Science.gov

Sample records for high speed cmos

  1. Design of high speed camera based on CMOS technology

    NASA Astrophysics Data System (ADS)

    Park, Sei-Hun; An, Jun-Sick; Oh, Tae-Seok; Kim, Il-Hwan

    2007-12-01

    The capacity of a high speed camera in taking high speed images has been evaluated using CMOS image sensors. There are 2 types of image sensors, namely, CCD and CMOS sensors. CMOS sensor consumes less power than CCD sensor and can take images more rapidly. High speed camera with built-in CMOS sensor is widely used in vehicle crash tests and airbag controls, golf training aids, and in bullet direction measurement in the military. The High Speed Camera System made in this study has the following components: CMOS image sensor that can take about 500 frames per second at a resolution of 1280*1024; FPGA and DDR2 memory that control the image sensor and save images; Camera Link Module that transmits saved data to PC; and RS-422 communication function that enables control of the camera from a PC.

  2. A CMOS high speed imaging system design based on FPGA

    NASA Astrophysics Data System (ADS)

    Tang, Hong; Wang, Huawei; Cao, Jianzhong; Qiao, Mingrui

    2015-10-01

    CMOS sensors have more advantages than traditional CCD sensors. The imaging system based on CMOS has become a hot spot in research and development. In order to achieve the real-time data acquisition and high-speed transmission, we design a high-speed CMOS imaging system on account of FPGA. The core control chip of this system is XC6SL75T and we take advantages of CameraLink interface and AM41V4 CMOS image sensors to transmit and acquire image data. AM41V4 is a 4 Megapixel High speed 500 frames per second CMOS image sensor with global shutter and 4/3" optical format. The sensor uses column parallel A/D converters to digitize the images. The CameraLink interface adopts DS90CR287 and it can convert 28 bits of LVCMOS/LVTTL data into four LVDS data stream. The reflected light of objects is photographed by the CMOS detectors. CMOS sensors convert the light to electronic signals and then send them to FPGA. FPGA processes data it received and transmits them to upper computer which has acquisition cards through CameraLink interface configured as full models. Then PC will store, visualize and process images later. The structure and principle of the system are both explained in this paper and this paper introduces the hardware and software design of the system. FPGA introduces the driven clock of CMOS. The data in CMOS is converted to LVDS signals and then transmitted to the data acquisition cards. After simulation, the paper presents a row transfer timing sequence of CMOS. The system realized real-time image acquisition and external controls.

  3. High-speed polysilicon CMOS photodetector for telecom and datacom

    NASA Astrophysics Data System (ADS)

    Atabaki, Amir H.; Meng, Huaiyu; Alloatti, Luca; Mehta, Karan K.; Ram, Rajeev J.

    2016-09-01

    Absorption by mid-bandgap states in polysilicon or heavily implanted silicon has been previously utilized to implement guided-wave infrared photodetectors in CMOS compatible photonic platforms. Here, we demonstrate a resonant guided-wave photodetector based on the polysilicon layer that is used for the transistor gate in a microelectronic SOI CMOS process without any change to the foundry process flow ("zero-change" CMOS). Through a combination of doping mask layers, a lateral pn junction diode in the polysilicon is demonstrated with a strong electric field to enable efficient photo-carrier extraction and high-speed operation. This photodetector has a responsivity of more than 0.14 A/W from 1300 to 1600 nm, a 10 GHz bandwidth, and 80 nA dark current at 15 V reverse bias.

  4. A high speed CMOS A/D converter

    NASA Technical Reports Server (NTRS)

    Wiseman, Don R.; Whitaker, Sterling R.

    1992-01-01

    This paper presents a high speed analog-to-digital (A/D) converter. The converter is a 7 bit flash converter with one half LSB accuracy. Typical parts will function at approximately 200 MHz. The converter uses a novel comparator circuit that is shown to out perform more traditional comparators, and thus increases the speed of the converter. The comparator is a clocked, precharged circuit that offers very fast operation with a minimal offset voltage (2 mv). The converter was designed using a standard 1 micron digital CMOS process and is 2,244 microns by 3,972 microns.

  5. Noise analysis for high speed CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Guo, Zhi-qiang; Liu, Li-yuan; Liu, Jian; Wu, Nan-jian

    2015-04-01

    Noise performance of the high speed image sensor is a bottle neck for its low illumination applications. As the foremost stage circuit, pixel noise is an important portion of high speed image sensor system. This paper has discussed and analyzed the different noise source of the 4T pixel and influence on the image quality of high speed image sensor in detail. We proposed circuit model of pixel with ideal correlated double sampler to simulate the noise source distribution in the pixel and noise reducing methods. Pixel random readout noise can be effectively reduced to 5.44e by optimizing the gate size of the reset transistor.

  6. High-speed binary CMOS image sensor using a high-responsivity MOSFET-type photodetector

    NASA Astrophysics Data System (ADS)

    Choi, Byoung-Soo; Jo, Sung-Hyun; Bae, Myunghan; Choi, Pyung; Shin, Jang-Kyoo

    2015-03-01

    In this paper, a complementary metal oxide semiconductor (CMOS) binary image sensor based on a gate/body-tied (GBT) MOSFET-type photodetector is proposed. The proposed CMOS binary image sensor was simulated and measured using a standard CMOS 0.18-μm process. The GBT MOSFET-type photodetector is composed of a floating gate (n+- polysilicon) tied to the body (n-well) of the p-type MOSFET. The size of the active pixel sensor (APS) using GBT photodetector is smaller than that of APS using the photodiode. This means that the resolution of the image can be increased. The high-gain GBT photodetector has a higher photosensitivity compared to the p-n junction photodiode that is used in a conventional APS. Because GBT has a high sensitivity, fast operation of the binary processing is possible. A CMOS image sensor with the binary processing can be designed with simple circuits composed of a comparator and a Dflip- flop while a complex analog to digital converter (ADC) is not required. In addition, the binary image sensor has low power consumption and high speed operation with the ability to switch back and forth between a binary mode and an analog mode.

  7. Precision of FLEET Velocimetry Using High-Speed CMOS Camera Systems

    NASA Technical Reports Server (NTRS)

    Peters, Christopher J.; Danehy, Paul M.; Bathel, Brett F.; Jiang, Naibo; Calvert, Nathan D.; Miles, Richard B.

    2015-01-01

    Femtosecond laser electronic excitation tagging (FLEET) is an optical measurement technique that permits quantitative velocimetry of unseeded air or nitrogen using a single laser and a single camera. In this paper, we seek to determine the fundamental precision of the FLEET technique using high-speed complementary metal-oxide semiconductor (CMOS) cameras. Also, we compare the performance of several different high-speed CMOS camera systems for acquiring FLEET velocimetry data in air and nitrogen free-jet flows. The precision was defined as the standard deviation of a set of several hundred single-shot velocity measurements. Methods of enhancing the precision of the measurement were explored such as digital binning (similar in concept to on-sensor binning, but done in post-processing), row-wise digital binning of the signal in adjacent pixels and increasing the time delay between successive exposures. These techniques generally improved precision; however, binning provided the greatest improvement to the un-intensified camera systems which had low signal-to-noise ratio. When binning row-wise by 8 pixels (about the thickness of the tagged region) and using an inter-frame delay of 65 microseconds, precisions of 0.5 meters per second in air and 0.2 meters per second in nitrogen were achieved. The camera comparison included a pco.dimax HD, a LaVision Imager scientific CMOS (sCMOS) and a Photron FASTCAM SA-X2, along with a two-stage LaVision HighSpeed IRO intensifier. Excluding the LaVision Imager sCMOS, the cameras were tested with and without intensification and with both short and long inter-frame delays. Use of intensification and longer inter-frame delay generally improved precision. Overall, the Photron FASTCAM SA-X2 exhibited the best performance in terms of greatest precision and highest signal-to-noise ratio primarily because it had the largest pixels.

  8. Precision of FLEET Velocimetry Using High-speed CMOS Camera Systems

    NASA Technical Reports Server (NTRS)

    Peters, Christopher J.; Danehy, Paul M.; Bathel, Brett F.; Jiang, Naibo; Calvert, Nathan D.; Miles, Richard B.

    2015-01-01

    Femtosecond laser electronic excitation tagging (FLEET) is an optical measurement technique that permits quantitative velocimetry of unseeded air or nitrogen using a single laser and a single camera. In this paper, we seek to determine the fundamental precision of the FLEET technique using high-speed complementary metal-oxide semiconductor (CMOS) cameras. Also, we compare the performance of several different high-speed CMOS camera systems for acquiring FLEET velocimetry data in air and nitrogen free-jet flows. The precision was defined as the standard deviation of a set of several hundred single-shot velocity measurements. Methods of enhancing the precision of the measurement were explored such as digital binning (similar in concept to on-sensor binning, but done in post-processing), row-wise digital binning of the signal in adjacent pixels and increasing the time delay between successive exposures. These techniques generally improved precision; however, binning provided the greatest improvement to the un-intensified camera systems which had low signal-to-noise ratio. When binning row-wise by 8 pixels (about the thickness of the tagged region) and using an inter-frame delay of 65 micro sec, precisions of 0.5 m/s in air and 0.2 m/s in nitrogen were achieved. The camera comparison included a pco.dimax HD, a LaVision Imager scientific CMOS (sCMOS) and a Photron FASTCAM SA-X2, along with a two-stage LaVision High Speed IRO intensifier. Excluding the LaVision Imager sCMOS, the cameras were tested with and without intensification and with both short and long inter-frame delays. Use of intensification and longer inter-frame delay generally improved precision. Overall, the Photron FASTCAM SA-X2 exhibited the best performance in terms of greatest precision and highest signal-to-noise ratio primarily because it had the largest pixels.

  9. A 10-bit column-parallel cyclic ADC for high-speed CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Ye, Han; Quanliang, Li; Cong, Shi; Nanjian, Wu

    2013-08-01

    This paper presents a high-speed column-parallel cyclic analog-to-digital converter (ADC) for a CMOS image sensor. A correlated double sampling (CDS) circuit is integrated in the ADC, which avoids a stand-alone CDS circuit block. An offset cancellation technique is also introduced, which reduces the column fixed-pattern noise (FPN) effectively. One single channel ADC with an area less than 0.02 mm2 was implemented in a 0.13 μm CMOS image sensor process. The resolution of the proposed ADC is 10-bit, and the conversion rate is 1.6 MS/s. The measured differential nonlinearity and integral nonlinearity are 0.89 LSB and 6.2 LSB together with CDS, respectively. The power consumption from 3.3 V supply is only 0.66 mW. An array of 48 10-bit column-parallel cyclic ADCs was integrated into an array of CMOS image sensor pixels. The measured results indicated that the ADC circuit is suitable for high-speed CMOS image sensors.

  10. High-speed bipolar phototransistors in a 180 nm CMOS process

    PubMed Central

    Kostov, P.; Gaberl, W.; Zimmermann, H.

    2013-01-01

    Several high-speed pnp phototransistors built in a standard 180 nm CMOS process are presented. The phototransistors were implemented in sizes of 40×40 μm2 and 100×100 μm2. Different base and emitter areas lead to different characteristics of the phototransistors. As starting material a p+ wafer with a p− epitaxial layer on top was used. The phototransistors were optically characterized at wavelengths of 410, 675 and 850 nm. Bandwidths up to 92 MHz and dynamic responsivities up to 2.95 A/W were achieved. Evaluating the results, we can say that the presented phototransistors are well suited for high speed photosensitive optical applications where inherent amplification is needed. Further on, the standard silicon CMOS implementation opens the possibility for cheap integration of integrated optoelectronic circuits. Possible applications for the presented phototransistors are low cost high speed image sensors, opto-couplers, etc. PMID:23847388

  11. Multi-channel high-speed CMOS image acquisition and pre-processing system

    NASA Astrophysics Data System (ADS)

    Sun, Chun-feng; Yuan, Feng; Ding, Zhen-liang

    2008-10-01

    A new multi-channel high-speed CMOS image acquisition and pre-processing system is designed to realize the image acquisition, data transmission, time sequential control and simple image processing by high-speed CMOS image sensor. The modular structure design, LVDS and ping-pong cache techniques used during the designed image data acquisition sub-system design ensure the real-time data acquisition and transmission. Furthermore, a new histogram equalization algorithm of adaptive threshold value based on the reassignment of redundant gray level is incorporated in the image preprocessing module of FPGA. The iterative method is used in the course of setting threshold value, and a redundant graylevel is redistributed rationally according to the proportional gray level interval. The over-enhancement of background is restrained and the feasibility of mergence of foreground details is reduced. The experimental certificates show that the system can be used to realize the image acquisition, transmission, memory and pre-processing to 590MPixels/s data size, and make for the design and realization of the subsequent system.

  12. A high speed, low power consumption LVDS interface for CMOS pixel sensors

    NASA Astrophysics Data System (ADS)

    Shi, Zhan; Tang, Zhenan; Tian, Yong; Pham, Hung; Valin, Isabelle; Jaaskelainen, Kimmo

    2015-01-01

    The use of CMOS Pixel Sensors (CPSs) offers a promising approach to the design of vertex detectors in High Energy Physics (HEP) experiments. As the CPS equipping the upgraded Solenoidal Tracker at RHIC (STAR) pixel detector, ULTIMATE perfectly illustrates the potential of CPSs for HEP applications. However, further development of CPSs with respect to readout speed is required to fulfill the readout time requirement of the next generation HEP detectors, such as the upgrade of A Large Ion Collider Experiment (ALICE) Inner Tracking System (ITS), the International Linear Collider (ILC), and the Compressed Baryonic Matter (CBM) vertex detectors. One actual limitation of CPSs is related to the speed of the Low-Voltage Differential Signaling (LVDS) circuitry implementing the interface between the sensor and the Data Acquisition (DAQ) system. To improve the transmission rate while keeping the power consumption at a low level, a source termination technique and a special current comparator were adopted for the LVDS driver and receiver, respectively. Moreover, hardening techniques are used. The circuitry was designed and submitted for fabrication in a 0.18-μm CMOS Image Sensor (CIS) process at the end of 2011. The test results indicated that the LVDS driver and receiver can operate properly at the data rate of 1.2 Gb/s with power consumption of 19.6 mW.

  13. A low-power column-parallel ADC for high-speed CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Han, Ye; Li, Quanliang; Shi, Cong; Liu, Liyuan; Wu, Nanjian

    2013-08-01

    This paper presents a 10-bit low-power column-parallel cyclic analog-to-digital converter (ADC) used for high-speed CMOS image sensor (CIS). An opamp sharing technique is used to save power and area. Correlated double sampling (CDS) circuit and programmable gain amplifier (PGA) are integrated in the ADC, which avoids stand-alone circuit blocks. An offset cancellation technique is also introduced, which reduces the column fixed-pattern noise (FPN) effectively. One single channel ADC with an area less than 0.03mm2 was implemented in a 0.18μm 1P4M CMOS image sensor process. The resolution of the proposed ADC is 10-bit, and the conversion rate is 2MS/s. The measured differential nonlinearity (DNL) and integral nonlinearity (INL) are 0.62 LSB and 2.1 LSB together with CDS, respectively. The power consumption from 1.8V supply is only 0.36mW.

  14. Laser Doppler Perfusion Imaging with a high-speed CMOS-camera

    NASA Astrophysics Data System (ADS)

    Draijer, Matthijs J.; Hondebrink, Erwin; Steenbergen, Wiendelt; van Leeuwen, Ton G.

    2007-07-01

    The technique of Laser Doppler Perfusion Imaging (LDPI) is widely used for determining cerebral blood flow or skin perfusion in the case of burns. The commonly used Laser Doppler Perfusion Imagers are scanning systems which point by point scan the area under investigation and use a single photo detector to capture the photoelectric current to obtain a perfusion map. In that case the imaging time for a perfusion map of 64 x 64 pixels is around 5 minutes. Disadvantages of a long imaging time for in-vivo imaging are the bigger chance of movement artifacts, reduced comfort for the patient and the inability to follow fast changing perfusion conditions. We present a Laser Doppler Perfusion Imager which makes use of a high speed CMOS-camera. By illuminating the area under investigation and simultaneously taking images at high speed with the camera, it is possible to obtain a perfusion map of the area under investigation in a shorter period of time than with the commonly used Laser Doppler Perfusion Imagers.

  15. Towards real-time VMAT verification using a prototype, high-speed CMOS active pixel sensor

    NASA Astrophysics Data System (ADS)

    Zin, Hafiz M.; Harris, Emma J.; Osmond, John P. F.; Allinson, Nigel M.; Evans, Philip M.

    2013-05-01

    This work investigates the feasibility of using a prototype complementary metal oxide semiconductor active pixel sensor (CMOS APS) for real-time verification of volumetric modulated arc therapy (VMAT) treatment. The prototype CMOS APS used region of interest read out on the chip to allow fast imaging of up to 403.6 frames per second (f/s). The sensor was made larger (5.4 cm × 5.4 cm) using recent advances in photolithographic technique but retains fast imaging speed with the sensor's regional read out. There is a paradigm shift in radiotherapy treatment verification with the advent of advanced treatment techniques such as VMAT. This work has demonstrated that the APS can track multi leaf collimator (MLC) leaves moving at 18 mm s-1 with an automatic edge tracking algorithm at accuracy better than 1.0 mm even at the fastest imaging speed. Evaluation of the measured fluence distribution for an example VMAT delivery sampled at 50.4 f/s was shown to agree well with the planned fluence distribution, with an average gamma pass rate of 96% at 3%/3 mm. The MLC leaves motion and linac pulse rate variation delivered throughout the VMAT treatment can also be measured. The results demonstrate the potential of CMOS APS technology as a real-time radiotherapy dosimeter for delivery of complex treatments such as VMAT.

  16. A Dynamic Range Enhanced Readout Technique with a Two-Step TDC for High Speed Linear CMOS Image Sensors

    PubMed Central

    Gao, Zhiyuan; Yang, Congjie; Xu, Jiangtao; Nie, Kaiming

    2015-01-01

    This paper presents a dynamic range (DR) enhanced readout technique with a two-step time-to-digital converter (TDC) for high speed linear CMOS image sensors. A multi-capacitor and self-regulated capacitive trans-impedance amplifier (CTIA) structure is employed to extend the dynamic range. The gain of the CTIA is auto adjusted by switching different capacitors to the integration node asynchronously according to the output voltage. A column-parallel ADC based on a two-step TDC is utilized to improve the conversion rate. The conversion is divided into coarse phase and fine phase. An error calibration scheme is also proposed to correct quantization errors caused by propagation delay skew within −Tclk~+Tclk. A linear CMOS image sensor pixel array is designed in the 0.13 μm CMOS process to verify this DR-enhanced high speed readout technique. The post simulation results indicate that the dynamic range of readout circuit is 99.02 dB and the ADC achieves 60.22 dB SNDR and 9.71 bit ENOB at a conversion rate of 2 MS/s after calibration, with 14.04 dB and 2.4 bit improvement, compared with SNDR and ENOB of that without calibration. PMID:26561819

  17. High-Speed Scanning Interferometer Using CMOS Image Sensor and FPGA Based on Multifrequency Phase-Tracking Detection

    NASA Technical Reports Server (NTRS)

    Ohara, Tetsuo

    2012-01-01

    A sub-aperture stitching optical interferometer can provide a cost-effective solution for an in situ metrology tool for large optics; however, the currently available technologies are not suitable for high-speed and real-time continuous scan. NanoWave s SPPE (Scanning Probe Position Encoder) has been proven to exhibit excellent stability and sub-nanometer precision with a large dynamic range. This same technology can transform many optical interferometers into real-time subnanometer precision tools with only minor modification. The proposed field-programmable gate array (FPGA) signal processing concept, coupled with a new-generation, high-speed, mega-pixel CMOS (complementary metal-oxide semiconductor) image sensor, enables high speed (>1 m/s) and real-time continuous surface profiling that is insensitive to variation of pixel sensitivity and/or optical transmission/reflection. This is especially useful for large optics surface profiling.

  18. Novel CMOS time-delay integration using single-photon counting for high-speed industrial and aerospace applications

    NASA Astrophysics Data System (ADS)

    El-Desouki, Munir M.; Al-Azem, Badeea

    2014-03-01

    Time-delay integration (TDI) is a popular imaging technique that is used in many applications such as machine vision, dental scanning and satellite earth observation. One of the main advantages of using TDI imagers is the increased effective integration time that is achieved while maintaining high frame-rates. Another use for TDI imagers is with moving objects, such as the earth's surface or industrial machine vision applications, where integration time is limited in order to avoid motion blurs. Such technique may even find its way in mobile and consumer based imaging applications where the reduction in pixel size can limit the performance during low-light and high speed applications. Until recently, TDI was only used with charge-coupled devices (CCDs) mainly due to their charge transfer characteristics. CCDs however, are power consuming and slow when compared to CMOS technology and are no longer favorable for mobile applications. In this work, we report on novel single-photon counting based TDI technique that is implemented in standard CMOS technology allowing for complete camera-on-a-chip solution. The imager was fabricated in a standard CMOS 150 nm 5-metal digital process from LFoundry.

  19. On numerical simulation of high-speed CCD/CMOS-based wavefront sensors in adaptive optics

    NASA Astrophysics Data System (ADS)

    Konnik, Mikhail V.; Welsh, James Stuart

    2011-10-01

    Wavefront sensors, which use solid-state CCD or CMOS photosensors, are sources of errors in adaptive optic systems. Inaccuracy in the detection of wavefront distortions introduces considerable errors into wavefront reconstruction and leads to overall performance degradation of the adaptive optics system. The accuracy of wavefront sensors is significantly affected by photosensor noise. Thus, it is crucial to formulate high-level photosensor models that enable adaptive optic engineers to simulate realistic effects of noise from wavefront sensors. However, the complexity of solid-state photosensors and multiple noise sources makes it difficult to formulate an adequate model of the photosensor. Moreover, the characterisation of the simulated sensor and comparison with real hardware is often incomplete due to lack of comprehensive standards and guidelines. Owe to these difficulties, engineers work with oversimplified models of the wavefront sensors and consequently have imprecise numerical simulation results. The paper presents an approach for the modelling of noise sources for CCD and CMOS sensors that are used for wavefront sensing in adaptive optics. Both dark and light noise such as fixed pattern noise, photon shot noise, and read noises, as well as, charge-to-voltage noises are described. Procedures for characterisation of both light and dark noises of the simulated photosensors are provided. Numerical simulation results of a photosensor for a high-frame rate Shack-Hartmann wavefront sensor are presented.

  20. LGSD/NGSD: high speed optical CMOS imagers for E-ELT adaptive optics

    NASA Astrophysics Data System (ADS)

    Downing, Mark; Kolb, Johann; Balard, Philippe; Dierickx, Bart; Defernez, Arnaud; Feautrier, Philippe; Finger, Gert; Fryer, Martin; Gach, Jean-Luc; Guillaume, Christian; Hubin, Norbert; Jerram, Paul; Jorden, Paul; Meyer, Manfred; Payne, Andrew; Pike, Andrew; Reyes, Javier; Simpson, Robert; Stadler, Eric; Stent, Jeremy; Swift, Nick

    2014-07-01

    The success of the next generation of instruments for ELT class telescopes will depend upon improving the image quality by exploiting sophisticated Adaptive Optics (AO) systems. One of the critical components of the AO systems for the E-ELT has been identified as the optical Laser/Natural Guide Star WFS detector. The combination of large format, 1760×1680 pixels to finely sample the wavefront and the spot elongation of laser guide stars, fast frame rate of 700 frames per second (fps), low read noise (< 3e-), and high QE (> 90%) makes the development of this device extremely challenging. Design studies concluded that a highly integrated Backside Illuminated CMOS Imager built on High Resistivity silicon as the most likely technology to succeed. Two generations of the CMOS Imager are being developed: a) the already designed and manufactured NGSD (Natural Guide Star Detector), a quarter-sized pioneering device of 880×840 pixels capable of meeting first light needs of the E-ELT; b) the LGSD (Laser Guide Star Detector), the larger full size device. The detailed design is presented including the approach of using massive parallelism (70,400 ADCs) to achieve the low read noise at high pixel rates of ~3 Gpixel/s and the 88 channel LVDS 220Mbps serial interface to get the data off-chip. To enable read noise closer to the goal of 1e- to be achieved, a split wafer run has allowed the NGSD to be manufactured in the more speculative, but much lower read noise, Ultra Low Threshold Transistors in the unit cell. The NGSD has come out of production, it has been thinned to 12μm, backside processed and packaged in a custom 370pin Ceramic PGA (Pin Grid Array). First results of tests performed both at e2v and ESO are presented.

  1. Low power consumption high speed CMOS dual-modulus 15/16 prescaler for optical and wireless communications

    NASA Astrophysics Data System (ADS)

    Liu, Hui-Min; Zhang, Xiao-Xing; Dai, Yu-Jie; Lv, Ying-Jie

    2011-09-01

    Frequency synthesizer is an important part of optical and wireless communication system. Low power comsumption prescaler is one of the most critical unit of frequency synthesizer. For the frequency divider, it must be programmable for channel selection in multi-channel communication systems. A dual-modulus prescaler (DMP) is needed to provide variable division ratios. DMP is considered as a critical power dissipative block since it always operates at full speed. This paper introduces a high speed and low power complementary metal oxide semiconductor (CMOS) 15/16 DMP based on true single-phase-clock (TSPC) and transmission gates (TGs) cell. A conventional TSPC is optimized in terms of devices size, and it is resimulated. The TSPC is used in the synchronous and asynchronous counter. TGs are used in the control logic. The DMP circuit is implemented in 0.18 μm CMOS process. The simulation results are provided. The results show wide operating frequency range from 7.143 MHz to 4.76 GHz and it comsumes 3.625 mW under 1.8 V power supply voltage at 4.76 GHz.

  2. High Speed, Radiation Hard CMOS Pixel Sensors for Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Contarato, Devis; Denes, Peter; Doering, Dionisio; Joseph, John; Krieger, Brad

    CMOS monolithic active pixel sensors are currently being established as the technology of choice for new generation digital imaging systems in Transmission Electron Microscopy (TEM). A careful sensor design that couples μm-level pixel pitches with high frame rate readout and radiation hardness to very high electron doses enables the fabrication of direct electron detectors that are quickly revolutionizing high-resolution TEM imaging in material science and molecular biology. This paper will review the principal characteristics of this novel technology and its advantages over conventional, optically-coupled cameras, and retrace the sensor development driven by the Transmission Electron Aberration corrected Microscope (TEAM) project at the LBNL National Center for Electron Microscopy (NCEM), illustrating in particular the imaging capabilities enabled by single electron detection at high frame rate. Further, the presentation will report on the translation of the TEAM technology to a finer feature size process, resulting in a sensor with higher spatial resolution and superior radiation tolerance currently serving as the baseline for a commercial camera system.

  3. A Stimulated Raman Scattering CMOS Pixel Using a High-Speed Charge Modulator and Lock-in Amplifier

    PubMed Central

    Lioe, De Xing; Mars, Kamel; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Yamada, Takahiro; Hashimoto, Mamoru

    2016-01-01

    A complementary metal-oxide semiconductor (CMOS) lock-in pixel to observe stimulated Raman scattering (SRS) using a high speed lateral electric field modulator (LEFM) for photo-generated charges and in-pixel readout circuits is presented. An effective SRS signal generated after the SRS process is very small and needs to be extracted from an extremely large offset due to a probing laser signal. In order to suppress the offset components while amplifying high-frequency modulated small SRS signal components, the lock-in pixel uses a high-speed LEFM for demodulating the SRS signal, resistor-capacitor low-pass filter (RC-LPF) and switched-capacitor (SC) integrator with a fully CMOS differential amplifier. AC (modulated) components remained in the RC-LPF outputs are eliminated by the phase-adjusted sampling with the SC integrator and the demodulated DC (unmodulated) components due to the SRS signal are integrated over many samples in the SC integrator. In order to suppress further the residual offset and the low frequency noise (1/f noise) components, a double modulation technique is introduced in the SRS signal measurements, where the phase of high-frequency modulated laser beam before irradiation of a specimen is modulated at an intermediate frequency and the demodulation is done at the lock-in pixel output. A prototype chip for characterizing the SRS lock-in pixel is implemented and a successful operation is demonstrated. The reduction effects of residual offset and 1/f noise components are confirmed by the measurements. A ratio of the detected small SRS to offset a signal of less than 10−5 is experimentally demonstrated, and the SRS spectrum of a Benzonitrile sample is successfully observed. PMID:27089339

  4. A Stimulated Raman Scattering CMOS Pixel Using a High-Speed Charge Modulator and Lock-in Amplifier.

    PubMed

    Lioe, De Xing; Mars, Kamel; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Yamada, Takahiro; Hashimoto, Mamoru

    2016-01-01

    A complementary metal-oxide semiconductor (CMOS) lock-in pixel to observe stimulated Raman scattering (SRS) using a high speed lateral electric field modulator (LEFM) for photo-generated charges and in-pixel readout circuits is presented. An effective SRS signal generated after the SRS process is very small and needs to be extracted from an extremely large offset due to a probing laser signal. In order to suppress the offset components while amplifying high-frequency modulated small SRS signal components, the lock-in pixel uses a high-speed LEFM for demodulating the SRS signal, resistor-capacitor low-pass filter (RC-LPF) and switched-capacitor (SC) integrator with a fully CMOS differential amplifier. AC (modulated) components remained in the RC-LPF outputs are eliminated by the phase-adjusted sampling with the SC integrator and the demodulated DC (unmodulated) components due to the SRS signal are integrated over many samples in the SC integrator. In order to suppress further the residual offset and the low frequency noise (1/f noise) components, a double modulation technique is introduced in the SRS signal measurements, where the phase of high-frequency modulated laser beam before irradiation of a specimen is modulated at an intermediate frequency and the demodulation is done at the lock-in pixel output. A prototype chip for characterizing the SRS lock-in pixel is implemented and a successful operation is demonstrated. The reduction effects of residual offset and 1/f noise components are confirmed by the measurements. A ratio of the detected small SRS to offset a signal of less than 10(-)⁵ is experimentally demonstrated, and the SRS spectrum of a Benzonitrile sample is successfully observed. PMID:27089339

  5. High-speed modulator with interleaved junctions in zero-change CMOS photonics

    NASA Astrophysics Data System (ADS)

    Alloatti, L.; Cheian, D.; Ram, R. J.

    2016-03-01

    A microring depletion modulator is demonstrated with T-shaped lateral p-n junctions used to realize efficient modulation while maximizing the RC limited bandwidth. The device having a 3 dB bandwidth of 13 GHz has been fabricated in a standard 45 nm microelectronics CMOS process. The cavity has a linewidth of 17 GHz and an average wavelength-shift of 9 pm/V in reverse-bias conditions.

  6. Optimal high speed CMOS inverter design using craziness based Particle Swarm Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    De, Bishnu P.; Kar, Rajib; Mandal, Durbadal; Ghoshal, Sakti P.

    2015-07-01

    The inverter is the most fundamental logic gate that performs a Boolean operation on a single input variable. In this paper, an optimal design of CMOS inverter using an improved version of particle swarm optimization technique called Craziness based Particle Swarm Optimization (CRPSO) is proposed. CRPSO is very simple in concept, easy to implement and computationally efficient algorithm with two main advantages: it has fast, nearglobal convergence, and it uses nearly robust control parameters. The performance of PSO depends on its control parameters and may be influenced by premature convergence and stagnation problems. To overcome these problems the PSO algorithm has been modiffed to CRPSO in this paper and is used for CMOS inverter design. In birds' flocking or ffsh schooling, a bird or a ffsh often changes direction suddenly. In the proposed technique, the sudden change of velocity is modelled by a direction reversal factor associated with the previous velocity and a "craziness" velocity factor associated with another direction reversal factor. The second condition is introduced depending on a predeffned craziness probability to maintain the diversity of particles. The performance of CRPSO is compared with real code.gnetic algorithm (RGA), and conventional PSO reported in the recent literature. CRPSO based design results are also compared with the PSPICE based results. The simulation results show that the CRPSO is superior to the other algorithms for the examples considered and can be efficiently used for the CMOS inverter design.

  7. PNP PIN bipolar phototransistors for high-speed applications built in a 180 nm CMOS process

    PubMed Central

    Kostov, P.; Gaberl, W.; Hofbauer, M.; Zimmermann, H.

    2012-01-01

    This work reports on three speed optimized pnp bipolar phototransistors build in a standard 180 nm CMOS process using a special starting wafer. The starting wafer consists of a low doped p epitaxial layer on top of the p substrate. This low doped p epitaxial layer leads to a thick space-charge region between base and collector and thus to a high −3 dB bandwidth at low collector–emitter voltages. For a further increase of the bandwidth the presented phototransistors were designed with small emitter areas resulting in a small base-emitter capacitance. The three presented phototransistors were implemented in sizes of 40 × 40 μm2 and 100 × 100 μm2. Optical DC and AC measurements at 410 nm, 675 nm and 850 nm were done for phototransistor characterization. Due to the speed optimized design and the layer structure of the phototransistors, bandwidths up to 76.9 MHz and dynamic responsivities up to 2.89 A/W were achieved. Furthermore simulations of the electric field strength and space-charge regions were done. PMID:23482349

  8. High speed CMOS imager with motion artifact supression and anti-blooming

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Wrigley, Chris (Inventor); Yang, Guang (Inventor); Yadid-Pecht, Orly (Inventor)

    2001-01-01

    An image sensor includes pixels formed on a semiconductor substrate. Each pixel includes a photoactive region in the semiconductor substrate, a sense node, and a power supply node. A first electrode is disposed near a surface of the semiconductor substrate. A bias signal on the first electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the sense node. A second electrode is disposed near the surface of the semiconductor substrate. A bias signal on the second electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the power supply node. The image sensor includes a controller that causes bias signals to be provided to the electrodes so that photocharges generated in the photoactive region are accumulated in the photoactive region during a pixel integration period, the accumulated photocharges are transferred to the sense node during a charge transfer period, and photocharges generated in the photoactive region are transferred to the power supply node during a third period without passing through the sense node. The imager can operate at high shutter speeds with simultaneous integration of pixels in the array. High quality images can be produced free from motion artifacts. High quantum efficiency, good blooming control, low dark current, low noise and low image lag can be obtained.

  9. A 12-bit high-speed column-parallel two-step single-slope analog-to-digital converter (ADC) for CMOS image sensors.

    PubMed

    Lyu, Tao; Yao, Suying; Nie, Kaiming; Xu, Jiangtao

    2014-01-01

    A 12-bit high-speed column-parallel two-step single-slope (SS) analog-to-digital converter (ADC) for CMOS image sensors is proposed. The proposed ADC employs a single ramp voltage and multiple reference voltages, and the conversion is divided into coarse phase and fine phase to improve the conversion rate. An error calibration scheme is proposed to correct errors caused by offsets among the reference voltages. The digital-to-analog converter (DAC) used for the ramp generator is based on the split-capacitor array with an attenuation capacitor. Analysis of the DAC's linearity performance versus capacitor mismatch and parasitic capacitance is presented. A prototype 1024 × 32 Time Delay Integration (TDI) CMOS image sensor with the proposed ADC architecture has been fabricated in a standard 0.18 μm CMOS process. The proposed ADC has average power consumption of 128 μW and a conventional rate 6 times higher than the conventional SS ADC. A high-quality image, captured at the line rate of 15.5 k lines/s, shows that the proposed ADC is suitable for high-speed CMOS image sensors.

  10. A high-speed CMOS image sensor with column-parallel single capacitor CDSs and single-slope ADCs

    NASA Astrophysics Data System (ADS)

    Li, Quanliang; Shi, Cong; Wu, Nanjian

    2011-08-01

    This paper presents a high speed CMOS image sensor (CIS) with column-parallel single capacitor correlated double samplings (CDSs), programmable gain amplifiers (PGAs) and single-slope analog-to-digital converters (ADCs). The single capacitor CDS circuit has only one capacitor so that the area CDS circuit is small. In order to attain appropriate image contrast under different light conditions, the signal range can be adjusted by PGA. Single-slope ADC has smaller chip area than others ADCs and is suitable for column-parallel CIS architectures. A prototype sensor of 256x256 pixels was realized in a 0.13μm 1P3M CIS process. Its pixel circuit is 4T active pixel sensor (APS) and pixel size is 10x10μm2. Total chip area is 4x4mm2. The prototype achieves the full frame rate in excess of 250 frames per second, the sensitivity of 10.7V/lx•s, the conversion gain of 55.6μV/e and the column-to- column fixed-pattern noise (FPN) 0.41%.

  11. Binary CMOS image sensor with a gate/body-tied MOSFET-type photodetector for high-speed operation

    NASA Astrophysics Data System (ADS)

    Choi, Byoung-Soo; Jo, Sung-Hyun; Bae, Myunghan; Kim, Sang-Hwan; Shin, Jang-Kyoo

    2016-05-01

    In this paper, a binary complementary metal oxide semiconductor (CMOS) image sensor with a gate/body-tied (GBT) metal oxide semiconductor field effect transistor (MOSFET)-type photodetector is presented. The sensitivity of the GBT MOSFET-type photodetector, which was fabricated using the standard CMOS 0.35-μm process, is higher than the sensitivity of the p-n junction photodiode, because the output signal of the photodetector is amplified by the MOSFET. A binary image sensor becomes more efficient when using this photodetector. Lower power consumptions and higher speeds of operation are possible, compared to the conventional image sensors using multi-bit analog to digital converters (ADCs). The frame rate of the proposed image sensor is over 2000 frames per second, which is higher than those of the conventional CMOS image sensors. The output signal of an active pixel sensor is applied to a comparator and compared with a reference level. The 1-bit output data of the binary process is determined by this level. To obtain a video signal, the 1-bit output data is stored in the memory and is read out by horizontal scanning. The proposed chip is composed of a GBT pixel array (144 × 100), binary-process circuit, vertical scanner, horizontal scanner, and readout circuit. The operation mode can be selected from between binary mode and multi-bit mode.

  12. Design of High Speed and Low Offset Dynamic Latch Comparator in 0.18 µm CMOS Process

    PubMed Central

    Rahman, Labonnah Farzana; Reaz, Mamun Bin Ibne; Yin, Chia Chieu; Ali, Mohammad Alauddin Mohammad; Marufuzzaman, Mohammad

    2014-01-01

    The cross-coupled circuit mechanism based dynamic latch comparator is presented in this research. The comparator is designed using differential input stages with regenerative S-R latch to achieve lower offset, lower power, higher speed and higher resolution. In order to decrease circuit complexity, a comparator should maintain power, speed, resolution and offset-voltage properly. Simulations show that this novel dynamic latch comparator designed in 0.18 µm CMOS technology achieves 3.44 mV resolution with 8 bit precision at a frequency of 50 MHz while dissipating 158.5 µW from 1.8 V supply and 88.05 µA average current. Moreover, the proposed design propagates as fast as 4.2 nS with energy efficiency of 0.7 fJ/conversion-step. Additionally, the core circuit layout only occupies 0.008 mm2. PMID:25299266

  13. High speed sCMOS-based oblique plane microscopy applied to the study of calcium dynamics in cardiac myocytes.

    PubMed

    Sikkel, Markus B; Kumar, Sunil; Maioli, Vincent; Rowlands, Christina; Gordon, Fabiana; Harding, Sian E; Lyon, Alexander R; MacLeod, Kenneth T; Dunsby, Chris

    2016-03-01

    Oblique plane microscopy (OPM) is a form of light sheet microscopy that uses a single high numerical aperture microscope objective for both fluorescence excitation and collection. In this paper, measurements of the relative collection efficiency of OPM are presented. An OPM system incorporating two sCMOS cameras is then introduced that enables single isolated cardiac myocytes to be studied continuously for 22 seconds in two dimensions at 667 frames per second with 960 × 200 pixels and for 30 seconds with 960 × 200 × 20 voxels at 25 volumes per second. In both cases OPM is able to record in two spectral channels, enabling intracellular calcium to be studied via the probe Fluo-4 AM simultaneously with the sarcolemma and transverse tubule network via the membrane dye Cellmask Orange. The OPM system was then applied to determine the spatial origin of spontaneous calcium waves for the first time and to measure the cell transverse tubule structure at their point of origin. Further results are presented to demonstrate that the OPM system can also be used to study calcium spark parameters depending on their relationship to the transverse tubule structure. PMID:26488431

  14. High-voltage CMOS detectors

    NASA Astrophysics Data System (ADS)

    Ehrler, F.; Blanco, R.; Leys, R.; Perić, I.

    2016-07-01

    High-voltage CMOS (HVCMOS) pixel sensors are depleted active pixel sensors implemented in standard commercial CMOS processes. The sensor element is the n-well/p-substrate diode. The sensor electronics are entirely placed inside the n-well which is at the same time used as the charge collection electrode. High voltage is used to deplete the part of the substrate around the n-well. HVCMOS sensors allow implementation of complex in-pixel electronics. This, together with fast signal collection, allows a good time resolution, which is required for particle tracking in high energy physics. HVCMOS sensors will be used in Mu3e experiment at PSI and are considered as an option for both ATLAS and CLIC (CERN). Radiation tolerance and time walk compensation have been tested and results are presented.

  15. A high-speed two-frame, 1-2 ns gated X-ray CMOS imager used as a hohlraum diagnostic on the National Ignition Facility (invited)

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Palmer, N.; Dayton, M.; Carpenter, A.; Schneider, M. B.; Bell, P. M.; Bradley, D. K.; Claus, L. D.; Fang, L.; Hilsabeck, T.; Hohenberger, M.; Jones, O. S.; Kilkenny, J. D.; Kimmel, M. W.; Robertson, G.; Rochau, G.; Sanchez, M. O.; Stahoviak, J. W.; Trotter, D. C.; Porter, J. L.

    2016-11-01

    A novel x-ray imager, which takes time-resolved gated images along a single line-of-sight, has been successfully implemented at the National Ignition Facility (NIF). This Gated Laser Entrance Hole diagnostic, G-LEH, incorporates a high-speed multi-frame CMOS x-ray imager developed by Sandia National Laboratories to upgrade the existing Static X-ray Imager diagnostic at NIF. The new diagnostic is capable of capturing two laser-entrance-hole images per shot on its 1024 × 448 pixels photo-detector array, with integration times as short as 1.6 ns per frame. Since its implementation on NIF, the G-LEH diagnostic has successfully acquired images from various experimental campaigns, providing critical new information for understanding the hohlraum performance in inertial confinement fusion (ICF) experiments, such as the size of the laser entrance hole vs. time, the growth of the laser-heated gold plasma bubble, the change in brightness of inner beam spots due to time-varying cross beam energy transfer, and plasma instability growth near the hohlraum wall.

  16. A 12-bit compact column-parallel SAR ADC with dynamic power control technique for high-speed CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Quanliang, Li; Liyuan, Liu; Ye, Han; Zhongxiang, Cao; Nanjian, Wu

    2014-10-01

    This paper presents a 12-bit column-parallel successive approximation register analog-to-digital converter (SAR ADC) for high-speed CMOS image sensors. A segmented binary-weighted switched capacitor digital-to-analog converter (CDAC) and a staggered structure MOM unit capacitor is used to reduce the ADC area and to make its layout fit double pixel pitches. An electrical field shielding layout method is proposed to eliminate the parasitic capacitance on the top plate of the unit capacitor. A dynamic power control technique is proposed to reduce the power consumption of a single channel during readout. An off-chip foreground digital calibration is adopted to compensate for the nonlinearity due to the mismatch of unit capacitors among the CDAC. The prototype SAR ADC is fabricated in a 0.18 μm 1P5M CIS process. A single SAR ADC occupies 20 × 2020 μm2. Sampling at 833 kS/s, the measured differential nonlinearity, integral nonlinearity and effective number of bits of SAR ADC with calibration are 0.9/-1 LSB, 1/-1.1 LSB and 11.24 bits, respectively; the power consumption is only 0.26 mW under a 1.8-V supply and decreases linearly as the frame rate decreases.

  17. Observations of in situ deep-sea marine bioluminescence with a high-speed, high-resolution sCMOS camera

    NASA Astrophysics Data System (ADS)

    Phillips, Brennan T.; Gruber, David F.; Vasan, Ganesh; Roman, Christopher N.; Pieribone, Vincent A.; Sparks, John S.

    2016-05-01

    Observing and measuring marine bioluminescence in situ presents unique challenges, characterized by the difficult task of approaching and imaging weakly illuminated bodies in a three-dimensional environment. To address this problem, a scientific complementary-metal-oxide-semiconductor (sCMOS) microscopy camera was outfitted for deep-sea imaging of marine bioluminescence. This system was deployed on multiple platforms (manned submersible, remotely operated vehicle, and towed body) in three oceanic regions (Western Tropical Pacific, Eastern Equatorial Pacific, and Northwestern Atlantic) to depths up to 2500 m. Using light stimulation, bioluminescent responses were recorded at high frame rates and in high resolution, offering unprecedented low-light imagery of deep-sea bioluminescence in situ. The kinematics of light production in several zooplankton groups was observed, and luminescent responses at different depths were quantified as intensity vs. time. These initial results signify a clear advancement in the bioluminescent imaging methods available for observation and experimentation in the deep-sea.

  18. High-temperature Complementary Metal Oxide Semiconductors (CMOS)

    NASA Technical Reports Server (NTRS)

    Mcbrayer, J. D.

    1981-01-01

    The results of an investigation into the possibility of using complementary metal oxide semiconductor (CMOS) technology for high temperature electronics are presented. A CMOS test chip was specifically developed as the test bed. This test chip incorporates CMOS transistors that have no gate protection diodes; these diodes are the major cause of leakage in commercial devices.

  19. High gain CMOS image sensor design and fabrication on SOI and bulk technology

    NASA Astrophysics Data System (ADS)

    Zhang, Weiquan

    2000-12-01

    The CMOS imager is now competing with the CCD imager, which still dominates the electronic imaging market. By taking advantage of the mature CMOS technology, the CMOS imager can integrate AID converters, digital signal processing (DSP) and timing control circuits on the same chip. This low cost and high-density integration solution to the image capture is the strong driving force in industry. Silicon on insulator (SOI) is considered as the coming mainstream technology. It challenges the current bulk CMOS technology because of its reduced power consumption, high speed, radiation hardness etc. Moving the CMOS imager from the bulk to the SOI substrate will benefit from these intrinsic advantages. In addition, the blooming and the cross-talk between the pixels of the sensor array can be ideally eliminated, unlike those on the bulk technology. Though there are many advantages to integrate CMOS imager on SOI, the problem is that the top silicon film is very thin, such as 2000Å. Many photons can just pass through this layer without being absorbed. A good photo-detector on SOI is critical to integrate SOI CMOS imagers. In this thesis, several methods to make photo-detectors on SOI substrate are investigated. A floating gate MOSFET on SOI substrate, operating in its lateral bipolar mode, is photon sensitive. One step further, the SOI MOSFET gate and body can be tied together. The positive feedback between the body and gate enables this device have a high responsivity. A similar device can be found on the bulk CMOS technology: the gate-well tied PMOSFET. A 32 x 32 CMOS imager is designed and characterized using such a device as the light-sensing element. I also proposed the idea of building hybrid active pixels on SOI substrate. Such devices are fabricated and characterized. The work here represents my contribution on the CMOS imager, especially moving the CMOS imager onto the SOI substrate.

  20. High speed handpieces.

    PubMed

    Bhandary, Nayan; Desai, Asavari; Shetty, Y Bharath

    2014-02-01

    High speed instruments are versatile instruments used by clinicians of all specialties of dentistry. It is important for clinicians to understand the types of high speed handpieces available and the mechanism of working. The centers for disease control and prevention have issued guidelines time and again for disinfection and sterilization of high speed handpieces. This article presents the recent developments in the design of the high speed handpieces. With a view to prevent hospital associated infections significant importance has been given to disinfection, sterilization & maintenance of high speed handpieces. How to cite the article: Bhandary N, Desai A, Shetty YB. High speed handpieces. J Int Oral Health 2014;6(1):130-2.

  1. High speed handpieces

    PubMed Central

    Bhandary, Nayan; Desai, Asavari; Shetty, Y Bharath

    2014-01-01

    High speed instruments are versatile instruments used by clinicians of all specialties of dentistry. It is important for clinicians to understand the types of high speed handpieces available and the mechanism of working. The centers for disease control and prevention have issued guidelines time and again for disinfection and sterilization of high speed handpieces. This article presents the recent developments in the design of the high speed handpieces. With a view to prevent hospital associated infections significant importance has been given to disinfection, sterilization & maintenance of high speed handpieces. How to cite the article: Bhandary N, Desai A, Shetty YB. High speed handpieces. J Int Oral Health 2014;6(1):130-2. PMID:24653618

  2. CMOS sensors in 90 nm fabricated on high resistivity wafers: Design concept and irradiation results

    NASA Astrophysics Data System (ADS)

    Rivetti, A.; Battaglia, M.; Bisello, D.; Caselle, M.; Chalmet, P.; Costa, M.; Demaria, N.; Giubilato, P.; Ikemoto, Y.; Kloukinas, K.; Mansuy, C.; Marchioro, A.; Mugnier, H.; Pantano, D.; Potenza, A.; Rousset, J.; Silvestrin, L.; Wyss, J.

    2013-12-01

    The LePix project aims at improving the radiation hardness and the readout speed of monolithic CMOS sensors through the use of standard CMOS technologies fabricated on high resistivity substrates. In this context, high resistivity means beyond 400 Ω cm, which is at least one order of magnitude greater than the typical value (1 - 10 Ω cm) adopted for integrated circuit production. The possibility of employing these lightly doped substrates was offered by one foundry for an otherwise standard 90 nm CMOS process. In the paper, the case for such a development is first discussed. The sensor design is then described, along with the key challenges encountered in fabricating the detecting element in a very deep submicron process. Finally, irradiation results obtained on test matrices are reported.

  3. High-performance VGA-resolution digital color CMOS imager

    NASA Astrophysics Data System (ADS)

    Agwani, Suhail; Domer, Steve; Rubacha, Ray; Stanley, Scott

    1999-04-01

    This paper discusses the performance of a new VGA resolution color CMOS imager developed by Motorola on a 0.5micrometers /3.3V CMOS process. This fully integrated, high performance imager has on chip timing, control, and analog signal processing chain for digital imaging applications. The picture elements are based on 7.8micrometers active CMOS pixels that use pinned photodiodes for higher quantum efficiency and low noise performance. The image processing engine includes a bank of programmable gain amplifiers, line rate clamping for dark offset removal, real time auto white balancing, per column gain and offset calibration, and a 10 bit pipelined RSD analog to digital converter with a programmable input range. Post ADC signal processing includes features such as bad pixel replacement based on user defined thresholds levels, 10 to 8 bit companding and 5 tap FIR filtering. The sensor can be programmed via a standard I2C interface that runs on 3.3V clocks. Programmable features include variable frame rates using a constant frequency master clock, electronic exposure control, continuous or single frame capture, progressive or interlace scanning modes. Each pixel is individually addressable allowing region of interest imaging and image subsampling. The sensor operates with master clock frequencies of up to 13.5MHz resulting in 30FPS. A total programmable gain of 27dB is available. The sensor power dissipation is 400mW at full speed of operation. The low noise design yields a measured 'system on a chip' dynamic range of 50dB thus giving over 8 true bits of resolution. Extremely high conversion gain result in an excellent peak sensitivity of 22V/(mu) J/cm2 or 3.3V/lux-sec. This monolithic image capture and processing engine represent a compete imaging solution making it a true 'camera on a chip'. Yet in its operation it remains extremely easy to use requiring only one clock and a 3.3V power supply. Given the available features and performance levels, this sensor will be

  4. High-Speed Photography

    SciTech Connect

    Paisley, D.L.; Schelev, M.Y.

    1998-08-01

    The applications of high-speed photography to a diverse set of subjects including inertial confinement fusion, laser surgical procedures, communications, automotive airbags, lightning etc. are briefly discussed. (AIP) {copyright} {ital 1998 Society of Photo-Optical Instrumentation Engineers.}

  5. High Speed Research Program

    NASA Technical Reports Server (NTRS)

    Anderson, Robert E.; Corsiglia, Victor R.; Schmitz, Frederic H. (Technical Monitor)

    1994-01-01

    An overview of the NASA High Speed Research Program will be presented from a NASA Headquarters perspective. The presentation will include the objectives of the program and an outline of major programmatic issues.

  6. A CMOS 0.18 μm 600 MHz clock multiplier PLL and a pseudo-LVDS driver for the high speed data transmission for the ALICE Inner Tracking System front-end chip

    NASA Astrophysics Data System (ADS)

    Lattuca, A.; Mazza, G.; Aglieri Rinella, G.; Cavicchioli, C.; Chanlek, N.; Collu, A.; Degerli, Y.; Dorokhov, A.; Flouzat, C.; Gajanana, D.; Gao, C.; Guilloux, F.; Hillemanns, H.; Hristozkov, S.; Junique, A.; Keil, M.; Kim, D.; Kofarago, M.; Kugathasan, T.; Kwon, Y.; Mager, M.; Sielewicz, K. Marek; Marin Tobon, C. Augusto; Marras, D.; Martinengo, P.; Mugnier, H.; Musa, L.; Pham, T. Hung; Puggioni, C.; Reidt, F.; Riedler, P.; Rousset, J.; Siddhanta, S.; Snoeys, W.; Song, M.; Usai, G.; Van Hoorne, J. Willem; Yang, P.

    2016-01-01

    This work presents the 600 MHz clock multiplier PLL and the pseudo-LVDS driver which are two essential components of the Data Transmission Unit (DTU), a fast serial link for the 1.2 Gb/s data transmission of the ALICE inner detector front-end chip (ALPIDE). The PLL multiplies the 40 MHz input clock in order to obtain the 600 MHz and the 200 MHz clock for a fast serializer which works in Double Data Rate mode. The outputs of the serializer feed the pseudo-LVDS driver inputs which transmits the data from the pixel chip to the patch panel with a limited number of signal lines. The driver drives a 5.3 m-6.5 m long differential transmission line by steering a maximum of 5 mA of current at the target speed. To overcome bandwidth limitations coming from the long cables the pre-emphasis can be applied to the output. Currents for the main and pre-emphasis driver can individually be adjusted using on-chip digital-to-analog converters. The circuits will be integrated in the pixel chip and are designed in the same 0.18 μm CMOS technology and will operate from the same 1.8 V supply. Design and test results of both circuits are presented.

  7. High speed civil transport

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.

    1992-01-01

    The design requirements of the High Speed Civil Transport (HSCT) are discussed. The following design concerns are presented: (1) environmental impact (emissions and noise); (2) critical components (the high temperature combustor and the lightweight exhaust nozzle); and (3) advanced materials (high temperature ceramic matrix composites (CMC's)/intermetallic matrix composites (IMC's)/metal matrix composites (MMC's)).

  8. High Speed Ice Friction

    NASA Astrophysics Data System (ADS)

    Seymour-Pierce, Alexandra; Sammonds, Peter; Lishman, Ben

    2014-05-01

    Many different tribological experiments have been run to determine the frictional behaviour of ice at high speeds, ostensibly with the intention of applying results to everyday fields such as winter tyres and sports. However, experiments have only been conducted up to linear speeds of several metres a second, with few additional subject specific studies reaching speeds comparable to these applications. Experiments were conducted in the cold rooms of the Rock and Ice Physics Laboratory, UCL, on a custom built rotational tribometer based on previous literature designs. Preliminary results from experiments run at 2m/s for ice temperatures of 271 and 263K indicate that colder ice has a higher coefficient of friction, in accordance with the literature. These results will be presented, along with data from further experiments conducted at temperatures between 259-273K (in order to cover a wide range of the temperature dependent behaviour of ice) and speeds of 2-15m/s to produce a temperature-velocity-friction map for ice. The effect of temperature, speed and slider geometry on the deformation of ice will also be investigated. These speeds are approaching those exhibited by sports such as the luge (where athletes slide downhill on an icy track), placing the tribological work in context.

  9. High speed door assembly

    DOEpatents

    Shapiro, Carolyn

    1993-01-01

    A high speed door assembly, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  10. High speed door assembly

    DOEpatents

    Shapiro, C.

    1993-04-27

    A high speed door assembly is described, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  11. PALM and STORM: Into large fields and high-throughput microscopy with sCMOS detectors.

    PubMed

    Almada, Pedro; Culley, Siân; Henriques, Ricardo

    2015-10-15

    Single Molecule Localization Microscopy (SMLM) techniques such as Photo-Activation Localization Microscopy (PALM) and Stochastic Optical Reconstruction Microscopy (STORM) enable fluorescence microscopy super-resolution: the overcoming of the resolution barrier imposed by the diffraction of light. These techniques are based on acquiring hundreds or thousands of images of single molecules, locating them and reconstructing a higher-resolution image from the high-precision localizations. These methods generally imply a considerable trade-off between imaging speed and resolution, limiting their applicability to high-throughput workflows. Recent advancements in scientific Complementary Metal-Oxide Semiconductor (sCMOS) camera sensors and localization algorithms reduce the temporal requirements for SMLM, pushing it toward high-throughput microscopy. Here we outline the decisions researchers face when considering how to adapt hardware on a new system for sCMOS sensors with high-throughput in mind. PMID:26079924

  12. High Speed Vortex Flows

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.

    2000-01-01

    A review of the research conducted at the National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data reviewed is for flat plates, cavities, bodies, missiles, wings, and aircraft. These data are presented and discussed relative to the design of future vehicles. Also presented is a brief historical review of the extensive body of high-speed vortex flow research from the 1940s to the present in order to provide perspective of the NASA LaRC's high-speed research results. Data are presented which show the types of vortex structures which occur at supersonic speeds and the impact of these flow structures to vehicle performance and control is discussed. The data presented shows the presence of both small- and large scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices and the downstream fins. It was shown that these vortex flow interference effects could be both positive and negative. Data are shown which highlights the effect that leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber has on the aerodynamics of and flow over delta wings. The observed flow fields for delta wings (i.e. separation bubble, classical vortex, vortex with shock, etc.) are discussed in the context of' aircraft design. And data have been shown that indicate that aerodynamic performance improvements are available by considering vortex flows as a primary design feature. Finally a discussing of a design approach for wings which utilize vortex flows for improved aerodynamic performance at supersonic speed is presented.

  13. High speed door assembly

    SciTech Connect

    Shapiro, C.

    1991-12-31

    This invention is comprised of a high speed door assembly, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  14. High speed civil transport

    NASA Technical Reports Server (NTRS)

    Bogardus, Scott; Loper, Brent; Nauman, Chris; Page, Jeff; Parris, Rusty; Steinbach, Greg

    1990-01-01

    The design process of the High Speed Civil Transport (HSCT) combines existing technology with the expectation of future technology to create a Mach 3.0 transport. The HSCT was designed to have a range in excess of 6000 nautical miles and carry up to 300 passengers. This range will allow the HSCT to service the economically expanding Pacific Basin region. Effort was made in the design to enable the aircraft to use conventional airports with standard 12,000 foot runways. With a takeoff thrust of 250,000 pounds, the four supersonic through-flow engines will accelerate the HSCT to a cruise speed of Mach 3.0. The 679,000 pound (at takeoff) HSCT is designed to cruise at an altitude of 70,000 feet, flying above most atmospheric disturbances.

  15. High-Voltage-Input Level Translator Using Standard CMOS

    NASA Technical Reports Server (NTRS)

    Yager, Jeremy A.; Mojarradi, Mohammad M.; Vo, Tuan A.; Blalock, Benjamin J.

    2011-01-01

    proposed integrated circuit would translate (1) a pair of input signals having a low differential potential and a possibly high common-mode potential into (2) a pair of output signals having the same low differential potential and a low common-mode potential. As used here, "low" and "high" refer to potentials that are, respectively, below or above the nominal supply potential (3.3 V) at which standard complementary metal oxide/semiconductor (CMOS) integrated circuits are designed to operate. The input common-mode potential could lie between 0 and 10 V; the output common-mode potential would be 2 V. This translation would make it possible to process the pair of signals by use of standard 3.3-V CMOS analog and/or mixed-signal (analog and digital) circuitry on the same integrated-circuit chip. A schematic of the circuit is shown in the figure. Standard 3.3-V CMOS circuitry cannot withstand input potentials greater than about 4 V. However, there are many applications that involve low-differential-potential, high-common-mode-potential input signal pairs and in which standard 3.3-V CMOS circuitry, which is relatively inexpensive, would be the most appropriate circuitry for performing other functions on the integrated-circuit chip that handles the high-potential input signals. Thus, there is a need to combine high-voltage input circuitry with standard low-voltage CMOS circuitry on the same integrated-circuit chip. The proposed circuit would satisfy this need. In the proposed circuit, the input signals would be coupled into both a level-shifting pair and a common-mode-sensing pair of CMOS transistors. The output of the level-shifting pair would be fed as input to a differential pair of transistors. The resulting differential current output would pass through six standoff transistors to be mirrored into an output branch by four heterojunction bipolar transistors. The mirrored differential current would be converted back to potential by a pair of diode-connected transistors

  16. Micromachined high-performance RF passives in CMOS substrate

    NASA Astrophysics Data System (ADS)

    Li, Xinxin; Ni, Zao; Gu, Lei; Wu, Zhengzheng; Yang, Chen

    2016-11-01

    This review systematically addresses the micromachining technologies used for the fabrication of high-performance radio-frequency (RF) passives that can be integrated into low-cost complementary metal-oxide semiconductor (CMOS)-grade (i.e. low-resistivity) silicon wafers. With the development of various kinds of post-CMOS-compatible microelectromechanical systems (MEMS) processes, 3D structural inductors/transformers, variable capacitors, tunable resonators and band-pass/low-pass filters can be compatibly integrated into active integrated circuits to form monolithic RF system-on-chips. By using MEMS processes, including substrate modifying/suspending and LIGA-like metal electroplating, both the highly lossy substrate effect and the resistive loss can be largely eliminated and depressed, thereby meeting the high-performance requirements of telecommunication applications.

  17. High speed flywheel

    DOEpatents

    McGrath, Stephen V.

    1991-01-01

    A flywheel for operation at high speeds utilizes two or more ringlike coments arranged in a spaced concentric relationship for rotation about an axis and an expansion device interposed between the components for accommodating radial growth of the components resulting from flywheel operation. The expansion device engages both of the ringlike components, and the structure of the expansion device ensures that it maintains its engagement with the components. In addition to its expansion-accommodating capacity, the expansion device also maintains flywheel stiffness during flywheel operation.

  18. High speed transient sampler

    DOEpatents

    McEwan, T.E.

    1995-11-28

    A high speed sampler comprises a meandered sample transmission line for transmitting an input signal, a straight strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates along the transmission lines. The sampling gates comprise a four terminal diode bridge having a first strobe resistor connected from a first terminal of the bridge to the positive strobe line, a second strobe resistor coupled from the third terminal of the bridge to the negative strobe line, a tap connected to the second terminal of the bridge and to the sample transmission line, and a sample holding capacitor connected to the fourth terminal of the bridge. The resistance of the first and second strobe resistors is much higher than the signal transmission line impedance in the preferred system. This results in a sampling gate which applies a very small load on the sample transmission line and on the strobe generator. The sample holding capacitor is implemented using a smaller capacitor and a larger capacitor isolated from the smaller capacitor by resistance. The high speed sampler of the present invention is also characterized by other optimizations, including transmission line tap compensation, stepped impedance strobe line, a multi-layer physical layout, and unique strobe generator design. A plurality of banks of such samplers are controlled for concatenated or interleaved sample intervals to achieve long sample lengths or short sample spacing. 17 figs.

  19. High speed transient sampler

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    A high speed sampler comprises a meandered sample transmission line for transmitting an input signal, a straight strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates along the transmission lines. The sampling gates comprise a four terminal diode bridge having a first strobe resistor connected from a first terminal of the bridge to the positive strobe line, a second strobe resistor coupled from the third terminal of the bridge to the negative strobe line, a tap connected to the second terminal of the bridge and to the sample transmission line, and a sample holding capacitor connected to the fourth terminal of the bridge. The resistance of the first and second strobe resistors is much higher than the signal transmission line impedance in the preferred system. This results in a sampling gate which applies a very small load on the sample transmission line and on the strobe generator. The sample holding capacitor is implemented using a smaller capacitor and a larger capacitor isolated from the smaller capacitor by resistance. The high speed sampler of the present invention is also characterized by other optimizations, including transmission line tap compensation, stepped impedance strobe line, a multi-layer physical layout, and unique strobe generator design. A plurality of banks of such samplers are controlled for concatenated or interleaved sample intervals to achieve long sample lengths or short sample spacing.

  20. A 1-V TSPC Dual Modulus Prescaler with Speed Scalability Using Forward Body Biasing in 0.18µm CMOS

    NASA Astrophysics Data System (ADS)

    Shin, Hyunchol

    The operating speed scalability is demonstrated by using the forward body biasing method for a 1-V 0.18-µm CMOS true single-phase clocking (TSPC) dual-modulus prescaler. With the forward body bias voltage varying between 0 and 0.4V, the maximum operating speed changes by about 40-50% and the maximum input sensitivity frequency changes by about 400%. This speed scalability is achieved with less than 0.5-dB phase noise degradation. This demonstration indicates that the forward body biasing method is instrumental to build a cost-saving power-efficient 1-V 0.18-µm CMOS radio for low-power WBAN and WSN applications.

  1. Fully depleted, thick, monolithic CMOS pixels with high quantum efficiency

    NASA Astrophysics Data System (ADS)

    Clarke, A.; Stefanov, K.; Johnston, N.; Holland, A.

    2015-04-01

    The Centre for Electronic Imaging (CEI) has an active programme of evaluating and designing Complementary Metal-Oxide Semiconductor (CMOS) image sensors with high quantum efficiency, for applications in near-infrared and X-ray photon detection. This paper describes the performance characterisation of CMOS devices made on a high resistivity 50 μ m thick p-type substrate with a particular focus on determining the depletion depth and the quantum efficiency. The test devices contain 8 × 8 pixel arrays using CCD-style charge collection, which are manufactured in a low voltage CMOS process by ESPROS Photonics Corporation (EPC). Measurements include determining under which operating conditions the devices become fully depleted. By projecting a spot using a microscope optic and a LED and biasing the devices over a range of voltages, the depletion depth will change, causing the amount of charge collected in the projected spot to change. We determine if the device is fully depleted by measuring the signal collected from the projected spot. The analysis of spot size and shape is still under development.

  2. High-performance BiCMOS technologies without epitaxially-buried subcollectors and deep trenches

    NASA Astrophysics Data System (ADS)

    Heinemann, B.; Barth, R.; Knoll, D.; Rücker, H.; Tillack, B.; Winkler, W.

    2007-01-01

    A 0.25 µm SiGe:C BiCMOS technology family (SG25H) with high-speed npn and pnp transistors for different performance requirements is presented. A CMOS-friendly integration scheme is realized by using collector wells, implanted after shallow trench formation, and avoiding deep trenches and extra collector sinkers. Three process variants are offered. The key bipolar transistor of the SG25H1 process is a 200 GHz npn device. The SG25H3 process offers three different types of npn HBTs. The performance ranges from fT/fmax /BVCEo values of 110 GHz/180 GHz/2.3 V for the high-speed (HS) device to 50 GHz/140 GHz/4.5 V for the medium voltage (MV) device and 30 GHz/80 GHz/6.5 V for the high-voltage (HV) transistor. The SG25H2 process provides in addition to npn transistors similar to those of SG25H1 and H3 a very high-speed SiGe:C pnp HBT with fT/fmax/BVCEo values of 90 GHz/120 GHz/2.8 V.

  3. HIGH SPEED CAMERA

    DOEpatents

    Rogers, B.T. Jr.; Davis, W.C.

    1957-12-17

    This patent relates to high speed cameras having resolution times of less than one-tenth microseconds suitable for filming distinct sequences of a very fast event such as an explosion. This camera consists of a rotating mirror with reflecting surfaces on both sides, a narrow mirror acting as a slit in a focal plane shutter, various other mirror and lens systems as well as an innage recording surface. The combination of the rotating mirrors and the slit mirror causes discrete, narrow, separate pictures to fall upon the film plane, thereby forming a moving image increment of the photographed event. Placing a reflecting surface on each side of the rotating mirror cancels the image velocity that one side of the rotating mirror would impart, so as a camera having this short a resolution time is thereby possible.

  4. High speed nozzles task

    NASA Technical Reports Server (NTRS)

    Hamed, Awatef

    1995-01-01

    Supersonic cruise exhaust nozzles for advanced applications are optimized for a high nozzle pressure ratio (NPR) at design supersonic cruise Mach number and altitude. The performance of these nozzles with large expansion ratios are severely degraded for operations at subsonic speeds near sea level for NPR significantly less than the design values. The prediction of over-expanded 2DCD nozzles performance is critical to evaluating the internal losses and to the optimization of the integrated vehicle and propulsion system performance. The reported research work was aimed at validating and assessing existing computational methods and turbulence models for predicting the flow characteristics and nozzle performance at over-expanded conditions. Flow simulations in 2DCD nozzles were performed using five different turbulence models. The results are compared with the experimental data for the wall pressure distribution and thrust and flow coefficients at over-expanded static conditions.

  5. High speed packet switching

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document constitutes the final report prepared by Proteon, Inc. of Westborough, Massachusetts under contract NAS 5-30629 entitled High-Speed Packet Switching (SBIR 87-1, Phase 2) prepared for NASA-Greenbelt, Maryland. The primary goal of this research project is to use the results of the SBIR Phase 1 effort to develop a sound, expandable hardware and software router architecture capable of forwarding 25,000 packets per second through the router and passing 300 megabits per second on the router's internal busses. The work being delivered under this contract received its funding from three different sources: the SNIPE/RIG contract (Contract Number F30602-89-C-0014, CDRL Sequence Number A002), the SBIR contract, and Proteon. The SNIPE/RIG and SBIR contracts had many overlapping requirements, which allowed the research done under SNIPE/RIG to be applied to SBIR. Proteon funded all of the work to develop new router interfaces other than FDDI, in addition to funding the productization of the router itself. The router being delivered under SBIR will be a fully product-quality machine. The work done during this contract produced many significant findings and results, summarized here and explained in detail in later sections of this report. The SNIPE/RIG contract was completed. That contract had many overlapping requirements with the SBIR contract, and resulted in the successful demonstration and delivery of a high speed router. The development that took place during the SNIPE/RIG contract produced findings that included the choice of processor and an understanding of the issues surrounding inter processor communications in a multiprocessor environment. Many significant speed enhancements to the router software were made during that time. Under the SBIR contract (and with help from Proteon-funded work), it was found that a single processor router achieved a throughput significantly higher than originally anticipated. For this reason, a single processor router was

  6. High-speed semiconductor devices

    NASA Astrophysics Data System (ADS)

    Sze, S. M.

    An introduction to the physical principles and operational characteristics of high-speed semiconductor devices is presented. Consideration is given to materials and technologies for high-speed devices, device building blocks, the submicron MOSFET, homogeneous field-effect transistors, and heterostructure field-effect transistors. Also considered are quantum-effect devices, microwave diodes, and high-speed photonic devices.

  7. Design and characterization of high precision in-pixel discriminators for rolling shutter CMOS pixel sensors with full CMOS capability

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Hu-Guo, C.; Dorokhov, A.; Pham, H.; Hu, Y.

    2013-07-01

    In order to exploit the ability to integrate a charge collecting electrode with analog and digital processing circuitry down to the pixel level, a new type of CMOS pixel sensors with full CMOS capability is presented in this paper. The pixel array is read out based on a column-parallel read-out architecture, where each pixel incorporates a diode, a preamplifier with a double sampling circuitry and a discriminator to completely eliminate analog read-out bottlenecks. The sensor featuring a pixel array of 8 rows and 32 columns with a pixel pitch of 80 μm×16 μm was fabricated in a 0.18 μm CMOS process. The behavior of each pixel-level discriminator isolated from the diode and the preamplifier was studied. The experimental results indicate that all in-pixel discriminators which are fully operational can provide significant improvements in the read-out speed and the power consumption of CMOS pixel sensors.

  8. High-Voltage CMOS Controller for Microfluidics.

    PubMed

    Khorasani, M; Behnam, M; van den Berg, L; Backhouse, C J; Elliott, D G

    2009-04-01

    A high-voltage microfluidic controller designed using DALSA semiconductor's 0.8-mum low-voltage/high-voltage complementary metal-oxide semiconductor/double diffused metal-oxide semiconductor process is presented. The chip's four high-voltage output drivers can switch 300 V, and the dc-dc boost converter can generate up to 68 V using external passive components. This integrated circuit represents an advancement in microfluidic technology when used in conjunction with a charge coupling device (CCD)-based optical system and a glass microfluidic channel, enabling a portable and cost-efficient platform for genetic analysis.

  9. High speed civil transport

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This report discusses the design and marketability of a next generation supersonic transport. Apogee Aeronautics Corporation has designated its High Speed Civil Transport (HSCT): Supercruiser HS-8. Since the beginning of the Concorde era, the general consensus has been that the proper time for the introduction of a next generation Supersonic Transport (SST) would depend upon the technical advances made in the areas of propulsion (reduction in emissions) and material composites (stronger, lighter materials). It is believed by many in the aerospace industry that these beforementioned technical advances lie on the horizon. With this being the case, this is the proper time to begin the design phase for the next generation HSCT. The design objective for a HSCT was to develop an aircraft that would be capable of transporting at least 250 passengers with baggage at a distance of 5500 nmi. The supersonic Mach number is currently unspecified. In addition, the design had to be marketable, cost effective, and certifiable. To achieve this goal, technical advances in the current SST's must be made, especially in the areas of aerodynamics and propulsion. As a result of these required aerodynamic advances, several different supersonic design concepts were reviewed.

  10. A CMOS In-Pixel CTIA High Sensitivity Fluorescence Imager

    PubMed Central

    Murari, Kartikeya; Etienne-Cummings, Ralph; Thakor, Nitish; Cauwenberghs, Gert

    2012-01-01

    Traditionally, charge coupled device (CCD) based image sensors have held sway over the field of biomedical imaging. Complementary metal oxide semiconductor (CMOS) based imagers so far lack sensitivity leading to poor low-light imaging. Certain applications including our work on animal-mountable systems for imaging in awake and unrestrained rodents require the high sensitivity and image quality of CCDs and the low power consumption, flexibility and compactness of CMOS imagers. We present a 132×124 high sensitivity imager array with a 20.1 μm pixel pitch fabricated in a standard 0.5 μ CMOS process. The chip incorporates n-well/p-sub photodiodes, capacitive transimpedance amplifier (CTIA) based in-pixel amplification, pixel scanners and delta differencing circuits. The 5-transistor all-nMOS pixel interfaces with peripheral pMOS transistors for column-parallel CTIA. At 70 fps, the array has a minimum detectable signal of 4 nW/cm2 at a wavelength of 450 nm while consuming 718 μA from a 3.3 V supply. Peak signal to noise ratio (SNR) was 44 dB at an incident intensity of 1 μW/cm2. Implementing 4×4 binning allowed the frame rate to be increased to 675 fps. Alternately, sensitivity could be increased to detect about 0.8 nW/cm2 while maintaining 70 fps. The chip was used to image single cell fluorescence at 28 fps with an average SNR of 32 dB. For comparison, a cooled CCD camera imaged the same cell at 20 fps with an average SNR of 33.2 dB under the same illumination while consuming over a watt. PMID:23136624

  11. High speed transition prediction

    NASA Technical Reports Server (NTRS)

    Gasperas, Gediminis

    1992-01-01

    The main objective of this work period was to develop, acquire and apply state-of-the-art tools for the prediction of transition at high speeds at NASA Ames. Although various stability codes as well as basic state codes were acquired, the development of a new Parabolized Stability Equation (PSE) code was minimal. The time that was initially allocated for development was used on other tasks, in particular for the Leading Edge Suction problem, in acquiring proficiency in various graphics tools, and in applying these tools to evaluate various Navier-Stokes and Euler solutions. The second objective of this work period was to attend the Transition and Turbulence Workshop at NASA Langley in July and August, 1991. A report on the Workshop follows. From July 8, 1991 to August 2, 1991, the author participated in the Transition and Turbulence Workshop at NASA Langley. For purposes of interest here, analysis can be said to consist of solving simplified governing equations by various analytical methods, such as asymptotic methods, or by use of very meager computer resources. From the composition of the various groups at the Workshop, it can be seen that analytical methods are generally more popular in Great Britain than they are in the U.S., possibly due to historical factors and the lack of computer resources. Experimenters at the Workshop were mostly concerned with subsonic flows, and a number of demonstrations were provided, among which were a hot-wire experiment to probe the boundary layer on a rotating disc, a hot-wire rake to map a free shear layer behind a cylinder, and the use of heating strips on a flat plate to control instability waves and consequent transition. A highpoint of the demonstrations was the opportunity to observe the rather noisy 'quiet' supersonic pilot tunnel in operation.

  12. High responsivity CMOS imager pixel implemented in SOI technology

    NASA Technical Reports Server (NTRS)

    Zheng, X.; Wrigley, C.; Yang, G.; Pain, B.

    2000-01-01

    Availability of mature sub-micron CMOS technology and the advent of the new low noise active pixel sensor (APS) concept have enabled the development of low power, miniature, single-chip, CMOS digital imagers in the decade of the 1990's.

  13. High-Speed Photography 101

    NASA Astrophysics Data System (ADS)

    Davidhazy, Andrew

    1997-05-01

    This paper describes the contents of a unique introductory, applications oriented, high speed photography course offered to Imaging and Photographic Technology majors at the Rochester Institute of Technology. The course covers the theory and practice of photographic systems designed to permit analysis of events of very short duration. Included are operational characteristics of intermittent and rotating prism cameras, rotating mirror and drum cameras, synchronization systems and timing controls and high speed flash and stroboscopic systems, and high speed video recording. Students gain basic experience not only in the use of fundamental equipment but also in proper planning, set-up and introductory data reduction techniques through a series of practical experiments.

  14. High-Speed Electrochemical Imaging.

    PubMed

    Momotenko, Dmitry; Byers, Joshua C; McKelvey, Kim; Kang, Minkyung; Unwin, Patrick R

    2015-09-22

    The design, development, and application of high-speed scanning electrochemical probe microscopy is reported. The approach allows the acquisition of a series of high-resolution images (typically 1000 pixels μm(-2)) at rates approaching 4 seconds per frame, while collecting up to 8000 image pixels per second, about 1000 times faster than typical imaging speeds used up to now. The focus is on scanning electrochemical cell microscopy (SECCM), but the principles and practicalities are applicable to many electrochemical imaging methods. The versatility of the high-speed scan concept is demonstrated at a variety of substrates, including imaging the electroactivity of a patterned self-assembled monolayer on gold, visualization of chemical reactions occurring at single wall carbon nanotubes, and probing nanoscale electrocatalysts for water splitting. These studies provide movies of spatial variations of electrochemical fluxes as a function of potential and a platform for the further development of high speed scanning with other electrochemical imaging techniques.

  15. SEAL FOR HIGH SPEED CENTRIFUGE

    DOEpatents

    Skarstrom, C.W.

    1957-12-17

    A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.

  16. Gated high speed optical detector

    NASA Technical Reports Server (NTRS)

    Green, S. I.; Carson, L. M.; Neal, G. W.

    1973-01-01

    The design, fabrication, and test of two gated, high speed optical detectors for use in high speed digital laser communication links are discussed. The optical detectors used a dynamic crossed field photomultiplier and electronics including dc bias and RF drive circuits, automatic remote synchronization circuits, automatic gain control circuits, and threshold detection circuits. The equipment is used to detect binary encoded signals from a mode locked neodynium laser.

  17. Optimization of CMOS pixel sensors for high performance vertexing and tracking

    NASA Astrophysics Data System (ADS)

    Baudot, Jérôme; Besson, Auguste; Claus, Gilles; Dulinski, Wojciech; Dorokhov, Andrei; Goffe, Mathieu; Hu-Guo, Christine; Molnar, Levente; Sanchez-Castro, Xitzel; Senyukov, Serhiy; Winter, Marc

    2013-12-01

    CMOS Pixel Sensors tend to become relevant for a growing spectrum of charged particle detection instruments. This comes mainly from their high granularity and low material budget. However, several potential applications require a higher read-out speed and radiation tolerance than those achieved with the available devices based on a 0.35 μm feature size technology. This paper shows preliminary test results of new prototype sensors manufactured in a 0.18 μm process based on a high resistivity epitaxial layer of sizeable thickness. Grounded on these observed performances, we discuss a development strategy over the coming years to reach a full scale sensor matching the specifications of the upgraded version of the Inner Tracking System (ITS) of the ALICE experiment at CERN, for which a sensitive area of up to ∼10 m2 may be equipped with pixel sensors.

  18. High speed optical networks

    NASA Astrophysics Data System (ADS)

    Frankel, Michael Y.; Livas, Jeff

    2005-02-01

    This overview will discuss core network technology and cost trade-offs inherent in choosing between "analog" architectures with high optical transparency, and ones heavily dependent on frequent "digital" signal regeneration. The exact balance will be related to the specific technology choices in each area outlined above, as well as the network needs such as node geographic spread, physical connectivity patterns, and demand loading. Over the course of a decade, optical networks have evolved from simple single-channel SONET regenerator-based links to multi-span multi-channel optically amplified ultra-long haul systems, fueled by high demand for bandwidth at reduced cost. In general, the cost of a well-designed high capacity system is dominated by the number of optical to electrical (OE) and electrical to optical (EO) conversions required. As the reach and channel capacity of the transport systems continued to increase, it became necessary to improve the granularity of the demand connections by introducing (optical add/drop multiplexers) OADMs. Thus, if a node requires only small demand connectivity, most of the optical channels are expressed through without regeneration (OEO). The network costs are correspondingly reduced, partially balanced by the increased cost of the OADM nodes. Lately, the industry has been aggressively pursuing a natural extension of this philosophy towards all-optical "analog" core networks, with each demand touching electrical digital circuitry only at the in/egress nodes. This is expected to produce a substantial elimination of OEO costs, increase in network capacity, and a notionally simpler operation and service turn-up. At the same time, such optical "analog" network requires a large amount of complicated hardware and software for monitoring and manipulating high bit rate optical signals. New and more complex modulation formats that provide resiliency to both optical noise and nonlinear propagation effects are important for extended

  19. Superplane! High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The High Speed Civil Transport (HSCT). This light-hearted promotional piece explains what the HSCT 'Superplane' is and what advantages it will have over current aircraft. As envisioned, the HSCT is a next-generation supersonic (faster than the speed of sound) passenger jet that would fly 300 passengers at more than 1,500 miles per hour -- more than twice the speed of sound. It will cross the Pacific or Atlantic in less than half the time of modern subsonic jets, and at a ticket price less than 20 percent above comparable, slower flights

  20. CMOS pixel sensors on high resistive substrate for high-rate, high-radiation environments

    NASA Astrophysics Data System (ADS)

    Hirono, Toko; Barbero, Marlon; Breugnon, Patrick; Godiot, Stephanie; Gonella, Laura; Hemperek, Tomasz; Hügging, Fabian; Krüger, Hans; Liu, Jian; Pangaud, Patrick; Peric, Ivan; Pohl, David-Leon; Rozanov, Alexandre; Rymaszewski, Piotr; Wang, Anqing; Wermes, Norbert

    2016-09-01

    A depleted CMOS active pixel sensor (DMAPS) has been developed on a substrate with high resistivity in a high voltage process. High radiation tolerance and high time resolution can be expected because of the charge collection by drift. A prototype of DMAPS was fabricated in a 150 nm process by LFoundry. Two variants of the pixel layout were tested, and the measured depletion depths of the variants are 166 μm and 80 μm. We report the results obtained with the prototype fabricated in this technology.

  1. Results of the 2015 testbeam of a 180 nm AMS High-Voltage CMOS sensor prototype

    NASA Astrophysics Data System (ADS)

    Benoit, M.; Bilbao de Mendizabal, J.; Casse, G.; Chen, H.; Chen, K.; Di Bello, F. A.; Ferrere, D.; Golling, T.; Gonzalez-Sevilla, S.; Iacobucci, G.; Lanni, F.; Liu, H.; Meloni, F.; Meng, L.; Miucci, A.; Muenstermann, D.; Nessi, M.; Perić, I.; Rimoldi, M.; Ristic, B.; Barrero Pinto, M. Vicente; Vossebeld, J.; Weber, M.; Wu, W.; Xu, L.

    2016-07-01

    Active pixel sensors based on the High-Voltage CMOS technology are being investigated as a viable option for the future pixel tracker of the ATLAS experiment at the High-Luminosity LHC. This paper reports on the testbeam measurements performed at the H8 beamline of the CERN Super Proton Synchrotron on a High-Voltage CMOS sensor prototype produced in 180 nm AMS technology. Results in terms of tracking efficiency and timing performance, for different threshold and bias conditions, are shown.

  2. High-speed and ultrahigh-speed cinematographic recording techniques

    NASA Astrophysics Data System (ADS)

    Miquel, J. C.

    1980-12-01

    A survey is presented of various high-speed and ultrahigh-speed cinematographic recording systems (covering a range of speeds from 100 to 14-million pps). Attention is given to the functional and operational characteristics of cameras and to details of high-speed cinematography techniques (including image processing, and illumination). A list of cameras (many of them French) available in 1980 is presented

  3. Integrated, nonvolatile, high-speed analog random access memory

    NASA Technical Reports Server (NTRS)

    Katti, Romney R. (Inventor); Wu, Jiin-Chuan (Inventor); Stadler, Henry L. (Inventor)

    1994-01-01

    This invention provides an integrated, non-volatile, high-speed random access memory. A magnetically switchable ferromagnetic or ferrimagnetic layer is sandwiched between an electrical conductor which provides the ability to magnetize the magnetically switchable layer and a magneto resistive or Hall effect material which allows sensing the magnetic field which emanates from the magnetization of the magnetically switchable layer. By using this integrated three-layer form, the writing process, which is controlled by the conductor, is separated from the storage medium in the magnetic layer and from the readback process which is controlled by the magnetoresistive layer. A circuit for implementing the memory in CMOS or the like is disclosed.

  4. High speed multiwire photon camera

    NASA Technical Reports Server (NTRS)

    Lacy, Jeffrey L. (Inventor)

    1989-01-01

    An improved multiwire proportional counter camera having particular utility in the field of clinical nuclear medicine imaging. The detector utilizes direct coupled, low impedance, high speed delay lines, the segments of which are capacitor-inductor networks. A pile-up rejection test is provided to reject confused events otherwise caused by multiple ionization events occurring during the readout window.

  5. High speed multiwire photon camera

    NASA Technical Reports Server (NTRS)

    Lacy, Jeffrey L. (Inventor)

    1991-01-01

    An improved multiwire proportional counter camera having particular utility in the field of clinical nuclear medicine imaging. The detector utilizes direct coupled, low impedance, high speed delay lines, the segments of which are capacitor-inductor networks. A pile-up rejection test is provided to reject confused events otherwise caused by multiple ionization events occuring during the readout window.

  6. High-speed pulse camera

    NASA Technical Reports Server (NTRS)

    Lawson, J. R.

    1968-01-01

    Miniaturized, 16 mm high speed pulse camera takes spectral photometric photographs upon instantaneous command. The design includes a low-friction, low-inertia film transport, a very thin beryllium shutter driven by a low-inertia stepper motor for minimum actuation time after a pulse command, and a binary encoder.

  7. High speed laser tomography system.

    PubMed

    Samsonov, D; Elsaesser, A; Edwards, A; Thomas, H M; Morfill, G E

    2008-03-01

    A high speed laser tomography system was developed capable of acquiring three-dimensional (3D) images of optically thin clouds of moving micron-sized particles. It operates by parallel-shifting an illuminating laser sheet with a pair of galvanometer-driven mirrors and synchronously recording two-dimensional (2D) images of thin slices of the imaged volume. The maximum scanning speed achieved was 120,000 slices/s, sequences of 24 volume scans (up to 256 slices each) have been obtained. The 2D slices were stacked to form 3D images of the volume, then the positions of the particles were identified and followed in the consecutive scans. The system was used to image a complex plasma with particles moving at speeds up to cm/s.

  8. High speed laser tomography system.

    PubMed

    Samsonov, D; Elsaesser, A; Edwards, A; Thomas, H M; Morfill, G E

    2008-03-01

    A high speed laser tomography system was developed capable of acquiring three-dimensional (3D) images of optically thin clouds of moving micron-sized particles. It operates by parallel-shifting an illuminating laser sheet with a pair of galvanometer-driven mirrors and synchronously recording two-dimensional (2D) images of thin slices of the imaged volume. The maximum scanning speed achieved was 120,000 slices/s, sequences of 24 volume scans (up to 256 slices each) have been obtained. The 2D slices were stacked to form 3D images of the volume, then the positions of the particles were identified and followed in the consecutive scans. The system was used to image a complex plasma with particles moving at speeds up to cm/s. PMID:18377040

  9. High-speed sorting of grains by color and surface texture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A high-speed, low-cost, image-based sorting device was developed to detect and separate grains with different colors/textures. The device directly combines a complementary metal–oxide–semiconductor (CMOS) color image sensor with a field-programmable gate array (FPGA) that was programmed to execute ...

  10. Hardware-based image processing for high-speed inspection of grains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A high-speed, low-cost, image-based sorting device was developed to detect and separate grains with slight color differences and small defects on grains The device directly combines a complementary metal–oxide–semiconductor (CMOS) color image sensor with a field-programmable gate array (FPGA) which...

  11. A single shot TDC with 4.8 ps resolution in 40 nm CMOS for high energy physics applications

    NASA Astrophysics Data System (ADS)

    Prinzie, J.; Steyaert, M.; Leroux, P.

    2015-01-01

    A robust TDC with 4.8 ps bin width has been designed for harsh environments and high energy physics applications. The circuit uses resistive interpolation DLL with a novel dual phase detector architecture. This architecture improves startup- and recovery speed from single event strikes without control voltage ripple trade-off and requires no off-line calibrations. A 0.43 LSB DNL has been measured at a power consumption of 4.2 mW with an extended frequency range from 0.8 GHz to 2.4 GHz. The TDC has been processed in 40 nm CMOS technology.

  12. High Speed Photometry for BUSCA

    NASA Astrophysics Data System (ADS)

    Cordes, O.; Reif, K.

    The camera BUSCA (Bonn University Simultaneous CAmera) is a standard instrument at the 2.2m telescope at Calar Alto Observatory (Spain) since 2001. At the moment some modifications of BUSCA are planned and partially realised. One major goal is the replacement of the old thick CCDs in the blue, yellow-green, and near-infrared channels. The newer CCDs have better cosmetics and performance in sensitivity. The other goal is to replace the old "Heidelberg"-style controller with a newly designed controller with the main focus on high-speed readout and on an advanced windowing mechanism. We present a theoretical analysis of the new controller design and its advantage in high speed photometry of rapidly pulsating stars. As an example PG1605+072 was chosen which was observed with BUSCA before in 2001 and 2002.

  13. Small Scale High Speed Turbomachinery

    NASA Technical Reports Server (NTRS)

    London, Adam P. (Inventor); Droppers, Lloyd J. (Inventor); Lehman, Matthew K. (Inventor); Mehra, Amitav (Inventor)

    2015-01-01

    A small scale, high speed turbomachine is described, as well as a process for manufacturing the turbomachine. The turbomachine is manufactured by diffusion bonding stacked sheets of metal foil, each of which has been pre-formed to correspond to a cross section of the turbomachine structure. The turbomachines include rotating elements as well as static structures. Using this process, turbomachines may be manufactured with rotating elements that have outer diameters of less than four inches in size, and/or blading heights of less than 0.1 inches. The rotating elements of the turbomachines are capable of rotating at speeds in excess of 150 feet per second. In addition, cooling features may be added internally to blading to facilitate cooling in high temperature operations.

  14. Experiments on high speed ejectors

    NASA Technical Reports Server (NTRS)

    Wu, J. J.

    1986-01-01

    Experimental studies were conducted to investigate the flow and the performance of thrust augmenting ejectors for flight Mach numbers in the range of 0.5 to 0.8, primary air stagnation pressures up to 107 psig (738 kPa), and primary air stagnation temperatures up to 1250 F (677 C). The experiment verified the existence of the second solution ejector flow, where the flow after complete mixing is supersonic. Thrust augmentation in excess of 1.2 was demonstrated for both hot and cold primary jets. The experimental ejector performed better than the corresponding theoretical optimal first solution ejector, where the mixed flow is subsonic. Further studies are required to realize the full potential of the second solution ejector. The research program was started by the Flight Dynamics Research Corporation (FDRC) to investigate the characteristic of a high speed ejector which augments thrust of a jet at high flight speeds.

  15. Towards a 10 μs, thin and high resolution pixelated CMOS sensor system for future vertex detectors

    NASA Astrophysics Data System (ADS)

    De Masi, R.; Amar-Youcef, S.; Baudot, J.; Bertolone, G.; Brogna, A.; Chon-Sen, N.; Claus, G.; Colledani, C.; Degerli, Y.; Deveaux, M.; Dorokhov, A.; Doziére, G.; Dulinski, W.; Gelin, M.; Goffe, M.; Fontaine, J. C.; Hu-Guo, Ch.; Himmi, A.; Jaaskelainen, K.; Koziel, M.; Morel, F.; Müntz, C.; Orsini, F.; Santos, C.; Schrader, C.; Specht, M.; Stroth, J.; Valin, I.; Voutsinas, G.; Wagner, F. M.; Winter, M.

    2011-02-01

    The physics goals of many high energy experiments require a precise determination of decay vertices, imposing severe constraints on vertex detectors (readout speed, granularity, material budget,…). The IPHC-IRFU collaboration developed a sensor architecture to comply with these requirements. The first full scale CMOS sensor was realised and equips the reference planes of the EUDET beam telescope. Its architecture is being adapted to the needs of the STAR (RHIC) and CBM (FAIR) experiments. It is a promising candidate for the ILC experiments and the ALICE detector upgrade (LHC). A substantial improvement to the CMOS sensor performances, especially in terms of radiation hardness, should come from a new fabrication technology with depleted sensitive volume. A prototype sensor was fabricated to explore the benefits of the technology. The crucial system integration issue is also currently being addressed. In 2009 the PLUME collaboration was set up to investigate the feasibility and performances of a light double sided ladder equipped with CMOS sensors, aimed primarily for the ILC vertex detector but also of interest for other applications such as the CBM vertex detector.

  16. Faster Is Better: High-Speed Modems.

    ERIC Educational Resources Information Center

    Roth, Cliff

    1995-01-01

    Discusses using high-speed modems to access the Internet. Examines internal and external modems, data speeds, compression and error reduction, faxing and voice capabilities, and software features. Considers ISDN (Integrated Services Digital Network) as the future replacement of high-speed modems. Sidebars present high-speed modem product…

  17. High-Speed TCP Testing

    NASA Technical Reports Server (NTRS)

    Brooks, David E.; Gassman, Holly; Beering, Dave R.; Welch, Arun; Hoder, Douglas J.; Ivancic, William D.

    1999-01-01

    Transmission Control Protocol (TCP) is the underlying protocol used within the Internet for reliable information transfer. As such, there is great interest to have all implementations of TCP efficiently interoperate. This is particularly important for links exhibiting long bandwidth-delay products. The tools exist to perform TCP analysis at low rates and low delays. However, for extremely high-rate and lone-delay links such as 622 Mbps over geosynchronous satellites, new tools and testing techniques are required. This paper describes the tools and techniques used to analyze and debug various TCP implementations over high-speed, long-delay links.

  18. Quiet High-Speed Fan

    NASA Technical Reports Server (NTRS)

    Lieber, Lysbeth; Repp, Russ; Weir, Donald S.

    1996-01-01

    A calibration of the acoustic and aerodynamic prediction methods was performed and a baseline fan definition was established and evaluated to support the quiet high speed fan program. A computational fluid dynamic analysis of the NASA QF-12 Fan rotor, using the DAWES flow simulation program was performed to demonstrate and verify the causes of the relatively poor aerodynamic performance observed during the fan test. In addition, the rotor flowfield characteristics were qualitatively compared to the acoustic measurements to identify the key acoustic characteristics of the flow. The V072 turbofan source noise prediction code was used to generate noise predictions for the TFE731-60 fan at three operating conditions and compared to experimental data. V072 results were also used in the Acoustic Radiation Code to generate far field noise for the TFE731-60 nacelle at three speed points for the blade passage tone. A full 3-D viscous flow simulation of the current production TFE731-60 fan rotor was performed with the DAWES flow analysis program. The DAWES analysis was used to estimate the onset of multiple pure tone noise, based on predictions of inlet shock position as a function of the rotor tip speed. Finally, the TFE731-60 fan rotor wake structure predicted by the DAWES program was used to define a redesigned stator with the leading edge configured to minimize the acoustic effects of rotor wake / stator interaction, without appreciably degrading performance.

  19. High-speed phosphor thermometry.

    PubMed

    Fuhrmann, N; Baum, E; Brübach, J; Dreizler, A

    2011-10-01

    Phosphor thermometry is a semi-invasive surface temperature measurement technique utilising the luminescence properties of doped ceramic materials. Typically, these phosphor materials are coated onto the object of interest and are excited by a short UV laser pulse. Up to now, primarily Q-switched laser systems with repetition rates of 10 Hz were employed for excitation. Accordingly, this diagnostic tool was not applicable to resolve correlated temperature transients at time scales shorter than 100 ms. This contribution reports on the first realisation of a high-speed phosphor thermometry system employing a highly repetitive laser in the kHz regime and a fast decaying phosphor. A suitable material was characterised regarding its temperature lifetime characteristic and its measurement precision. Additionally, the influence of laser power on the phosphor coating was investigated in terms of heating effects. A demonstration of this high-speed technique has been conducted inside the thermally highly transient system of an optically accessible internal combustion engine. Temperatures have been measured with a repetition rate of 6 kHz corresponding to one sample per crank angle degree at 1000 rpm. PMID:22047319

  20. High-speed phosphor thermometry

    NASA Astrophysics Data System (ADS)

    Fuhrmann, N.; Baum, E.; Brübach, J.; Dreizler, A.

    2011-10-01

    Phosphor thermometry is a semi-invasive surface temperature measurement technique utilising the luminescence properties of doped ceramic materials. Typically, these phosphor materials are coated onto the object of interest and are excited by a short UV laser pulse. Up to now, primarily Q-switched laser systems with repetition rates of 10 Hz were employed for excitation. Accordingly, this diagnostic tool was not applicable to resolve correlated temperature transients at time scales shorter than 100 ms. This contribution reports on the first realisation of a high-speed phosphor thermometry system employing a highly repetitive laser in the kHz regime and a fast decaying phosphor. A suitable material was characterised regarding its temperature lifetime characteristic and its measurement precision. Additionally, the influence of laser power on the phosphor coating was investigated in terms of heating effects. A demonstration of this high-speed technique has been conducted inside the thermally highly transient system of an optically accessible internal combustion engine. Temperatures have been measured with a repetition rate of 6 kHz corresponding to one sample per crank angle degree at 1000 rpm.

  1. High-speed phosphor thermometry.

    PubMed

    Fuhrmann, N; Baum, E; Brübach, J; Dreizler, A

    2011-10-01

    Phosphor thermometry is a semi-invasive surface temperature measurement technique utilising the luminescence properties of doped ceramic materials. Typically, these phosphor materials are coated onto the object of interest and are excited by a short UV laser pulse. Up to now, primarily Q-switched laser systems with repetition rates of 10 Hz were employed for excitation. Accordingly, this diagnostic tool was not applicable to resolve correlated temperature transients at time scales shorter than 100 ms. This contribution reports on the first realisation of a high-speed phosphor thermometry system employing a highly repetitive laser in the kHz regime and a fast decaying phosphor. A suitable material was characterised regarding its temperature lifetime characteristic and its measurement precision. Additionally, the influence of laser power on the phosphor coating was investigated in terms of heating effects. A demonstration of this high-speed technique has been conducted inside the thermally highly transient system of an optically accessible internal combustion engine. Temperatures have been measured with a repetition rate of 6 kHz corresponding to one sample per crank angle degree at 1000 rpm.

  2. High speed quantitative digital microscopy

    NASA Technical Reports Server (NTRS)

    Castleman, K. R.; Price, K. H.; Eskenazi, R.; Ovadya, M. M.; Navon, M. A.

    1984-01-01

    Modern digital image processing hardware makes possible quantitative analysis of microscope images at high speed. This paper describes an application to automatic screening for cervical cancer. The system uses twelve MC6809 microprocessors arranged in a pipeline multiprocessor configuration. Each processor executes one part of the algorithm on each cell image as it passes through the pipeline. Each processor communicates with its upstream and downstream neighbors via shared two-port memory. Thus no time is devoted to input-output operations as such. This configuration is expected to be at least ten times faster than previous systems.

  3. Development of High Speed Digital Camera: EXILIM EX-F1

    NASA Astrophysics Data System (ADS)

    Nojima, Osamu

    The EX-F1 is a high speed digital camera featuring a revolutionary improvement in burst shooting speed that is expected to create entirely new markets. This model incorporates a high speed CMOS sensor and a high speed LSI processor. With this model, CASIO has achieved an ultra-high speed 60 frames per second (fps) burst rate for still images, together with 1,200 fps high speed movie that captures movements which cannot even be seen by human eyes. Moreover, this model can record movies at full High-Definition. After launching it into the market, it was able to get a lot of high appraisals as an innovation camera. We will introduce the concept, features and technologies about the EX-F1.

  4. CMOS compatible high-Q photonic crystal nanocavity fabricated with photolithography on silicon photonic platform.

    PubMed

    Ooka, Yuta; Tetsumoto, Tomohiro; Fushimi, Akihiro; Yoshiki, Wataru; Tanabe, Takasumi

    2015-01-01

    Progress on the fabrication of ultrahigh-Q photonic-crystal nanocavities (PhC-NCs) has revealed the prospect for new applications including silicon Raman lasers that require a strong confinement of light. Among various PhC-NCs, the highest Q has been recorded with silicon. On the other hand, microcavity is one of the basic building blocks in silicon photonics. However, the fusion between PhC-NCs and silicon photonics has yet to be exploited, since PhC-NCs are usually fabricated with electron-beam lithography and require an air-bridge structure. Here we show that a 2D-PhC-NC fabricated with deep-UV photolithography on a silica-clad silicon-on-insulator (SOI) structure will exhibit a high-Q of 2.2 × 10(5) with a mode-volume of ~ 1.7(λ/n)(3). This is the highest Q demonstrated with photolithography. We also show that this device exhibits an efficient thermal diffusion and enables high-speed switching. The demonstration of the photolithographic fabrication of high-Q silica-clad PhC-NCs will open possibility for mass-manufacturing and boost the fusion between silicon photonics and CMOS devices.

  5. CMOS compatible high-Q photonic crystal nanocavity fabricated with photolithography on silicon photonic platform

    PubMed Central

    Ooka, Yuta; Tetsumoto, Tomohiro; Fushimi, Akihiro; Yoshiki, Wataru; Tanabe, Takasumi

    2015-01-01

    Progress on the fabrication of ultrahigh-Q photonic-crystal nanocavities (PhC-NCs) has revealed the prospect for new applications including silicon Raman lasers that require a strong confinement of light. Among various PhC-NCs, the highest Q has been recorded with silicon. On the other hand, microcavity is one of the basic building blocks in silicon photonics. However, the fusion between PhC-NCs and silicon photonics has yet to be exploited, since PhC-NCs are usually fabricated with electron-beam lithography and require an air-bridge structure. Here we show that a 2D-PhC-NC fabricated with deep-UV photolithography on a silica-clad silicon-on-insulator (SOI) structure will exhibit a high-Q of 2.2 × 105 with a mode-volume of ~1.7(λ/n)3. This is the highest Q demonstrated with photolithography. We also show that this device exhibits an efficient thermal diffusion and enables high-speed switching. The demonstration of the photolithographic fabrication of high-Q silica-clad PhC-NCs will open possibility for mass-manufacturing and boost the fusion between silicon photonics and CMOS devices. PMID:26086849

  6. Remote Transmission at High Speed

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Omni and NASA Test Operations at Stennis entered a Dual-Use Agreement to develop the FOTR-125, a 125 megabit-per-second fiber-optic transceiver that allows accurate digital recordings over a great distance. The transceiver s fiber-optic link can be as long as 25 kilometers. This makes it much longer than the standard coaxial link, which can be no longer than 50 meters.The FOTR-125 utilizes laser diode transmitter modules and integrated receivers for the optical interface. Two transmitters and two receivers are employed at each end of the link with automatic or manual switchover to maximize the reliability of the communications link. NASA uses the transceiver in Stennis High-Speed Data Acquisition System (HSDAS). The HSDAS consists of several identical systems installed on the Center s test stands to process all high-speed data related to its propulsion test programs. These transceivers allow the recorder and HSDAS controls to be located in the Test Control Center in a remote location while the digitizer is located on the test stand.

  7. HAWAII-2RG: a 2k x 2k CMOS multiplexer for low and high background astronomy applications

    NASA Astrophysics Data System (ADS)

    Loose, Markus; Farris, Mark C.; Garnett, James D.; Hall, Donald N. B.; Kozlowski, Lester J.

    2003-03-01

    The HAWAII-2RG is a major upgrade of our prior 2048 x 2048 CMOS readout for astronomy (HAWAII-2) to support the requirements of the Next Generation Space Telescope and enable breakthrough capability for ground-based astronomy. By migrating to 0.25μm CMOS, for the first time guide mode readout is simultaneously supported in combination with various programmable science modes on a frame-by-frame basis. Consequently, the readout simultaneously supports programmable guide mode window and full-field science using the rest of the 4.2 million pixels at read noise <5 e-. Also for the first time with any imaging sensor, low and high background astronomy is supported using from 1 to 32 low-noise outputs via low-speed and high-speed signal paths. The latter supports throughput rate of up 320 MHz for real time imaging at >60 Hz. As with the HAWAII-2, the readout can be mated to our infrared and visible detector arrays including low dark current MBE HgCdTe at cutoff wavelengths from 1.5μm to 14μm, 2.5μm PACE HgCdTe, and silicon p-i-n detectors with superior quantum efficiency to backside-illuminated CCDs.

  8. Prototyping of an HV-CMOS demonstrator for the High Luminosity-LHC upgrade

    NASA Astrophysics Data System (ADS)

    Vilella, E.; Benoit, M.; Casanova, R.; Casse, G.; Ferrere, D.; Iacobucci, G.; Peric, I.; Vossebeld, J.

    2016-01-01

    HV-CMOS sensors can offer important advantages in terms of material budget, granularity and cost for large area tracking systems in high energy physics experiments. This article presents the design and simulated results of an HV-CMOS pixel demonstrator for the High Luminosity-LHC. The pixel demonstrator has been designed in the 0.35 μm HV-CMOS process from ams AG and submitted for fabrication through an engineering run. To improve the response of the sensor, different wafers with moderate to high substrate resistivities are used to fabricate the design. The prototype consists of four large analog and standalone matrices with several pixel flavours, which are all compatible for readout with the FE-I4 ASIC. Details about the matrices and the pixel flavours are provided in this article.

  9. Development of low read noise high conversion gain CMOS image sensor for photon counting level imaging

    NASA Astrophysics Data System (ADS)

    Seo, Min-Woong; Kawahito, Shoji; Kagawa, Keiichiro; Yasutomi, Keita

    2016-05-01

    A CMOS image sensor with deep sub-electron read noise and high pixel conversion gain has been developed. Its performance is recognized through image outputs from an area image sensor, confirming the capability of photoelectroncounting- level imaging. To achieve high conversion gain, the proposed pixel has special structures to reduce the parasitic capacitances around FD node. As a result, the pixel conversion gain is increased due to the optimized FD node capacitance, and the noise performance is also improved by removing two noise sources from power supply. For the first time, high contrast images from the reset-gate-less CMOS image sensor, with less than 0.3e- rms noise level, have been generated at an extremely low light level of a few electrons per pixel. In addition, the photon-counting capability of the developed CMOS imager is demonstrated by a measurement, photoelectron-counting histogram (PCH).

  10. A Synchronization Algorithm and Implementation for High-Speed Block Codes Applications. Part 4

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Zhang, Yu; Nakamura, Eric B.; Uehara, Gregory T.

    1998-01-01

    Block codes have trellis structures and decoders amenable to high speed CMOS VLSI implementation. For a given CMOS technology, these structures enable operating speeds higher than those achievable using convolutional codes for only modest reductions in coding gain. As a result, block codes have tremendous potential for satellite trunk and other future high-speed communication applications. This paper describes a new approach for implementation of the synchronization function for block codes. The approach utilizes the output of the Viterbi decoder and therefore employs the strength of the decoder. Its operation requires no knowledge of the signal-to-noise ratio of the received signal, has a simple implementation, adds no overhead to the transmitted data, and has been shown to be effective in simulation for received SNR greater than 2 dB.

  11. High-Q CMOS-integrated photonic crystal microcavity devices.

    PubMed

    Mehta, Karan K; Orcutt, Jason S; Tehar-Zahav, Ofer; Sternberg, Zvi; Bafrali, Reha; Meade, Roy; Ram, Rajeev J

    2014-01-01

    Integrated optical resonators are necessary or beneficial in realizations of various functions in scaled photonic platforms, including filtering, modulation, and detection in classical communication systems, optical sensing, as well as addressing and control of solid state emitters for quantum technologies. Although photonic crystal (PhC) microresonators can be advantageous to the more commonly used microring devices due to the former's low mode volumes, fabrication of PhC cavities has typically relied on electron-beam lithography, which precludes integration with large-scale and reproducible CMOS fabrication. Here, we demonstrate wavelength-scale polycrystalline silicon (pSi) PhC microresonators with Qs up to 60,000 fabricated within a bulk CMOS process. Quasi-1D resonators in lateral p-i-n structures allow for resonant defect-state photodetection in all-silicon devices, exhibiting voltage-dependent quantum efficiencies in the range of a few 10 s of %, few-GHz bandwidths, and low dark currents, in devices with loaded Qs in the range of 4,300-9,300; one device, for example, exhibited a loaded Q of 4,300, 25% quantum efficiency (corresponding to a responsivity of 0.31 A/W), 3 GHz bandwidth, and 30 nA dark current at a reverse bias of 30 V. This work demonstrates the possibility for practical integration of PhC microresonators with active electro-optic capability into large-scale silicon photonic systems.

  12. High-Q CMOS-integrated photonic crystal microcavity devices

    NASA Astrophysics Data System (ADS)

    Mehta, Karan K.; Orcutt, Jason S.; Tehar-Zahav, Ofer; Sternberg, Zvi; Bafrali, Reha; Meade, Roy; Ram, Rajeev J.

    2014-02-01

    Integrated optical resonators are necessary or beneficial in realizations of various functions in scaled photonic platforms, including filtering, modulation, and detection in classical communication systems, optical sensing, as well as addressing and control of solid state emitters for quantum technologies. Although photonic crystal (PhC) microresonators can be advantageous to the more commonly used microring devices due to the former's low mode volumes, fabrication of PhC cavities has typically relied on electron-beam lithography, which precludes integration with large-scale and reproducible CMOS fabrication. Here, we demonstrate wavelength-scale polycrystalline silicon (pSi) PhC microresonators with Qs up to 60,000 fabricated within a bulk CMOS process. Quasi-1D resonators in lateral p-i-n structures allow for resonant defect-state photodetection in all-silicon devices, exhibiting voltage-dependent quantum efficiencies in the range of a few 10 s of %, few-GHz bandwidths, and low dark currents, in devices with loaded Qs in the range of 4,300-9,300 one device, for example, exhibited a loaded Q of 4,300, 25% quantum efficiency (corresponding to a responsivity of 0.31 A/W), 3 GHz bandwidth, and 30 nA dark current at a reverse bias of 30 V. This work demonstrates the possibility for practical integration of PhC microresonators with active electro-optic capability into large-scale silicon photonic systems.

  13. Use of CMOS imagers to measure high fluxes of charged particles

    NASA Astrophysics Data System (ADS)

    Servoli, L.; Tucceri, P.

    2016-03-01

    The measurement of high flux charged particle beams, specifically at medical accelerators and with small fields, poses several challenges. In this work we propose a single particle counting method based on CMOS imagers optimized for visible light collection, exploiting their very high spatial segmentation (> 3 106 pixels/cm2) and almost full efficiency detection capability. An algorithm to measure the charged particle flux with a precision of ~ 1% for fluxes up to 40 MHz/cm2 has been developed, using a non-linear calibration algorithm, and several CMOS imagers with different characteristics have been compared to find their limits on flux measurement.

  14. A standard CMOS high-voltage transmitter for ultrasound medical imaging applications

    NASA Astrophysics Data System (ADS)

    Cha, Hyouk-Kyu

    2014-03-01

    A high-voltage (HV) transmitter for ultrasound medical imaging applications is designed using 0.18-µm CMOS (complementary metal oxide semiconductor) technology. The proposed HV transmitter achieves high integration by employing standard CMOS transistors in a stacked configuration with dynamic gate biasing circuit while successfully driving the capacitive output load with an HV pulse without device breakdown reliability issues. The HV transmitter, which includes the output driver and voltage level-shifters, generates up to 30-Vp-p pulses at 1.25 MHz frequency and occupies 0.035 mm² of layout area.

  15. High-speed data search

    NASA Technical Reports Server (NTRS)

    Driscoll, James N.

    1994-01-01

    The high-speed data search system developed for KSC incorporates existing and emerging information retrieval technology to help a user intelligently and rapidly locate information found in large textual databases. This technology includes: natural language input; statistical ranking of retrieved information; an artificial intelligence concept called semantics, where 'surface level' knowledge found in text is used to improve the ranking of retrieved information; and relevance feedback, where user judgements about viewed information are used to automatically modify the search for further information. Semantics and relevance feedback are features of the system which are not available commercially. The system further demonstrates focus on paragraphs of information to decide relevance; and it can be used (without modification) to intelligently search all kinds of document collections, such as collections of legal documents medical documents, news stories, patents, and so forth. The purpose of this paper is to demonstrate the usefulness of statistical ranking, our semantic improvement, and relevance feedback.

  16. High speed bus technology development

    NASA Astrophysics Data System (ADS)

    Modrow, Marlan B.; Hatfield, Donald W.

    1989-09-01

    The development and demonstration of the High Speed Data Bus system, a 50 Million bits per second (Mbps) local data network intended for avionics applications in advanced military aircraft is described. The Advanced System Avionics (ASA)/PAVE PILLAR program provided the avionics architecture concept and basic requirements. Designs for wire and fiber optic media were produced and hardware demonstrations were performed. An efficient, robust token-passing protocol was developed and partially demonstrated. The requirements specifications, the trade-offs made, and the resulting designs for both a coaxial wire media system and a fiber optics design are examined. Also, the development of a message-oriented media access protocol is described, from requirements definition through analysis, simulation and experimentation. Finally, the testing and demonstrations conducted on the breadboard and brassboard hardware is presented.

  17. High-Speed Schlieren Movies of Decelerators at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    1960-01-01

    High-Speed Schlieren Movies of Decelerators at Supersonic Speeds. Tests were conducted on several types of porous parachutes, a paraglider, and a simulated retrorocket. Mach numbers ranged from 1.8-3.0, porosity from 20-80 percent, and camera speeds from 1680-3000 feet per second (fps) in trials with porous parachutes. Trials of reefed parachutes were conducted at Mach number 2.0 and reefing of 12-33 percent at camera speeds of 600 fps. A flexible parachute with an inflatable ring in the periphery of the canopy was tested at Reynolds number 750,000 per foot, Mach number 2.85, porosity of 28 percent, and camera speed of 36oo fps. A vortex-ring parachute was tested at Mach number 2.2 and camera speed of 3000 fps. The paraglider, with a sweepback of 45 degrees at an angle of attack of 45 degrees was tested at Mach number 2.65, drag coefficient of 0.200, and lift coefficient of 0.278 at a camera speed of 600 fps. A cold air jet exhausting upstream from the center of a bluff body was used to simulate a retrorocket. The free-stream Mach number was 2.0, free-stream dynamic pressure was 620 lb/sq ft, jet-exit static pressure ratio was 10.9, and camera speed was 600 fps. [Entire movie available on DVD from CASI as Doc ID 20070030973. Contact help@sti.nasa.gov

  18. High speed sampler and demultiplexer

    DOEpatents

    McEwan, T.E.

    1995-12-26

    A high speed sampling demultiplexer based on a plurality of sampler banks, each bank comprising a sample transmission line for transmitting an input signal, a strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates at respective positions along the sample transmission line for sampling the input signal in response to the strobe signal. Strobe control circuitry is coupled to the plurality of banks, and supplies a sequence of bank strobe signals to the strobe transmission lines in each of the plurality of banks, and includes circuits for controlling the timing of the bank strobe signals among the banks of samplers. Input circuitry is included for supplying the input signal to be sampled to the plurality of sample transmission lines in the respective banks. The strobe control circuitry can repetitively strobe the plurality of banks of samplers such that the banks of samplers are cycled to create a long sample length. Second tier demultiplexing circuitry is coupled to each of the samplers in the plurality of banks. The second tier demultiplexing circuitry senses the sample taken by the corresponding sampler each time the bank in which the sampler is found is strobed. A plurality of such samples can be stored by the second tier demultiplexing circuitry for later processing. Repetitive sampling with the high speed transient sampler induces an effect known as ``strobe kickout``. The sample transmission lines include structures which reduce strobe kickout to acceptable levels, generally 60 dB below the signal, by absorbing the kickout pulses before the next sampling repetition. 16 figs.

  19. High speed sampler and demultiplexer

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    A high speed sampling demultiplexer based on a plurality of sampler banks, each bank comprising a sample transmission line for transmitting an input signal, a strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates at respective positions along the sample transmission line for sampling the input signal in response to the strobe signal. Strobe control circuitry is coupled to the plurality of banks, and supplies a sequence of bank strobe signals to the strobe transmission lines in each of the plurality of banks, and includes circuits for controlling the timing of the bank strobe signals among the banks of samplers. Input circuitry is included for supplying the input signal to be sampled to the plurality of sample transmission lines in the respective banks. The strobe control circuitry can repetitively strobe the plurality of banks of samplers such that the banks of samplers are cycled to create a long sample length. Second tier demultiplexing circuitry is coupled to each of the samplers in the plurality of banks. The second tier demultiplexing circuitry senses the sample taken by the corresponding sampler each time the bank in which the sampler is found is strobed. A plurality of such samples can be stored by the second tier demultiplexing circuitry for later processing. Repetitive sampling with the high speed transient sampler induces an effect known as "strobe kickout". The sample transmission lines include structures which reduce strobe kickout to acceptable levels, generally 60 dB below the signal, by absorbing the kickout pulses before the next sampling repetition.

  20. High Precision Bright-Star Astrometry with the USNO Astrometric CMOS Hybrid Camera System

    NASA Astrophysics Data System (ADS)

    Secrest, Nathan; Dudik, Rachel; Berghea, Ciprian T.; Hennessy, Greg; Dorland, Bryan

    2015-05-01

    While GAIA will provide excellent positional measurements of hundreds of millions of stars between 5 < mag < 20, an ongoing challenge in the field of high-precision differential astrometry is the positional accuracy of very bright stars (mag < 5), due to the enormous dynamic range between bright stars of interest, such as those in the Hipparcos catalog, and their background field stars, which are especially important for differential astrometry. Over the past few years, we have been testing the USNO Astrometric CMOS Hybrid Camera System (UAHC), which utilizes an H4RG-10 detector in windowing mode, as a possible solution to the NOFS USNO Bright Star Astrometric Database (UBAD). In this work, we discuss the results of an astrometric analysis of single-epoch Hipparcos data taken with the UAHC from the 1.55m Kaj Strand Astrometric Reflector at NOFS from June 27-30, 2014. We discuss the calibration of this data, as well as an astrometric analysis pipeline we developed that will enable multi-epoch differential and absolute astrometry with the UAHC. We find that while the overall differential astrometric stability of data taken with the UAHC is good (5-10 mas single-measurement precision) and comparable to other ground-based astrometric camera systems, bright stars in the detector window suffer from several systematic effects, such as insufficient window geometry and centroiding failures due to read-out artifacts - both of which can be significantly improved with modifications to the electronics, read-out speed and microcode.

  1. ADVANCED HIGH SPEED PROGRAMMABLE PREFORMING

    SciTech Connect

    Norris Jr, Robert E; Lomax, Ronny D; Xiong, Fue; Dahl, Jeffrey S; Blanchard, Patrick J

    2010-01-01

    Polymer-matrix composites offer greater stiffness and strength per unit weight than conventional materials resulting in new opportunities for lightweighting of automotive and heavy vehicles. Other benefits include design flexibility, less corrosion susceptibility, and the ability to tailor properties to specific load requirements. However, widespread implementation of structural composites requires lower-cost manufacturing processes than those that are currently available. Advanced, directed-fiber preforming processes have demonstrated exceptional value for rapid preforming of large, glass-reinforced, automotive composite structures. This is due to process flexibility and inherently low material scrap rate. Hence directed fiber performing processes offer a low cost manufacturing methodology for producing preforms for a variety of structural automotive components. This paper describes work conducted at the Oak Ridge National Laboratory (ORNL), focused on the development and demonstration of a high speed chopper gun to enhance throughput capabilities. ORNL and the Automotive Composites Consortium (ACC) revised the design of a standard chopper gun to expand the operational envelope, enabling delivery of up to 20kg/min. A prototype unit was fabricated and used to demonstrate continuous chopping of multiple roving at high output over extended periods. In addition fiber handling system modifications were completed to sustain the high output the modified chopper affords. These hardware upgrades are documented along with results of process characterization and capabilities assessment.

  2. High-speed laser photography

    NASA Astrophysics Data System (ADS)

    Becker, Roger J.

    1988-08-01

    High-speed movies of solid propellant deflagration have long provided useful qualitative information on propellant behavior. Consequently, an extension of performance to include quantitative behavior of the surface, particularly the spatial relationship of particles across the surface, the temporal behavior of particles through extended periods of time, and accurate measurements of particle sizes, is highly desirable. Such measurements require the ability to take detailed movies across an extensive surface through the propellant flame for longer periods than the residence time of a given particle. The modulation transfer function (MTF) of the camera optics and film will greatly affect performance. The MTF of the optics can be improved by a factor of two or more at practical spatial frequencies by the use of monochromatic light, such as the reflected light from a laser. The use of an intense, short-pulsed laser has the additional advantage of suppressing flame brightness and motion blur. High resolution at unity magnification is achieved by the use of 2 mJ of illumination energy per pulse in conjunction with a fine-grain film. The surfaces of the wide-distribution propellants were found to be molten.

  3. High-Q CMOS-integrated photonic crystal microcavity devices

    PubMed Central

    Mehta, Karan K.; Orcutt, Jason S.; Tehar-Zahav, Ofer; Sternberg, Zvi; Bafrali, Reha; Meade, Roy; Ram, Rajeev J.

    2014-01-01

    Integrated optical resonators are necessary or beneficial in realizations of various functions in scaled photonic platforms, including filtering, modulation, and detection in classical communication systems, optical sensing, as well as addressing and control of solid state emitters for quantum technologies. Although photonic crystal (PhC) microresonators can be advantageous to the more commonly used microring devices due to the former's low mode volumes, fabrication of PhC cavities has typically relied on electron-beam lithography, which precludes integration with large-scale and reproducible CMOS fabrication. Here, we demonstrate wavelength-scale polycrystalline silicon (pSi) PhC microresonators with Qs up to 60,000 fabricated within a bulk CMOS process. Quasi-1D resonators in lateral p-i-n structures allow for resonant defect-state photodetection in all-silicon devices, exhibiting voltage-dependent quantum efficiencies in the range of a few 10 s of %, few-GHz bandwidths, and low dark currents, in devices with loaded Qs in the range of 4,300–9,300; one device, for example, exhibited a loaded Q of 4,300, 25% quantum efficiency (corresponding to a responsivity of 0.31 A/W), 3 GHz bandwidth, and 30 nA dark current at a reverse bias of 30 V. This work demonstrates the possibility for practical integration of PhC microresonators with active electro-optic capability into large-scale silicon photonic systems. PMID:24518161

  4. High speed imager test station

    DOEpatents

    Yates, George J.; Albright, Kevin L.; Turko, Bojan T.

    1995-01-01

    A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment.

  5. High speed imager test station

    DOEpatents

    Yates, G.J.; Albright, K.L.; Turko, B.T.

    1995-11-14

    A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment. 12 figs.

  6. Advanced MOSFET technologies for high-speed circuits and EPROM

    SciTech Connect

    Wu, A.T.T.

    1987-01-01

    In the first part of the thesis, two novel source-side injection EPROM (SI-EPROM) devices capable of 5-volt only, high-speed programming are studied. Both devices are asymmetrical n-channel stacked-gate MOSFETs, each with a short weak gate-control channel region introduced close to the source. Under high gate bias, a strong-channel electric field for hot-electron generation is created in this local region even at a relatively low drain voltage. Furthermore, the gate oxide field in this region is highly favorable for hot-electron injection into the floating-gate. As a results, a programming speed of 10..mu..s at a drain voltage of 5 volts was demonstrated with one of the SI-EPROM devices fabricated. In the second part of the thesis, technology design considerations accompanying MOSFET scaling are studied for high-speed analog circuits and densely packed digital circuits. It is shown that for sub-micron technologies, especially those for CMOS, the drain/source junction capacitances dominate device parasitic capacitances in digital applications. A novel MOS device structure that employs the COO and DOO schemes is described.

  7. A very high speed lossless compression/decompression chip set

    NASA Technical Reports Server (NTRS)

    Venbrux, Jack; Liu, Norley; Liu, Kathy; Vincent, Peter; Merrell, Randy

    1991-01-01

    A chip is described that will perform lossless compression and decompression using the Rice Algorithm. The chip set is designed to compress and decompress source data in real time for many applications. The encoder is designed to code at 20 M samples/second at MIL specifications. That corresponds to 280 Mbits/second at maximum quantization or approximately 500 Mbits/second under nominal conditions. The decoder is designed to decode at 10 M samples/second at industrial specifications. A wide range of quantization levels is allowed (4...14 bits) and both nearest neighbor prediction and external prediction are supported. When the pre and post processors are bypassed, the chip set performs high speed entropy coding and decoding. This frees the chip set from being tied to one modeling technique or specific application. Both the encoder and decoder are being fabricated in a 1.0 micron CMOS process that has been tested to survive 1 megarad of total radiation dosage. The CMOS chips are small, only 5 mm on a side, and both are estimated to consume less than 1/4 of a Watt of power while operating at maximum frequency.

  8. A new 28 nm high-k metal gate CMOS logic one-time programmable memory cell

    NASA Astrophysics Data System (ADS)

    Hsiao, Woan Yun; Mei, Chin Yu; Chao Shen, Wen; Der Chih, Yue; King, Ya-Chin; Lin, Chrong Jung

    2014-01-01

    This work presents a high density high-k metal gate (HKMG) one-time programmable (OTP) cell. Without additional processes and steps, this OTP cell is fully compatible to 28 nm HKMG CMOS process. The OTP cell adopts high-k dielectric breakdown as programming mechanism to obtain more than 105 times of on/off read window. Moreover, it features low power and fast program speed by 4.5 V program voltage in 100 µs. In addition to the ultrasmall cell area of 0.0425 µm2, the superior performance of disturb immunities and data retention further support the new logic OTP cell to be a very promising solution in advanced logic non-volatile memory (NVM) applications.

  9. High-speed pressure clamp.

    PubMed

    Besch, Stephen R; Suchyna, Thomas; Sachs, Frederick

    2002-10-01

    We built a high-speed, pneumatic pressure clamp to stimulate patch-clamped membranes mechanically. The key control element is a newly designed differential valve that uses a single, nickel-plated piezoelectric bending element to control both pressure and vacuum. To minimize response time, the valve body was designed with minimum dead volume. The result is improved response time and stability with a threefold decrease in actuation latency. Tight valve clearances minimize the steady-state air flow, permitting us to use small resonant-piston pumps to supply pressure and vacuum. To protect the valve from water contamination in the event of a broken pipette, an optical sensor detects water entering the valve and increases pressure rapidly to clear the system. The open-loop time constant for pressure is 2.5 ms for a 100-mmHg step, and the closed-loop settling time is 500-600 micros. Valve actuation latency is 120 micros. The system performance is illustrated for mechanically induced changes in patch capacitance.

  10. A High Frequency Active Voltage Doubler in Standard CMOS Using Offset-Controlled Comparators for Inductive Power Transmission

    PubMed Central

    Lee, Hyung-Min; Ghovanloo, Maysam

    2014-01-01

    In this paper, we present a fully integrated active voltage doubler in CMOS technology using offset-controlled high speed comparators for extending the range of inductive power transmission to implantable microelectronic devices (IMD) and radio-frequency identification (RFID) tags. This active voltage doubler provides considerably higher power conversion efficiency (PCE) and lower dropout voltage compared to its passive counterpart and requires lower input voltage than active rectifiers, leading to reliable and efficient operation with weakly coupled inductive links. The offset-controlled functions in the comparators compensate for turn-on and turn-off delays to not only maximize the forward charging current to the load but also minimize the back current, optimizing PCE in the high frequency (HF) band. We fabricated the active voltage doubler in a 0.5-μm 3M2P std. CMOS process, occupying 0.144 mm2 of chip area. With 1.46 V peak AC input at 13.56 MHz, the active voltage doubler provides 2.4 V DC output across a 1 kΩ load, achieving the highest PCE = 79% ever reported at this frequency. In addition, the built-in start-up circuit ensures a reliable operation at lower voltages. PMID:23853321

  11. High-speed detection of DNA translocation in nanopipettes

    NASA Astrophysics Data System (ADS)

    Fraccari, Raquel L.; Ciccarella, Pietro; Bahrami, Azadeh; Carminati, Marco; Ferrari, Giorgio; Albrecht, Tim

    2016-03-01

    We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface.We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface. Electronic supplementary information (ESI) available: Gel electrophoresis confirming lengths and purity of DNA samples, comparison between Axopatch 200B and custom-built setup, comprehensive low-noise amplifier characterization, representative I-V curves of nanopipettes used, typical scatter plots of τ vs. peak amplitude for the four LDNA's used, table of most probable τ values, a comparison between different fitting models for the DNA translocation time distribution, further details on the stochastic numerical simulation of the scaling statistics and the derivation of the extended

  12. Design and Fabrication of High-Efficiency CMOS/CCD Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata

    2007-01-01

    An architecture for back-illuminated complementary metal oxide/semiconductor (CMOS) and charge-coupled-device (CCD) ultraviolet/visible/near infrared- light image sensors, and a method of fabrication to implement the architecture, are undergoing development. The architecture and method are expected to enable realization of the full potential of back-illuminated CMOS/CCD imagers to perform with high efficiency, high sensitivity, excellent angular response, and in-pixel signal processing. The architecture and method are compatible with next-generation CMOS dielectric-forming and metallization techniques, and the process flow of the method is compatible with process flows typical of the manufacture of very-large-scale integrated (VLSI) circuits. The architecture and method overcome all obstacles that have hitherto prevented high-yield, low-cost fabrication of back-illuminated CMOS/CCD imagers by use of standard VLSI fabrication tools and techniques. It is not possible to discuss the obstacles in detail within the space available for this article. Briefly, the obstacles are posed by the problems of generating light-absorbing layers having desired uniform and accurate thicknesses, passivation of surfaces, forming structures for efficient collection of charge carriers, and wafer-scale thinning (in contradistinction to diescale thinning). A basic element of the present architecture and method - the element that, more than any other, makes it possible to overcome the obstacles - is the use of an alternative starting material: Instead of starting with a conventional bulk-CMOS wafer that consists of a p-doped epitaxial silicon layer grown on a heavily-p-doped silicon substrate, one starts with a special silicon-on-insulator (SOI) wafer that consists of a thermal oxide buried between a lightly p- or n-doped, thick silicon layer and a device silicon layer of appropriate thickness and doping. The thick silicon layer is used as a handle: that is, as a mechanical support for the

  13. Front-end receiver electronics for high-frequency monolithic CMUT-on-CMOS imaging arrays.

    PubMed

    Gurun, Gokce; Hasler, Paul; Degertekin, F

    2011-08-01

    This paper describes the design of CMOS receiver electronics for monolithic integration with capacitive micromachined ultrasonic transducer (CMUT) arrays for highfrequency intravascular ultrasound imaging. A custom 8-inch (20-cm) wafer is fabricated in a 0.35-μm two-poly, four-metal CMOS process and then CMUT arrays are built on top of the application specific integrated circuits (ASICs) on the wafer. We discuss advantages of the single-chip CMUT-on-CMOS approach in terms of receive sensitivity and SNR. Low-noise and high-gain design of a transimpedance amplifier (TIA) optimized for a forward-looking volumetric-imaging CMUT array element is discussed as a challenging design example. Amplifier gain, bandwidth, dynamic range, and power consumption trade-offs are discussed in detail. With minimized parasitics provided by the CMUT-on-CMOS approach, the optimized TIA design achieves a 90 fA/√Hz input-referred current noise, which is less than the thermal-mechanical noise of the CMUT element. We show successful system operation with a pulseecho measurement. Transducer-noise-dominated detection in immersion is also demonstrated through output noise spectrum measurement of the integrated system at different CMUT bias voltages. A noise figure of 1.8 dB is obtained in the designed CMUT bandwidth of 10 to 20 MHz.

  14. High performance rf front end circuits using SiGe:C BiCMOS+copper technologies

    NASA Astrophysics Data System (ADS)

    Watanabe, Glenn; Ortiz, Jeff; Holbrook, Rick

    2004-03-01

    Using a first generation standard silicon germanium (SiGe):C HBT BiCMOS process, a personal digital cellular (PDC) LNA noice factor (NF) of 1.0 dB at 850 MHz and 1.2 dB at 1.5 GHz has been achieved. The LNA NF can be further reduced by using the second generation enhanced SiGe:C HBT BiCMOS process. The mixer performance is equally impressive. The NF of the downconversion mixer at 1.5 GHz is just 6.2 dB with a conversion gain of 12 dB. The mixer IIP3 is +9.9 dBm at a current drain of 5.6 mA. Design techniques are given on how to achieve high linearity with minimal current drain resulting in a 881 MHz LNA with an IIP3 of +12.4 dBm with just 6 mA of current and a NF of 1.4 dB using the first generation SiGe:C HBT BiCMOS process. The second generation enhanced SiGe:C HBT BiCMOS process should further reduce the noise figure.

  15. Review of high speed communications photomultiplier detectors

    NASA Technical Reports Server (NTRS)

    Enck, R. S.; Abraham, W. G.

    1978-01-01

    Four types of newly developed high speed photomultipliers are discussed: all electrostatic; static crossed field; dynamic crossed field; and hybrid (EBS). Design, construction, and performance parameters of each class are presented along with limitations of each class of device and prognosis for its future in high speed light detection. The particular advantage of these devices lies in high speed applications using low photon flux, large cathode areas, and broadband optical detection.

  16. The Future Of High Speed Photography

    NASA Astrophysics Data System (ADS)

    Courtney-Pratt, J. S.

    1987-09-01

    The variety, range and precision of methods available for photographic recording of fast phenomena have been increasing steadily. The capabilities of the techniques are considered, classifying the methods by the kind of record obtained. descriptions of experimental techniques and apparatus, and illustrations, are given in earlier articles: "A Review of the Methods of High-Speed Photography," Reports on Progress in Physics in 1957; "Advances in High-Speed Photography 1957-1972," Proceedings of the Tenth International Congress on High-Speed Photography and also JSMPTE 82, pp. 167-175 (1973); "Advances in High-Speed Photograph, updated to 1983 in the Proceedings of SPIE Volume 427.

  17. Region-of-interest cone beam computed tomography (ROI CBCT) with a high resolution CMOS detector

    NASA Astrophysics Data System (ADS)

    Jain, A.; Takemoto, H.; Silver, M. D.; Nagesh, S. V. S.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.

    2015-03-01

    Cone beam computed tomography (CBCT) systems with rotational gantries that have standard flat panel detectors (FPD) are widely used for the 3D rendering of vascular structures using Feldkamp cone beam reconstruction algorithms. One of the inherent limitations of these systems is limited resolution (<3 lp/mm). There are systems available with higher resolution but their small FOV limits them to small animal imaging only. In this work, we report on region-of-interest (ROI) CBCT with a high resolution CMOS detector (75 μm pixels, 600 μm HR-CsI) mounted with motorized detector changer on a commercial FPD-based C-arm angiography gantry (194 μm pixels, 600 μm HL-CsI). A cylindrical CT phantom and neuro stents were imaged with both detectors. For each detector a total of 209 images were acquired in a rotational protocol. The technique parameters chosen for the FPD by the imaging system were used for the CMOS detector. The anti-scatter grid was removed and the incident scatter was kept the same for both detectors with identical collimator settings. The FPD images were reconstructed for the 10 cm x10 cm FOV and the CMOS images were reconstructed for a 3.84 cm x 3.84 cm FOV. Although the reconstructed images from the CMOS detector demonstrated comparable contrast to the FPD images, the reconstructed 3D images of the neuro stent clearly showed that the CMOS detector improved delineation of smaller objects such as the stent struts (~70 μm) compared to the FPD. Further development and the potential for substantial clinical impact are suggested.

  18. High-Speed Ring Bus

    NASA Technical Reports Server (NTRS)

    Wysocky, Terry; Kopf, Edward, Jr.; Katanyoutananti, Sunant; Steiner, Carl; Balian, Harry

    2010-01-01

    The high-speed ring bus at the Jet Propulsion Laboratory (JPL) allows for future growth trends in spacecraft seen with future scientific missions. This innovation constitutes an enhancement of the 1393 bus as documented in the Institute of Electrical and Electronics Engineers (IEEE) 1393-1999 standard for a spaceborne fiber-optic data bus. It allows for high-bandwidth and time synchronization of all nodes on the ring. The JPL ring bus allows for interconnection of active units with autonomous operation and increased fault handling at high bandwidths. It minimizes the flight software interface with an intelligent physical layer design that has few states to manage as well as simplified testability. The design will soon be documented in the AS-1393 standard (Serial Hi-Rel Ring Network for Aerospace Applications). The framework is designed for "Class A" spacecraft operation and provides redundant data paths. It is based on "fault containment regions" and "redundant functional regions (RFR)" and has a method for allocating cables that completely supports the redundancy in spacecraft design, allowing for a complete RFR to fail. This design reduces the mass of the bus by incorporating both the Control Unit and the Data Unit in the same hardware. The standard uses ATM (asynchronous transfer mode) packets, standardized by ITU-T, ANSI, ETSI, and the ATM Forum. The IEEE-1393 standard uses the UNI form of the packet and provides no protection for the data portion of the cell. The JPL design adds optional formatting to this data portion. This design extends fault protection beyond that of the interconnect. This includes adding protection to the data portion that is contained within the Bus Interface Units (BIUs) and by adding to the signal interface between the Data Host and the JPL 1393 Ring Bus. Data transfer on the ring bus does not involve a master or initiator. Following bus protocol, any BIU may transmit data on the ring whenever it has data received from its host. There

  19. A highly sensitive CMOS digital Hall sensor for low magnetic field applications.

    PubMed

    Xu, Yue; Pan, Hong-Bin; He, Shu-Zhuan; Li, Li

    2012-01-01

    Integrated CMOS Hall sensors have been widely used to measure magnetic fields. However, they are difficult to work with in a low magnetic field environment due to their low sensitivity and large offset. This paper describes a highly sensitive digital Hall sensor fabricated in 0.18 μm high voltage CMOS technology for low field applications. The sensor consists of a switched cross-shaped Hall plate and a novel signal conditioner. It effectively eliminates offset and low frequency 1/f noise by applying a dynamic quadrature offset cancellation technique. The measured results show the optimal Hall plate achieves a high current related sensitivity of about 310 V/AT. The whole sensor has a remarkable ability to measure a minimum ± 2 mT magnetic field and output a digital Hall signal in a wide temperature range from -40 °C to 120 °C.

  20. A Highly Sensitive CMOS Digital Hall Sensor for Low Magnetic Field Applications

    PubMed Central

    Xu, Yue; Pan, Hong-Bin; He, Shu-Zhuan; Li, Li

    2012-01-01

    Integrated CMOS Hall sensors have been widely used to measure magnetic fields. However, they are difficult to work with in a low magnetic field environment due to their low sensitivity and large offset. This paper describes a highly sensitive digital Hall sensor fabricated in 0.18 μm high voltage CMOS technology for low field applications. The sensor consists of a switched cross-shaped Hall plate and a novel signal conditioner. It effectively eliminates offset and low frequency 1/f noise by applying a dynamic quadrature offset cancellation technique. The measured results show the optimal Hall plate achieves a high current related sensitivity of about 310 V/AT. The whole sensor has a remarkable ability to measure a minimum ±2 mT magnetic field and output a digital Hall signal in a wide temperature range from −40 °C to 120 °C. PMID:22438758

  1. High Precision Bright-Star Astrometry with the USNO Astrometric CMOS Hybrid Camera System

    NASA Astrophysics Data System (ADS)

    Secrest, Nathan; Dudik, Rachel; Berghea, Ciprian; Hennessy, Greg; Dorland, Bryan

    2015-08-01

    While GAIA will provide excellent positional measurements of hundreds of millions of stars between 5 < mag < 20, an ongoing challenge in the field of high-precision differential astrometry is the positional accuracy of very bright stars (mag < 5), due to the enormous dynamic range between bright stars of interest, such as those in the Hipparcos catalog, and their background field stars, which are especially important for differential astrometry. Over the past few years, we have been testing the USNO Astrometric CMOS Hybrid Camera System (UAHC), which utilizes an H4RG-10 detector in windowing mode, as a possible solution to the NOFS USNO Bright Star Astrometric Database (UBAD). In this work, we discuss the results of an astrometric analysis of single-epoch Hipparcos data taken with the UAHC from the 1.55m Kaj Strand Astrometric Reflector at NOFS from June 27-30, 2014. We discuss the calibration of this data, as well as an astrometric analysis pipeline we developed that will enable multi-epoch differential and absolute astrometry with the UAHC. We find that while the overall differential astrometric stability of data taken with the UAHC is good (5-10 mas single-measurement precision) and comparable to other ground-based astrometric camera systems, bright stars in the detector window suffer from several systematic effects, such as insufficient window geometry and centroiding failures due to read-out artifacts—both of which can be significantly improved with modifications to the electronics, read-out speed and microcode.

  2. Aerodynamic Characteristics of Airfoils at High Speeds

    NASA Technical Reports Server (NTRS)

    Briggs, L J; Hull, G F; Dryden, H L

    1925-01-01

    This report deals with an experimental investigation of the aerodynamical characteristics of airfoils at high speeds. Lift, drag, and center of pressure measurements were made on six airfoils of the type used by the air service in propeller design, at speeds ranging from 550 to 1,000 feet per second. The results show a definite limit to the speed at which airfoils may efficiently be used to produce lift, the lift coefficient decreasing and the drag coefficient increasing as the speed approaches the speed of sound. The change in lift coefficient is large for thick airfoil sections (camber ratio 0.14 to 0.20) and for high angles of attack. The change is not marked for thin sections (camber ratio 0.10) at low angles of attack, for the speed range employed. At high speeds the center of pressure moves back toward the trailing edge of the airfoil as the speed increases. The results indicate that the use of tip speeds approaching the speed of sound for propellers of customary design involves a serious loss in efficiency.

  3. High-performance CMOS image sensors at BAE SYSTEMS Imaging Solutions

    NASA Astrophysics Data System (ADS)

    Vu, Paul; Fowler, Boyd; Liu, Chiao; Mims, Steve; Balicki, Janusz; Bartkovjak, Peter; Do, Hung; Li, Wang

    2012-07-01

    In this paper, we present an overview of high-performance CMOS image sensor products developed at BAE SYSTEMS Imaging Solutions designed to satisfy the increasingly challenging technical requirements for image sensors used in advanced scientific, industrial, and low light imaging applications. We discuss the design and present the test results of a family of image sensors tailored for high imaging performance and capable of delivering sub-electron readout noise, high dynamic range, low power, high frame rates, and high sensitivity. We briefly review the performance of the CIS2051, a 5.5-Mpixel image sensor, which represents our first commercial CMOS image sensor product that demonstrates the potential of our technology, then we present the performance characteristics of the CIS1021, a full HD format CMOS image sensor capable of delivering sub-electron read noise performance at 50 fps frame rate at full HD resolution. We also review the performance of the CIS1042, a 4-Mpixel image sensor which offers better than 70% QE @ 600nm combined with better than 91dB intra scene dynamic range and about 1 e- read noise at 100 fps frame rate at full resolution.

  4. High Speed Video for Airborne Instrumentation Application

    NASA Technical Reports Server (NTRS)

    Tseng, Ting; Reaves, Matthew; Mauldin, Kendall

    2006-01-01

    A flight-worthy high speed color video system has been developed. Extensive system development and ground and environmental. testing hes yielded a flight qualified High Speed Video System (HSVS), This HSVS was initially used on the F-15B #836 for the Lifting Insulating Foam Trajectory (LIFT) project.

  5. High-Speed Photography with Computer Control.

    ERIC Educational Resources Information Center

    Winters, Loren M.

    1991-01-01

    Describes the use of a microcomputer as an intervalometer for the control and timing of several flash units to photograph high-speed events. Applies this technology to study the oscillations of a stretched rubber band, the deceleration of high-speed projectiles in water, the splashes of milk drops, and the bursts of popcorn kernels. (MDH)

  6. Reducing Heating In High-Speed Cinematography

    NASA Technical Reports Server (NTRS)

    Slater, Howard A.

    1989-01-01

    Infrared-absorbing and infrared-reflecting glass filters simple and effective means for reducing rise in temperature during high-speed motion-picture photography. "Hot-mirror" and "cold-mirror" configurations, employed in projection of images, helps prevent excessive heating of scenes by powerful lamps used in high-speed photography.

  7. Design of high-speed high-performance, serial bus data transceiver

    NASA Astrophysics Data System (ADS)

    Kuppusamy, Saravanan K.; Hasan, S. M. Rezaul

    2000-10-01

    Recent developments in digital data transport shows that the general trend is moving towards high-speed, low-cost serial networks. Standards such as USB and the relatively new IEEE1394, provide inexpensive, scalable and truly universal I/O connection for virtually any form of digital hardware. Bandwidth requirements for multimedia applications such as real-time digital audio and video, digital broadcasting, wide-band ethernet and the emergence of consumer products such as digital camcorders and VCRs makes data rates of up to 400Mbit/s and beyond, a necessity. In this work we have developed a high-speed high-performance serial bus transceiver, which conforms to the IEEE1394 standards. The HP 0.5micrometers scalable CMOS process available through MOSIS was used for the hardware design. Data rates of up to 800Mbit/s are achieve din comparison to previous similar works that only achieves 300Mbit/s using a BiCMOS process.

  8. High speed flow past wings

    NASA Technical Reports Server (NTRS)

    Norstrud, H.

    1973-01-01

    The analytical solution to the transonic small perturbation equation which describes steady compressible flow past finite wings at subsonic speeds can be expressed as a nonlinear integral equation with the perturbation velocity potential as the unknown function. This known formulation is substituted by a system of nonlinear algebraic equations to which various methods are applicable for its solution. Due to the presence of mathematical discontinuities in the flow solutions, however, a main computational difficulty was to ensure uniqueness of the solutions when local velocities on the wing exceeded the speed of sound. For continuous solutions this was achieved by embedding the algebraic system in an one-parameter operator homotopy in order to apply the method of parametric differentiation. The solution to the initial system of equations appears then as a solution to a Cauchy problem where the initial condition is related to the accompanying incompressible flow solution. In using this technique, however, a continuous dependence of the solution development on the initial data is lost when the solution reaches the minimum bifurcation point. A steepest descent iteration technique was therefore, added to the computational scheme for the calculation of discontinuous flow solutions. Results for purely subsonic flows and supersonic flows with and without compression shocks are given and compared with other available theoretical solutions.

  9. Active control system for high speed windmills

    DOEpatents

    Avery, D.E.

    1988-01-12

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed. 4 figs.

  10. Active control system for high speed windmills

    DOEpatents

    Avery, Don E.

    1988-01-01

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed.

  11. ControlNet features high speed

    SciTech Connect

    McEldowney, D.

    1996-11-01

    ControlNet is a high-speed, high-capacity network providing a connection among controllers and I/O subsystems. It was designed for applications in which data integrity, determinism, high speeds, and high data capacities are required. ControlNet addresses applications needing tighter control over processes as well as demanding remote I/O or interlocked PLC applications, both discrete- and process-related. Some examples include high-speed conveyors, transfer lines, cut-to-length lines, high-speed assembly, bottling, and packaging. Process examples, or those typically requiring heavy remote analog I/O, include water/wastewater, test stands, chemical, beverage, food, marine control, and utility balance-of-plant.

  12. Lubrication and cooling for high speed gears

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.

    1985-01-01

    The problems and failures occurring with the operation of high speed gears are discussed. The gearing losses associated with high speed gearing such as tooth mesh friction, bearing friction, churning, and windage are discussed with various ways shown to help reduce these losses and thereby improve efficiency. Several different methods of oil jet lubrication for high speed gearing are given such as into mesh, out of mesh, and radial jet lubrication. The experiments and analytical results for the various methods of oil jet lubrication are shown with the strengths and weaknesses of each method discussed. The analytical and experimental results of gear lubrication and cooling at various test conditions are presented. These results show the very definite need of improved methods of gear cooling at high speed and high load conditions.

  13. Speed control with end cushion for high speed air cylinder

    DOEpatents

    Stevens, Wayne W.; Solbrig, Charles W.

    1991-01-01

    A high speed air cylinder in which the longitudinal movement of the piston within the air cylinder tube is controlled by pressurizing the air cylinder tube on the accelerating side of the piston and releasing pressure at a controlled rate on the decelerating side of the piston. The invention also includes a method for determining the pressure required on both the accelerating and decelerating sides of the piston to move the piston with a given load through a predetermined distance at the desired velocity, bringing the piston to rest safely without piston bounce at the end of its complete stroke.

  14. Damping Bearings In High-Speed Turbomachines

    NASA Technical Reports Server (NTRS)

    Von Pragenau, George L.

    1994-01-01

    Paper presents comparison of damping bearings with traditional ball, roller, and hydrostatic bearings in high-speed cryogenic turbopumps. Concept of damping bearings described in "Damping Seals and Bearings for a Turbomachine" (MFS-28345).

  15. A High Vacuum High Speed Ion Pump

    DOE R&D Accomplishments Database

    Foster, J. S. Jr.; Lawrence, E. O.; Lofgren, E. J.

    1952-08-27

    A vacuum pump based on the properties of a magnetically collimated electric discharge is described. It has a speed in the range 3000 to 7000 liters a second and a base pressure in the order of 10{sup -6} mm. (auth)

  16. Aerodynamics of high-speed railway train

    NASA Astrophysics Data System (ADS)

    Raghunathan, Raghu S.; Kim, H.-D.; Setoguchi, T.

    2002-10-01

    Railway train aerodynamic problems are closely associated with the flows occurring around train. Much effort to speed up the train system has to date been paid on the improvement of electric motor power rather than understanding the flow around the train. This has led to larger energy losses and performance deterioration of the train system, since the flows around train are more disturbed due to turbulence of the increased speed of the train, and consequently the flow energies are converted to aerodynamic drag, noise and vibrations. With the speed-up of train, many engineering problems which have been neglected at low train speeds, are being raised with regard to aerodynamic noise and vibrations, impulse forces occurring as two trains intersect each other, impulse wave at the exit of tunnel, ear discomfort of passengers inside train, etc. These are of major limitation factors to the speed-up of train system. The present review addresses the state of the art on the aerodynamic and aeroacoustic problems of high-speed railway train and highlights proper control strategies to alleviate undesirable aerodynamic problems of high-speed railway train system.

  17. Superplane!High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The High Speed Civil Transport (HSCT). This light-hearted promotional piece explains what the HSCT 'Superplane' is and what advantages it will have over current aircraft. As envisioned, the HSCT is a next-generation supersonic (faster than the speed of sound) passenger jet that would fly 300 passengers at more than 1,500 miles per hour -- more than twice the speed of sound. It will cross the Pacific or Atlantic in less than half the time of modern subsonic jets, and at a ticket price less than 20 percent above comparable, slower flights

  18. Aerodynamic design on high-speed trains

    NASA Astrophysics Data System (ADS)

    Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li

    2016-04-01

    Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.

  19. High speed hydrogen/graphite interaction

    NASA Technical Reports Server (NTRS)

    Kelly, A. J.; Hamman, R.; Sharma, O. P.; Harrje, D. T.

    1974-01-01

    Various aspects of a research program on high speed hydrogen/graphite interaction are presented. Major areas discussed are: (1) theoretical predictions of hydrogen/graphite erosion rates; (2) high temperature, nonequilibrium hydrogen flow in a nozzle; and (3) molecular beam studies of hydrogen/graphite erosion.

  20. High Speed Digital Camera Technology Review

    NASA Technical Reports Server (NTRS)

    Clements, Sandra D.

    2009-01-01

    A High Speed Digital Camera Technology Review (HSD Review) is being conducted to evaluate the state-of-the-shelf in this rapidly progressing industry. Five HSD cameras supplied by four camera manufacturers participated in a Field Test during the Space Shuttle Discovery STS-128 launch. Each camera was also subjected to Bench Tests in the ASRC Imaging Development Laboratory. Evaluation of the data from the Field and Bench Tests is underway. Representatives from the imaging communities at NASA / KSC and the Optical Systems Group are participating as reviewers. A High Speed Digital Video Camera Draft Specification was updated to address Shuttle engineering imagery requirements based on findings from this HSD Review. This draft specification will serve as the template for a High Speed Digital Video Camera Specification to be developed for the wider OSG imaging community under OSG Task OS-33.

  1. Friction in high-speed impact experiments

    NASA Astrophysics Data System (ADS)

    Pelak, Robert A.; Rightley, Paul; Hammerberg, J. E.

    2000-04-01

    The physical interactions at the contact interface between two metals moving relative to one another are not well understood, particularly when the relative velocity between the bodies becomes a significant fraction of the sound speed in either material. Our goal is to characterize the interfacial dynamics occurring between two metal surfaces sliding at high loads (up to 300 kbar) and at high speeds (greater than 100 m/s). We are developing a technique where a high-speed spinning projectile is fired from a rifled gun at a rod instrumented with electrical resistance strain gauges for measuring both longitudinal and torsional strain waves. The observed traces, in conjunction with computer simulations, are used to estimate the normal and tangential force components at the interface to produce an estimate of the coefficient of friction. A preliminary estimate for a copper/steel interface is presented.

  2. CMOS Amperometric ADC With High Sensitivity, Dynamic Range and Power Efficiency for Air Quality Monitoring.

    PubMed

    Li, Haitao; Boling, C Sam; Mason, Andrew J

    2016-08-01

    Airborne pollutants are a leading cause of illness and mortality globally. Electrochemical gas sensors show great promise for personal air quality monitoring to address this worldwide health crisis. However, implementing miniaturized arrays of such sensors demands high performance instrumentation circuits that simultaneously meet challenging power, area, sensitivity, noise and dynamic range goals. This paper presents a new multi-channel CMOS amperometric ADC featuring pixel-level architecture for gas sensor arrays. The circuit combines digital modulation of input currents and an incremental Σ∆ ADC to achieve wide dynamic range and high sensitivity with very high power efficiency and compact size. Fabricated in 0.5 [Formula: see text] CMOS, the circuit was measured to have 164 dB cross-scale dynamic range, 100 fA sensitivity while consuming only 241 [Formula: see text] and 0.157 [Formula: see text] active area per channel. Electrochemical experiments with liquid and gas targets demonstrate the circuit's real-time response to a wide range of analyte concentrations. PMID:27352395

  3. Novel source follower transistor structure without lightly doped drain for high performance CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Song, Hyeong-Sub; Kwon, Sung-Kyu; Jeon, So-Ra; Oh, Dong-Jun; Lee, Ga-Won; Lee, Hi-Deok

    2016-08-01

    To realize high-resolution pixels in the CMOS image sensor, it is necessary to reduce low-frequency noise, particularly random telegraph signal (RTS) noise of the source-follower transistor (SFT). To achieve less relative variation of drain noise current, ΔI D/I D, a metal-oxide-semiconductor field-effect transistor structure without the lightly doped drain (LDD) for the SFT transistor is proposed. Then, a comparison of RTS noise characteristics between the proposed SFT structure without LDD and the conventional SFT structure with LDD was conducted. Although the RTS noise occurrence probability of the proposed SFT structure without LDD is somewhat greater than that of the conventional SFT structure with LDD, the amplitude of relative variation of drain noise current of the proposed SFT structure is significantly less than that of the conventional SFT. Despite changes in several factors in the proposed SFT, such as effective channel length, trap depth profile in gate oxide, and random dopant fluctuation (RDF), it is believed that the change of trap depth profile is a primary factor for the improved RTS characteristic. Therefore, the proposed SFT is highly desirable for the high-resolution CMOS image sensor.

  4. Novel source follower transistor structure without lightly doped drain for high performance CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Song, Hyeong-Sub; Kwon, Sung-Kyu; Jeon, So-Ra; Oh, Dong-Jun; Lee, Ga-Won; Lee, Hi-Deok

    2016-08-01

    To realize high-resolution pixels in the CMOS image sensor, it is necessary to reduce low-frequency noise, particularly random telegraph signal (RTS) noise of the source-follower transistor (SFT). To achieve less relative variation of drain noise current, ΔI D/I D, a metal–oxide–semiconductor field-effect transistor structure without the lightly doped drain (LDD) for the SFT transistor is proposed. Then, a comparison of RTS noise characteristics between the proposed SFT structure without LDD and the conventional SFT structure with LDD was conducted. Although the RTS noise occurrence probability of the proposed SFT structure without LDD is somewhat greater than that of the conventional SFT structure with LDD, the amplitude of relative variation of drain noise current of the proposed SFT structure is significantly less than that of the conventional SFT. Despite changes in several factors in the proposed SFT, such as effective channel length, trap depth profile in gate oxide, and random dopant fluctuation (RDF), it is believed that the change of trap depth profile is a primary factor for the improved RTS characteristic. Therefore, the proposed SFT is highly desirable for the high-resolution CMOS image sensor.

  5. Aerodynamics of High-Speed Trains

    NASA Astrophysics Data System (ADS)

    Schetz, Joseph A.

    This review highlights the differences between the aerodynamics of high-speed trains and other types of transportation vehicles. The emphasis is on modern, high-speed trains, including magnetic levitation (Maglev) trains. Some of the key differences are derived from the fact that trains operate near the ground or a track, have much greater length-to-diameter ratios than other vehicles, pass close to each other and to trackside structures, are more subject to crosswinds, and operate in tunnels with entry and exit events. The coverage includes experimental techniques and results and analytical and numerical methods, concentrating on the most recent information available.

  6. High speed databus evaluation - Further work

    NASA Astrophysics Data System (ADS)

    Lee, Andrew J.

    Communication elements of avionic architectures and tools for assessing their capabilities are discussed with emphasis placed on the most recent study aimed at understanding and using of high speed databuses. The latter include Linear Token Passing Bus, High Speed Ring Bus, and Fiber Distributed Data Interface. Simulation techniques for evaluating the performance of communication system elements provide a cost-effective and time efficient method of assessment. Further work is aimed at providing a unique capability capable of simulating the hardware and software functionality as well as communication elements. This tool will be used to assess complete avionic architectures.

  7. Low-FPN high-gain capacitive transimpedance amplifier for low-noise CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Fowler, Boyd A.; Balicki, Janusz; How, Dana; Godfrey, Michael

    2001-05-01

    In this paper we introduce a low fixed pattern noise (LFPN) capacitive transimpedance amplifier (CTIA) for active pixel CMOS image sensors (APS) with high switchable gain and low read noise. The LFPN CTIA APS uses a switched capacitor voltage divider feedback circuit to achieve high sensitivity, low gain FPN, and low read noise. This paper discusses the operation of the LFPN CTIA APS, and presents a theoretical analysis of its gain FPN and read noise. We do not analyze the effect of 1/f noise, since it is typically much smaller than the thermal and shot noise effects. Monte Carlo simulation of gain FPN and SPICE simulation of read noise are also presented. For a 0.35 micrometers CMOS LFPN CTIA at room temperature and an output data rate of 16Mpixel/sec, we show that the pixel amplifier gain FPN is less than 0.0064, where FPN is defined as the ratio of standard deviation to mean. The read noise and dynamic range are less than 3 electrons RMS and greater than 90dB respectively. We find that theory and simulated results match closely.

  8. High Speed and Slow Motion: The Technology of Modern High Speed Cameras

    ERIC Educational Resources Information Center

    Vollmer, Michael; Mollmann, Klaus-Peter

    2011-01-01

    The enormous progress in the fields of microsystem technology, microelectronics and computer science has led to the development of powerful high speed cameras. Recently a number of such cameras became available as low cost consumer products which can also be used for the teaching of physics. The technology of high speed cameras is discussed,…

  9. CAOS-CMOS camera.

    PubMed

    Riza, Nabeel A; La Torre, Juan Pablo; Amin, M Junaid

    2016-06-13

    Proposed and experimentally demonstrated is the CAOS-CMOS camera design that combines the coded access optical sensor (CAOS) imager platform with the CMOS multi-pixel optical sensor. The unique CAOS-CMOS camera engages the classic CMOS sensor light staring mode with the time-frequency-space agile pixel CAOS imager mode within one programmable optical unit to realize a high dynamic range imager for extreme light contrast conditions. The experimentally demonstrated CAOS-CMOS camera is built using a digital micromirror device, a silicon point-photo-detector with a variable gain amplifier, and a silicon CMOS sensor with a maximum rated 51.3 dB dynamic range. White light imaging of three different brightness simultaneously viewed targets, that is not possible by the CMOS sensor, is achieved by the CAOS-CMOS camera demonstrating an 82.06 dB dynamic range. Applications for the camera include industrial machine vision, welding, laser analysis, automotive, night vision, surveillance and multispectral military systems.

  10. CAOS-CMOS camera.

    PubMed

    Riza, Nabeel A; La Torre, Juan Pablo; Amin, M Junaid

    2016-06-13

    Proposed and experimentally demonstrated is the CAOS-CMOS camera design that combines the coded access optical sensor (CAOS) imager platform with the CMOS multi-pixel optical sensor. The unique CAOS-CMOS camera engages the classic CMOS sensor light staring mode with the time-frequency-space agile pixel CAOS imager mode within one programmable optical unit to realize a high dynamic range imager for extreme light contrast conditions. The experimentally demonstrated CAOS-CMOS camera is built using a digital micromirror device, a silicon point-photo-detector with a variable gain amplifier, and a silicon CMOS sensor with a maximum rated 51.3 dB dynamic range. White light imaging of three different brightness simultaneously viewed targets, that is not possible by the CMOS sensor, is achieved by the CAOS-CMOS camera demonstrating an 82.06 dB dynamic range. Applications for the camera include industrial machine vision, welding, laser analysis, automotive, night vision, surveillance and multispectral military systems. PMID:27410361

  11. High-Speed Schlieren Movies of Decelerators at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    1960-01-01

    Tests were conducted on several types of porous parachutes, a paraglider, and a simulated retrorocket. Mach numbers ranged from 1.8-3.0, porosity from 20-80 percent, and camera speeds from 1680-3000 feet per second (fps) in trials with porous parachutes. Trials of reefed parachutes were conducted at Mach number 2.0 and reefing of 12-33 percent at camera speeds of 600 fps. A flexible parachute with an inflatable ring in the periphery of the canopy was tested at Reynolds number 750,000 per foot, Mach number 2.85, porosity of 28 percent, and camera speed of 36oo fps. A vortex-ring parachute was tested at Mach number 2.2 and camera speed of 3000 fps. The paraglider, with a sweepback of 45 degrees at an angle of attack of 45 degrees was tested at Mach number 2.65, drag coefficient of 0.200, and lift coefficient of 0.278 at a camera speed of 600 fps. A cold air jet exhausting upstream from the center of a bluff body was used to simulate a retrorocket. The free-stream Mach number was 2.0, free-stream dynamic pressure was 620 lb/sq ft, jet-exit static pressure ratio was 10.9, and camera speed was 600 fps.

  12. A high-speed hydroplane accident.

    PubMed

    Flaherty, G N

    1975-03-29

    This report records the investigation into a high-speed hydroplane accident in which the driver died. He was ejected head first into the water at 117 to 126 ft/sec (80 to 85 mph), suffering brain damage and a fractured skull. Suggestions are made to minimize the effects of these inevitable crashes. PMID:1143139

  13. Italian High-speed Airplane Engines

    NASA Technical Reports Server (NTRS)

    Bona, C F

    1940-01-01

    This paper presents an account of Italian high-speed engine designs. The tests were performed on the Fiat AS6 engine, and all components of that engine are discussed from cylinders to superchargers as well as the test set-up. The results of the bench tests are given along with the performance of the engines in various races.

  14. High-speed data word monitor

    NASA Technical Reports Server (NTRS)

    Wirth, M. N.

    1975-01-01

    Small, portable, self-contained device provides high-speed display of bit pattern or any selected portion of transmission, can suppress filler patterns so that display is not updated, and can freeze display so that specific event may be observed in detail.

  15. Aeroacoustic sources of high speed maglev trains

    NASA Astrophysics Data System (ADS)

    Hanson, Carl E.

    This paper summarizes information from several studies regarding aeroacoustic sources of highspeed magnetically levitated trains (maglev). At low speed, the propulsion system, auxiliary equipment, and mechanical/structural radiation are the predominant sources of noise from maglev. At high speed, aeroacoustic sources dominate the noise. Noise from airflow over a train (aeroacoustic noise) is generated by flow separation and reattachment at the front, turbulent boundary layer over the entire surface of the train, flow interactions with edges and appendages, and flow interactions between moving and stationary components of the system. This paper discusses aeroacoustic mechanisms at the noise, the mechanisms related to the turbulent boundary layer, and edge mechanisms.

  16. Pulsed laser triggered high speed microfluidic switch

    NASA Astrophysics Data System (ADS)

    Wu, Ting-Hsiang; Gao, Lanyu; Chen, Yue; Wei, Kenneth; Chiou, Pei-Yu

    2008-10-01

    We report a high-speed microfluidic switch capable of achieving a switching time of 10 μs. The switching mechanism is realized by exciting dynamic vapor bubbles with focused laser pulses in a microfluidic polydimethylsiloxane (PDMS) channel. The bubble expansion deforms the elastic PDMS channel wall and squeezes the adjacent sample channel to control its fluid and particle flows as captured by the time-resolved imaging system. A switching of polystyrene microspheres in a Y-shaped channel has also been demonstrated. This ultrafast laser triggered switching mechanism has the potential to advance the sorting speed of state-of-the-art microscale fluorescence activated cell sorting devices.

  17. High Speed SPM of Functional Materials

    SciTech Connect

    Huey, Bryan D.

    2015-08-14

    The development and optimization of applications comprising functional materials necessitates a thorough understanding of their static and dynamic properties and performance at the nanoscale. Leveraging High Speed SPM and concepts enabled by it, efficient measurements and maps with nanoscale and nanosecond temporal resolution are uniquely feasible. This includes recent enhancements for topographic, conductivity, ferroelectric, and piezoelectric properties as originally proposed, as well as newly developed methods or improvements to AFM-based mechanical, friction, thermal, and photoconductivity measurements. The results of this work reveal fundamental mechanisms of operation, and suggest new approaches for improving the ultimate speed and/or efficiency, of data storage systems, magnetic-electric sensors, and solar cells.

  18. Some problems of high speed travel

    PubMed Central

    Reader, D. C.

    1975-01-01

    Some aspects of high speed flight are examined to investigate whether increase in speed implies any lowering of safety standards. The problem of circadian dysrhythmia is discussed and methods of attenuating its effects are explained and some new hypnotic drugs are mentioned. The risk of decompression has been quantified and predictions have been made for risks in commercial service. Cosmic radiation in supersonic aircraft is unlikely to limit commercial operation or significantly increase risks to passengers and crew. The supersonic boom is likely to limit the terrain over which supersonic aircraft can operate and regulations covering engine noise on the ground could restrict some flights. PMID:1208294

  19. Manufacture and Characterization of High Q-Factor Inductors Based on CMOS-MEMS Techniques

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang; Hong, Jin-Yu

    2011-01-01

    A high Q-factor (quality-factor) spiral inductor fabricated by the CMOS (complementary metal oxide semiconductor) process and a post-process was investigated. The spiral inductor is manufactured on a silicon substrate. A post-process is used to remove the underlying silicon substrate in order to reduce the substrate loss and to enhance the Q-factor of the inductor. The post-process adopts RIE (reactive ion etching) to etch the sacrificial oxide layer, and then TMAH (tetramethylammonium hydroxide) is employed to remove the silicon substrate for obtaining the suspended spiral inductor. The advantage of this post-processing method is its compatibility with the CMOS process. The performance of the spiral inductor is measured by an Agilent 8510C network analyzer and a Cascade probe station. Experimental results show that the Q-factor and inductance of the spiral inductor are 15 at 15 GHz and 1.8 nH at 1 GHz, respectively. PMID:22163726

  20. Technology needs for high speed rotorcraft (2)

    NASA Technical Reports Server (NTRS)

    Scott, Mark W.

    1991-01-01

    An analytical study was conducted to identify rotorcraft concepts best capable of combining a cruise speed of 350 to 450 knots with helicopter-like low speed attributes, and to define the technology advancements needed to make them viable by the year 2000. A systematic approach was used to compare the relative attributes and mission gross weights for a wide range of concepts, resulting in a downselect to the most promising concept/mission pairs. For transport missions, tilt-wing and variable diameter tilt-rotor (VDTR) concepts were found to be superior. For a military scout/attack role, the VDTR was best, although a shrouded rotor concept could provide a highly agile, low observable alternative if its weight empty fraction could be reduced. A design speed of 375 to 425 knots was found to be the maximum desirable for transport missions, with higher speed producing rapidly diminishing benefits in productivity. The key technologies that require advancement to make the tilt-wing and VDTR concepts viable are in the areas of wing and proprotor aerodynamics, efficient structural design, flight controls, refinement of the geared flap pitch control system, expansion of the speed/descent envelope, and the structural and aerodynamic tradeoffs of wing thickness and forward sweep. For the shrouded rotor, weight reduction is essential, particularly with respect to the mechanism for covering the rotor in cruise.

  1. Sensor study for high speed autonomous operations

    NASA Astrophysics Data System (ADS)

    Schneider, Anne; La Celle, Zachary; Lacaze, Alberto; Murphy, Karl; Del Giorno, Mark; Close, Ryan

    2015-06-01

    As robotic ground systems advance in capabilities and begin to fulfill new roles in both civilian and military life, the limitation of slow operational speed has become a hindrance to the wide-spread adoption of these systems. For example, military convoys are reluctant to employ autonomous vehicles when these systems slow their movement from 60 miles per hour down to 40. However, these autonomous systems must operate at these lower speeds due to the limitations of the sensors they employ. Robotic Research, with its extensive experience in ground autonomy and associated problems therein, in conjunction with CERDEC/Night Vision and Electronic Sensors Directorate (NVESD), has performed a study to specify system and detection requirements; determined how current autonomy sensors perform in various scenarios; and analyzed how sensors should be employed to increase operational speeds of ground vehicles. The sensors evaluated in this study include the state of the art in LADAR/LIDAR, Radar, Electro-Optical, and Infrared sensors, and have been analyzed at high speeds to study their effectiveness in detecting and accounting for obstacles and other perception challenges. By creating a common set of testing benchmarks, and by testing in a wide range of real-world conditions, Robotic Research has evaluated where sensors can be successfully employed today; where sensors fall short; and which technologies should be examined and developed further. This study is the first step to achieve the overarching goal of doubling ground vehicle speeds on any given terrain.

  2. High speed printing with polygon scan heads

    NASA Astrophysics Data System (ADS)

    Stutz, Glenn

    2016-03-01

    To reduce and in many cases eliminate the costs associated with high volume printing of consumer and industrial products, this paper investigates and validates the use of the new generation of high speed pulse on demand (POD) lasers in concert with high speed (HS) polygon scan heads (PSH). Associated costs include consumables such as printing ink and nozzles, provisioning labor, maintenance and repair expense as well as reduction of printing lines due to high through put. Targets that are applicable and investigated include direct printing on plastics, printing on paper/cardboard as well as printing on labels. Market segments would include consumer products (CPG), medical and pharmaceutical products, universal ID (UID), and industrial products. In regards to the POD lasers employed, the wavelengths include UV(355nm), Green (532nm) and IR (1064nm) operating within the repetition range of 180 to 250 KHz.

  3. Large area CMOS bio-pixel array for compact high sensitive multiplex biosensing.

    PubMed

    Sandeau, Laure; Vuillaume, Cassandre; Contié, Sylvain; Grinenval, Eva; Belloni, Federico; Rigneault, Hervé; Owens, Roisin M; Fournet, Margaret Brennan

    2015-02-01

    A novel CMOS bio-pixel array which integrates assay substrate and assay readout is demonstrated for multiplex and multireplicate detection of a triplicate of cytokines with single digit pg ml(-1) sensitivities. Uniquely designed large area bio-pixels enable individual assays to be dedicated to and addressed by single pixels. A capability to simultaneously measure a large number of targets is provided by the 128 available pixels. Chemiluminescent assays are carried out directly on the pixel surface which also detects the emitted chemiluminescent photons, facilitating a highly compact sensor and reader format. The high sensitivity of the bio-pixel array is enabled by the high refractive index of silicon based pixels. This in turn generates a strong supercritical angle luminescence response significantly increasing the efficiency of the photon collection over conventional farfield modalities. PMID:25490928

  4. A Monolithic CMOS Magnetic Hall Sensor with High Sensitivity and Linearity Characteristics.

    PubMed

    Huang, Haiyun; Wang, Dejun; Xu, Yue

    2015-10-27

    This paper presents a fully integrated linear Hall sensor by means of 0.8 μm high voltage complementary metal-oxide semiconductor (CMOS) technology. This monolithic Hall sensor chip features a highly sensitive horizontal switched Hall plate and an efficient signal conditioner using dynamic offset cancellation technique. An improved cross-like Hall plate achieves high magnetic sensitivity and low offset. A new spinning current modulator stabilizes the quiescent output voltage and improves the reliability of the signal conditioner. The tested results show that at the 5 V supply voltage, the maximum Hall output voltage of the monolithic Hall sensor microsystem, is up to ±2.1 V and the linearity of Hall output voltage is higher than 99% in the magnetic flux density range from ±5 mT to ±175 mT. The output equivalent residual offset is 0.48 mT and the static power consumption is 20 mW.

  5. Data Capture Technique for High Speed Signaling

    DOEpatents

    Barrett, Wayne Melvin; Chen, Dong; Coteus, Paul William; Gara, Alan Gene; Jackson, Rory; Kopcsay, Gerard Vincent; Nathanson, Ben Jesse; Vranas, Paylos Michael; Takken, Todd E.

    2008-08-26

    A data capture technique for high speed signaling to allow for optimal sampling of an asynchronous data stream. This technique allows for extremely high data rates and does not require that a clock be sent with the data as is done in source synchronous systems. The present invention also provides a hardware mechanism for automatically adjusting transmission delays for optimal two-bit simultaneous bi-directional (SiBiDi) signaling.

  6. High dynamic range CMOS-based mammography detector for FFDM and DBT

    NASA Astrophysics Data System (ADS)

    Peters, Inge M.; Smit, Chiel; Miller, James J.; Lomako, Andrey

    2016-03-01

    Digital Breast Tomosynthesis (DBT) requires excellent image quality in a dynamic mode at very low dose levels while Full Field Digital Mammography (FFDM) is a static imaging modality that requires high saturation dose levels. These opposing requirements can only be met by a dynamic detector with a high dynamic range. This paper will discuss a wafer-scale CMOS-based mammography detector with 49.5 μm pixels and a CsI scintillator. Excellent image quality is obtained for FFDM as well as DBT applications, comparing favorably with a-Se detectors that dominate the X-ray mammography market today. The typical dynamic range of a mammography detector is not high enough to accommodate both the low noise and the high saturation dose requirements for DBT and FFDM applications, respectively. An approach based on gain switching does not provide the signal-to-noise benefits in the low-dose DBT conditions. The solution to this is to add frame summing functionality to the detector. In one X-ray pulse several image frames will be acquired and summed. The requirements to implement this into a detector are low noise levels, high frame rates and low lag performance, all of which are unique characteristics of CMOS detectors. Results are presented to prove that excellent image quality is achieved, using a single detector for both DBT as well as FFDM dose conditions. This method of frame summing gave the opportunity to optimize the detector noise and saturation level for DBT applications, to achieve high DQE level at low dose, without compromising the FFDM performance.

  7. High-speed civil transport study. Summary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A system of study of the potential for a high speed commercial transport aircraft addressed technology, economic, and environmental constraints. Market projections indicated a need for fleets of transport with supersonic or greater cruise speeds by the years 2000 to 2005. The associated design requirements called for a vehicle to carry 250 to 300 passengers over a range of 5000 to 6000 nautical miles. The study was initially unconstrained in terms of vehicle characteristics, such as cruise speed, propulsion systems, fuels, or structural materials. Analyses led to a focus on the most promising vehicle concepts. These were concepts that used a kerosene type fuel and cruised at Mach numbers between 2.0 to 3.2. Further systems study identified the impact of environmental constraints (for community noise, sonic boom, and engine emissions) on economic attractiveness and technological needs. Results showed that current technology cannot produce a viable high speed civil transport. Significant advances are needed to take off gross weight and allow for both economic attractiveness and environment acceptability. Specific technological requirements were identified to meet these needs.

  8. High-speed civil transport study

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A system study of the potential for a high-speed commercial transport has addressed technological, economic, and environmental constraints. Market projections indicate a need for fleets of transports with supersonic or greater cruise speeds by the year 2000 to 2005. The associated design requirements called for a vehicle to carry 250 to 300 passengers over a range of 5,000 to 6,000 nautical miles. The study was initially unconstrained in terms of vehicle characteristic, such as cruise speed, propulsion systems, fuels, or structural materials. Analyses led to a focus on the most promising vehicle concepts. These were concepts that used a kerosene-type fuel and cruised at Mach numbers between 2.0 to 3.2. Further systems study identified the impact of environmental constraints (for community noise, sonic boom, and engine emissions) on economic attractiveness and technological needs. Results showed that current technology cannot produce a viable high-speed civil transport; significant advances are required to reduce takeoff gross weight and allow for both economic attractiveness and environmental accepatability. Specific technological requirements were identified to meet these needs.

  9. PMSM sensorless control with separate control strategies and smooth switch from low speed to high speed.

    PubMed

    Chen, SiYi; Luo, Ying; Pi, YouGuo

    2015-09-01

    This paper proposes a smooth switching scheme with separate control strategies on low speed mode and high speed mode for permanent magnet synchronous motor (PMSM) sensorless control to improve the overall performance in full speed range. Constant voltage/frequency tuning method is used on low speed mode because the rotor position can hardly be estimated precisely at low speed. Along with the increasing speed, the control strategy can be switched to high speed mode smoothly when current and speed meet the given requirements. In this high speed mode, the current tracking with a sliding mode observer (SMO) and speed tracking with a sliding mode controller (SMC) are handled, respectively. Experimental demonstration is presented to show the desired performance in full speed range of the PMSM sensorless control using the proposed control scheme in this paper.

  10. High Speed Research Program Sonic Fatigue

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A. (Technical Monitor); Beier, Theodor H.; Heaton, Paul

    2005-01-01

    The objective of this sonic fatigue summary is to provide major findings and technical results of studies, initiated in 1994, to assess sonic fatigue behavior of structure that is being considered for the High Speed Civil Transport (HSCT). High Speed Research (HSR) program objectives in the area of sonic fatigue were to predict inlet, exhaust and boundary layer acoustic loads; measure high cycle fatigue data for materials developed during the HSR program; develop advanced sonic fatigue calculation methods to reduce required conservatism in airframe designs; develop damping techniques for sonic fatigue reduction where weight effective; develop wing and fuselage sonic fatigue design requirements; and perform sonic fatigue analyses on HSCT structural concepts to provide guidance to design teams. All goals were partially achieved, but none were completed due to the premature conclusion of the HSR program. A summary of major program findings and recommendations for continued effort are included in the report.

  11. An ASIC memory buffer controller for a high speed disk system

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.; Campbell, Steve

    1993-01-01

    The need for large capacity, high speed mass memory storage devices has become increasingly evident at NASA during the past decade. High performance mass storage systems are crucial to present and future NASA systems. Spaceborne data storage system requirements have grown in response to the increasing amounts of data generated and processed by orbiting scientific experiments. Predictions indicate increases in the volume of data by orders of magnitude during the next decade. Current predictions are for storage capacities on the order of terabits (Tb), with data rates exceeding one gigabit per second (Gbps). As part of the design effort for a state of the art mass storage system, NASA Langley has designed a 144 CMOS ASIC to support high speed data transfers. This paper discusses the system architecture, ASIC design and some of the lessons learned in the development process.

  12. Compact high-speed scanning lidar system

    NASA Astrophysics Data System (ADS)

    Dickinson, Cameron; Hussein, Marwan; Tripp, Jeff; Nimelman, Manny; Koujelev, Alexander

    2012-06-01

    The compact High Speed Scanning Lidar (HSSL) was designed to meet the requirements for a rover GN&C sensor. The eye-safe HSSL's fast scanning speed, low volume and low power, make it the ideal choice for a variety of real-time and non-real-time applications including: 3D Mapping; Vehicle guidance and Navigation; Obstacle Detection; Orbiter Rendezvous; Spacecraft Landing / Hazard Avoidance. The HSSL comprises two main hardware units: Sensor Head and Control Unit. In a rover application, the Sensor Head mounts on the top of the rover while the Control Unit can be mounted on the rover deck or within its avionics bay. An Operator Computer is used to command the lidar and immediately display the acquired scan data. The innovative lidar design concept was a result of an extensive trade study conducted during the initial phase of an exploration rover program. The lidar utilizes an innovative scanner coupled with a compact fiber laser and high-speed timing electronics. Compared to existing compact lidar systems, distinguishing features of the HSSL include its high accuracy, high resolution, high refresh rate and large field of view. Other benefits of this design include the capability to quickly configure scan settings to fit various operational modes.

  13. Avalanche photodiode with high responsivity in 0.35 μm CMOS

    NASA Astrophysics Data System (ADS)

    Gaberl, Wolfgang; Schneider-Hornstein, Kerstin; Enne, Reinhard; Steindl, Bernhard; Zimmermann, Horst

    2014-04-01

    The presented linear mode avalanche photodiode (APD) uses the standard layers and process steps available in the 0.35-μm Si bulk CMOS process. Due to a low-doped epitaxial layer with a resistivity of 664 Ω cm, a deep intrinsic zone is realized to enable a large depleted absorption region at already moderate bias voltages and therefore ensures a high low-voltage responsivity. In combination with avalanche gain at high bias voltages, this leads to an overall responsivity of 1.7×105 A/W at 1.1 nW optical input power and 670-nm wavelength. The maximum achieved avalanche gain was 4.94×105. The maximum -3 dB frequency of 700 MHz was measured at a reverse bias voltage of 30 V and an optical input power of 14.7 μW.

  14. A low-power CMOS WIA-PA transceiver with a high sensitivity GFSK demodulator

    NASA Astrophysics Data System (ADS)

    Tao, Yang; Yu, Jiang; Shengyou, Liu; Guiliang, Guo; Yuepeng, Yan

    2015-06-01

    This paper presents a low power, high sensitivity Gaussian frequency shift keying (GFSK) demodulator with a flexible frequency offset canceling method for wireless networks for industrial automation process automation (WIA-PA) transceiver fabricated in 0.18 μm CMOS technology. The receiver uses a low-IF (1.5 MHz) architecture, and the transmitter uses a sigma delta PLL based modulation with Gaussian low-pass filter for low power consumption. The active area of the demodulator is 0.14 mm2. Measurement results show that the proposed demodulator operates without harmonic distortion, deals with ± 180 kHz frequency offset, needs SNR only 18.5 dB at 0.1% bit-error rate (BER), and consumes no more than 0.26 mA from a 1.8 V power supply. Project supported by the National High Technology Research and Development Program of China (No. 2011AA040102).

  15. A High Performance CMOS Current Mirror Circuit with Neuron MOSFETs and a Transimpedance Amplifier

    NASA Astrophysics Data System (ADS)

    Shimizu, Akio; Ishikawa, Yohei; Fukai, Sumio; Aikawa, Masayoshi

    In this paper, we propose a high accuracy current mirror circuit suitable for a low-voltage operation. The proposed circuit has a novel negative feedback that is composed of neuron MOSFETs and a transimpedance amplifier. As a result, the proposed circuit achieves a high accuracy current mirror circuit. At the same time, the proposed circuit monitors an error current by a low voltage because the negative feedback operates in a current-mode. The performance of the proposed circuit is evaluated using HSPICE simulation with On-Semiconductor 1.48μm CMOS device parameters. Simulation results show that the output resistance of the proposed circuit is 5.79[GΩ] and minimum operating range is 0.3[V].

  16. Charged particle detection performances of CMOS pixel sensors produced in a 0.18 μm process with a high resistivity epitaxial layer

    NASA Astrophysics Data System (ADS)

    Senyukov, S.; Baudot, J.; Besson, A.; Claus, G.; Cousin, L.; Dorokhov, A.; Dulinski, W.; Goffe, M.; Hu-Guo, C.; Winter, M.

    2013-12-01

    The apparatus of the ALICE experiment at CERN will be upgraded in 2017/18 during the second long shutdown of the LHC (LS2). A major motivation for this upgrade is to extend the physics reach for charmed and beauty particles down to low transverse momenta. This requires a substantial improvement of the spatial resolution and the data rate capability of the ALICE Inner Tracking System (ITS). To achieve this goal, the new ITS will be equipped with 50 μm thin CMOS Pixel Sensors (CPS) covering either the three innermost layers or all the 7 layers of the detector. The CPS being developed for the ITS upgrade at IPHC (Strasbourg) is derived from the MIMOSA 28 sensor realised for the STAR-PXL at RHIC in a 0.35 μm CMOS process. In order to satisfy the ITS upgrade requirements in terms of readout speed and radiation tolerance, a CMOS process with a reduced feature size and a high resistivity epitaxial layer should be exploited. In this respect, the charged particle detection performance and radiation hardness of the TowerJazz 0.18 μm CMOS process were studied with the help of the first prototype chip MIMOSA 32. The beam tests performed with negative pions of 120 GeV/c at the CERN-SPS allowed to measure a signal-to-noise ratio (SNR) for the non-irradiated chip in the range between 22 and 32 depending on the pixel design. The chip irradiated with the combined dose of 1 MRad and 1013neq /cm2 was observed to yield an SNR ranging between 11 and 23 for coolant temperatures varying from 15 °C to 30 °C. These SNR values were measured to result in particle detection efficiencies above 99.5% and 98% before and after irradiation, respectively. These satisfactory results allow to validate the TowerJazz 0.18 μm CMOS process for the ALICE ITS upgrade.

  17. Architectures and applications of high-speed vision

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoshihiro; Oku, Hiromasa; Ishikawa, Masatoshi

    2014-11-01

    With the progress made in high-speed imaging technology, image processing systems that can process images at high frame rates, as well as their applications, are expected. In this article, we examine architectures for high-speed vision systems, and also dynamic image control, which can realize high-speed active optical systems. In addition, we also give an overview of some applications in which high-speed vision is used, including man-machine interfaces, image sensing, interactive displays, high-speed three-dimensional sensing, high-speed digital archiving, microvisual feedback, and high-speed intelligent robots.

  18. Pulse Detonation Engines for High Speed Flight

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    2002-01-01

    Revolutionary concepts in propulsion are required in order to achieve high-speed cruise capability in the atmosphere and for low cost reliable systems for earth to orbit missions. One of the advanced concepts under study is the air-breathing pulse detonation engine. Additional work remains in order to establish the role and performance of a PDE in flight applications, either as a stand-alone device or as part of a combined cycle system. In this paper, we shall offer a few remarks on some of these remaining issues, i.e., combined cycle systems, nozzles and exhaust systems and thrust per unit frontal area limitations. Currently, an intensive experimental and numerical effort is underway in order to quantify the propulsion performance characteristics of this device. In this paper, we shall highlight our recent efforts to elucidate the propulsion potential of pulse detonation engines and their possible application to high-speed or hypersonic systems.

  19. High-speed massively parallel scanning

    DOEpatents

    Decker, Derek E.

    2010-07-06

    A new technique for recording a series of images of a high-speed event (such as, but not limited to: ballistics, explosives, laser induced changes in materials, etc.) is presented. Such technique(s) makes use of a lenslet array to take image picture elements (pixels) and concentrate light from each pixel into a spot that is much smaller than the pixel. This array of spots illuminates a detector region (e.g., film, as one embodiment) which is scanned transverse to the light, creating tracks of exposed regions. Each track is a time history of the light intensity for a single pixel. By appropriately configuring the array of concentrated spots with respect to the scanning direction of the detection material, different tracks fit between pixels and sufficient lengths are possible which can be of interest in several high-speed imaging applications.

  20. High speed receiver for capsule endoscope.

    PubMed

    Woo, S H; Yoon, K W; Moon, Y K; Lee, J H; Park, H J; Kim, T W; Choi, H C; Won, C H; Cho, J H

    2010-10-01

    In this study, a high-speed receiver for a capsule endoscope was proposed and implemented. The proposed receiver could receive 20 Mbps data that was sufficient to receive images with a higher resolution than conventional receivers. The receiver used a 1.2 GHz band to receive radio frequency (RF) signal, and demodulated the signal to an intermediate frequency (IF) stage (150 MHz). The demodulated signal was amplified, filtered, and under-sampled by a high-speed analog-to-digital converter (ADC). In order to decode the under-sampled data in real time, a simple frequency detection algorithm was selected and was implemented by using a FPGA. The implemented system could receive 20 Mbps data.

  1. High-Speed Granular Chute Flows

    NASA Astrophysics Data System (ADS)

    McElwaine, J.

    2014-12-01

    Accurate models for high speed granular flows are critical for understanding long runout landslides and rockfalls. However reproducible experimental data is extremely limited and is mostly only available for steady state flows on moderate inclinations. We report on experiments over a much greater range of slope angles 30-50 degrees and flow depths 4-130 particle diameters with upto 20kg/s of sand flowing steadily. The data suggests that friction can be much larger than the μ(I)mu(I) rheology or kinetic theories predict and suggest and that there may be constant velocity states above the angle of vanishing hstop. We show similar high speed steady flows at angles up to 50 degress in Discrete Element Simuations and discuss how these can be understood theoretically.

  2. Development of high-speed video cameras

    NASA Astrophysics Data System (ADS)

    Etoh, Takeharu G.; Takehara, Kohsei; Okinaka, Tomoo; Takano, Yasuhide; Ruckelshausen, Arno; Poggemann, Dirk

    2001-04-01

    Presented in this paper is an outline of the R and D activities on high-speed video cameras, which have been done in Kinki University since more than ten years ago, and are currently proceeded as an international cooperative project with University of Applied Sciences Osnabruck and other organizations. Extensive marketing researches have been done, (1) on user's requirements on high-speed multi-framing and video cameras by questionnaires and hearings, and (2) on current availability of the cameras of this sort by search of journals and websites. Both of them support necessity of development of a high-speed video camera of more than 1 million fps. A video camera of 4,500 fps with parallel readout was developed in 1991. A video camera with triple sensors was developed in 1996. The sensor is the same one as developed for the previous camera. The frame rate is 50 million fps for triple-framing and 4,500 fps for triple-light-wave framing, including color image capturing. Idea on a video camera of 1 million fps with an ISIS, In-situ Storage Image Sensor, was proposed in 1993 at first, and has been continuously improved. A test sensor was developed in early 2000, and successfully captured images at 62,500 fps. Currently, design of a prototype ISIS is going on, and, hopefully, will be fabricated in near future. Epoch-making cameras in history of development of high-speed video cameras by other persons are also briefly reviewed.

  3. Turbulence modeling for high speed compressible flows

    NASA Technical Reports Server (NTRS)

    Chandra, Suresh

    1993-01-01

    The following grant objectives were delineated in the proposal to NASA: to offer course work in computational fluid dynamics (CFD) and related areas to enable mechanical engineering students at North Carolina A&T State University (N.C. A&TSU) to pursue M.S. studies in CFD, and to enable students and faculty to engage in research in high speed compressible flows. Since no CFD-related activity existed at N.C. A&TSU before the start of the NASA grant period, training of students in the CFD area and initiation of research in high speed compressible flows were proposed as the key aspects of the project. To that end, graduate level courses in CFD, boundary layer theory, and fluid dynamics were offered. This effort included initiating a CFD course for graduate students. Also, research work was performed on studying compressibility effects in high speed flows. Specifically, a modified compressible dissipation model, which included a fourth order turbulent Mach number term, was incorporated into the SPARK code and verified for the air-air mixing layer case. The results obtained for this case were compared with a wide variety of experimental data to discern the trends in the mixing layer growth rates with varying convective Mach numbers. Comparison of the predictions of the study with the results of several analytical models was also carried out. The details of the research study are described in the publication entitled 'Compressibility Effects in Modeling Turbulent High Speed Mixing Layers,' which is attached to this report.

  4. Turbulence modeling for high speed compressible flows

    NASA Astrophysics Data System (ADS)

    Chandra, Suresh

    1993-08-01

    The following grant objectives were delineated in the proposal to NASA: to offer course work in computational fluid dynamics (CFD) and related areas to enable mechanical engineering students at North Carolina A&T State University (N.C. A&TSU) to pursue M.S. studies in CFD, and to enable students and faculty to engage in research in high speed compressible flows. Since no CFD-related activity existed at N.C. A&TSU before the start of the NASA grant period, training of students in the CFD area and initiation of research in high speed compressible flows were proposed as the key aspects of the project. To that end, graduate level courses in CFD, boundary layer theory, and fluid dynamics were offered. This effort included initiating a CFD course for graduate students. Also, research work was performed on studying compressibility effects in high speed flows. Specifically, a modified compressible dissipation model, which included a fourth order turbulent Mach number term, was incorporated into the SPARK code and verified for the air-air mixing layer case. The results obtained for this case were compared with a wide variety of experimental data to discern the trends in the mixing layer growth rates with varying convective Mach numbers. Comparison of the predictions of the study with the results of several analytical models was also carried out. The details of the research study are described in the publication entitled 'Compressibility Effects in Modeling Turbulent High Speed Mixing Layers,' which is attached to this report.

  5. Friction in high-speed impact experiments.

    NASA Astrophysics Data System (ADS)

    Rightley, Paul; Pelak, Robert A.; Hammerberg, James E.

    1999-06-01

    The physical interactions at the contact interface between two metals moving relative to one another are not well understood. Current knowledge is particularly limited when the relative velocity between the bodies becomes a significant fraction of the sound speed in either material. Our goal is to characterize the interfacial dynamics occurring between two metal surfaces sliding at high loads (up to 300 kBar) and at high speeds (up to 10 mm/μs). In our primary experimental geometry, a high-speed, spinning projectile is fired from a rifled gun at a rod instrumented with electrical resistance strain gauges for measuring both longitudinal and torsional strain waves. The observed traces are then used to determine the normal and tangential force components at the interface to produce an estimate of the coefficient of friction. Such an estimate for a copper/steel interface will be presented. New simulations of the impact dynamics which include the large-scale plastic deformation processes are being used to optimize the experimental design.

  6. Technology needs for high speed rotorcraft (3)

    NASA Technical Reports Server (NTRS)

    Detore, Jack; Conway, Scott

    1991-01-01

    The spectrum of vertical takeoff and landing (VTOL) type aircraft is examined to determine which aircraft are most likely to achieve high subsonic cruise speeds and have hover qualities similar to a helicopter. Two civil mission profiles are considered: a 600-n.mi. mission for a 15- and a 30-passenger payload. Applying current technology, only the 15- and 30-passenger tiltfold aircraft are capable of attaining the 450-knot design goal. The two tiltfold aircraft at 450 knots and a 30-passenger tiltrotor at 375 knots were further developed for the Task II technology analysis. A program called High-Speed Total Envelope Proprotor (HI-STEP) is recommended to meet several of these issues based on the tiltrotor concept. A program called Tiltfold System (TFS) is recommended based on the tiltrotor concept. A task is identified to resolve the best design speed from productivity and demand considerations based on the technology that emerges from the recommended programs. HI-STEP's goals are to investigate propulsive efficiency, maneuver loads, and aeroelastic stability. Programs currently in progress that may meet the other technology needs include the Integrated High Performance Turbine Engine Technology (IHPTET) (NASA Lewis) and the Advanced Structural Concepts Program funded through NASA Langley.

  7. Testing of high speed network components

    SciTech Connect

    Wing, W.R.

    1997-06-30

    At the time of the start of this project, a battle was being fought between the computer networking technologies and telephone networking technologies. The telecommunications industry wanted to standardize on Asynchronous Transfer Mode (ATM) as the technology of choice for carrying all cross-country traffic. The computer industry wanted to use Packet Transfer Mode (PTM). The project had several goals, some unspoken. At the highest, most obvious level, the project goals were to test the high-speed components being developed by the computer technology industry. However, in addition, both industrial partners were having trouble finding markets for the high-speed networking technology they were developing and deploying. Thus, a part of the project was to demonstrate applications developed at Oak Ridge which would stretch the limits of the network, and thus demonstrate the utility of high-speed networks. Finally, an unspoken goal of the computer technology industry was to convince the telecommunications industry that packet switching was superior to cell switching. Conversely, the telecommunications industry hoped to see the computer technology industry`s packet switch fail to perform in a real-world test. Project was terminated early due to failure of one of the CRADA partners to deliver needed component.

  8. Optical receiver for high-speed communication

    NASA Astrophysics Data System (ADS)

    Mitchell, Paul A.; Grib, Valerie J.

    2010-04-01

    For through-the-air optical communication applications, we present a high speed detector module with high bandwidth and large active area. The detector has achieved a rise time of 220 pS with a full-width-half-max of 420 pS. Data rates are expected to approach 2 GHz. The active area of the input window is 12 mm, giving a large collection surface for through-the-air applications. The detector module includes an integrated power supply having low power consumption. In comparison with other detector technologies, this new detector exceeds the speed of conventional photomultiplier designs by 3 to 5 times. In comparison with microchannel plate detectors, the speed is comparable, but the throughput of the new detector is much higher - tens of microamperes of signal current can be obtained indefinitely. Optical communication applications can be served by two different designs. In the first case, the module utilizes gain based on ordinary secondary emission materials to achieve current gains of 1500. This design is suitable for applications at the limit of the detector's bandwidth where light power is relatively high. In another design, the secondary emission material was changed to diamond film which allows five times higher gain. While the current design uses an ordinary, blue sensitive input light conversion material, higher efficiency materials are in development for signals at longer wavelength.

  9. Living dangerously: driver distraction at high speed.

    PubMed

    Johnson, Mark B; Voas, Robert B; Lacey, John H; McKnight, A Scott; Lange, James E

    2004-03-01

    Recent research indicates that cell phone use can distract drivers from safe vehicle operation. However, estimates of the prevalence of cell phone use while driving have been limited to daytime hours and low-speed roadways. This paper describes the results of a study to estimate rates of cell phone use and other distractions by examining approximately 40,000 high-quality digital photographs of vehicles and drivers on the New Jersey Turnpike. The photographs, which originally were collected as part of a separate study, were taken both during the day and during the night and at different locations across the span of the Turnpike. A radar gun linked to the camera recorded the speeds of vehicles as they passed. This provided us with the speeds of every vehicle photographed, and allowed us to determine population counts of vehicles. A panel of three trained coders examined each photograph and recorded the presence of cell phone use by the drivers or any other distracting behavior. Demographic information on the driver was obtained during previous examinations of the photographs for an unrelated study. A rating was considered reliable when two out of the three coders agreed. Population estimates (and confidence intervals) of cell phone use and other distractions were estimated by weighting the cases by the inverse probability of vehicle selection. Logistic regression was used to predict cell phone use from demographic and situational factors. The results indicated that the most frequent distraction was cell phone use: 1.5% of the drivers on the Turnpike were using cell phones compared to the 3 to 4% use rates reported in the National Occupant Protection Use Survey (NOPUS) surveys conducted during the daytime on lower speed roadways. The Turnpike survey indicated that cell phones were used less on weekends and at night, and when the driver was exceeding the speed limit or had a passenger in the car.

  10. Fibre-optic coupling to high-resolution CCD and CMOS image sensors

    NASA Astrophysics Data System (ADS)

    van Silfhout, R. G.; Kachatkou, A. S.

    2008-12-01

    We describe a simple method of gluing fibre-optic faceplates to complementary metal oxide semiconductor (CMOS) active pixel and charge coupled device (CCD) image sensors and report on their performance. Cross-sectional cuts reveal that the bonding layer has a thickness close to the diameter of the individual fibres and is uniform over the whole sensor area. Our method requires no special tools or alignment equipment and gives reproducible and high-quality results. The method maintains a uniform bond layer thickness even if sensor dies are mounted at slight angles with their package. These fibre-coupled sensors are of particular interest to X-ray imaging applications but also provide a solution for compact optical imaging systems.

  11. 14 CFR 25.253 - High-speed characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false High-speed characteristics. 25.253 Section...-speed characteristics. (a) Speed increase and recovery characteristics. The following speed increase and... inadvertent speed increases (including upsets in pitch and roll) must be simulated with the airplane...

  12. 14 CFR 25.253 - High-speed characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false High-speed characteristics. 25.253 Section...-speed characteristics. (a) Speed increase and recovery characteristics. The following speed increase and... inadvertent speed increases (including upsets in pitch and roll) must be simulated with the airplane...

  13. 14 CFR 25.253 - High-speed characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High-speed characteristics. 25.253 Section...-speed characteristics. (a) Speed increase and recovery characteristics. The following speed increase and... inadvertent speed increases (including upsets in pitch and roll) must be simulated with the airplane...

  14. 14 CFR 25.253 - High-speed characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High-speed characteristics. 25.253 Section...-speed characteristics. (a) Speed increase and recovery characteristics. The following speed increase and... inadvertent speed increases (including upsets in pitch and roll) must be simulated with the airplane...

  15. All aboard for high-speed rail

    SciTech Connect

    Herman, D.

    1996-09-01

    A sleek, bullet-nosed train whizzing across the countryside is a fairly common sight in many nations. Since the Train a Grande Vitesse (TGV)--the record-setting ``train with great speed``--was introduced in France in 1981, Germany, Japan, and other countries have joined the high-speed club. In addition, the Eurostar passenger train, which travels between Great Britain and France through the Channel Tunnel, can move at 186 miles per hour once it reaches French tracks. Despite the technology`s growth elsewhere, rapid rail travel has not been seen on US shores beyond a few test runs by various manufacturers. Before the end of the century, however, American train spotters will finally be able to see some very fast trains here too. In March, Washington, DC-based Amtrak announced the purchase of 18 American Flyer high-speed train sets for the Northeast Corridor, which stretches from Boston through new York to the nation`s capital. Furthermore, Florida will get its own system by 2004, and other states are now taking a look at the technology. The American Flyer--designed by Montreal-based Bombardier and TGV manufacturer GEC Alsthom Transport in Paris--should venture onto US rails by 1999. Traveling at up to 150 miles per hour, the American Flyer will cut the New York-Boston run from 4 1/2 hours to 3 hours and reduce New York-Washington trip time from 3 hours to less than 2 3/4. Amtrak hopes the new trains and better times will earn it a greater share of travelers from air shuttles and perhaps from Interstate 95. This article describes how technologies that tilt railcars and propel the world`s fastest trains will be merged into one train set for the American Flyer, Amtrak`s first trip along high-speed rails.

  16. Pressure Distribution Over Airfoils at High Speeds

    NASA Technical Reports Server (NTRS)

    Briggs, L J; Dryden, H L

    1927-01-01

    This report deals with the pressure distribution over airfoils at high speeds, and describes an extension of an investigation of the aerodynamic characteristics of certain airfoils which was presented in NACA Technical Report no. 207. The results presented in report no. 207 have been confirmed and extended to higher speeds through a more extensive and systematic series of tests. Observations were also made of the air flow near the surface of the airfoils, and the large changes in lift coefficients were shown to be associated with a sudden breaking away of the flow from the upper surface. The tests were made on models of 1-inch chord and comparison with the earlier measurements on models of 3-inch chord shows that the sudden change in the lift coefficient is due to compressibility and not to a change in the Reynolds number. The Reynolds number still has a large effect, however, on the drag coefficient. The pressure distribution observations furnish the propeller designer with data on the load distribution at high speeds, and also give a better picture of the air-flow changes.

  17. High-Speed, High-Resolution Time-to-Digital Conversion

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Kleyner, Igor; Garcia, Rafael

    2013-01-01

    This innovation is a series of time-tag pulses from a photomultiplier tube, featuring short time interval between pulses (e.g., 2.5 ns). Using the previous art, dead time between pulses is too long, or too much hardware is required, including a very-high-speed demultiplexer. A faster method is needed. The goal of this work is to provide circuits to time-tag pulses that arrive at a high rate using the hardwired logic in an FPGA - specifically the carry chain - to create what is (in effect) an analog delay line. High-speed pulses travel down the chain in a "wave." For instance, a pulse train has been demonstrated from a 1- GHz source reliably traveling down the carry chain. The size of the carry chain is over 10 ns in the time domain. Thus, multiple pulses will travel down the carry chain in a wave simultaneously. A register clocked by a low-skew clock takes a "snapshot" of the wave. Relatively simple logic can extract the pulses from the snapshot picture by detecting the transitions between logic states. The propagation delay of CMOS (complementary metal oxide semiconductor) logic circuits will differ and/or change as a result of temperature, voltage, age, radiation, and manufacturing variances. The time-to-digital conversion circuits can be calibrated with test signals, or the changes can be nulled by a separate on-die calibration channel, in a closed loop circuit.

  18. High-speed wavelength-swept lasers

    NASA Astrophysics Data System (ADS)

    Hsu, Kevin

    2006-05-01

    High-speed wavelength-swept lasers capable of providing wide frequency chirp and flexible temporal waveforms could enable numerous advanced functionalities for defense and security applications. Powered by high spectral intensity at rapid sweep rates across a wide wavelength range in each of the 1060nm, 1300nm, and 1550nm spectral windows, these swept-laser systems have demonstrated real-time monitoring and superior signal-to-noise ratio measurements in optical frequency domain imaging, fiber-optic sensor arrays, and near-IR spectroscopy. These same capabilities show promising potentials in laser radar and remote sensing applications. The core of the high-speed swept laser incorporates a semiconductor gain module and a high-performance fiber Fabry- Perot tunable filter (FFP-TF) to provide rapid wavelength scanning operations. This unique design embodies the collective advantages of the semiconductor amplifier's broad gain-bandwidth with direct modulation capability, and the FFP-TF's wide tuning ranges (>200nm), high finesse (1000 to 10,000), low-loss (<3dB), and fast scan rates reaching 20KHz. As a result, the laser can sweep beyond 100nm in 25μsec, output a scanning peak power near mW level, and exhibit excellent peak signal-to-spontaneous-emission ratio >80dB in static mode. When configured as a seed laser followed by post amplification, the swept spectrum and power can be optimized for Doppler ranging and remote sensing applications. Furthermore, when combined with a dispersive element, the wavelength sweep can be converted into high-speed and wide-angle spatial scanning without moving parts.

  19. The Very High Speed Integrated Circuit Program

    NASA Astrophysics Data System (ADS)

    Thornton, C. G.

    The DOD's Very High Speed Integrated Circuits (VHSIC) Program was established in order to gain and maintain a lead over adversaries in the military field of high density signal processing microelectronic subsystems. The advantages anticipated for VHSIC systems include order-of-magnitude reductions in signal processor size, weight and power requirements, as well as improvements in system performance capabilities, reliability, logistics support, and radiation hardness. VHSIC will be applied to systems involved in communications, intelligence, surveillance, target acquisition, and missile guidance and control.

  20. Design and image-quality performance of high resolution CMOS-based X-ray imaging detectors for digital mammography

    NASA Astrophysics Data System (ADS)

    Cha, B. K.; Kim, J. Y.; Kim, Y. J.; Yun, S.; Cho, G.; Kim, H. K.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2012-04-01

    In digital X-ray imaging systems, X-ray imaging detectors based on scintillating screens with electronic devices such as charge-coupled devices (CCDs), thin-film transistors (TFT), complementary metal oxide semiconductor (CMOS) flat panel imagers have been introduced for general radiography, dental, mammography and non-destructive testing (NDT) applications. Recently, a large-area CMOS active-pixel sensor (APS) in combination with scintillation films has been widely used in a variety of digital X-ray imaging applications. We employed a scintillator-based CMOS APS image sensor for high-resolution mammography. In this work, both powder-type Gd2O2S:Tb and a columnar structured CsI:Tl scintillation screens with various thicknesses were fabricated and used as materials to convert X-ray into visible light. These scintillating screens were directly coupled to a CMOS flat panel imager with a 25 × 50 mm2 active area and a 48 μm pixel pitch for high spatial resolution acquisition. We used a W/Al mammographic X-ray source with a 30 kVp energy condition. The imaging characterization of the X-ray detector was measured and analyzed in terms of linearity in incident X-ray dose, modulation transfer function (MTF), noise-power spectrum (NPS) and detective quantum efficiency (DQE).

  1. High-Speed, high-power, switching transistor

    NASA Technical Reports Server (NTRS)

    Carnahan, D.; Ohu, C. K.; Hower, P. L.

    1979-01-01

    Silicon transistor rate for 200 angstroms at 400 to 600 volts combines switching speed of transistors with ruggedness, power capacity of thyristor. Transistor introduces unique combination of increased power-handling capability, unusally low saturation and switching losses, and submicrosecond switching speeds. Potential applications include high power switching regulators, linear amplifiers, chopper controls for high frequency electrical vehicle drives, VLF transmitters, RF induction heaters, kitchen cooking ranges, and electronic scalpels for medical surgery.

  2. Exhaust emissions from high speed passenger ferries

    NASA Astrophysics Data System (ADS)

    Cooper, D. A.

    Exhaust emission measurements have been carried out on-board three high-speed passenger ferries (A, B and C) during normal service routes. Ship A was powered by conventional, medium-speed, marine diesel engines, Ship B by gas turbine engines and Ship C conventional, medium-speed, marine diesel engines equipped with selective catalytic reduction (SCR) systems for NO x abatement. All ships had similar auxiliary engines (marine diesels) for generating electric power on-board. Real-world emission factors of NOx, SO2, CO, CO 2, NMVOC, CH4, N2O, NH3, PM and PAH at steady-state engine loads and for complete voyages were determined together with an estimate of annual emissions. In general, Ship B using gas turbines showed favourable NO x, PM and PAH emissions but at the expense of higher fuel consumption and CO 2 emissions. Ship C with the SCR had the lowest NO x emissions but highest NH 3 emissions especially during harbour approaches and stops. The greatest PM and PAH specific emissions were measured from auxiliary engines operating at low engine loads during harbour stops. Since all ships used a low-sulphur gas oil, SO 2 emissions were relatively low in all cases.

  3. High-speed Civil Transport Aircraft Emissions

    NASA Technical Reports Server (NTRS)

    Miake-Lye, Richard C.; Matulaitis, J. A.; Krause, F. H.; Dodds, Willard J.; Albers, Martin; Hourmouziadis, J.; Hasel, K. L.; Lohmann, R. P.; Stander, C.; Gerstle, John H.

    1992-01-01

    Estimates are given for the emissions from a proposed high speed civil transport (HSCT). This advanced technology supersonic aircraft would fly in the lower stratosphere at a speed of roughly Mach 1.6 to 3.2 (470 to 950 m/sec or 920 to 1850 knots). Because it would fly in the stratosphere at an altitude in the range of 15 to 23 km commensurate with its design speed, its exhaust effluents could perturb the chemical balance in the upper atmosphere. The first step in determining the nature and magnitude of any chemical changes in the atmosphere resulting from these proposed aircraft is to identify and quantify the chemically important species they emit. Relevant earlier work is summarized, dating back to the Climatic Impact Assessment Program of the early 1970s and current propulsion research efforts. Estimates are provided of the chemical composition of an HSCT's exhaust, and these emission indices are presented. Other aircraft emissions that are not due to combustion processes are also summarized; these emissions are found to be much smaller than the exhaust emissions. Future advances in propulsion technology, in experimental measurement techniques, and in understanding upper atmospheric chemistry may affect these estimates of the amounts of trace exhaust species or their relative importance.

  4. 14 CFR 23.253 - High speed characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a)...

  5. 14 CFR 23.253 - High speed characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a)...

  6. 14 CFR 23.253 - High speed characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a)...

  7. 14 CFR 23.253 - High speed characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a)...

  8. High-speed multispectral confocal imaging

    NASA Astrophysics Data System (ADS)

    Carver, Gary E.; Locknar, Sarah A.; Morrison, William A.; Farkas, Daniel L.

    2013-02-01

    A new approach for generating high-speed multispectral images has been developed. The central concept is that spectra can be acquired for each pixel in a confocal spatial scan by using a fast spectrometer based on optical fiber delay lines. This concept merges fast spectroscopy with standard spatial scanning to create datacubes in real time. The spectrometer is based on a serial array of reflecting spectral elements, delay lines between these elements, and a single element detector. The spatial, spectral, and temporal resolution of the instrument is described, and illustrated by multispectral images of laser-induced autofluorescence in biological tissues.

  9. High-speed multispectral confocal biomedical imaging

    PubMed Central

    Carver, Gary E.; Locknar, Sarah A.; Morrison, William A.; Krishnan Ramanujan, V.; Farkas, Daniel L.

    2014-01-01

    Abstract. A new approach for generating high-speed multispectral confocal images has been developed. The central concept is that spectra can be acquired for each pixel in a confocal spatial scan by using a fast spectrometer based on optical fiber delay lines. This approach merges fast spectroscopy with standard spatial scanning to create datacubes in real time. The spectrometer is based on a serial array of reflecting spectral elements, delay lines between these elements, and a single element detector. The spatial, spectral, and temporal resolution of the instrument is described and illustrated by multispectral images of laser-induced autofluorescence in biological tissues. PMID:24658777

  10. The Hubble Space Telescope high speed photometer

    NASA Technical Reports Server (NTRS)

    Vancitters, G. W., Jr.; Bless, R. C.; Dolan, J. F.; Elliot, J. L.; Robinson, E. L.; White, R. L.

    1988-01-01

    The Hubble Space Telescope will provide the opportunity to perform precise astronomical photometry above the disturbing effects of the atmosphere. The High Speed Photometer is designed to provide the observatory with a stable, precise photometer with wide dynamic range, broad wavelenth coverage, time resolution in the microsecond region, and polarimetric capability. Here, the scientific requirements for the instrument are examined, the unique design features of the photometer are explored, and the improvements to be expected over the performance of ground-based instruments are projected.

  11. Characterization and Compensation of High Speed Digitizers

    SciTech Connect

    Fong, P; Teruya, A; Lowry, M

    2005-04-04

    Increasingly, ADC technology is being pressed into service for single single-shot instrumentation applications that were formerly served by vacuum-tube based oscilloscopes and streak cameras. ADC technology, while convenient, suffers significant performance impairments. Thus, in these demanding applications, a quantitative and accurate representation of these impairments is critical to an understanding of measurement accuracy. We have developed a phase-plane behavioral model, implemented it in SIMULINK and applied it to interleaved, high-speed ADCs (up to 4 gigasamples/sec). We have also developed and demonstrated techniques to effectively compensate for these impairments based upon the model.

  12. Initial performance of the High Speed Photometer

    NASA Technical Reports Server (NTRS)

    Richards, Evan; Percival, Jeff; Nelson, Matt; Hatter, ED; Fitch, John; White, Rick

    1991-01-01

    The Hubble Space Telescope High Speed Photometer has four image dissector tubes, two with UV sensitive photocathodes, two sensitive to the near UV and to visual light, and a single red sensitive photomultiplier tube. The HSP is capable of photometric measurements from 1200 to 7500 A with time resolution of 11 microseconds and has no moving parts. An initial analysis of the on-orbit engineering performance of the HSP is presented with changes in operating procedures resulting from the primary mirror spherical aberration and experience gained during the verification period.

  13. Study of high-speed civil transports

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A systems study to identify the economic potential for a high-speed commercial transport (HSCT) has considered technology, market characteristics, airport infrastructure, and environmental issues. Market forecasts indicate a need for HSCT service in the 2000/2010 time frame conditioned on economic viability and environmental acceptability. Design requirements focused on a 300 passenger, 3 class service, and 6500 nautical mile range based on the accelerated growth of the Pacific region. Compatibility with existing airports was an assumed requirement. Mach numbers between 2 and 25 were examined in conjunction with the appropriate propulsion systems, fuels, structural materials, and thermal management systems. Aircraft productivity was a key parameter with aircraft worth, in comparison to aircraft price, being the airline-oriented figure of merit. Aircraft screening led to determination that Mach 3.2 (TSJF) would have superior characteristics to Mach 5.0 (LNG) and the recommendation that the next generation high-speed commercial transport aircraft use a kerosene fuel. The sensitivity of aircraft performance and economics to environmental constraints (e.g., sonic boom, engine emissions, and airport/community noise) was identified together with key technologies. In all, current technology is not adequate to produce viable HSCTs for the world marketplace. Technology advancements must be accomplished to meet environmental requirements (these requirements are as yet undetermined for sonic boom and engine emissions). High priority is assigned to aircraft gross weight reduction which benefits both economics and environmental aspects. Specific technology requirements are identified and national economic benefits are projected.

  14. Ultra-high-speed embossed radiography system

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Abderyim, Purkhet; Osawa, Akihiro; Enomoto, Toshiyuki; Tanaka, Etsuro; Sato, Koetsu; Izumisawa, Mitsuru; Ogawa, Akira; Sato, Shigehiro; Takayama, Kazuyoshi

    2008-11-01

    Embossed radiography is an important technique for imaging target region by decreasing absorption contrast of objects. The ultra-high-speed embossed radiography system consists of a computed radiography system, an intense flash x-ray generator, and a computer program for shifting the image pixel. In the flash x-ray generator, a high-voltage condenser of 200 nF was charged to 50 kV, and the electric charges in the condenser were discharged to the flash x-ray tube after triggering the cathode electrode. The molybdenum-target evaporation lead to the formation of weakly ionized linear plasma, and intense molybdenum K-series x-rays were produced. High-speed radiography was performed using molybdenum K-rays, and the embossed radiography was carried out utilizing single-energy subtraction after the image shifting. The minimum spatial resolution was equal to the sampling pitch of the CR system of 87.5 μm, and concavoconvex radiography such as phase-differential imaging was performed with an x-ray duration of approximately 0.5 Μs.

  15. Debris transport around high-speed snowplows

    NASA Astrophysics Data System (ADS)

    Nakhla, Hany Kamel

    2001-08-01

    The distribution of airborne debris around high-speed snowplows affects visibility and thus road safety. A combination of calculations, windtunnel experiments, and road trials are presented to provide knowledge of debris distributions and to obtain understanding of the mechanisms that can reduce suspended debris. Measurements obtained around windtunnel models show the influence of a variety of plow geometries on the location of debris around plowing trucks. Debris trajectories were calculated around plows with and without overplow deflectors by solution of Reynolds-averaged Navier-Stokes equations with cutting-edge and particle-tracking models. Calculations extrapolated windtunnel results over the wide range of snow conditions from light powder to slushy ice. Road trials compared visibility of conventional and modified snowplows with image analysis that quantified visible area, contrast and color intensity. In full scale tests, snow did not blow overtop of plow configurations that had trap angles less than 50 degrees, as predicted in windtunnel and computational results. Packing and junction flaps deflected discharge snow back into the consolidated discharge stream and decreased the amount of loose debris. Side-mounted hopper vanes kept rearward- facing surfaces clearer and made rear lighting and signage more effective. The visible area of high-speed snowplows outfitted with overplow deflector, packing flap, junction flap and hopper vanes was measured to be more than 50% larger than conventional plows for following motorists in all wind conditions and this was linked to reductions in the quantity of debris in the downstream snow cloud.

  16. High Speed Research - External Vision System (EVS)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Imagine flying a supersonic passenger jet (like the Concorde) at 1500 mph with no front windows in the cockpit - it may one day be a reality, as seen in this animation still. NASA engineers are working to develop technology that would replace the forward cockpit windows in future supersonic passenger jets with large sensor displays. These displays would use video images, enhanced by computer-generated graphics, to take the place of the view out the front windows. The envisioned eXternal Visibility System (XVS) would guide pilots to an airport, warn them of other aircraft near their path, and provide additional visual aides for airport approaches, landings and takeoffs. Currently, supersonic transports like the Anglo-French Concorde droop the front of the jet (the 'nose') downward to allow the pilots to see forward during takeoffs and landings. By enhancing the pilots' vision with high-resolution video displays, future supersonic transport designers could eliminate the heavy and expensive, mechanically-drooped nose. A future U.S. supersonic passenger jet, as envisioned by NASA's High-Speed Research (HSR) program, would carry 300 passengers more than 5000 nautical miles per hour more than 1500 miles per hour (more than twice the speed of sound). Traveling from Los Angeles to Tokyo would take only four hours, with an anticipated fare increase of only 20 percent over current ticket prices for substantially slower subsonic flights. Animation by Joey Ponthieux, Computer Sciences Corporation, Inc.

  17. A Monolithic CMOS Magnetic Hall Sensor with High Sensitivity and Linearity Characteristics

    PubMed Central

    Huang, Haiyun; Wang, Dejun; Xu, Yue

    2015-01-01

    This paper presents a fully integrated linear Hall sensor by means of 0.8 μm high voltage complementary metal-oxide semiconductor (CMOS) technology. This monolithic Hall sensor chip features a highly sensitive horizontal switched Hall plate and an efficient signal conditioner using dynamic offset cancellation technique. An improved cross-like Hall plate achieves high magnetic sensitivity and low offset. A new spinning current modulator stabilizes the quiescent output voltage and improves the reliability of the signal conditioner. The tested results show that at the 5 V supply voltage, the maximum Hall output voltage of the monolithic Hall sensor microsystem, is up to ±2.1 V and the linearity of Hall output voltage is higher than 99% in the magnetic flux density range from ±5 mT to ±175 mT. The output equivalent residual offset is 0.48 mT and the static power consumption is 20 mW. PMID:26516864

  18. High mobility CMOS technologies using III-V/Ge channels on Si platform

    NASA Astrophysics Data System (ADS)

    Takagi, S.; Kim, S.-H.; Yokoyama, M.; Zhang, R.; Taoka, N.; Urabe, Y.; Yasuda, T.; Yamada, H.; Ichikawa, O.; Fukuhara, N.; Hata, M.; Takenaka, M.

    2013-10-01

    MOSFETs using channel materials with high mobility and low effective mass have been regarded as strongly important for obtaining high current drive and low supply voltage CMOS under sub 10 nm regime. From this viewpoint, attentions have recently been paid to Ge and III-V channels. In this paper, possible solutions for realizing III-V/Ge MOSFETs on the Si platform are presented. The high quality III-V channel formation on Si substrates can be realized through direct wafer bonding. The gate stack formation is constructed on a basis of atomic layer deposition (ALD) Al2O3 gate insulators for both InGaAs and Ge MOSFETs. As the source/drain (S/D) formation, Ni-based metal S/D is implemented for both InGaAs and Ge MOSFETs. By combining these technologies, we demonstrate successful integration of InGaAs-OI nMOSFETs and Ge p-MOSFETs on a same wafer and their superior device performance.

  19. Full-field dynamic deformation and strain measurements using high-speed digital cameras

    NASA Astrophysics Data System (ADS)

    Schmidt, Timothy E.; Tyson, John; Galanulis, Konstantin; Revilock, Duane M.; Melis, Matthew E.

    2005-03-01

    Digital cameras are rapidly supplanting film, even for very high speed and ultra high-speed applications. The benefits of these cameras, particularly CMOS versions, are well appreciated. This paper describes how a pair of synchronized digital high-speed cameras can provide full-field dynamic deformation, shape and strain information, through a process known as 3D image correlation photogrammetry. The data is equivalent to thousands of non-contact x-y-z extensometers and strain rosettes, as well as instant non-contact CMM shape measurement. A typical data acquisition rate is 27,000 frames per second, with displacement accuracy on the order of 25-50 microns, and strain accuracy of 250-500 microstrain. High-speed 3D image correlation is being used extensively at the NASA Glenn Ballistic Impact Research Lab, in support of Return to Flight activities. This leading edge work is playing an important role in validating and iterating LS-DYNA models of foam impact on reinforced carbon-carbon, including orbiter wing panel tests. The technique has also been applied to air blast effect studies and Kevlar ballistic impact testing. In these cases, full-field and time history analysis revealed the complexity of the dynamic buckling, including multiple lobes of out-of-plane and in-plane displacements, strain maxima shifts, and damping over time.

  20. Interpolation circuit with high resolution and high response speed

    NASA Astrophysics Data System (ADS)

    Piao, Weiying; Yuan, Yibao; Xu, Lianhu; Zhang, Hao

    2009-05-01

    An interpolation circuit based upon the looking-up table by hardware is presented. Output data of two A/D convertors are connected to ROM's address bus. The memory space of ROM is divided. When the address bus is activated by A/D conversion's output data, the ROM's output data is interpolation data. This circuit has high response speed, and it is easy to obtain high interpolation multiple. The same kind of hardware circuit can achieve different interpolation multiple by modifying ROM's data. It is very convenient and flexible. The principle of direction judgment and counting is analyzed; the implementation speed and maximal interpolation multiple are discussed in this paper. Finally through experiment, make sure this circuit not only has the characteristic of high response speed and high interpolation multiple, but also avoids the counting error of micro-computer interpolation.

  1. 14 CFR 25.253 - High-speed characteristics.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false High-speed characteristics. 25.253 Section...-speed characteristics. Link to an amendment published at 76 FR 74654, December 1, 2011. (a) Speed increase and recovery characteristics. The following speed increase and recovery characteristics must...

  2. Intelligence: The Speed and Accuracy Tradeoff in High Aptitude Individuals.

    ERIC Educational Resources Information Center

    Lajoie, Suzanne P.; Shore, Bruce M.

    1986-01-01

    The relative contributions of mental speed and accuracy to Primary Mental Ability (PMA) IQ prediction were studied in 52 high ability grade 10 students. Both speed and accuracy independently predicted IQ, but not speed over and above accuracy. Accuracy was demonstrated to be universally advantageous in IQ performance, but speed varied according to…

  3. High-speed cameras at Los Alamos

    NASA Astrophysics Data System (ADS)

    Brixner, Berlyn

    1997-05-01

    In 1943, there was no camera with the microsecond resolution needed for research in Atomic Bomb development. We had the Mitchell camera (100 fps), the Fastax (10 000), the Marley (100 000), the drum streak (moving slit image) 10-5 s resolution, and electro-optical shutters for 10-6 s. Julian Mack invented a rotating-mirror camera for 10-7 s, which was in use by 1944. Small rotating mirror changes secured a resolution of 10-8 s. Photography of oscilloscope traces soon recorded 10-6 resolution, which was later improved to 10-8 s. Mack also invented two time resolving spectrographs for studying the radiation of the first atomic explosion. Much later, he made a large aperture spectrograph for shock wave spectra. An image dissecting drum camera running at 107 frames per second (fps) was used for studying high velocity jets. Brixner invented a simple streak camera which gave 10-8 s resolution. Using a moving film camera, an interferometer pressure gauge was developed for measuring shock-front pressures up to 100 000 psi. An existing Bowen 76-lens frame camera was speeded up by our turbine driven mirror to make 1 500 000 fps. Several streak cameras were made with writing arms from 4 1/2 to 40 in. and apertures from f/2.5 to f/20. We made framing cameras with top speeds of 50 000, 1 000 000, 3 500 000, and 14 000 000 fps.

  4. High-Speed RaPToRS

    NASA Astrophysics Data System (ADS)

    Henchen, Robert; Esham, Benjamin; Becker, William; Pogozelski, Edward; Padalino, Stephen; Sangster, Thomas; Glebov, Vladimir

    2008-11-01

    The High-Speed Rapid Pneumatic Transport of Radioactive Samples (HS-RaPToRS) system, designed to quickly and safely move radioactive materials, was assembled and tested at the Mercury facility of the Naval Research Laboratory (NRL) in Washington D.C. A sample, which is placed inside a four-inch-diameter carrier, is activated before being transported through a PVC tube via airflow. The carrier travels from the reaction chamber to the end station where it pneumatically brakes prior to the gate. A magnetic latch releases the gate when the carrier arrives and comes to rest. The airflow, optical carrier-monitoring devices, and end gate are controlled manually or automatically with LabView software. The installation and testing of the RaPToRS system at NRL was successfully completed with transport times of less than 3 seconds. The speed of the carrier averaged 16 m/s. Prospective facilities for similar systems include the Laboratory for Laser Energetics and the National Ignition Facility.

  5. A method for electrophysiological characterization of hamster retinal ganglion cells using a high-density CMOS microelectrode array

    PubMed Central

    Jones, Ian L.; Russell, Thomas L.; Farrow, Karl; Fiscella, Michele; Franke, Felix; Müller, Jan; Jäckel, David; Hierlemann, Andreas

    2015-01-01

    Knowledge of neuronal cell types in the mammalian retina is important for the understanding of human retinal disease and the advancement of sight-restoring technology, such as retinal prosthetic devices. A somewhat less utilized animal model for retinal research is the hamster, which has a visual system that is characterized by an area centralis and a wide visual field with a broad binocular component. The hamster retina is optimally suited for recording on the microelectrode array (MEA), because it intrinsically lies flat on the MEA surface and yields robust, large-amplitude signals. However, information in the literature about hamster retinal ganglion cell functional types is scarce. The goal of our work is to develop a method featuring a high-density (HD) complementary metal-oxide-semiconductor (CMOS) MEA technology along with a sequence of standardized visual stimuli in order to categorize ganglion cells in isolated Syrian Hamster (Mesocricetus auratus) retina. Since the HD-MEA is capable of recording at a higher spatial resolution than most MEA systems (17.5 μm electrode pitch), we were able to record from a large proportion of RGCs within a selected region. Secondly, we chose our stimuli so that they could be run during the experiment without intervention or computation steps. The visual stimulus set was designed to activate the receptive fields of most ganglion cells in parallel and to incorporate various visual features to which different cell types respond uniquely. Based on the ganglion cell responses, basic cell properties were determined: direction selectivity, speed tuning, width tuning, transience, and latency. These properties were clustered to identify ganglion cell types in the hamster retina. Ultimately, we recorded up to a cell density of 2780 cells/mm2 at 2 mm (42°) from the optic nerve head. Using five parameters extracted from the responses to visual stimuli, we obtained seven ganglion cell types. PMID:26528115

  6. Using a High-Speed Camera to Measure the Speed of Sound

    ERIC Educational Resources Information Center

    Hack, William Nathan; Baird, William H.

    2012-01-01

    The speed of sound is a physical property that can be measured easily in the lab. However, finding an inexpensive and intuitive way for students to determine this speed has been more involved. The introduction of affordable consumer-grade high-speed cameras (such as the Exilim EX-FC100) makes conceptually simple experiments feasible. Since the…

  7. Ultra-low-voltage CMOS-based current bleeding mixer with high LO-RF isolation.

    PubMed

    Tan, Gim Heng; Sidek, Roslina Mohd; Ramiah, Harikrishnan; Chong, Wei Keat; Lioe, De Xing

    2014-01-01

    This journal presents an ultra-low-voltage current bleeding mixer with high LO-RF port-to-port isolation, implemented on 0.13 μm standard CMOS technology for ZigBee application. The architecture compliments a modified current bleeding topology, consisting of NMOS-based current bleeding transistor, PMOS-based switching stage, and integrated inductors achieving low-voltage operation and high LO-RF isolation. The mixer exhibits a conversion gain of 7.5 dB at the radio frequency (RF) of 2.4 GHz, an input third-order intercept point (IIP3) of 1 dBm, and a LO-RF isolation measured to 60 dB. The DC power consumption is 572 µW at supply voltage of 0.45 V, while consuming a chip area of 0.97 × 0.88 mm(2). PMID:25197694

  8. High-power CMOS current driver with accurate transconductance for electrical impedance tomography.

    PubMed

    Constantinou, Loucas; Triantis, Iasonas F; Bayford, Richard; Demosthenous, Andreas

    2014-08-01

    Current drivers are fundamental circuits in bioimpedance measurements including electrical impedance tomography (EIT). In the case of EIT, the current driver is required to have a large output impedance to guarantee high current accuracy over a wide range of load impedance values. This paper presents an integrated current driver which meets these requirements and is capable of delivering large sinusoidal currents to the load. The current driver employs a differential architecture and negative feedback, the latter allowing the output current to be accurately set by the ratio of the input voltage to a resistor value. The circuit was fabricated in a 0.6- μm high-voltage CMOS process technology and its core occupies a silicon area of 0.64 mm (2) . It operates from a ± 9 V power supply and can deliver output currents up to 5 mA p-p. The accuracy of the maximum output current is within 0.41% up to 500 kHz, reducing to 0.47% at 1 MHz with a total harmonic distortion of 0.69%. The output impedance is 665 k Ω at 100 kHz and 372 k Ω at 500 kHz.

  9. Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology

    PubMed Central

    Strle, Drago; Nahtigal, Uroš; Batistell, Graciele; Zhang, Vincent Chi; Ofner, Erwin; Fant, Andrea; Sturm, Johannes

    2015-01-01

    This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode’s current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm2 of silicon area (including three photodiodes and the analog part of the ADC). The DSP is currently implemented on FPGA. PMID:26205275

  10. Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology.

    PubMed

    Strle, Drago; Nahtigal, Uroš; Batistell, Graciele; Zhang, Vincent Chi; Ofner, Erwin; Fant, Andrea; Sturm, Johannes

    2015-07-22

    This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode's current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm(2) of silicon area (including three photodiodes and the analog part of the ADC). The DSP is currently implemented on FPGA.

  11. Ultra-Low-Voltage CMOS-Based Current Bleeding Mixer with High LO-RF Isolation

    PubMed Central

    Tan, Gim Heng; Sidek, Roslina Mohd; Chong, Wei Keat; Lioe, De Xing

    2014-01-01

    This journal presents an ultra-low-voltage current bleeding mixer with high LO-RF port-to-port isolation, implemented on 0.13 μm standard CMOS technology for ZigBee application. The architecture compliments a modified current bleeding topology, consisting of NMOS-based current bleeding transistor, PMOS-based switching stage, and integrated inductors achieving low-voltage operation and high LO-RF isolation. The mixer exhibits a conversion gain of 7.5 dB at the radio frequency (RF) of 2.4 GHz, an input third-order intercept point (IIP3) of 1 dBm, and a LO-RF isolation measured to 60 dB. The DC power consumption is 572 µW at supply voltage of 0.45 V, while consuming a chip area of 0.97 × 0.88 mm2. PMID:25197694

  12. Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology.

    PubMed

    Strle, Drago; Nahtigal, Uroš; Batistell, Graciele; Zhang, Vincent Chi; Ofner, Erwin; Fant, Andrea; Sturm, Johannes

    2015-01-01

    This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode's current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm(2) of silicon area (including three photodiodes and the analog part of the ADC). The DSP is currently implemented on FPGA. PMID:26205275

  13. HIGH SPEED KERR CELL FRAMING CAMERA

    DOEpatents

    Goss, W.C.; Gilley, L.F.

    1964-01-01

    The present invention relates to a high speed camera utilizing a Kerr cell shutter and a novel optical delay system having no moving parts. The camera can selectively photograph at least 6 frames within 9 x 10/sup -8/ seconds during any such time interval of an occurring event. The invention utilizes particularly an optical system which views and transmits 6 images of an event to a multi-channeled optical delay relay system. The delay relay system has optical paths of successively increased length in whole multiples of the first channel optical path length, into which optical paths the 6 images are transmitted. The successively delayed images are accepted from the exit of the delay relay system by an optical image focusing means, which in turn directs the images into a Kerr cell shutter disposed to intercept the image paths. A camera is disposed to simultaneously view and record the 6 images during a single exposure of the Kerr cell shutter. (AEC)

  14. High speed civil transport aerodynamic optimization

    NASA Technical Reports Server (NTRS)

    Ryan, James S.

    1994-01-01

    This is a report of work in support of the Computational Aerosciences (CAS) element of the Federal HPCC program. Specifically, CFD and aerodynamic optimization are being performed on parallel computers. The long-range goal of this work is to facilitate teraflops-rate multidisciplinary optimization of aerospace vehicles. This year's work is targeted for application to the High Speed Civil Transport (HSCT), one of four CAS grand challenges identified in the HPCC FY 1995 Blue Book. This vehicle is to be a passenger aircraft, with the promise of cutting overseas flight time by more than half. To meet fuel economy, operational costs, environmental impact, noise production, and range requirements, improved design tools are required, and these tools must eventually integrate optimization, external aerodynamics, propulsion, structures, heat transfer, controls, and perhaps other disciplines. The fundamental goal of this project is to contribute to improved design tools for U.S. industry, and thus to the nation's economic competitiveness.

  15. Merging of High Speed Argon Plasma Jets

    NASA Astrophysics Data System (ADS)

    Case, Andrew; Messer, Sarah; Brockington, Sam; Wu, Lin-Chun; Witherspoon, F. Douglas

    2012-10-01

    Formation of an imploding plasma liner for the Plasma Liner Experiment (PLX) requires individual plasma jets to merge into a uniform shell of plasma converging on the target region. Understanding dynamics of the merging process requires knowledge of the plasma phenomena involved. We present here results from the study of the merging of six plasma jets in three dimensional geometry. The experiments were performed using HyperV Technologies Corp. one centimeter MiniRailguns using a preionized Argon plasma armature on a vacuum chamber designed to partially reproduce the port geometry of the PLX vacuum chamber. Diagnostics include fast imaging, spectroscopy, interferometry, fast pressure probes, B-dot probes, and high speed spatially resolved photodiodes, permitting measurements of plasma density, temperature, velocity, stagnation pressure, and magnetic field. These experimental results are compared with simulation results from the LSP 3D hybrid PIC code.

  16. Merging of high speed argon plasma jets

    NASA Astrophysics Data System (ADS)

    Case, A.; Messer, S.; Brockington, S.; Wu, L.; Witherspoon, F. D.; Elton, R.

    2013-01-01

    Formation of an imploding plasma liner for the plasma liner experiment (PLX) requires individual plasma jets to merge into a quasi-spherical shell of plasma converging on the origin. Understanding dynamics of the merging process requires knowledge of the plasma phenomena involved. We present results from the study of the merging of three plasma jets in three dimensional geometry. The experiments were performed using HyperV Technologies Corp. 1 cm Minirailguns with a preionized argon plasma armature. The vacuum chamber partially reproduces the port geometry of the PLX chamber. Diagnostics include fast imaging, spectroscopy, interferometry, fast pressure probes, B-dot probes, and high speed spatially resolved photodiodes, permitting measurements of plasma density, temperature, velocity, stagnation pressure, magnetic field, and density gradients. These experimental results are compared with simulation results from the LSP 3D hybrid PIC code.

  17. Design of a high speed business transport

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The design of a High Speed Business Transport (HSBT) was considered by the Aeronautical Design Class during the academic year 1989 to 1990. The project was chosen to offer an opportunity to develop user friendliness for some computer codes such as WAVE DRAG, supplied by NASA/Langley, and to experiment with several design lessons developed by Dr. John McMasters and his colleages at Boeing. Central to these design lessons was an appeal to marketing and feasibility considerations. There was an emphasis upon simplified analytical techniques to study trades and to stimulate creative thinking before committing to extensive analytical activity. Two designs stood out among all the rest because of the depth of thought and consideration of alternatives. One design, the Aurora, used a fixed wing design to satisfy the design mission: the Viero used a swept wing configuration to overcome problems related to supersonic flight. A summary of each of these two designs is given.

  18. The high speed bus technology development program

    NASA Astrophysics Data System (ADS)

    Ludvigson, M. T.; Modrow, M. B.; Goldman, P. C.

    The current development status of a high-speed data bus to link MIL-STD-1750A computers in avionics applications is reviewed and illustrated with diagrams and photographs. The bus requirements include data rate 50 Mb/s, a linear token-passing scheme permitting both electronic and fiber-optic implementation, up to 64-terminal capacity, maximum terminal separation 300 ft, latency control via token-rotation-timer priority, self-test and bus-loop test capability, and automatic clock synchronization. The design concept and performance of a breadboard wire bus tested in July 1986 are discussed in detail, with particular attention to the redundancy manager, the output controller, the input controller, the ringmaster topology manager, and typical initial-placement problems.

  19. Octane rating methods at high revolution speed

    SciTech Connect

    Millo, F.; Ferraro, C.V.; Barbera, E.; Margaria, G.

    1995-12-31

    An experimental investigation on a group of unleaded gasolines of different chemical composition has been carried out, in order to analyze their knock behavior in a mass-produced engine at high revolution speed, to highlight possible inconsistencies with their standard Research and Motor octane numbers and to try to discover explanations for the above mentioned inconsistencies. The investigation has been focused on fuels containing oxygenated compounds, such as alcohols (methanol and ethanol) and ethers (MTBE), with the aim of pointing out the influence of the fuel composition on the octane rating, especially as far as the variation in the stoichiometric air/fuel ratio (due to oxygenated compounds blending) is concerned. In particular, the rating of all the fuels under the same relative air/fuel ratio has shown to be a mandatory condition in order to obtain a proper estimate of antiknock performances. The evaluations obtained are consistent with the standard Motor octane numbers.

  20. High-speed electrical motor evaluation

    SciTech Connect

    Not Available

    1989-02-03

    Under this task, MTI conducted a general review of state-of-the-art high-speed motors. The purpose of this review was to assess the operating parameters, limitations and performance of existing motor designs, and to establish commercial sources for a motor compatible with the requirements of the Brayton-cycle system. After the motor requirements were established, a list of motor types, manufacturers and designs capable of achieving the requisite performance was compiled. This list was based on an in-house evaluation of designs. Following the establishment of these options, a technical evaluation of the designs selected was conducted. In parallel with their evaluations, MTI focused on the establishment of commercial sources.

  1. Technology needs for high-speed rotorcraft

    NASA Technical Reports Server (NTRS)

    Rutherford, John; Orourke, Matthew; Martin, Christopher; Lovenguth, Marc; Mitchell, Clark

    1991-01-01

    A study to determine the technology development required for high-speed rotorcraft development was conducted. The study begins with an initial assessment of six concepts capable of flight at, or greater than 450 knots with helicopter-like hover efficiency (disk loading less than 50 pfs). These concepts were sized and evaluated based on measures of effectiveness and operational considerations. Additionally, an initial assessment of the impact of technology advances on the vehicles attributes was made. From these initial concepts a tilt wing and rotor/wing concepts were selected for further evaluation. A more detailed examination of conversion and technology trade studies were conducted on these two vehicles, each sized for a different mission.

  2. A fully integrated CMOS VCXO-IC with low phase noise, wide tuning range and high tuning linearity

    NASA Astrophysics Data System (ADS)

    Yanjun, Yang; Yun, Zeng

    2015-06-01

    This paper describes a low phase noise, wide tuning range and high tuning linearity CMOS voltage controlled crystal oscillator IC (VCXO-IC) with LVCMOS and LVPECL output. A differential coupled frequency doubling Colpitts oscillator is adopted to obtain low noise 2× frequency output. Wide tuning range and high linearity are simultaneously achieved by using MOS varactor arrays. The measurement results show that the designed VCXO-IC achieves -134 dBc/Hz phase noise at 1 kHz offset frequency and ± 135 ppm output frequency tuning range within 3% linearity by using 40 MHz fundamental AT-cut crystal. The VCXO-IC is fabricated in the chartered 0.35 μm standard CMOS process and occupies a total silicon area of 2.4 mm2. Project supported by the National Natural Science Foundation of China (No. 61350007).

  3. High Speed/ Low Effluent Process for Ethanol

    SciTech Connect

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol ‘beers’ in 6 to 12 hours using either a ‘consecutive batch’ or ‘continuous cascade’ implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The ‘consecutive batch’ technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  4. Photodetector having high speed and sensitivity

    DOEpatents

    Morse, Jeffrey D.; Mariella, Jr., Raymond P.

    1991-01-01

    The present invention provides a photodetector having an advantageous combination of sensitivity and speed; it has a high sensitivity while retaining high speed. In a preferred embodiment, visible light is detected, but in some embodiments, x-rays can be detected, and in other embodiments infrared can be detected. The present invention comprises a photodetector having an active layer, and a recombination layer. The active layer has a surface exposed to light to be detected, and comprises a semiconductor, having a bandgap graded so that carriers formed due to interaction of the active layer with the incident radiation tend to be swept away from the exposed surface. The graded semiconductor material in the active layer preferably comprises Al.sub.1-x Ga.sub.x As. An additional sub-layer of graded In.sub.1-y Ga.sub.y As may be included between the Al.sub.1-x Ga.sub.x As layer and the recombination layer. The recombination layer comprises a semiconductor material having a short recombination time such as a defective GaAs layer grown in a low temperature process. The recombination layer is positioned adjacent to the active layer so that carriers from the active layer tend to be swept into the recombination layer. In an embodiment, the photodetector may comprise one or more additional layers stacked below the active and recombination layers. These additional layers may include another active layer and another recombination layer to absorb radiation not absorbed while passing through the first layers. A photodetector having a stacked configuration may have enhanced sensitivity and responsiveness at selected wavelengths such as infrared.

  5. Computation of high-speed reacting flows

    NASA Astrophysics Data System (ADS)

    Clutter, James Keith

    A computational study has been conducted for high-speed reacting flows relevant to munition problems, including shock-induced combustion and gun muzzle blast. The theoretical model considers inviscid and viscous flows, multi-species, finite rate chemical reaction schemes, and turbulence. Both the physical and numerical aspects are investigated to determine their impact on simulation accuracy. A range of hydrogen and oxygen reaction mechanisms are evaluated for the shock-induced combustion flow scenario. Characteristics of the mechanisms such as the induction time, heat release rate, and second explosion limit are found to impact the accuracy of the computation. On the numerical side, reaction source term treatments, including logarithmic weighting and scaling modifications, are investigated to determine their effectiveness in addressing numerical errors caused by disparate length scales between chemical reactions and fluid dynamics. It is demonstrated that these techniques can enhance solution accuracy. Computations of shock-induced combustion have also been performed using a κ-ɛ model to account for the turbulent transport of species and heat. An algebraic model of the temperature fluctuations has been used to estimate the impact of the turbulent effect on the chemical reaction source terms. The turbulence effects when represented with the current models are found to be minimal in the shock-induced combustion flow investigated in the present work. For the gun system simulations, computations for both a large caliber howitzer and small caliber firearms are carried out. A reduced kinetic scheme and an algebraic turbulence model are employed. The present approach, which accounts for the chemical reaction aspects of the gun muzzle blast problem, is found to improve the prediction of peak overpressures and can capture the effects produced by small caliber firearm sound suppressors. The present study has established the numerical and physical requirements for

  6. High-sensitivity chemiluminescence detection of cytokines using an antibody-immobilized CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Hong, Dong-Gu; Joung, Hyou-Arm; Kim, Sang-Hyo; Kim, Min-Gon

    2013-05-01

    In this study, we used a Complementary Metal Oxide Semiconductor (CMOS) image sensor with immobilizing antibodies on its surface to detect human cytokines, which are activators that mediate intercellular communication including expression and control of immune responses. The CMOS image sensor has many advantages over the Charge Couple Device, including lower power consumption, operation voltage, and cost. The photodiode, a unit pixel component in the CMOS image sensor, receives light from the detection area and generates digital image data. About a million pixels are embedded, and size of each pixel is 3 x 3 μm. The chemiluminescence reaction produces light from the chemical reaction of luminol and hydrogen peroxide. To detect cytokines, antibodies were immobilized on the surface of the CMOS image sensor, and a sandwich immunoassay using an HRP-labeled antibody was performed. An HRP-catalyzed chemiluminescence reaction was measured by each pixel of the CMOS image sensor. Pixels with stronger signals indicated higher cytokine concentrations; thus, we were able to measure human interleukin-5 (IL-5) at femtomolar concentrations.

  7. Characterization of Depleted Monolithic Active Pixel detectors implemented with a high-resistive CMOS technology

    NASA Astrophysics Data System (ADS)

    Kishishita, T.; Hemperek, T.; Rymaszewski, P.; Hirono, T.; Krüger, H.; Wermes, N.

    2016-07-01

    We present the recent development of DMAPS (Depleted Monolithic Active Pixel Sensor), implemented with a Toshiba 130 nm CMOS process. Unlike in the case of standard MAPS technologies which are based on an epi-layer, this process provides a high-resistive substrate that enables larger signal and faster charge collection by drift in a 50 - 300 μm thick depleted layer. Since this process also enables the use of deep n-wells to isolate the collection electrodes from the thin active device layer, NMOS and PMOS transistors are available for the readout electronics in each pixel cell. In order to characterize the technology, we implemented a simple three transistor readout with a variety of pixel pitches and input FET sizes. This layout variety gives us a clue on sensor characteristics for future optimization, such as the input detector capacitance or leakage current. In the initial measurement, the radiation spectra were obtained from 55Fe with an energy resolution of 770 eV (FWHM) and 90Sr with the MVP of 4165 e-.

  8. High-dynamic-range 4-Mpixel CMOS image sensor for scientific applications

    NASA Astrophysics Data System (ADS)

    Vu, Paul; Fowler, Boyd; Liu, Chiao; Mims, Steve; Bartkovjak, Peter; Do, Hung; Li, Wang; Appelbaum, Jeff; Lopez, Angel

    2012-03-01

    As bio-technology transitions from research and development to high volume production, dramatic improvements in image sensor performance will be required to support the throughput and cost requirements of this market. This includes higher resolution, higher frame rates, higher quantum efficiencies, increased system integration, lower read-noise, and lower device costs. We present the performance of a recently developed low noise 2048(H) x 2048(V) CMOS image sensor optimized for scientific applications such as life science imaging, microscopy, as well as industrial inspection applications. The sensor architecture consists of two identical halves which can be operated independently and the imaging array consists of 4T pixels with pinned photodiodes on a 6.5μm pitch with integrated micro-lens. The operation of the sensor is programmable through a SPI interface. The measured peak quantum efficiency of the sensor is 73% at 600nm, and the read noise is about 1.1e- RMS at 100 fps data rate. The sensor features dual gain column parallel ouput amplifiers with 11-bit single slope ADCs. The full well capacity is greater than 36ke-, the dark current is less than 7pA/cm2 at 20°C. The sensor achieves an intra-scene linear dynamic range of greater than 91dB (36000:1) at room temperature.

  9. Studies for a 10 μs, thin, high resolution CMOS pixel sensor for future vertex detectors

    NASA Astrophysics Data System (ADS)

    Voutsinas, G.; Amar-Youcef, S.; Baudot, J.; Bertolone, G.; Brogna, A.; Chon-Sen, N.; Claus, G.; Colledani, C.; Dorokhov, A.; Dozière, G.; Dulinski, W.; Degerli, Y.; De Masi, R.; Deveaux, M.; Gelin, M.; Goffe, M.; Hu-Guo, Ch.; Himmi, A.; Jaaskelainen, K.; Koziel, M.; Morel, F.; Müntz, C.; Orsini, F.; Santos, C.; Schrader, C.; Specht, M.; Stroth, J.; Valin, I.; Wagner, F. M.; Winter, M.

    2011-06-01

    Future high energy physics (HEP) experiments require detectors with unprecedented performances for track and vertex reconstruction. These requirements call for high precision sensors, with low material budget and short integration time. The development of CMOS sensors for HEP applications was initiated at IPHC Strasbourg more than 10 years ago, motivated by the needs for vertex detectors at the International Linear Collider (ILC) [R. Turchetta et al, NIM A 458 (2001) 677]. Since then several other applications emerged. The first real scale digital CMOS sensor MIMOSA26 equips Flavour Tracker at RHIC, as well as for the microvertex detector of the CBM experiment at FAIR. MIMOSA sensors may also offer attractive performances for the ALICE upgrade at LHC. This paper will demonstrate the substantial performance improvement of CMOS sensors based on a high resistivity epitaxial layer. First studies for integrating the sensors into a detector system will be addressed and finally the way to go to a 10 μs readout sensor will be discussed.

  10. High-voltage circuits for power management on 65 nm CMOS

    NASA Astrophysics Data System (ADS)

    Pashmineh, S.; Killat, D.

    2015-11-01

    This paper presents two high-voltage circuits used in power management, a switching driver for buck converter with optimized on-resistance and a low dropout (LDO) voltage regulator with 2-stacked pMOS pass devices. The circuit design is based on stacked MOSFETs, thus the circuits are technology independent. High-voltage drivers with stacked devices suffer from slow switching characteristics. In this paper, a new concept to adjust gate voltages of stacked transistors is introduced for reduction of on-resistance. According to the theory, a circuit is proposed that drives 2 stacked transistors of a driver. Simulation results show a reduction of the on-resistance between 27 and 86 % and a reduction of rise and fall times between 16 and 83 % with a load capacitance of 150 pF at various supply voltages, compared to previous work. The concept can be applied to each high-voltage driver that is based on a number (N) of stacked transistors. The high voltage compatibility of the low drop-out voltage regulator (LDO) is established by a 2-stacked pMOS transistors as pass device controlled by two regulators: an error amplifier and a 2nd amplifier adjusting the division of the voltages between the two pass transistors. A high GBW and good DC accuracy in line and load regulation is achieved by using 3-stage error amplifiers. To improve stability, two feedback loops are utilized. In this paper, the 2.5 V I/O transistors of the TSMC 65 nm CMOS technology are used for the circuit design.

  11. Development of Gated Pinned Avalanche Photodiode Pixels for High-Speed Low-Light Imaging.

    PubMed

    Resetar, Tomislav; De Munck, Koen; Haspeslagh, Luc; Rosmeulen, Maarten; Süss, Andreas; Puers, Robert; Van Hoof, Chris

    2016-01-01

    This work explores the benefits of linear-mode avalanche photodiodes (APDs) in high-speed CMOS imaging as compared to different approaches present in literature. Analysis of APDs biased below their breakdown voltage employed in single-photon counting mode is also discussed, showing a potentially interesting alternative to existing Geiger-mode APDs. An overview of the recently presented gated pinned avalanche photodiode pixel concept is provided, as well as the first experimental results on a 8 × 16 pixel test array. Full feasibility of the proposed pixel concept is not demonstrated; however, informative data is obtained from the sensor operating under -32 V substrate bias and clearly exhibiting wavelength-dependent gain in frontside illumination. The readout of the chip designed in standard 130 nm CMOS technology shows no dependence on the high-voltage bias. Readout noise level of 15 e - rms, full well capacity of 8000 e - , and the conversion gain of 75 µV / e - are extracted from the photon-transfer measurements. The gain characteristics of the avalanche junction are characterized on separate test diodes showing a multiplication factor of 1.6 for red light in frontside illumination. PMID:27537882

  12. Development of Gated Pinned Avalanche Photodiode Pixels for High-Speed Low-Light Imaging

    PubMed Central

    Resetar, Tomislav; De Munck, Koen; Haspeslagh, Luc; Rosmeulen, Maarten; Süss, Andreas; Puers, Robert; Van Hoof, Chris

    2016-01-01

    This work explores the benefits of linear-mode avalanche photodiodes (APDs) in high-speed CMOS imaging as compared to different approaches present in literature. Analysis of APDs biased below their breakdown voltage employed in single-photon counting mode is also discussed, showing a potentially interesting alternative to existing Geiger-mode APDs. An overview of the recently presented gated pinned avalanche photodiode pixel concept is provided, as well as the first experimental results on a 8 × 16 pixel test array. Full feasibility of the proposed pixel concept is not demonstrated; however, informative data is obtained from the sensor operating under −32 V substrate bias and clearly exhibiting wavelength-dependent gain in frontside illumination. The readout of the chip designed in standard 130 nm CMOS technology shows no dependence on the high-voltage bias. Readout noise level of 15 e- rms, full well capacity of 8000e-, and the conversion gain of 75 µV/e- are extracted from the photon-transfer measurements. The gain characteristics of the avalanche junction are characterized on separate test diodes showing a multiplication factor of 1.6 for red light in frontside illumination. PMID:27537882

  13. Development of Gated Pinned Avalanche Photodiode Pixels for High-Speed Low-Light Imaging.

    PubMed

    Resetar, Tomislav; De Munck, Koen; Haspeslagh, Luc; Rosmeulen, Maarten; Süss, Andreas; Puers, Robert; Van Hoof, Chris

    2016-08-15

    This work explores the benefits of linear-mode avalanche photodiodes (APDs) in high-speed CMOS imaging as compared to different approaches present in literature. Analysis of APDs biased below their breakdown voltage employed in single-photon counting mode is also discussed, showing a potentially interesting alternative to existing Geiger-mode APDs. An overview of the recently presented gated pinned avalanche photodiode pixel concept is provided, as well as the first experimental results on a 8 × 16 pixel test array. Full feasibility of the proposed pixel concept is not demonstrated; however, informative data is obtained from the sensor operating under -32 V substrate bias and clearly exhibiting wavelength-dependent gain in frontside illumination. The readout of the chip designed in standard 130 nm CMOS technology shows no dependence on the high-voltage bias. Readout noise level of 15 e - rms, full well capacity of 8000 e - , and the conversion gain of 75 µV / e - are extracted from the photon-transfer measurements. The gain characteristics of the avalanche junction are characterized on separate test diodes showing a multiplication factor of 1.6 for red light in frontside illumination.

  14. Silicon CMOS optical receiver circuits with integrated thin-film compound semiconductor detectors

    NASA Astrophysics Data System (ADS)

    Brooke, Martin A.; Lee, Myunghee; Jokerst, Nan Marie; Camperi-Ginestet, C.

    1995-04-01

    While many circuit designers have tackled the problem of CMOS digital communications receiver design, few have considered the problem of circuitry suitable for an all CMOS digital IC fabrication process. Faced with a high speed receiver design the circuit designer will soon conclude that a high speed analog-oriented fabrication process provides superior performance advantages to a digital CMOS process. However, for applications where there are overwhelming reasons to integrate the receivers on the same IC as large amounts of conventional digital circuitry, the low yield and high cost of the exotic analog-oriented fabrication is no longer an option. The issues that result from a requirement to use a digital CMOS IC process cut across all aspects of receiver design, and result in significant differences in circuit design philosophy and topology. Digital ICs are primarily designed to yield small, fast CMOS devices for digital logic gates, thus no effort is put into providing accurate or high speed resistances, or capacitors. This lack of any reliable resistance or capacitance has a significant impact on receiver design. Since resistance optimization is not a prerogative of the digital IC process engineer, the wisest option is thus to not use these elements, opting instead for active circuitry to replace the functions normally ascribed to resistance and capacitance. Depending on the application receiver noise may be a dominant design constraint. The noise performance of CMOS amplifiers is different than bipolar or GaAs MESFET circuits, shot noise is generally insignificant when compared to channel thermal noise. As a result the optimal input stage topology is significantly different for the different technologies. It is found that, at speeds of operation approaching the limits of the digital CMOS process, open loop designs have noise-power-gain-bandwidth tradeoff performance superior to feedback designs. Furthermore, the lack of good resisters and capacitors

  15. High-temperature MAS-NMR at high spinning speeds.

    PubMed

    Kirchhain, Holger; Holzinger, Julian; Mainka, Adrian; Spörhase, Andreas; Venkatachalam, Sabarinathan; Wixforth, Achim; van Wüllen, Leo

    2016-09-01

    A low cost version to enable high temperature MAS NMR experiments at temperatures of up to 700°C and spinning speeds of up to 10kHz is presented. The method relies on inductive heating using a metal coated rotor insert. The metal coating is accomplished via a two step process involving physical vapor deposition and galvanization.

  16. A built-in SRAM for radiation hard CMOS pixel sensors dedicated to high energy physics experiments

    NASA Astrophysics Data System (ADS)

    Wei, Xiaomin; Gao, Deyuan; Doziere, Guy; Hu, Yann

    2013-02-01

    CMOS pixel sensors (CPS) are attractive candidates for charged particle tracking in high energy physics experiments. However, CPS chips fabricated with standard CMOS processes, especially the built-in SRAM IP cores, are not radiation hard enough for this application. This paper presents a radiation hard SRAM for improving the CPS radiation tolerance. The SRAM cell is hardened by increasing the static noise margin (SNM) and adding P+ guard rings in layout. The peripheral circuitry is designed by building a radiation-hardened logic library. The SRAM internal timing control is hardened by a self-adaptive timing design. Finally, the SRAM design was implemented and tested in the Austriamicrosystems (AMS) 0.35 μm standard CMOS process. The prototype chips are adapted to work with frequencies up to 80 MHz, power supply voltages from 2.9 V to 3.3 V and temperatures from 0 °C to 60 °C. The single event latchup (SEL) tolerance is improved from 5.2 MeV cm2/mg to above 56 MeV cm2/mg. The total ionizing dose (TID) tolerance is enhanced by the P+ guard rings and the self-adaptive timing design. The single event upset (SEU) effects are also alleviated due to the high SNM SRAM cell and the P+ guard rings. In the near future, the presented SRAM will be integrated in the CPS chips for the STAR experiments.

  17. 14 CFR 23.253 - High speed characteristics.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. Link to an amendment published at 76 FR 75755, December 2, 2011. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following...

  18. High speed exhaust gas recirculation valve

    DOEpatents

    Fensom, Rod; Kidder, David J.

    2005-01-18

    In order to minimize pollutants such as Nox, internal combustion engines typically include an exhaust gas recirculation (EGR) valve that can be used to redirect a portion of exhaust gases to an intake conduit, such as an intake manifold, so that the redirected exhaust gases will be recycled. It is desirable to have an EGR valve with fast-acting capabilities, and it is also desirable to have the EGR valve take up as little space as possible. An exhaust gas recirculation valve is provided that includes an exhaust passage tube, a valve element pivotally mounted within the exhaust passage tube, a linear actuator; and a gear train. The gear train includes a rack gear operatively connected to the linear actuator, and at least one rotatable gear meshing with the rack gear and operatively connected to the valve element to cause rotation of the valve element upon actuation of the linear actuator. The apparatus provides a highly compact package having a high-speed valve actuation capability.

  19. High-Speed Data Recorder for Space, Geodesy, and Other High-Speed Recording Applications

    NASA Technical Reports Server (NTRS)

    Taveniku, Mikael

    2013-01-01

    A high-speed data recorder and replay equipment has been developed for reliable high-data-rate recording to disk media. It solves problems with slow or faulty disks, multiple disk insertions, high-altitude operation, reliable performance using COTS hardware, and long-term maintenance and upgrade path challenges. The current generation data recor - ders used within the VLBI community are aging, special-purpose machines that are both slow (do not meet today's requirements) and are very expensive to maintain and operate. Furthermore, they are not easily upgraded to take advantage of commercial technology development, and are not scalable to multiple 10s of Gbit/s data rates required by new applications. The innovation provides a softwaredefined, high-speed data recorder that is scalable with technology advances in the commercial space. It maximally utilizes current technologies without being locked to a particular hardware platform. The innovation also provides a cost-effective way of streaming large amounts of data from sensors to disk, enabling many applications to store raw sensor data and perform post and signal processing offline. This recording system will be applicable to many applications needing realworld, high-speed data collection, including electronic warfare, softwaredefined radar, signal history storage of multispectral sensors, development of autonomous vehicles, and more.

  20. SPADAS: a high-speed 3D single-photon camera for advanced driver assistance systems

    NASA Astrophysics Data System (ADS)

    Bronzi, D.; Zou, Y.; Bellisai, S.; Villa, F.; Tisa, S.; Tosi, A.; Zappa, F.

    2015-02-01

    Advanced Driver Assistance Systems (ADAS) are the most advanced technologies to fight road accidents. Within ADAS, an important role is played by radar- and lidar-based sensors, which are mostly employed for collision avoidance and adaptive cruise control. Nonetheless, they have a narrow field-of-view and a limited ability to detect and differentiate objects. Standard camera-based technologies (e.g. stereovision) could balance these weaknesses, but they are currently not able to fulfill all automotive requirements (distance range, accuracy, acquisition speed, and frame-rate). To this purpose, we developed an automotive-oriented CMOS single-photon camera for optical 3D ranging based on indirect time-of-flight (iTOF) measurements. Imagers based on Single-photon avalanche diode (SPAD) arrays offer higher sensitivity with respect to CCD/CMOS rangefinders, have inherent better time resolution, higher accuracy and better linearity. Moreover, iTOF requires neither high bandwidth electronics nor short-pulsed lasers, hence allowing the development of cost-effective systems. The CMOS SPAD sensor is based on 64 × 32 pixels, each able to process both 2D intensity-data and 3D depth-ranging information, with background suppression. Pixel-level memories allow fully parallel imaging and prevents motion artefacts (skew, wobble, motion blur) and partial exposure effects, which otherwise would hinder the detection of fast moving objects. The camera is housed in an aluminum case supporting a 12 mm F/1.4 C-mount imaging lens, with a 40°×20° field-of-view. The whole system is very rugged and compact and a perfect solution for vehicle's cockpit, with dimensions of 80 mm × 45 mm × 70 mm, and less that 1 W consumption. To provide the required optical power (1.5 W, eye safe) and to allow fast (up to 25 MHz) modulation of the active illumination, we developed a modular laser source, based on five laser driver cards, with three 808 nm lasers each. We present the full characterization of

  1. High Speed High Resolution Current Comparator and its Application to Analog to Digital Converter

    NASA Astrophysics Data System (ADS)

    Sridhar, Ranjana; Pandey, Neeta; Bhattacharyya, Asok; Bhatia, Veepsa

    2016-06-01

    This paper introduces a high speed high resolution current comparator which includes the current differencing stage and employs non linear feedback in the gain stage. The usefulness of the proposed comparator is demonstrated by implementing a 3-bit current mode flash analog-to-digital converter (ADC). Simulation program with integrated circuit emphasis (SPICE) simulations have been carried out to verify theoretical proposition and performance parameters of both comparator and ADC are obtained using TSMC 0.18 µm CMOS technology parameters. The current comparator shows a resolution of ±5 nA and a delay of 0.86 ns for current difference of ±1 µA. The impact of process variation on proposed comparator propagation delay has been studied through Monte Carlo simulation and it is found that percentage change in propagation delay in best case is 1.3 % only and in worst case is 9 % only. The ADC exhibits an offset, gain error, differential nonlinearity (DNL) and integral nonlinearity (INL) of 0.102 µA, 0.99, -0.34 LSB and 0.0267 LSB, respectively. The impact of process variation on ADC has also been studied at different process corners.

  2. CMOS Monolithic Active Pixel Sensors (MAPS): Developments and future outlook

    NASA Astrophysics Data System (ADS)

    Turchetta, R.; Fant, A.; Gasiorek, P.; Esbrand, C.; Griffiths, J. A.; Metaxas, M. G.; Royle, G. J.; Speller, R.; Venanzi, C.; van der Stelt, P. F.; Verheij, H.; Li, G.; Theodoridis, S.; Georgiou, H.; Cavouras, D.; Hall, G.; Noy, M.; Jones, J.; Leaver, J.; Machin, D.; Greenwood, S.; Khaleeq, M.; Schulerud, H.; Østby, J. M.; Triantis, F.; Asimidis, A.; Bolanakis, D.; Manthos, N.; Longo, R.; Bergamaschi, A.

    2007-12-01

    Re-invented in the early 1990s, on both sides of the Atlantic, Monolithic Active Pixel Sensors (MAPS) in a CMOS technology are today the most sold solid-state imaging devices, overtaking the traditional technology of Charge-Coupled Devices (CCD). The slow uptake of CMOS MAPS started with low-end applications, for example web-cams, and is slowly pervading the high-end applications, for example in prosumer digital cameras. Higher specifications are required for scientific applications: very low noise, high speed, high dynamic range, large format and radiation hardness are some of these requirements. This paper will present a brief overview of the CMOS Image Sensor technology and of the requirements for scientific applications. As an example, a sensor for X-ray imaging will be presented. This sensor was developed within a European FP6 Consortium, intelligent imaging sensors (I-ImaS).

  3. A high-speed mixed-signal down-scaling circuit for DAB tuners

    NASA Astrophysics Data System (ADS)

    Lu, Tang; Zhigong, Wang; Jiahui, Xuan; Yang, Yang; Jian, Xu; Yong, Xu

    2012-07-01

    A high-speed mixed-signal down-scaling circuit with low power consumption and low phase noise for use in digital audio broadcasting tuners has been realized and characterized. Some new circuit techniques are adopted to improve its performance. A dual-modulus prescaler (DMP) with low phase noise is realized with a kind of improved source-coupled logic (SCL) D-flip-flop (DFF) in the synchronous divider and a kind of improved complementary metal oxide semiconductor master-slave (CMOS MS)-DFF in the asynchronous divider. A new more accurate wire-load model is used to realize the pulse-swallow counter (PS counter). Fabricated in a 0.18-μm CMOS process, the total chip size is 0.6 × 0.2 mm2. The DMP in the proposed down-scaling circuit exhibits a low phase noise of -118.2 dBc/Hz at 10 kHz off the carrier frequency. At a supply voltage of 1.8 V, the power consumption of the down-scaling circuit's core part is only 2.7 mW.

  4. Modifications in CMOS Dynamic Logic Style: A Review Paper

    NASA Astrophysics Data System (ADS)

    Meher, Preetisudha; Mahapatra, Kamalakanta

    2015-12-01

    Dynamic logic style is used in high performance circuit design because of its fast speed and less transistors requirement as compared to CMOS logic style. But it is not widely accepted for all types of circuit implementations due to its less noise tolerance and charge sharing problems. A small noise at the input of the dynamic logic can change the desired output. Domino logic uses one static CMOS inverter at the output of dynamic node which is more noise immune and consuming very less power as compared to other proposed circuit. In this paper, an overview and classification of these techniques are first presented and then compared according to their performance.

  5. High speed imaging technology: yesterday, today, and tomorrow

    NASA Astrophysics Data System (ADS)

    Pendley, Gil J.

    2003-07-01

    The purpose of this discussion is to familiarize readers with an overview of high-speed imaging technology as a means of analyzing objects in motion that occur too fast for the eye to see or conventional photography or video to capture. This information is intended to provide a brief historical narrative from the inception of high-speed imaging in the USA and the acceptance of digital video technology to augment or replace high-speed motion picture cameras. It is not intended a definitive work on the subject. For those interested in greater detail, such as application techniques, formulae, very high-speed and ultra speed technology etc. I recommend the latest text on the subject: High Speed Photography and Photonics first published in 1997 by Focal Press in the UK and copyrighted by the Association for High Speed Photography in the United Kingdom.

  6. A high linearity current mode second IF CMOS mixer for a DRM/DAB receiver

    NASA Astrophysics Data System (ADS)

    Jian, Xu; Zheng, Zhou; Yiqiang, Wu; Zhigong, Wang; Jianping, Chen

    2015-05-01

    A passive current switch mixer was designed for the second IF down-conversion in a DRM/DAB receiver. The circuit consists of an input transconductance stage, a passive current switching stage, and a current amplifier stage. The input transconductance stage employs a self-biasing current reusing technique, with a resistor shunt feedback to increase the gain and output impedance. A dynamic bias technique is used in the switching stage to ensure the stability of the overdrive voltage versus the PVT variations. A current shunt feedback is introduced to the conventional low-voltage second-generation fully balanced multi-output current converter (FBMOCCII), which provides very low input impedance and high output impedance. With the circuit working in current mode, the linearity is effectively improved with low supply voltages. Especially, the transimpedance stage can be removed, which simplifies the design considerably. The design is verified with a SMIC 0.18 μm RF CMOS process. The measurement results show that the voltage conversation gain is 1.407 dB, the NF is 16.22 dB, and the IIP3 is 4.5 dBm, respectively. The current consumption is 9.30 mA with a supply voltage of 1.8 V. This exhibits a good compromise among the gain, noise, and linearity for the second IF mixer in DRM/DAB receivers. Project supported by the National Natural Science Foundation of China (No. 61306069), and the National High Technology Research and Development Program of China (No. 2011AA010301).

  7. The high speed civil transport and NASA's High Speed Research (HSR) program

    NASA Technical Reports Server (NTRS)

    Shaw, Robert J.

    1994-01-01

    Ongoing studies being conducted not only in this country but in Europe and Asia suggest that a second generation supersonic transport, or High-Speed Civil Transport (HSCT), could become an important part of the 21st century international air transportation system. However, major environmental compatibility and economic viability issues must be resolved if the HSCT is to become a reality. This talk will overview the NASA High-Speed Research (HSR) program which is aimed at providing the U.S. industry with a technology base to allow them to consider launching an HSCT program early in the next century. The talk will also discuss some of the comparable activities going on within Europe and Japan.

  8. High speed point derivative microseismic detector

    DOEpatents

    Uhl, James Eugene; Warpinski, Norman Raymond; Whetten, Ernest Blayne

    1998-01-01

    A high speed microseismic event detector constructed in accordance with the present invention uses a point derivative comb to quickly and accurately detect microseismic events. Compressional and shear waves impinging upon microseismic receiver stations disposed to collect waves are converted into digital data and analyzed using a point derivative comb including assurance of quiet periods prior to declaration of microseismic events. If a sufficient number of quiet periods have passed, the square of a two point derivative of the incoming digital signal is compared to a trip level threshold exceeding the determined noise level to declare a valid trial event. The squaring of the derivative emphasizes the differences between noise and signal, and the valid event is preferably declared when the trip threshold has been exceeded over a temporal comb width to realize a comb over a given time period. Once a trial event has been declared, the event is verified through a spatial comb, which applies the temporal event comb to additional stations. The detector according to the present invention quickly and accurately detects initial compressional waves indicative of a microseismic event which typically exceed the ambient cultural noise level by a small amount, and distinguishes the waves from subsequent larger amplitude shear waves.

  9. High speed point derivative microseismic detector

    DOEpatents

    Uhl, J.E.; Warpinski, N.R.; Whetten, E.B.

    1998-06-30

    A high speed microseismic event detector constructed in accordance with the present invention uses a point derivative comb to quickly and accurately detect microseismic events. Compressional and shear waves impinging upon microseismic receiver stations disposed to collect waves are converted into digital data and analyzed using a point derivative comb including assurance of quiet periods prior to declaration of microseismic events. If a sufficient number of quiet periods have passed, the square of a two point derivative of the incoming digital signal is compared to a trip level threshold exceeding the determined noise level to declare a valid trial event. The squaring of the derivative emphasizes the differences between noise and signal, and the valid event is preferably declared when the trip threshold has been exceeded over a temporal comb width to realize a comb over a given time period. Once a trial event has been declared, the event is verified through a spatial comb, which applies the temporal event comb to additional stations. The detector according to the present invention quickly and accurately detects initial compressional waves indicative of a microseismic event which typically exceed the ambient cultural noise level by a small amount, and distinguishes the waves from subsequent larger amplitude shear waves. 9 figs.

  10. High speed curved position sensitive detector

    DOEpatents

    Hendricks, Robert W.; Wilson, Jack W.

    1989-01-01

    A high speed curved position sensitive porportional counter detector for use in x-ray diffraction, the detection of 5-20 keV photons and the like. The detector employs a planar anode assembly of a plurality of parallel metallic wires. This anode assembly is supported between two cathode planes, with at least one of these cathode planes having a serpentine resistive path in the form of a meander having legs generally perpendicular to the anode wires. This meander is produced by special microelectronic fabrication techniques whereby the meander "wire" fans outwardly at the cathode ends to produce the curved aspect of the detector, and the legs of the meander are small in cross-section and very closely spaced whereby a spatial resolution of about 50 .mu.m can be achieved. All of the other performance characteristics are about as good or better than conventional position sensitive proportional counter type detectors. Count rates of up to 40,000 counts per second with 0.5 .mu.s shaping time constants are achieved.

  11. 8-Foot High Speed Tunnel (HST)

    NASA Technical Reports Server (NTRS)

    1953-01-01

    Semi-automatic readout equipment installed in the 1950s used for data recording and reduction in the 8-Foot High Speed Tunnel (HST). A 1957 NACA report on wind tunnel facilities at Langley included these comments on the data recording and reduction equipment for the 8-foot HST: 'The data recording and reduction equipment used for handling steady force and pressure information at the Langley 8-foot transonic tunnel is similar to that described for the Langley 16-foot transonic tunnel. Very little dynamic data recording equipment, however, is available.' The description of the 16-foot transonic tunnel equipment is as follows: 'A semiautomatic force data readout system provides tabulated raw data and punch card storage of raw data concurrent with the operation of the wind tunnel. Provision is made for 12 automatic channels of strain gage-data output, and eight channels of four-digit manually operated inputs are available for tabulating and punching constants, configuration codes, and other information necessary for data reduction and identification. The data are then processed on electronic computing machines to obtain the desired coefficients. These coefficients and their proper identification are then machine tabulated to provide a printed record of the results. The punched cards may also be fed into an automatic plotting device for the preparation of plots necessary for data analysis.'

  12. Enhanced high-speed coherent diffraction imaging

    NASA Astrophysics Data System (ADS)

    Potier, Jonathan; Fricker, Sebastien; Idir, Mourad

    2011-03-01

    Due to recent advances in X-ray microscopy, we are now able to image objects with nanometer resolution thanks to Synchrotron beam lines or Free Electron Lasers (FEL). The PCI (Phase Contrast Imaging) is a robust technique that can recover the wavefront from measurements of only few intensity pictures in the Fresnel diffraction region. With our fast straightforward calculus methods, we manage to provide the phase induced by a microscopic specimen in few seconds. We can therefore obtain high contrasted images from transparent materials at very small scales. To reach atomic resolution imaging and thus make a transition from the near to the far field, the Coherent Diffraction Imaging (CDI) technique finds its roots in the analysis of diffraction patterns to obtain the phase of the altered complex wave. Theoretical results about existence and uniqueness of this retrieved piece of information by both iterative and direct algorithms have already been released. However, performances of algorithms remain limited by the coherence of the X-ray beam, presence of random noise and the saturation threshold of the detector. We will present reconstructions of samples using an enhanced version of HIO algorithm improving the speed of convergence and its repeatability. As a first step toward a practical X-Ray CDI system, initial images for reconstructions are acquired with the laser-based CDI system working in the visible spectrum.

  13. Hubble Space Telescope, High Speed Photometer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This drawing illustrates the Hubble Space Telescope's (HST's) High Speed Photometer (HSP). The HSP measures the intensity of starlight (brightness), which will help determine astronomical distances. Its principal use will be to measure extremely-rapid variations or pulses in light from celestial objects, such as pulsating stars. The HSP produces brightness readings. Light passes into one of four special signal-multiplying tubes that record the data. The HSP can measure energy fluctuations from objects that pulsate as rapidly as once every 10 microseconds. From HSP data, astronomers expect to learn much about such mysterious objects as pulsars, black holes, and quasars. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  14. High speed homology search with FPGAs.

    PubMed

    Yamaguchi, Yoshiki; Maruyama, Tsutomu; Konagaya, Akihiko

    2002-01-01

    We will introduce a way how we can achieve high speed homology search by only adding one off-the-shelf PCI board with one Field Programmable Gate Array (FPGA) to a Pentium based computer system in use. FPGA is a reconfigurable device, and any kind of circuits, such as pattern matching program, can be realized in a moment. The performance is almost proportional to the size of FPGA which is used in the system, and FPGAs are becoming larger and larger following Moore's law. We can easily obtain latest/larger FPGAs in the form off-the-shelf PCI boards with FPGAs, at low costs. The result which we obtained is as follows. The performance is most comparable with small to middle class dedicated hardware systems when we use a board with one of the latest FPGAs and the performance can be furthermore accelerated by using more number of FPGA boards. The time for comparing a query sequence of 2,048 elements with a database sequence of 64 million elements by the Smith-Waterman algorithm is about 34 sec, which is about 330 times faster than a desktop computer with a 1 GHz Pentium III. We can also accelerate the performance of a laptop computer using a PC card with one smaller FPGA. The time for comparing a query sequence (1,024) with the database sequence (64 million) is about 185 sec, which is about 30 times faster than the desktop computer.

  15. How to Combine Engines to Achieve High Speed, Hypersonic Speed, Speed of Light and Even Higher-Applications

    NASA Astrophysics Data System (ADS)

    Mwizerwa, Celestin; Nishimwe, Celestine

    2014-03-01

    When Einstein left us, he left us a really big problem to solve, does anything can travel faster than the speed of light? There hasn't been any way to try this in the past, because there were any technology which could accelerate objects at this speed. What researchers tried to do, was to accelerate particles. But there must be a way to play with speeds so that, as we do math, we may practically multiply the speed by any number we want, we also may practically divide the speed by any number we want. In this paper I will try to show how. Also, In our real life, there might be a need of such high speeds, so that a lot of problems may be solved, as for example the airplane technology, electric power, space travel, car transmission, industrial high temperature and so on ...I do not say for sure that, the object will move faster than the speed of light, but, people who have ability may try to accelerate it at this speed and even faster to see what will happen as now it is very easy to realize. There are two ways; you go to space to do it or, you create a vacuum and move it inside.

  16. High-speed image matching with coaxial holographic optical correlator

    NASA Astrophysics Data System (ADS)

    Ikeda, Kanami; Watanabe, Eriko

    2016-09-01

    A computation speed of more than 100 Gbps is experimentally demonstrated using our developed ultrahigh-speed optical correlator. To verify this high computation speed practically, the computation speeds of our optical correlator and conventional digital image matching are quantitatively compared. We use a population count function that achieves the fastest calculation speed when calculating binary matching by a central processing unit (CPU). The calculation speed of the optical correlator is dramatically faster than that using a CPU (2.40 GHz × 4) and 16 GB of random access memory, especially when the calculation data are large-scale.

  17. High Speed Dynamics in Brittle Materials

    NASA Astrophysics Data System (ADS)

    Hiermaier, Stefan

    2015-06-01

    Brittle Materials under High Speed and Shock loading provide a continuous challenge in experimental physics, analysis and numerical modelling, and consequently for engineering design. The dependence of damage and fracture processes on material-inherent length and time scales, the influence of defects, rate-dependent material properties and inertia effects on different scales make their understanding a true multi-scale problem. In addition, it is not uncommon that materials show a transition from ductile to brittle behavior when the loading rate is increased. A particular case is spallation, a brittle tensile failure induced by the interaction of stress waves leading to a sudden change from compressive to tensile loading states that can be invoked in various materials. This contribution highlights typical phenomena occurring when brittle materials are exposed to high loading rates in applications such as blast and impact on protective structures, or meteorite impact on geological materials. A short review on experimental methods that are used for dynamic characterization of brittle materials will be given. A close interaction of experimental analysis and numerical simulation has turned out to be very helpful in analyzing experimental results. For this purpose, adequate numerical methods are required. Cohesive zone models are one possible method for the analysis of brittle failure as long as some degree of tension is present. Their recent successful application for meso-mechanical simulations of concrete in Hopkinson-type spallation tests provides new insight into the dynamic failure process. Failure under compressive loading is a particular challenge for numerical simulations as it involves crushing of material which in turn influences stress states in other parts of a structure. On a continuum scale, it can be modeled using more or less complex plasticity models combined with failure surfaces, as will be demonstrated for ceramics. Models which take microstructural

  18. A High-Speed and Low-Offset Dynamic Latch Comparator

    PubMed Central

    Rahman, Labonnah Farzana; Reaz, Mamun Bin Ibne; Yin, Chia Chieu; Rahman, Mohammad Anisur

    2014-01-01

    Circuit intricacy, speed, low-offset voltage, and resolution are essential factors for high-speed applications like analog-to-digital converters (ADCs). The comparator circuit with preamplifier increases the power dissipation, as it requires higher amount of currents than the latch circuitry. In this research, a novel topology of dynamic latch comparator is illustrated, which is able to provide high speed, low offset, and high resolution. Moreover, the circuit is able to reduce the power dissipation as the topology is based on latch circuitry. The cross-coupled circuit mechanism with the regenerative latch is employed for enhancing the dynamic latch comparator performance. In addition, input-tracking phase is used to reduce the offset voltage. The Monte-Carlo simulation results for the designed comparator in 0.18 μm CMOS process show that the equivalent input-referred offset voltage is 720 μV with 3.44 mV standard deviation. The simulated result shows that the designed comparator has 8-bit resolution and dissipates 158.5 μW of power under 1.8 V supply while operating with a clock frequency of 50 MHz. In addition, the proposed dynamic latch comparator has a layout size of 148.80 μm × 59.70 μm. PMID:25114959

  19. A high-speed and low-offset dynamic latch comparator.

    PubMed

    Rahman, Labonnah Farzana; Bin Ibne Reaz, Mamun; Yin, Chia Chieu; Marufuzzaman, Mohammad; Rahman, Mohammad Anisur

    2014-01-01

    Circuit intricacy, speed, low-offset voltage, and resolution are essential factors for high-speed applications like analog-to-digital converters (ADCs). The comparator circuit with preamplifier increases the power dissipation, as it requires higher amount of currents than the latch circuitry. In this research, a novel topology of dynamic latch comparator is illustrated, which is able to provide high speed, low offset, and high resolution. Moreover, the circuit is able to reduce the power dissipation as the topology is based on latch circuitry. The cross-coupled circuit mechanism with the regenerative latch is employed for enhancing the dynamic latch comparator performance. In addition, input-tracking phase is used to reduce the offset voltage. The Monte-Carlo simulation results for the designed comparator in 0.18 μm CMOS process show that the equivalent input-referred offset voltage is 720 μV with 3.44 mV standard deviation. The simulated result shows that the designed comparator has 8-bit resolution and dissipates 158.5 μW of power under 1.8 V supply while operating with a clock frequency of 50 MHz. In addition, the proposed dynamic latch comparator has a layout size of 148.80 μm × 59.70 μm. PMID:25114959

  20. Silicon high speed modulator for advanced modulation: device structures and exemplary modulator performance

    NASA Astrophysics Data System (ADS)

    Milivojevic, Biljana; Wiese, Stefan; Whiteaway, James; Raabe, Christian; Shastri, Anujit; Webster, Mark; Metz, Peter; Sunder, Sanjay; Chattin, Bill; Anderson, Sean P.; Dama, Bipin; Shastri, Kal

    2014-03-01

    Fiber optics is well established today due to the high capacity and speed, unrivaled flexibility and quality of service. However, state of the art optical elements and components are hardly scalable in terms of cost and size required to achieve competitive port density and cost per bit. Next-generation high-speed coherent optical communication systems targeting a data rate of 100-Gb/s and beyond goes along with innovations in component and subsystem areas. Consequently, by leveraging the advanced silicon micro and nano-fabrication technologies, significant progress in developing CMOS platform-based silicon photonic devices has been made all over the world. These achievements include the demonstration of high-speed IQ modulators, which are important building blocks in coherent optical communication systems. In this paper, we demonstrate silicon photonic QPSK modulator based on a metal-oxide-semiconductor (MOS) capacitor structure, address different modulator configuration structures and report our progress and research associated with highspeed advanced optical modulation in silicon photonics

  1. A high-speed and low-offset dynamic latch comparator.

    PubMed

    Rahman, Labonnah Farzana; Bin Ibne Reaz, Mamun; Yin, Chia Chieu; Marufuzzaman, Mohammad; Rahman, Mohammad Anisur

    2014-01-01

    Circuit intricacy, speed, low-offset voltage, and resolution are essential factors for high-speed applications like analog-to-digital converters (ADCs). The comparator circuit with preamplifier increases the power dissipation, as it requires higher amount of currents than the latch circuitry. In this research, a novel topology of dynamic latch comparator is illustrated, which is able to provide high speed, low offset, and high resolution. Moreover, the circuit is able to reduce the power dissipation as the topology is based on latch circuitry. The cross-coupled circuit mechanism with the regenerative latch is employed for enhancing the dynamic latch comparator performance. In addition, input-tracking phase is used to reduce the offset voltage. The Monte-Carlo simulation results for the designed comparator in 0.18 μm CMOS process show that the equivalent input-referred offset voltage is 720 μV with 3.44 mV standard deviation. The simulated result shows that the designed comparator has 8-bit resolution and dissipates 158.5 μW of power under 1.8 V supply while operating with a clock frequency of 50 MHz. In addition, the proposed dynamic latch comparator has a layout size of 148.80 μm × 59.70 μm.

  2. High speed vision processor with reconfigurable processing element array based on full-custom distributed memory

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Yang, Jie; Shi, Cong; Qin, Qi; Liu, Liyuan; Wu, Nanjian

    2016-04-01

    In this paper, a hybrid vision processor based on a compact full-custom distributed memory for near-sensor high-speed image processing is proposed. The proposed processor consists of a reconfigurable processing element (PE) array, a row processor (RP) array, and a dual-core microprocessor. The PE array includes two-dimensional processing elements with a compact full-custom distributed memory. It supports real-time reconfiguration between the PE array and the self-organized map (SOM) neural network. The vision processor is fabricated using a 0.18 µm CMOS technology. The circuit area of the distributed memory is reduced markedly into 1/3 of that of the conventional memory so that the circuit area of the vision processor is reduced by 44.2%. Experimental results demonstrate that the proposed design achieves correct functions.

  3. High Speed Balancing Applied to the T700 Engine

    NASA Technical Reports Server (NTRS)

    Walton, J.; Lee, C.; Martin, M.

    1989-01-01

    The work performed under Contracts NAS3-23929 and NAS3-24633 is presented. MTI evaluated the feasibility of high-speed balancing for both the T700 power turbine rotor and the compressor rotor. Modifications were designed for the existing Corpus Christi Army Depot (CCAD) T53/T55 high-speed balancing system for balancing T700 power turbine rotors. Tests conducted under these contracts included a high-speed balancing evaluation for T700 power turbines in the Army/NASA drivetrain facility at MTI. The high-speed balancing tests demonstrated the reduction of vibration amplitudes at operating speed for both low-speed balanced and non-low-speed balanced T700 power turbines. In addition, vibration data from acceptance tests of T53, T55, and T700 engines were analyzed and a vibration diagnostic procedure developed.

  4. Measuring droplet fall speed with a high-speed camera: indoor accuracy and potential outdoor applications

    NASA Astrophysics Data System (ADS)

    Yu, Cheng-Ku; Hsieh, Pei-Rong; Yuter, Sandra E.; Cheng, Lin-Wen; Tsai, Chia-Lun; Lin, Che-Yu; Chen, Ying

    2016-04-01

    Acquisition of accurate raindrop fall speed measurements outdoors in natural rain by means of moderate-cost and easy-to-use devices represents a long-standing and challenging issue in the meteorological community. Feasibility experiments were conducted to evaluate the indoor accuracy of fall speed measurements made with a high-speed camera and to evaluate its capability for outdoor applications. An indoor experiment operating in calm conditions showed that the high-speed imaging technique can provide fall speed measurements with a mean error of 4.1-9.7 % compared to Gunn and Kinzer's empirical fall-speed-size relationship for typical sizes of rain and drizzle drops. Results obtained using the same apparatus outside in summer afternoon showers indicated larger positive and negative velocity deviations compared to the indoor measurements. These observed deviations suggest that ambient flow and turbulence play a role in modifying drop fall speeds which can be quantified with future outdoor high-speed camera measurements. Because the fall speed measurements, as presented in this article, are analyzed on the basis of tracking individual, specific raindrops, sampling uncertainties commonly found in the widely adopted optical disdrometers can be significantly mitigated.

  5. High speed flow cytometric separation of viable cells

    DOEpatents

    Sasaki, D.T.; Van den Engh, G.J.; Buckie, A.M.

    1995-11-14

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  6. High speed flow cytometric separation of viable cells

    DOEpatents

    Sasaki, Dennis T.; Van den Engh, Gerrit J.; Buckie, Anne-Marie

    1995-01-01

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  7. Ring current development during high speed streams

    NASA Astrophysics Data System (ADS)

    Jordanova, V. K.; Matsui, H.; Puhl-Quinn, P. A.; Thomsen, M. F.; Mursula, K.; Holappa, L.

    2009-07-01

    Episodes of southward (Bz<0) interplanetary magnetic field (IMF) which lead to disturbed geomagnetic conditions are associated either with coronal mass ejections (CMEs) and possess long and continuous negative IMF Bz excursions, or with high speed solar wind streams (HSS) whose geoeffectiveness is due to IMF Bz profiles fluctuating about zero with various amplitudes and duration. We simulate ring current evolution during a HSS-driven storm that occurred during 24-26 October 2002 and compare its dynamics with a CME-driven storm of similar strength during 22-23 April 2001. We use our kinetic ring current-atmosphere interactions model (RAM), and investigate the mechanisms responsible for trapping particles and for causing their loss. Ring current evolution depends on the interplay of time-dependent inflow of plasma from the magnetotail, particle acceleration and loss (mainly due to charge exchange) along adiabatic drift paths, and outflow of plasma from the dayside magnetopause; all of these processes are incorporated in our model. We compare results from simulations using a newly developed, Cluster data based, University of New Hampshire inner magnetospheric electric field (UNH-IMEF) convection model with simulations using a Volland-Stern (V-S) type convection model. We find that, first, periods of increased magnetospheric convection coinciding with enhancements of plasma sheet density are needed for strong ring current buildup. Second, during the HSS-driven storm the convection potential from UNH-IMEF model is highly variable and causes sporadic shallow injections resulting in a weak ring current. The long period of enhanced convection during the CME-driven storm causes a continuous ion injection penetrating to lower L shells and stronger ring current buildup. V-S model predicts larger ring current injection during both storms. Third, the RAM driven by either convection model underestimates the total ring current energy during the recovery phase of the HSS storm

  8. 33 CFR 84.24 - High-speed craft.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false High-speed craft. 84.24 Section... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.24 High-speed craft. (a) The masthead light of high-speed craft with a length to breadth ratio of less than 3.0 may be placed at...

  9. 33 CFR 84.24 - High-speed craft.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false High-speed craft. 84.24 Section... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.24 High-speed craft. (a) The masthead light of high-speed craft with a length to breadth ratio of less than 3.0 may be placed at...

  10. 33 CFR 84.24 - High-speed craft.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false High-speed craft. 84.24 Section... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.24 High-speed craft. (a) The masthead light of high-speed craft with a length to breadth ratio of less than 3.0 may be placed at...

  11. 33 CFR 84.24 - High-speed craft.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false High-speed craft. 84.24 Section... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.24 High-speed craft. (a) The masthead light of high-speed craft with a length to breadth ratio of less than 3.0 may be placed at...

  12. 33 CFR 84.24 - High-speed craft.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false High-speed craft. 84.24 Section... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.24 High-speed craft. (a) The masthead light of high-speed craft with a length to breadth ratio of less than 3.0 may be placed at...

  13. Chicago-St. Louis high speed rail plan

    SciTech Connect

    Stead, M.E.

    1994-12-31

    The Illinois Department of Transportation (IDOT), in cooperation with Amtrak, undertook the Chicago-St. Louis High Speed Rail Financial and Implementation Plan study in order to develop a realistic and achievable blueprint for implementation of high speed rail in the Chicago-St. Louis corridor. This report presents a summary of the Price Waterhouse Project Team`s analysis and the Financial and Implementation Plan for implementing high speed rail service in the Chicago-St. Louis corridor.

  14. Water Containment Systems for Testing High-Speed Flywheels

    NASA Technical Reports Server (NTRS)

    Trase, Larry; Thompson, Dennis

    2006-01-01

    Water-filled containers are used as building blocks in a new generation of containment systems for testing high-speed flywheels. Such containment systems are needed to ensure safety by trapping high-speed debris in the event of centrifugal breakup or bearing failure. Traditional containment systems for testing flywheels consist mainly of thick steel rings. The effectiveness of this approach to shielding against high-speed debris was demonstrated in a series of tests.

  15. Concept for high speed computer printer

    NASA Technical Reports Server (NTRS)

    Stephens, J. W.

    1970-01-01

    Printer uses Kerr cell as light shutter for controlling the print on photosensitive paper. Applied to output data transfer, the information transfer rate of graphic computer printers could be increased to speeds approaching the data transfer rate of computer central processors /5000 to 10,000 lines per minute/.

  16. High-speed rail-coming to America?

    PubMed

    Cameron, David Ossian

    2009-01-01

    The United States lags many parts of the world when it comes to high-speed rail. But investing in high-speed rail could help us through current problems. Funds- $8 billion-in the economic stimulus package passed by Congress are designated for high-speed rail. Other funds in the pipeline total approximately $15.5 billion. High-speed rail can relieve congestion, free up national airspace, provide reliable transportation and positive economic development, create jobs, and is more energy efficient than other modes of travel. PMID:19608527

  17. High-Speed General Purpose Genetic Algorithm Processor.

    PubMed

    Hoseini Alinodehi, Seyed Pourya; Moshfe, Sajjad; Saber Zaeimian, Masoumeh; Khoei, Abdollah; Hadidi, Khairollah

    2016-07-01

    In this paper, an ultrafast steady-state genetic algorithm processor (GAP) is presented. Due to the heavy computational load of genetic algorithms (GAs), they usually take a long time to find optimum solutions. Hardware implementation is a significant approach to overcome the problem by speeding up the GAs procedure. Hence, we designed a digital CMOS implementation of GA in [Formula: see text] process. The proposed processor is not bounded to a specific application. Indeed, it is a general-purpose processor, which is capable of performing optimization in any possible application. Utilizing speed-boosting techniques, such as pipeline scheme, parallel coarse-grained processing, parallel fitness computation, parallel selection of parents, dual-population scheme, and support for pipelined fitness computation, the proposed processor significantly reduces the processing time. Furthermore, by relying on a built-in discard operator the proposed hardware may be used in constrained problems that are very common in control applications. In the proposed design, a large search space is achievable through the bit string length extension of individuals in the genetic population by connecting the 32-bit GAPs. In addition, the proposed processor supports parallel processing, in which the GAs procedure can be run on several connected processors simultaneously.

  18. Investigation of HV/HR-CMOS technology for the ATLAS Phase-II Strip Tracker Upgrade

    NASA Astrophysics Data System (ADS)

    Fadeyev, V.; Galloway, Z.; Grabas, H.; Grillo, A. A.; Liang, Z.; Martinez-Mckinney, F.; Seiden, A.; Volk, J.; Affolder, A.; Buckland, M.; Meng, L.; Arndt, K.; Bortoletto, D.; Huffman, T.; John, J.; McMahon, S.; Nickerson, R.; Phillips, P.; Plackett, R.; Shipsey, I.; Vigani, L.; Bates, R.; Blue, A.; Buttar, C.; Kanisauskas, K.; Maneuski, D.; Benoit, M.; Di Bello, F.; Caragiulo, P.; Dragone, A.; Grenier, P.; Kenney, C.; Rubbo, F.; Segal, J.; Su, D.; Tamma, C.; Das, D.; Dopke, J.; Turchetta, R.; Wilson, F.; Worm, S.; Ehrler, F.; Peric, I.; Gregor, I. M.; Stanitzki, M.; Hoeferkamp, M.; Seidel, S.; Hommels, L. B. A.; Kramberger, G.; Mandić, I.; Mikuž, M.; Muenstermann, D.; Wang, R.; Zhang, J.; Warren, M.; Song, W.; Xiu, Q.; Zhu, H.

    2016-09-01

    ATLAS has formed strip CMOS project to study the use of CMOS MAPS devices as silicon strip sensors for the Phase-II Strip Tracker Upgrade. This choice of sensors promises several advantages over the conventional baseline design, such as better resolution, less material in the tracking volume, and faster construction speed. At the same time, many design features of the sensors are driven by the requirement of minimizing the impact on the rest of the detector. Hence the target devices feature long pixels which are grouped to form a virtual strip with binary-encoded z position. The key performance aspects are radiation hardness compatibility with HL-LHC environment, as well as extraction of the full hit position with full-reticle readout architecture. To date, several test chips have been submitted using two different CMOS technologies. The AMS 350 nm is a high voltage CMOS process (HV-CMOS), that features the sensor bias of up to 120 V. The TowerJazz 180 nm high resistivity CMOS process (HR-CMOS) uses a high resistivity epitaxial layer to provide the depletion region on top of the substrate. We have evaluated passive pixel performance, and charge collection projections. The results strongly support the radiation tolerance of these devices to radiation dose of the HL-LHC in the strip tracker region. We also describe design features for the next chip submission that are motivated by our technology evaluation.

  19. High-speed dual Langmuir probe

    SciTech Connect

    Lobbia, Robert B.; Gallimore, Alec D.

    2010-07-15

    In an effort to temporally resolve the electron density, electron temperature, and plasma potential for turbulent plasma discharges, a unique high-speed dual Langmuir probe (HDLP) has been developed. A traditional single Langmuir probe of cylindrical geometry (exposed to the plasma) is swept simultaneously with a nearby capacitance and noise compensating null probe (fully insulated from the plasma) to enable bias sweep rates on a microsecond timescale. Traditional thin-sheath Langmuir probe theory is applied for interpretation of the collected probe data. Data at a sweep rate of 100 kHz are presented; however the developed system is capable of running at 1 MHz--near the upper limit of the applied electrostatic Langmuir probe theory for the investigated plasma conditions. Large sets (100 000 sweeps at each of 352 spatial locations) of contiguous turbulent plasma properties are collected using simple electronics for probe bias driving and current measurement attaining 80 dB signal-to-noise measurements with dc to 1 MHz bandwidth. Near- and far-field plume measurements with the HDLP system are performed downstream from a modern Hall effect thruster where the time-averaged plasma properties exhibit the approximate ranges: electron density n{sub e} from (1x10{sup 15})-(5x10{sup 16}) m{sup -3}, electron temperature T{sub e} from 1 to 3.5 eV, and plasma potential V{sub p} from 5 to 15 V. The thruster discharge of 200 V (constant anode potential) and 2 A (average discharge current) displays strong, 2.2 A peak-to-peak, current oscillations at 19 kHz, characteristic of the thruster ''breathing mode'' ionization instability. Large amplitude discharge current fluctuations are typical for most Hall thrusters, yet the HDLP system reveals the presence of the same 19 kHz fluctuations in n{sub e}(t), T{sub e}(t), and V{sub p}(t) throughout the entire plume with peak-to-peak divided by mean plasma properties that average 94%. The propagation delays between the discharge current

  20. High-speed dual Langmuir probe.

    PubMed

    Lobbia, Robert B; Gallimore, Alec D

    2010-07-01

    In an effort to temporally resolve the electron density, electron temperature, and plasma potential for turbulent plasma discharges, a unique high-speed dual Langmuir probe (HDLP) has been developed. A traditional single Langmuir probe of cylindrical geometry (exposed to the plasma) is swept simultaneously with a nearby capacitance and noise compensating null probe (fully insulated from the plasma) to enable bias sweep rates on a microsecond timescale. Traditional thin-sheath Langmuir probe theory is applied for interpretation of the collected probe data. Data at a sweep rate of 100 kHz are presented; however the developed system is capable of running at 1 MHz-near the upper limit of the applied electrostatic Langmuir probe theory for the investigated plasma conditions. Large sets (100,000 sweeps at each of 352 spatial locations) of contiguous turbulent plasma properties are collected using simple electronics for probe bias driving and current measurement attaining 80 dB signal-to-noise measurements with dc to 1 MHz bandwidth. Near- and far-field plume measurements with the HDLP system are performed downstream from a modern Hall effect thruster where the time-averaged plasma properties exhibit the approximate ranges: electron density n(e) from (1x10(15))-(5x10(16)) m(-3), electron temperature T(e) from 1 to 3.5 eV, and plasma potential V(p) from 5 to 15 V. The thruster discharge of 200 V (constant anode potential) and 2 A (average discharge current) displays strong, 2.2 A peak-to-peak, current oscillations at 19 kHz, characteristic of the thruster "breathing mode" ionization instability. Large amplitude discharge current fluctuations are typical for most Hall thrusters, yet the HDLP system reveals the presence of the same 19 kHz fluctuations in n(e)(t), T(e)(t), and V(p)(t) throughout the entire plume with peak-to-peak divided by mean plasma properties that average 94%. The propagation delays between the discharge current fluctuations and the corresponding plasma

  1. High-speed on-chip windowed centroiding using photodiode-based CMOS imager

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Sun, Chao (Inventor); Yang, Guang (Inventor); Cunningham, Thomas J. (Inventor); Hancock, Bruce (Inventor)

    2003-01-01

    A centroid computation system is disclosed. The system has an imager array, a switching network, computation elements, and a divider circuit. The imager array has columns and rows of pixels. The switching network is adapted to receive pixel signals from the image array. The plurality of computation elements operates to compute inner products for at least x and y centroids. The plurality of computation elements has only passive elements to provide inner products of pixel signals the switching network. The divider circuit is adapted to receive the inner products and compute the x and y centroids.

  2. High-speed on-chip windowed centroiding using photodiode-based CMOS imager

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Sun, Chao (Inventor); Yang, Guang (Inventor); Cunningham, Thomas J. (Inventor); Hancock, Bruce (Inventor)

    2004-01-01

    A centroid computation system is disclosed. The system has an imager array, a switching network, computation elements, and a divider circuit. The imager array has columns and rows of pixels. The switching network is adapted to receive pixel signals from the image array. The plurality of computation elements operates to compute inner products for at least x and y centroids. The plurality of computation elements has only passive elements to provide inner products of pixel signals the switching network. The divider circuit is adapted to receive the inner products and compute the x and y centroids.

  3. High-speed architecture for the decoding of trellis-coded modulation

    NASA Technical Reports Server (NTRS)

    Osborne, William P.

    1992-01-01

    Since 1971, when the Viterbi Algorithm was introduced as the optimal method of decoding convolutional codes, improvements in circuit technology, especially VLSI, have steadily increased its speed and practicality. Trellis-Coded Modulation (TCM) combines convolutional coding with higher level modulation (non-binary source alphabet) to provide forward error correction and spectral efficiency. For binary codes, the current stare-of-the-art is a 64-state Viterbi decoder on a single CMOS chip, operating at a data rate of 25 Mbps. Recently, there has been an interest in increasing the speed of the Viterbi Algorithm by improving the decoder architecture, or by reducing the algorithm itself. Designs employing new architectural techniques are now in existence, however these techniques are currently applied to simpler binary codes, not to TCM. The purpose of this report is to discuss TCM architectural considerations in general, and to present the design, at the logic gate level, or a specific TCM decoder which applies these considerations to achieve high-speed decoding.

  4. Time optimal paths for high speed maneuvering

    SciTech Connect

    Reister, D.B.; Lenhart, S.M.

    1993-01-01

    Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature of the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.

  5. Full-field high-speed laser Doppler imaging system for blood-flow measurements

    NASA Astrophysics Data System (ADS)

    Serov, Alexandre; Lasser, Theo

    2006-02-01

    We describe the design and performance of a new full-field high-speed laser Doppler imaging system developed for mapping and monitoring of blood flow in biological tissue. The total imaging time for 256x256 pixels region of interest is 1.2 seconds. An integrating CMOS image sensor is utilized to detect Doppler signal in a plurality of points simultaneously on the sample illuminated by a divergent laser beam of a uniform intensity profile. The integrating property of the detector improves the signal-to-noise ratio of the measurement, which results in high-quality flow-images provided by the system. The new technique is real-time, non-invasive and the instrument is easy to use. The wide range of applications is one of the major challenges for a future application of the imager. High-resolution high-speed laser Doppler perfusion imaging is a promising optical technique for diagnostic and assessing the treatment effect of the diseases such as e.g. atherosclerosis, psoriasis, diabetes, skin cancer, allergies, peripheral vascular diseases, skin irritancy and wound healing. We present some biological applications of the new imager and discuss the perspectives for the future implementations of the imager for clinical and physiological applications.

  6. Multi-point, high-speed passive ion velocity distribution diagnostic on the Pegasus Toroidal Experiment

    SciTech Connect

    Burke, M. G.; Fonck, R. J.; Bongard, M. W.; Schlossberg, D. J.; Winz, G. R.

    2012-10-15

    A passive ion temperature polychromator has been deployed on Pegasus to study power balance and non-thermal ion distributions that arise during point source helicity injection. Spectra are recorded from a 1 m F/8.6 Czerny-Turner polychromator whose output is recorded by an intensified high-speed camera. The use of high orders allows for a dispersion of 0.02 A/mm in 4th order and a bandpass of 0.14 A ({approx}13 km/s) at 3131 A in 4th order with 100 {mu}m entrance slit. The instrument temperature of the spectrometer is 15 eV. Light from the output of an image intensifier in the spectrometer focal plane is coupled to a high-speed CMOS camera. The system can accommodate up to 20 spatial points recorded at 0.5 ms time resolution. During helicity injection, stochastic magnetic fields keep T{sub e} low ({approx}100 eV) and thus low ionization impurities penetrate to the core. Under these conditions, high core ion temperatures are measured (T{sub i} Almost-Equal-To 1.2 keV, T{sub e} Almost-Equal-To 0.1 keV) using spectral lines from carbon III, nitrogen III, and boron IV.

  7. Accuracy of two-color pyrometry using color high-speed cameras for measurement of luminous flames

    NASA Astrophysics Data System (ADS)

    Usui, Hiroyuki; Mitsui, Kenji

    2007-01-01

    By the recent development in electronics, including new solid-state image sensors such as area CCD and C-MOS sensors and the progress of image processing techniques, new imaging radiometers have been developed which two-dimensionally acquire image data of objects moving at a high speed and under high temperature, and (graphically) present the temperature distribution over the object immediately. We successfully measured the temperature distribution and the term KL distribution, which is the absorption strength of combustion in diesel engine cylinders or other luminous flames taking place at a high speed, using single-sensor color high-speed cameras and applying two-color pyrometry introduced by H. C. Hottel and F. P. Btoughton. The measurement accuracy depends on the accuracy of color reproducibility of the high-speed camera being used which is considered a brightness pyrometer, because two-color pyrometry for measuring luminous flames is based on the brightness temperature at two wavelength bands such as red and green. In this paper, we present a method of maintaining the accuracy of measurement using a high-speed camera as a brightness pyrometer and of two-color pyrometry that was developed based on it.

  8. Structural vulnerability and intervention of high speed railway networks

    NASA Astrophysics Data System (ADS)

    Zhang, Jianhua; Hu, Funian; Wang, Shuliang; Dai, Yang; Wang, Yixing

    2016-11-01

    This paper employs complex network theory to assess the structural vulnerability of high speed railway networks subjected to two different malicious attacks. Chinese, US and Japanese high speed railway networks are used to discuss the vulnerable characteristics of systems. We find that high speed railway networks are very fragile when suffering serious disturbances and two attack rules can cause analogous damages to one high speed railway network, which illustrates that the station with large degree possesses high betweenness, vice versa. Meanwhile, we discover that Japanese high speed railway network has the best global connectivity, but Chinese high speed railway network has the best local connectivity and possesses the largest transport capacity. Moreover, we find that there exist several redundant paths in Chinese high speed railway network and discover the critical stations of three HSRNs. Furthermore, the nearest-link method is adopted to implement topological interventions and to improve the connectivity and reliability of high speed railway networks. In addition, the feasibility and effectiveness of topological interventions are shown by simulations.

  9. Investigation of diesel injection jets using high-speed photography and speed holography

    NASA Astrophysics Data System (ADS)

    Eisfeld, Fritz

    1991-04-01

    To reduce the particle emission of a Diesel engine it is necessary to improve our know- [edge on the penetration and the spreading of an injection jet. Therefore the motion of the fuel jet and his break up within the orifice and aLso in a test chamber was investigated using high speed cinematography. The possibility to use high speed holography was aLso tested and a new drum camera was developed.

  10. High-speed wireless optical LANs

    NASA Astrophysics Data System (ADS)

    Oe, Kunishige; Sato, Syuichi; Okayama, Motoyuki; Kubota, Toshihiro

    2001-11-01

    Study on high speed indoor wireless optical LAN system enabling 100Mbps signal transmission with low bit error rate (10-9) is presented. To realize the optical LAN system handling 100 Mbps signal, a directed line of sight (LOS) system is adopted as the optical receiver sensitivity for a bit error rate of 10-9 for 100 Mbps signals is fairly large. In the system, new approaches are introduced: WDM technology which enables bi-directional transmission in full duplex manner is applied using a 1.3 micrometers laser diode for down-link and 0.65 micrometers red laser diode for up-link light sources. As the wavelengths of the two lasers are quite separated from each other, this WDM technology brings an advantage that two kind of semiconductor materials can be used for detectors; GaInAs is used for down-link while Si is applied for up-link. GaInAs PD cannot detect the up-link laser light of 0.65 micrometers and Si PD or APD cannot detect the down-link laser light of 1.3micrometers . Therefore full duplex transmission can be achieved in this configuration. In the indoor wireless optical LAN system, one of the critical points is the transmitter configuration for down- link which enables to deliver optical power enough for 100 Mbps transmission to user areas as wide as possible with inexpensive prices. To realize the point, a special 1.3micrometers laser diode, a spot-size converter integrated laser (SS-LD), is introduced in company with convex lens and an object lens to deliver optical power to areas as wide as possible. As the far-field patterns of the SS-LD are fairly narrow, most of the output power of the LD could be collected to and spread wide by the object lens of 40 magnifications. Using the device, 3m diameter circle area in the plane 2m apart from the 1.3micrometers SS-LD emitting 20 mW optical power, could receive optical power above the receiver sensitivity for a bit error rate of 10-9 for 100 Mbps signals. The visible red light is convenient for not only position

  11. HIGH-SPEED GC/MS FOR AIR ANALYSIS

    EPA Science Inventory

    High speed or fast gas chromatography (FGC) consists of narrow bandwidth injection into a high-speed carrier gas stream passing through a short column leading to a fast detector. Many attempts have been made to demonstrate FGC, but until recently no practical method for routin...

  12. The Advantages of ISDN for High-Speed Remote Access.

    ERIC Educational Resources Information Center

    Galvin, Mark; Hauf, Al

    1997-01-01

    Explains why ISDN (integrated services digital network) is the most practical solution for high-speed remote access, including reliability, cost, flexibility, scaleability, standards, and manageability. Other data transmission options are discussed, including asymmetric digital subscriber lines (ADSL), high-speed digital subscriber lines (HDSL),…

  13. High-Speed Video Analysis of Damped Harmonic Motion

    ERIC Educational Resources Information Center

    Poonyawatpornkul, J.; Wattanakasiwich, P.

    2013-01-01

    In this paper, we acquire and analyse high-speed videos of a spring-mass system oscillating in glycerin at different temperatures. Three cases of damped harmonic oscillation are investigated and analysed by using high-speed video at a rate of 120 frames s[superscript -1] and Tracker Video Analysis (Tracker) software. We present empirical data for…

  14. High-speed detector for time-resolved diffraction studies

    PubMed Central

    Singh, Bipin; Miller, Stuart R.; Bhandari, Harish B.; Graceffa, Rita; Irving, Thomas C.; Nagarkar, Vivek V.

    2013-01-01

    There are a growing number of high brightness synchrotron sources that require high-frame-rate detectors to provide the time-scales required for performing time-resolved diffraction experiments. We report on the development of a very high frame rate CMOS X-ray detector for time-resolved muscle diffraction and time-resolved solution scattering experiments. The detector is based on a low-afterglow scintillator, provides a megapixel resolution with frame rates of up to 120,000 frames per second, an effective pixel size of 64 µm, and can be adapted for various X-ray energies. The paper describes the detector design and initial results of time-resolved diffraction experiments on a synchrotron beamline. PMID:24489595

  15. High-speed detector for time-resolved diffraction studies

    NASA Astrophysics Data System (ADS)

    Singh, Bipin; Miller, Stuart R.; Bhandari, Harish B.; Graceffa, Rita; Irving, Thomas C.; Nagarkar, Vivek V.

    2013-03-01

    There are a growing number of high brightness synchrotron sources that require high-frame-rate detectors to provide the time-scales required for performing time-resolved diffraction experiments. We report on the development of a very high frame rate CMOS X-ray detector for time-resolved muscle diffraction and time-resolved solution scattering experiments. The detector is based on a low-afterglow scintillator, provides a megapixel resolution with frame rates of up to 120,000 frames per second, an effective pixel size of 64 um, and can be adapted for various X-ray energies. The paper describes the detector design and initial results of time-resolved diffraction experiments on a synchrotron beamline.

  16. Non-linear responsivity characterisation of a CMOS Active Pixel Sensor for high resolution imaging of the Jovian system

    NASA Astrophysics Data System (ADS)

    Soman, M.; Stefanov, K.; Weatherill, D.; Holland, A.; Gow, J.; Leese, M.

    2015-02-01

    The Jovian system is the subject of study for the Jupiter Icy Moon Explorer (JUICE), an ESA mission which is planned to launch in 2022. The scientific payload is designed for both characterisation of the magnetosphere and radiation environment local to the spacecraft, as well as remote characterisation of Jupiter and its satellites. A key instrument on JUICE is the high resolution and wide angle camera, JANUS, whose main science goals include detailed characterisation and study phases of three of the Galilean satellites, Ganymede, Callisto and Europa, as well as studies of other moons, the ring system, and irregular satellites. The CIS115 is a CMOS Active Pixel Sensor from e2v technologies selected for the JANUS camera. It is fabricated using 0.18 μ m CMOS imaging sensor process, with an imaging area of 2000 × 1504 pixels, each 7 μ m square. A 4T pixel architecture allows for efficient correlated double sampling, improving the readout noise to better than 8 electrons rms, whilst the sensor is operated in a rolling shutter mode, sampling at up to 10 Mpixel/s at each of the four parallel outputs.A primary parameter to characterise for an imaging device is the relationship that converts the sensor's voltage output back to the corresponding number of electrons that were detected in a pixel, known as the Charge to Voltage Factor (CVF). In modern CMOS sensors with small feature sizes, the CVF is known to be non-linear with signal level, therefore a signal-dependent measurement of the CIS115's CVF has been undertaken and is presented here. The CVF is well modelled as a quadratic function leading to a measurement of the maximum charge handling capacity of the CIS115 to be 3.4 × 104 electrons. If the CIS115's response is assumed linear, its CVF is 21.1 electrons per mV (1/47.5 μ V per electron).

  17. Final Report and Documentation for the Optical Backplane/Interconnect for High Speed Communication LDRD

    SciTech Connect

    ROBERTSON, PERRY J.; CHEN, HELEN Y.; BRANDT, JAMES M.; SULLIVAN, CHARLES T.; PIERSON, LYNDON G.; WITZKE, EDWARD L.; GASS, KARL

    2001-03-01

    Current copper backplane technology has reached the technical limits of clock speed and width for systems requiring multiple boards. Currently, bus technology such as VME and PCI (types of buses) will face severe limitations are the bus speed approaches 100 MHz. At this speed, the physical length limit of an unterminated bus is barely three inches. Terminating the bus enables much higher clock rates but at drastically higher power cost. Sandia has developed high bandwidth parallel optical interconnects that can provide over 40 Gbps throughput between circuit boards in a system. Based on Sandia's unique VCSEL (Vertical Cavity Surface Emitting Laser) technology, these devices are compatible with CMOS (Complementary Metal Oxide Semiconductor) chips and have single channel bandwidth in excess of 20 GHz. In this project, we are researching the use of this interconnect scheme as the physical layer of a greater ATM (Asynchronous Transfer Mode) based backplane. There are several advantages to this technology including small board space, lower power and non-contact communication. This technology is also easily expandable to meet future bandwidth requirements in excess of 160 Gbps sometimes referred to as UTOPIA 6. ATM over optical backplane will enable automatic switching of wide high-speed circuits between boards in a system. In the first year we developed integrated VCSELs and receivers, identified fiber ribbon based interconnect scheme and a high level architecture. In the second year, we implemented the physical layer in the form of a PCI computer peripheral card. A description of future work including super computer networking deployment and protocol processing is included.

  18. High-Speed Tests of Conventional Radial-Engine Cowlings

    NASA Technical Reports Server (NTRS)

    Robinson, Russell G; Becker, John V

    1942-01-01

    The drag characteristics of eight radial-engine cowlings have been determined over a wide speed range in the NACA 8-foot high-speed wind tunnel. The pressure distribution over all cowlings was measured, to and above the speed of the compressibility burble, as an aid in interpreting the force tests. One-fifth-scale models of radial-engine cowlings on a wing-nacelle combination were used in the tests.

  19. Concentric Parallel Combining Balun for Millimeter-Wave Power Amplifier in Low-Power CMOS with High-Power Density

    NASA Astrophysics Data System (ADS)

    Han, Jiang-An; Kong, Zhi-Hui; Ma, Kaixue; Yeo, Kiat Seng; Lim, Wei Meng

    2016-11-01

    This paper presents a novel balun for a millimeter-wave power amplifier (PA) design to achieve high-power density in a 65-nm low-power (LP) CMOS process. By using a concentric winding technique, the proposed parallel combining balun with compact size accomplishes power combining and unbalance-balance conversion concurrently. For calculating its power combination efficiency in the condition of various amplitude and phase wave components, a method basing on S-parameters is derived. Based on the proposed parallel combining balun, a fabricated 60-GHz industrial, scientific, and medical (ISM) band PA with single-ended I/O achieves an 18.9-dB gain and an 8.8-dBm output power at 1-dB compression and 14.3-dBm saturated output power ( P sat) at 62 GHz. This PA occupying only a 0.10-mm2 core area has demonstrated a high-power density of 269.15 mW/mm2 in 65 nm LP CMOS.

  20. Concentric Parallel Combining Balun for Millimeter-Wave Power Amplifier in Low-Power CMOS with High-Power Density

    NASA Astrophysics Data System (ADS)

    Han, Jiang-An; Kong, Zhi-Hui; Ma, Kaixue; Yeo, Kiat Seng; Lim, Wei Meng

    2016-07-01

    This paper presents a novel balun for a millimeter-wave power amplifier (PA) design to achieve high-power density in a 65-nm low-power (LP) CMOS process. By using a concentric winding technique, the proposed parallel combining balun with compact size accomplishes power combining and unbalance-balance conversion concurrently. For calculating its power combination efficiency in the condition of various amplitude and phase wave components, a method basing on S-parameters is derived. Based on the proposed parallel combining balun, a fabricated 60-GHz industrial, scientific, and medical (ISM) band PA with single-ended I/O achieves an 18.9-dB gain and an 8.8-dBm output power at 1-dB compression and 14.3-dBm saturated output power (P sat) at 62 GHz. This PA occupying only a 0.10-mm2 core area has demonstrated a high-power density of 269.15 mW/mm2 in 65 nm LP CMOS.

  1. High speed demodulation systems for fiber optic grating sensors

    NASA Technical Reports Server (NTRS)

    Udd, Eric (Inventor); Weisshaar, Andreas (Inventor)

    2002-01-01

    Fiber optic grating sensor demodulation systems are described that offer high speed and multiplexing options for both single and multiple parameter fiber optic grating sensors. To attain very high speeds for single parameter fiber grating sensors ratio techniques are used that allow a series of sensors to be placed in a single fiber while retaining high speed capability. These methods can be extended to multiparameter fiber grating sensors. Optimization of speeds can be obtained by minimizing the number of spectral peaks that must be processed and it is shown that two or three spectral peak measurements may in specific multiparameter applications offer comparable or better performance than processing four spectral peaks. Combining the ratio methods with minimization of peak measurements allows very high speed measurement of such important environmental effects as transverse strain and pressure.

  2. Traction contact performance evaluation at high speeds

    NASA Technical Reports Server (NTRS)

    Tevaarwerk, J. L.

    1981-01-01

    The results of traction tests performed on two fluids are presented. These tests covered a pressure range of 1.0 to 2.5 GPa, an inlet temperature range of 30 'C to 70 'C, a speed range of 10 to 80 m/sec, aspect ratios of .5 to 5 and spin from 0 to 2.1 percent. The test results are presented in the form of two dimensionless parameters, the initial traction slope and the maximum traction peak. With the use of a suitable rheological fluid model the actual traction curves measured can now be reconstituted from the two fluid parameters. More importantly, the knowledge of these parameters together with the fluid rheological model, allow the prediction of traction under conditions of spin, slip and any combination thereof. Comparison between theoretically predicted traction under these conditions and those measured in actual traction tests shows that this method gives good results.

  3. High-Speed, High-Temperature Finger Seal Test Results

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Kumar, Arun; Delgado, Irebert R.

    2002-01-01

    Finger seals have significantly lower leakage rates than conventional labyrinth seals used in gas turbine engines and are expected to decrease specific fuel consumption by over 1 percent and to decrease direct operating cost by over 0.5 percent. Their compliant design accommodates shaft growth and motion due to thermal and dynamic loads with minimal wear. The cost to fabricate these finger seals is estimated to be about half the cost to fabricate brush seals. A finger seal has been tested in NASA's High Temperature, High Speed Turbine Seal Test Rig at operating conditions up to 1200 F, 1200 ft/s, and 75 psid. Static, performance and endurance test results are presented. While seal leakage and wear performance are acceptable, further design improvements are needed to reduce the seal power loss.

  4. High-speed camera characterization of voluntary eye blinking kinematics.

    PubMed

    Kwon, Kyung-Ah; Shipley, Rebecca J; Edirisinghe, Mohan; Ezra, Daniel G; Rose, Geoff; Best, Serena M; Cameron, Ruth E

    2013-08-01

    Blinking is vital to maintain the integrity of the ocular surface and its characteristics such as blink duration and speed can vary significantly, depending on the health of the eyes. The blink is so rapid that special techniques are required to characterize it. In this study, a high-speed camera was used to record and characterize voluntary blinking. The blinking motion of 25 healthy volunteers was recorded at 600 frames per second. Master curves for the palpebral aperture and blinking speed were constructed using palpebral aperture versus time data taken from the high-speed camera recordings, which show that one blink can be divided into four phases; closing, closed, early opening and late opening. Analysis of data from the high-speed camera images was used to calculate the palpebral aperture, peak blinking speed, average blinking speed and duration of voluntary blinking and compare it with data generated by other methods previously used to evaluate voluntary blinking. The advantages of the high-speed camera method over the others are discussed, thereby supporting the high potential usefulness of the method in clinical research.

  5. First Annual High-Speed Research Workshop, part 4

    NASA Technical Reports Server (NTRS)

    Whitehead, Allen H., Jr. (Compiler)

    1992-01-01

    Papers presented at the First Annual High Speed Research Workshop held in Williamsburg, Viginia, on May 14-16, 1991 are presented. This NASA-sponsored workshop provided a national forum for presenting and discussing important technology issues related to the definition of an economically viable and environmentally compatible High Speed Civil Transport. The sessions are developed around the technical components of NASA's Phase 1 High Speed Research Program which addresses the environmental issues of atmospheric emissions, community noise, and sonic boom. In particular, this part of the publication, Part 4, addresses high lift research and supersonic laminar flow control.

  6. High Electron Mobility Transistor Structures on Sapphire Substrates Using CMOS Compatible Processing Techniques

    NASA Technical Reports Server (NTRS)

    Mueller, Carl; Alterovitz, Samuel; Croke, Edward; Ponchak, George

    2004-01-01

    System-on-a-chip (SOC) processes are under intense development for high-speed, high frequency transceiver circuitry. As frequencies, data rates, and circuit complexity increases, the need for substrates that enable high-speed analog operation, low-power digital circuitry, and excellent isolation between devices becomes increasingly critical. SiGe/Si modulation doped field effect transistors (MODFETs) with high carrier mobilities are currently under development to meet the active RF device needs. However, as the substrate normally used is Si, the low-to-modest substrate resistivity causes large losses in the passive elements required for a complete high frequency circuit. These losses are projected to become increasingly troublesome as device frequencies progress to the Ku-band (12 - 18 GHz) and beyond. Sapphire is an excellent substrate for high frequency SOC designs because it supports excellent both active and passive RF device performance, as well as low-power digital operations. We are developing high electron mobility SiGe/Si transistor structures on r-plane sapphire, using either in-situ grown n-MODFET structures or ion-implanted high electron mobility transistor (HEMT) structures. Advantages of the MODFET structures include high electron mobilities at all temperatures (relative to ion-implanted HEMT structures), with mobility continuously improving to cryogenic temperatures. We have measured electron mobilities over 1,200 and 13,000 sq cm/V-sec at room temperature and 0.25 K, respectively in MODFET structures. The electron carrier densities were 1.6 and 1.33 x 10(exp 12)/sq cm at room and liquid helium temperature, respectively, denoting excellent carrier confinement. Using this technique, we have observed electron mobilities as high as 900 sq cm/V-sec at room temperature at a carrier density of 1.3 x 10(exp 12)/sq cm. The temperature dependence of mobility for both the MODFET and HEMT structures provides insights into the mechanisms that allow for enhanced

  7. Experimental ball bearing dynamics study. [by high speed photography

    NASA Technical Reports Server (NTRS)

    Signer, H. R.

    1973-01-01

    A photographic method was employed to record the kinematic performance of rolling elements in turbo machinery ball bearings. The 110 mm split inner ring test bearings had nominal contact angles of 26 deg and 34 deg. High speed films were taken at inner ring speeds of 4,000, 8,000 and 12,000 rpm and at thrust loads of 4,448 N and 22,240 N (1,000 and 5,000 lbs). The films were measured and this data reduced to obtain separator speed, ball speed and ball spin axis orientation.

  8. Review of High-Speed Fiber Optic Grating Sensors Systems

    SciTech Connect

    Udd, E; Benterou, J; May, C; Mihailov, S J; Lu, P

    2010-03-24

    Fiber grating sensors can be used to support a wide variety of high speed measurement applications. This includes measurements of vibrations on bridges, traffic monitoring on freeways, ultrasonic detection to support non-destructive tests on metal plates and providing details of detonation events. This paper provides a brief overview of some of the techniques that have been used to support high speed measurements using fiber grating sensors over frequency ranges from 10s of kHz, to MHZ and finally toward frequencies approaching the GHz regime. Very early in the development of fiber grating sensor systems it was realized that a high speed fiber grating sensor system could be realized by placing an optical filter that might be a fiber grating in front of a detector so that spectral changes in the reflection from a fiber grating were amplitude modulated. In principal the only limitation on this type of system involved the speed of the output detector which with the development of high speed communication links moved from the regime of 10s of MHz toward 10s of GHz. The earliest deployed systems involved civil structures including measurements of the strain fields on composite utility poles and missile bodies during break tests, bridges and freeways. This was followed by a series of developments that included high speed fiber grating sensors to support nondestructive testing via ultrasonic wave detection, high speed machining and monitoring ship hulls. Each of these applications involved monitoring mechanical motion of structures and thus interest was in speeds up to a few 10s of MHz. Most recently there has been interest in using fiber grating to monitor the very high speed events such as detonations and this has led to utilization of fiber gratings that are consumed during an event that may require detection speeds of hundreds of MHz and in the future multiple GHz.

  9. CMOS preamplifier with high linearity and ultra low noise for x-ray spectroscopy

    SciTech Connect

    O`Connor, P.O.; Rehak, P.; Gramegna, G.; Corsi, F.; Marzocca, C.

    1996-12-31

    We present an ultra low noise charge preamplifier suitable for small capacitance (200M), low leakage current solid state detectors. A self adaptive bias circuit for the MOS feedback device establishes the static feedback resistance in the G{Omega} range while tracking the threshold variations and power supply and temperature fluctuations. The linearity of the gain versus input charge has been improved by means of a voltage divider between the output of the charge-sensitive amplifier and the source of the feedback transistor. With the preamplifier alone, we measure a room-temperature equivalent noise charge (ENC) of 9 e{sup -} rms at 12 usec shaping time. When coupled to a cooled detector a FWHM of 130 eV is obtained at 2.4 usec shaping, corresponding to an ENC of 16 e{sup -} rms. This is the best reported resolution obtained with a CMOS preamplifier. The circuit has good linearity (< 0.2%) up to 1.8 W. Since the preamplifier`s ENC is limited by flicker noise, we fabricated the circuit in two 1.2um CMOS technologies. Device measurements allow us to compare the 1/f noise behavior of each foundry. In addition to the preamplifiers, a 1 us shaper and a 50{Omega} output driver are included on the die.

  10. Low Noise and Highly Linear Wideband CMOS RF Front-End for DVB-H Direct-Conversion Receiver

    NASA Astrophysics Data System (ADS)

    Nam, Ilku; Moon, Hyunwon; Woo, Doo Hyung

    In this paper, a wideband CMOS radio frequency (RF) front-end for digital video broadcasting-handheld (DVB-H) receiver is proposed. The RF front-end circuit is composed of a single-ended resistive feedback low noise amplifier (LNA), a single-to-differential amplifier, an I/Q down-conversion mixer with linearized transconductors employing third order intermodulation distortion cancellation, and a divide-by-two circuit with LO buffers. By employing a third order intermodulation (IMD3) cancellation technique and vertical NPN bipolar junction transistor (BJT) switching pair for an I/Q down-conversion mixer, the proposed RF front-end circuit has high linearity and low low-frequency noise performance. It is fabricated in a 0.18µm deep n-well CMOS technology and draws 12mA from a 1.8V supply voltage. It shows a voltage gain of 31dB, a noise figure (NF) lower than 2.6dB, and an IIP3 of -8dBm from 470MHz to 862MHz.

  11. The Lag Model Applied to High Speed Flows

    NASA Technical Reports Server (NTRS)

    Olsen, Michael E.; Coakley, Thomas J.; Lillard, Randolph P.

    2005-01-01

    The Lag model has shown great promise in prediction of low speed and transonic separations. The predictions of the model, along with other models (Spalart-Allmaras and Menter SST) are assessed for various high speed flowfields. In addition to skin friction and separation predictions, the prediction of heat transfer are compared among these models, and some fundamental building block flowfields, are investigated.

  12. Application Of High Speed Photography In Science And Technology

    NASA Astrophysics Data System (ADS)

    Wu Ji-Zong, Wu; Yu-Ju, Lin

    1983-03-01

    The service works in high-speed photography carried out by the Department of Precision Instruments, Tianjin University are described in this paper. A compensation type high-speed camera was used in these works. The photographic methods adopted and better results achieved in the studies of several technical fields, such as velocity field of flow of overflow surface of high dam, combustion process of internal combustion engine, metal cutting, electrical are welding, experiment of piling of steel tube piles for supporting the marine platforms and characteristics of motion of wrist watch escape mechanism and so on are illustrated in more detail. As the extension of human visual organs and for increasing the abi-lities of observing and studying the high-speed processes, high-speed photography plays a very important role. In order to promote the application and development on high-speed photography, we have carried out the consultative and service works inside and outside Tianjin Uni-versity. The Pentazet 35 compensation type high-speed camera, made in East Germany, was used to record the high-speed events in various kinds of technical investigations and necessary results have been ob-tained. 1. Measurement of flow velocity on the overflow surface of high dam. In the design of a key water control project with high head, it is extremely necessary to determinate various characteristics of flow velocity field on the overflow surface of high dam. Since the water flow on the surface of high overflow dam possesses the features of large flow velocity and shallow water depth, therefore it is difficult to use the conventional current meters such as pilot tube, miniature cur-rent meter or electrical measuring methods of non-electrical quantities for studying this problem. Adopting the high-speed photographic method to study analogously the characteristics of flow velocity field on the overflow surface of high dam is a kind of new measuring method. People

  13. Per-Pixel Coded Exposure for High-Speed and High-Resolution Imaging Using a Digital Micromirror Device Camera.

    PubMed

    Feng, Wei; Zhang, Fumin; Qu, Xinghua; Zheng, Shiwei

    2016-03-04

    High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of existing image sensors, design the sampling functions, and implement a hardware prototype with a digital micromirror device (DMD) camera in which spatial and temporal information can be flexibly modulated. Combined with the optical model of DMD camera, we theoretically analyze the per-pixel coded exposure and propose a three-element median quicksort method to increase the temporal resolution of the imaging system. Theoretically, this approach can rapidly increase the temporal resolution several, or even hundreds, of times without increasing bandwidth requirements of the camera. We demonstrate the effectiveness of our method via extensive examples and achieve 100 fps (frames per second) gain in temporal resolution by using a 25 fps camera.

  14. Per-Pixel Coded Exposure for High-Speed and High-Resolution Imaging Using a Digital Micromirror Device Camera

    PubMed Central

    Feng, Wei; Zhang, Fumin; Qu, Xinghua; Zheng, Shiwei

    2016-01-01

    High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of existing image sensors, design the sampling functions, and implement a hardware prototype with a digital micromirror device (DMD) camera in which spatial and temporal information can be flexibly modulated. Combined with the optical model of DMD camera, we theoretically analyze the per-pixel coded exposure and propose a three-element median quicksort method to increase the temporal resolution of the imaging system. Theoretically, this approach can rapidly increase the temporal resolution several, or even hundreds, of times without increasing bandwidth requirements of the camera. We demonstrate the effectiveness of our method via extensive examples and achieve 100 fps (frames per second) gain in temporal resolution by using a 25 fps camera. PMID:26959023

  15. High speed electromechanical response of ionic microactuators

    NASA Astrophysics Data System (ADS)

    Maziz, Ali; Plesse, Cedric; Soyer, Caroline; Cattan, Eric; Vidal, Frederic

    2015-04-01

    This paper presents the synthesis and characterization of thin and ultra-fast conducting polymer microactuators which can operate in the open air. Compared to all previous existing electronic conducting polymer based microactuators, this approach deals with the synthesis of robust interpenetrating polymer networks (IPNs) combined with a spincoating technique in order to tune and drastically reduce the thickness of conducting IPN microactuators using a so-called "trilayer" configuration. Patterning of electroactive materials has been performed with existing technologies, such as standard photolithography and dry etching. The smallest air-operating microbeam actuator based on conducting polymer is then described with dimensions as low as 160x30x6 μm3. Under electrical stimulation the translations of small ion motion into bending deformations are used as tools to demonstrate that small ion vibrations can still occur at frequency as several hundreds of Hz. Conducting IPN microactuators are then promising candidates to develop new MEMS combining downscaling, softness, low driving voltage, and fast response speed.

  16. Improving the critical speeds of high-speed trains using magnetorheological technology

    NASA Astrophysics Data System (ADS)

    Sun, Shuaishuai; Deng, Huaxia; Li, Weihua; Du, Haiping; Qing Ni, Yi; Zhang, Jin; Yang, Jian

    2013-11-01

    With the rapid development of high-speed railways, vibration control for maintaining stability, passenger comfort, and safety has become an important area of research. In order to investigate the mechanism of train vibration, the critical speeds of various DOFs with respect to suspension stiffness and damping are first calculated and analyzed based on its dynamic equations. Then, the sensitivity of the critical speed is studied by analyzing the influence of different suspension parameters. On the basis of these analyses, a conclusion is drawn that secondary lateral damping is the most sensitive suspension damper. Subsequently, the secondary lateral dampers are replaced with magnetorheological fluid (MRF) dampers. Finally, a high-speed train model with MRF dampers is simulated by a combined ADAMS and MATLAB simulation and tested in a roller rig test platform to investigate the mechanism of how the MRF damper affects the train’s stability and critical speed. The results show that the semi-active suspension installed with MRF dampers substantially improves the stability and critical speed of the train.

  17. High Speed Measurements using Fiber-optic Bragg Grating Sensors

    SciTech Connect

    Benterou, J J; May, C A; Udd, E; Mihailov, S J; Lu, P

    2011-03-26

    Fiber grating sensors may be used to monitor high-speed events that include catastrophic failure of structures, ultrasonic testing and detonations. This paper provides insights into the utility of fiber grating sensors to measure structural changes under extreme conditions. An emphasis is placed on situations where there is a structural discontinuity. Embedded chirped fiber Bragg grating (CFBG) sensors can track the very high-speed progress of detonation waves (6-9 km/sec) inside energetic materials. This paper discusses diagnostic instrumentation and analysis techniques used to measure these high-speed events.

  18. High-speed digital project, HSD test capability

    SciTech Connect

    Markley, R.E.; Elarton, J.L.; Allen, C.T.

    1994-04-01

    Establishing a high-speed digital (HSD) test capability for the Digital Waveform Synthesizer (DWS) multichip module (MCM) has required the development of several areas: a detailed test plan for the MCM; design, fabrication and prove-in of the high-speed test console; and the specification, design, and development of the high-speed test and environmental conditioning interface to the DWS. These development activities have been successfully completed at the Allied Signal Inc., Kansas City Division (KCD), and the test capability described herein is currently supporting DWS MCM testing and can be adapted to similar HSD module testing.

  19. First Annual High-Speed Research Workshop, part 3

    NASA Technical Reports Server (NTRS)

    Whitehead, Allen H., Jr. (Compiler)

    1992-01-01

    The First High-Speed Research (HSR) Workshop was hosted by NASA LaRC and was held 14-16 May 1991, in Williamsburg, Virginia. The purpose of the workshop was to provide a national forum for the government, industry, and university participants to present and discuss important technology issues related to the development of a commercially viable, environmentally compatible, U.S. High-Speed Civil Transport. The workshop sessions are organized around the major task elements in NASA's Phase 1 High-Speed Research Program which basically addresses the environmental issues of atmospheric emissions, community noise, and sonic boom.

  20. A high-sensitivity 135 GHz millimeter-wave imager by compact split-ring-resonator in 65-nm CMOS

    NASA Astrophysics Data System (ADS)

    Li, Nan; Yu, Hao; Yang, Chang; Shang, Yang; Li, Xiuping; Liu, Xiong

    2015-11-01

    A high-sensitivity 135 GHz millimeter-wave imager is demonstrated in 65 nm CMOS by on-chip metamaterial resonator: a differential transmission-line (T-line) loaded with split-ring-resonator (DTL-SRR). Due to sharp stop-band introduced by the metamaterial load, high-Q oscillatory amplification can be achieved with high sensitivity when utilizing DTL-SRR as quench-controlled oscillator to provide regenerative detection. The developed 135 GHz mm-wave imager pixel has a compact core chip area of 0.0085 mm2 with measured power consumption of 6.2 mW, sensitivity of -76.8 dBm, noise figure of 9.7 dB, and noise equivalent power of 0.9 fW/√{HZ } Hz. Millimeter-wave images has been demonstrated with millimeter-wave imager integrated with antenna array.

  1. FPGA Flash Memory High Speed Data Acquisition

    NASA Technical Reports Server (NTRS)

    Gonzalez, April

    2013-01-01

    The purpose of this research is to design and implement a VHDL ONFI Controller module for a Modular Instrumentation System. The goal of the Modular Instrumentation System will be to have a low power device that will store data and send the data at a low speed to a processor. The benefit of such a system will give an advantage over other purchased binary IP due to the capability of allowing NASA to re-use and modify the memory controller module. To accomplish the performance criteria of a low power system, an in house auxiliary board (Flash/ADC board), FPGA development kit, debug board, and modular instrumentation board will be jointly used for the data acquisition. The Flash/ADC board contains four, 1 MSPS, input channel signals and an Open NAND Flash memory module with an analog to digital converter. The ADC, data bits, and control line signals from the board are sent to an Microsemi/Actel FPGA development kit for VHDL programming of the flash memory WRITE, READ, READ STATUS, ERASE, and RESET operation waveforms using Libero software. The debug board will be used for verification of the analog input signal and be able to communicate via serial interface with the module instrumentation. The scope of the new controller module was to find and develop an ONFI controller with the debug board layout designed and completed for manufacture. Successful flash memory operation waveform test routines were completed, simulated, and tested to work on the FPGA board. Through connection of the Flash/ADC board with the FPGA, it was found that the device specifications were not being meet with Vdd reaching half of its voltage. Further testing showed that it was the manufactured Flash/ADC board that contained a misalignment with the ONFI memory module traces. The errors proved to be too great to fix in the time limit set for the project.

  2. Highly Reliable, High-Speed, Unidirectional Serial Data Links

    NASA Technical Reports Server (NTRS)

    Cole, Robert M.; Bishop, Jamie

    2005-01-01

    Highly reliable, high-speed, unidirectional serial data-communication subsystems have been proposed to be installed in an upgrade of the computing systems aboard the space shuttles. The basic design concept of these serial data links is also adaptable to terrestrial use in applications in which there are requirements for highly reliable serial data communications. The hardware and software aspects of the architecture of the data links are dictated largely by a requirement, in the original space-shuttle application, for one computer to monitor the memory transactions and memory contents of other computers in real time with high reliability and without reliance on requests for retransmission. To minimize weight while affording a capability to transfer data at a required rate of 2.56 x 10(exp 8) bits per second, it was decided that the links would be serial ones of the fiber-channel type. [Fiber channel denotes a type of serial computer bus that is used to connect a computer (usually a supercomputer) with a high-speed data storage device. Depending on the specific application, the physical connection between the transmitter and receiver could be made via an optical fiber or a twisted pair of wires.] Heretofore, fiber-channel links have ordinarily been bidirectional and have operated under protocols that provide for receiving stations to detect errors and request retransmission when necessary. In the present case, the time taken by processing to request retransmission would conflict with the requirement for real-time transfer of data. To ensure reliability without retransmission, a link according to the proposal would utilize a modified version of the normal fiberchannel character set in conjunction with forward error correction by means of a Reed-Solomon code (see figure). The Reed-Solomon encoding and decoding and the translations between the normal and modified character sets would be effected by logic circuitry external to the fiber-channel transmitter and receiver

  3. ASIC for high-speed-gating and free running operation of SPADs

    NASA Astrophysics Data System (ADS)

    Rochas, Alexis; Guillaume-Gentil, Christophe; Gautier, Jean-Daniel; Pauchard, Alexandre; Ribordy, Gregoire; Zbinden, Hugo; Leblebici, Yusuf; Monat, Laurent

    2007-05-01

    Single photon detection at telecom wavelengths is of importance in many industrial applications ranging from quantum cryptography, quantum optics, optical time domain reflectometry, non-invasive testing of VLSI circuits, eye-safe LIDAR to laser ranging. In practical applications, the combination of an InGaAs/InP APD with an appropriate electronic circuit still stands as the best solution in comparison with emerging technologies such as superconducting single photon detectors, MCP-PMTs for the near IR or up-conversion technique. An ASIC dedicated to the operation of InGaAs/InP APDs in both gated mode and free-running mode is presented. The 1.6mm2 chip is fabricated in a CMOS technology. It combines a gate generator, a voltage limiter, a fast comparator, a precise timing circuit for the gate signal processing and an output stage. A pulse amplitude of up to +7V can be achieved, which allows the operation of commercially available APDs at a single photon detection probability larger than 25% at 1.55μm. The avalanche quenching process is extremely fast, thus reducing the afterpulsing effects. The packaging of the diode in close proximity with the quenching circuit enables high speed gating at frequencies larger than 10MHz. The reduced connection lengths combined with impedance adaptation technique provide excellent gate quality, free of oscillations or bumps. The excess bias voltage is thus constant over the gate width leading to a stable single photon detection probability and timing resolution. The CMOS integration guarantees long-term stability, reliability and compactness.

  4. Entire thickness profiles of the epithelium and contact lens in vivo imaged with high speed and high resolution optical coherence tomography

    PubMed Central

    Tao, Aizhu; Shao, Yilei; Jiang, Hong; Ye, Yufeng; Lu, Fan; Shen, Meixiao; Zhu, Dexi; Wang, Jianhua

    2013-01-01

    Purpose To test the feasibility of measuring the entire thickness profiles of the epithelium and contact lens in vivo, using high speed and high resolution spectral domain optical coherence tomography (SD-OCT). Methods A custom-built, long scan depth SD-OCT was developed based on a CMOS camera and the axial resolution was about 5.1 µm in tissue. Five eyes of 5 subjects were imaged twice across the horizontal meridian before and while wearing one contact lens (CL). Semi-automatic measurement was done to yield the entire thickness profiles of the epithelium, total cornea, and contact lens after correcting for optical distortion. Results The full width and depth of the epithelium, ocular surface and contact lens were clearly visualized. The epithelial thickness (ET) at the center was 51.9 ± 3.5 µm, it remained at this thickness across the central 7 mm diameter and then increased at both temporal and nasal peripheries. The contact lens profile showed the thinnest point at the center with thickness of 100.3 ± 4.9 µm. The thickness increased towards the mid-periphery and then decreased at the edge. Conclusions This pilot study demonstrated the feasibility of using high speed CMOS-based OCT to evaluate the entire thickness profiles of the epithelium and contact lens in vivo. Further development will be needed to extend the scanning from 2D to 3D with a robust automatic image processing ability. PMID:23982471

  5. Explosive-driven, high speed, arcless switch

    DOEpatents

    Skogmo, P.J.; Tucker, T.J.

    1987-07-14

    An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed. 7 figs.

  6. Explosive-driven, high speed, arcless switch

    DOEpatents

    Skogmo, P.J.; Tucker, T.J.

    1986-05-02

    An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed.

  7. Explosive-driven, high speed, arcless switch

    DOEpatents

    Skogmo, Phillip J.; Tucker, Tillman J.

    1987-01-01

    An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed.

  8. Radiation tolerance study of a commercial 65 nm CMOS technology for high energy physics applications

    NASA Astrophysics Data System (ADS)

    Ding, Lili; Gerardin, Simone; Bagatin, Marta; Bisello, Dario; Mattiazzo, Serena; Paccagnella, Alessandro

    2016-09-01

    This paper reports the radiation tolerance study of a commercial 65 nm technology, which is a strong candidate for the Large Hadron Collider applications. After exposure to 3 MeV protons till 1 Grad dose, the 65 nm CMOS transistors, especially the pMOSFETs, showed severe long-term degradation mainly in the saturation drain currents. There were some differences between the degradation levels in the nMOSFETs and the pMOSFETs, which were likely attributed to the positive charges trapped in the gate spacers. After exposure to heavy ions till multiple strikes, the pMOSFETs did not show any sudden loss of drain currents, the degradations in the characteristics were negligible.

  9. Multi-exposure laser speckle contrast imaging using a high frame rate CMOS sensor with a field programmable gate array.

    PubMed

    Sun, Shen; Hayes-Gill, Barrie R; He, Diwei; Zhu, Yiqun; Morgan, Stephen P

    2015-10-15

    A system has been developed in which multi-exposure laser speckle contrast imaging (LSCI) is implemented using a high frame rate CMOS imaging sensor chip. Processing is performed using a field programmable gate array (FPGA). The system allows different exposure times to be simulated by accumulating a number of short exposures. This has the advantage that the image acquisition time is limited by the maximum exposure time and that regulation of the illuminating light level is not required. This high frame rate camera has also been deployed to implement laser Doppler blood flow processing, enabling a direct comparison of multi-exposure laser speckle imaging and laser Doppler imaging (LDI) to be carried out using the same experimental data. Results from a rotating diffuser indicate that both multi-exposure LSCI and LDI provide a linear response to changes in velocity. This cannot be obtained using single-exposure LSCI, unless an appropriate model is used for correcting the response. PMID:26469570

  10. High granularity tracker based on a Triple-GEM optically read by a CMOS-based camera

    NASA Astrophysics Data System (ADS)

    Marafini, M.; Patera, V.; Pinci, D.; Sarti, A.; Sciubba, A.; Spiriti, E.

    2015-12-01

    The detection of photons produced during the avalanche development in gas chambers has been the subject of detailed studies in the past. The great progresses achieved in last years in the performance of micro-pattern gas detectors on one side and of photo-sensors on the other provide the possibility of making high granularity and very sensitive particle trackers. In this paper, the results obtained with a triple-GEM structure read-out by a CMOS based sensor are described. The use of an He/CF4 (60/40) gas mixture and a detailed optimization of the electric fields made possible to obtain a very high GEM light yield. About 80 photons per primary electron were detected by the sensor resulting in a very good capability of tracking both muons from cosmic rays and electrons from natural radioactivity.

  11. Multi-exposure laser speckle contrast imaging using a high frame rate CMOS sensor with a field programmable gate array.

    PubMed

    Sun, Shen; Hayes-Gill, Barrie R; He, Diwei; Zhu, Yiqun; Morgan, Stephen P

    2015-10-15

    A system has been developed in which multi-exposure laser speckle contrast imaging (LSCI) is implemented using a high frame rate CMOS imaging sensor chip. Processing is performed using a field programmable gate array (FPGA). The system allows different exposure times to be simulated by accumulating a number of short exposures. This has the advantage that the image acquisition time is limited by the maximum exposure time and that regulation of the illuminating light level is not required. This high frame rate camera has also been deployed to implement laser Doppler blood flow processing, enabling a direct comparison of multi-exposure laser speckle imaging and laser Doppler imaging (LDI) to be carried out using the same experimental data. Results from a rotating diffuser indicate that both multi-exposure LSCI and LDI provide a linear response to changes in velocity. This cannot be obtained using single-exposure LSCI, unless an appropriate model is used for correcting the response.

  12. Driver assist behaviors for high-speed small UGVs

    NASA Astrophysics Data System (ADS)

    Yamauchi, Brian

    2011-05-01

    Currently deployed small UGVs operate at speeds up to around 6 mph and have proven their usefulness in explosives ordnance disposal (EOD) missions. As part of the TARDEC-funded Stingray Project, iRobot is investigating techniques to increase the speed of small UGVs so they can be useful in a wider range of missions, such as high-speed reconnaissance and infantry assault missions. We have developed a prototype Stingray PackBot, using wheels rather than tracks, that is capable of traveling at speeds up to 18 mph. A key issue when traveling at such speeds is how to maintain stability during sharp turns and over rough terrain. We are developing driver assist behaviors that will provide dynamic stability control for high-speed small UGVs using techniques such as dynamic weight shifting to limit oversteer and understeer. These driver assist behaviors will enable operators to use future high-speed small UGVs in high optempo infantry missions and keep warfighters out of harm's way.

  13. High-speed seal and bearing test facility

    NASA Technical Reports Server (NTRS)

    Panos, Jean B.

    1994-01-01

    The following topics are discussed in this viewgraph presentation: high speed seal/bearing rig background, project status, facility features, test rig capabilities, EMD testing advantages, and future opportunities.

  14. The High Speed Photometer for the Space Telescope

    NASA Technical Reports Server (NTRS)

    Bless, R. C.

    1982-01-01

    An overview of the high speed photometer (HSP), its optics and detectors, its electronics, its mechanical structure, and some observational considerations are presented. The capabilities and limitations of the HSP are outlined.

  15. High Speed Photographic Studies Of Rocket Engine Combustion

    NASA Astrophysics Data System (ADS)

    Uyemura, Tsuneyoshi; Ozono, Shigeo; Mizunuma, Toshio; Yamamoto, Yoshitaka; Kikusato, Yutaka; Eiraku, Masamitsu; Uchida, Yubu

    1983-03-01

    The high speed cameras were used to develop the new sounding rocket motor and to check the safety operation system. The new rocket motor was designed as a single stage rocket and its power was greater than the multi-stage K-9M rocket motor. The test combustion of this new type rocket engine was photographed by the high speed cameras to analyze the burning process. At the outside of rocket chamber, the cable which connect the detector of an engine nozzle with the telemeter system was fixed. To check the thero.,a1 influences of combustion flame to the cable, the thermo-tapes and high speed cameras were used Safety operation system was tested and photographed with high speed cameras using a S0-1510 model rocket.

  16. Technology needs for high-speed rotorcraft, volume 1

    NASA Technical Reports Server (NTRS)

    Wilkerson, J. B.; Schneider, J. J.; Bartie, K. M.

    1991-01-01

    High-speed rotorcraft concepts and the technology needed to extend rotorcraft cruise speeds up to 450 knots (while retaining the helicopter attributes of low downwash velocities) were identified. Task I identified 20 concepts with high-speed potential. These concepts were qualitatively evaluated to determine the five most promising ones. These five concepts were designed with optimum wing loading and disk loading to a common NASA-defined military transport mission. The optimum designs were quantitatively compared against 11 key criteria and ranked accordingly. The two highest ranking concepts were selected for the further study.

  17. Supersonic stall flutter of high-speed fans

    NASA Technical Reports Server (NTRS)

    Adamczyk, J. J.; Stevans, W.; Jutras, R.

    1981-01-01

    An analytical model is proposed for predicting the onset of supersonic stall bending flutter in high-speed rotors. The analysis is based on a modified two-dimensional, compressible, unsteady actuator disk theory. The stability boundary predicted by the analysis is shown to be in good agreement with the measured boundary of a high speed fan. The prediction that the flutter mode would be a forward traveling wave sensitive to wheel speed and aerodynamic loading is confirmed by experimental measurements. In addition, the analysis shows that reduced frequency and dynamic head also play a significant role in establishing the supersonic stall bending flutter boundary of an unshrouded fan.

  18. High speed data transmission at the Superconducting Super Collider

    SciTech Connect

    Leskovar, B.

    1990-04-01

    High speed data transmission using fiber optics in the data acquisition system of the Superconducting Super Collider has been investigated. Emphasis is placed on the high speed data transmission system overview, the local data network and on subassemblies, such as optical transmitters and receivers. Also, the performance of candidate subassemblies having a low power dissipation for the data acquisition system is discussed. 14 refs., 5 figs.

  19. High Speed Computing, LANs, and WAMs

    NASA Technical Reports Server (NTRS)

    Bergman, Larry A.; Monacos, Steve

    1994-01-01

    Optical fiber networks may one day offer potential capacities exceeding 10 terabits/sec. This paper describes present gigabit network techniques for distributed computing as illustrated by the CASA gigabit testbed, and then explores future all-optic network architectures that offer increased capacity, more optimized level of service for a given application, high fault tolerance, and dynamic reconfigurability.

  20. Carrying freight on high-speed rail lines

    SciTech Connect

    Plotkin, D.

    1997-05-01

    Under the current economic climate it is expected that any new high-speed rail line in the US would be constructed as a public/private partnership, requiring substantial private investment, and thus the expectation of reasonable profits. To date, proposed high-speed rail lines have failed to attract sufficient investment to create any new starts, in great part due to the conclusion that these systems would not likely cover their capital and operating costs and also provide reasonable profit for investors. Studies of the economic potential of US high-speed rail lines have commonly considered them as passenger carriers only, depending solely on ridership as a source of revenue. Yet is likely that significant revenue potential exists for carrying higher value freight as well--perhaps enough to substantially improve the economic viability of certain high-speed operations. Some basic technical aspects of carrying freight on high-speed rail lines are presented, along with an analysis to estimate the quantity of freight that may be technically practical, and thus potentially economically viable, for a high-speed train to carry.

  1. High-speed cineradiography using electronic imaging

    NASA Astrophysics Data System (ADS)

    Lucero, Jacob P.; Fry, David A.; Gaskill, William E.; Henderson, R. L.; Crawford, Ted R.; Carey, N. E.

    1993-01-01

    The Los Alamos National Laboratory has constructed and is now operating a cineradiography system for imaging and evaluation of ballistic interaction events at the 1200 meter range of the Terminal Effects Research and Analysis (TERA) Group at the New Mexico Institute of Mining and Technology. Cineradiography is part of a complete firing, tracking, and analysis system at the range. The cine system consists of flash x-ray sources illuminating a one-half meter by two meter fast phosphor screen which is viewed by gated-intensified high resolution still video cameras via turning mirrors. The entire system is armored to protect against events containing up to 13.5 kg of high explosive. Digital images are available for immediate display and processing. The system is capable of frame rates up to 105/sec for up to five total images.

  2. High speed cineradiography using electronic imaging

    NASA Astrophysics Data System (ADS)

    Lucero, J. P.; Fry, D. A.; Gaskill, W. E.; Henderson, R. L.; Crawford, T. R.; Carey, N. E.

    1992-12-01

    The Los Alamos National Laboratory has constructed and is now operating a cineradiography system for imaging and evaluation of ballistic interaction events at the 1200 meter range of the Terminal Effects Research and Analysis (TERA) Group at the New Mexico Institute of Mining and Technology. Cineradiography is part of a complete firing, tracking, and analysis system at the range. The cine system consists of flash x-ray sources illuminating a one-half meter by two meter fast phosphor screen which is viewed by gated-intensified high resolution still video cameras via turning mirrors. The entire system is armored to protect against events containing up to 13.5 kg of high explosive. Digital images are available for immediate display and processing. The system is capable of frame rates up to 10(exp 5)/sec for up to five total images.

  3. A new design for a high speed spindle

    SciTech Connect

    Weck, M.; Fischer, S.; Holster, P.; Carlisle, K.; Chen, Y.

    1996-12-31

    Precision grinding and micromachining both impose high demands on the machine behavior, since the achievable workpiece accuracy is determined not only by the technological parameters but also by the characteristics of the applicated machine components. Ultraprecision surface quality and the mechanical fabrication of structures in the micron range can only be achieved by using machine tools which have appropriate spindles. Structures cannot be manufactured using spindle types of which the radial error motion is greater than the level of contour accuracy or surface roughness required. In addition, the spindle speed is an important value. Not only a certain cutting speed is needed from the technological point of view, but also the machining time required for microstructuring surfaces is reduced by deploying a high frequency spindle, thereby increasing the economic efficiency of the technique. Hence, the main purpose of the project was to develop a high speed spindle with properties concerning accuracy, speed and stiffness beyond commercially available ones.

  4. Delivering high speed communications into harsh environments

    SciTech Connect

    2007-08-15

    For those who believe that information is power, extending an organization's knowledge base throughout the entire enterprise can not help but improve operations. Until recently, though, field operations were often left out of the loop, as extending high-bandwidth communications into harsh environments often proved impossible. The article, submitted by Optical Cable Corp., describes development of a tight-buffered fibre optic cable designed for harsh underground mining conditions. CONSOL has installed almost 100 miles of the cable across 10 different installations. 1 fig., 1 photo.

  5. Monolithic active pixel sensors (MAPS) in a VLSI CMOS technology

    NASA Astrophysics Data System (ADS)

    Turchetta, R.; French, M.; Manolopoulos, S.; Tyndel, M.; Allport, P.; Bates, R.; O'Shea, V.; Hall, G.; Raymond, M.

    2003-03-01

    Monolithic Active Pixel Sensors (MAPS) designed in a standard VLSI CMOS technology have recently been proposed as a compact pixel detector for the detection of high-energy charged particle in vertex/tracking applications. MAPS, also named CMOS sensors, are already extensively used in visible light applications. With respect to other competing imaging technologies, CMOS sensors have several potential advantages in terms of low cost, low power, lower noise at higher speed, random access of pixels which allows windowing of region of interest, ability to integrate several functions on the same chip. This brings altogether to the concept of 'camera-on-a-chip'. In this paper, we review the use of CMOS sensors for particle physics and we analyse their performances in term of the efficiency (fill factor), signal generation, noise, readout speed and sensor area. In most of high-energy physics applications, data reduction is needed in the sensor at an early stage of the data processing before transfer of the data to tape. Because of the large number of pixels, data reduction is needed on the sensor itself or just outside. This brings in stringent requirements on the temporal noise as well as to the sensor uniformity, expressed as a Fixed Pattern Noise (FPN). A pixel architecture with an additional transistor is proposed. This architecture, coupled to correlated double sampling of the signal will allow cancellation of the two dominant noise sources, namely the reset or kTC noise and the FPN. A prototype has been designed in a standard 0.25 μm CMOS technology. It has also a structure for electrical calibration of the sensor. The prototype is functional and detailed tests are under way.

  6. An Integrated Power-Efficient Active Rectifier With Offset-Controlled High Speed Comparators for Inductively Powered Applications

    PubMed Central

    Lee, Hyung-Min; Ghovanloo, Maysam

    2011-01-01

    We present an active full-wave rectifier with offset-controlled high speed comparators in standard CMOS that provides high power conversion efficiency (PCE) in high frequency (HF) range for inductively powered devices. This rectifier provides much lower dropout voltage and far better PCE compared to the passive on-chip or off-chip rectifiers. The built-in offset-control functions in the comparators compensate for both turn-on and turn-off delays in the main rectifying switches, thus maximizing the forward current delivered to the load and minimizing the back current to improve the PCE. We have fabricated this active rectifier in a 0.5-μm 3M2P standard CMOS process, occupying 0.18 mm2 of chip area. With 3.8 V peak ac input at 13.56 MHz, the rectifier provides 3.12 V dc output to a 500 Ω load, resulting in the PCE of 80.2%, which is the highest measured at this frequency. In addition, overvoltage protection (OVP) as safety measure and built-in back telemetry capabilities have been incorporated in our design using detuning and load shift keying (LSK) techniques, respectively, and tested. PMID:22174666

  7. Three-dimensional image cytometer based on widefield structured light microscopy and high-speed remote depth scanning.

    PubMed

    Choi, Heejin; Wadduwage, Dushan N; Tu, Ting Yuan; Matsudaira, Paul; So, Peter T C

    2015-01-01

    A high throughput 3D image cytometer have been developed that improves imaging speed by an order of magnitude over current technologies. This imaging speed improvement was realized by combining several key components. First, a depth-resolved image can be rapidly generated using a structured light reconstruction algorithm that requires only two wide field images, one with uniform illumination and the other with structured illumination. Second, depth scanning is implemented using the high speed remote depth scanning. Finally, the large field of view, high NA objective lens and the high pixelation, high frame rate sCMOS camera enable high resolution, high sensitivity imaging of a large cell population. This system can image at 800 cell/sec in 3D at submicron resolution corresponding to imaging 1 million cells in 20 min. The statistical accuracy of this instrument is verified by quantitatively measuring rare cell populations with ratio ranging from 1:1 to 1:10(5) . © 2014 International Society for Advancement of Cytometry. PMID:25352187

  8. Three-dimensional image cytometer based on widefield structured light microscopy and high-speed remote depth scanning.

    PubMed

    Choi, Heejin; Wadduwage, Dushan N; Tu, Ting Yuan; Matsudaira, Paul; So, Peter T C

    2015-01-01

    A high throughput 3D image cytometer have been developed that improves imaging speed by an order of magnitude over current technologies. This imaging speed improvement was realized by combining several key components. First, a depth-resolved image can be rapidly generated using a structured light reconstruction algorithm that requires only two wide field images, one with uniform illumination and the other with structured illumination. Second, depth scanning is implemented using the high speed remote depth scanning. Finally, the large field of view, high NA objective lens and the high pixelation, high frame rate sCMOS camera enable high resolution, high sensitivity imaging of a large cell population. This system can image at 800 cell/sec in 3D at submicron resolution corresponding to imaging 1 million cells in 20 min. The statistical accuracy of this instrument is verified by quantitatively measuring rare cell populations with ratio ranging from 1:1 to 1:10(5) . © 2014 International Society for Advancement of Cytometry.

  9. High-speed imaging system for observation of discharge phenomena

    NASA Astrophysics Data System (ADS)

    Tanabe, R.; Kusano, H.; Ito, Y.

    2008-11-01

    A thin metal electrode tip instantly changes its shape into a sphere or a needlelike shape in a single electrical discharge of high current. These changes occur within several hundred microseconds. To observe these high-speed phenomena in a single discharge, an imaging system using a high-speed video camera and a high repetition rate pulse laser was constructed. A nanosecond laser, the wavelength of which was 532 nm, was used as the illuminating source of a newly developed high-speed video camera, HPV-1. The time resolution of our system was determined by the laser pulse width and was about 80 nanoseconds. The system can take one hundred pictures at 16- or 64-microsecond intervals in a single discharge event. A band-pass filter at 532 nm was placed in front of the camera to block the emission of the discharge arc at other wavelengths. Therefore, clear images of the electrode were recorded even during the discharge. If the laser was not used, only images of plasma during discharge and thermal radiation from the electrode after discharge were observed. These results demonstrate that the combination of a high repetition rate and a short pulse laser with a high speed video camera provides a unique and powerful method for high speed imaging.

  10. Coal-fueled high-speed diesel engine development

    SciTech Connect

    Kakwani, R. M.; Winsor, R. E.; Ryan, III, T. W.; Schwalb, J. A.; Wahiduzzaman, S.; Wilson, Jr., R. P.

    1991-11-01

    The objectives of this program are to study combustion feasibility by running Series 149 engine tests at high speeds with a fuel injection and combustion system designed for coal-water-slurry (CWS). The following criteria will be used to judge feasibility: (1) engine operation for sustained periods over the load range at speeds from 600 to 1900 rpm. The 149 engine for mine-haul trucks has a rated speed of 1900 rpm; (2) reasonable fuel economy and coal burnout rate; (3) reasonable cost of the engine design concept and CWS fuel compared to future oil prices.

  11. Superplane! High Speed Civil Transport ( pt3/5 )

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The High Speed Civil Transport (HSCT). This light-hearted promotional piece explains what the HSCT 'Superplane' is and what advantages it will have over current aircraft. As envisioned, the HSCT is a next-generation supersonic (faster than the speed of sound) passenger jet that would fly 300 passengers at more than 1,500 miles per hour -- more than twice the speed of sound. It will cross the Pacific or Atlantic in less than half the time of modern subsonic jets, and at a ticket price less than 20 percent above comparable, slower flights

  12. 'Superplane!' High Speed Civil Transport (pt 1/5)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The High Speed Civil Transport (HSCT). This light-hearted promotional piece explains what the HSCT 'Superplane!' is and what advantages it will have over current aircraft. As envisioned, the HSCT is a next-generation supersonic (faster than the speed of sound) passenger jet that would fly 300 passengers at more than 1,500 miles per hour -- more than twice the speed of sound. It will cross the Pacific or Atlantic in less than half the time of modern subsonic jets, and at a ticket price less than 20 percent above comparable, slower flights.

  13. 'Superplane!' High Speed Civil Transport (pt 2/5)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The High Speed Civil Transport (HSCT). This light-hearted promotional piece explains what the HSCT 'Superplane!' is and what advantages it will have over current aircraft. As envisioned, the HSCT is a next-generation supersonic (faster than the speed of sound) passenger jet that would fly 300 passengers at more than 1,500 miles per hour -- more than twice the speed of sound. It will cross the Pacific or Atlantic in less than half the time of modern subsonic jets, and at a ticket price less than 20 percent above comparable, slower flights

  14. A Double Precision High Speed Convolution Processor

    NASA Astrophysics Data System (ADS)

    Larochelle, F.; Coté, J. F.; Malowany, A. S.

    1989-11-01

    There exist several convolution processors on the market that can process images at video rate. However, none of these processors operates in floating point arithmetic. Unfortunately, many image processing algorithms presently under development are inoperable in integer arithmetic, forcing the researchers to use regular computers. To solve this problem, we designed a specialized convolution processor that operates in double precision floating point arithmetic with a throughput several thousand times faster than the one obtained on regular computer. Its high performance is attributed to a VLSI double precision convolution systolic cell designed in our laboratories. A 9X9 systolic array carries out, in a pipeline manner, every arithmetic operation. The processor is designed to interface directly with the VME Bus. A DMA chip is responsible for bringing the original pixel intensities from the memory of the computer to the systolic array and to return the convolved pixels back to memory. A special use of 8K RAMs allows an inexpensive and efficient way of delaying the pixel intensities in order to supply the right sequence to the systolic array. On board circuitry converts pixel values into floating point representation when the image is originally represented with integer values. An additional systolic cell, used as a pipeline adder at the output of the systolic array, offers the possibility of combining images together which allows a variable convolution window size and color image processing.

  15. SPH simulations of high-speed collisions

    NASA Astrophysics Data System (ADS)

    Rozehnal, Jakub; Broz, Miroslav

    2016-10-01

    Our work is devoted to a comparison of: i) asteroid-asteroid collisions occurring at lower velocities (about 5 km/s in the Main Belt), and ii) mutual collisions of asteroids and cometary nuclei usually occurring at significantly higher relative velocities (> 10 km/s).We focus on differences in the propagation of the shock wave, ejection of the fragments and possible differences in the resultingsize-frequency distributions of synthetic asteroid families. We also discuss scaling with respect to the "nominal" target diameter D = 100 km, projectile velocity 3-7 km/s, for which a number of simulations were done so far (Durda et al. 2007, Benavidez et al. 2012).In the latter case of asteroid-comet collisions, we simulate the impacts of brittle or pre-damaged impactors onto solid monolithic targets at high velocities, ranging from 10 to 15 km/s. The purpose of this numerical experiment is to better understand impact processes shaping the early Solar System, namely the primordial asteroid belt during during the (late) heavy bombardment (as a continuation of Broz et al. 2013).For all hydrodynamical simulations we use a smoothed-particle hydrodynamics method (SPH), namely the lagrangian SPH3D code (Benz & Asphaug 1994, 1995). The gravitational interactions between fragments (re-accumulation) is simulated with the Pkdgrav tree-code (Richardson et al. 2000).

  16. Low Speed and High Speed Correlation of SMART Active Flap Rotor Loads

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi B. R.

    2010-01-01

    Measured, open loop and closed loop data from the SMART rotor test in the NASA Ames 40- by 80- Foot Wind Tunnel are compared with CAMRAD II calculations. One open loop high-speed case and four closed loop cases are considered. The closed loop cases include three high-speed cases and one low-speed case. Two of these high-speed cases include a 2 deg flap deflection at 5P case and a test maximum-airspeed case. This study follows a recent, open loop correlation effort that used a simple correction factor for the airfoil pitching moment Mach number. Compared to the earlier effort, the current open loop study considers more fundamental corrections based on advancing blade aerodynamic conditions. The airfoil tables themselves have been studied. Selected modifications to the HH-06 section flap airfoil pitching moment table are implemented. For the closed loop condition, the effect of the flap actuator is modeled by increased flap hinge stiffness. Overall, the open loop correlation is reasonable, thus confirming the basic correctness of the current semi-empirical modifications; the closed loop correlation is also reasonable considering that the current flap model is a first generation model. Detailed correlation results are given in the paper.

  17. A Low-Power High-Speed Smart Sensor Design for Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi

    1997-01-01

    A low-power high-speed smart sensor system based on a large format active pixel sensor (APS) integrated with a programmable neural processor for space exploration missions is presented. The concept of building an advanced smart sensing system is demonstrated by a system-level microchip design that is composed with an APS sensor, a programmable neural processor, and an embedded microprocessor in a SOI CMOS technology. This ultra-fast smart sensor system-on-a-chip design mimics what is inherent in biological vision systems. Moreover, it is programmable and capable of performing ultra-fast machine vision processing in all levels such as image acquisition, image fusion, image analysis, scene interpretation, and control functions. The system provides about one tera-operation-per-second computing power which is a two order-of-magnitude increase over that of state-of-the-art microcomputers. Its high performance is due to massively parallel computing structures, high data throughput rates, fast learning capabilities, and advanced VLSI system-on-a-chip implementation.

  18. High speed global shutter image sensors for professional applications

    NASA Astrophysics Data System (ADS)

    Wu, Xu; Meynants, Guy

    2015-04-01

    Global shutter imagers expand the use to miscellaneous applications, such as machine vision, 3D imaging, medical imaging, space etc. to eliminate motion artifacts in rolling shutter imagers. A low noise global shutter pixel requires more than one non-light sensitive memory to reduce the read noise. But larger memory area reduces the fill-factor of the pixels. Modern micro-lenses technology can compensate this fill-factor loss. Backside illumination (BSI) is another popular technique to improve the pixel fill-factor. But some pixel architecture may not reach sufficient shutter efficiency with backside illumination. Non-light sensitive memory elements make the fabrication with BSI possible. Machine vision like fast inspection system, medical imaging like 3D medical or scientific applications always ask for high frame rate global shutter image sensors. Thanks to the CMOS technology, fast Analog-to-digital converters (ADCs) can be integrated on chip. Dual correlated double sampling (CDS) on chip ADC with high interface digital data rate reduces the read noise and makes more on-chip operation control. As a result, a global shutter imager with digital interface is a very popular solution for applications with high performance and high frame rate requirements. In this paper we will review the global shutter architectures developed in CMOSIS, discuss their optimization process and compare their performances after fabrication.

  19. Ultra high speed image processing techniques. [electronic packaging techniques

    NASA Technical Reports Server (NTRS)

    Anthony, T.; Hoeschele, D. F.; Connery, R.; Ehland, J.; Billings, J.

    1981-01-01

    Packaging techniques for ultra high speed image processing were developed. These techniques involve the development of a signal feedthrough technique through LSI/VLSI sapphire substrates. This allows the stacking of LSI/VLSI circuit substrates in a 3 dimensional package with greatly reduced length of interconnecting lines between the LSI/VLSI circuits. The reduced parasitic capacitances results in higher LSI/VLSI computational speeds at significantly reduced power consumption levels.

  20. Quality of service on high-speed data networks

    NASA Astrophysics Data System (ADS)

    Barbero, Ezio; Antonelli, Ferruccio

    1995-02-01

    Since the beginning of this century the issue of `quality' has been gaining increasing importance in a number of fields of human activities. For telecommunication services, too, the quality perceived by customers has been taken into account early on as an issue of strategic importance. Whilst for telephony the Quality of Service (QoS) has been already investigated and identified in terms of parameters and related test methodology, the situation for high speed data services (i.e. CBDS/SMDS, Frame Relay, etc.), provided by means of high speed network based on Asynchronous Transfer Moe (ATM) or Metropolitan Area Network technologies, can still be considered `under study'. There is a death of experience not only in terms of measurement instruments and procedures, but also in terms of knowledge of the relationship between the QoS provided at a network level and the quality perceived by the user on his or her terminal. The complexity of the equipment involved in setting up an end-to-end solution based on high speed data communications makes the problems of knowledge and supply of quality very hard to solve. Starting from the experience gained in carrying out high- speed network field trials based on Metropolitan Area Networks and, more recently, on ATM technology, the paper mainly deals with the problem of defining, measuring and then offering a specific QoS. First, the issue of what the user expects from the `high-speed network' is addressed. This analysis is carried out trying to gather what is peculiar to high-speed data communications from the user standpoint. Next, the focus is on how to cope with the requirements due to users' expectations, while carefully considering the basic principles of quality. Finally, a solution is proposed, starting from the experience gained from high speed networks installed in Italy.

  1. A fully-integrated 12.5-Gb/s 850-nm CMOS optical receiver based on a spatially-modulated avalanche photodetector.

    PubMed

    Lee, Myung-Jae; Youn, Jin-Sung; Park, Kang-Yeob; Choi, Woo-Young

    2014-02-10

    We present a fully integrated 12.5-Gb/s optical receiver fabricated with standard 0.13-µm complementary metal-oxide-semiconductor (CMOS) technology for 850-nm optical interconnect applications. Our integrated optical receiver includes a newly proposed CMOS-compatible spatially-modulated avalanche photodetector, which provides larger photodetection bandwidth than previously reported CMOS-compatible photodetectors. The receiver also has high-speed CMOS circuits including transimpedance amplifier, DC-balanced buffer, equalizer, and limiting amplifier. With the fabricated optical receiver, detection of 12.5-Gb/s optical data is successfully achieved at 5.8 pJ/bit. Our receiver achieves the highest data rate ever reported for 850-nm integrated CMOS optical receivers.

  2. Material requirements for the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.; Hecht, Ralph J.; Johnson, Andrew M.

    1993-01-01

    Under NASA-sponsored High Speed Research (HSR) programs, the materials and processing requirements have been identified for overcoming the environmental and economic barriers of the next generation High Speed Civil Transport (HSCT) propulsion system. The long (2 to 5 hours) supersonic cruise portion of the HSCT cycle will place additional durability requirements on all hot section engine components. Low emissions combustor designs will require high temperature ceramic matrix composite liners to meet an emission goal of less than 5g NO(x) per Kg fuel burned. Large axisymmetric and two-dimensional exhaust nozzle designs are now under development to meet or exceed FAR 36 Stage III noise requirements, and will require lightweight, high temperature metallic, intermetallic, and ceramic matrix composites to reduce nozzle weight and meet structural and acoustic component performance goals. This paper describes and discusses the turbomachinery, combustor, and exhaust nozzle requirements of the High Speed Civil Transport propulsion system.

  3. High-Speed Soft-Decision Decoding of Two Reed-Muller Codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Uehara, Gregory T.

    1996-01-01

    implement the system at high speed. Second, we will describe details of the 8-trellis diagram we found to best meet the trade-offs between chip and overall system complexity. The chosen approach implements the trellis for the (64, 40, 8) RM subcode with 32 independent sub-trellises. And third, we will describe results of our feasibility study on the implementation of such an IC chip in CMOS technology to implement one of these sub-trellises.

  4. HDR {sup 192}Ir source speed measurements using a high speed video camera

    SciTech Connect

    Fonseca, Gabriel P.; Rubo, Rodrigo A.; Sales, Camila P. de; Verhaegen, Frank

    2015-01-15

    Purpose: The dose delivered with a HDR {sup 192}Ir afterloader can be separated into a dwell component, and a transit component resulting from the source movement. The transit component is directly dependent on the source speed profile and it is the goal of this study to measure accurate source speed profiles. Methods: A high speed video camera was used to record the movement of a {sup 192}Ir source (Nucletron, an Elekta company, Stockholm, Sweden) for interdwell distances of 0.25–5 cm with dwell times of 0.1, 1, and 2 s. Transit dose distributions were calculated using a Monte Carlo code simulating the source movement. Results: The source stops at each dwell position oscillating around the desired position for a duration up to (0.026 ± 0.005) s. The source speed profile shows variations between 0 and 81 cm/s with average speed of ∼33 cm/s for most of the interdwell distances. The source stops for up to (0.005 ± 0.001) s at nonprogrammed positions in between two programmed dwell positions. The dwell time correction applied by the manufacturer compensates the transit dose between the dwell positions leading to a maximum overdose of 41 mGy for the considered cases and assuming an air-kerma strength of 48 000 U. The transit dose component is not uniformly distributed leading to over and underdoses, which is within 1.4% for commonly prescribed doses (3–10 Gy). Conclusions: The source maintains its speed even for the short interdwell distances. Dose variations due to the transit dose component are much lower than the prescribed treatment doses for brachytherapy, although transit dose component should be evaluated individually for clinical cases.

  5. High-Speed Soft-Decision Decoding of Two Reed-Muller Codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Uehara, Gregory T.

    1996-01-01

    implement the system at high speed. Second, we will describe details of the 8-trellis diagram we found to best meet the trade-offs between chip and overall system complexity. The chosen approach implements the trellis for the (64, 40, 8) RM subcode with 32 independent sub-trellises. And third, we will describe results of our feasibility study on the implementation of such an IC chip in CMOS technology to implement one of these sub-trellises.

  6. Thermal Behavior of High-Speed Helical Gear Trains Investigated

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    2003-01-01

    High-speed and heavily loaded gearing are commonplace in the rotorcraft systems employed in helicopter and tiltrotor transmissions. The components are expected to deliver high power from the gas turbine engines to the high-torque, low-speed rotor, reducing the shaft rotational speed in the range of 25:1 to 100:1. These components are designed for high power-to-weight ratios, thus the components are fabricated as light as possible with the best materials and processing to transmit the required torque and carry the resultant loads without compromising the reliability of the drive system. This is a difficult task that is meticulously analyzed and thoroughly tested experimentally prior to being applied on a new or redesigned aircraft.

  7. Validation of solar wind high-speed stream predictions

    NASA Astrophysics Data System (ADS)

    Reiss, Martin; Temmer, Manuela; Veronig, Astrid; Nikolic, Ljubomir; Schöngassner, Florian; Vennerstrøm, Susanne

    2016-04-01

    Solar wind high-speed streams emanating from coronal holes are frequently impinging on the Earth's magnetosphere causing recurrent, medium-level geomagnetic storm activity. As major contributors to space weather disturbances at times of low solar activity, prediction models of solar wind high-speed streams are becoming highly desirable. We present a verification analysis of two operational solar wind prediction models (empirical model, Wang-Sheeley-Arge like model) by comparing the model runs for the period 2011 to 2014 with in-situ plasma measurements from the ACE spacecraft located at 1 AU. We find that both prediction models achieve a similar accuracy but demonstrate the tendency to under-predict and over-predict events of solar wind high-speed streams, respectively. General advantages and disadvantages of both models are diagnosed and outlined.

  8. High speed commercial transport fuels considerations and research needs

    NASA Technical Reports Server (NTRS)

    Lee, C. M.; Niedzwiecki, R. W.

    1989-01-01

    NASA is currently evaluating the potential of incorporating High Speed Civil Transport (HSCT) aircraft in the commercial fleet in the beginning of the 21st century. NASA sponsored HSCT enabling studies currently underway with airframers and engine manufacturers, are addressing a broad range of technical, environmental, economic, and related issues. Supersonic cruise speeds for these aircraft were originally focused in the Mach 2 to 5 range. At these flight speeds, both jet fuels and liquid methane were considered potential fuel candidates. For the year 2000 to 2010, cruise Mach numbers of 2 to 3+ are projected for aircraft fuel with thermally stable liquid jet fuels. For 2015 and beyond, liquid methane fueled aircraft cruising at Mach numbers of 4+ may be viable candidates. Operation at supersonic speeds will be much more severe than those encountered at subsonic flight. One of the most critical problems is the potential deterioration of the fuel due to the high temperature environment. HSCT fuels will not only be required to provide the energy necessary for flight, but will also be subject to aerodynamic heating and, will be required to serve as the primary heat sink for cooling the engine and airframe. To define fuel problems for high speed flight, a fuels workshop was conducted at NASA Lewis Research Center. The purpose of the workshop was to gather experts on aviation fuels, airframe fuel systems, airport infrastructure, and combustion systems to discuss high speed fuel alternatives, fuel supply scenarios, increased thermal stability approaches and measurements, safety considerations, and to provide directional guidance for future R and D efforts. Subsequent follow-up studies defined airport infrastructure impacts of high speed fuel candidates. The results of these activities are summarized. In addition, an initial case study using modified in-house refinery simulation model Gordian code (1) is briefly discussed. This code can be used to simulate different

  9. High-speed silicon modulator based on cascaded microring resonators.

    PubMed

    Hu, Yingtao; Xiao, Xi; Xu, Hao; Li, Xianyao; Xiong, Kang; Li, Zhiyong; Chu, Tao; Yu, Yude; Yu, Jinzhong

    2012-07-01

    A high-speed silicon modulator based on cascaded double microring resonators is demonstrated in this paper. The proposed modulator experimentally achieved 40 Gbit/s modulation with an extinction ratio of 3.9 dB. Enhancement of the modulator achieves with an ultra-high optical bandwidth of 0.41 nm, corresponding to 51 GHz, was accomplished by using cascaded double ring structure. The described modulator can provides an ultra-high-speed optical modulation with a further improvement in electrical bandwidth of the device. PMID:22772204

  10. Modeling high flow speeds in the inner corona

    SciTech Connect

    Esser, Ruth; Habbal, Shadia Rifai

    1996-07-20

    Following recent observations which indicate the possibility of extremely high flow speeds in the inner corona, 700-800 km s{sup -1} below 10 R{sub S}, and the possibility of very high proton temperatures, T{sub p}{<=}8.5x10{sup 6} K, we present a new approach to solar wind modeling. In this approach we show that if the high proton temperatures in the inner corona are genuine, then flow speeds of 700 to 800 km s{sup -1} can readily be achieved at 10 R{sub S} or even closer to the coronal base.

  11. Development of a prototype sensor system for ultra-high-speed LDA-PIV

    NASA Astrophysics Data System (ADS)

    Griffiths, Jennifer A.; Royle, Gary J.; Bohndiek, Sarah E.; Turchetta, Renato; Chen, Daoyi

    2008-04-01

    Laser Doppler Anemometry (LDA) and Particle Image Velocimetry (PIV) are commonly used in the analysis of particulates in fluid flows. Despite the successes of these techniques, current instrumentation has placed limitations on the size and shape of the particles undergoing measurement, thus restricting the available data for the many industrial processes now utilising nano/micro particles. Data for spherical and irregularly shaped particles down to the order of 0.1 µm is now urgently required. Therefore, an ultra-fast LDA-PIV system is being constructed for the acquisition of this data. A key component of this instrument is the PIV optical detection system. Both the size and speed of the particles under investigation place challenging constraints on the system specifications: magnification is required within the system in order to visualise particles of the size of interest, but this restricts the corresponding field of view in a linearly inverse manner. Thus, for several images of a single particle in a fast fluid flow to be obtained, the image capture rate and sensitivity of the system must be sufficiently high. In order to fulfil the instrumentation criteria, the optical detection system chosen is a high-speed, lensed, digital imaging system based on state-of-the-art CMOS technology - the 'Vanilla' sensor developed by the UK based MI3 consortium. This novel Active Pixel Sensor is capable of high frame rates and sparse readout. When coupled with an image intensifier, it will have single photon detection capabilities. An FPGA based DAQ will allow real-time operation with minimal data transfer.

  12. High-speed T-38A landing gear extension loads

    NASA Technical Reports Server (NTRS)

    Schmitt, A. L.

    1980-01-01

    Testing of T-38A landing gear extension at high speed and high altitude is described. The mechanisms are shown together with peak hydraulic pressure data during landing gear deployment with active and inactive strut door flaps. Results of strain gage measurements of stress on various structural members are included.

  13. Investigation of fullerenes for high speed low latency, photonic switching

    SciTech Connect

    Lee, H. W. H; Shelton, R.N.

    1997-02-13

    The components in high-speed, all-optical photonic systems must satisfy two essential requirements: (1) high switching speeds in the range of Tbit/s, and (2) low latency, where the latency is the amount of time that the optical signal remains in the device. An important problem precluding the practical implementation of high-speed, all- optical switching is the lack of a material with appropriate nonlinear optical properties needed to effect the switching. Numerous material systems have been studied in the past, but none have met all the necessary requirements. Development of such a material and its incorporation into photonic devices would advance the field tremendously. This Lab-wide LDRD project resolved this critical problem.

  14. Nonlinear Alfven waves in high-speed solar wind streams

    NASA Technical Reports Server (NTRS)

    Abraham-Shrauner, B.; Feldman, W. C.

    1977-01-01

    A nonlinear proton distribution function that is an exact stationary solution of the nonlinear Vlasov equation and Maxwell's equations and which supports a single nonlinear transverse Alfven (ion cyclotron) wave that is circularly polarized and nondispersive is proposed for most of the observations during high-speed solar wind streams. This nonlinear distribution removes the strong Alfven wave instability, inconsistent with the persistence of the observed proton distribution functions in high-speed streams, found by the linear stability analysis. Model temperature anisotropies and drift velocities of the two spatially inhomogeneous bi-Maxwellian components are consistent with typical proton velocity distributions measured in high-speed streams at 1 AU. Two derived relations for each of the wave number and the phase velocity of the wave are obeyed within experimental uncertainties by two typical proton measurements. Our model also predicts that the alpha particle bulk flow velocity exceeds the proton particle bulk flow velocity, as is observed.

  15. High-speed signal sampling technique in lidar application

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Zhao, Yuan; Liu, Feng; Su, Jian-zhong

    2013-09-01

    Common lidar systems sets the standard using only one sample data from the laser echo signal, while information from signal waveform is ignored, constraining further enhancement of range resolution and accuracy. By employing high-speed signal sampling technique, we make full use of the echo signal, and achieved large improvement on range resolution and accuracy. Moreover, the digital signal processing algorithm can be adopted for different targets, which provides better versatility of the lidar system. This paper reviewed high speed signal sampling technique and its application in lidar system. The HT high-speed DAQ developed in our group was used in both FMCW lidar and pulse laser radar. Over fourfold increase in range accuracy, comparing to that of traditional method, is demonstrated.

  16. Tank Tests of Two Floats for High-speed Seaplanes

    NASA Technical Reports Server (NTRS)

    Bell, Joe W

    1933-01-01

    At the request of the Bureau of Aeronautics, Navy Department, a study of the design of floats especially suitable for use on high-speed seaplanes was undertaken in the N.A.C.A. tank. This note give the results obtained in tests of one-quarter full-size models of two floats for high-speed seaplanes. One was a float similar to that used on the Macchi high-speed seaplane which competed in the 1926 Schneider Trophy races, and the other a float designed at the N.A.C.A. tank in an attempt to improve on the water performance of the Macchi float. The model of the latter showed considerably better water performance than the model of the Macchi float.

  17. CMOS output buffer wave shaper

    NASA Technical Reports Server (NTRS)

    Albertson, L.; Whitaker, S.; Merrell, R.

    1990-01-01

    As the switching speeds and densities of Digital CMOS integrated circuits continue to increase, output switching noise becomes more of a problem. A design technique which aids in the reduction of switching noise is reported. The output driver stage is analyzed through the use of an equivalent RLC circuit. The results of the analysis are used in the design of an output driver stage. A test circuit based on these techniques is being submitted to MOSIS for fabrication.

  18. Using high frame rate CMOS sensors for three-dimensional eye tracking.

    PubMed

    Clarke, A H; Ditterich, J; Drüen, K; Schönfeld, U; Steineke, C

    2002-11-01

    A novel three-dimensional eye tracker is described and its performance evaluated. In contrast to previous devices based on conventional video standards, the present eye tracker is based on programmable CMOS image sensors, interfaced directly to digital processing circuitry to permit real-time image acquisition and processing. This architecture provides a number of important advantages, including image sampling rates of up to 400/sec measurement, direct pixel addressing for preprocessing and acquisition,and hard-disk storage of relevant image data. The reconfigurable digital processing circuitry also facilitates inline optmization of the front-end, time-critical processes. The primary acquisition algorithm for tracking the pupil and other eye features is designed around the generalized Hough transform. The tracker permits comprehensive measurement of eye movement (three degrees of freedom) and head movement (six degrees of freedom), and thus provides the basis for many types of vestibulo-oculomotor and visual research. The device has been qualified by the German Space Agency (DLR) and NASA for deployment on the International Space Station. It is foreseen that the device will be used together with appropriate stimulus generators as a general purpose facility for visual and vestibular experiments. Initial verification studies with an artificial eye demonstrate a measurement resolution of better than 0.1 degrees in all three components (i.e.,system noise for each of the components measured as 0.006 degrees H, 0.005 degrees V, and 0.016 degrees T. Over a range of +/-20 degrees eye rotation, linearity was found to be <0.5% (H), <0.5% (V), and <2.0% (T). A comparison with the scleral search coil technique yielded near equivalent values for the system noise and the thickness of Listing's plane. PMID:12564559

  19. CMOS Active Pixel Sensor (APS) Imager for Scientific Applications

    NASA Astrophysics Data System (ADS)

    Ay, Suat U.; Lesser, Michael P.; Fossum, Eric R.

    2002-12-01

    A 512×512 CMOS Active Pixel Sensor (APS) imager has been designed, fabricate, and tested for frontside illumination suitable for use in astronomy specifically in telescope guider systems as a replacement of CCD chips. The imager features a high-speed differential analog readout, 15 μm pixel pitch, 75 % fill factor (FF), 62 dB dynamic range, 315Ke- pixel capacity, less than 0.25% fixed pattern noise (FPN), 45 dB signal to noise ratio (SNR) and frame rate of up to 40 FPS. Design was implemented in a standard 0.5 μm CMOS process technology consuming less than 200mWatts on a single 5 Volt power supply. CMOS Active Pixel Sensor (APS) imager was developed with pixel structure suitable for both frontside and backside illumination holding large number of electron in relatively small pixel pitch of 15 μm. High-speed readout and signal processing circuits were designed to achieve low fixed pattern noise (FPN) and non-uniformity to provide CCD-like analog outputs. Target spectrum range of operation for the imager is in near ultraviolet (300-400 nm) with high quantum efficiency. This device is going to be used as a test vehicle to develop backside-thinning process.

  20. Advanced superposition methods for high speed turbopump vibration analysis

    NASA Technical Reports Server (NTRS)

    Nielson, C. E.; Campany, A. D.

    1981-01-01

    The small, high pressure Mark 48 liquid hydrogen turbopump was analyzed and dynamically tested to determine the cause of high speed vibration at an operating speed of 92,400 rpm. This approaches the design point operating speed of 95,000 rpm. The initial dynamic analysis in the design stage and subsequent further analysis of the rotor only dynamics failed to predict the vibration characteristics found during testing. An advanced procedure for dynamics analysis was used in this investigation. The procedure involves developing accurate dynamic models of the rotor assembly and casing assembly by finite element analysis. The dynamically instrumented assemblies are independently rap tested to verify the analytical models. The verified models are then combined by modal superposition techniques to develop a completed turbopump model where dynamic characteristics are determined. The results of the dynamic testing and analysis obtained are presented and methods of moving the high speed vibration characteristics to speeds above the operating range are recommended. Recommendations for use of these advanced dynamic analysis procedures during initial design phases are given.

  1. Proceedings: High-speed rail and maglev workshop

    SciTech Connect

    Not Available

    1993-04-01

    On October 30 and 31, 1991, the EPRI Public and Advanced Transportation Program sponsored a workshop on high-speed rail (HSR) and maglev. The purpose of this workshop was to provide utility managers with increased knowledge about these technologies, public policy regarding them, and their potential costs and benefits to utilities, including induced economic development. With this information, utilities should be better prepared to make decisions related to the development of these high speed intercity passenger options in their service areas. A main goal, achieved by the workshop, was to provide EPRI and its member utilities with ideas and information for developing an assessment and research agenda on these technologies.

  2. Development of magnetically levitated high speed transport system in Japan

    SciTech Connect

    Sawada, Kazuo

    1996-07-01

    In Japan, huge passenger traffic moves through the Tokyo-Osaka corridor and the demand is mounting on one more high speed line besides the Tokaido Shinkansen. A magnetically levitated vehicle (JR Maglev) using superconducting magnets has been developed for the Tokyo-Osaka superspeed express. JR Maglev has many advantages over conventional rail systems. This paper describes the necessity of one more high speed line in this corridor, the reason the author chose Maglev, the scheme of this system, history of the development and outline of the new Yamanashi test line project.

  3. Introduction of the M-85 high-speed rotorcraft concept

    NASA Technical Reports Server (NTRS)

    Stroub, Robert H.

    1991-01-01

    As a result of studying possible requirements for high-speed rotorcraft and studying many high-speed concepts, a new high-speed rotorcraft concept, designated as M-85, was derived. The M-85 is a helicopter that is reconfigured to a fixed-wing aircraft for high-speed cruise. The concept was derived as an approach to enable smooth, stable conversion between fixed-wing and rotary-wing while retaining hover and low-speed flight characteristics of a low disk loading helicopter. The name, M-85, reflects the high-speed goals of 0.85 Mach number at high altitude. For a high-speed rotorcraft, it is expected that a viable concept must be a cruise-efficient, fixed-wing aircraft so it may be attractive for a multiplicity of missions. It is also expected that a viable high-speed rotorcraft concept must be cruise efficient first and secondly, efficient in hover. What makes the M-85 unique is the large circular hub fairing that is large enough to support the aircraft during conversion between rotary-wind and fixed-wing modes. With the aircraft supported by this hub fairing, the rotor blades can be unloaded during the 100 percent change in rotor rpm. With the blades unloaded, the potential for vibratory loads would be lessened. In cruise, the large circular hub fairing would be part of the lifting system with additional lifting panels deployed for better cruise efficiency. In hover, the circular hub fairing would slightly reduce lift potential and/or decrease hover efficiency of the rotor system. The M-85 concept is described and estimated forward flight performance characteristics are presented in terms of thrust requirements and L/D with airspeed. The forward flight performance characteristics reflect recent completed wind tunnel tests of the wing concept. Also presented is a control system technique that is critical to achieving low oscillatory loads in rotary-wing mode. Hover characteristics, C(sub p) versus C(sub T) from test data, is discussed. Other techniques pertinent to

  4. First Annual High-Speed Research Workshop, part 1

    NASA Technical Reports Server (NTRS)

    Whitehead, Allen H., Jr. (Compiler)

    1992-01-01

    The workshop was presented to provide a national forum for the government, industry, and university participants in the program to present and discuss important technology issues related to the development of a commercially viable, environmentally compatible U.S. High Speed Civil Transport. The workshop sessions were organized around the major task elements in NASA's Phase 1 High Speed Research Program which basically addressed the environmental issues of atmospheric emissions, community noise, and sonic boom. This volume is divided into three sessions entitled: Plenary Session (which gives overviews from NASA, Boeing, Douglas, GE, and Pratt & Whitney on the HSCT program); Airframe Systems Studies; and Atmospheric Effects.

  5. High-speed nanometer-resolved imaging vibrometer and velocimeter

    SciTech Connect

    Mahjoubfar, Ata; Goda, Keisuke; Fard, Ali; Ayazi, Ali; Kim, Sang Hyup; Jalali, Bahram

    2011-03-07

    Conventional laser vibrometers are incapable of performing multidimensional vibrometry at high speeds because they build on single-point measurements and rely on beam scanning, significantly limiting their utility and precision. Here we introduce a laser vibrometer that performs high-speed multidimensional imaging-based vibration and velocity measurements with nanometer-scale axial resolution without the need for beam scanning. As a proof-of-concept, we demonstrate real-time microscopic imaging of acoustic vibrations with 1 nm axial resolution, 1200 image pixels, and 30 ps dwell time at 36.7 MHz scan rate.

  6. Miniature high speed compressor having embedded permanent magnet motor

    NASA Technical Reports Server (NTRS)

    Zhou, Lei (Inventor); Zheng, Liping (Inventor); Chow, Louis (Inventor); Kapat, Jayanta S. (Inventor); Wu, Thomas X. (Inventor); Kota, Krishna M. (Inventor); Li, Xiaoyi (Inventor); Acharya, Dipjyoti (Inventor)

    2011-01-01

    A high speed centrifugal compressor for compressing fluids includes a permanent magnet synchronous motor (PMSM) having a hollow shaft, the being supported on its ends by ball bearing supports. A permanent magnet core is embedded inside the shaft. A stator with a winding is located radially outward of the shaft. The PMSM includes a rotor including at least one impeller secured to the shaft or integrated with the shaft as a single piece. The rotor is a high rigidity rotor providing a bending mode speed of at least 100,000 RPM which advantageously permits implementation of relatively low-cost ball bearing supports.

  7. Ethylene Trace-gas Techniques for High-speed Flows

    NASA Technical Reports Server (NTRS)

    Davis, David O.; Reichert, Bruce A.

    1994-01-01

    Three applications of the ethylene trace-gas technique to high-speed flows are described: flow-field tracking, air-to-air mixing, and bleed mass-flow measurement. The technique involves injecting a non-reacting gas (ethylene) into the flow field and measuring the concentration distribution in a downstream plane. From the distributions, information about flow development, mixing, and mass-flow rates can be dtermined. The trace-gas apparatus and special considerations for use in high-speed flow are discussed. A description of each application, including uncertainty estimates is followed by a demonstrative example.

  8. Magneto-optical system for high speed real time imaging.

    PubMed

    Baziljevich, M; Barness, D; Sinvani, M; Perel, E; Shaulov, A; Yeshurun, Y

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  9. Multiply-agile encryption in high speed communication networks

    SciTech Connect

    Pierson, L.G.; Witzke, E.L.

    1997-05-01

    Different applications have different security requirements for data privacy, data integrity, and authentication. Encryption is one technique that addresses these requirements. Encryption hardware, designed for use in high-speed communications networks, can satisfy a wide variety of security requirements if that hardware is key-agile, robustness-agile and algorithm-agile. Hence, multiply-agile encryption provides enhanced solutions to the secrecy, interoperability and quality of service issues in high-speed networks. This paper defines these three types of agile encryption. Next, implementation issues are discussed. While single-algorithm, key-agile encryptors exist, robustness-agile and algorithm-agile encryptors are still research topics.

  10. High speed propeller acoustics and aerodynamics - A boundary element approach

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Myers, M. K.; Dunn, M. H.

    1989-01-01

    The Boundary Element Method (BEM) is applied in this paper to the problems of acoustics and aerodynamics of high speed propellers. The underlying theory is described based on the linearized Ffowcs Williams-Hawkings equation. The surface pressure on the blade is assumed unknown in the aerodynamic problem. It is obtained by solving a singular integral equation. The acoustic problem is then solved by moving the field point inside the fluid medium and evaluating some surface and line integrals. Thus the BEM provides a powerful technique in calculation of high speed propeller aerodynamics and acoustics.

  11. Magneto-optical system for high speed real time imaging.

    PubMed

    Baziljevich, M; Barness, D; Sinvani, M; Perel, E; Shaulov, A; Yeshurun, Y

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated. PMID:22938303

  12. Secondary Containment Design for a High Speed Centrifuge

    SciTech Connect

    Snyder, K.W.

    1999-03-01

    Secondary containment for high speed rotating machinery, such as a centrifuge, is extremely important for operating personnel safety. Containment techniques can be very costly, ungainly and time consuming to construct. A novel containment concept is introduced which is fabricated out of modular sections of polycarbonate glazed into a Unistrut metal frame. A containment study for a high speed centrifuge is performed which includes the development of parameters for secondary containment design. The Unistrut/polycarbonate shield framing concept is presented including design details and proof testing procedures. The economical fabrication and modularity of the design indicates a usefulness for this shielding system in a wide variety of containment scenarios.

  13. Global dynamics of low immersion high-speed milling.

    PubMed

    Szalai, Róbert; Stépán, Gábor; Hogan, S John

    2004-12-01

    In the case of low immersion high-speed milling, the ratio of time spent cutting to not cutting can be considered as a small parameter. In this case the classical regenerative vibration model of machine tool vibrations reduces to a simplified discrete mathematical model. The corresponding stability charts contain stability boundaries related to period doubling and Neimark-Sacker bifurcations. The subcriticality of both types of bifurcations is proved in this paper. Further, global period-2 orbits are found and analyzed. In connection with these orbits, the existence of chaotic motion is demonstrated for realistic high-speed milling parameters.

  14. Spatio-temporal experiments of volume elastic objects with high speed digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Pérez López, C.; Hernández Montes, M. S.; Mendoza Santoyo, F.; Gutiérrez Hernandez, D. A.

    2011-08-01

    The optical non-destructive digital holographic interferometry (DHI) technique has proven to be a powerful tool in measuring vibration phenomena with a spatial resolution ranging from a few hundreds of nanometers to tens of micrometers. With the aid of high speed digital cameras it is possible to achieve simultaneously spatial and temporal resolution, and thus capable of measuring the entire object mechanical oscillation trajectory from one to several cycles. It is important to mention that due to faster computers with large data storage capacity there is an increasing interest in applying numerical simulation methods to mimic different real life objects for example, in the field of modern elastic materials and biological systems. The complex algorithms involved cannot render significant results mainly due to the rather large number of variables. In order to test these numerical simulations some experiments using optical techniques have been designed and reported. This is very important for example in measurements of the dynamic elastic properties of materials. In this work we present some preliminary results from experiments that use DHI to measure vibrations of an elastic spherical object subject to a mechanical excitation that induces resonant vibration modes in its volume. We report on the spatial and temporal effects that by their nature have a non-linear mechanical response. The use of a high speed CMOS camera in DHI assures the measurement of this nonlinear behavior as a sum of linear effects that happen during very short time lapses and with very small displacement amplitudes. We conclude by stating that complex numerical models may be compared to results using DHI, thus proposing an alternative method to prove and verify the mathematical models vs. real measurements on volumetric elastic objects.

  15. High-Speed Imaging Optical Pyrometry for Study of Boron Nitride Nanotube Generation

    NASA Technical Reports Server (NTRS)

    Inman, Jennifer A.; Danehy, Paul M.; Jones, Stephen B.; Lee, Joseph W.

    2014-01-01

    A high-speed imaging optical pyrometry system is designed for making in-situ measurements of boron temperature during the boron nitride nanotube synthesis process. Spectrometer measurements show molten boron emission to be essentially graybody in nature, lacking spectral emission fine structure over the visible range of the electromagnetic spectrum. Camera calibration experiments are performed and compared with theoretical calculations to quantitatively establish the relationship between observed signal intensity and temperature. The one-color pyrometry technique described herein involves measuring temperature based upon the absolute signal intensity observed through a narrowband spectral filter, while the two-color technique uses the ratio of the signals through two spectrally separated filters. The present study calibrated both the one- and two-color techniques at temperatures between 1,173 K and 1,591 K using a pco.dimax HD CMOS-based camera along with three such filters having transmission peaks near 550 nm, 632.8 nm, and 800 nm.

  16. A low-power high-speed driving circuit for spatial light modulators

    NASA Astrophysics Data System (ADS)

    Minghao, Zhu; Congyi, Zhu; Wenjiang, Li; Yaohui, Zhang

    2012-02-01

    This paper describes the design and test of a novel custom driving circuit for multi-quantum-well (MQW) spatial light modulators (SLMs). Unlike previous solutions, we integrated all blocks in one chip to synchronize the control logic circuit and the driving circuits. Single-slope digital-to-analog converters (DACs) inside each pixel are not adopted because it is difficult to eliminate capacitor mismatch. 64 column-shared 8-bit resistor-string DACs are utilized to provide programmable output voltages from 0.5 to 3.8 V. They are located on the top of 64 × 64 driving pixels tightly to match each other with several dummies. Each DAC performs its conversion in 280 ns and draws 80 μA. For a high speed data transfer rate, the system adopts a 2-stage shift register that operates at 50 MHz and the modulating rate achieves 50 K frames/s while dissipating 302 mW from a 5-V supply. The die is fabricated in a 0.35 μm CMOS process and its area is 5.5 × 7 mm2.

  17. High-speed 1280x1024 camera with 12-Gbyte SDRAM memory

    NASA Astrophysics Data System (ADS)

    Postnikov, Konstantin O.; Yakovlev, Alexey V.

    2001-04-01

    A 600 Frame/s camera based on 1.3 Megapixel CMOS sensor (PBMV13) with wide digital data output bus (10 parallel outputs of 10 bit worlds) was developed using high capacity SCRAM memory. This architecture allows to achieve 10 seconds of continuous recording of digital data from the sensor at 600 frames per second to the memory box with up to 12 1Gbytes SDRAM modules. Acquired data is transmitted through the fibre optic channel connected to the camera via FPDP interface to a PC type computer at the speed of 100 Mbyte per second and fibre cable length up to 10 km. All camera settings such as shutter time, frame rate, image size, present for changing integration time and frame rate, can be controlled by software. Camera specifications: shutter time - from 3.3 us to full frame at 1.6 us steps at 600 fps and then 1 frame steps down to 16 ms, frame rate - from 60 fps to 600 fps, image size 1280x1024, 1280x512, 1290x256, or 1280x128, changing on a fly - presetting two step table, memory capacity - depends on frame size (6000 frames with 1280x1024 or 48000 frames with 1280x128 resolution). Program can work with monochrome or color versions of the MV13 sensor.

  18. Fiber-optic links based on silicon photonics for high-speed readout of trackers

    NASA Astrophysics Data System (ADS)

    Drake, G.; Garcia-Scivres, M.; Paramonov, A.; Stanek, R.; Underwood, D.

    2014-10-01

    We propose to use silicon photonics technology to build radiation-hard fiber-optic links for high-bandwidth readout of tracking detectors. The CMOS integrated silicon photonics was developed by Luxtera and commercialized by Molex. The commercial off-the-shelf (COTS) fiber-optic links feature moderate radiation tolerance insufficient for trackers. A transceiver contains four RX and four TX channels operating at 10 Gbps each. The next generation will likely operate at 25 Gbps per channel. The approach uses a standard CMOS process and single-mode fibers, providing low power consumption and good scalability and reliability.

  19. Ultra-high-speed optical and electronic distributed devices

    SciTech Connect

    Hietala, V.M.; Plut, T.A.; Kravitz, S.H.; Vawter, G.A.; Wendt, J.R.; Armendariz, M.G.

    1995-08-01

    This report summarizes work on the development of ultra-high-speed semiconductor optical and electronic devices. High-speed operation is achieved by velocity matching the input stimulus to the output signal along the device`s length. Electronic devices such as field-effect transistors (FET`s), should experience significant speed increases by velocity matching the electrical input and output signals along the device. Likewise, optical devices, which are typically large, can obtain significant bandwidths by velocity matching the light being generated, detected or modulated with the electrical signal on the device`s electrodes. The devices discussed in this report utilize truly distributed electrical design based on slow-wave propagation to achieve velocity matching.

  20. Effects of high sound speed confiners on ANFO detonations

    NASA Astrophysics Data System (ADS)

    Kiyanda, Charles; Jackson, Scott; Short, Mark

    2011-06-01

    The interaction between high explosive (HE) detonations and high sound speed confiners, where the confiner sound speed exceeds the HE's detonation speed, has not been thoroughly studied. The subsonic nature of the flow in the confiner allows stress waves to travel ahead of the main detonation front and influence the upstream HE state. The interaction between the detonation wave and the confiner is also no longer a local interaction, so that the confiner thickness now plays a significant role in the detonation dynamics. We report here on larger scale experiments in which a mixture of ammonium nitrate and fuel oil (ANFO) is detonated in aluminium confiners with varying charge diameter and confiner thickness. The results of these large-scale experiments are compared with previous large-scale ANFO experiments in cardboard, as well as smaller-scale aluminium confined ANFO experiments, to characterize the effects of confiner thickness.

  1. Research and design of high speed mass image storage system

    NASA Astrophysics Data System (ADS)

    Li, Yu-feng; Xue, Rong-kun; Liang, Fei

    2009-07-01

    The design of the high mass image storage system is introduced using DSP, FPGA and Flash structure. Texas Instruments Corporation DSP chip (TMS320VC5509APEG) is used as the main controller, Samsung's Flash chips (K9F2G08U0M) used as the main storage medium, and the Xilinx Corporation FPGA chip (XCV600E) used as logic control modules. In this system, Storage module consists of 32 Flash memory chips, which are divided into 8 groups that correspond to 8-level pipeline. The 4-Flash memory chip forms a basic 32-bit memory module. The entire system storage space is 64 G bit. Through simulation and verification, the storage speed is up to 352Mbps and readout speed is up to 290Mbps, it can meet the demand to the high-speed access, and which has strong environmental adaptability.

  2. High-speed pulse-shape generator, pulse multiplexer

    DOEpatents

    Burkhart, Scott C.

    2002-01-01

    The invention combines arbitrary amplitude high-speed pulses for precision pulse shaping for the National Ignition Facility (NIF). The circuitry combines arbitrary height pulses which are generated by replicating scaled versions of a trigger pulse and summing them delayed in time on a pulse line. The combined electrical pulses are connected to an electro-optic modulator which modulates a laser beam. The circuit can also be adapted to combine multiple channels of high speed data into a single train of electrical pulses which generates the optical pulses for very high speed optical communication. The invention has application in laser pulse shaping for inertial confinement fusion, in optical data links for computers, telecommunications, and in laser pulse shaping for atomic excitation studies. The invention can be used to effect at least a 10.times. increase in all fiber communication lines. It allows a greatly increased data transfer rate between high-performance computers. The invention is inexpensive enough to bring high-speed video and data services to homes through a super modem.

  3. High speed magneto-resistive random access memory

    NASA Technical Reports Server (NTRS)

    Wu, Jiin-Chuan (Inventor); Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor)

    1992-01-01

    A high speed read MRAM memory element is configured from a sandwich of magnetizable, ferromagnetic film surrounding a magneto-resistive film which may be ferromagnetic or not. One outer ferromagnetic film has a higher coercive force than the other and therefore remains magnetized in one sense while the other may be switched in sense by a switching magnetic field. The magneto-resistive film is therefore sensitive to the amplitude of the resultant field between the outer ferromagnetic films and may be constructed of a high resistivity, high magneto-resistive material capable of higher sensing currents. This permits higher read voltages and therefore faster read operations. Alternate embodiments with perpendicular anisotropy, and in-plane anisotropy are shown, including an embodiment which uses high permeability guides to direct the closing flux path through the magneto-resistive material. High density, high speed, radiation hard, memory matrices may be constructed from these memory elements.

  4. High-speed imaging of explosive eruptions: applications and perspectives

    NASA Astrophysics Data System (ADS)

    Taddeucci, Jacopo; Scarlato, Piergiorgio; Gaudin, Damien; Capponi, Antonio; Alatorre-Ibarguengoitia, Miguel-Angel; Moroni, Monica

    2013-04-01

    Explosive eruptions, being by definition highly dynamic over short time scales, necessarily call for observational systems capable of relatively high sampling rates. "Traditional" tools, like as seismic and acoustic networks, have recently been joined by Doppler radar and electric sensors. Recent developments in high-speed camera systems now allow direct visual information of eruptions to be obtained with a spatial and temporal resolution suitable for the analysis of several key eruption processes. Here we summarize the methods employed to gather and process high-speed videos of explosive eruptions, and provide an overview of the several applications of these new type of data in understanding different aspects of explosive volcanism. Our most recent set up for high-speed imaging of explosive eruptions (FAMoUS - FAst, MUltiparametric Set-up,) includes: 1) a monochrome high speed camera, capable of 500 frames per second (fps) at high-definition (1280x1024 pixel) resolution and up to 200000 fps at reduced resolution; 2) a thermal camera capable of 50-200 fps at 480-120x640 pixel resolution; and 3) two acoustic to infrasonic sensors. All instruments are time-synchronized via a data logging system, a hand- or software-operated trigger, and via GPS, allowing signals from other instruments or networks to be directly recorded by the same logging unit or to be readily synchronized for comparison. FAMoUS weights less than 20 kg, easily fits into four, hand-luggage-sized backpacks, and can be deployed in less than 20' (and removed in less than 2', if needed). So far, explosive eruptions have been recorded in high-speed at several active volcanoes, including Fuego and Santiaguito (Guatemala), Stromboli (Italy), Yasur (Vanuatu), and Eyjafiallajokull (Iceland). Image processing and analysis from these eruptions helped illuminate several eruptive processes, including: 1) Pyroclasts ejection. High-speed videos reveal multiple, discrete ejection pulses within a single Strombolian

  5. Florida's high-speed rail and maglev projects

    SciTech Connect

    Smith, C.H. )

    1990-04-01

    The author discusses how the State of Florida has taken an innovative approach to meeting its future needs for an efficient transportation system that will complement its extensive highway network and aviation system. This new concept is a statewide, high-speed, fixed guideway ground transportation system. The technologies will include advanced electrified wheels-on-rail trains and magnetically levitated and propelled vehicles.

  6. PDC bits stand up to high speed, soft formation drilling

    SciTech Connect

    Hover, E.R.; Middleton, J.N.

    1982-08-01

    Six experimental, polycrystalline diamond compact (PDC) bit designs were tested in the lab at both high and low speeds in three different types of rock. Testing procedures, bit performance and wear characteristics are discussed. These experimental results are correlated with specific design options such as rake angle and bit profile.

  7. High Speed Lunar Navigation for Crewed and Remotely Piloted Vehicles

    NASA Technical Reports Server (NTRS)

    Pedersen, L.; Allan, M.; To, V.; Utz, H.; Wojcikiewicz, W.; Chautems, C.

    2010-01-01

    Increased navigation speed is desirable for lunar rovers, whether autonomous, crewed or remotely operated, but is hampered by the low gravity, high contrast lighting and rough terrain. We describe lidar based navigation system deployed on NASA's K10 autonomous rover and to increase the terrain hazard situational awareness of the Lunar Electric Rover crew.

  8. Numerical Simulation of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Jaberi, F. A.; Colucci, P. J.; James, S.; Givi, P.

    1996-01-01

    The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES) methods for computational analysis of high-speed reacting turbulent flows. We have just completed the first year of Phase 3 of this research.

  9. Using high-speed video in ballistic experiments with crossbows

    NASA Astrophysics Data System (ADS)

    Geradts, Zeno J.; Dofferhoff, Gerard; Visser, Rob

    1997-02-01

    In a short period of two weeks experiments had to be done for court. The order was to investigate the effects of ballpoints shot transorbitally by a crossbow. The use of a high speed video camera turned out to be valuable for detailed observation of the ballpoint during launching and penetration of a gelatine model and demonstration of the results in court.

  10. High-speed civil transport study: Special factors

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Studies relating to environmental factors associated with high speed civil transports were conducted. Projected total engine emissions for year 2015 fleets of several subsonic/supersonic transport fleet scenarios, discussion of sonic boom reduction methods, discussion of community noise level requirements, fuels considerations, and air traffic control impact are presented.

  11. Speed Reading/Scholarship Skills for Gifted High School Students.

    ERIC Educational Resources Information Center

    Tompkins, Stephen R.

    A speed reading/scholarship skills course was offered to college-bound students in the Dallas, Texas, school system in 1977-78. Approximately 1,700 students took the 60-day elective course in 20 different high schools. As measured by the Nelson-Denny Standardized Reading Test and compared to college freshman norms, students registered the…

  12. Deformable MEMS grating for wide tunability and high operating speed

    NASA Astrophysics Data System (ADS)

    Tormen, Maurizio; Peter, Yves-Alain; Niedermann, Philippe; Hoogerwerf, Arno; Shea, Herbert; Stanley, Ross

    2006-01-01

    Diffractive MEMS are interesting for a wide range of applications, including displays, scanners or switching elements. Their advantages are compactness, potentially high actuation speed and in the ability to deflect light at large angles. We have designed and fabricated deformable diffractive MEMS grating to be used as tuning elements for external cavity lasers. The resulting device is compact, has wide tunability and a high operating speed. The initial design is a planar grating where the beams are free-standing and attached to each other using leaf springs. Actuation is achieved through two electrostatic comb drives at either end of the grating. To prevent deformation of the free-standing grating, the device is 10 μm thick made from a Silicon on Insulator (SOI) wafer in a single mask process. At 100V a periodicity tuning of 3% has been measured. The first resonant mode of the grating is measured at 13.8 kHz, allowing high speed actuation. This combination of wide tunability and high operating speed represents state of the art in the domain of tunable MEMS filters. In order to improve diffraction efficiency and to expand the usable wavelength range, a blazed version of the deformable MEMS grating has been designed. A key issue is maintaining the mechanical properties of the original device while providing optically smooth blazed beams. Using a process based on anisotropic KOH etching, blazed gratings have been obtained and preliminary characterization is promising.

  13. New seed-cotton reclaimer for high speed roller gins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An experimental laboratory prototype reclaimer is being developed by the USDA-ARS in cooperation with Lummus Corporation. The objective of the project is to develop a seed-cotton reclaimer for high speed roller ginning that has a higher operational capacity and reduced seed loss in comparison to cur...

  14. Penetrating injury from high-speed motor vehicle collision.

    PubMed

    Daniels, Alan H

    2015-01-01

    We present the case history of a post motor vehicle crash victim with lower extremity fractures and decreased blood flow. Emergent Angipgraphy revealed a foreign body which was later operated and removed. The case emphasizes that High-speed motor vehicle accidents commonly lead to penetrating injury from objects within and outside of the vehicle.

  15. Applicability of explicit congestion notification in very high speed networks

    NASA Astrophysics Data System (ADS)

    Laalaoua, Rachid; Dotaro, Emmanuel; Atmaca, Tulin

    1999-11-01

    Congestion control avoidance in computer networks is still a major unresolved image. The applicability of previous congestion control mechanisms has to be demonstrated taking into account today's constraints. In this work, several schemes are studied in order to support differentiated services in a wide area, very high speed network.

  16. Faster than "g", Revisited with High-Speed Imaging

    ERIC Educational Resources Information Center

    Vollmer, Michael; Mollmann, Klaus-Peter

    2012-01-01

    The introduction of modern high-speed cameras in physics teaching provides a tool not only for easy visualization, but also for quantitative analysis of many simple though fast occurring phenomena. As an example, we present a very well-known demonstration experiment--sometimes also discussed in the context of falling chimneys--which is commonly…

  17. Numerical Simulation of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Givi, P.; Taulbee, D. B.; Madnia, C. K.; Jaberi, F. A.; Colucci, P. J.; Gicquel, L. Y. M.; Adumitroaie, V.; James, S.

    1999-01-01

    The objectives of this research are: (1) to develop and implement a new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. (2) To develop algebraic turbulence closures for statistical description of chemically reacting turbulent flows.

  18. Analysis of high speed flow, thermal and structural interactions

    NASA Technical Reports Server (NTRS)

    Thornton, Earl A.

    1994-01-01

    Research for this grant focused on the following tasks: (1) the prediction of severe, localized aerodynamic heating for complex, high speed flows; (2) finite element adaptive refinement methodology for multi-disciplinary analyses; (3) the prediction of thermoviscoplastic structural response with rate-dependent effects and large deformations; (4) thermoviscoplastic constitutive models for metals; and (5) coolant flow/structural heat transfer analyses.

  19. High speed photography and photonics applications: An underutilized technology

    SciTech Connect

    Paisley, D.L.

    1996-10-01

    Snapshot: Paisley describes the development of high-speed photography including the role of streak cameras, fiber optics, and lasers. Progress in this field has created a powerful tool for viewing such ultrafast processes as hypersonic events and ballistics. {copyright} {ital 1996 Optical Society of America.} [1047-6938-96-10-9939-04

  20. Waste heat recovery with ultra high-speed turbomachinery

    SciTech Connect

    Vakkilainen, E.; Larjola, J.; Lindgren, O.

    1984-08-01

    A new ORC heat recovery system which converts waste heat to electricity has been developed in Lappeenranta University of Technology with support from Department of Energy in Finnish Ministry of Trade and Industry. Use of ultra high-speed turbomachinery (10 000 rpm - 200 000 rpm) promises lower unit costs, higher efficiencies and fast amortization rate, 2,4 - 3,0 years.

  1. Hybrid hydrostatic/ball bearings in high-speed turbomachinery

    NASA Technical Reports Server (NTRS)

    Nielson, C. E.

    1983-01-01

    A high speed, high pressure liquid hydrogen turbopump was designed, fabricated, and tested under a previous contract. This design was then modified to incorporate hybrid hydrostatic/ball bearings on both the pump end and turbine end to replace the original conventional ball bearing packages. The design, analysis, turbopump modification, assembly, and testing of the turbopump with hybrid bearings is presented here. Initial design considerations and rotordynamic performance analysis was made to define expected turbopump operating characteristics and are reported. The results of testing the turbopump to speeds of 9215 rad/s (88,000 rpm) using a wide range of hydrostatic bearing supply pressures are presented. The hydrostatic bearing test data and the rotordynamic behavior of the turbopump was closely analyzed and are included in the report. The testing of hybrid hydrostatic/ball bearings on a turbopump to the high speed requirements has indicated the configuration concept is feasible. The program has presented a great deal of information on the technology requirements of integrating the hybrid bearing into high speed turbopump designs for improved bearing life.

  2. A high-speed distortionless predictive image-compression scheme

    NASA Technical Reports Server (NTRS)

    Cheung, K.-M.; Smyth, P.; Wang, H.

    1990-01-01

    A high-speed distortionless predictive image-compression scheme that is based on differential pulse code modulation output modeling combined with efficient source-code design is introduced. Experimental results show that this scheme achieves compression that is very close to the difference entropy of the source.

  3. Modelling Of Residual Stresses Induced By High Speed Milling Process

    SciTech Connect

    Desmaison, Olivier; Mocellin, Katia; Jardin, Nicolas

    2011-05-04

    Maintenance processes used in heavy industries often include high speed milling operations. The reliability of the post-process material state has to be studied. Numerical simulation appears to be a very interesting way to supply an efficient residual stresses (RS) distribution prediction.Because the adiabatic shear band and the serrated chip shaping are features of the austenitic stainless steel high speed machining, a 2D high speed orthogonal cutting model is briefly presented. This finite element model, developed on Forge registered software, is based on data taken from Outeiro and al.'s paper [1]. A new behaviour law fully coupling Johnson-Cook's constitutive law and Latham and Cockcroft's damage model is detailed in this paper. It ensures results that fit those found in literature.Then, the numerical tools used on the 2D model are integrated to a 3D high speed milling model. Residual stresses distribution is analysed, on the surface and into the depth of the material. Various revolutions and passes of the two teeth hemispheric mill on the workpiece are simulated. Thus the sensitivity of the residual stresses generation to the cutting conditions can be discussed. In order to validate the 3D model, a comparison of the cutting forces measured by EDF R and D to those given by numerical simulations is achieved.

  4. Modelling Of Residual Stresses Induced By High Speed Milling Process

    NASA Astrophysics Data System (ADS)

    Desmaison, Olivier; Mocellin, Katia; Jardin, Nicolas

    2011-05-01

    Maintenance processes used in heavy industries often include high speed milling operations. The reliability of the post-process material state has to be studied. Numerical simulation appears to be a very interesting way to supply an efficient residual stresses (RS) distribution prediction. Because the adiabatic shear band and the serrated chip shaping are features of the austenitic stainless steel high speed machining, a 2D high speed orthogonal cutting model is briefly presented. This finite element model, developed on Forge® software, is based on data taken from Outeiro & al.'s paper [1]. A new behaviour law fully coupling Johnson-Cook's constitutive law and Latham and Cockcroft's damage model is detailed in this paper. It ensures results that fit those found in literature. Then, the numerical tools used on the 2D model are integrated to a 3D high speed milling model. Residual stresses distribution is analysed, on the surface and into the depth of the material. Various revolutions and passes of the two teeth hemispheric mill on the workpiece are simulated. Thus the sensitivity of the residual stresses generation to the cutting conditions can be discussed. In order to validate the 3D model, a comparison of the cutting forces measured by EDF R&D to those given by numerical simulations is achieved.

  5. Development of small bore, high speed tapered roller bearing

    NASA Technical Reports Server (NTRS)

    Morrison, F. R.; Gassel, S. S.; Bovenkerk, R. L.

    1981-01-01

    The performance of four rolling bearing configurations for use on the input pinion shaft of a proposed commercial helicopter transmission was evaluated. The performance characteristics of a high speed tapered roller bearing operating under conditions comparable to those existing at this input pinion shaft were defined. The tapered roller bearing shaft support configuration was developed for the gearbox using commercially available bearing designings. The configuration was optimized and interactive thermomechanically system analyzed. Automotive pinion quality tapered roller bearings were found to be reliable under load and speed conditions in excess of those anticipated in the helicopter transmission. However, it is indicated that the elastohydrodynamic lubricant films are inadequate.

  6. Synchronizing Photography For High-Speed-Engine Research

    NASA Technical Reports Server (NTRS)

    Chun, K. S.

    1989-01-01

    Light flashes when shaft reaches predetermined angle. Synchronization system facilitates visualization of flow in high-speed internal-combustion engines. Designed for cinematography and holographic interferometry, system synchronizes camera and light source with predetermined rotational angle of engine shaft. 10-bit resolution of absolute optical shaft encoder adapted, and 2 to tenth power combinations of 10-bit binary data computed to corresponding angle values. Pre-computed angle values programmed into EPROM's (erasable programmable read-only memories) to use as angle lookup table. Resolves shaft angle to within 0.35 degree at rotational speeds up to 73,240 revolutions per minute.

  7. Modular high speed counter employing edge-triggered code

    DOEpatents

    Vanstraelen, G.F.

    1993-06-29

    A high speed modular counter (100) utilizing a novel counting method in which the first bit changes with the frequency of the driving clock, and changes in the higher order bits are initiated one clock pulse after a 0'' to 1'' transition of the next lower order bit. This allows all carries to be known one clock period in advance of a bit change. The present counter is modular and utilizes two types of standard counter cells. A first counter cell determines the zero bit. The second counter cell determines any other higher order bit. Additional second counter cells are added to the counter to accommodate any count length without affecting speed.

  8. Modular high speed counter employing edge-triggered code

    DOEpatents

    Vanstraelen, Guy F.

    1993-06-29

    A high speed modular counter (100) utilizing a novel counting method in which the first bit changes with the frequency of the driving clock, and changes in the higher order bits are initiated one clock pulse after a "0" to "1" transition of the next lower order bit. This allows all carries to be known one clock period in advance of a bit change. The present counter is modular and utilizes two types of standard counter cells. A first counter cell determines the zero bit. The second counter cell determines any other higher order bit. Additional second counter cells are added to the counter to accommodate any count length without affecting speed.

  9. High speed GaAs static RAM technology and design

    NASA Astrophysics Data System (ADS)

    Lundgren, R. E.; Waldner, M.

    A design and analysis study of potential high-speed GaAs MESFET memory circuits was performed. The results show that a 1-kbit static RAM having a 1-ns access time is feasible using low-power enhancement-mode MESFETs to realize static flip-flop memory cells; power dissipation would be 5 microwatts per cell. To achieve maximum memory speed, the control and drive circuitry incorporates depletion-mode devices throughout; total power dissipation would be about 1 W. Details of the memory design and analysis are presented.

  10. Unwinding of a carbon nanoscroll due to high speed rotation

    NASA Astrophysics Data System (ADS)

    Yin, Hang; Cai, Kun

    2015-10-01

    A carbon nanoscroll (CNS) can be formed easily by rolling a graphene sheet around a carbon nanotube (CNT) [Zhang and Li, 2010, APL, 97, 081909]. When the CNS is driven by the rotary CNT to rotate at a high speed, the attractive interaction within the CNS or between the CNS and CNT is crippled by the centrifugal force on the CNS. The unwinding of CNS is triggered when the kinetic energy increment approaches to the variation of interaction energy of the system during CNS formation. Numerical experiments also indicate that the unwinding of CNS happens earlier when the CNT has a higher rotational speed or the system is at a higher temperature.

  11. High-speed microscopy of continuously moving cell culture vessels

    PubMed Central

    Schenk, Friedrich Walter; Brill, Nicolai; Marx, Ulrich; Hardt, Daniel; König, Niels; Schmitt, Robert

    2016-01-01

    We report a method of high-speed phase contrast and bright field microscopy which permits large cell culture vessels to be scanned at much higher speed (up to 30 times faster) than when conventional methods are used without compromising image quality. The object under investigation moves continuously and is captured using a flash illumination which creates an exposure time short enough to prevent motion blur. During the scan the object always stays in focus due to a novel hardware-autofocus system. PMID:27667637

  12. Design criteria for light high speed desert air cushion vehicles

    NASA Astrophysics Data System (ADS)

    Abulnaga, B. E.

    An evaluation is made of the applicability and prospective performance of ACVs in trans-Saharan cargo transport, in view of the unique characteristics of the dry sand environment. The lightweight/high-speed ACV concept envisioned is essentially ground effect aircraftlike, with conventional wheels as a low-speed backup suspension system. A propeller is used in ground effect cruise. Attention is given to the effects on vehicle stability and performance of sandy surface irregularities of the desert topography and of cross-winds from various directions relative to vehicle movement.

  13. Active Structured Learning for High-Speed Object Detection

    NASA Astrophysics Data System (ADS)

    Lampert, Christoph H.; Peters, Jan

    High-speed smooth and accurate visual tracking of objects in arbitrary, unstructured environments is essential for robotics and human motion analysis. However, building a system that can adapt to arbitrary objects and a wide range of lighting conditions is a challenging problem, especially if hard real-time constraints apply like in robotics scenarios. In this work, we introduce a method for learning a discriminative object tracking system based on the recent structured regression framework for object localization. Using a kernel function that allows fast evaluation on the GPU, the resulting system can process video streams at speed of 100 frames per second or more.

  14. Modulated CMOS camera for fluorescence lifetime microscopy.

    PubMed

    Chen, Hongtao; Holst, Gerhard; Gratton, Enrico

    2015-12-01

    Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime of entire images. However, the complexity and high costs involved in construction of such a system limit the extensive use of this technique. PCO AG recently released the first luminescence lifetime imaging camera based on a high frequency modulated CMOS image sensor, QMFLIM2. Here we tested and provide operational procedures to calibrate the camera and to improve the accuracy using corrections necessary for image analysis. With its flexible input/output options, we are able to use a modulated laser diode or a 20 MHz pulsed white supercontinuum laser as the light source. The output of the camera consists of a stack of modulated images that can be analyzed by the SimFCS software using the phasor approach. The nonuniform system response across the image sensor must be calibrated at the pixel level. This pixel calibration is crucial and needed for every camera settings, e.g. modulation frequency and exposure time. A significant dependency of the modulation signal on the intensity was also observed and hence an additional calibration is needed for each pixel depending on the pixel intensity level. These corrections are important not only for the fundamental frequency, but also for the higher harmonics when using the pulsed supercontinuum laser. With these post data acquisition corrections, the PCO CMOS-FLIM camera can be used for various biomedical applications requiring a large frame and high speed acquisition. PMID:26500051

  15. Modulated CMOS camera for fluorescence lifetime microscopy.

    PubMed

    Chen, Hongtao; Holst, Gerhard; Gratton, Enrico

    2015-12-01

    Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime of entire images. However, the complexity and high costs involved in construction of such a system limit the extensive use of this technique. PCO AG recently released the first luminescence lifetime imaging camera based on a high frequency modulated CMOS image sensor, QMFLIM2. Here we tested and provide operational procedures to calibrate the camera and to improve the accuracy using corrections necessary for image analysis. With its flexible input/output options, we are able to use a modulated laser diode or a 20 MHz pulsed white supercontinuum laser as the light source. The output of the camera consists of a stack of modulated images that can be analyzed by the SimFCS software using the phasor approach. The nonuniform system response across the image sensor must be calibrated at the pixel level. This pixel calibration is crucial and needed for every camera settings, e.g. modulation frequency and exposure time. A significant dependency of the modulation signal on the intensity was also observed and hence an additional calibration is needed for each pixel depending on the pixel intensity level. These corrections are important not only for the fundamental frequency, but also for the higher harmonics when using the pulsed supercontinuum laser. With these post data acquisition corrections, the PCO CMOS-FLIM camera can be used for various biomedical applications requiring a large frame and high speed acquisition.

  16. Ultra High-Speed Radio Frequency Switch Based on Photonics

    PubMed Central

    Ge, Jia; Fok, Mable P.

    2015-01-01

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches. PMID:26608349

  17. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    PubMed

    Ge, Jia; Fok, Mable P

    2015-11-26

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  18. Quiet High Speed Fan II (QHSF II): Final Report

    NASA Technical Reports Server (NTRS)

    Kontos, Karen; Weir, Don; Ross, Dave

    2012-01-01

    This report details the aerodynamic, mechanical, structural design and fabrication of a Honey Engines Quiet High Speed Fan II (lower hub/tip ratio and higher specific flow than the Baseline I fan). This fan/nacelle system incorporates features such as advanced forward sweep and an advanced integrated fan/fan exit guide vane design that provides for the following characteristics: (1) Reduced noise at supersonic tip speeds, in comparison to current state-of-the-art fan technology; (2) Improved aeroelastic stability within the anticipated operating envelope; and (3) Aerodynamic performance consistent with current state-of-the-art fan technology. This fan was fabricated by Honeywell and tested in the NASA Glenn 9- by 15-Ft Low Speed Wind Tunnel for aerodynamic, aeromechanical, and acoustic performance.

  19. A digital optical torquemeter for high rotational speed applications

    NASA Technical Reports Server (NTRS)

    Lesco, D. J.; Buchele, D. R.; Oberle, L. G.

    1982-01-01

    A digital optical torquemeter system designed for applications at high rotational speeds was fabricated and tested for zero stability at speeds up to 20,000 rpm. Data obtained in a spin rig and with simulated inputs demonstrate that the system is capable of measuring torque bar twist to within 0.03 degrees at speeds of 30,000 rpm. The optical system uses fiber optic bundles to transmit light to the torque bar and to silicon avalanche detectors. The system is microcomputer based and provides measurements of average torque and torque as a function of angular shaft position. The torquemeter requires no bearings or other contact between the rotating torque bar and the nonrotating optics, and tolerates movement of the torque bar as large as 1 mm relative to the optics.

  20. Unique research challenges for high-speed civil transports

    NASA Technical Reports Server (NTRS)

    Jackson, Charlie M., Jr.; Morris, Charles E. K., Jr.

    1987-01-01

    Market growth and technological advances are expected to lead to a generation of long-range transports that cruise at supersonic or even hypersonic speeds. Current NASA/industry studies will define the market windows in terms of time frame, Mach number, and technology requirements for these aircraft. Initial results indicate that, for the years 2000 to 2020, economically attractive vehicles could have a cruise speed up to Mach 6. The resulting research challenges are unique. They must be met with technologies that will produce commercially successful and environmentally compatible vehicles where none have existed. Several important areas of research were identified for the high-speed civil transports. Among these are sonic boom, takeoff noise, thermal management, lightweight structures with long life, unique propulsion concepts, unconventional fuels, and supersonic laminar flow.

  1. Development of a Dual-PIV system for high-speed flow applications

    NASA Astrophysics Data System (ADS)

    Schreyer, Anne-Marie; Lasserre, Jean J.; Dupont, Pierre

    2015-10-01

    A new Dual-particle image velocimetry (Dual-PIV) system for application in supersonic flows was developed. The system was designed for shock wave/turbulent boundary layer interactions with separation. This type of flow places demanding requirements on the system, from the large range of characteristic frequencies O(100 Hz-100 kHz) to spatial and temporal resolutions necessary for the measurement of turbulent quantities (Dolling in AIAA J 39(8):1517-1531, 2001; Dupont et al. in J Fluid Mech 559:255-277, 2006; Smits and Dussauge in Turbulent shear layers in supersonic flow, 2nd edn. Springer, New York, 2006). While classic PIV systems using high-resolution CCD sensors allow high spatial resolution, these systems cannot provide the required temporal resolution. Existing high-speed PIV systems provide temporal and CMOS sensor resolutions, and even laser pulse energies, that are not adapted to our needs. The only obvious solution allowing sufficiently high spatial resolution, access to high frequencies, and a high laser pulse energy is a multi-frame system: a Dual-PIV system, consisting of two synchronized PIV systems observing the same field of view, will give access to temporal characteristics of the flow. The key technology of our system is frequency-based image separation: two lasers of different wavelengths illuminate the field of view. The cross-pollution with laser light from the respective other branches was quantified during system validation. The overall system noise was quantified, and the prevailing error of only 2 % reflects the good spatial and temporal alignment. The quality of the measurement system is demonstrated with some results on a subsonic jet flow including the spatio-temporal inter-correlation functions between the systems. First measurements in a turbulent flat-plate boundary layer at Mach 2 show the same satisfactory data quality and are also presented and discussed.

  2. Novel Hybrid CMOS X-ray Detector Developments for Future Large Area and High Resolution X-ray Astronomy Missions

    NASA Astrophysics Data System (ADS)

    Falcone, Abe

    In the coming years, X-ray astronomy will require new soft X-ray detectors that can be read very quickly with low noise and can achieve small pixel sizes over a moderately large focal plane area. These requirements will be present for a variety of X-ray missions that will attempt to address science that was highly ranked by the Decadal Review, including missions with science that over-laps with that of IXO and ATHENA, as well as other missions addressing science topics beyond those of IXO and ATHENA. An X-ray Surveyor mission was recently endorsed by the NASA long term planning document entitled "Enduring Quests, Daring Visions," and a detailed description of one possible realization of such a mission has been referred to as SMART-X, which was described in a recent NASA RFI response. This provides an example of a future mission concept with these requirements since it has high X-ray throughput and excellent spatial resolution. We propose to continue to modify current active pixel sensor designs, in particular the hybrid CMOS detectors that we have been working with for several years, and implement new in-pixel technologies that will allow us to achieve these ambitious and realistic requirements on a timeline that will make them available to upcoming X-ray missions. This proposal is a continuation of our program that has been working on these developments for the past several years.

  3. SEMICONDUCTOR DEVICES: Design and application of a depletion-mode NJFET in a high-voltage BiCMOS process

    NASA Astrophysics Data System (ADS)

    Yong, Liu; Zhaohuan, Tang; Zhikuan, Wang; Yonghui, Yang; Weidong, Yang; Yonggui, Hu

    2010-08-01

    A novel depletion-mode NJFET compatible high-voltage BiCMOS process is proposed and experimentally demonstrated with a four-branch 12-bit DAC (digital-to-analog converter). With this process, an NJFET with a pinch-off voltage of about-1.5 V and a breakdown voltage of about 16 V, an NLDDMOS (N-type lightly-dosed-drain in MOS) with a turn-on voltage of about 1.0 V and a breakdown voltage of about 35 V, and a Zener diode with a reverse voltage of about 5.6 V were obtained. Measurement results showed that the converter had a reference temperature coefficient of less than ±25 ppm/°C, a differential coefficient error of less than ±0.3 LSB, and a linear error of less than ±0.5 LSB. The depletion-mode NJFET and its compatible process can also be widely used for high-voltage ADCs or DACs.

  4. Field-based high-speed imaging of explosive eruptions

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Scarlato, P.; Freda, C.; Moroni, M.

    2012-12-01

    Explosive eruptions involve, by definition, physical processes that are highly dynamic over short time scales. Capturing and parameterizing such processes is a major task in eruption understanding and forecasting, and a task that necessarily requires observational systems capable of high sampling rates. Seismic and acoustic networks are a prime tool for high-frequency observation of eruption, recently joined by Doppler radar and electric sensors. In comparison with the above monitoring systems, imaging techniques provide more complete and direct information of surface processes, but usually at a lower sampling rate. However, recent developments in high-speed imaging systems now allow such information to be obtained with a spatial and temporal resolution suitable for the analysis of several key eruption processes. Our most recent set up for high-speed imaging of explosive eruptions (FAMoUS - FAst, MUltiparametric Set-up,) includes: 1) a monochrome high speed camera, capable of 500 frames per second (fps) at high-definition (1280x1024 pixel) resolution and up to 200000 fps at reduced resolution; 2) a thermal camera capable of 50-200 fps at 480-120x640 pixel resolution; and 3) two acoustic to infrasonic sensors. All instruments are time-synchronized via a data logging system, a hand- or software-operated trigger, and via GPS, allowing signals from other instruments or networks to be directly recorded by the same logging unit or to be readily synchronized for comparison. FAMoUS weights less than 20 kg, easily fits into four, hand-luggage-sized backpacks, and can be deployed in less than 20' (and removed in less than 2', if needed). So far, explosive eruptions have been recorded in high-speed at several active volcanoes, including Fuego and Santiaguito (Guatemala), Stromboli (Italy), Yasur (Vanuatu), and Eyjafiallajokull (Iceland). Image processing and analysis from these eruptions helped illuminate several eruptive processes, including: 1) Pyroclasts ejection. High-speed

  5. Modeling Compressibility Effects in High-Speed Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Sarkar, S.

    2004-01-01

    Man has strived to make objects fly faster, first from subsonic to supersonic and then to hypersonic speeds. Spacecraft and high-speed missiles routinely fly at hypersonic Mach numbers, M greater than 5. In defense applications, aircraft reach hypersonic speeds at high altitude and so may civilian aircraft in the future. Hypersonic flight, while presenting opportunities, has formidable challenges that have spurred vigorous research and development, mainly by NASA and the Air Force in the USA. Although NASP, the premier hypersonic concept of the eighties and early nineties, did not lead to flight demonstration, much basic research and technology development was possible. There is renewed interest in supersonic and hypersonic flight with the HyTech program of the Air Force and the Hyper-X program at NASA being examples of current thrusts in the field. At high-subsonic to supersonic speeds, fluid compressibility becomes increasingly important in the turbulent boundary layers and shear layers associated with the flow around aerospace vehicles. Changes in thermodynamic variables: density, temperature and pressure, interact strongly with the underlying vortical, turbulent flow. The ensuing changes to the flow may be qualitative such as shocks which have no incompressible counterpart, or quantitative such as the reduction of skin friction with Mach number, large heat transfer rates due to viscous heating, and the dramatic reduction of fuel/oxidant mixing at high convective Mach number. The peculiarities of compressible turbulence, so-called compressibility effects, have been reviewed by Fernholz and Finley. Predictions of aerodynamic performance in high-speed applications require accurate computational modeling of these "compressibility effects" on turbulence. During the course of the project we have made fundamental advances in modeling the pressure-strain correlation and developed a code to evaluate alternate turbulence models in the compressible shear layer.

  6. Influence of Tool Balancing in High Speed Machining

    NASA Astrophysics Data System (ADS)

    Bašovská, Klaudia; Peterka, Jozef

    2014-12-01

    The high speed machining (HSM) is now considered as one of the key manufacturing technologies for higher throughput and productivity. HSM used higher rotational speed of the spindle (40,000 min-1 and higher). With increasing high speed spindle rotations raises a number of dynamic forces. Even a small mass unbalance in the spindle and tooling generates tool vibration. Tool vibration shortens tool life and lowers the quality of the machined surface. It is necessary to minimize this vibration by balancing tool and tool holder. The balancing process improves the mass distribution of a cutting tool and its holder, allowing the combination of the two to rotate with the minimum amount of unbalanced centrifugal forces. Machining with balanced tool will provide better surface quality, accuracy and less tool and machine wear. In this study is focused on unbalance cutting tools, definitions, balancing techniques, sources, effects, processes and machineries. The aim of this article was to examine the relationship between unbalance and tool holders used in high speed metalworking machine tools

  7. High speed intravascular photoacoustic imaging of atherosclerotic arteries (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Piao, Zhonglie; Ma, Teng; Qu, Yueqiao; Li, Jiawen; Yu, Mingyue; He, Youmin; Shung, K. Kirk; Zhou, Qifa; Kim, Chang-Seok; Chen, Zhongping

    2016-02-01

    Cardiovascular disease is the leading cause of death in the industrialized nations. Accurate quantification of both the morphology and composition of lipid-rich vulnerable atherosclerotic plaque are essential for early detection and optimal treatment in clinics. In previous works, intravascular photoacoustic (IVPA) imaging for detection of lipid-rich plaque within coronary artery walls has been demonstrated in ex vivo, but the imaging speed is still limited. In order to increase the imaging speed, a high repetition rate laser is needed. In this work, we present a high speed integrated IVPA/US imaging system with a 500 Hz optical parametric oscillator laser at 1725 nm. A miniature catheter with 1.0 mm outer diameter was designed with a 200 μm multimode fiber and an ultrasound transducer with 45 MHz center frequency. The fiber was polished at 38 degree and enclosed in a glass capillary for total internal reflection. An optical/electrical rotary junction and pull-back mechanism was applied for rotating and linearly scanning the catheter to obtain three-dimensional imaging. Atherosclerotic rabbit abdominal aorta was imaged as two frame/second at 1725 nm. Furthermore, by wide tuning range of the laser wavelength from 1680 nm to 1770 nm, spectroscopic photoacoustic analysis of lipid-mimicking phantom and an human atherosclerotic artery was performed ex vivo. The results demonstrated that the developed IVPA/US imaging system is capable for high speed intravascular imaging for plaque detection.

  8. Sound transmission loss of windows on high speed trains

    NASA Astrophysics Data System (ADS)

    Zhang, Yumei; Xiao, Xinbiao; Thompson, David; Squicciarini, Giacomo; Wen, Zefeng; Li, Zhihui; Wu, Yue

    2016-09-01

    The window is one of the main components of the high speed train car body structure through which noise can be transmitted. To study the windows’ acoustic properties, the vibration of one window of a high speed train has been measured for a running speed of 250 km/h. The corresponding interior noise and the noise in the wheel-rail area have been measured simultaneously. The experimental results show that the window vibration velocity has a similar spectral shape to the interior noise. Interior noise source identification further indicates that the window makes a contribution to the interior noise. Improvement of the window's Sound Transmission Loss (STL) can reduce the interior noise from this transmission path. An STL model of the window is built based on wave propagation and modal superposition methods. From the theoretical results, the window's STL property is studied and several factors affecting it are investigated, which provide indications for future low noise design of high speed train windows.

  9. High-speed, efficient metal - semiconductor - metal photodetectors

    SciTech Connect

    Collin, St; Pardo, F; Bardou, N; Pelouard, J.-L.; Averin, S V

    2010-08-03

    Design principles and the fabrication technique of highly efficient, high-speed photodetectors based on MSM nanostructures are developed. To efficiently confine light in the region of the strong field as well as to decrease light losses due to reflection from the diode contacts, use is made of a nanoscale interdigital diffraction grating and a multilayer Bragg grating. Measurements of the reflection coefficients and the quantum efficiency for a multilayer structure are in good agreement with theoretical estimates. A record-high quantum efficiency (QE = 46 %) is obtained for high speed MSM photodetectors. The detector has a high spectral selectivity ({Delta}{lambda}{sub 1/2} = 17 nm) at a wavelength of 800 nm. Taking into account the diode capacitance and the drift time of photogenerated carriers, the performance of the detectors under study is {approx} 500 GHz. The low level of the dark current density in the structures under study (j={sup 1} pA {mu}m{sup -2}) makes it possible to realise on their basis highly sensitive, high-speed selective detectors of optical radiation.

  10. Noise isolation system for high-speed circuits

    DOEpatents

    McNeilly, David R.

    1986-01-01

    A noise isolation circuit is provided that consists of a dual function bypass which confines high-speed switching noise to the component or circuit which generates it and isolates the component or circuit from high-frequency noise transients which may be present on the ground and power supply busses. A local circuit ground is provided which is coupled to the system ground by sufficient impedance to force the dissipation of the noise signal in the local circuit or component generating the noise. The dual function bypass network couples high-frequency noise signals generated in the local component or circuit through a capacitor to the local ground while isolating the component or circuit from noise signals which may be present on the power supply busses or system ground. The network is an effective noise isolating system and is applicable to both high-speed analog and digital circuits.

  11. Noise isolation system for high-speed circuits

    DOEpatents

    McNeilly, D.R.

    1983-12-29

    A noise isolation circuit is provided that consists of a dual function bypass which confines high-speed switching noise to the component or circuit which generates it and isolates the component or circuit from high-frequency noise transients which may be present on the ground and power supply busses. A local circuit ground is provided which is coupled to the system ground by sufficient impedance to force the dissipation of the noise signal in the local circuit or component generating the noise. The dual function bypass network couples high-frequency noise signals generated in the local component or circuit through a capacitor to the local ground while isolating the component or circuit from noise signals which may be present on the power supply busses or system ground. The network is an effective noise isolating system and is applicable to both high-speed analog and digital circuits.

  12. High speed fiber grating sensors for structural monitoring

    NASA Astrophysics Data System (ADS)

    Udd, Eric

    2014-06-01

    This paper provides an overview of selected applications of high speed structural monitoring using fiber grating sensors. Rapid and effective diagnostic capabilities are necessary to respond to changes in structural integrity that may affect safety. In the case of aerospace structures operating at high velocity rapid response has the potential to mitigate catastrophic failure. Similar safety issues apply to civil structures where timely decisions are critical to operations of bridges, dams and buildings. Rapid responses for oil and gas, medical and environmental monitoring applications are also highly important. A great deal of progress has been made in improving the quality and capabilities of high speed fiber grating sensor systems. Some of these systems will be discussed.

  13. A 0.13µm CMOS Bluetooth EDR Transceiver with High Sensitivity over Wide Temperature Range and Immunity to Process Variation

    NASA Astrophysics Data System (ADS)

    Agawa, Kenichi; Ishizuka, Shinichiro; Majima, Hideaki; Kobayashi, Hiroyuki; Koizumi, Masayuki; Nagano, Takeshi; Arai, Makoto; Shimizu, Yutaka; Maki, Asuka; Urakawa, Go; Terada, Tadashi; Itoh, Nobuyuki; Hamada, Mototsugu; Fujii, Fumie; Kato, Tadamasa; Yoshitomi, Sadayuki; Otsuka, Nobuaki

    A 2.4GHz 0.13µm CMOS transceiver LSI, supporting Bluetooth V2.1 + enhanced data rate (EDR) standard, has achieved a high reception sensitivity and high-quality transmission signals between -40°C and +90°C. A low-IF receiver and direct-conversion transmitter architecture are employed. A temperature compensated receiver chain including a low-noise amplifier accomplishes a sensitivity of -90dBm at frequency shift keying modulation even in the worst environmental condition. Design optimization of phase noise in a local oscillator and linearity of a power amplifier improves transmission signals and enables them to meet Bluetooth radio specifications. Fabrication in scaled 0.13µm CMOS and operation at a low supply voltage of 1.5V result in small area and low power consumption.

  14. Galvanometer deflection: a precision high-speed system.

    PubMed

    Jablonowski, D P; Raamot, J

    1976-06-01

    An X-Y galvanometer deflection system capable of high precision in a random access mode of operation is described. Beam positional information in digitized form is obtained by employing a Ronchi grating with a sophisticated optical detection scheme. This information is used in a control interface to locate the beam to the required precision. The system is characterized by high accuracy at maximum speed and is designed for operation in a variable environment, with particular attention placed on thermal insensitivity.

  15. Elements of NASA's high-speed research program

    NASA Technical Reports Server (NTRS)

    Darden, Christine M.; Olson, Erik D.; Shields, Elwood W.

    1993-01-01

    A brief description is given of the history of supersonic transport research, of feasibility studies commissioned by NASA in 1986, and of the NASA High-Speed Research Program which is an outgrowth of those feasibility studies. The paper places particular emphasis on airport and community-noise reduction through advanced takeoff procedures and high-lift devices and sonic-boom reduction through configuration design. Sonic-boom acceptability studies and atmospheric propagation methods are also discussed.

  16. Plant Gas Exchange at High Wind Speeds 1

    PubMed Central

    Caldwell, Martyn M.

    1970-01-01

    High altitude Rhododendron ferrugineum L. and Pinus cembra L. seedlings were exposed to winds at 15 meters per second for 24-hour periods. Wind-sensitive stomata of Rhododendron seedlings immediately initiated a closing response which resulted in decreased photosynthesis and an even greater reduction in transpiration. Stomatal aperture and transpiration rates of P. cembra were only slightly reduced by high speed winds. However, photosynthesis was substantially reduced because of changes in needle display to available irradiation. PMID:16657501

  17. Galvanometer deflection: a precision high-speed system.

    PubMed

    Jablonowski, D P; Raamot, J

    1976-06-01

    An X-Y galvanometer deflection system capable of high precision in a random access mode of operation is described. Beam positional information in digitized form is obtained by employing a Ronchi grating with a sophisticated optical detection scheme. This information is used in a control interface to locate the beam to the required precision. The system is characterized by high accuracy at maximum speed and is designed for operation in a variable environment, with particular attention placed on thermal insensitivity. PMID:20165203

  18. VERY HIGH-SPEED DRILL STRING COMMUNICATIONS NETWORK

    SciTech Connect

    David S. Pixton

    2002-11-01

    Testing of a high-speed digital data transmission system for drill pipe is described. Passive transmission of digital data through 1000 ft of telemetry drill pipe has been successfully achieved. Data rates of up to 2 Mbit/sec have been tested through the 1000 ft system with very low occurrence of data errors: required error correction effort is very low or nonexistent. Further design modifications have been made to improve manufacturability and high pressure robustness of the transmission line components. Failure mechanisms of previous designs at high pressure and high temperature are described. Present design limitations include high temperature application.

  19. Integrated 3D porous C-MoS2/nitrogen-doped graphene electrode for high capacity and prolonged stability lithium storage

    NASA Astrophysics Data System (ADS)

    Xie, D.; Tang, W. J.; Xia, X. H.; Wang, D. H.; Zhou, D.; Shi, F.; Wang, X. L.; Gu, C. D.; Tu, J. P.

    2015-11-01

    Scrupulous design and fabrication of advanced anode materials are of great importance for developing high-performance lithium ion batteries. Herein, we report a facile strategy for construction of free-standing and free-binder 3D porous carbon coated MoS2/nitrogen-doped graphene (C-MoS2/N-G) integrated electrode via a hydrothermal-induced self-assembly process. The preformed carbon coated MoS2 is strongly anchored on the porous nitrogen-doped graphene aerogel architecture. As an anode for lithium ion batteries, the C-MoS2/N-G electrode delivers a high first discharge capacity of 1600 mAh g-1 and maintains 900 mAh g-1 after 500 cycles at a current density of 200 mA g-1. Impressively, superior high-rate capability is achieved for the C-MoS2/N-G with a reversible capacity of 500 mAh g-1 at a high current density of 4000 mA g-1. Furthermore, the lithium storage mechanism of the obtained integrated electrode is investigated by ex-situ X-ray photoelectron spectroscopy and transmission electron microscopy in detail.

  20. Multivariable Techniques for High-Speed Research Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Newman, Brett A.

    1999-01-01

    This report describes the activities and findings conducted under contract with NASA Langley Research Center. Subject matter is the investigation of suitable multivariable flight control design methodologies and solutions for large, flexible high-speed vehicles. Specifically, methodologies are to address the inner control loops used for stabilization and augmentation of a highly coupled airframe system possibly involving rigid-body motion, structural vibrations, unsteady aerodynamics, and actuator dynamics. Design and analysis techniques considered in this body of work are both conventional-based and contemporary-based, and the vehicle of interest is the High-Speed Civil Transport (HSCT). Major findings include: (1) control architectures based on aft tail only are not well suited for highly flexible, high-speed vehicles, (2) theoretical underpinnings of the Wykes structural mode control logic is based on several assumptions concerning vehicle dynamic characteristics, and if not satisfied, the control logic can break down leading to mode destabilization, (3) two-loop control architectures that utilize small forward vanes with the aft tail provide highly attractive and feasible solutions to the longitudinal axis control challenges, and (4) closed-loop simulation sizing analyses indicate the baseline vane model utilized in this report is most likely oversized for normal loading conditions.