NASA Astrophysics Data System (ADS)
Wang, Zhifan; Wang, Fan
2018-04-01
The equation-of-motion coupled-cluster method for ionised states at the singles and doubles level (EOM-IP-CCSD) with spin-orbit coupling (SOC) included in post-Hartree-Fock (HF) steps is extended to spatially non-degenerate open-shell systems such as high spin states of s1, p3, σ1 or π2 configuration in this work. Pseudopotentials are employed to treat relativistic effects and spin-unrestricted scalar relativistic HF determinant is adopted as reference in calculations. Symmetry is not exploited in the implementation since both time-reversal and spatial symmetry is broken due to SOC. IPs with the EOM-IP-CCSD approach are those from the 3Σ1- states for high spin state of π2 configuration, while the ground state is the 3Σ0- state. When removing an electron from the high spin state of p3 configuration, only the 3P2 state can be reached. The open-shell EOM-IP-CCSD approach with SOC was employed in calculating IPs of some open-shell atoms with s1 configuration, diatomic molecules with π2 configuration and SOC splitting of the ionised π1 state, as well as IPs of VA atoms with p3 configuration. Our results demonstrate that this approach can be applied to ionised states of spatially non-degenerate open-shell states containing heavy elements with reasonable accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datta, Dipayan, E-mail: datta.dipayan@gmail.com; Gauss, Jürgen, E-mail: gauss@uni-mainz.de
We report analytical calculations of isotropic hyperfine-coupling constants in radicals using a spin-adapted open-shell coupled-cluster theory, namely, the unitary group based combinatoric open-shell coupled-cluster (COSCC) approach within the singles and doubles approximation. A scheme for the evaluation of the one-particle spin-density matrix required in these calculations is outlined within the spin-free formulation of the COSCC approach. In this scheme, the one-particle spin-density matrix for an open-shell state with spin S and M{sub S} = + S is expressed in terms of the one- and two-particle spin-free (charge) density matrices obtained from the Lagrangian formulation that is used for calculating themore » analytic first derivatives of the energy. Benchmark calculations are presented for NO, NCO, CH{sub 2}CN, and two conjugated π-radicals, viz., allyl and 1-pyrrolyl in order to demonstrate the performance of the proposed scheme.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giner, Emmanuel, E-mail: gnrmnl@unife.it; Angeli, Celestino, E-mail: anc@unife.it
2016-03-14
The present work describes a new method to compute accurate spin densities for open shell systems. The proposed approach follows two steps: first, it provides molecular orbitals which correctly take into account the spin delocalization; second, a proper CI treatment allows to account for the spin polarization effect while keeping a restricted formalism and avoiding spin contamination. The main idea of the optimization procedure is based on the orbital relaxation of the various charge transfer determinants responsible for the spin delocalization. The algorithm is tested and compared to other existing methods on a series of organic and inorganic open shellmore » systems. The results reported here show that the new approach (almost black-box) provides accurate spin densities at a reasonable computational cost making it suitable for a systematic study of open shell systems.« less
NASA Astrophysics Data System (ADS)
Hansen, Andreas; Liakos, Dimitrios G.; Neese, Frank
2011-12-01
A production level implementation of the high-spin open-shell (spin unrestricted) single reference coupled pair, quadratic configuration interaction and coupled cluster methods with up to doubly excited determinants in the framework of the local pair natural orbital (LPNO) concept is reported. This work is an extension of the closed-shell LPNO methods developed earlier [F. Neese, F. Wennmohs, and A. Hansen, J. Chem. Phys. 130, 114108 (2009), 10.1063/1.3086717; F. Neese, A. Hansen, and D. G. Liakos, J. Chem. Phys. 131, 064103 (2009), 10.1063/1.3173827]. The internal space is spanned by localized orbitals, while the external space for each electron pair is represented by a truncated PNO expansion. The laborious integral transformation associated with the large number of PNOs becomes feasible through the extensive use of density fitting (resolution of the identity (RI)) techniques. Technical complications arising for the open-shell case and the use of quasi-restricted orbitals for the construction of the reference determinant are discussed in detail. As in the closed-shell case, only three cutoff parameters control the average number of PNOs per electron pair, the size of the significant pair list, and the number of contributing auxiliary basis functions per PNO. The chosen threshold default values ensure robustness and the results of the parent canonical methods are reproduced to high accuracy. Comprehensive numerical tests on absolute and relative energies as well as timings consistently show that the outstanding performance of the LPNO methods carries over to the open-shell case with minor modifications. Finally, hyperfine couplings calculated with the variational LPNO-CEPA/1 method, for which a well-defined expectation value type density exists, indicate the great potential of the LPNO approach for the efficient calculation of molecular properties.
First-order symmetry-adapted perturbation theory for multiplet splittings.
Patkowski, Konrad; Żuchowski, Piotr S; Smith, Daniel G A
2018-04-28
We present a symmetry-adapted perturbation theory (SAPT) for the interaction of two high-spin open-shell molecules (described by their restricted open-shell Hartree-Fock determinants) resulting in low-spin states of the complex. The previously available SAPT formalisms, except for some system-specific studies for few-electron complexes, were restricted to the high-spin state of the interacting system. Thus, the new approach provides, for the first time, a SAPT-based estimate of the splittings between different spin states of the complex. We have derived and implemented the lowest-order SAPT term responsible for these splittings, that is, the first-order exchange energy. We show that within the so-called S 2 approximation commonly used in SAPT (neglecting effects that vanish as fourth or higher powers of intermolecular overlap integrals), the first-order exchange energies for all multiplets are linear combinations of two matrix elements: a diagonal exchange term that determines the spin-averaged effect and a spin-flip term responsible for the splittings between the states. The numerical factors in this linear combination are determined solely by the Clebsch-Gordan coefficients: accordingly, the S 2 approximation implies a Heisenberg Hamiltonian picture with a single coupling strength parameter determining all the splittings. The new approach is cast into both molecular-orbital and atomic-orbital expressions: the latter enable an efficient density-fitted implementation. We test the newly developed formalism on several open-shell complexes ranging from diatomic systems (Li⋯H, Mn⋯Mn, …) to the phenalenyl dimer.
First-order symmetry-adapted perturbation theory for multiplet splittings
NASA Astrophysics Data System (ADS)
Patkowski, Konrad; Żuchowski, Piotr S.; Smith, Daniel G. A.
2018-04-01
We present a symmetry-adapted perturbation theory (SAPT) for the interaction of two high-spin open-shell molecules (described by their restricted open-shell Hartree-Fock determinants) resulting in low-spin states of the complex. The previously available SAPT formalisms, except for some system-specific studies for few-electron complexes, were restricted to the high-spin state of the interacting system. Thus, the new approach provides, for the first time, a SAPT-based estimate of the splittings between different spin states of the complex. We have derived and implemented the lowest-order SAPT term responsible for these splittings, that is, the first-order exchange energy. We show that within the so-called S2 approximation commonly used in SAPT (neglecting effects that vanish as fourth or higher powers of intermolecular overlap integrals), the first-order exchange energies for all multiplets are linear combinations of two matrix elements: a diagonal exchange term that determines the spin-averaged effect and a spin-flip term responsible for the splittings between the states. The numerical factors in this linear combination are determined solely by the Clebsch-Gordan coefficients: accordingly, the S2 approximation implies a Heisenberg Hamiltonian picture with a single coupling strength parameter determining all the splittings. The new approach is cast into both molecular-orbital and atomic-orbital expressions: the latter enable an efficient density-fitted implementation. We test the newly developed formalism on several open-shell complexes ranging from diatomic systems (Li⋯H, Mn⋯Mn, …) to the phenalenyl dimer.
Charge and Spin Currents in Open-Shell Molecules: A Unified Description of NMR and EPR Observables.
Soncini, Alessandro
2007-11-01
The theory of EPR hyperfine coupling tensors and NMR nuclear magnetic shielding tensors of open-shell molecules in the limit of vanishing spin-orbit coupling (e.g., for organic radicals) is analyzed in terms of spin and charge current density vector fields. The ab initio calculation of the spin and charge current density response has been implemented at the Restricted Open-Shell Hartree-Fock, Unrestricted Hartree-Fock, and unrestricted GGA-DFT level of theory. On the basis of this formalism, we introduce the definition of nuclear hyperfine coupling density, a scalar function of position providing a partition of the EPR observable over the molecular domain. Ab initio maps of spin and charge current density and hyperfine coupling density for small radicals are presented and discussed in order to illustrate the interpretative advantages of the newly introduced approach. Recent NMR experiments providing evidence for the existence of diatropic ring currents in the open-shell singlet pancake-bonded dimer of the neutral phenalenyl radical are directly assessed via the visualization of the induced current density.
Exploring Closed-Shell Cationic Phenalenyl: From Catalysis to Spin Electronics.
Mukherjee, Arup; Sau, Samaresh Chandra; Mandal, Swadhin K
2017-07-18
The odd alternant hydrocarbon phenalenyl (PLY) can exist in three different forms, a closed-shell cation, an open-shell radical, and a closed-shell anion, using its nonbonding molecular orbital (NBMO). The chemistry of PLY-based molecules began more than five decades ago, and so far, the progress has mainly involved the open-shell neutral radical state. Over the last two decades, we have witnessed the evolution of a range of PLY-based radicals generating an array of multifunctional materials. However, it has been admitted that the practical applications of PLY radicals are greatly challenged by the low stability of the open-shell (radical) state. Recently, we took a different route to establish the utility of these PLY molecules using the closed-shell cationic state. In such a design, the closed-shell unit of PLY can readily accept free electrons, stabilizing in its NBMO upon generation of the open-shell state of the molecule. Thus, one can synthetically avoid the unstable open-shell state but still take advantage of this state by in situ generating the radical through external electron transfer or spin injection into the empty NBMO. It is worth noting that such approaches using closed-shell phenalenyl have been missing in the literature. This Account focuses on our recent developments using the closed-shell cationic state of the PLY molecule and its application in broad multidisciplinary areas spanning from catalysis to spin electronics. We describe how this concept has been utilized to develop a variety of homogeneous catalysts. For example, this concept was used in designing an iron(III) PLY-based electrocatalyst for a single-compartment H 2 O 2 fuel cell, which delivered the best electrocatalytic activity among previously reported iron complexes, organometallic catalysts for various homogeneous organic transformations (hydroamination and polymerization), an organic Lewis acid catalyst for the ring opening of epoxides, and transition-metal-free C-H functionalization catalysts. Moreover, this concept of using the empty NBMO present in the closed-shell cationic state of the PLY moiety to capture electron(s) was further extended to an entirely different area of spin electronics to design a PLY-based spin-memory device, which worked by a spin-filtration mechanism using an organozinc compound based on a PLY backbone deposited over a ferromagnetic substrate. In this Account, we summarize our recent efforts to understand how this unexplored closed-shell state of the phenalenyl molecule, which has been known for over five decades, can be utilized in devising an array of materials that not only are important from an organometallic chemistry or organic chemistry point of view but also provide new understanding for device physics.
Luo, Yang-Hui; Wang, Jing-Wen; Wang, Wen; He, Xiao-Tong; Hong, Dan-Li; Chen, Chen; Xu, Tao; Shao, Qiyue; Sun, Bai-Wang
2018-05-16
Bidirectional photoswitching of molecular materials under ambient condition is of significant importance. Herein, we present for the first time that a core-shell UCNP-SCO nanosphere (UCNP = upconversion nanophosphor, SCO = spin crossover), which was composed of a UCNP core (NaYF 4 : 20 mol % Yb 3+ , 1 mol % Er 3+ ) and an SCO iron(II) shell ([Fe(H 2 Bpz) 2 (bipy-COOH)], H 2 Bpz = dihydrobis(1-pyrazolyl)borate, bipy-COOH = 4,4'-dicarboxy-2,2'-bipyridine), can be reversibly photoswitched between the high-spin and low-spin states at room temperature in the solid state, via alternating irradiation with near-infrared (λ = 980 nm) and ultraviolet (λ = 310 nm) light. What's more, this reversible spin-state switching was accompanied by a variation of fluorescent spectrum and dielectric constants. The strategy here, that is, integrating the SCO iron(II) complex into a UCNP-SCO nanosphere for molecular photoswitching, may open a new area in the development of photocontrolled molecular devices.
Li, Zhendong; Liu, Wenjian
2010-08-14
The spin-adaptation of single-reference quantum chemical methods for excited states of open-shell systems has been nontrivial. The primary reason is that the configuration space, generated by a truncated rank of excitations from only one component of a reference multiplet, is spin-incomplete. Those "missing" configurations are of higher ranks and can, in principle, be recaptured by a particular class of excitation operators. However, the resulting formalisms are then quite involved and there are situations [e.g., time-dependent density functional theory (TD-DFT) under the adiabatic approximation] that prevent one from doing so. To solve this issue, we propose here a tensor-coupling scheme that invokes all the components of a reference multiplet (i.e., a tensor reference) rather than increases the excitation ranks. A minimal spin-adapted n-tuply excited configuration space can readily be constructed by tensor products between the n-tuple tensor excitation operators and the chosen tensor reference. Further combined with the tensor equation-of-motion formalism, very compact expressions for excitation energies can be obtained. As a first application of this general idea, a spin-adapted open-shell random phase approximation is first developed. The so-called "translation rule" is then adopted to formulate a spin-adapted, restricted open-shell Kohn-Sham (ROKS)-based TD-DFT (ROKS-TD-DFT). Here, a particular symmetry structure has to be imposed on the exchange-correlation kernel. While the standard ROKS-TD-DFT can access only excited states due to singlet-coupled single excitations, i.e., only some of the singly excited states of the same spin (S(i)) as the reference, the new scheme can capture all the excited states of spin S(i)-1, S(i), or S(i)+1 due to both singlet- and triplet-coupled single excitations. The actual implementation and computation are very much like the (spin-contaminated) unrestricted Kohn-Sham-based TD-DFT. It is also shown that spin-contaminated spin-flip configuration interaction approaches can easily be spin-adapted via the tensor-coupling scheme.
Saitow, Masaaki; Becker, Ute; Riplinger, Christoph; Valeev, Edward F; Neese, Frank
2017-04-28
The Coupled-Cluster expansion, truncated after single and double excitations (CCSD), provides accurate and reliable molecular electronic wave functions and energies for many molecular systems around their equilibrium geometries. However, the high computational cost, which is well-known to scale as O(N 6 ) with system size N, has limited its practical application to small systems consisting of not more than approximately 20-30 atoms. To overcome these limitations, low-order scaling approximations to CCSD have been intensively investigated over the past few years. In our previous work, we have shown that by combining the pair natural orbital (PNO) approach and the concept of orbital domains it is possible to achieve fully linear scaling CC implementations (DLPNO-CCSD and DLPNO-CCSD(T)) that recover around 99.9% of the total correlation energy [C. Riplinger et al., J. Chem. Phys. 144, 024109 (2016)]. The production level implementations of the DLPNO-CCSD and DLPNO-CCSD(T) methods were shown to be applicable to realistic systems composed of a few hundred atoms in a routine, black-box fashion on relatively modest hardware. In 2011, a reduced-scaling CCSD approach for high-spin open-shell unrestricted Hartree-Fock reference wave functions was proposed (UHF-LPNO-CCSD) [A. Hansen et al., J. Chem. Phys. 135, 214102 (2011)]. After a few years of experience with this method, a few shortcomings of UHF-LPNO-CCSD were noticed that required a redesign of the method, which is the subject of this paper. To this end, we employ the high-spin open-shell variant of the N-electron valence perturbation theory formalism to define the initial guess wave function, and consequently also the open-shell PNOs. The new PNO ansatz properly converges to the closed-shell limit since all truncations and approximations have been made in strict analogy to the closed-shell case. Furthermore, given the fact that the formalism uses a single set of orbitals, only a single PNO integral transformation is necessary, which offers large computational savings. We show that, with the default PNO truncation parameters, approximately 99.9% of the total CCSD correlation energy is recovered for open-shell species, which is comparable to the performance of the method for closed-shells. UHF-DLPNO-CCSD shows a linear scaling behavior for closed-shell systems, while linear to quadratic scaling is obtained for open-shell systems. The largest systems we have considered contain more than 500 atoms and feature more than 10 000 basis functions with a triple-ζ quality basis set.
NASA Astrophysics Data System (ADS)
Saitow, Masaaki; Becker, Ute; Riplinger, Christoph; Valeev, Edward F.; Neese, Frank
2017-04-01
The Coupled-Cluster expansion, truncated after single and double excitations (CCSD), provides accurate and reliable molecular electronic wave functions and energies for many molecular systems around their equilibrium geometries. However, the high computational cost, which is well-known to scale as O(N6) with system size N, has limited its practical application to small systems consisting of not more than approximately 20-30 atoms. To overcome these limitations, low-order scaling approximations to CCSD have been intensively investigated over the past few years. In our previous work, we have shown that by combining the pair natural orbital (PNO) approach and the concept of orbital domains it is possible to achieve fully linear scaling CC implementations (DLPNO-CCSD and DLPNO-CCSD(T)) that recover around 99.9% of the total correlation energy [C. Riplinger et al., J. Chem. Phys. 144, 024109 (2016)]. The production level implementations of the DLPNO-CCSD and DLPNO-CCSD(T) methods were shown to be applicable to realistic systems composed of a few hundred atoms in a routine, black-box fashion on relatively modest hardware. In 2011, a reduced-scaling CCSD approach for high-spin open-shell unrestricted Hartree-Fock reference wave functions was proposed (UHF-LPNO-CCSD) [A. Hansen et al., J. Chem. Phys. 135, 214102 (2011)]. After a few years of experience with this method, a few shortcomings of UHF-LPNO-CCSD were noticed that required a redesign of the method, which is the subject of this paper. To this end, we employ the high-spin open-shell variant of the N-electron valence perturbation theory formalism to define the initial guess wave function, and consequently also the open-shell PNOs. The new PNO ansatz properly converges to the closed-shell limit since all truncations and approximations have been made in strict analogy to the closed-shell case. Furthermore, given the fact that the formalism uses a single set of orbitals, only a single PNO integral transformation is necessary, which offers large computational savings. We show that, with the default PNO truncation parameters, approximately 99.9% of the total CCSD correlation energy is recovered for open-shell species, which is comparable to the performance of the method for closed-shells. UHF-DLPNO-CCSD shows a linear scaling behavior for closed-shell systems, while linear to quadratic scaling is obtained for open-shell systems. The largest systems we have considered contain more than 500 atoms and feature more than 10 000 basis functions with a triple-ζ quality basis set.
Si, Dejun; Li, Hui
2011-10-14
The analytic energy gradients in combined second order Møller-Plesset perturbation theory and conductorlike polarizable continuum model calculations are derived and implemented for spin-restricted closed shell (RMP2), Z-averaged spin-restricted open shell (ZAPT2), and spin-unrestricted open shell (UMP2) cases. Using these methods, the geometries of the S(0) ground state and the T(1) state of three nucleobase pairs (guanine-cytosine, adenine-thymine, and adenine-uracil) in the gas phase and aqueous solution phase are optimized. It is found that in both the gas phase and the aqueous solution phase the hydrogen bonds in the T(1) state pairs are weakened by ~1 kcal/mol as compared to those in the S(0) state pairs. © 2011 American Institute of Physics
Datta, Dipayan; Mukherjee, Debashis
2009-07-28
In this paper, we present a comprehensive account of an explicitly spin-free compact state-universal multireference coupled cluster (CC) formalism for computing the state energies of simple open-shell systems, e.g., doublets and biradicals, where the target open-shell states can be described by a few configuration state functions spanning a model space. The cluster operators in this formalism are defined in terms of the spin-free unitary generators with respect to the common closed-shell component of all model functions (core) as vacuum. The spin-free cluster operators are either closed-shell-like n hole-n particle excitations (denoted by T(mu)) or involve excitations from the doubly occupied (nonvalence) orbitals to the singly occupied (valence) orbitals (denoted by S(e)(mu)). In addition, there are cluster operators with exchange spectator scatterings involving the valence orbitals (denoted by S(re)(mu)). We propose a new multireference cluster expansion ansatz for the wave operator with the above generally noncommuting cluster operators which essentially has the same physical content as the Jeziorski-Monkhorst ansatz with the commuting cluster operators defined in the spin-orbital basis. The T(mu) operators in our ansatz are taken to commute with all other operators, while the S(e)(mu) and S(re)(mu) operators are allowed to contract among themselves through the spectator valence orbitals. An important innovation of this ansatz is the choice of an appropriate automorphic factor accompanying each contracted composite of cluster operators in order to ensure that each distinct excitation generated by this composite appears only once in the wave operator. The resulting CC equations consist of two types of terms: a "direct" term and a "normalization" term containing the effective Hamiltonian operator. It is emphasized that the direct term is almost quartic in the cluster amplitudes, barring only a handful of terms and termination of the normalization term depends on the valence rank of the effective Hamiltonian operator and the excitation rank of the cluster operators at which the theory is truncated. Illustrative applications are presented by computing the state energies of neutral doublet radicals and doublet molecular cations and ionization energies of neutral molecules and comparing our results with the other open-shell CC theories, benchmark full CI results (when available) in the same basis, and the experimental results. Highly encouraging results show the efficacy of the method.
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Arnold, James O. (Technical Monitor)
1994-01-01
A new spin orbital basis is employed in the development of efficient open-shell coupled-cluster and perturbation theories that are based on a restricted Hartree-Fock (RHF) reference function. The spin orbital basis differs from the standard one in the spin functions that are associated with the singly occupied spatial orbital. The occupied orbital (in the spin orbital basis) is assigned the delta(+) = 1/square root of 2(alpha+Beta) spin function while the unoccupied orbital is assigned the delta(-) = 1/square root of 2(alpha-Beta) spin function. The doubly occupied and unoccupied orbitals (in the reference function) are assigned the standard alpha and Beta spin functions. The coupled-cluster and perturbation theory wave functions based on this set of "symmetric spin orbitals" exhibit much more symmetry than those based on the standard spin orbital basis. This, together with interacting space arguments, leads to a dramatic reduction in the computational cost for both coupled-cluster and perturbation theory. Additionally, perturbation theory based on "symmetric spin orbitals" obeys Brillouin's theorem provided that spin and spatial excitations are both considered. Other properties of the coupled-cluster and perturbation theory wave functions and models will be discussed.
rPM6 parameters for phosphorous and sulphur-containing open-shell molecules
NASA Astrophysics Data System (ADS)
Saito, Toru; Takano, Yu
2018-03-01
In this article, we have introduced a reparameterisation of PM6 (rPM6) for phosphorus and sulphur to achieve a better description of open-shell species containing the two elements. Two sets of the parameters have been optimised separately using our training sets. The performance of the spin-unrestricted rPM6 (UrPM6) method with the optimised parameters is evaluated against 14 radical species, which contain either phosphorus or sulphur atom, comparing with the original UPM6 and the spin-unrestricted density functional theory (UDFT) methods. The standard UPM6 calculations fail to describe the adiabatic singlet-triplet energy gaps correctly, and may cause significant structural mismatches with UDFT-optimised geometries. Leaving aside three difficult cases, tests on 11 open-shell molecules strongly indicate the superior performance of UrPM6, which provides much better agreement with the results of UDFT methods for geometric and electronic properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datta, Dipayan, E-mail: datta@uni-mainz.de; Gauss, Jürgen, E-mail: gauss@uni-mainz.de
2014-09-14
An analytic scheme is presented for the evaluation of first derivatives of the energy for a unitary group based spin-adapted coupled cluster (CC) theory, namely, the combinatoric open-shell CC (COSCC) approach within the singles and doubles approximation. The widely used Lagrange multiplier approach is employed for the derivation of an analytical expression for the first derivative of the energy, which in combination with the well-established density-matrix formulation, is used for the computation of first-order electrical properties. Derivations of the spin-adapted lambda equations for determining the Lagrange multipliers and the expressions for the spin-free effective density matrices for the COSCC approachmore » are presented. Orbital-relaxation effects due to the electric-field perturbation are treated via the Z-vector technique. We present calculations of the dipole moments for a number of doublet radicals in their ground states using restricted open-shell Hartree-Fock (ROHF) and quasi-restricted HF (QRHF) orbitals in order to demonstrate the applicability of our analytic scheme for computing energy derivatives. We also report calculations of the chlorine electric-field gradients and nuclear quadrupole-coupling constants for the CCl, CH{sub 2}Cl, ClO{sub 2}, and SiCl radicals.« less
Boisdenghien, Zino; Fias, Stijn; Van Alsenoy, Christian; De Proft, Frank; Geerlings, Paul
2014-07-28
Most of the work done on the linear response kernel χ(r,r') has focussed on its atom-atom condensed form χAB. Our previous work [Boisdenghien et al., J. Chem. Theory Comput., 2013, 9, 1007] was the first effort to truly focus on the non-condensed form of this function for closed (sub)shell atoms in a systematic fashion. In this work, we extend our method to the open shell case. To simplify the plotting of our results, we average our results to a symmetrical quantity χ(r,r'). This allows us to plot the linear response kernel for all elements up to and including argon and to investigate the periodicity throughout the first three rows in the periodic table and in the different representations of χ(r,r'). Within the context of Spin Polarized Conceptual Density Functional Theory, the first two-dimensional plots of spin polarized linear response functions are presented and commented on for some selected cases on the basis of the atomic ground state electronic configurations. Using the relation between the linear response kernel and the polarizability we compare the values of the polarizability tensor calculated using our method to high-level values.
NASA Astrophysics Data System (ADS)
Fawzy, Wafaa M.
2010-10-01
A FORTRAN code is developed for simulation and fitting the fine structure of a planar weakly-bonded open-shell complex that consists of a diatomic radical in a Σ3 electronic state and a diatomic or a polyatomic closed-shell molecule. The program sets up the proper total Hamiltonian matrix for a given J value and takes account of electron-spin-electron-spin, electron-spin rotation interactions, and the quartic and sextic centrifugal distortion terms within the complex. Also, R-dependence of electron-spin-electron-spin and electron-spin rotation couplings are considered. The code does not take account of effects of large-amplitude internal rotation of the diatomic radical within the complex. It is assumed that the complex has a well defined equilibrium geometry so that effects of large amplitude motion are negligible. Therefore, the computer code is suitable for a near-rigid rotor. Numerical diagonalization of the matrix provides the eigenvalues and the eigenfunctions that are necessary for calculating energy levels, frequencies, relative intensities of infrared or microwave transitions, and expectation values of the quantum numbers within the complex. Goodness of all the quantum numbers, with exception of J and parity, depends on relative sizes of the product of the rotational constants and quantum numbers (i.e. BJ, CJ, and AK), electron-spin-electron-spin, and electron-spin rotation couplings, as well as the geometry of the complex. Therefore, expectation values of the quantum numbers are calculated in the eigenfunctions basis of the complex. The computational time for the least squares fits has been significantly reduced by using the Hellman-Feynman theory for calculating the derivatives. The computer code is useful for analysis of high resolution infrared and microwave spectra of a planar near-rigid weakly-bonded open-shell complex that contains a diatomic fragment in a Σ3 electronic state and a closed-shell molecule. The computer program was successfully applied to analysis and fitting the observed high resolution infrared spectra of the O 2sbnd HF/O 2sbnd DF and O 2sbnd N 2O complexes. Test input file for simulation and fitting the high resolution infrared spectrum of the O 2sbnd DF complex is provided. Program summaryProgram title: TSIG_COMP Catalogue identifier: AEGM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 10 030 No. of bytes in distributed program, including test data, etc.: 51 663 Distribution format: tar.gz Programming language: Fortran 90, free format Computer: SGI Origin 3400, workstations and PCs Operating system: Linux, UNIX and Windows (see Restrictions below) RAM: Case dependent Classification: 16.2 Nature of problem: TSIG_COMP calculates frequencies, relative intensities, and expectation values of the various quantum numbers and parities of bound states involved in allowed ro-vibrational transitions in semi-rigid planar weakly-bonded open-shell complexes. The complexes of interest contain a free radical in a Σ3 state and a closed-shell partner, where the electron-spin-electron-spin interaction, electron-spin rotation interaction, and centrifugal forces significantly modify the spectral patterns. To date, ab initio methods are incapable of taking these effects into account to provide accurate predictions for the ro-vibrational energy levels of the complexes of interest. In the TSIG_COMP program, the problem is solved by using the proper effective Hamiltonian and molecular basis set. Solution method: The program uses a Hamiltonian operator that takes into account vibration, end-over-end rotation, electron-spin-electron-spin and electron-spin rotation interactions as well as the various centrifugal distortion terms. The Hamiltonian operator and the molecular basis set are used to set up the Hamiltonian matrix in the inertial axis system of the complex of interest. Diagonalization of the Hamiltonian matrix provides the eigenvalues and the eigenfunctions for the bound ro-vibrational states. These eigenvalues and eigenfunctions are used to calculate frequencies and relative intensities of the allowed infrared or microwave transitions as well as expectation values of all the quantum numbers and parities of states involved in the transitions. The program employs the method of least squares fits to fit the observed frequencies to the calculated frequencies to provide the molecular parameters that determine the geometry of the complex of interest. Restrictions: The number of transitions and parameters included in the fits is limited to 80 parameters and 200 transitions. However, these numbers can be increased by adjusting dimensions of the arrays (not recommended). Running the program under MS windows is recommended for simulations of any number of transitions and for fitting a relatively small number of parameters and transitions (maximum 15 parameters and 82 transitions), for fitting larger number of parameters run time error may occur. Because spectra of weakly bonded complexes are recorded at low temperatures, in most of cases fittings can be performed under MS windows. Running time: Problem-dependent. The provided test input for Linux fits 82 transitions and 21 parameters, the actual run time is 62 minutes. The provided test input file for MS windows fits 82 transitions and 15 parameters; the actual runtime is 5 minutes.
Control of the Speed of a Light-Induced Spin Transition through Mesoscale Core-Shell Architecture.
Felts, Ashley C; Slimani, Ahmed; Cain, John M; Andrus, Matthew J; Ahir, Akhil R; Abboud, Khalil A; Meisel, Mark W; Boukheddaden, Kamel; Talham, Daniel R
2018-05-02
The rate of the light-induced spin transition in a coordination polymer network solid dramatically increases when included as the core in mesoscale core-shell particles. A series of photomagnetic coordination polymer core-shell heterostructures, based on the light-switchable Rb a Co b [Fe(CN) 6 ] c · mH 2 O (RbCoFe-PBA) as core with the isostructural K j Ni k [Cr(CN) 6 ] l · nH 2 O (KNiCr-PBA) as shell, are studied using temperature-dependent powder X-ray diffraction and SQUID magnetometry. The core RbCoFe-PBA exhibits a charge transfer-induced spin transition (CTIST), which can be thermally and optically induced. When coupled to the shell, the rate of the optically induced transition from low spin to high spin increases. Isothermal relaxation from the optically induced high spin state of the core back to the low spin state and activation energies associated with the transition between these states were measured. The presence of a shell decreases the activation energy, which is associated with the elastic properties of the core. Numerical simulations using an electro-elastic model for the spin transition in core-shell particles supports the findings, demonstrating how coupling of the core to the shell changes the elastic properties of the system. The ability to tune the rate of optically induced magnetic and structural phase transitions through control of mesoscale architecture presents a new approach to the development of photoswitchable materials with tailored properties.
Two-nucleon high-spin states, the Bansal-French model and the crude shell model
NASA Astrophysics Data System (ADS)
Chan, Tsan Ung
1987-08-01
Recent data on two-nucleon stretched high-spin states agree well with the crude shell model predictions. For two-neutron high-spin states, the A and T linear dependence of B2n in the Bansal-French model can be deduced from the A and T linear dependence of Bn and the crude shell model. 7-2 states in some Zn and Ge even nuclei might be two-proton states. This hypothesis should be confirmed by two-proton transfer reaction.
Magnetic dipole excitations of 50Cr
NASA Astrophysics Data System (ADS)
Pai, H.; Beck, T.; Beller, J.; Beyer, R.; Bhike, M.; Derya, V.; Gayer, U.; Isaak, J.; Krishichayan, Kvasil, J.; Löher, B.; Nesterenko, V. O.; Pietralla, N.; Martínez-Pinedo, G.; Mertes, L.; Ponomarev, V. Yu.; Reinhard, P.-G.; Repko, A.; Ries, P. C.; Romig, C.; Savran, D.; Schwengner, R.; Tornow, W.; Werner, V.; Wilhelmy, J.; Zilges, A.; Zweidinger, M.
2016-01-01
The low-lying M 1 strength of the open-shell nucleus 50Cr has been studied with the method of nuclear resonance fluorescence up to 9.7 MeV using bremsstrahlung at the superconducting Darmstadt linear electron accelerator S-DALINAC and Compton backscattered photons at the High Intensity γ -ray Source (HI γ S ) facility between 6 and 9.7 MeV of the initial photon energy. Fifteen 1+ states have been observed between 3.6 and 9.7 MeV. Following our analysis the lowest 1+ state at 3.6 MeV can be considered as an isovector orbital mode with some spin admixture. The obtained results generally match the estimations and trends typical for the scissors-like mode. Detailed calculations within the Skyrme quasiparticle random-phase-approximation method and the large-scale shell model justify our conclusions. The calculated distributions of the orbital current for the lowest 1+-state suggest the schematic view of Lipparini and Stringari (isovector rotation-like oscillations inside the rigid surface) rather than the scissors-like picture of Lo Iudice and Palumbo. The spin M 1 resonance is shown to be mainly generated by spin-flip transitions between the orbitals of the f p shell.
Electronic spectrum of the UO and UO(+) molecules.
Tyagi, Rajni; Zhang, Zhiyong; Pitzer, Russell M
2014-12-18
Electronic theory calculations are applied to the study of the UO molecule and the UO(+) ion. Relativistic effective core potentials are used along with the accompanying valence spin-orbit operators. Polarized double-ς and triple-ς basis sets are used. Molecular orbitals are obtained from state-averaged multiconfiguration self-consistent field calculations and then used in multireference spin-orbit configuration interaction calculations with a number of millions of terms. The ground state of UO has open shells of 5f(3)7s(1), angular momentum Ω = 4, and a spin-orbit-induced avoided crossing near the equilibrium internuclear distance. Many UO excited states are studied with rotational constants, intensities, and experimental comparisons. The ground state of UO(+) is of 5f(3) nature with Ω = 9/2. Many UO(+) excited states are also studied. The open-shell nature of both UO and UO(+) leads to many low-lying excited states.
Two-nucleon high-spin states, the Bansal-French model and the crude shell model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, T.U.
Recent data on two-nucleon stretched high-spin states agree well with the crude shell model predictions. For two-neutron high-spin states, the A and T linear dependence of B/sub 2n/ in the Bansal-French model can be deduced from the A and T linear dependence of B/sub n/ and the crude shell model. 7/sub 2//sup -/ states in some Zn and Ge even nuclei might be two-proton states. This hypothesis should be confirmed by two-proton transfer reaction.
Yoneda, Kyohei; Nakano, Masayoshi; Fukui, Hitoshi; Minami, Takuya; Shigeta, Yasuteru; Kubo, Takashi; Botek, Edith; Champagne, Benoît
2011-06-20
The impact of topology on the open-shell characters and the second hyperpolarizabilities (γ) has been addressed for one-dimensional graphene nanoflakes (GNFs) composed of the smallest trigonal graphene (phenalenyl) units. The main results are: 1) These GNFs show not only diradical but also multiradical characters when increasing the number of linked units. 2) GNFs composed of an equivalent number of units can exhibit a wide range of open-shell characters-from nearly closed-shell to pure multiradical characters-depending on the linking pattern of the trigonal units. 3) This wide variation in open-shell characters is explained by their resonance structures and/or by their (HOMO-i)-(LUMO+i) gaps deduced from the orbital correlations. 4) The change in the linking structure of the units can effectively control their open-shell characters as well as their γ values, of which the longitudinal components are significantly enhanced for the singlet GNFs having intermediate open-shell characters. 5) Singlet alternately linked (AL) systems present intermediate multiradical characters even in the case of a large number of units, which creates a significant enhancement of γ with increasing the size, whereas nonalternately linked (NAL) systems, which present pure multiradical characters, possess much smaller γ values. Finally 6) by switching from the singlet to the highest spin states, the γ values of NAL systems hardly change, whereas those of AL systems exhibit large reductions. These fascinating structure-property relationships between the topology of the GNFs, their open-shell characters, and their γ values not only deepen the understanding of open-shell characters of GNFs but aim also at stimulating further design studies to achieve giant NLO responses based on open-shell graphene-like materials. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Revealing weak spin-orbit coupling effects on charge carriers in a π -conjugated polymer
NASA Astrophysics Data System (ADS)
Malissa, H.; Miller, R.; Baird, D. L.; Jamali, S.; Joshi, G.; Bursch, M.; Grimme, S.; van Tol, J.; Lupton, J. M.; Boehme, C.
2018-04-01
We measure electrically detected magnetic resonance on organic light-emitting diodes made of the polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] at room temperature and high magnetic fields where spectral broadening of the resonance due to spin-orbit coupling (SOC) exceeds that due to the local hyperfine fields. Density-functional-theory calculations on an open-shell model of the material reveal g -tensors of charge-carrier spins in the lowest unoccupied (electron) and highest occupied (hole) molecular orbitals. These tensors are used for simulations of magnetic resonance line shapes. Besides providing the first quantification and direct observation of SOC effects on charge-carrier states in these weakly SO-coupled hydrocarbons, this procedure demonstrates that spin-related phenomena in these materials are fundamentally monomolecular in nature.
Theory and practice of uncommon molecular electronic configurations.
Gryn'ova, Ganna; Coote, Michelle L; Corminboeuf, Clemence
2015-01-01
The electronic configuration of the molecule is the foundation of its structure and reactivity. The spin state is one of the key characteristics arising from the ordering of electrons within the molecule's set of orbitals. Organic molecules that have open-shell ground states and interesting physicochemical properties, particularly those influencing their spin alignment, are of immense interest within the up-and-coming field of molecular electronics. In this advanced review, we scrutinize various qualitative rules of orbital occupation and spin alignment, viz., the aufbau principle, Hund's multiplicity rule, and dynamic spin polarization concept, through the prism of quantum mechanics. While such rules hold in selected simple cases, in general the spin state of a system depends on a combination of electronic factors that include Coulomb and Pauli repulsion, nuclear attraction, kinetic energy, orbital relaxation, and static correlation. A number of fascinating chemical systems with spin states that fluctuate between triplet and open-shell singlet, and are responsive to irradiation, pH, and other external stimuli, are highlighted. In addition, we outline a range of organic molecules with intriguing non-aufbau orbital configurations. In such quasi-closed-shell systems, the singly occupied molecular orbital (SOMO) is energetically lower than one or more doubly occupied orbitals. As a result, the SOMO is not affected by electron attachment to or removal from the molecule, and the products of such redox processes are polyradicals. These peculiar species possess attractive conductive and magnetic properties, and a number of them that have already been developed into molecular electronics applications are highlighted in this review. WIREs Comput Mol Sci 2015, 5:440-459. doi: 10.1002/wcms.1233 For further resources related to this article, please visit the WIREs website.
Singlet-paired coupled cluster theory for open shells
NASA Astrophysics Data System (ADS)
Gomez, John A.; Henderson, Thomas M.; Scuseria, Gustavo E.
2016-06-01
Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior for strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference.
Observation of high-spin bands with large moments of inertia in Xe 124
Nag, Somnath; Singh, A. K.; Hagemann, G. B.; ...
2016-09-07
In this paper, high-spin states in 124Xe have been populated using the 80Se( 48Ca, 4n) reaction at a beam energy of 207 MeV and high-multiplicity, γ-ray coincidence events were measured using the Gammasphere spectrometer. Six high-spin rotational bands with moments of inertia similar to those observed in neighboring nuclei have been observed. The experimental results are compared with calculations within the framework of the Cranked Nilsson-Strutinsky model. Finally, it is suggested that the configurations of the bands involve excitations of protons across the Z = 50 shell gap coupled to neutrons within the N = 50 - 82 shell ormore » excited across the N = 82 shell closure.« less
High spin structure and intruder configurations in 31P
NASA Astrophysics Data System (ADS)
Ionescu-Bujor, M.; Iordachescu, A.; Napoli, D. R.; Lenzi, S. M.; Mărginean, N.; Otsuka, T.; Utsuno, Y.; Ribas, R. V.; Axiotis, M.; Bazzacco, D.; Bizzeti-Sona, A. M.; Bizzeti, P. G.; Brandolini, F.; Bucurescu, D.; Cardona, M. A.; De Angelis, G.; De Poli, M.; Della Vedova, F.; Farnea, E.; Gadea, A.; Hojman, D.; Kalfas, C. A.; Kröll, Th.; Lunardi, S.; Martínez, T.; Mason, P.; Pavan, P.; Quintana, B.; Alvarez, C. Rossi; Ur, C. A.; Vlastou, R.; Zilio, S.
2006-02-01
The nucleus 31P has been studied in the 24Mg(16O,2αp) reaction with a 70-MeV 16O beam. A complex level scheme extended up to spins 17/2+ and 15/2-, on positive and negative parity, respectively, has been established. Lifetimes for the new states have been investigated by the Doppler shift attenuation method. Two shell-model calculations have been performed to describe the experimental data, one by using the code ANTOINE in a valence space restricted to the sd shell, and the other by applying the Monte Carlo shell model in a valence space including the sd-fp shells. The latter calculation indicates that intruder excitations, involving the promotion of a T=0 proton-neutron pair to the fp shell, play a dominant role in the structure of the positive-parity high-spin states of 31P.
Density functional theory for open-shell singlet biradicals
NASA Astrophysics Data System (ADS)
Gräfenstein, Jürgen; Kraka, Elfi; Cremer, Dieter
1998-05-01
The description of open-shell singlet (OSS) σ- π biradicals by density functional theory (DFT) requires at least a two-configurational (TC) or, in general, a MC-DFT approach, which bears many unsolved problems. These can be avoided by reformulating the TC description in the spirit of restricted open shell theory for singlets (ROSS) and developing an exchange-correlation functional for ROSS-DFT. ROSS-DFT turns out to lead to reliable descriptions of geometry and vibrational frequencies for OSS biradicals. The relative energies of the OSS states obtained at the ROSS-B3LYP/6-311G(d,p) level are often better than the corresponding ROSS-MP2 results. However, in those cases where spin polarization in a conjugated π systems plays a role, DFT predicts the triplet state related to the OSS state 2-4 kcal/mol too stable.
Qi, Qingbiao; Burrezo, Paula Mayorga; Phan, Hoa; Herng, Tun Seng; Gopalakrishna, Tullimilli Y; Zeng, Wangdong; Ding, Jun; Casado, Juan; Wu, Jishan
2017-06-01
Radical cations and dications of π-conjugated systems play vital roles in organic electronic devices, organic conductors, and conducting polymers. Their structures, charge and spin distribution, and mechanism of charge transport are of great interest. In this article, radical cations and dications of a series of newly synthesized methylthio-capped rylenes were synthesized and isolated. Their ground-state structures, physical properties, and solid-state packing were systematically investigated by various experimental methods, such as X-ray crystallographic analysis, UV/Vis/NIR absorption spectroscopy, (spectro-)electrochemistry, nuclear magnetic resonance spectroscopy, electron spin resonance spectroscopy, superconducting quantum interference device, and Raman spectroscopy, assisted by DFT calculations. It was found that all the charged species show an exceptional stability under ambient air and light conditions due to the efficient spin and charge delocalization over the whole rylene backbone. The dication of hexarylene turned out to have an unusual open-shell singlet rather than closed-shell ground state, thus it can be described as a diradical dication. Dimerization was observed for the radical cations and even the dications in crystals due to the strong intermolecular antiferromagnetic spin-spin interaction and π-π interaction, which result in unique magnetic properties. Such intermolecular association was also observed in solution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nag, Somnath; Singh, A. K.; Hagemann, G. B.
In this paper, high-spin states in 124Xe have been populated using the 80Se( 48Ca, 4n) reaction at a beam energy of 207 MeV and high-multiplicity, γ-ray coincidence events were measured using the Gammasphere spectrometer. Six high-spin rotational bands with moments of inertia similar to those observed in neighboring nuclei have been observed. The experimental results are compared with calculations within the framework of the Cranked Nilsson-Strutinsky model. Finally, it is suggested that the configurations of the bands involve excitations of protons across the Z = 50 shell gap coupled to neutrons within the N = 50 - 82 shell ormore » excited across the N = 82 shell closure.« less
Charge and spin control of ultrafast electron and hole dynamics in single CdSe/ZnSe quantum dots
NASA Astrophysics Data System (ADS)
Hinz, C.; Gumbsheimer, P.; Traum, C.; Holtkemper, M.; Bauer, B.; Haase, J.; Mahapatra, S.; Frey, A.; Brunner, K.; Reiter, D. E.; Kuhn, T.; Seletskiy, D. V.; Leitenstorfer, A.
2018-01-01
We study the dynamics of photoexcited electrons and holes in single negatively charged CdSe/ZnSe quantum dots with two-color femtosecond pump-probe spectroscopy. An initial characterization of the energy level structure is performed at low temperatures and magnetic fields of up to 5 T. Emission and absorption resonances are assigned to specific transitions between few-fermion states by a theoretical model based on a configuration interaction approach. To analyze the dynamics of individual charge carriers, we initialize the quantum system into excited trion states with defined energy and spin. Subsequently, the time-dependent occupation of the trion ground state is monitored by spectrally resolved differential transmission measurements. We observe subpicosecond dynamics for a hole excited to the D shell. The energy dependence of this D -to-S shell intraband transition is investigated in quantum dots of varying size. Excitation of an electron-hole pair in the respective p shells leads to the formation of singlet and triplet spin configurations. Relaxation of the p -shell singlet is observed to occur on a time scale of a few picoseconds. Pumping of p -shell triplet transitions opens up two pathways with distinctly different scattering times. These processes are shown to be governed by the mixing of singlet and triplet states due to exchange interactions enabling simultaneous electron and hole spin flips. To isolate the relaxation channels, we align the spin of the residual electron by a magnetic field and employ laser pulses of defined helicity. This step provides ultrafast preparation of a fully inverted trion ground state of the quantum dot with near unity probability, enabling deterministic addition of a single photon to the probe pulse. Therefore our experiments represent a significant step towards using single quantum emitters with well-controled inversion to manipulate the photon statistics of ultrafast light pulses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, John A.; Henderson, Thomas M.; Scuseria, Gustavo E.
Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior formore » strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference.« less
Dipole and spin-dipole strength distributions in ^{124,126,128,130} Te isotopes
NASA Astrophysics Data System (ADS)
Cakmak, Necla; Cakmak, Sadiye; Selam, Cevad; Unlu, Serdar
2018-02-01
We try to present the structure of 1- excitations in open-shell ^{124,126,128,130} Te isotopes. Electric dipole states are investigated within a translational and Galilean invariant model. Also, a theoretical description of charge-conserving spin-dipole {1}- excitations is presented for the same isotopes. The energy spectra for both kinds of excitations are analysed in detail. Furthermore, a comparison of the calculated cross-sections and energies with the available experimental data is given.
Stable Radical Materials for Energy Applications.
Wilcox, Daniel A; Agarkar, Varad; Mukherjee, Sanjoy; Boudouris, Bryan W
2018-06-07
Although less studied than their closed-shell counterparts, materials containing stable open-shell chemistries have played a key role in many energy storage and energy conversion devices. In particular, the oxidation-reduction (redox) properties of these stable radicals have made them a substantial contributor to the progress of organic batteries. Moreover, the use of radical-based materials in photovoltaic devices and thermoelectric systems has allowed for these emerging molecules to have impacts in the energy conversion realm. Additionally, the unique doublet states of radical-based materials provide access to otherwise inaccessible spin states in optoelectronic devices, offering many new opportunities for efficient usage of energy in light-emitting devices. Here, we review the current state of the art regarding the molecular design, synthesis, and application of stable radicals in these energy-related applications. Finally, we point to fundamental and applied arenas of future promise for these designer open-shell molecules, which have only just begun to be evaluated in full.
Spin Imbalanced Quasi-Two-Dimensional Fermi Gases
NASA Astrophysics Data System (ADS)
Ong, Willie C.
Spin-imbalanced Fermi gases serve as a testbed for fundamental notions and are efficient table-top emulators of a variety of quantum matter ranging from neutron stars, the quark-gluon plasma, to high critical temperature superconductors. A macroscopic quantum phenomenon which occurs in spin-imbalanced Fermi gases is that of phase separation; in three dimensions, a spin-balanced, fully-paired superfluid core is surrounded by an imbalanced normal-fluid shell, followed by a fully polarized shell. In one dimension, the behavior is reversed; a balanced phase appears outside a spin-imbalanced core. This thesis details the first density profile measurements and studies on spin-imbalanced quasi-2D Fermi gases, accomplished with high-resolution, rapid sequential spin-imaging. The measured cloud radii and central densities are in disagreement with mean-field Bardeen-Cooper-Schrieffer theory for a 2D system. Data for normal-fluid mixtures are well fit by a simple 2D polaron model of the free energy. Not predicted by the model is an observed phase transition to a spin-balanced central core above a critical polarisation.
Coulomb energy differences in isobaric multiplets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenzi, S. M.; Farnea, E.; Bazzacco, D.
2007-02-12
By comparing the excitation energies of analogue states in isobaric multiplets, several nuclear structure properties can be studied as a function of the angular momentum up to high spin states. In particular, the mirror nuclei 35Ar and 35Cl show large differences between the excitation energies of analogue negative-parity states at high spin, confirming the important contribution of the relativistic electromagnetic spin-orbit interaction to the Coulomb energy. The single-particle character of the configuration of these states is reproduced with very good accuracy by shell model calculations in the sd and pf shells valence space. In addition, evidence of isospin mixing ismore » deduced from the El transitions linking positive and negative parity states.« less
NASA Astrophysics Data System (ADS)
Tsogbayar, Tsednee; Yeager, Danny L.
2017-01-01
We further apply the complex scaled multiconfigurational spin-tensor electron propagator method (CMCSTEP) for the theoretical determination of resonance parameters with electron-atom systems including open-shell and highly correlated (non-dynamical correlation) atoms and molecules. The multiconfigurational spin-tensor electron propagator method (MCSTEP) developed and implemented by Yeager and his coworkers for real space gives very accurate and reliable ionization potentials and electron affinities. CMCSTEP uses a complex scaled multiconfigurational self-consistent field (CMCSCF) state as an initial state along with a dilated Hamiltonian where all of the electronic coordinates are scaled by a complex factor. CMCSTEP is designed for determining resonances. We apply CMCSTEP to get the lowest 2P (Be-, Mg-) and 2D (Mg-, Ca-) shape resonances using several different basis sets each with several complete active spaces. Many of these basis sets we employ have been used by others with different methods. Hence, we can directly compare results with different methods but using the same basis sets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khurshid, Hafsa, E-mail: hkhurshi@usf.edu, E-mail: phanm@usf.edu, E-mail: sharihar@usf.edu; Phan, Manh-Huong, E-mail: hkhurshi@usf.edu, E-mail: phanm@usf.edu, E-mail: sharihar@usf.edu; Mukherjee, Pritish
A comparative study has been performed of the exchange bias (EB) effect in Fe/γ-Fe{sub 2}O{sub 3} core-shell nanoparticles with the same thickness of the γ-Fe{sub 2}O{sub 3} shell (∼2 nm) and the diameter of the Fe core varying from 4 nm to 11 nm. Transmission electron microscopy (TEM) and high-resolution TEM confirmed the high quality of the core-shell nanostructures. A systematic analysis of magnetization versus magnetic field measurements under zero-field-cooled and field-cooled regimes using the Meiklejohn-Bean model and deconvoluting superparamagnetic and paramagnetic contribution to the total magnetic moment Langevin function shows that there exists a critical particle size (∼10 nm), above which the spinsmore » at the interface between Fe and γ-Fe{sub 2}O{sub 3} contribute primarily to the EB, but below which the surface spin effect is dominant. Our finding yields deeper insight into the collective contributions of interface and surface spins to the EB in core-shell nanoparticle systems, knowledge of which is the key to manipulating EB in magnetic nanostructures for spintronics applications.« less
Barone, Vincenzo; Biczysko, Malgorzata; Bloino, Julien; Egidi, Franco; Puzzarini, Cristina
2015-01-01
The CCSD(T) model coupled with extrapolation to the complete basis-set limit and additive approaches represents the “golden standard” for the structural and spectroscopic characterization of building blocks of biomolecules and nanosystems. However, when open-shell systems are considered, additional problems related to both specific computational difficulties and the need of obtaining spin-dependent properties appear. In this contribution, we present a comprehensive study of the molecular structure and spectroscopic (IR, Raman, EPR) properties of the phenyl radical with the aim of validating an accurate computational protocol able to deal with conjugated open-shell species. We succeeded in obtaining reliable and accurate results, thus confirming and, partly, extending the available experimental data. The main issue to be pointed out is the need of going beyond the CCSD(T) level by including a full treatment of triple excitations in order to fulfil the accuracy requirements. On the other hand, the reliability of density functional theory in properly treating open-shell systems has been further confirmed. PMID:23802956
NASA Astrophysics Data System (ADS)
Dupuy, Nicolas; Casula, Michele
2018-04-01
By means of the Jastrow correlated antisymmetrized geminal power (JAGP) wave function and quantum Monte Carlo (QMC) methods, we study the ground state properties of the oligoacene series, up to the nonacene. The JAGP is the accurate variational realization of the resonating-valence-bond (RVB) ansatz proposed by Pauling and Wheland to describe aromatic compounds. We show that the long-ranged RVB correlations built in the acenes' ground state are detrimental for the occurrence of open-shell diradical or polyradical instabilities, previously found by lower-level theories. We substantiate our outcome by a direct comparison with another wave function, tailored to be an open-shell singlet (OSS) for long-enough acenes. By comparing on the same footing the RVB and OSS wave functions, both optimized at a variational QMC level and further projected by the lattice regularized diffusion Monte Carlo method, we prove that the RVB wave function has always a lower variational energy and better nodes than the OSS, for all molecular species considered in this work. The entangled multi-reference RVB state acts against the electron edge localization implied by the OSS wave function and weakens the diradical tendency for higher oligoacenes. These properties are reflected by several descriptors, including wave function parameters, bond length alternation, aromatic indices, and spin-spin correlation functions. In this context, we propose a new aromatic index estimator suitable for geminal wave functions. For the largest acenes taken into account, the long-range decay of the charge-charge correlation functions is compatible with a quasi-metallic behavior.
NASA Astrophysics Data System (ADS)
Thomas, S.; Reethu, K.; Thanveer, T.; Myint, M. T. Z.; Al-Harthi, S. H.
2017-08-01
The exchange bias blocking temperature distribution of naturally oxidized Co-CoO core-shell nanoparticles exhibits two distinct signatures. These are associated with the existence of two magnetic entities which are responsible for the temperature dependence of an exchange bias field. One is from the CoO grains which undergo thermally activated magnetization reversal. The other is from the disordered spins at the Co-CoO interface which exhibits spin-glass-like behavior. We investigated the oxide shell thickness dependence of the exchange bias effect. For particles with a 3 nm thick CoO shell, the predominant contribution to the temperature dependence of exchange bias is the interfacial spin-glass layer. On increasing the shell thickness to 4 nm, the contribution from the spin-glass layer decreases, while upholding the antiferromagnetic grain contribution. For samples with a 4 nm CoO shell, the exchange bias training was minimal. On the other hand, 3 nm samples exhibited both the training effect and a peak in coercivity at an intermediate set temperature Ta. This is explained using a magnetic core-shell model including disordered spins at the interface.
Sood, Parveen; Kim, Ki Chul; Jang, Seung Soon
2018-03-19
The high electron affinity of fullerene C 60 coupled with the rich chemistry of carbon makes it a promising material for cathode applications in lithium-ion batteries. Since boron has one electron less than carbon, the presence of boron on C 60 cages is expected to generate electron deficiency in C 60 , and thereby to enhance its electron affinity. By using density functional theory (DFT), we studied the redox potentials and electronic properties of C 60 and C 59 B. We have found that doping C 60 with one boron atom results in a substantial increase in redox potential from 2.462 V to 3.709 V, which was attributed to the formation of an open shell system. We also investigated the redox and electronic properties of C 59 B functionalized with various redox-active oxygen containing functional groups (OCFGs). For the combination of functionalization with OCFGs and boron doping, it is found that the enhancement of redox potential is reduced, which is mainly attributed to the open shell structure being changed to a closed-shell one. Nevertheless, the redox potentials are still higher than that of pristine C 60 . From the observation that the lowest unoccupied molecular orbital of closed-shell OCFG- functionalized C 59 B is correlated well with the redox potential, it was confirmed that the spin state is crucial to be considered to understand the relationship between electronic structure and redox properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solomon, Gemma C; Reimers, Jeffrey R; Hush, Noel S
2004-10-08
A priori evaluations, using Hartree-Fock self-consistent-field (SCF) theory or density-functional theory (DFT), of the current passing between two electrodes through a single bridging molecule result in predicted conductivities that may be up to one to two orders of magnitude larger than observed ones. We demonstrate that this is, in part, often due to the improper application of the computational methods. Conductivity is shown to arise from tunneling between junction states of the electrodes through the molecule; these states are inherently either quasi two-fold or four-fold degenerate and always comprise the (highest occupied molecular orbital) HOMO band at the Fermi energy of the system. Frequently, in previous cluster based molecular conduction calculations, closed-shell SCF or Kohn-Sham DFT methods have been applied to systems that we demonstrate to be intrinsically open shell in nature. Such calculations are shown to induce artificial HOMO-LUMO (LUMO-lowest unoccupied molecular orbital) band splittings that Landauer-based formalisms for steady-state conduction interpret as arising from extremely rapid through-molecule tunneling at the Fermi energy, hence, overestimating the low-voltage conductivity. It is demonstrated that these shortcomings can be eliminated, dramatically reducing calculated current magnitudes, through the alternate use of electronic-structure calculations based on the spin-restricted open-shell formalism and related multiconfigurational SCF of DFT approaches. Further, we demonstrate that most anomalies arising in DFT implementations arise through the use of hybrid density functionals such as B3LYP. While the enhanced band-gap properties of these functionals have made them the defacto standard in molecular conductivity calculations, we demonstrate that it also makes them particularly susceptible to open-shell anomalies.
Zhang, Ran; Luo, Qiu-Ping; Chen, Hong-Yan; Yu, Xiao-Yun; Kuang, Dai-Bin; Su, Cheng-Yong
2012-04-23
A CdS/CdSe composite shell is assembled onto the surface of ZnO nanowire arrays with a simple spin-coating-based successive ionic layer adsorption and reaction method. The as-prepared photoelectrode exhibit a high photocurrent density in photoelectrochemical cells and also generates good power conversion efficiency in quantum-dot-sensitized solar cells. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cao, Zhanli; Li, Zhendong; Wang, Fan; Liu, Wenjian
2017-02-01
The spin-separated exact two-component (X2C) relativistic Hamiltonian [sf-X2C+so-DKHn, J. Chem. Phys., 2012, 137, 154114] is combined with the equation-of-motion coupled-cluster method with singles and doubles (EOM-CCSD) for the treatment of spin-orbit splittings of open-shell molecular systems. Scalar relativistic effects are treated to infinite order from the outset via the spin-free part of the X2C Hamiltonian (sf-X2C), whereas the spin-orbit couplings (SOC) are handled at the CC level via the first-order Douglas-Kroll-Hess (DKH) type of spin-orbit operator (so-DKH1). Since the exponential of single excitations, i.e., exp(T 1 ), introduces sufficient spin orbital relaxations, the inclusion of SOC at the CC level is essentially the same in accuracy as the inclusion of SOC from the outset in terms of the two-component spinors determined variationally by the sf-X2C+so-DKH1 Hamiltonian, but is computationally more efficient. Therefore, such an approach (denoted as sf-X2C-EOM-CCSD(SOC)) can achieve uniform accuracy for the spin-orbit splittings of both light and heavy elements. For light elements, the treatment of SOC can even be postponed until the EOM step (denoted as sf-X2C-EOM(SOC)-CCSD), so as to further reduce the computational cost. To reveal the efficacy of sf-X2C-EOM-CCSD(SOC) and sf-X2C-EOM(SOC)-CCSD, the spin-orbit splittings of the 2 Π states of monohydrides up to the sixth row of the periodic table are investigated. The results show that sf-X2C-EOM-CCSD(SOC) predicts very accurate results (within 5%) for elements up to the fifth row, whereas sf-X2C-EOM(SOC)-CCSD is useful only for light elements (up to the third row but with some exceptions). For comparison, the sf-X2C-S-TD-DFT-SOC approach [spin-adapted open-shell time-dependent density functional theory, Mol. Phys., 2013, 111, 3741] is applied to the same systems. The overall accuracy (1-10%) is satisfactory.
Rotational and fine structure of open-shell molecules in nearly degenerate electronic states
NASA Astrophysics Data System (ADS)
Liu, Jinjun
2018-03-01
An effective Hamiltonian without symmetry restriction has been developed to model the rotational and fine structure of two nearly degenerate electronic states of an open-shell molecule. In addition to the rotational Hamiltonian for an asymmetric top, this spectroscopic model includes the energy separation between the two states due to difference potential and zero-point energy difference, as well as the spin-orbit (SO), Coriolis, and electron spin-molecular rotation (SR) interactions. Hamiltonian matrices are computed using orbitally and fully symmetrized case (a) and case (b) basis sets. Intensity formulae and selection rules for rotational transitions between a pair of nearly degenerate states and a nondegenerate state have also been derived using all four basis sets. It is demonstrated using real examples of free radicals that the fine structure of a single electronic state can be simulated with either a SR tensor or a combination of SO and Coriolis constants. The related molecular constants can be determined precisely only when all interacting levels are simulated simultaneously. The present study suggests that analysis of rotational and fine structure can provide quantitative insights into vibronic interactions and related effects.
NASA Astrophysics Data System (ADS)
Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic
2018-05-01
We present a state interaction spin-orbit coupling method to calculate electron paramagnetic resonance g-tensors from density matrix renormalization group wavefunctions. We apply the technique to compute g-tensors for the TiF3 and CuCl42 - complexes, a [2Fe-2S] model of the active center of ferredoxins, and a Mn4CaO5 model of the S2 state of the oxygen evolving complex. These calculations raise the prospects of determining g-tensors in multireference calculations with a large number of open shells.
Charge instability in double quantum dots in Ge/Si core/shell nanowires
NASA Astrophysics Data System (ADS)
Zarassi, Azarin; Su, Zhaoen; Schwenderling, Jens; Frolov, Sergey M.; Hocevar, Moïra; Nguyen, Binh-Minh; Yoo, Jinkyoung; Dayeh, Shadi A.
Controlling dephasing times are of great challenge in the studies of spin qubit. Reported long spin coherence time and predicted strong spin-orbit interaction of holes in Ge/Si core/shell nanowires, as well as their weak coupling to very few nuclear spins of these group IV semiconductors, persuade electrical spin control. We have established Pauli spin blockade in gate-tunable quantum dots formed in these nanowires. The g-factor has been measured and evidence of spin-orbit interaction has been observed in the presence of magnetic field. However, electrical control of spins requires considerable stability in the double dot configuration, and imperfectly these dots suffer from poor stability. We report on fabrication modifications on Ge/Si core/shell nanowires, as well as measurement techniques to suppress the charge instabilities and ease the way to study spin-orbit coupling and resolve electric dipole spin resonance.
Intra- and inter-shell Kondo effects in carbon nanotube quantum dots
NASA Astrophysics Data System (ADS)
Krychowski, Damian; Lipiński, Stanisław
2018-01-01
The linear response transport properties of carbon nanotube quantum dot in the strongly correlated regime are discussed. The finite-U mean field slave boson approach is used to study many-body effects. Magnetic field can rebuilt Kondo correlations, which are destroyed by the effect of spin-orbit interaction or valley mixing. Apart from the field induced revivals of SU(2) Kondo effects of different types: spin, valley or spin-valley, also more exotic phenomena appear, such as SU(3) Kondo effect. Threefold degeneracy occurs due to the effective intervalley exchange induced by short-range part of Coulomb interaction or due to the intershell mixing. In narrow gap nanotubes the full spin-orbital degeneracy might be recovered in the absence of magnetic field opening the condition for a formation of SU(4) Kondo resonance.
Low temperature nano-spin filtering using a diluted magnetic semiconductor core-shell quantum dot
NASA Astrophysics Data System (ADS)
Chattopadhyay, Saikat; Sen, Pratima; Andrews, Joshep Thomas; Sen, Pranay Kumar
2014-07-01
The spin polarized electron transport properties and spin polarized tunneling current have been investigated analytically in a diluted magnetic semiconductor core-shell quantum dot in the presence of applied electric and magnetic fields. Assuming the electron wave function to satisfy WKB approximation, the electron energy eigenvalues have been calculated. The spin polarized tunneling current and the spin dependent tunneling coefficient are obtained by taking into account the exchange interaction and Zeeman splitting. Numerical estimates made for a specific diluted magnetic semiconductor, viz., Zn1-xMnxSe/ZnS core-shell quantum dot establishes the possibility of a nano-spin filter for a particular biasing voltage and applied magnetic field. Influence of applied voltage on spin polarized electron transport has been investigated in a CSQD.
Egidi, Franco; Sun, Shichao; Goings, Joshua J; Scalmani, Giovanni; Frisch, Michael J; Li, Xiaosong
2017-06-13
We present a linear response formalism for the description of the electronic excitations of a noncollinear reference defined via Kohn-Sham spin density functional methods. A set of auxiliary variables, defined using the density and noncollinear magnetization density vector, allows the generalization of spin density functional kernels commonly used in collinear DFT to noncollinear cases, including local density, GGA, meta-GGA and hybrid functionals. Working equations and derivations of functional second derivatives with respect to the noncollinear density, required in the linear response noncollinear TDDFT formalism, are presented in this work. This formalism takes all components of the spin magnetization into account independent of the type of reference state (open or closed shell). As a result, the method introduced here is able to afford a nonzero local xc torque on the spin magnetization while still satisfying the zero-torque theorem globally. The formalism is applied to a few test cases using the variational exact-two-component reference including spin-orbit coupling to illustrate the capabilities of the method.
Roles of NN-interaction components in shell-structure evolution
NASA Astrophysics Data System (ADS)
Umeya, Atsushi; Muto, Kazuo
2016-11-01
Since the importance of the monopole interaction was first emphasized in 1960s, roles of monopole strengths of two-body nucleon-nucleon interaction in shell structure have been discussed. Through the monopole strengths, we study the roles in shell-structure evolution, starting from explicit forms of the interaction. For the tensor component of the interaction, we show the derivation of the relation, (2j> + 1)Vjj> + (2j< + 1)Vjj< = 0, with a detailed manipulation. We show that one-body spin-orbit term appears in the multipole expansion of two-body spin-orbit interaction. Only the spin-orbit components can affect the spin-orbit energy splitting between spin-orbit partners, when the spin-orbit partner orbits are fully occupied.
Exchange bias for core/shell magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Lemos, C. G. O.; Figueiredo, W.; Santos, M.
2015-09-01
We study the properties of a finite magnetic system to model a magnetic nanoparticle, which is formed by a reduced number of magnetic dipole moments due to the spin of the atoms. The nanoparticle is of the type core/shell where the shell is formed by spins interacting through an antiferromagnetic exchange coupling while for the spins belonging to the core the coupling is ferromagnetic. The interaction between the spins at the interface core/shell can be either ferro or antiferromagnetic. To describe the states of the spins we used the XY model in which the spins are considered as continuous variables, free to point in any direction of the xy plane. We also consider a magnetocrystalline anisotropy, exchange anisotropy and the Zeeman effect. Our model is studied in a lattice with square symmetry, using the Monte Carlo method along with the Metropolis prescription. The results show that in the absence of an external magnetic field and exchange anisotropy, the system continuously goes to a disordered state from an ordered state at a well defined temperature. In the presence of external magnetic fields the system displays the exchange bias phenomenon, that is, the displacement of the hysteresis loops, due to the introduction of the exchange anisotropy term. However, this displacement depends on the core and shell sizes, as well as on the magnitude of the coupling between the shell and the core moments.
Second derivatives for approximate spin projection methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Lee M.; Hratchian, Hrant P., E-mail: hhratchian@ucmerced.edu
2015-02-07
The use of broken-symmetry electronic structure methods is required in order to obtain correct behavior of electronically strained open-shell systems, such as transition states, biradicals, and transition metals. This approach often has issues with spin contamination, which can lead to significant errors in predicted energies, geometries, and properties. Approximate projection schemes are able to correct for spin contamination and can often yield improved results. To fully make use of these methods and to carry out exploration of the potential energy surface, it is desirable to develop an efficient second energy derivative theory. In this paper, we formulate the analytical secondmore » derivatives for the Yamaguchi approximate projection scheme, building on recent work that has yielded an efficient implementation of the analytical first derivatives.« less
Zhao, Peiwen; Bu, Yuxiang
2016-01-14
In this work, we computationally design radical nucleobases which possess improved electronic properties, especially diradical properties through introducing a cyclopentadiene radical. We predict that the detailed electromagnetic features of base assemblies are based on the orientation of the extra five-membered cyclopentadiene ring. Broken symmetry DFT calculations take into account the relevant structures and properties. Our results reveal that both the radicalized DNA bases and the base pairs formed when they combine with their counterparts remain stable and display larger spin delocalization. The mode of embedding the cyclopentadiene free radical in the structures has some influence on the degree of π-conjugation, which results in various diradical characteristics. Single-layered radical base pairs all have an open-shell singlet ground state, but the energy difference between singlet and triplet is not significant. For two-layered radical base pairs, the situation is more complex. All of them have an open-shell state as their ground state, including an open-shell singlet state and an open-shell triplet state. That is, the majority of radical base pairs possess anti-ferromagnetic or ferromagnetic characteristics. We present here a more in-depth discussion and analyses to study the magnetic characteristics of radical bases and base pairs. As an important factor, two-layered radical base pairs also have been carefully analyzed. We hope that all the measurements and results presented here will stimulate further detailed insights into the related mechanisms in modified DNA bases and the design of better ring-expanded DNA magnetic materials.
NASA Astrophysics Data System (ADS)
Vatansever, Erol
2017-05-01
By means of Monte Carlo simulation method with Metropolis algorithm, we elucidate the thermal and magnetic phase transition behaviors of a ferrimagnetic core/shell nanocubic system driven by a time dependent magnetic field. The particle core is composed of ferromagnetic spins, and it is surrounded by an antiferromagnetic shell. At the interface of the core/shell particle, we use antiferromagnetic spin-spin coupling. We simulate the nanoparticle using classical Heisenberg spins. After a detailed analysis, our Monte Carlo simulation results suggest that present system exhibits unusual and interesting magnetic behaviors. For example, at the relatively lower temperature regions, an increment in the amplitude of the external field destroys the antiferromagnetism in the shell part of the nanoparticle, leading to a ground state with ferromagnetic character. Moreover, particular attention has been dedicated to the hysteresis behaviors of the system. For the first time, we show that frequency dispersions can be categorized into three groups for a fixed temperature for finite core/shell systems, as in the case of the conventional bulk systems under the influence of an oscillating magnetic field.
Gani, Terry Z H; Kulik, Heather J
2017-11-14
Accurate predictions of spin-state ordering, reaction energetics, and barrier heights are critical for the computational discovery of open-shell transition-metal (TM) catalysts. Semilocal approximations in density functional theory, such as the generalized gradient approximation (GGA), suffer from delocalization error that causes them to overstabilize strongly bonded states. Descriptions of energetics and bonding are often improved by introducing a fraction of exact exchange (e.g., erroneous low-spin GGA ground states are instead correctly predicted as high-spin with a hybrid functional). The degree of spin-splitting sensitivity to exchange can be understood based on the chemical composition of the complex, but the effect of exchange on reaction energetics within a single spin state is less well-established. Across a number of model iron complexes, we observe strong exchange sensitivities of reaction barriers and energies that are of the same magnitude as those for spin splitting energies. We rationalize trends in both reaction and spin energetics by introducing a measure of delocalization, the bond valence of the metal-ligand bonds in each complex. The bond valence thus represents a simple-to-compute property that unifies understanding of exchange sensitivity for catalytic properties and spin-state ordering in TM complexes. Close agreement of the resulting per-metal-organic-bond sensitivity estimates, together with failure of alternative descriptors demonstrates the utility of the bond valence as a robust descriptor of how differences in metal-ligand delocalization produce differing relative energetics with exchange tuning. Our unified description explains the overall effect of exact exchange tuning on the paradigmatic two-state FeO + /CH 4 reaction that combines challenges of spin-state and reactivity predictions. This new descriptor-sensitivity relationship provides a path to quantifying how predictions in transition-metal complex screening are sensitive to the method used.
Shell Filling and Magnetic Anisotropy In A Few Hole Silicon Metal-Oxide-Semiconductor Quantum Dot
NASA Astrophysics Data System (ADS)
Hamilton, Alex; Li., R.; Liles, S. D.; Yang, C. H.; Hudson, F. E.; Veldhorst, M. E.; Dzurak, A. S.
There is growing interest in hole spin states in group IV materials for quantum information applications. The near-absence of nuclear spins in group IV crystals promises long spin coherence times, while the strong spin-orbit interaction of the hole states provides fast electrical spin manipulation methods. However, the level-mixing and magnetic field dependence of the p-orbital hole states is non-trivial in nanostructures, and is not as well understood as for electron systems. In this work, we study the hole states in a gate-defined silicon metal-oxide-semiconductor quantum dot. Using an adjacent charge sensor, we monitor quantum dot orbital level spacing down to the very last hole, and find the standard two-dimensional (2D) circular dot shell filling structure. We can change the shell filling sequence by applying an out-of-plane magnetic field. However, when the field is applied in-plane, the shell filling is not changed. This magnetic field anisotropy suggests that the confined hole states are Ising-like.
Gangopadhyay, Shruba; Pickett, Warren E.
2015-01-15
The double perovskite Ba 2NaOsO 6 (BNOO), an exotic example of a very high oxidation state (heptavalent) osmium d1 compound and also uncommon by being a ferromagnetic open d-shell (Mott) insulator without Jahn-Teller (JT) distortion, is modeled using a density functional theory based hybrid functional incorporating exact exchange for correlated electronic orbitals and including the large spin-orbit coupling (SOC). The experimentally observed narrow-gap ferromagnetic insulating ground state is obtained, but only when including spin-orbit coupling, making this a Dirac-Mott insulator. The calculated easy axis along [110] is in accord with experiment, providing additional support that this approach provides a realisticmore » method for studying this system. The predicted spin density for [110] spin orientation is nearly cubic (unlike for other directions), providing an explanation for the absence of JT distortion. An orbital moment of –0.4μ B strongly compensates the +0.5μ B spin moment on Os, leaving a strongly compensated moment more in line with experiment. Remarkably, the net moment lies primarily on the oxygen ions. An insulator-metal transition, by rotating the magnetization direction with an external field under moderate pressure, is predicted as one consequence of strong SOC, and metallization under moderate pressure is predicted. In conclusion, a comparison is made with the isostructural, isovalent insulator Ba 2LiOsO 6, which, however, orders antiferromagnetically.« less
NASA Astrophysics Data System (ADS)
Champagne, Benoı̂t; Botek, Edith; Nakano, Masayoshi; Nitta, Tomoshige; Yamaguchi, Kizashi
2005-03-01
The basis set and electron correlation effects on the static polarizability (α) and second hyperpolarizability (γ) are investigated ab initio for two model open-shell π-conjugated systems, the C5H7 radical and the C6H8 radical cation in their doublet state. Basis set investigations evidence that the linear and nonlinear responses of the radical cation necessitate the use of a less extended basis set than its neutral analog. Indeed, double-zeta-type basis sets supplemented by a set of d polarization functions but no diffuse functions already provide accurate (hyper)polarizabilities for C6H8 whereas diffuse functions are compulsory for C5H7, in particular, p diffuse functions. In addition to the 6-31G*+pd basis set, basis sets resulting from removing not necessary diffuse functions from the augmented correlation consistent polarized valence double zeta basis set have been shown to provide (hyper)polarizability values of similar quality as more extended basis sets such as augmented correlation consistent polarized valence triple zeta and doubly augmented correlation consistent polarized valence double zeta. Using the selected atomic basis sets, the (hyper)polarizabilities of these two model compounds are calculated at different levels of approximation in order to assess the impact of including electron correlation. As a function of the method of calculation antiparallel and parallel variations have been demonstrated for α and γ of the two model compounds, respectively. For the polarizability, the unrestricted Hartree-Fock and unrestricted second-order Møller-Plesset methods bracket the reference value obtained at the unrestricted coupled cluster singles and doubles with a perturbative inclusion of the triples level whereas the projected unrestricted second-order Møller-Plesset results are in much closer agreement with the unrestricted coupled cluster singles and doubles with a perturbative inclusion of the triples values than the projected unrestricted Hartree-Fock results. Moreover, the differences between the restricted open-shell Hartree-Fock and restricted open-shell second-order Møller-Plesset methods are small. In what concerns the second hyperpolarizability, the unrestricted Hartree-Fock and unrestricted second-order Møller-Plesset values remain of similar quality while using spin-projected schemes fails for the charged system but performs nicely for the neutral one. The restricted open-shell schemes, and especially the restricted open-shell second-order Møller-Plesset method, provide for both compounds γ values close to the results obtained at the unrestricted coupled cluster level including singles and doubles with a perturbative inclusion of the triples. Thus, to obtain well-converged α and γ values at low-order electron correlation levels, the removal of spin contamination is a necessary but not a sufficient condition. Density-functional theory calculations of α and γ have also been carried out using several exchange-correlation functionals. Those employing hybrid exchange-correlation functionals have been shown to reproduce fairly well the reference coupled cluster polarizability and second hyperpolarizability values. In addition, inclusion of Hartree-Fock exchange is of major importance for determining accurate polarizability whereas for the second hyperpolarizability the gradient corrections are large.
Robust and Efficient Spin Purification for Determinantal Configuration Interaction.
Fales, B Scott; Hohenstein, Edward G; Levine, Benjamin G
2017-09-12
The limited precision of floating point arithmetic can lead to the qualitative and even catastrophic failure of quantum chemical algorithms, especially when high accuracy solutions are sought. For example, numerical errors accumulated while solving for determinantal configuration interaction wave functions via Davidson diagonalization may lead to spin contamination in the trial subspace. This spin contamination may cause the procedure to converge to roots with undesired ⟨Ŝ 2 ⟩, wasting computer time in the best case and leading to incorrect conclusions in the worst. In hopes of finding a suitable remedy, we investigate five purification schemes for ensuring that the eigenvectors have the desired ⟨Ŝ 2 ⟩. These schemes are based on projection, penalty, and iterative approaches. All of these schemes rely on a direct, graphics processing unit-accelerated algorithm for calculating the S 2 c matrix-vector product. We assess the computational cost and convergence behavior of these methods by application to several benchmark systems and find that the first-order spin penalty method is the optimal choice, though first-order and Löwdin projection approaches also provide fast convergence to the desired spin state. Finally, to demonstrate the utility of these approaches, we computed the lowest several excited states of an open-shell silver cluster (Ag 19 ) using the state-averaged complete active space self-consistent field method, where spin purification was required to ensure spin stability of the CI vector coefficients. Several low-lying states with significant multiply excited character are predicted, suggesting the value of a multireference approach for modeling plasmonic nanomaterials.
Lifetime measurement of high spin states in (75) Kr
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheikh, Javid; Trivedi, T.; Maurya, K.
2010-01-01
The lifetimes of high spin states of {sup 75}Kr have been determined via {sup 50}Cr ({sup 28}Si, 2pn) {sup 75}Kr reaction in positive parity band using the Doppler-shift attenuation method. The transition quadrupole moments Q deduced from lifetime measurements have been compared with {sup 75}Br. Experimental results obtained from lifetime measurement are interpreted in the framework of projected shell model.
On Closed Shells in Nuclei. II
DOE R&D Accomplishments Database
Mayer, M. G.
1949-04-01
Discussion on the use of spins and magnetic moments of the even-odd nuclei by Feenberg and Nordheim to determine the angular momentum of the eigenfunction of the odd particle; discussion of prevalence of isomerism in certain regions of the isotope chart; tabulated data on levels of square well potential, spectroscopic levels, spin term, number of states, shells and known spins and orbital assignments.
Synthesis and characterization of triangulene
NASA Astrophysics Data System (ADS)
Pavliček, Niko; Mistry, Anish; Majzik, Zsolt; Moll, Nikolaj; Meyer, Gerhard; Fox, David J.; Gross, Leo
2017-05-01
Triangulene, the smallest triplet-ground-state polybenzenoid (also known as Clar's hydrocarbon), has been an enigmatic molecule ever since its existence was first hypothesized. Despite containing an even number of carbons (22, in six fused benzene rings), it is not possible to draw Kekulé-style resonant structures for the whole molecule: any attempt results in two unpaired valence electrons. Synthesis and characterization of unsubstituted triangulene has not been achieved because of its extreme reactivity, although the addition of substituents has allowed the stabilization and synthesis of the triangulene core and verification of the triplet ground state via electron paramagnetic resonance measurements. Here we show the on-surface generation of unsubstituted triangulene that consists of six fused benzene rings. The tip of a combined scanning tunnelling and atomic force microscope (STM/AFM) was used to dehydrogenate precursor molecules. STM measurements in combination with density functional theory (DFT) calculations confirmed that triangulene keeps its free-molecule properties on the surface, whereas AFM measurements resolved its planar, threefold symmetric molecular structure. The unique topology of such non-Kekulé hydrocarbons results in open-shell π-conjugated graphene fragments that give rise to high-spin ground states, potentially useful in organic spintronic devices. Our generation method renders manifold experiments possible to investigate triangulene and related open-shell fragments at the single-molecule level.
Observation of a γ-decaying millisecond isomeric state in 128Cd80
NASA Astrophysics Data System (ADS)
Jungclaus, A.; Grawe, H.; Nishimura, S.; Doornenbal, P.; Lorusso, G.; Simpson, G. S.; Söderström, P.-A.; Sumikama, T.; Taprogge, J.; Xu, Z. Y.; Baba, H.; Browne, F.; Fukuda, N.; Gernhäuser, R.; Gey, G.; Inabe, N.; Isobe, T.; Jung, H. S.; Kameda, D.; Kim, G. D.; Kim, Y.-K.; Kojouharov, I.; Kubo, T.; Kurz, N.; Kwon, Y. K.; Li, Z.; Sakurai, H.; Schaffner, H.; Shimizu, Y.; Steiger, K.; Suzuki, H.; Takeda, H.; Vajta, Zs.; Watanabe, H.; Wu, J.; Yagi, A.; Yoshinaga, K.; Benzoni, G.; Bönig, S.; Chae, K. Y.; Coraggio, L.; Daugas, J.-M.; Drouet, F.; Gadea, A.; Gargano, A.; Ilieva, S.; Itaco, N.; Kondev, F. G.; Kröll, T.; Lane, G. J.; Montaner-Pizá, A.; Moschner, K.; Mücher, D.; Naqvi, F.; Niikura, M.; Nishibata, H.; Odahara, A.; Orlandi, R.; Patel, Z.; Podolyák, Zs.; Wendt, A.
2017-09-01
A new high-spin isomer in the neutron-rich nucleus 128Cd was populated in the projectile fission of a 238U beam at the Radioactive Isotope Beam Factory at RIKEN. A half-life of T1/2 = 6.3 (8) ms was measured for the new state which was tentatively assigned a spin/parity of (15-). The experimental results are compared to shell model calculations performed using state-of-the-art realistic effective interactions and to the neighbouring nucleus 129Cd. In the present experiment no evidence was found for the decay of a 18+E6 spin-trap isomer, based on the complete alignment of the two-neutron and two-proton holes in the 0h11/2 and the 0g9/2 orbit, respectively, which is predicted to exist by the shell model.
NASA Astrophysics Data System (ADS)
Sen, Sangita; Shee, Avijit; Mukherjee, Debashis
2018-02-01
The orbital relaxation attendant on ionization is particularly important for the core electron ionization potential (core IP) of molecules. The Unitary Group Adapted State Universal Coupled Cluster (UGA-SUMRCC) theory, recently formulated and implemented by Sen et al. [J. Chem. Phys. 137, 074104 (2012)], is very effective in capturing orbital relaxation accompanying ionization or excitation of both the core and the valence electrons [S. Sen et al., Mol. Phys. 111, 2625 (2013); A. Shee et al., J. Chem. Theory Comput. 9, 2573 (2013)] while preserving the spin-symmetry of the target states and using the neutral closed-shell spatial orbitals of the ground state. Our Ansatz invokes a normal-ordered exponential representation of spin-free cluster-operators. The orbital relaxation induced by a specific set of cluster operators in our Ansatz is good enough to eliminate the need for different sets of orbitals for the ground and the core-ionized states. We call the single configuration state function (CSF) limit of this theory the Unitary Group Adapted Open-Shell Coupled Cluster (UGA-OSCC) theory. The aim of this paper is to comprehensively explore the efficacy of our Ansatz to describe orbital relaxation, using both theoretical analysis and numerical performance. Whenever warranted, we also make appropriate comparisons with other coupled-cluster theories. A physically motivated truncation of the chains of spin-free T-operators is also made possible by the normal-ordering, and the operational resemblance to single reference coupled-cluster theory allows easy implementation. Our test case is the prediction of the 1s core IP of molecules containing a single light- to medium-heavy nucleus and thus, in addition to demonstrating the orbital relaxation, we have addressed the scalar relativistic effects on the accuracy of the IPs by using a hierarchy of spin-free Hamiltonians in conjunction with our theory. Additionally, the contribution of the spin-free component of the two-electron Gaunt term, not usually taken into consideration, has been estimated at the Self-Consistent Field (ΔSCF) level and is found to become increasingly important and eventually quite prominent for molecules with third period atoms and below. The accuracies of the IPs computed using UGA-OSCC are found to be of the same order as the Coupled Cluster Singles Doubles (ΔCCSD) values while being free from spin contamination. Since the UGA-OSCC uses a common set of orbitals for the ground state and the ion, it obviates the need of two N5 AO to MO transformation in contrast to the ΔCCSD method.
Sen, Sangita; Shee, Avijit; Mukherjee, Debashis
2018-02-07
The orbital relaxation attendant on ionization is particularly important for the core electron ionization potential (core IP) of molecules. The Unitary Group Adapted State Universal Coupled Cluster (UGA-SUMRCC) theory, recently formulated and implemented by Sen et al. [J. Chem. Phys. 137, 074104 (2012)], is very effective in capturing orbital relaxation accompanying ionization or excitation of both the core and the valence electrons [S. Sen et al., Mol. Phys. 111, 2625 (2013); A. Shee et al., J. Chem. Theory Comput. 9, 2573 (2013)] while preserving the spin-symmetry of the target states and using the neutral closed-shell spatial orbitals of the ground state. Our Ansatz invokes a normal-ordered exponential representation of spin-free cluster-operators. The orbital relaxation induced by a specific set of cluster operators in our Ansatz is good enough to eliminate the need for different sets of orbitals for the ground and the core-ionized states. We call the single configuration state function (CSF) limit of this theory the Unitary Group Adapted Open-Shell Coupled Cluster (UGA-OSCC) theory. The aim of this paper is to comprehensively explore the efficacy of our Ansatz to describe orbital relaxation, using both theoretical analysis and numerical performance. Whenever warranted, we also make appropriate comparisons with other coupled-cluster theories. A physically motivated truncation of the chains of spin-free T-operators is also made possible by the normal-ordering, and the operational resemblance to single reference coupled-cluster theory allows easy implementation. Our test case is the prediction of the 1s core IP of molecules containing a single light- to medium-heavy nucleus and thus, in addition to demonstrating the orbital relaxation, we have addressed the scalar relativistic effects on the accuracy of the IPs by using a hierarchy of spin-free Hamiltonians in conjunction with our theory. Additionally, the contribution of the spin-free component of the two-electron Gaunt term, not usually taken into consideration, has been estimated at the Self-Consistent Field (ΔSCF) level and is found to become increasingly important and eventually quite prominent for molecules with third period atoms and below. The accuracies of the IPs computed using UGA-OSCC are found to be of the same order as the Coupled Cluster Singles Doubles (ΔCCSD) values while being free from spin contamination. Since the UGA-OSCC uses a common set of orbitals for the ground state and the ion, it obviates the need of two N 5 AO to MO transformation in contrast to the ΔCCSD method.
Koopmans' theorem in the Hartree-Fock method. General formulation
NASA Astrophysics Data System (ADS)
Plakhutin, Boris N.
2018-03-01
This work presents a general formulation of Koopmans' theorem (KT) in the Hartree-Fock (HF) method which is applicable to molecular and atomic systems with arbitrary orbital occupancies and total electronic spin including orbitally degenerate (OD) systems. The new formulation is based on the full set of variational conditions imposed upon the HF orbitals by the variational principle for the total energy and the conditions imposed by KT on the orbitals of an ionized electronic shell [B. N. Plakhutin and E. R. Davidson, J. Chem. Phys. 140, 014102 (2014)]. Based on these conditions, a general form of the restricted open-shell HF method is developed, whose eigenvalues (orbital energies) obey KT for the whole energy spectrum. Particular attention is paid to the treatment of OD systems, for which the new method gives a number of unexpected results. For example, the present method gives four different orbital energies for the triply degenerate atomic level 2p in the second row atoms B to F. Based on both KT conditions and a parallel treatment of atoms B to F within a limited configuration interaction approach, we prove that these four orbital energies, each of which is triply degenerate, are related via KT to the energies of different spin-dependent ionization and electron attachment processes (2p)N → (2p ) N ±1. A discussion is also presented of specific limitations of the validity of KT in the HF method which arise in OD systems. The practical applicability of the theory is verified by comparing KT estimates of the ionization potentials I2s and I2p for the second row open-shell atoms Li to F with the relevant experimental data.
A test for correction made to spin systematics for coupled band in doubly-odd nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Vinod, E-mail: vinod2.k2@gmail.com
2015-12-15
Systematic Spin Assignments were generally made by using the argument that the energy of levels is a function of neutron number. In the present systematics, the excitation energy of the levels incorporated the effect of nuclear deformation and signature splitting. The nuclear deformation changes toward the mid-shell, therefore a smooth variation in the excitation energy of the levels is observed towards the mid-shell, that intended to make systematics as a function of neutron number towards the mid-shell. Another term “signature splitting” that push the energy of levels for odd- and even-spin sequences up and down, caused the different energy variationmore » pattern for odd- and even-spin sequences. The corrections made in the spin systematics were tested for the known spins of various isotopic chain. In addition, the inconsistency in spin assignments made by the spin systematics and other methods of the configuration πh{sub 11/2} ⊗ νh{sub 11/2} band belonging to {sup 112,114,116}Cs, {sup 126}Pr, and {sup 138}Pr, as an example, was resolved by the correctionmade in the present spin systematics.« less
Bis(aminoaryl) Carbon-Bridged Oligo(phenylenevinylene)s Expand the Limits of Electronic Couplings.
Burrezo, Paula Mayorga; Lin, Nai-Ti; Nakabayashi, Koji; Ohkoshi, Shin-Ichi; Calzado, Eva M; Boj, Pedro G; Díaz García, María A; Franco, Carlos; Rovira, Concepciò; Veciana, Jaume; Moos, Michael; Lambert, Christoph; López Navarrete, Juan T; Tsuji, Hayato; Nakamura, Eiichi; Casado, Juan
2017-03-06
Carbon-bridged bis(aminoaryl) oligo(para-phenylenevinylene)s have been prepared and their optical, electrochemical, and structural properties analyzed. Their radical cations are class III and class II mixed-valence systems, depending on the molecular size, and they show electronic couplings which are among the largest for the self-exchange reaction of purely organic molecules. In their dication states, the antiferromagnetic coupling is progressively tuned with size from quinoidal closed-shell to open-shell biradicals. The data prove that the electronic coupling in the radical cations and the singlet-triplet gap in the dications show similar small attenuation factors, thus allowing charge/spin transfer over rather large distances. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Theophilou, Iris; Lathiotakis, Nektarios N; Helbig, Nicole
2018-03-21
We investigate the structure of the one-body reduced density matrix of three electron systems, i.e., doublet and quadruplet spin configurations, corresponding to the smallest interacting system with an open-shell ground state. To this end, we use configuration interaction (CI) expansions of the exact wave function in Slater determinants built from natural orbitals in a finite dimensional Hilbert space. With the exception of maximally polarized systems, the natural orbitals of spin eigenstates are generally spin dependent, i.e., the spatial parts of the up and down natural orbitals form two different sets. A measure to quantify this spin dependence is introduced and it is shown that it varies by several orders of magnitude depending on the system. We also study the ordering issue of the spin-dependent occupation numbers which has practical implications in reduced density matrix functional theory minimization schemes, when generalized Pauli constraints (GPCs) are imposed and in the form of the CI expansion in terms of the natural orbitals. Finally, we discuss the aforementioned CI expansion when there are GPCs that are almost "pinned."
Dielectronic recombination of the 4p and 4d open sub-shell tungsten ions
NASA Astrophysics Data System (ADS)
Li, M. J.; Fu, Y. B.; Zhang, G. D.; Zhang, Y. Z.; Dong, C. Z.; Koike, F.
2014-04-01
Dielectronic recombination rate coefficients are given theoretically for several highly charged tungsten ions. As 4p open sub-shell ions, Ga-, Ge-, As-, Br-, Kr-like ions are considered. Rb-like ion is further considered as a 4d open sub-shell ion. Theoretical calculations are carried out using a relativistic atomic code FAC. The effect of configuration interaction is taking into account. Inner-shell electron excitations play a significant role for the dielectronic recombination process. Simple analytical formulae are given for the total rate coefficients by fitting to the presently obtained numerical results.
Tracking the Magnetization Evolution in γ-Fe2O3 / Metallic Fe Core-Shell Nanoparticle Variants
NASA Astrophysics Data System (ADS)
Kons, C.; Nemati, Z.; Srikanth, H.; Phan, M.-H.; Krycka, K.; Borchers, J.; Keavney, D.; Arena, D. A.
Iron-core magnetic nanoparticles (MNPs) with oxide shells exhibit varying magnetic properties due to the different ordering temperatures of the core and shell spins, as well as the coupling across the metal/oxide interface. While spin coupling across two dimensional interfaces has been well explored, less is known about three dimensional interfaces such as those presented in the MNPs. In this work, MNPs were synthesized with a bcc Fe core and γ-Fe2O3 shell and placed in an oxygen rich environment to encourage the transition from cores shell (CS) to core void shell (CVS) to hollow (H) structures. Static magnetic measurements (MvT) and AC magnetometry were performed to explore the magnetic behavior of the various synthesized structures. To further understand the nature of the spin coupling in the MNPs, TEM and conventional magnetometry as well as variable-temperature small angle neutron scattering (SANS), x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) spectroscopy were performed. Modeling of the x-ray spectra and SANS data will enable us to develop a cohesive picture of spin coupling, freezing and frustration along the three-dimensional metal / oxide interface. Supported by Department of Energy award #DE-FG02-07ER46438; NSF Award #DMR-1508249.
Adiabatic quantum computing with spin qubits hosted by molecules.
Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji
2015-01-28
A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.
Klokishner, Sophia I; Roman, Marianna A; Reu, Oleg S
2011-11-21
A microscopic approach to the problem of cooperative spin crossover in the [MnL2]NO3 crystal, which contains Mn(III) ions as structural units, is elaborated on, and the main mechanisms governing this effect are revealed. The proposed model also takes into account the splitting of the low-spin 3T1 (t(2)(4)) and high-spin 5E (t(2)(3)e) terms by the low-symmetry crystal field. The low-spin → high-spin transition has been considered as a cooperative phenomenon driven by interaction of the electronic shells of the Mn(III) ions with the all-around full-symmetric deformation that is extended over the crystal lattice via the acoustic phonon field. The model well explains the observed thermal dependencies of the magnetic susceptibility and the effective magnetic moment.
Darkhovskii, M B; Pletnev, I V; Tchougréeff, A L
2003-11-15
A computational method targeted to Werner-type complexes is developed on the basis of quantum mechanical effective Hamiltonian crystal field (EHCF) methodology (previously proposed for describing electronic structure of transition metal complexes) combined with the Gillespie-Kepert version of molecular mechanics (MM). It is a special version of the hybrid quantum/MM approach. The MM part is responsible for representing the whole molecule, including ligand atoms and metal ion coordination sphere, but leaving out the effects of the d-shell. The quantum mechanical EHCF part is limited to the metal ion d-shell. The method reproduces with reasonable accuracy geometry and spin states of the Fe(II) complexes with monodentate and polydentate aromatic ligands with nitrogen donor atoms. In this setting a single set of MM parameters set is shown to be sufficient for handling all spin states of the complexes under consideration. Copyright 2003 Wiley Periodicals, Inc.
Observation of a γ -decaying millisecond isomeric state in 128 Cd 80
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jungclaus, A.; Grawe, H.; Nishimura, S.
2017-09-01
A new high-spin isomer in the neutron-rich nucleus 128Cd was populated in the projectile fission of a 238U beam at the Radioactive Isotope Beam Factory at RIKEN. A half-life of T1/2 = 6.3(8) ms was measured for the new state which was tentatively assigned a spin/parity of (15-). The experimental results are compared to shell model calculations performed using state-of-the-art realistic effective interactions and to the neighbouring nucleus 129Cd. In the present experiment no evidence was found for the decay of a 18 + E6 spin-trap isomer, based on the complete alignment of the two-neutron and two-proton holes in themore » 0h 11/2 and the 0g 9/2 orbit, respectively, which is predicted to exist by the shell model.« less
Effect of multiple spin species on spherical shell neutron transmission analysis
NASA Technical Reports Server (NTRS)
Semler, T. T.
1972-01-01
A series of Monte Carlo calculations were performed in order to evaluate the effect of separated against merged spin statistics on the analysis of spherical shell neutron transmission experiments for gold. It is shown that the use of separated spin statistics results in larger average capture cross sections of gold at 24 KeV. This effect is explained by stronger windows in the total cross section caused by the interference between potential and J(+) resonances and by J(+) and J(-) resonance overlap allowed by the use of separated spin statistics.
Microscopic Studies of Quantum Phase Transitions in Optical Lattices
NASA Astrophysics Data System (ADS)
Bakr, Waseem S.
2011-12-01
In this thesis, I report on experiments that microscopically probe quantum phase transitions of ultracold atoms in optical lattices. We have developed a "quantum gas microscope" that allowed, for the first time, optical imaging and manipulation of single atoms in a quantum-degenerate gas on individual sites of an optical lattice. This system acts as a quantum simulator of strongly correlated materials, which are currently the subject of intense research because of the technological potential of high--T c superconductors and spintronic materials. We have used our microscope to study the superfluid to Mott insulator transition in bosons and a magnetic quantum phase transition in a spin system. In our microscopic study of the superfluid-insulator transition, we have characterized the on-site number statistics in a space- and time-resolved manner. We observed Mott insulators with fidelities as high as 99%, corresponding to entropies of 0.06kB per particle. We also measured local quantum dynamics and directly imaged the shell structure of the Mott insulator. I report on the first quantum magnetism experiments in optical lattices. We have realized a quantum Ising chain in a magnetic field, and observed a quantum phase transition between a paramagnet and antiferromagnet. We achieved strong spin interactions by encoding spins in excitations of a Mott insulator in a tilted lattice. We detected the transition by measuring the total magnetization of the system across the transition using in-situ measurements as well as the Neel ordering in the antiferromagnetic state using noise-correlation techniques. We characterized the dynamics of domain formation in the system. The spin mapping introduced opens up a new path to realizing more exotic states in optical lattices including spin liquids and quantum valence bond solids. As our system sizes become larger, simulating their physics on classical computers will require exponentially larger resources because of entanglement build-up near a quantum phase transition. We have demonstrated a quantum simulator in which all degrees of freedom can be read out microscopically, allowing the simulation of quantum many-body systems with manageable resources. More generally, the ability to image and manipulate individual atoms in optical lattices opens an avenue towards scalable quantum computation.
An Investigation at Low Speed of the Spin Instability of Mortar-Shell Tails
NASA Technical Reports Server (NTRS)
Bird, John D.; Lichtenstein, Jacob H.
1957-01-01
An investigation was made in the Langley stability tunnel to study the influence of number of fins, fin shrouding, and fin aspect ratio on the spin instability of mortar-shell tail surfaces. It was found that the 12-fin tails tested spun less rapidly throughout the angle-of-yaw range than did the 6-fin tails and that fin shrouding reduced the spin encountered by a large amount.
Isomer spectroscopy using RI beam
NASA Astrophysics Data System (ADS)
Odahara, Atsuko
2009-10-01
We have studied systematically high-spin oblate shape isomers in the N=83 isotones, which have revealed the characteristics of nuclear structure, such as the preserving pairing interactions at high-spin states, decrease of Z=64 proton shell gap energy as the decrease of proton number from 64 to 60 and so on. Recently, it became possible to search for isomers by the secondary fusion reaction at high-spin states in nuclei, which could not be populated by the stable beam and stable target, using RCNP RI beam line at Osaka University. RI beams enable us to study high-spin states in nuclei in wide mass region. By using the RI beams delivered by RIBF and the high-efficiency γ-ray detection system GRETINA, it will be possible to investigate nuclei far from the stability line. Single-particle energies and nucleon-nucleon interactions of these nuclei close to drip line are expected to be the test ground of nuclear models, such as shell structures. We have a plan to search for isomers with half lives of ˜μsec to ˜msec and to explore the decay mechanism of isomers in the proton-rich nuclei along N=Z line with 80< A<100. Moreover we try to search for nuclei beyond the proton drip line, which could be defined that isomeric states would be bound by the centrifugal potential although the ground states would be unbound against the proton emission. Isomers are expected to reveal the following characteristics of these nuclei. (1) Existence of isomers could prove the magicity of N=Z=50 and the large neutron-proton interaction, as one of the candidates of isomers is spin-gap isomer which is caused by the lowering of excitation energies resulting from the stretch coupling of spins of high-j (g9/2) holes of the ^100Sn core. (2) Isomers could prove the nuclear deformation which is caused by the evolution of shell structure. One of spin-gap isomers in ^94Ag was reported to have large prolate deformation. (3) This mass region is on the way of the rapid proton (rp) synthesis pass. Recently, neutrino reactions in the super novae were reported to play a role of the synthesis of the rp-process nuclei. In the case of no path or slow down of rp process, isomers could contribute to synthesis of rp-nuclei with larger Z, although the production rates of isomers are small.
Nuclear spin-isospin excitations from covariant quasiparticle-vibration coupling
NASA Astrophysics Data System (ADS)
Robin, Caroline; Litvinova, Elena
2016-09-01
Methods based on the relativistic Lagrangian of quantum hadrodynamics and nuclear field theory provide a consistent framework for the description of nuclear excitations, naturally connecting the high- and medium-energy scales of mesons to the low-energy domain of nucleonic collective motion. Applied in the neutral channel, this approach has been quite successful in describing the overall transition strength up to high excitation energies, as well as fine details of the low-lying distribution. Recently, this method has been extended to the description of spin-isospin excitations in open-shell nuclei. In the charge-exchange channel, the coupling between nucleons and collective vibrations generates a time-dependent proton-neutron effective interaction, in addition to the static pion and rho-meson exchange, and introduces complex configurations that induce fragmentation and spreading of the resonances. Such effects have a great impact on the quenching of the strength and on the computing of weak reaction rates that are needed for astrophysics modeling. Gamow-Teller transitions in medium-mass nuclei and associated beta-decay half-lives will be presented. Further developments aiming to include additional ground-state correlations will also be discussed. This work is supported by US-NSF Grants PHY-1404343 and PHY-1204486.
Effects of pressure on the magnetic properties of FeO: A diffusion Monte Carlo study
NASA Astrophysics Data System (ADS)
Townsend, Joshua; Shulenburger, Luke; Mattsson, Thomas; Esler, Ken; Cohen, Ronald
While simple in terms of structure and composition, both experimental and computational investigations have demonstrated that FeO has a rich phase diagram of structural phase transformations, electronic spin transitions, insulator-metal transitions, and magnetic ordering transitions, due to the open-shell occupation of the Fe 3d electrons. We investigated the magnetic and electronic structures of FeO under ambient and high pressure conditions using diffusion Quantum Monte Carlo (QMC) within the fixed-node approximation. QMC techniques are especially well suited to the study of strongly correlated systems because they explicitly include correlation into the ground-state wave function. Here we report on the effects of the choice of trial wave function on the ambient pressure lattice distortion due to AFM ordering, as well as the equation of state, spin collapse, and metal-insulator transitions. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE.
High-spin spectroscopy of 139Ce
NASA Astrophysics Data System (ADS)
Kaim, S.; Petrache, C. M.; Gargano, A.; Itaco, N.; Zerrouki, T.; Leguillon, R.; Astier, A.; Deloncle, I.; Konstantinopoulos, T.; Régis, J. M.; Wilmsen, D.; Melon, B.; Nannini, A.; Ducoin, C.; Guinet, D.; Bhattacharjee, T.
2015-02-01
High-spin states in 139Ce have been populated using the 130Te(14C,5 n ) reaction. The level scheme has been extended to higher spins, including a new band of dipole transitions. The parity of several states has been changed from negative to positive, mainly based on the comparison with the level structure of the core nucleus 140Ce and the results of a realistic shell-model calculation. The dipole band is interpreted as a magnetic rotation band with π h11/2 2⊗ν h11/2 -1 configuration built on small deformation axial shape with (ɛ2=0.12 ,γ =0∘) .
Core excitations across the neutron shell gap in 207Tl
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, E.; Podolyák, Zs.; Grawe, H.
2015-05-05
The single closed-neutron-shell, one proton–hole nucleus 207Tl was populated in deep-inelastic collisions of a 208Pb beam with a 208Pb target. The yrast and near-yrast level scheme has been established up to high excitation energy, comprising an octupole phonon state and a large number of core excited states. Based on shell-model calculations, all observed single core excitations were established to arise from the breaking of the N=126 neutron core. While the shell-model calculations correctly predict the ordering of these states, their energies are compressed at high spins. It is concluded that this compression is an intrinsic feature of shell-model calculations usingmore » two-body matrix elements developed for the description of two-body states, and that multiple core excitations need to be considered in order to accurately calculate the energy spacings of the predominantly three-quasiparticle states.« less
Theory of quasi-spherical accretion in X-ray pulsars
NASA Astrophysics Data System (ADS)
Shakura, N.; Postnov, K.; Kochetkova, A.; Hjalmarsdotter, L.
2012-02-01
A theoretical model for quasi-spherical subsonic accretion on to slowly rotating magnetized neutron stars is constructed. In this model, the accreting matter subsonically settles down on to the rotating magnetosphere forming an extended quasi-static shell. This shell mediates the angular momentum removal from the rotating neutron star magnetosphere during spin-down episodes by large-scale convective motions. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere. The settling regime of accretion can be realized for moderate accretion rates ? g s-1. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and accretion becomes highly non-stationary. From observations of the spin-up/spin-down rates (the angular rotation frequency derivative ?, and ? near the torque reversal) of X-ray pulsars with known orbital periods, it is possible to determine the main dimensionless parameters of the model, as well as to estimate the magnetic field of the neutron star. We illustrate the model by determining these parameters for three wind-fed X-ray pulsars GX 301-2, Vela X-1 and GX 1+4. The model explains both the spin-up/spin-down of the pulsar frequency on large time-scales and the irregular short-term frequency fluctuations, which can correlate or anticorrelate with the X-ray flux fluctuations in different systems. It is shown that in real pulsars an almost iso-angular-momentum rotation law with ω˜ 1/R2, due to strongly anisotropic radial turbulent motions sustained by large-scale convection, is preferred.
NASA Astrophysics Data System (ADS)
Vogt, A.; Birkenbach, B.; Reiter, P.; Blazhev, A.; Siciliano, M.; Valiente-Dobón, J. J.; Wheldon, C.; Bazzacco, D.; Bowry, M.; Bracco, A.; Bruyneel, B.; Chakrawarthy, R. S.; Chapman, R.; Cline, D.; Corradi, L.; Crespi, F. C. L.; Cromaz, M.; de Angelis, G.; Eberth, J.; Fallon, P.; Farnea, E.; Fioretto, E.; Freeman, S. J.; Gadea, A.; Geibel, K.; Gelletly, W.; Gengelbach, A.; Giaz, A.; Görgen, A.; Gottardo, A.; Hayes, A. B.; Hess, H.; Hua, H.; John, P. R.; Jolie, J.; Jungclaus, A.; Korten, W.; Lee, I. Y.; Leoni, S.; Liang, X.; Lunardi, S.; Macchiavelli, A. O.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Mijatović, T.; Montagnoli, G.; Montanari, D.; Napoli, D.; Pearson, C. J.; Pellegri, L.; Podolyák, Zs.; Pollarolo, G.; Pullia, A.; Radeck, F.; Recchia, F.; Regan, P. H.; Şahin, E.; Scarlassara, F.; Sletten, G.; Smith, J. F.; Söderström, P.-A.; Stefanini, A. M.; Steinbach, T.; Stezowski, O.; Szilner, S.; Szpak, B.; Teng, R.; Ur, C.; Vandone, V.; Ward, D.; Warner, D. D.; Wiens, A.; Wu, C. Y.
2016-05-01
Detailed spectroscopic information on the N ˜82 nuclei is necessary to benchmark shell-model calculations in the region. The nuclear structure above long-lived isomers in 134Xe is investigated after multinucleon transfer (MNT) and actinide fission. Xenon-134 was populated as (i) a transfer product in 238U+ 136Xe and 208Pb+ 136Xe MNT reactions and (ii) as a fission product in the 238U+ 136Xe reaction employing the high-resolution Advanced Gamma Tracking Array (AGATA). Trajectory reconstruction has been applied for the complete identification of beamlike transfer products with the magnetic spectrometer PRISMA. The 198Pt 136Xe MNT reaction was studied with the γ -ray spectrometer GAMMASPHERE in combination with the gas detector array Compact Heavy Ion Counter (CHICO). Several high-spin states in 134Xe on top of the two long-lived isomers are discovered based on γ γ -coincidence relationships and information on the γ -ray angular distributions as well as excitation energies from the total kinetic energy loss and fission fragments. The revised level scheme of 134Xe is extended up to an excitation energy of 5.832 MeV with tentative spin-parity assignments up to 16+. Previous assignments of states above the 7- isomer are revised. Latest shell-model calculations employing two different effective interactions reproduce the experimental findings and support the new spin and parity assignments.
Nakano, Masayoshi
2017-01-01
Open-shell character, e. g., diradical character, is a quantum chemically well-defined quantity in ground-state molecular systems, which is not an observable but can quantify the degree of effective bond weakness in the chemical sense or electron correlation strength in the physical sense. Because this quantity also correlates to specific excited states, physicochemical properties concerned with those states are expected to strongly correlate to the open-shell character. This feature enables us to open a new path to revealing the mechanism of these properties as well as to realizing new design principles for efficient functional molecular systems. This account explains the open-shell-character-based molecular design principles and introduces their applications to the rational design of highly efficient nonlinear optical and singlet fission molecular systems. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Xi, S. B.; Lu, W. J.; Wu, H. Y.; Tong, P.; Sun, Y. P.
2012-12-01
The surface magnetic behavior of La0.8Ca0.2MnO3 nanoparticles was investigated. We observed irreversibility in high magnetic field. The surface spin-glass behavior as well as the high-field irreversibility is suppressed by increasing particle size while the freezing temperature TF does not change with particle size. The enhanced coercivity has been observed in the particles and we attributed it to the large surface anisotropy. We have disclosed a clear relationship between the particle size, the thickness of the shell, and the saturation magnetization of the particles. The large reduction of the saturation magnetization of the samples is found to be induced by the increase of nonmagnetic surface large since the thickness of the spin-disordered surface layer increases with a decrease in the particle size. Due to the reduction of the magnetization, the magnetocaloric effect (MCE) has been reduced by the decreased particle size since the nonmagnetic surface contributes little to the MCE. Based on the core-shell structure, large relative cooling powers RCP(s) of 180 J/kg and 471 J/kg were predicted for a field change of 2.0 T and 4.5 T, respectively, in the small particles with thin spin-glass layer.
Characterization of Al 2219 material for the application of the spin-forming-process
NASA Astrophysics Data System (ADS)
Mueller-Wiesner, D.; Sieger, E.; Ernsberger, K.
1991-10-01
The shells of the propellant tanks of the Ariane 5 EPS stage are to be manufactured by the spin forming process. The material for the shells (hemispheres) is the aluminum alloy 2219. By a material characterization program optimized parameters for the application of the forming process starting from different material conditions (T31 temper and '0' condition) are determined. Based on the results of this program it was decided to start spin forming in the '0' condition for flight hardware.
Characterization of the interface interaction of cobalt on top of copper- and iron-phthalocyanine.
Schmitt, Felix; Sauther, Jens; Lach, Stefan; Ziegler, Christiane
2011-05-01
The electronic structure of the interface between ferromagnetic cobalt and the organic semiconductors copper- (CuPc) and iron-phthalocyanine (FePc) was investigated by means of photoemission spectroscopy (UPS, IPES, and XPS). These metal-phthalocyanine (MePc) molecules have an open shell structure and are known to show promising properties for their use in organic spintronics. In spintronic devices, the interface between ferromagnetic electrode and the organic layer determines the spin injection properties and is hence important for the quality of, e.g., a possible spin-valve device. For this purpose, cobalt was deposited onto the MePcs, such as in devices with ferromagnetic top contacts. The reported investigations reveal a diffusion of cobalt into the organic layers and chemical reactions at the interface.
Non-conductive ferromagnetic carbon-coated (Co, Ni) metal/polystyrene nanocomposites films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takacs, H., E-mail: helene.takacs@gmail.com; LTM-CNRS-UJF, CEA, LETI, Minatec Campus, Grenoble 38054; Viala, B.
2016-03-07
This article reports non-conductive ferromagnetic properties of metal/polymer nanocomposite films intended to be used for RF applications. The nanocomposite arrangement is unique showing a core double-shell structure of metal-carbon-polystyrene: M/C//P{sub 1}/P{sub 2}, where M = Co, Ni is the core material, C = graphene or carbon is the first shell acting as a protective layer against oxidation, P{sub 1} = pyrene-terminated polystyrene is the second shell for electrical insulation, and P{sub 2} = polystyrene is a supporting matrix (// indicates actual grafting). The nanocomposite formulation is briefly described, and the film deposition by spin-coating is detailed. Original spin-curves are reported and analyzed. One key outcome is the achievementmore » of uniform and cohesive films at the wafer scale. Structural properties of films are thoroughly detailed, and weight and volume fractions of M/C are considered. Then, a comprehensive overview of DC magnetic and electrical properties is reported. A discussion follows on the magnetic softness of the nanocomposites vs. that of a single particle (theoretical) and the raw powder (experimental). Finally, unprecedented achievement of high magnetization (∼0.6 T) and ultra-high resistivity (∼10{sup 10 }μΩ cm) is shown. High magnetization comes from the preservation of the existing protective shell C, with no significant degradation on the particle net-moment, and high electrical insulation is ensured by adequate grafting of the secondary shell P{sub 1}. To conclude, the metal/polymer nanocomposites are situated in the landscape of soft ferromagnetic materials for RF applications (i.e., inductors and antennas), by means of two phase-diagrams, where they play a crucial role.« less
Quasispherical subsonic accretion in X-ray pulsars
NASA Astrophysics Data System (ADS)
Shakura, Nikolai I.; Postnov, Konstantin A.; Kochetkova, A. Yu; Hjalmarsdotter, L.
2013-04-01
A theoretical model is considered for quasispherical subsonic accretion onto slowly rotating magnetized neutron stars. In this regime, the accreting matter settles down subsonically onto the rotating magnetosphere, forming an extended quasistatic shell. Angular momentum transfer in the shell occurs via large-scale convective motions resulting, for observed pulsars, in an almost iso-angular-momentum \\omega \\sim 1/R^2 rotation law inside the shell. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instabilities, with allowance for cooling. A settling accretion regime is possible for moderate accretion rates \\dot M \\lesssim \\dot M_* \\simeq 4\\times 10^{16} g s ^{-1}. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and the accretion becomes highly nonstationary. Observations of spin-up/spin-down rates of quasispherically wind accreting equilibrium X-ray pulsars with known orbital periods (e.g., GX 301-2 and Vela X-1) enable us to determine the main dimensionless parameters of the model, as well as to estimate surface magnetic field of the neutron star. For equilibrium pulsars, the independent measurements of the neutron star magnetic field allow for an estimate of the stellar wind velocity of the optical companion without using complicated spectroscopic measurements. For nonequilibrium pulsars, a maximum value is shown to exist for the spin-down rate of the accreting neutron star. From observations of the spin-down rate and the X-ray luminosity in such pulsars (e.g., GX 1+4, SXP 1062, and 4U 2206+54), a lower limit can be put on the neutron star magnetic field, which in all cases turns out to be close to the standard value and which agrees with cyclotron line measurements. Furthermore, both explains the spin-up/spin-down of the pulsar frequency on large time-scales and also accounts for the irregular short-term frequency fluctuations, which may correlate or anticorrelate with the observed X-ray luminosity fluctuations.
Kutzelnigg, Werner; Mukherjee, Debashis
2004-04-22
We analyze the structure and the solutions of the irreducible k-particle Brillouin conditions (IBCk) and the irreducible contracted Schrödinger equations (ICSEk) for an n-electron system without electron interaction. This exercise is very instructive in that it gives one both the perspective and the strategies to be followed in applying the IBC and ICSE to physically realistic systems with electron interaction. The IBC1 leads to a Liouville equation for the one-particle density matrix gamma1=gamma, consistent with our earlier analysis that the IBC1 holds both for a pure and an ensemble state. The IBC1 or the ICSE1 must be solved subject to the constraints imposed by the n-representability condition, which is particularly simple for gamma. For a closed-shell state gamma is idempotent, i.e., all natural spin orbitals (NSO's) have occupation numbers 0 or 1, and all cumulants lambdak with k> or =2 vanish. For open-shell states there are NSO's with fractional occupation number, and at the same time nonvanishing elements of lambda2, which are related to spin and symmetry coupling. It is often useful to describe an open-shell state by a totally symmetric ensemble state. If one wants to treat a one-particle perturbation by means of perturbation theory, this mainly as a run-up for the study of a two-particle perturbation, one is faced with the problem that the perturbation expansion of the Liouville equation gives information only on the nondiagonal elements (in a basis of the unperturbed states) of gamma. There are essentially three possibilities to construct the diagonal elements of gamma: (i) to consider the perturbation expansion of the characteristic polynomial of gamma, especially the idempotency for closed-shell states, (ii) to rely on the ICSE1, which (at variance with the IBC1) also gives information on the diagonal elements, though not in a very efficient manner, and (iii) to formulate the perturbation theory in terms of a unitary transformation in Fock space. The latter is particularly powerful, especially, when one wishes to study realistic Hamiltonians with a two-body interaction. (c) 2004 American Institute of Physics
Equation-of-motion coupled-cluster method for doubly ionized states with spin-orbit coupling.
Wang, Zhifan; Hu, Shu; Wang, Fan; Guo, Jingwei
2015-04-14
In this work, we report implementation of the equation-of-motion coupled-cluster method for doubly ionized states (EOM-DIP-CC) with spin-orbit coupling (SOC) using a closed-shell reference. Double ionization potentials (DIPs) are calculated in the space spanned by 2h and 3h1p determinants with the EOM-DIP-CC approach at the CC singles and doubles level (CCSD). Time-reversal symmetry together with spatial symmetry is exploited to reduce computational effort. To circumvent the problem of unstable dianion references when diffuse basis functions are included, nuclear charges are scaled. Effect of this stabilization potential on DIPs is estimated based on results from calculations using a small basis set without diffuse basis functions. DIPs and excitation energies of some low-lying states for a series of open-shell atoms and molecules containing heavy elements with two unpaired electrons have been calculated with the EOM-DIP-CCSD approach. Results show that this approach is able to afford a reliable description on SOC splitting. Furthermore, the EOM-DIP-CCSD approach is shown to provide reasonable excitation energies for systems with a dianion reference when diffuse basis functions are not employed.
Equation-of-motion coupled-cluster method for doubly ionized states with spin-orbit coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhifan; Hu, Shu; Guo, Jingwei
2015-04-14
In this work, we report implementation of the equation-of-motion coupled-cluster method for doubly ionized states (EOM-DIP-CC) with spin-orbit coupling (SOC) using a closed-shell reference. Double ionization potentials (DIPs) are calculated in the space spanned by 2h and 3h1p determinants with the EOM-DIP-CC approach at the CC singles and doubles level (CCSD). Time-reversal symmetry together with spatial symmetry is exploited to reduce computational effort. To circumvent the problem of unstable dianion references when diffuse basis functions are included, nuclear charges are scaled. Effect of this stabilization potential on DIPs is estimated based on results from calculations using a small basis setmore » without diffuse basis functions. DIPs and excitation energies of some low-lying states for a series of open-shell atoms and molecules containing heavy elements with two unpaired electrons have been calculated with the EOM-DIP-CCSD approach. Results show that this approach is able to afford a reliable description on SOC splitting. Furthermore, the EOM-DIP-CCSD approach is shown to provide reasonable excitation energies for systems with a dianion reference when diffuse basis functions are not employed.« less
Memory effect versus exchange bias for maghemite nanoparticles
NASA Astrophysics Data System (ADS)
Nadeem, K.; Krenn, H.; Szabó, D. V.
2015-11-01
We studied the temperature dependence of memory and exchange bias effects and their dependence on each other in maghemite (γ-Fe2O3) nanoparticles by using magnetization studies. Memory effect in zero field cooled process in nanoparticles is a fingerprint of spin-glass behavior which can be due to i) surface disordered spins (surface spin-glass) and/or ii) randomly frozen and interacting nanoparticles core spins (super spin-glass). Temperature region (25-70 K) for measurements has been chosen just below the average blocking temperature (TB=75 K) of the nanoparticles. Memory effect (ME) shows a non-monotonous behavior with temperature. It shows a decreasing trend with decreasing temperature and nearly vanishes below 30 K. However it also decreased again near the blocking temperature of the nanoparticles e.g., 70 K. Exchange bias (EB) in these nanoparticles arises due to core/shell interface interactions. The EB increases sharply below 30 K due to increase in core/shell interactions, while ME starts vanishing below 30 K. We conclude that the core/shell interface interactions or EB have not enhanced the ME but may reduce it in these nanoparticles.
Zhang, Xinghao; Guo, Ruiying; Li, Xianglong; Zhi, Linjie
2018-06-01
Building stable and efficient electron and ion transport pathways are critically important for energy storage electrode materials and systems. Herein, a scallop-inspired shell engineering strategy is proposed and demonstrated to confine high volume change silicon microparticles toward the construction of stable and high volumetric capacity binder-free lithium battery anodes. As for each silicon microparticle, the methodology involves an inner sealed but adaptable overlapped graphene shell, and an outer open hollow shell consisting of interconnected reduced graphene oxide, mimicking the scallop structure. The inner closed shell enables simultaneous stabilization of the interfaces of silicon with both carbon and electrolyte, substantially facilitates efficient and rapid transport of both electrons and lithium ions from/to silicon, the outer open hollow shell creates stable and robust transport paths of both electrons and lithium ions throughout the electrode without any sophisticated additives. The resultant self-supported electrode has achieved stable cycling with rapidly increased coulombic efficiency in the early stage, superior rate capability, and remarkably high volumetric capacity upon a facile pressing process. The rational design and engineering of graphene shells of the silicon microparticles developed can provide guidance for the development of a wide range of other high capacity but large volume change electrochemically active materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The equation-of-motion coupled cluster method for triple electron attached states
NASA Astrophysics Data System (ADS)
Musiał, Monika; Olszówka, Marta; Lyakh, Dmitry I.; Bartlett, Rodney J.
2012-11-01
The initial implementation of the triple electron attachment (TEA) equation-of-motion (EOM) coupled cluster (CC) method is presented, aiming at the description of electronic states with three open shell electrons outside a suitably chosen closed shell vacuum. In particular, such an approach can be used for describing dissociation of chemical bonds predominantly formed by three valence electrons, for example, in LiC and NaC molecules. Both ground and excited states are considered while rigorously maintaining the correct spin value. The preliminary results show a correct asymptotic behavior of the dissociation curves. At the same time, we emphasize that a chemically accurate description will require an extension of the minimal TEA-EOM-CC model introduced here, analogous to those already used in the double ionization potential and double electron attachment methods.
Spectroscopy of the odd-odd fp-shell nucleus {sup 52}Sc from secondary fragmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gade, A.; Bazin, D.; Mueller, W.F.
2006-03-15
The odd-odd fp-shell nucleus {sup 52}Sc was investigated using in-beam {gamma}-ray spectroscopy following secondary fragmentation of a {sup 55}V and {sup 57}Cr cocktail beam. Aside from the known {gamma}-ray transition at 674(5) keV, a new decay at E{sub {gamma}}=212(3) keV was observed. It is attributed to the depopulation of a low-lying excited level. This new state is discussed in the framework of shell-model calculations with the GXPF1, GXPF1A, and KB3G effective interactions. These calculations are found to be fairly robust for the low-lying level scheme of {sup 52}Sc irrespective of the choice of the effective interaction. In addition, the frequencymore » of spin values predicted by the shell model is successfully modeled by a spin distribution formulated in a statistical approach with an empirical, energy-independent spin-cutoff parameter.« less
Choi, Hyekyoung; Song, Jung Hoon; Jang, Jihoon; Mai, Xuan Dung; Kim, Sungwoo; Jeong, Sohee
2015-11-07
We fabricated heterojunction solar cells with PbSe/PbS core shell quantum dots and studied the precisely controlled PbS shell thickness dependency in terms of optical properties, electronic structure, and solar cell performances. When the PbS shell thickness increases, the short circuit current density (JSC) increases from 6.4 to 11.8 mA cm(-2) and the fill factor (FF) enhances from 30 to 49% while the open circuit voltage (VOC) remains unchanged at 0.46 V even with the decreased effective band gap. We found that the Fermi level and the valence band maximum level remain unchanged in both the PbSe core and PbSe/PbS core/shell with a less than 1 nm thick PbS shell as probed via ultraviolet photoelectron spectroscopy (UPS). The PbS shell reduces their surface trap density as confirmed by relative quantum yield measurements. Consequently, PbS shell formation on the PbSe core mitigates the trade-off relationship between the open circuit voltage and the short circuit current density. Finally, under the optimized conditions, the PbSe core with a 0.9 nm thick shell yielded a power conversion efficiency of 6.5% under AM 1.5.
Investigation of high spin states in 133Cs
NASA Astrophysics Data System (ADS)
Xu, Q.; Xiao, Z. G.; Zhu, S. J.; Qi, C.; Jia, H.; Qi, B.; Wang, R. S.; Cheng, W. J.; Zhang, Y.; Yi, H.; Lü, L. M.; Wang, Y. J.; Li, H. J.; Huang, Y.; Zhang, Z.; Wu, X. G.; Li, C. B.; Zheng, Y.; Chen, Q. M.; Zhou, W. K.; Li, G. S.
2018-05-01
High spin states in 133Cs nucleus have been studied with the reaction 130Te (7Li, 4n) at a beam energy of 38 MeV. The level scheme has been expanded with spin up to 31/2 \\hbar. Compared with a recent paper, ground state band and other two collective band structures at lower spin states have been confirmed. Another collective band structure at higher spin states as well as some levels and transitions are updated. Compared with the experimental data, large-scale shell model and tilted axis cranking model calculations have been carried out. The results show that the band-head configuration of yrast band based on 7/2+ ground state and the side band built on the 5/2+ state are a pair of pseudospin partner states with π \\tilde{f}_{7/2,5/2}. The negative parity band based on 1071.5 keV level originates from π h_{11/2} orbital. Another band built on 2642.9 keV level at high spin states has been proposed with oblate deformation. Other characteristics for these bands were also discussed.
NASA Technical Reports Server (NTRS)
Anderson, David T.; Davis, Scott; Zwier, Timothy S.; Nesbitt, David J.
1996-01-01
A novel pulsed, slit supersonic discharge source is described for generating intense jet-cooled densities of radicals (greater than 10(exp 12)/cu cm) and molecular ions (greater than 10(exp 10)/cu cm) under long absorption path (80 cm), supersonically cooled conditions. The design confines the discharge region upstream of the supersonic expansion orifice to achieve efficient rotational cooling down to 30 K or less. The collisionally collimated velocity distribution in the slit discharge geometry yields sub-Doppler spectral linewidths, which for open-shell radicals reveals spin-rotation splittings and broadening due to nuclear hyperfine structure. Application of the slit source for high-resolution, direct IR laser absorption spectroscopy in discharges is demonstrated on species such as OH, H3O(+) and N2H(+).
Recombination of open-f-shell tungsten ions
NASA Astrophysics Data System (ADS)
Krantz, C.; Badnell, N. R.; Müller, A.; Schippers, S.; Wolf, A.
2017-03-01
We review experimental and theoretical efforts aimed at a detailed understanding of the recombination of electrons with highly charged tungsten ions characterised by an open 4f sub-shell. Highly charged tungsten occurs as a plasma contaminant in ITER-like tokamak experiments, where it acts as an unwanted cooling agent. Modelling of the charge state populations in a plasma requires reliable thermal rate coefficients for charge-changing electron collisions. The electron recombination of medium-charged tungsten species with open 4f sub-shells is especially challenging to compute reliably. Storage-ring experiments have been conducted that yielded recombination rate coefficients at high energy resolution and well-understood systematics. Significant deviations compared to simplified, but prevalent, computational models have been found. A new class of ab initio numerical calculations has been developed that provides reliable predictions of the total plasma recombination rate coefficients for these ions.
Time-resolved inner-shell photoelectron spectroscopy: From a bound molecule to an isolated atom
NASA Astrophysics Data System (ADS)
Brauße, Felix; Goldsztejn, Gildas; Amini, Kasra; Boll, Rebecca; Bari, Sadia; Bomme, Cédric; Brouard, Mark; Burt, Michael; de Miranda, Barbara Cunha; Düsterer, Stefan; Erk, Benjamin; Géléoc, Marie; Geneaux, Romain; Gentleman, Alexander S.; Guillemin, Renaud; Ismail, Iyas; Johnsson, Per; Journel, Loïc; Kierspel, Thomas; Köckert, Hansjochen; Küpper, Jochen; Lablanquie, Pascal; Lahl, Jan; Lee, Jason W. L.; Mackenzie, Stuart R.; Maclot, Sylvain; Manschwetus, Bastian; Mereshchenko, Andrey S.; Mullins, Terence; Olshin, Pavel K.; Palaudoux, Jérôme; Patchkovskii, Serguei; Penent, Francis; Piancastelli, Maria Novella; Rompotis, Dimitrios; Ruchon, Thierry; Rudenko, Artem; Savelyev, Evgeny; Schirmel, Nora; Techert, Simone; Travnikova, Oksana; Trippel, Sebastian; Underwood, Jonathan G.; Vallance, Claire; Wiese, Joss; Simon, Marc; Holland, David M. P.; Marchenko, Tatiana; Rouzée, Arnaud; Rolles, Daniel
2018-04-01
Due to its element and site specificity, inner-shell photoelectron spectroscopy is a widely used technique to probe the chemical structure of matter. Here, we show that time-resolved inner-shell photoelectron spectroscopy can be employed to observe ultrafast chemical reactions and the electronic response to the nuclear motion with high sensitivity. The ultraviolet dissociation of iodomethane (CH3I ) is investigated by ionization above the iodine 4 d edge, using time-resolved inner-shell photoelectron and photoion spectroscopy. The dynamics observed in the photoelectron spectra appear earlier and are faster than those seen in the iodine fragments. The experimental results are interpreted using crystal-field and spin-orbit configuration interaction calculations, and demonstrate that time-resolved inner-shell photoelectron spectroscopy is a powerful tool to directly track ultrafast structural and electronic transformations in gas-phase molecules.
Aerodynamic flail for a spinning projectile
Cole, James K.
1990-05-01
A flail is provided which reduces the spin of a projectile in a recovery system which includes a parachute, a cable connected to the parachute, a swivel, and means for connecting the swivel to the projectile. The flail includes a plurality of flexible filaments and a rotor for attaching the filaments to the front end of the projectile. The rotor is located radially with respect to the spinning axis of the projectile. In one embodiment, the projectile includes a first nose cone section housing a deployable spin damping assembly; a second nose cone section, housing a deployable parachute assembly; a shell section, supporting the first and second nose cone sections during flight of the projectile; a mechanism for releasing the first nose cone section from the second cone section; and a mechanism for releasing the second nose cone section from the shell section. In operation of this embodiment, the deployable spin damping assembly deploys during flight of the projectile when the mechanism for releasing the first nose cone section from the second nose cone section are actuated. Then, upon actuation of the mechanism for releasing the second nose cone section from the shell section, two things happen: the spin damping assembly separates from the projectile; and the deployable parachute assembly is deployed.
Aerodynamic flail for a spinning projectile
Cole, James K.
1990-01-01
A flail is provided which reduces the spin of a projectile in a recovery system which includes a parachute, a cable connected to the parachute, a swivel, and means for connecting the swivel to the projectile. The flail includes a plurality of flexible filaments and a rotor for attaching the filaments to the front end of the projectile. The rotor is located radially with respect to the spinning axis of the projectile. In one embodiment, the projectile includes a first nose cone section housing a deployable spin damping assembly; a second nose cone section, housing a deployable parachute assembly; a shell section, supporting the first and second nose cone sections during flight of the projectile; a mechanism for releasing the first nose cone section from the second cone section; and a mechanism for releasing the second nose cone section from the shell section. In operation of this embodiment, the deployable spin damping assembly deploys during flight of the projectile when the mechanism for releasing the first nose cone section from the second nose cone section are actuated. Then, upon actuation of the mechanism for releasing the second nose cone section from the shell section, two things happen: the spin damping assembly separates from the projectile; and the deployable parachute assembly is deployed.
Quantified Gamow shell model interaction for p s d -shell nuclei
NASA Astrophysics Data System (ADS)
Jaganathen, Y.; Betan, R. M. Id; Michel, N.; Nazarewicz, W.; Płoszajczak, M.
2017-11-01
Background: The structure of weakly bound and unbound nuclei close to particle drip lines is one of the major science drivers of nuclear physics. A comprehensive understanding of these systems goes beyond the traditional configuration interaction approach formulated in the Hilbert space of localized states (nuclear shell model) and requires an open quantum system description. The complex-energy Gamow shell model (GSM) provides such a framework as it is capable of describing resonant and nonresonant many-body states on equal footing. Purpose: To make reliable predictions, quality input is needed that allows for the full uncertainty quantification of theoretical results. In this study, we carry out the optimization of an effective GSM (one-body and two-body) interaction in the p s d f -shell-model space. The resulting interaction is expected to describe nuclei with 5 ≤A ≲12 at the p -s d -shell interface. Method: The one-body potential of the 4He core is modeled by a Woods-Saxon + spin-orbit + Coulomb potential, and the finite-range nucleon-nucleon interaction between the valence nucleons consists of central, spin-orbit, tensor, and Coulomb terms. The GSM is used to compute key fit observables. The χ2 optimization is performed using the Gauss-Newton algorithm augmented by the singular value decomposition technique. The resulting covariance matrix enables quantification of statistical errors within the linear regression approach. Results: The optimized one-body potential reproduces nucleon-4He scattering phase shifts up to an excitation energy of 20 MeV. The two-body interaction built on top of the optimized one-body field is adjusted to the bound and unbound ground-state binding energies and selected excited states of the helium, lithium, and beryllium isotopes up to A =9 . A very good agreement with experimental results was obtained for binding energies. First applications of the optimized interaction include predictions for two-nucleon correlation densities and excitation spectra of light nuclei with quantified uncertainties. Conclusion: The new interaction will enable comprehensive and fully quantified studies of structure and reactions aspects of nuclei from the p s d region of the nuclear chart.
Quantified Gamow shell model interaction for p s d -shell nuclei
Jaganathen, Y.; Betan, R. M. Id; Michel, N.; ...
2017-11-20
Background: The structure of weakly bound and unbound nuclei close to particle drip lines is one of the major science drivers of nuclear physics. A comprehensive understanding of these systems goes beyond the traditional configuration interaction approach formulated in the Hilbert space of localized states (nuclear shell model) and requires an open quantum system description. The complex-energy Gamow shell model (GSM) provides such a framework as it is capable of describing resonant and nonresonant many-body states on equal footing. Purpose: To make reliable predictions, quality input is needed that allows for the full uncertainty quantification of theoretical results. In thismore » study, we carry out the optimization of an effective GSM (one-body and two-body) interaction in the psdf-shell-model space. The resulting interaction is expected to describe nuclei with 5 ≤ A ≲ 12 at the p-sd-shell interface. Method: The one-body potential of the 4He core is modeled by a Woods-Saxon + spin-orbit + Coulomb potential, and the finite-range nucleon-nucleon interaction between the valence nucleons consists of central, spin-orbit, tensor, and Coulomb terms. The GSM is used to compute key fit observables. The χ 2 optimization is performed using the Gauss-Newton algorithm augmented by the singular value decomposition technique. The resulting covariance matrix enables quantification of statistical errors within the linear regression approach. Results: The optimized one-body potential reproduces nucleon- 4He scattering phase shifts up to an excitation energy of 20 MeV. The two-body interaction built on top of the optimized one-body field is adjusted to the bound and unbound ground-state binding energies and selected excited states of the helium, lithium, and beryllium isotopes up to A = 9 . A very good agreement with experimental results was obtained for binding energies. First applications of the optimized interaction include predictions for two-nucleon correlation densities and excitation spectra of light nuclei with quantified uncertainties. In conclusion: The new interaction will enable comprehensive and fully quantified studies of structure and reactions aspects of nuclei from the psd region of the nuclear chart.« less
Sudden transition and sudden change from open spin environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Zheng-Da; School of Science, Jiangnan University, Wuxi 214122; Xu, Jing-Bo, E-mail: xujb@zju.edu.cn
2014-11-15
We investigate the necessary conditions for the existence of sudden transition or sudden change phenomenon for appropriate initial states under dephasing. As illustrative examples, we study the behaviors of quantum correlation dynamics of two noninteracting qubits in independent and common open spin environments, respectively. For the independent environments case, we find that the quantum correlation dynamics is closely related to the Loschmidt echo and the dynamics exhibits a sudden transition from classical to quantum correlation decay. It is also shown that the sudden change phenomenon may occur for the common environment case and stationary quantum discord is found at themore » high temperature region of the environment. Finally, we investigate the quantum criticality of the open spin environment by exploring the probability distribution of the Loschmidt echo and the scaling transformation behavior of quantum discord, respectively. - Highlights: • Sudden transition or sudden change from open spin baths are studied. • Quantum discord is related to the Loschmidt echo in independent open spin baths. • Steady quantum discord is found in a common open spin bath. • The probability distribution of the Loschmidt echo is analyzed. • The scaling transformation behavior of quantum discord is displayed.« less
Understanding the quantum nature of low-energy C(3P j ) + He inelastic collisions.
Bergeat, Astrid; Chefdeville, Simon; Costes, Michel; Morales, Sébastien B; Naulin, Christian; Even, Uzi; Kłos, Jacek; Lique, François
2018-05-01
Inelastic collisions that occur between open-shell atoms and other atoms or molecules, and that promote a spin-orbit transition, involve multiple interaction potentials. They are non-adiabatic by nature and cannot be described within the Born-Oppenheimer approximation; in particular, their theoretical modelling becomes very challenging when the collision energies have values comparable to the spin-orbit splitting. Here we study inelastic collisions between carbon in its ground state C( 3 P j=0 ) and helium atoms-at collision energies in the vicinity of spin-orbit excitation thresholds (~0.2 and 0.5 kJ mol -1 )-that result in spin-orbit excitation to C( 3 P j=1 ) and C( 3 P j=2 ). State-to-state integral cross-sections are obtained from crossed-beam experiments with a beam source that provides an almost pure beam of C( 3 P j=0 ) . We observe very good agreement between experimental and theoretical results (acquired using newly calculated potential energy curves), which validates our characterization of the quantum dynamical resonances that are observed. Rate coefficients at very low temperatures suitable for chemical modelling of the interstellar medium are also calculated.
Understanding the quantum nature of low-energy C(3Pj) + He inelastic collisions
NASA Astrophysics Data System (ADS)
Bergeat, Astrid; Chefdeville, Simon; Costes, Michel; Morales, Sébastien B.; Naulin, Christian; Even, Uzi; Kłos, Jacek; Lique, François
2018-05-01
Inelastic collisions that occur between open-shell atoms and other atoms or molecules, and that promote a spin-orbit transition, involve multiple interaction potentials. They are non-adiabatic by nature and cannot be described within the Born-Oppenheimer approximation; in particular, their theoretical modelling becomes very challenging when the collision energies have values comparable to the spin-orbit splitting. Here we study inelastic collisions between carbon in its ground state C(3Pj=0) and helium atoms—at collision energies in the vicinity of spin-orbit excitation thresholds ( 0.2 and 0.5 kJ mol-1)—that result in spin-orbit excitation to C(3Pj=1) and C(3Pj=2). State-to-state integral cross-sections are obtained from crossed-beam experiments with a beam source that provides an almost pure beam of C(3Pj=0) . We observe very good agreement between experimental and theoretical results (acquired using newly calculated potential energy curves), which validates our characterization of the quantum dynamical resonances that are observed. Rate coefficients at very low temperatures suitable for chemical modelling of the interstellar medium are also calculated.
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Harris, I.
1981-01-01
An analysis of superrotation in the atmosphere of planets, with rotation axis perpendicular to the orbital plane is presented. As the atmosphere expands, Hadley cells develop producing a redistribution of mass and angular momentum. A three dimensional thermally driven zonally symmetric spectral model and Laplace transformation simulate the time evolution of a fluid leading from corotation under globally uniform heating to superrotation under globally nonuniform heating. For high viscosities the rigid shell component of atmospheric superrotation can be understood in analogy with a pirouette. During spin up angular momentum is transferred to the planet. For low iscosities, the process is reversed. A tendency toward geostrophy, combined with increase of surface pressure toward the poles (due to meridional mass transport), induces the atmosphere to subrotate temporarily at lower altitudes. Resultant viscous shear near the surface permits angular momentum to flow from the planet into the atmosphere propagating upwards to produce high altitude superrotation rates.
High-spin structures in the 139Pr nucleus
NASA Astrophysics Data System (ADS)
Yeoh, E. Y.; Zhu, S. J.; Wang, J. G.; Xiao, Z. G.; Zhang, M.; Yan, W. H.; Wang, R. S.; Xu, Q.; Wu, X. G.; He, C. Y.; Li, G. S.; Zheng, Y.; Li, C. B.; Cao, X. P.; Hu, S. P.; Yao, S. H.; Yu, B. B.
2012-06-01
Background: 139Pr is located in a transitional region of neutron number close to the N=82 shell. The study of its high-spin states and collective bands is important for systematically understanding the nuclear structural characteristics in this region.Purpose: To investigate the high-spin levels and to search for oblate bands in 139Pr.Methods: The high-spin states of 139Pr have been studied via the reaction 124Sn(19F,4n) at a beam energy of 80 MeV. The experiment was carried out at the HI-13 Tandem Accelerator at the China Institute of Atomic Energy (CIAE). The data analysis was done by using the γ-γ coincidence method.Results: The level scheme of 139Pr has been expanded with spin up to 45/2ℏ. A total of 39 new levels and 45 new transitions are identified. Four collective band structures at high-spin states have been newly established. From systematic analysis, one of the bands is proposed as a double decoupled band; two bands are proposed as oblate bands with γ˜-60∘; another band is suggested as an oblate-triaxial band with γ˜-90∘. The other characteristics for these bands are discussed.Conclusions: A new level scheme in 139Pr has been established and the collective bands at high spin have been identified. The result shows that the strong oblate shape-driving effect is caused by neutrons at the high-spin states in 139Pr.
Hyperfine structure of 2Σ molecules containing alkaline-earth-metal atoms
NASA Astrophysics Data System (ADS)
Aldegunde, Jesus; Hutson, Jeremy M.
2018-04-01
Ultracold molecules with both electron spin and an electric dipole moment offer new possibilities in quantum science. We use density-functional theory to calculate hyperfine coupling constants for a selection of molecules important in this area, including RbSr, LiYb, RbYb, CaF, and SrF. We find substantial hyperfine coupling constants for the fermionic isotopes of the alkaline-earth-metal and Yb atoms. We discuss the hyperfine level patterns and Zeeman splittings expected for these molecules. The results will be important both to experiments aimed at forming ultracold open-shell molecules and to their applications.
NASA Astrophysics Data System (ADS)
Crisan, A. D.; Angelakeris, M.; Simeonidis, K.; Tsiaoussis, I.; Crisan, O.
2010-11-01
In core-shell systems with non-magnetic core and magnetic shell, the electron transport and magnetic properties are expected to show enhanced behavior due to the particular morpho-structural features of the conductive and magnetic regions. This may lead to novel advanced GMR materials and spin valves. This is the case of core-shell Ag-Co colloidal nanoscale particles that organize into regular arrays. An insight on the structure and morphology of the newly synthesized Ag-Co nanoparticles deposited on different substrates will be presented. The influence of the substrate on different morphologies and organization dynamics is discussed. It is shown that the magnetic behavior of the Ag-Co nanoparticles is highly influenced by the corona-like morphology of Co shell, chemical environment of the magnetic atoms and by the fact that they exhibit strongly reduced coordination due to the surface states.
USDA-ARS?s Scientific Manuscript database
Due to low consumer acceptance and the possibility of immature kernels, closed-shell pistachio nuts should be separated from open-shell nuts before reaching the consumer. The feasibility of a system using impact acoustics as a means of classifying closed-shell nuts from open-shell nuts has already b...
Invariant functionals in higher-spin theory
NASA Astrophysics Data System (ADS)
Vasiliev, M. A.
2017-03-01
A new construction for gauge invariant functionals in the nonlinear higher-spin theory is proposed. Being supported by differential forms closed by virtue of the higher-spin equations, invariant functionals are associated with central elements of the higher-spin algebra. In the on-shell AdS4 higher-spin theory we identify a four-form conjectured to represent the generating functional for 3d boundary correlators and a two-form argued to support charges for black hole solutions. Two actions for 3d boundary conformal higher-spin theory are associated with the two parity-invariant higher-spin models in AdS4. The peculiarity of the spinorial formulation of the on-shell AdS3 higher-spin theory, where the invariant functional is supported by a two-form, is conjectured to be related to the holomorphic factorization at the boundary. The nonlinear part of the star-product function F* (B (x)) in the higher-spin equations is argued to lead to divergencies in the boundary limit representing singularities at coinciding boundary space-time points of the factors of B (x), which can be regularized by the point splitting. An interpretation of the RG flow in terms of proposed construction is briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiedeking, M.; Krticka, M.; Bernstein, L. A.
2016-02-01
The emission of γ rays from neutron-bound and neutron-unbound states in 95Mo, populated in the 94Mo(d,p) reaction, has been investigated. Charged particles and γ radiation were detected with arrays of annular silicon and Clover-type high-purity Germanium detectors, respectively. Utilizing p-γ and p-γ-γ coincidences, the 95Mo level scheme was greatly enhanced with 102 new transitions and 43 new states. It agrees well with shell model calculations for excitation energies below ≈2 MeV. From p-γ coincidence data, a new method for the determination of spins of discrete levels is proposed. The method exploits the suppression of high-angular momentum neutron emission from levelsmore » with high spins populated in the (d,p) reaction above the neutron separation energy. As a result, spins for almost all 95Mo levels below 2 MeV (and for a few levels above) have been determined with this method.« less
Korytár, Richard; Lorente, Nicolás
2011-09-07
We have developed a multi-orbital approach to compute the electronic structure of a quantum impurity using the non-crossing approximation. The calculation starts with a mean-field evaluation of the system's electronic structure using a standard quantum chemistry code; here we use density functional theory (DFT). We transformed the one-electron structure into an impurity Hamiltonian by using maximally localized Wannier functions. Hence, we have developed a method to study the Kondo effect in systems based on an initial one-electron calculation. We have applied our methodology to a copper phthalocyanine molecule chemisorbed on Ag(100), and we have described its spectral function for three different cases where the molecule presents a single spin or two spins with ferro- and anti-ferromagnetic exchange couplings. We find that the use of broken-symmetry mean-field theories such as Kohn-Sham DFT cannot deal with the complexity of the spin of open-shell molecules on metal surfaces and extra modeling is needed. © 2011 IOP Publishing Ltd
Solution blow spun spinel ferrite and highly porous silica nanofibers
USDA-ARS?s Scientific Manuscript database
The novelty of this work is the production of nano- and submicrometric silica and spinel-ferrite fibers using the solution blow spinning (SBS) method. A pseudo-core-shell method for the production of large surface area silica fibers is also reported. Silica fibers present mean diameters and specific...
NASA Astrophysics Data System (ADS)
Foley, Jonathan J.; Mazziotti, David A.
2010-10-01
An efficient method for geometry optimization based on solving the anti-Hermitian contracted Schrödinger equation (ACSE) is presented. We formulate a reduced version of the Hellmann-Feynman theorem (HFT) in terms of the two-electron reduced Hamiltonian operator and the two-electron reduced density matrix (2-RDM). The HFT offers a considerable reduction in computational cost over methods which rely on numerical derivatives. While previous geometry optimizations with numerical gradients required 2M evaluations of the ACSE where M is the number of nuclear degrees of freedom, the HFT requires only a single ACSE calculation of the 2-RDM per gradient. Synthesizing geometry optimization techniques with recent extensions of the ACSE theory to arbitrary electronic and spin states provides an important suite of tools for accurately determining equilibrium and transition-state structures of ground- and excited-state molecules in closed- and open-shell configurations. The ability of the ACSE to balance single- and multi-reference correlation is particularly advantageous in the determination of excited-state geometries where the electronic configurations differ greatly from the ground-state reference. Applications are made to closed-shell molecules N2, CO, H2O, the open-shell molecules B2 and CH, and the excited state molecules N2, B2, and BH. We also study the HCN ↔ HNC isomerization and the geometry optimization of hydroxyurea, a molecule which has a significant role in the treatment of sickle-cell anaemia.
On four-point interactions in massless higher spin theory in flat space
NASA Astrophysics Data System (ADS)
Roiban, R.; Tseytlin, A. A.
2017-04-01
We consider a minimal interacting theory of a single tower of spin j = 0, 2, 4,… massless Fronsdal fields in flat space with local Lorentz-covariant cubic interaction vertices. We address the question of constraints on possible quartic interaction vertices imposed by the condition of on-shell gauge invariance of the tree-level four-point scattering amplitudes involving three spin 0 and one spin j particle. We find that these constraints admit a local solution for quartic 000 j interaction term in the action only for j = 2 and j = 4. We determine the non-local terms in four-vertices required in the j ≥ 6 case and suggest that these non-localities may be interpreted as a result of integrating out a tower of auxiliary ghost-like massless higher spin fields in an extended theory with a local action, up to possible higher-point interactions of the ghost fields. We also consider the conformal off-shell extension of the Einstein theory and show that the perturbative expansion of its action is the same as that of the non-local action resulting from integrating out the trace of the graviton field from the Einstein action. Motivated by this example, we conjecture the existence of a similar conformal off-shell extension of a massless higher spin theory that may be related to the above extended theory. It may then have the same infinite-dimensional symmetry as the higher-derivative conformal higher spin theory and may thus lead to a trivial S matrix.
Communication: Nuclear quadrupole moment-induced Cotton-Mouton effect in noble gas atoms
NASA Astrophysics Data System (ADS)
Fu, Li-juan; Rizzo, Antonio; Vaara, Juha
2013-11-01
New, high-sensitivity and high-resolution spectroscopic and imaging methods may be developed by exploiting nuclear magneto-optic effects. A first-principles electronic structure formulation of nuclear electric quadrupole moment-induced Cotton-Mouton effect (NQCME) is presented for closed-shell atoms. In NQCME, aligned quadrupole moments alter the index of refraction of the medium along with and perpendicular to the direction of nuclear alignment. The roles of basis-set convergence, electron correlation, and relativistic effects are investigated for three quadrupolar noble gas isotopes: 21Ne, 83Kr, and 131Xe. The magnitude of the resulting ellipticities is predicted to be 10-4-10-6 rad/(M cm) for fully spin-polarized nuclei. These should be detectable in the Voigt setup. Particularly interesting is the case of 131Xe, in which a high degree of spin polarization can be achieved via spin-exchange optical hyperpolarization.
The single-ion anisotropy effects in the mixed-spin ternary-alloy
NASA Astrophysics Data System (ADS)
Albayrak, Erhan
2018-04-01
The effect of single-ion anisotropy on the thermal properties of the ternary-alloy in the form of ABpC1-p is investigated on the Bethe lattice (BL) in terms of exact recursion relations. The simulation on the BL consists of placing A atoms (spin-1/2) on the odd shells and randomly placing B (spin-3/2) or C (spin-5/2) atoms with concentrations p and 1 - p, respectively, on the even shells. The phase diagrams are calculated in possible planes spanned by the system parameters: temperature, single-ion anisotropy, concentration and ratio of the bilinear interaction parameters for z = 3 corresponding to the honeycomb lattice. It is found that the crystal field drives the system to the lowest possible state therefore reducing the temperatures of the critical lines in agreement with the literature.
Spin temperature concept verified by optical magnetometry of nuclear spins
NASA Astrophysics Data System (ADS)
Vladimirova, M.; Cronenberger, S.; Scalbert, D.; Ryzhov, I. I.; Zapasskii, V. S.; Kozlov, G. G.; Lemaître, A.; Kavokin, K. V.
2018-01-01
We develop a method of nonperturbative optical control over adiabatic remagnetization of the nuclear spin system and apply it to verify the spin temperature concept in GaAs microcavities. The nuclear spin system is shown to exactly follow the predictions of the spin temperature theory, despite the quadrupole interaction that was earlier reported to disrupt nuclear spin thermalization. These findings open a way for the deep cooling of nuclear spins in semiconductor structures, with the prospect of realizing nuclear spin-ordered states for high-fidelity spin-photon interfaces.
Soydaş, Emine; Bozkaya, Uğur
2015-04-14
An assessment of orbital-optimized MP2.5 (OMP2.5) [ Bozkaya, U.; Sherrill, C. D. J. Chem. Phys. 2014, 141, 204105 ] for thermochemistry and kinetics is presented. The OMP2.5 method is applied to closed- and open-shell reaction energies, barrier heights, and aromatic bond dissociation energies. The performance of OMP2.5 is compared with that of the MP2, OMP2, MP2.5, MP3, OMP3, CCSD, and CCSD(T) methods. For most of the test sets, the OMP2.5 method performs better than MP2.5 and CCSD, and provides accurate results. For barrier heights of radical reactions and aromatic bond dissociation energies OMP2.5-MP2.5, OMP2-MP2, and OMP3-MP3 differences become obvious. Especially, for aromatic bond dissociation energies, standard perturbation theory (MP) approaches dramatically fail, providing mean absolute errors (MAEs) of 22.5 (MP2), 17.7 (MP2.5), and 12.8 (MP3) kcal mol(-1), while the MAE values of the orbital-optimized counterparts are 2.7, 2.4, and 2.4 kcal mol(-1), respectively. Hence, there are 5-8-folds reductions in errors when optimized orbitals are employed. Our results demonstrate that standard MP approaches dramatically fail when the reference wave function suffers from the spin-contamination problem. On the other hand, the OMP2.5 method can reduce spin-contamination in the unrestricted Hartree-Fock (UHF) initial guess orbitals. For overall evaluation, we conclude that the OMP2.5 method is very helpful not only for challenging open-shell systems and transition-states but also for closed-shell molecules. Hence, one may prefer OMP2.5 over MP2.5 and CCSD as an O(N(6)) method, where N is the number of basis functions, for thermochemistry and kinetics. The cost of the OMP2.5 method is comparable with that of CCSD for energy computations. However, for analytic gradient computations, the OMP2.5 method is only half as expensive as CCSD.
Domain model for Ca2(+)-inactivation of Ca2+ channels at low channel density.
Sherman, A; Keizer, J; Rinzel, J
1990-01-01
The "shell" model for Ca2(+)-inactivation of Ca2+ channels is based on the accumulation of Ca2+ in a macroscopic shell beneath the plasma membrane. The shell is filled by Ca2+ entering through open channels, with the elevated Ca2+ concentration inactivating both open and closed channels at a rate determined by how fast the shell is filled. In cells with low channel density, the high concentration Ca2+ "shell" degenerates into a collection of nonoverlapping "domains" localized near open channels. These domains form rapidly when channels open and disappear rapidly when channels close. We use this idea to develop a "domain" model for Ca2(+)-inactivation of Ca2+ channels. In this model the kinetics of formation of an inactivated state resulting from Ca2+ binding to open channels determines the inactivation rate, a mechanism identical with that which explains single-channel recordings on rabbit-mesenteric artery Ca2+ channels (Huang Y., J. M. Quayle, J. F. Worley, N. B. Standen, and M. T. Nelson. 1989. Biophys. J. 56:1023-1028). We show that the model correctly predicts five important features of the whole-cell Ca2(+)-inactivation for mouse pancreatic beta-cells (Plants, T. D. 1988. J. Physiol. 404:731-747) and that Ca2(+)-inactivation has only minor effects on the bursting electrical activity of these cells. PMID:2174274
Structure and properties of silk from the African wild silkmoth Gonometa postica reared indoors.
Teshome, Addis; Raina, S K; Vollrath, Fritz
2014-03-07
African wild silkmoth, Gonometa postica Walker (Lepidoptera: Lasiocampidae), were reared indoors in order to examine the influence of rearing conditions on the structure and properties of silk cocoon shells and degummed fibers by using a scanning electron microscope, an Instron tensile tester, and a thermogravimetric analyzer. The cocoons reared indoors showed inferior quality in weight, length, width, and cocoon shell ratio compared to cocoons reared outdoors. There were no differences in cocoon shell and fiber surfaces and cross sectional structures. Cocoon shells were covered with calcium oxalate crystals with few visible fibers on their surface. Degummed fibers were smooth with minimum unfractured surfaces and globular to triangular cross sections. Indoor-reared cocoon shells had a significantly higher breaking strain, while the breaking stress was higher for cocoons reared outdoors. Fibers from indoor cocoons had a significantly higher breaking stress while outdoor fibers had higher breaking strain. Thermogravimetric analysis curves showed two main thermal reactions revealing the dehydration of water molecules and ir-reversible decomposition of the crystallites in both cocoons and fibers reared indoors and outdoors. Cocoon shells underwent additional peaks of decomposition with increased temperature. The total weight loss was higher for cocoon shells and degummed fibers from indoors. Rearing conditions (temperature and relative humidity), feeding method used, changes in total life span, days to molting, and spinning might have influenced the variation in the properties observed.The ecological and commercial significances of indoor rearing of G. posticaare discussed. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.
Fission Barrier of ^254No at High Spin
NASA Astrophysics Data System (ADS)
Henning, G.; Khoo, T. L.; Seweryniak, D.; Back, B. B.; Bertone, P. F.; Carpenter, M. P.; Greene, J. P.; Gürdal, G.; Hoffman, C. R.; Janssens, R. V. F.; Kay, B. P.; Kondev, F. G.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Nair, C.; Rogers, A. M.; Zhu, S.; Chiara, C. J.; Hauschild, K.; Lopez-Martens, A.; Heinz, A.; Piot, J.; Chowdhury, P.; Lakshmi, S.
2010-11-01
Superheavy nuclei provide opportunities to study nuclear structure at the limits in charge, spin and excitation energy. These nuclei exist only because shell effects create a fission barrier Bf. Hence, it is important to determine Bf and its spin dependence. For ^254No, the maximum spin and energy were found [1] to be Imax= 22 and E* = 8 MeV in the reaction ^208Pb(^48Ca,2n) at a beam energy of 219 MeV. At 223 MeV, the maximum spin increases to 32. In contrast, the spin in ^220Th, produced [2] in the ^176Yb(^48 Ca,4n) reaction at 206 and 219 MeV, saturates at 20. A measurement of the entry distribution of ^254No at 223 MeV has been performed to determine Bf(I) and results will be reported.[4pt] [1] P. Reiter et al., Phys. Rev. Lett. 84, 3542 (2000).[0pt] [2] A. Heinz et al., Nucl. Phys. A682, 458c (2001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayangeakaa, A. D.; Zhu, S.; Janssens, R. V. F.
2015-04-01
An extensive study of the level structure of Co-61 has been performed following the complex Mg-26(Ca-48, 2 alpha 4np gamma)Co-61 reaction at beam energies of 275, 290, and 320 MeV using Gammasphere and the Fragment Mass Analyzer (FMA). The low-spin structure is discussed within the framework of shell-model calculations using the GXPF1A effective interaction. Two quasirotational bands consisting of stretched-E2 transitions have been established up to spins I = 41/2 and (43/2), and excitation energies of similar to 17 and similar to 20 MeV, respectively. These are interpreted as signature partners built on a neutron nu(g(9/2))(2) configuration coupled to amore » proton pi p(3/2) state, based on cranked shell model (CSM) calculations and comparisons with observations in neighboring nuclei. In addition, four Delta I = 1 bands were populated to high spin, with the yrast dipole band interpreted as a possible candidate for the shears mechanism, a process seldom observed thus far in this mass region.« less
Transition-Metal Nitride Core@Noble-Metal Shell Nanoparticles as Highly CO Tolerant Catalysts
Garg, Aaron; Milina, Maria; Ball, Madelyn; ...
2017-05-25
Core–shell architectures offer an effective way to tune and enhance the properties of noble-metal catalysts. Herein, we demonstrate the synthesis of Pt shell on titanium tungsten nitride core nanoparticles (Pt/TiWN) by high temperature ammonia nitridation of a parent core–shell carbide material (Pt/TiWC). X-ray photoelectron spectroscopy revealed significant core-level shifts for Pt shells supported on TiWN cores, corresponding to increased stabilization of the Pt valence d-states. The modulation of the electronic structure of the Pt shell by the nitride core translated into enhanced CO tolerance during hydrogen electrooxidation in the presence of CO. In conclusion, the ability to control shell coveragemore » and vary the heterometallic composition of the shell and nitride core opens up attractive opportunities to synthesize a broad range of new materials with tunable catalytic properties.« less
Transition-Metal Nitride Core@Noble-Metal Shell Nanoparticles as Highly CO Tolerant Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garg, Aaron; Milina, Maria; Ball, Madelyn
Core–shell architectures offer an effective way to tune and enhance the properties of noble-metal catalysts. Herein, we demonstrate the synthesis of Pt shell on titanium tungsten nitride core nanoparticles (Pt/TiWN) by high temperature ammonia nitridation of a parent core–shell carbide material (Pt/TiWC). X-ray photoelectron spectroscopy revealed significant core-level shifts for Pt shells supported on TiWN cores, corresponding to increased stabilization of the Pt valence d-states. The modulation of the electronic structure of the Pt shell by the nitride core translated into enhanced CO tolerance during hydrogen electrooxidation in the presence of CO. In conclusion, the ability to control shell coveragemore » and vary the heterometallic composition of the shell and nitride core opens up attractive opportunities to synthesize a broad range of new materials with tunable catalytic properties.« less
High-spin yrast structure of 204Hg from the decay of a four-hole, 22+ isomer
NASA Astrophysics Data System (ADS)
Wrzesiński, J.; Lane, G. J.; Maier, K. H.; Janssens, R. V. F.; Dracoulis, G. D.; Broda, R.; Byrne, A. P.; Carpenter, M. P.; Clark, R. M.; Cromaz, M.; Fornal, B.; Lauritsen, T.; Macchiavelli, A. O.; Rejmund, M.; Szpak, B.; Vetter, K.; Zhu, S.
2015-10-01
A high-spin isomer with τ >700 ns has been found in 204Hg , populated in reactions of 1360-MeV 208Pb and 330-MeV 48Ca beams with a thick 238U target and a 1450-MeV 208Pb beam on a thick 208Pb target. The observed γ -ray decay of the isomer has established the yrast states below it, including another isomer with τ =33 (3 ) ns. The experimental results are compared with shell-model calculations that include four holes in the configuration space between 132Sn and 208Pb . The available spectroscopic information, including transition strengths, total conversion, and angular correlation coefficients, together with the observed agreement with the calculations, allows spin, parity, and configuration assignments to be proposed for the experimental states. The τ >700 ns isomer is the 22+ state of maximum spin available from the alignment of the four valence holes with the configuration π h11/2 -2ν i13/2 -2 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Hai-Xia; Wang, Xiao-Xu; Beijing Computing Center, Beijing 100094
Ag@ZnO core-shell nanoparticles of around 72 atoms have been investigated by the density functional theory, revealing proving for the first time that the core-shell structure exhibits a shrinkage phenomenon from outer shell in agreement with the other studies in literatures. Our calculations predict that the Ag@ZnO core-shell structure is a ferromagnetic spin polarized state, and the magnetism mainly stems from the spin splitting of 2p electrons of O atoms. In addition, the total and partial DOS of Ag@ZnO indicate that the nanostructure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. Furthermore, the optical properties calculations showmore » that the absorption edge of Ag@ZnO have a red shift and good photocatalysis compare to that of the bulk ZnO. These results of the Ag@ZnO core-shell structure obtain a well agreement with the experimental measurement. - Graphical abstract: Geometric structure of (a) Ag@ZnO core-shell nanostructure; (b) the core of Ag; (c) the shell of ZnO The core-shell nanoparticle Ag@ZnO contains Ag inner core of radius of 4 Å and ZnO outer shell with thickness of 2 Å. Ag@ZnO core-shell nanoparticles of around 72 atoms have been proved for the first time that the core-shell structure exhibit a shrinkage phenomenon from outer shell. Our calculations predict that the Ag@ZnO core-shell structure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. The absorption edge of Ag@ZnO have a red shift and get good photo-catalysis compare to that of the bulk ZnO.« less
The Helium Golden Ratios: triplet-singlet and G for He-like X-ray Emission
NASA Astrophysics Data System (ADS)
Stancil, Phillip C.; Miller, Ansley; Terry, Jason; Cumbee, Renata; Mullen, Patrick Dean; Schultz, David R.
2017-06-01
The existence of a mere two electrons manifests a multitude of interesting and diverse phenomena in the atomic structure of He-like ions including separate spin manifolds (singlets and triplets), unusual ordering of angular momentum states, and intercombination (i) and forbidden (f) radiative transitions. This rich behavior extends also to the dynamics involving He-like ions and various perturbers. While electrons have a propensity for exciting resonant (r) dipole-allowed transitions, heavy particles are far less selective. In this presentation, I'll illustrate how these properties play out in ion-neutral charge exchange (CX) processes which result in He-like product ions. The focus will be on the spin-multiplicity of the atomic ions and the quasi-molecular states involved in the interactions, how these affect the CX cross sections, and their impact on the resulting X-ray spectrum. In particular, the G-ratio, the ratio of Kα line intensities (f+i)/r, is very sensitive to the spin-dependent cross sections which in turn is dependent on the neutral target, whether open-shell like H (Nolte et al. 2012, 2017; Wu et al. 2012) or closed-shell like He or H2 (Cumbee et al. 2017; Mullen et al. 2016, 2017). Preliminary evidence also suggests that multielectron capture processes may influence the G-ratio when multielectron targets are involved.Cumbee R. S. et al. 2017, ApJ, submittedMullen, P. D. et al. 2016, ApJS, 224, 31Mullen, P. D. et al. 2017, ApJ, submittedNolte, J. et al. 2012, JPB, 45, 245202; 2017, to be submittedWu, Y. et al. 2012, JPB, 84, 022711This work was partially supported by NASA grants NNX09AC46G and NNG09WF24I.
The generator coordinate Dirac-Fock method for open-shell atomic systems
NASA Astrophysics Data System (ADS)
Malli, Gulzari L.; Ishikawa, Yasuyuki
1998-11-01
Recently we developed generator coordinate Dirac-Fock and Dirac-Fock-Breit methods for closed-shell systems assuming finite nucleus and have reported Dirac-Fock and Dirac-Fock-Breit energies for the atoms He through Nobelium (Z=102) [see Refs. Reference 10Reference 11Reference 12Reference 13]. In this paper, we generalize our earlier work on closed-shell systems and develop a generator coordinate Dirac-Fock method for open-shell systems. We present results for a number of representative open-shell heavy atoms (with nuclear charge Z>80) including the actinide and superheavy transactinide (with Z>103) atomic systems: Fr (Z=87), Ac (Z=89), and Lr (Z=103) to E113 (eka-thallium, Z=113). The high accuracy obtained in our open-shell Dirac-Fock calculations is similar to that of our closed-shell calculations, and we attribute it to the fact that the representation of the relativistic dynamics of an electron in a spherical ball finite nucleus near the origin in terms of our universal Gaussian basis set is as accurate as that provided by the numerical finite difference method. The DF SCF energies calculated by Desclaux [At. Data. Nucl. Data Tables 12, 311 (1973)] (apart from a typographic error for Fr pointed out here) are higher than those reported here for atoms of some of the superheavy transactinide elements by as much as 5 hartrees (136 eV). We believe that this is due to the use by Desclaux of much larger atomic masses than the currently accepted values for these elements.
Beam normal spin asymmetry for the e p →e Δ (1232 ) process
NASA Astrophysics Data System (ADS)
Carlson, Carl E.; Pasquini, Barbara; Pauk, Vladyslav; Vanderhaeghen, Marc
2017-12-01
We calculate the single spin asymmetry for the e p →e Δ (1232 ) process, for an electron beam polarized normal to the scattering plane. Such single spin asymmetries vanish in the one-photon exchange approximation and are directly proportional to the absorptive part of a two-photon exchange amplitude. As the intermediate state in such a two-photon exchange process is on its mass shell, the asymmetry allows one to access for the first time the on-shell Δ →Δ as well as N*→Δ electromagnetic transitions. We present the general formalism to describe the e p →e Δ beam normal spin asymmetry, and we provide a numerical estimate of its value using the nucleon, Δ (1232 ), S11(1535 ), and D13(1520 ) intermediate states. We compare our results with the first data from the Qweak@JLab experiment and give predictions for the A4@MAMI experiment.
ZnO/ZnSxSe1-x core/shell nanowire arrays as photoelectrodes with efficient visible light absorption
NASA Astrophysics Data System (ADS)
Wang, Zhenxing; Zhan, Xueying; Wang, Yajun; Safdar, Muhammad; Niu, Mutong; Zhang, Jinping; Huang, Ying; He, Jun
2012-08-01
ZnO/ZnSxSe1-x core/shell nanowires have been synthesized on n+-type silicon substrate via a two-step chemical vapor deposition method. Transmission electron microscopy reveals that ZnSxSe1-x can be deposited on the entire surface of ZnO nanowire, forming coaxial heterojunction along ZnO nanowire with very smooth shell surface and high shell thickness uniformity. The photoelectrode after deposition of the ternary alloy shell significantly improves visible light absorption efficiency. Electrochemical impedance spectroscopy results explicitly indicate that the introduction of ZnSxSe1-x shell to ZnO nanowires effectively improves the photogenerated charge separation process. Our finding opens up an efficient means for achieving high efficient energy conversion devices.
Multiple band structures in 70Ge
NASA Astrophysics Data System (ADS)
Haring-Kaye, R. A.; Morrow, S. I.; Döring, J.; Tabor, S. L.; Le, K. Q.; Allegro, P. R. P.; Bender, P. C.; Elder, R. M.; Medina, N. H.; Oliveira, J. R. B.; Tripathi, Vandana
2018-02-01
High-spin states in 70Ge were studied using the 55Mn(18O,p 2 n ) fusion-evaporation reaction at a beam energy of 50 MeV. Prompt γ -γ coincidences were measured using the Florida State University Compton-suppressed Ge array consisting of three Clover detectors and seven single-crystal detectors. An investigation of these coincidences resulted in the addition of 31 new transitions and the rearrangement of four others in the 70Ge level scheme, providing a more complete picture of the high-spin decay pattern involving both positive- and negative-parity states with multiple band structures. Spins were assigned based on directional correlation of oriented nuclei ratios, which many times also led to unambiguous parity determinations based on the firm assignments for low-lying states made in previous work. Total Routhian surface calculations, along with the observed trends in the experimental kinematic moment of inertia with rotational frequency, support the multiquasiparticle configurations of the various crossing bands proposed in recent studies. The high-spin excitation spectra predicted by previous shell-model calculations compare favorably with the experimental one determined from this study.
Strongly deformed nuclear shapes at ultra-high spin and shape coexistence in N ~ 90 nuclei
Riley, M. A.; Aguilar, A.; Evans, A. O.; ...
2009-01-01
The N ~ 90 region of the nuclear chart has featured prominently as the spectroscopy of nuclei at extreme spin has progressed. This talk will present recent discoveries from investigations of high spin behavior in the N ~ 90 Er, Tm and Yb nuclei utilizing the Gammasphere gamma-ray spectrometer. In particular it will include discussion of the beautiful shape evolution and coexistence observed in these nuclei along with the identification of a remarkable new family of band structures. The latter are very weakly populated rotational sequences with high moment of inertia that bypass the classic terminating configurations near spin 40-50h,more » marking a return to collectivity that extends discrete γ-ray spectroscopy to well over 60h. Establishing the nature of the yrast states in these nuclei beyond the oblate band-termination states has been a major goal for the past two decades. Cranking calculations suggest that these new structures most likely represent stable triaxial strongly deformed bands that lie in a valley of favored shell energy in deformation and particle-number space.« less
All zinc-blende GaAs/(Ga,Mn)As core-shell nanowires with ferromagnetic ordering.
Yu, Xuezhe; Wang, Hailong; Pan, Dong; Zhao, Jianhua; Misuraca, Jennifer; von Molnár, Stephan; Xiong, Peng
2013-04-10
Combining self-catalyzed vapor-liquid-solid growth of GaAs nanowires and low-temperature molecular-beam epitaxy of (Ga,Mn)As, we successfully synthesized all zinc-blende (ZB) GaAs/(Ga,Mn)As core-shell nanowires on Si(111) substrates. The ZB GaAs nanowire cores are first fabricated at high temperature by utilizing the Ga droplets as the catalyst and controlling the triple phase line nucleation, then the (Ga,Mn)As shells are epitaxially grown on the side facets of the GaAs core at low temperature. The growth window for the pure phase GaAs/(Ga,Mn)As core-shell nanowires is found to be very narrow. Both high-resolution transmission electron microscopy and scanning electron microscopy observations confirm that all-ZB GaAs/(Ga,Mn)As core-shell nanowires with smooth side surface are obtained when the Mn concentration is not more than 2% and the growth temperature is 245 °C or below. Magnetic measurements with different applied field directions provide strong evidence for ferromagnetic ordering in the all-ZB GaAs/(Ga,Mn)As nanowires. The hybrid nanowires offer an attractive platform to explore spin transport and device concepts in fully epitaxial all-semiconductor nanospintronic structures.
Observation of a new high-spin isomer in {sup 94}Pd
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brock, T. S.; Nara Singh, B. S.; Wadsworth, R.
2010-12-15
A second {gamma}-decaying high-spin isomeric state, with a half-life of 197(22)ns, has been identified in the N=Z+2 nuclide {sup 94}Pd as part of a stopped-beam Rare Isotope Spectroscopic INvestigation at GSI (RISING) experiment. Weisskopf estimates were used to establish a tentative spin/parity of 19{sup -}, corresponding to the maximum possible spin of a negative parity state in the restricted (p{sub 1/2}, g{sub 9/2}) model space of empirical shell model calculations. The reproduction of the E3 decay properties of the isomer required an extension of the model space to include the f{sub 5/2} and p{sub 3/2} orbitals using the CD-Bonn potential.more » This is the first time that such an extension has been required for a high-spin isomer in the vicinity of {sup 100}Sn and reveals the importance of such orbits for understanding the decay properties of high-spin isomers in this region. However, despite the need for the extended model space for the E3 decay, the dominant configuration for the 19{sup -} state remains ({pi}p{sub 1/2}{sup -1}g{sub 9/2}{sup -3}){sub 11} x ({nu}g{sub 9/2}{sup -2}){sub 8}. The half-life of the known, 14{sup +}, isomer was remeasured and yielded a value of 499(13) ns.« less
Expanding the Bethe/Gauge dictionary
NASA Astrophysics Data System (ADS)
Bullimore, Mathew; Kim, Hee-Cheol; Lukowski, Tomasz
2017-11-01
We expand the Bethe/Gauge dictionary between the XXX Heisenberg spin chain and 2d N = (2, 2) supersymmetric gauge theories to include aspects of the algebraic Bethe ansatz. We construct the wave functions of off-shell Bethe states as orbifold defects in the A-twisted supersymmetric gauge theory and study their correlation functions. We also present an alternative description of off-shell Bethe states as boundary conditions in an effective N = 4 supersymmetric quantum mechanics. Finally, we interpret spin chain R-matrices as correlation functions of Janus interfaces for mass parameters in the supersymmetric quantum mechanics.
Nuclear structure for SNe r- and neutrino processes
NASA Astrophysics Data System (ADS)
Suzuki, Toshio
2014-09-01
SNe r- and neutrino-processes are investigated based on recent advances in the studies of spin responses in nuclei. New shell-model Hamiltonians, which can well describe spin responses in nuclei with proper tensor components, are used to make accurate evaluations of reaction cross sections and rates in astrophysical processes. Nucleosyntheses in SNe r- and ν -processes as well as rp-processes are discussed with these new reaction rates with improved accuracies. (1) Beta-decay rates for N = 126 isotones are evaluated by shell-model calculations, and new rates are applied to study r-process nucleosynthesis in SNe's around its third peak as well as beyond the peak region up to uranium. (2) ν -processes for light-element synthesis in core-collapse SNe are studied with a new shell-model Hamiltonian in p-shell, SFO. Effects of MSW ν -oscillations on the production yields of 7Li and 11B and sensitivity of the yield ratio on ν -oscillation parameters are discussed. ν -induced reactions on 16O are also studied. (3) A new shell-model Hamiltonian in pf-shell, GXPF1J, is used to evaluate e-capture rates in pf-shell nuclei at stellar environments. New e-capture rates are applied to study nucleosynthesis in type-Ia supernova explosions, rp-process and X-ray bursts.
Magnetic moments, E3 transitions and the structure of high-spin core excited states in 211Rn
NASA Astrophysics Data System (ADS)
Poletti, A. R.; Dracoulis, G. D.; Byrne, A. P.; Stuchbery, A. E.; Poletti, S. J.; Gerl, J.; Lewis, P. M.
1985-05-01
The results of g-factor measurements of high-spin states in 211Rn are: Ex = 8856 + Δ' keV (Jπ = 63/2-), g = 0.626(7); 6101 + Δ' KeV (49/2+), 0.766(8); 5347 + Δ' KeV (43/2-), 0.74(2); 3927 + Δ KeV (35/2+), 1.017(12); 1578 + Δ KeV (17/2-), 0.912(9). These results together with measured E3 transition strengths and shell model calculations are used to assign configurations to the core excited states in 211Rn. Mixed configurations are required to explain the g-factors and enhanced E3 strengths simultaneously.
Large-scale shell-model calculation with core excitations for neutron-rich nuclei beyond 132Sn
NASA Astrophysics Data System (ADS)
Jin, Hua; Hasegawa, Munetake; Tazaki, Shigeru; Kaneko, Kazunari; Sun, Yang
2011-10-01
The structure of neutron-rich nuclei with a few nucleons beyond 132Sn is investigated by means of large-scale shell-model calculations. For a considerably large model space, including neutron core excitations, a new effective interaction is determined by employing the extended pairing-plus-quadrupole model with monopole corrections. The model provides a systematical description for energy levels of A=133-135 nuclei up to high spins and reproduces available data of electromagnetic transitions. The structure of these nuclei is analyzed in detail, with emphasis of effects associated with core excitations. The results show evidence of hexadecupole correlation in addition to octupole correlation in this mass region. The suggested feature of magnetic rotation in 135Te occurs in the present shell-model calculation.
Recent progress in density functional theory
NASA Astrophysics Data System (ADS)
Truhlar, Donald
2014-03-01
Ongoing work involves several areas of density functional theory: new methods for computing electronic excitation energies, including a new way to remove spin contamination in the spin-flip Tamm-Dancoff approximation and a configuration-interaction-corrected Tamm-Dancoff Approximation for treating conical intersections; new ways to treat open-shell states, including a reinterpreted broken-symmetry method and multi-configuration Kohn-Sham theory; a new exchange-correlation functional; new tests of density functional theory against databases for electronic transition energies and molecules and solids containing metal atoms; and applications. A selection of results will be presented. I am grateful to the following collaborators for contributions to the ongoing work: Boris Averkiev, Rebecca Carlson, Laura Fernandez, Laura Gagliardi, Chad Hoyer, Francesc Illas, Miho Isegawa, Shaohong Li, Giovanni Li Manni, Sijie Luo, Dongxia Ma, Remi Maurice, Rubén Means-Pañeda, Roberto Peverati, Nora Planas, Prasenjit Seal, Pragya Verma, Bo Wang, Xuefei Xu, Ke R. Yang, Haoyu Yu, Wenjing Zhang, and Jingjing Zheng. Supported in part by the AFOSR and U.S. DOE.
Nuclear structure studies of 141Ce and 147Sm using deep-inelastic collisions
NASA Astrophysics Data System (ADS)
Gass, E. J.; McCutchan, E. A.; Sonzogni, A. A.; Loveland, W.; Barrett, J. S.; Yanez, R.; Chiara, C. J.; Harker, J. L.; Walters, W. B.; Zhu, S.; Ayangeakaai, A. D.; Carpenter, M. P.; Greene, J. P.; Janssens, R. V. F.; Lauritsen, T.; Naïdja, H.
2017-09-01
Nuclei with a few valence nucleons outside of the magic numbers are essential for testing the nuclear shell model and gathering information on the residual interactions and energies of single-particle levels. The present work focused on the high-spin structures of 141Ce (N = 83) and 147Sm (N = 85). These nuclei are not produced by heavy-ion fusion-evaporation or fission reactions, therefore little was known about their high-spin structure. A deep-inelastic reaction using a beam of 136Xe incident on a thick target of 208Pb was used to populate excited states in the nuclei. The Gammasphere array at Argonne National Laboratory was used to detect the resulting de-excitation -ray transitions. The level schemes of both nuclei were significantly extended to high angular momentum and high excitation energy. In 141Ce, this included a number of states built on the i13/2, 1369-keV level. Results of the present analysis will be compared to state-of-the-art shell model calculations. Supported by US DOE under the SULI Program and Grant Nos. DE-FG06-97ER41026 and DE-FG02-94ER40834 and Contract Nos. DE-AC02-06CH11357 and DE-AC02-06CH10886.
NASA Astrophysics Data System (ADS)
Feraoun, A.; Zaim, A.; Kerouad, M.
2016-09-01
By using the Quantum Monte Carlo simulation; the electric properties of a nanowire, consisting of a ferroelectric core of spin-1/2 surrounded by a ferroelectric shell of spin-1/2 with ferro- or anti-ferroelectric interfacial coupling have been studied within the framework of the Transverse Ising Model (TIM). We have examined the effects of the shell coupling Js, the interfacial coupling JInt, the transverse field Ω, and the temperature T on the hysteresis behavior and on the electric properties of the system. The remanent polarization and the coercive field as a function of the transverse field and the temperature are examined. A number of characteristic behavior have been found such as the appearance of triple hysteresis loops for appropriate values of the system parameters.
Fluorescent Fe K Emission from High Density Accretion Disks
NASA Astrophysics Data System (ADS)
Bautista, Manuel; Mendoza, Claudio; Garcia, Javier; Kallman, Timothy R.; Palmeri, Patrick; Deprince, Jerome; Quinet, Pascal
2018-06-01
Iron K-shell lines emitted by gas closely orbiting black holes are observed to be grossly broadened and skewed by Doppler effects and gravitational redshift. Accordingly, models for line profiles are widely used to measure the spin (i.e., the angular momentum) of astrophysical black holes. The accuracy of these spin estimates is called into question because fitting the data requires very high iron abundances, several times the solar value. Meanwhile, no plausible physical explanation has been proffered for why these black hole systems should be so iron rich. The most likely explanation for the super-solar iron abundances is a deficiency in the models, and the leading candidate cause is that current models are inapplicable at densities above 1018 cm-3. We study the effects of high densities on the atomic parameters and on the spectral models for iron ions. At high densities, Debye plasma can affect the effective atomic potential of the ions, leading to observable changes in energy levels and atomic rates with respect to the low density case. High densities also have the effec of lowering energy the atomic continuum and reducing the recombination rate coefficients. On the spectral modeling side, high densities drive level populations toward a Boltzman distribution and very large numbers of excited atomic levels, typically accounted for in theoretical spectral models, may contribute to the K-shell spectrum.
Communication: Nuclear quadrupole moment-induced Cotton-Mouton effect in noble gas atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Li-juan; Vaara, Juha, E-mail: juha.vaara@iki.fi; Rizzo, Antonio
New, high-sensitivity and high-resolution spectroscopic and imaging methods may be developed by exploiting nuclear magneto-optic effects. A first-principles electronic structure formulation of nuclear electric quadrupole moment-induced Cotton-Mouton effect (NQCME) is presented for closed-shell atoms. In NQCME, aligned quadrupole moments alter the index of refraction of the medium along with and perpendicular to the direction of nuclear alignment. The roles of basis-set convergence, electron correlation, and relativistic effects are investigated for three quadrupolar noble gas isotopes: {sup 21}Ne, {sup 83}Kr, and {sup 131}Xe. The magnitude of the resulting ellipticities is predicted to be 10{sup −4}–10{sup −6} rad/(M cm) for fully spin-polarized nuclei.more » These should be detectable in the Voigt setup. Particularly interesting is the case of {sup 131}Xe, in which a high degree of spin polarization can be achieved via spin-exchange optical hyperpolarization.« less
Active structuring of colloidal armour on liquid drops
NASA Astrophysics Data System (ADS)
Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Otto Fossum, Jon
2013-06-01
Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-field-assisted convective assembly of jammed colloidal ‘ribbons’, electro-rheological colloidal chains confined to a two-dimensional surface and spinning colloidal domains on that surface. In addition, we demonstrate the size control of ‘pupil’-like openings in colloidal shells. We anticipate that electric field manipulation of colloids in leaky dielectrics can lead to new routes of colloidosome assembly and design for ‘smart armoured’ droplets.
Active structuring of colloidal armour on liquid drops.
Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Otto Fossum, Jon
2013-01-01
Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-field-assisted convective assembly of jammed colloidal 'ribbons', electro-rheological colloidal chains confined to a two-dimensional surface and spinning colloidal domains on that surface. In addition, we demonstrate the size control of 'pupil'-like openings in colloidal shells. We anticipate that electric field manipulation of colloids in leaky dielectrics can lead to new routes of colloidosome assembly and design for 'smart armoured' droplets.
Effect of vertebral shell on injection pressure and intravertebral pressure in vertebroplasty.
Baroud, Gamal; Vant, Christianne; Giannitsios, Demetri; Bohner, Marc; Steffen, Thomas
2005-01-01
An experimental biomechanical study conducted on osteoporotic cadaveric vertebrae. 1) To measure the intravertebral shell pressure and injection pressure; and 2) to determine the effect of the vertebral shell on the intravertebral shell pressure and on the injection pressure. Forces that govern cement flow are an essential component of the cement injection process in vertebroplasty. The vertebral shell may play a significant role in confining the flow of cement in the vertebral body and thereby affecting the intravertebral pressure and injection pressure. A small fenestration was created in the left lateral vertebral shell of 14 vertebrae. A valve to open and close the fenestration and a sensor to measure the intravertebral pressure were attached to the opening. A closed fenestration simulated an intact shell, whereas an open fenestration represented a vented shell. Injection pressure and intravertebral pressure at the shell were recorded during a controlled injection. A closed fenestration resulted in a significant increase in the intravertebral pressure at the shell. During the injection, the shell pressure increased on average to approximately 3.54 +/- 2.91 kPa. Conversely, an open fenestration resulted in an instant relaxation of the shell pressure to the ambient pressure of 0 kPa. Additionally, the injection pressure was approximately 97 times higher than the shell pressure. The presence of vertebral shell seems to be important for intravertebral pressure. However, the intravertebral shell pressure adds very little to the injection pressure.
Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter
Fermion localization functions are used to discuss electronic and nucleonic shell structure effects in the superheavy element oganesson, the heaviest element discovered to date. Spin-orbit splitting in the 7p electronic shell becomes so large (~10 eV) that Og is expected to show uniform-gas-like behavior in the valence region with a rather large dipole polarizability compared to the lighter rare gas elements. The nucleon localization in Og is also predicted to undergo a transition to the Thomas-Fermi gas behavior in the valence region. Finally, this effect, particularly strong for neutrons, is due to the high density of single-particle orbitals.
Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit
Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter; ...
2018-01-31
Fermion localization functions are used to discuss electronic and nucleonic shell structure effects in the superheavy element oganesson, the heaviest element discovered to date. Spin-orbit splitting in the 7p electronic shell becomes so large (~10 eV) that Og is expected to show uniform-gas-like behavior in the valence region with a rather large dipole polarizability compared to the lighter rare gas elements. The nucleon localization in Og is also predicted to undergo a transition to the Thomas-Fermi gas behavior in the valence region. Finally, this effect, particularly strong for neutrons, is due to the high density of single-particle orbitals.
Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit
NASA Astrophysics Data System (ADS)
Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter; Nazarewicz, Witold
2018-02-01
Fermion localization functions are used to discuss electronic and nucleonic shell structure effects in the superheavy element oganesson, the heaviest element discovered to date. Spin-orbit splitting in the 7 p electronic shell becomes so large (˜10 eV ) that Og is expected to show uniform-gas-like behavior in the valence region with a rather large dipole polarizability compared to the lighter rare gas elements. The nucleon localization in Og is also predicted to undergo a transition to the Thomas-Fermi gas behavior in the valence region. This effect, particularly strong for neutrons, is due to the high density of single-particle orbitals.
Self-assembly of core-shell structure PtO2@Pt nanodots and their formation evolution
NASA Astrophysics Data System (ADS)
Yang, Weijia; Liu, Junjie; Liu, Mingquan; Zhao, Zhicheng; Song, Yapeng; Tang, Xiufeng; Luo, Jianyi; Zeng, Qingguang; He, Xin
2018-05-01
Core-shell structure PtO2@Pt nanodots have been self-assembly by vacuum sputtering and high temperature annealing. First, Pt thin films with a small amount of PtO2 are grown on the sapphire substrates by vacuum sputtering. And then high temperature annealing on the thin films is carried out at 800 °C for 2 min to form Pt nanodots. During the cooling process, the atmosphere is deployed to supplant the nitrogen. Finally, even distributed core-shell structure PtO2@Pt nanodots with a diameter from 100 to 300 nm are achieved. Furthermore, the formation evolution of core-shell structure PtO2@Pt nanodots is also proposed. This work open up a new approach for fabricating core-shell structure nanodots.
Nonlinear spin conductance of yttrium iron garnet thin films driven by large spin-orbit torque
NASA Astrophysics Data System (ADS)
Thiery, N.; Draveny, A.; Naletov, V. V.; Vila, L.; Attané, J. P.; Beigné, C.; de Loubens, G.; Viret, M.; Beaulieu, N.; Ben Youssef, J.; Demidov, V. E.; Demokritov, S. O.; Slavin, A. N.; Tiberkevich, V. S.; Anane, A.; Bortolotti, P.; Cros, V.; Klein, O.
2018-02-01
We report high power spin transfer studies in open magnetic geometries by measuring the spin conductance between two nearby Pt wires deposited on top of an epitaxial yttrium iron garnet thin film. Spin transport is provided by propagating spin waves that are generated and detected by direct and inverse spin Hall effects. We observe a crossover in spin conductance from a linear transport dominated by exchange magnons (low current regime) to a nonlinear transport dominated by magnetostatic magnons (high current regime). The latter are low-damping magnetic excitations, located near the spectral bottom of the magnon manifold, with a sensitivity to the applied magnetic field. This picture is supported by microfocus Brillouin light-scattering spectroscopy. Our findings could be used for the development of controllable spin conductors by variation of relatively weak magnetic fields.
Staged depressurization system
Schulz, T.L.
1993-11-02
A nuclear reactor having a reactor vessel disposed in a containment shell is depressurized in stages using depressurizer valves coupled in fluid communication with the coolant circuit. At least one sparger submerged in the in-containment refueling water storage tank which can be drained into the containment sump communicates between one or more of the valves and an inside of the containment shell. The depressurizer valves are opened in stages, preferably at progressively lower coolant levels and for opening progressively larger flowpaths to effect depressurization through a number of the valves in parallel. The valves can be associated with a pressurizer tank in the containment shell, coupled to a coolant outlet of the reactor. At least one depressurization valve stage openable at a lowest pressure is coupled directly between the coolant circuit and the containment shell. The reactor is disposed in the open sump in the containment shell, and a further valve couples the open sump to a conduit coupling the refueling water storage tank to the coolant circuit for adding water to the coolant circuit, whereby water in the containment shell can be added to the reactor from the open sump. 4 figures.
Staged depressurization system
Schulz, Terry L.
1993-01-01
A nuclear reactor having a reactor vessel disposed in a containment shell is depressurized in stages using depressurizer valves coupled in fluid communication with the coolant circuit. At least one sparger submerged in the in-containment refueling water storage tank which can be drained into the containment sump communicates between one or more of the valves and an inside of the containment shell. The depressurizer valves are opened in stages, preferably at progressively lower coolant levels and for opening progressively larger flowpaths to effect depressurization through a number of the valves in parallel. The valves can be associated with a pressurizer tank in the containment shell, coupled to a coolant outlet of the reactor. At least one depressurization valve stage openable at a lowest pressure is coupled directly between the coolant circuit and the containment shell. The reactor is disposed in the open sump in the containment shell, and a further valve couples the open sump to a conduit coupling the refueling water storage tank to the coolant circuit for adding water to the coolant circuit, whereby water in the containment shell can be added to the reactor from the open sump.
Ponec, Robert; Ramos-Cordoba, Eloy; Salvador, Pedro
2013-03-07
The electronic structure of the trinuclear symmetric complex [(tmedaCu)3S2 ](3+), whose Cu3S2 core represents a model of the active site of metalloenzymes involved in biological processes, has been in recent years the subject of vigorous debate. The complex exists as an open-shell triplet, and discussions concerned the question whether there is a direct S-S bond in the [Cu3S2](3+) core, whose answer is closely related to the problem of the formal oxidation state of Cu atoms. In order to contribute to the elucidation of the serious differences in the conclusions of earlier studies, we report in this study the detailed comprehensive analysis of the electronic structure of the [Cu3S2](3+) core using the methodologies that are specifically designed to address three particular aspects of the bonding in the core of the above complex, namely, the presence and/or absence of direct S-S bond, the existence and the nature of spin-spin interactions among the atoms in the core, and the formal oxidation state of Cu atoms in the core. Using such a combined approach, it was possible to conclude that the picture of bonding consistently indicates the existence of a weak direct two-center-three-electron (2c-3e) S-S bond, but at the same time, the observed lack of any significant local spin in the core of the complex is at odds with the suggested existence of antiferromagnetic coupling among the Cu and S atoms, so that the peculiarities of the bonding in the complex seem to be due to extensive delocalization of the unpaired spin in the [Cu3S2](3+) core. Finally, a scrutiny of the effective atomic hybrids and their occupations points to a predominant formal Cu(II) oxidation state, with a weak contribution of partial Cu(I) character induced mainly by the partial flow of electrons from S to Cu atoms and high delocalization of the unpaired spin in the [Cu3S2](3+) core.
Effects of orbital and spin current interference in E1 and M2 nuclear excitations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goncharova, N. G., E-mail: n.g.goncharova@gmail.com
The interference of contributions from the orbital and spin currents to the E1 and M2 resonances is investigated. The results of the current interference analysis within the shell model are compared with the experimental data.
The phase diagrams of a spin 1/2 core and a spin 1 shell nanoparticle with a disordered interface
NASA Astrophysics Data System (ADS)
Zaim, N.; Zaim, A.; Kerouad, M.
2016-12-01
The critical and compensation behaviors, of a spherical ferrimagnetic nanoparticle, consisting of a ferromagnetic core of spin-1/2 A atoms, a ferromagnetic shell of spin-1 B atoms and a disordered interface in between that is characterized by a random arrangement of A and B atoms of ApB1-p type and a negative A - B coupling, are studied. The ground state phase diagrams of the system have been determined in the (JAB, D/jA) and (JB, D/jA) planes. Monte Carlo simulation based on Metropolis algorithm has been used to study the effects of the concentration parameter p, the crystal field, the coupling between B - B atoms jB and the antiferromagnetic interface coupling jAB on the phase diagrams and the magnetic properties of the system. It has been found that one, two or even three compensation point(s) can appear for appropriate values of the system parameters.
Beam normal spin asymmetry for the e p → e Δ ( 1232 ) process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, Carl E.; Pasquini, Barbara; Pauk, Vladyslav
Here, we calculate the single spin asymmetry for themore » $$e p \\to e \\Delta(1232)$$ process, for an electron beam polarized normal to the scattering plane. Such single spin asymmetries vanish in the one-photon exchange approximation, and are directly proportional to the absorptive part of a two-photon exchange amplitude. As the intermediate state in such two-photon exchange process is on its mass shell, the asymmetry allows one to access for the first time the on-shell $$\\Delta \\to \\Delta$$ as well as $$N^\\ast \\to \\Delta$$ electromagnetic transitions. We present the general formalism to describe the $$e p \\to e \\Delta$$ beam normal spin asymmetry, and provide a numerical estimate of its value using the nucleon, $$\\Delta(1232)$$, $$S_{11}(1535)$$, and $$D_{13}(1520)$$ intermediate states. We compare our results with the first data from the Qweak@JLab experiment and give predictions for the A4@MAMI experiment.« less
Beam normal spin asymmetry for the e p → e Δ ( 1232 ) process
Carlson, Carl E.; Pasquini, Barbara; Pauk, Vladyslav; ...
2017-12-26
Here, we calculate the single spin asymmetry for themore » $$e p \\to e \\Delta(1232)$$ process, for an electron beam polarized normal to the scattering plane. Such single spin asymmetries vanish in the one-photon exchange approximation, and are directly proportional to the absorptive part of a two-photon exchange amplitude. As the intermediate state in such two-photon exchange process is on its mass shell, the asymmetry allows one to access for the first time the on-shell $$\\Delta \\to \\Delta$$ as well as $$N^\\ast \\to \\Delta$$ electromagnetic transitions. We present the general formalism to describe the $$e p \\to e \\Delta$$ beam normal spin asymmetry, and provide a numerical estimate of its value using the nucleon, $$\\Delta(1232)$$, $$S_{11}(1535)$$, and $$D_{13}(1520)$$ intermediate states. We compare our results with the first data from the Qweak@JLab experiment and give predictions for the A4@MAMI experiment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adelnia, Fatemeh; Lascialfari, Alessandro; Dipartimento di Fisica, Università degli Studi di Pavia and INSTM, Pavia
2015-05-07
We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM) Eu(hfac){sub 3}NITEt and the magnetically frustrated Gd(hfac){sub 3}NITEt. The NSLR as a function of external magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by a long time persistence of the decay of the two-spin correlation function due to the conservation of the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also investigated in Heisenberg AFM molecular rings. In both Cr{sub 8} closed ringmore » and in Cr{sub 7}Cd and Cr{sub 8}Zn open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spectral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecular anisotropic interactions prevents a detailed analysis of the spin diffusion regime.« less
Páli, Tibor; Kóta, Zoltán
2013-01-01
Spin label electron paramagnetic resonance (EPR) of lipid-protein interactions reveals crucial features of the structure and assembly of integral membrane proteins. Spin label EPR spectroscopy is the technique of choice to characterize the protein-solvating lipid shell in its highly dynamic nature, because the EPR spectra of lipids that are spin labeled close to the terminal methyl end of their acyl chains display two spectral components, those corresponding to lipids directly contacting the protein and those corresponding to lipids in the bulk fluid bilayer regions of the membrane. In this chapter, typical spin label EPR procedures are presented that allow determination of the stoichiometry of interaction of spin-labeled lipids with the intra-membranous region of membrane proteins or polypeptides, as well as the association constant of the spin-labeled lipid with respect to the host lipid. The lipids giving rise to the so-called immobile spectral component in the EPR spectrum of such samples are identified as the motionally restricted first-shell lipids solvating membrane proteins in biomembranes. Stoichiometry and selectivity are directly related to the structure of the intra-membranous sections of membrane-associated proteins or polypeptides and can be used to study the state of assembly of such proteins in the membrane. Since these characteristics of lipid-protein interactions are discussed in detail in the literature [see Marsh (Eur Biophys J 39:513-525, 2010) for a most recent review], here we focus more on how to spin label model and biomembranes and how to measure and analyze the two-component EPR spectra of spin-labeled lipids in phospholipid bilayers that contain proteins or polypeptides. After a description of how to prepare spin-labeled model and native biological membranes, we present the reader with computational procedures for determining the molar fraction of motionally restricted lipids when both, one, or none of the pure isolated-mobile or immobile-spectral components are available. With these topics, this chapter complements a recent methodological paper [Marsh (Methods 46:83-96, 2008)]. The interpretation of the data is discussed briefly, as well as other relevant and recent spin label EPR techniques for studying lipid-protein interactions, not only from the point of view of lipid chain dynamics.
High-spin structures in 132Xe and 133Xe and evidence for isomers along the N =79 isotones
NASA Astrophysics Data System (ADS)
Vogt, A.; Siciliano, M.; Birkenbach, B.; Reiter, P.; Hadyńska-Klek, K.; Wheldon, C.; Valiente-Dobón, J. J.; Teruya, E.; Yoshinaga, N.; Arnswald, K.; Bazzacco, D.; Blazhev, A.; Bracco, A.; Bruyneel, B.; Chakrawarthy, R. S.; Chapman, R.; Cline, D.; Corradi, L.; Crespi, F. C. L.; Cromaz, M.; de Angelis, G.; Eberth, J.; Fallon, P.; Farnea, E.; Fioretto, E.; Fransen, C.; Freeman, S. J.; Fu, B.; Gadea, A.; Gelletly, W.; Giaz, A.; Görgen, A.; Gottardo, A.; Hayes, A. B.; Hess, H.; Hetzenegger, R.; Hirsch, R.; Hua, H.; John, P. R.; Jolie, J.; Jungclaus, A.; Karayonchev, V.; Kaya, L.; Korten, W.; Lee, I. Y.; Leoni, S.; Liang, X.; Lunardi, S.; Macchiavelli, A. O.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Mijatović, T.; Montagnoli, G.; Montanari, D.; Müller-Gatermann, C.; Napoli, D.; Pearson, C. J.; Podolyák, Zs.; Pollarolo, G.; Pullia, A.; Queiser, M.; Recchia, F.; Regan, P. H.; Régis, J.-M.; Saed-Samii, N.; Şahin, E.; Scarlassara, F.; Seidlitz, M.; Siebeck, B.; Sletten, G.; Smith, J. F.; Söderström, P.-A.; Stefanini, A. M.; Stezowski, O.; Szilner, S.; Szpak, B.; Teng, R.; Ur, C.; Warner, D. D.; Wolf, K.; Wu, C. Y.; Zell, K. O.
2017-08-01
The transitional nuclei 132Xe and 133Xe are investigated after multinucleon-transfer (MNT) and fusion-evaporation reactions. Both nuclei are populated (i) in 136Xe+208Pb MNT reactions employing the high-resolution Advanced GAmma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA, (ii) in the 136Xe+198Pt MNT reaction employing the GAMMASPHERE spectrometer in combination with the gas-detector array CHICO, and (iii) as an evaporation residue after a 130Te(α ,x n )134 -x nXe fusion-evaporation reaction employing the HORUS γ -ray array at the University of Cologne. The high-spin level schemes are considerably extended above the Jπ=(7-) and (10+) isomers in 132Xe and above the 11 /2- isomer in 133Xe. The results are compared to the high-spin systematics of the Z =54 as well as the N =78 and N =79 chains. Furthermore, evidence is found for a long-lived (T1 /2≫1 μ s ) isomer in 133Xe which closes a gap along the N =79 isotones. Shell-model calculations employing the SN100PN and PQM130 effective interactions reproduce the experimental findings and provide guidance to the interpretation of the observed high-spin features.
High-spin structures in Xe 132 and Xe 133 and evidence for isomers along the N = 79 isotones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogt, A.; Siciliano, M.; Birkenbach, B.
In this study, the transitional nuclei 132Xe and 133Xe are investigated after multinucleon-transfer (MNT) and fusion-evaporation reactions. Both nuclei are populated (i) in 136Xe + 208Pb MNT reactions employing the high-resolution Advanced GAmma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA, (ii) in the 136Xe + 198Pt MNT reaction employing the GAMMASPHERE spectrometer in combination with the gas-detector array CHICO, and (iii) as an evaporation residue after a 130Te (α,xn) 134-xnXe fusion-evaporation reaction employing the HORUS γ -ray array at the University of Cologne. The high-spin level schemes are considerably extended above the J π = (7 -) andmore » (10 +) isomers in 132Xe and above the 11/2 - isomer in 133Xe. The results are compared to the high-spin systematics of the Z = 54 as well as the N = 78 and N = 79 chains. Furthermore, evidence is found for a long-lived (T 1/2 » 1 μs) isomer in 133Xe which closes a gap along the N = 79 isotones. Finally, shell-model calculations employing the SN100PN and PQM130 effective interactions reproduce the experimental findings and provide guidance to the interpretation of the observed high-spin features.« less
High-spin structures in Xe 132 and Xe 133 and evidence for isomers along the N = 79 isotones
Vogt, A.; Siciliano, M.; Birkenbach, B.; ...
2017-08-24
In this study, the transitional nuclei 132Xe and 133Xe are investigated after multinucleon-transfer (MNT) and fusion-evaporation reactions. Both nuclei are populated (i) in 136Xe + 208Pb MNT reactions employing the high-resolution Advanced GAmma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA, (ii) in the 136Xe + 198Pt MNT reaction employing the GAMMASPHERE spectrometer in combination with the gas-detector array CHICO, and (iii) as an evaporation residue after a 130Te (α,xn) 134-xnXe fusion-evaporation reaction employing the HORUS γ -ray array at the University of Cologne. The high-spin level schemes are considerably extended above the J π = (7 -) andmore » (10 +) isomers in 132Xe and above the 11/2 - isomer in 133Xe. The results are compared to the high-spin systematics of the Z = 54 as well as the N = 78 and N = 79 chains. Furthermore, evidence is found for a long-lived (T 1/2 » 1 μs) isomer in 133Xe which closes a gap along the N = 79 isotones. Finally, shell-model calculations employing the SN100PN and PQM130 effective interactions reproduce the experimental findings and provide guidance to the interpretation of the observed high-spin features.« less
Local magnetizations in impure two-dimensional antiferromagnets
NASA Astrophysics Data System (ADS)
van Luijk, J. A.; Arts, A. F. M.; de Wijn, H. W.
1980-03-01
The local magnetizations near dilute substitutional impurities in the quadratic-layer antiferromagnet K2MnF4 are studied both experimentally and theoretically. The impurities considered are the nonmagnetic Zn and Mg, as well as Ni. The magnetizations are probed through the positions of the impurity-associated satellites in the nuclear magnetic resonance of the out-of-layer and in-layer 19F nuclei adjacent to the magnetic ions. It is discussed in which way the effects of lattice deformations can be eliminated in order to obtain the variations of the local magnetizations with temperature. The theoretical treatment is based on Green's-function techniques. The decoupling employed is within the local spin-deviation operators and accounts for correlation between nearest neighbors. It reduces the renormalized spin-wave Hamiltonian to an effective quadratic form, rendering decoupling of Green's functions unnecessary. The spectral distributions of the excitations are calculated including local modes. The theory is subsequently applied to the 13-site cluster consisting of the impurity and the first three shells of Mn around it. Good agreement is found. The magnetization is significantly modified in the first shell. The further shells are only weakly affected, however somewhat stronger than in comparable three-dimensional systems. For nonmagnetic impurities the thermal spin deviation in the first shell is about 13 larger than that of the host; in the Ni-doped system the additional deviations are within 1%. The zero-point deviation of the Ni is 0.11 units of spin, as compared to 0.17 in the host. A further experimental result is a uniform shift, increasing with concentration, of the sublattice magnetization at large distance from the impurity. It must be related to the finite density of states near the zone center in two-dimensional systems. Finally, some data are presented on the local susceptibilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaganathen, Y.; Betan, R. M. Id; Michel, N.
Background: The structure of weakly bound and unbound nuclei close to particle drip lines is one of the major science drivers of nuclear physics. A comprehensive understanding of these systems goes beyond the traditional configuration interaction approach formulated in the Hilbert space of localized states (nuclear shell model) and requires an open quantum system description. The complex-energy Gamow shell model (GSM) provides such a framework as it is capable of describing resonant and nonresonant many-body states on equal footing. Purpose: To make reliable predictions, quality input is needed that allows for the full uncertainty quantification of theoretical results. In thismore » study, we carry out the optimization of an effective GSM (one-body and two-body) interaction in the psdf-shell-model space. The resulting interaction is expected to describe nuclei with 5 ≤ A ≲ 12 at the p-sd-shell interface. Method: The one-body potential of the 4He core is modeled by a Woods-Saxon + spin-orbit + Coulomb potential, and the finite-range nucleon-nucleon interaction between the valence nucleons consists of central, spin-orbit, tensor, and Coulomb terms. The GSM is used to compute key fit observables. The χ 2 optimization is performed using the Gauss-Newton algorithm augmented by the singular value decomposition technique. The resulting covariance matrix enables quantification of statistical errors within the linear regression approach. Results: The optimized one-body potential reproduces nucleon- 4He scattering phase shifts up to an excitation energy of 20 MeV. The two-body interaction built on top of the optimized one-body field is adjusted to the bound and unbound ground-state binding energies and selected excited states of the helium, lithium, and beryllium isotopes up to A = 9 . A very good agreement with experimental results was obtained for binding energies. First applications of the optimized interaction include predictions for two-nucleon correlation densities and excitation spectra of light nuclei with quantified uncertainties. In conclusion: The new interaction will enable comprehensive and fully quantified studies of structure and reactions aspects of nuclei from the psd region of the nuclear chart.« less
NASA Astrophysics Data System (ADS)
Zaim, N.; Zaim, A.; Kerouad, M.
2017-02-01
In this work, the magnetic behavior of the cylindrical nanowire, consisting of a ferromagnetic core of spin-1 atoms surrounded by a ferromagnetic shell of spin-1 atoms is studied in the presence of a random crystal field interaction. Based on Metropolis algorithm, the Monte Carlo simulation has been used to investigate the effects of the concentration of the random crystal field p, the crystal field D and the shell exchange interaction Js on the phase diagrams and the hysteresis behavior of the system. Some characteristic behaviors have been found, such as the first and second-order phase transitions joined by tricritical point for appropriate values of the system parameters, triple and isolated critical points can be also found. Depending on the Hamiltonian parameters, single, double and para hysteresis regions are explicitly determined.
Strong spin-photon coupling in silicon
NASA Astrophysics Data System (ADS)
Samkharadze, N.; Zheng, G.; Kalhor, N.; Brousse, D.; Sammak, A.; Mendes, U. C.; Blais, A.; Scappucci, G.; Vandersypen, L. M. K.
2018-03-01
Long coherence times of single spins in silicon quantum dots make these systems highly attractive for quantum computation, but how to scale up spin qubit systems remains an open question. As a first step to address this issue, we demonstrate the strong coupling of a single electron spin and a single microwave photon. The electron spin is trapped in a silicon double quantum dot, and the microwave photon is stored in an on-chip high-impedance superconducting resonator. The electric field component of the cavity photon couples directly to the charge dipole of the electron in the double dot, and indirectly to the electron spin, through a strong local magnetic field gradient from a nearby micromagnet. Our results provide a route to realizing large networks of quantum dot–based spin qubit registers.
NASA Astrophysics Data System (ADS)
Vaz, Louis C.; Alexander, John M.
1983-07-01
Fission angular distributions have been studied for years and have been treated as classic examples of trasitions-state theory. Early work involving composite nuclei of relatively low excitation energy E ∗ (⪅35 MeV) and spin I (⪅25ħ) gave support to theory and delimited interesting properties of the transitions-state nuclei. More recent research on fusion fission and sequential fission after deeply inelastic reactions involves composite nuclei of much higher energies (⪅200 MeV) and spins (⪅100ħ). Extension of the basic ideas developed for low-spin nuclei requires detailed consideration of the role of these high spins and, in particular, the “spin window” for fussion. We have made empirical correlations of cross sections for evaporation residues and fission in order to get a description of this spin window. A systematic reanalysis has been made for fusion fission induced by H, He and heavier ions. Empirical correlations of K 20 (K 20 = {IeffT }/{h̷2}) are presented along with comparisons of Ieff to moments of inertia for saddle-point nuclei from the rotating liquid drop model. This model gives an excellent guide for the intermidiate spin zone (30⪅ I ⪅65), while strong shell and/or pairing effects are evident for excitations less than ⪅35 MeV. Observations of strong anisotropies for very high-spin systems signal the demise of certain approximation commonly made in the theory, and suggestions are made toward this end.
Shell-model predictions for Lambda Lambda hypernuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gal, A.; Millener, D.
2011-06-02
It is shown how the recent shell-model determination of {Lambda}N spin-dependent interaction terms in {Lambda} hypernuclei allows for a reliable deduction of {Lambda}{Lambda} separation energies in {Lambda}{Lambda} hypernuclei across the nuclear p shell. Comparison is made with the available data, highlighting {sub {Lambda}{Lambda}}{sup 11}Be and {sub {Lambda}{Lambda}}{sup 12}Be which have been suggested as possible candidates for the KEK-E373 HIDA event.
Owen, L.A.; Bright, Jordon; Finkel, R.C.; Jaiswal, M.K.; Kaufman, D.S.; Mahan, S.; Radtke, U.; Schneider, J.S.; Sharp, W.; Singhvi, A.K.; Warren, C.N.
2007-01-01
A Late Quaternary spit-shoreline complex on the northern shore of Pleistocene Lake Mojave of southeastern California, USA was studied with the goal of comparing accelerator mass spectrometry (AMS) radiocarbon, luminescence, electron spin resonance (ESR), terrestrial cosmogenic radionuclide (TCN) surface exposure, amino acid racemization (AAR) and U-series dating methods. The pattern of ages obtained by the different methods illustrates the complexity of processes acting in the lakeshore environment and highlights the utility of a multi-method approach. TCN surface exposure ages (mostly ???20-30 ka) record the initial erosion of shoreline benches, whereas radiocarbon ages on shells (determined in this and previous studies) within the spit, supported by AAR data, record its construction at fluctuating lake levels from ???16 to 10 ka. Luminescence ages on spit sediment (???6-7 ka) and ESR ages on spit shells (???4 ka) are anomalously young relative to radiocarbon ages of shells within the same deposits. The significance of the surprisingly young luminescence ages is not clear. The younger ESR ages could be a consequence of post-mortem enrichment of U in the shells. High concentrations of detrital thorium in tufa coating spit gravels inhibited the use of single-sample U-series dating. Detailed comparisons such as this provide one of the few means of assessing the accuracy of Quaternary dating techniques. More such comparisons are needed. ?? 2007 Elsevier Ltd and INQUA.
NASA Astrophysics Data System (ADS)
Zhou, You; Ma, Li; Gan, Mengyu; Ye, Menghan; Li, Xiurong; Zhai, Yanfang; Yan, Fabing; Cao, Feifei
2018-06-01
The monodisperse MnO2@NiCo2O4 core/shell nanospheres for good-performance supercapacitors are designed and synthesized by a two-step solution-based method and a simple post annealing process. In the composite, both MnO2 (the "core") and NiCo2O4 (the "shell") are formed by the accumulation of nanoflakes. Thus, nearly all the core/shell nanoflakes are highly opened and accessible to electrolyte, making them give full play to the Faradaic reaction. Our results demonstrate that the composite electrode exhibits desirable pseudocapacitive behaviors with higher specific capacitance (1127.27 F g-1 at a current density of 1 A g-1), better rate capability (81.0% from 1 to 16 A g-1) and superior cycling stability (actually 126.8% capacitance retention after 1000 cycles and only 3.7% loss after 10,000 cycles at 10 A g-1) in 3 M KOH aqueous solution. Moreover, it offers the excellent specific energy density of 26.6 Wh kg-1 at specific power density of 800 W kg-1. The present MnO2@NiCo2O4 core/shell nanospheres with remarkable electrochemical properties are considered as potential electrode materials for the next generation supercapacitors.
Ballistic anisotropic magnetoresistance in core-shell nanowires and rolled-up nanotubes
NASA Astrophysics Data System (ADS)
Chang, Ching-Hao; Ortix, Carmine
2017-01-01
In ferromagnetic nanostructures, the ballistic anisotropic magnetoresistance (BAMR) is a change in the ballistic conductance with the direction of magnetization due to spin-orbit interaction. Very recently, a directional dependent ballistic conductance has been predicted to occur in a number of newly synthesized nonmagnetic semiconducting nanostructures subject to externally applied magnetic fields, without necessitating spin-orbit coupling. In this paper, we review past works on the prediction of this BAMR effect in core-shell nanowires (CSN) and rolled-up nanotubes (RUNTs). This is complemented by new results, we establish for the transport properties of tubular nanosystems subject to external magnetic fields.
Navier-Stokes predictions of pitch damping for axisymmetric shell using steady coning motion
NASA Technical Reports Server (NTRS)
Weinacht, Paul; Sturek, Walter B.; Schiff, Lewis B.
1991-01-01
Previous theoretical investigations have proposed that the side force and moment acting on a body of revolution in steady coning motion could be related to the pitch-damping force and moment. In the current research effort, this approach is applied to produce predictions of the pitch damping for axisymmetric shell. The flow fields about these projectiles undergoing steady coning motion are successfully computed using a parabolized Navier-Stokes computational approach which makes use of a rotating coordinate frame. The governing equations are modified to include the centrifugal and Coriolis force terms due to the rotating coordinate frame. From the computed flow field, the side moments due to coning motion, spinning motion, and combined spinning and coning motion are used to determine the pitch-damping coefficients. Computations are performed for two generic shell configurations, a secant-ogive-cylinder and a secant-ogive-cylinder-boattail.
NASA Astrophysics Data System (ADS)
Kuś, Tomasz; Bartlett, Rodney J.
2008-09-01
The doublet and quartet excited states of the formyl radical have been studied by the equation-of-motion (EOM) coupled cluster (CC) method. The Sz spin-conserving singles and doubles (EOM-EE-CCSD) and singles, doubles, and triples (EOM-EE-CCSDT) approaches, as well as the spin-flipped singles and doubles (EOM-SF-CCSD) method have been applied, subject to unrestricted Hartree-Fock (HF), restricted open-shell HF, and quasirestricted HF references. The structural parameters, vertical and adiabatic excitation energies, and harmonic vibrational frequencies have been calculated. The issue of the reference function choice for the spin-flipped (SF) method and its impact on the results has been discussed using the experimental data and theoretical results available. The results show that if the appropriate reference function is chosen so that target states differ from the reference by only single excitations, then EOM-EE-CCSD and EOM-SF-CCSD methods give a very good description of the excited states. For the states that have a non-negligible contribution of the doubly excited configurations one is able to use the SF method with such a reference function, that in most cases the performance of the EOM-SF-CCSD method is better than that of the EOM-EE-CCSD approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Yong-Hui; Sumpter, Bobby G.; Du, Shiyu
Phenalenyl is an important neutral pi-radical due to its capability to form unconventional pancake pi-pi bonding interactions, whereas its analogues with graphitic boron (B) or nitrogen (N)-doping have been regarded as closed-shell systems and therefore received much less attention. By using high-level quantum chemistry calculations, we also show that the B- and N-doped closed-shell phenalenyls unexpectedly form open-shell singlet pi-dimers with diradicaloid character featuring 2e/all-sites double pi-pi bonding. Moreover, by proper substitutions, the doped phenalenyl derivatives can be made open-shell species that form closed shell singlet pi-dimers bound by stronger 4e/all-sites double pi-pi bonding. Moreover, covalent pi-pi bonding overlap ismore » distributed on all of the atomic sites giving robust and genuine pancake-shaped pi-dimers which, depending on the number of electrons available in the bonding interactions, are equally or more stable than the pi-dimers of the pristine phenalenyl.« less
Tian, Yong-Hui; Sumpter, Bobby G.; Du, Shiyu; ...
2015-06-03
Phenalenyl is an important neutral pi-radical due to its capability to form unconventional pancake pi-pi bonding interactions, whereas its analogues with graphitic boron (B) or nitrogen (N)-doping have been regarded as closed-shell systems and therefore received much less attention. By using high-level quantum chemistry calculations, we also show that the B- and N-doped closed-shell phenalenyls unexpectedly form open-shell singlet pi-dimers with diradicaloid character featuring 2e/all-sites double pi-pi bonding. Moreover, by proper substitutions, the doped phenalenyl derivatives can be made open-shell species that form closed shell singlet pi-dimers bound by stronger 4e/all-sites double pi-pi bonding. Moreover, covalent pi-pi bonding overlap ismore » distributed on all of the atomic sites giving robust and genuine pancake-shaped pi-dimers which, depending on the number of electrons available in the bonding interactions, are equally or more stable than the pi-dimers of the pristine phenalenyl.« less
Xu, Lin; Wang, Hai-Xiao; Xu, Ya-Dong; Chen, Huan-Yang; Jiang, Jian-Hua
2016-08-08
A simple core-shell two-dimensional photonic crystal is studied where the triangular lattice symmetry and the C6 point group symmetry give rich physics in accidental touching points of photonic bands. We systematically evaluate different types of accidental nodal points at the Brillouin zone center for transverse-magnetic harmonic modes when the geometry and permittivity of the core-shell material are continuously tuned. The accidental nodal points can have different dispersions and topological properties (i.e., Berry phases). These accidental nodal points can be the critical states lying between a topological phase and a normal phase of the photonic crystal. They are thus very important for the study of topological photonic states. We show that, without breaking time-reversal symmetry, by tuning the geometry of the core-shell material, a phase transition into the photonic quantum spin Hall insulator can be achieved. Here the "spin" is defined as the orbital angular momentum of a photon. We study the topological phase transition as well as the properties of the edge and bulk states and their application potentials in optics.
Presence of glassy state and large exchange bias in nanocrystalline BiFeO3
NASA Astrophysics Data System (ADS)
Srivastav, Simant Kumar; Johari, Anima; Patel, S. K. S.; Gajbhiye, N. S.
2017-11-01
We investigated the static and dynamic aspects of the magnetic properties for single phase nanocrystalline BiFeO3 with average crystallite size of 35 nm. The frequency dependence of the peak is observed in the real part of ac susceptibility χ‧ac vs T measurement and described well by the Vogel-Fulcher law as well as the power law. These analyses indicated the existence of cluster glass state with significant interaction among the spin clusters and results in cluster-glass like cooperative freezing at low temperature. The influence of temperature and magnetic field cooling on the exchange bias effect is investigated. A training effect is also observed. We have reported a significantly high ZFC & FC exchange bias of 200 Oe & 450 Oe at 300 K and 900 Oe & 2100 Oe at 5 K. The obtained results are interpreted in the framework of core-shell model, where the core of the BFO nanoparticles shows antiferromagnetic behavior and surrounded by CG-like ferromagnetic (FM) shell associated to uncompensated surface spins.
Evidence for Multiple Negative-Parity Band Structure in ^71Se
NASA Astrophysics Data System (ADS)
Baker, N. R.; Kaye, R. A.; Arora, S. R.; Bruckman, J.; Tabor, S. L.; Hinners, T. A.; Hoffman, C. R.; Lee, S.; Doring, J.
2008-10-01
The negative-parity bands of ^69Se and ^73Se indicate a stark contrast between strong single-particle (^69Se) and collective (^73Se) behavior over a wide range of spins. However, only one negative-parity band has been observed so far in ^71Se, making it difficult to see where it lies between these two very different cases. Thus, the goal of the present work was to extend the level scheme of ^71Se as much as possible, with an emphasis on finding new negative-parity states. ^71Se nuclei were produced at high spin following the 80-MeV ^54Fe (^23Na, αpn) reaction at Florida State University. γ-γ coincidences were measured using an array of 10 Compton-suppressed Ge detectors which included three Clover detectors. From the coincidence relationships, new states were found that formed candidates for perhaps two new negative-parity bands. Cranked-shell model calculations indicate that one new band is associated with rigid-body rotation at high spin.
Evidence for Multiple Negative-Parity Band Structure in ^71Se
NASA Astrophysics Data System (ADS)
Baker, N. R.; Kaye, R. A.; Arora, S. R.; Bruckman, J. K.; Tabor, S. L.; Hinners, T. A.; Hoffman, C. R.; Lee, S.; Döring, J.
2008-10-01
The negative-parity bands of ^69Se and ^73Se indicate a stark contrast between strong single-particle (^69Se) and collective (^73Se) behavior over a wide range of spins. However, only one negative-parity band has been observed so far in ^71Se, making it difficult to see where it lies between these two very different cases. Thus, the goal of the present work was to extend the level scheme of ^71Se as much as possible, with an emphasis on finding new negative-parity states. ^71Se nuclei were produced at high spin following the 80-MeV ^54Fe (^23Na, αpn) reaction at Florida State University. γ-γ coincidences were measured using an array of 10 Compton-suppressed Ge detectors which included three Clover detectors. From the coincidence relationships, new states were found that formed candidates for perhaps two new negative-parity bands. Cranked-shell model calculations indicate that one new band is associated with rigid- body rotation at high spin.
NASA Astrophysics Data System (ADS)
Juneja, P.; Gupta, S. L.; Pancholi, S. C.; Kumar, Ashok; Mehta, D.; Chaturvedi, L.; Katoch, S. K.; Malik, S.; Shanker, G.; Bhowmik, R. K.; Muralithar, S.; Rodrigues, G.; Singh, R. P.
1996-03-01
High spin states in the odd-odd 164Lu nucleus have been investigated for the first time, through in-beam gamma-ray spectroscopy, following the 150Sm(19F,5n) reaction at beam energy Elab=105 MeV. Four bands, including two signature split bands are identified. The interpretation of the experimental results is discussed in comparison with the existing data in the neighboring nuclei and in the framework of the cranked shell model. The πh11/2⊗νi13/2 yrast band exhibits anomalous signature splitting and signature inversion is observed at a spin of 18ħ. This provides the missing datum for the systematics of staggering and signature inversion for the neighboring odd-odd N=93 isotones and supports the predictions of angular-momentum projection calculations by Hara and Sun. In the second signature split πh 11/2h9/2 band, the AB neutron crossing occurs at a rotational frequency of ~0.29 MeV. This is indicative of the disappearance of the blocking effect of the odd neutron.
Keller, Katharina; Mertens, Valerie; Qi, Mian; Nalepa, Anna I; Godt, Adelheid; Savitsky, Anton; Jeschke, Gunnar; Yulikov, Maxim
2017-07-21
Extraction of distance distributions between high-spin paramagnetic centers from relaxation induced dipolar modulation enhancement (RIDME) data is affected by the presence of overtones of dipolar frequencies. As previously proposed, we account for these overtones by using a modified kernel function in Tikhonov regularization analysis. This paper analyzes the performance of such an approach on a series of model compounds with the Gd(iii)-PyMTA complex serving as paramagnetic high-spin label. We describe the calibration of the overtone coefficients for the RIDME kernel, demonstrate the accuracy of distance distributions obtained with this approach, and show that for our series of Gd-rulers RIDME technique provides more accurate distance distributions than Gd(iii)-Gd(iii) double electron-electron resonance (DEER). The analysis of RIDME data including harmonic overtones can be performed using the MATLAB-based program OvertoneAnalysis, which is available as open-source software from the web page of ETH Zurich. This approach opens a perspective for the routine use of the RIDME technique with high-spin labels in structural biology and structural studies of other soft matter.
Active structuring of colloidal armour on liquid drops
Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Otto Fossum, Jon
2013-01-01
Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-field-assisted convective assembly of jammed colloidal ‘ribbons’, electro-rheological colloidal chains confined to a two-dimensional surface and spinning colloidal domains on that surface. In addition, we demonstrate the size control of ‘pupil’-like openings in colloidal shells. We anticipate that electric field manipulation of colloids in leaky dielectrics can lead to new routes of colloidosome assembly and design for ‘smart armoured’ droplets. PMID:23811716
NASA Astrophysics Data System (ADS)
Lique, François; Jiménez-Serra, Izaskun; Viti, Serena; Marinakis, Sarantos
2018-01-01
We present the first ab initio potential energy surfaces (PESs) for the PO(X2Π)-He van der Waals system. The PESs were obtained using the open-shell partially spin-restricted coupled cluster approach with single, double and perturbative triple excitations [UCCSD(T)]. The augmented correlation-consistent polarized valence triple-zeta (aug-cc-pVTZ) basis set was employed supplemented by mid-bond functions. Integral and differential cross sections for the rotational excitation in PO-He collisions were calculated using the new PES and compared with results in similar systems. Finally, our work presents the first hyperfine-resolved cross sections for this system that are needed for accurate modelling in astrophysical environments.
Valve assembly for use with high temperature and high pressure fluids
De Feo, Angelo
1982-01-01
The valve assembly for use with high temperature and high pressure fluids has inner and outer spaced shells and a valve actuator support of inner and outer spaced members which are connected at their end portions to the inner and outer shells, respectively, to extend substantially normal to the longitudinal axis of the inner shell. A layer of resilient heat insulating material covers the outer surfaces of the inner shell and the inner actuator support member and is of a thickness to only occupy part of the spaces between the inner and outer shells and inner and outer actuator support members. The remaining portion of the space between the inner and outer shells and the space between the inner and outer members is substantially filled with a body of castable, rigid refractory material. A movable valve member is disposed in the inner shell. A valve actuator assembly is supported in the valve actuator support to extend into the inner shell for connection with the movable valve member for movement of the movable valve member to positions from a fully open to a fully closed position to control flow of fluid through the inner shell. An anchor mneans is disposed adjacent opposite sides of the axis of the valve actuator support and attached to the inner shell so that relative radial movement between the inner and outer shell is permitted by the layer of resilient heat insulating material and relative longitudinal movement of the inner shell to the outer shell is permitted in opposite directions from the anchor means to thereby maintain the functional integrity of the movable valve member by providing an area of the inner shell surrounding the movable valve member longitdinally stationary, but at the same time allowing radial movement.
Exchange biased Co3O4 nanowires: A new insight into its magnetic core-shell nature
NASA Astrophysics Data System (ADS)
Thomas, S.; Jose, A.; Thanveer, T.; Anantharaman, M. R.
2017-06-01
We investigated interfacial exchange coupling effect in nano casted Co3O4 nanowires. Magnetometry measurements indicated that the magnetic response of the wires has two contributions. First one from the core of the wire which has characteristics of a 2D-DAFF(two-dimensional diluted antiferromagnet in a field). The second one is from uncompensated surface spins which get magnetically ordered towards the field direction once field cooled below 25 K. Below 25 K, the net magnetization of the core of the wire gets exchange coupled with the uncompensated surface spins giving rise to exchange bias effect. The unique 2D-DAFF/spin-glass core/shell heterostructure showed a pronounced training effect in the first field cycling itself. The magnitude of exchange bias field showed a maximum at intermediate cooling fields and for the higher cooling field, exchange bias got reduced.
Spin Exchange Interaction in Substituted Copper Phthalocyanine Crystalline Thin Films
NASA Astrophysics Data System (ADS)
Rawat, Naveen; Pan, Zhenwen; Lamarche, Cody J.; Wetherby, Anthony; Waterman, Rory; Tokumoto, Takahisa; Cherian, Judy G.; Headrick, Randall L.; McGill, Stephen A.; Furis, Madalina I.
2015-11-01
The origins of spin exchange in crystalline thin films of Copper Octabutoxy Phthalocyanine (Cu-OBPc) are investigated using Magnetic Circular Dichroism (MCD) spectroscopy. These studies are made possible by a solution deposition technique which produces highly ordered films with macroscopic grain sizes suitable for optical studies. For temperatures lower than 2 K, the contribution of a specific state in the valence band manifold originating from the hybridized lone pair in nitrogen orbitals of the Phthalocyanine ring, bears the Brillouin-like signature of an exchange interaction with the localized d-shell Cu spins. A comprehensive MCD spectral analysis coupled with a molecular field model of a σπ - d exchange analogous to sp-d interactions in Diluted Magnetic Semiconductors (DMS) renders an enhanced Zeeman splitting and a modified g-factor of -4 for the electrons that mediate the interaction. These studies define an experimental tool for identifying electronic states involved in spin-dependent exchange interactions in organic materials.
Spin Exchange Interaction in Substituted Copper Phthalocyanine Crystalline Thin Films
Rawat, Naveen; Pan, Zhenwen; Lamarche, Cody J.; Wetherby, Anthony; Waterman, Rory; Tokumoto, Takahisa; Cherian, Judy G.; Headrick, Randall L.; McGill, Stephen A.; Furis, Madalina I.
2015-01-01
The origins of spin exchange in crystalline thin films of Copper Octabutoxy Phthalocyanine (Cu-OBPc) are investigated using Magnetic Circular Dichroism (MCD) spectroscopy. These studies are made possible by a solution deposition technique which produces highly ordered films with macroscopic grain sizes suitable for optical studies. For temperatures lower than 2 K, the contribution of a specific state in the valence band manifold originating from the hybridized lone pair in nitrogen orbitals of the Phthalocyanine ring, bears the Brillouin-like signature of an exchange interaction with the localized d-shell Cu spins. A comprehensive MCD spectral analysis coupled with a molecular field model of a σπ − d exchange analogous to sp-d interactions in Diluted Magnetic Semiconductors (DMS) renders an enhanced Zeeman splitting and a modified g-factor of −4 for the electrons that mediate the interaction. These studies define an experimental tool for identifying electronic states involved in spin-dependent exchange interactions in organic materials. PMID:26559337
Spin Exchange Interaction in Substituted Copper Phthalocyanine Crystalline Thin Films.
Rawat, Naveen; Pan, Zhenwen; Lamarche, Cody J; Wetherby, Anthony; Waterman, Rory; Tokumoto, Takahisa; Cherian, Judy G; Headrick, Randall L; McGill, Stephen A; Furis, Madalina I
2015-11-12
The origins of spin exchange in crystalline thin films of Copper Octabutoxy Phthalocyanine (Cu-OBPc) are investigated using Magnetic Circular Dichroism (MCD) spectroscopy. These studies are made possible by a solution deposition technique which produces highly ordered films with macroscopic grain sizes suitable for optical studies. For temperatures lower than 2 K, the contribution of a specific state in the valence band manifold originating from the hybridized lone pair in nitrogen orbitals of the Phthalocyanine ring, bears the Brillouin-like signature of an exchange interaction with the localized d-shell Cu spins. A comprehensive MCD spectral analysis coupled with a molecular field model of a σπ - d exchange analogous to sp-d interactions in Diluted Magnetic Semiconductors (DMS) renders an enhanced Zeeman splitting and a modified g-factor of -4 for the electrons that mediate the interaction. These studies define an experimental tool for identifying electronic states involved in spin-dependent exchange interactions in organic materials.
THE SPIN OF THE BLACK HOLE 4U 1543-47
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morningstar, Warren R.; Miller, Jon M., E-mail: wmorning@umich.edu, E-mail: jonmm@umich.edu
2014-10-01
We present a new analysis of Rossi X-Ray Timing Explorer observations of the 2002 outburst of the transient X-ray nova 4U 1543-47. We focus on observations in the high/soft state, and attempt to measure the ''spin'' of the black hole by simultaneously fitting the thermal disk continuum and by modeling the broadened iron k-shell emission lines and additional blurred reflection features. Previous works have found that use of these methods individually returns contradictory values for the dimensionless spin parameter a {sub *} = cJ/GM {sup 2}. We find that when used in conjunction with each other, a moderate spin ismore » obtained (a{sub ∗}=0.43{sub −0.31}{sup +0.22}) that is actually consistent with both other values within errors. We discuss limitations of our analysis, systematic uncertainties, and implications of this measurement, and compare our result to those previously claimed for 4U 1543-47.« less
NASA Astrophysics Data System (ADS)
Nomura, Takuji
2017-10-01
We study two-magnon excitations in resonant inelastic x-ray scattering (RIXS) at the transition-metal K edge. Instead of working with effective Heisenberg spin models, we work with a Hubbard-type model (d -p model) for a typical insulating cuprate La2CuO4 . For the antiferromagnetic ground state within the spin density wave (SDW) mean-field formalism, we calculate the dynamical correlation function within the random-phase approximation (RPA), and then obtain two-magnon excitation spectra by calculating the convolution of it. Coupling between the K -shell hole and the magnons in the intermediate state is calculated by means of diagrammatic perturbation expansion in the Coulomb interaction. The calculated momentum dependence of RIXS spectra agrees well with that of experiments. A notable difference from previous calculations based on the Heisenberg spin models is that RIXS spectra have a large two-magnon weight near the zone center, which may be confirmed by further careful high-resolution experiments.
High Resolution NMR Studies of Encapsulated Proteins In Liquid Ethane
Peterson, Ronald W.; Lefebvre, Brian G.; Wand, A. Joshua
2005-01-01
Many of the difficulties presented by large, aggregation-prone, and membrane proteins to modern solution NMR spectroscopy can be alleviated by actively seeking to increase the effective rate of molecular reorientation. An emerging approach involves encapsulating the protein of interest within the protective shell of a reverse micelle, and dissolving the resulting particle in a low viscosity fluid, such as the short chain alkanes. Here we present the encapsulation of proteins with high structural fidelity within reverse micelles dissolved in liquid ethane. The addition of appropriate co-surfactants can significantly reduce the pressure required for successful encapsulation. At these reduced pressures, the viscosity of the ethane solution is low enough to provide sufficiently rapid molecular reorientation to significantly lengthen the spin-spin NMR relaxation times of the encapsulated protein. PMID:16028922
7 CFR 51.2542 - U.S. Artificially Opened.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS) United States Standards for Grades of Pistachio Nuts in the Shell § 51.2542 U.S. Artificially Opened. “U.S. Artificially Opened” consists of artificially opened pistachio nuts in the shell which meet...
The open XXX spin chain in the SoV framework: scalar product of separate states
NASA Astrophysics Data System (ADS)
Kitanine, N.; Maillet, J. M.; Niccoli, G.; Terras, V.
2017-06-01
We consider the XXX open spin-1/2 chain with the most general non-diagonal boundary terms, that we solve by means of the quantum separation of variables (SoV) approach. We compute the scalar products of separate states, a class of states which notably contains all the eigenstates of the model. As usual for models solved by SoV, these scalar products can be expressed as some determinants with a non-trivial dependance in terms of the inhomogeneity parameters that have to be introduced for the method to be applicable. We show that these determinants can be transformed into alternative ones in which the homogeneous limit can easily be taken. These new representations can be considered as generalizations of the well-known determinant representation for the scalar products of the Bethe states of the periodic chain. In the particular case where a constraint is applied on the boundary parameters, such that the transfer matrix spectrum and eigenstates can be characterized in terms of polynomial solutions of a usual T-Q equation, the scalar product that we compute here corresponds to the scalar product between two off-shell Bethe-type states. If in addition one of the states is an eigenstate, the determinant representation can be simplified, hence leading in this boundary case to direct analogues of algebraic Bethe ansatz determinant representations of the scalar products for the periodic chain.
Canonical field anticommutators in the extended gauged Rarita-Schwinger theory
NASA Astrophysics Data System (ADS)
Adler, Stephen L.; Henneaux, Marc; Pais, Pablo
2017-10-01
We reexamine canonical quantization of the gauged Rarita-Schwinger theory using the extended theory, incorporating a dimension 1/2 auxiliary spin-1/2 field Λ , in which there is an exact off-shell gauge invariance. In Λ =0 gauge, which reduces to the original unextended theory, our results agree with those found by Johnson and Sudarshan, and later verified by Velo and Zwanziger, which give a canonical Rarita-Schwinger field Dirac bracket that is singular for small gauge fields. In gauge covariant radiation gauge, the Dirac bracket of the Rarita-Schwinger fields is nonsingular, but does not correspond to a positive semidefinite anticommutator, and the Dirac bracket of the auxiliary fields has a singularity of the same form as found in the unextended theory. These results indicate that gauged Rarita-Schwinger theory is somewhat pathological, and cannot be canonically quantized within a conventional positive semidefinite metric Hilbert space. We leave open the questions of whether consistent quantizations can be achieved by using an indefinite metric Hilbert space, by path integral methods, or by appropriate couplings to conventional dimension 3/2 spin-1/2 fields.
NASA Technical Reports Server (NTRS)
Phillips, D. H.; Schug, J. C.
1974-01-01
The approximate spin projection method of Amos et al. is extended to handle UHF wave functions having three significant components of differing multiplicity. An expression is given for the energy after single annihilation which differs from that of Amos and Hall. The new expression reproduces the results obtained from a previous exact calculation for which the weights and energies of the components are known. The extended approximate projection method is applied to the pi-electron UHF wave functions for the ground states of the pentachlorocyclopentadienyl cation and the croconate dianion, C5O5(2-). The results indicate a triplet ground state for the former and a singlet ground state for the latter, in agreement with experimental ESR susceptibility measurements for these molecular ions. C5C15(-) cannont be treated by restricted Hartree-Fock theory, due to its open-shell ground state. Incorrect results are obtained for the croconate dianion, if restricted Hartree-Fock theory and singly excited configuration interactions are utilized.
Statistical modeling of the reactions Fe(+) + N2O → FeO(+) + N2 and FeO(+) + CO → Fe(+) + CO2.
Ushakov, Vladimir G; Troe, Jürgen; Johnson, Ryan S; Guo, Hua; Ard, Shaun G; Melko, Joshua J; Shuman, Nicholas S; Viggiano, Albert A
2015-08-14
The rates of the reactions Fe(+) + N2O → FeO(+) + N2 and FeO(+) + CO → Fe(+) + CO2 are modeled by statistical rate theory accounting for energy- and angular momentum-specific rate constants for formation of the primary and secondary cationic adducts and their backward and forward reactions. The reactions are both suggested to proceed on sextet and quartet potential energy surfaces with efficient, but probably not complete, equilibration by spin-inversion of the populations of the sextet and quartet adducts. The influence of spin-inversion on the overall reaction rate is investigated. The differences of the two reaction rates mostly are due to different numbers of entrance states (atom + linear rotor or linear rotor + linear rotor, respectively). The reaction Fe(+) + N2O was studied either with (6)Fe(+) or with (4)Fe(+) reactants. Differences in the rate constants of (6)Fe(+) and (4)Fe(+) reacting with N2O are attributed to different contributions from electronically excited potential energy surfaces, such as they originate from the open-electronic shell reactants.
The heat of formation of gaseous PuO(2)2+ from relativistic density functional calculations.
Moskaleva, Lyudmila V; Matveev, Alexei V; Dengler, Joachim; Rösch, Notker
2006-08-28
Using a set of model reactions, we estimated the heat of formation of gaseous PuO2(2+) from quantum-chemical reaction enthalpies and experimental heats of formation of reference species. To this end, we carried out relativistic density functional calculations on the molecules PuO(2)2+, PuO2, PuF6, and PuF4. We used a revised variant (PBEN) of the Perdew-Burke-Ernzerhof gradient-corrected exchange-correlation functional, and we accounted for spin-orbit interaction in a self-consistent fashion. As open-shell Pu species with two or more unpaired 5f electrons are involved, spin-orbit interaction significantly affects the energies of the model reactions. Our theoretical estimate for the heat of formation DeltafH degree 0(PuO2(2+),g), 418+/-15 kcal mol-1, evaluated using plutonium fluorides as references, is in good agreement with a recent experimental result, 413+/-16 kcal mol-1. The theoretical value connected to the experimental heat of formation of PuO2(g) has a notably higher uncertainty and therefore was not included in the final result.
Kasper, Joseph M; Lestrange, Patrick J; Stetina, Torin F; Li, Xiaosong
2018-04-10
X-ray absorption spectroscopy is a powerful technique to probe local electronic and nuclear structure. There has been extensive theoretical work modeling K-edge spectra from first principles. However, modeling L-edge spectra directly with density functional theory poses a unique challenge requiring further study. Spin-orbit coupling must be included in the model, and a noncollinear density functional theory is required. Using the real-time exact two-component method, we are able to variationally include one-electron spin-orbit coupling terms when calculating the absorption spectrum. The abilities of different basis sets and density functionals to model spectra for both closed- and open-shell systems are investigated using SiCl 4 and three transition metal complexes, TiCl 4 , CrO 2 Cl 2 , and [FeCl 6 ] 3- . Although we are working in the real-time framework, individual molecular orbital transitions can still be recovered by projecting the density onto the ground state molecular orbital space and separating contributions to the time evolving dipole moment.
The Explanation of the Pauli Exclusion Principle
NASA Astrophysics Data System (ADS)
Vasiliev, Victor; Moon, Russell
2006-11-01
Using the principles of the Vortex Theory, the construction of the alpha particle, and the theory that the nucleus is constructed out of alpha particles, the explanation of the Pauli Exclusion Principle is explained. If protons and electrons are connected to each other via fourth dimensional vortices, they spin in opposite directions. Since the alpha particle possesses two protons possessing opposite spins, their electrons also possess opposite spins. With a nucleus constructed out of alpha particles, all paired electrons in shells and sub-shells will spin in opposite directions. 1. Victor Vasiliev, Russell Moon. Controversy surrounding the Experiment conducted to prove the Vortex Theory, 2006 8th Annual Meeting of the Northwest Section, May 18-20, 2006, University of Puget Sound, Tacoma, Washington, USA, Abstract C1.00009. 2. Russell Moon. To the Photon Acceleration Effect, 2006 Texas Section APS/AAPT/SPS Joint Spring Meeting, Thursday--Saturday, March 23--25, 2006; San Angelo, Texas, Abstract: POS.00008. 3. Russell Moon, Fabian Calvo, Victor Vasiliev. The Neutral Pentaquark, 2006 APS March Meeting, March 13-17, Baltimore, MD, USA, Session Q1: GENERAL POSTER SESSION, Abstract Q1.00147.
Strong Electron Correlation in Photoionization of Spin-Orbit Doublets
NASA Astrophysics Data System (ADS)
Amusia, M. Ya.; Chernsheva, L. V.; Mnason, S. T.; Msezane, A. Z.; Radojevic, V.
2002-05-01
A new and explicitly many-body aspect of the "leveraging" of the spin-orbit interaction is demonstrated, spin-orbit activated interchannel coupling, which can significantly alter the photoionization cross section of a spin-orbit doublet. As an example, using a modified version of the Spin-Polarized Random-Phase-Approximation with Exchange methodology, a recently observed structure in the photoionization of Xe 3d(A. Kivimaki et al, Phys. Rev. A 63), 012716 (2000) has been explained both qualitatively and quantitatively. The structure is entirely due to this new spin-orbit activated interchannel coupling effect, which should be a general feature of inner-shell photoionization. This work was supported by NSF, NASA, DOE and ISTC.
NASA Astrophysics Data System (ADS)
Parfrey, Kyle; Spitkovsky, Anatoly; Beloborodov, Andrei M.
2016-05-01
The interaction of a rotating star’s magnetic field with a surrounding plasma disk lies at the heart of many questions posed by neutron stars in X-ray binaries. We consider the opening of stellar magnetic flux due to differential rotation along field lines coupling the star and disk, using a simple model for the disk-opened flux, the torques exerted on the star by the magnetosphere, and the power extracted by the electromagnetic wind. We examine the conditions under which the system enters an equilibrium spin state, in which the accretion torque is instantaneously balanced by the pulsar wind torque alone. For magnetic moments, spin frequencies, and accretion rates relevant to accreting millisecond pulsars, the spin-down torque from this enhanced pulsar wind can be substantially larger than that predicted by existing models of the disk-magnetosphere interaction, and is in principle capable of maintaining spin equilibrium at frequencies less than 1 kHz. We speculate that this mechanism may account for the non-detection of frequency increases during outbursts of SAX J1808.4-3658 and XTE J1814-338, and may be generally responsible for preventing spin-up to sub-millisecond periods. If the pulsar wind is collimated by the surrounding environment, the resulting jet can satisfy the power requirements of the highly relativistic outflows from Cir X-1 and Sco X-1. In this framework, the jet power scales relatively weakly with accretion rate, {L}{{j}}\\propto {\\dot{M}}4/7, and would be suppressed at high accretion rates only if the stellar magnetic moment is sufficiently low.
Properties of Cerium Hydroxides from Matrix Infrared Spectra and Electronic Structure Calculations.
Fang, Zongtang; Thanthiriwatte, K Sahan; Dixon, David A; Andrews, Lester; Wang, Xuefeng
2016-02-15
Reactions of laser ablated cerium atoms with hydrogen peroxide or hydrogen and oxygen mixtures diluted in argon and condensed at 4 K produced the Ce(OH)3 and Ce(OH)2 molecules and Ce(OH)2(+) cation as major products. Additional minor products were identified as the Ce(OH)4, HCeO, and OCeOH molecules. These new species were identified from their matrix infrared spectra with D2O2, D2, and (18)O2 isotopic substitution and correlating observed frequencies with values calculated by density functional theory. We find that the amounts of Ce(OH)3 and of the Ce(OH)2(+) cation increase on UV (λ > 220 nm) photolysis, while Ce(OH)2, Ce(OH)4, and HCeO are photosensitive. The observed major species for Ce are in the +III or +II oxidation state, and the minor product, Ce(OH)4, is in the +IV oxidation state. The calculations for the vibrational frequencies with the B3LYP functional agree well with the experiment. The NBO analysis shows significant backbonding to the metal 4f and 5d orbitals for the closed shell species. Most open shell species have the excess spin in the 4f with paired spin in the 5d due to backbonding. The heats of formation of the observed species were derived from the available data from experiment and the calculated reaction energies. The major products in this study are different from similar reactions for Th where the tetrahydroxide was the major species.
Study of near-stability nuclei populated as fission fragments in heavy-ion fusion reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fotiadis, Nikolaos; Nelson, Ronald O; Devlin, Matthew
2010-01-01
Examples are presented to illustrate the power of prompt {gamma}-ray spectroscopy of fission fragments from compound nuclei with A {approx} 200 formed in fusion-evaporation reactions in experiments using the Gammasphere Ge-detector array. Complementary methods, such as Coulomb excitation and deep-inelastic processes, are also discussed. In other cases (n, xn{gamma}) reactions on stable isotopes have been used to establish neutron excitation functions for {gamma}-rays using a pulsed 'white'-neutron source, coupled to a high-energy-resolution germanium-detector array. The excitation functions can unambiguously assign {gamma}-rays to a specific reaction product. Results from all these methods bridge the gaps in the systematics of high-spin statesmore » between the neutron-deficient and neutron-rich nuclei. Results near shell closures should motivate new shell model calculations.« less
Nuclear magnetic resonance in high magnetic field: Application to condensed matter physics
NASA Astrophysics Data System (ADS)
Berthier, Claude; Horvatić, Mladen; Julien, Marc-Henri; Mayaffre, Hadrien; Krämer, Steffen
2017-05-01
In this review, we describe the potentialities offered by the nuclear magnetic resonance (NMR) technique to explore at a microscopic level new quantum states of condensed matter induced by high magnetic fields. We focus on experiments realised in resistive (up to 34 T) or hybrid (up to 45 T) magnets, which open a large access to these quantum phase transitions. After an introduction on NMR observables, we consider several topics: quantum spin systems (spin-Peierls transition, spin ladders, spin nematic phases, magnetisation plateaus, and Bose-Einstein condensation of triplet excitations), the field-induced charge density wave (CDW) in high-Tc superconductors, and exotic superconductivity including the Fulde-Ferrel-Larkin-Ovchinnikov superconducting state and the field-induced superconductivity due to the Jaccarino-Peter mechanism.
NASA Astrophysics Data System (ADS)
Tavan, Paul; Schulten, Klaus
1980-03-01
A new, efficient algorithm for the evaluation of the matrix elements of the CI Hamiltonian in the basis of spin-coupled ν-fold excitations (over orthonormal orbitals) is developed for even electron systems. For this purpose we construct an orthonormal, spin-adapted CI basis in the framework of second quantization. As a prerequisite, spin and space parts of the fermion operators have to be separated; this makes it possible to introduce the representation theory of the permutation group. The ν-fold excitation operators are Serber spin-coupled products of particle-hole excitations. This construction is also designed for CI calculations from multireference (open-shell) states. The 2N-electron Hamiltonian is expanded in terms of spin-coupled particle-hole operators which map any ν-fold excitation on ν-, and ν±1-, and ν±2-fold excitations. For the calculation of the CI matrix this leaves one with only the evaluation of overlap matrix elements between spin-coupled excitations. This leads to a set of ten general matrix element formulas which contain Serber representation matrices of the permutation group Sν×Sν as parameters. Because of the Serber structure of the CI basis these group-theoretical parameters are kept to a minimum such that they can be stored readily in the central memory of a computer for ν?4 and even for higher excitations. As the computational effort required to obtain the CI matrix elements from the general formulas is very small, the algorithm presented appears to constitute for even electron systems a promising alternative to existing CI methods for multiply excited configurations, e.g., the unitary group approach. Our method makes possible the adaptation of spatial symmetries and the selection of any subset of configurations. The algorithm has been implemented in a computer program and tested extensively for ν?4 and singlet ground and excited states.
High coercivity in large exchange-bias Co/CoO-MgO nano-granular films
NASA Astrophysics Data System (ADS)
Ge, Chuan-Nan; Wan, Xian-Gang; Eric, Pellegrin; Hu, Zhi-Wei; Wen-I, Liang; Michael, Bruns; Zou, Wen-Qin; Du, You-Wei
2015-03-01
We present a detailed study on the magnetic coercivity of Co/CoO-MgO core-shell systems, which exhibits a large exchange bias due to an increase of the uncompensated spin density at the interface between the CoO shell and the metallic Co core by replacing Co by Mg within the CoO shell. We find a large magnetic coercivity of 7120 Oe around the electrical percolation threshold of the Co/CoO core/shell particles, while samples with a smaller or larger Co metal volume fraction show a considerably smaller coercivity. Thus, this study may lead to a route to improving the magnetic properties of artificial magnetic material in view of potential applications. Project supported by the National Basic Research Program of China (Grant No. 2012CB932304), the National Natural Science Foundation of China (Grant Nos. U1232210, 91122035, 11174124, and 11374137), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 14KJB140003), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
NASA Astrophysics Data System (ADS)
Ang, Yee Sin; Ang, Lay Kee; Zhang, Chao; Ma, Zhongshui
In graphene-magnetic-insulator hybrid structure such as graphene-Europium-oxide, proximity induced exchange interaction opens up a spin-dependent bandgap and spin splitting in the Dirac band. We show that such band topology allows pure crossed Andreev reflection to be generated exclusively without the parasitic local Andreev reflection and elastic cotunnelling over a wide range of bias and Fermi levels. We model the charge transport in an EuO-graphene/superconductor/EuO-graphene three-terminal device and found that the pure non-local conductance exhibits rapid on/off switching characteristic with a minimal subthreshold swing of ~ 20 mV. Non-local conductance oscillation is observed when the Fermi levels in the superconducting lead is varied. The oscillatory behavior is directly related to the quasiparticle propagation in the superconducting lead and hence can be used as a tool to probe the subgap quasiparticle mode in superconducting graphene. The non-local current is 100% spin-polarized and is highly tunable in our proposed device. This opens up the possibility of highly tunable graphene-based spin transistor that operates purely in the non-local transport regime.
Terahertz spin current pulses controlled by magnetic heterostructures
NASA Astrophysics Data System (ADS)
Kampfrath, T.; Battiato, M.; Maldonado, P.; Eilers, G.; Nötzold, J.; Mährlein, S.; Zbarsky, V.; Freimuth, F.; Mokrousov, Y.; Blügel, S.; Wolf, M.; Radu, I.; Oppeneer, P. M.; Münzenberg, M.
2013-04-01
In spin-based electronics, information is encoded by the spin state of electron bunches. Processing this information requires the controlled transport of spin angular momentum through a solid, preferably at frequencies reaching the so far unexplored terahertz regime. Here, we demonstrate, by experiment and theory, that the temporal shape of femtosecond spin current bursts can be manipulated by using specifically designed magnetic heterostructures. A laser pulse is used to drive spins from a ferromagnetic iron thin film into a non-magnetic cap layer that has either low (ruthenium) or high (gold) electron mobility. The resulting transient spin current is detected by means of an ultrafast, contactless amperemeter based on the inverse spin Hall effect, which converts the spin flow into a terahertz electromagnetic pulse. We find that the ruthenium cap layer yields a considerably longer spin current pulse because electrons are injected into ruthenium d states, which have a much lower mobility than gold sp states. Thus, spin current pulses and the resulting terahertz transients can be shaped by tailoring magnetic heterostructures, which opens the door to engineering high-speed spintronic devices and, potentially, broadband terahertz emitters.
Yang, X F; Wraith, C; Xie, L; Babcock, C; Billowes, J; Bissell, M L; Blaum, K; Cheal, B; Flanagan, K T; Garcia Ruiz, R F; Gins, W; Gorges, C; Grob, L K; Heylen, H; Kaufmann, S; Kowalska, M; Kraemer, J; Malbrunot-Ettenauer, S; Neugart, R; Neyens, G; Nörtershäuser, W; Papuga, J; Sánchez, R; Yordanov, D T
2016-05-06
Collinear laser spectroscopy is performed on the _{30}^{79}Zn_{49} isotope at ISOLDE-CERN. The existence of a long-lived isomer with a few hundred milliseconds half-life is confirmed, and the nuclear spins and moments of the ground and isomeric states in ^{79}Zn as well as the isomer shift are measured. From the observed hyperfine structures, spins I=9/2 and I=1/2 are firmly assigned to the ground and isomeric states. The magnetic moment μ (^{79}Zn)=-1.1866(10)μ_{N}, confirms the spin-parity 9/2^{+} with a νg_{9/2}^{-1} shell-model configuration, in excellent agreement with the prediction from large scale shell-model theories. The magnetic moment μ (^{79m}Zn)=-1.0180(12)μ_{N} supports a positive parity for the isomer, with a wave function dominated by a 2h-1p neutron excitation across the N=50 shell gap. The large isomer shift reveals an increase of the intruder isomer mean square charge radius with respect to that of the ground state, δ⟨r_{c}^{2}⟩^{79,79m}=+0.204(6) fm^{2}, providing first evidence of shape coexistence.
Assessing open-system behavior of 14C in terrestrial gastropod shells
Rech, Jason A.; Pigati, Jeffrey S.; Lehmann, Sophie B.; McGimpsey, Chelsea N.; Grimley, David A.; Nekola, Jeffrey C.
2011-01-01
In order to assess open-system behavior of radiocarbon in fossil gastropod shells, we measured the 14C activity on 10 aliquots of shell material recovered from Illinoian (~190-130 ka) and pre-Illinoian (~800 ka) loess and lacustrine deposits in the Midwestern USA. Eight of the 10 aliquots yielded measurable 14C activities that ranged from 0.25 to 0.53 percent modern carbon (pMC), corresponding to apparent 14C ages between 48.2 and 42.1 ka. This small level of open-system behavior is common in many materials that are used for 14C dating (e.g. charcoal), and typically sets the upper practical limit of the technique. Two aliquots of gastropod shells from the Illinoian-aged Petersburg Silt (Petersburg Section) in central Illinois, USA, however, yielded elevated 14C activities of 1.26 and 1.71 pMC, which correspond to apparent 14C ages of 35.1 and 32.7 ka. Together, these results suggest that while many fossil gastropods shells may not suffer from major (>1%) open-system problems, this is not always the case. We then examined the mineralogy, trace element chemistry, and physical characteristics of a suite of fossil and modern gastropod shells to identify the source of contamination in the Petersburg shells and assess the effectiveness of these screening techniques at identifying samples suitable for 14C dating. Mineralogical (XRD) and trace element analyses were inconclusive, which suggests that these techniques are not suitable for assessing open-system behavior in terrestrial gastropod shells. Analysis with scanning electron microscopy (SEM), however, identified secondary mineralization (calcium carbonate) primarily within the inner whorls of the Petersburg shells. This indicates that SEM examination, or possibly standard microscope examination, of the interior of gastropod shells should be used when selecting fossil gastropod shells for 14C dating.
Assessing open-system behavior of 14C in terrestrial gastropod shells
Rech, J.A.; Pigati, J.S.; Lehmann, S.B.; McGimpsey, C.N.; Grimley, D.A.; Nekola, J.C.
2011-01-01
In order to assess open-system behavior of radiocarbon in fossil gastropod shells, we measured the 14C activity on 10 aliquots of shell material recovered from Illinoian (~190-130 ka) and pre-Illinoian (~800 ka) loess and lacustrine deposits in the Midwestern USA. Eight of the 10 aliquots yielded measurable 14C activities that ranged from 0.25 to 0.53 percent modern carbon (pMC), corresponding to apparent 14C ages between 48.2 and 42.1 ka. This small level of open-system behavior is common in many materials that are used for 14C dating (e.g. charcoal), and typically sets the upper practical limit of the technique. Two aliquots of gastropod shells from the Illinoian-aged Petersburg Silt (Petersburg Section) in central Illinois, USA, however, yielded elevated 14C activities of 1.26 and 1.71 pMC, which correspond to apparent 14C ages of 35.1 and 32.7 ka. Together, these results suggest that while many fossil gastropods shells may not suffer from major (>1%) open-system problems, this is not always the case. We then examined the mineralogy, trace element chemistry, and physical characteristics of a suite of fossil and modern gastropod shells to identify the source of contamination in the Petersburg shells and assess the effectiveness of these screening techniques at identifying samples suitable for 14C dating. Mineralogical (XRD) and trace element analyses were inconclusive, which suggests that these techniques are not suitable for assessing open-system behavior in terrestrial gastropod shells. Analysis with scanning electron microscopy (SEM), however, identified secondary mineralization (calcium carbonate) primarily within the inner whorls of the Petersburg shells. This indicates that SEM examination, or possibly standard microscope examination, of the interior of gastropod shells should be used when selecting fossil gastropod shells for 14C dating. ?? 2011 by the Arizona Board of Regents on behalf of the University of Arizona.
High temperature spin-glass-like transition in La0.67Sr0.33MnO3 nanofibers near the Curie point.
Lu, Ruie; Yang, Sen; Li, Yitong; Chen, Kaiyun; Jiang, Yun; Fu, Bi; Zhang, Yin; Zhou, Chao; Xu, Minwei; Zhou, Xuan
2017-06-28
The glassy transition of superparamagnetic (SPM) (r < r 0 ) nanoparticle systems usually occurs at a very low temperature that greatly limits its application to high temperatures. In this work, we report a spin-glass-like (SGL) behavior near the Curie point (T C ), i.e., T 0 = 330 K, in La 0.67 Sr 0.33 MnO 3 (LSMO) nanofibers (NFs) composed of nanoparticles beyond the SPM size (r ≫ r 0 ), resulting in a significant increase of the glass transition temperature. This SGL transition near the T C of bulk LSMO can be explained to be the scenario of locally ordered clusters embedded in a disordered host, in which the assembly of nanoparticles has a magnetic core-shell model driven by surface spin glass. The presence of a surface spin glass of nanoparticles was proved by the Almeida-Thouless line δT f ∝ H 2/3 , exchange bias, and reduced saturation magnetization of the NF system. Composite dynamics were found - that is, both the SPM and the super-spin-glass (SSG) behavior are found in such an NF system. The bifurcation of the zero-field-cooled (ZFC) and field-cooled (FC) magnetization vs. temperature curves at the ZFC peak, and the flatness of FC magnetization involve SSG, while the frequency-dependent ac susceptibility anomaly follows the Vogel-Fulcher law that implies weak dipole interactions of the SPM model. This finding can help us to find a way to search for high temperature spin glass materials.
Spectroscopy of 70Kr and isospin symmetry in the T =1 f p g shell nuclei
NASA Astrophysics Data System (ADS)
Debenham, D. M.; Bentley, M. A.; Davies, P. J.; Haylett, T.; Jenkins, D. G.; Joshi, P.; Sinclair, L. F.; Wadsworth, R.; Ruotsalainen, P.; Henderson, J.; Kaneko, K.; Auranen, K.; Badran, H.; Grahn, T.; Greenlees, P.; HerzaáÅ, A.; Jakobsson, U.; Konki, J.; Julin, R.; Juutinen, S.; Leino, M.; Sorri, J.; Pakarinen, J.; Papadakis, P.; Peura, P.; Partanen, J.; Rahkila, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Stolze, S.; Uusitalo, J.; David, H. M.; de Angelis, G.; Korten, W.; Lotay, G.; Mallaburn, M.; Sahin, E.
2016-11-01
The recoil-β tagging technique has been used in conjunction with the 40Ca(32S,2 n ) reaction at a beam energy of 88 MeV to identify transitions associated with the decay of the 2+ and, tentatively, 4+ states in the nucleus 70Kr. These data are used, along with previously published data, to examine the triplet energy differences (TED) for the mass 70 isobars. The experimental TED values are compared with shell model calculations, performed with the JUN45 interaction in the f p g model space, that include a J =0 isospin nonconserving (INC) interaction with an isotensor strength of 100 keV. The agreement is found to be very good up to spin 4 and supports the expectation for analog states that all three nuclei have the same oblate shape at low-spin. The A =70 results are compared with the experimental and shell model predicted TED and mirror energy differences (MED) for the mass 66 and 74 systems. The comparisons clearly demonstrate the importance of the isotensor INC interaction in replicating the TED data in this region. Issues related to the observed MED values and their interpretation within the shell model are discussed.
SPIN EVOLUTION OF ACCRETING YOUNG STARS. I. EFFECT OF MAGNETIC STAR-DISK COUPLING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matt, Sean P.; Greene, Thomas P.; Pinzon, Giovanni
2010-05-10
We present a model for the rotational evolution of a young, solar mass star interacting with an accretion disk. The model incorporates a description of the angular momentum transfer between the star and the disk due to a magnetic connection, and includes changes in the star's mass and radius and a decreasing accretion rate. The model also includes, for the first time in a spin evolution model, the opening of the stellar magnetic field lines, as expected to arise from twisting via star-disk differential rotation. In order to isolate the effect that this has on the star-disk interaction torques, wemore » neglect the influence of torques that may arise from open field regions connected to the star or disk. For a range of magnetic field strengths, accretion rates, and initial spin rates, we compute the stellar spin rates of pre-main-sequence stars as they evolve on the Hayashi track to an age of 3 Myr. How much the field opening affects the spin depends on the strength of the coupling of the magnetic field to the disk. For the relatively strong coupling (i.e., high magnetic Reynolds number) expected in real systems, all models predict spin periods of less than {approx}3 days, in the age range of 1-3 Myr. Furthermore, these systems typically do not reach an equilibrium spin rate within 3 Myr, so that the spin at any given time depends upon the choice of initial spin rate. This corroborates earlier suggestions that, in order to explain the full range of observed rotation periods of approximately 1-10 days, additional processes, such as the angular momentum loss from powerful stellar winds, are necessary.« less
σ-SCF: A direct energy-targeting method to mean-field excited states
NASA Astrophysics Data System (ADS)
Ye, Hong-Zhou; Welborn, Matthew; Ricke, Nathan D.; Van Voorhis, Troy
2017-12-01
The mean-field solutions of electronic excited states are much less accessible than ground state (e.g., Hartree-Fock) solutions. Energy-based optimization methods for excited states, like Δ-SCF (self-consistent field), tend to fall into the lowest solution consistent with a given symmetry—a problem known as "variational collapse." In this work, we combine the ideas of direct energy-targeting and variance-based optimization in order to describe excited states at the mean-field level. The resulting method, σ-SCF, has several advantages. First, it allows one to target any desired excited state by specifying a single parameter: a guess of the energy of that state. It can therefore, in principle, find all excited states. Second, it avoids variational collapse by using a variance-based, unconstrained local minimization. As a consequence, all states—ground or excited—are treated on an equal footing. Third, it provides an alternate approach to locate Δ-SCF solutions that are otherwise hardly accessible by the usual non-aufbau configuration initial guess. We present results for this new method for small atoms (He, Be) and molecules (H2, HF). We find that σ-SCF is very effective at locating excited states, including individual, high energy excitations within a dense manifold of excited states. Like all single determinant methods, σ-SCF shows prominent spin-symmetry breaking for open shell states and our results suggest that this method could be further improved with spin projection.
σ-SCF: A direct energy-targeting method to mean-field excited states.
Ye, Hong-Zhou; Welborn, Matthew; Ricke, Nathan D; Van Voorhis, Troy
2017-12-07
The mean-field solutions of electronic excited states are much less accessible than ground state (e.g., Hartree-Fock) solutions. Energy-based optimization methods for excited states, like Δ-SCF (self-consistent field), tend to fall into the lowest solution consistent with a given symmetry-a problem known as "variational collapse." In this work, we combine the ideas of direct energy-targeting and variance-based optimization in order to describe excited states at the mean-field level. The resulting method, σ-SCF, has several advantages. First, it allows one to target any desired excited state by specifying a single parameter: a guess of the energy of that state. It can therefore, in principle, find all excited states. Second, it avoids variational collapse by using a variance-based, unconstrained local minimization. As a consequence, all states-ground or excited-are treated on an equal footing. Third, it provides an alternate approach to locate Δ-SCF solutions that are otherwise hardly accessible by the usual non-aufbau configuration initial guess. We present results for this new method for small atoms (He, Be) and molecules (H 2 , HF). We find that σ-SCF is very effective at locating excited states, including individual, high energy excitations within a dense manifold of excited states. Like all single determinant methods, σ-SCF shows prominent spin-symmetry breaking for open shell states and our results suggest that this method could be further improved with spin projection.
Chai, Jianfang; Zhu, Hongping; Stückl, A Claudia; Roesky, Herbert W; Magull, Jörg; Bencini, Alessandro; Caneschi, Andrea; Gatteschi, Dante
2005-06-29
This paper reports on the synthesis, X-ray structure, magnetic properties, and DFT calculations of [[HC(CMeNAr)2]Mn]2 (Ar = 2,6-iPr2C6H3) (2), the first complex with three-coordinate manganese(I). Reduction of the iodide [[HC(CMeNAr)2]Mn(mu-I)]2 (1) with Na/K in toluene afforded 2 as dark-red crystals. The molecule of 2 contains a Mn2(2+) core with a Mn-Mn bond. The magnetic investigations show a rare example of a high-spin manganese(I) complex with an antiferromagnetic interaction between the two Mn(I) centers. The DFT calculations indicate a strong s-s interaction of the two Mn(I) ions with the open shell configuration (3d54s1). This suggests that the magnetic behavior of 2 could be correctly described as the coupling between two S1 = S2 = 5/2 spin centers. The Mn-Mn bond energy is estimated at 44 kcal mol(-1) by first principle calculations with the B3LYP functional. The further oxidative reaction of 2 with KMnO4 or O2 resulted in the formation of manganese(III) oxide [[HC(CMeNAr)2]Mn(mu-O)]2 (3). Compound 3 shows an antiferromagnetic coupling between the two oxo-bridged manganese(III) centers by magnetic measurements.
Block copolymer hollow fiber membranes with catalytic activity and pH-response.
Hilke, Roland; Pradeep, Neelakanda; Madhavan, Poornima; Vainio, Ulla; Behzad, Ali Reza; Sougrat, Rachid; Nunes, Suzana P; Peinemann, Klaus-Viktor
2013-08-14
We fabricated block copolymer hollow fiber membranes with self-assembled, shell-side, uniform pore structures. The fibers in these membranes combined pores able to respond to pH and acting as chemical gates that opened above pH 4, and catalytic activity, achieved by the incorporation of gold nanoparticles. We used a dry/wet spinning process to produce the asymmetric hollow fibers and determined the conditions under which the hollow fibers were optimized to create the desired pore morphology and the necessary mechanical stability. To induce ordered micelle assembly in the doped solution, we identified an ideal solvent mixture as confirmed by small-angle X-ray scattering. We then reduced p-nitrophenol with a gold-loaded fiber to confirm the catalytic performance of the membranes.
Graphene-based half-metal and spin-semiconductor for spintronic applications.
Qi, Jingshan; Chen, Xiaofang; Hu, Kaige; Feng, Ji
2016-03-31
In this letter we propose a strategy to make graphene become a half-metal or spin-semiconductor by combining the magnetic proximity effects and sublattice symmetry breaking in graphone/graphene and graphone/graphene/BN heterostructures. Exchange interactions lift the spin degeneracy and sublattice symmetry breaking opens a band gap in graphene. More interestingly, the gap opening depends on the spin direction and the competition between the sublattice asymmetry and exchange field determines the system is a half-metal or a spin-semiconductor. By first-principles calculations and a low-energy effective model analysis, we elucidate the underlying physical mechanism of spin-dependent gap opening and spin degeneracy splitting. This offers an alternative practical platform for graphene-based spintronics.
NASA Astrophysics Data System (ADS)
Pisane, K. L.; Singh, Sobhit; Seehra, M. S.
2017-05-01
In magnetic nanoparticles (NPs), the observed increase in the effective magnetic anisotropy Keff with the decrease in particle size D is often interpreted, sometimes unsuccessfully, using the equation Keff = Kb + (6KS/D), where Kb is the bulk-like anisotropy of the core spins and KS is the anisotropy of spins in the surface layer. Here, we test the validity of this relation in γ-Fe2O3 NPs for sizes D from 15 nm to 2.5 nm. The samples include oleic acid-coated NPs with D = 2.5, 3.4, 6.3, and 7.0 nm investigated here, with results on 14 other sizes taken from literature. Keff is determined from the analysis of the frequency dependence of the blocking temperature TB after considering the effects of interparticle interactions on TB. For the γ-Fe2O3 NPs with D < 5 nm, an unusual enhancement of Keff with decreasing D, well above the magnitudes predicted by the above equation, is observed. Instead the variation of Keff vs. D is best described by an extension of the above equation by including Ksh term from spins in a shell of thickness d. Based on this core-shell-surface layer model, the data are fit to the equation Keff = Kb + (6KS/D) + Ksh{[1-(2d/D)]-3-1} with Kb = 1.9 × 105 ergs/cm3, KS = 0.035 ergs/cm2, and Ksh = 1.057 × 104 ergs/cm3 as the contribution of spins in the shell of thickness d = 1.1 nm. Significance of this result is discussed.
Hertelendy, N.A.
1987-04-22
A pressure resistant seal for a metallic container is formed between a cylindrical portion having one end open and a cap which seals the open end of the shell. The cap is in the form of a frusto-conical flange which is inserted narrow end first into the open end of the shell and the container is sealed by means of a capping tool which pulls the flange against a die, deforming the flange and forcing the edge of the flange into the wall of the shell. 6 figs.
Hertelendy, Nicholas A [Kennewick, WA
1989-01-01
A pressure resistant seal for a metallic container is formed between a cylindrical portion having one end open and a cap which seals the open end of the shell. The cap is in the form of a frusto-conical flange which is inserted narrow end first into the open end of the shell and the container is sealed by means of a capping tool which pulls the flange against a die, deforming the flange and forcing the edge of the flange into the wall of the shell.
Hertelendy, Nicholas A.
1989-04-04
A pressure resistant seal for a metallic container is formed between a cylindrical portion having one end open and a cap which seals the open end of the shell. The cap is in the form of a frusto-conical flange which is inserted narrow end first into the open end of the shell and the container is sealed by means of a capping tool which pulls the flange against a die, deforming the flange and forcing the edge of the flange into the wall of the shell.
Giant spin splitting in optically active ZnMnTe/ZnMgTe core/shell nanowires.
Wojnar, Piotr; Janik, Elżbieta; Baczewski, Lech T; Kret, Sławomir; Dynowska, Elżbieta; Wojciechowski, Tomasz; Suffczyński, Jan; Papierska, Joanna; Kossacki, Piotr; Karczewski, Grzegorz; Kossut, Jacek; Wojtowicz, Tomasz
2012-07-11
An enhancement of the Zeeman splitting as a result of the incorporation of paramagnetic Mn ions in ZnMnTe/ZnMgTe core/shell nanowires is reported. The studied structures are grown by gold-catalyst assisted molecular beam epitaxy. The near band edge emission of these structures, conspicuously absent in the case of uncoated ZnMnTe nanowires, is activated by the presence of ZnMgTe coating. Giant Zeeman splitting of this emission is studied in ensembles of nanowires with various average Mn concentrations of the order of a few percent, as well as in individual nanowires. Thus, we show convincingly that a strong spin sp-d coupling is indeed present in these structures.
Symmetry operators and decoupled equations for linear fields on black hole spacetimes
NASA Astrophysics Data System (ADS)
Araneda, Bernardo
2017-02-01
In the class of vacuum Petrov type D spacetimes with cosmological constant, which includes the Kerr-(A)dS black hole as a particular case, we find a set of four-dimensional operators that, when composed off shell with the Dirac, Maxwell and linearized gravity equations, give a system of equations for spin weighted scalars associated with the linear fields, that decouple on shell. Using these operator relations we give compact reconstruction formulae for solutions of the original spinor and tensor field equations in terms of solutions of the decoupled scalar equations. We also analyze the role of Killing spinors and Killing-Yano tensors in the spin weight zero equations and, in the case of spherical symmetry, we compare our four-dimensional formulation with the standard 2 + 2 decomposition and particularize to the Schwarzschild-(A)dS black hole. Our results uncover a pattern that generalizes a number of previous results on Teukolsky-like equations and Debye potentials for higher spin fields.
Electron Density Distribution Changes of Magnesiowüstite With Pressure
NASA Astrophysics Data System (ADS)
Diamond, M. R.; Popov, D.; Shen, G.; Jeanloz, R.
2017-12-01
Magnesiowüstite is one of the dominant minerals in the earth's lower mantle; its density and elasticity, substantially altered by its spin crossover, have direct consequence to interpreting deep-earth geophysical data. High-resolution single-crystal x-ray diffraction data can portray the 3-dimensional distribution of electron density through the Fourier transform of measured form factors. Here we present experimentally measured changes in electron density distribution of single-crystal (Mg.85,Fe.15)O as it goes through its iron(II) high-spin to low-spin electronic transition between about 40 and 60 GPa [Lin and Tsuchiya, 2008], in a diamond-anvil cell. As (Mg,Fe)O undergoes a pressure induced spin crossover (from high spin at low pressure to low spin at high pressure) due to overlap of its eg orbitals, the t2g orbitals become more pronounced to due a higher population of electrons, while the eg orbitals diminish. The spin splitting energy becomes increasingly unfavorable compared to the spin orbital pairing energy. By looking at the population of electrons at different directions in real space, we directly observe these changes in orbital occupation leading up to and during the spin crossover. Since high-Mg magnesiowüstite has a high symmetry structure at these pressure conditions, detecting relative changes in electron density distribution (comparing subsequent pressure steps) is feasible by collecting high resolution data offered by high-energy X rays and wide opening-angle diamond-anvil cells.
Structure of high-resolution K β1 ,3 x-ray emission spectra for the elements from Ca to Ge
NASA Astrophysics Data System (ADS)
Ito, Y.; Tochio, T.; Yamashita, M.; Fukushima, S.; Vlaicu, A. M.; Syrocki, Ł.; Słabkowska, K.; Weder, E.; Polasik, M.; Sawicka, K.; Indelicato, P.; Marques, J. P.; Sampaio, J. M.; Guerra, M.; Santos, J. P.; Parente, F.
2018-05-01
The K β x-ray spectra of the elements from Ca to Ge have been systematically investigated using a high-resolution antiparallel double-crystal x-ray spectrometer. Each K β1 ,3 natural linewidth has been corrected using the instrumental function of this type of x-ray spectrometer, and the spin doublet energies have been obtained from the peak position values in K β1 ,3 x-ray spectra. For all studied elements the corrected K β1 x-ray lines FWHM increase linearly as a function of Z . However, for K β3 x-ray lines this dependence is generally not linear in the case of 3 d elements but increases from Sc to Co elements. It has been found that the contributions of satellite lines are considered to be [K M ] shake processes. Our theoretically predicted synthetic spectra of Ca, Mn, Cu, and Zn are in very good agreement with our high-resolution measurements, except in the case of Mn, due to the open-shell valence configuration effect (more than 7000 transitions for diagram lines and more than 100 000 transitions for satellite lines) and the influence of the complicated structure of the metallic Mn.
Experimental investigation of mode I fracture for brittle tube-shaped particles
NASA Astrophysics Data System (ADS)
Stasiak, Marta; Combe, Gaël; Desrues, Jacques; Richefeu, Vincent; Villard, Pascal; Armand, Gilles; Zghondi, Jad
2017-06-01
We focus herein on the mechanical behavior of highly crushable grains. The object of our interest, named shell, is a hollow cylinder grain with ring cross-section, made of baked clay. The objective is to model the fragmentation of such shells, by means of discrete element (DE) approach. To this end, fracture modes I (opening fracture) and II (in-plane shear fracture) have to be investigated experimentally. This paper is essentially dedicated to mode I fracture. Therefore, a campaign of Brazilian-like compression tests, that result in crack opening, has been performed. The distribution of the occurrence of tensile strength is shown to obey a Weibull distribution for the studied shells, and Weibull's modulus was quantified. Finally, an estimate of the numerical/physical parameters required in a DE model (local strength), is proposed on the basis of the energy required to fracture through a given surface in mode I or II.
High-spin terminating states in the N = 88 Ho 155 and Er 156 isotones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rees, J. M.; Paul, E. S.; Simpson, J.
2015-05-01
The Sn-124(Cl-37, 6n gamma) fusion-evaporation reaction at a bombarding energy of 180 MeV has been used to significantly extend the excitation level scheme of Ho-155(67)88. The collective rotational behavior of this nucleus breaks down above spin I similar to 30 and a fully aligned noncollective (band terminating) state has been identified at I-pi = 79/2(-). Comparison with cranked Nilsson-Strutinsky calculations also provides evidence for core-excited noncollective states at I-pi = 87/2(-) and (89/2(+)) involving particle-hole excitations across the Z = 64 shell gap. A similar core-excited state in Er-156(68)88 at I-pi = (46(+)) is also presented.
Distinguishing magnetic blocking and surface spin-glass freezing in nickel ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Nadeem, K.; Krenn, H.; Traussing, T.; Letofsky-Papst, I.
2011-01-01
Nickel ferrite nanoparticles dispersed in SiO2 matrix have been synthesized by sol-gel method. Structural analysis has been performed by using x-ray diffraction and transmission electron microscopy. Magnetic properties have been investigated by using superconducting quantum interference device magnetometry. In addition to the average blocking temperature peak at TB=120 K measured by a zero field cooled temperature scan of the dc susceptibility, an additional hump near 15 K is observed. Temperature dependent out-of-phase ac susceptibility shows the same features: one broad peak at high temperature and a second narrow peak at low temperature. The high temperature peak corresponds to magnetic blocking of individual nanoparticles, while the low temperature peak is attributed to surface spin-glass freezing which becomes dominant for decreasing particle diameter. To prove the dynamics of the spin (dis)order in both regimes of freezing and blocking, the frequency dependent ac susceptibility is investigated under a biasing dc field. The frequency shift in the "frozen" low-temperature ac susceptibility peak is fitted to a dynamic scaling law with a critical exponent zv=7.5, which indicates a spin-glass phase. Exchange bias is turned on at low temperature which signifies the existence of a strong core-shell interaction. Aging and memory effects are further unique fingerprints of a spin-glass freezing on the surface of isolated magnetic nanoparticles.
Tian, Xinlong; Tang, Haibo; Luo, Junming; ...
2017-04-25
A class of core–shell structured low-platinum catalysts with well-dispersed inexpensive titanium copper nitride nanoparticles as cores and atomic platinum layers as shells exhibiting high activity and stability for the oxygen reduction reaction is successfully developed. In using nitrided carbon nanotubes (NCNTs) as the support greatly improved the morphology and dispersion of the nitride nanoparticles, resulting in significant enhancement of the performance of the catalyst. The optimized catalyst, Ti 0.9Cu 0.1N@Pt/NCNTs, has a Pt mass activity 5 times higher than that of commercial Pt/C, comparable to that of core–shell catalysts with precious metal nanoparticles as the core, and much higher thanmore » that the latter if we take into account the mass activity of all platinum group metals. Furthermore, only a minimal loss of activity can be observed after 10000 potential cycles, demonstrating the catalyst’s high stability. After durability testing, atomic-scale elemental mapping confirmed that the core–shell structure of the catalyst remained intact. This approach may open a pathway for the design and preparation of high-performance inexpensive core–shell catalysts for a wide range of applications in energy conversion processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Xinlong; Tang, Haibo; Luo, Junming
A class of core–shell structured low-platinum catalysts with well-dispersed inexpensive titanium copper nitride nanoparticles as cores and atomic platinum layers as shells exhibiting high activity and stability for the oxygen reduction reaction is successfully developed. In using nitrided carbon nanotubes (NCNTs) as the support greatly improved the morphology and dispersion of the nitride nanoparticles, resulting in significant enhancement of the performance of the catalyst. The optimized catalyst, Ti 0.9Cu 0.1N@Pt/NCNTs, has a Pt mass activity 5 times higher than that of commercial Pt/C, comparable to that of core–shell catalysts with precious metal nanoparticles as the core, and much higher thanmore » that the latter if we take into account the mass activity of all platinum group metals. Furthermore, only a minimal loss of activity can be observed after 10000 potential cycles, demonstrating the catalyst’s high stability. After durability testing, atomic-scale elemental mapping confirmed that the core–shell structure of the catalyst remained intact. This approach may open a pathway for the design and preparation of high-performance inexpensive core–shell catalysts for a wide range of applications in energy conversion processes.« less
Fusion with highly spin polarized HD and D{sub 2}. Final report, January 2, 1992--June 30, 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honig, A.; Letzring, S.; Skupsky, S.
1993-12-17
Our experimental efforts over the past 5 years have been aimed at cazrying out ICF shots with spin-polarized 0 fuel. We successfully prepared polarized 0 in HD, and solved the problems of loading target shells with our carefully prepared isotopic -rnixt.l.l?-es, polarizing them so that the 0 polarization remains metastably frozen-in for about half a day, and carrying out the various cold transfer requirements at Syracuse, where the target is prepared, and at Rochester, where the cold target is inserted fusion chamber. Upon shooting the accurately positioned unpolarized high density cold target, no neutron yield was observed. Inspection inside themore » OMEGA tank after the shot indicated the absence of neutron yield was dus to mal-timing or insufficient retraction rate of OMEGA`S fast shroud mechanism, resulting in interception of at least 20 of the 24 laser beams by the faulty shroud. In spits of this, all alements of the complex experiment we originally undertook have been successfully demonstrated, and the cold retrieval concepts and methods we developed are being utilized on the ICF upgrades at Rochester and at Livermore. In addition to the solution of the interface problems, we obtained novel results on polymer shell characteristics at low temperatures, and continuation of these experiments is c = ently supported by KLUP. Extensive additional mappings were ca=ied out of nuclear spin relaxation rates of H and D in solid HD in the temperature-magnetic field rangs of 0.01 to 4.2K and 0 - 13 Tesla. New phenomena were discovered, such as association of impurity clustering with very low temperature motion, and inequality of the growth-rate and decay-rate of the magnetization.« less
High-order moments of spin-orbit energy in a multielectron configuration
NASA Astrophysics Data System (ADS)
Na, Xieyu; Poirier, M.
2016-07-01
In order to analyze the energy-level distribution in complex ions such as those found in warm dense plasmas, this paper provides values for high-order moments of the spin-orbit energy in a multielectron configuration. Using second-quantization results and standard angular algebra or fully analytical expressions, explicit values are given for moments up to 10th order for the spin-orbit energy. Two analytical methods are proposed, using the uncoupled or coupled orbital and spin angular momenta. The case of multiple open subshells is considered with the help of cumulants. The proposed expressions for spin-orbit energy moments are compared to numerical computations from Cowan's code and agree with them. The convergence of the Gram-Charlier expansion involving these spin-orbit moments is analyzed. While a spectrum with infinitely thin components cannot be adequately represented by such an expansion, a suitable convolution procedure ensures the convergence of the Gram-Charlier series provided high-order terms are accounted for. A corrected analytical formula for the third-order moment involving both spin-orbit and electron-electron interactions turns out to be in fair agreement with Cowan's numerical computations.
Sinha, Tanur; Ahmaruzzaman, M
2015-09-01
The common household material, egg shell of Anas platyrhynchos is utilized for the synthesis of Silver and Gold-Silver core shell nanoparticles using greener, environment friendly and economic way. The egg shell extracts were acting as a stabilizing and reducing agents. This method avoids the use of external reducing and stabilizing agents, templates and solvents. The effects of various reaction parameters, such as reaction temperature, concentration in the formation of nanoparticles have also been investigated. The compositional abundance of gelatin may be envisaged for the effective reductive as well as stabilizing potency. The mechanisms for the formation of NPs have also been presented. The synthesized Ag NPs formed were predominantly spherical in nature with an average size of particles in the range of 6-26 nm. While, Au-Ag core shell nanoparticles formed were spherical and oval shaped, within a narrow size spectrum of 9-18 nm. Both the Ag NPs Au-and Ag core shell nanoparticles showed characteristic Bragg's reflection planes of fcc structure and surface plasmon resonance at 430 nm and 365 nm, respectively. The NPs were utilized for the removal of toxic and hazardous dyes, such as Rose Bengal, Methyl Violet 6 B and Methylene Blue from aqueous phase. Approximately 98.2%, 98.4% and 97% degradations of Rose Bengal, Methyl Violet 6 B, and Methylene Blue were observed with Ag NPs, while the percentage degradation of these dyes was 97.3%, 97.6% and 96% with Au-Ag NPs, respectively. Therefore, the present study has opened up an innovative way for synthesizing Ag NPs and Au-Ag bimetallic nanostructures of different morphologies and sizes involving the utilization of egg shell extract. The high efficiency of the NPs as photocatalysts has opened a promising application for the removal of hazardous dyes from the industrial effluents. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Filatov, Michael; Cremer, Dieter
2005-09-01
It is demonstrated that the LYP correlation functional is not suited to be used for the calculation of electron spin resonance hyperfine structure (HFS) constants, nuclear magnetic resonance spin-spin coupling constants, magnetic, shieldings and other properties that require a balanced account of opposite- and equal-spin correlation, especially in the core region. In the case of the HFS constants of alkali atoms, LYP exaggerates opposite-spin correlation effects thus invoking too strong in-out correlation effects, an exaggerated spin-polarization pattern in the core shells of the atoms, and, consequently, too large HFS constants. Any correlation functional that provides a balanced account of opposite- and equal-spin correlation leads to improved HFS constants, which is proven by comparing results obtained with the LYP and the PW91 correlation functional. It is suggested that specific response properties are calculated with the PW91 rather than the LYP correlation functional.
Growth of juvenile Arctica islandica under experimental conditions
NASA Astrophysics Data System (ADS)
Witbaard, R.; Franken, R.; Visser, B.
1998-02-01
In two laboratory experiments, the effects of temperature and food availability on the growth of 10- to 23-mm high specimens of the bivalve Arctica islandica were estimated. Each experimental set-up consisted of 5 treatments in which either the food supply or the temperature differed. It was demonstrated that Arctica is able to grow at temperatures as low as 1°C. A tenfold increase of shell growth was observed at temperatures between 1° and 12°C. The greatest change in growth rate took place between 1° and 6°C. Average instantaneous shell growth varies between 0.0003 at 1°C to 0.0032/day at 12°C. The results suggest that temperature hardly affects the time spent in filtration, whereas particle density strongly influences that response. Starved animals at 9°C have their siphons open during only 12% of the time, whereas the siphons of optimally fed animals were open on average during 76% of the observations. Increased siphon activity corresponded to high shell and tissue growth. At 9°C, average shell growth at the optimum cell density of 20×106 cell/l was 3.1 mm corresponding to an instantaneous rate of 0.0026/day. An algal cell density ( Isochrysis galbana, Dunaliella marina) ranging between 5 and 7×106 cell/l is just enough to keep shells alive at 9°C. Carbon conversion efficiency at 9°C is estimated to vary between 11 and 14%.
Walton, David A; Randall, Bruce W; Le Lagadec, Marie D; Wallace, Helen M
2013-09-01
Kernel brown centres in macadamia are a defect causing internal discolouration of kernels. This study investigates the effect on the incidence of brown centres in raw kernel after maintaining high moisture content in macadamia nuts-in-shell stored at temperatures of 30°C, 35°C, 40°C and 45°C. Brown centres of raw kernel increased with nuts-in-shell storage time and temperature when high moisture content was maintained by sealing in polyethylene bags. Almost all kernels developed the defect when kept at high moisture content for 5 days at 45°C, and 44% developed brown centres after only 2 days of storage at high moisture content at 45°C. This contrasted with only 0.76% when stored for 2 days at 45°C but allowed to dry in open-mesh bags. At storage temperatures below 45°C, there were fewer brown centres, but there were still significant differences between those stored at high moisture content and those allowed to dry (P < 0.05). Maintenance of high moisture content during macadamia nuts-in-shell storage increases the incidence of brown centres in raw kernels and the defect increases with time and temperature. On-farm nuts-in-shell drying and storage practices should rapidly remove moisture to reduce losses. Ideally, nuts-in-shell should not be stored at high moisture content on-farm at temperatures over 30°C. © 2013 Society of Chemical Industry.
Zhang, Yu; Sun, Wenping; Rui, Xianhong; Li, Bing; Tan, Hui Teng; Guo, Guilue; Madhavi, Srinivasan; Zong, Yun; Yan, Qingyu
2015-08-12
Transition metal sulfides gain much attention as electrode materials for supercapacitors due to their rich redox chemistry and high electrical conductivity. Designing hierarchical nanostructures is an efficient approach to fully utilize merits of each component. In this work, amorphous MoS(2) is firstly demonstrated to show specific capacitance 1.6 times as that of the crystalline counterpart. Then, crystalline core@amorphous shell (Ni(3)S(4)@MoS(2)) is prepared by a facile one-pot process. The diameter of the core and the thickness of the shell can be independently tuned. Taking advantages of flexible protection of amorphous shell and high capacitance of the conductive core, Ni(3)S(4) @amorphous MoS(2) nanospheres are tested as supercapacitor electrodes, which exhibit high specific capacitance of 1440.9 F g(-1) at 2 A g(-1) and a good capacitance retention of 90.7% after 3000 cycles at 10 A g(-1). This design of crystalline core@amorphous shell architecture may open up new strategies for synthesizing promising electrode materials for supercapacitors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Raturi, Ashish; Choudhary, Sudhanshu
2016-11-01
First principles calculations of spin-dependent electronic transport properties of magnetic tunnel junction (MTJ) consisting of MgO adsorbed graphene nanosheet sandwiched between two CrO2 half-metallic ferromagnetic (HMF) electrodes is reported. MgO adsorption on graphene opens bandgap in graphene nanosheet which makes it more suitable for use as a tunnel barrier in MTJs. It was found that MgO adsorption suppresses transmission probabilities for spin-down channel in case of parallel configuration (PC) and also suppresses transmission in antiparallel configuration (APC) for both spin-up and spin-down channel. Tunnel magneto-resistance (TMR) of 100% is obtained at all bias voltages in MgO adsorbed graphene-based MTJ which is higher than that reported in pristine graphene-based MTJ. HMF electrodes were found suitable to achieve perfect spin filtration effect and high TMR. I-V characteristics for both parallel and antiparallel magnetization states of junction are calculated. High TMR suggests its usefulness in spin valves and other spintronics-based applications.
Recent trends in spin-resolved photoelectron spectroscopy
NASA Astrophysics Data System (ADS)
Okuda, Taichi
2017-12-01
Since the discovery of the Rashba effect on crystal surfaces and also the discovery of topological insulators, spin- and angle-resolved photoelectron spectroscopy (SARPES) has become more and more important, as the technique can measure directly the electronic band structure of materials with spin resolution. In the same way that the discovery of high-Tc superconductors promoted the development of high-resolution angle-resolved photoelectron spectroscopy, the discovery of this new class of materials has stimulated the development of new SARPES apparatus with new functions and higher resolution, such as spin vector analysis, ten times higher energy and angular resolution than conventional SARPES, multichannel spin detection, and so on. In addition, the utilization of vacuum ultra violet lasers also opens a pathway to the realization of novel SARPES measurements. In this review, such recent trends in SARPES techniques and measurements will be overviewed.
He, Dalong; Wang, Yao; Song, Silong; Liu, Song; Deng, Yuan
2017-12-27
Design of composites with ordered fillers arrangement results in anisotropic performances with greatly enhanced properties along a specific direction, which is a powerful tool to optimize physical properties of composites. Well-aligned core-shell SiC@SiO 2 whiskers in poly(vinylidene fluoride) (PVDF) matrix has been achieved via a modified spinning approach. Because of the high aspect ratio of SiC whiskers, strong anisotropy and significant enhancement in dielectric constant were observed with permittivity 854 along the parallel direction versus 71 along the perpendicular direction at 20 vol % SiC@SiO 2 loading, while little increase in dielectric loss was found due to the highly insulating SiO 2 shell. The anisotropic dielectric behavior of the composite is perfectly understood macroscopically to have originated from anisotropic intensity of interfacial polarization based on an equivalent circuit model of two parallel RC circuits connected in series. Furthermore, finite element simulations on the three-dimensional distribution of local electric field, polarization, and leakage current density in oriented SiC@SiO 2 /PVDF composites under different applied electrical field directions unambiguously revealed that aligned core-shell SiC@SiO 2 whiskers with a high aspect ratio significantly improved dielectric performances. Importantly, the thermal conductivity of the composite was synchronously enhanced over 7 times as compared to that of PVDF matrix along the parallel direction at 20 vol % SiC@SiO 2 whiskers loading. This study highlights an effective strategy to achieve excellent comprehensive properties for high-k dielectrics.
Exotic nuclear studies around and below A = 100
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nara Singh, B. S.; Wadsworth, R.; Brock, T. S.
2011-11-30
A RISING experiment with an aim to study exotic Cd nuclei was carried out at GSI-FRS facility. Some preliminary results from this experiment are presented here. In particular, the {beta} decay of {sup 96}Cd to {sup 96}Ag revealed the existence of a high spin isomer predicted a few decades ago. In this context, the structures of both these nuclei are discussed. Shell model calculations using the Gross-Frenkel interaction are used to interpret the results.
Second-Order Moller-Plesset Perturbation Theory for Molecular Dirac-Hartree-Fock Wave Functions
NASA Technical Reports Server (NTRS)
Dyall, Kenneth G.; Arnold, James O. (Technical Monitor)
1994-01-01
Moller-Plesset perturbation theory is developed to second order for a selection of Kramers restricted Dirac-Hartree-Fock closed and open-shell reference wave functions. The open-shell wave functions considered are limited to those with no more than two electrons in open shells, but include the case of a two-configuration SCF reference. Denominator shifts are included in the style of Davidson's OPT2 method. An implementation which uses unordered integrals with labels is presented, and results are given for a few test cases.
Intrinsic properties of high-spin band structures in triaxial nuclei
NASA Astrophysics Data System (ADS)
Jehangir, S.; Bhat, G. H.; Sheikh, J. A.; Palit, R.; Ganai, P. A.
2017-12-01
The band structures of 68,70Ge, 128,130,132,134Ce and 132,134,136,138Nd are investigated using the triaxial projected shell model (TPSM) approach. These nuclei depict forking of the ground-state band into several s-bands and in some cases, both the lowest two observed s-bands depict neutron or proton character. It was discussed in our earlier work that this anomalous behaviour can be explained by considering γ-bands based on two-quasiparticle configurations. As the parent band and the γ-band built on it have the same intrinsic structure, g-factors of the two bands are expected to be similar. In the present work, we have undertaken a detailed investigation of g-factors for the excited band structures of the studied nuclei and the available data for a few high-spin states are shown to be in fair agreement with the predicted values.
Density of high-spin states in38Ar and42Ca
NASA Astrophysics Data System (ADS)
Kern, Th.; Betz, P.; Bitterwolf, E.; Glatz, F.; Röpke, H.
1980-03-01
The γ-decay modes of38Ar levels with E x ≦11,630keV and of42Ca levels with E x ≦10,036keV have been studied using the35Cl( α, pγ) reaction at 16MeV and the39K( α, pγ) reaction at 15.14 MeV, respectively. In both nuclei the number of states with J≧6 exceeds fifty. Weak coupling calculations of the Bansal and French type reproduce the density of high-spin states. The success of the model implies that the excitations of up to four particles from the d 3/2 into the f 7/2 shell play a role in both nuclei. The structure of deformed states was found to be predominantly 4 p/s 6 h in38Ar and 4 p/s 2 h in42Ca, respectively.
Li, Guixin; Wu, Lin; Li, King F; Chen, Shumei; Schlickriede, Christian; Xu, Zhengji; Huang, Siya; Li, Wendi; Liu, Yanjun; Pun, Edwin Y B; Zentgraf, Thomas; Cheah, Kok W; Luo, Yu; Zhang, Shuang
2017-12-13
The spin and orbital angular momentum (SAM and OAM) of light is providing a new gateway toward high capacity and robust optical communications. While the generation of light with angular momentum is well studied in linear optics, its further integration into nonlinear optical devices will open new avenues for increasing the capacity of optical communications through additional information channels at new frequencies. However, it has been challenging to manipulate the both SAM and OAM of nonlinear signals in harmonic generation processes with conventional nonlinear materials. Here, we report the generation of spin-controlled OAM of light in harmonic generations by using ultrathin photonic metasurfaces. The spin manipulation of OAM mode of harmonic waves is experimentally verified by using second harmonic generation (SHG) from gold meta-atom with 3-fold rotational symmetry. By introducing nonlinear phase singularity into the metasurface devices, we successfully generate and measure the topological charges of spin-controlled OAM mode of SHG through an on-chip metasurface interferometer. The nonlinear photonic metasurface proposed in this work not only opens new avenues for manipulating the OAM of nonlinear optical signals but also benefits the understanding of the nonlinear spin-orbit interaction of light in nanoscale devices.
1978-08-01
91 40. Aerodynamic Coefficients for Sharp Cone at Angle of Attack 93 41. Posttest Photograph of Ablated Camphor Nose Tip, rn/rb = 0.042...94 AEDC-TR-78-40 Figure Page 42. Aerodynamic Coefficients on Spinning Model with Camphor Nose Tip with Imbedded Metal Shaving 95 43. 3...shell could be replaced with camphor (in the case of the larger spin model only, Fig. 5a), asymmetric aluminum (Fig. 5b), or carbon phenolic frustums
The spin-partitioned total position-spread tensor: An application to Heisenberg spin chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fertitta, Edoardo; Paulus, Beate; El Khatib, Muammar
2015-12-28
The spin partition of the Total Position-Spread (TPS) tensor has been performed for one-dimensional Heisenberg chains with open boundary conditions. Both the cases of a ferromagnetic (high-spin) and an anti-ferromagnetic (low-spin) ground-state have been considered. In the case of a low-spin ground-state, the use of alternating magnetic couplings allowed to investigate the effect of spin-pairing. The behavior of the spin-partitioned TPS (SP-TPS) tensor as a function of the number of sites turned to be closely related to the presence of an energy gap between the ground-state and the first excited-state at the thermodynamic limit. Indeed, a gapped energy spectrum ismore » associated to a linear growth of the SP-TPS tensor with the number of sites. On the other hand, in gapless situations, the spread presents a faster-than-linear growth, resulting in the divergence of its per-site value. Finally, for the case of a high-spin wave function, an analytical expression of the dependence of the SP-TPS on the number of sites n and the total spin-projection S{sub z} has been derived.« less
Tunable short-wavelength spin wave excitation from pinned magnetic domain walls
Van de Wiele, Ben; Hämäläinen, Sampo J.; Baláž, Pavel; Montoncello, Federico; van Dijken, Sebastiaan
2016-01-01
Miniaturization of magnonic devices for wave-like computing requires emission of short-wavelength spin waves, a key feature that cannot be achieved with microwave antennas. In this paper, we propose a tunable source of short-wavelength spin waves based on highly localized and strongly pinned magnetic domain walls in ferroelectric-ferromagnetic bilayers. When driven into oscillation by a microwave spin-polarized current, the magnetic domain walls emit spin waves with the same frequency as the excitation current. The amplitude of the emitted spin waves and the range of attainable excitation frequencies depend on the availability of domain wall resonance modes. In this respect, pinned domain walls in magnetic nanowires are particularly attractive. In this geometry, spin wave confinement perpendicular to the nanowire axis produces a multitude of domain wall resonances enabling efficient spin wave emission at frequencies up to 100 GHz and wavelengths down to 20 nm. At high frequency, the emission of spin waves in magnetic nanowires becomes monochromatic. Moreover, pinning of magnetic domain wall oscillators onto the same ferroelectric domain boundary in parallel nanowires guarantees good coherency between spin wave sources, which opens perspectives towards the realization of Mach-Zehnder type logic devices and sensors. PMID:26883893
OpenSim: A Flexible Distributed Neural Network Simulator with Automatic Interactive Graphics.
Jarosch, Andreas; Leber, Jean Francois
1997-06-01
An object-oriented simulator called OpenSim is presented that achieves a high degree of flexibility by relying on a small set of building blocks. The state variables and algorithms put in this framework can easily be accessed through a command shell. This allows one to distribute a large-scale simulation over several workstations and to generate the interactive graphics automatically. OpenSim opens new possibilities for cooperation among Neural Network researchers. Copyright 1997 Elsevier Science Ltd.
NASA Astrophysics Data System (ADS)
Manojlović, N.; Salom, I.
2017-10-01
The implementation of the algebraic Bethe ansatz for the XXZ Heisenberg spin chain in the case, when both reflection matrices have the upper-triangular form is analyzed. The general form of the Bethe vectors is studied. In the particular form, Bethe vectors admit the recurrent procedure, with an appropriate modification, used previously in the case of the XXX Heisenberg chain. As expected, these Bethe vectors yield the strikingly simple expression for the off-shell action of the transfer matrix of the chain as well as the spectrum of the transfer matrix and the corresponding Bethe equations. As in the XXX case, the so-called quasi-classical limit gives the off-shell action of the generating function of the corresponding trigonometric Gaudin Hamiltonians with boundary terms.
Slavnov and Gaudin-Korepin formulas for models without U (1) symmetry: the XXX chain on the segment
NASA Astrophysics Data System (ADS)
Belliard, S.; Pimenta, R. A.
2016-04-01
We consider the isotropic spin -\\frac{1}{2} Heisenberg chain with the most general integrable boundaries. The scalar product between the on-shell Bethe vector and its off-shell dual, obtained by means of the modified algebraic Bethe ansatz, is given by a modified Slavnov formula. The corresponding Gaudin-Korepin formula, i.e., the square of the norm, is also obtained.
Spin-Projected Matrix Product States: Versatile Tool for Strongly Correlated Systems.
Li, Zhendong; Chan, Garnet Kin-Lic
2017-06-13
We present a new wave function ansatz that combines the strengths of spin projection with the language of matrix product states (MPS) and matrix product operators (MPO) as used in the density matrix renormalization group (DMRG). Specifically, spin-projected matrix product states (SP-MPS) are constructed as [Formula: see text], where [Formula: see text] is the spin projector for total spin S and |Ψ MPS (N,M) ⟩ is an MPS wave function with a given particle number N and spin projection M. This new ansatz possesses several attractive features: (1) It provides a much simpler route to achieve spin adaptation (i.e., to create eigenfunctions of Ŝ 2 ) compared to explicitly incorporating the non-Abelian SU(2) symmetry into the MPS. In particular, since the underlying state |Ψ MPS (N,M) ⟩ in the SP-MPS uses only Abelian symmetries, one does not need the singlet embedding scheme for nonsinglet states, as normally employed in spin-adapted DMRG, to achieve a single consistent variationally optimized state. (2) Due to the use of |Ψ MPS (N,M) ⟩ as its underlying state, the SP-MPS can be closely connected to broken-symmetry mean-field states. This allows one to straightforwardly generate the large number of broken-symmetry guesses needed to explore complex electronic landscapes in magnetic systems. Further, this connection can be exploited in the future development of quantum embedding theories for open-shell systems. (3) The sum of MPOs representation for the Hamiltonian and spin projector [Formula: see text] naturally leads to an embarrassingly parallel algorithm for computing expectation values and optimizing SP-MPS. (4) Optimizing SP-MPS belongs to the variation-after-projection (VAP) class of spin-projected theories. Unlike usual spin-projected theories based on determinants, the SP-MPS ansatz can be made essentially exact simply by increasing the bond dimensions in |Ψ MPS (N,M) ⟩. Computing excited states is also simple by imposing orthogonality constraints, which are simple to implement with MPS. To illustrate the versatility of SP-MPS, we formulate algorithms for the optimization of ground and excited states, develop perturbation theory based on SP-MPS, and describe how to evaluate spin-independent and spin-dependent properties such as the reduced density matrices. We demonstrate the numerical performance of SP-MPS with applications to several models typical of strong correlation, including the Hubbard model, and [2Fe-2S] and [4Fe-4S] model complexes.
Some Fundamental Issues in Ground-State Density Functional Theory: A Guide for the Perplexed.
Perdew, John P; Ruzsinszky, Adrienn; Constantin, Lucian A; Sun, Jianwei; Csonka, Gábor I
2009-04-14
Some fundamental issues in ground-state density functional theory are discussed without equations: (1) The standard Hohenberg-Kohn and Kohn-Sham theorems were proven for a Hamiltonian that is not quite exact for real atoms, molecules, and solids. (2) The density functional for the exchange-correlation energy, which must be approximated, arises from the tendency of electrons to avoid one another as they move through the electron density. (3) In the absence of a magnetic field, either spin densities or total electron density can be used, although the former choice is better for approximations. (4) "Spin contamination" of the determinant of Kohn-Sham orbitals for an open-shell system is not wrong but right. (5) Only to the extent that symmetries of the interacting wave function are reflected in the spin densities should those symmetries be respected by the Kohn-Sham noninteracting or determinantal wave function. Functionals below the highest level of approximations should however sometimes break even those symmetries, for good physical reasons. (6) Simple and commonly used semilocal (lower-level) approximations for the exchange-correlation energy as a functional of the density can be accurate for closed systems near equilibrium and yet fail for open systems of fluctuating electron number. (7) The exact Kohn-Sham noninteracting state need not be a single determinant, but common approximations can fail when it is not. (8) Over an open system of fluctuating electron number, connected to another such system by stretched bonds, semilocal approximations make the exchange-correlation energy and hole-density sum rule too negative. (9) The gap in the exact Kohn-Sham band structure of a crystal underestimates the real fundamental gap but may approximate the first exciton energy in the large-gap limit. (10) Density functional theory is not really a mean-field theory, although it looks like one. The exact functional includes strong correlation, and semilocal approximations often overestimate the strength of static correlation through their semilocal exchange contributions. (11) Only under rare conditions can excited states arise directly from a ground-state theory.
Zhang, Yu; Yue, Qin; Yu, Lei; Yang, Xuanyu; Hou, Xiu-Feng; Zhao, Dongyuan; Cheng, Xiaowei; Deng, Yonghui
2018-05-11
Core-shell magnetic porous microspheres have wide applications in drug delivery, catalysis and bioseparation, and so on. However, it is great challenge to controllably synthesize magnetic porous microspheres with uniform well-aligned accessible large mesopores (>10 nm) which are highly desired for applications involving immobilization or adsorption of large guest molecules or nanoobjects. In this study, a facile and general amphiphilic block copolymer directed interfacial coassembly strategy is developed to synthesize core-shell magnetic mesoporous microspheres with a monolayer of mesoporous shell of different composition, such as core-shell magnetic mesoporous aluminosilicate (CS-MMAS), silica (CS-MMS), and zirconia-silica (CS-MMZS), open and large pores by employing polystyrene-block-poly (4-vinylpyridine) (PS-b-P4VP) as an interface structure directing agent and aluminum acetylacetonate (Al(acac) 3 ), zirconium acetylacetonate, and tetraethyl orthosilicate as shell precursors. The obtained CS-MMAS microspheres possess magnetic core, perpendicular mesopores (20-32 nm) in the shell, high surface area (244.7 m 2 g -1 ), and abundant acid sites (0.44 mmol g -1 ), and as a result, they exhibit superior performance in removal of organophosphorus pesticides (fenthion) with a fast adsorption dynamics and high adsorption capacity. CS-MMAS microspheres loaded with Au nanoparticles (≈3.5 nm) behavior as a highly active heterogeneous nanocatalyst for N-alkylation reaction for producing N-phenylbenzylamine with a selectivity and yields of over 90% and good magnetic recyclability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rusakov, Yury Yu; Krivdin, Leonid B; Østerstrøm, Freja F; Sauer, Stephan P A; Potapov, Vladimir A; Amosova, Svetlana V
2013-08-21
This paper documents the very first example of a high-level correlated calculation of spin-spin coupling constants involving tellurium taking into account relativistic effects, vibrational corrections and solvent effects for medium sized organotellurium molecules. The (125)Te-(1)H spin-spin coupling constants of tellurophene and divinyl telluride were calculated at the SOPPA and DFT levels, in good agreement with experimental data. A new full-electron basis set, av3z-J, for tellurium derived from the "relativistic" Dyall's basis set, dyall.av3z, and specifically optimized for the correlated calculations of spin-spin coupling constants involving tellurium was developed. The SOPPA method shows a much better performance compared to DFT, if relativistic effects calculated within the ZORA scheme are taken into account. Vibrational and solvent corrections are next to negligible, while conformational averaging is of prime importance in the calculation of (125)Te-(1)H spin-spin couplings. Based on the performed calculations at the SOPPA(CCSD) level, a marked stereospecificity of geminal and vicinal (125)Te-(1)H spin-spin coupling constants originating in the orientational lone pair effect of tellurium has been established, which opens a new guideline in organotellurium stereochemistry.
NASA Astrophysics Data System (ADS)
Abdul-Hameed, Assel A.; Mahdi, M. A.; Ali, Basil; Selman, Abbas M.; Al-Taay, H. F.; Jennings, P.; Lee, Wen-Jen
2018-04-01
Core-shell self-powered SiNWs homojunction photosensors have been fabricated. SiNWs are prepared by a metal assisted chemical etching method using different HF/H2O2 ratios and etching times. The length of the p-SiNWs increased as the H2O2 concentration and etching time increased. All the grown SiNWs show very low (∼0.7%) optical reflectance for the wavelength range of 200-1100 nm. Photoluminescence spectra of all prepared SiNWs show sharp and broad emission bands located in the red region of the light spectrum. Core-shell homojunction photosensors were fabricated by spin coating P2O2 onto the surface of the prepared p-SiNWs and annealed at 900 °C for 1 h. The fabricated devices exhibited photovoltaic behavior and high photosensitivity with fast response speed to the visible light. However, the sample that was fabricated using HF/H2O2 ratio of 1:1 showed the highest photosensitivity value of 3578% while the photosensor prepared using 2:1 ratio of HF/H2O2 gave the faster rise and decay time.
Quasiballistic quantum transport through Ge/Si core/shell nanowires
NASA Astrophysics Data System (ADS)
Kotekar-Patil, D.; Nguyen, B.-M.; Yoo, J.; Dayeh, S. A.; Frolov, S. M.
2017-09-01
We study signatures of ballistic quantum transport of holes through Ge/Si core/shell nanowires at low temperatures. We observe Fabry-Pérot interference patterns as well as conductance plateaus at integer multiples of 2e 2/h at zero magnetic field. Magnetic field evolution of these plateaus reveals relatively large effective Landé g-factors. Ballistic effects are observed in nanowires with silicon shell thickness of 1-3 nm, but not in bare germanium wires. These findings inform the future development of spin and topological quantum devices which rely on ballistic sub-band-resolved transport.
Quasiballistic quantum transport through Ge/Si core/shell nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotekar-Patil, D.; Nguyen, B-M; Yoo, J.
We study signatures of ballistic quantum transport of holes through Ge/Si core/shell nanowires at low temperatures. We observe Fabry–Pérot interference patterns as well as conductance plateaus at integer multiples of 2e 2/h at zero magnetic field. Magnetic field evolution of these plateaus reveals relatively large effective Landé g-factors. Ballistic effects are observed in nanowires with silicon shell thickness of 1–3 nm, but not in bare germanium wires. These findings inform the future development of spin and topological quantum devices which rely on ballistic sub-band-resolved transport.
Quasiballistic quantum transport through Ge/Si core/shell nanowires
Kotekar-Patil, D.; Nguyen, B-M; Yoo, J.; ...
2017-09-04
We study signatures of ballistic quantum transport of holes through Ge/Si core/shell nanowires at low temperatures. We observe Fabry–Pérot interference patterns as well as conductance plateaus at integer multiples of 2e 2/h at zero magnetic field. Magnetic field evolution of these plateaus reveals relatively large effective Landé g-factors. Ballistic effects are observed in nanowires with silicon shell thickness of 1–3 nm, but not in bare germanium wires. These findings inform the future development of spin and topological quantum devices which rely on ballistic sub-band-resolved transport.
Band structures in near spherical 138Ce
NASA Astrophysics Data System (ADS)
Bhattacharjee, T.; Chanda, S.; Bhattacharyya, S.; Basu, S. K.; Bhowmik, R. K.; Das, J. J.; Pramanik, U. Datta; Ghugre, S. S.; Madhavan, N.; Mukherjee, A.; Mukherjee, G.; Muralithar, S.; Singh, R. P.
2009-06-01
The high spin states of N=80138Ce have been populated in the fusion evaporation reaction 130Te( 12C, 4n) 138Ce at E=65 MeV. The γ transitions belonging to various band structures were detected and characterized using an array of five Clover Germanium detectors. The level scheme has been established up to a maximum spin and excitation energy of 23 ℏ and 9511.3 keV, respectively, by including 53 new transitions. The negative parity ΔI=1 band, developed on the 6536.3 keV 15 level, has been conjectured to be a magnetic rotation band following a semiclassical analysis and comparing the systematics of similar bands in the neighboring nuclei. The said band is proposed to have a four quasiparticle configuration of [πgh]⊗[. Other band structures are interpreted in terms of multi-quasiparticle configurations, based on Total Routhian Surface (TRS) calculations. For the low and medium spin states, a shell model calculation using a realistic two body interaction has been performed using the code OXBASH.
Long distance spin communication in chemical vapour deposited graphene
NASA Astrophysics Data System (ADS)
Kamalakar, M. Venkata; Groenveld, Christiaan; Dankert, André; Dash, Saroj P.
2015-04-01
Graphene is an ideal medium for long-distance spin communication in future spintronic technologies. So far, the prospect is limited by the smaller sizes of exfoliated graphene flakes and lower spin transport properties of large-area chemical vapour-deposited (CVD) graphene. Here we demonstrate a high spintronic performance in CVD graphene on SiO2/Si substrate at room temperature. We show pure spin transport and precession over long channel lengths extending up to 16 μm with a spin lifetime of 1.2 ns and a spin diffusion length ~6 μm at room temperature. These spin parameters are up to six times higher than previous reports and highest at room temperature for any form of pristine graphene on industrial standard SiO2/Si substrates. Our detailed investigation reinforces the observed performance in CVD graphene over wafer scale and opens up new prospects for the development of lateral spin-based memory and logic applications.
Velocity barrier-controlled of spin-valley polarized transport in monolayer WSe2 junction
NASA Astrophysics Data System (ADS)
Qiu, Xuejun; Lv, Qiang; Cao, Zhenzhou
2018-05-01
In this work, we have theoretically investigated the influence of velocity barrier on the spin-valley polarized transport in monolayer (ML) WSe2 junction with a large spin-orbit coupling (SOC). Both the spin-valley resolved transmission probabilities and conductance are strong dependent on the velocity barrier, as the velocity barrier decreases to 0.06, a spin-valley polarization of exceeding 90% is observed, which is distinct from the ML MoS2 owing to incommensurable SOC. In addition, the spin-valley polarization is further increased above 95% in a ML WSe2 superlattice, in particular, it's found many extraordinary velocity barrier-dependent transport gaps for multiple barrier due to evanescent tunneling. Our results may open an avenue for the velocity barrier-controlled high-efficiency spin and valley polarizations in ML WSe2-based electronic devices.
Higher-order spin and charge dynamics in a quantum dot-lead hybrid system.
Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Stano, Peter; Noiri, Akito; Ito, Takumi; Loss, Daniel; Ludwig, Arne; Wieck, Andreas D; Tarucha, Seigo
2017-09-22
Understanding the dynamics of open quantum systems is important and challenging in basic physics and applications for quantum devices and quantum computing. Semiconductor quantum dots offer a good platform to explore the physics of open quantum systems because we can tune parameters including the coupling to the environment or leads. Here, we apply the fast single-shot measurement techniques from spin qubit experiments to explore the spin and charge dynamics due to tunnel coupling to a lead in a quantum dot-lead hybrid system. We experimentally observe both spin and charge time evolution via first- and second-order tunneling processes, and reveal the dynamics of the spin-flip through the intermediate state. These results enable and stimulate the exploration of spin dynamics in dot-lead hybrid systems, and may offer useful resources for spin manipulation and simulation of open quantum systems.
NASA Astrophysics Data System (ADS)
Zhou, Gang; Duan, Wenhui
2007-03-01
Spin-polarized density functional calculations show that the substitutional doping of carbon (C) atom at the mouth changes the atomic and spin configurations of open armchair boron nitride nanotubes (BNNTs). The occupied/unoccupied deep gap states are observed with the significant spin-splitting. The structures and spin-polarized properties are basically stable under the considerable electric field, which is important for practical applications. The magnetization mechanism is attributed to the interactions of s, p states between the C and its neighboring B or N atoms. Ultimately, advantageous geometrical and electronic effects mean that C-doped open armchair BNNTs would have promising applications in nano-spintronic devices.
Landau-Zener-Stückelberg-Majorana Interferometry of a Single Hole
NASA Astrophysics Data System (ADS)
Bogan, Alex; Studenikin, Sergei; Korkusinski, Marek; Gaudreau, Louis; Zawadzki, Piotr; Sachrajda, Andy S.; Tracy, Lisa; Reno, John; Hargett, Terry
2018-05-01
We perform Landau-Zener-Stückelberg-Majorana (LZSM) spectroscopy on a system with strong spin-orbit interaction (SOI), realized as a single hole confined in a gated double quantum dot. Analogous to electron systems, at a magnetic field B =0 and high modulation frequencies, we observe photon-assisted tunneling between dots, which smoothly evolves into the typical LZSM funnel-shaped interference pattern as the frequency is decreased. In contrast to electrons, the SOI enables an additional, efficient spin-flip interdot tunneling channel, introducing a distinct interference pattern at finite B . Magnetotransport spectra at low-frequency LZSM driving show the two channels to be equally coherent. High-frequency LZSM driving reveals complex photon-assisted tunneling pathways, both spin conserving and spin flip, which form closed loops at critical magnetic fields. In one such loop, an arbitrary hole spin state is inverted, opening the way toward its all-electrical manipulation.
Nonpolar InGaN/GaN Core-Shell Single Nanowire Lasers.
Li, Changyi; Wright, Jeremy B; Liu, Sheng; Lu, Ping; Figiel, Jeffrey J; Leung, Benjamin; Chow, Weng W; Brener, Igal; Koleske, Daniel D; Luk, Ting-Shan; Feezell, Daniel F; Brueck, S R J; Wang, George T
2017-02-08
We report lasing from nonpolar p-i-n InGaN/GaN multi-quantum well core-shell single-nanowire lasers by optical pumping at room temperature. The nanowire lasers were fabricated using a hybrid approach consisting of a top-down two-step etch process followed by a bottom-up regrowth process, enabling precise geometrical control and high material gain and optical confinement. The modal gain spectra and the gain curves of the core-shell nanowire lasers were measured using micro-photoluminescence and analyzed using the Hakki-Paoli method. Significantly lower lasing thresholds due to high optical gain were measured compared to previously reported semipolar InGaN/GaN core-shell nanowires, despite significantly shorter cavity lengths and reduced active region volume. Mode simulations show that due to the core-shell architecture, annular-shaped modes have higher optical confinement than solid transverse modes. The results show the viability of this p-i-n nonpolar core-shell nanowire architecture, previously investigated for next-generation light-emitting diodes, as low-threshold, coherent UV-visible nanoscale light emitters, and open a route toward monolithic, integrable, electrically injected single-nanowire lasers operating at room temperature.
Nonpolar InGaN/GaN core–shell single nanowire lasers
Li, Changyi; Wright, Jeremy Benjamin; Liu, Sheng; ...
2017-01-24
We report lasing from nonpolar p-i-n InGaN/GaN multi-quantum well core–shell single-nanowire lasers by optical pumping at room temperature. The nanowire lasers were fabricated using a hybrid approach consisting of a top-down two-step etch process followed by a bottom-up regrowth process, enabling precise geometrical control and high material gain and optical confinement. The modal gain spectra and the gain curves of the core–shell nanowire lasers were measured using micro-photoluminescence and analyzed using the Hakki-Paoli method. Significantly lower lasing thresholds due to high optical gain were measured compared to previously reported semipolar InGaN/GaN core–shell nanowires, despite significantly shorter cavity lengths and reducedmore » active region volume. Mode simulations show that due to the core–shell architecture, annular-shaped modes have higher optical confinement than solid transverse modes. Furthermore, the results show the viability of this p-i-n nonpolar core–shell nanowire architecture, previously investigated for next-generation light-emitting diodes, as low-threshold, coherent UV–visible nanoscale light emitters, and open a route toward monolithic, integrable, electrically injected single-nanowire lasers operating at room temperature.« less
Spin-dependent evolution of collectivity in 112Te
NASA Astrophysics Data System (ADS)
Doncel, M.; Bäck, T.; Qi, C.; Cullen, D. M.; Hodge, D.; Cederwall, B.; Taylor, M. J.; Procter, M.; Giles, M.; Auranen, K.; Grahn, T.; Greenlees, P. T.; Jakobsson, U.; Julin, R.; Juutinen, S.; HerzáÅ, A.; Konki, J.; Pakarinen, J.; Partanen, J.; Peura, P.; Rahkila, P.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Sorri, J.; Stolze, S.; Uusitalo, J.
2017-11-01
The evolution of collectivity with spin along the yrast line in the neutron-deficient nucleus 112Te has been studied by measuring the reduced transition probability of excited states in the yrast band. In particular, the lifetimes of the 4+ and 6+ excited states have been determined by using the recoil distance Doppler-shift method. The results are discussed using both large-scale shell-model and total Routhian surface calculations.
All-optical control of long-lived nuclear spins in rare-earth doped nanoparticles.
Serrano, D; Karlsson, J; Fossati, A; Ferrier, A; Goldner, P
2018-05-29
Nanoscale systems that coherently couple to light and possess spins offer key capabilities for quantum technologies. However, an outstanding challenge is to preserve properties, and especially optical and spin coherence lifetimes, at the nanoscale. Here, we report optically controlled nuclear spins with long coherence lifetimes (T 2 ) in rare-earth-doped nanoparticles. We detect spins echoes and measure a spin coherence lifetime of 2.9 ± 0.3 ms at 5 K under an external magnetic field of 9 mT, a T 2 value comparable to those obtained in bulk rare-earth crystals. Moreover, we achieve spin T 2 extension using all-optical spin dynamical decoupling and observe high fidelity between excitation and echo phases. Rare-earth-doped nanoparticles are thus the only nano-material in which optically controlled spins with millisecond coherence lifetimes have been reported. These results open the way to providing quantum light-atom-spin interfaces with long storage time within hybrid architectures.
A pathway for the growth of core-shell Pt-Pd nanoparticles
Narula, Chaitanya Kumar; Yang, Xiaofan; Li, Chen; ...
2015-10-12
In this study, the aging of both Pt-Pd nanoparticles and core-shell Pt-Pd nanoparticles has been reported to result in alloying of Pt with Pd. In comparison to monometallic Pt catalysts, the growth of Pd-Pt bimetallics is slower; however, the mechanism of growth of particles and the mechanism by which Pd improves the hydrothermal durability of bimetallic Pd-Pt particles remains uncertain. In our work on hydrothermal aging of core-shell Pt-Pd nanoparticles, synthesized by solution methods, with varying Pd:Pt ratio of 1:4, 1:1, and 4:1, we compare the growth of core-shell Pt-Pd nanoparticles and find that particles grow by migrating and joiningmore » together. The unique feature of the observed growth is that Pd shells from both particles open up and join, allowing the cores to merge. At high temperatures, alloying occurs in good agreement with reports by other workers.« less
Huang, Ming; Zhang, Yuxin; Li, Fei; Wang, Zhongchang; Alamusi; Hu, Ning; Wen, Zhiyu; Liu, Qing
2014-01-01
Fabricating hierarchical core-shell nanostructures is currently the subject of intensive research in the electrochemical field owing to the hopes it raises for making efficient electrodes for high-performance supercapacitors. Here, we develop a simple and cost-effective approach to prepare CuO@MnO2 core-shell nanostructures without any surfactants and report their applications as electrodes for supercapacitors. An asymmetric supercapacitor with CuO@MnO2 core-shell nanostructure as the positive electrode and activated microwave exfoliated graphite oxide (MEGO) as the negative electrode yields an energy density of 22.1 Wh kg−1 and a maximum power density of 85.6 kW kg−1; the device shows a long-term cycling stability which retains 101.5% of its initial capacitance even after 10000 cycles. Such a facile strategy to fabricate the hierarchical CuO@MnO2 core-shell nanostructure with significantly improved functionalities opens up a novel avenue to design electrode materials on demand for high-performance supercapacitor applications. PMID:24682149
A high-performance Fortran code to calculate spin- and parity-dependent nuclear level densities
NASA Astrophysics Data System (ADS)
Sen'kov, R. A.; Horoi, M.; Zelevinsky, V. G.
2013-01-01
A high-performance Fortran code is developed to calculate the spin- and parity-dependent shell model nuclear level densities. The algorithm is based on the extension of methods of statistical spectroscopy and implies exact calculation of the first and second Hamiltonian moments for different configurations at fixed spin and parity. The proton-neutron formalism is used. We have applied the method for calculating the level densities for a set of nuclei in the sd-, pf-, and pf+g- model spaces. Examples of the calculations for 28Si (in the sd-model space) and 64Ge (in the pf+g-model space) are presented. To illustrate the power of the method we estimate the ground state energy of 64Ge in the larger model space pf+g, which is not accessible to direct shell model diagonalization due to the prohibitively large dimension, by comparing with the nuclear level densities at low excitation energy calculated in the smaller model space pf. Program summaryProgram title: MM Catalogue identifier: AENM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 193181 No. of bytes in distributed program, including test data, etc.: 1298585 Distribution format: tar.gz Programming language: Fortran 90, MPI. Computer: Any architecture with a Fortran 90 compiler and MPI. Operating system: Linux. RAM: Proportional to the system size, in our examples, up to 75Mb Classification: 17.15. External routines: MPICH2 (http://www.mcs.anl.gov/research/projects/mpich2/) Nature of problem: Calculating of the spin- and parity-dependent nuclear level density. Solution method: The algorithm implies exact calculation of the first and second Hamiltonian moments for different configurations at fixed spin and parity. The code is parallelized using the Message Passing Interface and a master-slaves dynamical load-balancing approach. Restrictions: The program uses two-body interaction in a restricted single-level basis. For example, GXPF1A in the pf-valence space. Running time: Depends on the system size and the number of processors used (from 1 min to several hours).
He, Weiwei; Cai, Junhui; Jiang, Xiumei; Yin, Jun-Jie; Meng, Qingbo
2018-06-13
The combination of semiconductor and plasmonic nanostructures, endowed with high efficiency light harvesting and surface plasmon confinement, has been a promising way for efficient utilization of solar energy. Although the surface plasmon resonance (SPR) assisted photocatalysis has been extensively studied, the photochemical mechanism, e.g. the effect of SPR on the generation of reactive oxygen species and charge carriers, is not well understood. In this study, we take Au@TiO2 nanostructures as a plasmonic photocatalyst to address this critical issue. The Au@TiO2 core/shell nanostructures with tunable SPR property were synthesized by the templating method with post annealing thermal treatment. It was found that Au@TiO2 nanostructures exhibit enhanced photocatalytic activity in either sunlight or visible light (λ > 420 nm). Electron spin resonance spectroscopy with spin trapping and spin labeling was used to investigate the enhancing effect of Au@TiO2 on the photo-induced reactive oxygen species and charge carriers. The formation of Au@TiO2 core/shell nanostructures resulted in a dramatic increase in light-induced generation of hydroxyl radicals, singlet oxygen, holes and electrons, as compared with TiO2 alone. This enhancement under visible light (λ > 420 nm) irradiation may be dominated by SPR induced local electrical field enhancement, while the enhancement under sunlight irradiation is dominated by the higher electron transfer from TiO2 to Au. These results unveiled that the superior photocatalytic activity of Au@TiO2 nanostructures correlates with enhanced generation of reactive oxygen species and charge carriers.
Epitaxial growth of single-orientation high-quality MoS2 monolayers
NASA Astrophysics Data System (ADS)
Bana, Harsh; Travaglia, Elisabetta; Bignardi, Luca; Lacovig, Paolo; Sanders, Charlotte E.; Dendzik, Maciej; Michiardi, Matteo; Bianchi, Marco; Lizzit, Daniel; Presel, Francesco; De Angelis, Dario; Apostol, Nicoleta; Das, Pranab Kumar; Fujii, Jun; Vobornik, Ivana; Larciprete, Rosanna; Baraldi, Alessandro; Hofmann, Philip; Lizzit, Silvano
2018-07-01
We present a study on the growth and characterization of high-quality single-layer MoS2 with a single orientation, i.e. without the presence of mirror domains. This single orientation of the MoS2 layer is established by means of x-ray photoelectron diffraction. The high quality is evidenced by combining scanning tunneling microscopy with x-ray photoelectron spectroscopy measurements. Spin- and angle-resolved photoemission experiments performed on the sample revealed complete spin-polarization of the valence band states near the K and -K points of the Brillouin zone. These findings open up the possibility to exploit the spin and valley degrees of freedom for encoding and processing information in devices that are based on epitaxially grown materials.
Chiral higher spin theories and self-duality
NASA Astrophysics Data System (ADS)
Ponomarev, Dmitry
2017-12-01
We study recently proposed chiral higher spin theories — cubic theories of interacting massless higher spin fields in four-dimensional flat space. We show that they are naturally associated with gauge algebras, which manifest themselves in several related ways. Firstly, the chiral higher spin equations of motion can be reformulated as the self-dual Yang-Mills equations with the associated gauge algebras instead of the usual colour gauge algebra. We also demonstrate that the chiral higher spin field equations, similarly to the self-dual Yang-Mills equations, feature an infinite algebra of hidden symmetries, which ensures their integrability. Secondly, we show that off-shell amplitudes in chiral higher spin theories satisfy the generalised BCJ relations with the usual colour structure constants replaced by the structure constants of higher spin gauge algebras. We also propose generalised double copy procedures featuring higher spin theory amplitudes. Finally, using the light-cone deformation procedure we prove that the structure of the Lagrangian that leads to all these properties is universal and follows from Lorentz invariance.
Jang, Jaeyoung; Dolzhnikov, Dmitriy S; Liu, Wenyong; Nam, Sooji; Shim, Moonsub; Talapin, Dmitri V
2015-10-14
Crystalline silicon-based complementary metal-oxide-semiconductor transistors have become a dominant platform for today's electronics. For such devices, expensive and complicated vacuum processes are used in the preparation of active layers. This increases cost and restricts the scope of applications. Here, we demonstrate high-performance solution-processed CdSe nanocrystal (NC) field-effect transistors (FETs) that exhibit very high carrier mobilities (over 400 cm(2)/(V s)). This is comparable to the carrier mobilities of crystalline silicon-based transistors. Furthermore, our NC FETs exhibit high operational stability and MHz switching speeds. These NC FETs are prepared by spin coating colloidal solutions of CdSe NCs capped with molecular solders [Cd2Se3](2-) onto various oxide gate dielectrics followed by thermal annealing. We show that the nature of gate dielectrics plays an important role in soldered CdSe NC FETs. The capacitance of dielectrics and the NC electronic structure near gate dielectric affect the distribution of localized traps and trap filling, determining carrier mobility and operational stability of the NC FETs. We expand the application of the NC soldering process to core-shell NCs consisting of a III-V InAs core and a CdSe shell with composition-matched [Cd2Se3](2-) molecular solders. Soldering CdSe shells forms nanoheterostructured material that combines high electron mobility and near-IR photoresponse.
Wingard, G. Lynn; Surge, Donna
2017-01-01
Molluscs possess a number of attributes that make them an excellent source of past environmental conditions in estuaries: they are common in estuarine environments; they typically have hard shells and are usually well preserved in sediments; they are relatively easy to detect in the environment; they have limited mobility as adults; they grow by incremental addition of layers to their shells; and they are found in all the major environments surrounding estuaries—terrestrial, freshwater, brackish, and marine waters. Analysis of molluscan assemblages can contribute information about past changes in sea level, climate, land use patterns, anthropogenic alterations, salinity, and other parameters of the benthic habitat and water chemistry within the estuary. High-resolution (from less than a day to annual) records of changes in environmental parameters can be obtained by analyzing the incremental growth layers in mollusc shells (sclerochronology). The shell layers retain information on changes in water temperature, salinity, seasonality, climate, river discharge, productivity, pollution and human activity. Isotopic analyses of mollusc shell growth layers can be problematic in estuaries where water temperatures and isotopic ratios can vary simultaneously; however, methods are being developed to overcome these problems. In addition to sclerochronology, molluscs are important to Holocene and Pleistocene estuarine palaeoenvironmental studies because of their use in the development of age models through radiocarbon dating, amino acid racemization, uranium-thorium series dating, and electron spin resonance (ESR) dating.
NASA Astrophysics Data System (ADS)
Argan, A.; Piano, G.; Tavani, M.; Trois, A.
2016-04-01
We study the capability of the AGILE gamma ray space mission in detecting magnetospheric particles (mostly electrons) in the energy range 10-100 MeV. Our measurements focus on the inner magnetic shells with L ≲ 1.2 in the magnetic equator. The instrument characteristics and a quasi-equatorial orbit of ˜500 km altitude make it possible to address several important properties of the particle populations in the inner magnetosphere. We review the on board trigger logic and study the acceptance of the AGILE instrument for particle detection. We find that the AGILE effective geometric factor (acceptance) is R≃50 cm2 sr for particle energies in the range 10-100 MeV. Particle event reconstruction allows to determine the particle pitch angle with the local magnetic field with good accuracy. We obtain the pitch angle distributions for both the AGILE "pointing" phase (July 2007 to October 2009) and the "spinning" phase (November 2009 to present). In spinning mode, the whole range (0-180 degrees) is accessible every 7 min. We find a pitch angle distribution of the "dumbbell" type with a prominent depression near α = 90° which is typical of wave-particle resonant scattering and precipitation in the inner magnetosphere. Most importantly, we show that AGILE is not affected by solar particle precipitation events in the magnetosphere. The satellite trajectory intersects magnetic shells in a quite narrow range (1.0 ≲ L ≲ 1.2); AGILE then has a high exposure to a magnetospheric region potentially rich of interesting phenomena. The large particle acceptance in the 10-100 MeV range, the pitch angle determination capability, the L shell exposure, and the solar-free background make AGILE a unique instrument for measuring steady and transient particle events in the inner magnetosphere.
Spin-based quantum computation in multielectron quantum dots
NASA Astrophysics Data System (ADS)
Hu, Xuedong; Das Sarma, S.
2001-10-01
In a quantum computer the hardware and software are intrinsically connected because the quantum Hamiltonian (or more precisely its time development) is the code that runs the computer. We demonstrate this subtle and crucial relationship by considering the example of electron-spin-based solid-state quantum computer in semiconductor quantum dots. We show that multielectron quantum dots with one valence electron in the outermost shell do not behave simply as an effective single-spin system unless special conditions are satisfied. Our work compellingly demonstrates that a delicate synergy between theory and experiment (between software and hardware) is essential for constructing a quantum computer.
NASA Astrophysics Data System (ADS)
Zhang, ZhenHua
2016-07-01
The high-spin rotational properties of two-quasiparticle bands in the doubly-odd 166Ta are analyzed using the cranked shell model with pairing correlations treated by a particle-number conserving method, in which the blocking effects are taken into account exactly. The experimental moments of inertia and alignments and their variations with the rotational frequency hω are reproduced very well by the particle-number conserving calculations, which provides a reliable support to the configuration assignments in previous works for these bands. The backbendings in these two-quasiparticle bands are analyzed by the calculated occupation probabilities and the contributions of each orbital to the total angular momentum alignments. The moments of inertia and alignments for the Gallagher-Moszkowski partners of these observed two-quasiparticle rotational bands are also predicted.
NASA Astrophysics Data System (ADS)
Melnikov, Alexey; Razdolski, Ilya; Alekhin, Alexandr; Ilin, Nikita; Meyburg, Jan; Diesing, Detlef; Roddatis, Vladimir; Rungger, Ivan; Stamenova, Maria; Sanvito, Stefano; Bovensiepen, Uwe
2016-10-01
Further development of spintronics requires miniaturization and reduction of characteristic timescales of spin dynamics combining the nanometer spatial and femtosecond temporal ranges. These demands shift the focus of interest towards the fundamental open question of the interaction of femtosecond spin current (SC) pulses with a ferromagnet (FM). The spatio-temporal properties of the spin transfer torque (STT) exerted by ultrashort SC pulses on the FM open the time domain for studying STT fingerprint on spatially non-uniform magnetization dynamics. Using the sensitivity of magneto-induced second harmonic generation to SC, we develop technique for SC monitoring. With 20 fs resolution, we demonstrate the generation of 250 fs-long SC pulses in Fe/Au/Fe/MgO(001) structures. Their temporal profile indicates (i) nearly-ballistic hot electron transport in Au and (ii) that the pulse duration is primarily determined by the thermalization time of laser-excited hot carriers in Fe. Together with strongly spin-dependent Fe/Au interface transmission calculated for these carriers, this suggests the non-thermal spin-dependent Seebeck effect dominating the generation of ultrashort SC pulses. The analysis of SC transmission/reflection at the Au/Fe interface shows that hot electron spins orthogonal to the Fe magnetization rotate gaining huge parallel (anti-parallel) projection in transmitted (reflected) SC. This is accompanied by a STT-induced perturbation of the magnetization localized at the interface, which excites the inhomogeneous high-frequency spin dynamics in the FM. Time-resolved magneto-optical studies reveal the excitation of several standing spin wave modes in the Fe film with their spectrum extending up to 0.6 THz and indicating the STT spatial confinement to 2 nm.
A magnetic phase-transition graphene transistor with tunable spin polarization
NASA Astrophysics Data System (ADS)
Vancsó, Péter; Hagymási, Imre; Tapasztó, Levente
2017-06-01
Graphene nanoribbons (GNRs) have been proposed as potential building blocks for field effect transistor (FET) devices due to their quantum confinement bandgap. Here, we propose a novel GNR device concept, enabling the control of both charge and spin signals, integrated within the simplest three-terminal device configuration. In a conventional FET device, a gate electrode is employed to tune the Fermi level of the system in and out of a static bandgap. By contrast, in the switching mechanism proposed here, the applied gate voltage can dynamically open and close an interaction gap, with only a minor shift of the Fermi level. Furthermore, the strong interplay of the band structure and edge spin configuration in zigzag ribbons enables such transistors to carry spin polarized current without employing an external magnetic field or ferromagnetic contacts. Using an experimentally validated theoretical model, we show that such transistors can switch at low voltages and high speed, and the spin polarization of the current can be tuned from 0% to 50% by using the same back gate electrode. Furthermore, such devices are expected to be robust against edge irregularities and can operate at room temperature. Controlling both charge and spin signal within the simplest FET device configuration could open up new routes in data processing with graphene based devices.
Triggering of spin-flipping-modulated exchange bias in FeCo nanoparticles by electronic excitation
Sarker, Debalaya; Bhattacharya, Saswata; Srivastava, Pankaj; Ghosh, Santanu
2016-01-01
The exchange coupling between ferromagnetic (FM)-antiferromagnetic (AF) interfaces is a key element of modern spintronic devices. We here introduce a new way of triggering exchange bias (EB) in swift heavy ion (SHI) irradiated FeCo-SiO2 films, which is a manifestation of spin-flipping at high irradiation fluence. The elongation of FeCo nanoparticles (NPs) in SiO2 matrix gives rise to perpendicular magnetic anisotropy at intermediate fluence. However, a clear shift in hysteresis loop is evident at the highest fluence. This reveals the existence of an AF exchange pinning domain in the NPs, which is identified not to be oxide shell from XANES analysis. Thermal spike calculations along with first-principles based simulations under the framework of density functional theory (DFT) demonstrate that spin flipping of 3d valence electrons is responsible for formation of these AF domains inside the FM NPs. EXAFS experiments at Fe and Co K-edges further unravel that spin-flipping in highest fluence irradiated film results in reduced bond lengths. The results highlight the possibility of miniaturization of magnetic storage devices by using irradiated NPs instead of conventionally used FM-AF multilayers. PMID:27991552
Three-dimensional fractional-spin gravity
NASA Astrophysics Data System (ADS)
Boulanger, Nicolas; Sundell, Per; Valenzuela, Mauricio
2014-02-01
Using Wigner-deformed Heisenberg oscillators, we construct 3D Chern-Simons models consisting of fractional-spin fields coupled to higher-spin gravity and internal nonabelian gauge fields. The gauge algebras consist of Lorentz-tensorial Blencowe-Vasiliev higher-spin algebras and compact internal algebras intertwined by infinite-dimensional generators in lowest-weight representations of the Lorentz algebra with fractional spin. In integer or half-integer non-unitary cases, there exist truncations to gl(ℓ , ℓ ± 1) or gl(ℓ|ℓ ± 1) models. In all non-unitary cases, the internal gauge fields can be set to zero. At the semi-classical level, the fractional-spin fields are either Grassmann even or odd. The action requires the enveloping-algebra representation of the deformed oscillators, while their Fock-space representation suffices on-shell. The project was funded in part by F.R.S.-FNRS " Ulysse" Incentive Grant for Mobility in Scientific Research.
Sharma [ital et] [ital al]. reply:
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, M.M.; Lalazissis, G.A.; Hillebrandt, W.
1994-09-26
We believe that the different density and isospin dependence [5] of the spin[minus]orbit term is responsible for differences in shell effects found in the RMF theory as compared to the Skyrme approach. The importance of the spin[minus]orbit contribution in the RMF theory has been underlined in the successful description [6] of anomalous isotope shifts in Pb nuclei in the RMF theory as against the Skyrme theory which is unable to do so. (AIP)
Spin transport in epitaxial graphene
NASA Astrophysics Data System (ADS)
Tbd, -
2014-03-01
Spintronics is a paradigm focusing on spin as the information vector in fast and ultra-low-power non volatile devices such as the new STT-MRAM. Beyond its widely distributed application in data storage it aims at providing more complex architectures and a powerful beyond CMOS solution for information processing. The recent discovery of graphene has opened novel exciting opportunities in terms of functionalities and performances for spintronics devices. We will present experimental results allowing us to assess the potential of graphene for spintronics. We will show that unprecedented highly efficient spin information transport can occur in epitaxial graphene leading to large spin signals and macroscopic spin diffusion lengths (~ 100 microns), a key enabler for the advent of envisioned beyond-CMOS spin-based logic architectures. We will also show that how the device behavior is well explained within the framework of the Valet-Fert drift-diffusion equations. Furthermore, we will show that a thin graphene passivation layer can prevent the oxidation of a ferromagnet, enabling its use in novel humide/ambient low-cost processes for spintronics devices, while keeping its highly surface sensitive spin current polarizer/analyzer behavior and adding new enhanced spin filtering property. These different experiments unveil promising uses of graphene for spintronics.
Magnonic waveguide based on exchange-spring magnetic structure
NASA Astrophysics Data System (ADS)
Wang, Lixiang; Gao, Leisen; Jin, Lichuan; Liao, Yulong; Wen, Tianlong; Tang, Xiaoli; Zhang, Huaiwu; Zhong, Zhiyong
2018-05-01
A soft/hard exchange-spring coupled bilayer magnetic structure is proposed to obtain a narrow channel for spin-wave propagation. Micromagnetic simulations show that broad-band Damon-Eshbach geometry spin waves are strongly constrained within the channel and propagate effectively with a high group velocity. The beam width of the bound spin waves is almost independent from the frequency and is smaller than 24nm. Two side spin beams appearing at the low-frequency excitation are demonstrated to be coupled with the channel spins by dipole-dipole interaction. In contrast to a domain wall, the channel formed by exchange-spring coupling is easier to be realized in experimental scenarios and holds stronger immunity to surroundings. This work is expected to open new possibilities for energy-efficient spin-wave guiding as well as to help shape the field of beam magnonics.
Quantum entanglement and spin control in silicon nanocrystal.
Berec, Vesna
2012-01-01
Selective coherence control and electrically mediated exchange coupling of single electron spin between triplet and singlet states using numerically derived optimal control of proton pulses is demonstrated. We obtained spatial confinement below size of the Bohr radius for proton spin chain FWHM. Precise manipulation of individual spins and polarization of electron spin states are analyzed via proton induced emission and controlled population of energy shells in pure (29)Si nanocrystal. Entangled quantum states of channeled proton trajectories are mapped in transverse and angular phase space of (29)Si <100> axial channel alignment in order to avoid transversal excitations. Proton density and proton energy as impact parameter functions are characterized in single particle density matrix via discretization of diagonal and nearest off-diagonal elements. We combined high field and low densities (1 MeV/92 nm) to create inseparable quantum state by superimposing the hyperpolarizationed proton spin chain with electron spin of (29)Si. Quantum discretization of density of states (DOS) was performed by the Monte Carlo simulation method using numerical solutions of proton equations of motion. Distribution of gaussian coherent states is obtained by continuous modulation of individual spin phase and amplitude. Obtained results allow precise engineering and faithful mapping of spin states. This would provide the effective quantum key distribution (QKD) and transmission of quantum information over remote distances between quantum memory centers for scalable quantum communication network. Furthermore, obtained results give insights in application of channeled protons subatomic microscopy as a complete versatile scanning-probe system capable of both quantum engineering of charged particle states and characterization of quantum states below diffraction limit linear and in-depth resolution.PACS NUMBERS: 03.65.Ud, 03.67.Bg, 61.85.+p, 67.30.hj.
Projected shell model description of N = 114 superdeformed isotone nuclei
NASA Astrophysics Data System (ADS)
Guo, R. S.; Chen, L. M.; Chou, C. H.
2006-03-01
A systematic description of the yrast superdeformed (SD) bands in N = 114, Z = 80-84 isotone nuclei using the projected shell model is presented. The calculated γ-ray energies, moment of inertia and M1 transitions are compared with the data for which spin is assigned. Excellent agreement with the available data for all isotones is obtained. The calculated electromagnetic properties provide a microscopic understanding of those measured nuclei. Some predictions in superdeformed nuclei are also discussed.
Free-Spinning-Tunnel Tests of a 0.057-Scale Model of the Chance Vought XF7U-1 Airplane
NASA Technical Reports Server (NTRS)
Daughtridge, Lee T., Jr.
1948-01-01
An investigation of the spin and recovery characteristics of a 0.057-scale model of the Chance Vought XF7U-1 airplane has been conducted in the Langley 20-foot free-spinning tunnel. The effects of control settings and movements on the erect and inverted spin and recovery characteristics were determined, as were also the effects of extending the wing slats, of center-of-gravity movement, and-of variation in the mass distribution. The investigation also included wing-tip spin-recovery-parachute tests, pilot-escape tests, and rudder-control-force tests. The investigation indicated that the spin and recovery characteristics of the airplane will be satisfactory for all conditions. It was found that a single 4.24-foot (full-scale) parachute when opened alone from the outboard wing tip or two 8.77-foot (full-scale) parachutes when opened simultaneously, one from each wing tip, would effect satisfactory emergency recoveries (the drag coefficients of the parachutes, based on the surface area of the parachute, were 0.83 and 0.70 for the 4.24- and 8.77-foot parachutes, respectively). The towline length in both cases was 25 feet (full scale). Tests results showed that, if the pilot should have to leave the airplane during a spin, he should jump from the outboard side (left side in a right spin) of the cockpit. The rudder-control force necessary for recovery from a spin was found to be rather high but appeared to be within the upper limits of a pilot's capabilities.
Kinoshita, Angela; Sullasi, Henry L; Asfora, Viviane K; Azevedo, Renata L; Guzzo, Pedro; Guidon, Niede; Figueiredo, Ana Maria G; Khoury, Helen; Pessis, Anne-Marie; Baffa, Oswaldo
2016-06-07
This work reports the dating of a fossil human tooth and shell found at the archaeological site Toca do Enoque located in Serra das Confusões National Park (Piauí, Brazil). Many prehistoric paintings have been found at this site. An archaeological excavation unearthed three sepulchers with human skeletons and some shells. Two Brazilian laboratories, in Ribeirão Preto (USP) and Recife (UFPE), independently performed Electron Spin Resonance (ESR) measurements to date the tooth and the shell and obtain the equivalent dose received by each sample. The laboratories determined similar ages for the tooth and the shell (~4.8 kyBP). The results agreed with C-14 dating of the shell and other samples (charcoal) collected in the same sepulcher. Therefore, this work provides a valid inter-comparison of results by two independent ESR-dating laboratories and between two dating methods; i.e., C-14 and ESR, showing the validity of ESR dating for this range of ages.
NASA Astrophysics Data System (ADS)
Sen, Sangita; Tellgren, Erik I.
2018-05-01
External non-uniform magnetic fields acting on molecules induce non-collinear spin densities and spin-symmetry breaking. This necessitates a general two-component Pauli spinor representation. In this paper, we report the implementation of a general Hartree-Fock method, without any spin constraints, for non-perturbative calculations with finite non-uniform fields. London atomic orbitals are used to ensure faster basis convergence as well as invariance under constant gauge shifts of the magnetic vector potential. The implementation has been applied to investigate the joint orbital and spin response to a field gradient—quantified through the anapole moments—of a set of small molecules. The relative contributions of orbital and spin-Zeeman interaction terms have been studied both theoretically and computationally. Spin effects are stronger and show a general paramagnetic behavior for closed shell molecules while orbital effects can have either direction. Basis set convergence and size effects of anapole susceptibility tensors have been reported. The relation of the mixed anapole susceptibility tensor to chirality is also demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, X. J.; Xue, X. L.; Guo, Z. X.
Nanoclusters usually display exotic physical and chemical properties due to their intriguing geometric structures in contrast to their bulk counterparts. By means of first-principles calculations within density functional theory, we find that heavy noble metal Pt N nanoclusters around the size N = 55 begin to prefer an open configuration, rather than previously reported close-packed icosahedron or core-shell structures. Particularly, for Pt N, the widely supposed icosahedronal magic cluster is changed to a three-atomic-layered structure with D 6h symmetry, which can be well addressed by our recently established generalized Wulff construction principle (GWCP). But, the magic number of Pt Nmore » clusters around 55 is shifted to a new odd number of 57. The high symmetric three-layered Pt-57 motif is mainly stabilized by the enhanced covalent bonding contributed by both spin-orbital coupling effect and the open d orbital (5d 96s 1) of Pt, which result in a delicate balance between the enhanced Pt-Pt covalent bonding of the interlayers and negligible d dangling bonds on the cluster edges. Our findings about Pt N clusters are also applicable to Ir N clusters, but qualitatively different from their earlier neighboring element Os and their later neighboring element Au. The magic numbers for Os and Au are even, being 56 and 58, respectively. Finally, the findings of the new odd magic number 57 are the important supplementary of the recently established GWCP.« less
Controllable synthesis of ZnxCd1-xS@ZnO core-shell nanorods with enhanced photocatalytic activity.
Xie, Shilei; Lu, Xihong; Zhai, Teng; Gan, Jiayong; Li, Wei; Xu, Ming; Yu, Minghao; Zhang, Yuan-Ming; Tong, Yexiang
2012-07-17
We report the synthesis of Zn(x)Cd(1-x)S@ZnO nanorod arrays via a facile two-step process and the implementation of these core-shell nanorods as an environmental friendly and recyclable photocatalyst for methyl orange degradation. The band gap of Zn(x)Cd(1-x)S@ZnO core-shell nanorods can be readily tunable by adjusting the ratio of Zn/Cd during the synthesis. These Zn(x)Cd(1-x)S@ZnO core-shell nanorods exhibit a high photocatalytic activity and good stability in the degradation of the methyl orange. Moreover, these films grown on FTO substrates make the collection and recycle of the photocatalyst easier. These findings may open new opportunities for the design of effective, stable, and easy-recyclable photocatalytic materials.
Physics opportunities with a fixed target experiment at the LHC (AFTER@LHC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadjidakis, Cynthia; Anselmino, Mauro; Arnaldi, R.
By extracting the beam with a bent crystal or by using an internal gas target, the multi-TeV proton and lead LHC beams allow one to perform the most energetic fixed-target experiments (AFTER@LHC) and to study p+p and p+A collisions at \\sqrt{s_NN}=115 GeV and Pb+p and Pb+A collisions at \\sqrt{s_NN}=72 GeV. Such studies would address open questions in the domain of the nucleon and nucleus partonic structure at high-x, quark-gluon plasma and, by using longitudinally or transversally polarised targets, spin physics. In this paper, we discuss the physics opportunities of a fixed-target experiment at the LHC and we report on themore » possible technical implementations of a high-luminosity experiment. We finally present feasibility studies for Drell-Yan, open heavy-flavour and quarkonium production, with an emphasis on high-x and spin physics.« less
Polarized lepton-nucleon scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, E.
1994-12-01
The author provides a summary of the proposed and published statistical (systematic) uncertainties from the world experiments on nucleon spin structure function integrals. By the time these programs are complete, there will be a vast resource of data on nucleon spin structure functions. Each program has quite different experimental approaches regarding the beams, targets, and spectrometers thus ensuring systematically independent tests of the spin structure function measurements. Since the field of spin structure function measurements began, there has been a result appearing approximately every five years. With advances in polarized target technology and high polarization in virtually all of themore » lepton beams, results are now coming out each year; this is a true signature of the growth in the field. Hopefully, the experiments will provide a consistent picture of nucleon spin structure at their completion. In summary, there are still many open questions regarding the internal spin structure of the nucleon. Tests of QCD via the investigation of the Bjorken sum rule is a prime motivator for the field, and will continue with the next round of precision experiments. The question of the origin of spin is still a fundamental problem. Researchers hope is that high-energy probes using spin will shed light on this intriguing mystery, in addition to characterizing the spin structure of the nucleon.« less
Topological Phase Transitions in the Photonic Spin Hall Effect
Kort-Kamp, Wilton Junior de Melo
2017-10-04
The recent synthesis of two-dimensional staggered materials opens up burgeoning opportunities to study optical spin-orbit interactions in semiconducting Dirac-like systems. In this work, we unveil topological phase transitions in the photonic spin Hall effect in the graphene family materials. It is shown that an external static electric field and a high frequency circularly polarized laser allow for active on-demand manipulation of electromagnetic beam shifts. The spin Hall effect of light presents a rich dependence with radiation degrees of freedom, and material properties, and features nontrivial topological properties. Finally, we discover that photonic Hall shifts are sensitive to spin and valleymore » properties of the charge carriers, providing an unprecedented pathway to investigate spintronics and valleytronics in staggered 2D semiconductors.« less
Communication: Multiple-property-based diabatization for open-shell van der Waals molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karman, Tijs; Avoird, Ad van der; Groenenboom, Gerrit C., E-mail: gerritg@theochem.ru.nl
2016-03-28
We derive a new multiple-property-based diabatization algorithm. The transformation between adiabatic and diabatic representations is determined by requiring a set of properties in both representations to be related by a similarity transformation. This set of properties is determined in the adiabatic representation by rigorous electronic structure calculations. In the diabatic representation, the same properties are determined using model diabatic states defined as products of undistorted monomer wave functions. This diabatic model is generally applicable to van der Waals molecules in arbitrary electronic states. Application to locating seams of conical intersections and collisional transfer of electronic excitation energy is demonstrated formore » O{sub 2} − O{sub 2} in low-lying excited states. Property-based diabatization for this test system included all components of the electric quadrupole tensor, orbital angular momentum, and spin-orbit coupling.« less
Analysis of X-ray adsorption edges: L 2,3 edge of FeCl 4 -
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagus, Paul S.; Nelin, Connie J.; Ilton, Eugene S.
We describe a detailed analysis of the features of the X-ray adsorption spectra at the Fe L 2,3 edge of FeCl 4. The objective of this analysis is to explain the origin of the complex features in relation to properties of the wavefunctions, especially for the excited states. These properties include spin-orbit and ligand field splittings where a novel aspect of the dipole selection rules is applied to understand the influence of these splittings on the spectra. We also explicitly take account of the intermediate coupling of the open core and valence shell electrons. Our analysis also includes comparison ofmore » theory and experiment for the Fe L 2,3 edge and comparison of theoretical predictions for the Fe 3+ cation and FeCl 4-. The electronic structure is obtained from theoretical wavefunctions for the ground and excited states.« less
A threshold gas Cerenkov detector for the spin asymmetries of the nucleon experiment
Armstrong, Whitney R.; Choi, Seonho; Kaczanowicz, Ed; ...
2015-09-26
In this study, we report on the design, construction, commissioning, and performance of a threshold gas Cerenkov counter in an open configuration, which operates in a high luminosity environment and produces a high photo-electron yield. Part of a unique open geometry detector package known as the Big Electron Telescope Array, this Cerenkov counter served to identify scattered electrons and reject produced pions in an inclusive scattering experiment known as the Spin Asymmetries of the Nucleon Experiment E07-003 at the Thomas Jefferson National Accelerator Facility (TJNAF) also known as Jefferson Lab. The experiment consisted of a measurement of double spin asymmetriesmore » A || and A ⊥ of a polarized electron beam impinging on a polarized ammonia target. The Cerenkov counter's performance is characterised by a yield of about 20 photoelectrons per electron or positron track. Thanks to this large number of photoelectrons per track, the Cerenkov counter had enough resolution to identify electron-positron pairs from the conversion of photons resulting mainly from π 0 decays.« less
Projected Shell Model Description of Positive Parity Band of 130Pr Nucleus
NASA Astrophysics Data System (ADS)
Singh, Suram; Kumar, Amit; Singh, Dhanvir; Sharma, Chetan; Bharti, Arun; Bhat, G. H.; Sheikh, J. A.
2018-02-01
Theoretical investigation of positive parity yrast band of odd-odd 130Pr nucleus is performed by applying the projected shell model. The present study is undertaken to investigate and verify the very recently observed side band in 130Pr theoretically in terms of quasi-particle (qp) configuration. From the analysis of band diagram, the yrast as well as side band are found to arise from two-qp configuration πh 11/2 ⊗ νh 11/2. The present calculations are viewed to have qualitatively reproduced the known experimental data for yrast states, transition energies, and B( M1) / B( E2) ratios of this nucleus. The recently observed positive parity side band is also reproduced by the present calculations. The energy states of the side band are predicted up to spin 25+, which is far above the known experimental spin of 18+ and this could serve as a motivational factor for future experiments. In addition, the reduced transition probability B( E2) for interband transitions has also been calculated for the first time in projected shell model, which would serve as an encouragement for other research groups in the future.
Are there near-threshold Coulomb-like Baryonia?
NASA Astrophysics Data System (ADS)
Geng, Li-Sheng; Lu, Jun-Xu; Valderrama, M. Pavon; Ren, Xiu-Lei
2018-05-01
The Λc(2590 )Σc system can exchange a pion near the mass-shell. Owing to the opposite intrinsic parity of the Λc(2590 ) and Σc, the pion is exchanged in S-wave. This gives rise to a Coulomb-like force that might be able to bind the system. If one takes into account that the pion is not exactly on the mass shell, there is a shallow S-wave state, which we generically call the Yc c(5045 ) and Yc c ¯(5045 ) for the Λc(2590 )Σc and Λc(2590 )Σ¯c systems respectively. For the baryon-antibaryon case this Coulomb-like force is independent of spin: the Yc c ¯(5045 ) baryonia will appear either in the spin S =0 or S =1 configurations with G-parities G =(-1 )L+S +1. For the baryon-baryon case the Coulomb-like force is attractive in the spin S =0 configuration, for which a doubly charmed molecule is expected to form near the threshold. This type of spectrum might be very well realized in other molecular states composed of two opposite parity hadrons with the same spin and a mass difference close to that of a pseudo-Goldstone boson, of which a few examples include the Λ (1405 )N , Λ (1520 )Σ*, Ξ (1690 )Σ , Ds0 *(2317 )D and Ds1 *(2460 )D* molecules.
NASA Astrophysics Data System (ADS)
Yang, X. F.; Tsunoda, Y.; Babcock, C.; Billowes, J.; Bissell, M. L.; Blaum, K.; Cheal, B.; Flanagan, K. T.; Garcia Ruiz, R. F.; Gins, W.; Gorges, C.; Grob, L. K.; Heylen, H.; Kaufmann, S.; Kowalska, M.; Krämer, J.; Malbrunot-Ettenauer, S.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Otsuka, T.; Papuga, J.; Sánchez, R.; Wraith, C.; Xie, L.; Yordanov, D. T.
2018-04-01
Recently reported nuclear spins and moments of neutron-rich Zn isotopes measured at ISOLDE-CERN [C. Wraith et al., Phys. Lett. B 771, 385 (2017), 10.1016/j.physletb.2017.05.085] show an uncommon behavior of the isomeric state in 73Zn. Additional details relating to the measurement and analysis of the Znm73 hyperfine structure are addressed here to further support its spin-parity assignment 5 /2+ and to estimate its half-life. A systematic investigation of this 5 /2+ isomer indicates that significant collectivity appears due to proton/neutron E 2 excitations across the proton Z = 28 and neutron N = 50 shell gaps. This is confirmed by the good agreement of the observed quadrupole moments with large scale Monte Carlo shell model calculations. In addition, potential energy surface calculations in combination with T plots reveal a triaxial shape for this isomeric state.
HDice, Highly-Polarized Low-Background Frozen-Spin HD Targets for CLAS experiments at Jefferson Lab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Xiangdong; Bass, Christopher; D'Angelo, Annalisa
2012-12-01
Large, portable frozen-spin HD (Deuterium-Hydride) targets have been developed for studying nucleon spin properties with low backgrounds. Protons and Deuterons in HD are polarized at low temperatures (~10mK) inside a vertical dilution refrigerator (Oxford Kelvinox-1000) containing a high magnetic field (up to 17T). The targets reach a frozen-spin state within a few months, after which they can be cold transferred to an In-Beam Cryostat (IBC). The IBC, a thin-walled dilution refrigerator operating either horizontally or vertically, is use with quasi-4{pi} detector systems in open geometries with minimal energy loss for exiting reaction products in nucleon structure experiments. The first applicationmore » of this advanced target system has been used for Spin Sum Rule experiments at the LEGS facility in Brookhaven National Laboratory. An improved target production and handling system has been developed at Jefferson Lab for experiments with the CEBAF Large Acceptance Spectrometer, CLAS.« less
Multiconfigurational short-range density-functional theory for open-shell systems
NASA Astrophysics Data System (ADS)
Hedegârd, Erik Donovan; Toulouse, Julien; Jensen, Hans Jørgen Aagaard
2018-06-01
Many chemical systems cannot be described by quantum chemistry methods based on a single-reference wave function. Accurate predictions of energetic and spectroscopic properties require a delicate balance between describing the most important configurations (static correlation) and obtaining dynamical correlation efficiently. The former is most naturally done through a multiconfigurational (MC) wave function, whereas the latter can be done by, e.g., perturbation theory. We have employed a different strategy, namely, a hybrid between multiconfigurational wave functions and density-functional theory (DFT) based on range separation. The method is denoted by MC short-range DFT (MC-srDFT) and is more efficient than perturbative approaches as it capitalizes on the efficient treatment of the (short-range) dynamical correlation by DFT approximations. In turn, the method also improves DFT with standard approximations through the ability of multiconfigurational wave functions to recover large parts of the static correlation. Until now, our implementation was restricted to closed-shell systems, and to lift this restriction, we present here the generalization of MC-srDFT to open-shell cases. The additional terms required to treat open-shell systems are derived and implemented in the DALTON program. This new method for open-shell systems is illustrated on dioxygen and [Fe(H2O)6]3+.
Ancient DNA analysis identifies marine mollusc shells as new metagenomic archives of the past.
Der Sarkissian, Clio; Pichereau, Vianney; Dupont, Catherine; Ilsøe, Peter C; Perrigault, Mickael; Butler, Paul; Chauvaud, Laurent; Eiríksson, Jón; Scourse, James; Paillard, Christine; Orlando, Ludovic
2017-09-01
Marine mollusc shells enclose a wealth of information on coastal organisms and their environment. Their life history traits as well as (palaeo-) environmental conditions, including temperature, food availability, salinity and pollution, can be traced through the analysis of their shell (micro-) structure and biogeochemical composition. Adding to this list, the DNA entrapped in shell carbonate biominerals potentially offers a novel and complementary proxy both for reconstructing palaeoenvironments and tracking mollusc evolutionary trajectories. Here, we assess this potential by applying DNA extraction, high-throughput shotgun DNA sequencing and metagenomic analyses to marine mollusc shells spanning the last ~7,000 years. We report successful DNA extraction from shells, including a variety of ancient specimens, and find that DNA recovery is highly dependent on their biomineral structure, carbonate layer preservation and disease state. We demonstrate positive taxonomic identification of mollusc species using a combination of mitochondrial DNA genomes, barcodes, genome-scale data and metagenomic approaches. We also find shell biominerals to contain a diversity of microbial DNA from the marine environment. Finally, we reconstruct genomic sequences of organisms closely related to the Vibrio tapetis bacteria from Manila clam shells previously diagnosed with Brown Ring Disease. Our results reveal marine mollusc shells as novel genetic archives of the past, which opens new perspectives in ancient DNA research, with the potential to reconstruct the evolutionary history of molluscs, microbial communities and pathogens in the face of environmental changes. Other future applications include conservation of endangered mollusc species and aquaculture management. © 2017 John Wiley & Sons Ltd.
Magnetic field-temperature phase diagram of multiferroic [(CH3)2NH2] Mn (HCOO) 3
NASA Astrophysics Data System (ADS)
Clune, A. J.; Hughey, K. D.; Lee, C.; Abhyankar, N.; Ding, X.; Dalal, N. S.; Whangbo, M.-H.; Singleton, J.; Musfeldt, J. L.
2017-09-01
We combined pulsed field magnetization and first-principles spin-density calculations to reveal the magnetic field-temperature phase diagram and spin state character in multiferroic [(CH3)2NH2] Mn (HCOO) 3 . Despite similarities with the rare earth manganites, the phase diagram is analogous to other Mn-based quantum magnets with a 0.31 T spin flop, a 15.3 T transition to the fully polarized state, and short-range correlations that persist above the ordering temperature. The experimentally accessible saturation field opens the door to exploration of the high-field phase.
Electrical properties study under radiation of the 3D-open-shell-electrode detector
NASA Astrophysics Data System (ADS)
Liu, Manwen; Li, Zheng
2018-05-01
Since the 3D-Open-Shell-Electrode Detector (3DOSED) is proposed and the structure is optimized, it is important to study 3DOSED's electrical properties to determine the detector's working performance, especially in the heavy radiation environments, like the Large Hadron Collider (LHC) and it's upgrade, the High Luminosity (HL-LHC) at CERN. In this work, full 3D technology computer-aided design (TCAD) simulations have been done on this novel silicon detector structure. Simulated detector properties include the electric field distribution, the electric potential distribution, current-voltage (I-V) characteristics, capacitance-voltage (C-V) characteristics, charge collection property, and full depletion voltage. Through the analysis of calculations and simulation results, we find that the 3DOSED's electric field and potential distributions are very uniform, even in the tiny region near the shell openings with little perturbations. The novel detector fits the designing purpose of collecting charges generated by particle/light in a good fashion with a well defined funnel shape of electric potential distribution that makes these charges drifting towards the center collection electrode. Furthermore, by analyzing the I-V, C-V, charge collection property and full depletion voltage, we can expect that the novel detector will perform well, even in the heavy radiation environments.
Towards a bulk description of higher spin SYK
NASA Astrophysics Data System (ADS)
González, Hernán A.; Grumiller, Daniel; Salzer, Jakob
2018-05-01
We consider on the bulk side extensions of the Sachdev-Ye-Kitaev (SYK) model to Yang-Mills and higher spins. To this end we study generalizations of the Jackiw-Teitelboim (JT) model in the BF formulation. Our main goal is to obtain generalizations of the Schwarzian action, which we achieve in two ways: by considering the on-shell action supplemented by suitable boundary terms compatible with all symmetries, and by applying the Lee-Wald-Zoupas formalism to analyze the symplectic structure of dilaton gravity. We conclude with a discussion of the entropy (including log-corrections from higher spins) and a holographic dictionary for the generalized SYK/JT correspondence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutzler, F.W.; Painter, G.S.
1992-02-15
A fully self-consistent series of nonlocal (gradient) density-functional calculations has been carried out using the augmented-Gaussian-orbital method to determine the magnitude of gradient corrections to the potential-energy curves of the first-row diatomics, Li{sub 2} through F{sub 2}. Both the Langreth-Mehl-Hu and the Perdew-Wang gradient-density functionals were used in calculations of the binding energy, bond length, and vibrational frequency for each dimer. Comparison with results obtained in the local-spin-density approximation (LSDA) using the Vosko-Wilk-Nusair functional, and with experiment, reveals that bond lengths and vibrational frequencies are rather insensitive to details of the gradient functionals, including self-consistency effects, but the gradient correctionsmore » reduce the overbinding commonly observed in the LSDA calculations of first-row diatomics (with the exception of Li{sub 2}, the gradient-functional binding-energy error is only 50--12 % of the LSDA error). The improved binding energies result from a large differential energy lowering, which occurs in open-shell atoms relative to the diatomics. The stabilization of the atom arises from the use of nonspherical charge and spin densities in the gradient-functional calculations. This stabilization is negligibly small in LSDA calculations performed with nonspherical densities.« less
Excitation of propagating spin waves by pure spin current
NASA Astrophysics Data System (ADS)
Demokritov, Sergej
Recently it was demonstrated that pure spin currents can be utilized to excite coherent magnetization dynamics, which enables development of novel magnetic nano-oscillators. Such oscillators do not require electric current flow through the active magnetic layer, which can help to reduce the Joule power dissipation and electromigration. In addition, this allows one to use insulating magnetic materials and provides an unprecedented geometric flexibility. The pure spin currents can be produced by using the spin-Hall effect (SHE). However, SHE devices have a number of shortcomings. In particular, efficient spin Hall materials exhibit a high resistivity, resulting in the shunting of the driving current through the active magnetic layer and a significant Joule heating. These shortcomings can be eliminated in devices that utilize spin current generated by the nonlocal spin-injection (NLSI) mechanism. Here we review our recent studies of excitation of magnetization dynamics and propagating spin waves by using NLSI. We show that NLSI devices exhibit highly-coherent dynamics resulting in the oscillation linewidth of a few MHz at room temperature. Thanks to the geometrical flexibility of the NLSI oscillators, one can utilize dipolar fields in magnetic nano-patterns to convert current-induced localized oscillations into propagating spin waves. The demonstrated systems exhibit efficient and controllable excitation and directional propagation of coherent spin waves characterized by a large decay length. The obtained results open new perspectives for the future-generation electronics using electron spin degree of freedom for transmission and processing of information on the nanoscale.
Hybrid excitations due to crystal field, spin-orbit coupling, and spin waves in LiFePO4
NASA Astrophysics Data System (ADS)
Yiu, Yuen; Le, Manh Duc; Toft-Peterson, Rasmus; Ehlers, Georg; McQueeney, Robert J.; Vaknin, David
2017-03-01
We report on the spin waves and crystal field excitations in single crystal LiFePO4 by inelastic neutron scattering over a wide range of temperatures, below and above the antiferromagnetic transition of this system. In particular, we find extra excitations below TN=50 K that are nearly dispersionless and are most intense around magnetic zone centers. We show that these excitations correspond to transitions between thermally occupied excited states of Fe2 + due to splitting of the S =2 levels that arise from the crystal field and spin-orbit interactions. These excitations are further amplified by the highly distorted nature of the oxygen octahedron surrounding the iron atoms. Above TN, magnetic fluctuations are observed up to at least 720 K, with an additional inelastic excitation around 4 meV, which we attribute to single-ion effects, as its intensity weakens slightly at 720 K compared to 100 K, which is consistent with the calculated cross sections using a single-ion model. Our theoretical analysis, using the MF-RPA model, provides both detailed spectra of the Fe d shell and estimates of the average ordered magnetic moment and TN. By applying the MF-RPA model to a number of existing spin-wave results from other Li M PO4 (M =Mn , Co, and Ni), we are able to obtain reasonable predictions for the moment sizes and transition temperatures.
NASA Astrophysics Data System (ADS)
Niu, Chengrong; Hu, Jie; Li, Yinfeng; Leng, Jinghang; Li, Songjun
2018-03-01
In the present work, a thermoresponsive nanorattle with a Ag nanoparticle (NP) core (one catalyst in the nanorattle), and a poly(N-isopropylacrylamide) shell was developed. An imidazole group was grafted on the polymer shell by copolymerization as the other catalyst. Owing to the catalytic activities of the imidazole group and Ag NP with regards to hydrolysis and reduction, respectively, this nanorattle exhibited tandem-reaction catalytic abilities. In addition, because of the shrinkage of the poly(N-isopropylacrylamide) shell at high temperatures, the tandem reaction could be controlled to stop at the first reaction step. That is to say, only the hydrolysis reaction was catalyzed by the imidazole group being grafted on the surface of the shell. The reduction step in the tandem reaction catalyzed by the Ag particle, however, was switched off by the shrinkage of the poly(N-isopropylacrylamide) shell. This protocol opens up an opportunity to develop controllable catalysts for complicated chemical processes.
Perspective: Interface generation of spin-orbit torques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.
We present that most of the modern spintronics developments rely on the manipulation of magnetization states via electric currents, which started with the discovery of spin transfer torque effects 20 years ago. By now, it has been realized that spin-orbit coupling provides a particularly efficient pathway for generating spin torques from charge currents. At the same time, spin-orbit effects can be enhanced at interfaces, which opens up novel device concepts. Here, we discuss two examples of such interfacial spin-orbit torques, namely, systems with inherently two-dimensional materials and metallic bilayers with strong Rashba spin-orbit coupling at their interfaces. We show howmore » ferromagnetic resonance excited by spin-orbit torques can provide information about the underlying mechanisms. In addition, this article provides a brief overview of recent developments with respect to interfacial spin-orbit torques and an outlook of still open questions.« less
Perspective: Interface generation of spin-orbit torques
Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.; ...
2016-11-14
We present that most of the modern spintronics developments rely on the manipulation of magnetization states via electric currents, which started with the discovery of spin transfer torque effects 20 years ago. By now, it has been realized that spin-orbit coupling provides a particularly efficient pathway for generating spin torques from charge currents. At the same time, spin-orbit effects can be enhanced at interfaces, which opens up novel device concepts. Here, we discuss two examples of such interfacial spin-orbit torques, namely, systems with inherently two-dimensional materials and metallic bilayers with strong Rashba spin-orbit coupling at their interfaces. We show howmore » ferromagnetic resonance excited by spin-orbit torques can provide information about the underlying mechanisms. In addition, this article provides a brief overview of recent developments with respect to interfacial spin-orbit torques and an outlook of still open questions.« less
A possible layout of the Spin Physics Detector with toroid magnet.
NASA Astrophysics Data System (ADS)
Nagaytsev, A. P.
2017-12-01
The Spin Physics Detector project for carrying out experiments at the 2-nd interaction point of the NICA collider is under preparation. The design of the collider allows reaching collision energy in the c.m.s. as high as √s = 26 GeV for polarized proton-proton collisions and √s = 12 GeV for polarized deuteron-deuteron collisons with a luminosity of up to 1032 cm2 s-1 (for protons) and 1031cm2s-1 for deuterons. Such a high luminosity of polarized beams interactions opens unique possibilities to investigate a variety of polarization phenomena including those related to the nucleon spin structure. A proposal for the experimental set-up based on a toroid type magnet is presented.
New type of quantum spin Hall insulators in hydrogenated PbSn thin films
Liu, Liang; Qin, Hongwei; Hu, Jifan
2017-01-01
The realization of a quantum spin Hall (QSH) insulator working at high temperature is of both scientific and technical interest since it supports spin-polarized and dssipationless edge states. Based on first-principle calculations, we predicted that the two-dimensional (2D) binary compound of lead and tin (PbSn) in a buckled honeycomb framework can be tuned into a topological insulator with huge a band gap and structural stability via hydrogenation or growth on special substrates. This heavy-element-based structure is sufficiently ductile to survive the 18 ps molecular dynamics (MD) annealing to 400 K, and the band gap opened by strong spin-orbital-coupling (SOC) is as large as 0.7 eV. These characteristics indicate that hydrogenated PbSn (H-PbSn) is an excellent platform for QSH realization at high temperature. PMID:28218297
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lustikova, J., E-mail: lustikova@imr.tohoku.ac.jp; Shiomi, Y.; Handa, Y.
2015-02-21
We report on the deformation of microwave absorption spectra and of the inverse spin Hall voltage signals in thin film bilayers of yttrium iron garnet (YIG) and platinum at high microwave power levels in a 9.45-GHz TE{sub 011} cavity. As the microwave power increases from 0.15 to 200 mW, the resonance field shifts to higher values, and the initially Lorentzian spectra of the microwave absorption intensity as well as the inverse spin Hall voltage signals become asymmetric. The contributions from opening of the magnetization precession cone and heating of YIG cannot well reproduce the data. Control measurements of inverse spinmore » Hall voltages on thin-film YIG|Pt systems with a range of line widths underscore the role of spin-wave excitations in spectral deformation.« less
NASA Astrophysics Data System (ADS)
Nikolaev, M. A.; Klapdor-Kleingrothaus, H. V.
1993-06-01
We present calculations of the nuclear from factors for spin-dependent elastic scattering of dark matter WIMPs from123Te and131Xe isotopes, proposed to be used for dark matter detection. A method based on the theory of finite Fermi systems was used to describe the reduction of the single-particle spin-dependent matrix elements in the nuclear medium. Nucleon single-particle states were calculated in a realistic shell model potential; pairing effects were treated within the BCS model. The coupling of the lowest single-particle levels in123Te to collective 2+ excitations of the core was taken into account phenomenologically. The calculated nuclear form factors are considerably less then the single-particle ones for low momentum transfer. At high momentum transfer some dynamical amplification takes place due to the pion exchange term in the effective nuclear interaction. But as the momentum transfer increases, the difference disappears, the momentum transfer increases and the quenching effect disappears. The shape of the nuclear form factor for the131Xe isotope differs from the one obtained using an oscillator basis.
Seven-quasiparticle bands in Ce139
NASA Astrophysics Data System (ADS)
Chanda, Somen; Bhattacharjee, Tumpa; Bhattacharyya, Sarmishtha; Mukherjee, Anjali; Basu, Swapan Kumar; Ragnarsson, I.; Bhowmik, R. K.; Muralithar, S.; Singh, R. P.; Ghugre, S. S.; Pramanik, U. Datta
2009-05-01
The high spin states in the Ce139 nucleus have been studied by in-beam γ-spectroscopic techniques using the reaction Te130(C12,3n)Ce139 at Ebeam=65 MeV. A gamma detector array, consisting of five Compton-suppressed Clover detectors was used for coincidence measurements. 15 new levels have been proposed and 28 new γ transitions have been assigned to Ce139 on the basis of γγ coincidence data. The level scheme of Ce139 has been extended above the known 70 ns (19)/(2)- isomer up to ~6.1 MeV in excitation energy and (35)/(2)ℏ in spin. The spin-parity assignments for most of the newly proposed levels have been made using the deduced Directional Correlation from Oriented states of nuclei (DCO ratio) and the Polarization Directional Correlation from Oriented states (PDCO ratio) for the de-exciting transitions. The observed level structure has been compared with a large basis shell model calculation and also with the predictions from cranked Nilsson-Strutinsky (CNS) calculations. A general consistency has been observed between these two different theoretical approaches.
Possibility to realize spin-orbit-induced correlated physics in iridium fluorides
NASA Astrophysics Data System (ADS)
Rossi, M.; Retegan, M.; Giacobbe, C.; Fumagalli, R.; Efimenko, A.; Kulka, T.; Wohlfeld, K.; Gubanov, A. I.; Moretti Sala, M.
2017-06-01
Recent theoretical predictions of "unprecedented proximity" of the electronic ground state of iridium fluorides to the SU(2) symmetric jeff=1 /2 limit, relevant for superconductivity in iridates, motivated us to investigate their crystal and electronic structure. To this aim, we performed high-resolution x-ray powder diffraction, Ir L3-edge resonant inelastic x-ray scattering, and quantum chemical calculations on Rb2[IrF6] and other iridium fluorides. Our results are consistent with the Mott insulating scenario predicted by Birol and Haule [Phys. Rev. Lett. 114, 096403 (2015), 10.1103/PhysRevLett.114.096403], but we observe a sizable deviation of the jeff=1 /2 state from the SU(2) symmetric limit. Interactions beyond the first coordination shell of iridium are negligible, hence the iridium fluorides do not show any magnetic ordering down to at least 20 K. A larger spin-orbit coupling in iridium fluorides compared to oxides is ascribed to a reduction of the degree of covalency, with consequences on the possibility to realize spin-orbit-induced strongly correlated physics in iridium fluorides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eriksen, Janus J., E-mail: janusje@chem.au.dk; Jørgensen, Poul; Matthews, Devin A.
The accuracy at which total energies of open-shell atoms and organic radicals may be calculated is assessed for selected coupled cluster perturbative triples expansions, all of which augment the coupled cluster singles and doubles (CCSD) energy by a non-iterative correction for the effect of triple excitations. Namely, the second- through sixth-order models of the recently proposed CCSD(T–n) triples series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)] are compared to the acclaimed CCSD(T) model for both unrestricted as well as restricted open-shell Hartree-Fock (UHF/ROHF) reference determinants. By comparing UHF- and ROHF-based statistical results for a test setmore » of 18 modest-sized open-shell species with comparable RHF-based results, no behavioral differences are observed for the higher-order models of the CCSD(T–n) series in their correlated descriptions of closed- and open-shell species. In particular, we find that the convergence rate throughout the series towards the coupled cluster singles, doubles, and triples (CCSDT) solution is identical for the two cases. For the CCSD(T) model, on the other hand, not only its numerical consistency, but also its established, yet fortuitous cancellation of errors breaks down in the transition from closed- to open-shell systems. The higher-order CCSD(T–n) models (orders n > 3) thus offer a consistent and significant improvement in accuracy relative to CCSDT over the CCSD(T) model, equally for RHF, UHF, and ROHF reference determinants, albeit at an increased computational cost.« less
Spin-polarized scanning tunneling microscopy with quantitative insights into magnetic probes
NASA Astrophysics Data System (ADS)
Phark, Soo-hyon; Sander, Dirk
2017-04-01
Spin-polarized scanning tunneling microscopy and spectroscopy (spin-STM/S) have been successfully applied to magnetic characterizations of individual nanostructures. Spin-STM/S is often performed in magnetic fields of up to some Tesla, which may strongly influence the tip state. In spite of the pivotal role of the tip in spin-STM/S, the contribution of the tip to the differential conductance d I/d V signal in an external field has rarely been investigated in detail. In this review, an advanced analysis of spin-STM/S data measured on magnetic nanoislands, which relies on a quantitative magnetic characterization of tips, is discussed. Taking advantage of the uniaxial out-of-plane magnetic anisotropy of Co bilayer nanoisland on Cu(111), in-field spin-STM on this system has enabled a quantitative determination, and thereby, a categorization of the magnetic states of the tips. The resulting in-depth and conclusive analysis of magnetic characterization of the tip opens new venues for a clear-cut sub-nanometer scale spin ordering and spin-dependent electronic structure of the non-collinear magnetic state in bilayer high Fe nanoislands on Cu(111).
Solution-processed organic spin-charge converter.
Ando, Kazuya; Watanabe, Shun; Mooser, Sebastian; Saitoh, Eiji; Sirringhaus, Henning
2013-07-01
Conjugated polymers and small organic molecules are enabling new, flexible, large-area, low-cost optoelectronic devices, such as organic light-emitting diodes, transistors and solar cells. Owing to their exceptionally long spin lifetimes, these carbon-based materials could also have an important impact on spintronics, where carrier spins play a key role in transmitting, processing and storing information. However, to exploit this potential, a method for direct conversion of spin information into an electric signal is indispensable. Here we show that a pure spin current can be produced in a solution-processed conducting polymer by pumping spins through a ferromagnetic resonance in an adjacent magnetic insulator, and that this generates an electric voltage across the polymer film. We demonstrate that the experimental characteristics of the generated voltage are consistent with it being generated through an inverse spin Hall effect in the conducting polymer. In contrast with inorganic materials, the conducting polymer exhibits coexistence of high spin-current to charge-current conversion efficiency and long spin lifetimes. Our discovery opens a route for a new generation of molecular-structure-engineered spintronic devices, which could lead to important advances in plastic spintronics.
Robust spin-valley polarization in commensurate Mo S2 /graphene heterostructures
NASA Astrophysics Data System (ADS)
Du, Luojun; Zhang, Qian; Gong, Benchao; Liao, Mengzhou; Zhu, Jianqi; Yu, Hua; He, Rui; Liu, Kai; Yang, Rong; Shi, Dongxia; Gu, Lin; Yan, Feng; Zhang, Guangyu; Zhang, Qingming
2018-03-01
The investigation and control of quantum degrees of freedom (DoFs) of carriers lie at the heart of condensed-matter physics and next-generation electronics/optoelectronics. van der Waals heterostructures stacked from distinct two-dimensional (2D) crystals offer an unprecedented platform for combining the superior properties of individual 2D materials and manipulating spin, layer, and valley DoFs. Mo S2 /graphene heterostructures, harboring prominent spin-transport properties of graphene, giant spin-orbit coupling, and spin-valley polarization of Mo S2 , are predicted as a perfect venue for optospintronics. Here, we report the epitaxial growth of commensurate Mo S2 on graphene with high quality by chemical vapor deposition, and demonstrate robust temperature-independent spin-valley polarization at off-resonant excitation. We further show that the helicity of B exciton is larger than that of A exciton, allowing the manipulation of spin bits in the commensurate heterostructures by both optical helicity and wavelength. Our results open a window for controlling spin DoF by light and pave a way for taking spin qubits as information carriers in the next-generation valley-controlled optospintronics.
Daul, Claude
2014-09-01
Despite the important growth of ab initio and computational techniques, ligand field theory in molecular science or crystal field theory in condensed matter offers the most intuitive way to calculate multiplet energy levels arising from systems with open shells d and/or f electrons. Over the past decade we have developed a ligand field treatment of inorganic molecular modelling taking advantage of the dominant localization of the frontier orbitals within the metal-sphere. This feature, which is observed in any inorganic coordination compound, especially if treated by Density Functional Theory calculation, allows the determination of the electronic structure and properties with a surprising good accuracy. In ligand field theory, the theoretical concepts consider only a single atom center; and treat its interaction with the chemical environment essentially as a perturbation. Therefore success in the simple ligand field theory is no longer questionable, while the more accurate molecular orbital theory does in general over-estimate the metal-ligand covalence, thus yields wave functions that are too delocalized. Although LF theory has always been popular as a semi-empirical method when dealing with molecules of high symmetry e.g. cubic symmetry where the number of parameters needed is reasonably small (3 or 5), this is no more the case for molecules without symmetry and involving both an open d- and f-shell (# parameters ∼90). However, the combination of LF theory and Density Functional (DF) theory that we introduced twenty years ago can easily deal with complex molecules of any symmetry with two and more open shells. The accuracy of these predictions from 1(st) principles achieves quite a high accuracy (<5%) in terms of states energies. Hence, this approach is well suited to predict the magnetic and photo-physical properties arbitrary molecules and materials prior to their synthesis, which is the ultimate goal of each computational chemist. We will illustrate the performance of LFDFT for the design of phosphors that produces light similar to our sun and predict the magnetic anisotropy energy of single ion magnets.
Microscopic study of spin cut-off factors of nuclear level densities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gholami, M.; Kildir, M.; Behkami, A. N.
Level densities and spin cut-off factors have been investigated within the microscopic approach based on the BCS Hamiltonian. In particular, the spin cut-off parameters have been calculated at neutron binding energies over a large range of nuclear mass using the BCS theory. The spin cut-off parameters {sigma}{sup 2}(E) have also been obtained from the Gilbert and Cameron expression and from rigid body calculations. The results were compared with their corresponding macroscopic values. It was found that the values of {sigma}{sup 2}(E) did not increase smoothly with A as expected based on macroscopic theory. Instead, the values of {sigma}{sup 2}(E) showmore » structure reflecting the angular momentum of the shell model orbitals near the Fermi energy.« less
All-Electrical Spin Field Effect Transistor in van der Waals Heterostructures at Room Temperature
NASA Astrophysics Data System (ADS)
Dankert, André; Dash, Saroj
Spintronics aims to exploit the spin degree of freedom in solid state devices for data storage and information processing. Its fundamental concepts (creation, manipulation and detection of spin polarization) have been demonstrated in semiconductors and spin transistor structures using electrical and optical methods. However, an unsolved challenge is the realization of all-electrical methods to control the spin polarization in a transistor manner at ambient temperatures. Here we combine graphene and molybdenum disulfide (MoS2) in a van der Waals heterostructure to realize a spin field-effect transistor (spin-FET) at room temperature. These two-dimensional crystals offer a unique platform due to their contrasting properties, such as weak spin-orbit coupling (SOC) in graphene and strong SOC in MoS2. The gate-tuning of the Schottky barrier at the MoS2/graphene interface and MoS2 channel yields spins to interact with high SOC material and allows us to control the spin polarization and lifetime. This all-electrical spin-FET at room temperature is a substantial step in the field of spintronics and opens a new platform for testing a plethora of exotic physical phenomena, which can be key building blocks in future device architectures.
Voltage Control of Rare-Earth Magnetic Moments at the Magnetic-Insulator-Metal Interface
NASA Astrophysics Data System (ADS)
Leon, Alejandro O.; Cahaya, Adam B.; Bauer, Gerrit E. W.
2018-01-01
The large spin-orbit interaction in the lanthanides implies a strong coupling between their internal charge and spin degrees of freedom. We formulate the coupling between the voltage and the local magnetic moments of rare-earth atoms with a partially filled 4 f shell at the interface between an insulator and a metal. The rare-earth-mediated torques allow the power-efficient control of spintronic devices by electric-field-induced ferromagnetic resonance and magnetization switching.
Single-ion 4f element magnetism: an ab-initio look at Ln(COT)2(-).
Gendron, Frédéric; Pritchard, Benjamin; Bolvin, Hélène; Autschbach, Jochen
2015-12-14
The electron densities associated with the Ln 4f shell, and spin and orbital magnetizations ('magnetic moment densities'), are investigated for the Ln(COT)2(-) series. The densities are obtained from ab-initio calculations including spin-orbit coupling. For Ln = Ce, Pr the magnetizations are also derived from crystal field models and shown to agree with the ab-initio results. Analysis of magnetizations from ab-initio calculations may be useful in assisting research on single molecule magnets.
The role of spinning electrons in paramagnetic phenomena
NASA Technical Reports Server (NTRS)
Bose, D. M.
1986-01-01
An attempt is made to explain paramagnetic phenomena without assuming the orientation of a molecule or ion in a magnetic field. Only the spin angular momentum is assumed to be responsible. A derivative of the Gurie-Langevin law and the magnetic moments of ions are given as a function of the number of electrons in an inner, incomplete shell. An explanation of Gerlach's experiments with iron and nickel vapors is attempted. An explanation of magnetomechanical experiments with ferromagne elements is given.
Synthesis of Various Metal/TiO2 Core/shell Nanorod Arrays
NASA Astrophysics Data System (ADS)
Zhu, Wei; Wang, Guan-zhong; Hong, Xun; Shen, Xiao-shuang
2011-02-01
We present a general approach to fabricate metal/TiO2 core/shell nanorod structures by two-step electrodeposition. Firstly, TiO2 nanotubes with uniform wall thickness are prepared in anodic aluminum oxide (AAO) membranes by electrodeposition. The wall thickness of the nanotubes could be easily controlled by modulating the deposition time, and their outer diameter and length are only limited by the channel diameter and the thickness of the AAO membranes, respectively. The nanotubes' tops prepared by this method are open, while the bottoms are connected directly with the Au film at the back of the AAO membranes. Secondly, Pd, Cu, and Fe elements are filled into the TiO2 nanotubes to form core/shell structures. The core/shell nanorods prepared by this two-step process are high density and free-standing, and their length is dependent on the deposition time.
Ab initio results for intermediate-mass, open-shell nuclei
NASA Astrophysics Data System (ADS)
Baker, Robert B.; Dytrych, Tomas; Launey, Kristina D.; Draayer, Jerry P.
2017-01-01
A theoretical understanding of nuclei in the intermediate-mass region is vital to astrophysical models, especially for nucleosynthesis. Here, we employ the ab initio symmetry-adapted no-core shell model (SA-NCSM) in an effort to push first-principle calculations across the sd-shell region. The ab initio SA-NCSM's advantages come from its ability to control the growth of model spaces by including only physically relevant subspaces, which allows us to explore ultra-large model spaces beyond the reach of other methods. We report on calculations for 19Ne and 20Ne up through 13 harmonic oscillator shells using realistic interactions and discuss the underlying structure as well as implications for various astrophysical reactions. This work was supported by the U.S. NSF (OCI-0904874 and ACI -1516338) and the U.S. DOE (DE-SC0005248), and also benefitted from the Blue Waters sustained-petascale computing project and high performance computing resources provided by LSU.
The integrable quantum group invariant A2n-1(2) and Dn+1(2) open spin chains
NASA Astrophysics Data System (ADS)
Nepomechie, Rafael I.; Pimenta, Rodrigo A.; Retore, Ana L.
2017-11-01
A family of A2n(2) integrable open spin chains with Uq (Cn) symmetry was recently identified in arxiv:arXiv:1702.01482. We identify here in a similar way a family of A2n-1(2) integrable open spin chains with Uq (Dn) symmetry, and two families of Dn+1(2) integrable open spin chains with Uq (Bn) symmetry. We discuss the consequences of these symmetries for the degeneracies and multiplicities of the spectrum. We propose Bethe ansatz solutions for two of these models, whose completeness we check numerically for small values of n and chain length N. We find formulas for the Dynkin labels in terms of the numbers of Bethe roots of each type, which are useful for determining the corresponding degeneracies. In an appendix, we briefly consider Dn+1(2) chains with other integrable boundary conditions, which do not have quantum group symmetry.
Tidal deformability and I-Love-Q relations for gravastars with polytropic thin shells
NASA Astrophysics Data System (ADS)
Uchikata, Nami; Yoshida, Shijun; Pani, Paolo
2016-09-01
The moment of inertia, the spin-induced quadrupole moment, and the tidal Love number of neutron-star and quark-star models are related through some relations which depend only mildly on the stellar equation of state. These "I-Love-Q" relations have important implications for astrophysics and gravitational-wave astronomy. An interesting problem is whether similar relations hold for other compact objects and how they approach the black hole limit. To answer these questions, here we investigate the deformation properties of a large class of thin-shell gravastars, which are exotic compact objects that do not possess an event horizon nor a spacetime singularity. Working in a small-spin and small-tidal field expansion, we calculate the moment of inertia, the quadrupole moment, and the (quadrupolar electric) tidal Love number of gravastars with a polytropic thin shell. The I-Love-Q relations of a thin-shell gravastar are drastically different from those of an ordinary neutron star. The Love number and quadrupole moment for less compact models have the opposite sign relative to those of ordinary neutron stars, and the I-Love-Q relations continuously approach the black hole limit. We consider a variety of polytropic equations of state for the matter shell and find no universality in the I-Love-Q relations. However, we cannot deny the possibility that, similarly to the neutron-star case, an approximate universality might emerge for a limited class of equations of state. Finally, we discuss how a measurement of the tidal deformability from the gravitational-wave detection of a compact-binary inspiral can be used to constrain exotic compact objects like gravastars.
Template-free synthesis of ordered ZnO@ZnS core-shell arrays for high performance supercapacitors.
Yan, Hailong; Li, Tong; Lu, Yang; Cheng, Jinbing; Peng, Tao; Xu, Jinyou; Yang, Linying; Hua, Xiangqiang; Liu, Yunxin; Luo, Yongsong
2016-11-28
In this article, ordered ZnO@ZnS core-shell structures have been produced on a stainless mesh by a two-step approach without using a template. ZnO nanorods fabricated by a chemical vapor method are transferred into a 50 ml autoclave for a second stage ion-exchange reaction followed by heating at 120 °C for 4-16 h. The ZnO core is prepared as the conducting channel and ZnS as the active material. Such unique architecture exhibits remarkable electrochemical performance with high capacitance and desirable cycle life. When evaluating as the electrode for supercapacitors, the ZnO@ZnS core-shell structure delivers a high specific capacitance of 603.8 F g -1 at a current density of 2 A g -1 , with 9.4% capacitance loss after cycling 3000 times. The fabrication strategy presented here is simple and cost-effective, which can open new avenues for large-scale applications of the novel materials in energy storage.
Watanabe, H; Lorusso, G; Nishimura, S; Otsuka, T; Ogawa, K; Xu, Z Y; Sumikama, T; Söderström, P-A; Doornenbal, P; Li, Z; Browne, F; Gey, G; Jung, H S; Taprogge, J; Vajta, Zs; Wu, J; Yagi, A; Baba, H; Benzoni, G; Chae, K Y; Crespi, F C L; Fukuda, N; Gernhäuser, R; Inabe, N; Isobe, T; Jungclaus, A; Kameda, D; Kim, G D; Kim, Y K; Kojouharov, I; Kondev, F G; Kubo, T; Kurz, N; Kwon, Y K; Lane, G J; Moon, C-B; Montaner-Pizá, A; Moschner, K; Naqvi, F; Niikura, M; Nishibata, H; Nishimura, D; Odahara, A; Orlandi, R; Patel, Z; Podolyák, Zs; Sakurai, H; Schaffner, H; Simpson, G S; Steiger, K; Suzuki, H; Takeda, H; Wendt, A; Yoshinaga, K
2014-07-25
A new isomer with a half-life of 23.0(8) ms has been identified at 2406 keV in (126)Pd and is proposed to have a spin and parity of 10(+) with a maximally aligned configuration comprising two neutron holes in the 1h(11/2) orbit. In addition to an internal-decay branch through a hindered electric octupole transition, β decay from the long-lived isomer was observed to populate excited states at high spins in (126)Ag. The smaller energy difference between the 10(+) and 7(-) isomers in (126)Pd than in the heavier N=80 isotones can be interpreted as being ascribed to the monopole shift of the 1h(11/2) neutron orbit. The effects of the monopole interaction on the evolution of single-neutron energies below (132)Sn are discussed in terms of the central and tensor forces.
A Study of Multi-Λ Hypernuclei Within Spherical Relativistic Mean-Field Approach
NASA Astrophysics Data System (ADS)
Rather, Asloob A.; Ikram, M.; Usmani, A. A.; Kumar, B.; Patra, S. K.
2017-12-01
This research article is a follow up of an earlier work by M. Ikram et al., reported in Int. J. Mod. Phys. E 25, 1650103 (2016) where we searched for Λ magic numbers in experimentally confirmed doubly magic nucleonic cores in light to heavy mass region (i.e., 16 O-208 P b) by injecting Λ's into them. In the present manuscript, working within the state of the art relativistic mean field theory with the inclusion of Λ N and ΛΛ interaction in addition to nucleon-meson NL 3∗ effective force, we extend the search of lambda magic numbers in multi- Λ hypernuclei using the predicted doubly magic nucleonic cores 292120, 304120, 360132, 370132, 336138, 396138 of the elusive superheavy mass regime. In analogy to well established signatures of magicity in conventional nuclear theory, the prediction of hypernuclear magicities is made on the basis of one-, two- Λ separation energy ( S Λ, S 2Λ) and two lambda shell gaps ( δ 2Λ) in multi- Λ hypernuclei. The calculations suggest that the Λ numbers 92, 106, 126, 138, 184, 198, 240, and 258 might be the Λ shell closures after introducing the Λ's in the elusive superheavy nucleonic cores. The appearance of new lambda shell closures apart from the nucleonic ones predicted by various relativistic and non-relativistic theoretical investigations can be attributed to the relatively weak strength of the spin-orbit coupling in hypernuclei compared to normal nuclei. Further, the predictions made in multi- Λ hypernuclei under study resembles closely the magic numbers in conventional nuclear theory suggested by various relativistic and non-relativistic theoretical models. Moreover, in support of the Λ shell closure, the investigation of Λ pairing energy and effective Λ pairing gap has been made. We noticed a very close agreement of the predicted Λ shell closures with the survey made on the pretext of S Λ, S 2Λ, and δ 2Λ except for the appearance of magic numbers corresponding to Λ = 156 which manifest in Λ effective pairing gap and pairing energy. Also, the lambda single-particle spectrum is analyzed to mark the energy shell gap for further strengthening the predictions made on the basis of separation energies and shell gaps. Lambda and nucleon spin-orbit interactions are analyzed to confirm the reduction in magnitude of Λ spin-orbit interaction compared to the nucleonic case, however the interaction profile is similar in both the cases. Lambda and nucleon density distributions have been investigated to reveal the impurity effect of Λ hyperons which make the depression of central density of the core of superheavy doubly magic nuclei. Lambda skin structure is also seen.
Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes.
Qian, Fang; Gradecak, Silvija; Li, Yat; Wen, Cheng-Yen; Lieber, Charles M
2005-11-01
We report the growth and characterization of core/multishell nanowire radial heterostructures, and their implementation as efficient and synthetically tunable multicolor nanophotonic sources. Core/multishell nanowires were prepared by metal-organic chemical vapor deposition with an n-GaN core and InxGa1-xN/GaN/p-AlGaN/p-GaN shells, where variation of indium mole fraction is used to tune emission wavelength. Cross-sectional transmission electron microscopy studies reveal that the core/multishell nanowires are dislocation-free single crystals with a triangular morphology. Energy-dispersive X-ray spectroscopy clearly shows shells with distinct chemical compositions, and quantitatively confirms that the thickness and composition of individual shells can be well controlled during synthesis. Electrical measurements show that the p-AlGaN/p-GaN shell structure yields reproducible hole conduction, and electroluminescence measurements demonstrate that in forward bias the core/multishell nanowires function as light-emitting diodes, with tunable emission from 365 to 600 nm and high quantum efficiencies. The ability to synthesize rationally III-nitride core/multishell nanowire heterostructures opens up significant potential for integrated nanoscale photonic systems, including multicolor lasers.
Wu, Shih-Ying; Chen, Cherry C; Tung, Yao-Sheng; Olumolade, Oluyemi O; Konofagou, Elisa E
2015-08-28
Lipid-shelled microbubbles have been used in ultrasound-mediated drug delivery. The physicochemical properties of the microbubble shell could affect the delivery efficiency since they determine the microbubble mechanical properties, circulation persistence, and dissolution behavior during cavitation. Therefore, the aim of this study was to investigate the shell effects on drug delivery efficiency in the brain via blood-brain barrier (BBB) opening in vivo using monodisperse microbubbles with different phospholipid shell components. The physicochemical properties of the monolayer were varied by using phospholipids with different hydrophobic chain lengths (C16, C18, and C24). The dependence on the molecular size and acoustic energy (both pressure and pulse length) were investigated. Our results showed that a relatively small increase in the microbubble shell rigidity resulted in a significant increase in the delivery of 40-kDa dextran, especially at higher pressures. Smaller (3kDa) dextran did not show significant difference in the delivery amount, suggesting that the observed shell effect was molecular size-dependent. In studying the impact of acoustic energy on the shell effects, it was found that they occurred most significantly at pressures causing microbubble destruction (450kPa and 600kPa); by increasing the pulse length to deliver the 40-kDa dextran, the difference between C16 and C18 disappeared while C24 still achieved the highest delivery efficiency. These indicated that the acoustic energy could be used to modulate the shell effects. The acoustic cavitation emission revealed the physical mechanisms associated with different shells. Overall, lipid-shelled microbubbles with long hydrophobic chain length could achieve high delivery efficiency for larger molecules especially with high acoustic energy. Our study, for the first time, offered evidence directly linking the microbubble monolayer shell with their efficacy for drug delivery in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.
Bottom head to shell junction assembly for a boiling water nuclear reactor
Fife, Alex Blair; Ballas, Gary J.
1998-01-01
A bottom head to shell junction assembly which, in one embodiment, includes an annular forging having an integrally formed pump deck and shroud support is described. In the one embodiment, the annular forging also includes a top, cylindrical shaped end configured to be welded to one end of the pressure vessel cylindrical shell and a bottom, conical shaped end configured to be welded to the disk shaped bottom head. Reactor internal pump nozzles also are integrally formed in the annular forging. The nozzles do not include any internal or external projections. Stubs are formed in each nozzle opening to facilitate welding a pump housing to the forging. Also, an upper portion of each nozzle opening is configured to receive a portion of a diffuser coupled to a pump shaft which extends through the nozzle opening. Diffuser openings are formed in the integral pump deck to provide additional support for the pump impellers. The diffuser opening is sized so that a pump impeller can extend at least partially therethrough. The pump impeller is connected to the pump shaft which extends through the nozzle opening.
Bottom head to shell junction assembly for a boiling water nuclear reactor
Fife, A.B.; Ballas, G.J.
1998-02-24
A bottom head to shell junction assembly which, in one embodiment, includes an annular forging having an integrally formed pump deck and shroud support is described. In the one embodiment, the annular forging also includes a top, cylindrical shaped end configured to be welded to one end of the pressure vessel cylindrical shell and a bottom, conical shaped end configured to be welded to the disk shaped bottom head. Reactor internal pump nozzles also are integrally formed in the annular forging. The nozzles do not include any internal or external projections. Stubs are formed in each nozzle opening to facilitate welding a pump housing to the forging. Also, an upper portion of each nozzle opening is configured to receive a portion of a diffuser coupled to a pump shaft which extends through the nozzle opening. Diffuser openings are formed in the integral pump deck to provide additional support for the pump impellers. The diffuser opening is sized so that a pump impeller can extend at least partially therethrough. The pump impeller is connected to the pump shaft which extends through the nozzle opening. 5 figs.
Cylindrical Shells Made of Stainless Steel - Investigation of Postbuckling
NASA Astrophysics Data System (ADS)
Stehr, Sebastian; Stranghöner, Natalie
2017-06-01
The relevant load case of open thin-walled shells is often wind loading during construction. Because of the missing stabilization effect of the roof they show a very high sensitivity to buckling which results into higher wall thicknesses. As part of the European RFCS research project BiogaSS the Institute for Metal and Lightweight Structures of the University of Duisburg-Essen carried out investigations on open thin-walled tanks made of austenitic and duplex stainless steels under wind load to study a possible economic advantage which might be gained from the consideration of the elastic postbuckling behaviour. This contribution presents not only experimental and numerical results but also first recommendations regarding the range of possible buckling reduction factors which might be incorporated in future revisions of EN 1993-1-6 and EN 1993-4-2.
Shin, Dongjoon; Shin, Jungho; Yeo, Taehan; Hwang, Hayoung; Park, Seonghyun; Choi, Wonjoon
2018-03-01
Core-shell nanostructures of metal oxides and carbon-based materials have emerged as outstanding electrode materials for supercapacitors and batteries. However, their synthesis requires complex procedures that incur high costs and long processing times. Herein, a new route is proposed for synthesizing triple-core-shell nanoparticles of TiO 2 @MnO 2 @C using structure-guided combustion waves (SGCWs), which originate from incomplete combustion inside chemical-fuel-wrapped nanostructures, and their application in supercapacitor electrodes. SGCWs transform TiO 2 to TiO 2 @C and TiO 2 @MnO 2 to TiO 2 @MnO 2 @C via the incompletely combusted carbonaceous fuels under an open-air atmosphere, in seconds. The synthesized carbon layers act as templates for MnO 2 shells in TiO 2 @C and organic shells of TiO 2 @MnO 2 @C. The TiO 2 @MnO 2 @C-based electrodes exhibit a greater specific capacitance (488 F g -1 at 5 mV s -1 ) and capacitance retention (97.4% after 10 000 cycles at 1.0 V s -1 ), while the absence of MnO 2 and carbon shells reveals a severe degradation in the specific capacitance and capacitance retention. Because the core-TiO 2 nanoparticles and carbon shell prevent the deformation of the inner and outer sides of the MnO 2 shell, the nanostructures of the TiO 2 @MnO 2 @C are preserved despite the long-term cycling, giving the superior performance. This SGCW-driven fabrication enables the scalable synthesis of multiple-core-shell structures applicable to diverse electrochemical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dynamic model of open shell structures buried in poroelastic soils
NASA Astrophysics Data System (ADS)
Bordón, J. D. R.; Aznárez, J. J.; Maeso, O.
2017-08-01
This paper is concerned with a three-dimensional time harmonic model of open shell structures buried in poroelastic soils. It combines the dual boundary element method (DBEM) for treating the soil and shell finite elements for modelling the structure, leading to a simple and efficient representation of buried open shell structures. A new fully regularised hypersingular boundary integral equation (HBIE) has been developed to this aim, which is then used to build the pair of dual BIEs necessary to formulate the DBEM for Biot poroelasticity. The new regularised HBIE is validated against a problem with analytical solution. The model is used in a wave diffraction problem in order to show its effectiveness. It offers excellent agreement for length to thickness ratios greater than 10, and relatively coarse meshes. The model is also applied to the calculation of impedances of bucket foundations. It is found that all impedances except the torsional one depend considerably on hydraulic conductivity within the typical frequency range of interest of offshore wind turbines.
Dynamic spin injection into a quantum well coupled to a spin-split bound state
NASA Astrophysics Data System (ADS)
Maslova, N. S.; Rozhansky, I. V.; Mantsevich, V. N.; Arseyev, P. I.; Averkiev, N. S.; Lähderanta, E.
2018-05-01
We present a theoretical analysis of dynamic spin injection due to spin-dependent tunneling between a quantum well (QW) and a bound state split in spin projection due to an exchange interaction or external magnetic field. We focus on the impact of Coulomb correlations at the bound state on spin polarization and sheet density kinetics of the charge carriers in the QW. The theoretical approach is based on kinetic equations for the electron occupation numbers taking into account high order correlation functions for the bound state electrons. It is shown that the on-site Coulomb repulsion leads to an enhanced dynamic spin polarization of the electrons in the QW and a delay in the carriers tunneling into the bound state. The interplay of these two effects leads to nontrivial dependence of the spin polarization degree, which can be probed experimentally using time-resolved photoluminescence experiments. It is demonstrated that the influence of the Coulomb interactions can be controlled by adjusting the relaxation rates. These findings open a new way of studying the Hubbard-like electron interactions experimentally.
Magnetic field tunability of spin polarized excitations in a high temperature magnet
NASA Astrophysics Data System (ADS)
Holinsworth, Brian; Sims, Hunter; Cherian, Judy; Mazumdar, Dipanjan; Harms, Nathan; Chapman, Brandon; Gupta, Arun; McGill, Steve; Musfeldt, Janice
Magnetic semiconductors are at the heart of modern device physics because they naturally provide a non-zero magnetic moment below the ordering temperature, spin-dependent band gap, and spin polarization that originates from exchange-coupled magnetization or an applied field creating a spin-split band structure. Strongly correlated spinel ferrites are amongst the most noteworthy contenders for semiconductor spintronics. NiFe2O4, in particular, displays spin-filtering, linear magnetoresistance, and wide application in the microwave regime. To unravel the spin-charge interaction in NiFe2O4, we bring together magnetic circular dichroism, photoconductivity, and prior optical absorption with complementary first principles calculations. Analysis uncovers a metamagnetic transition modifying electronic structure in the minority channel below the majority channel gap, exchange splittings emerging from spin-split bands, anisotropy of excitons surrounding the indirect gap, and magnetic-field dependent photoconductivity. These findings open the door for the creation and control of spin-polarized excitations from minority channel charge charge transfer in NiFe2O4 and other members of the spinel ferrite family.
Alvermann, A; Fehske, H
2009-04-17
We propose a general numerical approach to open quantum systems with a coupling to bath degrees of freedom. The technique combines the methodology of polynomial expansions of spectral functions with the sparse grid concept from interpolation theory. Thereby we construct a Hilbert space of moderate dimension to represent the bath degrees of freedom, which allows us to perform highly accurate and efficient calculations of static, spectral, and dynamic quantities using standard exact diagonalization algorithms. The strength of the approach is demonstrated for the phase transition, critical behavior, and dissipative spin dynamics in the spin-boson model.
Thapa, Bishnu; Munk, Barbara H; Burrows, Cynthia J; Schlegel, H Bernhard
2017-04-27
Oxidation of guanine in the presence of lysine can lead to guanine-lysine cross-links. The ratio of the C4, C5 and C8 crosslinks depends on the manner of oxidation. Type II photosensitizers such as Rose Bengal and methylene blue can generate singlet oxygen, which leads to a different ratio of products than oxidation by type I photosensitizers or by one electron oxidants. Modeling reactions of singlet oxygen can be quite challenging. Reactions have been explored using CASSCF, NEVPT2, DFT, CCSD(T), and BD(T) calculations with SMD implicit solvation. The spin contamination in open-shell calculations were corrected by Yamaguchi's approximate spin projection method. The addition of singlet oxygen to guanine to form guanine endo- peroxide proceeds step-wise via a zwitterionic peroxyl intermediate. The subsequent barrier for ring closure is smaller than the initial barrier for singlet oxygen addition. Ring opening of the endoperoxide by protonation at C4-O is followed by loss of a proton from C8 and dehydration to produce 8-oxoG ox . The addition of lysine (modelled by methylamine) or water across the C5=N7 double bond of 8-oxoG ox is followed by acyl migration to form the final spiro products. The barrier for methylamine addition is significantly lower than for water addition and should be the dominant reaction channel. These results are in good agreement with the experimental results for the formation of guanine-lysine cross-links by oxidation by type II photosensitizers. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Robust techniques for polarization and detection of nuclear spin ensembles
NASA Astrophysics Data System (ADS)
Scheuer, Jochen; Schwartz, Ilai; Müller, Samuel; Chen, Qiong; Dhand, Ish; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor
2017-11-01
Highly sensitive nuclear spin detection is crucial in many scientific areas including nuclear magnetic resonance spectroscopy, magnetic resonance imaging (MRI), and quantum computing. The tiny thermal nuclear spin polarization represents a major obstacle towards this goal which may be overcome by dynamic nuclear spin polarization (DNP) methods. The latter often rely on the transfer of the thermally polarized electron spins to nearby nuclear spins, which is limited by the Boltzmann distribution of the former. Here we utilize microwave dressed states to transfer the high (>92 % ) nonequilibrium electron spin polarization of a single nitrogen-vacancy center (NV) induced by short laser pulses to the surrounding 13C carbon nuclear spins. The NV is repeatedly repolarized optically, thus providing an effectively infinite polarization reservoir. A saturation of the polarization of the nearby nuclear spins is achieved, which is confirmed by the decay of the polarization transfer signal and shows an excellent agreement with theoretical simulations. Hereby we introduce the polarization readout by polarization inversion method as a quantitative magnetization measure of the nuclear spin bath, which allows us to observe by ensemble averaging macroscopically hidden polarization dynamics like Landau-Zener-Stückelberg oscillations. Moreover, we show that using the integrated solid effect both for single- and double-quantum transitions nuclear spin polarization can be achieved even when the static magnetic field is not aligned along the NV's crystal axis. This opens a path for the application of our DNP technique to spins in and outside of nanodiamonds, enabling their application as MRI tracers. Furthermore, the methods reported here can be applied to other solid state systems where a central electron spin is coupled to a nuclear spin bath, e.g., phosphor donors in silicon and color centers in silicon carbide.
Inner shell radial pin geometry and mounting arrangement
Leach, David; Bergendahl, Peter Allen
2002-01-01
Circumferentially spaced arrays of support pins are disposed through access openings in an outer turbine shell and have projections received in recesses in forward and aft sections of an inner turbine shell supported from the outer shell. The projections have arcuate sides in a circumferential direction affording line contacts with the side walls of the recesses and are spaced from end faces of the recesses, enabling radial and axial expansion and contraction of the inner shell relative to the outer shell. All loads are taken up in a tangential direction by the outer shell with the support pins taking no radial loadings.
Notes on integrable boundary interactions of open SU(4) alternating spin chains
NASA Astrophysics Data System (ADS)
Wu, JunBao
2018-07-01
Ref. [J. High Energy Phys. 1708, 001 (2017)] showed that the planar flavored Ahanory-Bergman-Jafferis-Maldacena (ABJM) theory is integrable in the scalar sector at two-loop order using coordinate Bethe ansatz. A salient feature of this case is that the boundary reflection matrices are anti-diagonal with respect to the chosen basis. In this paper, we relax the coefficients of the boundary terms to be general constants to search for integrable systems among this class. We found that the only integrable boundary interaction at each end of the spin chain aside from the one in ref. [J. High Energy Phys. 1708, 001 (2017)] is the one with vanishing boundary interactions leading to diagonal reflection matrices. We also construct non-supersymmetric planar flavored ABJM theory which leads to trivial boundary interactions at both ends of the open chain from the two-loop anomalous dimension matrix in the scalar sector.
Spin splitting generated in a Y-shaped semiconductor nanostructure with a quantum point contact
NASA Astrophysics Data System (ADS)
Wójcik, P.; Adamowski, J.; Wołoszyn, M.; Spisak, B. J.
2015-07-01
We have studied the spin splitting of the current in the Y-shaped semiconductor nanostructure with a quantum point contact (QPC) in a perpendicular magnetic field. Our calculations show that the appropriate tuning of the QPC potential and the external magnetic field leads to an almost perfect separation of the spin-polarized currents: electrons with opposite spins flow out through different output branches. The spin splitting results from the joint effect of the QPC, the spin Zeeman splitting, and the electron transport through the edge states formed in the nanowire at the sufficiently high magnetic field. The Y-shaped nanostructure can be used to split the unpolarized current into two spin currents with opposite spins as well as to detect the flow of the spin current. We have found that the separation of the spin currents is only slightly affected by the Rashba spin-orbit coupling. The spin-splitter device is an analogue of the optical device—the birefractive crystal that splits the unpolarized light into two beams with perpendicular polarizations. In the magnetic-field range, in which the current is carried through the edges states, the spin splitting is robust against the spin-independent scattering. This feature opens up a possibility of the application of the Y-shaped nanostructure as a non-ballistic spin-splitter device in spintronics.
Spin splitting generated in a Y-shaped semiconductor nanostructure with a quantum point contact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wójcik, P., E-mail: pawel.wojcik@fis.agh.edu.pl; Adamowski, J., E-mail: janusz.adamowski@fis.agh.edu.pl; Wołoszyn, M.
2015-07-07
We have studied the spin splitting of the current in the Y-shaped semiconductor nanostructure with a quantum point contact (QPC) in a perpendicular magnetic field. Our calculations show that the appropriate tuning of the QPC potential and the external magnetic field leads to an almost perfect separation of the spin-polarized currents: electrons with opposite spins flow out through different output branches. The spin splitting results from the joint effect of the QPC, the spin Zeeman splitting, and the electron transport through the edge states formed in the nanowire at the sufficiently high magnetic field. The Y-shaped nanostructure can be usedmore » to split the unpolarized current into two spin currents with opposite spins as well as to detect the flow of the spin current. We have found that the separation of the spin currents is only slightly affected by the Rashba spin-orbit coupling. The spin-splitter device is an analogue of the optical device—the birefractive crystal that splits the unpolarized light into two beams with perpendicular polarizations. In the magnetic-field range, in which the current is carried through the edges states, the spin splitting is robust against the spin-independent scattering. This feature opens up a possibility of the application of the Y-shaped nanostructure as a non-ballistic spin-splitter device in spintronics.« less
Small-Angle Neutron Scattering Studies of Magnetic Correlation Lengths in Nanoparticle Assemblies
NASA Astrophysics Data System (ADS)
Majetich, Sara
2009-03-01
Small-angle neutron scattering (SANS) measurements of ordered arrays of surfactant-coated magnetic nanoparticle reveal characteristic length scales associated with interparticle and intraparticle magnetic ordering. The high degree of uniformity in the monodisperse nanoparticle size and spacing leads to a pronounced diffraction peak and allows for a straightforward determination of these length scales [1]. There are notable differences in these length scales depending on the particle moment, which depends on the material (Fe, Co, Fe3O4) and diameter, and also on whether the metal particle core is surrounded by an oxide shell. For 8.5 nm particles containing an Fe core and thick Fe3O4 shell, evidence of a spin flop phase is seen in the magnetite shell when a field is applied , but not when the shell thickness is ˜0.5 nm [2]. 8.0 nm particles with an e-Co core and 0.75 nm CoO shell show no exchange bias effects while similar particles with a 2 nm thick shell so significant training effects below 90 K. Polarized SANS studied of 7 nm Fe3O4 nanoparticle assemblies show the ability to resolve the magnetization components in 3D. [4pt] [1] M. Sachan, C. Bonnoit, S. A. Majetich, Y. Ijiri, P. O. Mensah-Bonsu, J. A. Borchers, and J. J. Rhyne, Appl. Phys. Lett. 92, 152503 (2008). [0pt] [2] Yumi Ijiri, Christopher V. Kelly, Julie A. Borchers, James J. Rhyne, Dorothy F. Farrell, Sara A. Majetich, Appl. Phys. Lett. 86, 243102-243104 (2005). [0pt] [3] K. L. Krycka, R. Booth, J. A. Borchers, W. C. Chen, C. Conlon, T. Gentile, C. Hogg, Y. Ijiri, M. Laver, B. B. Maranville, S. A. Majetich, J. Rhyne, and S. M. Watson, Physica B (submitted).
Nuclear Shell Structure and Beta Decay I. Odd A Nuclei II. Even A Nuclei
DOE R&D Accomplishments Database
Mayer, M.G.; Moszkowski, S.A.; Nordheim, L.W.
1951-05-01
In Part I a systematics is given of all transitions for odd A nuclei for which sufficiently reliable data are available. The allowed or forbidden characters of the transitions are correlated with the positions of the initial and final odd nucleon groups in the nuclear shell scheme. The nuclear shells show definite characteristics with respect to parity of the ground states. The latter is the same as the one obtained from known spins and magnetic moments in a one-particle interpretation. In Part II a systematics of the beta transitions of even-A nuclei is given. An interpretation of the character of the transitions in terms of nuclear shell structure is achieved on the hypothesis that the odd nucleon groups have the same structure as in odd-A nuclei, together with a simple coupling rule between the neutron and proton groups in odd-odd nuclei.
Nuclear Structure in China 2010
NASA Astrophysics Data System (ADS)
Bai, Hong-Bo; Meng, Jie; Zhao, En-Guang; Zhou, Shan-Gui
2011-08-01
Personal view on nuclear physics research / Jie Meng -- High-spin level structures in [symbol]Zr / X. P. Cao ... [et al.] -- Constraining the symmetry energy from the neutron skin thickness of tin isotopes / Lie-Wen Chen ... [et al.] -- Wobbling rotation in atomic nuclei / Y. S. Chen and Zao-Chun Gao -- The mixing of scalar mesons and the possible nonstrange dibaryons / L. R. Dai ... [et al.] -- Net baryon productions and gluon saturation in the SPS, RHIC and LHC energy regions / Sheng-Qin Feng -- Production of heavy isotopes with collisions between two actinide nuclides / Z. Q. Feng ... [et al.] -- The projected configuration interaction method / Zao-Chun Gao and Yong-Shou Chen -- Applications of Nilsson mean-field plus extended pairing model to rare-earth nuclei / Xin Guan ... [et al.] -- Complex scaling method and the resonant states / Jian-You Guo ... [et al.] -- Probing the equation of state by deep sub-barrier fusion reactions / Hong-Jun Hao and Jun-Long Tian -- Doublet structure study in A[symbol]105 mass region / C. Y. He ... [et al.] -- Rotational bands in transfermium nuclei / X. T. He -- Shape coexistence and shape evolution [symbol]Yb / H. Hua ... [et al.] -- Multistep shell model method in the complex energy plane / R. J. Liotta -- The evolution of protoneutron stars with kaon condensate / Ang Li -- High spin structures in the [symbol]Lu nucleus / Li Cong-Bo ... [et al.] -- Nuclear stopping and equation of state / QingFeng Li and Ying Yuan -- Covariant description of the low-lying states in neutron-deficient Kr isotopes / Z. X. Li ... [et al.] -- Isospin corrections for superallowed [symbol] transitions / HaoZhao Liang ... [et al.] -- The positive-parity band structures in [symbol]Ag / C. Liu ... [et al.] -- New band structures in odd-odd [symbol]I and [symbol]I / Liu GongYe ... [et al.] -- The sd-pair shell model and interacting boson model / Yan-An Luo ... [et al.] -- Cross-section distributions of fragments in the calcium isotopes projectile fragmentation at the intermediate energy / C. W. Ma ... [et al.].Systematic study of spin assignment and dynamic moment of inertia of high-j intruder band in [symbol]In / K. Y. Ma ... [et al.] -- Signals of diproton emission from the three-body breakup channel of [symbol]Al and [symbol]Mg / Ma Yu-Gang ... [et al.] -- Uncertainties of Th/Eu and Th/Hf chronometers from nucleus masses / Z. M. Niu ... [et al.] -- The chiral doublet bands with [symbol] configuration in A[symbol]100 mass region / B. Qi ... [et al.] -- [symbol] formation probabilities in nuclei and pairing collectivity / Chong Qi -- A theoretical prospective on triggered gamma emission from [symbol]Hf[symbol] isomer / ShuiFa Shen ... [et al.] -- Study of nuclear giant resonances using a Fermi-liquid method / Bao-Xi Sun -- Rotational bands in doubly odd [symbol]Sb / D. P. Sun ... [et al.] -- The study of the neutron N=90 nuclei / W. X. Teng ... [et al.] -- Dynamical modes and mechanisms in ternary reaction of [symbol]Au+[symbol]Au / Jun-Long Tian ... [et al.] -- Dynamical study of X(3872) as a D[symbol] molecular state / B. Wang ... [et al.] -- Super-heavy stability island with a semi-empirical nuclear mass formula / N. Wang ... [et al.] -- Pseudospin partner bands in [symbol]Sb / S. Y. Wang ... [et al.] -- Study of elastic resonance scattering at CIAE / Y. B. Wang ... [et al.] -- Systematic study of survival probability of excited superheavy nuclei / C. J. Xia ... [et al.] -- Angular momentum projection of the Nilsson mean-field plus nearest-orbit pairing interaction model / Ming-Xia Xie ... [et al.] -- Possible shape coexistence for [symbol]Sm in a reflection-asymmetric relativistic mean-field approach / W. Zhang ... [et al.] -- Nuclear pairing reduction due to rotation and blocking / Zhen-Hua Zhang -- Nucleon pair approximation of the shell model: a review and perspective / Y. M. Zhao ... [et al.] -- Band structures in doubly odd [symbol]I / Y. Zheng ... [et al.] -- Lifetimes of high spin states in [symbol]Ag / Y. Zheng ... [et al.] -- Effect of tensor interaction on the shell structure of superheavy nuclei / Xian-Rong Zhou ... [et al.].
Nanopatterned reconfigurable spin-textures for magnonics
NASA Astrophysics Data System (ADS)
Albisetti, E.; Petti, D.; Pancaldi, M.; Madami, M.; Tacchi, S.; Curtis, J.; King, W. P.; Papp, A.; Csaba, G.; Porod, W.; Vavassori, P.; Riedo, E.; Bertacco, R.
The control of spin-waves holds the promise to enable energy-efficient information transport and wave-based computing. Conventionally, the engineering of spin-waves is achieved via physically patterning magnetic structures such as magnonic crystals and micro-nanowires. We demonstrate a new concept for creating reconfigurable magnonic nanostructures, by crafting at the nanoscale the magnetic anisotropy landscape of a ferromagnet exchange-coupled to an antiferromagnet. By performing a highly localized field cooling with the hot tip of a scanning probe microscope, magnetic structures, with arbitrarily oriented magnetization and tunable unidirectional anisotropy, are patterned without modifying the film chemistry and topography. We demonstrate that, in such structures, the spin-wave excitation and propagation can be spatially controlled at remanence, and can be tuned by external magnetic fields. This opens the way to the use of nanopatterned spin-textures, such as domains and domain walls, for exciting and manipulating magnons in reconfigurable nanocircuits. Partially funded by the EC through project SWING (no. 705326).
High-Frequency Dynamics Modulated by Collective Magnetization Reversal in Artificial Spin Ice
NASA Astrophysics Data System (ADS)
Jungfleisch, Matthias B.; Sklenar, Joseph; Ding, Junjia; Park, Jungsik; Pearson, John E.; Novosad, Valentine; Schiffer, Peter; Hoffmann, Axel
2017-12-01
Spin-torque ferromagnetic resonance arises in heavy metal-ferromagnet heterostructures when an alternating charge current is passed through the bilayer stack. The methodology to detect the resonance is based on the anisotropic magnetoresistance, which is the change in the electrical resistance due to different orientations of the magnetization. In connected networks of ferromagnetic nanowires, known as artificial spin ice, the magnetoresistance is rather complex owing to the underlying collective behavior of the geometrically frustrated magnetic domain structure. Here, we demonstrate spin-torque ferromagnetic resonance investigations in a square artificial spin-ice system and correlate our observations to magnetotransport measurements. The experimental findings are described using a simulation approach that highlights the importance of the correlated dynamics response of the magnetic system. Our results open the possibility of designing reconfigurable microwave oscillators and magnetoresistive devices based on connected networks of nanomagnets.
Yang, Longhua; Wang, Hongming; Zhang, Ning; Hong, Sanguo
2013-08-21
The reaction mechanism of CO₂ hydrogenation catalyzed by [FeH(PP₃)]BF₄ (PP₃ = P(CH₂CH₂PPh₂)₃) had been investigated by DFT calculations. Our calculations indicated that the reduction of carbon dioxide could be carried out via two spin states, the high-spin (HS) triplet state and the low-spin (LS) singlet state. The minimum energy crossing points (MECPs) on the seam of two intersecting PESs (potential energy surfaces) were searched out. Some interesting phenomena, such as the open-loop phenomenon, and the O-rebound process, were demonstrated to be the important causes of the spin crossover. All these calculations gave us insight into the essence of the related experiment from the macro point of view, and helped to verify which spin states the related complexes pertinent were in. All of these researches would help advance the development of efficient and structurally tailorable CO₂ hydrogenation catalysts.
Spin doping using transition metal phthalocyanine molecules
Atxabal, A.; Ribeiro, M.; Parui, S.; Urreta, L.; Sagasta, E.; Sun, X.; Llopis, R.; Casanova, F.; Hueso, L. E.
2016-01-01
Molecular spins have become key enablers for exploring magnetic interactions, quantum information processes and many-body effects in metals. Metal-organic molecules, in particular, let the spin state of the core metal ion to be modified according to its organic environment, allowing localized magnetic moments to emerge as functional entities with radically different properties from its simple atomic counterparts. Here, using and preserving the integrity of transition metal phthalocyanine high-spin complexes, we demonstrate the magnetic doping of gold thin films, effectively creating a new ground state. We demonstrate it by electrical transport measurements that are sensitive to the scattering of itinerant electrons with magnetic impurities, such as Kondo effect and weak antilocalization. Our work expands in a simple and powerful way the classes of materials that can be used as magnetic dopants, opening a new channel to couple the wide range of molecular properties with spin phenomena at a functional scale. PMID:27941810
Topological Triply Degenerate Points Induced by Spin-Tensor-Momentum Couplings
NASA Astrophysics Data System (ADS)
Hu, Haiping; Hou, Junpeng; Zhang, Fan; Zhang, Chuanwei
2018-06-01
The recent discovery of triply degenerate points (TDPs) in topological materials has opened a new perspective toward the realization of novel quasiparticles without counterparts in quantum field theory. The emergence of such protected nodes is often attributed to spin-vector-momentum couplings. We show that the interplay between spin-tensor- and spin-vector-momentum couplings can induce three types of TDPs, classified by different monopole charges (C =±2 , ±1 , 0). A Zeeman field can lift them into Weyl points with distinct numbers and charges. Different TDPs of the same type are connected by intriguing Fermi arcs at surfaces, and transitions between different types are accompanied by level crossings along high-symmetry lines. We further propose an experimental scheme to realize such TDPs in cold-atom optical lattices. Our results provide a framework for studying spin-tensor-momentum coupling-induced TDPs and other exotic quasiparticles.
High-Frequency Dynamics Modulated by Collective Magnetization Reversal in Artificial Spin Ice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jungfleisch, Matthias B.; Sklenar, Joseph; Ding, Junjia
Spin-torque ferromagnetic resonance arises in heavy metal-ferromagnet heterostructures when an alternating charge current is passed through the bilayer stack. The methodology to detect the resonance is based on the anisotropic magnetoresistance, which is the change in the electrical resistance due to different orientations of the magnetization. In connected networks of ferromagnetic nanowires, known as artificial spin ice, the magnetoresistance is rather complex owing to the underlying collective behavior of the geometrically frustrated magnetic domain structure. Here, we demonstrate spin-torque ferromagnetic resonance investigations in a square artificial spin-ice system and correlate our observations to magneto-transport measurements. The experimental findings are describedmore » using a simulation approach that highlights the importance of the correlated dynamics response of the magnetic system. Our results open the possibility of designing reconfigurable microwave oscillators and magnetoresistive devices based on connected networks of nanomagnets.« less
NASA Astrophysics Data System (ADS)
Hu, C. Y.
2016-12-01
The realization of quantum computers and quantum Internet requires not only quantum gates and quantum memories, but also transistors at single-photon levels to control the flow of information encoded on single photons. Single-photon transistor (SPT) is an optical transistor in the quantum limit, which uses a single photon to open or block a photonic channel. In sharp contrast to all previous SPT proposals which are based on single-photon nonlinearities, here I present a design for a high-gain and high-speed (up to THz) SPT based on a linear optical effect: giant circular birefringence induced by a single spin in a double-sided optical microcavity. A gate photon sets the spin state via projective measurement and controls the light propagation in the optical channel. This spin-cavity transistor can be directly configured as diodes, routers, DRAM units, switches, modulators, etc. Due to the duality as quantum gate and transistor, the spin-cavity unit provides a solid-state platform ideal for future Internet: a mixture of all-optical Internet with quantum Internet.
Pair correlations in low-lying T =0 states of odd-odd nuclei with six nucleons
NASA Astrophysics Data System (ADS)
Fu, G. J.; Zhao, Y. M.; Arima, A.
2018-02-01
In this paper, we study pair correlations in low-lying T =0 states for two typical cases of odd-odd N =Z nuclei. The first case is six nucleons in a single j =9 /2 shell, for which we study the S -broken-pair approximation, the isoscalar spin-1 pair condensation, and the isoscalar spin-aligned pair condensation, with schematic interactions. In the second case, we study pair approximations and correlation energies for 22Na, 34Cl, 46V, 62Ga, and 94Ag in multi-j shells with effective interactions. A few T =0 states are found to be well represented by isoscalar nucleon pairs. The isoscalar spin-aligned pairs play an important role for the yrast T =0 states with I ˜2 j and I ˜Imax in 22Na, 46V, and 94Ag. The overlap between the isoscalar J =1 pair wave function and the shell-model wave function is around 0.5 for the I =1 ,3 states of 34Cl and the I =1 state of 94Ag. The I =9 state of 62Ga is very well described by the isoscalar J =3 pair condensation. The broken-pair approximation (which is similar to the 2-quasiparticle excitation of the isovector pair condensation) is appropriate for quite few states, such as the I =1 -3 states of 34Cl and the I =5 state of 62Ga. The correlation energies are presented in this paper. It is noted that the picture based on nucleon-pair wave functions is not always in agreement with the picture based on correlation energies.
Distinguishing spin-aligned and isotropic black hole populations with gravitational waves.
Farr, Will M; Stevenson, Simon; Miller, M Coleman; Mandel, Ilya; Farr, Ben; Vecchio, Alberto
2017-08-23
The direct detection of gravitational waves from merging binary black holes opens up a window into the environments in which binary black holes form. One signature of such environments is the angular distribution of the black hole spins. Binary systems that formed through dynamical interactions between already-compact objects are expected to have isotropic spin orientations (that is, the spins of the black holes are randomly oriented with respect to the orbit of the binary system), whereas those that formed from pairs of stars born together are more likely to have spins that are preferentially aligned with the orbit. The best-measured combination of spin parameters for each of the four likely binary black hole detections GW150914, LVT151012, GW151226 and GW170104 is the 'effective' spin. Here we report that, if the magnitudes of the black hole spins are allowed to extend to high values, the effective spins for these systems indicate a 0.015 odds ratio against an aligned angular distribution compared to an isotropic one. When considering the effect of ten additional detections, this odds ratio decreases to 2.9 × 10 -7 against alignment. The existing preference for either an isotropic spin distribution or low spin magnitudes for the observed systems will be confirmed (or overturned) confidently in the near future.
Hybrid excitations due to crystal field, spin-orbit coupling, and spin waves in LiFePO 4
Yiu, Yuen; Le, Manh Duc; Toft-Peterson, Rasmus; ...
2017-03-09
Here, we report on the spin waves and crystal field excitations in single crystal LiFePO 4 by inelastic neutron scattering over a wide range of temperatures, below and above the antiferromagnetic transition of this system. In particular, we find extra excitations below T N = 50 K that are nearly dispersionless and are most intense around magnetic zone centers. Furthermore, we show that these excitations correspond to transitions between thermally occupied excited states of Fe 2 + due to splitting of the S = 2 levels that arise from the crystal field and spin-orbit interactions. These excitations are further amplifiedmore » by the highly distorted nature of the oxygen octahedron surrounding the iron atoms. Above T N , magnetic fluctuations are observed up to at least 720 K, with an additional inelastic excitation around 4 meV, which we attribute to single-ion effects, as its intensity weakens slightly at 720 K compared to 100 K, which is consistent with the calculated cross sections using a single-ion model. This theoretical analysis, using the MF-RPA model, provides both detailed spectra of the Fe d shell and estimates of the average ordered magnetic moment and T N . By applying the MF-RPA model to a number of existing spin-wave results from other Li M PO 4 ( M = Mn , Co, and Ni), we are able to obtain reasonable predictions for the moment sizes and transition temperatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, X. J.; Xue, X. L.; Jia, Yu
Nanoclusters usually display exotic physical and chemical properties due to their intriguing geometric structures in contrast to their bulk counterparts. By means of first-principles calculations within density functional theory, we find that heavy noble metal Pt{sub N} nanoclusters around the size N = 55 begin to prefer an open configuration, rather than previously reported close-packed icosahedron or core-shell structures. Particularly, for Pt{sub N}, the widely supposed icosahedronal magic cluster is changed to a three-atomic-layered structure with D{sub 6h} symmetry, which can be well addressed by our recently established generalized Wulff construction principle (GWCP). However, the magic number of Pt{sub N}more » clusters around 55 is shifted to a new odd number of 57. The high symmetric three-layered Pt{sub 57} motif is mainly stabilized by the enhanced covalent bonding contributed by both spin-orbital coupling effect and the open d orbital (5d{sup 9}6s{sup 1}) of Pt, which result in a delicate balance between the enhanced Pt–Pt covalent bonding of the interlayers and negligible d dangling bonds on the cluster edges. These findings about Pt{sub N} clusters are also applicable to Ir{sub N} clusters, but qualitatively different from their earlier neighboring element Os and their later neighboring element Au. The magic numbers for Os and Au are even, being 56 and 58, respectively. The findings of the new odd magic number 57 are the important supplementary of the recently established GWCP.« less
New nilpotent N =2 superfields
NASA Astrophysics Data System (ADS)
Kuzenko, Sergei M.; Tartaglino-Mazzucchelli, Gabriele
2018-01-01
We propose new off-shell models for spontaneously broken local N =2 supersymmetry, in which the supergravity multiplet couples to nilpotent Goldstino superfields that contain either a gauge one-form or a gauge two-form in addition to spin-1 /2 Goldstone fermions and auxiliary fields. In the case of N =2 Poincaré supersymmetry, we elaborate on the concept of twisted chiral superfields and present a nilpotent N =2 superfield that underlies the cubic nilpotency conditions given in J. High Energy Phys. 08 (2017) 109., 10.1007/JHEP08(2017)109 in terms of constrained N =1 superfields.
Optically enhanced SnO{sub 2}/CdSe core/shell nanostructures grown by sol-gel spin coating method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Vijay, E-mail: vijaynadda83@gmail.com; Goswami, Y. C.; Rajaram, P.
2015-08-28
Synthesis of SnO{sub 2}/CdSe metal oxide/ chalcogenide nanostructures on glass micro slides using ultrasonic sol-gel process followed by spin coating has been reported. Stannous chloride, cadmium chloride and selenium dioxide compounds were used for Sn, Cd and Se precursors respectively. Ethylene glycol was used as complexing agent. The samples were characterized by XRD, SEM, AFM and UV-spectrophotometer. All the peaks shown in diffractograms are identified for SnO{sub 2}. Peak broadening observed in core shell due to stress behavior of CdSe lattice. Scanning electron microscope and AFM exhibits the conversion of cluster in to nanorods structures forms. Atomic force microscope showsmore » the structures in nanorods form and a roughness reduced 1.5194 nm by the deposition of CdSe. Uv Visible spectra shows a new absorption edge in the visible region make them useful for optoelectronic applications.« less
NASA Astrophysics Data System (ADS)
Strodel, Paul; Tavan, Paul
2002-09-01
We present a revised multi-reference configuration interaction (MRCI) algorithm for balanced and efficient calculation of electronic excitations in molecules. The revision takes up an earlier method, which had been designed for flexible, state-specific, and individual selection (IS) of MRCI expansions, included perturbational corrections (PERT), and used the spin-coupled hole-particle formalism of Tavan and Schulten (1980) for matrix-element evaluation. It removes the deficiencies of this method by introducing tree structures, which code the CI bases and allow us to efficiently exploit the sparseness of the Hamiltonian matrices. The algorithmic complexity is shown to be optimal for IS/MRCI applications. The revised IS/MRCI/PERT module is combined with the effective valence shell Hamiltonian OM2 suggested by Weber and Thiel (2000). This coupling serves the purpose of making excited state surfaces of organic dye molecules accessible to relatively cheap and sufficiently precise descriptions.
Systematics of nuclear ground state properties in 78-100Sr by laser spectroscopy
NASA Astrophysics Data System (ADS)
Buchinger, F.; Ramsay, E. B.; Arnold, E.; Neu, W.; Neugart, R.; Wendt, K.; Silverans, R. E.; Lievens, P.; Vermeeren, L.; Berdichevsky, D.; Fleming, R.; Sprung, D. W. L.; Ulm, G.
1990-06-01
Hyperfine structures and isotope shifts of strontium isotopes with A=78 to A=98 and A=100 were measured by collinear fast beam laser spectroscopy. Nuclear spins, moments and changes in mean square charge radii are extracted from the data. The spins and moments of most of the odd isotopes are explained in the framework of the single particle model. The changes in mean square charge radii are compared with predictions of the droplet model and of Hartree-Fock-plus-BCS calculations. For the isotopes in the transitional regions below and above the N=50 shell closure, the inclusion of quadrupole zero point motion in the Droplet model describes part of the observed shell effect. An additional change in the surface region of the charge distribution at spherical shape is suggested by the microscopic model. Furthermore, we propose that the isotopes 78Sr and 80Sr may show an unusual shape-sharing structure, with different mean deformations in the ground and 2+1 excited states.
Shell architecture: a novel proxy for paleotemperature reconstructions?
NASA Astrophysics Data System (ADS)
Milano, Stefania; Nehrke, Gernot; Wanamaker, Alan D., Jr.; Witbaard, Rob; Schöne, Bernd R.
2017-04-01
Mollusk shells are unique high-resolution paleoenvironmental archives. Their geochemical properties, such as oxygen isotope composition (δ18Oshell) and element-to-calcium ratios, are routinely used to estimate past environmental conditions. However, the existing proxies have certain drawbacks that can affect paleoreconstruction robustness. For instance, the estimation of water temperature of brackish and near-shore environments can be biased by the interdependency of δ18Oshell from multiple environmental variables (water temperature and δ18Owater). Likely, the environmental signature can be masked by physiological processes responsible for the incorporation of trace elements into the shell. The present study evaluated the use of shell structural properties as alternative environmental proxies. The sensitivity of shell architecture at µm and nm-scale to the environment was tested. In particular, the relationship between water temperature and microstructure formation was investigated. To enable the detection of potential structural changes, the shells of the marine bivalves Cerastoderma edule and Arctica islandica were analyzed with Scanning Electron Microscopy (SEM), nanoindentation and Confocal Raman Microscopy (CRM). These techniques allow a quantitative approach to the microstructural analysis. Our results show that water temperature induces a clear response in shell microstructure. A significant alteration in the morphometric characteristics and crystallographic orientation of the structural units was observed. Our pilot study suggests that shell architecture records environmental information and it has potential to be used as novel temperature proxy in near-shore and open ocean habitats.
Ware, M E; Stinaff, E A; Gammon, D; Doty, M F; Bracker, A S; Gershoni, D; Korenev, V L; Bădescu, S C; Lyanda-Geller, Y; Reinecke, T L
2005-10-21
We report polarized photoluminescence excitation spectroscopy of the negative trion in single charge-tunable quantum dots. The spectrum exhibits a p-shell resonance with polarized fine structure arising from the direct excitation of the electron spin triplet states. The energy splitting arises from the axially symmetric electron-hole exchange interaction. The magnitude and sign of the polarization are understood from the spin character of the triplet states and a small amount of quantum dot asymmetry, which mixes the wave functions through asymmetric e-e and e-h exchange interactions.
New predictions on meson decays from string splitting
NASA Astrophysics Data System (ADS)
Bigazzi, Francesco; Cotrone, Aldo L.
2006-11-01
We study certain exclusive decays of high spin mesons into mesons in models of large Nc Yang-Mills with few flavors at strong coupling using string theory. The rate of the process is calculated by studying the splitting of a macroscopic string on the relevant dual gravity backgrounds. In the leading channel for the decay of heavy quarkonium into two open-heavy quark states, one of the two produced mesons has much larger spin than the other. In this channel the decay rate is practically independent on the spin and has a mild dependence on the mass of the heavy quarks. Moreover, it is only power-like suppressed with the mass of the produced quark-anti quark pair. We also reconsider decays of high spin mesons made up of light quarks, confirming the linear dependence of the rate on the mass of the decaying meson. As a bonus of our computation, we provide a formula for the splitting rate of a macroscopic string lying on a Dp-brane in flat space.
Spin-Ice Thin Films: Large-N Theory and Monte Carlo Simulations
NASA Astrophysics Data System (ADS)
Lantagne-Hurtubise, Étienne; Rau, Jeffrey G.; Gingras, Michel J. P.
2018-04-01
We explore the physics of highly frustrated magnets in confined geometries, focusing on the Coulomb phase of pyrochlore spin ices. As a specific example, we investigate thin films of nearest-neighbor spin ice, using a combination of analytic large-N techniques and Monte Carlo simulations. In the simplest film geometry, with surfaces perpendicular to the [001] crystallographic direction, we observe pinch points in the spin-spin correlations characteristic of a two-dimensional Coulomb phase. We then consider the consequences of crystal symmetry breaking on the surfaces of the film through the inclusion of orphan bonds. We find that when these bonds are ferromagnetic, the Coulomb phase is destroyed by the presence of fluctuating surface magnetic charges, leading to a classical Z2 spin liquid. Building on this understanding, we discuss other film geometries with surfaces perpendicular to the [110] or the [111] direction. We generically predict the appearance of surface magnetic charges and discuss their implications for the physics of such films, including the possibility of an unusual Z3 classical spin liquid. Finally, we comment on open questions and promising avenues for future research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Man, Zhong-Xiao, E-mail: zxman@mail.qfnu.edu.cn; An, Nguyen Ba, E-mail: nban@iop.vast.ac.vn; Xia, Yun-Jie, E-mail: yjxia@mail.qfnu.edu.cn
In combination with the theories of open system and quantum recovering measurement, we propose a quantum state transfer scheme using spin chains by performing two sequential operations: a projective measurement on the spins of ‘environment’ followed by suitably designed quantum recovering measurements on the spins of interest. The scheme allows perfect transfer of arbitrary multispin states through multiple parallel spin chains with finite probability. Our scheme is universal in the sense that it is state-independent and applicable to any model possessing spin–spin interactions. We also present possible methods to implement the required measurements taking into account the current experimental technologies.more » As applications, we consider two typical models for which the probabilities of perfect state transfer are found to be reasonably high at optimally chosen moments during the time evolution. - Highlights: • Scheme that can achieve perfect quantum state transfer is devised. • The scheme is state-independent and applicable to any spin-interaction models. • The scheme allows perfect transfer of arbitrary multispin states. • Applications to two typical models are considered in detail.« less
Comparative analysis of local spin definitions.
Herrmann, Carmen; Reiher, Markus; Hess, Bernd A
2005-01-15
This work provides a survey of the definition of electron spin as a local property and its dependence on several parameters in actual calculations. We analyze one-determinant wave functions constructed from Hartree-Fock and, in particular, from Kohn-Sham orbitals within the collinear approach to electron spin. The scalar total spin operators S2 and Sz are partitioned by projection operators, as introduced by Clark and Davidson, in order to obtain local spin operators SASB and SzA, respectively. To complement the work of Davidson and co-workers, we analyze some features of local spins which have not yet been discussed in sufficient depth. The dependence of local spin on the choice of basis set, density functional, and projector is studied. We also discuss the results of Sz partitioning and show that SzA values depend less on these parameters than SASB values. Furthermore, we demonstrate that for small organic test molecules, a partitioning of Sz with preorthogonalized Lowdin projectors yields nearly the same results as one obtains using atoms-in-molecules projectors. In addition, the physical significance of nonzero SASB values for closed-shell molecules is investigated. It is shown that due to this problem, SASB values are useful for calculations of relative spin values, but not for absolute local spins, where SzA values appear to be better suited.
Sugisaki, Kenji; Yamamoto, Satoru; Nakazawa, Shigeaki; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji
2016-08-18
Quantum computers are capable to efficiently perform full configuration interaction (FCI) calculations of atoms and molecules by using the quantum phase estimation (QPE) algorithm. Because the success probability of the QPE depends on the overlap between approximate and exact wave functions, efficient methods to prepare accurate initial guess wave functions enough to have sufficiently large overlap with the exact ones are highly desired. Here, we propose a quantum algorithm to construct the wave function consisting of one configuration state function, which is suitable for the initial guess wave function in QPE-based FCI calculations of open-shell molecules, based on the addition theorem of angular momentum. The proposed quantum algorithm enables us to prepare the wave function consisting of an exponential number of Slater determinants only by a polynomial number of quantum operations.
Structure of 52 132Te80: The two-particle and two-hole spectrum of 50 132Sn82
NASA Astrophysics Data System (ADS)
Biswas, S.; Palit, R.; Navin, A.; Rejmund, M.; Bisoi, A.; Sarkar, M. Saha; Sarkar, S.; Bhattacharyya, S.; Biswas, D. C.; Caamaño, M.; Carpenter, M. P.; Choudhury, D.; Clément, E.; Danu, L. S.; Delaune, O.; Farget, F.; de France, G.; Hota, S. S.; Jacquot, B.; Lemasson, A.; Mukhopadhyay, S.; Nanal, V.; Pillay, R. G.; Saha, S.; Sethi, J.; Singh, Purnima; Srivastava, P. C.; Tandel, S. K.
2016-03-01
High-spin states in 132Te, an isotope with two proton particles and two neutron holes outside of the 132Sn doubly magic core, have been extended up to an excitation energy of 6.17 MeV. The prompt-delayed coincidence technique has been used to correlate states above the T1 /2=3.70 (9 ) μ s isomer in 132Te to the lower states using 232Th(7Li,f ) at 5.4 MeV/u and the Indian National Gamma Array (INGA). With 9Be(238U,f ) at 6.2 MeV/u and EXOGAM γ -array coupled with the VAMOS++ spectrometer, the level scheme was extended to higher excitation energies. The high-spin positive-parity states, above Jπ=10+ , in 132Te are expected to arise from the alignment of the particles in the high-j orbitals lying close to the Fermi surface, the π g7/2 2 , and the ν h11/2 -2 configurations. The experimental level scheme has been compared with the large scale shell model calculations. A reduction in the p -n interaction strength resulted in an improved agreement with the measurements up to the spin of 15 ℏ . In contrast, the comparison of the differences between the experiment and these calculations for the N =76 ,78 isotones of Te and Sn shows the increasing disagreement as a function of spin, where the magnitude is larger in Te than in Sn. This behavior could possibly be attributed to the deficiencies in the p -n correlations, in addition to the n -n correlations in Sn.
High-spin states in {sup 188}Au: Further evidence for nonaxial shape
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Y. D.; Zhang, Y. H.; Zhou, X. H.
2010-12-15
The high-spin level structure of {sup 188}Au has been investigated via the {sup 173}Yb({sup 19}F,4n{gamma}) reaction at beam energies of 86 and 90 MeV. The previously reported level scheme has been modified and extended significantly. A new I{sup {pi}}=20{sup +} state associated with {pi}h{sub 11/2}{sup -1} x {nu}i{sub 13/2}{sup -2}h{sub 9/2}{sup -1} configuration and two new rotational bands, one of which is built on the {pi}h{sub 9/2} x {nu}i{sub 13/2} configuration, have been identified. The prolate-to-oblate shape transition through triaxial shape has been proposed to occur around {sup 188}Au for the {pi}h{sub 9/2} x {nu}i{sub 13/2} bands in odd-odd Aumore » isotopes. Evidence for {pi}h{sub 11/2}{sup -1} x {nu}i{sub 13/2}{sup -1} structure of nonaxial shape with {gamma}<-70 deg. has been obtained by comparison with total Routhian surface and cranked-shell-model calculations.« less
Perforated cenosphere-supported pH-sensitive spin probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fomenko, E.V.; Bobko, A.A.; Salanov, A.N.
2008-03-15
Porous supports with an accessible internal volume and a shell providing the diffusive migration of pH-sensitive spin probes were obtained for the first time from hollow aluminosilicate cenospheres isolated from the coal fly ash. Using the methods of scanning electron microscopy and electron spin resonance, the morphology of different porous cenosphere modifications and its influence on the diffusion of spin probes from the internal volume were studied. When supporting aqueous solutions of a radical, the characteristic diffusion time for the mesoporous structure of the support is longer by a factor of 3-5 than that for the macroporous structure. Ferrospinel inmore » a content of 6 wt.% do not virtually affect the diffusion rate of spin probes. A constant rate of radical migration of similar to 1 {mu} mol min{sup -1}, determined by radical solubility in water, is achieved when a radical in the solid aggregate state is supported on the magnetic cenospheres.« less
Switchable Opening and Closing of a Liquid Marble via Ultrasonic Levitation.
Zang, Duyang; Li, Jun; Chen, Zhen; Zhai, Zhicong; Geng, Xingguo; Binks, Bernard P
2015-10-27
Liquid marbles have promising applications in the field of microreactors, where the opening and closing of their surfaces plays a central role. We have levitated liquid water marbles using an acoustic levitator and, thereby, achieved the manipulation of the particle shell in a controlled manner. Upon increasing the sound intensity, the stable levitated liquid marble changes from a quasi-sphere to a flattened ellipsoid. Interestingly, a cavity on the particle shell can be produced on the polar areas, which can be completely healed when decreasing the sound intensity, allowing it to serve as a microreactor. The integral of the acoustic radiation pressure on the part of the particle surface protruding into air is responsible for particle migration from the center of the liquid marble to the edge. Our results demonstrate that the opening and closing of the liquid marble particle shell can be conveniently achieved via acoustic levitation, opening up a new possibility to manipulate liquid marbles coated with non-ferromagnetic particles.
Seven-quasiparticle bands in {sup 139}Ce
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chanda, Somen; Bhattacharjee, Tumpa; Bhattacharyya, Sarmishtha
2009-05-15
The high spin states in the {sup 139}Ce nucleus have been studied by in-beam {gamma}-spectroscopic techniques using the reaction {sup 130}Te({sup 12}C,3n){sup 139}Ce at E{sub beam}=65 MeV. A gamma detector array, consisting of five Compton-suppressed Clover detectors was used for coincidence measurements. 15 new levels have been proposed and 28 new {gamma} transitions have been assigned to {sup 139}Ce on the basis of {gamma}{gamma} coincidence data. The level scheme of {sup 139}Ce has been extended above the known 70 ns (19/2){sup -} isomer up to {approx}6.1 MeV in excitation energy and (35/2)({Dirac_h}/2{pi}) in spin. The spin-parity assignments for most ofmore » the newly proposed levels have been made using the deduced Directional Correlation from Oriented states of nuclei (DCO ratio) and the Polarization Directional Correlation from Oriented states (PDCO ratio) for the de-exciting transitions. The observed level structure has been compared with a large basis shell model calculation and also with the predictions from cranked Nilsson-Strutinsky (CNS) calculations. A general consistency has been observed between these two different theoretical approaches.« less
Balancing Newtonian gravity and spin to create localized structures
NASA Astrophysics Data System (ADS)
Bush, Michael; Lindner, John
2015-03-01
Using geometry and Newtonian physics, we design localized structures that do not require electromagnetic or other forces to resist implosion or explosion. In two-dimensional Euclidean space, we find an equilibrium configuration of a rotating ring of massive dust whose inward gravity is the centripetal force that spins it. We find similar solutions in three-dimensional Euclidean and hyperbolic spaces, but only in the limit of vanishing mass. Finally, in three-dimensional Euclidean space, we generalize the two-dimensional result by finding an equilibrium configuration of a spherical shell of massive dust that supports itself against gravitational collapse by spinning isoclinically in four dimensions so its three-dimensional acceleration is everywhere inward. These Newtonian ``atoms'' illuminate classical physics and geometry.
Molecular Electronic Terms and Molecular Orbital Configurations.
ERIC Educational Resources Information Center
Mazo, R. M.
1990-01-01
Discussed are the molecular electronic terms which can arise from a given electronic configuration. Considered are simple cases, molecular states, direct products, closed shells, and open shells. Two examples are provided. (CW)
NASA Astrophysics Data System (ADS)
Zuo, Fanfan; Heimhofer, Ulrich; Huck, Stefan; Erbacher, Jochen; Bodin, Stephane
2017-04-01
Stratigraphic uncertainties due to the lack of open marine marker fossils (e.g. ammonites) hamper the precise age assignment and stratigraphic correlation of Kimmeridgian strata found in the Lower Saxony Basin of Northern Germany. Correlation of these deposits with the Jurassic standard ammonite zonation is still difficult, since the existing ostracod biostratigraphy is facies-controlled and of only limited stratigraphic precision. In this study, a chemostratigraphic approach has been chosen and biogenic shell material produced by brachiopods, oysters and lithiotids is evaluated for its reliability to act as proxy of the original Jurassic seawater strontium isotope composition. Low-Mg calcite shells have been collected from three stratigraphic sections accessible in open-cast quarries located in the Lower Saxony Basin of Northern Germany. In order to identify diagenetically altered shell calcite, trace element and stable isotope analysis of 227 calcite samples (oysters=101; brachiopods=60; Trichites=52) has been carried out. The geochemical results reveal that (1) concentration of different trace elements varies between the different groups of shell-forming organisms, which may be related to vital effects and (2) high strontium contents, low Mn and Fe contents and the lack of correlation between these elements indicate near-pristine calcite shells, and therefore shells are supposed to record the ambient sea water composition during the Late Jurassic. Strontium-isotope (87Sr/86Sr) analysis of diagenetically screened samples indicates an Early Kimmeridgian age of the studied deposits, which is in accordance with ostracod biostratigraphic data. An increasing trend in 87Sr/86Sr with stratigraphic height fits well with the global strontium-isotope curve. Besides, similar 87Sr/86Sr ratios derived from different organisms from a single stratigraphic level highlight the suitability of the shells for strontium-isotope stratigraphy. Despite the shallow-marine character of the studied deposits, no evidence for significant riverine influence on the strontium-isotope signature is observed. The new chemostratigraphic data will provide a more precise age assignment for Kimmeridgian strata in the Lower Saxony Basin and thus enable the establishment of a solid integrated stratigraphic scheme that can be used for correlation on both regional and global scale.
Size-selective breaking of the core-shell structure of gallium nanoparticles.
Catalán Gómez, Sergio; Redondo-Cubero, Andres; Palomares Simon, Francisco Javier; Vazquez Burgos, Luis; Nogales, Emilio; Nucciarelli, Flavio; Mendez, Bianchi; Gordillo, Nuria; Pau, Jose Luis
2018-06-11
Core-shell gallium nanoparticles (Ga NPs) have recently been proposed as an ultraviolet plasmonic material for different applications but only at room temperature. Here, the thermal stability as a function of the size of the NPs is reported over a wide range of temperatures. We analyse the chemical and structural properties of the oxide shell by x-ray photoelectron spectroscopy and atomic force microscopy. We demonstrate the inverse dependence of the shell breaking temperature with the size of the NPs. Spectroscopic ellipsometry is used for tracking the rupture and its mechanism is systematically investigated by scanning electron microscopy, grazing incidence x-ray diffraction and cathodoluminescence. Taking advantage of the thermal stability of the NPs, we perform complete oxidations that lead to homogenous gallium oxide NPs. Thus, this study set the physical limits of Ga NPs to last at high temperatures, and opens up the possibility to achieve totally oxidized NPs while keeping their sphericity. © 2018 IOP Publishing Ltd.
Supramolecular core-shell nanoparticles for photoconductive device applications
NASA Astrophysics Data System (ADS)
Cheng, Chih-Chia; Chen, Jem-Kun; Shieh, Yeong-Tarng; Lee, Duu-Jong
2016-08-01
We report a breakthrough discovery involving supramolecular-based strategies to construct novel core-shell heterojunction nanoparticles with hydrophilic adenine-functionalized polythiophene (PAT) as the core and hydrophobic phenyl-C61-butyric acid methyl ester (PCBM) as the shell, which enables the conception of new functional supramolecular assemblies for constructing functional nanomaterials for applications in optoelectronic devices. The generated nanoparticles exhibit uniform spherical shape, well-controlled tuning of particle size with narrow size distributions, and excellent electrochemical stability in solution and the solid state owing to highly efficient energy transfer from PAT to PCBM. When the PAT/PCBM nanoparticles were fabricated into a photoconducting layer in an electronic device, the resulting device showed excellent electric conduction characteristics, including an electrically-tunable voltage-controlled switch, and high short-circuit current and open-circuit voltage. These observations demonstrate how the self-assembly of PAT/PCBM into specific nanostructures may help to promote efficient charge generation and transport processes, suggesting potential for a wide variety of applications as a promising candidate material for bulk heterojunction polymer devices.
Leach, David; Bergendahl, Peter Allen; Waldo, Stuart Forrest; Smith, Robert Leroy; Phelps, Robert Kim
2001-01-01
A turbine includes upper and lower inner shell sections mounting the nozzles and shrouds and which inner shell is supported by pins secured to a surrounding outer shell. To disassemble the turbine for access to the inner shell sections and rotor, an alignment fixture is secured to the lower outer shell section and has pins engaging the inner shell section. To disassemble the turbine, the inner shell weight is transferred to the lower outer shell section via the alignment fixture and cradle pins. Roller assemblies are inserted through access openings vacated by support pins to permit rotation of the lower inner shell section out of and into the lower outer shell section during disassembly and assembly. The alignment fixture includes adjusting rods for adjusting the inner shell axially, vertically, laterally and about a lateral axis. A roller over-cage is provided to rotate the inner shell and a dummy shell to facilitate assembly and disassembly in the field.
Magneto-optical studies of quantum dots
NASA Astrophysics Data System (ADS)
Russ, Andreas Hans
Significant effort in condensed matter physics has recently been devoted to the field of "spintronics" which seeks to utilize the spin degree of freedom of electrons. Unlike conventional electronics that rely on the electron charge, devices exploiting their spin have the potential to yield new and novel technological applications, including spin transistors, spin filters, and spin-based memory devices. Any such application has the following essential requirements: 1) Efficient electrical injection of spin-polarized carriers; 2) Long spin lifetimes; 3) Ability to control and manipulate electron spins; 4) Effective detection of spin-polarized carriers. Recent work has demonstrated efficient electrical injection from ferromagnetic contacts such as Fe and MnAs, utilizing a spin-Light Emitting Diode (spin-LED) as a method of detection. Semiconductor quantum dots (QDs) are attractive candidates for satisfying requirements 2 and 3 as their zero dimensionality significantly suppresses many spin-flip mechanisms leading to long spin coherence times, as well as enabling the localization and manipulation of a controlled number of electrons and holes. This thesis is composed of three projects that are all based on the optical properties of QD structures including: I) Intershell exchange between spin-polarized electrons occupying adjacent shells in InAs QDs; II) Spin-polarized multiexitons in InAs QDs in the presence of spin-orbit interactions; III) The optical Aharonov-Bohm effect in AlxGa1-xAs/AlyGa1-yAs quantum wells (QWs). In the following we introduce some of the basic optical properties of quantum dots, describe the main tool (spin-LED) employed in this thesis to inject and detect spins in these QDs, and conclude with the optical Aharonov-Bohm effect (OAB) in type-II QDs.
Gelbrich, Thorsten; Reinartz, Michael; Schmidt, Annette M
2010-03-08
Multifunctional nanocarriers for amino functional targets with a high density of accessible binding sites are obtained in a single polymerization step by grafting from copolymerization of an active ester monomer from superparamagnetic cores. As a result of the brush-like structure of the highly dispersed shell, the nano-objects exhibit an available capture capacity for amines that is found to be up to 2 orders of magnitude higher than for commercial magnetic beads, and the functional brush shell can serve as a template for many types of pendant functional groups and molecules. As comonomer, oligo(ethylene glycol) methacrylate allows for excellent water solubility at room temperature, biocompatibility, and thermoflocculation. We demonstrate the biorelated applicability of the hybrid nanoparticles by two different approaches. In the first approach, the immobilization of trypsin to the core-shell nanoparticles results in highly active, nanoparticulate biocatalysts that can easily be separated magnetically. Second, we demonstrate that the obtained nanoparticles are suitable for the effective labeling of cell membranes, opening a novel pathway for the easy and effective isolation of membrane proteins.
Convergence behavior of the random phase approximation renormalized correlation energy
NASA Astrophysics Data System (ADS)
Bates, Jefferson E.; Sensenig, Jonathon; Ruzsinszky, Adrienn
2017-05-01
Based on the random phase approximation (RPA), RPA renormalization [J. E. Bates and F. Furche, J. Chem. Phys. 139, 171103 (2013), 10.1063/1.4827254] is a robust many-body perturbation theory that works for molecules and materials because it does not diverge as the Kohn-Sham gap approaches zero. Additionally, RPA renormalization enables the simultaneous calculation of RPA and beyond-RPA correlation energies since the total correlation energy is the sum of a series of independent contributions. The first-order approximation (RPAr1) yields the dominant beyond-RPA contribution to the correlation energy for a given exchange-correlation kernel, but systematically underestimates the total beyond-RPA correction. For both the homogeneous electron gas model and real systems, we demonstrate numerically that RPA renormalization beyond first order converges monotonically to the infinite-order beyond-RPA correlation energy for several model exchange-correlation kernels and that the rate of convergence is principally determined by the choice of the kernel and spin polarization of the ground state. The monotonic convergence is rationalized from an analysis of the RPA renormalized correlation energy corrections, assuming the exchange-correlation kernel and response functions satisfy some reasonable conditions. For spin-unpolarized atoms, molecules, and bulk solids, we find that RPA renormalization is typically converged to 1 meV error or less by fourth order regardless of the band gap or dimensionality. Most spin-polarized systems converge at a slightly slower rate, with errors on the order of 10 meV at fourth order and typically requiring up to sixth order to reach 1 meV error or less. Slowest to converge, however, open-shell atoms present the most challenging case and require many higher orders to converge.
7 CFR 51.2123 - Foreign material.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Standards for Grades of Shelled Almonds Definitions § 51.2123 Foreign material. Foreign material means pieces of shell, hulls or other foreign matter which will not pass through a round opening 8/64 of an...
Zhang, X; Bishof, M; Bromley, S L; Kraus, C V; Safronova, M S; Zoller, P; Rey, A M; Ye, J
2014-09-19
SU(N) symmetry can emerge in a quantum system with N single-particle spin states when spin is decoupled from interparticle interactions. Taking advantage of the high measurement precision offered by an ultrastable laser, we report a spectroscopic observation of SU(N ≤ 10) symmetry in (87)Sr. By encoding the electronic orbital degree of freedom in two clock states while keeping the system open to as many as 10 nuclear spin sublevels, we probed the non-equilibrium two-orbital SU(N) magnetism via Ramsey spectroscopy of atoms confined in an array of two-dimensional optical traps; we studied the spin-orbital quantum dynamics and determined the relevant interaction parameters. This study lays the groundwork for using alkaline-earth atoms as testbeds for important orbital models. Copyright © 2014, American Association for the Advancement of Science.
Effects of cluster-shell competition and BCS-like pairing in 12C
NASA Astrophysics Data System (ADS)
Matsuno, H.; Itagaki, N.
2017-12-01
The antisymmetrized quasi-cluster model (AQCM) was proposed to describe α-cluster and jj-coupling shell models on the same footing. In this model, the cluster-shell transition is characterized by two parameters, R representing the distance between α clusters and Λ describing the breaking of α clusters, and the contribution of the spin-orbit interaction, very important in the jj-coupling shell model, can be taken into account starting with the α-cluster model wave function. Not only the closure configurations of the major shells but also the subclosure configurations of the jj-coupling shell model can be described starting with the α-cluster model wave functions; however, the particle-hole excitations of single particles have not been fully established yet. In this study we show that the framework of AQCM can be extended even to the states with the character of single-particle excitations. For ^{12}C, two-particle-two-hole (2p2h) excitations from the subclosure configuration of 0p_{3/2} corresponding to a BCS-like pairing are described, and these shell model states are coupled with the three α-cluster model wave functions. The correlation energy from the optimal configuration can be estimated not only in the cluster part but also in the shell model part. We try to pave the way to establish a generalized description of the nuclear structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goh, Gregory Kia Liang; Le, Hong Quang, E-mail: lehq@imre.a-star.edu.sg; Huang, Tang Jiao
High aspect ratio ZnO nanorod arrays were synthesized on fluorine-doped tin oxide glasses via a low temperature solution method. By adjusting the growth condition and adding polyethylenimine, ZnO nanorod arrays with tunable length were successfully achieved. The ZnO@TiO{sub 2} core shells structures were realized by a fast growth method of immersion into a (NH{sub 4}){sub 2}·TiF{sub 6} solution. Transmission electron microscopy, X-ray Diffraction and energy dispersive X-ray measurements all confirmed the existence of a titania shell uniformly covering the ZnO nanorod's surface. Results of solar cell testing showed that addition of a TiO{sub 2} shell to the ZnO nanorod significantlymore » increased short circuit current (from 4.2 to 5.2 mA/cm{sup 2}), open circuit voltage (from 0.6 V to 0.8 V) and fill factor (from 42.8% to 73.02%). The overall cell efficiency jumped from 1.1% for bare ZnO nanorod to 3.03% for a ZnO@TiO{sub 2} core shell structured solar cell with a 18–22 nm shell thickness, a nearly threefold increase. - Graphical abstract: The synthesis process of coating TiO{sub 2} shell onto ZnO nanorod core is shown schematically. A thin, uniform, and conformal shell had been grown on the surface of the ZnO core after immersing in the (NH{sub 4}){sub 2}·TiF{sub 6} solution for 5–15 min. - Highlights: • ZnO@TiO{sub 2} core shell nanorod has been grown on FTO substrate using low temperature solution method. • TEM, XRD, EDX results confirmed the existing of titana shell, uniformly covered rod's surface. • TiO{sub 2} shell suppressed recombination, demonstrated significant enhancement in cell's efficiency. • Core shell DSSC's efficiency achieved as high as 3.03%, 3 times higher than that of ZnO nanorods.« less
Evidence for prevalent Z = 6 magic number in neutron-rich carbon isotopes.
Tran, D T; Ong, H J; Hagen, G; Morris, T D; Aoi, N; Suzuki, T; Kanada-En'yo, Y; Geng, L S; Terashima, S; Tanihata, I; Nguyen, T T; Ayyad, Y; Chan, P Y; Fukuda, M; Geissel, H; Harakeh, M N; Hashimoto, T; Hoang, T H; Ideguchi, E; Inoue, A; Jansen, G R; Kanungo, R; Kawabata, T; Khiem, L H; Lin, W P; Matsuta, K; Mihara, M; Momota, S; Nagae, D; Nguyen, N D; Nishimura, D; Otsuka, T; Ozawa, A; Ren, P P; Sakaguchi, H; Scheidenberger, C; Tanaka, J; Takechi, M; Wada, R; Yamamoto, T
2018-04-23
The nuclear shell structure, which originates in the nearly independent motion of nucleons in an average potential, provides an important guide for our understanding of nuclear structure and the underlying nuclear forces. Its most remarkable fingerprint is the existence of the so-called magic numbers of protons and neutrons associated with extra stability. Although the introduction of a phenomenological spin-orbit (SO) coupling force in 1949 helped in explaining the magic numbers, its origins are still open questions. Here, we present experimental evidence for the smallest SO-originated magic number (subshell closure) at the proton number six in 13-20 C obtained from systematic analysis of point-proton distribution radii, electromagnetic transition rates and atomic masses of light nuclei. Performing ab initio calculations on 14,15 C, we show that the observed proton distribution radii and subshell closure can be explained by the state-of-the-art nuclear theory with chiral nucleon-nucleon and three-nucleon forces, which are rooted in the quantum chromodynamics.
Blasi, Davide; Nikolaidou, Domna M; Terenziani, Francesca; Ratera, Imma; Veciana, Jaume
2017-03-29
In this work, the luminescence properties of new materials based on open-shell molecular systems are studied. In particular, we prepared polymeric films and organic nanoparticles (ONPs) doped with triphenylmethyl radical molecules. ONPs exhibit a uniform size distribution, spherical morphology and high colloidal stability. The emission spectrum of low-doped ONP suspensions and low-doped films is very similar to the emission spectrum of TTM in solution, while the luminescence lifetime and the luminescence quantum yield (LQY) are highly increased. Increasing the radical doping leads to a progressive decrease of the LQY and the appearance of a new broad excimeric band at longer wavelengths, both for ONPs and films. Thus, not only the luminescence properties were improved, but also the formation of excimers from stable and persistent supramolecular radical-pairs was observed for the first time. The good stability and luminescence properties with emission in the red-NIR region (650-800 nm), together with the open-shell nature of the emitter, make these free-radical excimer-forming materials promising candidates for optoelectronic and bioimaging applications.
Topological Magnonics: A Paradigm for Spin-Wave Manipulation and Device Design
NASA Astrophysics Data System (ADS)
Wang, X. S.; Zhang, H. W.; Wang, X. R.
2018-02-01
Conventional magnonic devices use magnetostatic waves whose properties are sensitive to device geometry and the details of magnetization structure, so the design and the scalability of the device or circuitry are difficult. We propose topological magnonics, in which topological exchange spin waves are used as information carriers, that do not suffer from conventional problems of magnonic devices with additional nice features of nanoscale wavelength and high frequency. We show that a perpendicularly magnetized ferromagnet on a honeycomb lattice is generically a topological magnetic material in the sense that topologically protected chiral edge spin waves exist in the band gap as long as a spin-orbit-induced nearest-neighbor pseudodipolar interaction (and/or a next-nearest-neighbor Dzyaloshinskii-Moriya interaction) is present. The edge spin waves propagate unidirectionally along sample edges and domain walls regardless of the system geometry and defects. As a proof of concept, spin-wave diodes, spin-wave beam splitters, and spin-wave interferometers are designed by using sample edges and domain walls to manipulate the propagation of topologically protected chiral spin waves. Since magnetic domain walls can be controlled by magnetic fields or electric current or fields, one can essentially draw, erase, and redraw different spin-wave devices and circuitry on the same magnetic plate so that the proposed devices are reconfigurable and tunable. The topological magnonics opens up an alternative direction towards a robust, reconfigurable and scalable spin-wave circuitry.
Lohan, S B; Icken, N; Teutloff, C; Saeidpour, S; Bittl, R; Lademann, J; Fleige, E; Haag, R; Haag, S F; Meinke, M C
2016-03-30
Dendritic core-multi shell (CMS) particles are polymer based systems consisting of a dendritic polar polyglycerol polymer core surrounded by a two-layer shell of nonpolar C18 alkyl chains and hydrophilic polyethylene glycol. Belonging to nanotransport systems (NTS) they allow the transport and storage of molecules with different chemical characters. Their amphipihilic character CMS-NTS permits good solubility in aqueous and organic solutions. We showed by multifrequency electron paramagnetic resonance (EPR) spectroscopy that spin-labeled 5-doxyl stearic acid (5DSA) can be loaded into the CMS-NTS. Furthermore, the release of 5DSA from the carrier into the stratum corneum of porcine skin was monitored ex vivo by EPR spectroscopy. Additionally, the penetration of the CMS-NTS into the skin was analyzed by fluorescence microscopy using indocarbocyanine (ICC) covalently bound to the nanocarrier. Thereby, no transport into the viable skin was observed, whereas the CMS-NTS had penetrated into the hair follicles down to a depth of 340 μm ± 82 μm. Thus, it could be shown that the combined application of fluorescence microscopy and multi-frequency EPR spectroscopy can be an efficient tool for investigating the loading of spin labeled drugs to nanocarrier systems, drug release and penetration into the skin as well as the localization of the NTS in the skin. Copyright © 2016 Elsevier B.V. All rights reserved.
Full-gap superconductivity in spin-polarised surface states of topological semimetal β-PdBi2.
Iwaya, K; Kohsaka, Y; Okawa, K; Machida, T; Bahramy, M S; Hanaguri, T; Sasagawa, T
2017-10-17
A bulk superconductor possessing a topological surface state at the Fermi level is a promising system to realise long-sought topological superconductivity. Although several candidate materials have been proposed, experimental demonstrations concurrently exploring spin textures and superconductivity at the surface have remained elusive. Here we perform spectroscopic-imaging scanning tunnelling microscopy on the centrosymmetric superconductor β-PdBi 2 that hosts a topological surface state. By combining first-principles electronic-structure calculations and quasiparticle interference experiments, we determine the spin textures at the surface, and show not only the topological surface state but also all other surface bands exhibit spin polarisations parallel to the surface. We find that the superconducting gap fully opens in all the spin-polarised surface states. This behaviour is consistent with a possible spin-triplet order parameter expected for such in-plane spin textures, but the observed superconducting gap amplitude is comparable to that of the bulk, suggesting that the spin-singlet component is predominant in β-PdBi 2 .Although several materials have been proposed as topological superconductors, spin textures and superconductivity at the surface remain elusive. Here, Iwaya et al. determine the spin textures at the surface of a superconductor β-PdBi 2 and find the superconducting gap opening in all spin-polarised surface states.
Report on the 18th International Conference on X-ray and Inner-Shell Processes (X99).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gemmell, D. S.; Physics
2000-01-01
The 18th conference of the series served as a forum for discussing fundamental issues in the field of x-ray and inner-shell processes and their application in various disciplines of science and technology. Special emphasis was given to the opportunities offered by modern synchrotron x-ray sources. The program included plenary talks, progress reports and poster presentations relating to new developments in the field of x-ray and inner-shell processes. The range of topics included: X-ray interactions with atoms, molecules, clusters, surfaces and solids; Decay processes for inner-shell vacancies; X-ray absorption and emission spectroscopy - Photoionization processes; Phenomena associated with highly charged ionsmore » and collisions with energetic particles; Electron-spin and -momentum spectroscopy; X-ray scattering and spectroscopy in the study of magnetic systems; Applications in materials science, biology, geosciences, and other disciplines; Elastic and inelastic x-ray scattering processes in atoms and molecules; Threshold phenomena (post-collision interaction, resonant Raman processes, etc.); Nuclear absorption and scattering of x-rays; 'Fourth-generation' x-ray sources; Processes exploiting the polarization and coherence properties of x-ray beams; Developments in experimental techniques (x-ray optics, temporal techniques, detectors); Microscopy, spectromicroscopy, and various imaging techniques; Non-linear processes and x-ray lasers; Ionization and excitation induced by charged particles and by x-rays; and Exotic atoms (including 'hollow' atoms and atoms that contain 'exotic' particles).« less
NASA Astrophysics Data System (ADS)
Carrião, Marcus S.; Bakuzis, Andris F.
2016-04-01
The phenomenon of heat dissipation by magnetic materials interacting with an alternating magnetic field, known as magnetic hyperthermia, is an emergent and promising therapy for many diseases, mainly cancer. Here, a magnetic hyperthermia model for core-shell nanoparticles is developed. The theoretical calculation, different from previous models, highlights the importance of heterogeneity by identifying the role of surface and core spins on nanoparticle heat generation. We found that the most efficient nanoparticles should be obtained by selecting materials to reduce the surface to core damping factor ratio, increasing the interface exchange parameter and tuning the surface to core anisotropy ratio for each material combination. From our results we propose a novel heat-based hyperthermia strategy with the focus on improving the heating efficiency of small sized nanoparticles instead of larger ones. This approach might have important implications for cancer treatment and could help improving clinical efficacy.The phenomenon of heat dissipation by magnetic materials interacting with an alternating magnetic field, known as magnetic hyperthermia, is an emergent and promising therapy for many diseases, mainly cancer. Here, a magnetic hyperthermia model for core-shell nanoparticles is developed. The theoretical calculation, different from previous models, highlights the importance of heterogeneity by identifying the role of surface and core spins on nanoparticle heat generation. We found that the most efficient nanoparticles should be obtained by selecting materials to reduce the surface to core damping factor ratio, increasing the interface exchange parameter and tuning the surface to core anisotropy ratio for each material combination. From our results we propose a novel heat-based hyperthermia strategy with the focus on improving the heating efficiency of small sized nanoparticles instead of larger ones. This approach might have important implications for cancer treatment and could help improving clinical efficacy. Electronic supplementary information (ESI) available: Unit cells per region calculation; core-shell Hamiltonian; magnetisation description functions; energy argument of Brillouin function; polydisperse models; details of experimental procedure; LRT versus core-shell model; model calculation software; and shell thickness study. See DOI: 10.1039/C5NR09093H
Nineteenth-century collapse of a benthic marine ecosystem on the open continental shelf
Tomašových, Adam; Kidwell, Susan M.
2017-01-01
The soft-sediment seafloor of the open continental shelf is among the least-known biomes on Earth, despite its high diversity and importance to fisheries and biogeochemical cycling. Abundant dead shells of epifaunal suspension-feeding terebratulid brachiopods (Laqueus) and scallops on the now-muddy mainland continental shelf of southern California reveal the recent, previously unsuspected extirpation of an extensive offshore shell-gravel ecosystem, evidently driven by anthropogenic siltation. Living populations of attached epifauna, which formerly existed in a middle- and outer-shelf mosaic with patches of trophically diverse muds, are restricted today to rocky seafloor along the shelf edge and to the sandier shelves of offshore islands. Geological age-dating of 190 dead brachiopod shells shows that (i) no shells have been produced on the mainland shelf within the last 100 years, (ii) their shell production declined steeply during the nineteenth century, and (iii) they had formerly been present continuously for at least 4 kyr. This loss, sufficiently rapid (less than or equal to 100 years) and thorough to represent an ecosystem collapse, coincides with intensification of alluvial-plain land use in the nineteenth century, particularly livestock grazing. Extirpation was complete by the start of twentieth-century urbanization, warming, bottom fishing and scientific surveys. The loss of this filter-feeding fauna and the new spatial homogeneity and dominance of deposit- and detritus-feeders would have altered ecosystem functioning by reducing habitat heterogeneity and seawater filtering. This discovery, attesting to the power of this geological approach to recent ecological transitions, also strongly increases the spatial scope attributable to the negative effects of siltation, and suggests that it has been under-recognized on continental shelves elsewhere as a legacy of coastal land use. PMID:28592668
Nineteenth-century collapse of a benthic marine ecosystem on the open continental shelf.
Tomašových, Adam; Kidwell, Susan M
2017-06-14
The soft-sediment seafloor of the open continental shelf is among the least-known biomes on Earth, despite its high diversity and importance to fisheries and biogeochemical cycling. Abundant dead shells of epifaunal suspension-feeding terebratulid brachiopods ( Laqueus ) and scallops on the now-muddy mainland continental shelf of southern California reveal the recent, previously unsuspected extirpation of an extensive offshore shell-gravel ecosystem, evidently driven by anthropogenic siltation. Living populations of attached epifauna, which formerly existed in a middle- and outer-shelf mosaic with patches of trophically diverse muds, are restricted today to rocky seafloor along the shelf edge and to the sandier shelves of offshore islands. Geological age-dating of 190 dead brachiopod shells shows that (i) no shells have been produced on the mainland shelf within the last 100 years, (ii) their shell production declined steeply during the nineteenth century, and (iii) they had formerly been present continuously for at least 4 kyr. This loss, sufficiently rapid (less than or equal to 100 years) and thorough to represent an ecosystem collapse, coincides with intensification of alluvial-plain land use in the nineteenth century, particularly livestock grazing. Extirpation was complete by the start of twentieth-century urbanization, warming, bottom fishing and scientific surveys. The loss of this filter-feeding fauna and the new spatial homogeneity and dominance of deposit- and detritus-feeders would have altered ecosystem functioning by reducing habitat heterogeneity and seawater filtering. This discovery, attesting to the power of this geological approach to recent ecological transitions, also strongly increases the spatial scope attributable to the negative effects of siltation, and suggests that it has been under-recognized on continental shelves elsewhere as a legacy of coastal land use. © 2017 The Author(s).
Spin-Selective Transmission and Devisable Chirality in Two-Layer Metasurfaces.
Li, Zhancheng; Liu, Wenwei; Cheng, Hua; Chen, Shuqi; Tian, Jianguo
2017-08-15
Chirality is a nearly ubiquitous natural phenomenon. Its minute presence in most naturally occurring materials makes it incredibly difficult to detect. Recent advances in metasurfaces indicate that they exhibit devisable chirality in novel forms; this finding offers an effective opening for studying chirality and its features in such nanostructures. These metasurfaces display vast possibilities for highly sensitive chirality discrimination in biological and chemical systems. Here, we show that two-layer metasurfaces based on twisted nanorods can generate giant spin-selective transmission and support engineered chirality in the near-infrared region. Two designed metasurfaces with opposite spin-selective transmission are proposed for treatment as enantiomers and can be used widely for spin selection and enhanced chiral sensing. Specifically, we demonstrate that the chirality in these proposed metasurfaces can be adjusted effectively by simply changing the orientation angle between the twisted nanorods. Our results offer simple and straightforward rules for chirality engineering in metasurfaces and suggest intriguing possibilities for the applications of such metasurfaces in spin optics and chiral sensing.
Coercivity and Exchange Bias Study of Polycrystalline Hollow Nanoparticles
NASA Astrophysics Data System (ADS)
Bah, Mohamed Alpha
Magnetic nanoparticles (NPs) have the potential to be useful in a variety of applications such as biomedical instruments, catalysis, sensing, recording information, etc. These nanoparticles exhibit remarkably different properties compared to their bulk counter parts. Synthesis of magnetic NPs with the right morphology, phase, size and surface functionality, as well as their usage for specific applications are challenging in terms of efficiency and safety. Morphology wise, there have been numerous reports on magnetic nanoparticles where morphologies such as core/shell, hollow, solid, etc., have been explored. It has been shown that morphology affects the magnetic response. Achieving the right crystal structure with required morphology and the magnetic behavior of the nanoparticle phases determines the magnetic response of the structure. For example, in the case of core/shell NPs various ferromagnetic (FM), ferrimagnetic (FiM), and antiferromagnetic (AFM) core and shell combinations have been reported. In these cases, interesting and strikingly different features, such as unusually high spin glass transition temperature, large exchange bias, finite size effects, magnetic proximity effects, unusual trend of blocking temperature as function of average crystal size, etc., have been reported. More specifically, the morphology of core/shell nanoparticles provides added degrees of freedom compared to conventional solid magnetic nanoparticles, including variations in the size, phase and material of the core and shell of the particle, etc. which helps enhance their magnetic properties. Similar to traditional core/shell nanoparticles, inverted core/shell having a FiM or FM order above the Curie temperature (TC) of the shell has been reported where the Neel temperature (TN) is comparable with the bulk value and there is nonmonotonic dependence of the coercive field (HC) and exchange bias (HEB) on the core diameter. In addition to the core/shell morphology, nanoparticles with hollow morphology are also of interest to the scientific community. For such cases, surface spin glass transition enhancements have been reported due to the presence of the additional inner surface. CoFe2O4, NiFe 2O4 and gamma-Fe2O3 hollow nanoparticles exhibit strikingly contrasting magnetic behavior compared to bulk and conventional solid particles; similar behavior was also observed in core/shell nanoparticles. Structurally, hollow polycrystalline nanoparticles are composed of multiple crystallographic domains. This random orientation of the crystallographic domains also causes randomization of the local anisotropy axes. Hence the overall effect of this morphology on the magnetic properties is exhibited through the high coercivity, relatively high temperature magnetic irreversibility, lack of magnetic saturation, high blocking temperature, etc. Over the years, extensive work on core/shell nanoparticles have been carried out to understand their exchange bias phenomenon and the effect on coercivity. Recently, focus has been given to hollow polycrystalline nanoparticles for the reason mentioned above. This thesis investigates the root cause for the above-mentioned effects on the coercivity and exchange bias. Since hollow nanoparticles with polycrystalline structure have shown to exhibit different and improved magnetic behavior compared to bulk and other conventional solid particles, they will be the focus of our investigation. First, extensive field and temperature dependent magnetic study on polycrystalline hollow nickel ferrite (NiFe2O4) have revealed the effect of the presence of inner surface in a single oxide nanoparticle. Second, the effect of having multiple oxides with different magnetic properties (i.e. FM and AFM) in a single nanoparticle, while maintaining a hollow morphology was investigated by studying polycrystalline hollow gamma-Mn2O3 and MnO nanoparticles. Studies on various conventional solid manganese oxide nanoparticles have already been reported. Therefore, focus was only made on the fabrication and magnetic study of hollow polycrystalline manganese oxide, with a comparison of the results to those from solid nanoparticles already available in literature. A conclusion was drawn to the importance of the coupling of different magnetic phases (i.e. FM and AFM, FiM and AFM, or SG and AFM), in contrast to just having one single oxide in the hollow nanoparticles. Finally, the importance of this coupling as compared to the increase of surface-to-volume ratio was evaluated in CoO/Co3O4/CoFe2O4 polycrystalline hollow nanoparticles by varying the AFM phase (CoO/Co 3O4) in the nanoparticles and observing how the magnetic properties varied. This system helped address the effect of the coupling between different magnetic phases, super-exchange interaction, and proximity effect.
Long-distance entanglement and quantum teleportation in XX spin chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campos Venuti, L.; Giampaolo, S. M.; CNR-INFM Coherentia, Napoli
2007-11-15
Isotropic XX models of one-dimensional spin-1/2 chains are investigated with the aim to elucidate the formal structure and the physical properties that allow these systems to act as channels for long-distance, high-fidelity quantum teleportation. We introduce two types of models: (i) open, dimerized XX chains, and (ii) open XX chains with small end bonds. For both models we obtain the exact expressions for the end-to-end correlations and the scaling of the energy gap with the length of the chain. We determine the end-to-end concurrence and show that model (i) supports true long-distance entanglement at zero temperature, while model (ii) supportsmore » 'quasi-long-distance' entanglement that slowly falls off with the size of the chain. Due to the different scalings of the gaps, respectively exponential for model (i) and algebraic in model (ii), we demonstrate that the latter allows for efficient qubit teleportation with high fidelity in sufficiently long chains even at moderately low temperatures.« less
Novel Δ J =1 Sequence in 78Ge: Possible Evidence for Triaxiality
NASA Astrophysics Data System (ADS)
Forney, A. M.; Walters, W. B.; Chiara, C. J.; Janssens, R. V. F.; Ayangeakaa, A. D.; Sethi, J.; Harker, J.; Alcorta, M.; Carpenter, M. P.; Gürdal, G.; Hoffman, C. R.; Kay, B. P.; Kondev, F. G.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Rogers, A. M.; Seweryniak, D.; Stefanescu, I.; Zhu, S.
2018-05-01
A sequence of low-energy levels in Ge783246 has been identified with spins and parity of 2+, 3+, 4+, 5+, and 6+. Decays within this band proceed strictly through Δ J =1 transitions, unlike similar sequences in neighboring Ge and Se nuclei. Above the 2+ level, members of this sequence do not decay into the ground-state band. Moreover, the energy staggering of this sequence has the phase that would be expected for a γ -rigid structure. The energies and branching ratios of many of the levels are described well by shell-model calculations. However, the calculated reduced transition probabilities for the Δ J =2 in-band transitions imply that they should have been observed, in contradiction with the experiment. Within the calculations of Davydov, Filippov, and Rostovsky for rigid-triaxial rotors with γ =3 0 ° , there are sequences of higher-spin levels connected by strong Δ J =1 transitions which decay in the same manner as those observed experimentally, yet are calculated at too high an excitation energy.
NASA Astrophysics Data System (ADS)
Yan, Jiawei; Wang, Shizhuo; Xia, Ke; Ke, Youqi
2018-01-01
We present first-principles analysis of interfacial disorder effects on spin-dependent tunneling statistics in thin Fe/MgO/Fe magnetic tunnel junctions. We find that interfacial disorder scattering can significantly modulate the tunneling statistics in the minority spin of the parallel configuration (PC) while all other spin channels remain dominated by the Poissonian process. For the minority-spin channel of PC, interfacial disorder scattering favors the formation of resonant tunneling channels by lifting the limitation of symmetry conservation at low concentration, presenting an important sub-Poissonian process in PC, but is destructive to the open channels at high concentration. We find that the important modulation of tunneling statistics is independent of the type of interfacial disorder. A bimodal distribution function of transmission with disorder dependence is introduced and fits very well our first-principles results. The increase of MgO thickness can quickly change the tunneling from a sub-Poissonian to Poissonian dominated process in the minority spin of PC with disorder. Our results provide a sensitive detection method of an ultralow concentration of interfacial defects.
Conduction-band valley spin splitting in single-layer H-T l2O
NASA Astrophysics Data System (ADS)
Ma, Yandong; Kou, Liangzhi; Du, Aijun; Huang, Baibiao; Dai, Ying; Heine, Thomas
2018-02-01
Despite numerous studies, coupled spin and valley physics is currently limited to two-dimensional (2D) transition-metal dichalcogenides (TMDCs). Here, we predict an exceptional 2D valleytronic material associated with the spin-valley coupling phenomena beyond 2D TMDCs—single-layer (SL) H-T l2O . It displays large valley spin splitting (VSS), significantly larger than that of 2D TMDCs, and a finite band gap, which are both critically attractive for the integration of valleytronics and spintronics. More importantly, in sharp contrast to all the experimentally confirmed 2D valleytronic materials, where the strong valence-band VSS (0.15-0.46 eV) supports the spin-valley coupling, the VSS in SL H-T l2O is pronounced in its conduction band (0.61 eV), but negligibly small in its valence band (21 meV), thus opening a way for manipulating the coupled spin and valley physics. Moreover, SL H-T l2O possesses extremely high carrier mobility, as large as 9.8 ×103c m2V-1s-1 .
Giant edge spin accumulation in a symmetric quantum well with two subbands
NASA Astrophysics Data System (ADS)
Khaetskii, Alexander; Egues, J. Carlos
We have studied the edge spin accumulation due to an electric current in a high mobility two-dimensional electron gas formed in a symmetric well with two subbands. This study is strongly motivated by recent experiments which demonstrated the spin accumulation near the edges of a symmetric bilayer GaAs structure in contrast to no effect in a single-layer configuration. The intrinsic mechanism of the spin-orbit interaction we consider arises from the coupling between two subband states of opposite parities. Following the method developed in, we show that the presence of a gap in the system (i.e., the energy separation between the two subband bottoms) changes drastically the picture of the edge spin accumulation. We obtain a parametrically large magnitude of the edge spin density for a two-subband well as compared to the usual single-subband structure, and show that by changing the gap from zero up to 1 ÷2 K, the magnitude of the effect changes by three orders of magnitude. It opens up the possibility for the design of new interesting spintronic devices. We acknowledge financial support from FAPESP.
Flexible configuration-interaction shell-model many-body solver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Calvin W.; Ormand, W. Erich; McElvain, Kenneth S.
BIGSTICK Is a flexible configuration-Interaction open-source shell-model code for the many-fermion problem In a shell model (occupation representation) framework. BIGSTICK can generate energy spectra, static and transition one-body densities, and expectation values of scalar operators. Using the built-in Lanczos algorithm one can compute transition probabflity distributions and decompose wave functions into components defined by group theory.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-05
... shell spire, degree of carination (i.e., presence and size of a keel or ridge around the outside whorl of the shell), width of umbilicus (i.e., the ventral opening formed in the center of the whorls), and color (Pilsbry 1939, p. 415). Shell morphology is plastic (variable in response to environmental...
Open source integrated modeling environment Delta Shell
NASA Astrophysics Data System (ADS)
Donchyts, G.; Baart, F.; Jagers, B.; van Putten, H.
2012-04-01
In the last decade, integrated modelling has become a very popular topic in environmental modelling since it helps solving problems, which is difficult to model using a single model. However, managing complexity of integrated models and minimizing time required for their setup remains a challenging task. The integrated modelling environment Delta Shell simplifies this task. The software components of Delta Shell are easy to reuse separately from each other as well as a part of integrated environment that can run in a command-line or a graphical user interface mode. The most components of the Delta Shell are developed using C# programming language and include libraries used to define, save and visualize various scientific data structures as well as coupled model configurations. Here we present two examples showing how Delta Shell simplifies process of setting up integrated models from the end user and developer perspectives. The first example shows coupling of a rainfall-runoff, a river flow and a run-time control models. The second example shows how coastal morphological database integrates with the coastal morphological model (XBeach) and a custom nourishment designer. Delta Shell is also available as open-source software released under LGPL license and accessible via http://oss.deltares.nl.
NASA Astrophysics Data System (ADS)
Ware, M. E.; Stinaff, E. A.; Gammon, D.; Doty, M. F.; Bracker, A. S.; Gershoni, D.; Korenev, V. L.; Bădescu, Ş. C.; Lyanda-Geller, Y.; Reinecke, T. L.
2005-10-01
We report polarized photoluminescence excitation spectroscopy of the negative trion in single charge-tunable InAs/GaAs quantum dots. The spectrum exhibits a p-shell resonance with polarized fine structure arising from the direct excitation of the electron spin triplet states. The energy splitting arises from the axially symmetric electron-hole exchange interaction. The magnitude and sign of the polarization are understood from the spin character of the triplet states and a small amount of quantum dot asymmetry, which mixes the wave functions through asymmetric e-e and e-h exchange interactions.
An unusual occurrence of Nautilus macromphalus in a cenote in the Loyalty Islands (New Caledonia).
Landman, Neil H; Mapes, Royal H; Cochran, J Kirk; Lignier, Vincent; Hembree, Daniel I; Goiran, Claire; Folcher, Eric; Brunet, Philippe
2014-01-01
Exploration of a landlocked cenote on Lifou (Loyalty Islands) revealed 37 shells of the cephalopod Nautilus macromphalus Sowerby, 1849, in saltwater on the cenote floor, approximately 40 m below the water surface. The occurrence of these shells is unusual because N. macromphalus is restricted to the open marine waters surrounding the island. All of the shells are mature, and nearly all of them are unbroken, with faded red-brown color stripes. We analyzed seven shells to determine their age. Radiocarbon dating yielded ages of 6380±30 to 7095±30 y BP. The 238U-series radionuclides 210Pb (half-life = 22.3 y) and 226Ra (half-life = 1600 y) also were measured. Two of the samples showed radioactive equilibrium between the nuclides, consistent with the old radiocarbon dates, but the other five samples showed excess 210Pb. When corrected for radioactive decay, the 226Ra activities were much greater than those found in living Nautilus. We conclude that exposure to high activities of 222Rn and 226Ra in the salty groundwater of the cenote altered the activities originally incorporated into the shells. Human placement of the shells in the cavity is rejected based on their radiocarbon age and the geometry of the cenote. The most probable explanation is that the animals entered the flooded karstic system through a connection on the seaward side at approximately 7,000 y BP, during an interval of slowly rising sea level. Unable to find an exit and/or due to anoxic bottom waters, the animals were trapped and died inside. The open connection with the sea persisted for ∼700 y, but after ∼6400 y BP, the connection was lost, probably due to a roof collapse. This is a rare example of Nautilus in a karstic coastal basin and provides a minimum age for the appearance of N. macromphalus in the Loyalty Islands.
An Unusual Occurrence of Nautilus macromphalus in a Cenote in the Loyalty Islands (New Caledonia)
Landman, Neil H.; Mapes, Royal H.; Cochran, J. Kirk; Lignier, Vincent; Hembree, Daniel I.; Goiran, Claire; Folcher, Eric; Brunet, Philippe
2014-01-01
Exploration of a landlocked cenote on Lifou (Loyalty Islands) revealed 37 shells of the cephalopod Nautilus macromphalus Sowerby, 1849, in saltwater on the cenote floor, approximately 40 m below the water surface. The occurrence of these shells is unusual because N. macromphalus is restricted to the open marine waters surrounding the island. All of the shells are mature, and nearly all of them are unbroken, with faded red-brown color stripes. We analyzed seven shells to determine their age. Radiocarbon dating yielded ages of 6380±30 to 7095±30 y BP. The 238U-series radionuclides 210Pb (half-life = 22.3 y) and 226Ra (half-life = 1600 y) also were measured. Two of the samples showed radioactive equilibrium between the nuclides, consistent with the old radiocarbon dates, but the other five samples showed excess 210Pb. When corrected for radioactive decay, the 226Ra activities were much greater than those found in living Nautilus. We conclude that exposure to high activities of 222Rn and 226Ra in the salty groundwater of the cenote altered the activities originally incorporated into the shells. Human placement of the shells in the cavity is rejected based on their radiocarbon age and the geometry of the cenote. The most probable explanation is that the animals entered the flooded karstic system through a connection on the seaward side at approximately 7,000 y BP, during an interval of slowly rising sea level. Unable to find an exit and/or due to anoxic bottom waters, the animals were trapped and died inside. The open connection with the sea persisted for ∼700 y, but after ∼6400 y BP, the connection was lost, probably due to a roof collapse. This is a rare example of Nautilus in a karstic coastal basin and provides a minimum age for the appearance of N. macromphalus in the Loyalty Islands. PMID:25470257
Nonlinear equations of dynamics for spinning paraboloidal antennas
NASA Technical Reports Server (NTRS)
Utku, S.; Shoemaker, W. L.; Salama, M.
1983-01-01
The nonlinear strain-displacement and velocity-displacement relations of spinning imperfect rotational paraboloidal thin shell antennas are derived for nonaxisymmetrical deformations. Using these relations with the admissible trial functions in the principle functional of dynamics, the nonlinear equations of stress inducing motion are expressed in the form of a set of quasi-linear ordinary differential equations of the undetermined functions by means of the Rayleigh-Ritz procedure. These equations include all nonlinear terms up to and including the third degree. Explicit expressions are given for the coefficient matrices appearing in these equations. Both translational and rotational off-sets of the axis of revolution (and also the apex point of the paraboloid) with respect to the spin axis are considered. Although the material of the antenna is assumed linearly elastic, it can be anisotropic.
One-loop effective actions and higher spins. Part II
NASA Astrophysics Data System (ADS)
Bonora, L.; Cvitan, M.; Prester, P. Dominis; Giaccari, S.; Štemberga, T.
2018-01-01
In this paper we continue and improve the analysis of the effective actions obtained by integrating out a scalar and a fermion field coupled to external symmetric sources, started in the previous paper. The first subject we study is the geometrization of the results obtained there, that is we express them in terms of covariant Jacobi tensors. The second subject concerns the treatment of tadpoles and seagull terms in order to implement off-shell covariance in the initial model. The last and by far largest part of the paper is a repository of results concerning all two point correlators (including mixed ones) of symmetric currents of any spin up to 5 and in any dimensions between 3 and 6. In the massless case we also provide formulas for any spin in any dimension.
Magnetocrystalline two-fold symmetry in CaFe2O4 single crystal
NASA Astrophysics Data System (ADS)
Chhaganlal Gandhi, Ashish; Das, Rajasree; Chou, Fang-Cheng; Lin, Jauyn Grace
2017-05-01
Understanding of magnetocrystalline anisotropy in CaFe2O4 is a matter of importance for its future applications. A high quality single crystal CaFe2O4 sample is studied by using synchrotron x-ray diffraction, a magnetometer and the electron spin resonance (ESR) technique. A broad feature of the susceptibility curve around room temperature is observed, indicating the development of 1D spin interactions above the on-set of antiferromagnetic transition. The angular dependency of ESR reveals an in-plane two-fold symmetry, suggesting a strong correlation between the room temperature spin structure and magnetocrystalline anisotropy. This finding opens an opportunity for the device utilizing the anisotropy field of CaFe2O4.
Multiple piece turbine airfoil
Kimmel, Keith D; Wilson, Jr., Jack W.
2010-11-02
A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of dog bone struts each mounted within openings formed within the shell and spar to allow for relative motion between the spar and shell in the airfoil chordwise direction while also forming a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure.
Q-operators for the open Heisenberg spin chain
NASA Astrophysics Data System (ADS)
Frassek, Rouven; Szécsényi, István M.
2015-12-01
We construct Q-operators for the open spin-1/2 XXX Heisenberg spin chain with diagonal boundary matrices. The Q-operators are defined as traces over an infinite-dimensional auxiliary space involving novel types of reflection operators derived from the boundary Yang-Baxter equation. We argue that the Q-operators defined in this way are polynomials in the spectral parameter and show that they commute with transfer matrix. Finally, we prove that the Q-operators satisfy Baxter's TQ-equation and derive the explicit form of their eigenvalues in terms of the Bethe roots.
Tidal dissipation in the Earth and Moon from lunar laser ranging
NASA Technical Reports Server (NTRS)
Yoder, C. F.; Williams, J. G.; Dickey, J. O.; Newhall, X. X.
1984-01-01
The evolution of the Moon's orbit which is governed by tidal dissipation in the Earth while the evolution of its spin is controlled by its own internal dissipation is discussed. Lunar laser ranging data from August 1969 through May 1982 yields the values of both of these parameters. It is suggested that if the Moon was orbited the Earth since its formation, this must be an anomalously high value presumably due to changes in dissipation in the oceans due to continental drift. The explanation that the dissipation occurs at the interface between the mantle and a liquid core of shell is preferred.
Recoil- α -fission and recoil- α – α -fission events observed in the reaction 48 Ca + 243 Am
Forsberg, U.; Rudolph, D.; Andersson, L. -L.; ...
2016-04-26
A recent high-resolution α, X-ray, and γ-ray coincidence-spectroscopy experiment at GSI offered the first glimpse of excitation schemes of isotopes along α-decay chains of Z=115. To understand these observations and to make predictions about shell structure of superheavy nuclei below 288115, we employed nuclear DFT. We find that the presence and nature of low-energy E1 transitions in well-deformed nuclei around Z=110, N=168 strongly depends on the strength of the spin-orbit coupling; hence, it provides an excellent constraint on theoretical models of superheavy nuclei.
Spin-Orbit Qubits of Rare-Earth-Metal Ions in Axially Symmetric Crystal Fields
NASA Astrophysics Data System (ADS)
Bertaina, S.; Shim, J. H.; Gambarelli, S.; Malkin, B. Z.; Barbara, B.
2009-11-01
Contrary to the well-known spin qubits, rare-earth-metal qubits are characterized by a strong influence of crystal field due to large spin-orbit coupling. At low temperature and in the presence of resonance microwaves, it is the magnetic moment of the crystal-field ground state which nutates (for several μs) and the Rabi frequency ΩR is anisotropic. Here, we present a study of the variations of ΩR(H→0) with the magnitude and direction of the static magnetic field H→0 for the odd Er167 isotope in a single crystal CaWO4:Er3+. The hyperfine interactions split the ΩR(H→0) curve into eight different curves which are fitted numerically and described analytically. These “spin-orbit qubits” should allow detailed studies of decoherence mechanisms which become relevant at high temperature and open new ways for qubit addressing using properly oriented magnetic fields.
Spin-orbit qubits of rare-earth-metal ions in axially symmetric crystal fields.
Bertaina, S; Shim, J H; Gambarelli, S; Malkin, B Z; Barbara, B
2009-11-27
Contrary to the well-known spin qubits, rare-earth-metal qubits are characterized by a strong influence of crystal field due to large spin-orbit coupling. At low temperature and in the presence of resonance microwaves, it is the magnetic moment of the crystal-field ground state which nutates (for several micros) and the Rabi frequency Omega(R) is anisotropic. Here, we present a study of the variations of Omega(R)(H(0)) with the magnitude and direction of the static magnetic field H(0) for the odd 167Er isotope in a single crystal CaWO(4):Er(3+). The hyperfine interactions split the Omega(R)(H(0)) curve into eight different curves which are fitted numerically and described analytically. These "spin-orbit qubits" should allow detailed studies of decoherence mechanisms which become relevant at high temperature and open new ways for qubit addressing using properly oriented magnetic fields.
Frank, Patrick; Szilagyi, Robert K; Gramlich, Volker; Hsu, Hua-Fen; Hedman, Britt; Hodgson, Keith O
2017-02-06
Sulfur K-edge X-ray absorption spectroscopy (XAS) spectra of the monodentate sulfate complexes [M II (itao)(SO 4 )(H 2 O) 0,1 ] (M = Co, Ni, Cu) and [Cu(Me 6 tren)(SO 4 )] exhibit well-defined preedge transitions at 2479.4, 2479.9, 2478.4, and 2477.7 eV, respectively, despite having no direct metal-sulfur bond, while the XAS preedge of [Zn(itao)(SO 4 )] is featureless. The sulfur K-edge XAS of [Cu(itao)(SO 4 )] but not of [Cu(Me 6 tren)(SO 4 )] uniquely exhibits a weak transition at 2472.1 eV, an extraordinary 8.7 eV below the first inflection of the rising K-edge. Preedge transitions also appear in the sulfur K-edge XAS of crystalline [M II (SO 4 )(H 2 O)] (M = Fe, Co, Ni, and Cu, but not Zn) and in sulfates of higher-valent early transition metals. Ground-state density functional theory (DFT) and time-dependent DFT (TDDFT) calculations show that charge transfer from coordinated sulfate to paramagnetic late transition metals produces spin polarization that differentially mixes the spin-up (α) and spin-down (β) spin orbitals of the sulfate ligand, inducing negative spin density at the sulfate sulfur. Ground-state DFT calculations show that sulfur 3p character then mixes into metal 4s and 4p valence orbitals and various combinations of ligand antibonding orbitals, producing measurable sulfur XAS transitions. TDDFT calculations confirm the presence of XAS preedge features 0.5-2 eV below the rising sulfur K-edge energy. The 2472.1 eV feature arises when orbitals at lower energy than the frontier occupied orbitals with S 3p character mix with the copper(II) electron hole. Transmission of spin polarization and thus of radical character through several bonds between the sulfur and electron hole provides a new mechanism for the counterintuitive appearance of preedge transitions in the XAS spectra of transition-metal oxoanion ligands in the absence of any direct metal-absorber bond. The 2472.1 eV transition is evidence for further radicalization from copper(II), which extends across a hydrogen-bond bridge between sulfate and the itao ligand and involves orbitals at energies below the frontier set. This electronic structure feature provides a direct spectroscopic confirmation of the through-bond electron-transfer mechanism of redox-active metalloproteins.
Frank, Patrick; Szilagyi, Robert K.; Gramlich, Volker; ...
2017-01-09
Sulfur K-edge X-ray absorption spectroscopy (XAS) spectra of the monodentate sulfate complexes [M II(itao)(SO 4)(H 2O) 0,1] (M = Co, Ni, Cu) and [Cu(Me 6tren)(SO 4)] exhibit well-defined preedge transitions at 2479.4, 2479.9, 2478.4, and 2477.7 eV, respectively, despite having no direct metal–sulfur bond, while the XAS preedge of [Zn(itao)(SO 4)] is featureless. The sulfur K-edge XAS of [Cu(itao)(SO 4)] but not of [Cu(Me 6tren)(SO 4)] uniquely exhibits a weak transition at 2472.1 eV, an extraordinary 8.7 eV below the first inflection of the rising K-edge. Preedge transitions also appear in the sulfur K-edge XAS of crystalline [M II(SO 4)(Hmore » 2O)] (M = Fe, Co, Ni, and Cu, but not Zn) and in sulfates of higher-valent early transition metals. Ground-state density functional theory (DFT) and time-dependent DFT (TDDFT) calculations show that charge transfer from coordinated sulfate to paramagnetic late transition metals produces spin polarization that differentially mixes the spin-up (α) and spin-down (β) spin orbitals of the sulfate ligand, inducing negative spin density at the sulfate sulfur. Ground-state DFT calculations show that sulfur 3p character then mixes into metal 4s and 4p valence orbitals and various combinations of ligand antibonding orbitals, producing measurable sulfur XAS transitions. TDDFT calculations confirm the presence of XAS preedge features 0.5–2 eV below the rising sulfur K-edge energy. The 2472.1 eV feature arises when orbitals at lower energy than the frontier occupied orbitals with S 3p character mix with the copper(II) electron hole. Transmission of spin polarization and thus of radical character through several bonds between the sulfur and electron hole provides a new mechanism for the counterintuitive appearance of preedge transitions in the XAS spectra of transition-metal oxoanion ligands in the absence of any direct metal–absorber bond. The 2472.1 eV transition is evidence for further radicalization from copper(II), which extends across a hydrogen-bond bridge between sulfate and the itao ligand and involves orbitals at energies below the frontier set. In conclusion, this electronic structure feature provides a direct spectroscopic confirmation of the through-bond electron-transfer mechanism of redox-active metalloproteins.« less
Ferrer, R.; Barzakh, A.; Bastin, B.; Beerwerth, R.; Block, M.; Creemers, P.; Grawe, H.; de Groote, R.; Delahaye, P.; Fléchard, X.; Franchoo, S.; Fritzsche, S.; Gaffney, L. P.; Ghys, L.; Gins, W.; Granados, C.; Heinke, R.; Hijazi, L.; Huyse, M.; Kron, T.; Kudryavtsev, Yu.; Laatiaoui, M.; Lecesne, N.; Loiselet, M.; Lutton, F.; Moore, I. D.; Martínez, Y.; Mogilevskiy, E.; Naubereit, P.; Piot, J.; Raeder, S.; Rothe, S.; Savajols, H.; Sels, S.; Sonnenschein, V.; Thomas, J-C; Traykov, E.; Van Beveren, C.; Van den Bergh, P.; Van Duppen, P.; Wendt, K.; Zadvornaya, A.
2017-01-01
Resonant laser ionization and spectroscopy are widely used techniques at radioactive ion beam facilities to produce pure beams of exotic nuclei and measure the shape, size, spin and electromagnetic multipole moments of these nuclei. However, in such measurements it is difficult to combine a high efficiency with a high spectral resolution. Here we demonstrate the on-line application of atomic laser ionization spectroscopy in a supersonic gas jet, a technique suited for high-precision studies of the ground- and isomeric-state properties of nuclei located at the extremes of stability. The technique is characterized in a measurement on actinium isotopes around the N=126 neutron shell closure. A significant improvement in the spectral resolution by more than one order of magnitude is achieved in these experiments without loss in efficiency. PMID:28224987
Spin-polarized electron emitter: Mn-doped GaN nanotubes and their arrays
NASA Astrophysics Data System (ADS)
Hao, Shaogang; Zhou, Gang; Wu, Jian; Duan, Wenhui; Gu, Bing-Lin
2004-03-01
The influences from the doping magnetic atom, Mn, on the geometry, electronic properties, and spin-polarization characteristics are demonstrated for open armchair gallium nitrogen (GaN) nanotubes and arrays by use of the first-principles calculations. The interaction between dangling bonds of Ga (Mn) and N atoms at the open-end promotes the self-close of the tube mouth and formation of a more stable open semicone top. Primarily owing to hybridization of Mn 3d and N 2p orbitals, one Mn atom introduces several impurity energy levels into the original energy gap, and the calculated magnetic moment is 4μB. The electron spin polarizations in the field emission are theoretically evaluated. We suggest that armchair open GaN nanotube arrays doped with a finite number of magnetic atoms may have application potential as the electron source of spintronic devices in the future.
Majorana states in prismatic core-shell nanowires
NASA Astrophysics Data System (ADS)
Manolescu, Andrei; Sitek, Anna; Osca, Javier; Serra, Llorenç; Gudmundsson, Vidar; Stanescu, Tudor Dan
2017-09-01
We consider core-shell nanowires with conductive shell and insulating core and with polygonal cross section. We investigate the implications of this geometry on Majorana states expected in the presence of proximity-induced superconductivity and an external magnetic field. A typical prismatic nanowire has a hexagonal profile, but square and triangular shapes can also be obtained. The low-energy states are localized at the corners of the cross section, i.e., along the prism edges, and are separated by a gap from higher energy states localized on the sides. The corner localization depends on the details of the shell geometry, i.e., thickness, diameter, and sharpness of the corners. We study systematically the low-energy spectrum of prismatic shells using numerical methods and derive the topological phase diagram as a function of magnetic field and chemical potential for triangular, square, and hexagonal geometries. A strong corner localization enhances the stability of Majorana modes to various perturbations, including the orbital effect of the magnetic field, whereas a weaker localization favorizes orbital effects and reduces the critical magnetic field. The prismatic geometry allows the Majorana zero-energy modes to be accompanied by low-energy states, which we call pseudo Majorana, and which converge to real Majoranas in the limit of small shell thickness. We include the Rashba spin-orbit coupling in a phenomenological manner, assuming a radial electric field across the shell.
Spontaneous formation of GaN/AlN core-shell nanowires on sapphire by hydride vapor phase epitaxy
NASA Astrophysics Data System (ADS)
Trassoudaine, Agnès; Roche, Elissa; Bougerol, Catherine; André, Yamina; Avit, Geoffrey; Monier, Guillaume; Ramdani, Mohammed Réda; Gil, Evelyne; Castelluci, Dominique; Dubrovskii, Vladimir G.
2016-11-01
Spontaneous GaN/AlN core-shell nanowires with high crystal quality were synthesized on sapphire substrates by vapor-liquid-solid hydride vapor phase epitaxy (VLS-HVPE) without any voluntary aluminum source. Deposition of aluminum is difficult to achieve in this growth technique which uses metal-chloride gaseous precursors: the strong interaction between the AlCl gaseous molecules and the quartz reactor yields a huge parasitic nucleation on the walls of the reactor upstream the substrate. We open up an innovative method to produce GaN/AlN structures by HVPE, thanks to aluminum etching from the sapphire substrate followed by redeposition onto the sidewalls of the GaN core. The paper presents the structural characterization of GaN/AlN core-shell nanowires, speculates on the growth mechanism and discusses a model which describes this unexpected behavior.
Going "open" with mesoscopy: a new dimension on multi-view imaging.
Gualda, Emilio; Moreno, Nuno; Tomancak, Pavel; Martins, Gabriel G
2014-03-01
OpenSPIM and OpenSpinMicroscopy emerged as open access platforms for Light Sheet and Optical Projection Imaging, often called as optical mesoscopy techniques. Both projects can be easily reproduced using comprehensive online instructions that should foster the implementation and further development of optical imaging techniques with sample rotation control. This additional dimension in an open system offers the possibility to make multi-view microscopy easily modified and will complement the emerging commercial solutions. Furthermore, it is deeply based on other open platforms such as MicroManager and Arduino, enabling development of tailored setups for very specific biological questions. In our perspective, the open access principle of OpenSPIM and OpenSpinMicroscopy is a game-changer, helping the concepts of light sheet and optical projection tomography (OPT) to enter the mainstream of biological imaging.
Gamow-Teller transitions between proton h11/2 and neutron h9/2 partner orbitals in 140I
NASA Astrophysics Data System (ADS)
Moon, B.; Moon, C.-B.; Odahara, A.; Lozeva, R.; Söderström, P.-A.; Nishimura, S.; Yuan, C.; Hong, B.; for theNP1112-RIBF87 Collaboration
2018-04-01
The excited states of the neutron-rich nucleus 140I were, for the first time, investigated by a β-delayed γ-ray spectroscopy. The parent nuclide 140Te was produced through the in-flight fission of the 238U beam at 345 MeV per nucleon on a 9Be target at the Radioactive Isotope Beam Factory (RIBF), RIKEN in Japan. The half-life of 140Te was measured to be 350(5) ms and the spin-parity of ground state of 140I was found to be 2-. The spin-parities of three levels at 926, 1188, and 1787 keV were assigned as 1+ based on log f t values. These allowed Gamow-Teller (G-T) transition-states could be interpreted as the transformation of a neutron in the h9/2 orbital into a proton in the h11/2 orbital. Systematic features of level structures and G-T transitions are discussed in the frameworks of the large-scale shell model and deformed shell model.
Convergence of high order perturbative expansions in open system quantum dynamics.
Xu, Meng; Song, Linze; Song, Kai; Shi, Qiang
2017-02-14
We propose a new method to directly calculate high order perturbative expansion terms in open system quantum dynamics. They are first written explicitly in path integral expressions. A set of differential equations are then derived by extending the hierarchical equation of motion (HEOM) approach. As two typical examples for the bosonic and fermionic baths, specific forms of the extended HEOM are obtained for the spin-boson model and the Anderson impurity model. Numerical results are then presented for these two models. General trends of the high order perturbation terms as well as the necessary orders for the perturbative expansions to converge are analyzed.
The total position-spread tensor: Spin partition
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Khatib, Muammar, E-mail: elkhatib@irsamc.ups-tlse.fr; Evangelisti, Stefano, E-mail: stefano@irsamc.ups-tlse.fr; Leininger, Thierry, E-mail: Thierry.Leininger@irsamc.ups-tlse.fr
2015-03-07
The Total Position Spread (TPS) tensor, defined as the second moment cumulant of the position operator, is a key quantity to describe the mobility of electrons in a molecule or an extended system. In the present investigation, the partition of the TPS tensor according to spin variables is derived and discussed. It is shown that, while the spin-summed TPS gives information on charge mobility, the spin-partitioned TPS tensor becomes a powerful tool that provides information about spin fluctuations. The case of the hydrogen molecule is treated, both analytically, by using a 1s Slater-type orbital, and numerically, at Full Configuration Interactionmore » (FCI) level with a V6Z basis set. It is found that, for very large inter-nuclear distances, the partitioned tensor growths quadratically with the distance in some of the low-lying electronic states. This fact is related to the presence of entanglement in the wave function. Non-dimerized open chains described by a model Hubbard Hamiltonian and linear hydrogen chains H{sub n} (n ≥ 2), composed of equally spaced atoms, are also studied at FCI level. The hydrogen systems show the presence of marked maxima for the spin-summed TPS (corresponding to a high charge mobility) when the inter-nuclear distance is about 2 bohrs. This fact can be associated to the presence of a Mott transition occurring in this region. The spin-partitioned TPS tensor, on the other hand, has a quadratical growth at long distances, a fact that corresponds to the high spin mobility in a magnetic system.« less
Tuning the Shell Number of Multishelled Metal Oxide Hollow Fibers for Optimized Lithium-Ion Storage.
Sun, Jin; Lv, Chunxiao; Lv, Fan; Chen, Shuai; Li, Daohao; Guo, Ziqi; Han, Wei; Yang, Dongjiang; Guo, Shaojun
2017-06-27
Searching the long-life transition-metal oxide (TMO)-based materials for future lithium-ion batteries (LIBs) is still a great challenge because of the mechanical strain resulting from volume change of TMO anodes during the lithiation/delithiation process. To well address this challenging issue, we demonstrate a controlled method for making the multishelled TMO hollow microfibers with tunable shell numbers to achieve the optimal void for efficient lithium-ion storage. Such a particularly designed void can lead to a short diffusion distance for fast diffusion of Li + ions and also withstand a large volume variation upon cycling, both of which are the key for high-performance LIBs. Triple-shelled TMO hollow microfibers are a quite stable anode material for LIBs with high reversible capacities (NiO: 698.1 mA h g -1 at 1 A g -1 ; Co 3 O 4 : 940.2 mA h g -1 at 1 A g -1 ; Fe 2 O 3 : 997.8 mA h g -1 at 1 A g -1 ), excellent rate capability, and stability. The present work opens a way for rational design of the void of multiple shells in achieving the stable lithium-ion storage through the biomass conversion strategy.
Open sd-shell nuclei from first principles
Jansen, Gustav R.; Signoracci, Angelo J.; Hagen, Gaute; ...
2016-07-05
We extend the ab initio coupled-cluster effective interaction (CCEI) method to open-shell nuclei with protons and neutrons in the valence space, and compute binding energies and excited states of isotopes of neon and magnesium. We employ a nucleon-nucleon and three-nucleon interaction from chiral effective field theory evolved to a lower cutoff via a similarity renormalization group transformation. We find good agreement with experiment for binding energies and spectra, while charge radii of neon isotopes are underestimated. For the deformed nuclei 20Ne and 24Mg we reproduce rotational bands and electric quadrupole transitions within uncertainties estimated from an effective field theory formore » deformed nuclei, thereby demonstrating that collective phenomena in sd-shell nuclei emerge from complex ab initio calculations.« less
Open sd-shell nuclei from first principles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jansen, Gustav R.; Signoracci, Angelo J.; Hagen, Gaute
We extend the ab initio coupled-cluster effective interaction (CCEI) method to open-shell nuclei with protons and neutrons in the valence space, and compute binding energies and excited states of isotopes of neon and magnesium. We employ a nucleon-nucleon and three-nucleon interaction from chiral effective field theory evolved to a lower cutoff via a similarity renormalization group transformation. We find good agreement with experiment for binding energies and spectra, while charge radii of neon isotopes are underestimated. For the deformed nuclei 20Ne and 24Mg we reproduce rotational bands and electric quadrupole transitions within uncertainties estimated from an effective field theory formore » deformed nuclei, thereby demonstrating that collective phenomena in sd-shell nuclei emerge from complex ab initio calculations.« less
Search for weak M 1 transitions in 48Ca with inelastic proton scattering
NASA Astrophysics Data System (ADS)
Mathy, M.; Birkhan, J.; Matsubara, H.; von Neumann-Cosel, P.; Pietralla, N.; Ponomarev, V. Yu.; Richter, A.; Tamii, A.
2017-05-01
Background: The quenching of spin-isospin modes in nuclei is an important field of research in nuclear structure. It has an impact on astrophysical reaction rates and on fundamental processes like neutrinoless double-β decay. Gamow-Teller (GT) and spin-flip M 1 strengths are quenched. Concerning the latter, the Jπ=1+ resonance in the doubly magic nucleus 48Ca, dominated by a single transition, serves as a reference case. Purpose: The aim of the present work is to search for weak M 1 transitions in 48Ca with a high-resolution (p ,p') experiment at 295 MeV and forward angles including 0∘ and a comparison with results from a similar study using backward-angle electron scattering at low momentum transfers in order to estimate their contribution to the total B (M 1 ) strength in 48Ca. Methods: The spin-M 1 cross sections of individual peaks in the spectra are deduced with a multipole decomposition analysis (MDA) and converted to reduced spin-M 1 transition strengths by using the unit cross-section method. For a comparison with electron-scattering results, corresponding reduced B (M 1 ) transition strengths are extracted following the approach outlined in Birkhan et al. [Phys. Rev. C 93, 041302(R) (2016), 10.1103/PhysRevC.93.041302]. Results: In total, 30 peaks containing a M 1 contribution are found in the excitation energy region 7-13 MeV. The resulting B (M 1 ) strength distribution compares well to the electron-scattering results considering different factors limiting the sensitivity in both experiments and the enhanced importance of mechanisms breaking the proportionality of nuclear cross sections and electromagnetic matrix elements for weak transitions as studied here. The total strength of 1.14(7) μN2 deduced assuming a nonquenched isoscalar part of the (p ,p') cross sections agrees with the (e ,e') result of 1.21(13) μN2. A bin-wise analysis above 10 MeV provides an upper limit of 1.51(17) μN2. Conclusions: The present results confirm the previous electron-scattering work that weak transitions contribute about 25% to the total B (M 1 ) strength in 48Ca and the quenching factors of GT and spin-M 1 strength are then comparable in f p -shell nuclei. Thus, the role of meson-exchange currents seems to be negligible in 48Ca, in contrast to s d -shell nuclei.
Photoionization cross sections for atomic chlorine using an open-shell random phase approximation
NASA Technical Reports Server (NTRS)
Starace, A. F.; Armstrong, L., Jr.
1975-01-01
The use of the Random Phase Approximation with Exchange (RPAE) for calculating partial and total photoionization cross sections and photoelectron angular distributions for open shell atoms is examined for atomic chlorine. Whereas the RPAE corrections in argon (Z=18) are large, it is found that those in chlorine (Z=17) are much smaller due to geometric factors. Hartree-Fock calculations with and without core relaxation are also presented. Sizable deviations from the close coupling results of Conneely are also found.
The decay of highly excited open strings
NASA Technical Reports Server (NTRS)
Mitchell, D.; Turok, N.; Wilkinson, R.; Jetzer, P.
1988-01-01
The decay rates of leading edge Regge trajectory states are calculated for very high level number in open bosonic string theories, ignoring tachyon final states. The optical theorem simplifies the analysis while enabling identification of the different mass level decay channels. The main result is that (in four dimensions) the greatest single channel is the emission of a single photon and a state of the next mass level down. A simple asymptotic formula for arbitrarily high level number is given for this process. Also calculated is the total decay rate exactly up to N=100. It shows little variation over this range but appears to decrease for larger N. The formalism is checked in examples and the decay rate of the first excited level calculated for open superstring theories. The calculation may also have implications for high spin meson resonances.
Liu, Cunming; Zhang, Jianxin; Lawson Daku, Latevi M.; ...
2017-11-10
Investigating the photoinduced electronic and structural response of bistable molecular building blocks incorporating transition metals in solution phase constitutes a necessary stepping stone for steering their properties towards applications and perfomance optimizations. Here, this paper presents a detailed X-ray transient absorption (XTA) spectroscopy study of a prototypical spin crossover (SCO) complex [Fe II(mbpy) 3] 2+ (where mbpy=4,4’-dimethyl-2,2’-bipyridine) with a [Fe IIN 6] first coordination shell in water (H 2O) and acetonitrile (CH 3CN). The unprecedented data quality of the XTA spectra together with the direct fitting of the difference spectra in k space using a large number of scattering pathsmore » enables resolving the subtle difference in the photoexcited structures of an Fe II complex in two solvents for the first time. Also, compared to the low spin (LS) 1A 1 state, the average Fe-N bond elongations for the photoinduced high spin (HS) 5T 2 state are found to be 0.181 ± 0.003 Å in H 2O and 0.199 ± 0.003 Å in CH 3CN. This difference in structural response is attributed to ligand-solvent interactions that are stronger in H 2O than in CH 3CN for the HS excited state. Our studies demonstrate that, although the metal center of [Fe II(mbpy) 3] 2+ could have been expected to be rather shielded by the three bidentate ligands with quasi-octahedral-coordination, the ligand field strength in the HS excited state is nevertheless indirectly affected by solvation that modifies the charge distribution within the Fe-N covalent bonds. More generally, this work highlights the importance of including solvation effects in order to develop a generalized understanding of the spin-state switching at the atomic level.« less
Buckling shells are also swimmers
NASA Astrophysics Data System (ADS)
Quilliet, Catherine; Dyfcom Bubbleboost Team
We present an experimental and numerical study on the displacement of shells undergoing deformations in a fluid. When submitted to cycles of pressure difference between outside and inside, a shell buckles and debuckles, showing a succession of shapes and a dynamics that are different during the two phases. Hence such objects are likely to swim, including at low Reynolds (microscopic scale). We studied the swimming of buckling/debuckling shells at macroscopic scale using different approaches (force quantization, shape recording, displacement along a frictionless rail, study of external flow using PIV), and showed that inertia plays a role in propulsion, even in situations where dimensionless numbers correspond also to microswimmers in water. Different fluid viscosities were explored, showing an optimum for the displacement. Interestingly, the most favorable cases lead to displacements in the same direction and sense during both motor stroke (buckling phase) and recovery stroke (de-buckling phase). This work opens the route for the synthesis with high throughput of abusively simple synthetic swimmers, possibly gathered into nanorobots, actuated by a scalar field such as the pressure in echographic devices. Universite Grenoble Alpes, CNRS, European Research Council.
Toughening mechanisms in laminated composites: A biomimetic study in mollusk shells
NASA Astrophysics Data System (ADS)
Kamat, Shekhar Shripad
2000-10-01
Mollusk shells can be described as structural biocomposite materials composed of a mineral (aragonite) and a continuous, albeit minor, organic (protein) component. The conch shell, Strombus Gigas, has intermediate strength and high fracture toughness. The high fracture toughness is a result of enhanced energy dissipation during crack propagation due to delamination, crack bridging, frictional sliding etc. A theoretical and experimental study was conducted on the crack bridging mechanisms operative in the shell. Four-point bend tests were conducted. Acoustic emission and post-mortem dye penetrants were used to characterize the crack propagation, together with conventional fractography. A two layer composite configuration is seen in the shells, with the tough and weak layers having a toughness ratio of ˜4 (Ktough = 2.2MPam1/2). This toughness ratio is a requisite for multiple cracking in the weak layer. A theoretical shear lag analysis of the crack bridging phenomena in the tough layer is shown to lead to a bridging law for the crack wake of the form of p = betau1/2 (p is the bridging traction for a crack opening u, with beta, being a constant of proportionality). Finite element analysis yielded a value of beta = 630 Nmm-5/2 and ucritical = 5 mum for the bridging law parameters. In a nonlinear fracture mechanics phenomenology, these values are relevant material parameters, rather than a critical stress intensity factor. The work of fracture for unnotched specimens is three orders of magnitude higher than mineral aragonite, and is demonstrated numerically incorporating the toughening mechanisms in the shell. Similar structural adaptations have been observed and studied in the red abalone shell, haliotis rufescens and the spines of the sea urchin, Heterocentrotus trigonarius. The toughening mechanisms seen in these shells give insight into structural design needs of brittle matrix composites (BMC) as well as conventional structural ceramics.
Masses of constituent quarks confined in open bottom hadrons
NASA Astrophysics Data System (ADS)
Borka Jovanović, V.; Borka, D.; Jovanović, P.; Milošević, J.; Ignjatović, S. R.
2014-12-01
We apply color-spin and flavor-spin quark-quark interactions to the meson and baryon constituent quarks, and calculate constituent quark masses, as well as the coupling constants of these interactions. The main goal of this paper was to determine constituent quark masses from light and open bottom hadron masses, using the fitting method we have developed and clustering of hadron groups. We use color-spin Fermi-Breit (FB) and flavor-spin Glozman-Riska (GR) hyperfine interaction (HFI) to determine constituent quark masses (especially b quark mass). Another aim was to discern between the FB and GR HFI because our previous findings had indicated that both interactions were satisfactory. Our improved fitting procedure of constituent quark masses showed that on average color-spin (FB) HFI yields better fits. The method also shows the way how the constituent quark masses and the strength of the interaction constants appear in different hadron environments.
He, Junkai; Wang, Mingchao; Wang, Wenbo; Miao, Ran; Zhong, Wei; Chen, Sheng-Yu; Poges, Shannon; Jafari, Tahereh; Song, Wenqiao; Liu, Jiachen; Suib, Steven L
2017-12-13
We report on the new facile synthesis of mesoporous NiO/MnO 2 in one step by modifying inverse micelle templated UCT (University of Connecticut) methods. The catalyst shows excellent electrocatalytic activity and stability for both the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR) in alkaline media after further coating with polyaniline (PANI). For electrochemical performance, the optimized catalyst exhibits a potential gap, ΔE, of 0.75 V to achieve a current of 10 mA cm -2 for the OER and -3 mA cm -2 for the ORR in 0.1 M KOH solution. Extensive characterization methods were applied to investigate the structure-property of the catalyst for correlations with activity (e.g., XRD, BET, SEM, HRTEM, FIB-TEM, XPS, TGA, and Raman). The high electrocatalytic activity of the catalyst closely relates to the good electrical conductivity of PANI, accessible mesoporous structure, high surface area, as well as the synergistic effect of the specific core-shell structure. This work opens a new avenue for the rational design of core-shell structure catalysts for energy conversion and storage applications.
Ab initio Bogoliubov coupled cluster theory for open-shell nuclei
Signoracci, Angelo J.; Duguet, Thomas; Hagen, Gaute; ...
2015-06-29
Background: Ab initio many-body methods have been developed over the past 10 yr to address closed-shell nuclei up to mass A≈130 on the basis of realistic two- and three-nucleon interactions. A current frontier relates to the extension of those many-body methods to the description of open-shell nuclei. Several routes to address open-shell nuclei are currently under investigation, including ideas that exploit spontaneous symmetry breaking. Purpose: Singly open-shell nuclei can be efficiently described via the sole breaking of U(1) gauge symmetry associated with particle-number conservation as a way to account for their superfluid character. While this route was recently followed withinmore » the framework of self-consistent Green's function theory, the goal of the present work is to formulate a similar extension within the framework of coupled cluster theory. Methods: We formulate and apply Bogoliubov coupled cluster (BCC) theory, which consists of representing the exact ground-state wave function of the system as the exponential of a quasiparticle excitation cluster operator acting on a Bogoliubov reference state. Equations for the ground-state energy and the cluster amplitudes are derived at the singles and doubles level (BCCSD) both algebraically and diagrammatically. The formalism includes three-nucleon forces at the normal-ordered two-body level. The first BCC code is implemented in m scheme, which will permit the treatment of doubly open-shell nuclei via the further breaking of SU(2) symmetry associated with angular momentum conservation. Results: Proof-of-principle calculations in an N max=6 spherical harmonic oscillator basis for 16,18O and 18Ne in the BCCD approximation are in good agreement with standard coupled cluster results with the same chiral two-nucleon interaction, while 20O and 20Mg display underbinding relative to experiment. The breaking of U(1) symmetry, monitored by computing the variance associated with the particle-number operator, is relatively constant for all five nuclei, in both the Hartree-Fock-Bogoliubov and BCCD approximations. Conclusions: The newly developed many-body formalism increases the potential span of ab initio calculations based on single-reference coupled cluster techniques tremendously, i.e., potentially to reach several hundred additional midmass nuclei. The new formalism offers a wealth of potential applications and further extensions dedicated to the description of ground and excited states of open-shell nuclei. Short-term goals include the implementation of three-nucleon forces at the normal-ordered two-body level. Midterm extensions include the approximate treatment of triples corrections and the development of the equation-of-motion methodology to treat both excited states and odd nuclei. Long-term extensions include exact restoration of U(1) and SU(2) symmetries.« less
Maeda, Kiminori; Lodge, Matthew T.J.; Harmer, Jeffrey; Freed, Jack H.; Edwards, Peter P.
2012-01-01
Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T1) and spin-spin (T2) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multi-exponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1–10)×10−12 s over a temperature range 230–290K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a timescale of ca. 10−13 s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great potential of multi-frequency EPR measurements to interrogate the microscopic nature and dynamics of ultra fast electron transfer or quantum-tunneling processes in liquids. Our results also impact on the universal issue of the role of a host solvent (or host matrix, e.g. a semiconductor) in mediating long-range electron transfer processes and we discuss the implications of our results with a range of other materials and systems exhibiting the phenomenon of electron transfer. PMID:22568866
Liu, Wenbo; Chen, Long; Dong, Xin; Yan, Jiazhen; Li, Ning; Shi, Sanqiang; Zhang, Shichao
2016-01-01
In this report, a facile and effective one-pot oxidation-assisted dealloying protocol has been developed to massively synthesize monolithic core-shell architectured nanoporous copper@cuprous oxide nanonetworks (C-S NPC@Cu2O NNs) by chemical dealloying of melt-spun Al 37 at.% Cu alloy in an oxygen-rich alkaline solution at room temperature, which possesses superior photocatalytic activity towards photodegradation of methyl orange (MO). The experimental results show that the as-prepared nanocomposite exhibits an open, bicontinuous interpenetrating ligament-pore structure with length scales of 20 ± 5 nm, in which the ligaments comprising Cu and Cu2O are typical of core-shell architecture with uniform shell thickness of ca. 3.5 nm. The photodegradation experiments of C-S NPC@Cu2O NNs show their superior photocatalytic activities for the MO degradation under visible light irradiation with degradation rate as high as 6.67 mg min−1 gcat−1, which is a diffusion-controlled kinetic process in essence in light of the good linear correlation between photodegradation ratio and square root of irradiation time. The excellent photocatalytic activity can be ascribed to the synergistic effects between unique core-shell architecture and 3D nanoporous network with high specific surface area and fast mass transfer channel, indicating that the C-S NPC@Cu2O NNs will be a promising candidate for photocatalysts of MO degradation. PMID:27830720
NASA Astrophysics Data System (ADS)
Liu, Wenbo; Chen, Long; Dong, Xin; Yan, Jiazhen; Li, Ning; Shi, Sanqiang; Zhang, Shichao
2016-11-01
In this report, a facile and effective one-pot oxidation-assisted dealloying protocol has been developed to massively synthesize monolithic core-shell architectured nanoporous copper@cuprous oxide nanonetworks (C-S NPC@Cu2O NNs) by chemical dealloying of melt-spun Al 37 at.% Cu alloy in an oxygen-rich alkaline solution at room temperature, which possesses superior photocatalytic activity towards photodegradation of methyl orange (MO). The experimental results show that the as-prepared nanocomposite exhibits an open, bicontinuous interpenetrating ligament-pore structure with length scales of 20 ± 5 nm, in which the ligaments comprising Cu and Cu2O are typical of core-shell architecture with uniform shell thickness of ca. 3.5 nm. The photodegradation experiments of C-S NPC@Cu2O NNs show their superior photocatalytic activities for the MO degradation under visible light irradiation with degradation rate as high as 6.67 mg min-1 gcat-1, which is a diffusion-controlled kinetic process in essence in light of the good linear correlation between photodegradation ratio and square root of irradiation time. The excellent photocatalytic activity can be ascribed to the synergistic effects between unique core-shell architecture and 3D nanoporous network with high specific surface area and fast mass transfer channel, indicating that the C-S NPC@Cu2O NNs will be a promising candidate for photocatalysts of MO degradation.
NASA Astrophysics Data System (ADS)
Liu, Bo; Kong, Dezhi; Huang, Zhi Xiang; Mo, Runwei; Wang, Ye; Han, Zhaojun; Cheng, Chuanwei; Yang, Hui Ying
2016-05-01
Three-dimensional (3D) hierarchical NiCo2O4@Ni3S2 core/shell arrays on Ni foam were synthesized by a facile, stepwise synthesis approach. The 3D heterogeneous NiCo2O4 nanostructure forms an interconnected web-like scaffold and serves as the core for the Ni3S2 shell. The as-prepared NiCo2O4@Ni3S2 nanowire array (NWA) electrodes exhibited excellent electrochemical performance, such as high specific areal capacitance and excellent cycling stability. The specific areal capacitance of 3.0 F cm-2 at a current density of 5 mA cm-2 is among the highest values and the only 6.7% capacitance decay after 10 000 cycles demonstrates the excellent cycling stability. A flexible asymmetric supercapacitor (ASC) was fabricated with activated carbon (AC) as the anode and the obtained NiCo2O4@Ni3S2 NWAs as the cathode. The ASC device exhibited a high energy density of 1.89 mW h cm-3 at 5.81 W cm-3 and a high power density of 56.33 W cm-3 at 0.94 mW h cm-3. As a result, the hybrid nanoarchitecture opens a new way to design high performance electrodes for electrochemical energy storage applications.Three-dimensional (3D) hierarchical NiCo2O4@Ni3S2 core/shell arrays on Ni foam were synthesized by a facile, stepwise synthesis approach. The 3D heterogeneous NiCo2O4 nanostructure forms an interconnected web-like scaffold and serves as the core for the Ni3S2 shell. The as-prepared NiCo2O4@Ni3S2 nanowire array (NWA) electrodes exhibited excellent electrochemical performance, such as high specific areal capacitance and excellent cycling stability. The specific areal capacitance of 3.0 F cm-2 at a current density of 5 mA cm-2 is among the highest values and the only 6.7% capacitance decay after 10 000 cycles demonstrates the excellent cycling stability. A flexible asymmetric supercapacitor (ASC) was fabricated with activated carbon (AC) as the anode and the obtained NiCo2O4@Ni3S2 NWAs as the cathode. The ASC device exhibited a high energy density of 1.89 mW h cm-3 at 5.81 W cm-3 and a high power density of 56.33 W cm-3 at 0.94 mW h cm-3. As a result, the hybrid nanoarchitecture opens a new way to design high performance electrodes for electrochemical energy storage applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02600a
Novel Solar Energy Conversion Materials by Design of Mn(II) Oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lany, S.; Peng, H.; Ndione, P.
2013-01-01
Solar energy conversion materials need to fulfill simultaneously a number of requirements in regard of their band-structure, optical properties, carrier transport, and doping. Despite their desirable chemical properties, e.g., for photo-electrocatalysis, transition-metal oxides usually do not have desirable semiconducting properties. Instead, oxides with open cation d-shells are typically Mott or charge-transfer insulators with notoriously poor transport properties, resulting from large effective electron/hole masses or from carrier self-trapping. Based on the notion that the electronic structure features (p-d interaction) supporting the p-type conductivity in d10 oxides like Cu2O and CuAlO2 occurs in a similar fashion also in the d5 (high-spin) oxides,more » we recently studied theoretically the band-structure and transport properties of the prototypical binary d5 oxides MnO and Fe2O3 [PRB 85, 201202(R)]. We found that MnO tends to self-trap holes by forming Mn+III, whereas Fe2O3 self-traps electrons by forming Fe+II. However, the self-trapping of holes is suppressed by when Mn is tetrahedrally coordinated, which suggests specific routes to design novel solar conversion materials by considering ternary Mn(II) oxides or oxide alloys. We are presenting theory, synthesis, and initial characterization for these novel energy materials.« less
Strain engineering of graphene nanoribbons: pseudomagnetic versus external magnetic fields
NASA Astrophysics Data System (ADS)
Prabhakar, Sanjay; Melnik, Roderick; Bonilla, Luis
2017-05-01
Bandgap opening due to strain engineering is a key architect for making graphene's optoelectronic, straintronic, and spintronic devices. We study the bandgap opening due to strain induced ripple waves and investigate the interplay between pseudomagnetic fields and externally applied magnetic fields on the band structures and spin relaxation in graphene nanoribbons (GNRs). We show that electron-hole bands of GNRs are highly influenced (i.e. level crossing of the bands are possible) by coupling two combined effects: pseudomagnetic fields (PMF) originating from strain tensor and external magnetic fields. In particular, we show that the tuning of the spin-splitting band extends to large externally applied magnetic fields with increasing values of pseudomagnetic fields. Level crossings of the bands in strained GNRs can also be observed due to the interplay between pseudomagnetic fields and externally applied magnetic fields. We also investigate the influence of this interplay on the electromagnetic field mediated spin relaxation mechanism in GNRs. In particular, we show that the spin hot spot can be observed at approximately B = 65 T (the externally applied magnetic field) and B0 = 53 T (the magnitude of induced pseudomagnetic field due to ripple waves) which may not be considered as an ideal location for the design of straintronic devices. Our analysis might be used for tuning the bandgaps in strained GNRs and utilized to design the optoelectronic devices for straintronic applications.
NASA Astrophysics Data System (ADS)
Isbaner, Sebastian; Hähnel, Dirk; Gregor, Ingo; Enderlein, Jörg
2017-02-01
Confocal Spinning Disk Systems are widely used for 3D cell imaging because they offer the advantage of optical sectioning at high framerates and are easy to use. However, as in confocal microscopy, the imaging resolution is diffraction limited, which can be theoretically improved by a factor of 2 using the principle of Image Scanning Microscopy (ISM) [1]. ISM with a Confocal Spinning Disk setup (CSDISM) has been shown to improve contrast as well as lateral resolution (FWHM) from 201 +/- 20 nm to 130 +/- 10 nm at 488 nm excitation. A minimum total acquisition time of one second per ISM image makes this method highly suitable for 3D live cell imaging [2]. Here, we present a multicolor implementation of CSDISM for the popular Micro-Manager Open Source Microscopy platform. Since changes in the optical path are not necessary, this will allow any researcher to easily upgrade their standard Confocal Spinning Disk system at remarkable low cost ( 5000 USD) with an ISM superresolution option. [1]. Müller, C.B. and Enderlein, J. Image Scanning Microscopy. Physical Review Letters 104, (2010). [2]. Schulz, O. et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy. Proceedings of the National Academy of Sciences of the United States of America 110, 21000-5 (2013).
NASA Astrophysics Data System (ADS)
Margerin, V.; Lane, G. J.; Dracoulis, G. D.; Palalani, N.; Smith, M. L.; Stuchbery, A. E.
2016-06-01
The structure of 210Fr has been established up to an excitation energy of ˜5.5 MeV and spins of ˜25 ℏ , via time-correlated γ -ray spectroscopy and using the 197Au(18O,5 n )210Fr reaction with pulsed beams at an energy of 97 MeV. A significantly different level scheme has been obtained compared to previous publications. Several isomers are reported here, including a Jπ=(23) +,τ =686 (9 ) -ns state at 4417 keV and a 10-, 29.8(11)-ns state at 1113 keV. The former isomer has been associated with the π (h9/2 3i13/2 2) ν (p1/2 -2f5/2 -1) configuration and decays via proposed E 3 transitions with strengths of 8.4(3) and 21.2(8) W.u. There are only very few known cases of a high-spin isomer decaying via two parallel E 3 transitions. Indeed, this is not seen in other Fr nuclei, and consequently these strengths differ from related decays in the neighboring isotopes. However, by examining the systematics of E 3 transitions in trans-lead nuclei, we suggest that the weaker of the two transitions decays to a mixed 20- state. Systematics of the 10- isomer are also discussed. Comparisons are made between the observed spectrum of states and those predicted from semiempirical shell-model calculations.
Dependence of weak interaction rates on the nuclear composition during stellar core collapse
NASA Astrophysics Data System (ADS)
Furusawa, Shun; Nagakura, Hiroki; Sumiyoshi, Kohsuke; Kato, Chinami; Yamada, Shoichi
2017-02-01
We investigate the influences of the nuclear composition on the weak interaction rates of heavy nuclei during the core collapse of massive stars. The nuclear abundances in nuclear statistical equilibrium (NSE) are calculated by some equation of state (EOS) models including in-medium effects on nuclear masses. We systematically examine the sensitivities of electron capture and neutrino-nucleus scattering on heavy nuclei to the nuclear shell effects and the single-nucleus approximation. We find that the washout of the shell effect at high temperatures brings significant change to weak rates by smoothing the nuclear abundance distribution: the electron capture rate decreases by ˜20 % in the early phase and increases by ˜40 % in the late phase at most, while the cross section for neutrino-nucleus scattering is reduced by ˜15 % . This is because the open-shell nuclei become abundant instead of those with closed neutron shells as the shell effects disappear. We also find that the single-nucleus description based on the average values leads to underestimations of weak rates. Electron captures and neutrino coherent scattering on heavy nuclei are reduced by ˜80 % in the early phase and by ˜5 % in the late phase, respectively. These results indicate that NSE like EOS accounting for shell washout is indispensable for the reliable estimation of weak interaction rates in simulations of core-collapse supernovae.
NASA Technical Reports Server (NTRS)
Baron, N.; Leonard, R. F.; Stewart, W. M.; Fink, C. L.; Christensen, P. R.; Nickles, J.; Thorsteinsen, T. F.
1972-01-01
Deuterons of 13-MeV incident energy were scattered from Zr-92(d,p)Zr-93. The Zr-92(d,p)Zr-93 data analysis resulted in the location of 47 levels up to an excitation energy of 4.84 MeV, and the spins of 43 of these levels were identified. Essentially all the strength of the 2d5/2, 3s1/2, 2d3/2, and 1g7/2 shells was observed; and the excitation energy of their centroids was computed to be 0.00, 1.21, 2.23, and 2.37 MeV, respectively. Also, 43 percent of the 1h11/2 strength, 21 percent of the 2f7/2 strength, and 3 percent of the 3p3/2 strength were observed. In addition, the Zr-92(d,t)Zr-91 data analysis resulted in the location of 26 levels up to an excitation energy of 4.01 MeV, and the spins of 21 of these levels were identified. Most of the expected strength of the 2d5/2 and 1g9/2 shells was obtained, and the excitation energy of their centroids was computed to be 0.31 and 3.19 MeV, respectively. In addition, six l=1 states are populated belonging to either the 2p1/2 or 2p3/2 shells.
The determination of the in situ structure by nuclear spin contrast variation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuhrmann, H.B.; Nierhaus, K.H.
1994-12-31
Polarized neutron scattering from polarized nuclear spins in hydrogenous substances opens a new way of contrast variation. The enhanced contrast due to proton spin polarization was used for the in situ structure determination of tRNA of the functional complex of the E.coli ribosome.
Limits to Open Class Performance?
NASA Technical Reports Server (NTRS)
Bowers, Albion H.
2008-01-01
This presentation discusses open or unlimited class aircraft performance limitations and design solutions. Limitations in this class of aircraft include slow climbing flight which requires low wing loading, high cruise speed which requires high wing loading, gains in induced or viscous drag alone which result in only half the gain overall and other structural problems (yaw inertia and spins, flutter and static loads integrity). Design solutions include introducing minimum induced drag for a given span (elliptical span load or winglets) and introducing minimum induced drag for a bell shaped span load. It is concluded that open class performance limits (under current rules and technologies) is very close to absolute limits, though some gains remain to be made from unexplored areas and new technologies.
Twisting microfluidics in a planetary centrifuge.
Yasuda, Shoya; Hayakawa, Masayuki; Onoe, Hiroaki; Takinoue, Masahiro
2017-03-15
This paper reports a twisting microfluidic method utilising a centrifuge-based fluid extruding system in a planetary centrifuge which simultaneously generates an orbital rotation and an axial spin. In this method, fluid extrusion from a micro-scale capillary to an 'open-space' solution or air enables release of the fluid from the capillary-based microchannel, which physically means that there is a release of fluids from a confined low-Reynolds-number environment to an open non-low-Reynolds-number environment. As a result, the extruded fluids are separated from the axial spin of the capillary, and the difference in the angular rates of the axial spin between the capillary and the extruded fluids produces the 'twisting' of the fluid. In this study, we achieve control of the twist of highly viscous fluids, and we construct a simple physical model for the fluid twist. In addition, we demonstrate the formation of twisted hydrogel microstructures (stripe-patterned microbeads and multi-helical microfibres) with control over the stripe pattern and the helical pitch length. We believe that this method will enable the generation of more sophisticated microstructures which cannot easily be formed by usual channel-based microfluidic devices. This method can also provide advanced control of microfluids, as in the case of rapid mixing of highly viscous fluids. This method can contribute to a wide range of applications in materials science, biophysics, biomedical science, and microengineering in the future.
SPINS-IND: Pellet injector for fuelling of magnetically confined fusion systems.
Gangradey, R; Mishra, J; Mukherjee, S; Panchal, P; Nayak, P; Agarwal, J; Saxena, Y C
2017-06-01
Using a Gifford-McMahon cycle cryocooler based refrigeration system, a single barrel hydrogen pellet injection (SPINS-IND) system is indigenously developed at Institute for Plasma Research, India. The injector is based on a pipe gun concept, where a pellet formed in situ in the gun barrel is accelerated to high speed using high pressure light propellant gas. The pellet size is decided by considering the Greenwald density limit and its speed is decided by considering a neutral gas shielding model based scaling law. The pellet shape is cylindrical of dimension (1.6 mm ℓ × 1.8 mm φ). For pellet ejection and acceleration, a fast opening valve of short opening duration is installed at the breech of the barrel. A three-stage differential pumping system is used to restrict the flow of the propellant gas into the plasma vacuum vessel. Diagnostic systems such as light gate and fast imaging camera (240 000 frames/s) are employed to measure the pellet speed and size, respectively. A trigger circuit and a programmable logic controller based integrated control system developed on LabVIEW enables to control the pellet injector remotely. Using helium as a propellant gas, the pellet speed is varied in the range 650 m/s-800 m/s. The reliability of pellet formation and ejection is found to be more than 95%. This paper describes the details of SPINS-IND and its test results.
SPINS-IND: Pellet injector for fuelling of magnetically confined fusion systems
NASA Astrophysics Data System (ADS)
Gangradey, R.; Mishra, J.; Mukherjee, S.; Panchal, P.; Nayak, P.; Agarwal, J.; Saxena, Y. C.
2017-06-01
Using a Gifford-McMahon cycle cryocooler based refrigeration system, a single barrel hydrogen pellet injection (SPINS-IND) system is indigenously developed at Institute for Plasma Research, India. The injector is based on a pipe gun concept, where a pellet formed in situ in the gun barrel is accelerated to high speed using high pressure light propellant gas. The pellet size is decided by considering the Greenwald density limit and its speed is decided by considering a neutral gas shielding model based scaling law. The pellet shape is cylindrical of dimension (1.6 mm ℓ × 1.8 mm φ). For pellet ejection and acceleration, a fast opening valve of short opening duration is installed at the breech of the barrel. A three-stage differential pumping system is used to restrict the flow of the propellant gas into the plasma vacuum vessel. Diagnostic systems such as light gate and fast imaging camera (240 000 frames/s) are employed to measure the pellet speed and size, respectively. A trigger circuit and a programmable logic controller based integrated control system developed on LabVIEW enables to control the pellet injector remotely. Using helium as a propellant gas, the pellet speed is varied in the range 650 m/s-800 m/s. The reliability of pellet formation and ejection is found to be more than 95%. This paper describes the details of SPINS-IND and its test results.
Spin singlet and spin triplet pairing correlations on shape evolution in s d -shell N =Z Nuclei
NASA Astrophysics Data System (ADS)
Ha, Eunja; Cheoun, Myung-Ki; Sagawa, H.
2018-02-01
We study the shape evolution of N =Z nuclei 24Mg,28Si, and 32S in the axially symmetric deformed Woods-Saxon model, taking into account both T =0 and T =1 pairing interactions. We find the coexistence of T =0 and T =1 superfluidity phases in the large deformation region | β2|>0.3 in these three nuclei. The interplay between the two pairing interactions has an important effect on determining the deformation of the ground states in these nuclei. The self-energy contributions from the pairing correlations to the single particle (s.p.) energies are also examined.
Johnson, Erin R; Contreras-García, Julia
2011-08-28
We develop a new density-functional approach combining physical insight from chemical structure with treatment of multi-reference character by real-space modeling of the exchange-correlation hole. We are able to recover, for the first time, correct fractional-charge and fractional-spin behaviour for atoms of groups 1 and 2. Based on Becke's non-dynamical correlation functional [A. D. Becke, J. Chem. Phys. 119, 2972 (2003)] and explicitly accounting for core-valence separation and pairing effects, this method is able to accurately describe dissociation and strong correlation in s-shell many-electron systems. © 2011 American Institute of Physics
On the origin of jets from disc-accreting magnetized stars
NASA Astrophysics Data System (ADS)
Lovelace, Richard V. E.; Romanova, Marina M.; Lii, Patrick; Dyda, Sergei
2014-09-01
A brief review of the origin of jets from disc-accreting rotating magnetized stars is given. In most models, the interior of the disc is characterized by a turbulent viscosity and magnetic diffusivity ("alpha" discs) whereas the coronal region outside the disc is treated using ideal magnetohydrodynamics (MHD). Extensive MHD simulations have established the occurrence of long-lasting outflows in the case of both slowly and rapidly rotating stars. (1) Slowly rotating stars exhibit a new type of outflow, conical winds. Conical winds are generated when stellar magnetic flux is bunched up by the inward motion of the accretion disc. Near their region of origin, the winds have a thin conical shell shape with half opening angle of ˜30°. At large distances, their toroidal magnetic field collimates the outflow forming current carrying, matter dominated jets. These winds are predominantly magnetically and not centrifugally driven. About 10-30% of the disc matter from the inner disc is launched in the conical wind. Conical winds may be responsible for episodic as well as long lasting outflows in different types of stars. (2) Rapidly rotating stars in the "propeller regime" exhibit two-component outflows. One component is similar to the matter dominated conical wind, where a large fraction of the disc matter may be ejected in this regime. The second component is a high-velocity, low-density magnetically dominated axial jet where matter flows along the open polar field lines of the star. The axial jet has a mass flux of about 10% that of the conical wind, but its energy flux, due to the Poynting flux, can be as large as for the conical wind. The jet's magnetically dominated angular momentum flux causes the star to spin down rapidly. Propeller-driven outflows may be responsible for protostellar jets and their rapid spin-down. When the artificial requirement of symmetry about the equatorial plane is dropped, the conical winds are found to come alternately from one side of the disc and then the other, even for the case where the stellar magnetic field is a centered axisymmetric dipole. Recent MHD simulations of disc accretion to rotating stars in the propeller regime have been done with no turbulent viscosity and no diffusivity. The strong turbulence observed is due to the magneto-rotational instability. This turbulence drives accretion in the disc and leads to episodic conical winds and jets.
NASA Astrophysics Data System (ADS)
Nguyen, Minh-Hai; Pai, Chi-Feng; Ralph, Daniel C.; Buhrman, Robert A.
2015-03-01
The spin Hall effect (SHE) in ferromagnet/heavy metal bilayer structures has been demonstrated to be a powerful means for producing pure spin currents and for exerting spin-orbit damping-like and field-like torques on the ferromagnetic layer. Large spin Hall (SH) angles have been reported for Pt, beta-Ta and beta-W films and have been utilized to achieve magnetic switching of in-plane and out-of-plane magnetized nanomagnets, spin torque auto-oscillators, and the control of high velocity domain wall motion. For many of the proposed applications of the SHE it is also important to achieve an effective Gilbert damping parameter that is as low as possible. In general the spin orbit torques and the effective damping are predicted to depend directly on the spin-mixing conductance of the SH metal/ferromagnet interface. This opens up the possibility of tuning these properties with the insertion of a very thin layer of another metal between the SH metal and the ferromagnet. Here we will report on experiments with such trilayer structures in which we have observed both a large enhancement of the spin Hall torque efficiency and a significant reduction in the effective Gilbert damping. Our results indicate that there is considerable opportunity to optimize the effectiveness and energy efficiency of the damping-like torque through engineering of such trilayer structures. Supported in part by NSF and Samsung Electronics Corporation.
Cavity Mediated Manipulation of Distant Spin Currents Using a Cavity-Magnon-Polariton.
Bai, Lihui; Harder, Michael; Hyde, Paul; Zhang, Zhaohui; Hu, Can-Ming; Chen, Y P; Xiao, John Q
2017-05-26
Using electrical detection of a strongly coupled spin-photon system comprised of a microwave cavity mode and two magnetic samples, we demonstrate the long distance manipulation of spin currents. This distant control is not limited by the spin diffusion length, instead depending on the interplay between the local and global properties of the coupled system, enabling systematic spin current control over large distance scales (several centimeters in this work). This flexibility opens the door to improved spin current generation and manipulation for cavity spintronic devices.
Electron Spin Polarization and Detection in InAs Quantum Dots Through p-Shell Trions
2010-01-08
Bracker, D. Gershoni, V. L. Korenev , S. C. Badescu, Y. Lyanda- Geller, and T. L. Reinecke, Phys. Rev. Lett. 95, 177403 2005. 16A. Babinski, M...V. L. Korenev , and I. A. Merkulov, Phys. Rev. Lett. 94, 047402 2005. 28Excitation of trion superposition states has also been considered but it has
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam, C.; Klimas, P.; Sanchez-Guillen, J.
For the baby Skyrme model with a specific potential, compacton solutions, i.e., configurations with a compact support and parabolic approach to the vacuum, are derived. Specifically, in the nontopological sector, we find spinning Q-balls and Q-shells, as well as peakons. Moreover, we obtain compact baby skyrmions with nontrivial topological charge. All these solutions may form stable multisoliton configurations provided they are sufficiently separated.
1982-12-22
A close-up photo of the spin chute mounted on the rear fuselage of the AFTI F-16, a safety device designed to prevent the loss of aircraft in spin conditions. Under some circumstances, pilots cannot recover from spins using normal controls. It these instances, the spin chute is deployed, thus "breaking" the spin and enabling the pilot to recover. The spin chute is held in a metal cylinder attached to the AFTI F-16 by four tubes, a structure strong enough to withstand the shock of the spin chute opening. Unlike the air probe in the last photo, spin chutes are not standard equipment on research or prototype aircraft but are commonly attached expressly for actual spin tests.
The State of the Art in (Cd,Mn)Te Heterostructures: Fundamentals and Applications
NASA Astrophysics Data System (ADS)
Wojtowicz, Tomasz
In my talk I will review recent progress in the MBE technology of (Cd,Mn)Te nanostructures containing two dimensional electron gas (2DEG) that led to the first ever observation of fractional quantum Hall effect in magnetic system. This opens new directions in spintronics. I will first discuss already demonstrated applications of such high mobility magnetic-2DEG system for: a) THz and microwave radiation induced zero-bias generation of pure spin currents and very efficient magnetic field induced conversion of them into spin polarized electric current; b) clear demonstration of THz radiation from spin-waves excited via efficient Raman generation process; c) experimental demonstration of working principles of a new type of spin transistor based on controlling the spin transmission via tunable Landau-Zener transitions in spatially modulated spin-split bands. I will also explain the possibility to use magnetic-2DEG for developing of a new system where non-Abelian excitations can not only be created, but also manipulated in a two-dimensional plane. The system is based on high mobility CdTe quantum wells with engineered placement of Mn atoms, where sign of the Lande g-factor can be locally controlled by electrostatic gates at high magnetic fields. Such a system may allow for building a new platform for topologically protected quantum information processing. I will also present results demonstrating electrostatic control of 2D gas polarization in a quantum Hall regime. The research was partially supported by National Science Centre (Poland) Grant DEC-2012/06/A/ST3/00247 and by ONR Grant N000141410339.
In-Beam Studies of High-Spin States in Mercury -183 and MERCURY-181
NASA Astrophysics Data System (ADS)
Shi, Detang
The high-spin states of ^{183 }Hg were studied by using the reaction ^{155}Gd(^{32}S, 4n)^{183}Hg at a beam energy of 160 MeV with the tandem-linac accelerator system and the multi-element gamma-ray detection array at Florida State University. Two new bands, consisting of stretched E2 transitions and connected by M1 inter-band transitions, were identified in ^{183}Hg. Several new levels were added to the previously known bands at higher spin. The spins and parities to the levels in ^{183}Hg were determined from the analysis of their DCO ratios and B(M1)/B(E2) ratios. While the two pairs of previously known bands in ^ {183}Hg were proposed to 7/2^ -[514] and 9/2^+ [624], the two new bands are assigned as the 1/2^-[521] ground state configuration based upon the systematics of Nilsson orbitals in this mass region. The 354-keV transition previously was considered to be an E2 transition and assigned as the only transition from a band which is built on an oblate deformed i_{13/2} isomeric state. However, our DCO ratio analysis indicates that the 354-keV gamma-ray is an M1 transition. This changes the decay pattern of the 9/2^+[624 ] prolate structure in ^ {183}Hg, so it is seen to feed only into the i_{13/2} isomer band head. Our knowledge of the mercury nuclei far from stability was then extended through an in-beam study of the reaction ^{144}Sm(^{40 }Ar, 3n)^{181}Hg by using the Fragment Mass Analyzer (FMA) and the ten-Compton-suppressed -germanium-detector system at Argonne National Laboratory. Band structures to high-spin states are established for the first time in ^{181}Hg in the present experiment. The observed level structure of ^{181}Hg is midway between those in ^{185}Hg and in ^{183}Hg. The experimental results are analyzed in the framework of the cranking shell model (CSM). Alternative theoretical explanations are also presented and discussed. Systematics of neighboring mercury isotopes and N = 103 isotones is analyzed.
Free vibration of laminated composite stiffened hyperbolic paraboloid shell panel with cutout
NASA Astrophysics Data System (ADS)
Sahoo, Sarmila
2016-08-01
Composite shell structures are extensively used in aerospace, civil, marine and other engineering applications. In practical civil engineering applications, the necessity of covering large column free open areas is often an issue and hyperbolic paraboloid shells are used as roofing units. Quite often, to save weight and also to provide a facility for inspection, cutouts are provided in shell panels. The paper considers free vibration characteristics of stiffened composite hyperbolic paraboloid shell panel with cutout in terms of natural frequency and mode shapes. A finite element code is developed for the purpose by combining an eight noded curved shell element with a three noded curved beam element. The size of the cutouts and their positions with respect to the shell centre are varied for different edge conditions to arrive at a set of inferences of practical engineering significances.
Wu, Fan; Cui, Qi; Qiu, Zeliang; Liu, Changwen; Zhang, Hui; Shen, Wei; Wang, Mingtai
2013-04-24
Incorporation of vertically aligned nanorod/nanowire arrays of metal oxide (oxide-NAs) with a polymer can produce efficient hybrid solar cells with an ideal bulk-heterojunction architecture. However, polymer/oxide-NAs solar cells still suffer from a rather low (normally, < 0.4 V) open-circuit voltage (Voc). Here we demonstrate, for the first time, a novel strategy to improve the Voc in polymer/oxide-NAs solar cells by formation of homogeneous core/shell structures and reveal the intrinsic principles involved therein. A feasible hydrothermal-solvothermal combined method is developed for preparing homogeneous core/shell nanoarrays of metal oxides with a single-crystalline nanorod as core and the aggregation layer of corresponding metal oxide quantum dots (QDs) as shell, and the shell thickness (L) is easily controlled by the solvothermal reaction time for growing QDs on the nanorod. The core/shell formation dramatically improves the device Voc up to ca. 0.7-0.8 V depending on L. Based on steady-state and dynamic measurements, as well as modeling by space-charge-limited current method, it is found that the improved Voc originates from the up-shifted conduction band edge in the core by the interfacial dipole field resulting from the decreased mobility difference between photogenerated electrons and holes after the shell growth, which increases the energy difference between the quasi-Fermi levels of photogenerated electrons in the core and holes in the polymer for a higher Voc. Our results indicate that increasing Voc by the core/shell strategy seems not to be dependent on the kinds of metal oxides.
Optical Emission Associated with the Galactic Supernova Remnant G179.0+2.6
NASA Astrophysics Data System (ADS)
How, Thomas G.; Fesen, Robert A.; Neustadt, Jack M. M.; Black, Christine S.; Outters, Nicolas
2018-04-01
Narrow passband optical images of the large Galactic supernova remnant G179.0+2.6 reveal a faint but nearly complete emission shell dominated by strong [O 3] 4959,5007 Å line emission. The remnant's optical emission, which consists of both diffuse and filamentary features, is brightest along its southern and northeastern limbs. Deep Hα images detect little coincidence emission indicating an unusually high [O 3]/Hα emission ratio for such a large and apparently old remnant. Low-dispersion optical spectra of several regions confirm large [O 3]/Hα line ratios with typical values around 10. The dominance of [O 3] emission for the majority of the remnant's optical filaments suggests shock velocities above 100 km s-1 are present throughout most of the remnant, likely reflecting a relatively low density ambient ISM. The remnant's unusually strong [O 3] emission adds to the remnant's interesting set of properties which include a thick radio emission shell, radial polarization of its radio emission like that typically seen in young supernova remnants, and an unusually slow-rotating gamma-ray pulsar with a characteristic spin-down age ≃ 50 kyr.
Structure and properties of silk from the African wild silkmoth Gonometa postica reared indoors
Teshome, Addis; Raina, S. K.; Vollrath, Fritz
2014-01-01
Abstract African wild silkmoth, Gonometa postica Walker (Lepidoptera: Lasiocampidae), were reared indoors in order to examine the influence of rearing conditions on the structure and properties of silk cocoon shells and degummed fibers by using a scanning electron microscope, an Instron tensile tester, and a thermogravimetric analyzer. The cocoons reared indoors showed inferior quality in weight, length, width, and cocoon shell ratio compared to cocoons reared outdoors. There were no differences in cocoon shell and fiber surfaces and cross sectional structures. Cocoon shells were covered with calcium oxalate crystals with few visible fibers on their surface. Degummed fibers were smooth with minimum unfractured surfaces and globular to triangular cross sections. Indoor-reared cocoon shells had a significantly higher breaking strain, while the breaking stress was higher for cocoons reared outdoors. Fibers from indoor cocoons had a significantly higher breaking stress while outdoor fibers had higher breaking strain. Thermogravimetric analysis curves showed two main thermal reactions revealing the dehydration of water molecules and ir-reversible decomposition of the crystallites in both cocoons and fibers reared indoors and outdoors. Cocoon shells underwent additional peaks of decomposition with increased temperature. The total weight loss was higher for cocoon shells and degummed fibers from indoors. Rearing conditions (temperature and relative humidity), feeding method used, changes in total life span, days to molting, and spinning might have influenced the variation in the properties observed.The ecological and commercial significances of indoor rearing of G. postica are discussed. PMID:25373183
An MR/MRI compatible core holder with the RF probe immersed in the confining fluid.
Shakerian, M; Balcom, B J
2018-01-01
An open frame RF probe for high pressure and high temperature MR/MRI measurements was designed, fabricated, and tested. The open frame RF probe was installed inside an MR/MRI compatible metallic core holder, withstanding a maximum pressure and temperature of 5000 psi and 80 °C. The open frame RF probe was tunable for both 1 H and 19 F resonance frequencies with a 0.2 T static magnetic field. The open frame structure was based on simple pillars of PEEK polymer upon which the RF probe was wound. The RF probe was immersed in the high pressure confining fluid during operation. The open frame structure simplified fabrication of the RF probe and significantly reduced the amount of polymeric materials in the core holder. This minimized the MR background signal detected. Phase encoding MRI methods were employed to map the spin density of a sulfur hexafluoride gas saturating a Berea core plug in the core holder. The SF 6 was imaged as a high pressure gas and as a supercritical fluid. Copyright © 2017 Elsevier Inc. All rights reserved.
An MR/MRI compatible core holder with the RF probe immersed in the confining fluid
NASA Astrophysics Data System (ADS)
Shakerian, M.; Balcom, B. J.
2018-01-01
An open frame RF probe for high pressure and high temperature MR/MRI measurements was designed, fabricated, and tested. The open frame RF probe was installed inside an MR/MRI compatible metallic core holder, withstanding a maximum pressure and temperature of 5000 psi and 80 °C. The open frame RF probe was tunable for both 1H and 19F resonance frequencies with a 0.2 T static magnetic field. The open frame structure was based on simple pillars of PEEK polymer upon which the RF probe was wound. The RF probe was immersed in the high pressure confining fluid during operation. The open frame structure simplified fabrication of the RF probe and significantly reduced the amount of polymeric materials in the core holder. This minimized the MR background signal detected. Phase encoding MRI methods were employed to map the spin density of a sulfur hexafluoride gas saturating a Berea core plug in the core holder. The SF6 was imaged as a high pressure gas and as a supercritical fluid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guloy, A.M.; Corbett, J.D.
1996-04-24
The new tetragonal phases La{sub 3}In{sub 4}Ge and La{sub 3}InGe are obtained from high-temperature reactions of the elements in welded Ta followed by annealing. The structures of both were established by single-crystal X-ray diffraction in tetragonal space group I4/mcm (Z = 4 and 16, {alpha} = 8.5165(3) and 12.3083(2) {Angstrom}, c = 11.9024(4) and 16.0776(4) {Angstrom}, respectively). La{sub 3}In{sub 4}Ge contains layers or slabs of three-connected indium built of puckered 8-rings and 4-rings, or of squashed tetrahedra ({open_quotes}butterflies{close_quotes}) interlinked at all vertices, and these are separated by layers of La and isolated Ge. The phase is deficient of being amore » Zintl phase by three electrons per formula unit and is better described in terms of an alternate optimized and delocalized bonding picture and an open-shell metallic better described in terms of an alternate optimized and delocalized bonding picture and an open-shell metallic behavior for the In slabs. The more complex La{sub 3}InGe, isostructural with Gd{sub 3}Ga{sub 2}, is also layered. This phase contains pairs of mixed-occupancy (0.75 In, 0.25 Ge) sites separated by 3.020 {Angstrom}, as well as isolated In and Ge atoms. The former appear to be fully reduced closed-shell atoms (relative to the bonded Ga dimers in Gd{sub 3}Ga{sub 2}) that are held in somewhat close proximity by cation matrix effects. The compound appears to be semiconducting and thus is a classical Zintl phase, (La{sup +3}){sub 3}In{sup {minus}5}Ge{sup {minus}4} in the simplest oxidation state notation. High Coulomb energies are presumably important for the nature of the bonding and the stabilities of both compounds.« less
Multi-quasiparticle excitations in145Tb
NASA Astrophysics Data System (ADS)
Zheng, Yong; Zhou, Xiaohong; Zhang, Yuhu; Liu, Minliang; Guo, Yingxiang; Lei, Xiangguo; Hayakawa, T.; Oshima, M.; Toh, T.; Shizuma, T.; Katakura, J.; Hatsukawa, Y.; Matsuda, M.; Kusakari, H.; Sugawara, M.
2004-09-01
High-spin states in145Tb have been populated using the118Sn (32S, 1p4n) reaction at beam energy of 165 MeV. The level scheme of145Tb has been established up to Ex≈7.4 MeV. The level scheme shows characteristics of a spherical or slightly oblate nucleus. Based on the systematic trends of the level structure in the neighboring N=80 isotones, the level structure in145Tb below 2 MeV excitation is well eplained by coupling an h 11/2 valence proton to the even-even144Gd core. Above 2 MeV excitation, most of the yrast levels are interpreted with multi-quasiparticle shell-model configurations.
Dynamics of quantum tomography in an open system
NASA Astrophysics Data System (ADS)
Uchiyama, Chikako
2015-06-01
In this study, we provide a way to describe the dynamics of quantum tomography in an open system with a generalized master equation, considering a case where the relevant system under tomographic measurement is influenced by the environment. We apply this to spin tomography because such situations typically occur in μSR (muon spin rotation/relaxation/resonance) experiments where microscopic features of the material are investigated by injecting muons as probes. As a typical example to describe the interaction between muons and a sample material, we use a spin-boson model where the relevant spin interacts with a bosonic environment. We describe the dynamics of a spin tomogram using a time-convolutionless type of generalized master equation that enables us to describe short time scales and/or low-temperature regions. Through numerical evaluation for the case of Ohmic spectral density with an exponential cutoff, a clear interdependency is found between the time evolution of elements of the density operator and a spin tomogram. The formulation in this paper may provide important fundamental information for the analysis of results from, for example, μSR experiments on short time scales and/or in low-temperature regions using spin tomography.
Localized Defect Modes in a Two-Dimensional Array of Magnetic Nanodots
2013-06-22
number of defects it is possible to obtain the information about the entire spin-wave spectrum of the array. Index Terms—Spin waves, magnonic crystal...multistability opens a way for the development of a novel type of artificial materials with tunable microwave properties – reconfigurable magnonic ...information about the entire spin-wave spectrum of the array. 15. SUBJECT TERMS Spin waves, magnonic crystal, magnetic dot, ferromagnetic resonance