, V. C.; Macknick, J.; Reno, M. D.; Moreland, B. D.; Zemlick, K. M.
2013-12-01
In the Southwestern United States, there are many large utility-scale solar photovoltaic (PV) and concentrating solar power (CSP) facilities currently in operation, with even more under construction and planned for future development. These are locations with high solar insolation and access to large metropolitan areas and existing grid infrastructure. The Bureau of Land Management, under a reasonably foreseeable development scenario, projects a total of almost 32 GW of installed utility-scale solar project capacity in the Southwest by 2030. To determine the potential impacts to water resources and the potential limitations water resources may have on development, we utilized methods outlined by the Bureau of Land Management (BLM) to determine potential water use in designated solar energy zones (SEZs) for construction and operations & maintenance (O&M), which is then evaluated according to water availability in six Southwestern states. Our results indicate that PV facilities overall use less water, however water for construction is high compared to lifetime operational water needs. There is a transition underway from wet cooled to dry cooled CSP facilities and larger PV facilities due to water use concerns, though some water is still necessary for construction, operations, and maintenance. Overall, ten watersheds, 9 in California, and one in New Mexico were identified as being of particular concern because of limited water availability. Understanding the location of potentially available water sources can help the solar industry determine locations that minimize impacts to existing water resources, and help understand potential costs when utilizing non-potable water sources or purchasing existing appropriated water. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Pasin Neto, Hugo; Grecco, Luanda André Collange; Ferreira, Luis Alfredo Braun; Duarte, Natália Almeida Carvalho; Galli, Manuela; Oliveira, Claudia Santos
2017-10-01
The aim of the present study was to assess the effect of postural insoles on gait performance in children with Cerebral Palsy (CP). Twenty four children between four and 12 years of age were randomly allocated either the control group (n = 12) or experimental group (n = 12). The control group used placebo insoles and the experimental group used postural insoles. Three-dimensional gait analysis was performed under three conditions: barefoot, in shoes and in shoes with insoles. Three evaluations were carried out: 1)immediately following placement of the insoles; 2)after three months of insole use; and 3)one month after suspending insole use. Regarding the immediate effects and after three months use of insole, significant improvements in gait velocity and cadence were found in the experimental group, along with an increase in foot dorsiflexion, a reduction in knee flexion and a reduction in internal rotation. Conversely, these changes were not maintained in the third assessment, one month after withdrawal of the insoles. The use of postural insoles led to improvements in gait performance in children with CP. Copyright © 2017 Elsevier Ltd. All rights reserved.
How Arch Support Insoles Help Persons with Flatfoot on Uphill and Downhill Walking.
Huang, Yu-Ping; Kim, Kwantae; Song, Chen-Yi; Chen, Yat-Hon; Peng, Hsien-Te
2017-01-01
The main purpose of this study was to investigate the effect of arch support insoles on uphill and downhill walking of persons with flatfoot. Sixteen healthy college students with flatfoot were recruited in this study. Their heart rate, peak oxygen uptake (VO 2 ), and median frequency (MDF) of surface electromyogram were recorded and analyzed. Nonparametric Wilcoxon signed-rank test was used for statistical analysis. The main results were as follows: (a) peak VO 2 significantly decreased with arch support insoles compared with flat insoles during uphill and downhill walking (arch support insole versus flat insole: uphill walking, 20.7 ± 3.6 versus 31.6 ± 5.5; downhill walking, 10.9 ± 2.3 versus 16.9 ± 4.2); (b) arch support insoles could reduce the fatigue of the rectus femoris muscle during downhill walking (MDF slope of arch support insole: 0.03 ± 1.17, flat insole: -6.56 ± 23.07); (c) insole hardness would increase not only the physical sensory input but also the fatigue of lower-limb muscles particularly for the rectus femoris muscle (MDF slope of arch support insole: -1.90 ± 1.60, flat insole: -0.83 ± 1.10) in persons with flatfoot during uphill walking. The research results show that arch support insoles could effectively be applied to persons with flatfoot to aid them during uphill and downhill walking.
PISCES: A "Stepping Stone" to International Space Exploration and Development
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Henley, Mark W.; Schowengerdt, Frank
2007-01-01
The Pacific International Space Center for Exploration Systems (PISCES) was initiated by the Japan/US Science, Technology and Space Application Programs (JUSTSAP) to advance research and education in space exploration technology and systems working closely with the State of Hawaii. Hawaii has a heritage with space exploration including the training of Apollo astronauts and testing of lunar rover systems in some of the most realistic terrestrial sites available. The high altitude dry environment with greater solar insolation, and the dry lunar regolith-like volcanic ash and cratered terrain make Hawaiian sites ideal to support, international space exploration technology development, demonstration, education and training. This paper will summarize development and roles of PISCES in lunar surface analogs, simulations, technology demonstrations, research and training for space exploration technology and systems.
Cates, Benjamin; Sim, Taeyong; Heo, Hyun Mu; Kim, Bori; Kim, Hyunggun; Mun, Joung Hwan
2018-01-01
In order to overcome the current limitations in current threshold-based and machine learning-based fall detectors, an insole system and novel fall classification model were created. Because high-acceleration activities have a high risk for falls, and because of the potential damage that is associated with falls during high-acceleration activities, four low-acceleration activities, four high-acceleration activities, and eight types of high-acceleration falls were performed by twenty young male subjects. Encompassing a total of 800 falls and 320 min of activities of daily life (ADLs), the created Support Vector Machine model’s Leave-One-Out cross-validation provides a fall detection sensitivity (0.996), specificity (1.000), and accuracy (0.999). These classification results are similar or superior to other fall detection models in the literature, while also including high-acceleration ADLs to challenge the classification model, and simultaneously reducing the burden that is associated with wearable sensors and increasing user comfort by inserting the insole system into the shoe. PMID:29673165
Electric power - Photovoltaic or solar dynamic?
NASA Technical Reports Server (NTRS)
Thomas, R. L.; Hallinan, G. J.; Hieatt, J. L.
1985-01-01
The design of the power system for supplying the Space Station with insolation-generated electricity is the main Phase B task at NASA-Lewis Center. The advantages and limitations of two types of power systems, the photovoltaic arrays (PV) and the solar dynamic system (SD), are discussed from the points of view of cost, overall systems integration, and growth. Subsystems of each of these options are described, and a sketch of a projected SD system is shown. The PV technology is well developed and proven, but its low efficiency calls for solar arrays of large areas, which affect station dynamics, control, and drag compensation. The SD systems would be less costly to operate than VP, and are more efficient, needing less deployed area. The major drawback of the SD is its infancy. The conservative and forgiving designs for some of its components must still be created and tested, and the development risks assessed.
Ozone changes under solar geoengineering: implications for UV exposure and air quality
NASA Astrophysics Data System (ADS)
Nowack, P. J.; Abraham, N. L.; Braesicke, P.; Pyle, J. A.
2015-11-01
Various forms of geoengineering have been proposed to counter anthropogenic climate change. Methods which aim to modify the Earth's energy balance by reducing insolation are often subsumed under the term Solar Radiation Management (SRM). Here, we present results of a standard SRM modelling experiment in which the incoming solar irradiance is reduced to offset the global mean warming induced by a quadrupling of atmospheric carbon dioxide. For the first time in an atmosphere-ocean coupled climate model, we include atmospheric composition feedbacks such as ozone changes under this scenario. Including the composition changes, we find large reductions in surface UV-B irradiance, with implications for vitamin D production, and increases in surface ozone concentrations, both of which could be important for human health. We highlight that both tropospheric and stratospheric ozone changes should be considered in the assessment of any SRM scheme, due to their important roles in regulating UV exposure and air quality.
NASA Technical Reports Server (NTRS)
Tsay, Si-Chee; Ji, Q. Jack
2011-01-01
Earth's climate is driven primarily by solar radiation. As summarized in various IPCC reports, the global average of radiative forcing for different agents and mechanisms, such as aerosols or CO2 doubling, is in the range of a few W/sq m. However, when solar irradiance is measured by broadband radiometers, such as the fleet of Eppley Precision Solar Pyranometers (PSP) and equivalent instrumentation employed worldwide, the measurement uncertainty is larger than 2% (e.g., WMO specification of pyranometer, 2008). Thus, out of the approx. 184 W/sq m (approx.263 W/sq m if cloud-free) surface solar insolation (Trenberth et al. 2009), the measurement uncertainty is greater than +/-3.6 W/sq m, overwhelming the climate change signals. To discern these signals, less than a 1 % measurement uncertainty is required and is currently achievable only by means of a newly developed methodology employing a modified PSP-like pyranometer and an updated calibration equation to account for its thermal effects (li and Tsay, 2010). In this talk, we will show that some auxiliary measurements, such as those from a collocated pyrgeometer or air temperature sensors, can help correct historical datasets. Additionally, we will also demonstrate that a pyrheliometer is not free of the thermal effect; therefore, comparing to a high cost yet still not thermal-effect-free "direct + diffuse" approach in measuring surface solar irradiance, our new method is more economical, and more likely to be suitable for correcting a wide variety of historical datasets. Modeling simulations will be presented that a corrected solar irradiance measurement has a significant impact on aerosol forcing, and thus plays an important role in climate studies.
1993-12-21
Latent(Lower Solid), Net Infrared (Dashed), and Net viii Heat Loss (Upper Solid - the Other 3 Surmmed) are Plotted, with Positive Values :ndicating...gained from solar insolation, Qs, and the heat lost from the surface due to latent, Qe, sensible, Qh, and net infrared radiation, Qb is positive...five empirically derived dimensionless constants in the model. With the introduction of two new unknowns, <E> and < ww2 >, the prediction of the upper
Orbital Noise in the Earth System and Climate Fluctuations
NASA Technical Reports Server (NTRS)
Liu, Han-Shou; Smith, David E. (Technical Monitor)
2001-01-01
Frequency noise in the variations of the Earth's obliquity (tilt) can modulate the insolation signal for climate change. Including this frequency noise effect on the incoming solar radiation, we have applied an energy balance climate model to calculate the climate fluctuations for the past one million years. Model simulation results are in good agreement with the geologically observed paleoclimate data. We conclude that orbital noise in the Earth system may be the major cause of the climate fluctuation cycles.
Propulsion element requirements using electrical power system unscheduled power
NASA Technical Reports Server (NTRS)
Zimmermann, Frank; Hodge, Kathy
1989-01-01
The suitability of using the electrical energy from the Space Station's Electrical Power System (EPS) during the periods of peak solar insolation which is currently not specifically allocated (unscheduled power) to produce propulsion propellants, gaseous hydrogen, and oxygen by electrolyzing water is investigated. Reboost propellant requirements are emphasized, but the results are more generally relevant because the balance of recurring propellant requirements are an order of magnitude smaller and the nonrecurring requirements are not significant on an average basis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yalcin, H.; Koc, T.
In this study 4.5 km long fuel pipeline, located on 41[degrees] N latitude (Istanbul, Turkey) was cathodically protected with solar energy. Four commercial photovoltaic modules of a 12 V version were used. Insolation data were collected by the aid of Florya Meteorological Station. The cathodic protection was applied for three years and kept under control during this period of time. Project criteria and reliability of the protection have been investigated. Better protection than the available criteria for steel pipeline was achieved even in winter solstice months.
NASA Astrophysics Data System (ADS)
Gongalo, Boris; Gudovicheva, Lubov; Gubareva, Anna; Dobrynina, Larisa
2018-03-01
The issues of constructing high-rise, primarily residential, buildings have a great social significance. Not every plot of land, acquired in the Russian Federation is suitable for high-rise construction. Therefore, every construction company that plans to erect a multi-apartment building, a high-rise office building, or a skyscraper must take into account not only technical norms but as well sanitary legislation regulations that set obligatory requirements about insolation of apartments. The article includes a short study of several norms in the Russian legislation regarding insolation of dwellings; analises the problems of judicial interpretation of the statutory limitations. In this aspect it researches the debatable questions arising in practice of state arbitration courts dealing with the lawsuits on allocation of land-plots by the local administration. The analysis of the judicial practice is followed by description of the difficulties facing the developers of land-plots, concerning the project and territorial planning documentation.
Photovoltaic power system operation in the Mars environment
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Flood, Dennis J.
1989-01-01
Detailed information on the environmental conditions on Mars are very desirable for the design of photovoltaic systems for establishing outposts on the Martian surface. The variation of solar insolation (global, direct, and diffuse) at the Viking lander's locations is addressed. It can be used, to a first approximation, for other latitudes. The radiation data is based on measured optical depth of the Martian atmosphere derived from images taken of the sun with a special diode on the Viking cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation. The data are used to make estimates of photovoltaic system power, area and mass for a surface power system using regenerative fuel cells for storage and nighttime operation.
Buffer thermal energy storage for an air Brayton solar engine
NASA Technical Reports Server (NTRS)
Strumpf, H. J.; Barr, K. P.
1981-01-01
The application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine was studied. To demonstrate the effect of buffer thermal energy storage on engine operation, a computer program was written which models the recuperator, receiver, and thermal storage device as finite-element thermal masses. Actual operating or predicted performance data are used for all components, including the rotating equipment. Based on insolation input and a specified control scheme, the program predicts the Brayton engine operation, including flows, temperatures, and pressures for the various components, along with the engine output power. An economic parametric study indicates that the economic viability of buffer thermal energy storage is largely a function of the achievable engine life.
A cellular glass substrate solar concentrator
NASA Technical Reports Server (NTRS)
Bedard, R.; Bell, D.
1980-01-01
The design of a second generation point focusing solar concentration is discussed. The design is based on reflective gores fabricated of thin glass mirror bonded continuously to a contoured substrate of cellular glass. The concentrator aperture and structural stiffness was optimized for minimum concentrator cost given the performance requirement of delivering 56 kWth to a 22 cm diameter receiver aperture with a direct normal insolation of 845 watts sq m and an operating wind of 50 kmph. The reflective panel, support structure, drives, foundation and instrumentation and control subsystem designs, optimized for minimum cost, are summarized. The use of cellular glass as a reflective panel substrate material is shown to offer significant weight and cost advantages compared to existing technology materials.
Clouds, surface temperature, and the tropical and subtropical radiation budget
NASA Technical Reports Server (NTRS)
Dhuria, Harbans L.; Kyle, H. Lee
1980-01-01
Solar energy drives both the Earth's climate and biosphere, but the absorbed energy is unevenly distributed over the Earth. The tropical regions receive excess energy which is then transported by atmospheric and ocean currents to the higher latitudes. All regions at a given latitude receive the same top of the atmosphere solar irradiance (insolation). However, the net radiation received from the Sun in the tropics and subtropics varies greatly from one region to another depending on local conditions. Over land, variations in surface albedo are important. Over both land and ocean, surface temperature, cloud amount, and cloud type are also important. The Nimbus-7 cloud and Earth radiation budget (ERB) data sets are used to examine the affect of these parameters.
Kido, Masamitsu; Ikoma, Kazuya; Hara, Yusuke; Imai, Kan; Maki, Masahiro; Ikeda, Takumi; Fujiwara, Hiroyoshi; Tokunaga, Daisaku; Inoue, Nozomu; Kubo, Toshikazu
2014-12-01
Insoles are frequently used in orthotic therapy as the standard conservative treatment for symptomatic flatfoot deformity to rebuild the arch and stabilize the foot. However, the effectiveness of therapeutic insoles remains unclear. In this study, we assessed the effectiveness of therapeutic insoles for flatfoot deformity using subject-based three-dimensional (3D) computed tomography (CT) models by evaluating the load responses of the bones in the medial longitudinal arch in vivo in 3D. We studied eight individuals (16 feet) with mild flatfoot deformity. CT scans were performed on both feet under non-loaded and full-body-loaded conditions, first with accessory insoles and then with therapeutic insoles under the same conditions. Three-dimensional CT models were constructed for the tibia and the tarsal and metatarsal bones of the medial longitudinal arch (i.e., first metatarsal bone, cuneiforms, navicular, talus, and calcaneus). The rotational angles between the tarsal bones were calculated under loading with accessory insoles or therapeutic insoles and compared. Compared with the accessory insoles, the therapeutic insoles significantly suppressed the eversion of the talocalcaneal joint. This is the first study to precisely verify the usefulness of therapeutic insoles (arch support and inner wedges) in vivo. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sarikhani, Ali; Motalebizadeh, Abbas; Kamali Doost Azad, Babak
2016-01-01
The insole shape and the resulting plantar stress distribution have a pivotal impact on overall health. In this paper, by Finite Element Method, maximum stress value and stress distribution of plantar were studied for different insoles designs, which are the flat surface and the custom-molded (conformal) surface. Moreover, insole thickness, heel's height, and different materials were used to minimize the maximum stress and achieve the most uniform stress distribution. The foot shape and its details used in this paper were imported from online CT-Scan images. Results show that the custom-molded insole reduced maximum stress 40% more than the flat surface insole. Upon increase of thickness in both insole types, stress distribution becomes more uniform and maximum stress value decreases up to 10%; however, increase of thickness becomes ineffective above a threshold of 1 cm. By increasing heel height (degree of insole), maximum stress moves from heel to toes and becomes more uniform. Therefore, this scenario is very helpful for control of stress in 0.2° to 0.4° degrees for custom-molded insole and over 1° for flat insole. By changing the material of the insole, the value of maximum stress remains nearly constant. The custom-molded (conformal) insole which has 0.5 to 1 cm thickness and 0.2° to 0.4° degrees is found to be the most compatible form for foot. PMID:27843284
Lucas-Cuevas, Angel Gabriel; Pérez-Soriano, Pedro; Llana-Belloch, Salvador; Macián-Romero, Cecili; Sánchez-Zuriaga, Daniel
2014-01-01
Controversy exists whether custom-made insoles are more effective in reducing plantar loading compared to prefabricated insoles. Forty recreational athletes ran using custom-made, prefabricated, and the original insoles of their running shoes, at rest and after a fatigue run. Contact time, stride rate, and plantar loading parameters were measured. Neither the insole conditions nor the fatigue state modified contact time and stride rate. Addressing prevention of running injuries, post-fatigue loading values are of great interest. Custom-made insoles reduced the post-fatigue loading under the hallux (92 vs. 130 kPa, P < 0.05), medial midfoot (70 vs. 105 kPa, P < 0.01), and lateral midfoot (62 vs 96 kPa, P < 0.01). Prefabricated insoles provoked reductions in post-fatigue loading under the toes (120 vs. 175 kPa, P < 0.05), medial midfoot (71 vs. 105 kPa, P < 0.01), and lateral midfoot (68 vs. 96 kPa, P < 0.01). Regarding both study insoles, custom-made insoles reduced by 31% and 54% plantar loading under the medial and lateral heel compared to the prefabricated insoles. Finally, fatigue state did not influence plantar loading regardless the insole condition. In long-distance races, even a slight reduction in plantar loading at each foot strike may suppose a significant decrease in the overall stress experienced by the foot, and therefore the use of insoles may be an important protective mechanism for plantar overloading.
Using the EUV to Weigh a Sun-Grazing Comet as it Disappears in the Solar Corona
NASA Technical Reports Server (NTRS)
Pesnell, William Dean; Schrijiver, Carolus J.; Brown, John C.; Battams, Karl; Saint-Hilaire, Pascal; Hudson Hugh S.; Lui, Wei
2012-01-01
On July 6,2011, the Atmospheric Imaging Assembly (AlA) on the Solar Dynamics Observatory (SDO) observed a comet in most of its EUY passbands. The comet disappeared while moving through the solar corona. The comet penetrated to 0.146 solar radii ($\\simapprox.100,000 km) above the photosphere before its EUY faded. Before then, the comet's coma and a tail were observed in absorption and emission, respectively. The material in the variable tail quickly fell behind the nucleus. An estimate of the comet's mass based on this effect, one derived from insolation, and one using the tail's EUY brightness, all yield $\\sim 50$ giga-grams some 10 minutes prior to the end of its visibility. These unique first observations herald a new era in the study of Sun-grazing comets close to their perihelia and of the conditions in the solar corona and solar wind. We will discuss the observations and interpretation of the comet by SDO as well as the coronagraph observations from SOHO and STEREO. A search of the SOHO comet archive for other comets that could be observed in the SDO; AlA EUY channels will be described
NASA Astrophysics Data System (ADS)
Molod, A.; Salmun, H.; Collow, A.
2017-12-01
The atmospheric general circulation model (GCM) that underlies the MERRA-2 reanalysis includesa suite of physical parameterizations that describe the processes that occur in theplanetary boundary layer (PBL). The data assimilation system assures that the atmosphericstate variables used as input to these parameterizations are constrained to the bestfit to all of the available observations. Many studies, however, have shown that the GCM-based estimates of MERRA-2 PBL heights are biased high, and so are not reliable forapplication related to constituent transport or the carbon cycle.A new 20-year record of PBL heights was derived from Wind Profiler (WP) backscatter data measuredat a wide network of stations throughout the US Great Plains and has been validated against independent estimates. The behavior of these PBL heights shows geographical and temporalvariations that are difficult to attribute to particular physical processes withoutadditional information that are not part of the observational record.In the present study, we use information on physical processes from MERRA-2 to understand the behavior of the WP derived PBL heights. The behavior of the annual cycle of both MERRA-2 and WP PBL heights shows three classes of behavior: (i) canonical, where the annual cyclefollows the annual cycle of the sun, (ii) delayed, where the PBL height reaches its annual maximum after the annual maximum of the solar insolation, and (iii) double maxima, wherethe PBL height begins to rise with the solar insolation but falls sometimes during the the summer and then rises again. Although the magnitude of these types of variations isdescribed by the WP PBL record, the explanation for these behaviors and the relationshipto local precipitation, temperature, hydrology and sensible and latent heat fluxes is articulated using information from MERRA-2.
Lo, Wai Ting; Yick, Kit Lun; Ng, Sun Pui; Yip, Joanne
2014-01-01
Orthotic insoles are commonly used in the treatment of the diabetic foot to prevent ulcerations. Choosing suitable insole material is vital for effective foot orthotic treatment. We examined seven types of orthotic materials. In consideration of the key requirements and end uses of orthotic insoles for the diabetic foot, including accommodation, cushioning, and control, we developed test methods for examining important physical properties, such as force reduction and compression properties, insole-skin friction, and shear properties, as well as thermal comfort properties of fabrication materials. A novel performance index that combines various material test results together was also proposed to quantify the overall performance of the insole materials. The investigation confirms that the insole-sock interface has a lower coefficient of friction and shearing stress than those of the insole-skin interface. It is also revealed that material brand and the corresponding density and cell volume, as well as thickness, are closely associated with the performance of moisture absorption and thermal comfort. On the basis of the proposed performance index, practitioners can better understand the properties and performance of various insole materials, thus prescribing suitable orthotic insoles for patients with diabetic foot.
Nonlinear response of summer temperature to Holocene insolation forcing in Alaska.
Clegg, Benjamin F; Kelly, Ryan; Clarke, Gina H; Walker, Ian R; Hu, Feng Sheng
2011-11-29
Regional climate responses to large-scale forcings, such as precessional changes in solar irradiation and increases in anthropogenic greenhouse gases, may be nonlinear as a result of complex interactions among earth system components. Such nonlinear behaviors constitute a major source of climate "surprises" with important socioeconomic and ecological implications. Paleorecords are key for elucidating patterns and mechanisms of nonlinear responses to radiative forcing, but their utility has been greatly limited by the paucity of quantitative temperature reconstructions. Here we present Holocene July temperature reconstructions on the basis of midge analysis of sediment cores from three Alaskan lakes. Results show that summer temperatures during 10,000-5,500 calibrated years (cal) B.P. were generally lower than modern and that peak summer temperatures around 5,000 were followed by a decreasing trend toward the present. These patterns stand in stark contrast with the trend of precessional insolation, which decreased by ∼10% from 10,000 y ago to the present. Cool summers before 5,500 cal B.P. coincided with extensive summer ice cover in the western Arctic Ocean, persistence of a positive phase of the Arctic Oscillation, predominantly La Niña-like conditions, and variation in the position of the Alaskan treeline. These results illustrate nonlinear responses of summer temperatures to Holocene insolation radiative forcing in the Alaskan sub-Arctic, possibly because of state changes in the Arctic Oscillation and El Niño-Southern Oscillation and associated land-atmosphere-ocean feedbacks.
Nonlinear response of summer temperature to Holocene insolation forcing in Alaska
Clegg, Benjamin F.; Kelly, Ryan; Clarke, Gina H.; Walker, Ian R.; Hu, Feng Sheng
2011-01-01
Regional climate responses to large-scale forcings, such as precessional changes in solar irradiation and increases in anthropogenic greenhouse gases, may be nonlinear as a result of complex interactions among earth system components. Such nonlinear behaviors constitute a major source of climate “surprises” with important socioeconomic and ecological implications. Paleorecords are key for elucidating patterns and mechanisms of nonlinear responses to radiative forcing, but their utility has been greatly limited by the paucity of quantitative temperature reconstructions. Here we present Holocene July temperature reconstructions on the basis of midge analysis of sediment cores from three Alaskan lakes. Results show that summer temperatures during 10,000–5,500 calibrated years (cal) B.P. were generally lower than modern and that peak summer temperatures around 5,000 were followed by a decreasing trend toward the present. These patterns stand in stark contrast with the trend of precessional insolation, which decreased by ∼10% from 10,000 y ago to the present. Cool summers before 5,500 cal B.P. coincided with extensive summer ice cover in the western Arctic Ocean, persistence of a positive phase of the Arctic Oscillation, predominantly La Niña-like conditions, and variation in the position of the Alaskan treeline. These results illustrate nonlinear responses of summer temperatures to Holocene insolation radiative forcing in the Alaskan sub-Arctic, possibly because of state changes in the Arctic Oscillation and El Niño-Southern Oscillation and associated land–atmosphere–ocean feedbacks. PMID:22084085
Lightweight Battery Charge Regulator Used to Track Solar Array Peak Power
NASA Technical Reports Server (NTRS)
Soeder, James F.; Button, Robert M.
1999-01-01
A battery charge regulator based on the series-connected boost regulator (SCBR) technology has been developed for high-voltage spacecraft applications. The SCBR regulates the solar array power during insolation to prevent battery overcharge or undercharge conditions. It can also be used to provide regulated battery output voltage to spacecraft loads if necessary. This technology uses industry-standard dc-dc converters and a unique interconnection to provide size, weight, efficiency, fault tolerance, and modularity benefits over existing systems. The high-voltage SCBR shown in the photograph has demonstrated power densities of over 1000 watts per kilogram (W/kg). Using four 150-W dc-dc converter modules, it can process 2500 W of power at 120 Vdc with a minimum input voltage of 90 Vdc. Efficiency of the SCBR was 94 to 98 percent over the entire operational range. Internally, the unit is made of two separate SCBR s, each with its own analog control circuitry, to demonstrate the modularity of the technology. The analog controllers regulate the output current and incorporate the output voltage limit with active current sharing between the two units. They also include voltage and current telemetry, on/off control, and baseplate temperature sensors. For peak power tracking, the SCBR was connected to a LabView-based data acquisition system for telemetry and control. A digital control algorithm for tracking the peak power point of a solar array was developed using the principle of matching the source impedance with the load impedance for maximum energy transfer. The algorithm was successfully demonstrated in a simulated spacecraft electrical system at the Boeing PhantomWorks High Voltage Test Facility in Seattle, Washington. The system consists of a 42-string, high-voltage solar array simulator, a 77-cell, 80-ampere-hour (A-hr) nickel-hydrogen battery, and a constant power-load module. The SCBR and the LabView control algorithm successfully tracked the solar array peak power point through various load transients, including sunlight discharge transients when the total load exceeded the maximum solar array output power.
The effect of insoles on foot pain and daily activities.
Amer, Ahmed O; Jarl, Gustav M; Hermansson, Liselotte N
2014-12-01
Foot pain decreases individuals' ability to perform daily activities. Insoles are often prescribed to reduce the pain which, in turn, may promote return to normal activities. To evaluate the effects of insoles on foot pain and daily activities, and to investigate the relationship between individuals' satisfaction with insoles and actual use of them. A 4-week pre-post intervention follow-up. Brief Pain Inventory, International Physical Activity Questionnaire and Lower Extremities Functional Status were used as outcome measures. Client Satisfaction with Device was used in the follow-up. A total of 67 participants answered the questionnaires (81% women). Overall, a reduction in Pain Severity (p = 0.002) and Pain Interference (p = 0.008) was shown. Secondary analyses revealed a significant effect only in women. No changes in daily activities (Walking, p = 0.867; Total Physical Activity, p = 0.842; Lower Extremities Functional Status, p = 0.939) could be seen. There was no relation between Client Satisfaction with Device measures and duration of insole use. A difference in sex was shown; women scored higher than men on Pain Severity. Insoles reduce pain and pain interference with daily activities for women with foot pain. Satisfaction with the insoles is not a predictor of actual insole use. The effect of insoles on activity performance needs further study. This study provides evidence for prescribing insoles to people with foot pain. Nonetheless, insoles are not enough to increase their physical activity level in the short term. Satisfaction with insoles and duration of use are not correlated and cannot be inferred from each other. © The International Society for Prosthetics and Orthotics 2013.
Climate Model Response from the Geoengineering Model Intercomparison Project (GeoMIP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravitz, Benjamin S.; Caldeira, Ken; Boucher, Olivier
2013-08-09
Solar geoengineering—deliberate reduction in the amount of solar radiation retained by the Earth—has been proposed as a means of counteracting some of the climatic effects of anthropogenic greenhouse gas emissions. We present results from Experiment G1 of the Geoengineering Model Intercomparison Project, in which 12 climate models have simulated the climate response to an abrupt quadrupling of CO2 from preindustrial concentrations brought into radiative balance via a globally uniform reduction in insolation. Models show this reduction largely offsets global mean surface temperature increases due to quadrupled CO2 concentrations and prevents 97% of the Arctic sea ice loss that would otherwisemore » occur under high CO2 levels but, compared to the preindustrial climate, leaves the tropics cooler (-0.3 K) and the poles warmer (+0.8 K). Annual mean precipitation minus evaporation anomalies for G1 are less than 0.2mmday-1 in magnitude over 92% of the globe, but some tropical regions receive less precipitation, in part due to increased moist static stability and suppression of convection. Global average net primary productivity increases by 120% in G1 over simulated preindustrial levels, primarily from CO2 fertilization, but also in part due to reduced plant heat stress compared to a high CO2 world with no geoengineering. All models show that uniform solar geoengineering in G1 cannot simultaneously return regional and global temperature and hydrologic cycle intensity to preindustrial levels.« less
A preliminary objective evaluation of leprosy footwear using in-shoe pressure measurement.
Linge, K
1996-01-01
The primary function of leprosy shoes, insoles and podiatric orthoses is to provide an underfoot environment capable of distributing the inevitable vertical forces, so reducing areas of peak pressure and ideally the period through which they are applied. Many patients with Hansen's disease have both skeletal deformity and anesthetised feet and the presence of high plantar pressures is the key reason for foot ulceration. This objective investigation using in-shoe dynamic pressure measurements showed that the addition of a shank to control insole rigidity reduced the overall peak pressures under the foot. When a deep canvas shoe was used to test single- and double-thickness insoles of two different types of material it was found in each case that the double-thickness mode was advantageous overall. Microcellular rubber insoles in two types of leprosy shoe were replaced by the polymer Poron. The Poron proved to be superior to both microcellular rubbers. The peak pressure and pressure-time integral should be considered as complimentary variables when determining the efficacy of footwear.
Validation of the National Solar Radiation Database (NSRDB) (2005-2012): Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Manajit; Weekley, Andrew; Habte, Aron
Publicly accessible, high-quality, long-term, satellite-based solar resource data is foundational and critical to solar technologies to quantify system output predictions and deploy solar energy technologies in grid-tied systems. Solar radiation models have been in development for more than three decades. For many years, the National Renewable Energy Laboratory (NREL) developed and/or updated such models through the National Solar Radiation Data Base (NSRDB). There are two widely used approaches to derive solar resource data from models: (a) an empirical approach that relates ground-based observations to satellite measurements and (b) a physics-based approach that considers the radiation received at the satellite andmore » creates retrievals to estimate clouds and surface radiation. Although empirical methods have been traditionally used for computing surface radiation, the advent of faster computing has made operational physical models viable. The Global Solar Insolation Project (GSIP) is an operational physical model from the National Oceanic and Atmospheric Administration (NOAA) that computes global horizontal irradiance (GHI) using the visible and infrared channel measurements from the Geostationary Operational Environmental Satellites (GOES) system. GSIP uses a two-stage scheme that first retrieves cloud properties and then uses those properties in the Satellite Algorithm for Surface Radiation Budget (SASRAB) model to calculate surface radiation. NREL, the University of Wisconsin, and NOAA have recently collaborated to adapt GSIP to create a high temporal and spatial resolution data set. The product initially generates the cloud properties using the AVHRR Pathfinder Atmospheres-Extended (PATMOS-x) algorithms [3], whereas the GHI is calculated using SASRAB. Then NREL implements accurate and high-resolution input parameters such as aerosol optical depth (AOD) and precipitable water vapor (PWV) to compute direct normal irradiance (DNI) using the DISC model. The AOD and PWV, temperature, and pressure data are also combined with the MMAC model to simulate solar radiation under clear-sky conditions. The current NSRDB update is based on a 4-km x 4-km resolution at a 30-minute time interval, which has a higher temporal and spatial resolution. This paper demonstrates the evaluation of the data set using ground-measured data and detailed evaluation statistics. The result of the comparison shows a good correlation to the NSRDB data set. Further, an outline of the new version of the NSRDB and future plans for enhancement and improvement are provided.« less
NASA Astrophysics Data System (ADS)
1982-03-01
Performance data are given for the month of February, 1982 for a photovoltaic power supply at a Massachusetts high school. Data given include: monthly and daily electrical energy yield; monthly and daily insolation; monthly and daily array efficiency; energy production as a function of power level, voltage, cell temperature, and hour of day; insolation as a function of hour of the day; input, output and efficiency for each of two power conditioning units and for the total power conditioning system; energy supplied to the load by the photovoltaic system and by the grid; photovoltaic system efficiency; dollar value of the energy supplied by the photovoltaic system; capacity factor; daily photovoltaic energy to load; daily system availability and hours of daylight; heating and cooling degree days; hourly cell temperature, ambient temperature, wind speed, and insolation; average monthly wind speed; wind direction distribution; and daily data acquisition mode and recording interval plot.
NASA Astrophysics Data System (ADS)
Liu, L.; Fu, X.
2010-12-01
The US has very long shorelines (95,471 miles) contributing remarkable yearly revenue to the country by providing numerous recreational beaches. The beaches of both inland lakes and marine regions must be closed when the level of waterborne pathogens indicated by fecal indicator bacteria (FIB) including total coliform (TC), fecal coli form (FC, or Escherichia coli, E. coli) and Enterococcus exceed microbial water quality standards. Beach closures are of mounting concern to beach managers and the public due to the increasing risk to human health from waterborne pathogens. Monitoring FIB with laboratory analysis usually takes at least 18 hours during which beach goers may have been unintentionally exposed to the contaminated water. Therefore a water quality model to quickly and precisely forecast FIB has been a very effective tool for beach management to help beach managers in making decisions if beaches are safe enough to open to the public. The fate and transport of pathogens in the surf-zone of a beach area is a complex process involving various factors of hydrodynamics, hydrology, chemistry, microbiology. These factors including dispersion coefficient, wind velocity, particle settling velocity, fraction of bacteria attached, solar insolation, discharges to the beach, geometry of the beach, etc, are the essential components for a mechanistic model to describe the inactivation of FIB. To better understand the importance of these factors and their roles in impacting inactivation, transport and removal of FIB is extremely important to enhance the effectiveness and preciseness of a predictive model. The aim of this paper is to report the sensitivity analysis results of these factors in the surf zone of a creational beach using a verified water quality model system. The relative importance of these parameters is being ranked. For instance, the current sensitivity analysis shows that sunlight insolation has greater impact on pathogen inactivation than water temperature and settling velocity (figure 1). The analysis results and conclusion may provide indication for general beach management and further inactivation investigation of pathogens. Figure 1: Relative contributions of settling and solar insolation to the overall inactivation of E. coli at the Mt. Baldy Beach (Liu et al. 2006)
Modeling the Transport and Fate of Fecal Pollution and Nutrients of Miyun Reservoir
NASA Astrophysics Data System (ADS)
Liu, L.; Fu, X.; Wang, G.
2009-12-01
Miyun Reservoir, a mountain valley reservoir, is located 100 km northeast of Beijing City. Besides the functions of flood control, irrigation and fishery for Beijing area, Miyun Reservoir is the main drinking water storage for Beijing city. The water quality is therefore of great importance. Recently, the concentration of fecal pollution and nutrients in the reservoir are constantly rising to arrest the attention of Beijing municipality. Fecal pollution from sewage is a significant public health concern due to the known presence of human viruses and parasites in these discharges. To investigate the transport and fate of the fecal pollution and nutrients at Miyun reservoir and the health risks associated with drinking and fishery, the reservoir and two tributaries, Chaohe river and Baihe river discharging into it are being examined for bacterial, nutrients and other routine pollution. To understand the relative importance of different processes influencing pollution transport and inactivation, a finite-element model of surf-zone hydrodynamics (coupled with models for temperature, fecal pollution, nutrients and other routine contaminants) is used. The developed models are being verified by the observed water quality data including water temperature, conductivities and dissolved oxygen from the reservoir and its tributaries. Different factors impacting the inactivation of fecal pollution and the transport of nutrients such as water temperature, sedimentation, sunlight insolation are evaluated for Miyun reservoir by a sensitivity analysis analogized from the previous research of Lake Michigan (figure 1, indicating that solar insolation dominates the inactivation of E. Coli, an indicator of fecal pollution, Liu et al. 2006). The calibrated modeling system can be used to temporally and spatially simulate and predict the variation of the concentration of fecal pollution and nutrients of Miyun reservoir. Therefore this research can provide a forecasting tool for the administrative agencies and policy makers to make correct decisions for the water utilization of Minyun reservoir once some emergency events occur. Key words: Fecal pollution, Modeling, Transport, Inactivation Figure 1: Relative contributions of settling and solar insolation to the overall inactivation of E. coli at the Mt. Baldy Beach (Liu et al. 2006)
Hsu, Yu-Chun; Gung, Yih-Wen; Shih, Shih-Liang; Feng, Chi-Kuang; Wei, Shun-Hwa; Yu, Chung-Huang; Chen, Chen-Sheng
2008-08-01
Plantar heel pain is a commonly encountered orthopedic problem and is most often caused by plantar fasciitis. In recent years, different shapes of insole have been used to treat plantar fasciitis. However, little research has been focused on the junction stress between the plantar fascia and the calcaneus when wearing different shapes of insole. Therefore, this study aimed to employ a finite element (FE) method to investigate the relationship between different shapes of insole and the junction stress, and accordingly design an optimal insole to lower fascia stress.A detailed 3D foot FE model was created using ANSYS 9.0 software. The FE model calculation was compared to the Pedar device measurements to validate the FE model. After the FE model validation, this study conducted parametric analysis of six different insoles and used optimization analysis to determine the optimal insole which minimized the junction stress between plantar fascia and calcaneus. This FE analysis found that the plantar fascia stress and peak pressure when using the optimal insole were lower by 14% and 38.9%, respectively, than those when using the flat insole. In addition, the stress variation in plantar fascia was associated with the different shapes of insole.
Solair heater program: solair applications study. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-12-01
General Electric has designed and tested a low-cost solar system using a vacuum tube solar air heater under ERDA Contract E(11-1)-2705. This contract extension has been provided to evaluate various applications of this solar collector. The evaluation identified attractive applications, evaluated corresponding control procedures, estimated system performance, compared economically insolation and insulation, and evaluated the repackaging of off-the-shelf equipment for improved cost effectiveness. The results of this study prompted General Electric's marketing group to do a detailed commercialization study of a residential domestic water heating system using the Solair concept which has been selected as the most attractive application. Othermore » attractive applications are space/domestic water heating and a heat pump assisted solar system/domestic water heating where the heat pump and the solar system function in parallel. A prime advantage of heated air solar systems over liquid systems is cost and longer life which results in higher BTU's/dollar. Other air system advantages are no liquid leakage problems, no toxicity of freezing problems, and less complicated equipment. A hybrid solar system has been identified that can improve the market penetration of solar energy. This system would use the existing mass of the house for energy storage thereby reducing solar cost and complexity. Adequate performance can be obtained with house temperature swings comparable to those used in nighttime setback of the thermostat. Details of this system are provided.« less
Paton, Joanne S; Stenhouse, Elizabeth; Bruce, Graham; Jones, Ray
2014-01-01
Insoles are commonly used to assist in the prevention of diabetic neuropathic foot ulceration. Insole replacement is often triggered only when foot lesions deteriorate, an indicator that functional performance is comprised and patients are exposed to unnecessary ulcer risk. We investigated the durability of insoles used for ulcer prevention in neuropathic diabetic feet over 12 months. Sixty neuropathic individuals with diabetes were provided with insoles and footwear. Insole durability over 12 months was evaluated using an in-shoe pressure measurement device and through repeated measurement of material depth at the first metatarsal head and the heel seat. Analysis of variance was performed to assess change across time (at issue, 6 months, and 12 months). Analyses were conducted using all available data (n = 43) and compliant data (n = 18). No significant difference was found in the reduction of mean peak pressure tested across time (P < .05). For both sites, significant differences in insole depth were identified between issue and 6 months and between issue and 12 months but not between 6 and 12 months (P < .05). Most insole compression occurred during the initial 6 months. Visual material compression does not seem to be a reliable indicator of insole usefulness. Frequency of insole replacement is best informed by a functional review of effect determined using an in-shoe pressure measurement system. These results suggest that insoles for diabetic neuropathic patients can be effective in maintaining peak pressure reduction for 12 months regardless of wear frequency.
NASA Astrophysics Data System (ADS)
Watanabe, Takashi; Yoshida, Toshiya; Ohniwa, Katsumi
This paper discusses a new control strategy for photovoltaic power generation systems with consideration of dynamic characteristics of the photovoltaic cells. The controller estimates internal currents of an equivalent circuit for the cells. This estimated, or the virtual current and the actual voltage of the cells are fed to a conventional Maximum-Power-Point-Tracking (MPPT) controller. Consequently, this MPPT controller still tracks the optimum point even though it is so designed that the seeking speed of the operating point is extremely high. This system may suit for applications, which are installed in rapidly changeable insolation and temperature-conditions e.g. automobiles, trains, and airplanes. The proposed method is verified by experiment with a combination of this estimating function and the modified Boehringer's MPPT algorithm.
NASA Technical Reports Server (NTRS)
Fanale, Fraser P.; Salvail, James R.; Matson, Dennis L.; Brown, Robert H.
1990-01-01
The present quantitative modeling of convective, condensational, and sublimational effects on porous ice crust volumes subjected to solar radiation encompasses the effect of such insolation's penetration of visible bandpass-translucent light, but opaque to the IR bandpass. Quasi-steady-state temperatures, H2O mass fluxes, and ice mass-density change rates are computed as functions of time of day and ice depth. When the effects of latent heat and mass transport are included in the model, the enhancement of near-surface temperature due to the 'solid-state greenhouse effect' is substantially diminished. When latent heat, mass transport, and densification effects are considered, however, a significant solid-state greenhouse effect is shown to be compatible with both morphological evidence for high crust strengths and icy shell decoupling from the lithosphere.
House, Carol; Reece, Allyson; Roiz de Sa, Dan
2013-06-01
This study was undertaken to determine whether the incidence of lower limb overuse injuries (LLOIs) sustained during Royal Marine training could be reduced by issuing the recruits with shock-absorbing insoles (SAIs) to wear in their military boots. This was a retrospective longitudinal trial conducted in two phases. Injury data from 1,416 recruits issued with standard Saran insoles and 1,338 recruits issued with SAI were compared. The recruits in the two groups were of similar height, body mass, and aerobic fitness and followed the same training course. The incidence of LLOI sustained by the recruits was lower (p < 0.05) in the SAI Group (19.0%) compared to the Saran Insole Group (31.7%). The incidences of lower limb stress fractures, tibial periostitis, tenosynovitis of foot, achilles tendonopathy, other tendonopathy and anterior knee pain were lower (p < 0.05) in the SAI Group. Tibial stress fracture incidence was lower (p < 0.05) in the SAI Group but metatarsal and femoral stress fracture incidences were the same for the two insole groups. Thus, issuing SAIs to military recruits undertaking a sustained, arduous physical training program with a high incidence of LLOI would provide a beneficial reduction in the incidence of LLOI. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.
How to Make Eccentricity Cycles in Stratigraphy: the Role of Compaction
NASA Astrophysics Data System (ADS)
Liu, W.; Hinnov, L.; Wu, H.; Pas, D.
2017-12-01
Milankovitch cycles from astronomically driven climate variations have been demonstrated as preserved in cyclostratigraphy throughout geologic time. These stratigraphic cycles have been identified in many types of proxies, e.g., gamma ray, magnetic susceptibility, oxygen isotopes, carbonate content, grayscale, etc. However, the commonly prominent spectral power of orbital eccentricity cycles in stratigraphy is paradoxical to insolation, which is dominated by precession index power. How is the spectral power transferred from precession to eccentricity in stratigraphy? Nonlinear sedimentation and bioturbation have long been identified as players in this transference. Here, we propose that in the absence of bioturbation differential compaction can generate the transference. Using insolation time series, we trace the steps by which insolation is transformed into stratigraphy, and how differential compaction of lithology acts to transfer spectral power from precession to eccentricity. Differential compaction is applied to unique values of insolation, which is assumed to control the type of deposited sediment. High compaction is applied to muds, and progressively lower compaction is applied to silts and sands, or carbonate. Linear differential compaction promotes eccentricity spectral power, but nonlinear differential compaction elevates eccentricity spectral power to dominance and precession spectral power to near collapse as is often observed in real stratigraphy. Keywords: differential compaction, cyclostratigraphy, insolation, eccentricity
Habitable Moons and Planets Around Post-Main Sequence Stars
NASA Astrophysics Data System (ADS)
Lorenz, R.
2014-04-01
Habitability is ephemeral, and arises against the backdrop of stellar evolution. Atmospheric modulation of incoming and outgoing radiative fluxes can restrict or extend the insolation domain in which habitable conditions can persist, and feedbacks (notably, silicate weathering of CO2) may fortuitously adapt that modulation to counteract evolving luminosity. But eventually the star will win. What happens then depends on the histories of stellar luminosity, and of stellar mass loss. While the enhancement of luminosity may render the outer solar system habitable in a classic radiative/convective equilibrium sense, a scenario studied in most detail in connection with Saturn's moon Titan, the enhanced solar wind associated with the latter may strip atmospheres unprotected by magnetic fields. The question of post-main sequence habitability is therefore not a simple one.
Introductory assessment of orbiting reflections for terrestrial power generation
NASA Technical Reports Server (NTRS)
Billman, K. W.; Gilbreath, W. P.; Bowen, S. W.
1977-01-01
The use of orbiting mirrors for providing energy to ground conversion stations to produce electrical power is shown to be a viable, cost effective and environmentally sound alternative to satellite solar power stations and conventional power sources. This is accomplished with the use of very light weight metal coated polymeric films as mirrors which, after deployment at 800 km, are placed in operational orbit and controlled by solar radiation pressure. Relations are developed showing the influence of a number of parameters (mirror altitude, orbit inclination, period, mirror size and number, and atmospheric effects) on the reflected insolation that may be received by a ground spot as a function of location. Some attractive alternative uses of the reflection are briefly discussed as a beneficial adjuncts to the system.
Deployable Mini-Payload Missions Enabled by Small Radioisotope Power Systems (RPSs)
NASA Technical Reports Server (NTRS)
Abelson, Robert D.; Satter, Celeste M.
2005-01-01
Deployable mini-payloads are envisioned as small, simple, standalone instruments that could be deployed from a mother vehicle such as a rover or the proposed Jupiter Icy Moons Orbiter to key points of interest within the solar system. Used in conjunction with a small radioisotope power system (RPS), these payloads could potentially be used for long-duration science missions or as positional beacons for rovers or other spacecraft. The RPS power source would be suitable for deployable mini-payload missions that would take place anywhere there is limited, intermittent, or no solar insolation. This paper introduces two such concepts: (1) a seismic monitoring station deployed by a rover or aerobot, and (2) a passive fields and particles station delivered by a mother spacecraft to Jupiter.
Toda, Y; Tsukimura, N
2006-03-01
This study was conducted in order to assess the effect of wearing a lateral wedged insole with a subtalar strap for 2 years in patients with osteoarthritis varus deformity of the knee (knee OA). The setting was an outpatient clinic. The efficacies of the strapped insole and a traditional shoe insert wedged insole (the inserted insole), as a positive control, were compared at the baseline and after 2 years of treatment. Randomization was performed according to birth date. The 61 female outpatients with knee OA who completed a prior 6-month study were asked to wear their respective insoles continuously as treatment during the course of the 2-year study. The femorotibial angle (FTA) was assessed by standing radiographs obtained while the subjects were barefoot and the Lequesne index of the knee OA at 2 years was compared with those at baseline in each insole group. There were 61 patients in the original study, but 13 patients (21.3%) did not want to wear the insole continuously and five (8.2%) withdrew for other reasons. The 42 patients who completed the 2-year study were evaluated. At the 2-year assessment, participants wearing the subtalar strapped insole (n=21) demonstrated significantly decreased FTA (P=0.015), and significantly improved Lequesne index (P=0.031) in comparison with their baseline assessments. These significant differences were not found in the group with the traditional shoe inserted wedged insole (n=21). Only those participants using the subtalar strapped insole demonstrated significant change in the FTA in comparison with the baseline assessments. If the insole with a subtalar strap maintains FTA for more than 2 years, it may restrict the progression of degenerative articular cartilage lesions of knee OA.
Impact of soft and hard insole density on postural stability in older adults.
Losa Iglesias, Marta Elena; Becerro de Bengoa Vallejo, Ricardo; Palacios Peña, Domingo
2012-01-01
A significant predictor of falls in the elderly population is attributed to postural instability. Thus, it is important to identify and implement practical clinical interventions to enhance postural stability in older adults. Shoe insoles have been identified as a mechanism to enhance postural control, and our study aimed to evaluate the impact of 2 shoe insoles on static standing balance in healthy, older adults compared with standing posture while barefoot. We hypothesized that both hard and soft shoe insoles would decrease postural sway compared with the barefoot condition. Indeed, excursion distances and sway areas were reduced, and sway velocity was decreased when wearing insoles. The hard insole was also effective when visual feedback was removed, suggesting that the more rigid an insole, the greater potential reduction in fall risk. Thus, shoe insoles may be a cost-effective, clinical intervention that is easy to implement to reduce the risk of falling in the elderly population. Copyright © 2012 Mosby, Inc. All rights reserved.
Su, Shonglun; Mo, Zhongjun; Guo, Junchao; Fan, Yubo
2017-01-01
Flat foot is one of the common deformities in the youth population, seriously affecting the weight supporting and daily exercising. However, there is lacking of quantitative data relative to material selection and shape design of the personalized orthopedic insole. This study was to evaluate the biomechanical effects of material hardness and support height of personalized orthopedic insole on foot tissues, by in vivo experiment and finite element modeling. The correction of arch height increased with material hardness and support height. The peak plantar pressure increased with the material hardness, and these values by wearing insoles of 40° were apparently higher than the bare feet condition. Harder insole material results in higher stress in the joint and ligament stress than softer material. In the calcaneocuboid joint, the stress increased with the arch height of insoles. The material hardness did not apparently affect the stress in the ankle joints, but the support heights of insole did. In general, insole material and support design are positively affecting the correction of orthopedic insole, but negatively resulting in unreasonable stress on the stress in the joint and ligaments. There should be an integration of improving correction and reducing stress in foot tissues.
[Use of insoles made of antimicrobial materials as prophylactic means in foot mycoses].
Sedov, A V; Vazhbin, L B; Odtarzhevskaia, N D; Astaf'eva, I P; Poliakova, L A; Karpov, V V; Ashurova, E I; Lazareva, N M; Mikhaĭlov, O R
1994-01-01
Stationary dermatologic examination covered 32 sufferers from epidermophytosis of soles, who used 3 types of antimicrobial insoles chosen through laboratory investigations. Clinical trials proved that antimicrobial insoles, if applied during 2 weeks, result in considerably decreased occurrence of causal fungus in the patients' surface skin scarring. The results proved fungicidal and bactericidal activity of insoles including furagin, nitrofurilacroleine, polyhexamethylene guanidine, so such insoles could be recommended as prophylactic measure for mycoses of soles.
Modeling Surface Processes Occurring on Moons of the Outer Solar System
NASA Astrophysics Data System (ADS)
Umurhan, O. M.; White, O. L.; Moore, J. M.; Howard, A. D.; Schenk, P.
2016-12-01
A variety of processes, some with familiar terrestrial analogs, are known to take place on moon surfaces in the outer solar system. In this talk, we discuss the observed features of mass wasting and surface transport seen on both Jupiter's moon Calisto and one of Saturn's Trojan moons Helene. We provide a number of numerical models using upgraded version of MARSSIM in support of several hypotheses suggested on behalf of the observations made regarding these objects. Calisto exhibits rolling plains of low albedo materials surrounding relatively high jutting peaks harboring high albedo deposits. Our modeling supports the interpretation that Calisto's surface is a record of erosion driven by the sublimation of CO2 and H2O contained in the bedrock. Both solar insolation and surface re-radiation drives the sublimation leaving behind debris which we interpret to be the observed darkened regolith and, further, the high albedo peaks are water ice deposits on surface cold traps. On the other hand, the 45 km scale Helene, being a milligravity environment, exhibits mysterious looking streaks and grooves of very high albedo materials extending for several kilometers with a down-sloping grade of 7o-9o. Helene's cratered terrain also shows evidence of narrowed septa. The observed surface features suggest some type of advective processes are at play in this system. Our modeling lends support to the suggestion that Helene's surface materials behave as a Bingham plastic material - our flow modeling with such rheologies can reproduce the observed pattern of streakiness depending upon the smoothness of the underlying bedrock; the overall gradients observed; and the narrowed septa of inter-crater regions.
Insolation-driven 100 kyr glacial cycles and millennial climate change
NASA Astrophysics Data System (ADS)
Abe-Ouchi, A.; Saito, F.; Kawamura, K.; Raymo, M. E.; Okuno, J.; Takahashi, K.; Blatter, H.
2013-12-01
The waxing and waning of Northern Hemisphere ice sheets over the past one million years is dominated by an approximately 100-kyr periodicity and a sawtooth pattern (gradual growth and fast termination). Milankovitch theory proposes that summer insolation at high northern latitudes drives the glacial cycles, and statistical tests demonstrated that the glacial cycles are indeed linked to eccentricity, obliquity and precession cycles. However, insolation alone cannot explain the strong 100 kyr cycle which presumably arises through internal climatic feedbacks. Prior work with conceptual models, for example, showed that glacial terminations are associated with the build-up of Northern Hemisphere 'excess ice', but the physical mechanisms of 100-kyr cycle at work remain unclear. Here, using comprehensive climate and ice sheet models, we show that the ~100-kyr periodicity is explained by insolation and internal feedback amongst the climate, ice sheet and lithosphere/asthenosphere system (reference). We found that equilibrium states of ice sheets exhibit hysteresis responses to summer insolation, and that the shape and position of the hysteresis loop play a key role in determining the periodicities of glacial cycles. The hysteresis loop of the North American ice sheet is such that, after its inception, the ice sheet mass balance remains mostly positive or neutral through several precession cycles whose amplitude decreases towards an eccentricity minimum. The larger the ice sheet grows and extends towards lower latitudes, the smaller is the insolation required to turn the mass balance to negative. Therefore, once the large ice sheet is established, only a moderate increase in insolation can trigger a negative mass balance, leading to a complete retreat within several thousand years, due to the delayed isostatic rebound. The effect of ocean circulation and millennial scale climate change are not playing the dominant role for determing the 100kyr cycle, but are effective for modifying the speed and geographical pattern of the waxing and waning of the Northern Hemisphere ice sheets and their melt water. (reference of the basic results: Abe-Ouchi et al, 2013, Insolation-driven 100,000 year glacial cycles and hysteresis of ice-sheet volume, Nature, 500, 190-193.)
García-Hernández, César; Sánchez-Álvarez, Eduardo J; Huertas-Talón, José-Luis
2016-01-01
This research is based on the development of a human foot model to study the temperature conditions of a foot bottom surface under extreme external conditions. This foot model is made by combining different manufacturing techniques to enable the simulation of bones and tissues, allowing the placement of sensors on its surface to track the temperature values of different points inside a shoe. These sensors let researchers capture valuable data during a defined period of time, making it possible to compare the features of different safety boots, socks or soles, among others. In this case, it has been applied to compare different plantar insole materials, placed into safety boots on a high-temperature surface.
Evaluation of All-Day-Efficiency for selected flat plate and evacuated tube collectors
NASA Technical Reports Server (NTRS)
1981-01-01
An evaluation of all day efficiency for selected flat plate and evacuated tube collectors is presented. Computations are based on a modified version of the NBSIR 78-1305A procedure for all day efficiency. The ASHMET and NOAA data bases for solar insolation are discussed. Details of the algorithm used to convert total (global) horizontal radiation to the collector tilt plane of the selected sites are given along with tables and graphs which show the results of the tests performed during this evaluation.
Solar dynamic power for the Space Station
NASA Technical Reports Server (NTRS)
Archer, J. S.; Diamant, E. S.
1986-01-01
This paper describes a computer code which provides a significant advance in the systems analysis capabilities of solar dynamic power modules. While the code can be used to advantage in the preliminary analysis of terrestrial solar dynamic modules its real value lies in the adaptions which make it particularly useful for the conceptualization of optimized power modules for space applications. In particular, as illustrated in the paper, the code can be used to establish optimum values of concentrator diameter, concentrator surface roughness, concentrator rim angle and receiver aperture corresponding to the main heat cycle options - Organic Rankine and Brayton - and for certain receiver design options. The code can also be used to establish system sizing margins to account for the loss of reflectivity in orbit or the seasonal variation of insolation. By the simulation of the interactions among the major components of a solar dynamic module and through simplified formulations of the major thermal-optic-thermodynamic interactions the code adds a powerful, efficient and economic analytical tool to the repertory of techniques available for the design of advanced space power systems.
Experimental investigation of insolation-driven dust ejection from Mars' CO2 ice caps
NASA Astrophysics Data System (ADS)
Kaufmann, E.; Hagermann, A.
2017-01-01
Mars' polar caps are - depending on hemisphere and season - partially or totally covered with CO2 ice. Icy surfaces such as the polar caps of Mars behave differently from surfaces covered with rock and soil when they are irradiated by solar light. The latter absorb and reflect incoming solar radiation within a thin layer beneath the surface. In contrast, ices are partially transparent in the visible spectral range and opaque in the infrared. Due to this fact, the solar radiation can penetrate to a certain depth and raise the temperature of the ice or dust below the surface. This may play an important role in the energy balance of icy surfaces in the solar system, as already noted in previous investigations. We investigated the temperature profiles inside CO2 ice samples including a dust layer under Martian conditions. We have been able to trigger dust eruptions, but also demonstrated that these require a very narrow range of temperature and ambient pressure. We discuss possible implications for the understanding of phenomena such as arachneiform patterns or fan shaped deposits as observed in Mars' southern polar region.
Vectorial Command of Induction Motor Pumping System Supplied by a Photovoltaic Generator
NASA Astrophysics Data System (ADS)
Makhlouf, Messaoud; Messai, Feyrouz; Benalla, Hocine
2011-01-01
With the continuous decrease of the cost of solar cells, there is an increasing interest and needs in photovoltaic (PV) system applications following standard of living improvements. Water pumping system powered by solar-cell generators are one of the most important applications. The fluctuation of solar energy on one hand, and the necessity to optimise available solar energy on the other, it is useful to develop new efficient and flexible modes to control motors that entrain the pump. A vectorial control of an asynchronous motor fed by a photovoltaic system is proposed. This paper investigates a photovoltaic-electro mechanic chain, composed of a PV generator, DC-AC converter, a vector controlled induction motor and centrifugal pump. The PV generator is forced to operate at its maximum power point by using an appropriate search algorithm integrated in the vector control. The optimization is realized without need to adding a DC-DC converter to the chain. The motor supply is also ensured in all insolation conditions. Simulation results show the effectiveness and feasibility of such an approach.
21 CFR 880.6280 - Medical insole.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical insole. 880.6280 Section 880.6280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES....6280 Medical insole. (a) Identification. A medical insole is a device intended for medical purposes...
21 CFR 880.6280 - Medical insole.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical insole. 880.6280 Section 880.6280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES....6280 Medical insole. (a) Identification. A medical insole is a device intended for medical purposes...
21 CFR 880.6280 - Medical insole.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical insole. 880.6280 Section 880.6280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES....6280 Medical insole. (a) Identification. A medical insole is a device intended for medical purposes...
21 CFR 880.6280 - Medical insole.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical insole. 880.6280 Section 880.6280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES....6280 Medical insole. (a) Identification. A medical insole is a device intended for medical purposes...
21 CFR 880.6280 - Medical insole.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical insole. 880.6280 Section 880.6280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES....6280 Medical insole. (a) Identification. A medical insole is a device intended for medical purposes...
Progress of the Mars Array Technology Experiment (MATE) on the 2001 Lander
NASA Technical Reports Server (NTRS)
Scheiman, David A.; Baraona, Cosmo; Wilt, Dave; Jenkins, Phil; Krasowski, Michael; Greer, Lawrence; Lekki, John; Spina, Daniel; Landis, Geoff
2005-01-01
NASA is planning missions to Mars every two years until 2010, these missions will rely on solar power. Sunlight on the surface of Mars is altered by airborne dust and fluctuates from day to day. The MATE flight experiment was designed to evaluate solar cell performance and will fly on the Mars 2001 surveyor Lander as part of the Mars In-Situ Propellant Production Precursor (MIP) package. MATE will measure several solar cell technologies and characterize the Martian environment's solar power. This will be done by measuring full IV curvers on solar cells, direct and global insolation, temperature, and spectral content. The lander is scheduled to launch in April 2001 and arrive on Mars in January of 2002. The site location has not been identified but will be near the equator, is a powered landing, and is baselined for 90 sols. The intent of this paper is to provide a brief overview of the MATE experiment and progress to date. The MATE Development Unit (DU) hardware has been built and has completed testing, work is beginning in the Qualification Unit which will start testing later this year, Flight Hardware is to be delivered next spring.
NASA Astrophysics Data System (ADS)
Lipenkov, V.; Raynaud, D.; Loutre, M.-F.; Duval, P.; Lemieux-Dudon, B.
2009-04-01
An accurate chronology of ice cores is needed for interpreting the paleoclimatic record and understanding the relation between insolation and climate. A new domain of research in this area has been initially stimulated by the work of M. Bender (2002) linking the record of O2/N2 ratio in the air trapped in the Vostok ice with the local insolation. More recently, it has been proposed that the long-term changes in air content, V, recorded in ice from the high Antarctic plateau is also dominantly imprinted by the local summer insolation (Raynaud et al., 2007). The present paper presents a new V record from Vostok, which is compared with the published Vostok O2/N2 record for the same period of time (150-400 ka BP) by using the same spectral analysis methods. The spectral differences between the two properties and the possible mechanisms linking them with insolation through the surface snow structure and the close-off processes are discussed. The main result of our study is that the two experimentally independent local insolation proxies lead to absolute (orbital) time scales, which agree together within a standard deviation of 0.6 ka. This result strongly adds credibility to the air content of ice and the O2 to N2 ratio of the air trapped in ice as equally reliable and complementary tools for accurate dating of existing and future deep ice cores. References: M. Bender, Orbital tuning chronology for the Vostok climate record supported by trapped gas composition, Earth and Planetary Science Letters 204(2002) 275-289. D. Raynaud, V. Lipenkov, B. Lemieux-Dudon, P. Duval, M.F. Loutre, N. Lhomme, The local insolation signature of air content in Antarctic ice: a new step toward an absolute dating of ice records, Earth and Planetary Science Letters 261(2007) 337-349.
Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume.
Abe-Ouchi, Ayako; Saito, Fuyuki; Kawamura, Kenji; Raymo, Maureen E; Okuno, Jun'ichi; Takahashi, Kunio; Blatter, Heinz
2013-08-08
The growth and reduction of Northern Hemisphere ice sheets over the past million years is dominated by an approximately 100,000-year periodicity and a sawtooth pattern (gradual growth and fast termination). Milankovitch theory proposes that summer insolation at high northern latitudes drives the glacial cycles, and statistical tests have demonstrated that the glacial cycles are indeed linked to eccentricity, obliquity and precession cycles. Yet insolation alone cannot explain the strong 100,000-year cycle, suggesting that internal climatic feedbacks may also be at work. Earlier conceptual models, for example, showed that glacial terminations are associated with the build-up of Northern Hemisphere 'excess ice', but the physical mechanisms underpinning the 100,000-year cycle remain unclear. Here we show, using comprehensive climate and ice-sheet models, that insolation and internal feedbacks between the climate, the ice sheets and the lithosphere-asthenosphere system explain the 100,000-year periodicity. The responses of equilibrium states of ice sheets to summer insolation show hysteresis, with the shape and position of the hysteresis loop playing a key part in determining the periodicities of glacial cycles. The hysteresis loop of the North American ice sheet is such that after inception of the ice sheet, its mass balance remains mostly positive through several precession cycles, whose amplitudes decrease towards an eccentricity minimum. The larger the ice sheet grows and extends towards lower latitudes, the smaller is the insolation required to make the mass balance negative. Therefore, once a large ice sheet is established, a moderate increase in insolation is sufficient to trigger a negative mass balance, leading to an almost complete retreat of the ice sheet within several thousand years. This fast retreat is governed mainly by rapid ablation due to the lowered surface elevation resulting from delayed isostatic rebound, which is the lithosphere-asthenosphere response. Carbon dioxide is involved, but is not determinative, in the evolution of the 100,000-year glacial cycles.
Insolation at Carterville, Illinois
Peter Y. S. Chen
1981-01-01
Insolation measured with a precision spectral pyranometer, was recorded near Carterville, Illinois, for 1 year. the pyranometer was tilted at an angle of 25 degrees in summer, 50 degrees in winter, and 37.5 degrees in spring and fall. the insolation measured in winter was found to be significantly larger than the insolation estimated on a horizontal surface.
Su, Shonglun; Mo, Zhongjun; Guo, Junchao
2017-01-01
Flat foot is one of the common deformities in the youth population, seriously affecting the weight supporting and daily exercising. However, there is lacking of quantitative data relative to material selection and shape design of the personalized orthopedic insole. This study was to evaluate the biomechanical effects of material hardness and support height of personalized orthopedic insole on foot tissues, by in vivo experiment and finite element modeling. The correction of arch height increased with material hardness and support height. The peak plantar pressure increased with the material hardness, and these values by wearing insoles of 40° were apparently higher than the bare feet condition. Harder insole material results in higher stress in the joint and ligament stress than softer material. In the calcaneocuboid joint, the stress increased with the arch height of insoles. The material hardness did not apparently affect the stress in the ankle joints, but the support heights of insole did. In general, insole material and support design are positively affecting the correction of orthopedic insole, but negatively resulting in unreasonable stress on the stress in the joint and ligaments. There should be an integration of improving correction and reducing stress in foot tissues. PMID:29065655
Effect of Foot Progression Angle and Lateral Wedge Insole on a Reduction in Knee Adduction Moment.
Tokunaga, Ken; Nakai, Yuki; Matsumoto, Ryo; Kiyama, Ryoji; Kawada, Masayuki; Ohwatashi, Akihiko; Fukudome, Kiyohiro; Ohshige, Tadasu; Maeda, Tetsuo
2016-10-01
This study evaluated the effect of foot progression angle on the reduction in knee adduction moment caused by a lateral wedged insole during walking. Twenty healthy, young volunteers walked 10 m at their comfortable velocity wearing a lateral wedged insole or control flat insole in 3 foot progression angle conditions: natural, toe-out, and toe-in. A 3-dimensional rigid link model was used to calculate the external knee adduction moment, the moment arm of ground reaction force to knee joint center, and the reduction ratio of knee adduction moment and moment arm. The result indicated that the toe-out condition and lateral wedged insole decreased the knee adduction moment in the whole stance phase. The reduction ratio of the knee adduction moment and the moment arm exhibited a close relationship. Lateral wedged insoles decreased the knee adduction moment in various foot progression angle conditions due to decrease of the moment arm of the ground reaction force. Moreover, the knee adduction moment during the toe-out gait with lateral wedged insole was the smallest due to the synergistic effect of the lateral wedged insole and foot progression angle. Lateral wedged insoles may be a valid intervention for patients with knee osteoarthritis regardless of the foot progression angle.
An Apparatus to Quantify Anteroposterior and Mediolateral Shear Reduction in Shoe Insoles
Belmont, Barry; Wang, Yancheng; Ammanath, Peethambaran; Wrobel, James S.; Shih, Albert
2013-01-01
Background Many of the physiological changes that lead to diabetic foot ulceration, such as muscle atrophy and skin hardening, are manifested at the foot–ground interface via pressure and shear points. Novel shear-reducing insoles have been developed, but their magnitude of shear stiffness has not yet been compared with regular insoles. The aim of this study was to develop an apparatus that would apply shear force and displacement to an insole’s forefoot region, reliably measure deformation, and calculate insole shear stiffness. Methods An apparatus consisting of suspended weights was designed to test the forefoot region of insoles. Three separate regions representing the hallux; the first and second metatarsals; and the third, fourth, and fifth metatarsals were sheared at 20 mm/min for displacements from 0.1 to 1.0 mm in both the anteroposterior and mediolateral directions for two types of insoles (regular and shear reducing). Results Shear reduction was found to be significant for the intervention insoles under all testing conditions. The ratio of a regular insole’s effective stiffness and the experimental insole’s effective stiffness across forefoot position versus shear direction, gait instance versus shear direction, and forefoot position versus gait instance was 270% ± 79%, 270% ± 96%, and 270% ± 86%, respectively. The apparatus was reliable with an average measured coefficient of variation of 0.034 and 0.069 for the regular and shear-reducing insole, respectively. Conclusions An apparatus consisting of suspended weights resting atop three locations of interest sheared across an insole was demonstrated to be capable of measuring the insole shear stiffness accurately, thus quantifying shear-reducing effects of a new type of insole. PMID:23567000
The application of photovoltaic roof shingles to residential and commercial buildings
NASA Technical Reports Server (NTRS)
Shepard, N. F., Jr.; Sanchez, L. E.
1978-01-01
The recent development of a shingle-type solar-cell module makes it possible to incorporate easily photovoltaic power generation into the sloping roofs of residential or commercial buildings. These modules, which use a closely packed array of nineteen 53-mm-diameter circular solar cells, are capable of producing 101 watts/sq m of module area under standard operating conditions. This module performance is achievable by the use of solar cells with an average efficiency of 13.3 percent at 1 kW/sq m air-mass-1.5 insolation and at a cell temperature of 28 C. When these modules are mounted on a sloping south-facing roof which is insulated on the rear surface, the annual energy generated at the maximum power operating point will vary from 255.6 to 137.3 kWh/sq m of module area depending on the site location, with Albuquerque, NM, and Seattle, WA, representing the highest and lowest values of the thirteen sites considered.
Development status of the small community solar power system
NASA Technical Reports Server (NTRS)
Pons, R. L.
1982-01-01
The development status and test results for the Small Community Solar Thermal Power Experiment are presented. Activities on the phase 2 power module development effort are presented with emphasis on the receiver, the plant control subsystem, and the energy transport subsystem. The components include a single prototype power module consisting of a parabolic dish concentrator, a power conversion assembly (PCA), and a multiple-module plant control subsystem. The PCA consists of a cavity receiver coupled to an organic Rankine cycle engine-alternator unit defined as the power conversion subsystem; the PCA is mounted at the focus of a parabolic dish concentrator. At a solar insolation of 100 W/sq m and ambient temperature of 28 C (82 F), the power module produces approximately 20 kW of 3-phase, 3 kHz ac power, depending on the concentrator employed. A ground-mounted rectifier to the central collection site where it is supplied directly to the common dc bus which collects the power from all modules in the plant.
Advanced latent heat of fusion thermal energy storage for solar power systems
NASA Technical Reports Server (NTRS)
Phillips, W. M.; Stearns, J. W.
1985-01-01
The use of solar thermal power systems coupled with thermal energy storage (TES) is being studied for both terrestrial and space applications. In the case of terrestrial applications, it was found that one or two hours of TES could shift the insolation peak (solar noon) to coincide with user peak loads. The use of a phase change material (PCM) is attractive because of the higher energy storage density which can be achieved. However, the use of PCM has also certain disadvantages which must be addressed. Proof of concept testing was undertaken to evaluate corrosive effects and thermal ratcheting effects in a slurry system. It is concluded that the considered alkali metal/alkali salt slurry approach to TES appears to be very viable, taking into account an elimination of thermal ratcheting in storage systems and the reduction of corrosive effects. The approach appears to be useful for an employment involving temperatures applicable to Brayton or Stirling cycles.
Pausata, Francesco S R; Emanuel, Kerry A; Chiacchio, Marc; Diro, Gulilat T; Zhang, Qiong; Sushama, Laxmi; Stager, J Curt; Donnelly, Jeffrey P
2017-06-13
Tropical cyclones (TCs) can have devastating socioeconomic impacts. Understanding the nature and causes of their variability is of paramount importance for society. However, historical records of TCs are too short to fully characterize such changes and paleo-sediment archives of Holocene TC activity are temporally and geographically sparse. Thus, it is of interest to apply physical modeling to understanding TC variability under different climate conditions. Here we investigate global TC activity during a warm climate state (mid-Holocene, 6,000 yBP) characterized by increased boreal summer insolation, a vegetated Sahara, and reduced dust emissions. We analyze a set of sensitivity experiments in which not only solar insolation changes are varied but also vegetation and dust concentrations. Our results show that the greening of the Sahara and reduced dust loadings lead to more favorable conditions for tropical cyclone development compared with the orbital forcing alone. In particular, the strengthening of the West African Monsoon induced by the Sahara greening triggers a change in atmospheric circulation that affects the entire tropics. Furthermore, whereas previous studies suggest lower TC activity despite stronger summer insolation and warmer sea surface temperature in the Northern Hemisphere, accounting for the Sahara greening and reduced dust concentrations leads instead to an increase of TC activity in both hemispheres, particularly over the Caribbean basin and East Coast of North America. Our study highlights the importance of regional changes in land cover and dust concentrations in affecting the potential intensity and genesis of past TCs and suggests that both factors may have appreciable influence on TC activity in a future warmer climate.
NASA Astrophysics Data System (ADS)
Pausata, Francesco S. R.; Emanuel, Kerry A.; Chiacchio, Marc; Diro, Gulilat T.; Zhang, Qiong; Sushama, Laxmi; Stager, J. Curt; Donnelly, Jeffrey P.
2017-06-01
Tropical cyclones (TCs) can have devastating socioeconomic impacts. Understanding the nature and causes of their variability is of paramount importance for society. However, historical records of TCs are too short to fully characterize such changes and paleo-sediment archives of Holocene TC activity are temporally and geographically sparse. Thus, it is of interest to apply physical modeling to understanding TC variability under different climate conditions. Here we investigate global TC activity during a warm climate state (mid-Holocene, 6,000 yBP) characterized by increased boreal summer insolation, a vegetated Sahara, and reduced dust emissions. We analyze a set of sensitivity experiments in which not only solar insolation changes are varied but also vegetation and dust concentrations. Our results show that the greening of the Sahara and reduced dust loadings lead to more favorable conditions for tropical cyclone development compared with the orbital forcing alone. In particular, the strengthening of the West African Monsoon induced by the Sahara greening triggers a change in atmospheric circulation that affects the entire tropics. Furthermore, whereas previous studies suggest lower TC activity despite stronger summer insolation and warmer sea surface temperature in the Northern Hemisphere, accounting for the Sahara greening and reduced dust concentrations leads instead to an increase of TC activity in both hemispheres, particularly over the Caribbean basin and East Coast of North America. Our study highlights the importance of regional changes in land cover and dust concentrations in affecting the potential intensity and genesis of past TCs and suggests that both factors may have appreciable influence on TC activity in a future warmer climate.
Dynamic conversion of solar generated heat to electricity
NASA Technical Reports Server (NTRS)
Powell, J. C.; Fourakis, E.; Hammer, J. M.; Smith, G. A.; Grosskreutz, J. C.; Mcbride, E.
1974-01-01
The effort undertaken during this program led to the selection of the water-superheated steam (850 psig/900 F) crescent central receiver as the preferred concept from among 11 candidate systems across the technological spectrum of the dynamic conversion of solar generated heat to electricity. The solar power plant designs were investigated in the range of plant capacities from 100 to 1000 Mw(e). The investigations considered the impacts of plant size, collector design, feed-water temperature ratio, heat rejection equipment, ground cover, and location on solar power technical and economic feasibility. For the distributed receiver systems, the optimization studies showed that plant capacities less than 100 Mw(e) may be best. Although the size of central receiver concepts was not parametrically investigated, all indications are that the optimal plant capacity for central receiver systems will be in the range from 50 to 200 Mw(e). Solar thermal power plant site selection criteria and methodology were also established and used to evaluate potentially suitable sites. The result of this effort was to identify a site south of Inyokern, California, as typically suitable for a solar thermal power plant. The criteria used in the selection process included insolation and climatological characteristics, topography, and seismic history as well as water availability.
2012-01-01
Background Neuropathic diabetic foot ulceration may be prevented if the mechanical stress transmitted to the plantar tissues is reduced. Insole therapy is one practical method commonly used to reduce plantar loads and ulceration risk. The type of insole best suited to achieve this is unknown. This trial compared custom-made functional insoles with prefabricated insoles to reduce risk factors for ulceration of neuropathic diabetic feet. Method A participant-blinded randomised controlled trial recruited 119 neuropathic participants with diabetes who were randomly allocated to custom-made functional or prefabricated insoles. Data were collected at issue and six month follow-up using the F-scan in-shoe pressure measurement system. Primary outcomes were: peak pressure, forefoot pressure time integral, total contact area, forefoot rate of load, duration of load as a percentage of stance. Secondary outcomes were patient perceived foot health (Bristol Foot Score), quality of life (Audit of Diabetes Dependent Quality of Life). We also assessed cost of supply and fitting. Analysis was by intention-to-treat. Results There were no differences between insoles in peak pressure, or three of the other four kinetic measures. The custom-made functional insole was slightly more effective than the prefabricated insole in reducing forefoot pressure time integral at issue (27% vs. 22%), remained more effective at six month follow-up (30% vs. 24%, p=0.001), but was more expensive (UK £656 vs. £554, p<0.001). Full compliance (minimum wear 7 hours a day 7 days per week) was reported by 40% of participants and 76% of participants reported a minimum wear of 5 hours a day 5 days per week. There was no difference in patient perception between insoles. Conclusion The custom-made insoles are more expensive than prefabricated insoles evaluated in this trial and no better in reducing peak pressure. We recommend that where clinically appropriate, the more cost effective prefabricated insole should be considered for use by patients with diabetes and neuropathy. Trial registration Clinical trials.gov (NCT00999635). Note: this trial was registered on completion. PMID:23216959
Insights into changes in precipitation patterns in Brazil from oxygen isotope ratios on speleothems
NASA Astrophysics Data System (ADS)
Cruz, F.; Mathias, V.; Stephen, B. J.; Wang, X.; Cheng, H.; Werner, M.; Edwards, R. L.; Karmann, I.; Auler, A. S.
2008-12-01
Variations in tropical precipitation on millennial and orbital time scales can reflect a Hadley-cell-related anti- phasing between the Northern and Southern hemispheres due to the influence of insolation on the global summer monsoons. A new δ18O speleothem record from northeastern Brazil shows that insolation- driven changes in monsoon intensity are capable of producing a similar, zonally oriented anti-phasing within the same hemisphere. Comparison of our speleothem record with other precipitation-sensitive proxies from the central Andes and southeastern Brazil shows that precipitation in Northeastern Brazil has been out of phase with insolation and rainfall in the rest of tropical South America south of the equator since the Last Glacial Maximum. Northeastern Brazil experienced humid conditions when summer insolation was reduced and arid conditions when insolation was high. While previous interpretations of past climate change in NE South America have commonly invoked meridional displacements in ITCZ location as the main mechanism for changes in precipitation on millennial time scales, our results suggest that remote monsoon forcing is responsible for much of the observed precipitation changes on orbital time scales during the Holocene. These results demonstrate that orbitally driven out-of-phase relationships in precipitation are not limited to interhemispheric anti-phasing as demonstrated previously, but may well occur within the same hemisphere. Speleothem records also indicate contrasting climatic conditions around the Last Glacial Maximum in Brazil, characterized by marked dry and wet climates in the Nordeste and in southeastern Brazil, respectively. It is likely, however, that these regional differences primarily reflect more distant extratropical teleconnections from the Atlantic Ocean and high northern latitude changes during glacial conditions.
Simpson, James J.; Dettinger, M.D.; Gehrke, F.; McIntire, T.J.; Hufford, Gary L.
2004-01-01
Accurate prediction of available water supply from snowmelt is needed if the myriad of human, environmental, agricultural, and industrial demands for water are to be satisfied, especially given legislatively imposed conditions on its allocation. Robust retrievals of hydrologic basin model variables (e.g., insolation or areal extent of snow cover) provide several advantages over the current operational use of either point measurements or parameterizations to help to meet this requirement. Insolation can be provided at hourly time scales (or better if needed during rapid melt events associated with flooding) and at 1-km spatial resolution. These satellite-based retrievals incorporate the effects of highly variable (both in space and time) and unpredictable cloud cover on estimates of insolation. The insolation estimates are further adjusted for the effects of basin topography using a high-resolution digital elevation model prior to model input. Simulations of two Sierra Nevada rivers in the snowmelt seasons of 1998 and 1999 indicate that even the simplest improvements in modeled insolation can improve snowmelt simulations, with 10%-20% reductions in root-mean-square errors. Direct retrieval of the areal extent of snow cover may mitigate the need to rely entirely on internal calculations of this variable, a reliance that can yield large errors that are difficult to correct until long after the season is complete and that often leads to persistent underestimates or overestimates of the volumes of the water to operational reservoirs. Agencies responsible for accurately predicting available water resources from the melt of snowpack [e.g., both federal (the National Weather Service River Forecast Centers) and state (the California Department of Water Resources)] can benefit by incorporating concepts developed herein into their operational forecasting procedures. ?? 2004 American Meteorological Society.
Metallic phase-change materials for solar dynamic energy storage systems
NASA Astrophysics Data System (ADS)
Lauf, R. J.; Hamby, C., Jr.
1990-12-01
Solar (thermal) dynamic power systems for satellites require a heat storage system that is capable of operating the engine during eclipse. The conventional approach to this thermal storage problem is to use the latent heat of fluoride salts, which would melt during insolation and freeze during eclipse. Although candidate fluorides have large heats of fusion per unit mass, their poor thermal conductivity limits the rate at which energy can be transferred to and from the storage device. System performance is further limited by the high parasitic mass of the superalloy canisters needed to contain the salt. A new thermal storage system is described in which the phase-change material (PCM) is a metal (typically germanium) contained in modular graphite canisters. These modules exhibit good thermal conductivity and low parasitic mass, and they are physically and chemically stable. Prototype modules have survived over 600 melt/freeze cycles without degradation. Advanced concepts to further improve performance are described. These concepts include the selection of ternary eutectic alloys to provide a wider range of useful melting temperatures and the use of infiltration to control the location of liquid alloy and to compensate for differences in thermal expansion.
Recent developments in nickel hydrogen technology
NASA Astrophysics Data System (ADS)
Beauchamp, R. L.; Dunlop, J. D.
1988-05-01
A program to design and develop a multikilowatt-hour nickel hydrogen battery for storing electricity from photovoltaic or other power sources is continuing under a cost sharing contract with Sandia National Laboratories. The challenge has been to dramatically reduce the first cost of the battery to make it economically competitive, on a life-cycle cost basis, with other energy storage batteries used in terrestrial applications. The advantages offered by nickel hydrogen batteries are: (1) long cycle life, (2) no maintenance, and (3) a high tolerance to abuse. The last being the most important, implying that there is no need for a charge controller between the solar array and the battery. This would have a beneficial effect on the installation's long term reliability and cost. It also means that one can take full advantage of the maximum output of the solar array, in contrast to systems where the controller isolates the battery during times of maximum insolation. Couple this to the battery's excellent energy efficiency and there can be a significant reduction in the size of the array. In addition, since the state-of-charge is directly related to pressure, the battery can be used as a load management system.
Martin, C E; Brandmeyer, E A; Ross, R D
2013-01-01
Leaf temperatures were lower when light entry at the leaf tip window was prevented through covering the window with reflective tape, relative to leaf temperatures of plants with leaf tip windows covered with transparent tape. This was true when leaf temperatures were measured with an infrared thermometer, but not with a fine-wire thermocouple. Leaf tip windows of Lithops growing in high-rainfall regions of southern Africa were larger than the windows of plants (numerous individuals of 17 species) growing in areas with less rainfall and, thus, more annual insolation. The results of this study indicate that leaf tip windows of desert plants with an underground growth habit can allow entry of supra-optimal levels of radiant energy, thus most likely inhibiting photosynthetic activity. Consequently, the size of the leaf tip windows correlates inversely with habitat solar irradiance, minimising the probability of photoinhibition, while maximising the absorption of irradiance in cloudy, high-rainfall regions. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
Spatial variation of pneumonia hospitalization risk in Twin Cities metro area, Minnesota.
Iroh Tam, P Y; Krzyzanowski, B; Oakes, J M; Kne, L; Manson, S
2017-11-01
Fine resolution spatial variability in pneumonia hospitalization may identify correlates with socioeconomic, demographic and environmental factors. We performed a retrospective study within the Fairview Health System network of Minnesota. Patients 2 months of age and older hospitalized with pneumonia between 2011 and 2015 were geocoded to their census block group, and pneumonia hospitalization risk was analyzed in relation to socioeconomic, demographic and environmental factors. Spatial analyses were performed using Esri's ArcGIS software, and multivariate Poisson regression was used. Hospital encounters of 17 840 patients were included in the analysis. Multivariate Poisson regression identified several significant associations, including a 40% increased risk of pneumonia hospitalization among census block groups with large, compared with small, populations of ⩾65 years, a 56% increased risk among census block groups in the bottom (first) quartile of median household income compared to the top (fourth) quartile, a 44% higher risk in the fourth quartile of average nitrogen dioxide emissions compared with the first quartile, and a 47% higher risk in the fourth quartile of average annual solar insolation compared to the first quartile. After adjusting for income, moving from the first to the second quartile of the race/ethnic diversity index resulted in a 21% significantly increased risk of pneumonia hospitalization. In conclusion, the risk of pneumonia hospitalization at the census-block level is associated with age, income, race/ethnic diversity index, air quality, and solar insolation, and varies by region-specific factors. Identifying correlates using fine spatial analysis provides opportunities for targeted prevention and control.
Opportunities and Challenges for Solar Minigrid Development in Rural India
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thirumurthy, N.; Harrington, L.; Martin, D.
2012-09-01
The goal of this report is to inform investors about the potential of solar minigrid technologies to serve India's rural market. Under the US-India Energy Dialogue, the US Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) is supporting the Indian Ministry of New and Renewable Energy (MNRE)'s Jawaharlal Nehru National Solar Mission (JNNSM) in performing a business-case and policy-oriented analysis on the deployment of solar minigrids in India. The JNNSM scheme targets the development of 2GW of off-grid solar power by 2022 and provides large subsidies to meet this target. NREL worked with electricity capacity and demand data suppliedmore » by the Ladakh Renewable Energy Development Agency (LREDA) from Leh District, to develop a technical approach for solar minigrid development. Based on the NREL-developed, simulated solar insolation data for the city of Leh, a 250-kW solar photovoltaic (PV) system can produce 427,737 kWh over a 12-month period. The business case analysis, based on several different scenarios and JNNSM incentives shows the cost of power ranges from Rs. 6.3/kWh (US$0.126) to Rs. 9/kWh (US$0.18). At these rates, solar power is a cheaper alternative to diesel. An assessment of the macro-environment elements--including political, economic, environmental, social, and technological--was also performed to identify factors that may impact India?s energy development initiatives.« less
The effect of textured ballet shoe insoles on ankle proprioception in dancers.
Steinberg, Nili; Waddington, Gordon; Adams, Roger; Karin, Janet; Tirosh, Oren
2016-01-01
Impaired ankle inversion movement discrimination (AIMD) can lead to ankle sprain injuries. The aim of this study was to explore whether wearing textured insoles improved AIMD compared with barefoot, ballet shoes and smooth insoles, among dancers. Forty-four adolescent male and female dancers, aged 13-19, from The Australian Ballet School were tested for AIMD while barefoot, wearing ballet shoes, smooth insoles, and textured insoles. No interaction was found between the four different footwear conditions, the two genders, or the two levels of dancers in AIMD (p > .05). An interaction was found between the four different footwear conditions and the three tertiles when tested in ballet shoes (p = .006). Although significant differences were found between the upper tertiles and the lower tertiles when tested with ballet shoes, barefoot and with smooth insoles (p < .001; p < .001; p = .047, respectively), when testing with textured insoles dancers in the lower tertile obtained similar scores to those obtained by dancers in the upper tertile (p = .911). Textured insoles improved the discrimination scores of dancers with low AIMD, suggesting that textured insoles may trigger the cutaneous receptors in the plantar surface, increasing the awareness of ankle positioning, which in turn might decrease the chance of ankle injury. Copyright © 2015 Elsevier Ltd. All rights reserved.
A novel power converter for photovoltaic applications
NASA Astrophysics Data System (ADS)
Yuvarajan, S.; Yu, Dachuan; Xu, Shanguang
A simple and economical power conditioner to convert the power available from solar panels into 60 Hz ac voltage is described. The raw dc voltage from the solar panels is converted to a regulated dc voltage using a boost converter and a large capacitor and the dc output is then converted to 60 Hz ac using a bridge inverter. The ratio between the load current and the short-circuit current of a PV panel at maximum power point is nearly constant for different insolation (light) levels and this property is utilized in designing a simple maximum power point tracking (MPPT) controller. The controller includes a novel arrangement for sensing the short-circuit current without disturbing the operation of the PV panel and implementing MPPT. The switching losses in the inverter are reduced by using snubbers. The results obtained on an experimental converter are presented.
The measurement of ultraviolet radiation and sunburn time over southern Ontario
NASA Technical Reports Server (NTRS)
Evans, W. F. J.
1994-01-01
Studies of the depletion of ozone which have been conducted from the TOMS instrument on the NIMBUS 7 satellite indicate that total ozone has declined by 5 percent over the last 12 years at most mid-latitudes in the Northern Hemisphere typical of southern Ontario. The measurement of the actual resultant increases in UVB is now important. A monitoring program of UVB (biologically active solar ultraviolet radiation) has been conducted for the last 24 months at a site near Bolton, Ontario. The sunburn time varies from less than 17 minutes in late July, to over 4 hours in December on clear days. The levels depend on solar insolation and total ozone column. The ultraviolet levels are strongly affected by cloud and sky conditions. The implications of present and future depletion on the sunburn time are discussed.
The risk characteristics of solar and geomagnetic activity
NASA Astrophysics Data System (ADS)
Podolska, Katerina
2016-04-01
The main aim of this contribution is a deeper analysis of the influence of solar activity which is expected to have an impact on human health, and therefore on mortality, in particular civilization and degenerative diseases. We have constructed the characteristics that represent the risk of solar and geomagnetic activity on human health on the basis of our previous analysis of association between the daily numbers of death on diseases of the nervous system and diseases of the circulatory system and solar and geomagnetic activity in the Czech Republic during the years 1994 - 2013. We used long period daily time series of numbers of deaths by cause, long period time series of solar activity indices (namely R and F10.7), geomagnetic indicies (Kp planetary index, Dst) and ionospheric parameters (foF2 and TEC). The ionospheric parameters were related to the geographic location of the Czech Republic and adjusted for middle geographic latitudes. The risk characteristics were composed by cluster analysis in time series according to the phases of the solar cycle resp. the seasonal insolation at mid-latitudes or the daily period according to the impact of solar and geomagnetic activity on mortality by cause of death from medical cause groups of death VI. Diseases of the nervous system and IX. Diseases of the circulatory system mortality by 10th Revision of International Classification of Diseases WHO (ICD-10).
NASA Technical Reports Server (NTRS)
Al-Hamdan, Mohammad; Crosson, William; Estes, Maury; Estes, Sue; Hemmings, Sarah; Quattrochi, Dale; McClure, Keslie; Kent, Shia; Economou, Sigrid; Puckett, Mark;
2012-01-01
This project has dual goals in decision ]making activities .. Providing information to decision makers about associations between environmental exposures and health conditions in a large national cohort study. Enriching the CDC Wide ]ranging Online Data for Epidemiologic Research (WONDER) system by integrating environmental exposure data. .. Develop daily high ]quality spatial data sets of environmental variables for the conterminous U.S. for the years 2003-2008 utilizing NASA data (Objective 1). Fine Particulates (PM2.5) (NASA MODIS and EPA AQS). Land Surface Temperature (NASA MODIS). Solar Insolation and Heat ]related Products (Reanalysis Data). Link these environmental variables with public health data from a national cohort study and examine environmental health relationships (Objective 2). Cognitive Function. Hypertension. Make the environmental datasets available to public health professionals, researchers and the general public via the CDC WONDER system (Objective 3).
NASA Astrophysics Data System (ADS)
1982-02-01
Performance data for the month of January, 1982 for a grid connected photovoltaic power supply in Massachusetts are presented. Data include: monthly and daily electrical energy produced; monthly and daily solar energy incident on the array; monthly and daily array efficiency; plots of energy produced as a function of power level, voltage, cell temperature and time of day; power conditioner input, output and efficiency for each of two individual units and for the total power conditioning system; photovoltaic system efficiency; capacity factor; PV system to load and grid to load energies and corresponding dollar values; daily energy supplies to the load by the PV system; daily PV system availability; monthly and hourly insolation; monthly and hourly temperature average; monthly and hourly wind speed; wind direction distribution; average heating and cooling degree days; number of freeze/thaw cycles; and the data acquisition mode and recording interval plot.
Blome, Margaret Whiting; Cohen, Andrew S; Tryon, Christian A; Brooks, Alison S; Russell, Joellen
2012-05-01
We synthesize African paleoclimate from 150 to 30 ka (thousand years ago) using 85 diverse datasets at a regional scale, testing for coherence with North Atlantic glacial/interglacial phases and northern and southern hemisphere insolation cycles. Two major determinants of circum-African climate variability over this time period are supported by principal components analysis: North Atlantic sea surface temperature (SST) variations and local insolation maxima. North Atlantic SSTs correlated with the variability found in most circum-African SST records, whereas the variability of the majority of terrestrial temperature and precipitation records is explained by local insolation maxima, particularly at times when solar radiation was intense and highly variable (e.g., 150-75 ka). We demonstrate that climates varied with latitude, such that periods of relatively increased aridity or humidity were asynchronous across the northern, eastern, tropical and southern portions of Africa. Comparisons of the archaeological, fossil, or genetic records with generalized patterns of environmental change based solely on northern hemisphere glacial/interglacial cycles are therefore imprecise. We compare our refined climatic framework to a database of 64 radiometrically-dated paleoanthropological sites to test hypotheses of demographic response to climatic change among African hominin populations during the 150-30 ka interval. We argue that at a continental scale, population and climate changes were asynchronous and likely occurred under different regimes of climate forcing, creating alternating opportunities for migration into adjacent regions. Our results suggest little relation between large scale demographic and climate change in southern Africa during this time span, but strongly support the hypothesis of hominin occupation of the Sahara during discrete humid intervals ~135-115 ka and 105-75 ka. Hominin populations in equatorial and eastern Africa may have been buffered from the extremes of climate change by locally steep altitudinal and rainfall gradients and the complex and variable effects of increased aridity on human habitat suitability in the tropics. Our data are consistent with hominin migrations out of Africa through varying exit points from ~140-80 ka. Copyright © 2012 Elsevier Ltd. All rights reserved.
Integration of LIDAR Data Into a Municipal GIS to Study Solar Radiation
NASA Astrophysics Data System (ADS)
Africani, P.; Bitelli, G.; Lambertini, A.; Minghetti, A.; Paselli, E.
2013-04-01
Identifying the right roofs to install solar panels inside a urban area is crucial for both private citizens and the whole local population. The aim is not easy because a lot of consideration must be made: insolation, orientation of the surface, size of the surface, shading due to topography, shading due to taller buildings next the surface, shading due to taller vegetation and other possible problems typical of urban areas like the presence of chimneys. Accuracy of data related to the analyzed surfaces is indeed fundamental, and also the detail of geometric models used to represent buildings and their roofs. The complexity that these roofs can reach is elevated. This work uses LiDAR data to obtain, with a semi-automatic technique, the full geometry of each roof part complementing the pre-existing building data in the municipal cartography. With this data is possible to evaluate the placement of solar panels on roofs of a whole city analyzing the solar potential of each building in detail. Other traditional techniques, like photogrammetry, need strong manual editing effort in order to identify slopes and insert vector on surfaces at the right height. Regarding LiDAR data, in order to perform accurate modelling, it is necessary to obtain an high density point cloud. The method proposed can also be used as a fast and linear workflow process for an area where LiDAR data are available and a municipal cartography already exist: LiDAR data can be furthermore successfully used to cross-check errors in pre-existent digital cartography that can remain otherwise hidden.
Influence of custom-made and prefabricated insoles before and after an intense run
2017-01-01
Each time the foot contacts the ground during running there is a rapid deceleration that results in a shock wave that is transmitted from the foot to the head. The fatigue of the musculoskeletal system during running may decrease the ability of the body to absorb those shock waves and increase the risk of injury. Insoles are commonly prescribed to prevent injuries, and both custom-made and prefabricated insoles have been observed to reduce shock accelerations during running. However, no study to date has included a direct comparison of their behaviour measured over the same group of athletes, and therefore great controversy still exists regarding their effectiveness in reducing impact loading during running. The aim of the study was to analyse the acute differences in stride and shock parameters while running on a treadmill with custom-made and prefabricated insoles. Stride parameters (stride length, stride rate) and shock acceleration parameters (head and tibial peak acceleration, shock magnitude, acceleration rate, and shock attenuation) were measured using two triaxial accelerometers in 38 runners at 3.33 m/s before and after a 15-min intense run while using the sock liner of the shoe (control condition), prefabricated insoles and custom-made insoles. No differences in shock accelerations were found between the custom-made and the control insoles. The prefabricated insoles increased the head acceleration rate (post-fatigue, p = 0.029) compared to the control condition. The custom-made reduced tibial (pre-fatigue, p = 0.041) and head acceleration rates (pre-fatigue and post-fatigue, p = 0.01 and p = 0.046) compared to the prefabricated insoles. Neither the stride nor the acceleration parameters were modified as a result of the intense run. In the present study, the acute use of insoles (custom-made, prefabricated) did not reduce shock accelerations compared to the control insoles. Therefore, their effectiveness at protecting against injuries associated with elevated accelerations is not supported and remains unclear. PMID:28245273
Toda, Yoshitaka; Tsukimura, Noriko
2004-10-01
To assess the effect of a lateral-wedge insole with elastic strapping of the subtalar joint on the femorotibial angle in patients with varus deformity of the knee. The efficacy of a wedged insole with subtalar straps and that of a traditional wedged insole shoe insert were compared. Sixty-six female outpatients with knee osteoarthritis (OA) were randomized (according to birth date) to be treated with either the strapped or the traditional inserted insole. Standing radiographs with unilateral insole use were used to analyze the femorotibial angles for each patient. In both groups, the baseline and 6-month visual analog scale (VAS) scores for subjective knee pain and the Lequesne index scores for knee OA were compared. The 61 patients who completed the 6-month study were evaluated. At baseline, there was no significant difference in the femorotibial angle (P = 0.66) and the VAS score (P = 0.75) between the 2 groups. At the 6-month assessment, the 29 subjects wearing the subtalar-strapped insole demonstrated a significantly decreased femorotibial angle (P < 0.0001) and significantly improved VAS scores (P = 0.001) and Lequesne index scores (P = 0.033) compared with their baseline assessments. These significant differences were not observed in the 32 subjects assigned to the traditional shoe-inserted wedged insole. These results suggest that an insole with a subtalar strap maintained the valgus correction of the femorotibial angle in patients with varus knee OA for 6 months, indicating longer-term clinical improvement with the strapped insert compared with the traditional insert. Copyright 2004 American College of Rheumatology
Abd El Megeid Abdallah, Amira Abdallah
2016-04-01
Increased impact loading is implicated in knee osteoarthritis development and progression. This study examined the impact ground reaction force (GRF) peak, its loading rate, its relative timing to stance phase timing, and walking speed during unilateral and bilateral use of laterally wedged insoles with arch supports. Within-subject design. Thirty-three female patients with medial knee osteoarthritis were examined with (unilateral 6° and 11°, and bilateral 0°, 6°, and 11°) and without insole use. Repeated measures MANOVA revealed that the impact force increased significantly in bilateral 11° versus unilateral 6° and without-insole conditions. The loading rate decreased significantly in unilateral 11° versus bilateral 6° insoles. The relative timing increased significantly in each of bilateral 6°, bilateral 11°, and unilateral 11° versus bilateral 0° insoles and in each of bilateral 11° and unilateral 11° versus without-insole condition. There were significant positive correlations between the walking speed and each of the force and loading rate. The Chi-square test revealed insignificant association between the insole condition and the presence of impact forces. Unilateral 11° insoles are capable of reducing impact loading possibly through increasing foot pronation. Walking slowly is another possible strategy to reduce loading. Unilaterally applied 11° laterally wedged insoles are capable of reducing and delaying the initial impact ground reaction forces and reducing their loading rates during walking in patients with medial knee osteoarthritis, thus reducing osteoarthritis progression. Walking slowly could also be used as a strategy to reduce impact loading. © The International Society for Prosthetics and Orthotics 2015.
Virtually optimized insoles for offloading the diabetic foot: A randomized crossover study.
Telfer, S; Woodburn, J; Collier, A; Cavanagh, P R
2017-07-26
Integration of objective biomechanical measures of foot function into the design process for insoles has been shown to provide enhanced plantar tissue protection for individuals at-risk of plantar ulceration. The use of virtual simulations utilizing numerical modeling techniques offers a potential approach to further optimize these devices. In a patient population at-risk of foot ulceration, we aimed to compare the pressure offloading performance of insoles that were optimized via numerical simulation techniques against shape-based devices. Twenty participants with diabetes and at-risk feet were enrolled in this study. Three pairs of personalized insoles: one based on shape data and subsequently manufactured via direct milling; and two were based on a design derived from shape, pressure, and ultrasound data which underwent a finite element analysis-based virtual optimization procedure. For the latter set of insole designs, one pair was manufactured via direct milling, and a second pair was manufactured through 3D printing. The offloading performance of the insoles was analyzed for forefoot regions identified as having elevated plantar pressures. In 88% of the regions of interest, the use of virtually optimized insoles resulted in lower peak plantar pressures compared to the shape-based devices. Overall, the virtually optimized insoles significantly reduced peak pressures by a mean of 41.3kPa (p<0.001, 95% CI [31.1, 51.5]) for milled and 40.5kPa (p<0.001, 95% CI [26.4, 54.5]) for printed devices compared to shape-based insoles. The integration of virtual optimization into the insole design process resulted in improved offloading performance compared to standard, shape-based devices. ISRCTN19805071, www.ISRCTN.org. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bagherzadeh Cham, Masumeh; Mohseni-Bandpei, Mohammad Ali; Bahramizadeh, Mahmood; Kalbasi, Saeed; Biglarian, Akbar
2018-06-01
Peripheral sensory neuropathy seems to be the main risk factor for diabetic foot ulceration. Previous studies demonstrated that stochastic resonance can improve the vibrotactile sensation of diabetic patients. The aim of this study was to evaluate the effects of Vibro-medical insole on pressure and vibration sensation in diabetic patients with mild-to-moderate peripheral neuropathy. A total of 20 patients with mild-to-moderate diabetic neuropathy were included in the pre-test and post-test clinical trial study. Vibro-medical insole consists of medical insole and vibratory system. Medical insole was made independently for each participant and vibratory system was inserted in it. Pressure and vibration sensation were evaluated before and after 30-min walking with Vibro-medical insole. Semmes-Weinstein monofilaments and tuning fork were used to evaluate pressure and vibration sensation, respectively. Pressure sensation showed significantly improvement using Vibro-medical insole at the heel, first and fifth metatarsophalangeal heads, and hallux of both feet in all participants (p < 0.001). Vibration sensation also improved at the big toe of both feet with 256 Hz tuning fork (p < 0.05) but no statistically significant effect was found with 128 Hz tuning fork (p > 0.05). Vibro-medical insole significantly improved pressure and vibration sensation of the foot in diabetic patients with mild-to-moderate peripheral neuropathy. The results suggest that Vibro-medical insole can be used for daily living activities to overcome sensory loss in diabetic neuropathy patients.
Refining surface net radiation estimates in arid and semi-arid climates of Iran
NASA Astrophysics Data System (ADS)
Golkar, Foroogh; Rossow, William B.; Sabziparvar, Ali Akbar
2018-06-01
Although the downwelling fluxes exhibit space-time scales of dependency on characteristic of atmospheric variations, especially clouds, the upward fluxes and, hence the net radiation, depends on the variation of surface properties, particularly surface skin temperature and albedo. Evapotranspiration at the land surface depends on the properties of that surface and is determined primarily by the net surface radiation, mostly absorbed solar radiation. Thus, relatively high spatial resolution net radiation data are needed for evapotranspiration studies. Moreover, in more arid environments, the diurnal variations of surface (air and skin) temperature can be large so relatively high (sub-daily) time resolution net radiation is also needed. There are a variety of radiation and surface property products available but they differ in accuracy, space-time resolution and information content. This situation motivated the current study to evaluate multiple sources of information to obtain the best net radiation estimate with the highest space-time resolution from ISCCP FD dataset. This study investigates the accuracy of the ISCCP FD and AIRS surface air and skin temperatures, as well as the ISCCP FD and MODIS surface albedos and aerosol optical depths as the leading source of uncertainty in ISCCP FD dataset. The surface air temperatures, 10-cm soil temperatures and surface solar insolation from a number of surface sites are used to judge the best combinations of data products, especially on clear days. The corresponding surface skin temperatures in ISCCP FD, although they are known to be biased somewhat high, disagreed more with AIRS measurements because of the mismatch of spatial resolutions. The effect of spatial resolution on the comparisons was confirmed using the even higher resolution MODIS surface skin temperature values. The agreement of ISCCP FD surface solar insolation with surface measurements is good (within 2.4-9.1%), but the use of MODIS aerosol optical depths as an alternative was checked and found to not improve the agreement. The MODIS surface albedos differed from the ISCCP FD values by no more than 0.02-0.07, but because these differences are mostly at longer wavelengths, they did not change the net solar radiation very much. Therefore to obtain the best estimate of surface net radiation with the best combination of spatial and temporal resolution, we developed a method to adjust the ISCCP FD surface longwave fluxes using the AIRS surface air and skin temperatures to obtain the higher spatial resolution of the latter (45 km), while retaining the 3-h time intervals of the former. Overall, the refinements reduced the ISCCP FD longwave flux magnitudes by about 25.5-42.1 W/m2 RMS (maximum difference -27.5 W/m2 for incoming longwave radiation and -59 W/m2 for outgoing longwave radiation) with the largest differences occurring at 9:00 and 12:00 UTC near local noon. Combining the ISCCP FD net shortwave radiation data and the AIRS-modified net longwave radiation data changed the total net radiation for summertime by 4.64 to 61.5 W/m2 and for wintertime by 1.06 to 41.88 W/m2 (about 11.1-39.2% of the daily mean).
Seiberl, Wolfgang; Jensen, Elisabeth; Merker, Josephine; Leitel, Marco; Schwirtz, Ansgar
2018-05-29
Force plates represent the "gold standard" in measuring running kinetics to predict performance or to identify the sources of running-related injuries. As these measurements are generally limited to laboratory analyses, wireless high-quality sensors for measuring in the field are needed. This work analysed the accuracy and precision of a new wireless insole forcesensor for quantifying running-related kinetic parameters. Vertical ground reaction force (GRF) was simultaneously measured with pit-mounted force plates (1 kHz) and loadsol ® sensors (100 Hz) under unshod forefoot and rearfoot running-step conditions. GRF data collections were repeated four times, each separated by 30 min treadmill running, to test influence of extended use. A repeated-measures ANOVA was used to identify differences between measurement devices. Additionally, mean bias and Bland-Altman limits of agreement (LoA) were calculated. We found a significant difference (p < .05) in ground contact time, peak force, and force rate, while there was no difference in parameters impulse, time to peak, and negative force rate. There was no influence of time point of measurement. The mean bias of ground contact time, impulse, peak force, and time to peak ranged between 0.6% and 3.4%, demonstrating high accuracy of loadsol ® devices for these parameters. For these same parameters, the LoA analysis showed that 95% of all measurement differences between insole and force plate measurements were less than 12%, demonstrating high precision of the sensors. However, highly dynamic behaviour of GRF, such as force rate, is not yet sufficiently resolved by the insole devices, which is likely explained by the low sampling rate.
Influence of foot orthosis customisation on perceived comfort during running.
Lucas-Cuevas, A G; Pérez-Soriano, P; Priego-Quesada, J I; Llana-Belloch, S
2014-01-01
Although running is associated with many health benefits, it also exposes the body to greater risk of injury. Foot orthoses are an effective strategy to prevent such injuries. Comfort is an essential element in orthosis design since any discomfort alters the runner's biomechanics, compromising performance and increasing the risk of injury. The present study analyses the perceived comfort of three types of orthoses: custom-made, prefabricated and original running shoe insoles. Nine comfort variables for each insole were assessed in a sample of 40 runners. Custom-made and prefabricated insoles were both perceived as significantly more comfortable than the original insoles. The differences were clinically relevant and were potentially causes of modifications in running gait. Although the prefabricated insoles were rated slightly higher than the custom-made insoles, the differences were not statistically significant. This study shows that prefabricated insoles constitute a reasonable alternative to custom-made insoles in terms of comfort. The perceived level of comfort of footwear is considered to be a protective measure of the potential risk of running injuries. We here compared runners' perception of comfort of custom-made and prefabricated orthoses while running. We found that even though custom-made orthoses are closely matched to each individual's foot, such customisation does not necessarily imply greater comfort.
The Martian climate: Energy balance models with CO2/H2O atmospheres
NASA Technical Reports Server (NTRS)
Hoffert, M. I.
1984-01-01
Progress in the development of a multi-reservoir, time dependent energy balance climate model for Mars driven by prescribed insolation at the top of the atmosphere is reported. The first approximately half-year of the program was devoted to assembling and testing components of the full model. Specific accomplishments were made on a longwave radiation code, coupling seasonal solar input to a ground temperature simulation, and conceptualizing an approach to modeling the seasonal pressure waves that develop in the Martian atmosphere as a result of sublimation and condensation of CO2 in polar regions.
Flywheel Charge/Discharge Control Developed
NASA Technical Reports Server (NTRS)
Beach, Raymond.F.; Kenny, Barbara H.
2001-01-01
A control algorithm developed at the NASA Glenn Research Center will allow a flywheel energy storage system to interface with the electrical bus of a space power system. The controller allows the flywheel to operate in both charge and discharge modes. Charge mode is used to store additional energy generated by the solar arrays on the spacecraft during insolation. During charge mode, the flywheel spins up to store the additional electrical energy as rotational mechanical energy. Discharge mode is used during eclipse when the flywheel provides the power to the spacecraft. During discharge mode, the flywheel spins down to release the stored rotational energy.
On the Departure from Isothermality of Pluto's Volatile Ice due to Local Insolation and Topography
NASA Astrophysics Data System (ADS)
Trafton, Laurence M.; Stansberry, John A.
2015-11-01
Pluto’s atmosphere is known to be supported by the vapor pressure of ices that are volatile at low temperature, primarily N2 and secondarily CH4 and CO. The atmospheric bulk is regulated by the globally average temperature of the ice, which is determined by a radiative balance between the diurnally average insolation absorbed globally by the volatile ice and the global volatile ice thermal radiation. This bulk is sufficient that Pluto’s atmosphere is close to hydrostatic equilibrium, though this may not remain so as Pluto continues to move towards aphelion. With the weight of the atmosphere currently distributed evenly around the body, the ice temperature is expected to be globally isothermal in absence of topographic variations, due to the transport of latent heat from regions of high insolation to low insolation through sublimation and condensation. Images returned from the New Horizons spacecraft show topographical features, including mountain ranges that extend above 3.5 km, with albedo variations that suggest a topographical dimension or dependence of the volatile ice deposits. In general, the conditions often applied to a volatile atmosphere of hydrostatic equilibrium and vapor-solid phase equilibrium are approximations that may not always both be appropriate. This is particularly the case in the presence of topography when the atmospheric lapse rate differs from the wet adiabat. We present our results of an investigation of the effect of variable insolation and topography on Pluto’s local ice temperature assuming an atmosphere close to hydrostatic equilibrium.
Determination of Thermal State of Charge in Solar Heat Receivers
NASA Technical Reports Server (NTRS)
Glakpe, E. K.; Cannon, J. N.; Hall, C. A., III; Grimmett, I. W.
1996-01-01
The research project at Howard University seeks to develop analytical and numerical capabilities to study heat transfer and fluid flow characteristics, and the prediction of the performance of solar heat receivers for space applications. Specifically, the study seeks to elucidate the effects of internal and external thermal radiation, geometrical and applicable dimensionless parameters on the overall heat transfer in space solar heat receivers. Over the last year, a procedure for the characterization of the state-of-charge (SOC) in solar heat receivers for space applications has been developed. By identifying the various factors that affect the SOC, a dimensional analysis is performed resulting in a number of dimensionless groups of parameters. Although not accomplished during the first phase of the research, data generated from a thermal simulation program can be used to determine values of the dimensionless parameters and the state-of-charge and thereby obtain a correlation for the SOC. The simulation program selected for the purpose is HOTTube, a thermal numerical computer code based on a transient time-explicit, axisymmetric model of the total solar heat receiver. Simulation results obtained with the computer program are presented the minimum and maximum insolation orbits. In the absence of any validation of the code with experimental data, results from HOTTube appear reasonable qualitatively in representing the physical situations modeled.
NASA Astrophysics Data System (ADS)
Saraswat, S. K.; Rao, K. V. S.
2018-03-01
Jaisalmer town in Rajasthan, India is having annual average solar insolation of 5.80 kWh/m2/day and 270 – 300 clear sky days in a year. A 10 kW off-grid hybrid energy system (HES) consisting of solar photovoltaic panels – diesel generator – bidirectional converter and batteries with zero percentage loss of load for Jaisalmer is designed using HOMER (version 3.4.3) software. Different system load factors of 0.33, 0.50, 0.67, 0.83 and 1 corresponding to fraction of running hours per day of the system are considered. The system is analyzed for all three aspects, namely, electrical, economic and emission point of view. Least levelized cost of electricity (LCOE) of Rs. 8.43/kWh is obtained at a load factor value of 0.5. If diesel generator alone (without Solar PV) is used to fulfil the demand for a load factor of 0.5the value of LCOE is obtained Rs.19.23/kWh. Comparison of results obtained for HES and diesel generator are made for load factor of 0.5 and 1.
Solar Irradiance from GOES Albedo performance in a Hydrologic Model Simulation of Snowmelt Runoff
NASA Astrophysics Data System (ADS)
Sumargo, E.; Cayan, D. R.; McGurk, B. J.
2015-12-01
In many hydrologic modeling applications, solar radiation has been parameterized using commonly available measures, such as the daily temperature range, due to scarce in situ solar radiation measurement network. However, these parameterized estimates often produce significant biases. Here we test hourly solar irradiance derived from the Geostationary Operational Environmental Satellite (GOES) visible albedo product, using several established algorithms. Focusing on the Sierra Nevada and White Mountain in California, we compared the GOES irradiance and that from a traditional temperature-based algorithm with incoming irradiance from pyranometers at 19 stations. The GOES based estimates yielded 21-27% reduction in root-mean-squared error (average over 19 sites). The derived irradiance is then prescribed as an input to Precipitation-Runoff Modeling System (PRMS). We constrain our experiment to the Tuolumne River watershed and focus our attention on the winter and spring of 1996-2014. A root-mean-squared error reduction of 2-6% in daily inflow to Hetch Hetchy at the lower end of the Tuolumne catchment was achieved by incorporating the insolation estimates at only 8 out of 280 Hydrologic Response Units (HRUs) within the basin. Our ongoing work endeavors to apply satellite-derived irradiance at each individual HRU.
Topographic and Other Influences on Pluto's Volatile Ices
NASA Astrophysics Data System (ADS)
Lewis, Briley Lynn; Stansberry, John; Grundy, William M.; Schmitt, Bernard; Protopapa, Silvia; Trafton, Laurence M.; Holler, Bryan J.; McKinnon, William B.; Schenk, Paul M.; Stern, S. Alan; Young, Leslie; Weaver, Harold A.; Olkin, Catherine; Ennico, Kimberly; New Horizons Science Team, The New Horizons Composition Team
2018-01-01
Pluto’s surface is known to consist of various volatile ices, mostly N2, CH4, and CO, which sublimate and condense on varying timescales, generally moving from points of high insolation to those of low insolation. The New Horizons Pluto encounter data provide multiple lenses through which to view Pluto’s detailed surface topography and composition and to investigate the distribution of volatiles on its surface, including albedo and elevation maps from the imaging instruments and composition maps from the LEISA spectral imager. The volatile surface ice is expected to be generally isothermal, due to the fact that their vapor pressures are in equilibrium with the atmosphere. Although secular topographic transport mechanisms suggest that points at low elevation should slowly fill with volatile ices (Trafton 2015 DPS abstract, Bertrand and Forget 2017), there are counter-examples of this across the surface, implying that energy discrepancies caused by insolation differences, albedo variations, local slopes, and other effects may take precedence at shorter timescales. Using data from the 2015 New Horizons flyby, we present our results of this investigation into the effects of variations in insolation, albedo, and topography on the presence of the different volatile ices across the surface of Pluto.
Topographic and Other Influences on Pluto's Volatile Ices
NASA Astrophysics Data System (ADS)
Lewis, Briley Lynn; Stansberry, John; Grundy, William M.; Schmitt, Bernard; Protopapa, Silvia; Trafton, Laurence M.; Holler, Bryan J.; McKinnon, William B.; Schenk, Paul M.; Stern, S. Alan; Young, Leslie; Weaver, Harold A.; Olkin, Catherine; Ennico, Kimberly; New Horizons Science Team
2017-10-01
Pluto’s surface is known to consist of various volatile ices, mostly N2, CH4, and CO, which sublimate and condense on varying timescales, generally moving from points of high insolation to those of low insolation. The New Horizons Pluto encounter data provide multiple lenses through which to view Pluto’s detailed surface topography and composition and to investigate the distribution of volatiles on its surface, including albedo and elevation maps from the imaging instruments and composition maps from the LEISA spectral imager. The volatile surface ice is expected to be generally isothermal, due to the fact that their vapor pressures are in equilibrium with the atmosphere. Although secular topographic transport mechanisms suggest that points at low elevation should slowly fill with volatile ices (Trafton 2015 DPS abstract, Bertrand and Forget 2017), there are counter-examples of this across the surface, implying that energy discrepancies caused by insolation differences, albedo variations, local slopes, and other effects may take precedence at shorter timescales. Using data from the 2015 New Horizons flyby, we present our results of this investigation into the effects of variations in insolation, albedo, and topography on the presence of the different volatile ices across the surface of Pluto.
Coxson, D S
1987-09-01
The response of net photosynthesis (NP) and dark respiration to periods of high insolation exposure was examined in the tropical basidiomycete lichen Cora pavonia. Photoinhibition of NP proved quite dependant on temperature. Rates of light saturated NP were severely impaired immediately after pretreatment high light exposure at temperatures of 10, 20 and 40°C, while similar exposure at 30°C resulted in only minimal photoinhibition. Apparent quantum yield proved an even more sensitive indicator of photoinhibition, reduced in all temperature treatments, although inhibition was again greatest at low and high temperatures. Concurrent exposure to reduced O 2 tensions during high light exposure mitigated some of the deleterious effects of high light exposure at 10 and 20°C, suggesting an interaction of O 2 with the inactivation of photosynthetic function. This represents the first reported instance of light dependant chilling stress in lichens, and may be an important limitation on the distribution of this and other tropical lichen species. This narrow range of temperatures within which thalli of C. pavonia can withstand periods of high insolation exposure coincides with that faced by hydrated thalli during rare periods of high insolation exposure within the cloud/shroud zone on La Soufrière, and points to the necessity of considering periods of atypical or unusual climatic events when interpreting patterns of net photosynthetic response, both in tropical and in north temperate lichen species.
Pausata, Francesco S. R.; Emanuel, Kerry A.; Chiacchio, Marc; Diro, Gulilat T.; Zhang, Qiong; Sushama, Laxmi; Stager, J. Curt; Donnelly, Jeffrey P.
2017-01-01
Tropical cyclones (TCs) can have devastating socioeconomic impacts. Understanding the nature and causes of their variability is of paramount importance for society. However, historical records of TCs are too short to fully characterize such changes and paleo-sediment archives of Holocene TC activity are temporally and geographically sparse. Thus, it is of interest to apply physical modeling to understanding TC variability under different climate conditions. Here we investigate global TC activity during a warm climate state (mid-Holocene, 6,000 yBP) characterized by increased boreal summer insolation, a vegetated Sahara, and reduced dust emissions. We analyze a set of sensitivity experiments in which not only solar insolation changes are varied but also vegetation and dust concentrations. Our results show that the greening of the Sahara and reduced dust loadings lead to more favorable conditions for tropical cyclone development compared with the orbital forcing alone. In particular, the strengthening of the West African Monsoon induced by the Sahara greening triggers a change in atmospheric circulation that affects the entire tropics. Furthermore, whereas previous studies suggest lower TC activity despite stronger summer insolation and warmer sea surface temperature in the Northern Hemisphere, accounting for the Sahara greening and reduced dust concentrations leads instead to an increase of TC activity in both hemispheres, particularly over the Caribbean basin and East Coast of North America. Our study highlights the importance of regional changes in land cover and dust concentrations in affecting the potential intensity and genesis of past TCs and suggests that both factors may have appreciable influence on TC activity in a future warmer climate. PMID:28559352
Comparison of advanced engines for parabolic dish solar thermal power plants
NASA Technical Reports Server (NTRS)
Fujita, T.; Bowyer, J. M.; Gajanana, B. C.
1980-01-01
A paraboloidal dish solar thermal power plant produces electrical energy by a two-step conversion process. The collector subsystem is composed of a two-axis tracking paraboloidal concentrator and a cavity receiver. The concentrator focuses intercepted sunlight (direct, normal insolation) into a cavity receiver whose aperture encircles the focal point of the concentrator. At the internal wall of the receiver the electromagnetic radiation is converted to thermal energy. A heat engine/generator assembly then converts the thermal energy captured by the receiver to electricity. Developmental activity has been concentrated on small power modules which employ 11- to 12-meter diameter dishes to generate nominal power levels of approximately 20 kWe. A comparison of advanced heat engines for the dish power module is presented in terms of the performance potential of each engine with its requirements for advanced technology development. Three advanced engine possibilities are the Brayton (gas turbine), Brayton/Rankine combined cycle, and Stirling engines.
Status of the Boeing Dish Engine Critical Component Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brau, H.W.; Diver, R.B.; Nelving, H.
1999-01-08
The Boeing Company's Dish Engine Critical Component (DECC) project started in April of 1998. It is a continuation of a solar energy program started by McDonnell Douglas (now Boeing) and United Stirling of Sweden in the mid 1980s. The overall objectives, schedule, and status of this project are presented in this paper. The hardware test configuration, hardware background, operation, and test plans are also discussed. A summary is given of the test data, which includes the daily power performance, generated energy, working-gas usage, mirror reflectivity, solar insolation, on-sun track time, generating time, and system availability. The system performance based uponmore » the present test data is compared to test data from the 1984/88 McDonnell Douglas/United Stirling AB/Southem California Edison test program. The test data shows that the present power, energy, and mirror performance is comparable to when the hardware was first manufactured 14 years ago.« less
Status of the Boeing Dish Engine Critical Component project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, K.W.; Nelving, H.; Braun, H.W.
1999-07-01
The Boeing Company's Dish Engine Critical Component (DECC) project started in April of 1998. It is a continuation of a solar energy program started by McDonnel Douglas (now Boeing) and United Stirling of Sweden in the mid 1980s. The overall objectives, schedule, and status of this project are presented in this paper. The hardware test configuration, hardware background, operation, and test plans are also discussed. A summary is given of the test data, which includes the daily power performance, generated energy, working-gas usage, mirror reflectivity, solar insolation, on-sun track time. Generating time, and system availability. The system performance based uponmore » the present test data is compared to test data from the 1984/88 McDonnel Douglas/United Stirling AB/Southern California Edison test program. The test data shows that the present power, energy, and mirror performance is comparable to when the hardware was first manufactured 14 years ago.« less
Chatzistergos, Panagiotis E; Naemi, Roozbeh; Chockalingam, Nachiappan
2015-06-01
This study aims to develop a numerical method that can be used to investigate the cushioning properties of different insole materials on a subject-specific basis. Diabetic footwear and orthotic insoles play an important role for the reduction of plantar pressure in people with diabetes (type-2). Despite that, little information exists about their optimum cushioning properties. A new in-vivo measurement based computational procedure was developed which entails the generation of 2D subject-specific finite element models of the heel pad based on ultrasound indentation. These models are used to inverse engineer the material properties of the heel pad and simulate the contact between plantar soft tissue and a flat insole. After its validation this modelling procedure was utilised to investigate the importance of plantar soft tissue stiffness, thickness and loading for the correct selection of insole material. The results indicated that heel pad stiffness and thickness influence plantar pressure but not the optimum insole properties. On the other hand loading appears to significantly influence the optimum insole material properties. These results indicate that parameters that affect the loading of the plantar soft tissues such as body mass or a person's level of physical activity should be carefully considered during insole material selection. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Application of compound parabolic concentrators to solar photovoltaic conversion. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, R.L.; Gorski, A.J.; Graven, R.M.
1977-02-01
The final results of an analytical and experimental study of the application of nonimaging concentrators to solar photovoltaic conversion are presented. Two versions of the Compound Parabolic Concentrator (CPC) were considered, the Dielectric Compound Parabolic Concentrator (DCPC) in which the concentrator is filled with a dielectric material that satisfies requirements for Total Internal Reflection (TIR), and a conventional CPC in which metallic reflection is used for the mirror surfaces. Two working prototype panels were constructed and tested during the course of the program. The first was a 1.22 m by 1.22 m DCPC panel that requires only ten adjustments/year, hasmore » a panel utilization factor (packing factor) of 96%, and delivered the equivalent of 138 W (peak) under 1 kW/m/sup 2/ direct insolation. The net energy conversion efficiency was 10.3% over the entire panel area. The second panel was a conventional CPC panel measuring 1.22 m by 1.22 m. This panel requires thirty-six adjustments per year, and delivers the equivalent of 97 W when under 1 kW/m/sup 2/ direct insolation. The results of a cost-effectiveness analysis of the concept of using nonimaging concentrators for photovoltaic conversion are also presented. The concentrator panels showed a decided savings in comparison to the cost of flat plate photovoltaic panels, both at present-day silicon costs ($2000/m/sup 2/) and projected lower silicon costs ($200/m/sup 2/). At a silicon cost of $200/m/sup 2/, a two-dimensional (cone) version of the collector has the potential for achieving from $0.60-2.00 per average watt (about $0.15-0.50 per peak watt) while requiring only crude (+-4.5/sup 0/) tracking.« less
Planning a Target Renewable Portfolio using Atmospheric Modeling and Stochastic Optimization
NASA Astrophysics Data System (ADS)
Hart, E.; Jacobson, M. Z.
2009-12-01
A number of organizations have suggested that an 80% reduction in carbon emissions by 2050 is a necessary step to mitigate climate change and that decarbonization of the electricity sector is a crucial component of any strategy to meet this target. Integration of large renewable and intermittent generators poses many new problems in power system planning. In this study, we attempt to determine an optimal portfolio of renewable resources to meet best the fluctuating California load while also meeting an 80% carbon emissions reduction requirement. A stochastic optimization scheme is proposed that is based on a simplified model of the California electricity grid. In this single-busbar power system model, the load is met with generation from wind, solar thermal, photovoltaic, hydroelectric, geothermal, and natural gas plants. Wind speeds and insolation are calculated using GATOR-GCMOM, a global-through-urban climate-weather-air pollution model. Fields were produced for California and Nevada at 21km SN by 14 km WE spatial resolution every 15 minutes for the year 2006. Load data for 2006 were obtained from the California ISO OASIS database. Maximum installed capacities for wind and solar thermal generation were determined using a GIS analysis of potential development sites throughout the state. The stochastic optimization scheme requires that power balance be achieved in a number of meteorological and load scenarios that deviate from the forecasted (or modeled) data. By adjusting the error distributions of the forecasts, the model describes how improvements in wind speed and insolation forecasting may affect the optimal renewable portfolio. Using a simple model, we describe the diversity, size, and sensitivities of a renewable portfolio that is best suited to the resources and needs of California and that contributes significantly to reduction of the state’s carbon emissions.
The Effects of Surface Roughness on the Apparent Thermal and Optical Properties of the Moon
NASA Astrophysics Data System (ADS)
Rubanenko, L.; Hayne, P. O.; Paige, D. A.
2017-12-01
The thermal inertia and albedo of airless planetary bodies such as the Moon can be inferred by measuring the surface temperatures and solar reflectance. However, roughness below the instrument resolution can affect these measured parameters. Scattering and IR emission from warm slopes onto colder slopes change the surface cooling rate, while shadowing and directional scattering change the reflectance. The importance of these effects grows with increasing solar incidence and emission angles, and during solar eclipses during which the insolation decreases rapidly. The high-quality data gathered by the Lunar Reconnaissance Orbiter (LRO) mission during the last seven years provides us with a unique opportunity to study these effects. Previous works have either adopted a simplified roughness model composed of a single slope, or an illumination model that does not account for subsurface conduction. Our approach incorporates data with simulations conducted using a coupled thermal and illumination model. First, we model the surface temperature distribution below the instrument resolution, considering two realizations: a cratered surface and a Gaussian random surface. Then, we fit the rough surface brightness temperature distribution to that of a flat surface with effective thermal and optical properties to find they differ from the original properties by up to 20% due to the added surface roughness. In the future, this will help to better constrain the intrinsic physical properties of the surface on both the Moon and Mercury and also other airless bodies such as asteroids.
NASA Astrophysics Data System (ADS)
Zorzi, Coralie; Sanchez Goñi, Maria Fernanda; Anupama, Krishnamurthy; Prasad, Srinivasan; Hanquiez, Vincent; Johnson, Joel; Giosan, Liviu
2015-10-01
In contrast to the East Asian and African monsoons the Indian monsoon is still poorly documented throughout the last climatic cycle (last 135,000 years). Pollen analysis from two marine sediment cores (NGHP-01-16A and NGHP-01-19B) collected from the offshore Godavari and Mahanadi basins, both located in the Core Monsoon Zone (CMZ) reveals changes in Indian summer monsoon variability and intensity during three contrasting climatic periods: the Holocene, the Heinrich Stadial (HS) 2 and the Marine Isotopic Stage (MIS) 5/4 during the ice sheet growth transition. During the first part of the Holocene between 11,300 and 4200 cal years BP, characterized by high insolation (minimum precession, maximum obliquity), the maximum extension of the coastal forest and mangrove reflects high monsoon rainfall. This climatic regime contrasts with that of the second phase of the Holocene, from 4200 cal years BP to the present, marked by the development of drier vegetation in a context of low insolation (maximum precession, minimum obliquity). The historical period in India is characterized by an alternation of strong and weak monsoon centennial phases that may reflect the Medieval Climate Anomaly and the Little Ice Age, respectively. During the HS 2, a period of low insolation and extensive iceberg discharge in the North Atlantic Ocean, vegetation was dominated by grassland and dry flora indicating pronounced aridity as the result of a weak Indian summer monsoon. The MIS 5/4 glaciation, also associated with low insolation but moderate freshwater fluxes, was characterized by a weaker reduction of the Indian summer monsoon and a decrease of seasonal contrast as recorded by the expansion of dry vegetation and the development of Artemisia, respectively. Our results support model predictions suggesting that insolation changes control the long term trend of the Indian monsoon precipitation, but its millennial scale variability and intensity are instead modulated by atmospheric teleconnections to remote phenomena in the North Atlantic, Eurasia or the Indian Ocean.
New Mexico climate manual: solar and weather data. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, W.S.; Haggard, K.W
This manual contains extensive solar and weather data for the state of New Mexico in tabular, map, and graphic formats. It is particularly relevant to design of energy efficient buildings and renewable energy systems, but is also broad enough to provide useful information to many other disciplines. Maps of the state show monthly values of insolation for horizontal, south-facing latitude-tilted and vertical surfaces, as well as mean temperatures. Climatic summaries given for 63 sites include monthly temperature and precipitation data as well as heating/cooling degree-days and design temperatures. For nine locations (Albuquerque, Clayton, Farmington, Los Alamos, Roswell, T or C,more » Tucumcari, Zuni, and El Paso, Texas) most of the following comprehensive data sets are also presented: design temperatures with mean coincident wet bulb and wind values; HDD/CDD values to 12 base temperatures; day/night wind data; typical and clear-day values of incident and transmitted solar radiation for 97 orientations and tilts; and temperature distribution data in 2/sup 0/F bins for six daily time periods. Extensive explanatory text with referencing to the data is provided.« less
Solar Geoengineering and the Modulation of North Atlantic Tropical Cyclone Frequency
NASA Astrophysics Data System (ADS)
Jones, A. C.; Haywood, J. M.; Hawcroft, M.; Jones, A.; Dunstone, N. J.; Hodges, K.
2017-12-01
Solar geoengineering (SG) refers to a wide range of proposed methods for counteracting global warming by artificially reducing solar insolation at Earth's surface. The most widely known SG proposal is stratospheric aerosol injection (SAI) which has impacts analogous to those from large-scale volcanic eruptions. Observations following major volcanic eruptions indicate that aerosol enhancements confined to a single hemisphere effectively modulate North Atlantic tropical cyclone (TC) activity in the following years. Here we investigate the effects of both single-hemisphere and global SAI scenarios on North Atlantic TC activity using the HadGEM2-ES general circulation model (GCM). We show that a 5 Tg y-1 injection of sulphur dioxide (SO2) into the northern hemisphere (NH) stratosphere would produce a global-mean cooling of 1 K and simultaneously reduce TC activity (to 8 TCs y-1), while the same injection in the southern hemisphere (SH) would enhance TC activity (to 14 TCs y-1), relative to a recent historical period (1950-2000, 10 TCs y-1). Our results reemphasize the risks of regional geoengineering and should motivate policymakers to regulate large-scale unilateral geoengineering deployments.
Nanofluid heat transfer under mixed convection flow in a tube for solar thermal energy applications.
Sekhar, Y Raja; Sharma, K V; Kamal, Subhash
2016-05-01
The solar flat plate collector operating under different convective modes has low efficiency for energy conversion. The energy absorbed by the working fluid in the collector system and its heat transfer characteristics vary with solar insolation and mass flow rate. The performance of the system is improved by reducing the losses from the collector. Various passive methods have been devised to aid energy absorption by the working fluid. Also, working fluids are modified using nanoparticles to improve the thermal properties of the fluid. In the present work, simulation and experimental studies are undertaken for pipe flow at constant heat flux boundary condition in the mixed convection mode. The working fluid at low Reynolds number in the mixed laminar flow range is undertaken with water in thermosyphon mode for different inclination angles of the tube. Local and average coefficients are determined experimentally and compared with theoretical values for water-based Al2O3 nanofluids. The results show an enhancement in heat transfer in the experimental range with Rayleigh number at higher inclinations of the collector tube for water and nanofluids.
Second-law efficiency of solar-thermal cavity receivers
NASA Technical Reports Server (NTRS)
Moynihan, P. I.
1983-01-01
Properly quantified performance of a solar-thermal cavity receiver must not only account for the energy gains and losses as dictated by the First Law of thermodynamics, but it must also account for the quality of that energy. However, energy quality can only be determined from the Second Law. An equation for the Second Law efficiency of a cavity receiver is derived from the definition of available energy, which is a thermodynamic property that measures the maximum amount of work obtainable when a system is allowed to come into unrestrained equilibrium with the surrounding environment. The fundamental concepts of the entropy and availability of radiation were explored from which a workable relationship among the reflected cone half-angle, the insolation, and the concentrator geometric characteristics was developed as part of the derivation of the Second Law efficiency. First and Second Law efficiencies were compared for data collected from two receivers that were designed for different purposes. A Second Law approach to quantifying the performance of a solar-thermal cavity receiver lends greater insight into the total performance than does the conventional First Law method.
Large-scale use of solar energy with central receivers
NASA Astrophysics Data System (ADS)
Kreith, F.; Meyer, R. T.
1983-12-01
The working principles of solar central receiver power plants are outlined and applications are discussed. Heliostat arrays direct sunlight into a receiver cavity mounted on a tower, heating the working fluid in the tower to temperatures exceeding 500 C. The formulation for the image plane and the geometric concentration ratio for a heliostat field are provided, noting that commercial electric power plants will require concentration ratios of 200-1000. Automated controls consider imperfections in the mirrors, tracking errors, and seasonal insolation intensity and angular variations. Membranes may be used instead of rigid heliostat mirrors to reduce costs, while trade-offs exist between the efficiencies of cavity and exterior receivers on the tower. Sensible heat storage has proved most effective for cloudy or nighttime operations. Details of the DOE Solar One 10 MW plant, which began operation in 1982, are provided, with mention given to the 33.6 continuous hours of power generation that have been achieved. Projected costs of commercial installations are $700/kWt, and possible applications include recovering and refining oil, processing natural gas, uranium ore, and sugar cane, drying gypsum board, and manufacturing ammonia.
Atmosphere-biosphere exchange of CO2 and O3 in the Central Amazon Forest
NASA Technical Reports Server (NTRS)
Fan, Song-Miao; Wofsy, Steven C.; Bakwin, Peter S.; Jacob, Daniel J.; Fitzjarrald, David R.
1990-01-01
An eddy correlation measurement of O3 deposition and CO2 exchange at a level 10 m above the canopy of the Amazon forest, conducted as part of the NASA/INPE ABLE2b mission during the wet season of 1987, is presented. It was found that the ecosystem exchange of CO2 undergoes a well-defined diurnal variation driven by the input of solar radiation. A curvilinear relationship was found between solar irradiance and uptake of CO2, with net CO2 uptake at a given solar irradiance equal to rates observed over forests in other climate zones. The carbon balance of the system appeared sensitive to cloud cover on the time scale of the experiment, suggesting that global carbon storage might be affected by changes in insolation associated with tropical climate fluctuations. The forest was found to be an efficient sink for O3 during the day, and evidence indicates that the Amazon forests could be a significant sink for global ozone during the nine-month wet period and that deforestation could dramatically alter O3 budgets.
Solar energy potential in the United Arab Emirates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalil, A.; Alnajjar, A.
1995-12-31
In the present study, the global, direct and diffuse components of solar radiation as well as temperature, relative humidity and wind speed have been continuously monitored and analyzed on hourly, daily and monthly basis. Experimental data is compared to the predictions of different theoretical models as functions of declination and hour angles. Correlations are obtained describing the variation of hourly, daily and monthly averages of total and diffuse solar radiation using polynomial expressions. Empirical correlations describing the dependence of the daily average diffuse to total radiation ratio on the clearness index are also obtained. Data of daily diffuse to totalmore » radiation ratio is compared to correlations obtained by other investigators. The comparison shows a reasonable agreement with some scatter due to the seasonal dependence of the correlation. Comparison of calculations with experimental measurements under clear sky conditions show excellent agreement with a maximum error of 8%. The measured ratio of hourly to daily insolation is in excellent agreement with the model of Hottel which is expressed as a function of the clearness index, hour and the sunset hour angles.« less
Yamaguchi, Satoshi; Kitamura, Masako; Ushikubo, Tomohiro; Murata, Atsushi; Akagi, Ryuichiro; Sasho, Takahisa
2015-01-01
Biomechanical effects of laterally wedged insoles are assessed by reduction in the knee adduction moment. However, the degree of reduction may vary depending on the reference frame with which it is calculated. The purpose of this study was to clarify the effect of reference frame on the reduction in the knee adduction moment by laterally wedged insoles. Twenty-nine healthy participants performed gait trials with a laterally wedged insole and with a flat insole as a control. The knee adduction moment, including the first and second peaks and the angular impulse, were calculated using four different reference frames: the femoral frame, tibial frame, laboratory frame and the Joint Coordinate System. There were significant effects of reference frame on the knee adduction moment first and second peaks (P < 0.001 for both variables), while the effect was not significant for the angular impulse (P = 0.84). No significant interaction between the gait condition and reference frame was found in either of the knee adduction moment variables (P = 0.99 for all variables), indicating that the effects of laterally wedged insole on the knee adduction moments were similar across the four reference frames. On the other hand, the average percent changes ranged from 9% to 16% for the first peak, from 16% to 18% for the second peak and from 17% to 21% for the angular impulse when using the different reference frames. The effects of laterally wedged insole on the reduction in the knee adduction moment were similar across the reference frames. On the other hand, Researchers need to recognize that when the percent change was used as the parameter of the efficacy of laterally wedged insole, the choice of reference frame may influence the interpretation of how laterally wedged insoles affect the knee adduction moment.
Feuilhade de Chauvin, M
2012-07-01
Shoes worn with bare feet function as a fungal reservoir and lead to persistent dermatophytosis. This study was designed to evaluate two formulations of terbinafine (1% spray powder or solution) to treat the insoles of shoes colonized by skin scales infected with Trichophyton rubrum and to determine the contact time necessary to achieve decontamination. Infected skin scales weighing 0.5 g, taken from the feet of patients with confirmed T. rubrum infection, was dispersed onto insoles pre-moistened with sterile saline solution (to mimic perspiration). Three types of insole were tested (felt, latex, leather). After inoculation, insoles were placed separately in new cardboard boxes at ambient temperature, and re-humidified with sterile normal saline solution for 48 h before being treated; untreated insoles served as controls. Scales were scraped off at 48 h or 96 h, and dropped into tubes of Sabouraud agar, incubated at 27°C and examined at 3 and 6 weeks. Cultures from all control insoles showed numerous T. rubrum colonies. In contrast, cultures from all insoles treated with a single application of terbinafine 1% spray solution or powder, and taken after 48 h or 96 h contact with the product, remained sterile at 3 weeks and 6 weeks. This study demonstrated the successful treatment of insoles colonized by T. rubrum-infected skin scales. Terbinafine 1% spray solution and powder showed good efficacy; the dermatophyte could no longer be cultured 48 h after a single application of terbinafine. © 2011 The Author. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.
Hybrid insolation forcing of Pliocene monsoon dynamics in West Africa
NASA Astrophysics Data System (ADS)
Kuechler, Rony R.; Dupont, Lydie M.; Schefuß, Enno
2018-01-01
The Pliocene is regarded as a potential analogue for future climate with conditions generally warmer-than-today and higher-than-preindustrial atmospheric CO2 levels. Here we present the first orbitally resolved records of continental hydrology and vegetation changes from West Africa for two Pliocene time intervals (5.0-4.6 Ma, 3.6-3.0 Ma), which we compare with records from the last glacial cycle (Kuechler et al., 2013). Our results indicate that changes in local insolation alone are insufficient to explain the full degree of hydrologic variations. Generally two modes of interacting insolation forcings are observed: during eccentricity maxima, when precession was strong, the West African monsoon was driven by summer insolation; during eccentricity minima, when precession-driven variations in local insolation were minimal, obliquity-driven changes in the summer latitudinal insolation gradient became dominant. This hybrid monsoonal forcing concept explains orbitally controlled tropical climate changes, incorporating the forcing mechanism of latitudinal gradients for the Pliocene, which probably increased in importance during subsequent Northern Hemisphere glaciations.
NASA Astrophysics Data System (ADS)
Tisza, Kata
Photovoltaic (PV) development shows significantly smaller growth in the Southeast U.S., than in the Southwest; which is mainly due to the low cost of fossil-fuel based energy production in the region and the lack of solar incentives. However, the Southeast has appropriate insolation conditions (4.0-6.0 KWh/m2/day) for photovoltaic deployment and in the past decade the region has experienced the highest population growth for the entire country. These factors, combined with new renewable energy portfolio policies, could create an opportunity for PV to provide some of the energy that will be required to sustain this growth. The goal of the study was to investigate the potential for PV generation in the Southeast region by identifying suitable areas for a utility-scale solar power plant deployment. Four states with currently low solar penetration were studied: Georgia, North Carolina, South Carolina and Tennessee. Feasible areas were assessed with Geographic Information Systems (GIS) software using solar, land use and population growth criteria combined with proximity to transmission lines and roads. After the GIS-based assessment of the areas, technological potential was calculated for each state. Multi-decision analysis model (MCDA) was used to simulate the decision making method for a strategic PV installation. The model accounted for all criteria necessary to consider in case of a PV development and also included economic and policy criteria, which is thought to be a strong influence on the PV market. Three different scenarios were established, representing decision makers' theoretical preferences. Map layers created in the first part were used as basis for the MCDA and additional technical, economic and political/market criteria were added. A sensitivity analysis was conducted to test the model's robustness. Finally, weighted criteria were assigned to the GIS map layers, so that the different preference systems could be visualized. As a result, lands suitable for a potential industrial-scale PV deployment were assessed. Moreover, a precise calculation for technical potential was conducted, with a capacity factor determined by the actual insolation of the sum of each specific feasible area. The results of the study showed that, for a utility-scale PV utility deployment, significant amount of feasible areas are available, with good electricity generation potential Moreover, a stable MCDA model was established for supporting strategic decision making in a PV deployment. Also, changes of suitable lands for utility-scale PV installations were visualized in GIS for the state of Tennessee.
Goga, Haruhisa
2012-09-01
It is crucial to identify the owner of unattended footwear left at a crime scene. However, retrieving enough DNA for DNA profiling from the owner's foot skin (plantar skin) cells from inside the footwear is often unsuccessful. This is sometimes because footwear that is used on a daily basis contains an abundance of bacteria that degrade DNA. Further, numerous other factors related to the inside of the shoe, such as high humidity and temperature, can encourage bacterial growth inside the footwear and enhance DNA degradation. This project sought to determine if bacteria from inside footwear could be used for footwear trace evidence. The plantar skins and insoles of shoes of volunteers were swabbed for bacteria, and their bacterial community profiles were compared using bacterial 16S rRNA terminal restriction fragment length polymorphism analysis. Sufficient bacteria were recovered from both footwear insoles and the plantar skins of the volunteers. The profiling identified that each volunteer's plantar skins harbored unique bacterial communities, as did the individuals' footwear insoles. In most cases, a significant similarity in the bacterial community was identified for the matched foot/insole swabs from each volunteer, as compared with those profiles from different volunteers. These observations indicate the probability to discriminate the owner of footwear by comparing the microbial DNA fingerprint from inside footwear with that of the skin from the soles of the feet of the suspected owner. This novel strategy will offer auxiliary forensic footwear evidence for human DNA identification, although further investigations into this technique are required.
Lin, Tung-Liang; Sheen, Huey-Min; Chung, Chin-Teng; Yang, Sai-Wei; Lin, Shih-Yi; Luo, Hong-Ji; Chen, Chung-Yu; Chan, I-Cheng; Shih, Hsu-Sheng; Sheu, Wayne Huey-Herng
2013-07-29
Removable plug insoles appear to be beneficial for patients with diabetic neuropathic feet to offload local plantar pressure. However, quantitative evidence of pressure reduction by means of plug removal is limited. The value of additional insole accessories, such as arch additions, has not been tested. The purpose of this study was to evaluate the effect of removing plugs from foam based insoles, and subsequently adding extra arch support, on plantar pressures. In-shoe plantar pressure measurements were performed on 26 patients with diabetic neuropathic feet at a baseline condition, in order to identify the forefoot region with the highest mean peak pressure (MPP). This was defined as the region of interest (ROI) for plug removal.The primary outcome was measurement of MPP using the pedar® system in the baseline and another three insole conditions (pre-plug removal, post-plug removal, and post-plug removal plus arch support). Among the 26 ROIs, a significant reduction in MPP (32.3%, P<0.001) was found after removing the insole plugs. With an arch support added, the pressure was further reduced (9.5%, P<0.001). There were no significant differences in MPP at non-ROIs between pre- and post-plug removal conditions. These findings suggest that forefoot plantar pressure can be reduced by removing plugs and adding arch support to foam-based insoles. This style of insole may therefore be clinically useful in managing patients with diabetic peripheral neuropathy.
Yi, Taeim; Kim, Jung Hyun; Oh-Park, Mooyeon; Hwang, Ji Hye
2018-03-01
We investigated the effects of full-length carbon fiber (FCF) insoles on gait, muscle activity, kinetics, and pain in patients with midfoot osteoarthritis (OA). We enrolled 13 patients with unilateral midfoot OA (mild: Visual Analog Scale [VAS] range, 1-3; moderate, VAS range, 4-7) and healthy controls. All participants were asked to walk under two conditions: with and without FCF insole. The outcome measures were ground reaction force, quantitative gait parameters, electromyography activities and pain severity (VAS). In the patients with moderate midfoot OA, significantly longer gait cycle and higher muscle activity of lower limb during loading-response phase were observed while walking without FCF insoles. In the mild midfoot OA group, there was no significant difference in VAS score (without, 2.0 ± 1.0 vs. with, 2.0 ± 0.5) with FCF insole use. However, significantly reduced VAS score (without, 5.5 ± 1.4 vs. with, 2.0 ± 0.5) and muscle activity of the tibialis anterior and increased muscle activity of gastrocnemius were observed in the moderate midfoot OA group by using an FCF insole (P < 0.05). Full-length carbon fiber insoles can improve pain in individuals with moderate midfoot OA, which might be associated with changes in the kinetics and muscle activities of the lower limb. Taken together, the results of the present study suggest that FCF insoles may be used as a helpful option for midfoot OA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolinger, Mark; Seel, Joachim; LaCommare, Kristina Hamachi
The utility-scale solar sector has led the overall U.S. solar market in terms of installed capacity since 2012. In 2016, the utility-scale sector installed more than 2.5 times as much new capacity as did the residential and commercial sectors combined, and is expected to maintain its dominant position for at least another five years. This report—the fifth edition in an ongoing annual series—provides data-driven analysis of the utility-scale solar project fleet in the United States. We analyze not just installed project prices, but also operating costs, capacity factors, and power purchase agreement ("PPA") prices from a large sample of utility-scalemore » PV and CSP projects throughout the United States. Highlights from this year's edition include the following: Installation Trends: The use of solar tracking devices dominated 2016 installations, at nearly 80% of all new capacity. In a reflection of the ongoing geographic expansion of the market beyond California and the Southwest, the median long-term average insolation level at newly built project sites declined again in 2016. While new fixed-tilt projects are now seen predominantly in less-sunny regions, tracking projects are increasingly pushing into these same regions. The median inverter loading ratio has stabilized in 2016 at 1.3 for both tracking and fixed-tilt projects. Installed Prices: Median installed PV project prices within a sizable sample have fallen by two-thirds since the 2007-2009 period, to $2.2/WAC (or $1.7/WDC) for projects completed in 2016. The lowest 20th percentile of projects within our 2016 sample were priced at or below $2.0/WAC, with the lowest-priced projects around $1.5/WAC. Overall price dispersion across the entire sample and across geographic regions decreased significantly in 2016. Operation and Maintenance (“O&M”) Costs: What limited empirical O&M cost data are publicly available suggest that PV O&M costs were in the neighborhood of $18/kWAC-year, or $8/MWh, in 2016. These numbers include only those costs incurred to directly operate and maintain the generating plant. Capacity Factors: The cumulative net AC capacity factors of individual PV projects range widely, from 15.4% to 35.5%, with a sample median of 26.3%. This project-level variation is based on a number of factors, including the strength of the solar resource at the project site, whether the array is mounted at a fixed-tilt or on a tracking mechanism, the inverter loading ratio, degradation, and curtailment. Changes in at least the first three of these factors drove mean capacity factors higher from 2010- to 2013-vintage projects, where they’ve remained fairly steady among both 2014- and 2015-vintage projects as an ongoing increase in the prevalence of tracking has been offset by a build-out of lower resource sites. Meanwhile, several of the newer CSP projects in the United States are struggling to match long-term performance expectations. PPA Prices: Driven by lower installed project prices and improving capacity factors, levelized PPA prices for utility-scale PV have fallen dramatically over time. Most recent PPAs in our sample are priced at or below $50/MWh levelized, with a few priced as aggressively as ~$30/MWh. Though impressive in pace and scale, these falling PPA prices have been offset to some degree by declining wholesale market value within high penetration markets like California, where in 2016 a MWh of solar generation was worth just 83% of a MWh of flat, round-the-clock generation. At the end of 2016, there were at least 121.4 GW of utility-scale solar power capacity within the interconnection queues across the nation. The growth within these queues is widely distributed across all regions of the country: California and the Southeast each account for 23% of the 83.3 GW of solar that first entered the queues in 2016, followed by the Northeast (17%), the Southwest (16%), the Central region (12%), Texas (6%) and the Northwest (3%). The widening geographic distribution of solar projects is a clear sign that the utility-scale market is maturing and expanding outside of its traditional high-insolation comfort zones.« less
Performance of a solar augmented heat pump
NASA Astrophysics Data System (ADS)
Bedinger, A. F. G.; Tomlinson, J. J.; Reid, R. L.; Chaffin, D. J.
Performance of a residential size solar augmented heat pump is reported for the 1979-1980 heating season. The facility located in Knoxville, Tennessee, has a measured heat load coefficient of 339.5 watt/C (644 BTU/hr- F). The solar augmented heat pump system consists of 7.4 cu m of one inch diameter crushed limestone. The heat pump is a nominal 8.8 KW (2 1/2 ton) high efficiency unit. The system includes electric resistance heaters to give the option of adding thermal energy to the pebble bed storage during utility off-peak periods, thus offering considerable load management capability. A 15 KW electric resistance duct heater is used to add thermal energy to the pebble bin as required during off-peak periods. Hourly thermal performance and on site weather data was taken for the period November 1, 1979, to April 13, 1980. Thermal performance data consists of heat flow summations for all modes of the system, pebble bed temperatures, and space temperature. Weather data consists of dry bulb temperature, dew point temperature, total global insolation (in the plane of the collector), and wind speed and direction. An error analysis was performed and the least accurate of the measurements was determined to be the heat flow at 5%. Solar system thermal performance factor was measured to be 8.77. The heat pump thermal performance factor was 1.64. Total system seasonal performance factor was measured to be 1.66. Using a modified version of TRNSYS, the thermal performance of this system was simulated. When simulation results were compared with data collected onsite, the predicted heat flow and power consumption generally were within experimental accuracy.
Fixed solar concentrator-collector-satelite receiver and co-generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meckler, M.
1985-01-01
An insolation and micro wave receiver fixedly installed in alignment with the suns azimuth and within the look angle of a satellite, and comprised of holographic windows recorded according to time related to the suns position as zone plates to concentrate infrared light into a Rankine cycle power generating receiver and to columnate ultraviolet light onto a photo voltaic power generating plane, utilizing a micro wave dish as the substrate support of photo voltaic cells and as a condenser of the Rankine cycle operating an induction generator synchronous with an external alternating current power system, and with the photo voltaicmore » power synchronized therewith by commutation.« less
Analysis of the economics of photovoltaic-diesel-battery energy systems for remote applications
NASA Technical Reports Server (NTRS)
Brainard, W. A.
1983-01-01
Computer simulations were conducted to analyze the performance and operating cost of a photovoltaic energy source combined with a diesel generator system and battery storage. The simulations were based on the load demand profiles used for the design of an all photovoltaic energy system installed in the remote Papago Indian Village of Schuchuli, Arizona. Twenty year simulations were run using solar insolation data from Phoenix SOLMET tapes. Total energy produced, energy consumed, operation and maintenance costs were calculated. The life cycle and levelized energy costs were determined for a variety of system configurations (i.e., varying amounts of photovoltaic array and battery storage).
Climatic Effects of Regional Nuclear War
NASA Technical Reports Server (NTRS)
Oman, Luke D.
2011-01-01
We use a modern climate model and new estimates of smoke generated by fires in contemporary cities to calculate the response of the climate system to a regional nuclear war between emerging third world nuclear powers using 100 Hiroshima-size bombs (less than 0.03% of the explosive yield of the current global nuclear arsenal) on cities in the subtropics. We find significant cooling and reductions of precipitation lasting years, which would impact the global food supply. The climate changes are large and longlasting because the fuel loadings in modern cities are quite high and the subtropical solar insolation heats the resulting smoke cloud and lofts it into the high stratosphere, where removal mechanisms are slow. While the climate changes are less dramatic than found in previous "nuclear winter" simulations of a massive nuclear exchange between the superpowers, because less smoke is emitted, the changes seem to be more persistent because of improvements in representing aerosol processes and microphysical/dynamical interactions, including radiative heating effects, in newer global climate system models. The assumptions and calculations that go into these conclusions will be described.
NASA Astrophysics Data System (ADS)
Doering, K.; Steinschneider, S.
2017-12-01
The variability of renewable energy supply and drivers of demand across space and time largely determines the energy balance within power systems with a high penetration of renewable technologies. This study examines the joint spatiotemporal variability of summertime climate linked to renewable energy production (precipitation, wind speeds, insolation) and energy demand (temperature) across the contiguous United States (CONUS) between 1948 and 2015. Canonical correlation analysis is used to identify the major modes of joint variability between summer wind speeds and precipitation and related patterns of insolation and temperature. Canonical variates are then related to circulation anomalies to identify common drivers of the joint modes of climate variability. Results show that the first two modes of joint variability between summer wind speeds and precipitation exhibit pan-US dipole patterns with centers of action located in the eastern and central CONUS. Temperature and insolation also exhibit related US-wide dipoles. The relationship between canonical variates and lower-tropospheric geopotential height indicates that these modes are related to variability in the North Atlantic subtropical high (NASH). This insight can inform optimal strategies for siting renewables in an interconnected electric grid, and has implications for the impacts of climate variability and change on renewable energy systems.
Football boot insoles and sensitivity to extent of ankle inversion movement.
Waddington, G; Adams, R
2003-04-01
The capacity of the plantar sole of the foot to convey information about foot position is reduced by conventional smooth boot insoles, compared with barefoot surface contact. To test the hypothesis that movement discrimination may be restored by inserting textured replacement insoles, achieved by changing footwear conditions and measuring the accuracy of judgments of the extent of ankle inversion movement. An automated testing device, the ankle movement extent discrimination apparatus (AMEDA), developed to assess active ankle function in weight bearing without a balance demand, was used to test the effects of sole inserts in soccer boots. Seventeen elite soccer players, the members of the 2000 Australian Women's soccer squad (34 ankles), took part in the study. Subjects were randomly allocated to start testing in: bare feet, their own football boots, own football boot and replacement insole, and on the left or right side. Subjects underwent six 50 trial blocks, in which they completed all footwear conditions. The sole inserts were cut to size for each foot from textured rubber "finger profile" sheeting. Movement discrimination scores were significantly worse when subjects wore their football boots and socks, compared with barefoot data collected at the same time. The substitution of textured insoles for conventional smooth insoles in the football boots was found to restore movement discrimination to barefoot levels. The lower active movement discrimination scores of athletes when wearing football boots with smooth insoles suggest that the insole is one aspect of football boot and sport shoe design that could be modified to provide the sensory feedback needed for accurate foot positioning.
Kasimova, R G; Tishin, D; Obnosov, Yu V; Dlussky, G M; Baksht, F B; Kacimov, A R
2014-08-21
Sizes, shapes, ambient and in-dome temperature, incoming solar radiation and illumination are measured on a Formica rufa anthill in a mixed forest of the Volga-Kama National Reserve in Russia. These data are used in a conceptual model of insolation of a right conical surface by direct-beam, descending atmospheric and ascending ground-reflected radiation. Unlike a standard calculation of the energy flux intercepted by a solar panel, the anthill is a 3-D structure and double-integration of the cosine of the angle between the solar beams and normal to the surface is carried out for a "cozy trapezium", where the insects expose themselves and the brood to "morning" sunbathing pulses (Jones and Oldroyd, 2007). Several constructal design problems are formulated with the criteria involving either a pure solar energy gained by the dome or this energy, as a mathematical criterion, penalized by additive terms of mechanical energy (potential and friction) lost by the ants in their diurnal forays from a "heartland" of the nest to the sun-basking zone on the surface. The unique and global optima are analytically found, with the optimal tilt angle of the cone explicitly expressed through the zenith angle of the Sun and meteorological constants for the isotropic sky model. Copyright © 2014 Elsevier Ltd. All rights reserved.
Correlation of LEND and Diviner Data
NASA Technical Reports Server (NTRS)
McClanahan, Tim; Boynton, William; Mitrofanov, Igor; Sagdeev, Raold; Bennet, Kristen; Starr, Richard; Evans, Larry; Paige, Dave; Sanin, Anton; Litvak, Max;
2011-01-01
Correlated results from the Lunar Reconnaissance Orbiter's (LRO) Lunar Exploration Neutron Detector (LEND) and Lunar Orbiting Laser Altimeter (LOLA) suggest insolation effects influence the spatial distribution of Lunar H poleward of 60deg latitude. Diviner results indicate an insolation induced thermal contrast between pole-facing and equator-facing slopes of crater walls. Our research shows that the contrasting thermal conditions observed in pole-facing vs equator-facing slopes and epithermal neutron rates from LEND are positively correlated. Numerical transformations of LOLA topography facilitated a systematic decomposition of LEND epithermal maps as a function of insolation effects. The results suggest a significantly positive local epithermal contrast in these regions. Comparing pole-facing and equator-facing slopes, we find that the pole-facing slopes show epithermal neutron suppression ranging from -0.005 to 0.02 cps relative to the equator-facing slopes .. We further investigate insolation effects on epithermal neutrons by comparing the predicted insolation contrast derived from the 3-D LOLA topography model with the LEND results. We also investigate and discuss the possibility of slope mass wasting effects being correlated with our insolation-effect hypothesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dan Wendt; Greg Mines
2014-09-01
Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contractsmore » in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.« less
Tang, Simon Fuk-Tan; Chen, Carl P C; Lin, Shih-Cherng; Wu, Chih-Kuan; Chen, Chih-Kuang; Cheng, Shun-Ping
2015-02-01
The purpose of this study was to observe whether our custom made shoes and total contact insoles can effectively increase the plantar contact areas and reduce peak pressures in patients with leprosy. In the rehabilitation laboratory of a tertiary medical center. Six male and two female leprosy patients were recruited in this study. In this study, parameters related to foot pressures were compared between these patients wearing commercial available soft-lining kung-fu shoes and our custom made shoes with total contact insoles. The custom made shoes were made with larger toe box and were able to accommodate both the foot and the insoles. Custom made total contact insoles were made with the subtalar joints under neutral and non-weight-bearing positions. The insole force measurement system of Novel Pedar-X (Novel, Munich, Germany) was used to measure the plantar forces. The parameters of contact area (cm(2)), peak plantar pressures (kPa), contact time (s), and pressure time integral (kPa s) were measured. There were significant contact area increases in the right and left foot heel areas, left medial arch, and second to fifth toes after wearing the custom made shoes and insoles. There were significant decreases in peak plantar pressures in bilateral heels, left lateral midfoot, bilateral second to fourth metatarsal areas, and left fifth metatarsal head after wearing the custom made shoes and insoles (p<0.05). Plantar ulceration is a common serious disability in leprosy patients. As a result, footwear and measures able to reduce plantar pressures may be beneficial in preventing plantar ulcers from occurring in these patients. Our custom made shoes and total contact insoles were proven to be effective in increasing contact areas and decreasing peak pressures in plantar surfaces, and may therefore be a feasible treatment option in preventing leprosy patients from developing plantar ulcers. © 2015 Elsevier B.V. All rights reserved.
Kosonen, Jukka; Kulmala, Juha-Pekka; Müller, Erich; Avela, Janne
2017-03-21
Anti-pronation orthoses, like medially posted insoles (MPI), have traditionally been used to treat various of lower limb problems. Yet, we know surprisingly little about their effects on overall foot motion and lower limb mechanics across walking and running, which represent highly different loading conditions. To address this issue, multi-segment foot and lower limb mechanics was examined among 11 overpronating men with normal (NORM) and MPI insoles during walking (self-selected speed 1.70±0.19m/s vs 1.72±0.20m/s, respectively) and running (4.04±0.17m/s vs 4.10±0.13m/s, respectively). The kinematic results showed that MPI reduced the peak forefoot eversion movement in respect to both hindfoot and tibia across walking and running when compared to NORM (p<0.05-0.01). No differences were found in hindfoot eversion between conditions. The kinetic results showed no insole effects in walking, but during running MPI shifted center of pressure medially under the foot (p<0.01) leading to an increase in frontal plane moments at the hip (p<0.05) and knee (p<0.05) joints and a reduction at the ankle joint (p<0.05). These findings indicate that MPI primarily controlled the forefoot motion across walking and running. While kinetic response to MPI was more pronounced in running than walking, kinematic effects were essentially similar across both modes. This suggests that despite higher loads placed upon lower limb during running, there is no need to have a stiffer insoles to achieve similar reduction in the forefoot motion than in walking. Copyright © 2017 Elsevier Ltd. All rights reserved.
Parametric study of orthopedic insole of valgus foot on partial foot amputation.
Guo, Jun-Chao; Wang, Li-Zhen; Chen, Wei; Du, Cheng-Fei; Mo, Zhong-Jun; Fan, Yu-Bo
2016-01-01
Orthopedic insole was important for partial foot amputation (PFA) to achieve foot balance and avoid foot deformity. The inapposite insole orthosis was thought to be one of the risk factors of reamputation for foot valgus patient, but biomechanical effects of internal tissues on valgus foot had not been clearly addressed. In this study, plantar pressure on heel and metatarsal regions of PFA was measured using F-Scan. The three-dimensional finite element (FE) model of partial foot evaluated different medial wedge angles (MWAs) (0.0°-10.0°) of orthopedic insole on valgus foot. The effect of orthopedic insole on the internal bone stress, the medial ligament tension of ankle, plantar fascia tension, and plantar pressure was investigated. Plantar pressure on medial heel region was about 2.5 times higher than that of lateral region based on the F-Scan measurements. FE-predicted results showed that the tension of medial ankle ligaments was the lowest, and the plantar pressure was redistributed around the heel, the first metatarsal, and the lateral longitudinal arch regions when MWA of orthopedic insole ranged from 7.5° to 8.0°. The plantar fascias maintained about 3.5% of the total load bearing on foot. However, the internal stresses from foot bones increased. The simulation in this study would provide the suggestion of guiding optimal design of orthopedic insole and therapeutic planning to pedorthist.
NASA Astrophysics Data System (ADS)
Wang, W.; Zender, C. S.; van As, D.; Smeets, P.; van den Broeke, M.
2015-12-01
Surface melt and mass loss of Greenland Ice Sheet may play crucial roles in global climate change due to their positive feedbacks and large fresh water storage. With few other regular meteorological observations available in this extreme environment, measurements from Automatic Weather Stations (AWS) are the primary data source for the surface energy budget studies, and for validating satellite observations and model simulations. However, station tilt, due to surface melt and compaction, results in considerable biases in the radiation and thus albedo measurements by AWS. In this study, we identify the tilt-induced biases in the climatology of surface radiative flux and albedo, and then correct them based on geometrical principles. Over all the AWS from the Greenland Climate Network (GC-Net), the Kangerlussuaq transect (K-transect) and the Programme for Monitoring of the Greenland Ice Sheet (PROMICE), only ~15% of clear days have the correct solar noon time, with the largest bias to be 3 hours. Absolute hourly biases in the magnitude of surface insolation can reach up to 200 W/m2, with daily average exceeding 100 W/m2. The biases are larger in the accumulation zone due to the systematic tilt at each station, although variabilities of tilt angles are larger in the ablation zone. Averaged over the whole Greenland Ice Sheet in the melting season, the absolute bias in insolation is ~23 W/m2, enough to melt 0.51 m snow water equivalent. We estimate the tilt angles and their directions by comparing the simulated insolation at a horizontal surface with the observed insolation by these tilted AWS under clear-sky conditions. Our correction reduces the RMSE against satellite measurements and reanalysis by ~30 W/m2 relative to the uncorrected data, with correlation coefficients over 0.95 for both references. The corrected diurnal changes of albedo are more smooth, with consistent semi-smiling patterns (see Fig. 1). The seasonal cycles and annual variabilities of albedo are in a better agreement with previous studies (see Fig. 2 and 3). The consistent tilt-corrected shortwave radiation dataset derived here will provide better observations and validations for surface energy budget studies on Greenland Ice Sheet, including albedo variation, surface melt simulations and cloud radiative forcing estimates.
Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP)
NASA Astrophysics Data System (ADS)
Kravitz, Ben; Caldeira, Ken; Boucher, Olivier; Robock, Alan; Rasch, Philip J.; Alterskjær, Kari; Karam, Diana Bou; Cole, Jason N. S.; Curry, Charles L.; Haywood, James M.; Irvine, Peter J.; Ji, Duoying; Jones, Andy; Kristjánsson, Jón Egill; Lunt, Daniel J.; Moore, John C.; Niemeier, Ulrike; Schmidt, Hauke; Schulz, Michael; Singh, Balwinder; Tilmes, Simone; Watanabe, Shingo; Yang, Shuting; Yoon, Jin-Ho
2013-08-01
geoengineering—deliberate reduction in the amount of solar radiation retained by the Earth—has been proposed as a means of counteracting some of the climatic effects of anthropogenic greenhouse gas emissions. We present results from Experiment G1 of the Geoengineering Model Intercomparison Project, in which 12 climate models have simulated the climate response to an abrupt quadrupling of CO2 from preindustrial concentrations brought into radiative balance via a globally uniform reduction in insolation. Models show this reduction largely offsets global mean surface temperature increases due to quadrupled CO2 concentrations and prevents 97% of the Arctic sea ice loss that would otherwise occur under high CO2 levels but, compared to the preindustrial climate, leaves the tropics cooler (-0.3 K) and the poles warmer (+0.8 K). Annual mean precipitation minus evaporation anomalies for G1 are less than 0.2 mm day-1 in magnitude over 92% of the globe, but some tropical regions receive less precipitation, in part due to increased moist static stability and suppression of convection. Global average net primary productivity increases by 120% in G1 over simulated preindustrial levels, primarily from CO2 fertilization, but also in part due to reduced plant heat stress compared to a high CO2 world with no geoengineering. All models show that uniform solar geoengineering in G1 cannot simultaneously return regional and global temperature and hydrologic cycle intensity to preindustrial levels.
Faint Luminescent Ring over Saturn’s Polar Hexagon
NASA Astrophysics Data System (ADS)
Adriani, Alberto; Moriconi, Maria Luisa; D'Aversa, Emiliano; Oliva, Fabrizio; Filacchione, Gianrico
2015-07-01
Springtime insolation is presently advancing across Saturn's north polar region. Early solar radiation scattered through the gaseous giant's atmosphere gives a unique opportunity to sound the atmospheric structure at its upper troposphere/lower stratosphere at high latitudes. Here, we report the detection of a tenuous bright structure in Saturn's northern polar cap corresponding to the hexagon equatorward boundary, observed by Cassini Visual and Infrared Mapping Spectrometer on 2013 June. The structure is spectrally characterized by an anomalously enhanced intensity in the 3610-3730 nm wavelength range and near 2500 nm, pertaining to relatively low opacity windows between strong methane absorption bands. Our first results suggest that a strong forward scattering by tropospheric clouds, higher in respect to the surrounding cloud deck, can be responsible for the enhanced intensity of the feature. This can be consistent with the atmospheric dynamics associated with the jet stream embedded in the polar hexagon. Further investigations at higher spectral resolution are needed to better assess the vertical distribution and microphysics of the clouds in this interesting region.
Past epochs of significantly higher pressure atmospheres on Pluto
NASA Astrophysics Data System (ADS)
Stern, S. A.; Binzel, R. P.; Earle, A. M.; Singer, K. N.; Young, L. A.; Weaver, H. A.; Olkin, C. B.; Ennico, K.; Moore, J. M.; McKinnon, W. B.; Spencer, J. R.; New Horizons Geology; Geophysics; Atmospheres Teams
2017-05-01
Pluto is known to have undergone thousands of cycles of obliquity change and polar precession. These variations have a large and corresponding impact on the total average solar insolation reaching various places on Pluto's surface as a function of time. Such changes could produce dramatic increases in surface pressure and may explain certain features observed by New Horizons on Pluto's surface, including some that indicate the possibility of surface paleo-liquids. This paper is the first to discuss multiple lines of geomorphological evidence consistent with higher pressure epochs in Pluto's geologic past, and it also the first to provide a mechanism for potentially producing the requisite high pressure conditions needed for an environment that could support liquids on Pluto. The presence of such liquids and such conditions, if borne out by future work, would fundamentally affect our view of Pluto's past climate, volatile transport, and geological evolution. This paper motivates future, more detailed climate modeling and geologic interpretation efforts in this area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holley, W H
This report describes the results of the literature search, interviews, and site visits conducted during the first six months of this subcontract. This survey was conducted to establish a baseline of information about thermal and photothermal degradation of EVA and case history surveys on discoloration (yellowing/browning) of EVA-based encapsulants in fielded flat-plate PV modules. The literature search revealed that EVA will undergo thermolysis of the acetate groups at temperatures of 130{degrees}C to 150{degrees}C and above, leading to formation of double bonds in the backbone of the copolymer. The survey of case histories of EVA-based encapsulant discoloration in fielded modules inmore » the United States revealed that the problem is limited to those areas of the west and southwest that have comparatively high solar insolation and ambient temperature. It is clear that the discoloration problem is not limited to the modules of any one manufacturer. Discoloration in the EVA encapsulant was experienced in fielded modules from all major US module producers.« less
Comet 67P: Thermal Maps and Local Properties as Derived from Rosetta/VIRTIS data
NASA Astrophysics Data System (ADS)
Tosi, Federico; Capria, Maria Teresa; Capaccioni, Fabrizio; Filacchione, Gianrico; Erard, Stéphane; Leyrat, Cédric; Bockelée-Morvan, Dominique; De Sanctis, Maria Cristina; Raponi, Andrea; Ciarniello, Mauro; Schmitt, Bernard; Arnold, Gabriele; Mottola, Stefano; Fonti, Sergio; Palomba, Ernesto; Longobardo, Andrea; Cerroni, Priscilla; Piccioni, Giuseppe; Drossart, Pierre; Kuehrt, Ekkehard
2015-04-01
Comet 67P is shown to be everywhere rich in organic materials with little to no water ice visible on the surface. In the range of heliocentric distances from 3.59 to 2.74 AU, daytime observed surface temperatures retrieved from VIRTIS data are overall comprised in the range between 180 and 220 K, which is incompatible with large exposures of water ice and is consistent with a low-albedo, organics-rich surface. The accuracy of temperature retrieval is as good as a few K in regions of the comet unaffected by shadowing or limb proximity. Maximum temperature values as high as 230 K have been recorded in very few places. The highest values of surface temperature in the early Mapping phase were obtained in August 2014, during observations at small phase angles implying that the observed surface has a large predominance of small incidence angles, and local solar times (LST) centered around the maximum daily insolation. In all cases, direct correlation with topographic features is observed, i.e. largest temperature values are generally associated with the smallest values of illumination angles. So far, there is no evidence of thermal anomalies, i.e. places of the surface that are intrinsically warmer or cooler than surrounding terrains observed at the same local solar time and under similar solar illumination. For a given LST, the maximum temperature mainly depends on the solar incidence angle and on surface properties such as thermal inertia and albedo. Since VIRTIS is able to observe the same point of the surface on various occasions under different conditions of solar illumination and LST, it is possible to reconstruct the temperature of that point at different times of the comet's day, thus building diurnal profiles of temperature that are useful to constrain thermal inertia. The availability of spatially-resolved, accurate temperature observations, significantly spaced out in local solar time, provides clues to the physical structure local features, which complements the compositional investigation based on imaging spectroscopy data collected at shorter wavelengths. In the VIRTIS thermal images, a note of great interest is provided by the 'neck' of the comet close to the 'body', where, because of the concave shape, the 'head' casts prominent shadows on some areas when they experience maximum daily insolation. This is a place potentially subjected to considerable thermal stresses. We evaluate both the spatial thermal gradients and the temporal thermal gradients, providing implications for the surface structure. Acknowledgements: The authors would like to thank the following institutions and agencies, which supported this work: Italian Space Agency (ASI - Italy), Centre National d'Etudes Spatiales (CNES- France), Deutsches Zentrum für Luft- und Raumfahrt (DLR-Germany), National Aeronautic and Space Administration (NASA-USA) Rosetta Program, Science and Technology Facilities Council (UK). VIRTIS has been built by a consortium, which includes Italy, France and Germany, under the scientific responsibility of the Istituto di Astrofisica e Planetologia Spaziali of INAF, Italy, which guides also the scientific operations. The VIRTIS instrument development has been funded and managed by ASI, with contributions from Observatoire de Meudon financed by CNES, and from DLR. The computational resources used in this research have been supplied by INAF-IAPS through the DataWell project.
Revisiting Parabolic Trough Concentrators for Industrial Process Heat in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turchi, Craig S.; Kurup, Parthiv; Zhu, Guangdong
After significant interest in the 1970s, but relatively few deployments, the use of concentrating solar collectors for thermal applications, including enhanced oil recovery, desalination, and industrial process heat (IPH), is again increasing in global interest. In particular, recent advances in collector design and manufacturing have led to reduced cost per square meter of aperture area. In this study, analysis of a modern parabolic trough that is suited for use in small solar IPH (SIPH) applications predicts that the installed solar field cost can be as low as $170/m2. A slightly higher cost of $200/m2 is estimated for facilities typical ofmore » a SIPH plant size. Full project costs will include additional costs for contingency, piping and heat exchanger interface, and project indirect costs. The cost for solar-generated heat by SIPH is quantified by defining the levelized cost of heat (LCOH). California offers a favorable environment for SIPH given its good insolation, gas prices typically higher than the national average, and policies promoting solar-thermal deployment. Given historically low gas prices, competing with natural gas remains the primary challenge to deployment. However, this study finds that the solar LCOH for many regions in California is lower than the LCOH from natural gas, using a representative installed solar hardware price and the average price for industrial natural gas in California. Lastly, modification are in progress to the parabolic trough model within NREL's System Advisor Model (SAM) to allow users to more easily predict performance for these steam-generation applications.« less
Properties of shoe insert materials related to shock wave transmission during gait.
Forner, A; García, A C; Alcántara, E; Ramiro, J; Hoyos, J V; Vera, P
1995-12-01
The influence of the mechanical characteristics of certain insole materials in the generation and transmission of heel strike impacts while walking was studied. Three insole materials were selected according to their mechanical characteristics under heel strike impacts. The selection of materials has made it possible to distinguish the effect of rigidity and loss tangent in the transmission of heel strike impacts. A lower rigidity and a high loss tangent have been shown to reduce the transmission of impacts to the tibia. A low rigidity was seen to significantly increase the transmission of impacts from tibia to forehead.
Effects of long-term stimulation of textured insoles on postural control in health elderly.
Annino, Giuseppe; Palazzo, Francesco; Alwardat, Mohammad S; Manzi, Vincenzo; Lebone, Pietro; Tancredi, Virginia; Sinibaldi Salimei, Paola; Caronti, Alfio; Panzarino, Michele; Padua, Elvira
2018-04-01
The aim of this study was to confirm the effects of long term (chronic) stimulating surface (textured insole) on body balance of elderly people. Twenty-four healthy elderly individuals were randomly distributed in two groups: control and experimental (67.75±6.04 years, 74.55±12.14 kg, 163.7±8.55 cm, 27.75±3.04 kg/m2). Over one month, control group (CG) used smooth insoles and the experimental group (ExG) used textured insoles every day. Velocity net (Vnet), anteroposterior (VA/P), mediolateral (VM/L) and sway path of CoP were assessed in different eye conditions before and after the experimental procedure. A mixed between-within subject ANOVA was conducted to assess the impact of soft and textured insoles and two visual conditions (vision vs. no vision) across two time periods (α≤0.05). The results showed any statistical difference between groups in each parameter assessed in this study. CoP, Vnet and VM/L in the experimental group showed a statistically significant effect of textured insoles only without vision (CoP: P=0.002; η2=0.35), Vnet P=0.02; η2=0.24, VM/L P=0.04; η2=0.177) whereas VA/P showed no statistically significant effect in the same group and condition. There was no significant effect in Vnet, VA/P, VM/L and COP in control group that used smooth insole for both eye conditions. The results confirm that postural stability improved in healthy elderly individuals, increasing somatosensory information's from feet plantar mechanoreceptors. Long term stimulation with textured insoles decreased CoP, Vnet and VM/L with eyes closed.
Arastoo, Ali Asghar; Aghdam, Esmaeil Moharrami; Habibi, Abdoul Hamid; Zahednejad, Shahla
2014-06-01
According to literature, little is known regarding the effects of orthotic management of flatfoot on kinetics of vertical jump. To compare the kinetic and temporal events of two-legged vertical jumping take-off from a force plate for heading a ball in normal and flexible flatfoot subjects with and without insole. A functional based interventional controlled study. Random sampling method was employed to draw a control group of 15 normal foot subjects to a group of 15 flatfoot subjects. A force platform was used to record kinetics of two-legged vertical jump shots. Results indicate that insole did not lead to a significant effect on kinetics regarding anterior-posterior and mediolateral directions (p > 0.05). Results of kinetics related to vertical direction for maximum force due to take-off and stance duration revealed significant differences between the normal and flexible flatfoot subjects without insole (p < 0.05) and no significant differences between the normal foot and flexible flatfoot subjects with insole adoption (p > 0.05). These results suggest that the use of an insole in the flexible flatfoot subjects led to improved stance time and decrease of magnitude of kinetics regarding vertical direction at take-off as the main feature of two-legged vertical jumping function. Adoption of the insole improved the design of the shoe-foot interface support for the flexible flatfoot athletes, enabling them to develop more effective take-off kinetics for vertical jumping in terms of ground reaction force and stance duration similar to that of normal foot subjects without insole. © The International Society for Prosthetics and Orthotics 2013.
Special Pyrheliometer Shroud Development
NASA Technical Reports Server (NTRS)
Dennison, E. W.
1984-01-01
To insure that the insolation values accurately represent the input power to a power conversion unit the field of view (FOV) of the concentrator aperture and the insolation radiometer must be the same. The calculations, implementation, and results of this approach are covered. Three instruments were used to measure the insolation: an Eppley Normal Incidence Radiometer (NIP) and two versions of the kendall cavity radiometer. The shrouds used to limit the FOV of the radiometers were designed to simulate the FOV of the PDC-1 concentrater with the cold water cavity calorimeter. This technique of matching the FOV of an insolation radiometer to the FOV of a specific concentrater and receiver aperture appears to be both practical and effective. The efficiency of a power conversion unit will be too low if the insolation is measured with a radiometer which has a FOV which is larger than the FOV of the concentrator.
Analysis of walking improvement with dynamic shoe insoles, using two accelerometers
NASA Astrophysics Data System (ADS)
Tsuruoka, Yuriko; Tamura, Yoshiyasu; Shibasaki, Ryosuke; Tsuruoka, Masako
2005-07-01
The orthopedics at the rehabilitation hospital found that disorders caused by sports injuries to the feet or caused by lower-back are improved by wearing dynamic shoe insoles, these improve walking balance and stability. However, the relationship of the lower-back and knees and the rate of increase in stability were not quantitatively analyzed. In this study, using two accelerometers, we quantitatively analyzed the reciprocal spatiotemporal contributions between the lower-back and knee of patients with left lower-back pain by means of Relative Power Contribution Analysis. When the insoles were worn, the contribution of the left and right knee relative to the left lower-back pain was up to 26% ( p<0.05) greater than without the insoles. Comparing patients with and without insoles, we found that the variance in the step response analysis of the left and right knee decreased by up to 67% ( p<0.05). This shows an increase in stability.
NASA Astrophysics Data System (ADS)
Zaprudin, B.; Lehto, H. J.; Nilsson, K.; Somero, A.; Pursimo, T.; Snodgrass, C.; Schulz, R.
2017-07-01
Context. 67P/Churyumov-Gerasimenko (67P/C-G) is a short-period Jupiter family comet with an orbital period of 6.55 yr. Being the target comet of ESA's Rosetta mission, 67P/C-G has become one of the most intensively studied minor bodies of the solar system. The Rosetta Orbiter and the Philae Lander have brought us unique information about the structure and activity of the comet nucleus, as well as its activity along the orbit, composition of gas, and dust particles emitted into the coma. However, as Rosetta stayed in very close proximity to the cometary nucleus (less than 500 km with a few short excursions reaching up to 1500 km), it could not see the global picture of a coma at the scales reachable by telescopic observations (103 - 105 km). Aims: In this work we aim to connect in-situ observations made by Rosetta with the morphological evolution of the coma structures monitored by the ground-based observations. In particular, we concentrate on causal relationships between the coma morphology and evolution observed with the Nordic Optical Telescope (NOT) in the Canary Islands, and the seasonal changes of the insolation and the activity of the comet observed by the Rosetta instruments. Methods: Comet 67P/C-G was monitored with the NOT in imaging mode in two colors. Imaging optical observations were performed roughly on a weekly basis, which provides good coverage of short- and long-term variability. With the three dimensional modeling of the coma produced by active regions on the southern hemisphere, we aim to qualify the observed morphology by connecting it to the activity observed by Rosetta. Results: During our monitoring program, we detected major changes in the coma morphology of comet 67P/C-G. These were long-term and long-lasting changes. They do not represent any sudden outburst or short transient event, but are connected to seasonal changes of the surface insolation and the emergence of new active regions on the irregular shaped comet nucleus. We have also found significant deviations in morphological changes from the prediction models based on previous apparitions of 67P/C-G, like the time delay of the morphology changes and the reduced activity in the northern hemisphere. According to our modeling of coma structures and geometry of observations, the changes are clearly connected with the activity in the southern hemisphere observed by the Rosetta spacecraft.
Hasan, Hosni; Davids, Keith; Chow, Jia Yi; Kerr, Graham
2017-04-01
This study investigated effects of wearing compression garments and textured insoles on modes of movement organisation emerging during performance of lower limb interceptive actions in association football. Participants were six skilled (age = 15.67 ± 0.74 years) and six less-skilled (age = 15.17 ± 1.1 years) football players. All participants performed 20 instep kicks with maximum velocity in four randomly organised insoles and socks conditions, (a) Smooth Socks with Smooth Insoles (SSSI); (b) Smooth Socks with Textured Insoles (SSTI); (c) Compression Socks with Smooth Insoles (CSSI); and (d), Compression Socks with Textured Insoles (CSTI). Results showed that, when wearing textured and compression materials (CSSI condition), less-skilled participants displayed significantly greater hip extension and flexion towards the ball contact phase, indicating larger ranges of motion in the kicking limb than in other conditions. Less-skilled participants also demonstrated greater variability in knee-ankle intralimb (angle-angle plots) coordination modes in the CSTI condition. Findings suggested that use of textured and compression materials increased attunement to somatosensory information from lower limb movement, to regulate performance of dynamic interceptive actions like kicking, especially in less-skilled individuals.
NASA Astrophysics Data System (ADS)
Zorzi, Coralie; Fernanda Sanchez Goñi, Maria; Anupama, Krishnamurthy; Prasad, Srinivasan; Hanquiez, Vincent; Johnson, Joel; Giosan, Liviu
2016-04-01
In contrast to the East Asian and African monsoons the Indian monsoon is still poorly documented throughout the last climatic cycle (last 135,000 years). Pollen analysis from two marine sediment cores (NGHP-01-16A and NGHP-01-19B) collected from the offshore Godavari and Mahanadi basins, both located in the Core Monsoon Zone (CMZ) reveals changes in Indian summer monsoon variability and intensity during three contrasting climatic periods: the Holocene, the Heinrich Stadial (HS) 2 and the Marine Isotopic Stage (MIS) 5/4 during the ice sheet growth transition. During the first part of the Holocene between 11,300 and 4,200 cal years BP, characterized by high insolation (minimum precession, maximum obliquity), the maximum extension of the coastal forest and mangrove reflects high monsoon rainfall. This climatic regime contrasts with that of the second phase of the Holocene, from 4,200 cal years BP to the present, marked by the development of drier vegetation in a context of low insolation (maximum precession, minimum obliquity). The historical period in India is characterized by an alternation of strong and weak monsoon centennial phases that may reflect the Medieval Climate Anomaly and the Little Ice Age, respectively. During the HS 2, a period of low insolation and extensive iceberg discharge in the North Atlantic Ocean, vegetation was dominated by grassland and dry flora indicating pronounced aridity as the result of a weak Indian summer monsoon. The MIS 5/4 glaciation, also associated with low insolation but moderate freshwater fluxes, was characterized by a weaker reduction of the Indian summer monsoon and a decrease of seasonal contrast as recorded by the expansion of dry vegetation and the development of Artemisia, respectively. Our results support model predictions suggesting that insolation changes control the long term trend of the Indian monsoon precipitation, but its millennial scale variability and intensity are instead modulated by atmospheric teleconnections to remote phenomena in the North Atlantic, Eurasia or the Indian Ocean.
Collins, Natalie J; Hinman, Rana S; Menz, Hylton B; Crossley, Kay M
2017-01-01
The purpose of the study was to determine whether prefabricated foot orthoses immediately reduce pain during functional tasks in people with patellofemoral osteoarthritis, compared to flat insoles and shoes alone. Eighteen people with predominant lateral patellofemoral osteoarthritis (nine women; mean [SD] age 59 [10]years; body mass index 27.9 [3.2]kg/m 2 ) performed functional tasks wearing running sandals, and then wearing foot orthoses and flat insoles (random order). Participants rated knee pain during each task (11-point numerical rating scales), ease of performance and knee stability (five-point Likert scales), and comfort (100mm visual analogue scales). Compared to shoes alone, foot orthoses (p=0.002; median difference 1.5 [IQR 3]) and flat insoles (p<0.001; 2 [3]) significantly reduced pain during step-downs; foot orthoses reduced pain during walking (p=0.008; 1 [1.25]); and flat insoles reduced pain during stair ambulation (p=0.001; 1 [1.75]). No significant differences between foot orthoses and flat insoles were observed for pain severity, ease of performance or knee stability. Foot orthoses were less comfortable than flat insoles and shoes alone (p<0.05). In people with patellofemoral osteoarthritis, immediate pain-relieving effects of prefabricated, contoured foot orthoses are equivalent to flat insoles. Further studies should investigate whether similar outcomes occur with longer-term wear or different orthosis designs. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Xuan; Zhang, Ming
2013-01-01
Laterally wedged insoles are widely applied in the conservative treatment for medial knee osteoarthritis. Experimental studies have been conducted to understand the effectiveness of such an orthotic intervention. However, the information was limited to the joint external loading such as knee adduction moment. The internal stress distribution is difficult to be obtained from in vivo experiment alone. Thus, a three-dimensional finite element model of the human knee-ankle-foot complex, together with orthosis, was developed in this study and used to investigate the redistribution of knee stress using laterally wedged insole intervention. Laterally wedged insoles with wedge angles of 0, 5, and 10° were fabricated for intervention. The subject-specific geometry of the lower extremity with details was characterized in the reconstruction of MR images. Motion analysis data and muscle forces were input to drive the model. The established finite element model was employed to investigate the loading responses of tibiofemoral articulation in three wedge angle conditions during simulated walking stance phase. With either of the 5° or 10° laterally wedged insole, significant decreases in von Mises stress and contact force at the medial femur cartilage region and the medial meniscus were predicted comparing with the 0° insole. The diminished stress and contact force at the medial compartment of the knee joint demonstrate the immediate effect of the laterally wedged insoles. The intervention may contribute to medial knee osteoarthritis rehabilitation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation.
He, Feng; Shakun, Jeremy D; Clark, Peter U; Carlson, Anders E; Liu, Zhengyu; Otto-Bliesner, Bette L; Kutzbach, John E
2013-02-07
According to the Milankovitch theory, changes in summer insolation in the high-latitude Northern Hemisphere caused glacial cycles through their impact on ice-sheet mass balance. Statistical analyses of long climate records supported this theory, but they also posed a substantial challenge by showing that changes in Southern Hemisphere climate were in phase with or led those in the north. Although an orbitally forced Northern Hemisphere signal may have been transmitted to the Southern Hemisphere, insolation forcing can also directly influence local Southern Hemisphere climate, potentially intensified by sea-ice feedback, suggesting that the hemispheres may have responded independently to different aspects of orbital forcing. Signal processing of climate records cannot distinguish between these conditions, however, because the proposed insolation forcings share essentially identical variability. Here we use transient simulations with a coupled atmosphere-ocean general circulation model to identify the impacts of forcing from changes in orbits, atmospheric CO(2) concentration, ice sheets and the Atlantic meridional overturning circulation (AMOC) on hemispheric temperatures during the first half of the last deglaciation (22-14.3 kyr BP). Although based on a single model, our transient simulation with only orbital changes supports the Milankovitch theory in showing that the last deglaciation was initiated by rising insolation during spring and summer in the mid-latitude to high-latitude Northern Hemisphere and by terrestrial snow-albedo feedback. The simulation with all forcings best reproduces the timing and magnitude of surface temperature evolution in the Southern Hemisphere in deglacial proxy records. AMOC changes associated with an orbitally induced retreat of Northern Hemisphere ice sheets is the most plausible explanation for the early Southern Hemisphere deglacial warming and its lead over Northern Hemisphere temperature; the ensuing rise in atmospheric CO(2) concentration provided the critical feedback on global deglaciation.
NASA Technical Reports Server (NTRS)
Otterman, J.; Mccumber, M.
1986-01-01
Spectral albedo, A sub n, for the direct solar beam is defined as A sub n (r sub i,s, theta sub 0) = r sub i exp(-s tan theta sub 0)1-I(s) where I(s) is the integral over all reflection angles describing the interception by the absorbing plants of the flux reflected from the soil, r sub i soil reflectance, assumed Lambertian, S the projection on a vertical plane of plants per unit surface area, and theta sub 0 is the solar zenith angle. Hemispheric reflectance for the direct solar beam equals 1-I(s) times the reflectance to the zenith. The values of s of 0.1, 0.2, and 0.3 respectively quantify sparse, moderately dense, and very dense desert scrub. Thin plants are assumed to be of negligible thermal inertia, and thus directly yield the absorbed insolation to the atmosphere. Surface thermal inertia is therefore effectively reduced. The ratio of surface roughness height to plant height is parameterized for sparse, moderately dense, and very dense desert-scrub as a function of s based on data expressing the dependence of this ratio on plant silhouette.
Comparison of electrochemical and thermal storage for hybrid parabolic dish solar power plants
NASA Technical Reports Server (NTRS)
Steele, H. L.; Wen, L.
1981-01-01
The economic and operating performance of a parabolic point focus array of solar electricity generators combined with either battery or thermal energy storage are examined. Noting that low-cost, mass-producible power generating units are under development for the point focus of distributed dishes, that Zn-Cl battery tests will begin in 1981 and a 100 kWh Na-S battery in 1983, the state of thermal storage requires acceleration to reach the prototype status of the batteries. Under the assumptions of 10,000 units/yr with an expected 30 yr lifetime, cost comparisons are developed for 10 types of advanced batteries. A 5 MWe plant with full thermal or 80% battery storage discharge when demand occurs in conditions of no insolation is considered, specifically for Fe-Cr redox batteries. A necessity for the doubling of fuel prices from 1980 levels by 1990 is found in order to make the systems with batteries economically competitive.
NASA Technical Reports Server (NTRS)
Gibson, G. G.; Denn, F. M.; Young, D. F.; Harrison, E. F.; Minnis, P.; Barkstrom, B. R.
1990-01-01
One year of ERBE data is analyzed for variations in outgoing LW and absorbed solar flux. Differences in land and ocean radiation budgets as well as differences between clear-sky and total scenes, including clouds, are studied. The variation of monthly average radiative parameters is examined for February 1985 through January 1986 for selected study regions and on zonal and global scales. ERBE results show significant seasonal variations in both outgoing LW and absorbed SW flux, and a pronounced difference between oceanic and continental surfaces. The main factors determining cloud radiative forcing in a given region are solar insolation, cloud amount, cloud type, and surface properties. The strongest effects of clouds are found in the midlatitude storm tracks over the oceans. Over much of the globe, LW warming is balanced by SW cooling. The annual-global average net cloud forcing shows that clouds have a net cooling effect on the earth for the year.
NASA Astrophysics Data System (ADS)
Yang, Chengyun; Smith, Anne K.; Li, Tao; Dou, Xiankang
2018-05-01
The response of the mesospheric migrating diurnal (DW1) tide to the Madden-Julian oscillation (MJO) is investigated for the first time using a simulation from the Specified-Dynamic Whole Atmosphere Community Climate Model (SD-WACCM), which is driven by reanalysis data. Analysis shows that a significant connection exists between the MJO and the mesospheric DW1 tidal amplitude. During MJO phases 2 and 3, the convection anomalies are associated with enhancement in both the solar insolation absorption and latent heat release in the equatorial troposphere; these in turn lead to stronger DW1 forcing. Conversely, the forcing of DW1 by solar and latent heating in the troposphere is weaker during MJO phase 8. The difference of the tidal amplitude during the opposite MJO phases from the boreal winter mean state is 15-20%. The parameterized gravity wave variations are found to have a significant impact on the DW1 tidal response in some phases of the MJO.
NASA Astrophysics Data System (ADS)
Ian, Richard; King, Elisabeth
1988-01-01
Proposed is an exploratory study to verify the feasibility of an inexpensive micro-climate control system for both marine and freshwater pond and tank aquaculture, offering good control over water temperature, incident light flux, and bandwidth, combined with good energy efficiency. The proposed control system utilizes some familiar components of passive solar design, together with a new holographic glazing system which is currently being developed by, and proprietary to Advanced Environmental Research Group (AERG). The use of solar algae ponds and tanks to warm and purify water for fish and attached macroscopic marine algae culture is an ancient and effective technique, but limited seasonally and geographically by the availability of sunlight. Holographic Diffracting Structures (HDSs) can be made which passively track, accept and/or reject sunlight from a wide range of altitude and azimuth angles, and redirect and distribute light energy as desired (either directly or indirectly over water surface in an enclosed, insulated structure), effectively increasing insolation values by accepting sunlight which would not otherwise enter the structure.
1982-09-15
for use in determining solar irradiance as a function of terrain elevation is also presented. Errors in computed sea level values of sky radiation as a...Renobserved if the Ground Were at Sea Level .. ..................... 365 5. Sky Radiation (W SK).. .. ....... ....... ....... 366 SKYY and Dewpoint SKY...WS -M 00 OiLn 00 00 00 .0 .. q . m1’ C14 IN’ .- *- * .0 *0 *0 0 .0 0 Y -’ CD N inC 0 M W N L- 04c 1- Wq an’ U) 14 N- 00 00 Mcq N N r- (’IC’I) (’ - M -0
Atmospheric effects on the mapping of Martian thermal inertia and thermally derived albedo
NASA Technical Reports Server (NTRS)
Hayashi, J. N.; Jakosky, B. M.; Haberle, R. M.
1994-01-01
The most widely used thermal inertia data for Mars assumes the atmospheric contribution is constant and equal to 2 percent of the maximum solar insolation. Haberle and Jakosky investigated the effect of including a dusty CO2 atmosphere and sensible heat exchange with the surface on thermal inertia. We recently utilized Haberle and Jakosky's coupled surface-atmosphere model to investigate the effects of such an atmosphere on the thermally derived albedo. The thermally derived albedo is the albedo which, together with the thermal inertia, provides model surface temperatures which best match the observed temperatures. New maps are presented of thermal inertia and thermally derived albedo which incorporate dust opacities derived from IRTM data.
The influence of vegetation-atmosphere-ocean interaction on climate during the mid-holocene
Ganopolski; Kubatzki; Claussen; Brovkin; Petoukhov
1998-06-19
Simulations with a synchronously coupled atmosphere-ocean-vegetation model show that changes in vegetation cover during the mid-Holocene, some 6000 years ago, modify and amplify the climate system response to an enhanced seasonal cycle of solar insolation in the Northern Hemisphere both directly (primarily through the changes in surface albedo) and indirectly (through changes in oceanic temperature, sea-ice cover, and oceanic circulation). The model results indicate strong synergistic effects of changes in vegetation cover, ocean temperature, and sea ice at boreal latitudes, but in the subtropics, the atmosphere-vegetation feedback is most important. Moreover, a reduction of the thermohaline circulation in the Atlantic Ocean leads to a warming of the Southern Hemisphere.
NASA Astrophysics Data System (ADS)
Lu, Fuzhi; Ma, Chunmei; Zhu, Cheng; Lu, Huayu; Zhang, Xiaojian; Huang, Kangyou; Guo, Tianhong; Li, Kaifeng; Li, Lan; Li, Bing; Zhang, Wenqing
2018-03-01
Projecting how the East Asian summer monsoon (EASM) rainfall will change with global warming is essential for human sustainability. Reconstructing Holocene climate can provide critical insight into its forcing and future variability. However, quantitative reconstructions of Holocene summer precipitation are lacking for tropical and subtropical China, which is the core region of the EASM influence. Here we present high-resolution annual and summer rainfall reconstructions covering the whole Holocene based on the pollen record at Xinjie site from the lower Yangtze region. Summer rainfall was less seasonal and 30% higher than modern values at 10-6 cal kyr BP and gradually declined thereafter, which broadly followed the Northern Hemisphere summer insolation. Over the last two millennia, however, the summer rainfall has deviated from the downward trend of summer insolation. We argue that greenhouse gas forcing might have offset summer insolation forcing and contributed to the late Holocene rainfall anomaly, which is supported by the TraCE-21 ka transient simulation. Besides, tropical sea-surface temperatures could modulate summer rainfall by affecting evaporation of seawater. The rainfall pattern concurs with stalagmite and other proxy records from southern China but differs from mid-Holocene rainfall maximum recorded in arid/semiarid northern China. Summer rainfall in northern China was strongly suppressed by high-northern-latitude ice volume forcing during the early Holocene in spite of high summer insolation. In addition, the El Niño/Southern Oscillation might be responsible for droughts of northern China and floods of southern China during the late Holocene. Furthermore, quantitative rainfall reconstructions indicate that the Paleoclimate Modeling Intercomparison Project (PMIP) simulations underestimate the magnitude of Holocene precipitation changes. Our results highlight the spatial and temporal variability of the Holocene EASM precipitation and potential forcing mechanisms, which are very helpful for calibration of paleoclimate models and prediction of future precipitation changes in East Asia in the scenario of global warming.
Obliquity (41kyr) Paced SE Asian Monsoon Variability Following the Miocene Climate Transition
NASA Astrophysics Data System (ADS)
Heitmann, E. O.; Breecker, D.; Ji, S.; Nie, J.
2016-12-01
We investigated Asian monsoon variability during the Miocene, which may provide a good analog for the future given the lack of northern hemisphere ice sheets. In the Miocene Yanwan Section (Tianshui Basin, China) 25cm thick CaCO3-cemented horizons overprint siltstones every 1m. We suggest this rhythmic layering records variations in water availability influenced by the Asian monsoon. We interpret the siltstones as stacked soils that formed in a seasonal climate with a fluctuating water table, evidenced by roots, clay films, mottling, presence of CaCO3 nodules, and stacked carbonate nodule δ13C and δ18O profiles that mimic modern soils. We interpret the CaCO3-cemented horizons as capillary-fringe carbonates that formed in an arid climate with a steady water table and high potential evapotranspiration (PET), evidenced by sharp upper and basal contacts, micrite, sparite, and root-pore cements. The magnetostratigraphy-based age model indicates obliquity-pacing of the CaCO3-cemented horizons suggesting an orbital control on water availability, for which we propose two mechanisms: 1) summer monsoon strength, moderated by the control of obliquity on the cross-equatorial pressure gradient, and 2) PET, moderated by the control of precession on 35oN summer insolation. We use orbital configurations to predict lithology. Coincidence of obliquity minima and insolation maxima drives strong summer monsoons, seasonal variations in water table depth and soil formation. Coincidence of obliquity maxima and insolation minima drives weak summer monsoons, high PET, and carbonate accumulation above a deepened, stable water table. Coincidence of obliquity and insolation minima drives strong monsoons, low PET, and a high water table, explaining the evidence for aquatic plants previously observed in this section. Southern hemisphere control of summer monsoon variability in the Miocene may thus have resulted in large water availability variations in central China.
The Cold and Icy Heart of Pluto
NASA Astrophysics Data System (ADS)
Hamilton, D. P.
2015-12-01
The locations of large deposits of frozen volatiles on planetary surfaces are largely coincident with areas receiving the minimum annual influx of solar energy. Thus we have the familiar polar caps of Earth and Mars, but cold equatorial regions for planets with obliquities between 54 and 126 degrees. Furthermore, for tilts between 45-66 degrees and 114-135 degrees the minimum incident energy occurs neither at the pole nor the equator. We find that the annual average insolation is always symmetric about Pluto's equator and is fully independent of the relative locations of the planet's pericenter and equinoxes. Remarkably, this symmetry holds for arbitrary orbital eccentricities and obliquities, and so we provide a short proof in the margin of this abstract. The current obliquity of Pluto is 119 degrees, giving it minima in average annual insolation at +/- 27 degrees latitude, with ~1.5% more flux to the equator and ~15% more to the poles. But the obliquity of Pluto also varies sinusoidally from 102-126 degrees and so, over the past million years, Pluto's annual equatorial and polar fluxes have changed by +15% and -13%, respectively. Interestingly, the energy flux received by latitudes between 25-35 degrees remains nearly constant over the presumably billions of years since Pluto acquired its current orbit and spin properties. Thus these latitudes are continuously cold and should be favored for the long-term deposition of volatile ices; the bright heart of Pluto, Sputnik Planum, extends not coincidentally across these latitudes. Reflected light and emitted thermal radiation from Charon increases annual insolation to one side of Pluto by of order 0.02%. Although small, the bulk of the energy is delivered at night to Pluto's cold equatorial regions. Furthermore, Charon's thermal IR is delivered very efficiently to icy deposits. Over billions of years, ices have preferentially formed and survived in the anti-Charon hemisphere.
Estimation of clear-sky insolation using satellite and ground meteorological data
NASA Technical Reports Server (NTRS)
Staylor, W. F.; Darnell, W. L.; Gupta, S. K.
1983-01-01
Ground based pyranometer measurements were combined with meteorological data from the Tiros N satellite in order to estimate clear-sky insolations at five U.S. sites for five weeks during the spring of 1979. The estimates were used to develop a semi-empirical model of clear-sky insolation for the interpretation of input data from the Tiros Operational Vertical Sounder (TOVS). Using only satellite data, the estimated standard errors in the model were about 2 percent. The introduction of ground based data reduced errors to around 1 percent. It is shown that although the errors in the model were reduced by only 1 percent, TOVS data products are still adequate for estimating clear-sky insolation.
Investigation of the turbulent wind field below 500 feet altitude at the Eastern Test Range, Florida
NASA Technical Reports Server (NTRS)
Blackadar, A. K.; Panofsky, H. A.; Fiedler, F.
1974-01-01
A detailed analysis of wind profiles and turbulence at the 150 m Cape Kennedy Meteorological Tower is presented. Various methods are explored for the estimation of wind profiles, wind variances, high-frequency spectra, and coherences between various levels, given roughness length and either low-level wind and temperature data, or geostrophic wind and insolation. The relationship between planetary Richardson number, insolation, and geostrophic wind is explored empirically. Techniques were devised which resulted in surface stresses reasonably well correlated with the surface stresses obtained from low-level data. Finally, practical methods are suggested for the estimation of wind profiles and wind statistics.
The climatic and hydrologic history of southern Nevada during the late Quaternary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forester, R.M.; Bradbury, J.P.; Carter, C.
Understanding climate change during the expected life span of a potential high-level nuclear-waste repository at Yucca Mountain, Nevada, requires estimates of future climate boundary conditions. These climate boundary conditions are governed by changes in the Earth's orbital properties (eccentricity, obliquity, precession) that determine insolation. Subcycles of the 400,000 year insolation-controlled climate cycles last approximately 100,000 years. This report describes the changes which have occurred in the climatic history of Southern Nevada during the past 400,000 years. These changes provide a basis for understanding the changes which may occur during the long-term future in this area.
Monsoonal Responses to External Forcings over the Past Millennium: A Model Study (Invited)
NASA Astrophysics Data System (ADS)
Liu, J.; Wang, B.
2009-12-01
The climate variations related to Global Monsoon (GM) and East Asian summer monsoon (EASM) rainfall over the past 1000 years were investigated by analysis of a pair of millennium simulations with the coupled climate model named ECHO-G. The free run was generated using fixed external (annual cycle) forcing, while the forced run was obtained using time-varying solar irradiance variability, greenhouse gases (CO2 and CH4) concentration and estimated radiative effect of volcanic aerosols. The model results indicate that the centennial-millennial variation of the GM and EASM is essentially a forced response to the external radiative forcings (insolation, volcanic aerosols, and greenhouse gases). The GM strength responds more directly to the effective solar forcing (insolation plus radiative effect of the volcanoes) when compared to responses of the global mean surface temperature on centennial timescale. The simulated GM precipitation in the forced run exhibits a significant quasi-bi-centennial oscillation. Weak GM precipitation was simulated during the Little Ice Age (1450-1850) with three weakest periods concurring with the Spörer, Maunder, and Dalton Minimum of solar activity. Conversely, strong GM was simulated during the model Medieval Warm Period (ca. 1030-1240). Before the industrial period, the natural variation in effective solar forcing reinforces the thermal contrasts both between the ocean and continent and between the northern and southern hemispheres, resulting in millennium-scale variation and the quasi-bi-centennial oscillation of the GM. The prominent upward trend in the GM precipitation occurring in the last century and the remarkably strengthening of the global monsoon in the period of 1961-1990 appear unprecedented and owed possibly in part to the increase of atmospheric carbon dioxide concentration. The EASM has the largest meridional extent (5oN-55oN) among all the regional monsoons on globe. Thus, the EASM provides an unique opportunity for understanding the latitudinal differences of the monsoonal responses to external forcings and internal feedback processes. The strength of the forced response depends on latitude. On centennial-millennial time scales, the variation of the extratropical and subtropical rainfall tends to follow the effective solar radiation forcing closely; the tropical rainfall is less sensitive to the effective solar radiation forcing but responds significantly to the modern anthropogenic CO2 forcing. The spatial patterns and structures of the forced response differ from the internal mode (i.e., interannual variability that arises primarily from the internal feedback processes within the climate system). Further, the behavior of the internal mode is effectively modulated by changes in the mean state on the centennial to millennial time scales. These findings have important ramification in understanding the differences and linkages between the forced and internal modes of variability as well as in promoting communication between scientists studying modern- and paleo-monsoon variations.
Powering the planet: Chemical challenges in solar energy utilization
Lewis, Nathan S.; Nocera, Daniel G.
2006-01-01
Global energy consumption is projected to increase, even in the face of substantial declines in energy intensity, at least 2-fold by midcentury relative to the present because of population and economic growth. This demand could be met, in principle, from fossil energy resources, particularly coal. However, the cumulative nature of CO2 emissions in the atmosphere demands that holding atmospheric CO2 levels to even twice their preanthropogenic values by midcentury will require invention, development, and deployment of schemes for carbon-neutral energy production on a scale commensurate with, or larger than, the entire present-day energy supply from all sources combined. Among renewable energy resources, solar energy is by far the largest exploitable resource, providing more energy in 1 hour to the earth than all of the energy consumed by humans in an entire year. In view of the intermittency of insolation, if solar energy is to be a major primary energy source, it must be stored and dispatched on demand to the end user. An especially attractive approach is to store solar-converted energy in the form of chemical bonds, i.e., in a photosynthetic process at a year-round average efficiency significantly higher than current plants or algae, to reduce land-area requirements. Scientific challenges involved with this process include schemes to capture and convert solar energy and then store the energy in the form of chemical bonds, producing oxygen from water and a reduced fuel such as hydrogen, methane, methanol, or other hydrocarbon species. PMID:17043226
Use and limitations of ASHRAE solar algorithms in solar energy utilization studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, E.F.
1978-01-01
Algorithms for computer calculation of solar radiation based on cloud cover data, recommended by the ASHRAE Task Group on Energy Requirements for Buildings, are examined for applicability in solar utilization studies. The implementation is patterned after a well-known computer program, NBSLD. The results of these algorithms, including horizontal and tilted surface insolation and useful energy collectable, are compared to observations and results obtainable by the Liu and Jordan method. For purposes of comparison, data for Riverside, CA from 1960 through 1963 are examined. It is shown that horizontal values so predicted are frequently less than 10% and always less thanmore » 23% in error when compared to averages of hourly measurements during important collection hours in 1962. Average daily errors range from -14 to 9% over the year. When averaged on an hourly basis over four years, there is a 21% maximum discrepancy compared to the Liu and Jordan method. Corresponding tilted-surface discrepancies are slightly higher, as are those for useful energy collected. Possible sources of these discrepancies and errors are discussed. Limitations of the algorithms and various implementations are examined, and it is suggested that certain assumptions acceptable for building loads analysis may not be acceptable for solar utilization studies. In particular, it is shown that the method of separatingg diffuse and direct components in the presence of clouds requires careful consideration in order to achieve accuracy and efficiency in any implementation.« less
Powering the planet: chemical challenges in solar energy utilization.
Lewis, Nathan S; Nocera, Daniel G
2006-10-24
Global energy consumption is projected to increase, even in the face of substantial declines in energy intensity, at least 2-fold by midcentury relative to the present because of population and economic growth. This demand could be met, in principle, from fossil energy resources, particularly coal. However, the cumulative nature of CO(2) emissions in the atmosphere demands that holding atmospheric CO(2) levels to even twice their preanthropogenic values by midcentury will require invention, development, and deployment of schemes for carbon-neutral energy production on a scale commensurate with, or larger than, the entire present-day energy supply from all sources combined. Among renewable energy resources, solar energy is by far the largest exploitable resource, providing more energy in 1 hour to the earth than all of the energy consumed by humans in an entire year. In view of the intermittency of insolation, if solar energy is to be a major primary energy source, it must be stored and dispatched on demand to the end user. An especially attractive approach is to store solar-converted energy in the form of chemical bonds, i.e., in a photosynthetic process at a year-round average efficiency significantly higher than current plants or algae, to reduce land-area requirements. Scientific challenges involved with this process include schemes to capture and convert solar energy and then store the energy in the form of chemical bonds, producing oxygen from water and a reduced fuel such as hydrogen, methane, methanol, or other hydrocarbon species.
Predicting Daily Insolation with Hourly Cloud Height and Coverage.
NASA Astrophysics Data System (ADS)
Meyers, T. P.; Dale, R. F.
1983-04-01
Solar radiation information is used in crop growth, boundary layer, entomological and plant pathological models, and in determining the potential use of active and passive solar energy systems. Yet solar radiation is among the least measured meteorological variables.A semi-physical model based on standard meteorological data was developed to estimate solar radiation received at the earth's surface. The radiation model includes the effects of Rayleigh scattering, absorption by water vapor and permanent gases, and absorption and scattering by aerosols and clouds. Cloud attenuation is accounted for by assigning transmission coefficients based on cloud height and amount. The cloud transmission coefficients for various heights and coverages were derived empirically from hourly observations of solar radiation in conjunction with corresponding cloud observations at West Lafayette, Indiana. The model was tested with independent data from West Lafayette and Indianapolis, Madison, WI, Omaha, NE, Columbia, MO, Nashville, TN, Seattle, WA, Los Angeles, CA, Phoenix, AZ, Lake Charles, LA, Miami, FL, and Sterling, VA. For each of these locations a 16% random sample of days was drawn within each of the 12 months in a year for testing the model. Excellent agreement between predicted and observed radiation values was obtained for all stations tested. Mean absolute errors ranged from 1.05 to 1.80 MJ m2 day1 and root-mean-square errors ranged from 1.31 to 2.32 MJ m2 day1. The model's performance judged by relative error was found to be independent of season and cloud amount for all locations tested.
Marini, Ida; Alessandri Bonetti, Giulio; Bortolotti, Francesco; Bartolucci, Maria Lavinia; Gatto, Maria Rosaria; Michelotti, Ambra
2015-06-01
It has been hypothesized that different plantar sensory inputs could influence the whole body posture and dental occlusion but there is a lack of evidence on this possible association. To investigate the effects of experimental insoles redistributing plantar pressure on body posture, mandibular kinematics and electromyographic (EMG) activity of masticatory muscles on healthy subjects. A pilot study was conducted on 19 healthy volunteers that wore custom-made insoles normalizing the plantar pressure distribution for 2 weeks. Body posture parameters were measured by means of an optoelectronic stereophotogrammetric analysis; mandibular kinematics was analyzed by means of gothic arch tracings; superficial EMG activity of head and neck muscles was performed. Measurements were carried out 10 days before the insertion of the insoles, immediately before the insertion, the day after, 7 and 14 days after, in four different exteroceptive conditions. The outcomes of the present study show that insoles do not modify significantly over time the parameters of body posture, SEMG activity of head and neck muscles and mandibular kinematics. In this pilot study the experimental insoles did not significantly influence the body posture, the mandibular kinematics and the activity of masticatory muscles during a 14-day follow up period. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effects of orthopedic insoles on static balance of older adults wearing thick socks.
Ma, Christina Zong-Hao; Wong, Duo Wai-Chi; Wan, Anson Hong-Ping; Lee, Winson Chiu-Chun
2018-06-01
The wearing of socks and insoles may affect the ability of the foot to detect tactile input influencing postural balance. The aim of this study was to investigate whether (1) thick socks adversely affected the elderly postural balance and (2) orthopedic insoles could improve the elderly postural balance while wearing thick socks. Repeated-measures study design. In total, 14 healthy older adults were recruited. A monofilament test was conducted to evaluate foot plantar sensation with and without thick socks. Subjects then performed the Romberg tests under three conditions: (1) barefoot, (2) with socks only, and (3) with both socks and insoles. Postural balance was assessed by measuring the center of pressure movement during standing in each experimental condition. Thick socks significantly decreased the monofilament score ( p < 0.001), suggesting reduction in ability to detect external forces. All center of pressure parameters increased significantly while wearing thick socks ( p < 0.017), implying reduction of postural stability. They then decreased significantly with the additional use of insoles ( p < 0.017). Previous studies have documented the changes in plantar pressure distribution with the use of orthopedic insoles. This study further suggests that such changes in contact mechanics could produce some balance-improving effects, which appears not to have been reported earlier. Clinical relevance Wearing thick socks reduces plantar pressure sensitivity and increases postural sway which may increase risk of falls. Orthopedic insoles and footwear with similar design could potentially be a cost-effective method in maintaining postural balance when wearing thick socks.
Arnold, John B; Wong, Daniel X; Jones, Richard K; Hill, Catherine L; Thewlis, Dominic
2016-07-01
Lateral wedge insoles are intended to reduce biomechanical risk factors of medial knee osteoarthritis (OA) progression, such as increased knee joint load; however, there has been no definitive consensus on this topic. The aim of this systematic review and meta-analysis was to establish the within-subject effects of lateral wedge insoles on knee joint load in people with medial knee OA during walking. Six databases were searched from inception until February 13, 2015. Included studies reported on the immediate biomechanical effects of lateral wedge insoles during walking in people with medial knee OA. Primary outcomes of interest relating to the biomechanical risk of disease progression were the first and second peak external knee adduction moment (EKAM) and knee adduction angular impulse (KAAI). Eligible studies were pooled using random-effects meta-analysis. Eighteen studies were included with a total of 534 participants. Lateral wedge insoles resulted in a small but statistically significant reduction in the first peak EKAM (standardized mean difference [SMD] -0.19; 95% confidence interval [95% CI] -0.23, -0.15) and second peak EKAM (SMD -0.25; 95% CI -0.32, -0.19) with a low level of heterogeneity (I(2) = 5% and 30%, respectively). There was a favorable but small reduction in the KAAI with lateral wedge insoles (SMD -0.14; 95% CI -0.21, -0.07, I(2) = 31%). Risk of methodologic bias scores (quality index) ranged from 8 to 13 out of 16. Lateral wedge insoles cause small reductions in the EKAM and KAAI during walking in people with medial knee OA. Current evidence demonstrates that lateral wedge insoles appear ineffective at attenuating structural changes in people with medial knee OA as a whole and may be better suited to targeted use in biomechanical phenotypes associated with larger reductions in knee load. © 2016, American College of Rheumatology.
NASA Astrophysics Data System (ADS)
Zhong, Wei; Cao, jiayuan; Xue, Jibin; Ouyang, Jun; Tang, Xiaohong; Yin, Huanling; Liao, Congyun; Long, Kun
2014-02-01
The study of a 300-cm-thick exposed lacustrine sediment section in the Hedong village in Zhaoqing area which is located in sub-tropical west Guangdong Province in South China, demonstrates that the lacustrine sedimentary sequence possibly contains evidence for exploring variation of Asian monsoon climate. Multi-proxy records, including the humification intensity, total organic carbon, and grain size fractions, reveal a general trend towards dry and cold conditions in the late Holocene that this is because of a decrease in solar insolation on an orbital scale. Three intensified Asian summer monsoon (ASM) intervals (˜3300-3000 cal yr BP, ˜2600-1600 cal yr BP, and ˜900-600 cal yr BP), and three weakened ASM intervals (˜4000-3300 cal yr BP, ˜3000-2600 cal yr BP, and ˜1600-900 cal yr BP) are identified. Our humification record (HDcal) shows a good correlation on multi-centennial scale with the tree ring Δ14C record, a proxy of solar activity. A spectral analysis of HDcal reveals four significant cycles, i.e., ˜1250 yr, 300 yr, 110 yr, and 70 yr, and most of these cycles are related to the solar activity. Our findings indicate that solar output and oceanic-atmospheric circulation probably have influenced the late Holocene climate variability in the study region.
Novel methodology to obtain salient biomechanical characteristics of insole materials.
Lavery, L A; Vela, S A; Ashry, H R; Lanctot, D R; Athanasiou, K A
1997-06-01
Viscoelastic inserts are commonly used as artificial shock absorbers to prevent neuropathic foot ulcerations by decreasing pressure on the sole of the foot. Unfortunately, there is little scientific information available to guide physicians in the selection of appropriate insole materials. Therefore, a novel methodology was developed to form a rational platform for biomechanical characterizations of insole material durability, which consisted of in vivo gait analysis and in vitro bioengineering measurements. Results show significant differences in the compressive stiffness of the tested insoles and the rate of change over time in both compressive stiffness and peak pressures measured. Good correlations were found between pressure-time integral and Young's modulus (r2 = 0.93), and total energy applied and Young's modulus (r2 = 0.87).
NASA Astrophysics Data System (ADS)
Kamae, Youichi; Kawana, Toshi; Oshiro, Megumi; Ueda, Hiroaki
2017-12-01
Instrumental and proxy records indicate remarkable global climate variability over the last millennium, influenced by solar irradiance, Earth's orbital parameters, volcanic eruptions and human activities. Numerical model simulations and proxy data suggest an enhanced Asian summer monsoon during the Medieval Warm Period (MWP) compared to the Little Ice Age (LIA). Using multiple climate model simulations, we show that anomalous seasonal insolation over the Northern Hemisphere due to a long cycle of orbital parameters results in a modulation of the Asian summer monsoon transition between the MWP and LIA. Ten climate model simulations prescribing historical radiative forcing that includes orbital parameters consistently reproduce an enhanced MWP Asian monsoon in late summer and a weakened monsoon in early summer. Weakened, then enhanced Northern Hemisphere insolation before and after June leads to a seasonally asymmetric temperature response over the Eurasian continent, resulting in a seasonal reversal of the signs of MWP-LIA anomalies in land-sea thermal contrast, atmospheric circulation, and rainfall from early to late summer. This seasonal asymmetry in monsoon response is consistently found among the different climate models and is reproduced by an idealized model simulation forced solely by orbital parameters. The results of this study indicate that slow variation in the Earth's orbital parameters contributes to centennial variability in the Asian monsoon transition.[Figure not available: see fulltext.
Laurentide ice-sheet instability during the last deglaciation
NASA Astrophysics Data System (ADS)
Ullman, David J.; Carlson, Anders E.; Anslow, Faron S.; Legrande, Allegra N.; Licciardi, Joseph M.
2015-07-01
Changes in the amount of summer incoming solar radiation (insolation) reaching the Northern Hemisphere are the underlying pacemaker of glacial cycles. However, not all rises in boreal summer insolation over the past 800,000 years resulted in deglaciation to present-day ice volumes, suggesting that there may be a climatic threshold for the disappearance of land-based ice. Here we assess the surface mass balance stability of the Laurentide ice sheet--the largest glacial ice mass in the Northern Hemisphere--during the last deglaciation (24,000 to 9,000 years ago). We run a surface energy balance model with climate data from simulations with a fully coupled atmosphere-ocean general circulation model for key time slices during the last deglaciation. We find that the surface mass balance of the Laurentide ice sheet was positive throughout much of the deglaciation, and suggest that dynamic discharge was mainly responsible for mass loss during this time. Total surface mass balance became negative only in the early Holocene, indicating the transition to a new state where ice loss occurred primarily by surface ablation. We conclude that the Laurentide ice sheet remained a viable ice sheet before the Holocene and began to fully deglaciate only once summer temperatures and radiative forcing over the ice sheet increased by 6-7 °C and 16-20 W m-2, respectively, relative to full glacial conditions.
Olyphant, Greg A.; Whitman, Richard L.
2004-01-01
Data on hydrometeorological conditions and E. coli concentration were simultaneously collected on 57 occasions during the summer of 2000 at 63rd Street Beach, Chicago, Illinois. The data were used to identify and calibrate a statistical regression model aimed at predicting when the bacterial concentration of the beach water was above or below the level considered safe for full body contact. A wide range of hydrological, meteorological, and water quality variables were evaluated as possible predictive variables. These included wind speed and direction, incoming solar radiation (insolation), various time frames of rainfall, air temperature, lake stage and wave height, and water temperature, specific conductance, dissolved oxygen, pH, and turbidity. The best-fit model combined real-time measurements of wind direction and speed (onshore component of resultant wind vector), rainfall, insolation, lake stage, water temperature and turbidity to predict the geometric mean E.coliconcentration in the swimming zone of the beach. The model, which contained both additive and multiplicative (interaction) terms, accounted for 71% of the observed variability in the log E. coliconcentrations. A comparison between model predictions of when the beach should be closed and when the actualbacterial concentrations were above or below the 235 cfu 100 ml-1 threshold value, indicated that the model accurately predicted openingsversus closures 88% of the time.
Response of the Asian summer monsoons to idealized precession and obliquity forcing in a set of GCMs
NASA Astrophysics Data System (ADS)
Bosmans, J. H. C.; Erb, M. P.; Dolan, A. M.; Drijfhout, S. S.; Tuenter, E.; Hilgen, F. J.; Edge, D.; Pope, J. O.; Lourens, L. J.
2018-05-01
We examine the response of the Indian and East Asian summer monsoons to separate precession and obliquity forcing, using a set of fully coupled high-resolution models for the first time: EC-Earth, GFDL CM2.1, CESM and HadCM3. We focus on the effect of insolation changes on monsoon precipitation and underlying circulation changes, and find strong model agreement despite a range of model physics, parameterization, and resolution. Our results show increased summer monsoon precipitation at times of increased summer insolation, i.e. minimum precession and maximum obliquity, accompanied by a redistribution of precipitation and convection from ocean to land. Southerly monsoon winds over East Asia are strengthened as a consequence of an intensified land-sea pressure gradient. The response of the Indian summer monsoon is less straightforward. Over south-east Asia low surface pressure is less pronounced and winds over the northern Indian Ocean are directed more westward. An Indian Ocean Dipole pattern emerges, with increased precipitation and convection over the western Indian Ocean. Increased temperatures occur during minimum precession over the Indian Ocean, but not during maximum obliquity when insolation is reduced over the tropics and southern hemisphere during northern hemisphere summer. Evaporation is reduced over the northern Indian Ocean, which together with increased precipitation over the western Indian Ocean dampens the increase of monsoonal precipitation over the continent. The southern tropical Indian Ocean as well as the western tropical Pacific (for precession) act as a moisture source for enhanced monsoonal precipitation. The models are in closest agreement for precession-induced changes, with more model spread for obliquity-induced changes, possibly related to a smaller insolation forcing. Our results indicate that a direct response of the Indian and East Asian summer monsoons to insolation forcing is possible, in line with speleothem records but in contrast to what most marine proxy climate records suggest.
Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendt, Daniel; Mines, Greg; Turchi, Craig
There are numerous technical merits associated with a renewable geothermal-solar hybrid plant concept. The performance of air-cooled binary plants is lowest when ambient temperatures are high due to the decrease in air-cooled binary plant performance that occurs when the working fluid condensing temperature, and consequently the turbine exhaust pressure, increases. Electrical power demand is generally at peak levels during periods of elevated ambient temperature and it is therefore especially important to utilities to be able to provide electrical power during these periods. The time periods in which air-cooled binary geothermal power plant performance is lowest generally correspond to periods ofmore » high solar insolation. Use of solar heat to increase air-cooled geothermal power plant performance during these periods can improve the correlation between power plant output and utility load curves. While solar energy is a renewable energy source with long term performance that can be accurately characterized, on shorter time scales of hours or days it can be highly intermittent. Concentrating solar power (CSP), aka solar-thermal, plants often incorporate thermal energy storage to ensure continued operation during cloud events or after sunset. Hybridization with a geothermal power plant can eliminate the need for thermal storage due to the constant availability of geothermal heat. In addition to the elimination of the requirement for solar thermal storage, the ability of a geothermal/solar-thermal hybrid plant to share a common power block can reduce capital costs relative to separate, stand-alone geothermal and solar-thermal power plant installations. The common occurrence of long-term geothermal resource productivity decline provides additional motivation to consider the use of hybrid power plants in geothermal power production. Geothermal resource productivity decline is a source of significant risk in geothermal power generation. Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing production fluid temperature, flow rate, or both during the life span of the associated power generation project. The impacts of geothermal production fluid temperature decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant efficiency. The impact of resource productivity decline on power generation project economics can be equally detrimental. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below a specified default level. While the magnitude of PPA penalties varies on a case-by-case basis, it is not unrealistic for these penalties to be on the order of the value of the deficit power sales such that the utility may purchase the power elsewhere. This report evaluates the use of geothermal/solar-thermal hybrid plant technology for mitigation of resource productivity decline, which has not been a primary topic of investigation in previous analyses in the open literature.« less
Insights to bioprocess and treatment competence of urban wetlands.
Mahapatra, Durga Madhab; Joshi, N V; Ramachandra, T V
2018-01-15
Wetlands play a major role in the recharge of groundwater resources, maintenance of water quality (remediation), moderate microclimate while supporting local livelihood through provision of fish, fodder, etc. The present study aims to investigate algal-bacterial consortium as a function of residence time with the water quality dynamics in two major wetlands in Bangalore city, India. Over thirty-two genera of algae were recorded with more than 40 species in the lakes and two dominant bacterial assemblages. The higher Ammonium-N content favoured the growth of these members. Significant correlation was observed between the nutrient concentrations and the community structure at the inflows and the outflows. The algal community showed negative correlation to filterable COD and high nutrients levels while bacterial abundance was observed under high loadings. The green algae Chlorophyceae (Chlorella blooms), which are indicators of nutrient enrichment were observed predominantly, that needs an immediate attention. Higher overall treatment efficiency was observed in terms of CNP removal during the Pre-monsoon season attributed to absence of macrophytes cover and rapid growth of algal assemblage's due to higher temperature regimes with adequate solar insolation. Copyright © 2017 Elsevier Ltd. All rights reserved.
The impact of orbitally-driven changes in solar insolation on “greenhouse” climates
NASA Astrophysics Data System (ADS)
Woodard, S. C.; Herridge, J. D.; Thomas, D. J.; Marcantonio, F.
2009-12-01
We seek to determine the link between climate change and eccentricity-scale lithologic cycles found in early Paleogene deep-sea sediments. Through a multi proxy investigation of cyclic lithologic variations recorded at Shatsky Rise (NW Pacific Ocean, Ocean Drilling Program Leg 198), we test the hypotheses that orbital variations in solar insolation caused changes in wind intensity and aridity in dust source regions as well as the corrosiveness of global deep ocean waters. During the study interval at ~58Ma, Shatsky Rise was in the central tropical Pacific, situated far from any existing shoreline so that any terrigenous silicate material that reached the location likely was windblown dust. Variations in the grain size and flux of eolian material delivered to the open ocean are used as a proxy for atmospheric circulation patterns and vigor, and changes in the aridity and/or vegetation cover of dust source regions, respectively. We have determined the grain size and dust accumulation rates over eight consecutive 100 kyr eccentricity cycles. Median grain sizes ranged from 8.7Φ to 8.4Φ over the interval, suggesting relative wind intensity changes of 30-60%, but with no resolvable orbital periodicity. In contrast, 232Th (a proxy for continentally derived material) and sedimentological analyses indicate dust fluxes to Shatsky Rise varied on eccentricity timescales, with maximum accumulation occurring during eccentricity maxima. 232Th concentrations in the bulk sediment indicate that the entire detrital fraction is continentally derived and not authigenic. The calculated 232Th fluxes (0.9 -17.4 mg/cm2/kyr) agree well with sediment dust mass accumulation rates determined using traditional chemical extraction techniques (2.9 to 15.9 mg/cm2/kyr). Nd and Sr isotopic values of the “eolian” sediment fraction were less and more radiogenic than coeval seawater, respectively, supporting the assumption the material was derived from the continents and is not authigenic (average ɛNd(t) = -10.0 and 87Sr/86Sr = 0.70906). The pacing of dust flux variations with eccentricity changes suggests that continental aridity is controlled by cyclic changes in solar insolation. Carbonate mass accumulation rates across the 8 eccentricity cycles exhibit a small range of 0.54 to 0.79 g/cm2/kyr. While intervals of increased dust accumulation during maximum eccentricity may “dilute” the total calcium carbonate accumulation, these can only account for a small fraction of the total carbonate change. Thus, the remaining difference in carbonate content must have been driven by coincident changes in carbonate accumulation. We analyzed the Nd isotopic composition of fossil fish debris to track potential changes in water mass composition that may have contributed to cyclic variations in seafloor corrosiveness. Preliminary results show a small range in ɛNd(t) of fish teeth -3.9 to -2.9, however a slight trend in the isotopic data suggests the possibility of orbitally-paced changes in water mass, with more radiogenic Nd coinciding with intervals of greater carbonate accumulation.
Bennell, Kim; Bowles, Kelly-Ann; Payne, Craig; Cicuttini, Flavia; Osborne, Richard; Harris, Anthony; Hinman, Rana
2007-01-01
Background Whilst laterally wedged insoles, worn inside the shoes, are advocated as a simple, inexpensive, non-toxic self-administered intervention for knee osteoarthritis (OA), there is currently limited evidence to support their use. The aim of this randomised, double-blind controlled trial is to determine whether laterally wedges insoles lead to greater improvements in knee pain, physical function and health-related quality of life, and slower structural disease progression as well as being more cost-effective, than control flat insoles in people with medial knee OA. Methods/Design Two hundred participants with painful radiographic medial knee OA and varus malalignment will be recruited from the community and randomly allocated to lateral wedge or control insole groups using concealed allocation. Participants will be blinded as to which insole is considered therapeutic. Blinded follow up assessment will be conducted at 12 months after randomisation. The outcome measures are valid and reliable measures recommended for OA clinical trials. Questionnaires will assess changes in pain, physical function and health-related quality-of-life. Magnetic resonance imaging will measure changes in tibial cartilage volume. To evaluate cost-effectiveness, participants will record the use of all health-related treatments in a log-book returned to the assessor on a monthly basis. To test the effect of the intervention using an intention-to-treat analysis, linear regression modelling will be applied adjusting for baseline outcome values and other demographic characteristics. Discussion Results from this trial will contribute to the evidence regarding the effectiveness of laterally wedged insoles for the management of medial knee OA. Trial registration ACTR12605000503628; NCT00415259. PMID:17892539
The global mean energy balance under cloud-free conditions
NASA Astrophysics Data System (ADS)
Wild, Martin; Hakuba, Maria; Folini, Dois; Ott, Patricia; Long, Charles
2017-04-01
A long standing problem of climate models is their overestimation of surface solar radiation not only under all-sky, but also under clear-sky conditions (Wild et al. 1995, Wild et al. 2006). This overestimation reduced over time in consecutive model generations due to the simulation of stronger atmospheric absorption. Here we analyze the clear sky fluxes of the latest climate model generation from the Coupled Model Intercomparison Project Phase 5 (CMIP5) against an expanded and updated set of direct observations from the Baseline Surface Radiation Network (BSRN). Clear sky climatologies from these sites have been composed based on the Long and Ackermann (2000) clear sky detection algorithm (Hakuba et al. 2017), and sampling issues when comparing with model simulated clear sky fluxes have been analyzed in Ott (2017). Overall, the overestimation of clear sky insolation in the CMIP5 models is now merely 1-2 Wm-2 in the multimodel mean, compared to 4 Wm-2 in CMIP3 and 6 Wm-2 in AMIPII (Wild et al. 2006). Still a considerable spread in the individual model biases is apparent, ranging from -2 Wm-2 to 10 Wm-2 when averaged over 53 globally distributed BSRN sites. This bias structure is used to infer best estimates for present day global mean clear sky insolation, following an approach developped in Wild et al. (2013, 2015, Clim. Dyn.) for all sky fluxes. Thereby the flux biases in the various models are linearly related to their respective global means. A best estimate can then be inferred from the linear regression at the intersect where the bias against the surface observations becomes zero. This way we obtain a best estimate of 247 Wm-2 for the global mean insolation at the Earth surface under cloud free conditions, and a global mean absorbed solar radiation of 214 Wm-2 in the cloud-free atmosphere, assuming a global mean surface albedo of 13.5%. Combined with a best estimate for the net influx of solar radiation at the Top of Atmosphere under cloud free conditions from CERES EBAF of 286 Wm-2, this leaves an amount of 72 Wm-2 absorbed solar radiation in the cloud free atmosphere. The 72 Wm-2 closely match our best estimate for the global mean cloud-free atmospheric absorption in Wild et al. JGR (2006) based on older models and their biases against much fewer direct observation. This indicates that the estimate of global mean solar absorption in the cloud free atmosphere slightly above 70 Wm-2 is fairly robust. In comparison, the global mean solar absorption under all sky conditions was estimated in Wild et al. (2015) at 80 Wm-2 based on the same approach. The difference between the all- and clear-sky absorption represents the cloud radiative effect on the atmospheric absorption, and is thus estimated here to be around 8 Wm-2. This is similar in magnitude to the 11 Wm-2 derived by Hakuba et al. (2017) when averaged over the atmospheric cloud effect determined at 36 BSRN station. We applied the same methodology also for the longwave fluxes. Thereby we obtained a best estimate for the global mean clear sky downward longwave flux at the Earth surface of 214 Wm-2. Together with a surface and TOA upward longwave flux of 398 Wm-2 and 266 Wm-2, respectively, this leaves an atmospheric longwave divergence under clear sky conditions of 182 Wm-2. Selected related references: Hakuba, M. Z., Folini, D., Wild, M., Long, C. N., Schaepman-Strub, G., and Stephens, G.L., 2017: Cloud Effects on Atmospheric Solar Absorption in Light of Most Recent Surface and Satellite Measurements. AIP Conf. Proc. (in press). Ott, P., 2017: Master Thesis at ETH Zurich (in prep.). Wild, M., Ohmura, A., Gilgen, H., and Roeckner, E., 1995: Validation of GCM simulated radiative fluxes using surface observations. J. Climate, 8, 1309-1324. Wild, M., Long, C.N., and Ohmura, A., 2006: Evaluation of clear-sky solar fluxes in GCMs participating in AMIP and IPCC-AR4 from a surface perspective. J. Geophys. Res., 111, D01104, doi:10.1029/2005JD006118. Wild, M., Folini, D., Schär, C., Loeb, N., Dutton, E.G., and König-Langlo, G., 2013: The global energy balance from a surface perspective. Climate Dynamics, 40, 3107-3134. Wild, M., Folini, D., Hakuba, M., Schär, C., Seneviratne, S.I., Kato, S., Rutan, D., Ammann, C., Wood, E.F., and König-Langlo, G., 2015: The energy balance over land and oceans: An assessment based on direct observations and CMIP5 climate models, Climate Dynamics, 3393-3429, 44, DOI 10.1007/s00382-014-2430-z.
Yucel, Ufuk; Kucuksen, Sami; Cingoz, Havva T; Anliacik, Emel; Ozbek, Orhan; Salli, Ali; Ugurlu, Hatice
2013-12-01
Plantar fasciitis often leads to disability. Optimal treatment for this clinical condition is still unknown. To compare the effectiveness of wearing a full-length silicone insole with ultrasound-guided corticosteroid injection in the management of plantar fasciitis. Randomized clinical trial. Forty-two patients with chronic unilateral plantar fasciitis were allocated randomly to have an ultrasound-guided corticosteroid injection or wear a full-length silicone insole. Data were collected before the procedure and 1 month after. The primary outcome measures included first-step heel pain via Visual Analogue Scale and Heel Tenderness Index. Other outcome measures were the Foot and Ankle Outcome Score and ultrasonographic thickness of the plantar fascia. After 1 month, a significant improvement was shown in Visual Analogue Scale, Heel Tenderness Index, Foot and Ankle Outcome Score, and ultrasonographic thickness of plantar fascia in both groups. Visual Analogue Scale scores, Foot and Ankle Outcome Score pain, Foot and Ankle Outcome Score for activities of daily living, Foot and Ankle Outcome Score for sport and recreation function, and plantar fascia thickness were better in injection group than in insole group (p < 0.05). Although both ultrasound-guided corticosteroid injection and wearing a full-length silicone insole were effective in the conservative treatment of plantar fasciitis, we recommend the use of silicone insoles as a first line of treatment for persons with plantar fasciitis.
Does Wearing Textured Insoles during Non-class Time Improve Proprioception in Professional Dancers?
Steinberg, N; Tirosh, O; Adams, R; Karin, J; Waddington, G
2015-11-01
This study sought to determine whether textured insoles inserted in the sports shoes of young dancers improved their inversion and eversion ankle movement discrimination. 26 ballet dancers (14 female, 12 male) from the Australian Ballet School, ages 14-19 years, were divided into 2 groups according to sex and class levels. During the first 4 weeks, the first intervention group (GRP1) was asked to wear textured insoles in their sports shoes during non-class periods, and the second intervention group (GRP2) followed standard practice. In the next 4 weeks, GRP2 was asked to wear the textured insoles and GRP1 did not wear the textured insoles. Participants were tested pre-intervention, after 4 weeks, and at 8 weeks for both inversion and eversion ankle discrimination. In both inversion and eversion testing positions, interaction was found between the 2 groups and the 3 testing times (p<0.001), with significant differences between the first testing and the second testing (p=0.038 and p=0.019, respectively), and between the third testing and the second testing (p=0.003 and p=0.029, respectively). In conclusion, the stimulation to the proprioceptive system arising from textured insoles worn for 4 weeks was sufficient to improve the ankle proprioception of ballet dancers, in both inversion and eversion movements. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Weber, Michael E.; Lantzsch, Hendrik; Dekens, Petra; Das, Supriyo K.; Reilly, Brendan T.; Martos, Yasmina M.; Meyer-Jacob, Carsten; Agrahari, Sandip; Ekblad, Alf; Titschack, Jürgen; Holmes, Beth; Wolfgramm, Philipp
2018-07-01
We conducted a multidisciplinary study to provide the stratigraphic and palaeoclimatic context of monsoonal rainfall dynamics and their responses to orbital forcing for the Bay of Bengal. Using sediment lightness we established an age model at orbital resolution for International Ocean Discovery Programme (IODP) Core U1452C-1H that covers the last 200 ka in the lower Bengal Fan. The low-resolution δ18O of G. sacculifer is consistent with global δ18O records, at least for major glacial-to-interglacial transitions. The variability of total organic carbon, total nitrogen, and the δ13C composition of organic matter indicate the marine origin of organic matter. Marine primary productivity likely increased during insolation minima, indicative for an enhanced NE monsoon during glacials and stadials. Pristine insolation forcing is also documented for wet-bulk density, red-green color variability, and grain-size variations, indicating that darker and coarser-grained material deposited at higher sedimentation rates during insolation minima. Stronger NE monsoon likely amplified ocean-atmosphere interactions over the Indian Ocean, leading to stronger upwelling through shoaling the thermocline, and higher delivery of sediment to the Bay of Bengal due to higher soil erosion on land. In addition, lower glacial and stadial sea levels as well as stronger westward surface circulation favored delivery of coarser-grained fluvial material to the lower Bengal Fan. At the same time the stronger NE monsoon might have increased the aeolian supply. Total inorganic carbon, the Ca/Ti ratio, and biogenic silica vary dominantly on obliquity frequencies, suggesting mobilization and transport of lithogenic material primarily during lowered sea levels and/or higher influence of the Northern Hemisphere westerlies on the dust transport from the Tibetan Plateau. The close resemblance of sediment lightness and the climate record of Antarctic ice cores over multiple glacial cycles indicate close relationship between high southern latitude and tropical Asian climate through shifts in position of the Intertropical Convergence Zone. The Bengal Fan monsoonal record shows very clear and strict responses to insolation forcing in the lower part from 200 ka to the Younger Toba Tuff during Marine Isotope Stage (MIS) 7 - 5, and less distinct response patterns after deposition of the ash during MIS 4 - 2, consistent with low-amplitude changes in insolation.
... and improve walking. This includes changes to the shoes, such as an arch insert and a support insole. Surgery to flatten the foot is sometimes needed in severe cases. Any nerve problems that exist must be treated by specialists.
Observational Evidence of Changes in Water Vapor, Clouds, and Radiation at the ARM SGP Site
NASA Technical Reports Server (NTRS)
Dong, Xiquan; Xi, Baike; Minnus, Patrick
2006-01-01
Characterizing water vapor and cloud effects on the surface radiation budget is critical for understanding the current climate because water vapor is the most important greenhouse gas in the atmosphere and clouds are one of the largest sources of uncertainty in predicting potential future climate change. Several studies have shown that insolation over land declined until 1990 then increased until the present. Using 8 years of surface data, we observed the increasing trend of insolation from 1997 to 2000, but detected a significant decrease from 2001 to 2004. The variation of cloud fraction mirrors that of insolation with an overall increase of 1 percent per year. Under clear-sky conditions, water vapor changes have a greater impact on longwave flux than on insolation.