Sample records for high spin structure

  1. Spin Hamiltonian Analysis of the SMM V15 Using High Field ESR

    NASA Astrophysics Data System (ADS)

    Martens, Mathew; van Tol, Hans; Bertaina, Sylvain; Barbara, Bernard; Muller, Achim; Chiorescu, Irinel

    2014-03-01

    We have studied molecular magnets using high field / high frequency Electron Spin Resonance. Such molecular structures contain many quantum spins linked by exchange interactions and consequently their energy structure is often complex and require a good understanding of the molecular spin Hamiltonian. In particular, we studied the V15 molecule, comprised of 15 spins 1/2 and a total spin 1/2, which is a system that recently showed quantum Rabi oscillations of its total quantum spin. This type of molecule is an essential system for advancing molecular structures into quantum computing. We used high frequency characterization techniques (of hundreds of GHz) to gain insight into the exchange anisotropy interactions, crystal field, and anti-symmetric interactions present in this system. We analyzed the data using a detailed numerical analysis of spin interactions and our findings regarding the V15 spin Hamiltonian will be discussed. Supported by the NSF Cooperative Agreement Grant No. DMR-0654118 and No. NHMFL UCGP 5059, NSF grant No. DMR-0645408.

  2. Periodic density functional theory study of spin crossover in the cesium iron hexacyanochromate prussian blue analog

    NASA Astrophysics Data System (ADS)

    Wojdeł, Jacek C.; Moreira, Ibério de P. R.; Illas, Francesc

    2009-01-01

    This paper presents a detailed theoretical analysis of the electronic structure of the CsFe[Cr(CN)6] prussian blue analog with emphasis on the structural origin of the experimentally observed spin crossover transition in this material. Periodic density functional calculations using generalized gradient approximation (GGA)+U and nonlocal hybrid exchange-correlation potentials show that, for the experimental low temperature crystal structure, the t2g6eg0 low spin configuration of FeII is the most stable and CrIII (S =3/2, t2g3eg0) remains the same in all cases. This is also found to be the case for the low spin GGA+U fully relaxed structure with the optimized unit cell. A completely different situation emerges when calculations are carried out using the experimental high temperature structure. Here, GGA+U and hybrid density functional theory calculations consistently predict that the t2g4eg2 FeII high spin configuration is the ground state. However, the two spin configurations appear to be nearly degenerate when calculations are carried out for the geometries arising from a GGA+U full relaxation of the atomic structure carried out at experimental high temperature lattice constant. A detailed analysis of the energy difference between the two spin configurations as a function of the lattice constant strongly suggests that the observed spin crossover transition has a structural origin with non-negligible entropic contributions of the high spin state.

  3. Magnetic tunnel spin injectors for spintronics

    NASA Astrophysics Data System (ADS)

    Wang, Roger

    Research in spin-based electronics, or "spintronics", has a universal goal to develop applications for electron spin in a broad range of electronics and strives to produce low power nanoscale devices. Spin injection into semiconductors is an important initial step in the development of spintronic devices, with the goal to create a highly spin polarized population of electrons inside a semiconductor at room temperature for study, characterization, and manipulation. This dissertation investigates magnetic tunnel spin injectors that aim to meet the spin injection requirements needed for potential spintronic devices. Magnetism and spin are inherently related, and chapter 1 provides an introduction on magnetic tunneling and spintronics. Chapter 2 then describes the fabrication of the spin injector structures studied in this dissertation, and also illustrates the optical spin detection technique that correlates the measured electroluminescence polarization from quantum wells to the electron spin polarization inside the semiconductor. Chapter 3 reports the spin injection from the magnetic tunnel transistor (MTT) spin injector, which is capable of producing highly spin polarized tunneling currents by spin selective scattering in its multilayer structure. The MTT achieves ˜10% lower bound injected spin polarization in GaAs at 1.4 K. Chapter 4 reports the spin injection from CoFe-MgO(100) tunnel spin injectors, where spin dependent tunneling through MgO(100) produces highly spin polarized tunneling currents. These structures achieve lower bound spin polarizations exceeding 50% at 100 K and 30% in GaAs at 290 K. The CoFe-MgO spin injectors also demonstrate excellent thermal stability, maintaining high injection efficiencies even after exposure to temperatures of up to 400 C. Bias voltage and temperature dependent studies on these structures indicate a significant dependence of the electroluminescence polarization on the spin and carrier recombination lifetimes inside the semiconductor. Chapter 5 investigates these spin and carrier lifetime effects on the electroluminescence polarization using time resolved optical techniques. These studies suggest that a peak in the carrier lifetime with temperature is responsible for the nonmonotonic temperature dependence observed in the electroluminescence polarization, and that the initially injected spin polarization from CoFe-MgO spin injectors is a nearly temperature independent ˜70% from 10 K up to room temperature.

  4. Polarized lepton-nucleon scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, E.

    1994-12-01

    The author provides a summary of the proposed and published statistical (systematic) uncertainties from the world experiments on nucleon spin structure function integrals. By the time these programs are complete, there will be a vast resource of data on nucleon spin structure functions. Each program has quite different experimental approaches regarding the beams, targets, and spectrometers thus ensuring systematically independent tests of the spin structure function measurements. Since the field of spin structure function measurements began, there has been a result appearing approximately every five years. With advances in polarized target technology and high polarization in virtually all of themore » lepton beams, results are now coming out each year; this is a true signature of the growth in the field. Hopefully, the experiments will provide a consistent picture of nucleon spin structure at their completion. In summary, there are still many open questions regarding the internal spin structure of the nucleon. Tests of QCD via the investigation of the Bjorken sum rule is a prime motivator for the field, and will continue with the next round of precision experiments. The question of the origin of spin is still a fundamental problem. Researchers hope is that high-energy probes using spin will shed light on this intriguing mystery, in addition to characterizing the spin structure of the nucleon.« less

  5. Thermal properties of spin-S Kitaev-Heisenberg model on a honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Suzuki, Takafumi; Yamaji, Youhei

    2018-05-01

    Temperature (T) dependence of heat capacity C (T) in the S = 1 / 2 Kitaev honeycomb model shows a double-peak structure resulting from fractionalization of spins into two kinds of Majorana fermions. Recently it has been discussed that the double-peak structure in C (T) is also observed in magnetic ordered phases of the S = 1 / 2 Kitaev-Heisenberg (KH) model on a honeycomb lattice when the system is located in the vicinity of the Kitaev's spin liquid phase. In addition to the S = 1 / 2 spin case, similar double-peak structure has been confirmed in the KH honeycomb model for classical Heisenberg spins, where spin S is regarded as S → ∞ . We investigate spin-S dependence of C (T) for the KH honeycomb models by using thermal pure quantum state. We also perform classical Monte Carlo calculations to obtain C (T) for the classical KH model. From obtained results, we find that the origin of the high-temperature peak is different between the quantum spin case with small Ss and the classical Heisenberg spin case. Furthermore, the high-temperature peak in the quantum spin case, which is one of the clues for fractionalization of spins, disappears for S > 1 .

  6. Widespread spin polarization effects in photoemission from topological insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jozwiak, C.; Chen, Y. L.; Fedorov, A. V.

    2011-06-22

    High-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES) was performed on the three-dimensional topological insulator Bi{sub 2}Se{sub 3} using a recently developed high-efficiency spectrometer. The topological surface state's helical spin structure is observed, in agreement with theoretical prediction. Spin textures of both chiralities, at energies above and below the Dirac point, are observed, and the spin structure is found to persist at room temperature. The measurements reveal additional unexpected spin polarization effects, which also originate from the spin-orbit interaction, but are well differentiated from topological physics by contrasting momentum and photon energy and polarization dependencies. These observations demonstrate significant deviations ofmore » photoelectron and quasiparticle spin polarizations. Our findings illustrate the inherent complexity of spin-resolved ARPES and demonstrate key considerations for interpreting experimental results.« less

  7. Structural characterization of nano-oxide layers in PtMn based specular spin valves

    NASA Astrophysics Data System (ADS)

    Zhou, Min; Chen, Lifan; Diao, Zhitao; Park, Chang-Man; Huai, Yiming

    2005-05-01

    A systematic structure characterization of nano-oxide layers (NOLs) and specular spin valves using x-ray diffraction and high-resolution transmission electron microscopy (HRTEM) has been studied. High-angle x-ray diffraction data show almost identical fcc textures for both natural and plasma NOL spin-valves. Low-angle x-ray reflectivity spectrum shows more deteriorated Kiessig fringes at high incident angles for natural oxide sample, indicating rougher interfaces in natural oxidation than in plasma oxidation. Oxygen exposure plays an important role in NOLs process. Fabricating NOLs without any crystal structure degradation is critical to obtain high MR ratio. HRTEM reveals that oxide clusters mixing with insufficiently oxidized CoFe layers prevailed in natural NOL, and the natural oxidation was inhomogeneous. In contrast, plasma NOL has a thinner, more homogeneously oxidized CoFe layers with sharp interfaces. In plasma NOLs, the structures still maintain CoFe crystal structure. The structures and magnetic correlation of the NOL specular spin valves are discussed.

  8. High-spin structures in the 139Pr nucleus

    NASA Astrophysics Data System (ADS)

    Yeoh, E. Y.; Zhu, S. J.; Wang, J. G.; Xiao, Z. G.; Zhang, M.; Yan, W. H.; Wang, R. S.; Xu, Q.; Wu, X. G.; He, C. Y.; Li, G. S.; Zheng, Y.; Li, C. B.; Cao, X. P.; Hu, S. P.; Yao, S. H.; Yu, B. B.

    2012-06-01

    Background: 139Pr is located in a transitional region of neutron number close to the N=82 shell. The study of its high-spin states and collective bands is important for systematically understanding the nuclear structural characteristics in this region.Purpose: To investigate the high-spin levels and to search for oblate bands in 139Pr.Methods: The high-spin states of 139Pr have been studied via the reaction 124Sn(19F,4n) at a beam energy of 80 MeV. The experiment was carried out at the HI-13 Tandem Accelerator at the China Institute of Atomic Energy (CIAE). The data analysis was done by using the γ-γ coincidence method.Results: The level scheme of 139Pr has been expanded with spin up to 45/2ℏ. A total of 39 new levels and 45 new transitions are identified. Four collective band structures at high-spin states have been newly established. From systematic analysis, one of the bands is proposed as a double decoupled band; two bands are proposed as oblate bands with γ˜-60∘; another band is suggested as an oblate-triaxial band with γ˜-90∘. The other characteristics for these bands are discussed.Conclusions: A new level scheme in 139Pr has been established and the collective bands at high spin have been identified. The result shows that the strong oblate shape-driving effect is caused by neutrons at the high-spin states in 139Pr.

  9. Crystal structures of (Mg1-x,Fe(x))SiO3 postperovskite at high pressures.

    PubMed

    Yamanaka, Takamitsu; Hirose, Kei; Mao, Wendy L; Meng, Yue; Ganesh, P; Shulenburger, Luke; Shen, Guoyin; Hemley, Russell J

    2012-01-24

    X-ray diffraction experiments on postperovskite (ppv) with compositions (Mg(0.9)Fe(0.1))SiO(3) and (Mg(0.6)Fe(0.4))SiO(3) at Earth core-mantle boundary pressures reveal different crystal structures. The former adopts the CaIrO(3)-type structure with space group Cmcm, whereas the latter crystallizes in a structure with the Pmcm (Pmma) space group. The latter has a significantly higher density (ρ = 6.119(1) g/cm(3)) than the former (ρ = 5.694(8) g/cm(3)) due to both the larger amount of iron and the smaller ionic radius of Fe(2+) as a result of an electronic spin transition observed by X-ray emission spectroscopy (XES). The smaller ionic radius for low-spin compared to high-spin Fe(2+) also leads to an ordered cation distribution in the M1 and M2 crystallographic sites of the higher density ppv structure. Rietveld structure refinement indicates that approximately 70% of the total Fe(2+) in that phase occupies the M2 site. XES results indicate a loss of 70% of the unpaired electronic spins consistent with a low spin M2 site and high spin M1 site. First-principles calculations of the magnetic ordering confirm that Pmcm with a two-site model is energetically more favorable at high pressure, and predict that the ordered structure is anisotropic in its electrical and elastic properties. These results suggest that interpretations of seismic structure in the deep mantle need to treat a broader range of mineral structures than previously considered.

  10. Electric field induced spin-polarized current

    DOEpatents

    Murakami, Shuichi; Nagaosa, Naoto; Zhang, Shoucheng

    2006-05-02

    A device and a method for generating an electric-field-induced spin current are disclosed. A highly spin-polarized electric current is generated using a semiconductor structure and an applied electric field across the semiconductor structure. The semiconductor structure can be a hole-doped semiconductor having finite or zero bandgap or an undoped semiconductor of zero bandgap. In one embodiment, a device for injecting spin-polarized current into a current output terminal includes a semiconductor structure including first and second electrodes, along a first axis, receiving an applied electric field and a third electrode, along a direction perpendicular to the first axis, providing the spin-polarized current. The semiconductor structure includes a semiconductor material whose spin orbit coupling energy is greater than room temperature (300 Kelvin) times the Boltzmann constant. In one embodiment, the semiconductor structure is a hole-doped semiconductor structure, such as a p-type GaAs semiconductor layer.

  11. Fine structure and optical pumping of spins in individual semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Bracker, Allan S.; Gammon, Daniel; Korenev, Vladimir L.

    2008-11-01

    We review spin properties of semiconductor quantum dots and their effect on optical spectra. Photoluminescence and other types of spectroscopy are used to probe neutral and charged excitons in individual quantum dots with high spectral and spatial resolution. Spectral fine structure and polarization reveal how quantum dot spins interact with each other and with their environment. By taking advantage of the selectivity of optical selection rules and spin relaxation, optical spin pumping of the ground state electron and nuclear spins is achieved. Through such mechanisms, light can be used to process spins for use as a carrier of information.

  12. Crystal structures of (Mg1-x,Fex)SiO3postperovskite at high pressures

    PubMed Central

    Yamanaka, Takamitsu; Hirose, Kei; Mao, Wendy L.; Meng, Yue; Ganesh, P.; Shulenburger, Luke; Shen, Guoyin; Hemley, Russell J.

    2012-01-01

    X-ray diffraction experiments on postperovskite (ppv) with compositions (Mg0.9Fe0.1)SiO3 and (Mg0.6Fe0.4)SiO3 at Earth core-mantle boundary pressures reveal different crystal structures. The former adopts the CaIrO3-type structure with space group Cmcm, whereas the latter crystallizes in a structure with the Pmcm (Pmma) space group. The latter has a significantly higher density (ρ = 6.119(1) g/cm3) than the former (ρ = 5.694(8) g/cm3) due to both the larger amount of iron and the smaller ionic radius of Fe2+ as a result of an electronic spin transition observed by X-ray emission spectroscopy (XES). The smaller ionic radius for low-spin compared to high-spin Fe2+ also leads to an ordered cation distribution in the M1 and M2 crystallographic sites of the higher density ppv structure. Rietveld structure refinement indicates that approximately 70% of the total Fe2+ in that phase occupies the M2 site. XES results indicate a loss of 70% of the unpaired electronic spins consistent with a low spin M2 site and high spin M1 site. First-principles calculations of the magnetic ordering confirm that Pmcm with a two-site model is energetically more favorable at high pressure, and predict that the ordered structure is anisotropic in its electrical and elastic properties. These results suggest that interpretations of seismic structure in the deep mantle need to treat a broader range of mineral structures than previously considered. PMID:22223656

  13. Pin-Hole Free Perovskite Film for Solar Cells Application Prepared by Controlled Two-Step Spin-Coating Method

    NASA Astrophysics Data System (ADS)

    Bahtiar, A.; Rahmanita, S.; Inayatie, Y. D.

    2017-05-01

    Morphology of perovskite film is a key important for achieving high performance perovskite solar cells. Perovskite films are commonly prepared by two-step spin-coating method. However, pin-holes are frequently formed in perovskite films due to incomplete conversion of lead-iodide (PbI2) into perovskite CH3NH3PbI3. Pin-holes in perovskite film cause large hysteresis in current-voltage curve of solar cells due to large series resistance between perovskite layer-hole transport material. Moreover, crystal structure and grain size of perovskite crystal are also other important parameters for achieving high performance solar cells, which are significantly affected by preparation of perovskite film. We studied the effect of preparation of perovskite film using controlled spin-coating parameters on crystal structure and morphological properties of perovskite film. We used two-step spin-coating method for preparation of perovskite film with varied spinning speed, spinning time and temperature of spin-coating process to control growth of perovskite crystal aimed to produce high quality perovskite crystal with pin-hole free and large grain size. All experiment was performed in air with high humidity (larger than 80%). The best crystal structure, pin-hole free with large grain crystal size of perovskite film was obtained from film prepared at room temperature with spinning speed 1000 rpm for 20 seconds and annealed at 100°C for 300 seconds.

  14. FMR-driven spin pumping in Y3Fe5O12-based structures

    NASA Astrophysics Data System (ADS)

    Yang, Fengyuan; Hammel, P. Chris

    2018-06-01

    Ferromagnetic resonance driven spin pumping, a topic of steadily increasing interest since its emergence over two decades ago, remains one of the most exciting research fields in condensed matter physics. Among the many materials that have been explored for spin pumping, yttrium iron garnet (YIG) is one of the most extensively studied because of its exceptionally low magnetic damping and insulating nature. There is a great amount of literature in the spin pumping and related research fields, too broad for this review to cover. In this Topical Review, we focus on the YIG-based spin pumping results carried out by our groups, including: the mechanism and technical details of our off-axis sputtering technique for the growth of single-crystalline YIG epitaxial films with a high degree ordering, experimental evidence for the high quality of the YIG films, spin pumping results from YIG into various transition metals and their heterostructures, dynamic spin transport in YIG/antiferromagnet hybrid structures, intralayer spin pumping by localized spin wave modes confined by a micromagnetic probe, dynamic spin coupling between YIG and nitrogen-vacancy centers in diamond, parametric spin pumping from high-wavevector spin waves in YIG, and localized spin wave mode behavior in broadly tunable spatially complex magnetic configurations. These results build on the power and versatility of YIG spin pumping to improve our understanding of spin dynamics, spin currents, spin Hall physics, spin–orbit coupling, dynamic magnetic coupling, and the relationship between these phenomena in a broad range of materials, geometries, and settings.

  15. Effect of on-site Coulomb interaction on electronic and transport properties of 100% spin polarized CoMnVAs

    NASA Astrophysics Data System (ADS)

    Bhat, Tahir Mohiuddin; Gupta, Dinesh C.

    2017-08-01

    The structural, electronic, magnetic and transport properties of a new quaternary Heusler alloy CoMnVAs have been investigated by employing generalized gradient approximation (GGA), modified Becke-Johnson (mBJ) and GGA with Hubbard U correction (GGA + U). The alloy is energetically more stable in ferromagnetic Y1 type structure. Elastic parameters reveal high anisotropy and ductile nature of the material. CoMnVAs shows half-metallic ferromagnet character with 100% spin polarization at Fermi level with band gap of 0.55 eV in the minority spin state. The alloy also possesses high electrical conductivity and Seebeck coefficients with 15 μVK-1 at room temperature, achieving a figure of merit of 0.65 at high temperatures. The high degree of ductility, 100% spin polarization and large Seebeck coefficient, makes it an attractive candidate to be used in spin voltage generators and thermoelectric materials.

  16. Searching for a 4 α linear-chain structure in excited states of 16O with covariant density functional theory

    NASA Astrophysics Data System (ADS)

    Yao, J. M.; Itagaki, N.; Meng, J.

    2014-11-01

    A study of the 4 α linear-chain structure in high-lying collective excitation states of 16O with covariant density functional theory is presented. The low-spin states are obtained by configuration mixing of particle-number and angular-momentum projected quadrupole deformed mean-field states with the generator coordinate method. The high-spin states are determined by cranking calculations. These two calculations are based on the same energy density functional PC-PK1. We have found a rotational band at low spin with the dominant intrinsic configuration considered to be the one whereby 4 α clusters stay along a common axis. The strongly deformed rod shape also appears in the high-spin region with the angular momentum 13 ℏ to18 ℏ ; however, whether the state is a pure 4 α linear chain is less obvious than for the low-spin states.

  17. Spin waves in planar quasicrystal of Penrose tiling

    NASA Astrophysics Data System (ADS)

    Rychły, J.; Mieszczak, S.; Kłos, J. W.

    2018-03-01

    We investigated two-dimensional magnonic structures which are the counterparts of photonic quasicrystals forming Penrose tiling. We considered the slab composed of Ni (or Py) disks embedded in Fe (or Co) matrix. The disks are arranged in quasiperiodic Penrose-like structure. The infinite quasicrystal was approximated by its rectangular section with periodic boundary conditions applied. This approach allowed us to use the plane wave method to find the frequency spectrum of eigenmodes for spin waves and their spatial profiles. The calculated integrated density of states shows more distinctive magnonic gaps for the structure composed of materials of high magnetic contrast (Ni and Fe) and relatively high filling fraction. This proves the impact of quasiperiodic long-range order on the spectrum of spin waves. We also investigated the localization of spin wave eingenmodes resulting from the quasiperiodicity of the structure.

  18. The stabilization mechanism of titanium cluster

    NASA Astrophysics Data System (ADS)

    Sun, Houqian; Ren, Yun; Hao, Yuhua; Wu, Zhaofeng; Xu, Ning

    2015-05-01

    A systematic and comparative theoretical study on the stabilization mechanism of titanium cluster has been performed by selecting the clusters Tin (n=3, 4, 5, 7, 13, 15 and 19) as representatives in the framework of density-functional theory. For small clusters Tin (n=3, 4 and 5), the binding energy gain due to spin polarization is substantially larger than that due to structural distortion. For medium clusters Ti13 and Ti15, both have about the same contribution. For Tin (n=4, 5, 13 and 15), when the undistorted high symmetric structure with spin-polarization is changed into the lowest energy structure, the energy level spelling due to distortion fails to reverse the level order of occupied and unoccupied molecular orbital (MO) of two type spin states, the spin configuration remains unchanged. In spin restricted and undistorted high symmetric structure, d orbitals participate in the hybridization in MOs, usually by way of a less distorted manner, and weak bonds are formed. In contrast, d orbitals take part in the formation of MOs in the ground state structure, usually in a distorted manner, and strong covalent metallic bonds are formed.

  19. High spin states of 72-74Kr

    NASA Astrophysics Data System (ADS)

    Kaushik, M.; Kumawat, M.; Singh, U. K.; Saxena, G.

    2018-05-01

    A theoretical investigation has made on the structure of high spin states of 72-74Kr within the framework of cranked Hartree-Fock-Bogoliubov (CHFB) theory employing a pairing + quadrupole + hexadecapole model interaction. Dependence of shape with the spin, excitation energy, alignment of proton as well as neutron 0g9/2 orbital along with backbending phenomenon are discussed upto a high spin J = 26. We found reasonable agreement with the experimental values and other theoretical calculations.

  20. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). Themore » spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.« less

  1. Quasi 2D electronic states with high spin-polarization in centrosymmetric MoS2 bulk crystals

    NASA Astrophysics Data System (ADS)

    Gehlmann, Mathias; Aguilera, Irene; Bihlmayer, Gustav; Młyńczak, Ewa; Eschbach, Markus; Döring, Sven; Gospodarič, Pika; Cramm, Stefan; Kardynał, Beata; Plucinski, Lukasz; Blügel, Stefan; Schneider, Claus M.

    2016-06-01

    Time reversal dictates that nonmagnetic, centrosymmetric crystals cannot be spin-polarized as a whole. However, it has been recently shown that the electronic structure in these crystals can in fact show regions of high spin-polarization, as long as it is probed locally in real and in reciprocal space. In this article we present the first observation of this type of compensated polarization in MoS2 bulk crystals. Using spin- and angle-resolved photoemission spectroscopy (ARPES), we directly observed a spin-polarization of more than 65% for distinct valleys in the electronic band structure. By additionally evaluating the probing depth of our method, we find that these valence band states at the point in the Brillouin zone are close to fully polarized for the individual atomic trilayers of MoS2, which is confirmed by our density functional theory calculations. Furthermore, we show that this spin-layer locking leads to the observation of highly spin-polarized bands in ARPES since these states are almost completely confined within two dimensions. Our findings prove that these highly desired properties of MoS2 can be accessed without thinning it down to the monolayer limit.

  2. Role of spin-orbit coupling in the electronic structure of Ir O2

    NASA Astrophysics Data System (ADS)

    Das, Pranab Kumar; Sławińska, Jagoda; Vobornik, Ivana; Fujii, Jun; Regoutz, Anna; Kahk, Juhan M.; Scanlon, David O.; Morgan, Benjamin J.; McGuinness, Cormac; Plekhanov, Evgeny; Di Sante, Domenico; Huang, Ying-Sheng; Chen, Ruei-San; Rossi, Giorgio; Picozzi, Silvia; Branford, William R.; Panaccione, Giancarlo; Payne, David J.

    2018-06-01

    The delicate interplay of electronic charge, spin, and orbital degrees of freedom is in the heart of many novel phenomena across the transition metal oxide family. Here, by combining high-resolution angle-resolved photoemission spectroscopy and first principles calculations (with and without spin-orbit coupling), the electronic structure of the rutile binary iridate, Ir O2 , is investigated. The detailed study of electronic bands measured on a high-quality single crystalline sample and use of a wide range of photon energy provide a huge improvement over the previous studies. The excellent agreement between theory and experimental results shows that the single-particle DFT description of Ir O2 band structure is adequate, without the need of invoking any treatment of correlation effects. Although many observed features point to a 3D nature of the electronic structure, clear surface effects are revealed. The discussion of the orbital character of the relevant bands crossing the Fermi level sheds light on spin-orbit-coupling-driven phenomena in this material, unveiling a spin-orbit-induced avoided crossing, a property likely to play a key role in its large spin Hall effect.

  3. Spin temperature concept verified by optical magnetometry of nuclear spins

    NASA Astrophysics Data System (ADS)

    Vladimirova, M.; Cronenberger, S.; Scalbert, D.; Ryzhov, I. I.; Zapasskii, V. S.; Kozlov, G. G.; Lemaître, A.; Kavokin, K. V.

    2018-01-01

    We develop a method of nonperturbative optical control over adiabatic remagnetization of the nuclear spin system and apply it to verify the spin temperature concept in GaAs microcavities. The nuclear spin system is shown to exactly follow the predictions of the spin temperature theory, despite the quadrupole interaction that was earlier reported to disrupt nuclear spin thermalization. These findings open a way for the deep cooling of nuclear spins in semiconductor structures, with the prospect of realizing nuclear spin-ordered states for high-fidelity spin-photon interfaces.

  4. Phase structure of higher spin black hole

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Long, Jiang; Wang, Yi-Nan

    2013-03-01

    In this paper, we investigate the phase structure of the black holes with one single higher spin hair, focusing specifically on the spin 3 and spin widetilde{4} black holes. Based on dimensional analysis and the requirement of thermodynamic consistency, we derive a universal formula relating the entropy with the conserved charges for arbitrary AdS 3 higher spin black holes. Then we use it to study the phase structure of the higher spin black holes. We find that there are six branches of solutions in the spin 3 gravity, eight branches of solutions in the spin widetilde{4} gravity and twelve branches of solutions in the G 2 gravity. In each case, all the branches are related by a simple angle shift in the entropy functions. In the spin 3 case, we reproduce all the results found before. In the spin widetilde{4} case, we find that at low temperature it lies in the BTZ branch while at high temperature it undergoes a phase transition to one of the two other branches, depending on the signature of the chemical potential, a reflection of charge conjugate asymmetry found before.

  5. X-ray absorption and magnetic circular dichroism of LaCoO3 , La0.7Ce0.3CoO3 , and La0.7Sr0.3CoO3 films: Evidence for cobalt-valence-dependent magnetism

    NASA Astrophysics Data System (ADS)

    Merz, M.; Nagel, P.; Pinta, C.; Samartsev, A.; v. Löhneysen, H.; Wissinger, M.; Uebe, S.; Assmann, A.; Fuchs, D.; Schuppler, S.

    2010-11-01

    Epitaxial thin films of undoped LaCoO3 , of electron-doped La0.7Ce0.3CoO3 , and of hole-doped La0.7Sr0.3CoO3 exhibit ferromagnetic order with a transition temperature TC≈84K , 23 K, and 194 K, respectively. The spin-state structure for these compounds was studied by soft x-ray magnetic circular dichroism and by near-edge x-ray absorption fine structure at the CoL2,3 and OK edges. It turns out that superexchange between Co3+ high-spin and Co3+ low-spin states is responsible for the ferromagnetism in LaCoO3 . For La0.7Ce0.3CoO3 the Co3+ ions are in a low-spin state and the spin and orbital moments are predominantly determined by a Co2+ high-spin configuration. A spin blockade naturally explains the low transition temperature and the insulating characteristics of La0.7Ce0.3CoO3 . For La0.7Sr0.3CoO3 , on the other hand, the magnetic moments in the epitaxial films originate from high-spin Co3+ and high-spin Co4+ states. Ferromagnetism is induced by t2g double exchange between the two high-spin configurations. For all systems, a strong magnetic anisotropy is observed, with the magnetic moments essentially oriented within the film plane.

  6. Nuclear spectroscopy of doubly-even130,132Ba

    NASA Astrophysics Data System (ADS)

    Gupta, Anuradha; Gupta, Surbhi; Singh, Suram; Bharti, Arun

    2018-05-01

    A comparative study of some high-spin characteristic nuclear structure properties of doubly-even 130,132Ba nuclei has been made using two microscopic frameworks - CHFB and PSM. The yrast spectra, intrinsic quadrupole moment and deformation systematics of these nuclei have been successfully calculated. Further, the calculated data from both the frameworks is also compared with the available experimental data and a good agreement has been obtained. The present CHFB calculations describes very well the low spin structure of even-even 130,132Ba nuclei whereas PSM calculations provide a qualitative description of the high-spin band structure of doubly-even 130,132Ba nuclei.

  7. Spin quenching assisted by a strongly anisotropic compression behavior in MnP

    NASA Astrophysics Data System (ADS)

    Han, Fei; Wang, Di; Wang, Yonggang; Li, Nana; Bao, Jin-Ke; Li, Bing; Botana, Antia S.; Xiao, Yuming; Chow, Paul; Chung, Duck Young; Chen, Jiuhua; Wan, Xiangang; Kanatzidis, Mercouri G.; Yang, Wenge; Mao, Ho-Kwang

    2018-02-01

    We studied the crystal structure and spin state of MnP under high pressure with synchrotron x-ray diffraction and x-ray emission spectroscopy (XES). MnP has an exceedingly strong anisotropy in compressibility, with the primary compressible direction along the b axis of the Pnma structure. XES reveals a pressure-driven quenching of the spin state in MnP. First-principles calculations suggest that the strongly anisotropic compression behavior significantly enhances the dispersion of the Mn d-orbitals and the splitting of the d-orbital levels compared to the hypothetical isotropic compression behavior. Thus, we propose spin quenching results mainly from the significant enhancement of the itinerancy of d electrons and partly from spin rearrangement occurring in the split d-orbital levels near the Fermi level. This explains the fast suppression of magnetic ordering in MnP under high pressure. The spin quenching lags behind the occurrence of superconductivity at ˜8 GPa implying that spin fluctuations govern the electron pairing for superconductivity.

  8. Spin quenching assisted by a strongly anisotropic compression behavior in MnP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Fei; Wang, Di; Wang, Yonggang

    We studied the crystal structure and spin state of MnP under high pressure with synchrotron X-ray diffraction and X-ray emission spectroscopy. MnP has an exceedingly strong anisotropy in compressibility, with the primary compressible direction along the b axis of the Pnma structure. X-ray emission spectroscopy reveals a pressure-driven quenching of the spin state in MnP. First-principles calculations suggest that the strongly anisotropic compression behavior significantly enhances the dispersion of the Mn d-orbitals and the splitting of the d-orbital levels compared to the hypothetical isotropic compression behavior. Thus, we propose spin quenching results mainly from the significant enhancement of the itinerancymore » of d electrons and partly from spin rearrangement occurring in the split d-orbital levels near the Fermi level. This explains the fast suppression of magnetic ordering in MnP under high pressure. The spin quenching lags behind the occurrence of superconductivity at ~8 GPa implying that spin fluctuations govern the electron pairing for superconductivity.« less

  9. Structural and magnetic characterization of Fe2CrSi Heusler alloy nanoparticles as spin injectors and spin based sensors

    NASA Astrophysics Data System (ADS)

    Saravanan, G.; Asvini, V.; Kalaiezhily, R. K.; Parveen, I. Mubeena; Ravichandran, K.

    2018-05-01

    Half-metallic ferromagnetic [HMF] nanoparticles are of considerable interest in spintronics applications due to their potential use as a highly spin polarized current source. HMF exhibits a semiconductor in one spin band at the Fermi level Ef and at the other spin band they poses strong metallic nature which shows 100 % spin polarization at Ef. Fe based full Heusler alloys are primary interest due to high Curie temperature. Fe2CrSi Heusler alloys are synthesized using metallic powders of Fe, Cr and Si by mechanical alloying method. X-Ray diffractions studies were performed to analyze the structural details of Fe2CrSi nanoparticles with High resolution scanning electron microscope (HRSEM) studies for the morphological details of nanoparticles and magnetic properties were studied using Vibrating sample magnetometer (VSM). XRD Data analysis conforms the Heusler alloy phase showing the existence of L21 structure. Magnetic properties are measured for synthesized samples exhibiting a soft magnetic property possessing low coercivity (HC = 60.5 Oe) and saturation magnetic moment of Fe2CrSi is 3.16 µB, which is significantly higher than the ideal value of 2 µB from the Slater-Pauling rule due to room temperature measurement. The change in magnetic properties are half-metallic nature of Fe2CrSi is due to the shift of the Fermi level with respect to the gap were can be used as spin sensors and spin injectors in magnetic random access memories and other spin dependent devices.

  10. Coherent manipulation of spin correlations in the Hubbard model

    NASA Astrophysics Data System (ADS)

    Wurz, N.; Chan, C. F.; Gall, M.; Drewes, J. H.; Cocchi, E.; Miller, L. A.; Pertot, D.; Brennecke, F.; Köhl, M.

    2018-05-01

    We coherently manipulate spin correlations in a two-component atomic Fermi gas loaded into an optical lattice using spatially and time-resolved Ramsey spectroscopy combined with high-resolution in situ imaging. This technique allows us not only to imprint spin patterns but also to probe the static magnetic structure factor at an arbitrary wave vector, in particular, the staggered structure factor. From a measurement along the diagonal of the first Brillouin zone of the optical lattice, we determine the magnetic correlation length and the individual spatial spin correlators. At half filling, the staggered magnetic structure factor serves as a sensitive thermometer, which we employ to study the equilibration in the spin and density sector during a slow quench of the lattice depth.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papp, A., E-mail: apapp@nd.edu; Pázmány Péter Catholic University, Faculty of Information Technology, Budapest 1088; Porod, W., E-mail: porod@nd.edu

    We study coupled ferromagnetic layers, which could facilitate low loss, sub 100 nm wavelength spin-wave propagation and manipulation. One of the layers is a low-loss garnet film (such as yttrium iron garnet (YIG)) that enables long-distance, coherent spin-wave propagation. The other layer is made of metal-based (Permalloy, Co, and CoFe) magnetoelectronic structures that can be used to generate, manipulate, and detect the spin waves. Using micromagnetic simulations, we analyze the interactions between the spin waves in the YIG and the metallic nanomagnet structures and demonstrate the components of a scalable spin-wave based signal processing device. We argue that such hybrid-metallic ferromagnetmore » structures can be the basis of potentially high-performance, ultra low-power computing devices.« less

  12. Structure of siderite FeCO[subscript 3] to 56 GPa and hysteresis of its spin-pairing transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavina, Barbara; Dera, Przemyslaw; Downs, Robert T.

    2010-09-17

    The structure of siderite, FeCO{sub 3}, was determined to 56 GPa, beyond the spin-pairing transition of its iron d electrons. Fe{sup 2+} in the siderite structure is in the high-spin state at low pressures and transforms to the low-spin (LS) state over a narrow pressure range, 44 to 45 GPa, that is concomitant with a shrinkage of the octahedral bond distance by 4%, and a volume collapse of 10%. The structural rearrangements associated with the electronic transition are nearly isotropic in contrast with other properties of siderite, which mostly are highly anisotropic. Robust refinements of the crystal structure from single-crystalmore » x-ray diffraction data were performed at small pressure intervals in order to accurately evaluate the variation in the interatomic distances and to define the geometry of the carbonate hosting LS-Fe{sup 2+}. Thermal vibrations are remarkably lowered in the LS-Sd as shown by atomic displacement parameters. The formation of like-spin domains at the transition shows a hysteresis of more than 3 GPa, compatible with a strong cooperative contribution of neighboring clusters to the transition.« less

  13. High-pressure phase transitions of Fe 3-xTi xO 4 solid solution up to 60 GPa correlated with electronic spin transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanaka, Takamitsu; Kyono, Atsushi; Nakamoto, Yuki

    2013-06-12

    The structural phase transition of the titanomagnetite (Fe 3–xTi xO 4) solid solution under pressures up to 60 GPa has been clarified by single-crystal and powder diffraction studies using synchrotron radiation and a diamond-anvil cell. Present Rietveld structure refinements of the solid solution prove that the prefered cation distribution is based on the crystal field preference rather than the magnetic spin ordering in the solid solution. The Ti-rich phases in 0.734 ≤ x ≤1.0 undergo a phase transformation from the cubic spinel of Fd3m to the tetragonal spinel structure of I4 1/amd with c/a < 1.0. The transition is drivenmore » by a Jahn-Teller effect of IVFe 2+ (3d 6) on the tetrahedral site. The c/a < 1 ratio is induced by lifting of the degeneracy of the e orbitals by raising the d x2-y2 orbital below the energy of the d z2 orbital. The distortion characterized by c/a < 1 is more pronounced with increasing Ti content in the Fe 3–xTi xO 4 solid solutions and with increasing pressure. An X-ray emission experiment of Fe 2TiO 4 at high pressures confirms the spin transition of FeKβ from high spin to intermediate spin (IS) state. The high spin (HS)-to-low spin (LS) transition starts at 14 GPa and the IS state gradually increases with compression. The VIFe 2+ in the octahedral site is more prone for the HS-to-LS transition, compared with Fe 2+ in the fourfold- or eightfold-coordinated site. The transition to the orthorhombic post-spinel structure with space group Cmcm has been confirmed in the whole compositional range of Fe 3–xTi xO 4. The transition pressure decreases from 25 GPa (x = 0.0) to 15 GPa (x = 1.0) with increasing Ti content. There are two cation sites in the orthorhombic phase: M1 and M2 sites of eightfold and sixfold coordination, respectively. Fe 2+ and Ti 4+ are disordered on the M2 site. This structural change is accelerated at higher pressures due to the spin transition of Fe 2+ in the octahedral site. This is because the ionic radius of VIFe 2+ becomes 20% shortened by the spin transition. At 53 GPa, the structure transforms to another high-pressure polymorph with Pmma symmetry with the ordered structure of Ti and Fe atoms in the octahedral site. This structure change results from the order-disorder transition.« less

  14. Spin wave nonreciprocity for logic device applications

    NASA Astrophysics Data System (ADS)

    Jamali, Mahdi; Kwon, Jae Hyun; Seo, Soo-Man; Lee, Kyung-Jin; Yang, Hyunsoo

    2013-11-01

    The utilization of spin waves as eigenmodes of the magnetization dynamics for information processing and communication has been widely explored recently due to its high operational speed with low power consumption and possible applications for quantum computations. Previous proposals of spin wave Mach-Zehnder devices were based on the spin wave phase, a delicate entity which can be easily disrupted. Here, we propose a complete logic system based on the spin wave amplitude utilizing the nonreciprocal spin wave behavior excited by microstrip antennas. The experimental data reveal that the nonreciprocity of magnetostatic surface spin wave can be tuned by the bias magnetic field. Furthermore, engineering of the device structure could result in a high nonreciprocity factor for spin wave logic applications.

  15. Spin wave nonreciprocity for logic device applications

    PubMed Central

    Jamali, Mahdi; Kwon, Jae Hyun; Seo, Soo-Man; Lee, Kyung-Jin; Yang, Hyunsoo

    2013-01-01

    The utilization of spin waves as eigenmodes of the magnetization dynamics for information processing and communication has been widely explored recently due to its high operational speed with low power consumption and possible applications for quantum computations. Previous proposals of spin wave Mach-Zehnder devices were based on the spin wave phase, a delicate entity which can be easily disrupted. Here, we propose a complete logic system based on the spin wave amplitude utilizing the nonreciprocal spin wave behavior excited by microstrip antennas. The experimental data reveal that the nonreciprocity of magnetostatic surface spin wave can be tuned by the bias magnetic field. Furthermore, engineering of the device structure could result in a high nonreciprocity factor for spin wave logic applications. PMID:24196318

  16. Effect of Fe-site Substitution on Pressure-induced Spin Transition in SrFeO2

    NASA Astrophysics Data System (ADS)

    Kawakami, Takateru; Yamamoto, Takafumi; Yata, Kanami; Ishii, Minoru; Watanabe, Yoshitaka; Mizumaki, Masaichiro; Kawamura, Naomi; Ishimatsu, Naoki; Takahashi, Hiroki; Okada, Taku; Yagi, Takehiko; Kageyama, Hiroshi

    2017-12-01

    The effect of Fe-site substitution on structural and physical properties of the infinite layer iron oxide SrFeO2 was investigated under high pressure by 57Fe Mössbauer spectroscopy, X-ray diffraction, X-ray absorption spectroscopy, X-ray magnetic circular dichroism, and electrical resistance measurements using a diamond-anvil cell. Both 20% Mn- and Co-substituted samples exhibit spin transitions from a high-spin (S = 2) to an intermediate-spin (S = 1) state at Pc ˜ 32 GPa, which is much the same pressure 33 GPa observed in SrFeO2. This result indicates that the spin transition pressure is insensitive to the d-orbital electron counts [Mn2+ (d5), Fe2+ (d6), Co2+ (d7)], but is governed by the local structure around the Fe site.

  17. Atomic-scale sensing of the magnetic dipolar field from single atoms

    NASA Astrophysics Data System (ADS)

    Choi, Taeyoung; Paul, William; Rolf-Pissarczyk, Steffen; MacDonald, Andrew J.; Natterer, Fabian D.; Yang, Kai; Willke, Philip; Lutz, Christopher P.; Heinrich, Andreas J.

    2017-05-01

    Spin resonance provides the high-energy resolution needed to determine biological and material structures by sensing weak magnetic interactions. In recent years, there have been notable achievements in detecting and coherently controlling individual atomic-scale spin centres for sensitive local magnetometry. However, positioning the spin sensor and characterizing spin-spin interactions with sub-nanometre precision have remained outstanding challenges. Here, we use individual Fe atoms as an electron spin resonance (ESR) sensor in a scanning tunnelling microscope to measure the magnetic field emanating from nearby spins with atomic-scale precision. On artificially built assemblies of magnetic atoms (Fe and Co) on a magnesium oxide surface, we measure that the interaction energy between the ESR sensor and an adatom shows an inverse-cube distance dependence (r-3.01±0.04). This demonstrates that the atoms are predominantly coupled by the magnetic dipole-dipole interaction, which, according to our observations, dominates for atom separations greater than 1 nm. This dipolar sensor can determine the magnetic moments of individual adatoms with high accuracy. The achieved atomic-scale spatial resolution in remote sensing of spins may ultimately allow the structural imaging of individual magnetic molecules, nanostructures and spin-labelled biomolecules.

  18. Spin-dependent electronic transport properties of transition metal atoms doped α-armchair graphyne nanoribbons

    NASA Astrophysics Data System (ADS)

    Fotoohi, Somayeh; Haji-Nasiri, Saeed

    2018-04-01

    Spin-dependent electronic transport properties of single 3d transition metal (TM) atoms doped α-armchair graphyne nanoribbons (α-AGyNR) are investigated by non-equilibrium Green's function (NEGF) method combined with density functional theory (DFT). It is found that all of the impurity atoms considered in this study (Fe, Co, Ni) prefer to occupy the sp-hybridized C atom site in α-AGyNR, and the obtained structures remain planar. The results show that highly localized impurity states are appeared around the Fermi level which correspond to the 3d orbitals of TM atoms, as can be derived from the projected density of states (PDOS). Moreover, Fe, Co, and Ni doped α-AGyNRs exhibit magnetic properties due to the strong spin splitting property of the energy levels. Also for each case, the calculated current-voltage characteristic per super-cell shows that the spin degeneracy in the system is obviously broken and the current becomes strongly spin dependent. Furthermore, a high spin-filtering effect around 90% is found under the certain bias voltages in Ni doped α-AGyNR. Additionally, the structure with Ni impurity reveals transfer characteristic that is suitable for designing a spin current switch. Our findings provide a high possibility to design the next generation spin nanodevices with novel functionalities.

  19. Investigation of high spin states in 133Cs

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Xiao, Z. G.; Zhu, S. J.; Qi, C.; Jia, H.; Qi, B.; Wang, R. S.; Cheng, W. J.; Zhang, Y.; Yi, H.; Lü, L. M.; Wang, Y. J.; Li, H. J.; Huang, Y.; Zhang, Z.; Wu, X. G.; Li, C. B.; Zheng, Y.; Chen, Q. M.; Zhou, W. K.; Li, G. S.

    2018-05-01

    High spin states in 133Cs nucleus have been studied with the reaction 130Te (7Li, 4n) at a beam energy of 38 MeV. The level scheme has been expanded with spin up to 31/2 \\hbar. Compared with a recent paper, ground state band and other two collective band structures at lower spin states have been confirmed. Another collective band structure at higher spin states as well as some levels and transitions are updated. Compared with the experimental data, large-scale shell model and tilted axis cranking model calculations have been carried out. The results show that the band-head configuration of yrast band based on 7/2+ ground state and the side band built on the 5/2+ state are a pair of pseudospin partner states with π \\tilde{f}_{7/2,5/2}. The negative parity band based on 1071.5 keV level originates from π h_{11/2} orbital. Another band built on 2642.9 keV level at high spin states has been proposed with oblate deformation. Other characteristics for these bands were also discussed.

  20. Quantized spin-momentum transfer in atom-sized magnetic systems

    NASA Astrophysics Data System (ADS)

    Loth, Sebastian

    2010-03-01

    Our ability to quickly access the vast amounts of information linked in the internet is owed to the miniaturization of magnetic data storage. In modern disk drives the tunnel magnetoresistance effect (TMR) serves as sensitive reading mechanism for the nanoscopic magnetic bits [1]. At its core lies the ability to control the flow of electrons with a material's magnetization. The inverse effect, spin transfer torque (STT), allows one to influence a magnetic layer by high current densities of spin-polarized electrons and carries high hopes for applications in non-volatile magnetic memory [2]. We show that equivalent processes are active in quantum spin systems. We use a scanning tunneling microscope (STM) operating at low temperature and high magnetic field to address individual magnetic structures and probe their spin excitations by inelastic electron tunneling [3]. As model system we investigate transition metal atoms adsorbed to a copper nitride layer grown on a Cu crystal. The magnetic atoms on the surface possess well-defined spin states [4]. Transfer of one magnetic atom to the STM tip's apex creates spin-polarization in the probe tip. The combination of functionalized tip and surface adsorbed atom resembles a TMR structure where the magnetic layers now consist of one magnetic atom each. Spin-polarized current emitted from the probe tip not only senses the magnetic orientation of the atomic spin system, it efficiently transfers spin angular momentum and pumps the quantum spin system between the different spin states. This enables further exploration of the microscopic mechanisms for spin-relaxation and stability of quantum spin systems. [4pt] [1] Zhu and Park, Mater. Today 9, 36 (2006).[0pt] [2] Huai, AAPPS Bulletin 18, 33 (2008).[0pt] [3] Heinrich et al., Science 306, 466 (2004).[0pt] [4] Hirjibehedin et al., Science 317, 1199 (2007).

  1. Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures

    DTIC Science & Technology

    2017-06-27

    realize high-performance spintronic and magnetic storage devices. 15. SUBJECT TERMS nano- electronics , spin, wave, magnetic, multi-functional, device 16... electronics has required us to develop high-performance and multi-functional electronic devices driven with extremely low power consumption...Spintronics”, simultaneously utilizing the charge and the spin of electrons , provides us with solutions to essential problems for semiconductor-based

  2. Spin noise spectroscopy of donor-bound electrons in ZnO

    NASA Astrophysics Data System (ADS)

    Horn, H.; Balocchi, A.; Marie, X.; Bakin, A.; Waag, A.; Oestreich, M.; Hübner, J.

    2013-01-01

    We investigate the intrinsic spin dynamics of electrons bound to Al impurities in bulk ZnO by optical spin noise spectroscopy. Spin noise spectroscopy enables us to investigate the longitudinal and transverse spin relaxation time with respect to nuclear and external magnetic fields in a single spectrum. On one hand, the spin dynamic is dominated by the intrinsic hyperfine interaction with the nuclear spins of the naturally occurring 67Zn isotope. We measure a typical spin dephasing time of 23 ns, in agreement with the expected theoretical values. On the other hand, we measure a third, very high spin dephasing rate which is attributed to a high defect density of the investigated ZnO material. Measurements of the spin dynamics under the influence of transverse as well as longitudinal external magnetic fields unambiguously reveal the intriguing connections of the electron spin with its nuclear and structural environment.

  3. Spin structure in high energy processes: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DePorcel, L.; Dunwoodie, C.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z{sup 0}s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD andmore » polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ({sup 3}HE) and the Bjoerken sum rule; a consumer`s guide to lattice QCD results; top ten models constrained by b {yields} sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere.« less

  4. Wigner time delay and spin-orbit activated confinement resonances

    NASA Astrophysics Data System (ADS)

    Keating, D. A.; Deshmukh, P. C.; Manson, S. T.

    2017-09-01

    A study of the photoionization of spin-orbit split subshells of high-Z atoms confined in C60 has been performed using the relativistic-random-phase approximation. Specifically, Hg@C60 5p, Rn@C60 6p and Ra@C60 5d were investigated and the near-threshold confinement resonances in the j = l - 1/2 channels were found to engender structures in the j = l + 1/2 cross sections via correlation in the form of interchannel coupling. These structures are termed spin-orbit induced confinement resonances and they are found to profoundly influence the Wigner time delay spectrum resulting in time delays of tens or hundreds of attoseconds along with dramatic swings in time delay over small energy intervals. Pronounced relativistic effects in time delay are also found. These structures, including their manifestation in time delay spectra, are expected to be general phenomena in the photoionization of spin-orbit doublets in confined high-Z atoms.

  5. Interplay between structural and magnetic-electronic responses of FeA l2O4 to a megabar: Site inversion and spin crossover

    NASA Astrophysics Data System (ADS)

    Xu, W. M.; Hearne, G. R.; Layek, S.; Levy, D.; Pasternak, M. P.; Rozenberg, G. Kh.; Greenberg, E.

    2018-02-01

    X-ray diffraction pressure studies at room temperature demonstrate that the spinel FeA l2O4 transforms to a tetragonal phase at ˜18 GPa. This tetragonal phase has a highly irregular unit-cell volume versus pressure dependence up to ˜45 GPa, after which a transformation to a Cmcm postspinel phase is onset. This is attributable to pressure driven Fe↔Al site inversion at room temperature, corroborated by signatures in the 57Fe Mössbauer spectroscopy pressure data. At the tetragonal→postspinel transition, onset in the range 45-50 GPa, there is a concurrent emergence of a nonmagnetic spectral component in the Mössbauer data at variable cryogenic temperatures. This is interpreted as spin crossover at sixfold coordinated Fe locations emanated from site inversion. Spin crossover commences at the end of the pressure range of the tetragonal phase and progresses in the postspinel structure. There is also a much steeper volume change ΔV /V ˜ 10% in the range 45-50 GPa compared to the preceding pressure regime, from the combined effects of the structural transition and spin crossover electronic change. At the highest pressure attained, ˜106 GPa, the Mössbauer data evidence a diamagnetic Fe low-spin abundance of ˜50%. The rest of the high-spin Fe in eightfold coordinated sites continue to experience a relatively small internal magnetic field of ˜33 T. This is indicative of a magnetic ground state associated with strong covalency, as well as substantive disorder from site inversion and the mixed spin-state configuration. Intriguingly, magnetism survives in such a spin-diluted postspinel lattice at high densities. The R (300 K) data decrease by only two orders of magnitude from ambient pressure to the vicinity of ˜100 GPa. Despite a ˜26% unit-cell volume densification from the lattice compressibility, structural transitions, and spin crossover, FeA l2O4 is definitively nonmetallic with an estimated gap of ˜400 meV at ˜100 GPa. At such high densification appreciable bandwidth broadening and gap closure would be anticipated. Reasons for the resilient nonmetallic behavior are briefly discussed.

  6. Structure of spin excitations in heavily electron-doped Li 0.8Fe 0.2ODFeSe superconductors

    DOE PAGES

    Pan, Bingying; Shen, Yao; Hu, Die; ...

    2017-07-25

    Heavily electron-doped iron-selenide high-transition-temperature (high-T c) superconductors, which have no hole Fermi pockets, but have a notably high T c, have challenged the prevailing s± pairing scenario originally proposed for iron pnictides containing both electron and hole pockets. The microscopic mechanism underlying the enhanced superconductivity in heavily electron-doped iron-selenide remains unclear. Here, we used neutron scattering to study the spin excitations of the heavily electron-doped iron-selenide material Li 0.8Fe 0.2ODFeSe (T c = 41 K). Our data revealed nearly ring-shaped magnetic resonant excitations surrounding (π, π) at ~21 meV. As the energy increased, the spin excitations assumed a diamond shape,more » and they dispersed outward until the energy reached ~60 meV and then inward at higher energies. The observed energy-dependent momentum structure and twisted dispersion of spin excitations near (π, π) are analogous to those of hole-doped cuprates in several aspects, thus implying that such spin excitations are essential for the remarkably high T c in these materials.« less

  7. Zero-Field Spin Structure and Spin Reorientations in Layered Organic Antiferromagnet, κ-(BEDT-TTF)2Cu[N(CN)2]Cl, with Dzyaloshinskii-Moriya Interaction

    NASA Astrophysics Data System (ADS)

    Ishikawa, Rui; Tsunakawa, Hitoshi; Oinuma, Kohsuke; Michimura, Shinji; Taniguchi, Hiromi; Satoh, Kazuhiko; Ishii, Yasuyuki; Okamoto, Hiroyuki

    2018-06-01

    Detailed magnetization measurements enabled us to claim that the layered organic insulator κ-(BEDT-TTF)2Cu[N(CN)2]Cl [BEDT-TTF: bis(ethylenedithio)tetrathiafulvalene] with the Dzyaloshinskii-Moriya interaction has an antiferromagnetic spin structure with the easy axis being the crystallographic c-axis and the net canting moment parallel to the a-axis at zero magnetic field. This zero-field spin structure is significantly different from that proposed in the past studies. The assignment was achieved by arguments including a correction of the direction of the weak ferromagnetism, reinterpretations of magnetization behaviors, and reasoning based on known high-field spin structures. We suggest that only the contributions of the strong intralayer antiferromagnetic interaction, the moderately weak Dzyaloshinskii-Moriya interaction, and the very weak interlayer ferromagnetic interaction can realize this spin structure. On the basis of this model, characteristic magnetic-field dependences of the magnetization can be interpreted as consequences of intriguing spin reorientations. The first reorientation is an unusual spin-flop transition under a magnetic field parallel to the b-axis. Although the existence of this transition is already known, the interpretation of what happens at this transition has been significantly revised. We suggest that this transition can be regarded as a spin-flop phenomenon of the local canting moment. We also claim that half of the spins rotate by 180° at this transition, in contrast to the conventional spin flop transition. The second reorientation is the gradual rotation of the spins during the variation of the magnetic field parallel to the c-axis. In this process, all the spins rotate around the Dzyaloshinskii-Moriya vectors by 90°. The results of our simulation based on the classical spin model well reproduce these spin reorientation behaviors, which strongly support our claimed zero-field spin structure. The present study highlights the intriguing low-field magnetic properties of this material and may evoke further research on the low-field magnetism in this class of materials.

  8. Resonance Raman study on the structure of the active sites of microsomal cytochrome P-450 isozymes LM2 and LM4.

    PubMed

    Hildebrandt, P; Greinert, R; Stier, A; Taniguchi, H

    1989-12-08

    The isozymes 2 and 4 of rabbit microsomal cytochrome P-450 (LM2, LM4) have been studied by resonance Raman spectroscopy. Based on high quality spectra, a vibrational assignment of the porphyrin modes in the frequency range between 100-1700 cm-1 is presented for different ferric states of cytochrome P-450 LM2 and LM4. The resonance Raman spectra are interpreted in terms of the spin and ligation state of the heme iron and of heme-protein interactions. While in cytochrome P-450 LM2 the six-coordinated low-spin configuration is predominantly occupied, in the isozyme LM4 the five-coordinated high-spin form is the most stable state. The different stability of these two spin configurations in LM2 and LM4 can be attributed to the structures of the active sites. In the low-spin form of the isozymes LM4 the protein matrix forces the heme into a more rigid conformation than in LM2. These steric constraints are removed upon dissociation of the sixth ligand leading to a more flexible structure of the active site in the high-spin form of the isozyme LM4. The vibrational modes of the vinyl groups were found to be characteristic markers for the specific structures of the heme pockets in both isozymes. They also respond sensitively to type-I substrate binding. While in cytochrome P-450 LM4 the occupation of the substrate-binding pocket induces conformational changes of the vinyl groups, as reflected by frequency shifts of the vinyl modes, in the LM2 isozyme the ground-state conformation of these substituents remain unaffected, suggesting that the more flexible heme pocket can accommodate substrates without imposing steric constraints on the porphyrin. The resonance Raman technique makes structural changes visible which are induced by substrate binding in addition and independent of the changes associated with the shift of the spin state equilibrium: the high-spin states in the substrate-bound and substrate-free enzyme are structurally different. The formation of the inactive form, P-420, involves a severe structural rearrangement in the heme binding pocket leading to drastic changes of the vinyl group conformations. The conformational differences of the active sites in cytochromes P-450 LM2 and LM4 observed in this work contribute to the understanding of the structural basis accounting for substrate and product specificity of cytochrome P-450 isozymes.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Qiang; Zhou, Liping, E-mail: zhoulp@suda.edu.cn; Cheng, Jue-Fei

    Electronic structures and coherent quantum transport properties are explored for spin-crossover molecule iron-benzene Fe(Bz){sub 2} using density functional theory combined with non-equilibrium Green’s function. High- and low-spin states are investigated for two different lead-molecule junctions. It is found that the asymmetrical T-shaped contact junction in the high-spin state behaves as an efficient spin filter while it has a smaller conductivity than that in the low-spin state. Large spin Seebeck effect is also observed in asymmetrical T-shaped junction. Spin-polarized properties are absent in the symmetrical H-shaped junction. These findings strongly suggest that both the electronic and contact configurations play significant rolesmore » in molecular devices and metal-benzene complexes are promising materials for spintronics and thermo-spintronics.« less

  10. Low operational current spin Hall nano-oscillators based on NiFe/W bilayers

    NASA Astrophysics Data System (ADS)

    Mazraati, Hamid; Chung, Sunjae; Houshang, Afshin; Dvornik, Mykola; Piazza, Luca; Qejvanaj, Fatjon; Jiang, Sheng; Le, Tuan Q.; Weissenrieder, Jonas; Åkerman, Johan

    2016-12-01

    We demonstrate highly efficient spin Hall nano-oscillators (SHNOs) based on NiFe/β-W bilayers. Thanks to the very high spin Hall angle of β-W, we achieve more than a 60% reduction in the auto-oscillation threshold current compared to NiFe/Pt bilayers. The structural, electrical, and magnetic properties of the bilayers, as well as the microwave signal generation properties of the SHNOs, have been studied in detail. Our results provide a promising path for the realization of low-current SHNO microwave devices with highly efficient spin-orbit torque from β-W.

  11. Structure-related frustrated magnetism of nanosized polyoxometalates: aesthetics and properties in harmony.

    PubMed

    Kögerler, Paul; Tsukerblat, Boris; Müller, Achim

    2010-01-07

    The structural versatility characterizing polyoxometalate chemistry, in combination with the option to deliberately use well-defined building blocks, serves as the foundation for the generation of a large family of magnetic clusters, frequently comprising highly symmetric spin arrays. If the spin centers are coupled by antiferromagnetic exchange, some of these systems exhibit spin frustration, which can result in novel magnetic properties of purely molecular origins. We discuss here the magnetic properties of selected nanosized polyoxometalate clusters featuring spin triangles as their magnetic 'building blocks' or fragments. This includes unique porous Keplerate clusters of the type {(Mo)Mo(5)}(12)M(30) (M = Fe(III), Cr(III), V(IV)) with the spin centers defining a regular icosidodecahedron and the {V(15)As(6)}-type cluster sphere containing a single equilateral spin triangle; these species are widely discussed and studied in the literature for their role in materials science as molecular representations of Kagomé lattices and in relation to quantum computing, respectively. Exhibiting fascinating and unique structural features, these magnetic molecules allow the study of the implications of frustrated spin ordering. Furthermore, this perspective covers the impact of spin frustration on the degeneracy of the ground state and related problems, namely strong magnetic anisotropy and the interplay of antisymmetric exchange and structural Jahn-Teller effects.

  12. Theoretical study of the density of states and magnetic properties of LaCoO3

    NASA Astrophysics Data System (ADS)

    Zhuang, Min; Zhang, Weiyi; Hu, Cheng; Ming, Naiben

    1998-05-01

    The density of states and magnetic properties of low-spin, high-spin, and mixing states of LaCoO3 have been studied within the unrestricted Hartree-Fock approximation. The real-space recursion method is adopted for computing the electronic structure of the disordered system. The paramagnetic high-spin state is dealt with using the usual binary alloy coherent potential approximation (CPA); an extended trinary alloy CPA approximation is developed to describe the mixing state. In agreement with experiments, our results show that the main features of the quasiparticle spectra in the mixing state are not a sensitive function of the high-spin component, but the spectrum does get broadened due to spin scattering. The increasing of the high-spin component also results in a pileup of the density of states at the Fermi energy which indicates an insulator to metal phase transition. Some limitations of the present approach are also discussed.

  13. Atomic-Scale Nuclear Spin Imaging Using Quantum-Assisted Sensors in Diamond

    NASA Astrophysics Data System (ADS)

    Ajoy, A.; Bissbort, U.; Lukin, M. D.; Walsworth, R. L.; Cappellaro, P.

    2015-01-01

    Nuclear spin imaging at the atomic level is essential for the understanding of fundamental biological phenomena and for applications such as drug discovery. The advent of novel nanoscale sensors promises to achieve the long-standing goal of single-protein, high spatial-resolution structure determination under ambient conditions. In particular, quantum sensors based on the spin-dependent photoluminescence of nitrogen-vacancy (NV) centers in diamond have recently been used to detect nanoscale ensembles of external nuclear spins. While NV sensitivity is approaching single-spin levels, extracting relevant information from a very complex structure is a further challenge since it requires not only the ability to sense the magnetic field of an isolated nuclear spin but also to achieve atomic-scale spatial resolution. Here, we propose a method that, by exploiting the coupling of the NV center to an intrinsic quantum memory associated with the nitrogen nuclear spin, can reach a tenfold improvement in spatial resolution, down to atomic scales. The spatial resolution enhancement is achieved through coherent control of the sensor spin, which creates a dynamic frequency filter selecting only a few nuclear spins at a time. We propose and analyze a protocol that would allow not only sensing individual spins in a complex biomolecule, but also unraveling couplings among them, thus elucidating local characteristics of the molecule structure.

  14. Pure spin current injection in hydrogenated graphene structures

    NASA Astrophysics Data System (ADS)

    Zapata-Peña, Reinaldo; Mendoza, Bernardo S.; Shkrebtii, Anatoli I.

    2017-11-01

    We present a theoretical study of spin-velocity injection (SVI) of a pure spin current (PSC) induced by linearly polarized light that impinges normally on the surface of two 50% hydrogenated noncentrosymmetric two-dimensional (2D) graphene structures. The first structure, labeled Up and also known as graphone, is hydrogenated only on one side, and the second, labeled Alt, is 25% hydrogenated at both sides. The hydrogenation opens an energy gap on both structures. The PSC formalism has been developed in the length gauge perturbing Hamiltonian, and includes, through the single-particle density matrix, the excited coherent superposition of the spin-split conduction bands inherent to the noncentrosymmetric nature of the structures considered in this work. We analyze two possibilities: in the first, the spin is fixed along a chosen direction, and the resulting SVI is calculated; in the second, we choose the SVI direction along the surface plane, and calculate the resulting spin orientation. This is done by changing the energy ℏ ω and polarization angle α of the incoming light. The results are calculated within a full electronic band structure scheme using the density functional theory (DFT) in the local density approximation (LDA). The maxima of the spin velocities are reached when ℏ ω =0.084 eV and α =35∘ for the Up structure, and ℏ ω =0.720 eV and α =150∘ for the Alt geometry. We find a speed of 668 and 645 km/s for the Up and the Alt structures, respectively, when the spin points perpendicularly to the surface. Also, the response is maximized by fixing the spin-velocity direction along a high-symmetry axis, obtaining a speed of 688 km/s with the spin pointing at 13∘ from the surface normal, for the Up, and 906 km/s and the spin pointing at 60∘ from the surface normal, for the Alt system. These speed values are orders of magnitude larger than those of bulk semiconductors, such as CdSe and GaAs, thus making the hydrogenated graphene structures excellent candidates for spintronics applications.

  15. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer

    NASA Astrophysics Data System (ADS)

    Gotlieb, K.; Hussain, Z.; Bostwick, A.; Lanzara, A.; Jozwiak, C.

    2013-09-01

    A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-EF spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.

  16. The Electronic Structure Signature of the Spin Cross-Over Transition of [Co(dpzca)2

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Mu, Sai; Liu, Yang; Luo, Jian; Zhang, Jian; N'Diaye, Alpha T.; Enders, Axel; Dowben, Peter A.

    2018-05-01

    The unoccupied electronic structure of the spin crossover molecule cobalt (II) N-(2-pyrazylcarbonyl)-2-pyrazinecarboxamide, [Co(dpzca)2] was investigated, using X-ray absorption spectroscopy (XAS) and compared with magnetometry (SQUID) measurements. The temperature dependence of the XAS and molecular magnetic susceptibility χmT are in general agreement for [Co(dpzca)2], and consistent with density functional theory (DFT). This agreement of magnetic susceptibility and X-ray absorption spectroscopy provides strong evidence that the changes in magnetic moment can be ascribed to changes in electronic structure. Calculations show the choice of Coulomb correlation energy U has a profound effect on the electronic structure of the low spin state, but has little influence on the electronic structure of the high spin state. In the temperature dependence of the XAS, there is also evidence of an X-ray induced excited state trapping for [Co(dpzca)2] at 15 K.

  17. Spin and lattice structures of single-crystalline SrFe2As2

    NASA Astrophysics Data System (ADS)

    Zhao, Jun; Ratcliff, W., II; Lynn, J. W.; Chen, G. F.; Luo, J. L.; Wang, N. L.; Hu, Jiangping; Dai, Pengcheng

    2008-10-01

    We use neutron scattering to study the spin and lattice structure of single-crystal SrFe2As2 , the parent compound of the FeAs-based superconductor (Sr,K)Fe2As2 . We find that SrFe2As2 exhibits an abrupt structural phase transition at 220 K, where the structure changes from tetragonal with lattice parameters c>a=b to orthorhombic with c>a>b . At almost the same temperature, Fe spins develop a collinear antiferromagnetic structure along the orthorhombic a axis with spin direction parallel to this a axis. These results are consistent with earlier work on the RFeAsO ( R=rare earth) families of materials and on BaFe2As2 , and therefore suggest that static antiferromagnetic order is ubiquitous for the parent compounds of these FeAs-based high-transition temperature superconductors.

  18. Beyond triplet: Unconventional superconductivity in a spin-3/2 topological semimetal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyunsoo; Wang, Kefeng; Nakajima, Yasuyuki

    In all known fermionic super fluids, Cooper pairs are composed of spin-1/2 quasi-particles that pair to form either spin-singlet or spin-triplet bound states. The "spin" of a Bloch electron, however, is xed by the symmetries of the crystal and the atomic orbitals from which it is derived, and in some cases can behave as if it were a spin-3/2 particle. The superconducting state of such a system allows pairing beyond spin-triplet, with higher spin quasi-particles combining to form quintet or even septet pairs. Here, we report evidence of unconventional superconductivity emerging from a spin-3/2 quasiparticle electronic structure in the half-Heuslermore » semimetal YPtBi, a low-carrier density noncentrosymmetric cubic material with a high symmetry that preserves the p-like j = 3/2 manifold in the Bi-based Γ 8 band in the presence of strong spin-orbit coupling. With a striking linear temperature dependence of the London penetration depth, the existence of line nodes in the superconducting order parameter Δ is directly explained by a mixed-parity Cooper pairing model with high total angular momentum, consistent with a high-spin fermionic super fluid state. We propose a k ∙ p model of the j = 3/2 fermions to explain how a dominant J=3 septet pairing state is the simplest solution that naturally produces nodes in the mixed even-odd parity gap. Together with the underlying topologically non-trivial band structure, the unconventional pairing in this system represents a truly novel form of super fluidity that has strong potential for leading the development of a new generation of topological superconductors.« less

  19. Beyond triplet: Unconventional superconductivity in a spin-3/2 topological semimetal

    DOE PAGES

    Kim, Hyunsoo; Wang, Kefeng; Nakajima, Yasuyuki; ...

    2018-04-06

    In all known fermionic super fluids, Cooper pairs are composed of spin-1/2 quasi-particles that pair to form either spin-singlet or spin-triplet bound states. The "spin" of a Bloch electron, however, is xed by the symmetries of the crystal and the atomic orbitals from which it is derived, and in some cases can behave as if it were a spin-3/2 particle. The superconducting state of such a system allows pairing beyond spin-triplet, with higher spin quasi-particles combining to form quintet or even septet pairs. Here, we report evidence of unconventional superconductivity emerging from a spin-3/2 quasiparticle electronic structure in the half-Heuslermore » semimetal YPtBi, a low-carrier density noncentrosymmetric cubic material with a high symmetry that preserves the p-like j = 3/2 manifold in the Bi-based Γ 8 band in the presence of strong spin-orbit coupling. With a striking linear temperature dependence of the London penetration depth, the existence of line nodes in the superconducting order parameter Δ is directly explained by a mixed-parity Cooper pairing model with high total angular momentum, consistent with a high-spin fermionic super fluid state. We propose a k ∙ p model of the j = 3/2 fermions to explain how a dominant J=3 septet pairing state is the simplest solution that naturally produces nodes in the mixed even-odd parity gap. Together with the underlying topologically non-trivial band structure, the unconventional pairing in this system represents a truly novel form of super fluidity that has strong potential for leading the development of a new generation of topological superconductors.« less

  20. New structure of high-pressure body-centered orthorhombic Fe 2 SiO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanaka, Takamitsu; Kyono, Atsushi; Nakamoto, Yuki

    2015-08-01

    A structural change in Fe2SiO4 spinel (ringwoodite) has been found by synchrotron powder diffraction study and the structure of a new high-pressure phase was determined by Monte-Carlo simulation method and Rietveld profile fitting of X-ray diffraction data up to 64 GPa at ambient temperature. A transition from the cubic spinel structure to a body centered orthorhombic phase (I-Fe2SiO4) with space group Imma and Z = 4 was observed at approximately 34 GPa. The structure of I-Fe2SiO4 has two crystallographically independent FeO6 octahedra. Iron resides in two different sites of sixfold coordination: Fe1 and Fe2, which are arranged in layers parallelmore » to (101) and (011) and are very similar to the layers of FeO6 octahedra in the spinel structure. Silicon is located in the sixfold coordination in I-Fe2SiO4. The transformation to the new high-pressure phase is reversible under decompression at ambient temperature. A martensitic transformation of each slab of the spinel structure with translation vector Embedded Image generates the I-Fe2SiO4 structure. Laser heating of I-Fe2SiO4 at 1500 K results in a decomposition of the material to rhombohedral FeO and SiO2 stishovite. FeKβ X-ray emission measurements at high pressure up to 65 GPa show that the transition from a high spin (HS) to an intermediate spin (IS) state begins at 17 GPa in the spinel phase. The IS electron spin state is gradually enhanced with pressure. The Fe2+ ion at the octahedral site changes the ion radius under compression at the low spin, which results in the changes of the lattice parameter and the deformation of the octahedra of the spinel structure. The compression curve of the lattice parameter of the spinel is discontinuous at ~20 GPa. The spin transition induces an isostructural change.« less

  1. Nanopatterned reconfigurable spin-textures for magnonics

    NASA Astrophysics Data System (ADS)

    Albisetti, E.; Petti, D.; Pancaldi, M.; Madami, M.; Tacchi, S.; Curtis, J.; King, W. P.; Papp, A.; Csaba, G.; Porod, W.; Vavassori, P.; Riedo, E.; Bertacco, R.

    The control of spin-waves holds the promise to enable energy-efficient information transport and wave-based computing. Conventionally, the engineering of spin-waves is achieved via physically patterning magnetic structures such as magnonic crystals and micro-nanowires. We demonstrate a new concept for creating reconfigurable magnonic nanostructures, by crafting at the nanoscale the magnetic anisotropy landscape of a ferromagnet exchange-coupled to an antiferromagnet. By performing a highly localized field cooling with the hot tip of a scanning probe microscope, magnetic structures, with arbitrarily oriented magnetization and tunable unidirectional anisotropy, are patterned without modifying the film chemistry and topography. We demonstrate that, in such structures, the spin-wave excitation and propagation can be spatially controlled at remanence, and can be tuned by external magnetic fields. This opens the way to the use of nanopatterned spin-textures, such as domains and domain walls, for exciting and manipulating magnons in reconfigurable nanocircuits. Partially funded by the EC through project SWING (no. 705326).

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beltrán, J.J., E-mail: jjbj08@gmail.com; Grupo de Estado Sólido, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, UdeA, Calle 70 No 52-21, Medellín; Barrero, C.A.

    We have carefully investigated the structural, optical and electronic properties and related them with changes in the magnetism of sol-gel synthesized Zn{sub 1−x}Co{sub x}O (0≤x≤0.10) nanoparticles. Samples with x≤0.05 were free of spurious phases. Samples with x≤0.03 were found to be with only high spin Co{sup 2+} ions into ZnO structure, whereas sample with x=0.05, exhibited the presence of high spin Co{sup 2+} and low spin Co{sup 3+}. We found that the intensity of the main EPR peak associated with Co{sup 2+} varies with the nominal Co content in a similar manner as the saturation magnetization and coercive field do.more » These results point out that the ferromagnetism in these samples should directly be correlated with the presence of divalent cobalt ions. Bound magnetic polaron (BMP) model and the charge transfer model are insufficient to explain the ferromagnetic properties of Zn{sub 1−x}Co{sub x}O nanoparticles. The room temperature ferromagnetism (RTFM) may be originated from a combination of several factors such as the interaction of high spin Co{sup 2+} ions, perturbation/alteration and/or changes in the electronic structure of ZnO close to the valence band edge and grain boundary effects. - Graphical abstract: The intensity of the main EPR peak associated with Co{sup 2+} varies with the nominal Co content in a similar manner as the saturation magnetization and coercive field do. These results point out that the ferromagnetism in these samples should directly be correlated with the presence of Co{sup 2+} ions. Display Omitted - Highlights: • Systematic and carefully study of physical-chemical properties of Zn{sub 1−x}Co{sub x}O nanoparticles. • Samples with x=0.01 and 0.03 were found to be with only high spin Co{sup 2+}. • Sample with x=0.05, exhibited the presence of high spin Co{sup 2+} and low spin Co{sup 3+}. • The BMP and charge transfer models seem not explain the ferromagnetic properties. • RTFM: high spin Co{sup 2+} ions, defects close to the valence band and grain boundary effects.« less

  3. Coexistence of perfect spin filtering for entangled electron pairs and high magnetic storage efficiency in one setup.

    PubMed

    Ji, T T; Bu, N; Chen, F J; Tao, Y C; Wang, J

    2016-04-14

    For Entangled electron pairs superconducting spintronics, there exist two drawbacks in existing proposals of generating entangled electron pairs. One is that the two kinds of different spin entangled electron pairs mix with each other. And the other is a low efficiency of entanglement production. Herein, we report the spin entanglement state of the ferromagnetic insulator (FI)/s-wave superconductor/FI structure on a narrow quantum spin Hall insulator strip. It is shown that not only the high production of entangled electron pairs in wider energy range, but also the perfect spin filtering of entangled electron pairs in the context of no highly spin-polarized electrons, can be obtained. Moreover, the currents for the left and right leads in the antiferromagnetic alignment both can be zero, indicating 100% tunnelling magnetoresistance with highly magnetic storage efficiency. Therefore, the spin filtering for entangled electron pairs and magnetic storage with high efficiencies coexist in one setup. The results may be experimentally demonstrated by measuring the tunnelling conductance and the noise power.

  4. Spin-orbit coupling effect on structural and magnetic properties of ConRh13-n (n = 0-13) clusters

    NASA Astrophysics Data System (ADS)

    Bai, Xi; Lv, Jin; Zhang, Fu-Qiang; Jia, Jian-Feng; Wu, Hai-Shun

    2018-04-01

    The effect of spin-orbit interaction on the structures and magnetism of ConRh13-n (n = 0-13) clusters have been systematically investigated by using the spin-orbit coupling (SOC) implementation of the density functional theory (DFT). The results calculated without SOC (NSOC) show that Rh13 prefers the double simple-cubic configuration, and icosahedron is the favorable structure for n = 1-9, while n ≥ 10, clusters favor the hexagonal bilayer structure. The inclusion of SOC in calculation does not change the geometries of clusters. Compared with that in NSOC calculation, although the binding energy per atom in clusters with same composition decreases in SOC calculation, the relative stability of clusters with different compositions does not change. An interesting result is that the spin moments of clusters for n = 1-9 are almost constant (21 μB). Spin-orbit interaction recovers orbital moment and its anisotropy by removing crystal-field effect in calculation. The destruction of bonding symmetry and relaxation of bonding account for high anisotropies of orbital moments in Co11Rh2 and CoRh12 clusters. With atomic composition (Co/Rh) around 4/9-5/8 and 9/4, the Co-Rh clusters exhibit high magnetic anisotropy energies.

  5. On the difference between the pyroxenes LiFeSi2O6 and LiFeGe2O6 in their magnetic structures and spin orientations

    NASA Astrophysics Data System (ADS)

    Lee, Changhoon; Hong, Jisook; Shim, Ji Hoon; Whangbo, Myung-Hwan

    2014-03-01

    The clinopyroxenes LiFeSi2O6 and LiFeGe2O6, crystallizing in a monoclinic space group P21/c, are isostructural and isoelectronic Their crystal structures are made up of zigzag chains of edge-sharing FeO6 octahedra containing high-spin Fe3 + ions, which run along the c direction. Despite this structural similarity, the two have quite different magnetic structures and spin orientations. In LiFeSi2O6 the Fe spins have a ferromagnetic coupling within the zigzag chains along c and such FM chains have an antiferromagnetic coupling along a. In contrast, in LiFeGe2O6, the spins have an AFM coupling within the zigzag chains along c and such FM chains have an ↑ ↑ ↓ ↓ coupling along a. In addition, the spin orientation is parallel to c in LiFeSi2O6, but is perpendicular to c in LiFeGe2O6. To explain these differences in the magnetic structure and spin orientation, we evaluated the spin exchange parameters by performing energy mapping analysis based on LDA +U and GGA +U calculations and also by evaluating the magnetocrystalline anisotropy energies in terms of GGA +U +SOC and LDA +U +SOC calculations. Our study show that the magnetic structures and spin orientations of LiFeSi2O6 and LiFeGe2O6 are better described by LDA +U and LDA +U +SOC calculations. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2013R1A1A2060341).

  6. High-Spin Structures as the Probes of Proton-Neutron Pairing

    NASA Astrophysics Data System (ADS)

    Afanasjev, A. V.

    Rotating N = Z nuclei in the mass A = 58-80 region have been studied within the framework of isovector mean field theory. Available data is well and systematically described in the calculations. The present study supports the presence of strong isovector np pair field at low spin, which is, however, destroyed at high spin. No clear evidence for the existence of the isoscalar t = 0 np pairing has been found.

  7. Imaging Magnetization Structure and Dynamics in Ultrathin Y3Fe5O12/Pt Bilayers with High Sensitivity Using the Time-Resolved Longitudinal Spin Seebeck Effect

    NASA Astrophysics Data System (ADS)

    Bartell, Jason M.; Jermain, Colin L.; Aradhya, Sriharsha V.; Brangham, Jack T.; Yang, Fengyuan; Ralph, Daniel C.; Fuchs, Gregory D.

    2017-04-01

    We demonstrate an instrument for time-resolved magnetic imaging that is highly sensitive to the in-plane magnetization state and dynamics of thin-film bilayers of yttrium iron garnet [Y3Fe5O12(YIG )]/Pt : the time-resolved longitudinal spin Seebeck (TRLSSE) effect microscope. We detect the local in-plane magnetic orientation within the YIG by focusing a picosecond laser to generate thermally driven spin current from the YIG into the Pt by the spin Seebeck effect and then use the inverse spin Hall effect in the Pt to transduce this spin current to an output voltage. To establish the time resolution of TRLSSE, we show that pulsed optical heating of patterned YIG (20 nm )/Pt (6 nm )/Ru (2 nm ) wires generates a magnetization-dependent voltage pulse of less than 100 ps. We demonstrate TRLSSE microscopy to image both static magnetic structure and gigahertz-frequency magnetic resonance dynamics with submicron spatial resolution and a sensitivity to magnetic orientation below 0.3 °/√{H z } in ultrathin YIG.

  8. Magnonic waveguide based on exchange-spring magnetic structure

    NASA Astrophysics Data System (ADS)

    Wang, Lixiang; Gao, Leisen; Jin, Lichuan; Liao, Yulong; Wen, Tianlong; Tang, Xiaoli; Zhang, Huaiwu; Zhong, Zhiyong

    2018-05-01

    A soft/hard exchange-spring coupled bilayer magnetic structure is proposed to obtain a narrow channel for spin-wave propagation. Micromagnetic simulations show that broad-band Damon-Eshbach geometry spin waves are strongly constrained within the channel and propagate effectively with a high group velocity. The beam width of the bound spin waves is almost independent from the frequency and is smaller than 24nm. Two side spin beams appearing at the low-frequency excitation are demonstrated to be coupled with the channel spins by dipole-dipole interaction. In contrast to a domain wall, the channel formed by exchange-spring coupling is easier to be realized in experimental scenarios and holds stronger immunity to surroundings. This work is expected to open new possibilities for energy-efficient spin-wave guiding as well as to help shape the field of beam magnonics.

  9. Unique spin-polarized transmission effects in a QD ring structure

    NASA Astrophysics Data System (ADS)

    Hedin, Eric; Joe, Yong

    2010-10-01

    Spintronics is an emerging field in which the spin of the electron is used for switching purposes and to communicate information. In order to obtain spin-polarized electron transmission, the Zeeman effect is employed to produce spin-split energy states in quantum dots which are embedded in the arms of a mesoscopic Aharonov-Bohm (AB) ring heterostructure. The Zeeman splitting of the QD energy levels can be induced by a parallel magnetic field, or by a perpendicular field which also produces AB-effects. The combination of these effects on the transmission resonances of the structure is studied analytically and several parameter regimes are identified which produce a high degree of spin-polarized output. Contour and line plots of the weighted spin polarization as a function of electron energy and magnetic field are presented to visualize the degree of spin-polarization. Taking advantage of these unique parameter regimes shows the potential promise of such devices for producing spin-polarized currents.

  10. Out-of-plane chiral domain wall spin-structures in ultrathin in-plane magnets

    DOE PAGES

    Chen, Gong; Kang, Sang Pyo; Ophus, Colin; ...

    2017-05-19

    Chiral spin textures in ultrathin films, such as skyrmions or chiral domain walls, are believed to offer large performance advantages in the development of novel spintronics technologies. While in-plane magnetized films have been studied extensively as media for current- and field-driven domain wall dynamics with applications in memory or logic devices, the stabilization of chiral spin textures in in-plane magnetized films has remained rare. Here we report a phase of spin structures in an in-plane magnetized ultrathin film system where out-of-plane spin orientations within domain walls are stable. Moreover, while domain walls in in-plane films are generally expected to bemore » non-chiral, we show that right-handed spin rotations are strongly favoured in this system, due to the presence of the interfacial Dzyaloshinskii-Moriya interaction. These results constitute a platform to explore unconventional spin dynamics and topological phenomena that may enable high-performance in-plane spin-orbitronics devices.« less

  11. Thermal stability of Mn-Ir-based specular spin valve structure

    NASA Astrophysics Data System (ADS)

    Yoon, S. Y.; Lee, D. H.; Jeon, D. M.; Kim, J. H.; Yoon, D. H.; Suh, S. J.

    2004-05-01

    We studied the thermal properties of specular and conventional spin valves. The specular spin valve showed better thermal properties (e.g. slow MR degradation and sheet resistance increment) than those of conventional spin valve. It is considered that the Mn-Co-Fe-O is formed in the NOL at 543-578 K and this acts as a diffusion barrier for Mn during high-temperature annealing process.

  12. Line patterning of anisotropic spin chains by polarized laser for application in micro-thermal management

    NASA Astrophysics Data System (ADS)

    Terakado, Nobuaki; Takahashi, Ryosuke; Takahashi, Yoshihiro; Fujiwara, Takumi

    2017-05-01

    The control of heat flow has become increasingly important in energy saving and harvesting. Among various thermal management materials, spinon thermal conductivity materials are promising for heat flow control at microscales because they exhibit high, anisotropic thermal conductivity resulting from spin chains. However, there has been only little development of the materials for controlling heat flow. Here, we present the line patterning of the spin chain structure on a SrCuO2 nanocrystalline film by laser scanning. When the polarization direction of laser light was orthogonal to the scanning direction, we found that the spin-chain structure anisotropically grew on the patterned line.

  13. Electronic and transport properties of Cobalt-based valence tautomeric molecules and polymers

    NASA Astrophysics Data System (ADS)

    Chen, Yifeng; Calzolari, Arrigo; Buongiorno Nardelli, Marco

    2011-03-01

    The advancement of molecular spintronics requires further understandings of the fundamental electronic structures and transport properties of prototypical spintronics molecules and polymers. Here we present a density functional based theoretical study of the electronic structures of Cobalt-based valence tautomeric molecules Co III (SQ)(Cat)L Co II (SQ)2 L and their polymers, where SQ refers to the semiquinone ligand, and Cat the catecholate ligand, while L is a redox innocent backbone ligand. The conversion from low-spin Co III ground state to high-spin Co II excited state is realized by imposing an on-site potential U on the Co atom and elongating the Co-N bond. Transport properties are subsequently calculated by extracting electronic Wannier functions from these systems and computing the charge transport in the ballistic regime using a Non-Equilibrium Green's Function (NEGF) approach. Our transport results show distinct charge transport properties between low-spin ground state and high-spin excited state, hence suggesting potential spintronics devices from these molecules and polymers such as spin valves.

  14. A Two-Dimensional Manganese Gallium Nitride Surface Structure Showing Ferromagnetism at Room Temperature.

    PubMed

    Ma, Yingqiao; Chinchore, Abhijit V; Smith, Arthur R; Barral, María Andrea; Ferrari, Valeria

    2018-01-10

    Practical applications of semiconductor spintronic devices necessitate ferromagnetic behavior at or above room temperature. In this paper, we demonstrate a two-dimensional manganese gallium nitride surface structure (MnGaN-2D) which is atomically thin and shows ferromagnetic domain structure at room temperature as measured by spin-resolved scanning tunneling microscopy and spectroscopy. Application of small magnetic fields proves that the observed magnetic domains follow a hysteretic behavior. Two initially oppositely oriented MnGaN-2D domains are rotated into alignment with only 120 mT and remain mostly in alignment at remanence. The measurements are further supported by first-principles theoretical calculations which reveal highly spin-polarized and spin-split surface states with spin polarization of up to 95% for manganese local density of states.

  15. High-sensitivity GMR with low coercivity in top-IrMn spin-valves

    NASA Astrophysics Data System (ADS)

    Liu, H. R.; Qu, B. J.; Ren, T. L.; Liu, L. T.; Xie, H. L.; Li, C. X.; Ku, W. J.

    2003-12-01

    Top-IrMn spin-valves with a structure of Ta/NiFe/CoFe/Cu/CoFe/IrMn/Ta have been investigated. The spin-valves were deposited by high vacuum DC magnetron sputtering at room temperature. The magnetoresistance ratio reaches 9.12% at room temperature. The coercivity of the free layer and the exchange bias field is 1.04 and 180 Oe, respectively. The maximum sensitivity of the spin-valves is 8.36%/Oe. A reduction of 33.2% of the coercivity was obtained after a 2-min RIE process. Utilizing standard integrated circuit (IC) process, mass production of robust giant magnetoresistance sensors can be achieved with these spin-valve thin films.

  16. Effective model with strong Kitaev interactions for α -RuCl3

    NASA Astrophysics Data System (ADS)

    Suzuki, Takafumi; Suga, Sei-ichiro

    2018-04-01

    We use an exact numerical diagonalization method to calculate the dynamical spin structure factors of three ab initio models and one ab initio guided model for a honeycomb-lattice magnet α -RuCl3 . We also use thermal pure quantum states to calculate the temperature dependence of the heat capacity, the nearest-neighbor spin-spin correlation function, and the static spin structure factor. From the results obtained from these four effective models, we find that, even when the magnetic order is stabilized at low temperature, the intensity at the Γ point in the dynamical spin structure factors increases with increasing nearest-neighbor spin correlation. In addition, we find that the four models fail to explain heat-capacity measurements whereas two of the four models succeed in explaining inelastic-neutron-scattering experiments. In the four models, when temperature decreases, the heat capacity shows a prominent peak at a high temperature where the nearest-neighbor spin-spin correlation function increases. However, the peak temperature in heat capacity is too low in comparison with that observed experimentally. To address these discrepancies, we propose an effective model that includes strong ferromagnetic Kitaev coupling, and we show that this model quantitatively reproduces both inelastic-neutron-scattering experiments and heat-capacity measurements. To further examine the adequacy of the proposed model, we calculate the field dependence of the polarized terahertz spectra, which reproduces the experimental results: the spin-gapped excitation survives up to an onset field where the magnetic order disappears and the response in the high-field region is almost linear. Based on these numerical results, we argue that the low-energy magnetic excitation in α -RuCl3 is mainly characterized by interactions such as off-diagonal interactions and weak Heisenberg interactions between nearest-neighbor pairs, rather than by the strong Kitaev interactions.

  17. Muon spin relaxation study of the layered magnetoelectric FeTe2O5Br with spin amplitude modulated magnetic structure

    NASA Astrophysics Data System (ADS)

    Zorko, A.; Pregelj, M.; Berger, H.; Arčon, D.

    2010-05-01

    Local-probe weak-transverse-field and zero-field μSR measurements have been employed to investigate magnetic ordering in the new magnetoelectric compound FeTe2O5Br. Below the Néel transition temperature TN=10.6 K a static local magnetic field starts to develop at the μ+ sites. Fast μ+ polarization decay below TN speaks in favor of a broad distribution of internal magnetic fields, in agreement with the incommensurate magnetic structure suggested by neutron diffraction experiments. Above TN the presence of short-range order is detected as high as at 2TN, which suggests only weak interlayer magnetic coupling. On the other hand, strong Fe3+ spin fluctuations likely reflect geometrically frustrated structure of [Fe4O16]20- spin clusters, which are the main building blocks of the layered FeTe2O5Br structure.

  18. Electrical detection of spin transport in Si two-dimensional electron gas systems

    NASA Astrophysics Data System (ADS)

    Chang, Li-Te; Fischer, Inga Anita; Tang, Jianshi; Wang, Chiu-Yen; Yu, Guoqiang; Fan, Yabin; Murata, Koichi; Nie, Tianxiao; Oehme, Michael; Schulze, Jörg; Wang, Kang L.

    2016-09-01

    Spin transport in a semiconductor-based two-dimensional electron gas (2DEG) system has been attractive in spintronics for more than ten years. The inherent advantages of high-mobility channel and enhanced spin-orbital interaction promise a long spin diffusion length and efficient spin manipulation, which are essential for the application of spintronics devices. However, the difficulty of making high-quality ferromagnetic (FM) contacts to the buried 2DEG channel in the heterostructure systems limits the potential developments in functional devices. In this paper, we experimentally demonstrate electrical detection of spin transport in a high-mobility 2DEG system using FM Mn-germanosilicide (Mn(Si0.7Ge0.3)x) end contacts, which is the first report of spin injection and detection in a 2DEG confined in a Si/SiGe modulation doped quantum well structure (MODQW). The extracted spin diffusion length and lifetime are l sf = 4.5 μm and {τ }{{s}}=16 {{ns}} at 1.9 K respectively. Our results provide a promising approach for spin injection into 2DEG system in the Si-based MODQW, which may lead to innovative spintronic applications such as spin-based transistor, logic, and memory devices.

  19. Spin crossover and Mott—Hubbard transition under high pressure and high temperature in the low mantle of the Earth

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, S. G.; Ovchinnikova, T. M.; Plotkin, V. V.; Dyad'kov, P. G.

    2015-11-01

    Effect of high pressure induced spin crossover on the magnetic, electronic and structural properties of the minerals forming the Earth's low mantle is discussed. The low temperature P, T phase diagram of ferropericlase has the quantum phase transition point Pc = 56 GPa at T = 0 confirmed recently by the synchrotron Mössbauer spectroscopy. The LDA+GTB calculated phase diagram describes the experimental data. Its extension to the high temperature resulted earlier in prediction of the metallic properties of the Earth's mantle at the depth 1400 km < h < 1800 km. Estimation of the electrical conductivity based on the percolation theory is given. We discuss also the thermodynamic properties and structural anomalies resulting from the spin crossover and metal-insulator transition and compare them with the experimental seismic and geomagnetic field data.

  20. Observational signature of high spin at the Event Horizon Telescope

    NASA Astrophysics Data System (ADS)

    Gralla, Samuel E.; Lupsasca, Alexandru; Strominger, Andrew

    2018-04-01

    We analytically compute the observational appearance of an isotropically emitting point source on a circular, equatorial orbit near the horizon of a rapidly spinning black hole. The primary image moves on a vertical line segment, in contrast to the primarily horizontal motion of the spinless case. Secondary images, also on the vertical line, display a rich caustic structure. If detected, this unique signature could serve as a `smoking gun' for a high spin black hole in nature.

  1. All-spinel oxide Josephson junctions for high-efficiency spin filtering.

    PubMed

    Mesoraca, S; Knudde, S; Leitao, D C; Cardoso, S; Blamire, M G

    2018-01-10

    Obtaining high efficiency spin filtering at room temperature using spinel ferromagnetic tunnel barriers has been hampered by the formation of antiphase boundaries due to their difference in lattice parameters between barrier and electrodes. In this work we demonstrate the use of LiTi 2 O 4 thin films as electrodes in an all-spinel oxide CoFe 2 O 4 -based spin filter devices. These structures show nearly perfect epitaxy maintained throughout the structure and so minimise the potential for APBs formation. The LiTi 2 O 4 in these devices is superconducting and so measurements at low temperature have been used to explore details of the tunnelling and Josephson junction behaviour.

  2. Magnon Splitting Induced by Charge Transfer in the Three-Orbital Hubbard Model

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Huang, Edwin W.; Moritz, Brian; Devereaux, Thomas P.

    2018-06-01

    Understanding spin excitations and their connection to unconventional superconductivity have remained central issues since the discovery of cuprates. Direct measurement of the dynamical spin structure factor in the parent compounds can provide key information on important interactions relevant in the doped regime, and variations in the magnon dispersion have been linked closely to differences in crystal structure between families of cuprate compounds. Here, we elucidate the relationship between spin excitations and various controlling factors thought to be significant in high-Tc materials by systematically evaluating the dynamical spin structure factor for the three-orbital Hubbard model, revealing differences in the spin dispersion along the Brillouin zone axis and the diagonal. Generally, we find that the absolute energy scale and momentum dependence of the excitations primarily are sensitive to the effective charge-transfer energy, while changes in the on-site Coulomb interactions have little effect on the details of the dispersion. In particular, our result highlights the splitting between spin excitations along the axial and diagonal directions in the Brillouin zone. This splitting decreases with increasing charge-transfer energy and correlates with changes in the apical oxygen position, and general structural variations, for different cuprate families.

  3. Electron Density Distribution Changes of Magnesiowüstite With Pressure

    NASA Astrophysics Data System (ADS)

    Diamond, M. R.; Popov, D.; Shen, G.; Jeanloz, R.

    2017-12-01

    Magnesiowüstite is one of the dominant minerals in the earth's lower mantle; its density and elasticity, substantially altered by its spin crossover, have direct consequence to interpreting deep-earth geophysical data. High-resolution single-crystal x-ray diffraction data can portray the 3-dimensional distribution of electron density through the Fourier transform of measured form factors. Here we present experimentally measured changes in electron density distribution of single-crystal (Mg.85,Fe.15)O as it goes through its iron(II) high-spin to low-spin electronic transition between about 40 and 60 GPa [Lin and Tsuchiya, 2008], in a diamond-anvil cell. As (Mg,Fe)O undergoes a pressure induced spin crossover (from high spin at low pressure to low spin at high pressure) due to overlap of its eg orbitals, the t2g orbitals become more pronounced to due a higher population of electrons, while the eg orbitals diminish. The spin splitting energy becomes increasingly unfavorable compared to the spin orbital pairing energy. By looking at the population of electrons at different directions in real space, we directly observe these changes in orbital occupation leading up to and during the spin crossover. Since high-Mg magnesiowüstite has a high symmetry structure at these pressure conditions, detecting relative changes in electron density distribution (comparing subsequent pressure steps) is feasible by collecting high resolution data offered by high-energy X rays and wide opening-angle diamond-anvil cells.

  4. Scanning Probe Microscopy for Spin Mapping and Spin Manipulation on the Atomic Scale

    NASA Astrophysics Data System (ADS)

    Wiesendanger, Roland

    2008-03-01

    A fundamental understanding of magnetic and spin-dependent phenomena requires the determination of spin structures and spin excitations down to the atomic scale. The direct visualization of atomic-scale spin structures [1-4] has first been accomplished for magnetic metals by combining the atomic resolution capability of Scanning Tunnelling Microscopy (STM) with spin sensitivity, based on vacuum tunnelling of spin-polarized electrons [5]. The resulting technique, Spin-Polarized Scanning Tunnelling Microscopy (SP-STM), nowadays provides unprecedented insight into collinear and non-collinear spin structures at surfaces of magnetic nanostructures and has already led to the discovery of new types of magnetic order at the nanoscale [6,7]. More recently, the detection of spin-dependent exchange and correlation forces has allowed a first direct real-space observation of spin structures at surfaces of antiferromagnetic insulators [8]. This new type of scanning probe microscopy, called Magnetic Exchange Force Microscopy (MExFM), offers a powerful new tool to investigate different types of spin-spin interactions based on direct-, super-, or RKKY-type exchange down to the atomic level. By combining MExFM with high-precision measurements of damping forces, localized or confined spin excitations in magnetic systems of reduced dimensions now become experimentally accessible. Moreover, the combination of spin state read-out and spin state manipulation, based on spin-current induced switching across a vacuum gap by means of SP-STM [9], provides a fascinating novel type of approach towards ultra-high density magnetic recording without the use of magnetic stray fields. [1] R. Wiesendanger, I. V. Shvets, D. Bürgler, G. Tarrach, H.-J. Güntherodt, J. M. D. Coey, and S. Gräser, Science 255, 583 (1992) [2] S. Heinze, M. Bode, O. Pietzsch, A. Kubetzka, X. Nie, S. Blügel, and R. Wiesendanger, Science 288, 1805 (2000) [3] A. Kubetzka, P. Ferriani, M. Bode, S. Heinze, G. Bihlmayer, K. von Bergmann, O. Pietzsch, S. Blügel, and R. Wiesendanger, Phys. Rev. Lett. 94, 087204 (2005) [4] M. Bode, E. Y. Vedmedenko, K. von Bergmann, A. Kubetzka, P. Ferriani, S. Heinze, and R. Wiesendanger, Nature Materials 5, 477 (2006) [5] R. Wiesendanger, H.-J. Güntherodt, G. Güntherodt, R. J. Gambino, and R. Ruf, Phys. Rev. Lett. 65, 247 (1990) [6] K. von Bergmann, S. Heinze, M. Bode, E. Y. Vedmedenko, G. Bihlmayer, S. Blügel, and R. Wiesendanger, Phys. Rev. Lett. 96, 167203 (2006) [7] M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze, G. Bihlmayer, A. Kubetzka, O. Pietzsch, S. Blügel, and R. Wiesendanger, Nature 447, 190 (2007) [8] U. Kaiser, A. Schwarz, and R. Wiesendanger, Nature 446, 522 (2007) [9] S. Krause, L. Berbil-Bautista, G. Herzog, M. Bode, and R. Wiesendanger, Science 317, 1537 (2007)

  5. High spin polarization in CoFeMnGe equiatomic quaternary Heusler alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bainsla, Lakhan; Magnetic Materials Unit, National Institute for Materials Science, Tsukuba 305-0047; Suresh, K. G., E-mail: suresh@phy.iitb.ac.in

    2014-11-28

    We report the structure, magnetic property, and spin polarization of CoFeMnGe equiatomic quaternary Heusler alloy. The alloy was found to crystallize in the cubic Heusler structure (prototype LiMgPdSn) with considerable amount of DO{sub 3} disorder. Thermal analysis result indicated the Curie temperature is about 750 K without any other phase transformation up to melting temperature. The magnetization value was close to that predicted by the Slater-Pauling curve. Current spin polarization of P = 0.70 ± 0.01 was deduced using point contact andreev reflection measurements. The temperature dependence of electrical resistivity has been fitted in the temperature range of 5–300 K in order to check for themore » half metallic behavior. Considering the high spin polarization and Curie temperature, this material appears to be promising for spintronic applications.« less

  6. New type of quantum spin Hall insulators in hydrogenated PbSn thin films

    PubMed Central

    Liu, Liang; Qin, Hongwei; Hu, Jifan

    2017-01-01

    The realization of a quantum spin Hall (QSH) insulator working at high temperature is of both scientific and technical interest since it supports spin-polarized and dssipationless edge states. Based on first-principle calculations, we predicted that the two-dimensional (2D) binary compound of lead and tin (PbSn) in a buckled honeycomb framework can be tuned into a topological insulator with huge a band gap and structural stability via hydrogenation or growth on special substrates. This heavy-element-based structure is sufficiently ductile to survive the 18 ps molecular dynamics (MD) annealing to 400 K, and the band gap opened by strong spin-orbital-coupling (SOC) is as large as 0.7 eV. These characteristics indicate that hydrogenated PbSn (H-PbSn) is an excellent platform for QSH realization at high temperature. PMID:28218297

  7. Analytical approaches to the determination of spin-dependent parton distribution functions at NNLO approximation

    NASA Astrophysics Data System (ADS)

    Salajegheh, Maral; Nejad, S. Mohammad Moosavi; Khanpour, Hamzeh; Tehrani, S. Atashbar

    2018-05-01

    In this paper, we present SMKA18 analysis, which is a first attempt to extract the set of next-to-next-leading-order (NNLO) spin-dependent parton distribution functions (spin-dependent PDFs) and their uncertainties determined through the Laplace transform technique and Jacobi polynomial approach. Using the Laplace transformations, we present an analytical solution for the spin-dependent Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations at NNLO approximation. The results are extracted using a wide range of proton g1p(x ,Q2) , neutron g1n(x ,Q2) , and deuteron g1d(x ,Q2) spin-dependent structure functions data set including the most recent high-precision measurements from COMPASS16 experiments at CERN, which are playing an increasingly important role in global spin-dependent fits. The careful estimations of uncertainties have been done using the standard Hessian error propagation. We will compare our results with the available spin-dependent inclusive deep inelastic scattering data set and other results for the spin-dependent PDFs in literature. The results obtained for the spin-dependent PDFs as well as spin-dependent structure functions are clearly explained both in the small and large values of x .

  8. Effects of Composition and Iron Spin State on the Structural Transition of (Mg,Fe)CO3 in the Earth's Lower Mantle

    NASA Astrophysics Data System (ADS)

    Hsu, H.; Huang, S. C.; Wei, C. M.; Hsing, C. R.

    2015-12-01

    Iron-bearing magnesium carbonates (Mg,Fe)CO3 are believed the major carbon carriers in the Earth's deep lower mantle; they may play a crucial role in the Earth's deep carbon cycle. Knowledge of the physical and chemical properties of these carbonates is thus essential for our understanding of the mantle's role in global carbon cycle. Experiments have shown that (Mg,Fe)CO3 ferromagnesite (calcite structure) can be stable up to 80-100 GPa. At 45-50 GPa, ferromangsite undergoes a high-spin to low-spin transition, accompanied by a volume reduction and elastic anomalies. Starting ~100 GPa, ferromagnesite goes through a complicated structural transition. The detail of this transition and the atomic structures of high-pressure (Mg,Fe)CO3 phases are still highly debated. Experimental observations and theoretical results are inconsistent so far. In experiments, several distinct high-pressure (Mg,Fe)CO3 structures have been reported, including a P21/c phase [1] and a Pmm2 phase [2]. In theory, a C2/m phase [3] and a P-1 phase [4] have been suggested, while the Pmm2 phase is not found. One possible reason for such a discrepancy is that all available theoretical calculations so far are based on pure MgCO3, while experimental works are performed using (Mg,Fe)CO3 with high iron concentration ( > 50%). Clearly, the concentration of iron and the possible iron spin crossover can significantly affect the stability of these high-pressure (Mg,Fe)CO3 phases. Here, we use density functional theory + self-consistent Hubbard U (DFT+Usc) calculations to study this structural transition. The effects of composition and iron spin state on these (Mg,Fe)CO3 phases are also discussed. Our results can be expected to provide insightful information for better understanding the Earth's deep carbon cycle.[1] E. Boulard et al., Proc. Natl. Acad. Sci. USA 108, 5184 (2011).[2] J. Liu et al., Sci. Rep. 5, 7640 (2015). [3] A. R. Oganov et al., Earth Planet. Sci. Lett. 273, 38 (2008). [4] C. J. Pickard and R. J. Needs, Phys. Rev. B 91, 104101 (2015).

  9. Molecules in high spin states: The millimeter and submillimeter spectrum of the MnS radical (X 6Sigma+)

    NASA Astrophysics Data System (ADS)

    Thompsen, J. M.; Brewster, M. A.; Ziurys, L. M.

    2002-06-01

    The pure rotational spectrum of MnS (v=0) in its X 6Sigma+ ground state has been recorded using millimeter and submillimeter direct absorption techniques in the range 160-502 GHz. MnS was synthesized in the gas phase by the reaction of manganese vapor and CS2 in a high-temperature Broida-type oven. Fourteen rotational transitions for this radical were measured, each consisting of six fine-structure components. In the lower rotational lines, hyperfine structure, arising from the 55Mn nuclear spin of 5/2, was also resolved in each spin component. These data were analyzed using a case (b) Hamiltonian, and rotational, fine structure, and hyperfine parameters determined for MnS. In the analysis, the third-order correction to the spin-rotation interaction, gammaS, and the fourth-order spin-spin coupling term, theta, were found necessary for an acceptable fit. The hyperfine constants determined suggest that MnS is more covalent than MnO, but more ionic than MnH. There additionally appears to be considerable sdsigma hybridization in molecular orbital formation for this molecule. Bond lengths of the 3d transition-metal sulfides were compared as well, and those of MnS, CuS, and TiS do not follow the trend of their oxide analogs. This result indicates that there are significant bonding differences between transition-metal sulfides and transition-metal oxides.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felser, Claudia, E-mail: felser@cpfs.mpg.de; Wollmann, Lukas; Chadov, Stanislav

    Heusler compounds are a remarkable class of materials with more than 1000 members and a wide range of extraordinary multi-functionalities including halfmetallic high-temperature ferri- and ferromagnets, multi-ferroics, shape memory alloys, and tunable topological insulators with a high potential for spintronics, energy technologies, and magneto-caloric applications. The tunability of this class of materials is exceptional and nearly every functionality can be designed. Co{sub 2}-Heusler compounds show high spin polarization in tunnel junction devices and spin-resolved photoemission. Manganese-rich Heusler compounds attract much interest in the context of spin transfer torque, spin Hall effect, and rare earth free hard magnets. Most Mn{sub 2}-Heuslermore » compounds crystallize in the inverse structure and are characterized by antiparallel coupling of magnetic moments on Mn atoms; the ferrimagnetic order and the lack of inversion symmetry lead to the emergence of new properties that are absent in ferromagnetic centrosymmetric Heusler structures, such as non-collinear magnetism, topological Hall effect, and skyrmions. Tetragonal Heusler compounds with large magneto crystalline anisotropy can be easily designed by positioning the Fermi energy at the van Hove singularity in one of the spin channels. Here, we give a comprehensive overview and a prospective on the magnetic properties of Heusler materials.« less

  11. Epitaxial strain-mediated spin-state transitions: can we switch off magnetism?

    NASA Astrophysics Data System (ADS)

    Rondinelli, James; Spaldin, Nicola

    2008-03-01

    We use first-principles density functional theory calculations to explore spin-state transitions in epitaxially strained LaCoO3. While high-spin to low-spin state transitions in minerals are common in geophysics, where pressures can reach over 200 GPa, we explore whether heteroepitaxial strain can achieve similar transitions with moderate strain in thin films. LaCoO3 is known to undergo a low-spin (S=0, t2g^6eg^0) to intermediate-spin (S=1, t2g^5eg^1) or high-spin (S=2, t2g^4eg^2) state transition with increasing temperature, and thus makes it a promising candidate material for strain-mediated spin transitions. Here we discuss the physics of the low-spin transition and changes in the electronic structure of LaCoO3, most notably, the metal-insulator transition that accompanies the spin-state transitions with epitaxial strain. As thin film growth techniques continue to reach atomic-level precision, we suggest this is another approach for controlling magnetism in complex oxide heterostructures.

  12. Magnetic field tunability of spin polarized excitations in a high temperature magnet

    NASA Astrophysics Data System (ADS)

    Holinsworth, Brian; Sims, Hunter; Cherian, Judy; Mazumdar, Dipanjan; Harms, Nathan; Chapman, Brandon; Gupta, Arun; McGill, Steve; Musfeldt, Janice

    Magnetic semiconductors are at the heart of modern device physics because they naturally provide a non-zero magnetic moment below the ordering temperature, spin-dependent band gap, and spin polarization that originates from exchange-coupled magnetization or an applied field creating a spin-split band structure. Strongly correlated spinel ferrites are amongst the most noteworthy contenders for semiconductor spintronics. NiFe2O4, in particular, displays spin-filtering, linear magnetoresistance, and wide application in the microwave regime. To unravel the spin-charge interaction in NiFe2O4, we bring together magnetic circular dichroism, photoconductivity, and prior optical absorption with complementary first principles calculations. Analysis uncovers a metamagnetic transition modifying electronic structure in the minority channel below the majority channel gap, exchange splittings emerging from spin-split bands, anisotropy of excitons surrounding the indirect gap, and magnetic-field dependent photoconductivity. These findings open the door for the creation and control of spin-polarized excitations from minority channel charge charge transfer in NiFe2O4 and other members of the spinel ferrite family.

  13. Spin heat capacity of monolayer and AB-stacked bilayer MoS2 in the presence of exchange magnetic field

    NASA Astrophysics Data System (ADS)

    Hoi, Bui Dinh; Yarmohammadi, Mohsen; Mirabbaszadeh, Kavoos

    2017-04-01

    Dirac theory and Green's function technique are carried out to compute the spin dependent band structures and corresponding electronic heat capacity (EHC) of monolayer (ML) and AB-stacked bilayer (BL) molybdenum disulfide (MoS2) two-dimensional (2D) crystals. We report the influence of induced exchange magnetic field (EMF) by magnetic insulator substrates on these quantities for both structures. The spin-up (down) subband gaps are shifted with EMF from conduction (valence) band to valence (conduction) band at both Dirac points in the ML because of the spin-orbit coupling (SOC) which leads to a critical EMF in the K point and EHC returns to its initial states for both spins. In the BL case, EMF results split states and the decrease (increase) behavior of spin-up (down) subband gaps has been observed at both K and K‧ valleys which is due to the combined effect of SOC and interlayer coupling. For low and high EMFs, EHC of BL MoS2 does not change for spin-up subbands while increases for spin-down subbands.

  14. Immune evasion by a staphylococcal inhibitor of myeloperoxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Jong, Nienke W. M.; Ramyar, Kasra X.; Guerra, Fermin E.

    Staphylococcus aureus is highly adapted to its host and has evolved many strategies to resist opsonization and phagocytosis. Even after uptake by neutrophils, S. aureus shows resistance to killing, which suggests the presence of phagosomal immune evasion molecules. With the aid of secretome phage display, we identified a highly conserved protein that specifically binds and inhibits human myeloperoxidase (MPO), a major player in the oxidative defense of neutrophils. We have named this protein “staphylococcal peroxidase inhibitor” (SPIN). To gain insight into inhibition of MPO by SPIN, we solved the cocrystal structure of SPIN bound to a recombinant form of humanmore » MPO at 2.4-Å resolution. This structure reveals that SPIN acts as a molecular plug that prevents H2O2 substrate access to the MPO active site. In subsequent experiments, we observed that SPIN expression increases inside the neutrophil phagosome, where MPO is located, compared with outside the neutrophil. Moreover, bacteria with a deleted gene encoding SPIN showed decreased survival compared with WT bacteria after phagocytosis by neutrophils. Taken together, our results demonstrate that S. aureus secretes a unique proteinaceous MPO inhibitor to enhance survival by interfering with MPO-mediated killing.« less

  15. Immune evasion by a staphylococcal inhibitor of myeloperoxidase

    PubMed Central

    de Jong, Nienke W. M.; Ramyar, Kasra X.; Guerra, Fermin E.; Fevre, Cindy; Voyich, Jovanka M.; McCarthy, Alex J.; Garcia, Brandon L.; van Kessel, Kok P. M.; van Strijp, Jos A. G.; Geisbrecht, Brian V.; Haas, Pieter-Jan A.

    2017-01-01

    Staphylococcus aureus is highly adapted to its host and has evolved many strategies to resist opsonization and phagocytosis. Even after uptake by neutrophils, S. aureus shows resistance to killing, which suggests the presence of phagosomal immune evasion molecules. With the aid of secretome phage display, we identified a highly conserved protein that specifically binds and inhibits human myeloperoxidase (MPO), a major player in the oxidative defense of neutrophils. We have named this protein “staphylococcal peroxidase inhibitor” (SPIN). To gain insight into inhibition of MPO by SPIN, we solved the cocrystal structure of SPIN bound to a recombinant form of human MPO at 2.4-Å resolution. This structure reveals that SPIN acts as a molecular plug that prevents H2O2 substrate access to the MPO active site. In subsequent experiments, we observed that SPIN expression increases inside the neutrophil phagosome, where MPO is located, compared with outside the neutrophil. Moreover, bacteria with a deleted gene encoding SPIN showed decreased survival compared with WT bacteria after phagocytosis by neutrophils. Taken together, our results demonstrate that S. aureus secretes a unique proteinaceous MPO inhibitor to enhance survival by interfering with MPO-mediated killing. PMID:28808028

  16. Anisotropic magnetic structures of the Mn R MnSbO6 high-pressure doubly ordered perovskites (R =La , Pr, and Nd)

    NASA Astrophysics Data System (ADS)

    Solana-Madruga, Elena; Arévalo-López, Ángel M.; Dos santos-García, Antonio J.; Ritter, Clemens; Cascales, Concepción; Sáez-Puche, Regino; Attfield, J. Paul

    2018-04-01

    A new type of doubly ordered perovskite (also reported as double double perovskite, DDPv) structure combining columnar and rock-salt orders of the cations at the A and B sites, respectively, was recently found at high pressure for Mn R MnSb O6 (R =La -Sm ). Here we report further magnetic structures of these compounds. M n2 + spins align into antiparallel ferromagnetic sublattices along the x axis for MnLaMnSb O6 , while the magnetic anisotropy of P r3 + magnetic moments induces their preferential order along the z direction for MnPrMnSb O6 . The magnetic structure of MnNdMnSb O6 was reported to show a spin-reorientation transition of M n2 + spins from the z axis towards the x axis driven by the ordering of N d3 + magnetic moments. The crystal-field parameters for P r3 + and N d3 + at the 4 e C2 site of their DDPv structure have been semiempirically estimated and used to derive their energy levels and associated wave functions. The results demonstrate that the spin-reorientation transition in MnNdMnSb O6 arises as a consequence of the crystal-field-induced magnetic anisotropy of N d3 + .

  17. The Enhancement of spin Hall torque efficiency and Reduction of Gilbert damping in spin Hall metal/normal metal/ferromagnetic trilayers

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh-Hai; Pai, Chi-Feng; Ralph, Daniel C.; Buhrman, Robert A.

    2015-03-01

    The spin Hall effect (SHE) in ferromagnet/heavy metal bilayer structures has been demonstrated to be a powerful means for producing pure spin currents and for exerting spin-orbit damping-like and field-like torques on the ferromagnetic layer. Large spin Hall (SH) angles have been reported for Pt, beta-Ta and beta-W films and have been utilized to achieve magnetic switching of in-plane and out-of-plane magnetized nanomagnets, spin torque auto-oscillators, and the control of high velocity domain wall motion. For many of the proposed applications of the SHE it is also important to achieve an effective Gilbert damping parameter that is as low as possible. In general the spin orbit torques and the effective damping are predicted to depend directly on the spin-mixing conductance of the SH metal/ferromagnet interface. This opens up the possibility of tuning these properties with the insertion of a very thin layer of another metal between the SH metal and the ferromagnet. Here we will report on experiments with such trilayer structures in which we have observed both a large enhancement of the spin Hall torque efficiency and a significant reduction in the effective Gilbert damping. Our results indicate that there is considerable opportunity to optimize the effectiveness and energy efficiency of the damping-like torque through engineering of such trilayer structures. Supported in part by NSF and Samsung Electronics Corporation.

  18. A model of spin crossover in manganese(III) compounds: effects of intra- and intercenter interactions.

    PubMed

    Klokishner, Sophia I; Roman, Marianna A; Reu, Oleg S

    2011-11-21

    A microscopic approach to the problem of cooperative spin crossover in the [MnL2]NO3 crystal, which contains Mn(III) ions as structural units, is elaborated on, and the main mechanisms governing this effect are revealed. The proposed model also takes into account the splitting of the low-spin 3T1 (t(2)(4)) and high-spin 5E (t(2)(3)e) terms by the low-symmetry crystal field. The low-spin → high-spin transition has been considered as a cooperative phenomenon driven by interaction of the electronic shells of the Mn(III) ions with the all-around full-symmetric deformation that is extended over the crystal lattice via the acoustic phonon field. The model well explains the observed thermal dependencies of the magnetic susceptibility and the effective magnetic moment.

  19. 1 / f α noise and generalized diffusion in random Heisenberg spin systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Kartiek; Demler, Eugene; Martin, Ivar

    2015-11-01

    We study the “flux-noise” spectrum of random-bond quantum Heisenberg spin systems using a real-space renormalization group (RSRG) procedure that accounts for both the renormalization of the system Hamiltonian and of a generic probe that measures the noise. For spin chains, we find that the dynamical structure factor Sq (f ), at finite wave vector q, exhibits a power-law behavior both at high and low frequencies f , with exponents that are connected to one another and to an anomalous dynamical exponent through relations that differ at T = 0 and T =∞. The low-frequency power-law behavior of the structure factormore » is inherited by any generic probe with a finite bandwidth and is of the form 1/f α with 0.5 < α < 1. An analytical calculation of the structure factor, assuming a limiting distribution of the RG flow parameters (spin size, length, bond strength) confirms numerical findings.More generally, we demonstrate that this form of the structure factor, at high temperatures, is a manifestation of anomalous diffusionwhich directly follows from a generalized spin-diffusion propagator.We also argue that 1/f -noise is intimately connected to many-body-localization at finite temperatures. In two dimensions, the RG procedure is less reliable; however, it becomes convergent for quasi-one-dimensional geometries where we find that one-dimensional 1/f α behavior is recovered at low frequencies; the latter configurations are likely representative of paramagnetic spin networks that produce 1/f α noise in SQUIDs.« less

  20. Plasmonic diabolo cavity enhanced spin pumping

    NASA Astrophysics Data System (ADS)

    Qian, Jie; Gou, Peng; Gui, Y. S.; Hu, C. M.; An, Zhenghua

    2017-09-01

    Low spin-current generation efficiency has impeded further progress in practical spin devices, especially in the form of wireless excitation. To tackle this problem, a unique Plasmonic Diabolo Cavity (PDC) is proposed to enhance the spin pumping (SP) signal. The SP microwave photovoltage is enhanced ˜22-fold by PDC at ferromagnetic resonance (FMR). This improvement owes to the localization of the microwave magnetic field, which drives the spin precession process to more effectively generate photovoltage at the FMR condition. The in-plane anisotropy of spin pumping is found to be suppressed by PDC. Our work suggests that metamaterial resonant structures exhibit rich interactions with spin dynamics and could potentially be applied in future high-frequency spintronics.

  1. Global Dirac bispinor entanglement under Lorentz boosts

    NASA Astrophysics Data System (ADS)

    Bittencourt, Victor A. S. V.; Bernardini, Alex E.; Blasone, Massimo

    2018-03-01

    The effects of Lorentz boosts on the quantum entanglement encoded by a pair of massive spin-1/2 particles are described according to the Lorentz covariant structure described by Dirac bispinors. The quantum system considered incorporates four degrees of freedom: two of them related to the bispinor intrinsic parity and the other two related to the bispinor spin projection, i.e., the Dirac particle helicity. Because of the natural multipartite structure involved, the Meyer-Wallach global measure of entanglement is preliminarily used for computing global quantum correlations, while the entanglement separately encoded by spin degrees of freedom is measured through the negativity of the reduced two-particle spin-spin state. A general framework to compute the changes on quantum entanglement induced by a boost is developed and then specialized to describe three particular antisymmetric two-particle states. According to the results obtained, two-particle spin-spin entanglement cannot be created by the action of a Lorentz boost in a spin-spin separable antisymmetric state. On the other hand, the maximal spin-spin entanglement encoded by antisymmetric superpositions is degraded by Lorentz boosts driven by high-speed frame transformations. Finally, the effects of boosts on chiral states are shown to exhibit interesting invariance properties, which can only be obtained through such a Lorentz covariant formulation of the problem.

  2. Polarized targets in high energy physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cates, G.D. Jr.

    1994-12-01

    Various approaches are discussed for producing polarized nuclear targets for high energy physics experiments. As a unifying theme, examples are drawn from experiments to measure spin dependent structure functions of nucleons in deep inelastic scattering. This single physics goal has, over roughly two decades, been a driving force in advances in target technology. Actual or planned approaches have included solid targets polarized by dynamic nuclear polarization (DNP), several types of internal targets for use in storage rings, and gaseous {sup 3}He targets polarized by spin-exchange optical pumping. This last approach is the type of target adopted for SLAC E-142, anmore » experiment to measure the spin structure function of the neutron, and is described in detail.« less

  3. Engineering spin-orbit torque in Co/Pt multilayers with perpendicular magnetic anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Kuo-Feng; Wang, Ding-Shuo; Lai, Chih-Huang, E-mail: chlai@mx.nthu.edu.tw

    To address thermal stability issues for spintronic devices with a reduced size, we investigate spin-orbit torque in Co/Pt multilayers with strong perpendicular magnetic anisotropy. Note that the spin-orbit torque arises from the global imbalance of the spin currents from the top and bottom interfaces for each Co layer. By inserting Ta or Cu layers to strengthen the top-down asymmetry, the spin-orbit torque efficiency can be greatly modified without compromised perpendicular magnetic anisotropy. Above all, the efficiency builds up as the number of layers increases, realizing robust thermal stability and high spin-orbit-torque efficiency simultaneously in the multilayers structure.

  4. Spin Seebeck effect and thermal colossal magnetoresistance in Christmas-tree silicene nanoribbons

    NASA Astrophysics Data System (ADS)

    Gao, Xiu-Jin; Zhao, Peng; Chen, Gang

    2018-05-01

    Based on the density functional theory and nonequilibrium Green's function method, we investigate the electronic structures and thermal spin transport properties of Christmas-tree silicene nanoribbons (CSiNRs). The results show that CSiNRs have ferromagnetic ground state with high Curie temperature far above the room temperature. Obvious spin Seebeck effect with spin-up and spin-down currents flowing in opposite directions by a temperature gradient can be observed in these systems. Furthermore, a thermal colossal magnetoresistance up to 109% can be realized by tuning the external magnetic field. The results show that CSiNRs hold great potential in designing spin caloritronic devices.

  5. Structural and magnetic studies of half-metallic Heusler alloy Cr2CoSi nanoparticle synthesized by mechanical-alloying method

    NASA Astrophysics Data System (ADS)

    Saravanan, G.; Asvini, V.; Kalaiezhily, R. K.; Ravichandran, K.

    2018-05-01

    Heusler Alloy based Cr2CoSi nanoparticles were synthesized by using ball milling. X-ray diffractions studies were used to characterize the crystal structure of Cr2CoSi nanoparticles and magnetic properties were studied using VSM. XRD data analysis confirms the Heusler alloy phase showing the L21 structure. Magnetic properties are measured for synthesized samples having coercivity Hc = 389 Oe, with high saturation magnetization value Ms = 8.64 emu/g and remenance value Mr = 2.93 emu/g. Synthesized Heusler alloy Cr2CoSi nanoparticles can be potential materials for use in Spin polarized based spin sensors, spin devices, magnetic sensors and transducer applications.

  6. Spin transport in carbon nanotubes bundles: An ab-initio study

    NASA Astrophysics Data System (ADS)

    Meena, Shweta; Choudhary, Sudhanshu

    2017-10-01

    First principles investigations are performed on understanding the spin-polarized transport in carbon nanotubes and carbon nanotube bundles consisting of (8 , 0) and (17 , 0) SWCNTs kept in vertical (out-of-plane) arrangement and contacted by two CrO2 Half-Metallic-Ferromagnetic (HMF) electrodes. On comparison of the results for all the structures, it is observed that carbon nanotube bundle consisting of (17 , 0) CNT offers high TMR ∼100% and the transport phenomenon is tunneling, since there are no transmission states near Fermi level. However, in individual (8 , 0) and (17 , 0) CNT the transport is not because of tunneling, since there are significant number of transmission states near Fermi level. High Magneto Resistance (MR) 96% and 99% is observed in individual (8 , 0) and (17 , 0) CNTs respectively. Both TMR and Spin Injection Efficiency η (Spin-Filtration) are higher in (17 , 0) carbon nanotube bundle structure, which is due to carbon nanotube bundle acting as a perfect barrier in vertical (out-of-plane) arrangement resulting in negligible spin-down current (I↓) in both Parallel Configuration (PC) and Antiparallel Configuration (APC).

  7. Spin splitting in band structures of BiTeX (X=Cl, Br, I) monolayers

    NASA Astrophysics Data System (ADS)

    Hvazdouski, D. C.; Baranava, M. S.; Stempitsky, V. R.

    2018-04-01

    In systems with breaking of inversion symmetry a perpendicular electric field arises that interacts with the conduction electrons. It may give rise to electron state splitting even without influence of external magnetic field due to the spin-orbital interaction (SOI). Such a removal of the spin degeneracy is called the Rashba effect. Nanostructure with the Rashba effect can be part of a spin transistor. Spin degeneracy can be realized in a channel from a material of this type without additive of magnetic ions. Lack of additive increases the charge carrier mobility and reliability of the device. Ab initio simulations of BiTeX (X=Cl, Br, I) monolayers have been carried out using VASP wherein implemented DFT method. The study of this structures is of interest because such sort of structures can be used their as spin-orbitronics materials. The crystal parameters of BiTeCl, BiTeBr, BiTeI have been determined by the ionic relaxation and static calculations. It is necessary to note that splitting of energy bands occurs in case of SOI included. The values of the Rashba coefficient aR (in the range from 6.25 to 10.00 eV·Å) have high magnitudes for spintronics materials. Band structure of monolayers structures have ideal Rashba electron gas, i.e. there no other energy states near to Fermi level except Rashba states.

  8. Exchange interactions and magnetic properties of hexagonal rare-earth-cobalt compounds

    NASA Astrophysics Data System (ADS)

    Burzo, E.

    2018-03-01

    The magnetic properties of some GdxY1-xCo4A compounds with A = Co, Si or B are analysed including the pressure effects. Isomorphous structure transitions, parallelly with changes of cobalt moments from high spin states to low spin states, were shown as pressure increases. The magnetic data, obtained from band structures, were compared with those predicted by the mean field model.

  9. Development and application of high-resolution solid- state NMR dipolar recovery techniques for spin-1/2 nuclei

    NASA Astrophysics Data System (ADS)

    Joers, James M.

    The use of magic angle spinning to obtain high resolution solid state spectra has been well documented. This resolution occurs by coherently averaging the chemical shift anisotropy and dipolar interactions to zero over the period of a full rotation. While this allows for higher resolution, the structural information is seemingly lost to the spectrometer eye. Thus, high resolution spectra and structural information appear to be mutually exlusive. Recently, the push in solid state NMR is the development of recoupling techniques which afford both high resolution and structural information. The following dissertation demonstrates the feasibility of implementing such experiments in solving real world problems, and is centered on devising a method to recover homonuclear dipolar interactions in the high resolution regime.

  10. Discovery of highly spin-polarized conducting surface states in the strong spin-orbit coupling semiconductor Sb2Se3

    NASA Astrophysics Data System (ADS)

    Das, Shekhar; Sirohi, Anshu; Kumar Gupta, Gaurav; Kamboj, Suman; Vasdev, Aastha; Gayen, Sirshendu; Guptasarma, Prasenjit; Das, Tanmoy; Sheet, Goutam

    2018-06-01

    Majority of the A2B3 -type chalcogenide systems with strong spin-orbit coupling (SOC), such as Bi2Se3,Bi2Te3 , and Sb2Te3 , etc., are topological insulators. One important exception is Sb2Se3 where a topological nontrivial phase was argued to be possible under ambient conditions, but such a phase could be detected to exist only under pressure. In this paper, we show that Sb2Se3 like Bi2Se3 displays a generation of highly spin-polarized current under mesoscopic superconducting point contacts as measured by point-contact Andreev reflection spectroscopy. In addition, we observe a large negative and anisotropic magnetoresistance of the mesoscopic metallic point contacts formed on Sb2Se3 . Our band-structure calculations confirm the trivial nature of Sb2Se3 crystals and reveal two trivial surface states one of which shows large spin splitting due to Rashba-type SOC. The observed high spin polarization and related phenomena in Sb2Se3 can be attributed to this spin splitting.

  11. Three-dimensional spin mapping of antiferromagnetic nanopyramids having spatially alternating surface anisotropy at room temperature.

    PubMed

    Wang, Kangkang; Smith, Arthur R

    2012-11-14

    Antiferromagnets play a key role in modern spintronic devices owing to their ability to modify the switching behavior of adjacent ferromagnets via the exchange bias effect. Consequently, detailed measurements of the spin structure at antiferromagnetic interfaces and surfaces are highly desirable, not only for advancing technologies but also for enabling new insights into the underlying physics. Here using spin-polarized scanning tunneling microscopy at room-temperature, we reveal in three-dimensions an orthogonal spin structure on antiferromagnetic compound nanopyramids. Contrary to expected uniaxial anisotropy based on bulk properties, the atomic terraces are found to have alternating in-plane and out-of-plane magnetic anisotropies. The observed layer-wise alternation in anisotropy could have strong influences on future nanoscale spintronic applications.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilgrim, C. D.; Callahan, J. R.; Colla, C. A.

    Here, one-dimensional 27Al, 23Na Magic-Angle-Spinning (MAS) NMR and 27Al Multiple-Quantum Magic-Angle-Spinning NMR (MQMAS) measurements are reported for the δ-isomer of the Al 13 Keggin structure at high spinning speed and 14.1 T field. Values for the CQ and η parameters are on the same scale as those seen in other isomers of the Al 13 structure. Density functional theory (DFT) calculations are performed for comparison to the experimental fits using the B3PW91/6-31+G* and PBE0/6-31+G* levels of theory, with the Polarizable Continuum Model (PCM).

  13. Fiber structure formation in melt spinning of bio-based aliphatic co-polyesters

    NASA Astrophysics Data System (ADS)

    Qin, Qing; Takarada, Wataru; Kikutani, Takeshi

    2015-05-01

    High-speed melt spinning of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) with the 3-hydroxyhexanoate composition of 5.4 mol% was carried out. Melting temperature of this polymer is 141.5°C. It has been reported that PHBH fibers of good appearance can be prepared through the melt spinning process only when extrusion temperature is lower than the melting temperature of pure PHB (176 °C). The high-speed melt spinning experiment in this study revealed that the crystallization of PHBH proceeded at high take-up velocities even when the extrusion temperature was higher than the melting temperature of PHB. This result is considered to be due to the enhancement of crystallization through the application of high tensile stress to the molten polymer in the spinning line. As-spun fibers showed sufficiently high mechanical properties. On the other hand, crystalline orientation of α-form crystal increased with an increase in the take-up velocity and the existence of a small amount of β-form crystals was detected at high take-up velocities. This is another indication for the occurrence of crystallization under high tensile stress.

  14. Wurtzite Spin-Lasers

    NASA Astrophysics Data System (ADS)

    Xu, Gaofeng; Faria Junior, Paulo E.; Sipahi, Guilherme M.; Zutic, Igor

    Lasers in which spin-polarized carriers are injected provide paths to different practical room temperature spintronic devices, not limited to magnetoresistive effects. While theoretical studies of such spin-lasers have focused on zinc-blende semiconductors as their active regions, the first electrically injected carriers at room temperature were recently demonstrated in GaN-based wurtzite semiconductors, recognized also for the key role as highly-efficient light emitting diodes. By focusing on a wurtzite quantum well-based spin-laser, we use accurate electronic structure calculations to develop a microscopic description for its lasing properties. We discuss important differences between wurtzite and zinc-blende spin-lasers.

  15. Thermal emergence of laser-induced spin dynamics for a Ni4 cluster

    NASA Astrophysics Data System (ADS)

    Sold, S.; Lefkidis, G.; Kamble, B.; Berakdar, J.; Hübner, W.

    2018-05-01

    We investigate the thermodynamic behavior of laser-induced spin dynamics of a perfect and a distorted Ni4 square in combination with an external thermal bath, by using the Lindblad-superoperator formalism. The energies of the planar molecules are determined with highly correlated ab initio quantum-chemistry calculations. When the distorted structure couples to the thermal bath a unique spin dynamics, i.e., a spin flip, emerges, due to the interplay of optically and thermally induced electronic transitions. The charge and spin relaxation times in dependence on the coupling strength and the bath temperature are determined and compared.

  16. Reduction of shunt current in buffer-free IrMn based spin-valve structures

    NASA Astrophysics Data System (ADS)

    Kocaman, B.; Akdoğan, N.

    2018-06-01

    The presence of thick buffer layers in magnetic sensor devices decreases sensor sensitivity due to shunt currents. With this motivation, we produced IrMn-based spin-valve multilayers without using buffer layer. We also studied the effects of post-annealing and IrMn thickness on exchange bias field (HEB) and blocking temperature (TB) of the system. Magnetization measurements indicate that both HEB and TB values are significantly enhanced with post-annealing of IrMn layer. In addition, we report that IrMn thickness of the system strongly influences the magnetization and transport characteristics of the spin-valve structures. We found that the minimum thickness of IrMn layer is 6 nm in order to achieve the lowest shunt current and high blocking temperature (>300 K). We also investigated the training of exchange bias to check the long-term durability of IrMn-based spin-valve structures for device applications.

  17. Quantum model of a solid-state spin qubit: Ni cluster on a silicon surface by the generalized spin Hamiltonian and X-ray absorption spectroscopy investigations

    NASA Astrophysics Data System (ADS)

    Farberovich, Oleg V.; Mazalova, Victoria L.; Soldatov, Alexander V.

    2015-11-01

    We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit with substrate is considered in GSH at the calculation of exchange integrals Jij of the nanosystem Ni7-Si in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (environment) with atoms of the Ni7-cluster. The energy pattern was found from the effective GSH Hamiltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni clusters on the silicon surface. The solution of the problem of the entanglement between spin states in the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral gap in their density of states. For quantifying the distribution of the entanglement between the individual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of entanglement (DOE). In this study we have developed and used the advanced high-precision numerical techniques to accurately assess the details of the decoherence process governing the dynamics of the N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed time (0.327 μs). The comparison of the energy pattern with the anisotropic exchange models conventionally used for the analysis of this system and, with the results of the experimental XANES spectra, shows that our complex investigations provide a good description of the pattern of the spin levels and the spin structures of the nanomagnetic Ni7 qubit. The results are discussed in the view of the general problem of the solid-state spin qubits and the spin structure of the Ni cluster.

  18. Computing distance distributions from dipolar evolution data with overtones: RIDME spectroscopy with Gd(iii)-based spin labels.

    PubMed

    Keller, Katharina; Mertens, Valerie; Qi, Mian; Nalepa, Anna I; Godt, Adelheid; Savitsky, Anton; Jeschke, Gunnar; Yulikov, Maxim

    2017-07-21

    Extraction of distance distributions between high-spin paramagnetic centers from relaxation induced dipolar modulation enhancement (RIDME) data is affected by the presence of overtones of dipolar frequencies. As previously proposed, we account for these overtones by using a modified kernel function in Tikhonov regularization analysis. This paper analyzes the performance of such an approach on a series of model compounds with the Gd(iii)-PyMTA complex serving as paramagnetic high-spin label. We describe the calibration of the overtone coefficients for the RIDME kernel, demonstrate the accuracy of distance distributions obtained with this approach, and show that for our series of Gd-rulers RIDME technique provides more accurate distance distributions than Gd(iii)-Gd(iii) double electron-electron resonance (DEER). The analysis of RIDME data including harmonic overtones can be performed using the MATLAB-based program OvertoneAnalysis, which is available as open-source software from the web page of ETH Zurich. This approach opens a perspective for the routine use of the RIDME technique with high-spin labels in structural biology and structural studies of other soft matter.

  19. Multiple band structures in 70Ge

    NASA Astrophysics Data System (ADS)

    Haring-Kaye, R. A.; Morrow, S. I.; Döring, J.; Tabor, S. L.; Le, K. Q.; Allegro, P. R. P.; Bender, P. C.; Elder, R. M.; Medina, N. H.; Oliveira, J. R. B.; Tripathi, Vandana

    2018-02-01

    High-spin states in 70Ge were studied using the 55Mn(18O,p 2 n ) fusion-evaporation reaction at a beam energy of 50 MeV. Prompt γ -γ coincidences were measured using the Florida State University Compton-suppressed Ge array consisting of three Clover detectors and seven single-crystal detectors. An investigation of these coincidences resulted in the addition of 31 new transitions and the rearrangement of four others in the 70Ge level scheme, providing a more complete picture of the high-spin decay pattern involving both positive- and negative-parity states with multiple band structures. Spins were assigned based on directional correlation of oriented nuclei ratios, which many times also led to unambiguous parity determinations based on the firm assignments for low-lying states made in previous work. Total Routhian surface calculations, along with the observed trends in the experimental kinematic moment of inertia with rotational frequency, support the multiquasiparticle configurations of the various crossing bands proposed in recent studies. The high-spin excitation spectra predicted by previous shell-model calculations compare favorably with the experimental one determined from this study.

  20. Strongly deformed nuclear shapes at ultra-high spin and shape coexistence in N ~ 90 nuclei

    DOE PAGES

    Riley, M. A.; Aguilar, A.; Evans, A. O.; ...

    2009-01-01

    The N ~ 90 region of the nuclear chart has featured prominently as the spectroscopy of nuclei at extreme spin has progressed. This talk will present recent discoveries from investigations of high spin behavior in the N ~ 90 Er, Tm and Yb nuclei utilizing the Gammasphere gamma-ray spectrometer. In particular it will include discussion of the beautiful shape evolution and coexistence observed in these nuclei along with the identification of a remarkable new family of band structures. The latter are very weakly populated rotational sequences with high moment of inertia that bypass the classic terminating configurations near spin 40-50h,more » marking a return to collectivity that extends discrete γ-ray spectroscopy to well over 60h. Establishing the nature of the yrast states in these nuclei beyond the oblate band-termination states has been a major goal for the past two decades. Cranking calculations suggest that these new structures most likely represent stable triaxial strongly deformed bands that lie in a valley of favored shell energy in deformation and particle-number space.« less

  1. Topologically nontrivial electronic bands and tunable Dirac cones in graphynes with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Juricic, Vladimir; van Miert, Guido; Morais Smith, Cristiane

    2015-03-01

    Graphynes represent an emerging family of carbon allotropes that differ from graphene by the presence of the triple bonds (-C ≡C-) in their band structure. They have recently attracted much interest due to the tunability of the Dirac cones in the band structure. I will show that the spin-orbit coupling in β-graphyne could produce various effects related to the topological properties of its electronic bands. Intrinsic spin-orbit coupling yields high- and tunable Chern-number bands, which may host both topological and Chern insulators, in the presence and absence of time-reversal symmetry, respectively. Furthermore, Rashba spin-orbit coupling can be used to control the position and the number of Dirac cones in the Brillouin zone. Finally, I will also discuss the electronic properties of α - and γ - graphyne in the presence of the spin-orbit coupling within recently developed general theory of spin-orbit couplings in graphynes. Work supported by the Netherlands Organization for Scientific Research (NWO).

  2. Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO 4

    DOE PAGES

    Toft-Petersen, Rasmus; Reehuis, Manfred; Jensen, Thomas B. S.; ...

    2015-07-06

    We report significant details of the magnetic structure and spin dynamics of LiFePO 4 obtained by single-crystal neutron scattering. Our results confirm a previously reported collinear rotation of the spins away from the principal b axis, and they determine that the rotation is toward the a axis. In addition, we find a significant spin-canting component along c. Furthermore, the possible causes of these components are discussed, and their significance for the magnetoelectric effect is analyzed. Inelastic neutron scattering along the three principal directions reveals a highly anisotropic hard plane consistent with earlier susceptibility measurements. While using a spin Hamiltonian, wemore » show that the spin dimensionality is intermediate between XY- and Ising-like, with an easy b axis and a hard c axis. As a result, it is shown that both next-nearest neighbor exchange couplings in the bc plane are in competition with the strongest nearest neighbor coupling.« less

  3. Thermal spin current generation and spin transport in Pt/magnetic-insulator/Py heterostructures

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Tzu; Safranski, Christopher; Krivorotov, Ilya; Sun, Jonathan

    Magnetic insulators can transmit spin current via magnon propagation while blocking charge current. Furthermore, under Joule heating, magnon flow as a result of the spin Seeback effect can generate additional spin current. Incorporating magnetic insulators in a spin-orbit torque magnetoresistive memory device can potentially yield high switching efficiencies. Here we report the DC magneto-transport studies of these two effects in Pt/magnetic-insulator/Py heterostructures, using ferrimagnetic CoFexOy (CFO) and antiferromagnet NiO as the model magnetic insulators. We observe the presence and absence of the inverse spin-Hall signals from the thermal spin current in Pt/CFO/Py and Pt/NiO/Py structures. These results are consistent with our spin-torque FMR linewidths in comparison. We will also report investigations into the magnetic field-angle dependence of these observations.

  4. Optimal Charge-to-Spin Conversion in Graphene on Transition-Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Offidani, Manuel; Milletarı, Mirco; Raimondi, Roberto; Ferreira, Aires

    2017-11-01

    When graphene is placed on a monolayer of semiconducting transition metal dichalcogenide (TMD) its band structure develops rich spin textures due to proximity spin-orbital effects with interfacial breaking of inversion symmetry. In this work, we show that the characteristic spin winding of low-energy states in graphene on a TMD monolayer enables current-driven spin polarization, a phenomenon known as the inverse spin galvanic effect (ISGE). By introducing a proper figure of merit, we quantify the efficiency of charge-to-spin conversion and show it is close to unity when the Fermi level approaches the spin minority band. Remarkably, at high electronic density, even though subbands with opposite spin helicities are occupied, the efficiency decays only algebraically. The giant ISGE predicted for graphene on TMD monolayers is robust against disorder and remains large at room temperature.

  5. Hierarchy of low-energy models of the electronic structure of cuprate HTSCs: The role of long-range spin-correlated hops

    NASA Astrophysics Data System (ADS)

    Val'kov, V. V.; Mitskan, V. A.; Dzebisashvili, D. M.; Barabanov, A. F.

    2018-02-01

    It is shown that for the three-band Emery p-d-model that reflects the real structure of the CuO2-plane of high-temperature superconductors in the regime of strong electron correlations, it is possible to carry out a sequence of reductions to the effective models reproducing low-energy features of elementary excitation spectrum and revealing the spin-polaron nature of the Fermi quasiparticles. The first reduction leads to the spin-fermion model in which the subsystem of spin moments, coupled by the exchange interaction and localized on copper ions, strongly interacts with oxygen holes. The second reduction deals with the transformation from the spin-fermion model to the φ-d-exchange model. An important feature of this transformation is the large energy of the φ-d-exchange coupling, which leads to the formation of spin polarons. The use of this fact allows us to carry out the third reduction, resulting in the t ˜-J˜ *-I -model. Its distinctive feature is the importance of spin-correlated hops as compared to the role of such processes in the commonly used t-J*-model derived from the Hubbard model. Based on the comparative analysis of the spectrum of Fermi excitations calculated for the obtained effective models of the CuO2-plane of high-temperature superconductors, the important role of the usually ignored long-range spin-correlated hops is determined.

  6. Mechanism of the high transition temperature for the 1111-type iron-based superconductors R FeAsO (R =rare earth ): Synergistic effects of local structures and 4 f electrons

    NASA Astrophysics Data System (ADS)

    Zhang, Lifang; Meng, Junling; Liu, Xiaojuan; Yao, Fen; Meng, Jian; Zhang, Hongjie

    2017-07-01

    Among the iron-based superconductors, the 1111-type Fe-As-based superconductors REFeAs O1 -xFx (RE = rare earth) exhibit high transition temperatures (Tc) above 40 K. We perform first-principles calculations based on density functional theory with the consideration of both electronic correlations and spin-orbit couplings on rare earths and Fe ions to study the underlying mechanism as the microscopic structural distortions in REFeAsO tuned by both lanthanide contraction and external strain. The electronic structures evolve similarly in both cases. It is found that there exist an optimal structural regime that will not only initialize but also optimize the orbital fluctuations due to the competing Fe-As and Fe-Fe crystal fields. We also find that the key structural features in REFeAsO, such as As-Fe-As bond angle, intrinsically induce the modification of the Fermi surface and dynamic spin fluctuation. These results suggest that the superconductivity is mediated by antiferromagnetic spin fluctuations. Simultaneously, we show that the rare-earth 4 f electrons play important roles on the high transition temperature whose behavior might be analogous to that of the heavy-fermion superconductors. The superconductivity of these 1111-type iron-based superconductors with high-Tc is considered to originate from the synergistic effects of local structures and 4 f electrons.

  7. Spin-polarized currents generated by magnetic Fe atomic chains.

    PubMed

    Lin, Zheng-Zhe; Chen, Xi

    2014-06-13

    Fe-based devices are widely used in spintronics because of high spin-polarization and magnetism. In this work, freestanding Fe atomic chains, the thinnest wires, were used to generate spin-polarized currents due to the spin-polarized energy bands. By ab initio calculations, the zigzag structure was found to be more stable than the wide-angle zigzag structure and had a higher ratio of spin-up and spin-down currents. By our theoretical prediction, Fe atomic chains have a sufficiently long thermal lifetime only at T ≦̸ 150 K, while C atomic chains are very stable even at T = 1000 K. This means that the spintronic devices based on Fe chains could work only at low temperatures. A system constructed by a short Fe chain sandwiched between two graphene electrodes could be used as a spin-polarized current generator, while a C chain could not be used in this way. The present work may be instructive and meaningful to further practical applications based on recent technical developments on the preparation of metal atomic chains (Proc. Natl. Acad. Sci. USA 107 9055 (2010)).

  8. Laser photoelectron spectroscopy of MnH - and FeH - : Electronic structures of the metal hydrides, identification of a low-spin excited state of MnH, and evidence for a low-spin ground state of FeH

    NASA Astrophysics Data System (ADS)

    Stevens, Amy E.; Feigerle, C. S.; Lineberger, W. C.

    1983-05-01

    The laser photoelectron spectra of MnH- and MnD-, and FeH- and FeD- are reported. A qualitative description of the electronic structure of the low-spin and high-spin states of the metal hydrides is developed, and used to interpret the spectra. A diagonal transition in the photodetachment to the known high-spin, 7Σ+, ground state of MnH is observed. An intense off-diagonal transition to a state of MnH, at 1725±50 cm-1 excitation energy, is attributed to loss of an antibonding electron from MnH-, to yield a low-spin quintet state of MnH. For FeH- the photodetachment to the ground state is an off-diagonal transition, attributed to loss of the antibonding electron from FeH-, to yield a low-spin quartet ground state of FeH. A diagonal transition results in an FeH state at 1945±55 cm-1; this state of FeH is assigned as the lowest-lying high-spin sextet state of FeH. An additional excited state of MnH and two other excited states of FeH are observed. Excitation energies for all the states are reported; vibrational frequencies and bond lengths for the ions and several states of the neutrals are also determined from the spectra. The electron affinity of MnH is found to be 0.869±0.010 eV; and the electron affinity of FeH is determined to be 0.934±0.011 eV. Spectroscopic constants for the various deuterides are also reported.

  9. Spectroscopic studies on the active site of hydroperoxide lyase; the influence of detergents on its conformation.

    PubMed

    Noordermeer, M A; Veldink, G A; Vliegenthart, J F

    2001-02-02

    Expression of high quantities of alfalfa hydroperoxide lyase in Escherichia coli made it possible to study its active site and structure in more detail. Circular dichroism (CD) spectra showed that hydroperoxide lyase consists for about 75% of alpha-helices. Electron paramagnetic resonance (EPR) spectra confirmed its classification as a cytochrome P450 enzyme. The positive influence of detergents on the enzyme activity is paralleled by a spin state transition of the heme Fe(III) from low to high spin. EPR and CD spectra showed that detergents induce a subtle conformational change, which might result in improved substrate binding. Because hydroperoxide lyase is thought to be a membrane bound protein and detergents mimic a membrane environment, the more active, high spin form likely represents the in vivo conformation. Furthermore, the spin state appeared to be temperature-dependent, with the low spin state favored at low temperature. Point mutants of the highly conserved cysteine in domain D indicated that this residue might be involved in heme binding.

  10. Dynamic magnetic hysteresis properties of two-dimensional ferrimagnetic structures containing high-spin (S = 5/2) and low-spin (S = 1/2)

    NASA Astrophysics Data System (ADS)

    Batı, Mehmet; Ertaş, Mehmet

    2017-09-01

    The dynamic hysteresis behaviors of a containing high spin-5/2 and low spin-1/2 Ising ferrimagnetic system on a square lattice are studied by using the dynamic mean-field approximation. The influences of the temperature, the single-ion anisotropy and the frequency on dynamic hysteresis behaviors are investigated in detail. Somewhat characteristic behaviors are found, such as the presence of triple hysteresis loop for appropriate values of the crystal field or temperature. Besides, we observed that, hysteresis loop area and phase transition points are very sensitive to changes in frequency and thus have profound importance in device application.

  11. High Sensitivity Combined with Extended Structural Coverage of Labile Compounds via Nanoelectrospray Ionization at Subambient Pressures

    DOE PAGES

    Cox, Jonathan T.; Kronewitter, Scott R.; Shukla, Anil K.; ...

    2014-09-15

    Subambient pressure ionization with nanoelectrospray (SPIN) has proven to be effective in producing ions with high efficiency and transmitting them to low pressures for high sensitivity mass spectrometry (MS) analysis. Here we present evidence that not only does the SPIN source improve MS sensitivity but also allows for gentler ionization conditions. The gentleness of a conventional heated capillary electrospray ionization (ESI) source and the SPIN source was compared by the liquid chromatography mass spectrometry (LC-MS) analysis of colominic acid. Colominic acid is a mixture of sialic acid polymers of different lengths containing labile glycosidic linkages between monomer units necessitating amore » gentle ion source. By coupling the SPIN source with high resolution mass spectrometry and using advanced data processing tools, we demonstrate much extended coverage of sialic acid polymer chains as compared to using the conventional ESI source. Additionally we show that SPIN-LC-MS is effective in elucidating polymer features with high efficiency and high sensitivity previously unattainable by the conventional ESI-LC-MS methods.« less

  12. Magnetic and Electric Transverse Spin Density of Spatially Confined Light

    NASA Astrophysics Data System (ADS)

    Neugebauer, Martin; Eismann, Jörg S.; Bauer, Thomas; Banzer, Peter

    2018-04-01

    When a beam of light is laterally confined, its field distribution can exhibit points where the local magnetic and electric field vectors spin in a plane containing the propagation direction of the electromagnetic wave. The phenomenon indicates the presence of a nonzero transverse spin density. Here, we experimentally investigate this transverse spin density of both magnetic and electric fields, occurring in highly confined structured fields of light. Our scheme relies on the utilization of a high-refractive-index nanoparticle as a local field probe, exhibiting magnetic and electric dipole resonances in the visible spectral range. Because of the directional emission of dipole moments that spin around an axis parallel to a nearby dielectric interface, such a probe particle is capable of locally sensing the magnetic and electric transverse spin density of a tightly focused beam impinging under normal incidence with respect to said interface. We exploit the achieved experimental results to emphasize the difference between magnetic and electric transverse spin densities.

  13. Redox Thermodynamics of High-Spin and Low-Spin Forms of Chlorite Dismutases with Diverse Subunit and Oligomeric Structures

    PubMed Central

    2012-01-01

    Chlorite dismutases (Clds) are heme b-containing oxidoreductases that convert chlorite to chloride and dioxygen. In this work, the thermodynamics of the one-electron reduction of the ferric high-spin forms and of the six-coordinate low-spin cyanide adducts of the enzymes from Nitrobacter winogradskyi (NwCld) and Candidatus “Nitrospira defluvii” (NdCld) were determined through spectroelectrochemical experiments. These proteins belong to two phylogenetically separated lineages that differ in subunit (21.5 and 26 kDa, respectively) and oligomeric (dimeric and pentameric, respectively) structure but exhibit similar chlorite degradation activity. The E°′ values for free and cyanide-bound proteins were determined to be −119 and −397 mV for NwCld and −113 and −404 mV for NdCld, respectively (pH 7.0, 25 °C). Variable-temperature spectroelectrochemical experiments revealed that the oxidized state of both proteins is enthalpically stabilized. Molecular dynamics simulations suggest that changes in the protein structure are negligible, whereas solvent reorganization is mainly responsible for the increase in entropy during the redox reaction. Obtained data are discussed with respect to the known structures of the two Clds and the proposed reaction mechanism. PMID:23126649

  14. Site-specific spin crossover in F e2Ti O4 post-spinel under high pressure up to nearly a megabar

    NASA Astrophysics Data System (ADS)

    Xu, W. M.; Hearne, G. R.; Layek, S.; Levy, D.; Itié, J.-P.; Pasternak, M. P.; Rozenberg, G. Kh.; Greenberg, E.

    2017-07-01

    X-ray diffraction studies to ˜90 GPa at room temperature show that F e2Ti O4 ferrous inverse spinel undergoes the following sequence of structural transitions: cubic (F d 3 ¯m ) →˜8 GPa tetragonal (I 41/a m d ) →˜16 GPa orthorhombic (C m c m ) →˜55 GPa orthorhombic (P m m a ) , at the indicated onset transition pressures. Within the Cmcm phase, site-specific spin crossover is initiated and involves only highly distorted octahedral sites constituting ˜25 % of all Fe locations. This is manifest as a steeper volume decrease of Δ V /V0˜3.5 % beyond ˜40 GPa and an emergent diamagnetic component discerned in 57Fe Mössbauer spectroscopy at variable cryogenic temperatures. A subsequent C m c m →P m m a Fe/Ti disorder-order reconfiguration is facilitated at sixfold coordinated (octahedral) sites. The rest of the high-spin Fe in sixfold and eightfold coordinated sites (˜75 % abundance) in the Pmma phase exhibit average saturation internal magnetic fields of Hh f˜42 T to ˜90 GPa , typical of spin-only (orbitally quenched) Fermi-contact values. By contrast, average Hh f˜20 T values, signifying unquenched orbital moments, occur below the 40 -45 GPa spin-crossover initiation regime in the Cmcm phase. Therefore, site-specific spin crossover invokes a cooperative lattice response and polyhedral distortions at the rest of the high-spin Fe sites, translating to 3 d level (sub-band) changes and consequential orbital moment quenching. Near ˜90 GPa , F e2Ti O4 is a partially spin-converted chemically ordered Pmma post-spinel having a persistent charge gap of ˜100 meV . Despite structural symmetry changes, partial spin crossover and lattice compressibility, resulting in a ˜33 % total reduction in unit-cell volume and corresponding 3 d bandwidth broadening, strong electron correlations persist at high densification.

  15. Fabrication of highly oriented nanoporous fibers via airflow bubble-spinning

    NASA Astrophysics Data System (ADS)

    Liu, Fujuan; Li, Shaokai; Fang, Yue; Zheng, Fangfang; Li, Junhua; He, Jihuan

    2017-11-01

    Highly oriented Poly(lactic acid) (PLA) nanofibers with nanoporous structures has been successfully fabricated via airflow bubble-spinning without electrostatic hazard. In this work, the volatile solvent was necessary for preparing the nanoporous fiber, which was attributed to the competition between phase separation and solvent evaporation. The interconnected porous structures were affected by the processing variables of solution concentration, airflow temperature, collecting distance and relative humidity (RH). Besides, the rheological properties of solutions were studied and the highly oriented PLA nanofibers with nanoporous structure were also completely characterized using scanning electron microscope (SEM). This study provided a novel technique that successfully gets rid of the potential safety hazards caused by unexpected static to prepare highly oriented nanoporous fibers, which would demonstrate an impressive prospect for the fields of adsorption and filtration.

  16. Highly Efficient Room Temperature Spin Injection Using Spin Filtering in MgO

    NASA Astrophysics Data System (ADS)

    Jiang, Xin

    2007-03-01

    Efficient electrical spin injection into GaAs/AlGaAs quantum well structures was demonstrated using CoFe/MgO tunnel spin injectors at room temperature. The spin polarization of the injected electron current was inferred from the circular polarization of electroluminescence from the quantum well. Polarization values as high as 57% at 100 K and 47% at 290 K were obtained in a perpendicular magnetic field of 5 Tesla. The interface between the tunnel spin injector and the GaAs interface remained stable even after thermal annealing at 400 ^oC. The temperature dependence of the electron-hole recombination time and the electron spin relaxation time in the quantum well was measured using time-resolved optical techniques. By taking into account of these properties of the quantum well, the intrinsic spin injection efficiency can be deduced. We conclude that the efficiency of spin injection from a CoFe/MgO spin injector is nearly independent of temperature and, moreover, is highly efficient with an efficiency of ˜ 70% for the temperature range studied (10 K to room temperature). Tunnel spin injectors are thus highly promising components of future semiconductor spintronic devices. Collaborators: Roger Wang^1, 3, Gian Salis^2, Robert Shelby^1, Roger Macfarlane^1, Seth Bank^3, Glenn Solomon^3, James Harris^3, Stuart S. P. Parkin^1 ^1 IBM Almaden Research Center, San Jose, CA 95120 ^2 IBM Zurich Research Laboratory, S"aumerstrasse 4, 8803 R"uschlikon, Switzerland ^3 Solid States and Photonics Laboratory, Stanford University, Stanford, CA 94305

  17. Second order nonlinear equations of motion for spinning highly flexible line-elements. [for spacecraft solar sail

    NASA Technical Reports Server (NTRS)

    Salama, M.; Trubert, M.

    1979-01-01

    A formulation is given for the second order nonlinear equations of motion for spinning line-elements having little or no intrinsic structural stiffness. Such elements have been employed in recent studies of structural concepts for future large space structures such as the Heliogyro solar sailer. The derivation is based on Hamilton's variational principle and includes the effect of initial geometric imperfections (axial, curvature, and twist) on the line-element dynamics. For comparison with previous work, the nonlinear equations are reduced to a linearized form frequently found in the literature. The comparison has revealed several new spin-stiffening terms that have not been previously identified and/or retained. They combine geometric imperfections, rotary inertia, Coriolis, and gyroscopic terms.

  18. Spin Funneling for Enhanced Spin Injection into Ferromagnets

    PubMed Central

    Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo

    2016-01-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory. PMID:27374496

  19. Spin Funneling for Enhanced Spin Injection into Ferromagnets

    NASA Astrophysics Data System (ADS)

    Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo

    2016-07-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory.

  20. The anisotropic tunneling behavior of spin transport in graphene-based magnetic tunneling junction

    NASA Astrophysics Data System (ADS)

    Pan, Mengchun; Li, Peisen; Qiu, Weicheng; Zhao, Jianqiang; Peng, Junping; Hu, Jiafei; Hu, Jinghua; Tian, Wugang; Hu, Yueguo; Chen, Dixiang; Wu, Xuezhong; Xu, Zhongjie; Yuan, Xuefeng

    2018-05-01

    Due to the theoretical prediction of large tunneling magnetoresistance (TMR), graphene-based magnetic tunneling junction (MTJ) has become an important branch of high-performance spintronics device. In this paper, the non-collinear spin filtering and transport properties of MTJ with the Ni/tri-layer graphene/Ni structure were studied in detail by utilizing the non-equilibrium Green's formalism combined with spin polarized density functional theory. The band structure of Ni-C bonding interface shows that Ni-C atomic hybridization facilitates the electronic structure consistency of graphene and nickel, which results in a perfect spin filtering effect for tri-layer graphene-based MTJ. Furthermore, our theoretical results show that the value of tunneling resistance changes with the relative magnetization angle of two ferromagnetic layers, displaying the anisotropic tunneling behavior of graphene-based MTJ. This originates from the resonant conduction states which are strongly adjusted by the relative magnetization angles. In addition, the perfect spin filtering effect is demonstrated by fitting the anisotropic conductance with the Julliere's model. Our work may serve as guidance for researches and applications of graphene-based spintronics device.

  1. Simultaneous optimization of spin fluctuations and superconductivity under pressure in an iron-based superconductor.

    PubMed

    Ji, G F; Zhang, J S; Ma, Long; Fan, P; Wang, P S; Dai, J; Tan, G T; Song, Y; Zhang, C L; Dai, Pengcheng; Normand, B; Yu, Weiqiang

    2013-09-06

    We present a high-pressure NMR study of the overdoped iron pnictide superconductor NaFe0.94Co0.06As. The low-energy antiferromagnetic spin fluctuations in the normal state, manifest as the Curie-Weiss upturn in the spin-lattice relaxation rate 1/(75)T1T, first increase strongly with pressure but fall again at P>Popt=2.2  GPa. Neither long-ranged magnetic order nor a structural phase transition is encountered up to 2.5 GPa. The superconducting transition temperature Tc shows a pressure dependence identical to the spin fluctuations. Our observations demonstrate that magnetic correlations and superconductivity are optimized simultaneously as a function of the electronic structure, thereby supporting very strongly a magnetic origin of superconductivity.

  2. Spin Seebeck effect and thermoelectric phenomena in superconducting hybrids with magnetic textures or spin-orbit coupling

    PubMed Central

    Bathen, Marianne Etzelmüller; Linder, Jacob

    2017-01-01

    We theoretically consider the spin Seebeck effect, the charge Seebeck coefficient, and the thermoelectric figure of merit in superconducting hybrid structures including either magnetic textures or intrinsic spin-orbit coupling. We demonstrate that large magnitudes for all these quantities are obtainable in Josephson-based systems with either zero or a small externally applied magnetic field. This provides an alternative to the thermoelectric effects generated in high-field (~1 T) superconducting hybrid systems, which were recently experimentally demonstrated. The systems studied contain either conical ferromagnets, spin-active interfaces, or spin-orbit coupling. We present a framework for calculating the linear thermoelectric response for both spin and charge of a system upon applying temperature and voltage gradients based on quasiclassical theory which allows for arbitrary spin-dependent textures and fields to be conveniently incorporated. PMID:28139667

  3. Nuclear spin noise in the central spin model

    NASA Astrophysics Data System (ADS)

    Fröhling, Nina; Anders, Frithjof B.; Glazov, Mikhail

    2018-05-01

    We study theoretically the fluctuations of the nuclear spins in quantum dots employing the central spin model which accounts for the hyperfine interaction of the nuclei with the electron spin. These fluctuations are calculated both with an analytical approach using homogeneous hyperfine couplings (box model) and with a numerical simulation using a distribution of hyperfine coupling constants. The approaches are in good agreement. The box model serves as a benchmark with low computational cost that explains the basic features of the nuclear spin noise well. We also demonstrate that the nuclear spin noise spectra comprise a two-peak structure centered at the nuclear Zeeman frequency in high magnetic fields with the shape of the spectrum controlled by the distribution of the hyperfine constants. This allows for direct access to this distribution function through nuclear spin noise spectroscopy.

  4. Spin Seebeck effect and thermoelectric phenomena in superconducting hybrids with magnetic textures or spin-orbit coupling.

    PubMed

    Bathen, Marianne Etzelmüller; Linder, Jacob

    2017-01-31

    We theoretically consider the spin Seebeck effect, the charge Seebeck coefficient, and the thermoelectric figure of merit in superconducting hybrid structures including either magnetic textures or intrinsic spin-orbit coupling. We demonstrate that large magnitudes for all these quantities are obtainable in Josephson-based systems with either zero or a small externally applied magnetic field. This provides an alternative to the thermoelectric effects generated in high-field (~1 T) superconducting hybrid systems, which were recently experimentally demonstrated. The systems studied contain either conical ferromagnets, spin-active interfaces, or spin-orbit coupling. We present a framework for calculating the linear thermoelectric response for both spin and charge of a system upon applying temperature and voltage gradients based on quasiclassical theory which allows for arbitrary spin-dependent textures and fields to be conveniently incorporated.

  5. The 3D structure of QCD and the roots of the Standard Model

    NASA Astrophysics Data System (ADS)

    Mulders, P. J.

    2016-03-01

    For many phenomenological applications involving hadrons in high energy processes the hadronic structure can be taken care of by parton distribution functions (PDFs), in which only the collinear momenta of quarks and gluons are important. In principle the transverse structure, however, provides interesting new phenomenology. Taking into account transverse momenta of partons one works with transverse momentum dependent PDFs (TMDs), These allow all spin-spin correlations and also spin-orbit correlations that have a time reversal odd character and lead to new observables. In many theoretical developments the link to the collinear treatment is used. In this talk I will speculate on a novel view of the 3-dimensional (3D) structure of QCD, which fits in a broader study looking at the roots of the Standard Model of particle physics.

  6. Highly tunable charge and spin transport in silicene junctions: phase transitions and half-metallic states.

    PubMed

    Mahdavifar, Maryam; Khoeini, Farhad

    2018-08-10

    We report peculiar charge and spin transport properties in S-shaped silicene junctions with the Kane-Mele tight-binding model. In this work, we investigate the effects of electric and exchange fields on the charge and spin transport properties. Our results show that by applying a perpendicular electric field, metal-semiconductor and also semimetal-semiconductor phase transitions occur in our systems. Furthermore, full spin current can be obtained in the structures, so the half-metallic states are observable. Our results enable us to control charge and spin currents and provide new opportunities and applications in silicene-based electronics, optoelectronics, and spintronics.

  7. Absence of giant spin splitting in the two-dimensional electron liquid at the surface of SrTiO3 (001)

    NASA Astrophysics Data System (ADS)

    McKeown Walker, S.; Riccò, S.; Bruno, F. Y.; de la Torre, A.; Tamai, A.; Golias, E.; Varykhalov, A.; Marchenko, D.; Hoesch, M.; Bahramy, M. S.; King, P. D. C.; Sánchez-Barriga, J.; Baumberger, F.

    2016-06-01

    We reinvestigate the putative giant spin splitting at the surface of SrTiO3 reported by Santander-Syro et al. [Nat. Mater. 13, 1085 (2014), 10.1038/nmat4107]. Our spin- and angle-resolved photoemission experiments on fractured (001) oriented surfaces supporting a two-dimensional electron liquid with high carrier density show no detectable spin polarization in the photocurrent. We demonstrate that this result excludes a giant spin splitting while it is consistent with the unconventional Rashba-like splitting seen in band structure calculations that reproduce the experimentally observed ladder of quantum confined subbands.

  8. Study on spin and optical polarization in a coupled InGaN/GaN quantum well and quantum dots structure.

    PubMed

    Yu, Jiadong; Wang, Lai; Di Yang; Zheng, Jiyuan; Xing, Yuchen; Hao, Zhibiao; Luo, Yi; Sun, Changzheng; Han, Yanjun; Xiong, Bing; Wang, Jian; Li, Hongtao

    2016-10-19

    The spin and optical polarization based on a coupled InGaN/GaN quantum well (QW) and quantum dots (QDs) structure is investigated. In this structure, spin-electrons can be temporarily stored in QW, and spin injection from the QW into QDs via spin-conserved tunneling is enabled. Spin relaxation can be suppressed owing to the small energy difference between the initial state in the QW and the final states in the QDs. Photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements are carried out on optical spin-injection and -detection. Owing to the coupled structure, spin-conserved tunneling mechanism plays a significant role in preventing spin relaxation process. As a result, a higher circular polarization degree (CPD) (~49.1%) is achieved compared with conventional single layer of QDs structure. Moreover, spin relaxation time is also extended to about 2.43 ns due to the weaker state-filling effect. This coupled structure is believed an appropriate candidate for realization of spin-polarized light source.

  9. Recent trends in spin-resolved photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Okuda, Taichi

    2017-12-01

    Since the discovery of the Rashba effect on crystal surfaces and also the discovery of topological insulators, spin- and angle-resolved photoelectron spectroscopy (SARPES) has become more and more important, as the technique can measure directly the electronic band structure of materials with spin resolution. In the same way that the discovery of high-Tc superconductors promoted the development of high-resolution angle-resolved photoelectron spectroscopy, the discovery of this new class of materials has stimulated the development of new SARPES apparatus with new functions and higher resolution, such as spin vector analysis, ten times higher energy and angular resolution than conventional SARPES, multichannel spin detection, and so on. In addition, the utilization of vacuum ultra violet lasers also opens a pathway to the realization of novel SARPES measurements. In this review, such recent trends in SARPES techniques and measurements will be overviewed.

  10. 27Al MQMAS of the δ-Al 13-Keggin

    DOE PAGES

    Pilgrim, C. D.; Callahan, J. R.; Colla, C. A.; ...

    2017-01-20

    Here, one-dimensional 27Al, 23Na Magic-Angle-Spinning (MAS) NMR and 27Al Multiple-Quantum Magic-Angle-Spinning NMR (MQMAS) measurements are reported for the δ-isomer of the Al 13 Keggin structure at high spinning speed and 14.1 T field. Values for the CQ and η parameters are on the same scale as those seen in other isomers of the Al 13 structure. Density functional theory (DFT) calculations are performed for comparison to the experimental fits using the B3PW91/6-31+G* and PBE0/6-31+G* levels of theory, with the Polarizable Continuum Model (PCM).

  11. Theoretical explanation of spin-Hamiltonian parameters and local structure for the orthorhombic MnO2 -4 clusters in K2CrO4 : Mn6 + crystal

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Xie, Linhua

    2017-12-01

    In this paper, the spin-Hamiltonian parameters (g factors gx, gy, gz and hyperfine structure constants A Ax, Ay, Az) and the absorption spectrum of K2CrO4 : Mn6 + crystal are theoretically explained by using the high-order perturbation theory, the double-spin-orbit-coupling model theory and the double-mechanism theory (the crystal field mechanism and the charge-transfer (CT) mechanism). The calculation results show that the contribution of the CT mechanism cannot be neglected for Mn6 + ions in orthorhombic clusters with the ground state ?.

  12. Atomic origin of the spin-polarization of the Co2FeAl Heusler compound

    NASA Astrophysics Data System (ADS)

    Liang, Jaw-Yeu; Lam, Tu-Ngoc; Lin, Yan-Cheng; Chang, Shu-Jui; Lin, Hong-Ji; Tseng, Yuan-Chieh

    2016-02-01

    Using synchrotron x-ray techniques, we studied the Co2FeAl spin-polarization state that generates the half-metallicity of the compound during an A2 (low-spin)  →  B2 (high-spin) phase transition. Given the advantage of element specificity of x-ray techniques, we could fingerprint the structural and magnetic cross-reactions between Co and Fe within a complex Co2FeAl structure deposited on a MgO (0 0 1) substrate. X-ray diffraction and extended x-ray absorption fine structure investigations determined that the Co atoms preferably populate the (1/4,1/4,1/4) and (3/4,3/4,3/4) sites during the development of the B2 phase. X-ray magnetic spectroscopy showed that although the two magnetic elements were ferromagnetically coupled, they interacted in a competing manner via a charge-transfer effect, which enhanced Co spin polarization at the expense of Fe spin polarization during the phase transition. This means that the spin-polarization of Co2FeAl was electronically dominated by Fe in A2 whereas the charge transfer turned the dominance to Co upon B2 formation. Helicity-dependent x-ray absorption spectra also revealed that only the minority state of Co/Fe was involved in the charge-transfer effect whereas the majority state was independent of it. Despite an overall increase of Co2FeAl magnetization, the charge-transfer effect created an undesired trade-off during the Co-Fe exchange interactions, because of the presence of twice as many X sites (Co) as Y sites (Fe) in the Heusler X 2 YZ formula. This suggests that the spin-polarization of Co2FeAl is unfortunately regulated by compromising the enhanced X (Co) sites and the suppressed Y (Fe) sites, irrespective of the development of the previously known high-spin-polarization phase of B2. This finding provides a possible cause for the limited half-metallicity of Co2FeAl discovered recently. Electronic tuning between the X and Y sites is necessary to further increase the spin-polarization, and likely the half-metallicity as well, of the compound.

  13. On the structure and spin states of Fe(III)-EDDHA complexes.

    PubMed

    Gómez-Gallego, Mar; Fernández, Israel; Pellico, Daniel; Gutiérrez, Angel; Sierra, Miguel A; Lucena, Juan J

    2006-07-10

    DFT methods are suitable for predicting both the geometries and spin states of EDDHA-Fe(III) complexes. Thus, extensive DFT computational studies have shown that the racemic-Fe(III) EDDHA complex is more stable than the meso isomer, regardless of the spin state of the central iron atom. A comparison of the energy values obtained for the complexes under study has also shown that high-spin (S = 5/2) complexes are more stable than low-spin (S = 1/2) ones. These computational results matched the experimental results of the magnetic susceptibility values of both isomers. In both cases, their behavior has been fitted as being due to isolated high-spin Fe(III) in a distorted octahedral environment. The study of the correlation diagram also confirms the high-spin iron in complex 2b. The geometry optimization of these complexes performed with the standard 3-21G* basis set for hydrogen, carbon, oxygen, and nitrogen and the Hay-Wadt small-core effective core potential (ECP) including a double-xi valence basis set for iron, followed by single-point energy refinement with the 6-31G* basis set, is suitable for predicting both the geometries and the spin-states of EDDHA-Fe(III) complexes. The presence of a high-spin iron in Fe(III)-EDDHA complexes could be the key to understanding their lack of reactivity in electron-transfer processes, either chemically or electrochemically induced, and their resistance to photodegradation.

  14. Effects of structural spin-orbit coupling in two dimensional electron and hole liquids

    NASA Astrophysics Data System (ADS)

    Chesi, Stefano

    The recent interest in spin-dependent phenomena in semiconductor heterostructures motivates our detailed study of the structural spin-orbit coupling present in clean two-dimensional electron and hole liquids. Interesting polarization effects are produced in a system out of equilibrium, as when a finite current flows in the sample. In particular, the consequences of a lateral confinement creating a quasi one-dimensional wire are studied in detail, partially motivated by a recent experimental investigation of the point-contact transmission for two-dimensional holes. We also address the role of the electron-electron interaction in the presence of spin-orbit coupling, which has received little attention in the literature. We discuss the formulation of the Hartree-Fock approximation in the particular case of linear Rashba spin-orbit. We establish the form of the mean-field phase diagram in the homogeneous case, which shows a complex interplay between paramagnetic and ferromagnetic states. The latter can be polarized in the plane or in a transverse direction, and are characterized by a complex spin structure and nontrivial occupation. The generality of the Hartree-Fock method allows a simple treatment of the Pauli spin susceptibility, and the application to different forms of spin-orbit coupling. Correlation corrections can be obtained in an analytic form for particular asymptotic regimes. For linear Rashba spin-orbit we identified the relevance of the large spin-orbit limit, dominated by many-body effects, and explicitly treated the high density limit, in which the system is asymptotically noninteracting. As a special case, we derive a new exact formula for the polarization dependence of the ring-diagram correlation energy.

  15. Recent Progress in Heliogyro Solar Sail Structural Dynamics

    NASA Technical Reports Server (NTRS)

    Wilkie, William K.; Warren, Jerry E.; Horta, Lucas G.; Juang, Jer-Nan; Gibbs, Samuel C.; Dowell, E.; Guerrant, Daniel; Lawrence Dale

    2014-01-01

    Results from recent National Aeronautics and Space Administration (NASA) research on the structural dynamics and control characteristics of heliogyro solar sails are summarized. Specific areas under investigation include coupled nonlinear finite element analysis of heliogyro membrane blade with solar radiation pressure effects, system identification of spinning membrane structures, solarelastic stability analysis of heliogyro solar sails, including stability during blade deployment, and results from small-scale in vacuo dynamics experiments with spinning high-aspect ratio membranes. A low-cost, rideshare payload heliogyro technology demonstration mission concept, used as a mission context for these heliogyro structural dynamics and solarelasticity investigations, is also described.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokosawa, A.

    The first polarized collider where we collide 250-GeV/c beams of 70% polarized protons at high luminosity is under construction. This will allow a determination of the nucleon spin-dependent structure functions over a large range in x and a collection of sufficient W and Z events to investigate extremely interesting spin-related phenomena.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokosawa, A.

    The first polarized collider where one collides 250-GeV/c beams of 70% polarized protons at high luminosity is under construction. This will allow a determination of the nucleon spin-dependent structure functions over a large range in x and a collection of sufficient W and Z events to investigate extremely interesting spin-related phenomena.

  18. Recent results from gammasphere

    DOE PAGES

    Lee, I. Y.; Clark, R. M.; Ward, D.; ...

    2001-12-01

    Three examples of recent nuclear structure studies using Gammasphere are discussed in this paper. (1) A rotational band has been identified in 108 Cd. Its moment of inertia and quadrupole moment indicate that this band has a shape with an axis ratio larger than 1.8:1. (2) Possible "Jacobi" shape transitions at high spin were investigated from studies of the continuum gamma rays on a number of nuclei. (3) Population of high-spin states in neutron-rich nuclei were studied in target fragmentation reactions. States with spin up to 6-12 were observed in a wide range of nuclei.

  19. Electron spin resonance modes in a strong-leg ladder in the Tomonaga-Luttinger liquid phase

    NASA Astrophysics Data System (ADS)

    Ozerov, M.; Maksymenko, M.; Wosnitza, J.; Honecker, A.; Landee, C. P.; Turnbull, M. M.; Furuya, S. C.; Giamarchi, T.; Zvyagin, S. A.

    2015-12-01

    Magnetic excitations in the strong-leg quantum spin ladder compound (C7H10N) 2CuBr4 (known as DIMPY) in the field-induced Tomonaga-Luttinger spin-liquid phase are studied by means of high-field electron spin resonance (ESR) spectroscopy. The presence of a gapped ESR mode with unusual nonlinear frequency-field dependence is revealed experimentally. Using a combination of analytic and exact-diagonalization methods, we compute the dynamical structure factor and identify this mode with longitudinal excitations in the antisymmetric channel. We argue that these excitations constitute a fingerprint of the spin dynamics in a strong-leg spin-1/2 Heisenberg antiferromagnetic ladder and owe their ESR observability to the uniform Dzyaloshinskii-Moriya interaction.

  20. Structural Changes Correlated with Magnetic Spin State Isomorphism in the S2 State of the Mn4CaO5 Cluster in the Oxygen-Evolving Complex of Photosystem II

    PubMed Central

    Chatterjee, Ruchira; Han, Guangye; Kern, Jan; Gul, Sheraz; Fuller, Franklin D.; Garachtchenko, Anna; Young, Iris; Weng, Tsu-Chien; Nordlund, Dennis; Alonso-Mori, Roberto; Bergmann, Uwe; Sokaras, Dimosthenis; Hatakeyama, Makoto; Yachandra, Vittal K.; Yano, Junko

    2016-01-01

    The Mn4CaO5 cluster in Photosystem II catalyzes the four-electron redox reaction of water oxidation in natural photosynthesis. This catalytic reaction cycles through four intermediate states (Si, i = 0 to 4), involving changes in the redox state of the four Mn atoms in the cluster. Recent studies suggest the presence and importance of isomorphous structures within the same redox/intermediate S-state. It is highly likely that geometric and electronic structural flexibility play a role in the catalytic mechanism. Among the catalytic intermediates that have been identified experimentally thus far, there is clear evidence of such isomorphism in the S2 state, with a high-spin (5/2) (HS) and a low spin (1/2) (LS) form, identified and characterized by their distinct electron paramagnetic resonance (EPR spectroscopy) signals. We studied these two S2 isomers with Mn extended X-ray absorption fine structure (EXAFS) and absorption and emission spectroscopy (XANES/XES) to characterize the structural and electronic structural properties. The geometric and electronic structure of the HS and LS S2 states are different as determined using Mn EXAFS and XANES/XES, respectively. The Mn K-edge XANES and XES for the HS form are different from the LS and indicate a slightly lower positive charge on the Mn atoms compared to the LS form. Based on the EXAFS results which are clearly different, we propose possible structural differences between the two spin states. Such structural and magnetic redox-isomers if present at room temperature, will likely play a role in the mechanism for water-exchange/oxidation in photosynthesis. PMID:28044099

  1. Structural changes correlated with magnetic spin state isomorphism in the S 2 state of the Mn 4CaO 5 cluster in the oxygen-evolving complex of photosystem II

    DOE PAGES

    Chatterjee, Ruchira; Han, Guangye; Kern, Jan; ...

    2016-05-09

    The Mn 4CaO 5 cluster in photosystem II catalyzes the four-electron redox reaction of water oxidation in natural photosynthesis. This catalytic reaction cycles through four intermediate states (S i, i = 0 to 4), involving changes in the redox state of the four Mn atoms in the cluster. Recent studies suggest the presence and importance of isomorphous structures within the same redox/intermediate S-state. It is highly likely that geometric and electronic structural flexibility play a role in the catalytic mechanism. Among the catalytic intermediates that have been identified experimentally thus far, there is clear evidence of such isomorphism in themore » S2 state, with a high-spin (5/2) (HS) and a low spin (1/2) (LS) form, identified and characterized by their distinct electron paramagnetic resonance (EPR spectroscopy) signals. We studied these two S2 isomers with Mn extended X-ray absorption fine structure (EXAFS) and absorption and emission spectroscopy (XANES/XES) to characterize the structural and electronic structural properties. The geometric and electronic structure of the HS and LS S2 states are different as determined using Mn EXAFS and XANES/XES, respectively. The Mn K-edge XANES and XES for the HS form are different from the LS and indicate a slightly lower positive charge on the Mn atoms compared to the LS form. Based on the EXAFS results which are clearly different, we propose possible structural differences between the two spin states. As a result, such structural and magnetic redox-isomers if present at room temperature, will likely play a role in the mechanism for water-exchange/oxidation in photosynthesis.« less

  2. Observation of stable Néel skyrmions in cobalt/palladium multilayers with Lorentz transmission electron microscopy

    DOE PAGES

    Pollard, Shawn D.; Garlow, Joseph A.; Yu, Jiawei; ...

    2017-03-10

    Néel skyrmions are of high interest due to their potential applications in a variety of spintronic devices, currently accessible in ultrathin heavy metal/ferromagnetic bilayers and multilayers with a strong Dzyaloshinskii–Moriya interaction. Here in this paper we report on the direct imaging of chiral spin structures including skyrmions in an exchange-coupled cobalt/palladium multilayer at room temperature with Lorentz transmission electron microscopy, a high-resolution technique previously suggested to exhibit no Néel skyrmion contrast. Phase retrieval methods allow us to map the internal spin structure of the skyrmion core, identifying a 25 nm central region of uniform magnetization followed by a larger regionmore » characterized by rotation from in- to out-of-plane. The formation and resolution of the internal spin structure of room temperature skyrmions without a stabilizing out-of-plane field in thick magnetic multilayers opens up a new set of tools and materials to study the physics and device applications associated with chiral ordering and skyrmions.« less

  3. Coherent structural trapping through wave packet dispersion during photoinduced spin state switching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert

    The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born–Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersionmore » of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.« less

  4. Synthesis and structural studies of two pyridine-armed reinforced cyclen chelators and their transition metal complexes.

    PubMed

    Wilson, Kevin R; Cannon-Smith, Desiray J; Burke, Benjamin P; Birdsong, Orry C; Archibald, Stephen J; Hubin, Timothy J

    2016-08-16

    Two novel pyridine pendant-armed macrocycles structurally reinforced by an ethyl bridge, either between adjacent nitrogens (for side-bridged) or non-adjacent nitrogens (for cross-bridged), have been synthesized and complexed with a range of transition metal ions (Co 2+ , Ni 2+ , Cu 2+ and Zn 2+ ). X-ray crystal structures of selected cross-bridged complexes were obtained which showed the characteristic cis-V configuration with potential labile cis binding sites. The complexes have been characterized by their electronic spectra and magnetic moments, which show the expected high spin divalent metal complex in most cases. Exceptions are the nickel side-bridged complex, which shows a mixture of high-spin and low spin, and the cobalt cross-bridged complex which has oxidized to cobalt(III). Cyclic voltammetry in acetonitrile was carried out to assess the potential future use of these complexes in oxidation catalysis. Selected complexes offer significant catalytic potential enhanced by the addition of the pyridyl arm to a reinforced cyclen backbone.

  5. Spin structure of the neutron ({sup 3}He) and the Bjoerken sum rule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meziani, Z.E.

    1994-12-01

    A first measurement of the longitudinal asymmetry of deep-inelastic scattering of polarized electrons from a polarized {sup 3}He target at energies ranging from 19 to 26 GeV has been performed at the Stanford Linear Accelerator Center (SLAC). The spin-structure function of the neutron g{sub 1}{sup n} has been extracted from the measured asymmetries. The Quark Parton Model (QPM) interpretation of the nucleon spin-structure function is examined in light of the new results. A test of the Ellis-Jaffe sum rule (E-J) on the neutron is performed at high momentum transfer and found to be satisfied. Furthermore, combining the proton results ofmore » the European Muon Collaboration (EMC) and the neutron results of E-142, the Bjoerken sum rule test is carried at high Q{sup 2} where higher order Perturbative Quantum Chromodynamics (PQCD) corrections and higher-twist corrections are smaller. The sum rule is saturated to within one standard deviation.« less

  6. Coherent structural trapping through wave packet dispersion during photoinduced spin state switching

    DOE PAGES

    Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert; ...

    2017-05-24

    The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born–Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersionmore » of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.« less

  7. Coherent structural trapping through wave packet dispersion during photoinduced spin state switching

    NASA Astrophysics Data System (ADS)

    Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert; van Driel, Tim B.; Chollet, Matthieu; Glownia, James M.; Song, Sanghoon; Zhu, Diling; Pace, Elisabetta; Matar, Samir F.; Nielsen, Martin M.; Benfatto, Maurizio; Gaffney, Kelly J.; Collet, Eric; Cammarata, Marco

    2017-05-01

    The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born-Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.

  8. Nuclear Structure of 124Xe Studied with β+/EC-Decay

    NASA Astrophysics Data System (ADS)

    Radich, A. J.; Garrett, P. E.; Allmond, J. M.; Andreoiu, C.; Ball, G. C.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Cross, D. S.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Hackman, G.; Hadinia, B.; Jigmeddorj, B.; Laffoley, A. T.; Leach, K. G.; Michetti-Wilson, J.; Orce, J. N.; Rajabali, M. M.; Rand, E.; Starosta, K.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wang, Z. M.; Wood, J. L.; Wong, J.; Williams, S. J.; Yates, S. W.

    The nuclear structure of 124Xe was investigated using γ-ray spectroscopy following the β+/EC-decay of 124Cs. A very high-statistics data set was collected and γγ coincidence data was analyzed, greatly adding to the 124Xe level scheme. A new decay branch from the high-spin isomer of 124Cs was observed as well as weak E2 transitions into excited 0+ states in 124Xe. B(E2) transition strengths of such low-spin transitions are very important in determining collective properties, which are currently poorly characterized in the region of neutron-deficient xenon isotopes.

  9. An Octanuclear Metallosupramolecular Cage Designed To Exhibit Spin-Crossover Behavior.

    PubMed

    Struch, Niklas; Bannwarth, Christoph; Ronson, Tanya K; Lorenz, Yvonne; Mienert, Bernd; Wagner, Norbert; Engeser, Marianne; Bill, Eckhard; Puttreddy, Rakesh; Rissanen, Kari; Beck, Johannes; Grimme, Stefan; Nitschke, Jonathan R; Lützen, Arne

    2017-04-24

    By employing the subcomponent self-assembly approach utilizing 5,10,15,20-tetrakis(4-aminophenyl)porphyrin or its zinc(II) complex, 1H-4-imidazolecarbaldehyde, and either zinc(II) or iron(II) salts, we were able to prepare O-symmetric cages having a confined volume of ca. 1300 Å 3 . The use of iron(II) salts yielded coordination cages in the high-spin state at room temperature, manifesting spin-crossover in solution at low temperatures, whereas corresponding zinc(II) salts led to the corresponding diamagnetic analogues. The new cages were characterized by synchrotron X-ray crystallography, high-resolution mass spectrometry, and NMR, Mössbauer, IR, and UV/Vis spectroscopy. The cage structures and UV/Vis spectra were independently confirmed by state-of-the-art DFT calculations. A remarkably high-spin-stabilizing effect through encapsulation of C 70 was observed. The spin-transition temperature T 1/2 is lowered by 20 K in the host-guest complex. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Spin Choreography: Basic Steps in High Resolution NMR (by Ray Freeman)

    NASA Astrophysics Data System (ADS)

    Minch, Michael J.

    1998-02-01

    There are three orientations that NMR courses may take. The traditional molecular structure course focuses on the interpretation of spectra and the use of chemical shifts, coupling constants, and nuclear Overhauser effects (NOE) to sort out subtle details of structure and stereochemistry. Courses can also focus on the fundamental quantum mechanics of observable NMR parameters and processes such a spin-spin splitting and relaxation. More recently there are courses devoted to the manipulation of nuclear spins and the basic steps of one- and two-dimensional NMR experiments. Freeman's book is directed towards the latter audience. Modern NMR methods offer a myriad ways to extract information about molecular structure and motion by observing the behavior of nuclear spins under a variety of conditions. In Freeman's words: "We can lead the spins through an intricate dance, carefully programmed in advance, to enhance, simplify, correlate, decouple, edit or assign NMR spectra." This is a carefully written, well-illustrated account of how this dance is choreographed by pulse programming, double resonance, and gradient effects. Although well written, this book is not an easy read; every word counts. It is recommended for graduate courses that emphasize the fundamentals of magnetic resonance. It is not a text on interpretation of spectra.

  11. A general explanation on the correlation of dark matter halo spin with the large-scale environment

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Kang, Xi

    2017-06-01

    Both simulations and observations have found that the spin of halo/galaxy is correlated with the large-scale environment, and particularly the spin of halo flips in filament. A consistent picture of halo spin evolution in different environments is still lacked. Using N-body simulation, we find that halo spin with its environment evolves continuously from sheet to cluster, and the flip of halo spin happens both in filament and nodes. The flip in filament can be explained by halo formation time and migrating time when its environment changes from sheet to filament. For low-mass haloes, they form first in sheets and migrate into filaments later, so their mass and spin growth inside filament are lower, and the original spin is still parallel to filament. For high-mass haloes, they migrate into filaments first, and most of their mass and spin growth are obtained in filaments, so the resulted spin is perpendicular to filament. Our results well explain the overall evolution of cosmic web in the cold dark matter model and can be tested using high-redshift data. The scenario can also be tested against alternative models of dark matter, such as warm/hot dark matter, where the structure formation will proceed in a different way.

  12. High-spin Mn-oxo complexes and their relevance to the oxygen-evolving complex within photosystem II.

    PubMed

    Gupta, Rupal; Taguchi, Taketo; Lassalle-Kaiser, Benedikt; Bominaar, Emile L; Yano, Junko; Hendrich, Michael P; Borovik, A S

    2015-04-28

    The structural and electronic properties of a series of manganese complexes with terminal oxido ligands are described. The complexes span three different oxidation states at the manganese center (III-V), have similar molecular structures, and contain intramolecular hydrogen-bonding networks surrounding the Mn-oxo unit. Structural studies using X-ray absorption methods indicated that each complex is mononuclear and that oxidation occurs at the manganese centers, which is also supported by electron paramagnetic resonance (EPR) studies. This gives a high-spin Mn(V)-oxo complex and not a Mn(IV)-oxy radical as the most oxidized species. In addition, the EPR findings demonstrated that the Fermi contact term could experimentally substantiate the oxidation states at the manganese centers and the covalency in the metal-ligand bonding. Oxygen-17-labeled samples were used to determine spin density within the Mn-oxo unit, with the greatest delocalization occurring within the Mn(V)-oxo species (0.45 spins on the oxido ligand). The experimental results coupled with density functional theory studies show a large amount of covalency within the Mn-oxo bonds. Finally, these results are examined within the context of possible mechanisms associated with photosynthetic water oxidation; specifically, the possible identity of the proposed high valent Mn-oxo species that is postulated to form during turnover is discussed.

  13. Effective combined water and sideband suppression for low-speed tissue and in vivo MAS NMR.

    PubMed

    Mobarhan, Yalda Liaghati; Struppe, Jochem; Fortier-McGill, Blythe; Simpson, André J

    2017-08-01

    High-resolution magic angle spinning (HR-MAS) NMR is a powerful technique that can provide metabolic profiles and structural constraints on intact biological and environmental samples such as cells, tissues and living organisms. However, centripetal force from fast spinning can lead to a loss of sample integrity. In analyses focusing on structural organization, metabolite compartmentalization or in vivo studies, it is critical to keep the sample intact. As such, there is growing interest in slow spinning studies that preserve sample longevity. In this study, for example, reducing the spinning rate from 2500 to 500 Hz during the analysis of a living freshwater shrimp increased the 100% survivability threshold from ~14 to 40 h. Unfortunately, reducing spinning rate decreases the intensity of the isotropic signals and increases both the intensity and number of spinning sidebands, which mask spectral information. Interestingly, water suppression approaches such as excitation sculpting and W5 WATERGATE, which are effective at higher spinning rates, fail at lower spinning rates (<2500 Hz) while simpler approaches such as presaturation are not able to effectively suppress water when the ratio of water to biomass is very high, as is the case in vivo. As such there is a considerable gap in NMR approaches which can be used to suppress water signals and sidebands in biological samples at lower spinning rates. This research presents simple but practically important sequences that combine PURGE water suppression with both phase-adjusted spinning sidebands and an analogue of TOSS termed TOSS.243. The result is simple and effective water and sideband suppression even in extremely dilute samples in pure water down to ~100 Hz spinning rate. The approach is introduced, described and applied to a range of samples including, ex vivo worm tissue, Daphnia magna (water fleas), and in vivo Hyalella azteca (shrimp).

  14. Giant magnetostriction effect near onset of spin reorientation in MnBi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Y.; Ryan, P. J.; McGuire, Michael A.

    In materials undergoing spontaneous symmetry breaking transitions, the emergence of multiple competing order parameters is pervasive. Employing in-field x-ray diffraction, we investigate the temperature and magnetic field dependence of the crystallographic structure of MnBi, elucidating the microscopic interplay between lattices and spin. The hexagonal phase of MnBi undergoes a spin reorientation transition (TSR), whereby the easy axis direction changes from the c axis to the basal plane. Across TSR, an abrupt symmetry change is accompanied by a clear sign change in the magnetostrictive coefficient, revealing that this transition corresponds to the onset of the spin reorientation. In the vicinity ofmore » TSR, a significantly larger in-plane magnetostrictive effect is observed, presenting the emergence of an intermediate phase that is highly susceptible to an applied magnetic field. X-ray linear dichroism shows that asymmetric Bi and Mn p orbitals do not play a role in the spin reorientation. Furthermore, this work suggests that the spin reorientation is caused by structural modification rather than changes in the local electronic configuration, providing a strategy for manipulating the magnetic anisotropy by external strain.« less

  15. Giant magnetostriction effect near onset of spin reorientation in MnBi

    DOE PAGES

    Choi, Y.; Ryan, P. J.; McGuire, Michael A.; ...

    2018-05-11

    In materials undergoing spontaneous symmetry breaking transitions, the emergence of multiple competing order parameters is pervasive. Employing in-field x-ray diffraction, we investigate the temperature and magnetic field dependence of the crystallographic structure of MnBi, elucidating the microscopic interplay between lattices and spin. The hexagonal phase of MnBi undergoes a spin reorientation transition (TSR), whereby the easy axis direction changes from the c axis to the basal plane. Across TSR, an abrupt symmetry change is accompanied by a clear sign change in the magnetostrictive coefficient, revealing that this transition corresponds to the onset of the spin reorientation. In the vicinity ofmore » TSR, a significantly larger in-plane magnetostrictive effect is observed, presenting the emergence of an intermediate phase that is highly susceptible to an applied magnetic field. X-ray linear dichroism shows that asymmetric Bi and Mn p orbitals do not play a role in the spin reorientation. Furthermore, this work suggests that the spin reorientation is caused by structural modification rather than changes in the local electronic configuration, providing a strategy for manipulating the magnetic anisotropy by external strain.« less

  16. Giant magnetostriction effect near onset of spin reorientation in MnBi

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Ryan, P. J.; McGuire, M. A.; Sales, B. C.; Kim, J.-W.

    2018-05-01

    In materials undergoing spontaneous symmetry breaking transitions, the emergence of multiple competing order parameters is pervasive. Employing in-field x-ray diffraction, we investigate the temperature and magnetic field dependence of the crystallographic structure of MnBi, elucidating the microscopic interplay between lattices and spin. The hexagonal phase of MnBi undergoes a spin reorientation transition (TSR), whereby the easy axis direction changes from the c axis to the basal plane. Across TSR, an abrupt symmetry change is accompanied by a clear sign change in the magnetostrictive coefficient, revealing that this transition corresponds to the onset of the spin reorientation. In the vicinity of TSR, a significantly larger in-plane magnetostrictive effect is observed, presenting the emergence of an intermediate phase that is highly susceptible to an applied magnetic field. X-ray linear dichroism shows that asymmetric Bi and Mn p orbitals do not play a role in the spin reorientation. This work suggests that the spin reorientation is caused by structural modification rather than changes in the local electronic configuration, providing a strategy for manipulating the magnetic anisotropy by external strain.

  17. Giant edge spin accumulation in a symmetric quantum well with two subbands

    NASA Astrophysics Data System (ADS)

    Khaetskii, Alexander; Egues, J. Carlos

    We have studied the edge spin accumulation due to an electric current in a high mobility two-dimensional electron gas formed in a symmetric well with two subbands. This study is strongly motivated by recent experiments which demonstrated the spin accumulation near the edges of a symmetric bilayer GaAs structure in contrast to no effect in a single-layer configuration. The intrinsic mechanism of the spin-orbit interaction we consider arises from the coupling between two subband states of opposite parities. Following the method developed in, we show that the presence of a gap in the system (i.e., the energy separation between the two subband bottoms) changes drastically the picture of the edge spin accumulation. We obtain a parametrically large magnitude of the edge spin density for a two-subband well as compared to the usual single-subband structure, and show that by changing the gap from zero up to 1 ÷2 K, the magnitude of the effect changes by three orders of magnitude. It opens up the possibility for the design of new interesting spintronic devices. We acknowledge financial support from FAPESP.

  18. Equal-Spin Andreev Reflection on Junctions of Spin-Resolved Quantum Hall Bulk State and Spin-Singlet Superconductor.

    PubMed

    Matsuo, Sadashige; Ueda, Kento; Baba, Shoji; Kamata, Hiroshi; Tateno, Mizuki; Shabani, Javad; Palmstrøm, Christopher J; Tarucha, Seigo

    2018-02-22

    The recent development of superconducting spintronics has revealed the spin-triplet superconducting proximity effect from a spin-singlet superconductor into a spin-polarized normal metal. In addition recently superconducting junctions using semiconductors are in demand for highly controlled experiments to engineer topological superconductivity. Here we report experimental observation of Andreev reflection in junctions of spin-resolved quantum Hall (QH) states in an InAs quantum well and the spin-singlet superconductor NbTi. The measured conductance indicates a sub-gap feature and two peaks on the outer side of the sub-gap feature in the QH plateau-transition regime increases. The observed structures can be explained by considering transport with Andreev reflection from two channels, one originating from equal-spin Andreev reflection intermediated by spin-flip processes and second arising from normal Andreev reflection. This result indicates the possibility to induce the superconducting proximity gap in the the QH bulk state, and the possibility for the development of superconducting spintronics in semiconductor devices.

  19. An electronegativity-induced spin repulsion effect.

    PubMed

    Stirling, Andras; Pasquarello, Alfredo

    2005-09-22

    We present a spin delocalization effect in radical Si-containing systems, featuring a heteroatom of high electronegativity (such as N, O, or Cl) bonded to the unsaturated Si atom. We find that the higher the electronegativity of the heteroatom, the more the localized spin shifts away from the unsaturated Si atom and the heteroatom toward saturated Si neighbors. We demonstrate that this spin repulsion toward saturated Si atoms is induced by the electronegativity difference between the Si atom and the heteroatoms. We present a simple molecular-orbital-based mechanism which fully explains the structural and electronic effects. We contrast the present spin delocalization mechanism with the classical hyperconjugation in organic chemistry. The most important consequences of this spin redistribution are the electron-spin-resonance activity of the saturated Si neighbors and the enhanced stability of the radical centers. We predict a similar effect for Ge radicals and discuss why organic systems based on carbon do not feature such spin repulsion.

  20. Investigation of negative-parity states in Dy 156 : Search for evidence of tetrahedral symmetry

    DOE PAGES

    Hartley, D. J.; Riedinger, L. L.; Janssens, R. V. F.; ...

    2017-01-01

    An experiment populating low/medium-spin states in 156Dy was performed to investigate the possibility of tetrahedral symmetry in this nucleus. In particular, focus was placed on the low-spin, negative-parity states since recent theoretical studies suggest that these may be good candidates for this high-rank symmetry. The states were produced in the 148Nd( 12C,4 n) reaction and the Gammasphere array was utilized to detect the emitted rays. B(E 2) /B(E1) ratios of transition probabilities from the low-spin, negative-parity bands were determined and used to interpret whether these structures are best associated with tetrahedral symmetry or, as previously assigned, to octupole vibrations. Additionally,more » several other negative-parity structures were observed to higher spin and two new sequences were established« less

  1. Investigation of negative-parity states in Dy 156 : Search for evidence of tetrahedral symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartley, D. J.; Riedinger, L. L.; Janssens, R. V. F.

    2017-01-01

    An experiment populating low/medium-spin states in 156 Dy was performed to investigate the possibility of tetrahedral symmetry in this nucleus. In particular, focus was placed on the low-spin, negative-parity states since recent theoretical studies suggest that these may be good candidates for this high-rank symmetry. The states were produced in the 148 Nd ( 12 C , 4 n ) reaction and the Gammasphere array was utilized to detect the emitted γ rays. B ( E 2 ) / B ( E 1 ) ratios of transition probabilities from the low-spin, negative-parity bands were determined and used to interpret whethermore » these structures are best associated with tetrahedral symmetry or, as previously assigned, to octupole vibrations. In addition, several other negative-parity structures were observed to higher spin and two new sequences were established.« less

  2. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X. J.

    2015-08-01

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.

  3. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling.

    PubMed

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X J

    2015-08-12

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.

  4. Analogies between Vanadoborates and Planar Aromatic Hydrocarbons: A High-Spin Analogue of Aromaticity.

    PubMed

    King, R Bruce

    2017-12-23

    The vanadium-vanadium interactions in the polygonal aggregates of d¹ vanadium(IV) atoms, with a total of 4 k + 2 vanadium electrons ( k an integer) imbedded in an electronically inactive borate matrix in certain vanadoborate structures are analogous to the ring carbon-carbon interactions in diamagnetic planar cyclic hydrocarbons. They thus represent a high-spin analogue of aromaticity. Thus, the vanadoborate anion [V₆B 20 O 50 H₈] 8- with six V(IV) electrons (i.e., 4 k + 2 for k = 1) contains a macrohexagon of d¹ V(IV) atoms with four unpaired electrons. This high-spin system is related to the low-spin aromaticity in the diamagnetic benzene having six π electrons. Similarly, the vanadoborate anion [V 10 B 28 O 74 H₈] 16- with ten V(IV) electrons (i.e., 4 k + 2 for k = 2) contains a macrodecagon of d¹ V(IV) atoms with eight unpaired electrons. Again, this high-spin system is related to the aromaticity in the diamagnetic 1,6-methanol[10]annulene, having ten π electrons.

  5. Low temperature and high field regimes of connected kagome artificial spin ice: the role of domain wall topology.

    PubMed

    Zeissler, Katharina; Chadha, Megha; Lovell, Edmund; Cohen, Lesley F; Branford, Will R

    2016-07-22

    Artificial spin ices are frustrated magnetic nanostructures where single domain nanobars act as macrosized spins. In connected kagome artificial spin ice arrays, reversal occurs along one-dimensional chains by propagation of ferromagnetic domain walls through Y-shaped vertices. Both the vertices and the walls are complex chiral objects with well-defined topological edge-charges. At room temperature, it is established that the topological edge-charges determine the exact switching reversal path taken. However, magnetic reversal at low temperatures has received much less attention and how these chiral objects interact at reduced temperature is unknown. In this study we use magnetic force microscopy to image the magnetic reversal process at low temperatures revealing the formation of quite remarkable high energy remanence states and a change in the dynamics of the reversal process. The implication is the breakdown of the artificial spin ice regime in these connected structures at low temperatures.

  6. High-spin europium and gadolinium centers in yttrium-aluminum garnet

    NASA Astrophysics Data System (ADS)

    Vazhenin, V. A.; Potapov, A. P.; Asatryan, G. R.; Uspenskaya, Yu. A.; Petrosyan, A. G.; Fokin, A. V.

    2016-08-01

    Electron-spin resonance spectra of Eu2+ and Gd3+ centers substituting Y3+ ions in single-crystal yttrium-aluminum garnet have been studied and the parameters of their rhombic spin Hamiltonian have been determined. The fine-structure parameters of the above ions have been calculated in the superposition model disregarding changes in the angular coordinates of the ligand environment of the impurity defect thus demonstrating the necessity of taking these changes into account.

  7. Direct evidence of hidden local spin polarization in a centrosymmetric superconductor LaO0.55 F0.45BiS2.

    PubMed

    Wu, Shi-Long; Sumida, Kazuki; Miyamoto, Koji; Taguchi, Kazuaki; Yoshikawa, Tomoki; Kimura, Akio; Ueda, Yoshifumi; Arita, Masashi; Nagao, Masanori; Watauchi, Satoshi; Tanaka, Isao; Okuda, Taichi

    2017-12-04

    Conventional Rashba spin polarization is caused by the combination of strong spin-orbit interaction and spatial inversion asymmetry. However, Rashba-Dresselhaus-type spin-split states are predicted in the centrosymmetric LaOBiS 2 system by recent theory, which stem from the local inversion asymmetry of active BiS 2 layer. By performing high-resolution spin- and angle-resolved photoemission spectroscopy, we have investigated the electronic band structure and spin texture of superconductor LaO 0.55 F 0.45 BiS 2 . Here we present direct spectroscopic evidence for the local spin polarization of both the valence band and the conduction band. In particular, the coexistence of Rashba-like and Dresselhaus-like spin textures has been observed in the conduction band. The finding is of key importance for fabrication of proposed dual-gated spin-field effect transistor. Moreover, the spin-split band leads to a spin-momentum locking Fermi surface from which superconductivity emerges. Our demonstration not only expands the scope of spintronic materials but also enhances the understanding of spin-orbit interaction-related superconductivity.

  8. Spin crossover behaviour in Hofmann-like coordination polymer Fe(py)2[Pd(CN)4] with 57Fe Mössbauer spectra

    NASA Astrophysics Data System (ADS)

    Kitazawa, Takafumi; Kishida, Takanori; Kawasaki, Takeshi; Takahashi, Masashi

    2017-11-01

    We have prepared the 2D spin crossover complexes Fe(L)2Pd(CN)4 (L = py : 1a; py-D5 : 1b and py-15N : 1c). 1a has been characterised by 57Fe Mossbauer spectroscopic measurements, single crystal X-ray determination and SQUID measurements. The Mössbauer spectra for 1a indicate that the iron(II) spin states are in high spin states at 298 K and are in low spin states at 77 K. The crystal structures of 1a at 298 K and 90 K also show the high spin state and the low spin state respectively, associated with the Fe(II)-N distances. The spin transition temperature range of 1a is higher than that of Fe(py)2Ni(CN)4 since Pd(II) ions are larger and heavier than Ni(II) ions. SQUID data indicate isotope effects among 1a, 1b and 1c are observed in very small shifts of the transition temperatures probably due to larger and heavier Pd(II) ions. The delicate shifts would be associated with subtle balances between different vibrations around Fe(II) atoms and electronic factors.

  9. Proton assisted recoupling and protein structure determination

    NASA Astrophysics Data System (ADS)

    de Paëpe, Gaël; Lewandowski, Józef R.; Loquet, Antoine; Böckmann, Anja; Griffin, Robert G.

    2008-12-01

    We introduce a homonuclear version of third spin assisted recoupling, a second-order mechanism that can be used for polarization transfer between 13C or 15N spins in magic angle spinning (MAS) NMR experiments, particularly at high spinning frequencies employed in contemporary high field MAS experiments. The resulting sequence, which we refer to as proton assisted recoupling (PAR), relies on a cross-term between 1H-13C (or 1H-15N) couplings to mediate zero quantum 13C-13C (or 15N-15N recoupling). In particular, using average Hamiltonian theory we derive an effective Hamiltonian for PAR and show that the transfer is mediated by trilinear terms of the form C1+/-C2-/+HZ for 13C-13C recoupling experiments (or N1+/-N2-/+HZ for 15N-15N). We use analytical and numerical simulations to explain the structure of the PAR optimization maps and to delineate the PAR matching conditions. We also detail the PAR polarization transfer dependence with respect to the local molecular geometry and explain the observed reduction in dipolar truncation. Finally, we demonstrate the utility of PAR in structural studies of proteins with 13C-13C spectra of uniformly 13C, 15N labeled microcrystalline Crh, a 85 amino acid model protein that forms a domain swapped dimer (MW=2×10.4 kDa). The spectra, which were acquired at high MAS frequencies (ωr2π>20 kHz) and magnetic fields (750-900 MHz 1H frequencies) using moderate rf fields, exhibit numerous cross peaks corresponding to long (up to 6-7 A˚) 13C-13C distances which are particularly useful in protein structure determination. Using results from PAR spectra we calculate the structure of the Crh protein.

  10. Hedgehog spin-vortex crystal stabilized in a hole-doped iron-based superconductor

    DOE PAGES

    Meier, William R.; Ding, Qing-Ping; Kreyssig, Andreas; ...

    2018-02-09

    Magnetism is widely considered to be a key ingredient of unconventional superconductivity. In contrast to cuprate high-temperature superconductors, antiferromagnetism in most Fe-based superconductors (FeSCs) is characterized by a pair of magnetic propagation vectors, (π,0) and (0,π). Consequently, three different types of magnetic order are possible. Of these, only stripe-type spin-density wave (SSDW) and spin-charge-density wave (SCDW) orders have been observed. A realization of the proposed spin-vortex crystal (SVC) order is noticeably absent. We report a magnetic phase consistent with the hedgehog variation of SVC order in Ni-doped and Co-doped CaKFe 4As 4 based on thermodynamic, transport, structural and local magneticmore » probes combined with symmetry analysis. The exotic SVC phase is stabilized by the reduced symmetry of the CaKFe 4As 4 structure. Thus, our results suggest that the possible magnetic ground states in FeSCs have very similar energies, providing an enlarged configuration space for magnetic fluctuations to promote high-temperature superconductivity.« less

  11. Hedgehog spin-vortex crystal stabilized in a hole-doped iron-based superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, William R.; Ding, Qing-Ping; Kreyssig, Andreas

    Magnetism is widely considered to be a key ingredient of unconventional superconductivity. In contrast to cuprate high-temperature superconductors, antiferromagnetism in most Fe-based superconductors (FeSCs) is characterized by a pair of magnetic propagation vectors, (π,0) and (0,π). Consequently, three different types of magnetic order are possible. Of these, only stripe-type spin-density wave (SSDW) and spin-charge-density wave (SCDW) orders have been observed. A realization of the proposed spin-vortex crystal (SVC) order is noticeably absent. We report a magnetic phase consistent with the hedgehog variation of SVC order in Ni-doped and Co-doped CaKFe 4As 4 based on thermodynamic, transport, structural and local magneticmore » probes combined with symmetry analysis. The exotic SVC phase is stabilized by the reduced symmetry of the CaKFe 4As 4 structure. Thus, our results suggest that the possible magnetic ground states in FeSCs have very similar energies, providing an enlarged configuration space for magnetic fluctuations to promote high-temperature superconductivity.« less

  12. Photonic-magnonic crystals: Multifunctional periodic structures for magnonic and photonic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kłos, J. W., E-mail: klos@amu.edu.pl; Krawczyk, M.; Dadoenkova, Yu. S.

    2014-05-07

    We investigate the properties of a photonic-magnonic crystal, a complex multifunctional one-dimensional structure with magnonic and photonic band gaps in the GHz and PHz frequency ranges for spin waves and light, respectively. The system consists of periodically distributed dielectric magnetic slabs of yttrium iron garnet and nonmagnetic spacers with an internal structure of alternating TiO{sub 2} and SiO{sub 2} layers which form finite-size dielectric photonic crystals. We show that the spin-wave coupling between the magnetic layers, and thus the formation of the magnonic band structure, necessitates a nonzero in-plane component of the spin-wave wave vector. A more complex structure perceivedmore » by light is evidenced by the photonic miniband structure and the transmission spectra in which we have observed transmission peaks related to the repetition of the magnetic slabs in the frequency ranges corresponding to the photonic band gaps of the TiO{sub 2}/SiO{sub 2} stack. Moreover, we show that these modes split to very high sharp (a few THz wide) subpeaks in the transmittance spectra. The proposed novel multifunctional artificial crystals can have interesting applications and be used for creating common resonant cavities for spin waves and light to enhance the mutual influence between them.« less

  13. Detailed Characterization of a Nanosecond-Lived Excited State: X-ray and Theoretical Investigation of the Quintet State in Photoexcited [Fe(terpy)2]2+

    PubMed Central

    2015-01-01

    Theoretical predictions show that depending on the populations of the Fe 3dxy, 3dxz, and 3dyz orbitals two possible quintet states can exist for the high-spin state of the photoswitchable model system [Fe(terpy)2]2+. The differences in the structure and molecular properties of these 5B2 and 5E quintets are very small and pose a substantial challenge for experiments to resolve them. Yet for a better understanding of the physics of this system, which can lead to the design of novel molecules with enhanced photoswitching performance, it is vital to determine which high-spin state is reached in the transitions that follow the light excitation. The quintet state can be prepared with a short laser pulse and can be studied with cutting-edge time-resolved X-ray techniques. Here we report on the application of an extended set of X-ray spectroscopy and scattering techniques applied to investigate the quintet state of [Fe(terpy)2]2+ 80 ps after light excitation. High-quality X-ray absorption, nonresonant emission, and resonant emission spectra as well as X-ray diffuse scattering data clearly reflect the formation of the high-spin state of the [Fe(terpy)2]2+ molecule; moreover, extended X-ray absorption fine structure spectroscopy resolves the Fe–ligand bond-length variations with unprecedented bond-length accuracy in time-resolved experiments. With ab initio calculations we determine why, in contrast to most related systems, one configurational mode is insufficient for the description of the low-spin (LS)–high-spin (HS) transition. We identify the electronic structure origin of the differences between the two possible quintet modes, and finally, we unambiguously identify the formed quintet state as 5E, in agreement with our theoretical expectations. PMID:25838847

  14. Detailed Characterization of a Nanosecond-Lived Excited State: X-ray and Theoretical Investigation of the Quintet State in Photoexcited [Fe(terpy) 2 ] 2+

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vankó, György; Bordage, Amélie; Pápai, Mátyás

    2015-03-19

    Theoretical predictions show that depending on the populations of the Fe 3dxy, 3dxz, and 3dyz orbitals two possible quintet states can exist for the high-spin state of the photoswitchable model system [Fe(terpy)2]2+. The differences in the structure and molecular properties of these 5B2 and 5E quintets are very small and pose a substantial challenge for experiments to resolve them. Yet for a better understanding of the physics of this system, which can lead to the design of novel molecules with enhanced photoswitching performance, it is vital to determine which high-spin state is reached in the transitions that follow the lightmore » excitation. The quintet state can be prepared with a short laser pulse and can be studied with cutting-edge time-resolved X-ray techniques. Here we report on the application of an extended set of X-ray spectroscopy and scattering techniques applied to investigate the quintet state of [Fe(terpy)2]2+ 80 ps after light excitation. High-quality X-ray absorption, nonresonant emission, and resonant emission spectra as well as X-ray diffuse scattering data clearly reflect the formation of the high-spin state of the [Fe(terpy)2]2+ molecule; moreover, extended X-ray absorption fine structure spectroscopy resolves the Fe-ligand bond-length variations with unprecedented bondlength accuracy in time-resolved experiments. With ab initio calculations we determine why, in contrast to most related systems, one configurational mode is insufficient for the description of the low-spin (LS)-high-spin (HS) transition. We identify the electronic structure origin of the differences between the two possible quintet modes, and finally, we unambiguously identify the formed quintet state as 5E, in agreement with our theoretical expectations.« less

  15. Detailed Characterization of a Nanosecond-Lived Excited State: X-ray and Theoretical Investigation of the Quintet State in Photoexcited [Fe(terpy) 2 ] 2+

    DOE PAGES

    Vanko, Gyorgy; Bordage, Amelie; Papai, Matyas; ...

    2015-03-19

    Theoretical predictions show that depending on the populations of the Fe 3d xy, 3d xz, and 3d yz orbitals two possible quintet states can exist for the high-spin state of the photoswitchable model system [Fe(terpy) 2] 2+. The differences in the structure and molecular properties of these 5B2 and 5E quintets are very small and pose a substantial challenge for experiments to resolve them. Yet for a better understanding of the physics of this system, which can lead to the design of novel molecules with enhanced photoswitching performance, it is vital to determine which high-spin state is reached in themore » transitions that follow the light excitation. The quintet state can be prepared with a short laser pulse and can be studied with cutting-edge time-resolved X-ray techniques. Here we report on the application of an extended set of X-ray spectroscopy and scattering techniques applied to investigate the quintet state of [Fe(terpy) 2] 2+ 80 ps after light excitation. High-quality X-ray absorption, nonresonant emission, and resonant emission spectra as well as X-ray diffuse scattering data clearly reflect the formation of the high-spin state of the [Fe(terpy) 2] 2+ molecule; moreover, extended X-ray absorption fine structure spectroscopy resolves the Fe–ligand bond-length variations with unprecedented bond-length accuracy in time-resolved experiments. With ab initio calculations we determine why, in contrast to most related systems, one configurational mode is insufficient for the description of the low-spin (LS)–high-spin (HS) transition. We identify the electronic structure origin of the differences between the two possible quintet modes, and finally, we unambiguously identify the formed quintet state as 5E, in agreement with our theoretical expectations.« less

  16. Realisation of magnetically and atomically abrupt half-metal/semiconductor interface: Co2FeSi0.5Al0.5/Ge(111)

    PubMed Central

    Nedelkoski, Zlatko; Kuerbanjiang, Balati; Glover, Stephanie E.; Sanchez, Ana M.; Kepaptsoglou, Demie; Ghasemi, Arsham; Burrows, Christopher W.; Yamada, Shinya; Hamaya, Kohei; Ramasse, Quentin M.; Hasnip, Philip J.; Hase, Thomas; Bell, Gavin R.; Hirohata, Atsufumi; Lazarov, Vlado K.

    2016-01-01

    Halfmetal-semiconductor interfaces are crucial for hybrid spintronic devices. Atomically sharp interfaces with high spin polarisation are required for efficient spin injection. In this work we show that thin film of half-metallic full Heusler alloy Co2FeSi0.5Al0.5 with uniform thickness and B2 ordering can form structurally abrupt interface with Ge(111). Atomic resolution energy dispersive X-ray spectroscopy reveals that there is a small outdiffusion of Ge into specific atomic planes of the Co2FeSi0.5Al0.5 film, limited to a very narrow 1 nm interface region. First-principles calculations show that this selective outdiffusion along the Fe-Si/Al atomic planes does not change the magnetic moment of the film up to the very interface. Polarized neutron reflectivity, x-ray reflectivity and aberration-corrected electron microscopy confirm that this interface is both magnetically and structurally abrupt. Finally, using first-principles calculations we show that this experimentally realised interface structure, terminated by Co-Ge bonds, preserves the high spin polarization at the Co2FeSi0.5Al0.5/Ge interface, hence can be used as a model to study spin injection from half-metals into semiconductors. PMID:27869132

  17. High spin structure and intruder configurations in 31P

    NASA Astrophysics Data System (ADS)

    Ionescu-Bujor, M.; Iordachescu, A.; Napoli, D. R.; Lenzi, S. M.; Mărginean, N.; Otsuka, T.; Utsuno, Y.; Ribas, R. V.; Axiotis, M.; Bazzacco, D.; Bizzeti-Sona, A. M.; Bizzeti, P. G.; Brandolini, F.; Bucurescu, D.; Cardona, M. A.; De Angelis, G.; De Poli, M.; Della Vedova, F.; Farnea, E.; Gadea, A.; Hojman, D.; Kalfas, C. A.; Kröll, Th.; Lunardi, S.; Martínez, T.; Mason, P.; Pavan, P.; Quintana, B.; Alvarez, C. Rossi; Ur, C. A.; Vlastou, R.; Zilio, S.

    2006-02-01

    The nucleus 31P has been studied in the 24Mg(16O,2αp) reaction with a 70-MeV 16O beam. A complex level scheme extended up to spins 17/2+ and 15/2-, on positive and negative parity, respectively, has been established. Lifetimes for the new states have been investigated by the Doppler shift attenuation method. Two shell-model calculations have been performed to describe the experimental data, one by using the code ANTOINE in a valence space restricted to the sd shell, and the other by applying the Monte Carlo shell model in a valence space including the sd-fp shells. The latter calculation indicates that intruder excitations, involving the promotion of a T=0 proton-neutron pair to the fp shell, play a dominant role in the structure of the positive-parity high-spin states of 31P.

  18. Unravelling the spin-state of solvated [Fe(bpp)2]2+ spin-crossover complexes: structure-function relationship.

    PubMed

    Giménez-López, Maria Del Carmen; Clemente-León, Miguel; Giménez-Saiz, Carlos

    2018-05-23

    This paper reports firstly the syntheses, crystal structures, and thermal and magnetic properties of spin crossover salts of formulae [Fe(bpp)2]3[Cr(CN)6]2·13H2O (1) and [Fe(bpp)2][N(CN)2]2·H2O (2) (bpp = 2,6-bis(pyrazol-3-yl)pyridine) exhibiting hydrogen-bonded networks of low-spin [Fe(bpp)2]2+ complexes and [Cr(CN)6]3- or [N(CN)2]- anions, with solvent molecules located in the voids. Desolvation of 1 is accompanied by a complete low-spin (LS) to a high-spin (HS) transformation that becomes reversible after rehydration by exposing the sample to the humidity of air. The influence of the lattice water on the magnetic properties of spin-crossover [Fe(bpp)2]X2 complex salts has been documented. In most cases, it stabilises the LS state over the HS one. In other cases, it is rather the contrary. The second part of this paper is devoted to unravelling the reasons why the lattice solvent stabilises one form over the other through magneto-structural correlations of [Fe(bpp)2]2+ salts bearing anions with different charge/size ratios (Xn-). The [Fe(bpp)2]2+ stacking explaining these two different behaviours is correlated here with the composition of the second coordination sphere of the Fe centers and the ability of these anions to form hydrogen bonds and/or π-π stacking interactions between them or the bpp ligand.

  19. High-spin spectroscopy of 139Ce

    NASA Astrophysics Data System (ADS)

    Kaim, S.; Petrache, C. M.; Gargano, A.; Itaco, N.; Zerrouki, T.; Leguillon, R.; Astier, A.; Deloncle, I.; Konstantinopoulos, T.; Régis, J. M.; Wilmsen, D.; Melon, B.; Nannini, A.; Ducoin, C.; Guinet, D.; Bhattacharjee, T.

    2015-02-01

    High-spin states in 139Ce have been populated using the 130Te(14C,5 n ) reaction. The level scheme has been extended to higher spins, including a new band of dipole transitions. The parity of several states has been changed from negative to positive, mainly based on the comparison with the level structure of the core nucleus 140Ce and the results of a realistic shell-model calculation. The dipole band is interpreted as a magnetic rotation band with π h11/2 2⊗ν h11/2 -1 configuration built on small deformation axial shape with (ɛ2=0.12 ,γ =0∘) .

  20. Anisotropic magnetic interactions and spin dynamics in the spin-chain compound Cu (py) 2Br2 : An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Zeisner, J.; Brockmann, M.; Zimmermann, S.; Weiße, A.; Thede, M.; Ressouche, E.; Povarov, K. Yu.; Zheludev, A.; Klümper, A.; Büchner, B.; Kataev, V.; Göhmann, F.

    2017-07-01

    We compare theoretical results for electron spin resonance (ESR) properties of the Heisenberg-Ising Hamiltonian with ESR experiments on the quasi-one-dimensional magnet Cu (py) 2Br2 (CPB). Our measurements were performed over a wide frequency and temperature range giving insight into the spin dynamics, spin structure, and magnetic anisotropy of this compound. By analyzing the angular dependence of ESR parameters (resonance shift and linewidth) at room temperature, we show that the two weakly coupled inequivalent spin-chain types inside the compound are well described by Heisenberg-Ising chains with their magnetic anisotropy axes perpendicular to the chain direction and almost perpendicular to each other. We further determine the full g tensor from these data. In addition, the angular dependence of the linewidth at high temperatures gives us access to the exponent of the algebraic decay of a dynamical correlation function of the isotropic Heisenberg chain. From the temperature dependence of static susceptibilities, we extract the strength of the exchange coupling (J /kB=52.0 K ) and the anisotropy parameter (δ ≈-0.02 ) of the model Hamiltonian. An independent compatible value of δ is obtained by comparing the exact prediction for the resonance shift at low temperatures with high-frequency ESR data recorded at 4 K . The spin structure in the ordered state implied by the two (almost) perpendicular anisotropy axes is in accordance with the propagation vector determined from neutron scattering experiments. In addition to undoped samples, we study the impact of partial substitution of Br by Cl ions on spin dynamics. From the dependence of the ESR linewidth on the doping level, we infer an effective decoupling of the anisotropic component J δ from the isotropic exchange J in these systems.

  1. Multipartite quantum correlations in the extended J1-J2 Heisenberg model

    NASA Astrophysics Data System (ADS)

    Batle, J.; Tarawneh, O.; Nagata, Koji; Nakamura, Tadao; Abdalla, S.; Farouk, Ahmed

    2017-11-01

    Multipartite entanglement and the maximum violation of Bell inequalities are studied in finite clusters of spins in an extended J1-J2 Heisenberg model at zero temperature. The ensuing highly frustrated states will unveil a rich structure for different values of the corresponding spin-spin interaction strengths. The interplay between nearest-neighbors, next-nearest neighbors and further couplings will be explored using multipartite correlations. The model is relevant to certain quantum annealing computation architectures where an all-to-all connectivity is considered.

  2. Spin dynamics and magnetoelectric coupling mechanism of C o4N b2O9

    NASA Astrophysics Data System (ADS)

    Deng, Guochu; Cao, Yiming; Ren, Wei; Cao, Shixun; Studer, Andrew J.; Gauthier, Nicolas; Kenzelmann, Michel; Davidson, Gene; Rule, Kirrily C.; Gardner, Jason S.; Imperia, Paolo; Ulrich, Clemens; McIntyre, Garry J.

    2018-02-01

    Neutron powder diffraction experiments reveal that C o4N b2O9 forms a noncollinear in-plane magnetic structure with C o2 + moments lying in the a b plane. The spin-wave excitations of this magnet were measured by using inelastic neutron scattering and soundly simulated by a dynamic model involving nearest- and next-nearest-neighbor exchange interactions, in-plane anisotropy, and the Dzyaloshinskii-Moriya interaction. The in-plane magnetic structure of C o4N b2O9 is attributed to the large in-plane anisotropy, while the noncollinearity of the spin configuration is attributed to the Dzyaloshinskii-Moriya interaction. The high magnetoelectric coupling effect of C o4N b2O9 in fields can be explained by its special in-plane magnetic structure.

  3. Biomimetic Nanofibrillation in Two-Component Biopolymer Blends with Structural Analogs to Spider Silk

    NASA Astrophysics Data System (ADS)

    Xie, Lan; Xu, Huan; Li, Liang-Bin; Hsiao, Benjamin S.; Zhong, Gan-Ji; Li, Zhong-Ming

    2016-10-01

    Despite the enormous potential in bioinspired fabrication of high-strength structure by mimicking the spinning process of spider silk, currently accessible routes (e.g., microfluidic and electrospinning approaches) still have substantial function gaps in providing precision control over the nanofibrillar superstructure, crystalline morphology or molecular orientation. Here the concept of biomimetic nanofibrillation, by copying the spiders’ spinning principles, was conceived to build silk-mimicking hierarchies in two-phase biodegradable blends, strategically involving the stepwise integration of elongational shear and high-pressure shear. Phase separation confined on nanoscale, together with deformation of discrete phases and pre-alignment of polymer chains, was triggered in the elongational shear, conferring the readiness for direct nanofibrillation in the latter shearing stage. The orderly aligned nanofibrils, featuring an ultralow diameter of around 100 nm and the “rigid-soft” system crosslinked by nanocrystal domains like silk protein dopes, were secreted by fine nanochannels. The incorporation of multiscale silk-mimicking structures afforded exceptional combination of strength, ductility and toughness for the nanofibrillar polymer composites. The proposed spider spinning-mimicking strategy, offering the biomimetic function integration unattainable with current approaches, may prompt materials scientists to pursue biopolymer mimics of silk with high performance yet light weight.

  4. Biomimetic Nanofibrillation in Two-Component Biopolymer Blends with Structural Analogs to Spider Silk.

    PubMed

    Xie, Lan; Xu, Huan; Li, Liang-Bin; Hsiao, Benjamin S; Zhong, Gan-Ji; Li, Zhong-Ming

    2016-10-03

    Despite the enormous potential in bioinspired fabrication of high-strength structure by mimicking the spinning process of spider silk, currently accessible routes (e.g., microfluidic and electrospinning approaches) still have substantial function gaps in providing precision control over the nanofibrillar superstructure, crystalline morphology or molecular orientation. Here the concept of biomimetic nanofibrillation, by copying the spiders' spinning principles, was conceived to build silk-mimicking hierarchies in two-phase biodegradable blends, strategically involving the stepwise integration of elongational shear and high-pressure shear. Phase separation confined on nanoscale, together with deformation of discrete phases and pre-alignment of polymer chains, was triggered in the elongational shear, conferring the readiness for direct nanofibrillation in the latter shearing stage. The orderly aligned nanofibrils, featuring an ultralow diameter of around 100 nm and the "rigid-soft" system crosslinked by nanocrystal domains like silk protein dopes, were secreted by fine nanochannels. The incorporation of multiscale silk-mimicking structures afforded exceptional combination of strength, ductility and toughness for the nanofibrillar polymer composites. The proposed spider spinning-mimicking strategy, offering the biomimetic function integration unattainable with current approaches, may prompt materials scientists to pursue biopolymer mimics of silk with high performance yet light weight.

  5. Biomimetic Nanofibrillation in Two-Component Biopolymer Blends with Structural Analogs to Spider Silk

    PubMed Central

    Xie, Lan; Xu, Huan; Li, Liang-Bin; Hsiao, Benjamin S.; Zhong, Gan-Ji; Li, Zhong-Ming

    2016-01-01

    Despite the enormous potential in bioinspired fabrication of high-strength structure by mimicking the spinning process of spider silk, currently accessible routes (e.g., microfluidic and electrospinning approaches) still have substantial function gaps in providing precision control over the nanofibrillar superstructure, crystalline morphology or molecular orientation. Here the concept of biomimetic nanofibrillation, by copying the spiders’ spinning principles, was conceived to build silk-mimicking hierarchies in two-phase biodegradable blends, strategically involving the stepwise integration of elongational shear and high-pressure shear. Phase separation confined on nanoscale, together with deformation of discrete phases and pre-alignment of polymer chains, was triggered in the elongational shear, conferring the readiness for direct nanofibrillation in the latter shearing stage. The orderly aligned nanofibrils, featuring an ultralow diameter of around 100 nm and the “rigid−soft” system crosslinked by nanocrystal domains like silk protein dopes, were secreted by fine nanochannels. The incorporation of multiscale silk-mimicking structures afforded exceptional combination of strength, ductility and toughness for the nanofibrillar polymer composites. The proposed spider spinning-mimicking strategy, offering the biomimetic function integration unattainable with current approaches, may prompt materials scientists to pursue biopolymer mimics of silk with high performance yet light weight. PMID:27694989

  6. Insights into the crystal-packing effects on the spin crossover of [Fe(II)(1-bpp)](2+)-based materials.

    PubMed

    Vela, Sergi; Novoa, Juan J; Ribas-Arino, Jordi

    2014-12-28

    Iron(II) complexes of the [Fe(II)(1-bpp2)](2+) type (1-bpp = 2,6-di(pyrazol-1-yl)pyridine) have been intensively investigated in the context of crystal engineering of switchable materials because their spin-crossover (SCO) properties dramatically depend on the counterions. Here, by means of DFT + U calculations at the molecular and solid state levels we provide a rationale for the different SCO behaviour of the BF4(-) and ClO4(-) salts of the parent complex; the former features Fe(II) complexes with a regular coordination geometry and undergoes a spin transition, whereas the Fe(II) complexes of the latter adopt a distorted structure and remain in the high-spin state at all temperatures. The different SCO behaviour of both salts can be explained on the basis of a combination of thermodynamic and kinetic effects. The shape of the SCO units at high temperature is thermodynamically controlled by the intermolecular interactions between the SCO units and counterions within the crystal. The spin trapping at low temperatures in the ClO4(-) salt, in turn, is traced back to a kinetic effect because our calculations have revealed the existence of a more stable polymorph having SCO units in their low-spin state that feature a regular structure. From the computational point of view, it is the first time that the U parameter is fine-tuned on the basis of CASPT2 calculations, thereby enabling an accurate description of the energetics of the spin transition at both molecular and solid-state levels.

  7. Structural changes in the nano-oxide layer with annealing in specular spin valves

    NASA Astrophysics Data System (ADS)

    Jang, S. H.; Kim, Y. W.; Kang, T.; Kim, H. J.; Kim, K. Y.

    2003-05-01

    We investigated microstructural changes in a nano-oxide layer (NOL) with annealing in specular spin valves (SVs) by cross-sectional transmission electron microscopy and x-ray photoelectron spectroscopy analysis. In the SV annealed at high temperature of 400 °C, an increase in thickness and a local breakdown of the NOL were observed. This local coarsening of the NOL is closely related to the formation of Mn oxides in the oxide-rich part of the NOL through Mn diffusion. Thus, the chemical structure of the NOL changes to the structure with Mn oxide-rich content after annealing.

  8. Recombinant spider silk from aqueous solutions via a bio-inspired microfluidic chip

    NASA Astrophysics Data System (ADS)

    Peng, Qingfa; Zhang, Yaopeng; Lu, Li; Shao, Huili; Qin, Kankan; Hu, Xuechao; Xia, Xiaoxia

    2016-11-01

    Spiders achieve superior silk fibres by controlling the molecular assembly of silk proteins and the hierarchical structure of fibres. However, current wet-spinning process for recombinant spidroins oversimplifies the natural spinning process. Here, water-soluble recombinant spider dragline silk protein (with a low molecular weight of 47 kDa) was adopted to prepare aqueous spinning dope. Artificial spider silks were spun via microfluidic wet-spinning, using a continuous post-spin drawing process (WS-PSD). By mimicking the natural spinning apparatus, shearing and elongational sections were integrated in the microfluidic spinning chip to induce assembly, orientation of spidroins, and fibril structure formation. The additional post-spin drawing process following the wet-spinning section partially mimics the spinning process of natural spider silk and substantially contributes to the compact aggregation of microfibrils. Subsequent post-stretching further improves the hierarchical structure of the fibres, including the crystalline structure, orientation, and fibril melting. The tensile strength and elongation of post-treated fibres reached up to 510 MPa and 15%, respectively.

  9. 3D Spin-Liquid State in an Organic Hyperkagome Lattice of Mott Dimers

    NASA Astrophysics Data System (ADS)

    Mizuno, Asato; Shuku, Yoshiaki; Matsushita, Michio M.; Tsuchiizu, Masahisa; Hara, Yuuki; Wada, Nobuo; Shimizu, Yasuhiro; Awaga, Kunio

    2017-08-01

    We report the first 3D spin liquid state of isotropic organic spins. Structural analysis, and magnetic and heat-capacity measurements were carried out for a chiral organic radical salt, (TBA) 1.5[(-)-NDI -Δ ] (TBA denotes tetrabutylammonium and NDI denotes naphthalene diimide), in which (-)-NDI -Δ forms a K4 structure due to its triangular molecular structure and an intermolecular π -π overlap between the NDI moieties. This lattice was identical to the hyperkagome lattice of S =1 /2 Mott dimers, and should exhibit 3D spin frustration. In fact, even though the high-temperature magnetic susceptibility followed the Curie-Weiss law with a negative Weiss constant of θ =-15 K , the low-temperature magnetic measurements revealed no long-range magnetic ordering down to 70 mK, and suggested the presence of a spin liquid state with a large residual paramagnetism χ0 of 8.5 ×10-6 emu g-1 at the absolute zero temperature. This was supported by the N 14 NMR measurements down to 0.38 K. Further, the low-temperature heat capacities cp down to 68 mK clearly indicated the presence of cp for the spin liquid state, which can be fitted to the power law of T0.62 in the wide temperature range 0.07-4.5 K.

  10. Backbending in the {}_{90}^{223}{Th} nucleus: presentation of the consistency of two different experiments

    NASA Astrophysics Data System (ADS)

    Maquart, G.; Astier, A.; Ducoin, C.; Guinet, D.; Stézowski, O.; Augey, L.; Chaix, L.; Companis, I.; Dudouet, J.; Lehaut, G.; Mancuso, C.; Redon, N.; Vancraeyenest, A.

    2017-06-01

    The detailed level structure of {}223{Th} has been investigated in measurements of γ radiations following the fusion-evaporation channel of the {}208{Pb}{(}18{{O}},3n{)}223{Th} reaction at 85 MeV beam energy. The present data are extracted from two different experiments performed with the EUROBALL IV and JUROGAM II γ-ray detector array, respectively. The level structure has been extended up to spin 49/2 and 33 new γ-rays have been added using triple-γ coincidence data. The spins and parities of the newly observed states have been confirmed by angular distribution ratios. In addition to the two known yrast bands based on a K=5/2 configuration, a non-yrast band has been established up to spin 35/2. This observation has brought to light a sharp backbending occuring at the highest spins promoting the {}223{Th} as the heavier thorium isotope having an accident observed in its moment of inertia at high spin. We interpret this new structure as based on the same configuration as the yrast band in {}221{Th} having dominant K=1/2 contribution. At the highest spin a backbending occurs around a rotational frequency of {\\hslash }ω =0.23 {MeV}, very close to the one predicted in the {}222{Th} where a sharp transition to a reflection-symmetric shape is expected.

  11. Isomer spectroscopy using RI beam

    NASA Astrophysics Data System (ADS)

    Odahara, Atsuko

    2009-10-01

    We have studied systematically high-spin oblate shape isomers in the N=83 isotones, which have revealed the characteristics of nuclear structure, such as the preserving pairing interactions at high-spin states, decrease of Z=64 proton shell gap energy as the decrease of proton number from 64 to 60 and so on. Recently, it became possible to search for isomers by the secondary fusion reaction at high-spin states in nuclei, which could not be populated by the stable beam and stable target, using RCNP RI beam line at Osaka University. RI beams enable us to study high-spin states in nuclei in wide mass region. By using the RI beams delivered by RIBF and the high-efficiency γ-ray detection system GRETINA, it will be possible to investigate nuclei far from the stability line. Single-particle energies and nucleon-nucleon interactions of these nuclei close to drip line are expected to be the test ground of nuclear models, such as shell structures. We have a plan to search for isomers with half lives of ˜μsec to ˜msec and to explore the decay mechanism of isomers in the proton-rich nuclei along N=Z line with 80< A<100. Moreover we try to search for nuclei beyond the proton drip line, which could be defined that isomeric states would be bound by the centrifugal potential although the ground states would be unbound against the proton emission. Isomers are expected to reveal the following characteristics of these nuclei. (1) Existence of isomers could prove the magicity of N=Z=50 and the large neutron-proton interaction, as one of the candidates of isomers is spin-gap isomer which is caused by the lowering of excitation energies resulting from the stretch coupling of spins of high-j (g9/2) holes of the ^100Sn core. (2) Isomers could prove the nuclear deformation which is caused by the evolution of shell structure. One of spin-gap isomers in ^94Ag was reported to have large prolate deformation. (3) This mass region is on the way of the rapid proton (rp) synthesis pass. Recently, neutrino reactions in the super novae were reported to play a role of the synthesis of the rp-process nuclei. In the case of no path or slow down of rp process, isomers could contribute to synthesis of rp-nuclei with larger Z, although the production rates of isomers are small.

  12. Theoretical Study of Gilbert Damping and Spin Dynamics in Spintronic Devices

    NASA Astrophysics Data System (ADS)

    Qu, Tao

    The determination of damping mechanisms is one of the most fundamental problems of magnetism. It represents the elimination of the magnetic energy and thus has broad impact in both science and technology. The dynamic time scale in spintronic devices is controlled by the damping and the consumed power depends on the damping constant squared. In recent years, the interest in high perpendicular anisotropy materials and thin film structures have increased considerably, owing to their stability over a wide temperature range when scaling devices to nanometer length scales. However, the conventional measurement method-Ferromagnetic resonance (FMR) can not produce accurate damping results in the high magnetic crystalline anisotropy materials/structures, and the intrinsic damping reported experimentally diverges among investigators, probably due to the varying fabrication techniques. This thesis describes the application of the Kambersky torque correlation technique, within the tight binding method, to multiple materials with high perpendicular magnetic anisotropy ( 10 7 erg/cm3), in both bulk and thin film structures. The impact of the inevitable experimental defects on the energy dissipation is identified and the experimental damping divergence among investigators due to the material degree of order is explained. It is demonstrated that this corresponds to an enhanced DOS at the Fermi level, owing to the rounding of the DOS with loss of long-range order. The consistency of the predicted damping constant with experimental measurement is demonstrated and the interface contribution to the energy damping constant in potential superlattices and heterostructures for spintronic devices is explored. An optimized structure will be a tradeoff involving both anisotropy and damping. The damping related spin dynamics in spintronic devices for different applications is investigated. One device is current perpendicular to planes(CPP) spin valve. Incoherent scattering matrices are applied to calculate the angle dependent magnetoresistantce and obtain analytic expressions for the spin valve. The non-linearity of magnetoresistance can be quantitatively explained by reflected electrons using only experimental spin polarization as input. The other device is a spin-transfer-torque nano-oscillator. The Landau-Lifshitz-Gilbert equation is applied and the synchronization requirement for experimentally fabricated non-identical multi spintronic oscillators is explored. Power enhancement and noise decrease for the synchronized state is demonstrated in a temperature range. Through introducing combined electric and magnetic coupling effect, a design for an optimized feasible nanopillar structure suitable for thin-film deposition is developed.

  13. Gradual pressure-induced change in the magnetic structure of the noncollinear antiferromagnet Mn3Ge

    NASA Astrophysics Data System (ADS)

    Sukhanov, A. S.; Singh, Sanjay; Caron, L.; Hansen, Th.; Hoser, A.; Kumar, V.; Borrmann, H.; Fitch, A.; Devi, P.; Manna, K.; Felser, C.; Inosov, D. S.

    2018-06-01

    By means of powder neutron diffraction we investigate changes in the magnetic structure of the coplanar noncollinear antiferromagnet Mn3Ge caused by an application of hydrostatic pressure up to 5 GPa. At ambient conditions the kagomé layers of Mn atoms in Mn3Ge order in a triangular 120∘ spin structure. Under high pressure the spins acquire a uniform out-of-plane canting, gradually transforming the magnetic texture to a noncoplanar configuration. With increasing pressure the canted structure fully transforms into the collinear ferromagnetic one. We observed that magnetic order is accompanied by a noticeable magnetoelastic effect, namely, spontaneous magnetostriction. The latter induces an in-plane magnetostrain of the hexagonal unit cell at ambient pressure and flips to an out-of-plane strain at high pressures in accordance with the change of the magnetic structure.

  14. Activation of coherent lattice phonon following ultrafast molecular spin-state photo-switching: A molecule-to-lattice energy transfer

    PubMed Central

    Marino, A.; Cammarata, M.; Matar, S. F.; Létard, J.-F.; Chastanet, G.; Chollet, M.; Glownia, J. M.; Lemke, H. T.; Collet, E.

    2015-01-01

    We combine ultrafast optical spectroscopy with femtosecond X-ray absorption to study the photo-switching dynamics of the [Fe(PM-AzA)2(NCS)2] spin-crossover molecular solid. The light-induced excited spin-state trapping process switches the molecules from low spin to high spin (HS) states on the sub-picosecond timescale. The change of the electronic state (<50 fs) induces a structural reorganization of the molecule within 160 fs. This transformation is accompanied by coherent molecular vibrations in the HS potential and especially a rapidly damped Fe-ligand breathing mode. The time-resolved studies evidence a delayed activation of coherent optical phonons of the lattice surrounding the photoexcited molecules. PMID:26798836

  15. Electron refrigeration in hybrid structures with spin-split superconductors

    NASA Astrophysics Data System (ADS)

    Rouco, M.; Heikkilä, T. T.; Bergeret, F. S.

    2018-01-01

    Electron tunneling between superconductors and normal metals has been used for an efficient refrigeration of electrons in the latter. Such cooling is a nonlinear effect and usually requires a large voltage. Here we study the electron cooling in heterostructures based on superconductors with a spin-splitting field coupled to normal metals via spin-filtering barriers. The cooling power shows a linear term in the applied voltage. This improves the coefficient of performance of electron refrigeration in the normal metal by shifting its optimum cooling to lower voltage, and also allows for cooling the spin-split superconductor by reverting the sign of the voltage. We also show how tunnel coupling spin-split superconductors with regular ones allows for a highly efficient refrigeration of the latter.

  16. Intrinsic Defect Ferromagnetism: The case of Hafnium Oxide

    NASA Astrophysics Data System (ADS)

    Das Pemmaraju, Chaitanya

    2005-03-01

    In view of the recent experimental reports of intrinsic ferromagnetism in Hafnium Oxide (HfO2) thin film systems ootnotetextM. Venkatesan, C. B. Fitzgerald, J. M. D. Coey Nature 430, 630 (2004) Brief Communications, we carried out first principles investigations to look for magnetic structure in HfO2 possibly brought about by the presence of small concentrations of intrinsic point defects. Ab initio electronic structure calculations using Density Functional Theory (DFT) show that isolated cation vacancy sites in HfO2 lead to the formation of high spin defect states which couple ferromagnetically to each other. Interestingly, these high spin states are observed in the low symmetry monoclinic and tetragonal phases while the highly symmetric cubic flourite phase exhibits a non-magnetic ground state. Detailed studies of the electronic structure of cation vacancies in the three crystalline phases of Hafnia show that symmetry leading to orbitally degenerate defect levels is not a pre-requsite for ferromagnetism and that the interplay between Kinetic, Coulomb and Exchange energy together with favourable coupling to the Crystalline environment can lead to high spin ferromagnetic ground states even in extreme low symmetry systems like monoclinic HfO2. These findings open up a much wider class of systems to the possibility of intrinsic defect ferromagnetism.

  17. Resonant Spin-Transfer-Torque Nano-Oscillators

    NASA Astrophysics Data System (ADS)

    Sharma, Abhishek; Tulapurkar, Ashwin A.; Muralidharan, Bhaskaran

    2017-12-01

    Spin-transfer-torque nano-oscillators are potential candidates for replacing the traditional inductor-based voltage-controlled oscillators in modern communication devices. Typical oscillator designs are based on trilayer magnetic tunnel junctions, which have the disadvantages of low power outputs and poor conversion efficiencies. We theoretically propose using resonant spin filtering in pentalayer magnetic tunnel junctions as a possible route to alleviate these issues and present viable device designs geared toward a high microwave output power and an efficient conversion of the dc input power. We attribute these robust qualities to the resulting nontrivial spin-current profiles and the ultrahigh tunnel magnetoresistance, both of which arise from resonant spin filtering. The device designs are based on the nonequilibrium Green's-function spin-transport formalism self-consistently coupled with the stochastic Landau-Lifshitz-Gilbert-Slonczewski equation and Poisson's equation. We demonstrate that the proposed structures facilitate oscillator designs featuring a large enhancement in microwave power of around 1150% and an efficiency enhancement of over 1100% compared to typical trilayer designs. We rationalize the optimum operating regions via an analysis of the dynamic and static device resistances. We also demonstrate the robustness of our structures against device design fluctuations and elastic dephasing. This work sets the stage for pentalyer spin-transfer-torque nano-oscillator device designs that ameliorate major issues associated with typical trilayer designs.

  18. Measurements of the Double-Spin Asymmetry A 1 on Helium-3: Toward a Precise Measurement of the Neutron A 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parno, Diana Seymour

    2011-04-01

    The spin structure of protons and neutrons has been an open question for nearly twenty-five years, after surprising experimental results disproved the simple model in which valence quarks were responsible for nearly 100% of the nucleon spin. Diverse theoretical approaches have been brought to bear on the problem, but a shortage of precise data - especially on neutron spin structure - has prevented a thorough understanding. Experiment E06-014, conducted in Hall A of Jefferson Laboratory in 2009, presented an opportunity to add to the world data set for the neutron in the poorly covered valence-quark region. Jefferson Laboratory's highly polarizedmore » electron beam, combined with Hall A's facilities for a high-density, highly polarized 3He target, allowed a high-luminosity double-polarized experiment, while the large acceptance of the BigBite spectrometer gave coverage over a wide kinematic range: 0.15 < x < 0.95. In this work, we present the analysis of a portion of the E06-014 data, measured with an incident beam energy of 4.74 GeV and spanning 1.5 < Q 2 < 5.5 (GeV/c) 2. From these data, we extract the longitudinal asymmetry in virtual photon-nucleon scattering, A 1, on the 3He nucleus. Combined with the remaining E06-014 data, this will form the basis of a measurement of the neutron asymmetry A η 1 that will extend the kinematic range of the data available to test models of spin-dependent parton distributions in the nucleon.« less

  19. Atomic-scale understanding of high thermal stability of the Mo/CoFeB/MgO spin injector for spin-injection in remanence.

    PubMed

    Tao, Bingshan; Barate, Philippe; Devaux, Xavier; Renucci, Pierre; Frougier, Julien; Djeffal, Abdelhak; Liang, Shiheng; Xu, Bo; Hehn, Michel; Jaffrès, Henri; George, Jean-Marie; Marie, Xavier; Mangin, Stéphane; Han, Xiufeng; Wang, Zhanguo; Lu, Yuan

    2018-05-31

    Remanent spin injection into a spin light emitting diode (spin-LED) at zero magnetic field is a prerequisite for future application of spin optoelectronics. Here, we demonstrate the remanent spin injection into GaAs based LEDs with a thermally stable Mo/CoFeB/MgO spin injector. A systematic study of magnetic properties, polarization-resolved electroluminescence (EL) and atomic-scale interfacial structures has been performed in comparison with the Ta/CoFeB/MgO spin injector. The perpendicular magnetic anisotropy (PMA) of the Mo/CoFeB/MgO injector shows more advanced thermal stability than that of the Ta/CoFeB/MgO injector and robust PMA can be maintained up to 400 °C annealing. The remanent circular polarization (PC) of EL from the Mo capped spin-LED reaches a maximum value of 10% after 300 °C annealing, and even remains at 4% after 400 °C annealing. In contrast, the Ta capped spin-LED almost completely loses the remanent PC under 400 °C annealing. Combined advanced electron microscopy and spectroscopy studies reveal that a large amount of Ta diffuses into the MgO tunneling barrier through the CoFeB layer after 400 °C annealing. However, the diffusion of Mo into CoFeB is limited and never reaches the MgO barrier. These findings afford a comprehensive perspective to use the highly thermally stable Mo/CoFeB/MgO spin injector for efficient electrical spin injection in remanence.

  20. Finger-gate manipulated quantum transport in Dirac materials

    NASA Astrophysics Data System (ADS)

    Kleftogiannis, Ioannis; Tang, Chi-Shung; Cheng, Shun-Jen

    2015-05-01

    We investigate the quantum transport properties of multichannel nanoribbons made of materials described by the Dirac equation, under an in-plane magnetic field. In the low energy regime, positive and negative finger-gate potentials allow the electrons to make intra-subband transitions via hole-like or electron-like quasibound states (QBS), respectively, resulting in dips in the conductance. In the high energy regime, double dip structures in the conductance are found, attributed to spin-flip or spin-nonflip inter-subband transitions through the QBSs. Inverting the finger-gate polarity offers the possibility to manipulate the spin polarized electronic transport to achieve a controlled spin-switch.

  1. Highly Efficient Spin-Current Operation in a Cu Nano-Ring

    NASA Astrophysics Data System (ADS)

    Murphy, Benedict A.; Vick, Andrew J.; Samiepour, Marjan; Hirohata, Atsufumi

    2016-11-01

    An all-metal lateral spin-valve structure has been fabricated with a medial Copper nano-ring to split the diffusive spin-current path. We have demonstrated significant modulation of the non-local signal by the application of a magnetic field gradient across the nano-ring, which is up to 30% more efficient than the conventional Hanle configuration at room temperature. This was achieved by passing a dc current through a current-carrying bar to provide a locally induced Ampère field. We have shown that in this manner a lateral spin-valve gains an additional functionality in the form of three-terminal gate operation for future spintronic logic.

  2. Spin-hall-active platinum thin films grown via atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Schlitz, Richard; Amusan, Akinwumi Abimbola; Lammel, Michaela; Schlicht, Stefanie; Tynell, Tommi; Bachmann, Julien; Woltersdorf, Georg; Nielsch, Kornelius; Goennenwein, Sebastian T. B.; Thomas, Andy

    2018-06-01

    We study the magnetoresistance of yttrium iron garnet/Pt heterostructures in which the Pt layer was grown via atomic layer deposition (ALD). Magnetotransport experiments in three orthogonal rotation planes reveal the hallmark features of spin Hall magnetoresistance. To estimate the spin transport parameters, we compare the magnitude of the magnetoresistance in samples with different Pt thicknesses. We check the spin Hall angle and the spin diffusion length of the ALD Pt layers against the values reported for high-quality sputter-deposited Pt films. The spin diffusion length of 1.5 nm agrees well with that of platinum thin films reported in the literature, whereas the spin Hall magnetoresistance Δ ρ / ρ = 2.2 × 10 - 5 is approximately a factor of 20 smaller compared to that of our sputter-deposited films. Our results demonstrate that ALD allows fabricating spin-Hall-active Pt films of suitable quality for use in spin transport structures. This work provides the basis to establish conformal ALD coatings for arbitrary surface geometries with spin-Hall-active metals and could lead to 3D spintronic devices in the future.

  3. Observation of high-spin mixed oxidation state of cobalt in ceramic Co3TeO6

    NASA Astrophysics Data System (ADS)

    Singh, Harishchandra; Ghosh, Haranath; Chandrasekhar Rao, T. V.; Sinha, A. K.; Rajput, Parasmani

    2014-12-01

    We report coexistence of high spin Co3+ and Co2+ in ceramic Co3TeO6 using X-ray Absorption Near Edge Structure (XANES), DC magnetization, and first principles ab-initio calculations. The main absorption line of cobalt Co K-edge XANES spectra, along with a linear combination fit, led us to estimate relative concentration of Co2+ and Co3+as 60:40. The pre edge feature of XANES spectrum shows crystal field splitting of ˜1.26 eV between eg and t2g states, suggesting a mixture of high spin states of both Co2+ and Co3+. Temperature dependent high field DC magnetization measurements reveal dominant antiferromagnetic order with two Neel temperatures (TN1 ˜ 29 K and TN2 ˜ 18 K), consistent with single crystal study. A larger effective magnetic moment is observed in comparison to that reported for single crystal (which contains only Co2+), supports our inference that Co3+ exists in high spin state. Furthermore, we show that both Co2+ and Co3+ being in high spin states constitute a favorable ground state through first principles ab-initio calculations, where Rietveld refined synchrotron X-ray diffraction data are used as input.

  4. Resolving the role of femtosecond heated electrons in ultrafast spin dynamics.

    PubMed

    Mendil, J; Nieves, P; Chubykalo-Fesenko, O; Walowski, J; Santos, T; Pisana, S; Münzenberg, M

    2014-02-05

    Magnetization manipulation is essential for basic research and applications. A fundamental question is, how fast can the magnetization be reversed in nanoscale magnetic storage media. When subject to an ultrafast laser pulse, the speed of the magnetization dynamics depends on the nature of the energy transfer pathway. The order of the spin system can be effectively influenced through spin-flip processes mediated by hot electrons. It has been predicted that as electrons drive spins into the regime close to almost total demagnetization, characterized by a loss of ferromagnetic correlations near criticality, a second slower demagnetization process takes place after the initial fast drop of magnetization. By studying FePt, we unravel the fundamental role of the electronic structure. As the ferromagnet Fe becomes more noble in the FePt compound, the electronic structure is changed and the density of states around the Fermi level is reduced, thereby driving the spin correlations into the limit of critical fluctuations. We demonstrate the impact of the electrons and the ferromagnetic interactions, which allows a general insight into the mechanisms of spin dynamics when the ferromagnetic state is highly excited, and identifies possible recording speed limits in heat-assisted magnetization reversal.

  5. Efficient spin filter and spin valve in a single-molecule magnet Fe{sub 4} between two graphene electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zu, Feng-Xia; School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074; Gao, Guo-Ying

    2015-12-21

    We propose a magnetic molecular junction consisting of a single-molecule magnet Fe{sub 4} connected two graphene electrodes and investigate transport properties, using the nonequilibrium Green's function method in combination with spin-polarized density-functional theory. The results show that the device can be used as a nearly perfect spin filter with efficiency approaching 100%. Our calculations provide crucial microscopic information how the four iron cores of the chemical structure are responsible for the spin-resolved transmissions. Moreover, it is also found that the device behaves as a highly efficient spin valve, which is an excellent candidate for spintronics of molecular devices. The ideamore » of combining single-molecule magnets with graphene provides a direction in designing a new class of molecular spintronic devices.« less

  6. Majorana surface modes of nodal topological pairings in spin-3/2 semimetals

    NASA Astrophysics Data System (ADS)

    Yang, Wang; Xiang, Tao; Wu, Congjun

    2017-10-01

    When solid state systems possess active orbital-band structures subject to spin-orbit coupling, their multicomponent electronic structures are often described in terms of effective large-spin fermion models. Their topological structures of superconductivity are beyond the framework of spin singlet and triplet Cooper pairings for spin-1/2 systems. Examples include the half-Heusler compound series of RPtBi, where R stands for a rare-earth element. Their spin-orbit coupled electronic structures are described by the Luttinger-Kohn model with effective spin-3/2 fermions and are characterized by band inversion. Recent experiments provide evidence to unconventional superconductivity in the YPtBi material with nodal spin-septet pairing. We systematically study topological pairing structures in spin-3/2 systems with the cubic group symmetries and calculate the surface Majorana spectra, which exhibit zero energy flat bands, or, cubic dispersion depending on the specific symmetry of the superconducting gap functions. The signatures of these surface states in the quasiparticle interference patterns of tunneling spectroscopy are studied, which can be tested in future experiments.

  7. Temperature and field dependent electronic structure and magnetic properties of LaCoO3 and GdCoO3

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, S. G.; Orlov, Yu. S.; Dudnikov, V. A.

    2012-10-01

    The transformation of the band structure of LaCoO3 in the applied magnetic field has been theoretically studied. If the field is below its critical value BC≈65 T, the dielectric band gap decreases with the field, thus giving rise to negative magnetoresistance that is highest at T≈300÷500 K. The critical field is related to the crossover between the low- and high-spin terms of Co3+ ions. The spin crossover results in an insulator-metal transition induced by an increase in the magnetic field. Similar calculations have been done for GdCoO3 which is characterized by large spin gap∼2000 K.

  8. Regeneration of high-quality silk fibroin fiber by wet spinning from CaCl2-formic acid solvent.

    PubMed

    Zhang, Feng; Lu, Qiang; Yue, Xiaoxiao; Zuo, Baoqi; Qin, Mingde; Li, Fang; Kaplan, David L; Zhang, Xueguang

    2015-01-01

    Silks spun by silkworms and spiders feature outstanding mechanical properties despite being spun under benign conditions. The superior physical properties of silk are closely related to its complicated hierarchical structures constructed from nanoscale building blocks, such as nanocrystals and nanofibrils. Here, we report a novel silk dissolution behavior, which preserved nanofibrils in CaCl2-formic acid solution, that enables spinning of high-quality fibers with a hierarchical structure. This process is characterized by simplicity, high efficiency, low cost, environmental compatibility and large-scale industrialization potential, as well as having utility and potential for the recycling of silk waste and the production of silk-based functional materials. Copyright © 2014. Published by Elsevier Ltd.

  9. Room temperature ferromagnetism in BiFe1-xMnxO3 thin film induced by spin-structure manipulation

    NASA Astrophysics Data System (ADS)

    Shigematsu, Kei; Asakura, Takeshi; Yamamoto, Hajime; Shimizu, Keisuke; Katsumata, Marin; Shimizu, Haruki; Sakai, Yuki; Hojo, Hajime; Mibu, Ko; Azuma, Masaki

    2018-05-01

    The evolution of crystal structure, spin structure, and macroscopic magnetization of manganese-substituted BiFeO3 (BiFe1-xMnxO3), a candidate for multiferroic materials, were investigated on bulk and epitaxial thin-film. Mn substitution for Fe induced collinear antiferromagnetic spin structure around room temperature by destabilizing the cycloidal spin modulation which prohibited the appearance of net magnetization generated by Dzyaloshinskii-Moriya interaction. For the bulk samples, however, no significant signal of ferromagnetism was observed because the direction of the ordered spins was close to parallel to the electric polarization so that spin-canting did not occur. On the contrary, BiFe1-xMnxO3 thin film on SrTiO3 (001) had a collinear spin structure with the spin direction perpendicular to the electric polarization at room temperature, where the appearance of spontaneous magnetization was expected. Indeed, ferromagnetic hysteresis behavior was observed for BiFe0.9Mn0.1O3 thin film.

  10. Magnetic field induced anisotropy of 139La spin-lattice relaxation rates in stripe ordered La 1.875Ba 0.125CuO 4

    DOE PAGES

    S. -H. Baek; Gu, G. D.; Utz, Y.; ...

    2015-10-26

    We report 139La nuclear magnetic resonance studies performed on a La 1.875Ba 0.125CuO 4 single crystal. The data show that the structural phase transitions (high-temperature tetragonal → low-temperature orthorhombic → low-temperature tetragonal phase) are of the displacive type in this material. The 139La spin-lattice relaxation rate T –1 1 sharply upturns at the charge-ordering temperature T CO = 54 K, indicating that charge order triggers the slowing down of spin fluctuations. Detailed temperature and field dependencies of the T –1 1 below the spin-ordering temperature T SO=40 K reveal the development of enhanced spin fluctuations in the spin-ordered state formore » H ∥ [001], which are completely suppressed for large fields along the CuO 2 planes. Lastly, our results shed light on the unusual spin fluctuations in the charge and spin stripe ordered lanthanum cuprates.« less

  11. Magnetic field induced anisotropy of 139La spin-lattice relaxation rates in stripe ordered La 1.875Ba 0.125CuO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. -H. Baek; Gu, G. D.; Utz, Y.

    We report 139La nuclear magnetic resonance studies performed on a La 1.875Ba 0.125CuO 4 single crystal. The data show that the structural phase transitions (high-temperature tetragonal → low-temperature orthorhombic → low-temperature tetragonal phase) are of the displacive type in this material. The 139La spin-lattice relaxation rate T –1 1 sharply upturns at the charge-ordering temperature T CO = 54 K, indicating that charge order triggers the slowing down of spin fluctuations. Detailed temperature and field dependencies of the T –1 1 below the spin-ordering temperature T SO=40 K reveal the development of enhanced spin fluctuations in the spin-ordered state formore » H ∥ [001], which are completely suppressed for large fields along the CuO 2 planes. Lastly, our results shed light on the unusual spin fluctuations in the charge and spin stripe ordered lanthanum cuprates.« less

  12. Density functional perturbational orbital theory of spin polarization in electronic systems. II. Transition metal dimer complexes.

    PubMed

    Seo, Dong-Kyun

    2007-11-14

    We present a theoretical scheme for a semiquantitative analysis of electronic structures of magnetic transition metal dimer complexes within spin density functional theory (DFT). Based on the spin polarization perturbational orbital theory [D.-K. Seo, J. Chem. Phys. 125, 154105 (2006)], explicit spin-dependent expressions of the spin orbital energies and coefficients are derived, which allows to understand how spin orbitals form and change their energies and shapes when two magnetic sites are coupled either ferromagnetically or antiferromagnetically. Upon employment of the concept of magnetic orbitals in the active-electron approximation, a general mathematical formula is obtained for the magnetic coupling constant J from the analytical expression for the electronic energy difference between low-spin broken-symmetry and high-spin states. The origin of the potential exchange and kinetic exchange terms based on the one-electron picture is also elucidated. In addition, we provide a general account of the DFT analysis of the magnetic exchange interactions in compounds for which the active-electron approximation is not appropriate.

  13. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling

    PubMed Central

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X. J.

    2015-01-01

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations. PMID:26267653

  14. Spin-filter specular spin valves

    NASA Astrophysics Data System (ADS)

    Lu, Z. Q.; Pan, G.; Jibouri, A. A.; Zheng, Yaunkai

    2002-01-01

    Both a thin free layer and high magnetoresistance (MR) ratio are required in spin valves for high magnetic density recording heads. In traditional spin valve structures, reducing the free layer normally results in a reduction in MR. We report here on a spin-filter specular spin valve with structure Ta 3.5 nm/NiFe 2 nm/IrMn 6 nm/CoFe 1.5 nm/Nol/CoFe 2 nm/Cu 2.2 nm/CoFe tF/Cu tSF/Nol2/Ta 3 nm, which is demonstrated to maintain MR ratio higher than 12% even when the CoFe free layer is reduced to 1 nm. The semiclassical Boltzmann transport equation was used to simulate MR ratio. An optimized MR ratio of ˜14.5% was obtained when tF was about 1.5 nm and tSF about 1.0 nm as a result of the balance between the increase in electron mean free path difference and current shunting through conducting layer. It is found that the Cu enhancing layer not only enhances the MR ratio but also improves soft magnetic properties of CoFe free layer due to the low atomic intermixing observed between Co and Cu. The CoFe free layer of 1-4 nm exhibits a low coercivity of ˜3 Oe even after annealing at 270 °C for 7 h in a field of 1 kOe. Furthermore, the interlayer coupling field Hint between free layer and pinned layer can be controlled by balancing the Rudermann-Kittel-(Kasuya)-Yosida and magnetostatic coupling. Such a thin soft CoFe free layer is particularly attractive for high density read sensor application.

  15. DFT Analysis of Spin Crossover in Mn(III) Complexes: Is a Two-Electron S = 2 to S = 0 Spin Transition Feasible?

    PubMed

    Amabilino, Silvia; Deeth, Robert J

    2017-03-06

    Six-coordinate, rigorously octahedral d 4 Mn(III) spin crossover (SCO) complexes are limited by symmetry to an S = 1 (intermediate spin, IS) to S = 2 (high spin, HS) transition. In order to realize the potential S = 0 to S = 2 transition, a lower symmetry and/or change in coordination number is needed, which we explore here computationally. First, a number of complexes are analyzed to develop a reliable and relatively fast DFT protocol for reproducing known Mn(III) spin state energetics. The hybrid meta-GGA functional TPSSh with a modest split valence plus polarization basis set and an empirical dispersion correction is found to predict correctly the ground spin state of Mn(III) complexes, including true low-spin (LS) S = 0 systems, with a range of donor sets including the hexadentate [N 4 O 2 ] Schiff base ligands. The electronic structure design criteria necessary for realizing a ΔS = 2 SCO transition are described, and a number of model complexes are screened for potential SCO behavior. Five-coordinate trigonal-bipyramidal symmetry fails to yield any suitable systems. Seven-coordinate, approximately pentagonal bipyramidal symmetry is more favorable, and when a known pentadentate macrocyclic donor is combined with π-acceptor axial ligands, a novel Mn(III) complex, [Mn(PABODP)(PF 3 ) 2 ] 3+ (PABODP = 2,13-dimethyl-3,6,9,12,18-pentaazabicyclo[12.3.1]octadeca-1(18),2,12,14,16-pentaene), is predicted to have the right spin state energetics for an S = 0 to S = 2 transition. Successful synthesis of such a complex could provide the first example of a ΔS = 2 SCO transition for d 4 Mn(III). However, the combination of a rigid macrocycle and a high coordination number dilutes the stereochemical activity of the d electrons, leading to relatively small structural changes between HS and LS systems. It may therefore remain a challenge to realize strong cooperative effects in Mn(III) systems.

  16. Electronic structure of charge- and spin-controlled Sr(1-(x+y))La(x+y)Ti(1-x)Cr(x)O3.

    PubMed

    Iwasawa, H; Yamakawa, K; Saitoh, T; Inaba, J; Katsufuji, T; Higashiguchi, M; Shimada, K; Namatame, H; Taniguchi, M

    2006-02-17

    We present the electronic structure of Sr(1-(x+y))La(x+y)Ti(1-x)Cr(x)O3 investigated by high-resolution photoemission spectroscopy. In the vicinity of the Fermi level, it was found that the electronic structure was composed of a Cr 3d local state with the t(2g)3 configuration and a Ti 3d itinerant state. The energy levels of these Cr and Ti 3d states are well interpreted by the difference of the charge-transfer energy of both ions. The spectral weight of the Cr 3d state is completely proportional to the spin concentration x irrespective of the carrier concentration y, indicating that the spin density can be controlled by x as desired. In contrast, the spectral weight of the Ti 3d state is not proportional to y, depending on the amount of Cr doping.

  17. HDice, Highly-Polarized Low-Background Frozen-Spin HD Targets for CLAS experiments at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Xiangdong; Bass, Christopher; D'Angelo, Annalisa

    2012-12-01

    Large, portable frozen-spin HD (Deuterium-Hydride) targets have been developed for studying nucleon spin properties with low backgrounds. Protons and Deuterons in HD are polarized at low temperatures (~10mK) inside a vertical dilution refrigerator (Oxford Kelvinox-1000) containing a high magnetic field (up to 17T). The targets reach a frozen-spin state within a few months, after which they can be cold transferred to an In-Beam Cryostat (IBC). The IBC, a thin-walled dilution refrigerator operating either horizontally or vertically, is use with quasi-4{pi} detector systems in open geometries with minimal energy loss for exiting reaction products in nucleon structure experiments. The first applicationmore » of this advanced target system has been used for Spin Sum Rule experiments at the LEGS facility in Brookhaven National Laboratory. An improved target production and handling system has been developed at Jefferson Lab for experiments with the CEBAF Large Acceptance Spectrometer, CLAS.« less

  18. Reorientation of the diagonal double-stripe spin structure at Fe 1+yTe bulk and thin-film surfaces

    DOE PAGES

    Hanke, Torben; Singh, Udai Raj; Cornils, Lasse; ...

    2017-01-06

    Here, establishing the relation between ubiquitous antiferromagnetism in the parent compounds of unconventional superconductors and their superconducting phase is important for understanding the complex physics in these materials. Going from bulk systems to thin films additionally affects their phase diagram. For Fe 1+yTe, the parent compound of Fe 1+ySe 1$-x$Tex superconductors, bulk-sensitive neutron diffraction revealed an in-plane oriented diagonal double-stripe antiferromagnetic spin structure. Here we show by spin-resolved scanning tunnelling microscopy that the spin direction at the surfaces of bulk Fe 1+yTe and thin films grown on the topological insulator Bi 2Te 3 is canted out of the high-symmetry directionsmore » of the surface unit cell resulting in a perpendicular spin component, keeping the diagonal double-stripe order. As the magnetism of the Fe d-orbitals is intertwined with the superconducting pairing in Fe-based materials, our results imply that the superconducting properties at the surface of the related superconducting compounds might be different from the bulk.« less

  19. Reorientation of the diagonal double-stripe spin structure at Fe 1+yTe bulk and thin-film surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanke, Torben; Singh, Udai Raj; Cornils, Lasse

    Here, establishing the relation between ubiquitous antiferromagnetism in the parent compounds of unconventional superconductors and their superconducting phase is important for understanding the complex physics in these materials. Going from bulk systems to thin films additionally affects their phase diagram. For Fe 1+yTe, the parent compound of Fe 1+ySe 1$-x$Tex superconductors, bulk-sensitive neutron diffraction revealed an in-plane oriented diagonal double-stripe antiferromagnetic spin structure. Here we show by spin-resolved scanning tunnelling microscopy that the spin direction at the surfaces of bulk Fe 1+yTe and thin films grown on the topological insulator Bi 2Te 3 is canted out of the high-symmetry directionsmore » of the surface unit cell resulting in a perpendicular spin component, keeping the diagonal double-stripe order. As the magnetism of the Fe d-orbitals is intertwined with the superconducting pairing in Fe-based materials, our results imply that the superconducting properties at the surface of the related superconducting compounds might be different from the bulk.« less

  20. The hyperfine structure in the rotational spectra of D{sub 2}{sup 17}O and HD{sup 17}O: Confirmation of the absolute nuclear magnetic shielding scale for oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puzzarini, Cristina, E-mail: cristina.puzzarini@unibo.it; Cazzoli, Gabriele; Harding, Michael E.

    2015-03-28

    Guided by theoretical predictions, the hyperfine structures of the rotational spectra of mono- and bideuterated-water containing {sup 17}O have been experimentally investigated. To reach sub-Doppler resolution, required to resolve the hyperfine structure due to deuterium quadrupole coupling as well as to spin-rotation (SR) and dipolar spin-spin couplings, the Lamb-dip technique has been employed. The experimental investigation and in particular, the spectral analysis have been supported by high-level quantum-chemical computations employing coupled-cluster techniques and, for the first time, a complete experimental determination of the hyperfine parameters involved was possible. The experimentally determined {sup 17}O spin-rotation constants of D{sub 2}{sup 17}O andmore » HD{sup 17}O were used to derive the paramagnetic part of the corresponding nuclear magnetic shielding constants. Together with the computed diamagnetic contributions as well as the vibrational and temperature corrections, the latter constants have been employed to confirm the oxygen nuclear magnetic shielding scale, recently established on the basis of spin-rotation data for H{sub 2}{sup 17}O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)].« less

  1. A Theoretical Approach to Selection of a Biologically Active Substance in Ultra-Low Doses for Effective Action on a Biological System.

    PubMed

    Boldyreva, Liudmila Borisovna

    2018-05-01

     An approach is offered to selecting a biologically active substance (BAS) in ultra-low dose for effective action on a biological system (BS). The technique is based on the assumption that BAS in ultra-low doses exerts action on BS by means of spin supercurrent emerging between the spin structure created by BAS, on the one hand, and the spin structure created by BS, on the other hand. According to modern quantum-mechanical concepts, these spin structures may be virtual particles pairs having precessing spin (that is, be essentially spin vortices in the physical vacuum) and created by the quantum entities that BAS and BS consist of. The action is effective provided there is equality of precession frequencies of spins in these spin structures.  In this work, some methods are considered for determining the precession frequencies of spins in virtual particles pairs: (1) determination of energy levels of quantum entities that BS and BAS consist of; (2) the use of spin-flip effect of the virtual particles pair spin, the effect being initiated by action of magnetic vector potential (the spin-flip effect takes place when the varied frequency of the magnetic vector potential equals the precession frequency of the spin); (3) determining the frequencies of photons effectively acting on BS.  It is shown that the effect of BAS in ultra-low doses on BS can be replaced by the effect of a beam of low-intensity photons, if the frequency of photons equals the precession frequency of spin in spin structures created by BS. Consequently, the color of bodies placed near a biological system is able to exert an effective action on the biological system: that is "color therapy" is possible. It is also supposed that the spin-flip effect may be used not only for determining the precession frequency of spin in spin structures created by BS but also for therapeutic action on biological systems. The Faculty of Homeopathy.

  2. Scan Rate Dependent Spin Crossover Iron(II) Complex with Two Different Relaxations and Thermal Hysteresis fac-[Fe(II)(HL(n-Pr))3]Cl·PF6 (HL(n-Pr) = 2-Methylimidazol-4-yl-methylideneamino-n-propyl).

    PubMed

    Fujinami, Takeshi; Nishi, Koshiro; Hamada, Daisuke; Murakami, Keishiro; Matsumoto, Naohide; Iijima, Seiichiro; Kojima, Masaaki; Sunatsuki, Yukinari

    2015-08-03

    Solvent-free spin crossover Fe(II) complex fac-[Fe(II)(HL(n-Pr))3]Cl·PF6 was prepared, where HL(n-Pr) denotes 2-methylimidazol-4-yl-methylideneamino-n-propyl. The magnetic susceptibility measurements at scan rate of 0.5 K min(-1) showed two successive spin transition processes consisting of the first spin transition T1 centered at 122 K (T1↑ = 127.1 K, T1↓ = 115.8 K) and the second spin transition T2 centered at ca. 105 K (T2↑ = 115.8 K, T2↓ = 97.2 K). The magnetic susceptibility measurements at the scan rate of 2.0, 1.0, 0.5, 0.25, and 0.1 K min(-1) showed two scan speed dependent spin transitions, while the Mössbauer spectra detected only the first spin transition T1. The crystal structures were determined at 160, 143, 120, 110, 95 K in the cooling mode, and 110, 120, and 130 K in the warming mode so as to follow the spin transition process of high-spin HS → HS(T1) → HS(T2) → low-spin LS → LS(T2) → LS(T1) → HS. The crystal structures at all temperatures have a triclinic space group P1̅ with Z = 2. The complex-cation has an octahedral N6 coordination geometry with three bidentate ligands and assume a facial-isomer with Δ- and Λ-enantimorphs. Three imidazole groups of fac-[Fe(II)(HL(n-Pr))3](2+) are hydrogen-bonded to three Cl(-) ions. The 3:3 NH(imidazole)···Cl(-) hydrogen-bonds form a stepwise ladder assembly structure, which is maintained during the spin transition process. The spin transition process is related to the structural changes of the FeN6 coordination environment, the order-disorder of PF6(-) anion, and the conformation change of n-propyl groups. The Fe-N bond distance in the HS state is longer by 0.2 Å than that in the LS state. Disorder of PF6(-) anion is not observed in the LS state but in the HS state. The conformational changes of n-propyl groups are found in the spin transition processes except for HS → HS(T1) → HS(T2).

  3. Coulomb energy differences in isobaric multiplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenzi, S. M.; Farnea, E.; Bazzacco, D.

    2007-02-12

    By comparing the excitation energies of analogue states in isobaric multiplets, several nuclear structure properties can be studied as a function of the angular momentum up to high spin states. In particular, the mirror nuclei 35Ar and 35Cl show large differences between the excitation energies of analogue negative-parity states at high spin, confirming the important contribution of the relativistic electromagnetic spin-orbit interaction to the Coulomb energy. The single-particle character of the configuration of these states is reproduced with very good accuracy by shell model calculations in the sd and pf shells valence space. In addition, evidence of isospin mixing ismore » deduced from the El transitions linking positive and negative parity states.« less

  4. Structure and dynamics of spin-labeled insulin entrapped in a silica matrix by the sol-gel method.

    PubMed

    Vanea, E; Gruian, C; Rickert, C; Steinhoff, H-J; Simon, V

    2013-08-12

    The structure and conformational dynamics of insulin entrapped into a silica matrix was monitored during the sol to maturated-gel transition by electron paramagnetic resonance (EPR) spectroscopy. Insulin was successfully spin-labeled with iodoacetamide and the bifunctional nitroxide reagent HO-1944. Room temperature continuous wave (cw) EPR spectra of insulin were recorded to assess the mobility of the attached spin labels. Insulin conformation and its distribution within the silica matrix were studied using double electron-electron resonance (DEER) and low-temperature cw-EPR. A porous oxide matrix seems to form around insulin molecules with pore diameters in the order of a few nanometers. Secondary structure of the encapsulated insulin investigated by Fourier transform infrared spectroscopy proved a high structural integrity of insulin even in the dried silica matrix. The results show that silica encapsulation can be used as a powerful tool to effectively isolate and functionally preserve biomolecules during preparation, storage, and release.

  5. High-spin studies: Recent results from the 8π spectrometer

    NASA Astrophysics Data System (ADS)

    Radford, D. C.; Galindo-Uribarri, A.; Hackman, G.; Janzen, V. P.; 8π Collaboration

    1993-05-01

    Selected highlights of recent high-spin nuclear-structure studies with the 8π spectrometer are presented. These include an extensive systematic study of high- j intruder bands in A ˜ 110 Sb, Sn and In nuclei; evidence for hyperdeformation, observed in the reaction 120Sn( 37Cl,px n) populating 152,153Dy; and the observation of a new superdeformed band in the N = 80 nucleus 142Sm. The design of "TRIGAM", a new HPGe-detector array proposed to replace the 8π spectrometer, is also presented.

  6. All-Electrical Spin Field Effect Transistor in van der Waals Heterostructures at Room Temperature

    NASA Astrophysics Data System (ADS)

    Dankert, André; Dash, Saroj

    Spintronics aims to exploit the spin degree of freedom in solid state devices for data storage and information processing. Its fundamental concepts (creation, manipulation and detection of spin polarization) have been demonstrated in semiconductors and spin transistor structures using electrical and optical methods. However, an unsolved challenge is the realization of all-electrical methods to control the spin polarization in a transistor manner at ambient temperatures. Here we combine graphene and molybdenum disulfide (MoS2) in a van der Waals heterostructure to realize a spin field-effect transistor (spin-FET) at room temperature. These two-dimensional crystals offer a unique platform due to their contrasting properties, such as weak spin-orbit coupling (SOC) in graphene and strong SOC in MoS2. The gate-tuning of the Schottky barrier at the MoS2/graphene interface and MoS2 channel yields spins to interact with high SOC material and allows us to control the spin polarization and lifetime. This all-electrical spin-FET at room temperature is a substantial step in the field of spintronics and opens a new platform for testing a plethora of exotic physical phenomena, which can be key building blocks in future device architectures.

  7. The extraction of the spin structure function, g2 (and g1) at low Bjorken x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ndukum, Luwani Z.

    2015-08-01

    The Spin Asymmetries of the Nucleon Experiment (SANE) used the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory in Newport News, VA to investigate the spin structure of the proton. The experiment measured inclusive double polarization electron asymmetries using a polarized electron beam, scattered off a solid polarized ammonia target with target polarization aligned longitudinal and near transverse to the electron beam, allowing the extraction of the spin asymmetries A1 and A2, and spin structure functions g1 and g2. Polarized electrons of energies of 4.7 and 5.9 GeV were used. The scattered electrons were detected by a novel, non-magnetic arraymore » of detectors observing a four-momentum transfer range of 2.5 to 6.5 GeV*V. This document addresses the extraction of the spin asymmetries and spin structure functions, with a focus on spin structure function, g2 (and g1) at low Bjorken x. The spin structure functions were measured as a function of x and W in four Q square bins. A full understanding of the low x region is necessary to get clean results for SANE and extend our understanding of the kinematic region at low x.« less

  8. First-principles calculation of the structure and electronic properties of Fe-substituted Bi2Ti2O7

    NASA Astrophysics Data System (ADS)

    Huang, Jin-Dou; Zhang, Zhenyi; Lin, Feng; Dong, Bin

    2017-12-01

    We performed first-principles calculations to investigate the formation energy, geometry structure, and electronic property of Fe-doped Bi2Ti2O7 systems with different Fe doping content. The calculated formation energies indicate that the substitutional configurations of Fe-doping Bi2Ti2O7 are easy to obtain under O-rich growth condition, but their thermodynamic stability decreases with the increase of Fe content. The calculated spin-resolved density of states and band structures indicate that the introduction of Fe into Bi2Ti2O7 brings high spin polarization. The spin-down impurity levels in Fe x Bi2-x Ti2O7 and spin-up impurity levels in Fe x Bi2Ti2-x O7 systems locate in the bottom of conduction band and narrow the band gap significantly, thus leading to the absorption of visible light. Interestingly, the impurity states in Fe x Bi2-x Ti2O7 are the efficient separation center of photogenerated electron and hole, and less affected by Fe doping content, in comparison, the levels of impurity band in Fe x Bi2Ti2-x O7 systems are largely effected by the Fe doping content, and high Fe doping content is the key factor to improve the separating rate of photogenerated electron and hole.

  9. Spin-polarized scanning tunneling microscopy with quantitative insights into magnetic probes

    NASA Astrophysics Data System (ADS)

    Phark, Soo-hyon; Sander, Dirk

    2017-04-01

    Spin-polarized scanning tunneling microscopy and spectroscopy (spin-STM/S) have been successfully applied to magnetic characterizations of individual nanostructures. Spin-STM/S is often performed in magnetic fields of up to some Tesla, which may strongly influence the tip state. In spite of the pivotal role of the tip in spin-STM/S, the contribution of the tip to the differential conductance d I/d V signal in an external field has rarely been investigated in detail. In this review, an advanced analysis of spin-STM/S data measured on magnetic nanoislands, which relies on a quantitative magnetic characterization of tips, is discussed. Taking advantage of the uniaxial out-of-plane magnetic anisotropy of Co bilayer nanoisland on Cu(111), in-field spin-STM on this system has enabled a quantitative determination, and thereby, a categorization of the magnetic states of the tips. The resulting in-depth and conclusive analysis of magnetic characterization of the tip opens new venues for a clear-cut sub-nanometer scale spin ordering and spin-dependent electronic structure of the non-collinear magnetic state in bilayer high Fe nanoislands on Cu(111).

  10. Solution-processed organic spin-charge converter.

    PubMed

    Ando, Kazuya; Watanabe, Shun; Mooser, Sebastian; Saitoh, Eiji; Sirringhaus, Henning

    2013-07-01

    Conjugated polymers and small organic molecules are enabling new, flexible, large-area, low-cost optoelectronic devices, such as organic light-emitting diodes, transistors and solar cells. Owing to their exceptionally long spin lifetimes, these carbon-based materials could also have an important impact on spintronics, where carrier spins play a key role in transmitting, processing and storing information. However, to exploit this potential, a method for direct conversion of spin information into an electric signal is indispensable. Here we show that a pure spin current can be produced in a solution-processed conducting polymer by pumping spins through a ferromagnetic resonance in an adjacent magnetic insulator, and that this generates an electric voltage across the polymer film. We demonstrate that the experimental characteristics of the generated voltage are consistent with it being generated through an inverse spin Hall effect in the conducting polymer. In contrast with inorganic materials, the conducting polymer exhibits coexistence of high spin-current to charge-current conversion efficiency and long spin lifetimes. Our discovery opens a route for a new generation of molecular-structure-engineered spintronic devices, which could lead to important advances in plastic spintronics.

  11. Temperature and Pressure Sensors Based on Spin-Allowed Broadband Luminescence of Doped Orthorhombic Perovskite Structures

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I. (Inventor); Chambers, Matthew D. (Inventor)

    2014-01-01

    Systems and methods that are capable of measuring pressure or temperature based on luminescence are discussed herein. These systems and methods are based on spin-allowed broadband luminescence of sensors with orthorhombic perovskite structures of rare earth aluminates doped with chromium or similar transition metals, such as chromium-doped gadolinium aluminate. Luminescence from these sensors can be measured to determine at least one of temperature or pressure, based on either the intense luminescence of these sensors, even at high temperatures, or low temperature techniques discussed herein.

  12. Halogenated Alkyltetrazoles for the Rational Design of FeII Spin-Crossover Materials: Fine-Tuning of the Ligand Size.

    PubMed

    Müller, Danny; Knoll, Christian; Seifried, Marco; Welch, Jan M; Giester, Gerald; Reissner, Michael; Weinberger, Peter

    2018-04-06

    1-(3-Halopropyl)-1H-tetrazoles and their corresponding Fe II spin-crossover complexes have been investigated in a combined experimental and theoretical study. Halogen substitution was found to positively influence the spin transition, shifting the transition temperature about 70 K towards room temperature. Halogens located at the ω position were found to be too far away from the coordinating tetrazole moiety to have an electronic impact on the spin transition. The subtle variation of the steric demand of the ligand in a highly comparable series was found to have a comparatively large impact on the spin-transition behavior, which highlights the sensitivity of the effect to subtle structural changes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High-spin structure, K isomers, and state mixing in the neutron-rich isotopes 173Tm and 175Tm

    NASA Astrophysics Data System (ADS)

    Hughes, R. O.; Lane, G. J.; Dracoulis, G. D.; Byrne, A. P.; Nieminen, P. H.; Watanabe, H.; Carpenter, M. P.; Chowdhury, P.; Janssens, R. V. F.; Kondev, F. G.; Lauritsen, T.; Seweryniak, D.; Zhu, S.

    2012-11-01

    High-spin states in the odd-proton thulium isotopes 173Tm and 175Tm have been studied using deep-inelastic reactions and γ-ray spectroscopy. In 173Tm, the low-lying structure has been confirmed and numerous new states have been identified, including a three-quasiparticle Kπ= 19/2- isomer with a lifetime of τ=360(100) ns at 1906 keV and a five-quasiparticle Kπ=35/2- isomer with a lifetime of τ= 175(40) ns at 4048 keV. The Kπ=35/2- state is interpreted as a t-band configuration that shows anomalously fast decays. In 175Tm, the low-lying structure has been reevaluated, a candidate state for the 9/2-[514] orbital has been identified at 1175 keV, and the 7/2-[523] bandhead has been measured to have a lifetime of τ= 460(50) ns. Newly identified high-K structures in 175Tm include a Kπ=15/2- isomer with a lifetime of τ= 64(3) ns at 947 keV and a Kπ= 23/2+ isomer with a lifetime of τ= 30(20) μs at 1518 keV. The Kπ=15/2- isomer shows relatively enhanced decays to the 7/2-[523] band that can be explained by chance mixing with the 15/2- member of the 7/2- band. Multiquasiparticle calculations have been performed for 173Tm and 175Tm, the results of which compare well with the experimentally observed high-spin states.

  14. High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirohi, Anshu; Saha, Preetha; Gayen, Sirshendu

    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number ofmore » measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (∼47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.« less

  15. The electronic structure of iron in rhyolitic and basaltic glasses at high pressure

    NASA Astrophysics Data System (ADS)

    Solomatova, N. V.; Jackson, J. M.; Sturhahn, W.; Roskosz, M.

    2016-12-01

    The physical properties of silicate melts within the Earth's mantle affect the chemical and thermal evolution of the Earth's interior. To understand melting processes within the Earth, it is imperative to determine the structure of silicate melts at high pressure. It has been proposed that iron-bearing silicate melts may exist in the lower mantle just above the core-mantle boundary [1]. The behavior of iron in mantle melts is poorly understood, but can be experimentally approximated by iron-bearing silicate glasses. Previous studies have conflicting conclusions on whether iron in lower mantle silicate melts goes through a high-spin to low-spin transition [2-4]. Additionally, the average coordination environment of iron in glasses is poorly constrained. XANES experiments on basaltic glasses have demonstrated that both four and six-fold coordinated iron may exist in significant amounts regardless of oxidation state [5] while conventional Mössbauer experiments have observed five-fold coordinated Fe2+ with small amounts of four and six-fold coordinated Fe2+ [6]. In an attempt to resolve these discrepancies, we have measured the hyperfine parameters of iron-bearing rhyolitic glass up to 115 GPa and basaltic glass up to 92 GPa in a neon pressure medium using time-resolved synchrotron Mössbauer spectroscopy at the Advanced Photon Source (Argonne National Laboratory, IL). We observed changes in the hyperfine parameters likely due to coordination changes as a result of increasing pressure. Our results indicate that iron does not undergo a high-spin to low-spin transition within the pressure range investigated. Changes in the electronic configuration, such as the spin state of iron affects the compressibility and thermal properties of melts. With the assumption that silica glasses can be used to model structural behavior in silicate melts, our study predicts that iron in chemically-complex silica-rich melts in the lower mantle likely exists in a high-spin state. Select references: [1] Williams and Garnero, Science 273, 1528-1530 (1996). [2] Nomura et al., Nature 473, 199-202 (2011). [3] Gu et al., Geophys. Res. Lett. 39 (2012). [4] Mao et al., Am. Mineral. 99, 415-423 (2014). [5] Wilke et al., Chem. Geology 220, 143-161 (2005). [6] Cottrell and Kelley Earth Planet. Sci. Lett. 305, 270-282 (2011).

  16. Intrinsic properties of high-spin band structures in triaxial nuclei

    NASA Astrophysics Data System (ADS)

    Jehangir, S.; Bhat, G. H.; Sheikh, J. A.; Palit, R.; Ganai, P. A.

    2017-12-01

    The band structures of 68,70Ge, 128,130,132,134Ce and 132,134,136,138Nd are investigated using the triaxial projected shell model (TPSM) approach. These nuclei depict forking of the ground-state band into several s-bands and in some cases, both the lowest two observed s-bands depict neutron or proton character. It was discussed in our earlier work that this anomalous behaviour can be explained by considering γ-bands based on two-quasiparticle configurations. As the parent band and the γ-band built on it have the same intrinsic structure, g-factors of the two bands are expected to be similar. In the present work, we have undertaken a detailed investigation of g-factors for the excited band structures of the studied nuclei and the available data for a few high-spin states are shown to be in fair agreement with the predicted values.

  17. Is nucleon spin structure inconsistent with the constituent quark model?

    NASA Astrophysics Data System (ADS)

    Qing, Di; Chen, Xiang-Song; Wang, Fan

    1998-12-01

    Proton spin structure discovered in polarized deep inelastic scattering is shown to be consistent with the valence-sea quark mixing constituent quark model. The relativistic correction and quark-antiquark pair creation (annihilation) terms inherently involved in the quark axial vector current suppress the quark spin contribution to the proton spin. The relativistic quark orbital angular momentum provides compensative terms to keep the proton spin 12 untouched. The tensor charge of the proton is predicted to have a similar but smaller suppression. An explanation on why baryon magnetic moments can be parametrized by the naive quark model spin content as well as the spin structure discovered in polarized deep inelastic scattering is given.

  18. Switchable geometric frustration in an artificial-spin-ice-superconductor heterosystem.

    PubMed

    Wang, Yong-Lei; Ma, Xiaoyu; Xu, Jing; Xiao, Zhi-Li; Snezhko, Alexey; Divan, Ralu; Ocola, Leonidas E; Pearson, John E; Janko, Boldizsar; Kwok, Wai-Kwong

    2018-06-11

    Geometric frustration emerges when local interaction energies in an ordered lattice structure cannot be simultaneously minimized, resulting in a large number of degenerate states. The numerous degenerate configurations may lead to practical applications in microelectronics 1 , such as data storage, memory and logic 2 . However, it is difficult to achieve very high degeneracy, especially in a two-dimensional system 3,4 . Here, we showcase in situ controllable geometric frustration with high degeneracy in a two-dimensional flux-quantum system. We create this in a superconducting thin film placed underneath a reconfigurable artificial-spin-ice structure 5 . The tunable magnetic charges in the artificial-spin-ice strongly interact with the flux quanta in the superconductor, enabling switching between frustrated and crystallized flux quanta states. The different states have measurable effects on the superconducting critical current profile, which can be reconfigured by precise selection of the spin-ice magnetic state through the application of an external magnetic field. We demonstrate the applicability of these effects by realizing a reprogrammable flux quanta diode. The tailoring of the energy landscape of interacting 'particles' using artificial-spin-ices provides a new paradigm for the design of geometric frustration, which could illuminate a path to control new functionalities in other material systems, such as magnetic skyrmions 6 , electrons and holes in two-dimensional materials 7,8 , and topological insulators 9 , as well as colloids in soft materials 10-13 .

  19. Density functional study for the bridged dinuclear center based on a high-resolution X-ray crystal structure of ba3 cytochrome c oxidase from Thermus thermophilus.

    PubMed

    Du, Wen-Ge Han; Noodleman, Louis

    2013-12-16

    Strong electron density for a peroxide type dioxygen species bridging the Fea3 and CuB dinuclear center (DNC) was observed in the high-resolution (1.8 Å) X-ray crystal structures (PDB entries 3S8G and 3S8F) of ba3 cytochrome c oxidase (CcO) from Thermus thermophilus. The crystals represent the as-isolated X-ray photoreduced CcO structures. The bridging peroxide was proposed to arise from the recombination of two radiation-produced HO(•) radicals formed either very near to or even in the space between the two metals of the DNC. It is unclear whether this peroxide species is in the O2(2-), O2(•)(-), HO2(-), or the H2O2 form and what is the detailed electronic structure and binding geometry including the DNC. In order to answer what form of this dioxygen species was observed in the DNC of the 1.8 Å X-ray CcO crystal structure (3S8G), we have applied broken-symmetry density functional theory (BS-DFT) geometric and energetic calculations (using OLYP potential) on large DNC cluster models with different Fea3-CuB oxidation and spin states and with O2(2-), O2(•)(-), HO2(-), or H2O2 in the bridging position. By comparing the DFT optimized geometries with the X-ray crystal structure (3S8G), we propose that the bridging peroxide is HO2(-). The X-ray crystal structure is likely to represent the superposition of the Fea3(2+)-(HO2(-))-CuB(+) DNC's in different states (Fe(2+) in low spin (LS), intermediate spin (IS), or high spin (HS)) with the majority species having the proton of the HO2(-) residing on the oxygen atom (O1) which is closer to the Fea3(2+) site in the Fea3(2+)-(HO-O)(-)-CuB(+) conformation. Our calculations show that the side chain of Tyr237 is likely trapped in the deprotonated Tyr237(-) anion form in the 3S8G X-ray crystal structure.

  20. Single-shot readout of accumulation mode Si/SiGe spin qubits using RF reflectometry

    NASA Astrophysics Data System (ADS)

    Volk, Christian; Martins, Frederico; Malinowski, Filip; Marcus, Charles M.; Kuemmeth, Ferdinand

    Spin qubits based on gate-defined quantum dots are promising systems for realizing quantum computation. Due to their low concentration of nuclear-spin-carrying isotopes, Si/SiGe heterostructures are of particular interest. While high fidelities have been reported for single-qubit and two-qubit gate operations, qubit initialization and measurement times are relatively slow. In order to develop fast read-out techniques compatible with the operation of spin qubits, we characterize double and triple quantum dots confined in undoped Si/Si0.7Ge0.3 heterostructures using accumulation and depletion gates and a nearby RF charge sensor dot. We implement a RF reflectometry technique that allows single-shot charge read-out at integration times on the order of a few μs. We show our recent advancement towards implementing spin qubits in these structures, including spin-selective single-shot read-out.

  1. Spin Seebeck effect and thermal spin galvanic effect in Ni80Fe20/p-Si bilayers

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Ravindra G.; Lou, Paul C.; Kumar, Sandeep

    2018-01-01

    The development of spintronics and spin-caloritronics devices needs efficient generation, detection, and manipulation of spin current. The thermal spin current from the spin-Seebeck effect has been reported to be more energy efficient than the electrical spin injection methods. However, spin detection has been the one of the bottlenecks since metals with large spin-orbit coupling is an essential requirement. In this work, we report an efficient thermal generation and interfacial detection of spin current. We measured a spin-Seebeck effect in Ni80Fe20 (25 nm)/p-Si (50 nm) (polycrystalline) bilayers without a heavy metal spin detector. p-Si, having a centrosymmetric crystal structure, has insignificant intrinsic spin-orbit coupling, leading to negligible spin-charge conversion. We report a giant inverse spin-Hall effect, essential for the detection of spin-Seebeck effects, in the Ni80Fe20/p-Si bilayer structure, which originates from Rashba spin orbit coupling due to structure inversion asymmetry at the interface. In addition, the thermal spin pumping in p-Si leads to spin current from p-Si to the Ni80Fe20 layer due to the thermal spin galvanic effect and the spin-Hall effect, causing spin-orbit torques. The thermal spin-orbit torques lead to collapse of magnetic hysteresis of the 25 nm thick Ni80Fe20 layer. The thermal spin-orbit torques can be used for efficient magnetic switching for memory applications. These scientific breakthroughs may give impetus to the silicon spintronics and spin-caloritronics devices.

  2. Electronic and Magnetic Properties of Ni-Doped Zinc-Blende ZnO: A First-Principles Study.

    PubMed

    Xue, Suqin; Zhang, Fuchun; Zhang, Shuili; Wang, Xiaoyang; Shao, Tingting

    2018-04-26

    The electronic structure, band structure, density of state, and magnetic properties of Ni-doped zinc-blende (ZB) ZnO are studied by using the first-principles method based on the spin-polarized density-functional theory. The calculated results show that Ni atoms can induce a stable ferromagnetic (FM) ground state in Ni-doped ZB ZnO. The magnetic moments mainly originate from the unpaired Ni 3 d orbitals, and the O 2 p orbitals contribute a little to the magnetic moments. The magnetic moment of a supercell including a single Ni atom is 0.79 μ B . The electronic structure shows that Ni-doped ZB ZnO is a half-metallic FM material. The strong spin-orbit coupling appears near the Fermi level and shows obvious asymmetry for spin-up and spin-down density of state, which indicates a significant hybrid effects from the Ni 3 d and O 2 p states. However, the coupling of the anti-ferromagnetic (AFM) state show metallic characteristic, the spin-up and spin-down energy levels pass through the Fermi surface. The magnetic moment of a single Ni atom is 0.74 μ B . Moreover, the results show that the Ni 3 d and O 2 p states have a strong p - d hybridization effect near the Fermi level and obtain a high stability. The above theoretical results demonstrate that Ni-doped zinc blende ZnO can be considered as a potential half-metal FM material and dilute magnetic semiconductors.

  3. Spin pumping and inverse spin Hall effects—Insights for future spin-orbitronics (invited)

    DOE PAGES

    Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; ...

    2015-03-13

    Quantification of spin-charge interconversion has become increasingly important in the fast-developing field of spin-orbitronics. Pure spin current generated by spin pumping acts a sensitive probe for many bulk and interface spin-orbit effects, which has been indispensable for the discovery of many promising new spin-orbit materials. Here, we apply spin pumping and inverse spin Hall effect experiments, as a useful metrology, and study spin-orbit effects in a variety of metals and metal interfaces. We also quantify the spin Hall effects in Ir and W using the conventional bilayer structures, and discuss the self-induced voltage in a single layer of ferromagnetic permalloy.more » Finally, we extend our discussions to multilayer structures and quantitatively reveal the spin current flow in two consecutive normal metal layers.« less

  4. Direct Observation of Very Large Zero-Field Splitting in a Tetrahedral Ni(II)Se4 Coordination Complex.

    PubMed

    Jiang, Shang-Da; Maganas, Dimitrios; Levesanos, Nikolaos; Ferentinos, Eleftherios; Haas, Sabrina; Thirunavukkuarasu, Komalavalli; Krzystek, J; Dressel, Martin; Bogani, Lapo; Neese, Frank; Kyritsis, Panayotis

    2015-10-14

    The high-spin (S = 1) tetrahedral Ni(II) complex [Ni{(i)Pr2P(Se)NP(Se)(i)Pr2}2] was investigated by magnetometry, spectroscopic, and quantum chemical methods. Angle-resolved magnetometry studies revealed the orientation of the magnetization principal axes. The very large zero-field splitting (zfs), D = 45.40(2) cm(-1), E = 1.91(2) cm(-1), of the complex was accurately determined by far-infrared magnetic spectroscopy, directly observing transitions between the spin sublevels of the triplet ground state. These are the largest zfs values ever determined--directly--for a high-spin Ni(II) complex. Ab initio calculations further probed the electronic structure of the system, elucidating the factors controlling the sign and magnitude of D. The latter is dominated by spin-orbit coupling contributions of the Ni ions, whereas the corresponding effects of the Se atoms are remarkably smaller.

  5. Laser photoelectron spectroscopy of CrH - , CoH - , and NiH - : Periodic trends in the electronic structure of the transition-metal hydrides

    NASA Astrophysics Data System (ADS)

    Stevens Miller, Amy E.; Feigerle, C. S.; Lineberger, W. C.

    1987-08-01

    The laser photoelectron spectra of CrH-, CoH-, and NiH- and the analogous deuterides are reported. The spectra are interpreted using a qualitative description of the electronic structure for the hydrides. This model is used to assign off-diagonal transitions in the photodetachment to low-spin states of the neutrals, and diagonal transitions to high-spin states of the neutrals. These data are used to identify the high-spin states of CoH and NiH; several other states of CrH, CoH, and NiH are also identified. Periodic trends in the bond lengths, vibrational frequencies, and electronic excitation energies for the MnH through NiH molecules are examined. Electron affinities are reported for CrH (0.563±0.010 eV), CoH (0.671±0.010 eV), and NiH (0.481±0.007 eV), and the corresponding deuterides.

  6. Half-metallicity at the (110) interface between a full Heusler alloy and GaAs

    NASA Astrophysics Data System (ADS)

    Nagao, Kazutaka; Miura, Yoshio; Shirai, Masafumi

    2006-03-01

    The electronic properties of Co2CrAl/GaAs interfaces are investigated by using first-principles calculations with density functional theory. It is found that spin polarization tends to remain relatively high at the (110) interface and reaches almost unity for a specific (110) interfacial structure. Furthermore, the nearly-half-metallic interface turns out to be the most stable of the (110) interfacial structures studied here. Spin polarization calculated only from the sp -projected density of states is also examined in order to eliminate the effects stemming from the localized d components. The analysis shows that the high spin polarization at the (110) interface owes little to the localized d component and, therefore, is expected to be fairly relevant to transport properties. Co2CrSi/GaAs , Co2MnSi/GaAs , and Co2MnGe/GaAs heterostructures are also investigated, and similar half-metal-like behavior at (110) interface is observed for all of them.

  7. Magnetic properties of magnetic bilayer Kekulene structure: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Jabar, A.; Masrour, R.

    2018-06-01

    In the present work, we have studied the magnetic properties of magnetic bilayer Kekulene structure with mixed spin-5/2 and spin-2 Ising model using Monte Carlo study. The magnetic phase diagrams of mixed spins Ising model have been given. The thermal total, partial magnetization and magnetic susceptibilities of the mixed spin-5/2 and spin-2 Ising model on a magnetic bilayer Kekulene structure are obtained. The transition temperature has been deduced. The effect of crystal field and exchange interactions on the this bilayers has been studied. The partial and total magnetic hysteresis cycles of the mixed spin-5/2 and spin-2 Ising model on a magnetic bilayer Kekulene structure have been given. The superparamagnetism behavior is observed in magnetic bilayer Kekulene structure. The magnetic coercive field decreases with increasing the exchange interactions between σ-σ and temperatures values and increases with increasing the absolute value of exchange interactions between σ-S. The multiple hysteresis behavior appears.

  8. Spin-polarized surface resonances accompanying topological surface state formation

    PubMed Central

    Jozwiak, Chris; Sobota, Jonathan A.; Gotlieb, Kenneth; Kemper, Alexander F.; Rotundu, Costel R.; Birgeneau, Robert J.; Hussain, Zahid; Lee, Dung-Hai; Shen, Zhi-Xun; Lanzara, Alessandra

    2016-01-01

    Topological insulators host spin-polarized surface states born out of the energetic inversion of bulk bands driven by the spin-orbit interaction. Here we discover previously unidentified consequences of band-inversion on the surface electronic structure of the topological insulator Bi2Se3. By performing simultaneous spin, time, and angle-resolved photoemission spectroscopy, we map the spin-polarized unoccupied electronic structure and identify a surface resonance which is distinct from the topological surface state, yet shares a similar spin-orbital texture with opposite orientation. Its momentum dependence and spin texture imply an intimate connection with the topological surface state. Calculations show these two distinct states can emerge from trivial Rashba-like states that change topology through the spin-orbit-induced band inversion. This work thus provides a compelling view of the coevolution of surface states through a topological phase transition, enabled by the unique capability of directly measuring the spin-polarized unoccupied band structure. PMID:27739428

  9. Kondo physics in non-local metallic spin transport devices.

    PubMed

    O'Brien, L; Erickson, M J; Spivak, D; Ambaye, H; Goyette, R J; Lauter, V; Crowell, P A; Leighton, C

    2014-05-29

    The non-local spin-valve is pivotal in spintronics, enabling separation of charge and spin currents, disruptive potential applications and the study of pressing problems in the physics of spin injection and relaxation. Primary among these problems is the perplexing non-monotonicity in the temperature-dependent spin accumulation in non-local ferromagnetic/non-magnetic metal structures, where the spin signal decreases at low temperatures. Here we show that this effect is strongly correlated with the ability of the ferromagnetic to form dilute local magnetic moments in the NM. This we achieve by studying a significantly expanded range of ferromagnetic/non-magnetic combinations. We argue that local moments, formed by ferromagnetic/non-magnetic interdiffusion, suppress the injected spin polarization and diffusion length via a manifestation of the Kondo effect, thus explaining all observations. We further show that this suppression can be completely quenched, even at interfaces that are highly susceptible to the effect, by insertion of a thin non-moment-supporting interlayer.

  10. Uniaxial strain control of spin-polarization in multicomponent nematic order of BaFe 2As 2

    DOE PAGES

    Kissikov, T.; Sarkar, R.; Lawson, M.; ...

    2018-03-13

    The iron-based high temperature superconductors exhibit a rich phase diagram reflecting a complex interplay between spin, lattice, and orbital degrees of freedom. The nematic state observed in these compounds epitomizes this complexity, by entangling a real-space anisotropy in the spin fluctuation spectrum with ferro-orbital order and an orthorhombic lattice distortion. A subtle and less-explored facet of the interplay between these degrees of freedom arises from the sizable spin-orbit coupling present in these systems, which translates anisotropies in real space into anisotropies in spin space. We present nuclear magnetic resonance studies, which reveal that the magnetic fluctuation spectrum in the paramagneticmore » phase of BaFe 2As 2 acquires an anisotropic response in spin-space upon application of a tetragonal symmetry-breaking strain field. Lastly, our results unveil an internal spin structure of the nematic order parameter, indicating that electronic nematic materials may offer a route to magneto-mechanical control.« less

  11. High-pressure insulator-to-metal transition in Sr3Ir2O7 studied by x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Donnerer, C.; Sala, M. Moretti; Pascarelli, S.; Rosa, A. D.; Andreev, S. N.; Mazurenko, V. V.; Irifune, T.; Hunter, E. C.; Perry, R. S.; McMorrow, D. F.

    2018-01-01

    High-pressure x-ray absorption spectroscopy was performed at the Ir L3 and L2 absorption edges of Sr3Ir2O7 . The branching ratio of white-line intensities continuously decreases with pressure, reflecting a reduction in the angular part of the expectation value of the spin-orbit coupling operator, 〈L .S 〉 . Up to the high-pressure structural transition at 53 GPa, this behavior can be explained within a single-ion model, where pressure increases the strength of the cubic crystal field, which suppresses the spin-orbit induced hybridization of Jeff=3 /2 and eg levels. We observe a further reduction of the branching ratio above the structural transition, which cannot be explained within a single-ion model of spin-orbit coupling and cubic crystal fields. This change in 〈L .S 〉 in the high-pressure, metallic phase of Sr3Ir2O7 could arise from noncubic crystal fields or a bandwidth-driven hybridization of Jeff=1 /2 ,3 /2 states and suggests that the electronic ground state significantly deviates from the Jeff=1 /2 limit.

  12. Role of entropy and structural parameters in the spin-state transition of LaCoO3

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Bismayan; Birol, Turan; Haule, Kristjan

    2017-11-01

    The spin-state transition in LaCoO3 has eluded description for decades despite concerted theoretical and experimental effort. In this study, we approach this problem using fully charge self-consistent density functional theory + embedded dynamical mean field theory (DFT+DMFT). We show from first principles that LaCoO3 cannot be described by a single, pure spin state at any temperature. Instead, we observe a gradual change in the population of higher-spin multiplets with increasing temperature, with the high-spin multiplets being excited at the onset of the spin-state transition followed by the intermediate-spin multiplets being excited at the metal-insulator-transition temperature. We explicitly elucidate the critical role of lattice expansion and oxygen octahedral rotations in the spin-state transition. We also reproduce, from first principles, that the spin-state transition and the metal-insulator transition in LaCoO3 occur at different temperature scales. In addition, our results shed light on the importance of electronic entropy in driving the spin-state transition, which has so far been ignored in all first-principles studies of this material.

  13. Reinvestigation of the giant Rashba-split states on Bi-covered Si(111)

    NASA Astrophysics Data System (ADS)

    Berntsen, M. H.; Götberg, O.; Tjernberg, O.

    2018-03-01

    We study the electronic and spin structures of the giant Rashba-split surface states of the Bi/Si(111)-(√{3 }×√{3 }) R 30∘ trimer phase by means of spin- and angle-resolved photoelectron spectroscopy (spin-ARPES). Supported by tight-binding calculations of the surface state dispersion and spin orientation, our findings show that the spin experiences a vortexlike structure around the Γ ¯ point of the surface Brillouin zone—in accordance with the standard Rashba model. Moreover, we find no evidence of a spin vortex around the K ¯ point in the hexagonal Brillouin zone and thus no peculiar Rashba split around this point, something that has been suggested by previous works. Rather the opposite, our results show that the spin structure around K¯ can be fully understood by taking into account the symmetry of the Brillouin zone and the intersection of spin vortices centered around the Γ ¯ points in neighboring Brillouin zones. As a result, the spin structure is consistently explained within the standard framework of the Rashba model although the spin-polarized surface states experience a more complex dispersion compared to free-electron-like parabolic states.

  14. Coulomb spin liquid in anion-disordered pyrochlore Tb 2Hf 2O 7

    DOE PAGES

    Sibille, Romain; Lhotel, Elsa; Hatnean, Monica Ciomaga; ...

    2017-10-12

    Here, the charge ordered structure of ions and vacancies characterizing rare-earth pyrochlore oxides serves as a model for the study of geometrically frustrated magnetism. The organization of magnetic ions into networks of corner-sharing tetrahedra gives rise to highly correlated magnetic phases with strong fluctuations, including spin liquids and spin ices. It is an open question how these ground states governed by local rules are affected by disorder. Here we demonstrate in the pyrochlore Tb 2Hf 2O 7, that the vicinity of the disordering transition towards a defective fluorite structure translates into a tunable density of anion Frenkel disorder while cationsmore » remain ordered. Quenched random crystal fields and disordered exchange interactions can therefore be introduced into otherwise perfect pyrochlore lattices of magnetic ions. We show that disorder can play a crucial role in preventing long-range magnetic order at low temperatures, and instead induces a strongly fluctuating Coulomb spin liquid with defect-induced frozen magnetic degrees of freedom.« less

  15. Exploring Nucleon Spin Structure Through Neutrino Neutral-Current Interactions in MicroBooNE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, Katherine

    2017-02-02

    The net contribution of the strange quark spins to the proton spin,more » $$\\Delta s$$, can be determined from neutral current elastic neutrino-proton interactions at low momentum transfer combined with data from electron-proton scattering. The probability of neutrino-proton interactions depends in part on the axial form factor, which represents the spin structure of the proton and can be separated into its quark flavor contributions. Low momentum transfer neutrino neutral current interactions can be measured in MicroBooNE, a high-resolution liquid argon time projection chamber (LArTPC) in its first year of running in the Booster Neutrino Beamline at Fermilab. The signal for these interactions in MicroBooNE is a single short proton track. We present our work on the automated reconstruction and classification of proton tracks in LArTPCs, an important step in the determination of neutrino- nucleon cross sections and the measurement of $$\\Delta s$$.« less

  16. Differentiation of molecular chain entanglement structure through laser Raman spectrum measurement of High strength PET fibers under stress

    NASA Astrophysics Data System (ADS)

    Go, D.; Takarada, W.; Kikutani, T.

    2017-10-01

    The aim of this study was to investigate the mechanism for the improvement of mechanical properties of poly(ethylene terephthalate) (PET) fibers based on the concept of controlling the state of molecular entanglement. For this purpose, five different PET fibers were prepared through either the conventional melt spinning and drawing/annealing process or the high-speed melt spinning process. In both cases, the melt spinning process was designed so as to realize different Deborah number conditions. The prepared fibers were subjected to the laser Raman spectroscopy measurement and the characteristics of the scattering peak at around 1616 cm-1, which corresponds to the C-C/C=C stretching mode of the aromatic ring in the main chain, were investigated in detail. It was revealed that the fibers drawn and annealed after the melt spinning process of lower Deborah number showed higher tensile strength as well as lower value of full width at half maximum (FWHM) in the laser Raman spectrum. Narrow FWHM was considered to represent the homogeneous state of entanglement structure, which may lead to the higher strength and toughness of fibers because individual molecular chains tend to bare similar level of tensile stress when the fiber is stretched. In case of high-speed spun fibers prepared with a high Deborah number condition, the FWHM was narrow presumably because much lower tensile stress in comparison with the drawing/annealing process was applied when the fiber structure was developed, however the value increased significantly upon applying tensile load to the fibers during the laser Raman spectrum measurement. From these results, it was concluded that the Laser Raman spectroscopy could differentiate molecular chain entanglement structure of various fiber samples, in that low FWHM, which corresponds to either homogeneous state of molecular entanglement or lower level of mean residual stress, and small increase of FWTH upon applying tensile stress are considered to be the key factors for the improvement of the mechanical properties of PET fibers.

  17. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces

    NASA Astrophysics Data System (ADS)

    Lesne, E.; Fu, Yu; Oyarzun, S.; Rojas-Sánchez, J. C.; Vaz, D. C.; Naganuma, H.; Sicoli, G.; Attané, J.-P.; Jamet, M.; Jacquet, E.; George, J.-M.; Barthélémy, A.; Jaffrès, H.; Fert, A.; Bibes, M.; Vila, L.

    2016-12-01

    The spin-orbit interaction couples the electrons’ motion to their spin. As a result, a charge current running through a material with strong spin-orbit coupling generates a transverse spin current (spin Hall effect, SHE) and vice versa (inverse spin Hall effect, ISHE). The emergence of SHE and ISHE as charge-to-spin interconversion mechanisms offers a variety of novel spintronic functionalities and devices, some of which do not require any ferromagnetic material. However, the interconversion efficiency of SHE and ISHE (spin Hall angle) is a bulk property that rarely exceeds ten percent, and does not take advantage of interfacial and low-dimensional effects otherwise ubiquitous in spintronic hetero- and mesostructures. Here, we make use of an interface-driven spin-orbit coupling mechanism--the Rashba effect--in the oxide two-dimensional electron system (2DES) LaAlO3/SrTiO3 to achieve spin-to-charge conversion with unprecedented efficiency. Through spin pumping, we inject a spin current from a NiFe film into the oxide 2DES and detect the resulting charge current, which can be strongly modulated by a gate voltage. We discuss the amplitude of the effect and its gate dependence on the basis of the electronic structure of the 2DES and highlight the importance of a long scattering time to achieve efficient spin-to-charge interconversion.

  18. Structure, magnetic properties, polarized neutron diffraction, and theoretical study of a copper(II) cubane.

    PubMed

    Aronica, Christophe; Chumakov, Yurii; Jeanneau, Erwann; Luneau, Dominique; Neugebauer, Petr; Barra, Anne-Laure; Gillon, Béatrice; Goujon, Antoine; Cousson, Alain; Tercero, Javier; Ruiz, Eliseo

    2008-01-01

    The paper reports the synthesis, X-ray and neutron diffraction crystal structures, magnetic properties, high field-high frequency EPR (HF-EPR), spin density and theoretical description of the tetranuclear CuII complex [Cu4L4] with cubane-like structure (LH2=1,1,1-trifluoro-7-hydroxy-4-methyl-5-aza-hept-3-en-2-one). The simulation of the magnetic behavior gives a predominant ferromagnetic interaction J1 (+30.5 cm(-1)) and a weak antiferromagnetic interaction J2 (-5.5 cm(-1)), which correspond to short and long Cu-Cu distances, respectively, as evidence from the crystal structure [see formulate in text]. It is in agreement with DFT calculations and with the saturation magnetization value of an S=2 ground spin state. HF-EPR measurements at low temperatures (5 to 30 K) provide evidence for a negative axial zero-field splitting parameter D (-0.25+/-0.01 cm(-1)) plus a small rhombic term E (0.025+/-0.001 cm(-1), E/D = 0.1). The experimental spin distribution from polarized neutron diffraction is mainly located in the basal plane of the CuII ion with a distortion of yz-type for one CuII ion. Delocalization on the ligand (L) is observed but to a smaller extent than expected from DFT calculations.

  19. Breaking Symmetry in Time-Dependent Electronic Structure Theory to Describe Spectroscopic Properties of Non-Collinear and Chiral Molecules

    NASA Astrophysics Data System (ADS)

    Goings, Joshua James

    Time-dependent electronic structure theory has the power to predict and probe the ways electron dynamics leads to useful phenomena and spectroscopic data. Here we report several advances and extensions of broken-symmetry time-dependent electronic structure theory in order to capture the flexibility required to describe non-equilibrium spin dynamics, as well as electron dynamics for chiroptical properties and vibrational effects. In the first half, we begin by discussing the generalization of self-consistent field methods to the so-called two-component structure in order to capture non-collinear spin states. This means that individual electrons are allowed to take a superposition of spin-1/2 projection states, instead of being constrained to either spin-up or spin-down. The system is no longer a spin eigenfunction, and is known a a spin-symmetry broken wave function. This flexibility to break spin symmetry may lead to variational instabilities in the approximate wave function, and we discuss how these may be overcome. With a stable non-collinear wave function in hand, we then discuss how to obtain electronic excited states from the non-collinear reference, along with associated challenges in their physical interpretation. Finally, we extend the two-component methods to relativistic Hamiltonians, which is the proper setting for describing spin-orbit driven phenomena. We describe the first implementation of the explicit time propagation of relativistic two-component methods and how this may be used to capture spin-forbidden states in electronic absorption spectra. In the second half, we describe the extension of explicitly time-propagated wave functions to the simulation of chiroptical properties, namely circular dichroism (CD) spectra of chiral molecules. Natural circular dichroism, that is, CD in the absence of magnetic fields, originates in the broken parity symmetry of chiral molecules. This proves to be an efficient method for computing circular dichroism spectra for high density-of-states chiral molecules. Next, we explore the impact of allowing nuclear motion on electronic absorption spectra within the context of mixed quantum-classical dynamics. We show that nuclear motion modulates the electronic response, and this gives rise to infrared absorption as well as Raman scattering phenomena in the computed dynamic polarizability. Finally, we explore the accuracy of several perturbative approximations to the equation-of-motion coupled-cluster methods for the efficient and accurate prediction of electronic absorption spectra.

  20. Control of spin-orbit torques through crystal symmetry in WTe2/ferromagnet bilayers

    NASA Astrophysics Data System (ADS)

    MacNeill, D.; Stiehl, G. M.; Guimaraes, M. H. D.; Buhrman, R. A.; Park, J.; Ralph, D. C.

    2017-03-01

    Recent discoveries regarding current-induced spin-orbit torques produced by heavy-metal/ferromagnet and topological-insulator/ferromagnet bilayers provide the potential for dramatically improved efficiency in the manipulation of magnetic devices. However, in experiments performed to date, spin-orbit torques have an important limitation--the component of torque that can compensate magnetic damping is required by symmetry to lie within the device plane. This means that spin-orbit torques can drive the most current-efficient type of magnetic reversal (antidamping switching) only for magnetic devices with in-plane anisotropy, not the devices with perpendicular magnetic anisotropy that are needed for high-density applications. Here we show experimentally that this state of affairs is not fundamental, but rather one can change the allowed symmetries of spin-orbit torques in spin-source/ferromagnet bilayer devices by using a spin-source material with low crystalline symmetry. We use WTe2, a transition-metal dichalcogenide whose surface crystal structure has only one mirror plane and no two-fold rotational invariance. Consistent with these symmetries, we generate an out-of-plane antidamping torque when current is applied along a low-symmetry axis of WTe2/Permalloy bilayers, but not when current is applied along a high-symmetry axis. Controlling spin-orbit torques by crystal symmetries in multilayer samples provides a new strategy for optimizing future magnetic technologies.

  1. High-spin structure of 134Xe

    NASA Astrophysics Data System (ADS)

    Vogt, A.; Birkenbach, B.; Reiter, P.; Blazhev, A.; Siciliano, M.; Valiente-Dobón, J. J.; Wheldon, C.; Bazzacco, D.; Bowry, M.; Bracco, A.; Bruyneel, B.; Chakrawarthy, R. S.; Chapman, R.; Cline, D.; Corradi, L.; Crespi, F. C. L.; Cromaz, M.; de Angelis, G.; Eberth, J.; Fallon, P.; Farnea, E.; Fioretto, E.; Freeman, S. J.; Gadea, A.; Geibel, K.; Gelletly, W.; Gengelbach, A.; Giaz, A.; Görgen, A.; Gottardo, A.; Hayes, A. B.; Hess, H.; Hua, H.; John, P. R.; Jolie, J.; Jungclaus, A.; Korten, W.; Lee, I. Y.; Leoni, S.; Liang, X.; Lunardi, S.; Macchiavelli, A. O.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Mijatović, T.; Montagnoli, G.; Montanari, D.; Napoli, D.; Pearson, C. J.; Pellegri, L.; Podolyák, Zs.; Pollarolo, G.; Pullia, A.; Radeck, F.; Recchia, F.; Regan, P. H.; Şahin, E.; Scarlassara, F.; Sletten, G.; Smith, J. F.; Söderström, P.-A.; Stefanini, A. M.; Steinbach, T.; Stezowski, O.; Szilner, S.; Szpak, B.; Teng, R.; Ur, C.; Vandone, V.; Ward, D.; Warner, D. D.; Wiens, A.; Wu, C. Y.

    2016-05-01

    Detailed spectroscopic information on the N ˜82 nuclei is necessary to benchmark shell-model calculations in the region. The nuclear structure above long-lived isomers in 134Xe is investigated after multinucleon transfer (MNT) and actinide fission. Xenon-134 was populated as (i) a transfer product in 238U+ 136Xe and 208Pb+ 136Xe MNT reactions and (ii) as a fission product in the 238U+ 136Xe reaction employing the high-resolution Advanced Gamma Tracking Array (AGATA). Trajectory reconstruction has been applied for the complete identification of beamlike transfer products with the magnetic spectrometer PRISMA. The 198Pt 136Xe MNT reaction was studied with the γ -ray spectrometer GAMMASPHERE in combination with the gas detector array Compact Heavy Ion Counter (CHICO). Several high-spin states in 134Xe on top of the two long-lived isomers are discovered based on γ γ -coincidence relationships and information on the γ -ray angular distributions as well as excitation energies from the total kinetic energy loss and fission fragments. The revised level scheme of 134Xe is extended up to an excitation energy of 5.832 MeV with tentative spin-parity assignments up to 16+. Previous assignments of states above the 7- isomer are revised. Latest shell-model calculations employing two different effective interactions reproduce the experimental findings and support the new spin and parity assignments.

  2. A possible layout of the Spin Physics Detector with toroid magnet.

    NASA Astrophysics Data System (ADS)

    Nagaytsev, A. P.

    2017-12-01

    The Spin Physics Detector project for carrying out experiments at the 2-nd interaction point of the NICA collider is under preparation. The design of the collider allows reaching collision energy in the c.m.s. as high as √s = 26 GeV for polarized proton-proton collisions and √s = 12 GeV for polarized deuteron-deuteron collisons with a luminosity of up to 1032 cm2 s-1 (for protons) and 1031cm2s-1 for deuterons. Such a high luminosity of polarized beams interactions opens unique possibilities to investigate a variety of polarization phenomena including those related to the nucleon spin structure. A proposal for the experimental set-up based on a toroid type magnet is presented.

  3. Magnetic anisotropy and spin-flop transition of NiWO4 single crystals

    NASA Astrophysics Data System (ADS)

    Liu, C. B.; He, Z. Z.; Liu, Y. J.; Chen, R.; Shi, M. M.; Zhu, H. P.; Dong, C.; Wang, J. F.

    2017-12-01

    NiWO4 exhibits a spin chain structure built by magnetic Ni2+ ions, which may be considered as a one dimensional S = 1 system. In this work, large-sized single crystals of NiWO4 were successfully synthesized by a flux method and the crystal quality was confirmed by X-ray diffraction. Magnetic properties of obtained single crystals were studied by means of magnetic susceptibility and high field magnetization along crystallographic axes. The results demonstrate that NiWO4 is highly magnetic anisotropic and possesses a three-dimensional long range ordering below 60 K, where a spin flop transition can be observed at 17.5 T in applied magnetic fields along the magnetic easy axis (c-axis).

  4. Universality, maximum radiation, and absorption in high-energy collisions of black holes with spin.

    PubMed

    Sperhake, Ulrich; Berti, Emanuele; Cardoso, Vitor; Pretorius, Frans

    2013-07-26

    We explore the impact of black hole spins on the dynamics of high-energy black hole collisions. We report results from numerical simulations with γ factors up to 2.49 and dimensionless spin parameter χ=+0.85, +0.6, 0, -0.6, -0.85. We find that the scattering threshold becomes independent of spin at large center-of-mass energies, confirming previous conjectures that structure does not matter in ultrarelativistic collisions. It has further been argued that in this limit all of the kinetic energy of the system may be radiated by fine tuning the impact parameter to threshold. On the contrary, we find that only about 60% of the kinetic energy is radiated for γ=2.49. By monitoring apparent horizons before and after scattering events we show that the "missing energy" is absorbed by the individual black holes in the encounter, and moreover the individual black-hole spins change significantly. We support this conclusion with perturbative calculations. An extrapolation of our results to the limit γ→∞ suggests that about half of the center-of-mass energy of the system can be emitted in gravitational radiation, while the rest must be converted into rest-mass and spin energy.

  5. Towards the Knittability of Graphene Oxide Fibres

    PubMed Central

    Seyedin, Shayan; Romano, Mark S.; Minett, Andrew I.; Razal, Joselito M.

    2015-01-01

    Recent developments in graphene oxide fibre (GO) processing include exciting demonstrations of hand woven textile structures. However, it is uncertain whether the fibres produced can meet the processing requirements of conventional textile manufacturing. This work reports for the first time the production of highly flexible and tough GO fibres that can be knitted using textile machinery. The GO fibres are made by using a dry-jet wet-spinning method, which allows drawing of the spinning solution (the GO dispersion) in several stages of the fibre spinning process. The coagulation composition and spinning conditions are evaluated in detail, which led to the production of densely packed fibres with near-circular cross-sections and highly ordered GO domains. The results are knittable GO fibres with Young’s modulus of ~7.9 GPa, tensile strength of ~135.8 MPa, breaking strain of ~5.9%, and toughness of ~5.7 MJ m−3. The combination of suitable spinning method, coagulation composition, and spinning conditions led to GO fibres with remarkable toughness; the key factor in their successful knitting. This work highlights important progress in realising the full potential of GO fibres as a new class of textile. PMID:26459866

  6. Variable-Structure Control of a Model Glider Airplane

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Anderson, Mark R.

    2008-01-01

    A variable-structure control system designed to enable a fuselage-heavy airplane to recover from spin has been demonstrated in a hand-launched, instrumented model glider airplane. Variable-structure control is a high-speed switching feedback control technique that has been developed for control of nonlinear dynamic systems.

  7. An overview of recent nucleon spin structure measurements at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allada, Kalyan

    2016-02-01

    Jefferson Lab have made significant contributions to improve our knowledge of the longitudinal spin structure by measuring polarized structure functions, g1 and g2, down to Q2 = 0.02 GeV2. The low Q2 data is especially useful in testing the Chiral Perturbation theory (cPT) calculations. The spin-dependent sum rules and the spin polarizabilities, constructed from the moments of g1 and g2, provide an important tool to study the longitudinal spin structure. We will present an overview of the experimental program to measure these structure functions at Jefferson Lab, and present some recent results on the neutron polarizabilities, proton g1 at lowmore » Q2, and proton and neutron d2 measurement. In addition to this, we will discuss the transverse spin structure of the nucleon which can be accessed using chiral-odd transversity distribution (h1), and show some results from measurements done on polarized 3He target in Hall A.« less

  8. Morphological, structural and optical properties of MEH-PPV: PC70BM nanocomposite film

    NASA Astrophysics Data System (ADS)

    Mhamdi, Asya; Sweii, Fatma ben Slama; Saidi, Hamza; Saidi, Faouzi; Bouazizi, Abdelaziz

    2018-05-01

    In this report, the influence of annealing temperature and spin coating speed on the structural and morphological properties of a blend of poly (2-methoxy-5-(2-ethyl-oxy)-p-phenylene-vinylene) (MEH-PPV) and [6-6]-phenyl-C71-butyric acid methyl ester (PC70BM) layer has been investigated. The photoactive layer (MEH-PPV: PC70BM) was deposited on ZnO film deposited on top of indium tin oxide (ITO) substrate by spin-coating. The effect of spin coating speed via atomic force microscope (AFM) leads to conclude that high speed is favorable for a good homogeneity of the film surface and good aggregates dispersion. The optimized structure was studied by varying the annealing temperatures using X-ray diffraction (XRD). The XRD analysis indicates that annealing treatment promoted the ordered aggregation and crystallization of MEH-PPV: PC70BM films. Indeed, the blend ratio effect on the optical properties of MEH-PPV: PC70BM thin film was investigated. While, the effect of incorporation of PC70BM on the optical properties was studied using UV-Vis and photoluminescence (PL) measurement. We conclude that MEH-PPV: PC70BM (1:3) film leads to high charge transfer rate.

  9. Simultaneous control of magnetic topologies for reconfigurable vortex arrays

    DOE PAGES

    Im, Mi-Young; Fischer, Peter; Han, Hee-Sung; ...

    2017-02-10

    The topological spin textures in magnetic vortices in confined magnetic elements offer a platform for understanding the fundamental physics of nanoscale spin behavior and the potential of harnessing their unique spin structures for advanced magnetic technologies. For magnetic vortices to be practical, an effective reconfigurability of the two topologies of magnetic vortices, that is, the circularity and the polarity, is an essential prerequisite. The reconfiguration issue is highly relevant to the question of whether both circularity and polarity are reliably and efficiently controllable. In this work, we report the first direct observation of simultaneous control of both circularity and polaritymore » by the sole application of an in-plane magnetic field to arrays of asymmetrically shaped permalloy disks. Our investigation demonstrates that a high degree of reliability for control of both topologies can be achieved by tailoring the geometry of the disk arrays. We also propose a new approach to control the vortex structures by manipulating the effect of the stray field on the dynamics of vortex creation. The current study is expected to facilitate complete and effective reconfiguration of magnetic vortex structures, thereby enhancing the prospects for technological applications of magnetic vortices.« less

  10. Simultaneous control of magnetic topologies for reconfigurable vortex arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Im, Mi-Young; Fischer, Peter; Han, Hee-Sung

    The topological spin textures in magnetic vortices in confined magnetic elements offer a platform for understanding the fundamental physics of nanoscale spin behavior and the potential of harnessing their unique spin structures for advanced magnetic technologies. For magnetic vortices to be practical, an effective reconfigurability of the two topologies of magnetic vortices, that is, the circularity and the polarity, is an essential prerequisite. The reconfiguration issue is highly relevant to the question of whether both circularity and polarity are reliably and efficiently controllable. In this work, we report the first direct observation of simultaneous control of both circularity and polaritymore » by the sole application of an in-plane magnetic field to arrays of asymmetrically shaped permalloy disks. Our investigation demonstrates that a high degree of reliability for control of both topologies can be achieved by tailoring the geometry of the disk arrays. We also propose a new approach to control the vortex structures by manipulating the effect of the stray field on the dynamics of vortex creation. The current study is expected to facilitate complete and effective reconfiguration of magnetic vortex structures, thereby enhancing the prospects for technological applications of magnetic vortices.« less

  11. Insight into the biological effects of acupuncture points by X-ray absorption fine structure.

    PubMed

    Liu, Chenglin; Liu, Qinghua; Zhang, Dongming; Liu, Wei; Yan, Xiaohui; Zhang, Xinyi; Oyanagi, Hiroyuki; Pan, Zhiyun; Hu, Fengchun; Wei, Shiqiang

    2018-06-02

    Exploration of the biological effects of transition metal ions in acupuncture points is essential to clarify the functional mechanism of acupuncture treatment. Here we show that in the SP6 acupuncture point (Sanyinjiao) the Fe ions are in a high-spin state of approximately t 2g 4.5 e g 1.5 in an Fe-N(O) octahedral crystal field. The Fe K-edge synchrotron radiation X-ray absorption fine structure results reveal that the Fe-N and Fe-O bond lengths in the SP6 acupuncture point are 2.05 and 2.13 Å, respectively, and are 0.05-0.10 Å longer than those in the surrounding tissue. The distorted atomic structure reduces the octahedral symmetry and weakens the crystal field around the Fe ions by approximately 0.3 eV, leading to the high-spin configuration of the Fe ions, which is favorable for strengthening the magnetotransport and oxygen transportation properties in the acupuncture point by the enhanced spin coherence. This finding might provide some insight into the microscopic effect of the atomic and electronic interactions of transition metal ions in the acupuncture point. Graphical Abstract ᅟ.

  12. Evidence for a pressure-induced spin transition in olivine-type LiFePO4 triphylite

    NASA Astrophysics Data System (ADS)

    Núñez Valdez, Maribel; Efthimiopoulos, Ilias; Taran, Michail; Müller, Jan; Bykova, Elena; McCammon, Catherine; Koch-Müller, Monika; Wilke, Max

    2018-05-01

    We present a combination of first-principles and experimental results regarding the structural and magnetic properties of olivine-type LiFePO4 under pressure. Our investigations indicate that the starting P b n m phase of LiFePO4 persists up to 70 GPa. Further compression leads to an isostructural transition in the pressure range of 70-75 GPa, inconsistent with a former theoretical study. Considering our first-principles prediction for a high-spin to low-spin transition of Fe2 + close to 72 GPa, we attribute the experimentally observed isostructural transition to a change in the spin state of Fe2 + in LiFePO4. Compared to relevant Fe-bearing minerals, LiFePO4 exhibits the largest onset pressure for a pressure-induced spin state transition.

  13. Growth and Electronic Structure of Heusler Compounds for Use in Electron Spin Based Devices

    NASA Astrophysics Data System (ADS)

    Patel, Sahil Jaykumar

    Spintronic devices, where information is carried by the quantum spin state of the electron instead of purely its charge, have gained considerable interest for their use in future computing technologies. For optimal performance, a pure spin current, where all electrons have aligned spins, must be generated and transmitted across many interfaces and through many types of materials. While conventional spin sources have historically been elemental ferromagnets, like Fe or Co, these materials pro duce only partially spin polarized currents. To increase the spin polarization of the current, materials like half-metallic ferromagnets, where there is a gap in the minority spin density of states around the Fermi level, or topological insulators, where the current transport is dominated by spin-locked surface states, show promise. A class of materials called Heusler compounds, with electronic structures that range from normal metals, to half metallic ferromagnets, semiconductors, superconductors and even topological insulators, interfaces well with existing device technologies, and through the use of molecular beam epitaxy (MBE) high quality heterostructures and films can be grown. This dissertation examines the electronic structure of surfaces and interfaces of both topological insulator (PtLuSb-- and PtLuBi--) and half-metallic ferromagnet (Co2MnSi-- and Co2FeSi--) III-V semiconductor heterostructures. PtLuSb and PtLuBi growth by MBE was demonstrated on Alx In1--xSb (001) ternaries. PtLuSb (001) surfaces were observed to reconstruct with either (1x3) or c(2x2) unit cells depending on Sb overpressure and substrate temperature. viii The electronic structure of these films was studied by scanning tunneling microscopy/spectroscopy (STM/STS) and photoemission spectroscopy. STS measurements as well as angle resolved photoemission spectropscopy (ARPES) suggest that PtLuSb has a zero-gap or semimetallic band structure. Additionally, the observation of linearly dispersing surface states, with an approximate crossing point 240meV above the Fermi level, suggests that PtLuSb (001) films are topologically non-trivial. PtLuBi films also display a Fermi level position approximately 500meV below the valence band maximum. Co2MnSi and Co2FeSi were also grown by MBE on GaAs (001) for use as spin injectors into GaAs lateral spin valve devices. By the growth of the quaternary alloy Co2FexMn1-- xSi and varying x, electron doping of the full Heusler compound was demonstrated by observation of a crossover from a majority spin polarization of Co2MnSi to a minority spin polarization in Co2FeSi. Co2MnSi films were studied as a function of the nucleation sequence, using either Co-- or MnSi-- initiated films on c(4x4) GaAs. Studies using x-ray photoemission spectroscopy (XPS), STM/STS, and transmission electron microscopy (TEM) suggest that the bulk of the Co2MnSi films and the interfacial structure between Co 2MnSi and GaAs is not modified by the nucleation sequence, but a change in spin transport characteristics suggests a modification of semiconductor band structure at the Co2MnSi/GaAs interface due to diffusion of Mn leading to compensation of the Schottky barrier contact. Diffusion of Mn into the GaAs was confirmed by secondary ion mass spectrometry (SIMS) measurements. The proposed mechanism for the modified spin transport characteristics for MnSi initiated films is that additional diffusion of Mn into the GaAs, widens the Schottky barrier contact region. These studies suggest that the ideal initiation sequence for Co2MnSi/GaAs (001) lateral spin valve devices is achieved by deposition of Co first.

  14. SDSL-ESR-based protein structure characterization.

    PubMed

    Strancar, Janez; Kavalenka, Aleh; Urbancic, Iztok; Ljubetic, Ajasja; Hemminga, Marcus A

    2010-03-01

    As proteins are key molecules in living cells, knowledge about their structure can provide important insights and applications in science, biotechnology, and medicine. However, many protein structures are still a big challenge for existing high-resolution structure-determination methods, as can be seen in the number of protein structures published in the Protein Data Bank. This is especially the case for less-ordered, more hydrophobic and more flexible protein systems. The lack of efficient methods for structure determination calls for urgent development of a new class of biophysical techniques. This work attempts to address this problem with a novel combination of site-directed spin labelling electron spin resonance spectroscopy (SDSL-ESR) and protein structure modelling, which is coupled by restriction of the conformational spaces of the amino acid side chains. Comparison of the application to four different protein systems enables us to generalize the new method and to establish a general procedure for determination of protein structure.

  15. Study of Double Spin Asymmetries in Inclusive ep Scattering at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Hoyoung

    2014-08-01

    The spin structure of the proton has been investigated in the high Bjorken x and low momentum transfer Q 2 region. We used Jefferson Lab's polarized electron beam, a polarized target, and a spectrometer to get both the parallel and perpendicular spin asymmetries Apar and Aperp. These asymmetries produced the physics asymmetries A_1 and A_2 and spin structure functions g_1 and g_2. We found Q 2 dependences of the asymmetries at resonance region and higher-twist effects. Our result increases the available data on the proton spin structure, especially at resonance region with low Q 2. Moreover, A_2 and g_2 datamore » show clear Q 2 evolution, comparing with RSS and SANE-BETA. Negative resonance in A_2 data needs to be examined by theory. It can be an indication of very negative transverse-longitudinal interference contribution at W ~ 1.3 GeV. Higher twist effect appears at the low Q 2 of 1.9 GeV 2, although it is less significant than lower Q 2 data of RSS. Twist03 matrix element d_2 was calculated using our asymmetry fits evaluation at Q 2 – 1.9 GeV 2. D-bar_2 = -0.0087±0.0014 was obtained by integrating 0.47 ≤ x ≤ 0.87.« less

  16. Charge and Spin-State Characterization of Cobalt Bis( o-dioxolene) Valence Tautomers Using Co Kβ X-ray Emission and L-Edge X-ray Absorption Spectroscopies

    DOE PAGES

    Liang, H. Winnie; Kroll, Thomas; Nordlund, Dennis; ...

    2016-12-30

    The valence tautomeric states of Co(phen)(3,5-DBQ) 2 and Co(tmeda)(3,5-DBQ) 2, where 3,5-DBQ is either the semiquinone (SQ –) or catecholate (Cat 2–) form of 3,5-di- tert-butyl-1,2-benzoquinone, have been examined by a series of cobalt-specific X-ray spectroscopies. In this work, we have utilized the sensitivity of 1s3p X-ray emission spectroscopy (Kβ XES) to the oxidation and spin states of 3d transition-metal ions to determine the cobalt-specific electronic structure of valence tautomers. A comparison of their Kβ XES spectra with the spectra of cobalt coordination complexes with known oxidation and spin states demonstrates that the low-temperature valence tautomer can be described asmore » a low-spin Co III configuration and the high-temperature valence tautomer as a high-spin Co II configuration. This conclusion is further supported by Co L-edge X-ray absorption spectroscopy (L-edge XAS) of the high-temperature valence tautomers and ligand-field atomic-multiplet calculations of the Kβ XES and L-edge XAS spectra. In conclusion, the nature and strength of the magnetic exchange interaction between the cobalt center and SQ – in cobalt valence tautomers is discussed in view of the effective spin at the Co site from Kβ XES and the molecular spin moment from magnetic susceptibility measurements.« less

  17. Charge and Spin-State Characterization of Cobalt Bis( o-dioxolene) Valence Tautomers Using Co Kβ X-ray Emission and L-Edge X-ray Absorption Spectroscopies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, H. Winnie; Kroll, Thomas; Nordlund, Dennis

    The valence tautomeric states of Co(phen)(3,5-DBQ) 2 and Co(tmeda)(3,5-DBQ) 2, where 3,5-DBQ is either the semiquinone (SQ –) or catecholate (Cat 2–) form of 3,5-di- tert-butyl-1,2-benzoquinone, have been examined by a series of cobalt-specific X-ray spectroscopies. In this work, we have utilized the sensitivity of 1s3p X-ray emission spectroscopy (Kβ XES) to the oxidation and spin states of 3d transition-metal ions to determine the cobalt-specific electronic structure of valence tautomers. A comparison of their Kβ XES spectra with the spectra of cobalt coordination complexes with known oxidation and spin states demonstrates that the low-temperature valence tautomer can be described asmore » a low-spin Co III configuration and the high-temperature valence tautomer as a high-spin Co II configuration. This conclusion is further supported by Co L-edge X-ray absorption spectroscopy (L-edge XAS) of the high-temperature valence tautomers and ligand-field atomic-multiplet calculations of the Kβ XES and L-edge XAS spectra. In conclusion, the nature and strength of the magnetic exchange interaction between the cobalt center and SQ – in cobalt valence tautomers is discussed in view of the effective spin at the Co site from Kβ XES and the molecular spin moment from magnetic susceptibility measurements.« less

  18. Antenna design for propagating spin wave spectroscopy in ferromagnetic thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Yu, Ting; Chen, Ji-lei; Zhang, You-guang; Feng, Jian; Tu, Sa; Yu, Haiming

    2018-03-01

    In this paper, we investigate the characteristics of antenna for propagating-spin-wave-spectroscopy (PSWS) experiment in ferromagnetic thin films. Firstly, we simulate the amplitude and phase distribution of the high-frequency magnetic field around antenna by high frequency structure simulator (HFSS). And then k distribution of the antenna is obtained by fast Fourier transformation (FFT). Furthermore, three kinds of antenna designs, i.e. micro-strip line, coplanar waveguide (CPW), loop, are studied and compared. How the dimension parameter of antenna influence the corresponding high-frequency magnetic field amplitude and k distribution are investigated in details.

  19. Hydrogen-bonded networks of [Fe(bpp)2]2+ spin crossover complexes and dicarboxylate anions: structural and photomagnetic properties.

    PubMed

    Jornet-Mollá, Verónica; Duan, Yan; Giménez-Saiz, Carlos; Waerenborgh, João C; Romero, Francisco M

    2016-11-28

    The paper reports the syntheses, crystal structures, thermal and (photo)magnetic properties of spin crossover salts of formula [Fe(bpp) 2 ](C 6 H 8 O 4 )·4H 2 O (1·4H 2 O), [Fe(bpp) 2 ](C 8 H 4 O 4 )·2CH 3 OH·H 2 O (2·2MeOH·H 2 O) and [Fe(bpp) 2 ](C 8 H 4 O 4 )·5H 2 O (2·5H 2 O) (bpp = 2,6-bis(pyrazol-3yl)pyridine; C 6 H 8 O 4 = adipate dianion; C 8 H 4 O 4 = terephthalate dianion). The salts exhibit an intricate network of hydrogen bonds between low-spin iron(ii) complexes and carboxylate dianions, with solvent molecules sitting in the voids. Desolvation is accompanied by a low-spin (LS) to high-spin (HS) transformation in the materials. The dehydrated phase 2 undergoes a two-step transition with a second step showing thermal hysteresis (T 1/2 ↑ = 139 K and T 1/2 ↓ = 118 K). 2 displays a quantitative LS to HS photomagnetic conversion, with a T(LIESST) value of 63 K.

  20. Nucleon Alignment and Shape Competition at High Spin in ^180Hf

    NASA Astrophysics Data System (ADS)

    Tandel, U. S.; Chowdhury, P.; Tandel, S. K.; Sheppard, S.; Cline, D.; Wu, C. Y.; Carpenter, M. P.; Janssens, R. V. F.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.; Zhu, S.

    2006-10-01

    In light even-N Hf isotopes (N = 96-106), the first i13/2 neutron alignment occurs at hφ< 0.3 MeV. In contrast, no alignment was observed up to ˜ 0.4 MeV in ^180,182Hf (N = 108,110) [1]. Theoretical calculations predict that oblate collective rotation becomes yrast at high spins in ^180Hf [2, 3]. In the present work, the yrast band of ^180Hf has been extended to high spins, via inelastic excitation, using a 1300 MeV ^180Hf beam incident on a thin ^232Th target. The γ rays were detected by Gammasphere, with event by event Doppler correction and Q-value selectivity provided by CHICO. The data reveal onset of the first nucleon alignment in ^180Hf at hφ ˜ 0.43 MeV, which is significantly higher than predictions (˜ 0.35 MeV). Interestingly, the γ-vibrational band is crossed by a band with apparent high moment-of-inertia at ˜ 0.25 MeV. This structure, which becomes near yrast at the highest observed spins will be discussed in the context of nucleon alignment and shape competition at high spin in ^180Hf. [1] E. Ngijoi-Yogo, Ph.D. thesis, U.Mass. Lowell (2004) [2] R.R. Hilton and H.J. Mang, Phys. Rev. Lett. 43, 1979 (1979). [3] F.R. Xu et al., Phys. Rev. C62, 014301 (2000).

  1. Development of new smart materials and spinning systems inspired by natural silks and their applications

    NASA Astrophysics Data System (ADS)

    Cheng, Jie; Lee, Sang-Hoon

    2015-12-01

    Silks produced by spiders and silkworms are charming natural biological materials with highly optimized hierarchical structures and outstanding physicomechanical properties. The superior performance of silks relies on the integration of a unique protein sequence, a distinctive spinning process, and complex hierarchical structures. Silks have been prepared to form a variety of morphologies and are widely used in diverse applications, for example, in the textile industry, as drug delivery vehicles, and as tissue engineering scaffolds. This review presents an overview of the organization of natural silks, in which chemical and physical functions are optimized, as well as a range of new materials inspired by the desire to mimic natural silk structure and synthesis.

  2. A theory for bioinorganic chemical reactivity of oxometal complexes and analogous oxidants: the exchange and orbital-selection rules.

    PubMed

    Usharani, Dandamudi; Janardanan, Deepa; Li, Chunsen; Shaik, Sason

    2013-02-19

    Over the past decades metalloenzymes and their synthetic models have emerged as an area of increasing research interest. The metalloenzymes and their synthetic models oxidize organic molecules using oxometal complexes (OMCs), especially oxoiron(IV)-based ones. Theoretical studies have helped researchers to characterize the active species and to resolve mechanistic issues. This activity has generated massive amounts of data on the relationship between the reactivity of OMCs and the transition metal's identity, oxidation state, ligand sphere, and spin state. Theoretical studies have also produced information on transition state (TS) structures, reaction intermediates, barriers, and rate-equilibrium relationships. For example, the experimental-theoretical interplay has revealed that nonheme enzymes carry out H-abstraction from strong C-H bonds using high-spin (S = 2) oxoiron(IV) species with four unpaired electrons on the iron center. However, other reagents with higher spin states and more unpaired electrons on the metal are not as reactive. Still other reagents carry out these transformations using lower spin states with fewer unpaired electrons on the metal. The TS structures for these reactions exhibit structural selectivity depending on the reactive spin states. The barriers and thermodynamic driving forces of the reactions also depend on the spin state. H-Abstraction is preferred over the thermodynamically more favorable concerted insertion into C-H bonds. Currently, there is no unified theoretical framework that explains the totality of these fascinating trends. This Account aims to unify this rich chemistry and understand the role of unpaired electrons on chemical reactivity. We show that during an oxidative step the d-orbital block of the transition metal is enriched by one electron through proton-coupled electron transfer (PCET). That single electron elicits variable exchange interactions on the metal, which in turn depend critically on the number of unpaired electrons on the metal center. Thus, we introduce the exchange-enhanced reactivity (EER) principle, which predicts the preferred spin state during oxidation reactions, the dependence of the barrier on the number of unpaired electrons in the TS, and the dependence of the deformation energy of the reactants on the spin state. We complement EER with orbital-selection rules, which predict the structure of the preferred TS and provide a handy theory of bioinorganic oxidative reactions. These rules show how EER provides a Hund's Rule for chemical reactivity: EER controls the reactivity landscape for a great variety of transition-metal complexes and substrates. Among many reactivity patterns explained, EER rationalizes the abundance of high-spin oxoiron(IV) complexes in enzymes that carry out bond activation of the strongest bonds. The concepts used in this Account might also be applicable in other areas such as in f-block chemistry and excited-state reactivity of 4d and 5d OMCs.

  3. Engineered long-range interactions on a 2D array of trapped ions

    NASA Astrophysics Data System (ADS)

    Britton, Joseph W.; Sawyer, Brian C.; Bollinger, John J.; Freericks, James K.

    2014-03-01

    Ising interactions are one paradigm used to model quantum magnetism in condensed matter systems. At NIST Boulder we confine and Doppler laser cool hundreds of 9Be+ ions in a Penning trap. The valence electron of each ion behaves as an ideal spin-1/2 particle and, in the limit of weak radial confinement relative to axial confinement, the ions naturally form a two-dimensional triangular lattice. A variable-range anti-ferromagnetic Ising interaction is engineered with a spin-dependent optical dipole force (ODF) through spin-dependent excitation of collective modes of ion motion. We have also exploited this spin-dependent force to perform spectroscopy and thermometry of the normal modes of the trapped ion crystal. The high spin-count and long-range spin-spin couplings achievable in the NIST Penning trap brings within reach simulation of computationally intractable problems in quantum magnetism. Examples include modeling quantum magnetic phase transitions and propagation of spin correlations resulting from a quantum quench. The Penning system may also be amenable to observation of spin-liquid behavior thought to arise in systems where the underlying lattice structure can frustrate long-range ordering. Supported by DARPA OLE and NIST.

  4. The spatial effect of protein deuteration on nitroxide spin-label relaxation: Implications for EPR distance measurement

    PubMed Central

    El Mkami, Hassane; Ward, Richard; Bowman, Andrew; Owen-Hughes, Tom; Norman, David G.

    2014-01-01

    Pulsed electron–electron double resonance (PELDOR) coupled with site-directed spin labeling is a powerful technique for the elucidation of protein or nucleic acid, macromolecular structure and interactions. The intrinsic high sensitivity of electron paramagnetic resonance enables measurement on small quantities of bio-macromolecules, however short relaxation times impose a limit on the sensitivity and size of distances that can be measured using this technique. The persistence of the electron spin-echo, in the PELDOR experiment, is one of the most crucial limitations to distance measurement. At a temperature of around 50 K one of the predominant factors affecting persistence of an echo, and as such, the sensitivity and measurable distance between spin labels, is the electron spin echo dephasing time (Tm). It has become normal practice to use deuterated solvents to extend Tm and recently it has been demonstrated that deuteration of the underlying protein significantly extends Tm. Here we examine the spatial effect of segmental deuteration of the underlying protein, and also explore the concentration and temperature dependence of highly deuterated systems. PMID:25310878

  5. The “Beta-Clasp” model of apolipoprotein A-I - a lipid-free solution structure determined by electron paramagnetic resonance spectroscopy

    PubMed Central

    Lagerstedt, Jens O.; Budamagunta, Madhu S.; Liu, Grace S.; DeValle, Nicole C.; Voss, John C.; Oda, Michael N.

    2012-01-01

    Apolipoprotein A-I (apoA-I) is the major protein component of high density lipoproteins (HDL) and plays a central role in cholesterol metabolism. The lipid-free / lipid-poor form of apoA-I is the preferred substrate for the ATP-binding cassette transporter A1 (ABCA1). The interaction of apoA-I with ABCA1 leads to the formation of cholesterol laden high density lipoprotein (HDL) particles, a key step in reverse cholesterol transport and the maintenance of cholesterol homeostasis. Knowledge of the structure of lipid-free apoA-I is essential to understanding its critical interaction with ABCA1 and the molecular mechanisms underlying HDL biogenesis. We therefore examined the structure of lipid-free apoA-I by electron paramagnetic resonance spectroscopy (EPR). Through site directed spin label EPR, we mapped the secondary structure of apoA-I and identified sites of spin coupling as residues 26, 44, 64, 167, 217 and 226. We capitalize on the fact that lipid-free apoA-I self-associates in an anti-parallel manner in solution. We employed these sites of spin coupling to define the central plane in the dimeric apoA-I complex. Applying both the constraints of dipolar coupling with the EPR-derived pattern of solvent accessibility, we assembled the secondary structure into a tertiary context, providing a solution structure for lipid-free apoA-I. PMID:22245143

  6. On-chip spin-controlled orbital angular momentum directional coupling

    NASA Astrophysics Data System (ADS)

    Xie, Zhenwei; Lei, Ting; Si, Guangyuan; Du, Luping; Lin, Jiao; Min, Changjun; Yuan, Xiaocong

    2018-01-01

    Optical vortex beams have many potential applications in the particle trapping, quantum encoding, optical orbital angular momentum (OAM) communications and interconnects. However, the on-chip compact OAM detection is still a big challenge. Based on a holographic configuration and a spin-dependent structure design, we propose and demonstrate an on-chip spin-controlled OAM-mode directional coupler, which can couple the OAM signal to different directions due to its topological charge. While the directional coupling function can be switched on/off by altering the spin of incident beam. Both simulation and experimental measurements verify the validity of the proposed approach. This work would benefit the on-chip OAM devices for optical communications and high dimensional quantum coding/decoding in the future.

  7. Associating Specific Materials with Topological Insulation Behavior

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuwen

    2014-03-01

    The first-principles (a) total-energy/stability calculations combined with (b) electronic structure calculations of band inversion, spin-polarization and topological invariants (Z2) has led to the design and prediction of specific materials that are topological insulators in this study. We classify bulk materials into four types of band-inversion behaviors (TI-1, TI-2, BI-3, BI-4), based on the number of band inversions and their distributions on various time reversal invariant k points. Depending on the inversion type in bulk, the corresponding surface states have different protections e.g., protected by time reversal symmetry (in TI-1 materials), spatial symmetry (in TI-2), or not protected (in BI-3, BI-4). Subject 1 Discovery of new TI by screening materials for a Z2 metric: Such high-throughput search in the framework of Inverse Design methodology predicts a few previously undocumented materials that are TI-1 in their ground state crystal structure. We also predict dozens of materials that are TI-1 however in structures that are not ground states (e.g. perovskite structure of II-Bi-O3). Subject 2 Design Principle to increase the gap of TI-1 materials: In HgTe-like cubic topological materials, the insulating gap is zero since the spin-orbit splitting is positive and so a 4-fold half-filled p-like band is near the Fermi level. By design of hybridization of d-orbitals into the p-like bands, one can create negative spin-orbit splitting and so a finite insulating gap. Subject 3 Unconventional spin textures of TI surface states: Despite the fact that one of our predicted TI-1 KBaBi has inversion symmetry in the bulk-a fact that that would preclude bulk spin polarization-we find a Dresselhaus-like spin texture with non-helical spin texture. This originates from the local spin polarization, anchored on the atomic sites with inversion asymmetric point groups, that is compensated due to global inversion symmetry in bulk. In collaboration with: Jun-Wei Luo, Qihang Liu, Julien Vidal, and Alex Zunger, and supported in part by National Science Foundation DMREF. X.Z. acknowledges the administrative support of REMRSEC at Colorado School of Mines, Golden, Colorado.

  8. Spin Transport in Nondegenerate Si with a Spin MOSFET Structure at Room Temperature

    NASA Astrophysics Data System (ADS)

    Sasaki, Tomoyuki; Ando, Yuichiro; Kameno, Makoto; Tahara, Takayuki; Koike, Hayato; Oikawa, Tohru; Suzuki, Toshio; Shiraishi, Masashi

    2014-09-01

    Spin transport in nondegenerate semiconductors is expected to pave the way to the creation of spin transistors, spin logic devices, and reconfigurable logic circuits, because room-temperature (RT) spin transport in Si has already been achieved. However, RT spin transport has been limited to degenerate Si, which makes it difficult to produce spin-based signals because a gate electric field cannot be used to manipulate such signals. Here, we report the experimental demonstration of spin transport in nondegenerate Si with a spin metal-oxide-semiconductor field-effect transistor (MOSFET) structure. We successfully observe the modulation of the Hanle-type spin-precession signals, which is a characteristic spin dynamics in nondegenerate semiconductors. We obtain long spin transport of more than 20 μm and spin rotation greater than 4π at RT. We also observe gate-induced modulation of spin-transport signals at RT. The modulation of the spin diffusion length as a function of a gate voltage is successfully observed, which we attribute to the Elliott-Yafet spin relaxation mechanism. These achievements are expected to lead to the creation of practical Si-based spin MOSFETs.

  9. Protein Structure Validation and Refinement Using Amide Proton Chemical Shifts Derived from Quantum Mechanics

    PubMed Central

    Christensen, Anders S.; Linnet, Troels E.; Borg, Mikael; Boomsma, Wouter; Lindorff-Larsen, Kresten; Hamelryck, Thomas; Jensen, Jan H.

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift-based structural refinements, starting from high-resolution X-ray structures of Protein G, ubiquitin, and SMN Tudor Domain, result in average chemical shifts, hydrogen bond geometries, and trans-hydrogen bond (h3 JNC') spin-spin coupling constants that are in excellent agreement with experiment. We show that the structural sensitivity of the QM-based amide proton chemical shift predictions is needed to obtain this agreement. The ProCS method thus offers a powerful new tool for refining the structures of hydrogen bonding networks to high accuracy with many potential applications such as protein flexibility in ligand binding. PMID:24391900

  10. ``Loose spins'' in Fe/Cu/Fe(001) structures

    NASA Astrophysics Data System (ADS)

    Heinrich, B.; Celinski, Z.; Liao, L. X.; From, M.; Cochran, J. F.

    1994-05-01

    Slonczewski recently proposed a model for the exchange coupling between ferromagnetic layers separated by a nonferromagnetic spacer based on the concept of ``loose spins.'' ``Loose spins'' contribute to the total exchange energy. We have studied the role of ``loose spins'' in bcc Fe/Cu/Fe(001) structures. bcc Fe/Cu/Fe(001) trilayers deposited at room temperature were investigated extensively in our previous studies. In our ``loose spin'' studies, the Fe was added inside the Cu interlayer. Several structures were atomically engineered in order to test the behavior of ``loose spins:'' One additional atomic layer of an (Fe+Cu) alloy were located in appropriate positions in a Cu spacer. The bilinear and biquadratic exchange coupling in the above structures was quantitatively studied with FMR in the temperature range 77-370 K and with MOKE at RT.

  11. Spin- and Valley-Dependent Electronic Structure in Silicene Under Periodic Potentials

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao; Li, Yun-Fang; Tian, Hong-Yu

    2018-03-01

    We study the spin- and valley-dependent energy band and transport property of silicene under a periodic potential, where both spin and valley degeneracies are lifted. It is found that the Dirac point, miniband, band gap, anisotropic velocity, and conductance strongly depend on the spin and valley indices. The extra Dirac points appear as the voltage potential increases, the critical values of which are different for electron with different spins and valleys. Interestingly, the velocity is greatly suppressed due to the electric field and exchange field, other than the gapless graphene. It is possible to achieve an excellent collimation effect for a specific spin near a specific valley. The spin- and valley-dependent band structure can be used to adjust the transport, and perfect transmissions are observed at Dirac points. Therefore, a remarkable spin and valley polarization is achieved which can be switched effectively by the structural parameters. Importantly, the spin and valley polarizations are greatly enhanced by the disorder of the periodic potential.

  12. Spin-polarized surface resonances accompanying topological surface state formation

    DOE PAGES

    Jozwiak, Chris; Sobota, Jonathan A.; Gotlieb, Kenneth; ...

    2016-10-14

    Topological insulators host spin-polarized surface states born out of the energetic inversion of bulk bands driven by the spin-orbit interaction. Here we discover previously unidentified consequences of band-inversion on the surface electronic structure of the topological insulator Bi 2Se 3. By performing simultaneous spin, time, and angle-resolved photoemission spectroscopy, we map the spin-polarized unoccupied electronic structure and identify a surface resonance which is distinct from the topological surface state, yet shares a similar spin-orbital texture with opposite orientation. Its momentum dependence and spin texture imply an intimate connection with the topological surface state. Calculations show these two distinct states canmore » emerge from trivial Rashba-like states that change topology through the spin-orbit-induced band inversion. As a result, this work thus provides a compelling view of the coevolution of surface states through a topological phase transition, enabled by the unique capability of directly measuring the spin-polarized unoccupied band structure.« less

  13. Disentangling the Mn moments on different sublattices in the half-metallic ferrimagnet Mn3?xCoxGa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klaer, P.; Jenkins, C.A.; Alijani, V.

    2011-05-03

    Ferrimagnetic Mn{sub 3-x}Co{sub x}Ga compounds have been investigated by magnetic circular dichroism in x-ray absorption (XMCD). Compounds with x > 0.5 crystallize in the CuHg{sub 2}Ti structure. A tetragonal distortion of the cubic structure occurs for x {le} 0.5. For the cubic phase, magnetometry reveals a linearly increasing magnetization of 2x Bohr magnetons per formula unit obeying the generalized Slater-Pauling rule. XMCD confirms the ferrimagnetic character with Mn atoms occupying two different sublattices with antiparallel spin orientation and different degrees of spin localization and identifies the region 0.6 < x {le} 0.8 as most promising for a high spin polarizationmore » at the Fermi level. Individual Mn moments on inequivalent sites are compared to theoretical predictions.« less

  14. Chemical modulation of electronic structure at the excited state

    NASA Astrophysics Data System (ADS)

    Li, F.; Song, C.; Gu, Y. D.; Saleem, M. S.; Pan, F.

    2017-12-01

    Spin-polarized electronic structures are the cornerstone of spintronics, and have thus attracted a significant amount of interest; in particular, researchers are looking into how to modulate the electronic structure to enable multifunctional spintronics applications, especially in half-metallic systems. However, the control of the spin polarization has only been predicted in limited two-dimensional systems with spin-polarized Dirac structures and is difficult to achieve experimentally. Here, we report the modulation of the electronic structure in the light-induced excited state in a typical half-metal, L a1 /2S r1 /2Mn O3 -δ . According to the spin-transport measurements, there appears a light-induced increase in magnetoresistance due to the enhanced spin scattering, which is closely associated with the excited spin polarization. Strikingly, the light-induced variation can be enhanced via alcohol processing and reduced by oxygen annealing. X-ray photoelectron spectroscopy measurements show that in the chemical process, a redox reaction occurs with a change in the valence of Mn. Furthermore, first-principles calculations reveal that the change in the valence of Mn alters the electronic structure and consequently modulates the spin polarization in the excited state. Our findings thus report a chemically tunable electronic structure, demonstrating interesting physics and the potential for multifunctional applications and ultrafast spintronics.

  15. Dynamics of Topological Excitations in a Model Quantum Spin Ice

    NASA Astrophysics Data System (ADS)

    Huang, Chun-Jiong; Deng, Youjin; Wan, Yuan; Meng, Zi Yang

    2018-04-01

    We study the quantum spin dynamics of a frustrated X X Z model on a pyrochlore lattice by using large-scale quantum Monte Carlo simulation and stochastic analytic continuation. In the low-temperature quantum spin ice regime, we observe signatures of coherent photon and spinon excitations in the dynamic spin structure factor. As the temperature rises to the classical spin ice regime, the photon disappears from the dynamic spin structure factor, whereas the dynamics of the spinon remain coherent in a broad temperature window. Our results provide experimentally relevant, quantitative information for the ongoing pursuit of quantum spin ice materials.

  16. Combining EPR spectroscopy and X-ray crystallography to elucidate the structure and dynamics of conformationally constrained spin labels in T4 lysozyme single crystals.

    PubMed

    Consentius, Philipp; Gohlke, Ulrich; Loll, Bernhard; Alings, Claudia; Heinemann, Udo; Wahl, Markus C; Risse, Thomas

    2017-08-09

    Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling is used to investigate the structure and dynamics of conformationally constrained spin labels in T4 lysozyme single crystals. Within a single crystal, the oriented ensemble of spin bearing moieties results in a strong angle dependence of the EPR spectra. A quantitative description of the EPR spectra requires the determination of the unit cell orientation with respect to the sample tube and the orientation of the spin bearing moieties within the crystal lattice. Angle dependent EPR spectra were analyzed by line shape simulations using the stochastic Liouville equation approach developed by Freed and co-workers and an effective Hamiltonian approach. The gain in spectral information obtained from the EPR spectra of single crystalline samples taken at different frequencies, namely the X-band and Q-band, allows us to discriminate between motional models describing the spectra of isotropic solutions similarly well. In addition, it is shown that the angle dependent single crystal spectra allow us to identify two spin label rotamers with very similar side chain dynamics. These results demonstrate the utility of single crystal EPR spectroscopy in combination with spectral line shape simulation techniques to extract valuable dynamic information not readily available from the analysis of isotropic systems. In addition, it will be shown that the loss of electron density in high resolution diffraction experiments at room temperature does not allow us to conclude that there is significant structural disorder in the system.

  17. Electronic Structures of Anti-Ferromagnetic Tetraradicals: Ab Initio and Semi-Empirical Studies.

    PubMed

    Zhang, Dawei; Liu, Chungen

    2016-04-12

    The energy relationships and electronic structures of the lowest-lying spin states in several anti-ferromagnetic tetraradical model systems are studied with high-level ab initio and semi-empirical methods. The Full-CI method (FCI), the complete active space second-order perturbation theory (CASPT2), and the n-electron valence state perturbation theory (NEVPT2) are employed to obtain reference results. By comparing the energy relationships predicted from the Heisenberg and Hubbard models with ab initio benchmarks, the accuracy of the widely used Heisenberg model for anti-ferromagnetic spin-coupling in low-spin polyradicals is cautiously tested in this work. It is found that the strength of electron correlation (|U/t|) concerning anti-ferromagnetically coupled radical centers could range widely from strong to moderate correlation regimes and could become another degree of freedom besides the spin multiplicity. Accordingly, the Heisenberg-type model works well in the regime of strong correlation, which reproduces well the energy relationships along with the wave functions of all the spin states. In moderately spin-correlated tetraradicals, the results of the prototype Heisenberg model deviate severely from those of multi-reference electron correlation ab initio methods, while the extended Heisenberg model, containing four-body terms, can introduce reasonable corrections and maintains its accuracy in this condition. In the weak correlation regime, both the prototype Heisenberg model and its extended forms containing higher-order correction terms will encounter difficulties. Meanwhile, the Hubbard model shows balanced accuracy from strong to weak correlation cases and can reproduce qualitatively correct electronic structures, which makes it more suitable for the study of anti-ferromagnetic coupling in polyradical systems.

  18. Spin-Controlled Conductivity in a Thiophene-Functionalized Iron-Bis(dicarbollide)

    NASA Astrophysics Data System (ADS)

    Beach, Benjamin; Sauriol, Dustin; Derosa, Pedro

    2016-04-01

    The relationship between spin state and conductivity is studied for a thiophene-functionalized iron(III)-bis(dicarbollide) with one or two thiophenes at each end of the cage. Iron has a high ground state spin that can be adjusted by external electromagnetic fields to produce different magnetic states. The hypothesis explored here is that changes in the spin state of these Fe-containing molecules can lead to significant changes in molecular conductivity. Two examples of the possible application of such spin-dependent conductivity are its use as a molecular switch, the basic building block in digital logic, or as a memory bit. The molecules were first optimized using the Becke-3 Lee-Yang-Parr functional (B3LYP) with the 6-31G(d) basis set. A relaxed molecular geometry at each spin state was then placed between gold electrodes to conduct spin-polarized electron transport calculations with the density functional theory/non-equilibrium Green's functions formalism. The revised Perdew-Burke-Ernzerhf solids exchange-correlation functional (PBES) with double zeta polarized basis set was used. The result of these calculations show that the conductivity increases with the spin state. The cage structure is shown to exhibit fully delocalized molecular orbitals (MOs) appropriate for high conductivity and thus, in this system, the conductivity depends on the position of the MOs relative to the Fermi level. Minority spins are responsible for the conductivity of the doublet spin state while majority spins dominate for the quartet and sextet spin states as they are found closer to the Fermi level when they are occupied. Energy calculations predict a difference in energy between the more and the less conductive spin states (sextet and doublet respectively) that is 15-20 times greater than the thermal energy, which would imply stability at room temperature; however, the energy difference is sufficiently small that transitions between spin states can be induced.

  19. Noncentrosymmetric superconductor BeAu

    NASA Astrophysics Data System (ADS)

    Amon, A.; Svanidze, E.; Cardoso-Gil, R.; Wilson, M. N.; Rosner, H.; Bobnar, M.; Schnelle, W.; Lynn, J. W.; Gumeniuk, R.; Hennig, C.; Luke, G. M.; Borrmann, H.; Leithe-Jasper, A.; Grin, Yu.

    2018-01-01

    Mixed spin-singlet and spin-triplet pairing can occur in noncentrosymmetric superconductors. In this respect, a comprehensive characterization of the noncentrosymmetric superconductor BeAu was carried out. It was established that BeAu undergoes a structural phase transition from a low-temperature noncentrosymmetric FeSi structure type to a high-temperature centrosymmetric structure in the CsCl type at Ts=860 K. The low-temperature modification exhibits a superconducting transition below Tc=3.3 K. The values of lower (Hc1=32 Oe) and upper (Hc2=335 Oe) critical fields are rather small, confirming that this type-II (κG-L=2.3 ) weakly coupled (λe-p=0.5 ,Δ Ce/γnTc≈1.26 ) superconductor can be well understood within the Bardeen-Cooper-Schrieffer theory. The muon spin relaxation analysis indicates that the time-reversal symmetry is preserved when the superconducting state is entered, supporting conventional superconductivity in BeAu. From the density functional band structure calculations, a considerable contribution of the Be electrons to the superconducting state was established. On average, a rather small mass renormalization was found, consistent with the experimental data.

  20. Two-dimensional electron gas in tricolor oxide interfaces

    NASA Astrophysics Data System (ADS)

    Cao, Yanwei; Kareev, Michael; Liu, Xiaoran; Middey, Srimanta; Meyers, Derek; Tchakhalian, Jak

    2014-03-01

    Understanding and manipulating spin of electrons in nanometer scale is the main challenge of current spintronics, recent emergent two-dimensional electron gas in oxide interface provides a good platform to investigate the spin behavior by covering an insulating magnetic oxide layer. In this work, take titanates as an example, ultra-thin tricolor (tri-compound) titanate superlattices ([LaTiO3/SrTiO3/YTiO3]) were grown in a layer-by-layer way by pulsed laser deposition. High sample quality and their electronic structures were characterized by the combination of in-situ photoelectron and ex-situ structure and surface morphology probes. Temperature-dependent sheet resistance indicates the presence of metallic interfaces in both [LaTiO3 /SrTiO3 ] and all the tricolor structures, whereas a [YTiO3 /SrTiO3] bi-layer shows insulating behavior. The tricolor titanate superlattices provide an opportunity to induce tunable spin-polarization into the two-dimensional electron gas (2DEG) with Mott carriers.

  1. Band structures in near spherical 138Ce

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, T.; Chanda, S.; Bhattacharyya, S.; Basu, S. K.; Bhowmik, R. K.; Das, J. J.; Pramanik, U. Datta; Ghugre, S. S.; Madhavan, N.; Mukherjee, A.; Mukherjee, G.; Muralithar, S.; Singh, R. P.

    2009-06-01

    The high spin states of N=80138Ce have been populated in the fusion evaporation reaction 130Te( 12C, 4n) 138Ce at E=65 MeV. The γ transitions belonging to various band structures were detected and characterized using an array of five Clover Germanium detectors. The level scheme has been established up to a maximum spin and excitation energy of 23 ℏ and 9511.3 keV, respectively, by including 53 new transitions. The negative parity ΔI=1 band, developed on the 6536.3 keV 15 level, has been conjectured to be a magnetic rotation band following a semiclassical analysis and comparing the systematics of similar bands in the neighboring nuclei. The said band is proposed to have a four quasiparticle configuration of [πgh]⊗[. Other band structures are interpreted in terms of multi-quasiparticle configurations, based on Total Routhian Surface (TRS) calculations. For the low and medium spin states, a shell model calculation using a realistic two body interaction has been performed using the code OXBASH.

  2. Spin Uncoupling in Chemisorbed OCCO and CO 2: Two High-Energy Intermediates in Catalytic CO 2 Reduction

    DOE PAGES

    Hedstrom, Svante; dos Santos, Egon Campos; Liu, Chang; ...

    2018-05-08

    Here, the production of useful compounds via the electrochemical carbon dioxide reduction reaction (CO2RR) is a matter of intense research. Although the thermodynamics and kinetic barriers of CO2RR are reported in previous computational studies, the electronic structure details are often overlooked. We study two important CO2RR intermediates: ethylenedione (OCCO) and CO 2 covalently bound to cluster and slab models of the Cu(100) surface. Both molecules exhibit a near-unity negative charge as chemisorbed, but otherwise they behave quite differently, as explained by a spin-uncoupling perspective. OCCO adopts a high-spin, quartetlike geometry, allowing two covalent bonds to the surface with an averagemore » gross interaction energy of –1.82 eV/bond. The energy cost for electronically exciting OCCO– to the quartet state is 1.5 eV which is readily repaid via the formation of its two surface bonds. CO 2, conversely, retains a low-spin, doubletlike structure upon chemisorption, and its single unpaired electron forms a single covalent surface bond of –2.07 eV. The 5.0 eV excitation energy to the CO 2 – quartet state is prohibitively costly and cannot be compensated for by an additional surface bond.« less

  3. Modeling the active site of [NiFe] hydrogenases and the [NiFeu] subsite of the C-cluster of carbon monoxide dehydrogenases: low-spin iron(II) versus high-spin iron(II).

    PubMed

    Weber, Katharina; Erdem, Özlen F; Bill, Eckhard; Weyhermüller, Thomas; Lubitz, Wolfgang

    2014-06-16

    A series of four [S2Ni(μ-S)2FeCp*Cl] compounds with different tetradentate thiolate/thioether ligands bound to the Ni(II) ion is reported (Cp* = C5Me5). The {S2Ni(μ-S)2Fe} core of these compounds resembles structural features of the active site of [NiFe] hydrogenases. Detailed analyses of the electronic structures of these compounds by Mössbauer and electron paramagnetic resonance spectroscopy, magnetic measurements, and density functional theory calculations reveal the oxidation states Ni(II) low spin and Fe(II) high spin for the metal ions. The same electronic configurations have been suggested for the Cred1 state of the C-cluster [NiFeu] subsite in carbon monoxide dehydrogenases (CODH). The Ni-Fe distance of ∼3 Å excludes a metal-metal bond between nickel and iron, which is in agreement with the computational results. Electrochemical experiments show that iron is the redox active site in these complexes, performing a reversible one-electron oxidation. The four complexes are discussed with regard to their similarities and differences both to the [NiFe] hydrogenases and the C-cluster of Ni-containing CODH.

  4. Miscibility and Phase Behavior of N-Acylethanolamine/Diacylphosphatidylethanolamine Binary Mixtures of Matched Acyl Chainlengths (n = 14, 16)

    PubMed Central

    Kamlekar, Ravi Kanth; Satyanarayana, S.; Marsh, Derek; Swamy, Musti J.

    2007-01-01

    The miscibility and phase behavior of hydrated binary mixtures of two N-acylethanolamines (NAEs), N-myristoylethanolamine (NMEA), and N-palmitoylethanolamine (NPEA), with the corresponding diacyl phosphatidylethanolamines (PEs), dimyristoylphosphatidylethanolamine (DMPE), and dipalmitoylphosphatidylethanolamine (DPPE), respectively, have been investigated by differential scanning calorimetry (DSC), spin-label electron spin resonance (ESR), and 31P-NMR spectroscopy. Temperature-composition phase diagrams for both NMEA/DMPE and NPEA/DPPE binary systems were established from high sensitivity DSC. The structures of the phases involved were determined by 31P-NMR spectroscopy. For both systems, complete miscibility in the fluid and gel phases is indicated by DSC and ESR, up to 35 mol % of NMEA in DMPE and 40 mol % of NPEA in DPPE. At higher contents of the NAEs, extensive solid-fluid phase separation and solid-solid immiscibility occur depending on the temperature. Characterization of the structures of the mixtures formed with 31P-NMR spectroscopy shows that up to 75 mol % of NAE, both DMPE and DPPE form lamellar structures in the gel phase as well as up to at least 65°C in the fluid phase. ESR spectra of phosphatidylcholine spin labeled at the C-5 position in the sn-2 acyl chain present at a probe concentration of 1 mol % exhibit strong spin-spin broadening in the low-temperature region for both systems, suggesting that the acyl chains pack very tightly and exclude the spin label. However, spectra recorded in the fluid phase do not exhibit any spin-spin broadening and indicate complete miscibility of the two components. The miscibility of NAE and diacyl PE of matched chainlengths is significantly less than that found earlier for NPEA and dipalmitoylphosphatidylcholine, an observation that is consistent with the notion that the NAEs are most likely stored as their precursor lipids (N-acyl PEs) and are generated only when the system is subjected to membrane stress. PMID:17369415

  5. Spin interactions in InAs quantum dots

    NASA Astrophysics Data System (ADS)

    Doty, M. F.; Ware, M. E.; Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2006-03-01

    Fine structure splittings in optical spectra of self-assembled InAs quantum dots (QDs) generally arise from spin interactions between particles confined in the dots. We present experimental studies of the fine structure that arises from multiple charges confined in a single dot [1] or in molecular orbitals of coupled pairs of dots. To probe the underlying spin interactions we inject particles with a known spin orientation (by using polarized light to perform photoluminescence excitation spectroscopy experiments) or use a magnetic field to orient and/or mix the spin states. We develop a model of the spin interactions that aids in the development of quantum information processing applications based on controllable interactions between spins confined to QDs. [1] Polarized Fine Structure in the Photoluminescence Excitation Spectrum of a Negatively Charged Quantum Dot, Phys. Rev. Lett. 95, 177403 (2005)

  6. Antisymmetric Spin-Orbit Coupling in a d-p Model on a Zigzag Chain

    DOE PAGES

    Sugita, Yusuke; Hayami, Satoru; Motome, Yukitoshi

    2015-12-29

    In this paper, we theoretically investigate how an antisymmetric spin-orbit coupling emerges in electrons moving on lattice structures which are centrosymmetric but break the spatial inversion symme- try at atomic positions. We construct an effective d-p model on the simplest lattice structure, a zigzag chain of edge-sharing octahedra, with taking into account the crystalline electric field, the spin-orbit coupling, and on-site and inter-site d-p hybridizations. We show that an effective antisymmetric spin-orbit coupling arises in the sublattice-dependent form, which results in a hidden spin polarization in the band structure. Finally, we explicitly derive the effective antisymmetric spin-orbit coupling for dmore » electrons, which not only explains the hidden spin polarization but also indicates how to enhance it.« less

  7. Antisymmetric Spin-Orbit Coupling in a d-p Model on a Zigzag Chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugita, Yusuke; Hayami, Satoru; Motome, Yukitoshi

    In this paper, we theoretically investigate how an antisymmetric spin-orbit coupling emerges in electrons moving on lattice structures which are centrosymmetric but break the spatial inversion symme- try at atomic positions. We construct an effective d-p model on the simplest lattice structure, a zigzag chain of edge-sharing octahedra, with taking into account the crystalline electric field, the spin-orbit coupling, and on-site and inter-site d-p hybridizations. We show that an effective antisymmetric spin-orbit coupling arises in the sublattice-dependent form, which results in a hidden spin polarization in the band structure. Finally, we explicitly derive the effective antisymmetric spin-orbit coupling for dmore » electrons, which not only explains the hidden spin polarization but also indicates how to enhance it.« less

  8. Spin-orbit coupling, electron transport and pairing instabilities in two-dimensional square structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocharian, Armen N.; Fernando, Gayanath W.; Fang, Kun

    Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges andmore » opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters) engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.« less

  9. Toward the fourth dimension of membrane protein structure: insight into dynamics from spin-labeling EPR spectroscopy.

    PubMed

    McHaourab, Hassane S; Steed, P Ryan; Kazmier, Kelli

    2011-11-09

    Trapping membrane proteins in the confines of a crystal lattice obscures dynamic modes essential for interconversion between multiple conformations in the functional cycle. Moreover, lattice forces could conspire with detergent solubilization to stabilize a minor conformer in an ensemble thus confounding mechanistic interpretation. Spin labeling in conjunction with electron paramagnetic resonance (EPR) spectroscopy offers an exquisite window into membrane protein dynamics in the native-like environment of a lipid bilayer. Systematic application of spin labeling and EPR identifies sequence-specific secondary structures, defines their topology and their packing in the tertiary fold. Long range distance measurements (60 Å-80 Å) between pairs of spin labels enable quantitative analysis of equilibrium dynamics and triggered conformational changes. This review highlights the contribution of spin labeling to bridging structure and mechanism. Efforts to develop methods for determining structures from EPR restraints and to increase sensitivity and throughput promise to expand spin labeling applications in membrane protein structural biology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Radical-lanthanide ferromagnetic interaction in a T bIII bis-phthalocyaninato complex

    NASA Astrophysics Data System (ADS)

    Komijani, Dorsa; Ghirri, Alberto; Bonizzoni, Claudio; Klyatskaya, Svetlana; Moreno-Pineda, Eufemio; Ruben, Mario; Soncini, Alessandro; Affronte, Marco; Hill, Stephen

    2018-02-01

    Recent studies have highlighted the importance of organic ligands in the field of molecular spintronics, via which delocalized electron-spin density can mediate magnetic coupling to otherwise localized 4 f moments of lanthanide ions, which show tremendous potential for single-molecule device applications. To this end, high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is employed to study a neutral terbium bis-phthalocyaninato metalorganic complex, [TbPc2 ] 0, with the aim of understanding the magnetic interaction between the Ising-like moment of the lanthanide ion and the unpaired spin density on the coordinating organic radical ligand. The measurements were performed on a previously unknown [TbPc2 ] 0 structural phase crystallizing in the Pnma space group. EPR measurements on powder samples of [TbPc2 ] 0 reveal an anisotropic spectrum, which is attributed to the spin-1/2 radical coupled weakly to the EPR-silent T bIII ion. Extensive double-axis rotation studies on a single crystal reveal two independent spin-1/2 signals with differently oriented (albeit identical) uniaxial g -tensors, in complete agreement with x-ray structural studies that indicate two molecular orientations within the unit cell. The easy-axis nature of the radical EPR spectra thus reflects the coupling to the Ising-like T bIII moment. This is corroborated by studies of the isostructural [YPc2 ] 0 analog (where Y is nonmagnetic yttrium), which gives a completely isotropic radical EPR signal. The experimental results for the terbium complex are well explained on the basis of an effective model that introduces a weak ferromagnetic Heisenberg coupling between an isotropic spin-1/2 and an anisotropic spin-orbital moment, J =6 , that mimics the known, strong easy-axis Tb ⋯P c2 crystal-field interaction.

  11. Pressure-Driven Spin Crossover Involving Polyhedral Transformation in Layered Perovskite Cobalt Oxyfluoride

    PubMed Central

    Tsujimoto, Yoshihiro; Nakano, Satoshi; Ishimatsu, Naoki; Mizumaki, Masaichiro; Kawamura, Naomi; Kawakami, Takateru; Matsushita, Yoshitaka; Yamaura, Kazunari

    2016-01-01

    We report a novel pressure-driven spin crossover in layered cobalt oxyfluoride Sr2CoO3F with a distorted CoO5 square pyramid loosely bound with a fluoride ion. Upon increasing pressure, the spin state of the Co(III) cation gradually changes from a high spin state (S = 2) to a low spin state (S = 0) accompanied by a anomalously large volume contraction (bulk modulus, 76.8(5) GPa). The spin state change occurs on the CoO5 pyramid in a wide pressure range, but the concomitant gradual shrinkage of the Co–F bond length with pressure gives rise to a polyhedral transformation to the CoO5F octahedron without a structural phase transition, leading to the full conversion to the LS state at 12 GPa. The present results provide new effective strategy to fine-tune electronic properties of mixed anion systems by controlling the covalency in metal-ligand bonds under pressure. PMID:27805031

  12. Study on the spin-states of cobalt-based double-layer perovskite Sr2Y0.5Ca0.5Co2O7

    NASA Astrophysics Data System (ADS)

    He, H.; Zhang, W. Y.

    2008-02-01

    The spin-states of cobalt based perovskite compounds depend sensitively on the valence state and local crystal environment of Co ions and the rich physical properties arise from strong coupling among charge, spin, and orbital degrees of freedom. While extensive studies have been carried out in the past, most of them concentrated on the isotropic compound LaCoO3. In this paper, using the unrestricted Hartree-Fock approximation and the real-space recursion method, we have investigated the competition of various magnetically ordered spin-states of anisotropic double-layered perovskite Sr2Y0.5Ca0.5Co2O7. The energy comparison among these states shows that the nearest-neighbor high-spin-intermediate-spin ferromagnetically ordered state is the relevant magnetic ground state of the compound. The magnetic structure and sizes of magnetic moments are consistent with the recent experimental observation.

  13. Fission Barrier of ^254No at High Spin

    NASA Astrophysics Data System (ADS)

    Henning, G.; Khoo, T. L.; Seweryniak, D.; Back, B. B.; Bertone, P. F.; Carpenter, M. P.; Greene, J. P.; Gürdal, G.; Hoffman, C. R.; Janssens, R. V. F.; Kay, B. P.; Kondev, F. G.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Nair, C.; Rogers, A. M.; Zhu, S.; Chiara, C. J.; Hauschild, K.; Lopez-Martens, A.; Heinz, A.; Piot, J.; Chowdhury, P.; Lakshmi, S.

    2010-11-01

    Superheavy nuclei provide opportunities to study nuclear structure at the limits in charge, spin and excitation energy. These nuclei exist only because shell effects create a fission barrier Bf. Hence, it is important to determine Bf and its spin dependence. For ^254No, the maximum spin and energy were found [1] to be Imax= 22 and E* = 8 MeV in the reaction ^208Pb(^48Ca,2n) at a beam energy of 219 MeV. At 223 MeV, the maximum spin increases to 32. In contrast, the spin in ^220Th, produced [2] in the ^176Yb(^48 Ca,4n) reaction at 206 and 219 MeV, saturates at 20. A measurement of the entry distribution of ^254No at 223 MeV has been performed to determine Bf(I) and results will be reported.[4pt] [1] P. Reiter et al., Phys. Rev. Lett. 84, 3542 (2000).[0pt] [2] A. Heinz et al., Nucl. Phys. A682, 458c (2001)

  14. Magnetism and local symmetry breaking in a Mott insulator with strong spin orbit interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, L.; Song, M.; Liu, W.

    2017-02-09

    Study of the combined effects of strong electronic correlations with spin-orbit coupling (SOC) represents a central issue in quantum materials research. Predicting emergent properties represents a huge theoretical problem since the presence of SOC implies that the spin is not a good quantum number. Existing theories propose the emergence of a multitude of exotic quantum phases, distinguishable by either local point symmetry breaking or local spin expectation values, even in materials with simple cubic crystal structure such as Ba 2NaOsO 6. Experimental tests of these theories by local probes are highly sought for. Our local measurements designed to concurrently probemore » spin and orbital/lattice degrees of freedom of Ba 2NaOsO 6 provide such tests. As a result, we show that a canted ferromagnetic phase which is preceded by local point symmetry breaking is stabilized at low temperatures, as predicted by quantum theories involving multipolar spin interactions.« less

  15. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polzikova, N. I., E-mail: polz@cplire.ru; Alekseev, S. G.; Pyataikin, I. I.

    2016-05-15

    We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determinedmore » by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.« less

  16. An improved numerical method to compute neutron/gamma deexcitation cascades starting from a high spin state

    DOE PAGES

    Regnier, D.; Litaize, O.; Serot, O.

    2015-12-23

    Numerous nuclear processes involve the deexcitation of a compound nucleus through the emission of several neutrons, gamma-rays and/or conversion electrons. The characteristics of such a deexcitation are commonly derived from a total statistical framework often called “Hauser–Feshbach” method. In this work, we highlight a numerical limitation of this kind of method in the case of the deexcitation of a high spin initial state. To circumvent this issue, an improved technique called the Fluctuating Structure Properties (FSP) method is presented. Two FSP algorithms are derived and benchmarked on the calculation of the total radiative width for a thermal neutron capture onmore » 238U. We compare the standard method with these FSP algorithms for the prediction of particle multiplicities in the deexcitation of a high spin level of 143Ba. The gamma multiplicity turns out to be very sensitive to the numerical method. The bias between the two techniques can reach 1.5 γγ/cascade. Lastly, the uncertainty of these calculations coming from the lack of knowledge on nuclear structure is estimated via the FSP method.« less

  17. Oxyhalides: A new class of high-TC multiferroic materials

    PubMed Central

    Zhao, Li; Fernández-Díaz, Maria Teresa; Tjeng, Liu Hao; Komarek, Alexander C.

    2016-01-01

    Magnetoelectric multiferroics have attracted enormous attention in the past years because of their high potential for applications in electronic devices, which arises from the intrinsic coupling between magnetic and ferroelectric ordering parameters. The initial finding in TbMnO3 has triggered the search for other multiferroics with higher ordering temperatures and strong magnetoelectric coupling for applications. To date, spin-driven multiferroicity is found mainly in oxides, as well as in a few halogenides. We report multiferroic properties for synthetic melanothallite Cu2OCl2, which is the first discovery of multiferroicity in a transition metal oxyhalide. Measurements of pyrocurrent and the dielectric constant in Cu2OCl2 reveal ferroelectricity below the Néel temperature of ~70 K. Thus, melanothallite belongs to a new class of multiferroic materials with an exceptionally high critical temperature. Powder neutron diffraction measurements reveal an incommensurate magnetic structure below TN, and all magnetic reflections can be indexed with a propagation vector [0.827(7), 0, 0], thus discarding the claimed pyrochlore-like “all-in–all-out” spin structure for Cu2OCl2, and indicating that this transition metal oxyhalide is, indeed, a spin-induced multiferroic material. PMID:27386552

  18. Low-spin manganese(II) and high-spin manganese(III) complexes derived from disalicylaldehyde oxaloyldihydrazone: Synthesis, spectral characterization and electrochemical studies

    NASA Astrophysics Data System (ADS)

    Syiemlieh, Ibanphylla; Kumar, Arvind; Kurbah, Sunshine D.; De, Arjune K.; Lal, Ram A.

    2018-01-01

    Low-spin manganese(II) complexes [MnII(H2slox)].H2O (1), [MnII(H2slox)(SL)] (where SL (secondary ligand) = pyridine (py, 2), 2-picoline (2-pic, 3), 3-picoline (3-pic, 4), and 4-picoline (4-pic, 5) and high-spin manganese(III) complex Na(H2O)4[MnIII(slox)(H2O)2].2.5H2O have been synthesized from disalicyaldehyde oxaloyldihydrazone in methanolic - water medium. The composition of complexes has been established by elemental analyses and thermoanalytical data. The structures of the complexes have been discussed on the basis of data obtained from molar conductance, UV visible, 1H NMR, infrared spectra, magnetic moment and electron paramagnetic resonance spectroscopic studies. Conductivity measurements in DMF suggest that the complexes (1-5) are non-electrolyte while the complex (6) is 1:1 electrolyte. The electronic spectral studies and magnetic moment data suggest five - coordinate square pyramidal structure for the complexes (2-5) and square planar geometry for manganese(II) in complex (1). In complex (6), both sodium and manganese(III) have six coordinate octahedral geometry. IR spectral studies reveal that the dihydrazone coordinates to the manganese centre in keto form in complexes (1-5) and in enol form in complex (6). In all complexes, the ligand is present in anti-cis configuration. Magnetic moment and EPR studies indicate manganese in +2 oxidation state in complexes (1-5), with low-spin square planar complex (1) and square pyramidal stereochemistries complexes (2-5) while in +3 oxidation state in high-spin distorted octahedral stereochemistry in complex (6). The complex (1) involves significant metal - metal interaction in the solid state. All of the complexes show only one metal centred electron transfer reaction in DMF solution in cyclic voltammetric studies. The complexes (1-5) involve MnII→MnI redox reaction while the complex (6) involves MnIII→MnII redox reaction, respectively.

  19. Roles of NN-interaction components in shell-structure evolution

    NASA Astrophysics Data System (ADS)

    Umeya, Atsushi; Muto, Kazuo

    2016-11-01

    Since the importance of the monopole interaction was first emphasized in 1960s, roles of monopole strengths of two-body nucleon-nucleon interaction in shell structure have been discussed. Through the monopole strengths, we study the roles in shell-structure evolution, starting from explicit forms of the interaction. For the tensor component of the interaction, we show the derivation of the relation, (2j> + 1)Vjj> + (2j< + 1)Vjj< = 0, with a detailed manipulation. We show that one-body spin-orbit term appears in the multipole expansion of two-body spin-orbit interaction. Only the spin-orbit components can affect the spin-orbit energy splitting between spin-orbit partners, when the spin-orbit partner orbits are fully occupied.

  20. Spin-interaction effects for ultralong-range Rydberg molecules in a magnetic field

    NASA Astrophysics Data System (ADS)

    Hummel, Frederic; Fey, Christian; Schmelcher, Peter

    2018-04-01

    We investigate the fine and spin structure of ultralong-range Rydberg molecules exposed to a homogeneous magnetic field. Each molecule consists of a 87Rb Rydberg atom the outer electron of which interacts via spin-dependent s - and p -wave scattering with a polarizable 87Rb ground-state atom. Our model includes also the hyperfine structure of the ground-state atom as well as spin-orbit couplings of the Rydberg and ground-state atom. We focus on d -Rydberg states and principal quantum numbers n in the vicinity of 40. The electronic structure and vibrational states are determined in the framework of the Born-Oppenheimer approximation for varying field strengths ranging from a few up to hundred Gauss. The results show that the interplay between the scattering interactions and the spin couplings gives rise to a large variety of molecular states in different spin configurations as well as in different spatial arrangements that can be tuned by the magnetic field. This includes relatively regularly shaped energy surfaces in a regime where the Zeeman splitting is large compared to the scattering interaction but small compared to the Rydberg fine structure, as well as more complex structures for both weaker and stronger fields. We quantify the impact of spin couplings by comparing the extended theory to a spin-independent model.

  1. High spin states of 141Pm

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Sarmishtha; Chanda, Somen; Bhattacharjee, Tumpa; Basu, Swapan Kumar; Bhowmik, R. K.; Muralithar, S.; Singh, R. P.; Ghugre, S. S.

    2004-01-01

    The high spin states in the N=80 odd- A141Pm nucleus have been investigated by in-beam γ-spectroscopic techniques following the reaction 133Cs( 12C, 4n) 141Pm at E=65 MeV using a modest γ detector array, consisting of seven Compton-suppressed high purity germanium detectors and a multiplicity ball of 14 bismuth germanate elements. Thirty new γ rays have been assigned to 141Pm on the basis of γ-ray singles and γγ-coincidence data. The level scheme of 141Pm has been extended upto an excitation energy of 5.2 MeV and spin {35}/{2}ℏ and 16 new levels have been proposed. Spin-parity assignments for most of the newly proposed levels have been made on the basis of the deduced directional correlation orientation ratios for strong transitions. The meanlives of a few excited states have been determined from the pulsed beam- γγ coincidence data using the generalised centroid-shift method. The level structure is discussed in the light of known systematics of neighbouring N=80 isotonic nuclei.

  2. Calculation of the spin-polarized electronic structure of an interstitial iron impurity in silicon

    NASA Astrophysics Data System (ADS)

    Katayama-Yoshida, H.; Zunger, Alex

    1985-06-01

    We apply our self-consistent, all-electron, spin-polarized Green's-function method within an impurity-centered, dynamic basis set to study the interstitial iron impurity in silicon. We use two different formulations of the interelectron interactions: the local-spin-density (LSD) formalism and the self-interaction-corrected (SIC) local-spin-density (SIC-LSD) formalism. We find that the SIC-LSD approach is needed to obtain the correct high-spin ground state of Si:Fe+. We propose a quantitative explanation to the observed donor ionization energy and the high-spin ground states for Si:Fe+ within the SIC-LSD approach. For both Si:Fe0 and Si:Fe+, this approach leads to a hyperfine field, contact spin density, and ionization energy in better agreement with experiments than the simple LSD approach. The apparent dichotomy between the covalently delocalized nature of Si:Fe as suggested on the one hand by its reduced hyperfine field (relative to the free atom) and extended spin density and by the occurrence of two closely spaced, stable charge states (within 0.4 eV) and on the other hand by the atomically localized picture (suggested, for example, by the stability of a high-spin, ground-state configuration) is resolved. We find a large reduction in the hyperfine field and contact spin density due to the covalent hybridization between the impurity 3d orbitals and the tails of the delocalized sp3 hybrid orbitals of the surrounding silicon atoms. Using the calculated results, we discuss (i) the underlying mechanism for the stability and plurality of charged states, (ii) the covalent reduction in the hyperfine field, (iii) the remarkable constancy of the impurity Mössbauer isomer shift for different charged states, (iv) comparison with the multiple charged states in ionic crystals, and (v) some related speculation about the mechanism of (Fe2+/Fe3+) oxidation-reduction ionizations in heme proteins and electron-transporting biological systems.

  3. Spin-polarized current in Zeeman-split d-wave superconductor/quantum wire junctions

    NASA Astrophysics Data System (ADS)

    Emamipour, Hamidreza

    2016-06-01

    We study a thin-film quantum wire/unconventional superconductor junction in the presence of an intrinsic exchange field for a d-wave symmetry of the superconducting order parameter. A strongly spin-polarized current is generated due to an interplay between Zeeman splitting of bands and the nodal structure of the superconducting order parameter. We show that strongly spin-polarized current is achievable for both metallic and tunnel junctions. This is because of the presence of a quantum wire (one-dimensional metal) in our junction. While in two-dimensional junctions with both conventional [F. Giazotto, F. Taddei, Phys. Rev. B 77 (2008) 132501] and unconventional [J. Linder, T. Yokoyama, Y. Tanaka, A. Sudbo, Phys. Rev. B 78 (2008) 014516] pairing states, highly spin polarized current takes place just for a tunnel junction. Also, the obtained spin-polarized current is tunable in sign and magnitude in terms of exchange field and applied bias voltage.

  4. Electrical detection of nuclear spins in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Malissa, H.; Kavand, M.; Waters, D. P.; Lupton, J. M.; Vardeny, Z. V.; Saam, B.; Boehme, C.

    2014-03-01

    We present pulsed combined electrically detected electron paramagnetic and nuclear magnetic resonance experiments on MEH-PPV OLEDs. Spin dynamics in these structures are governed by hyperfine interactions between charge carriers and the surrounding hydrogen nuclei, which are abundant in these materials. Hyperfine coupling has been observed by monitoring the device current during coherent spin excitation. Electron spin echoes (ESEs) are detected by applying one additional readout pulse at the time of echo formation. This allows for the application of high-resolution spectroscopy based on ESE detection, such as electron spin echo envelope modulation (ESEEM) and electron nuclear double resonance (ENDOR) available for electrical detection schemes. We conduct electrically detected ESEEM and ENDOR experiments and show how hyperfine interactions in MEH-PPV with and without deuterated polymer side groups can be observed by device current measurements. We acknowledge support by the Department of Energy, Office of Basic Energy Sciences under Award #DE-SC0000909.

  5. High-Frequency Dynamics Modulated by Collective Magnetization Reversal in Artificial Spin Ice

    NASA Astrophysics Data System (ADS)

    Jungfleisch, Matthias B.; Sklenar, Joseph; Ding, Junjia; Park, Jungsik; Pearson, John E.; Novosad, Valentine; Schiffer, Peter; Hoffmann, Axel

    2017-12-01

    Spin-torque ferromagnetic resonance arises in heavy metal-ferromagnet heterostructures when an alternating charge current is passed through the bilayer stack. The methodology to detect the resonance is based on the anisotropic magnetoresistance, which is the change in the electrical resistance due to different orientations of the magnetization. In connected networks of ferromagnetic nanowires, known as artificial spin ice, the magnetoresistance is rather complex owing to the underlying collective behavior of the geometrically frustrated magnetic domain structure. Here, we demonstrate spin-torque ferromagnetic resonance investigations in a square artificial spin-ice system and correlate our observations to magnetotransport measurements. The experimental findings are described using a simulation approach that highlights the importance of the correlated dynamics response of the magnetic system. Our results open the possibility of designing reconfigurable microwave oscillators and magnetoresistive devices based on connected networks of nanomagnets.

  6. The reduction of carbon dioxide in iron biocatalyst catalytic hydrogenation reaction: a theoretical study.

    PubMed

    Yang, Longhua; Wang, Hongming; Zhang, Ning; Hong, Sanguo

    2013-08-21

    The reaction mechanism of CO₂ hydrogenation catalyzed by [FeH(PP₃)]BF₄ (PP₃ = P(CH₂CH₂PPh₂)₃) had been investigated by DFT calculations. Our calculations indicated that the reduction of carbon dioxide could be carried out via two spin states, the high-spin (HS) triplet state and the low-spin (LS) singlet state. The minimum energy crossing points (MECPs) on the seam of two intersecting PESs (potential energy surfaces) were searched out. Some interesting phenomena, such as the open-loop phenomenon, and the O-rebound process, were demonstrated to be the important causes of the spin crossover. All these calculations gave us insight into the essence of the related experiment from the macro point of view, and helped to verify which spin states the related complexes pertinent were in. All of these researches would help advance the development of efficient and structurally tailorable CO₂ hydrogenation catalysts.

  7. High-Frequency Dynamics Modulated by Collective Magnetization Reversal in Artificial Spin Ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jungfleisch, Matthias B.; Sklenar, Joseph; Ding, Junjia

    Spin-torque ferromagnetic resonance arises in heavy metal-ferromagnet heterostructures when an alternating charge current is passed through the bilayer stack. The methodology to detect the resonance is based on the anisotropic magnetoresistance, which is the change in the electrical resistance due to different orientations of the magnetization. In connected networks of ferromagnetic nanowires, known as artificial spin ice, the magnetoresistance is rather complex owing to the underlying collective behavior of the geometrically frustrated magnetic domain structure. Here, we demonstrate spin-torque ferromagnetic resonance investigations in a square artificial spin-ice system and correlate our observations to magneto-transport measurements. The experimental findings are describedmore » using a simulation approach that highlights the importance of the correlated dynamics response of the magnetic system. Our results open the possibility of designing reconfigurable microwave oscillators and magnetoresistive devices based on connected networks of nanomagnets.« less

  8. Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit coupling, and self-energy effects

    NASA Astrophysics Data System (ADS)

    Gao, Weiwei; Gao, Xiang; Abtew, Tesfaye A.; Sun, Yi-Yang; Zhang, Shengbai; Zhang, Peihong

    2016-02-01

    The quasiparticle band gap is one of the most important materials properties for photovoltaic applications. Often the band gap of a photovoltaic material is determined (and can be controlled) by various factors, complicating predictive materials optimization. An in-depth understanding of how these factors affect the size of the gap will provide valuable guidance for new materials discovery. Here we report a comprehensive investigation on the band gap formation mechanism in organic-inorganic hybrid perovskites by decoupling various contributing factors which ultimately determine their electronic structure and quasiparticle band gap. Major factors, namely, quasiparticle self-energy, spin-orbit coupling, and structural distortions due to the presence of organic molecules, and their influences on the quasiparticle band structure of organic-inorganic hybrid perovskites are illustrated. We find that although methylammonium cations do not contribute directly to the electronic states near band edges, they play an important role in defining the band gap by introducing structural distortions and controlling the overall lattice constants. The spin-orbit coupling effects drastically reduce the electron and hole effective masses in these systems, which is beneficial for high carrier mobilities and small exciton binding energies.

  9. Symmetry-lowering lattice distortion at the spin reorientation in MnBi single crystals

    DOE PAGES

    McGuire, Michael A.; Cao, Huibo; Chakoumakos, Bryan C.; ...

    2014-11-18

    Here we report structural and physical properties determined by measurements on large single crystals of the anisotropic ferromagnet MnBi. The findings support the importance of magnetoelastic effects in this material. X-ray diffraction reveals a structural phase transition at the spin reorientation temperature T SR = 90 K. The distortion is driven by magneto-elastic coupling, and upon cooling transforms the structure from hexagonal to orthorhombic. Heat capacity measurements show a thermal anomaly at the crystallographic transition, which is suppressed rapidly by applied magnetic fields. Effects on the transport and anisotropic magnetic properties of the single crystals are also presented. Increasing anisotropymore » of the atomic displacement parameters for Bi with increasing temperature above T SR is revealed by neutron diffraction measurements. It is likely that this is directly related to the anisotropic thermal expansion in MnBi, which plays a key role in the spin reorientation and magnetocrystalline anisotropy. Finally, the identification of the true ground state crystal structure reported here may be important for future experimental and theoretical studies of this permanent magnet material, which have to date been performed and interpreted using only the high temperature structure.« less

  10. Ultra-robust high-field magnetization plateau and supersolidity in bond-frustrated MnCr2S4

    PubMed Central

    Tsurkan, Vladimir; Zherlitsyn, Sergei; Prodan, Lilian; Felea, Viorel; Cong, Pham Thanh; Skourski, Yurii; Wang, Zhe; Deisenhofer, Joachim; von Nidda, Hans-Albrecht Krug; Wosnitza, Joahim; Loidl, Alois

    2017-01-01

    Frustrated magnets provide a promising avenue for realizing exotic quantum states of matter, such as spin liquids and spin ice or complex spin molecules. Under an external magnetic field, frustrated magnets can exhibit fractional magnetization plateaus related to definite spin patterns stabilized by field-induced lattice distortions. Magnetization and ultrasound experiments in MnCr2S4 up to 60 T reveal two fascinating features: (i) an extremely robust magnetization plateau with an unusual spin structure and (ii) two intermediate phases, indicating possible realizations of supersolid phases. The magnetization plateau characterizes fully polarized chromium moments, without any contributions from manganese spins. At 40 T, the middle of the plateau, a regime evolves, where sound waves propagate almost without dissipation. The external magnetic field exactly compensates the Cr–Mn exchange field and decouples Mn and Cr sublattices. In analogy to predictions of quantum lattice-gas models, the changes of the spin order of the manganese ions at the phase boundaries of the magnetization plateau are interpreted as transitions to supersolid phases. PMID:28345038

  11. Chemical shift-based identification of monosaccharide spin-systems with NMR spectroscopy to complement untargeted glycomics.

    PubMed

    Klukowski, Piotr; Schubert, Mario

    2018-06-15

    A better understanding of oligosaccharides and their wide-ranging functions in almost every aspect of biology and medicine promises to uncover hidden layers of biology and will support the development of better therapies. Elucidating the chemical structure of an unknown oligosaccharide is still a challenge. Efficient tools are required for non-targeted glycomics. Chemical shifts are a rich source of information about the topology and configuration of biomolecules, whose potential is however not fully explored for oligosaccharides. We hypothesize that the chemical shifts of each monosaccharide are unique for each saccharide type with a certain linkage pattern, so that correlated data measured by NMR spectroscopy can be used to identify the chemical nature of a carbohydrate. We present here an efficient search algorithm, GlycoNMRSearch, that matches either a subset or the entire set of chemical shifts of an unidentified monosaccharide spin system to all spin systems in an NMR database. The search output is much more precise than earlier search functions and highly similar matches suggest the chemical structure of the spin system within the oligosaccharide. Thus searching for connected chemical shift correlations within all electronically available NMR data of oligosaccharides is a very efficient way of identifying the chemical structure of unknown oligosaccharides. With an improved database in the future, GlycoNMRSearch will be even more efficient deducing chemical structures of oligosaccharides and there is a high chance that it becomes an indispensable technique for glycomics. The search algorithm presented here, together with a graphical user interface, is available at http://glyconmrsearch.santos.pwr.edu.pl. Supplementary data are available at Bioinformatics online.

  12. X-ray Emission Spectroscopy in Magnetic 3d-Transition Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iota, V; Park, J; Baer, B

    2003-11-18

    The application of high pressure affects the band structure and magnetic interactions in solids by modifying nearest-neighbor distances and interatomic potentials. While all materials experience electronic changes with increasing pressure, spin polarized, strongly electron correlated materials are expected to undergo the most dramatic transformations. In such materials, (d and f-electron metals and compounds), applied pressure reduces the strength of on-site correlations, leading to increased electron delocalization and, eventually, to loss of its magnetism. In this ongoing project, we study the electronic and magnetic properties of Group VIII, 3d (Fe, Co and Ni) magnetic transition metals and their compounds at highmore » pressures. The high-pressure properties of magnetic 3d-transition metals and compounds have been studied extensively over the years, because of iron being a major constituent of the Earth's core and its relevance to the planetary modeling to understand the chemical composition, internal structure, and geomagnetism. However, the fundamental scientific interest in the high-pressure properties of magnetic 3d-electron systems extends well beyond the geophysical applications to include the electron correlation-driven physics. The role of magnetic interactions in the stabilization of the ''non-standard'' ambient pressure structures of Fe, Co and Ni is still incompletely understood. Theoretical studies have predicted (and high pressure experiments are beginning to show) strong correlations between the electronic structure and phase stability in these materials. The phase diagrams of magnetic 3d systems reflect a delicate balance between spin interactions and structural configuration. At ambient conditions, the crystal structures of {alpha}-Fe(bcc) and {var_epsilon}-Co(hcp) phases depart from the standard sequence (hcp {yields} bcc{yields} hcp {yields} fcc), as observed in all other non-magnetic transition metals with increasing the d-band occupancy, and are different from those of their 4d- and 5d-counter parts. This anomalous behavior has been interpreted in terms of the spin-polarized d-band altering the d-band occupancy [1]. At high pressures, however, the d-valence band is expected to broaden resulting in a suppression or even a complete loss of magnetism. Experimentally, ferromagnetic {alpha}(bcc)-Fe has been confirmed to transform to non-magnetic {var_epsilon}-Fe (hcp) at 10 GPa [2,3]. Recently, we have also observed a similar transition in Co from ferromagnetic {alpha}(hcp)-Co to likely nonmagnetic {beta}(fcc)-Co at 105 GPa[4]. A similar structural phase transition is expected in Ni, probably in the second-order fcc-fcc transition. However, there has been no directly measured change in magnetism associated with the structural phase transition in Co, nor has yet been confirmed such an iso-structural phase transition in Ni. Similar electronic transitions have been proposed in these 3d-transition metal oxides (FeO, CoO and NiO) from high spin (magnetic) to low spin (nonmagnetic) states [5]. In each of these systems, the magnetic transition is accompanied by a first-order structural transition involving large volume collapse (10% in FeO, for example). So far, there have been no electronic measurements under pressure confirming these significant theoretical predictions, although the predicted pressures for the volume collapse transitions are within the experimental pressure range (80-200GPa).« less

  13. Charge and spin in low-dimensional cuprates

    NASA Astrophysics Data System (ADS)

    Maekawa, Sadamichi; Tohyama, Takami

    2001-03-01

    One of the central issues in the study of high-temperature superconducting cuprates which are composed of two-dimensional (2D) CuO2 planes is whether the 2D systems with strong electron correlation behave as a Fermi liquid or a non-Fermi-liquid-like one-dimensional (1D) system with electron correlation. In this article, we start with the detailed examination of the electronic structure in cuprates and study theoretically the spin and charge dynamics in 1D and 2D cuprates. The theoretical background of spin-charge separation in the 1D model systems including the Hubbard and t-J models is presented. The first direct observation of collective modes of spin and charge excitations in a 1D cuprate, which are called spinons and holons respectively, in angle-resolved photoemission spectroscopy (ARPES) experiments is reviewed in the light of the theoretical results based on the numerically exact-diagonalization method. The charge and spin dynamics in 1D insulating cuprates is also discussed in connection with the spin-charge separation. The arguments are extended to the 2D cuprates, and the unique aspects of the electronic properties of high-temperature superconductors are discussed. Special emphasis is placed on the d-wave-like excitations in insulating 2D cuprates observed in ARPES experiments. We explain how the excitations are caused by the spin-charge separation. The charge stripes observed in the underdoped cuprates are examined in connection with spin-charge separation in real space.

  14. Control of the Speed of a Light-Induced Spin Transition through Mesoscale Core-Shell Architecture.

    PubMed

    Felts, Ashley C; Slimani, Ahmed; Cain, John M; Andrus, Matthew J; Ahir, Akhil R; Abboud, Khalil A; Meisel, Mark W; Boukheddaden, Kamel; Talham, Daniel R

    2018-05-02

    The rate of the light-induced spin transition in a coordination polymer network solid dramatically increases when included as the core in mesoscale core-shell particles. A series of photomagnetic coordination polymer core-shell heterostructures, based on the light-switchable Rb a Co b [Fe(CN) 6 ] c · mH 2 O (RbCoFe-PBA) as core with the isostructural K j Ni k [Cr(CN) 6 ] l · nH 2 O (KNiCr-PBA) as shell, are studied using temperature-dependent powder X-ray diffraction and SQUID magnetometry. The core RbCoFe-PBA exhibits a charge transfer-induced spin transition (CTIST), which can be thermally and optically induced. When coupled to the shell, the rate of the optically induced transition from low spin to high spin increases. Isothermal relaxation from the optically induced high spin state of the core back to the low spin state and activation energies associated with the transition between these states were measured. The presence of a shell decreases the activation energy, which is associated with the elastic properties of the core. Numerical simulations using an electro-elastic model for the spin transition in core-shell particles supports the findings, demonstrating how coupling of the core to the shell changes the elastic properties of the system. The ability to tune the rate of optically induced magnetic and structural phase transitions through control of mesoscale architecture presents a new approach to the development of photoswitchable materials with tailored properties.

  15. Electric field control of deterministic current-induced magnetization switching in a hybrid ferromagnetic/ferroelectric structure

    NASA Astrophysics Data System (ADS)

    Cai, Kaiming; Yang, Meiyin; Ju, Hailang; Wang, Sumei; Ji, Yang; Li, Baohe; Edmonds, Kevin William; Sheng, Yu; Zhang, Bao; Zhang, Nan; Liu, Shuai; Zheng, Houzhi; Wang, Kaiyou

    2017-07-01

    All-electrical and programmable manipulations of ferromagnetic bits are highly pursued for the aim of high integration and low energy consumption in modern information technology. Methods based on the spin-orbit torque switching in heavy metal/ferromagnet structures have been proposed with magnetic field, and are heading toward deterministic switching without external magnetic field. Here we demonstrate that an in-plane effective magnetic field can be induced by an electric field without breaking the symmetry of the structure of the thin film, and realize the deterministic magnetization switching in a hybrid ferromagnetic/ferroelectric structure with Pt/Co/Ni/Co/Pt layers on PMN-PT substrate. The effective magnetic field can be reversed by changing the direction of the applied electric field on the PMN-PT substrate, which fully replaces the controllability function of the external magnetic field. The electric field is found to generate an additional spin-orbit torque on the CoNiCo magnets, which is confirmed by macrospin calculations and micromagnetic simulations.

  16. Communication: Nuclear quadrupole moment-induced Cotton-Mouton effect in noble gas atoms

    NASA Astrophysics Data System (ADS)

    Fu, Li-juan; Rizzo, Antonio; Vaara, Juha

    2013-11-01

    New, high-sensitivity and high-resolution spectroscopic and imaging methods may be developed by exploiting nuclear magneto-optic effects. A first-principles electronic structure formulation of nuclear electric quadrupole moment-induced Cotton-Mouton effect (NQCME) is presented for closed-shell atoms. In NQCME, aligned quadrupole moments alter the index of refraction of the medium along with and perpendicular to the direction of nuclear alignment. The roles of basis-set convergence, electron correlation, and relativistic effects are investigated for three quadrupolar noble gas isotopes: 21Ne, 83Kr, and 131Xe. The magnitude of the resulting ellipticities is predicted to be 10-4-10-6 rad/(M cm) for fully spin-polarized nuclei. These should be detectable in the Voigt setup. Particularly interesting is the case of 131Xe, in which a high degree of spin polarization can be achieved via spin-exchange optical hyperpolarization.

  17. Anomalous magnetic and spin glass behavior in Nb-substituted LaCo1 -xNbxO3

    NASA Astrophysics Data System (ADS)

    Shukla, Rishabh; Dhaka, R. S.

    2018-01-01

    We report the structural, magnetic, transport, and electronic properties of Nb-substituted LaCo1 -xNbxO3 (x =0 -0.2 ). The Rietveld refinement of x-ray diffraction data demonstrate structural phase transitions from rhombohedral to orthorhombic and further to monoclinic with increasing the Nb concentration up to x ≥0.2 . Interestingly, we observed dramatic changes in the magnetization (M ) with increasing the Nb concentration, as the M sharply increases below 10 K even at 2.5% substitution. Furthermore, ac susceptibility data show the spin glass behavior in x =0.1 sample. We find that the density of states near the Fermi level decreases and the activation energy increases, which results in the decreasing conductivity with higher Nb concentration. A significant shift in the peak position of A2 g phonon mode has been observed using Raman spectroscopy, which indicates the change in the coupling due to the structural distortion with Nb substitution. The core-level photoemission study confirms that the Nb is present in 5 + valence state. Our study reveals that the nonmagnetic Nb5 + (d0) substitution converts Co3 + ions to Co2 + and stabilizes both in the high-spin state. Our results suggest that structural and spin-state transitions as well as the difference in the ionic radii between Nb5 + and Co3 + are playing an important role in tuning the physical properties.

  18. Spin fine structure of optically excited quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Scheibner, M.; Doty, M. F.; Ponomarev, I. V.; Bracker, A. S.; Stinaff, E. A.; Korenev, V. L.; Reinecke, T. L.; Gammon, D.

    2007-06-01

    The interaction between spins in coupled quantum dots is revealed in distinct fine structure patterns in the measured optical spectra of InAs/GaAs double quantum dot molecules containing zero, one, or two excess holes. The fine structure is explained well in terms of a uniquely molecular interplay of spin-exchange interactions, Pauli exclusion, and orbital tunneling. This knowledge is critical for converting quantum dot molecule tunneling into a means of optically coupling not just orbitals but also spins.

  19. Large spin-orbit coupling and helical spin textures in 2D heterostructure [Pb 2BiS 3][AuTe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, L.; Im, J.; DeGottardi, W.

    Two-dimensional heterostructures with strong spin-orbit coupling have direct relevance to topological quantum materials and potential applications in spin-orbitronics. In this work, we report on novel quantum phenomena in [Pb 2BiS 3][AuTe 2], a new 2D strong spin-orbit coupling heterostructure system. Transport measurements reveal the spin-related carrier scattering is at odds with the Abrikosov-Gorkov model due to strong spin-orbit coupling. This is consistent with our band structure calculations which reveal a large spin-orbit coupling gap of ε so = 0.21 eV. Furthermore, the band structure is also characterized by helical-like spin textures which are mainly induced by strong spin-orbit coupling andmore » the inversion symmetry breaking in the heterostructure system.« less

  20. Large spin-orbit coupling and helical spin textures in 2D heterostructure [Pb 2BiS 3][AuTe 2

    DOE PAGES

    Fang, L.; Im, J.; DeGottardi, W.; ...

    2016-10-12

    Two-dimensional heterostructures with strong spin-orbit coupling have direct relevance to topological quantum materials and potential applications in spin-orbitronics. In this work, we report on novel quantum phenomena in [Pb 2BiS 3][AuTe 2], a new 2D strong spin-orbit coupling heterostructure system. Transport measurements reveal the spin-related carrier scattering is at odds with the Abrikosov-Gorkov model due to strong spin-orbit coupling. This is consistent with our band structure calculations which reveal a large spin-orbit coupling gap of ε so = 0.21 eV. Furthermore, the band structure is also characterized by helical-like spin textures which are mainly induced by strong spin-orbit coupling andmore » the inversion symmetry breaking in the heterostructure system.« less

  1. Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition

    PubMed Central

    Zhou, Shiming; Miao, Xianbing; Zhao, Xu; Ma, Chao; Qiu, Yuhao; Hu, Zhenpeng; Zhao, Jiyin; Shi, Lei; Zeng, Jie

    2016-01-01

    The activity of electrocatalysts exhibits a strongly dependence on their electronic structures. Specifically, for perovskite oxides, Shao-Horn and co-workers have reported a correlation between the oxygen evolution reaction activity and the eg orbital occupation of transition-metal ions, which provides guidelines for the design of highly active catalysts. Here we demonstrate a facile method to engineer the eg filling of perovskite cobaltite LaCoO3 for improving the oxygen evolution reaction activity. By reducing the particle size to ∼80 nm, the eg filling of cobalt ions is successfully increased from unity to near the optimal configuration of 1.2 expected by Shao-Horn's principle. Consequently, the activity is significantly enhanced, comparable to those of recently reported cobalt oxides with eg∼1.2 configurations. This enhancement is ascribed to the emergence of spin-state transition from low-spin to high-spin states for cobalt ions at the surface of the nanoparticles, leading to more active sites with increased reactivity. PMID:27187067

  2. High-spin yrast structure of 204Hg from the decay of a four-hole, 22+ isomer

    NASA Astrophysics Data System (ADS)

    Wrzesiński, J.; Lane, G. J.; Maier, K. H.; Janssens, R. V. F.; Dracoulis, G. D.; Broda, R.; Byrne, A. P.; Carpenter, M. P.; Clark, R. M.; Cromaz, M.; Fornal, B.; Lauritsen, T.; Macchiavelli, A. O.; Rejmund, M.; Szpak, B.; Vetter, K.; Zhu, S.

    2015-10-01

    A high-spin isomer with τ >700 ns has been found in 204Hg , populated in reactions of 1360-MeV 208Pb and 330-MeV 48Ca beams with a thick 238U target and a 1450-MeV 208Pb beam on a thick 208Pb target. The observed γ -ray decay of the isomer has established the yrast states below it, including another isomer with τ =33 (3 ) ns. The experimental results are compared with shell-model calculations that include four holes in the configuration space between 132Sn and 208Pb . The available spectroscopic information, including transition strengths, total conversion, and angular correlation coefficients, together with the observed agreement with the calculations, allows spin, parity, and configuration assignments to be proposed for the experimental states. The τ >700 ns isomer is the 22+ state of maximum spin available from the alignment of the four valence holes with the configuration π h11/2 -2ν i13/2 -2 .

  3. Interdependence of spin structure, anion height and electronic structure of BaFe{sub 2}As{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Smritijit, E-mail: smritijit.sen@gmail.com; Ghosh, Haranath, E-mail: hng@rrcat.gov.in; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094

    2016-05-06

    Superconducting as well as other electronic properties of Fe-based superconductors are quite sensitive to the structural parameters specially, on anion height which is intimately related to z{sub As}, the fractional z co-ordinate of As atom. Due to presence of strong magnetic fluctuation in these Fe-based superconductors, optimized structural parameters (lattice parameters a, b, c) including z{sub As} using density functional theory (DFT) under generalized gradient approximation (GGA) does not match experimental values accurately. In this work, we show that the optimized value of z{sub As} is strongly influenced by the spin structures in the orthorhombic phase of BaFe{sub 2}As{sub 2}more » system. We take all possible spin structures for the orthorhombic BaFe{sub 2}As{sub 2} system and then optimize z{sub As}. Using these optimized structures we calculate electronic structures like density of states, band structures etc., for each spin configurations. From these studies we show that the electronic structure, orbital order which is responsible for structural as well as related to nematic transition, are significantly influenced by the spin structures.« less

  4. Theoretical research on the spin-Hamiltonian parameters of the rhombic W5+ centers in CaWO4:Y3+ crystal

    NASA Astrophysics Data System (ADS)

    Mei, Yang; Wei, Cheng-Fu; Zheng, Wen-Chen

    2016-02-01

    Detailed theoretical calculations for the spin-Hamiltonian parameters (g factors gi and hyperfine structure constants Ai, where i=x, y, z) of the rhombic W5+ center in CaWO4:Y3+ crystal are performed by using the high-order perturbation formulas for d1 ions in rhombic tetrahedral clusters with the ground state |dz2>. These formulas consist of the contributions from two mechanisms, the crystal-field (CF) mechanism connected with CF excited states in the vastly-used CF theory and the frequently-neglected charge-transfer (CT) mechanism related to CT excited states. The calculated results agree well with the experimental values. The calculations indicate that for W5+ ion (or other high valence state dn ions) in crystals, the model calculations of spin-Hamiltonian parameters should take both the CF and CT mechanisms into account. The signs of hyperfine structure constants Ai are suggested and the forming (or defect model) of rhombic W5+ center in CaWO4:Y3+ crystal is confirmed from the calculations.

  5. Chiral higher spin theories and self-duality

    NASA Astrophysics Data System (ADS)

    Ponomarev, Dmitry

    2017-12-01

    We study recently proposed chiral higher spin theories — cubic theories of interacting massless higher spin fields in four-dimensional flat space. We show that they are naturally associated with gauge algebras, which manifest themselves in several related ways. Firstly, the chiral higher spin equations of motion can be reformulated as the self-dual Yang-Mills equations with the associated gauge algebras instead of the usual colour gauge algebra. We also demonstrate that the chiral higher spin field equations, similarly to the self-dual Yang-Mills equations, feature an infinite algebra of hidden symmetries, which ensures their integrability. Secondly, we show that off-shell amplitudes in chiral higher spin theories satisfy the generalised BCJ relations with the usual colour structure constants replaced by the structure constants of higher spin gauge algebras. We also propose generalised double copy procedures featuring higher spin theory amplitudes. Finally, using the light-cone deformation procedure we prove that the structure of the Lagrangian that leads to all these properties is universal and follows from Lorentz invariance.

  6. Geometrical control of pure spin current induced domain wall depinning.

    PubMed

    Pfeiffer, A; Reeve, R M; Voto, M; Savero-Torres, W; Richter, N; Vila, L; Attané, J P; Lopez-Diaz, L; Kläui, Mathias

    2017-03-01

    We investigate the pure spin-current assisted depinning of magnetic domain walls in half ring based Py/Al lateral spin valve structures. Our optimized geometry incorporating a patterned notch in the detector electrode, directly below the Al spin conduit, provides a tailored pinning potential for a transverse domain wall and allows for a precise control over the magnetization configuration and as a result the domain wall pinning. Due to the patterned notch, we are able to study the depinning field as a function of the applied external field for certain applied current densities and observe a clear asymmetry for the two opposite field directions. Micromagnetic simulations show that this can be explained by the asymmetry of the pinning potential. By direct comparison of the calculated efficiencies for different external field and spin current directions, we are able to disentangle the different contributions from the spin transfer torque, Joule heating and the Oersted field. The observed high efficiency of the pure spin current induced spin transfer torque allows for a complete depinning of the domain wall at zero external field for a charge current density of [Formula: see text] A m -2 , which is attributed to the optimal control of the position of the domain wall.

  7. N-tert-butylmethanimine N-oxide is an efficient spin-trapping probe for EPR analysis of glutathione thiyl radical

    PubMed Central

    Scott, Melanie J.; Billiar, Timothy R.; Stoyanovsky, Detcho A.

    2016-01-01

    The electron spin resonance (EPR) spin-trapping technique allows detection of radical species with nanosecond half-lives. This technique is based on the high rates of addition of radicals to nitrones or nitroso compounds (spin traps; STs). The paramagnetic nitroxides (spin-adducts) formed as a result of reactions between STs and radical species are relatively stable compounds whose EPR spectra represent “structural fingerprints” of the parent radical species. Herein we report a novel protocol for the synthesis of N-tert-butylmethanimine N-oxide (EBN), which is the simplest nitrone containing an α-H and a tertiary α′-C atom. We present EPR spin-trapping proof that: (i) EBN is an efficient probe for the analysis of glutathione thiyl radical (GS•); (ii) β-cyclodextrins increase the kinetic stability of the spin-adduct EBN/•SG; and (iii) in aqueous solutions, EBN does not react with superoxide anion radical (O2−•) to form EBN/•OOH to any significant extent. The data presented complement previous studies within the context of synthetic accessibility to EBN and efficient spin-trapping analysis of GS•. PMID:27941944

  8. Topological Magnonics: A Paradigm for Spin-Wave Manipulation and Device Design

    NASA Astrophysics Data System (ADS)

    Wang, X. S.; Zhang, H. W.; Wang, X. R.

    2018-02-01

    Conventional magnonic devices use magnetostatic waves whose properties are sensitive to device geometry and the details of magnetization structure, so the design and the scalability of the device or circuitry are difficult. We propose topological magnonics, in which topological exchange spin waves are used as information carriers, that do not suffer from conventional problems of magnonic devices with additional nice features of nanoscale wavelength and high frequency. We show that a perpendicularly magnetized ferromagnet on a honeycomb lattice is generically a topological magnetic material in the sense that topologically protected chiral edge spin waves exist in the band gap as long as a spin-orbit-induced nearest-neighbor pseudodipolar interaction (and/or a next-nearest-neighbor Dzyaloshinskii-Moriya interaction) is present. The edge spin waves propagate unidirectionally along sample edges and domain walls regardless of the system geometry and defects. As a proof of concept, spin-wave diodes, spin-wave beam splitters, and spin-wave interferometers are designed by using sample edges and domain walls to manipulate the propagation of topologically protected chiral spin waves. Since magnetic domain walls can be controlled by magnetic fields or electric current or fields, one can essentially draw, erase, and redraw different spin-wave devices and circuitry on the same magnetic plate so that the proposed devices are reconfigurable and tunable. The topological magnonics opens up an alternative direction towards a robust, reconfigurable and scalable spin-wave circuitry.

  9. Laser-driven clockwise molecular rotation for a transient spinning waveplate.

    PubMed

    York, Andrew G

    2009-08-03

    Our simulations show a copropagating pair of laser pulses polarized in two different directions can selectively excite clockwise or counterclockwise molecular rotation in a gas of linear molecules. The resulting birefringence of the gas rotates on a femtosecond timescale and shows a periodic revival structure. The total duration of the pulse pair can be subpicosecond, allowing molecular alignment at the high densities and temperatures necessary to create a transient spinning waveplate.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokosawa, A.

    The first polarized collider, where we collide 250 GeV/c beams of 70% polarized protons at high luminosity, is under construction. This will allow a determination of the nuclear spin-dependent structure functions over a large range in x, and a collection of sufficient W and Z events to investigate extremely interesting spin-related phenomena. For these measurements, two major RHIC detectors will be used simultaneously whose functions are complimentary. Expected event rates given in this paper are for the STAR detector.

  11. Self-consistent electronic structure of disordered Fe/sub 0. 65/Ni/sub 0. 35/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.D.; Pinski, F.J.; Stocks, G.M.

    1985-04-15

    We present the results of the first ab initio calculation of the electronic structure of the disordered alloy Fe/sub 0.65/Ni/sub 0.35/. The calculation is based on the multiple-scattering coherent-potential approach (KKR-CPA) and is fully self-consistent and spin polarized. Magnetic effects are included within local-spin-density functional theory using the exchange-correlation function of Vosko--Wilk--Nusair. The most striking feature of the calculation is that electrons of different spins experience different degrees of disorder. The minority spin electrons see a very large disorder, whereas the majority spin electrons see little disorder. Consequently, the minority spin density of states is smooth compared to the verymore » structured majority spin density of states. This difference is due to a subtle balance between exchange splitting and charge neutrality.« less

  12. Self-consistent electronic structure of disordered Fe/sub 0/ /sub 65/Ni/sub 0/ /sub 35/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.D.; Pinski, F.J.; Stocks, G.M.

    1984-01-01

    We present the results of the first ab-initio calculation of the electronic structure of a disordered Fe/sub 0/ /sub 65/Ni/sub 0/ /sub 35/ alloy. The calculation is based on the multiple-scattering coherent-potential approach (KKR-CPA) and is fully self-consistent and spin-polarized. Magnetic effects are included within local-spin-density functional theory using the exchange-correlation function of Vosko-Wilk-Nusair. The most striking feature of the calculation is that electrons of different spins experience different degrees of disorder. The minority spin electrons see a very large disorder; whereas, the majority spin electrons see little disorder. Consequently, the minority spin density of states is smooth compared tomore » the very structured majority spin density of states. This difference is due to a subtle balance between exchange-splitting and charge neutrality. 15 references, 2 figures.« less

  13. Spin texture of the surface state of three-dimensional Dirac material Ca3PbO

    NASA Astrophysics Data System (ADS)

    Kariyado, Toshikaze

    2015-04-01

    The bulk and surface electronic structures of a candidate three-dimensional Dirac material Ca3PbO and its family are discussed especially focusing on the spin texture on the surface states. We first explain the basic features of the bulk band structure of Ca3PbO, such as emergence of Dirac fermions near the Fermi energy, and compare it with the other known three-dimensional Dirac semimetals. Then, the surface bands and spin-texture on them are investigated in detail. It is shown that the surface bands exhibit strong momentum-spin locking, which may be useful in some application for spin manipulation, induced by a combination of the inversion symmetry breaking at the surface and the strong spin-orbit coupling of Pb atoms. The surface band structure and the spin-textures are sensitive to the surface types.

  14. Algorithm for selection of optimized EPR distance restraints for de novo protein structure determination

    PubMed Central

    Kazmier, Kelli; Alexander, Nathan S.; Meiler, Jens; Mchaourab, Hassane S.

    2010-01-01

    A hybrid protein structure determination approach combining sparse Electron Paramagnetic Resonance (EPR) distance restraints and Rosetta de novo protein folding has been previously demonstrated to yield high quality models (Alexander et al., 2008). However, widespread application of this methodology to proteins of unknown structures is hindered by the lack of a general strategy to place spin label pairs in the primary sequence. In this work, we report the development of an algorithm that optimally selects spin labeling positions for the purpose of distance measurements by EPR. For the α-helical subdomain of T4 lysozyme (T4L), simulated restraints that maximize sequence separation between the two spin labels while simultaneously ensuring pairwise connectivity of secondary structure elements yielded vastly improved models by Rosetta folding. 50% of all these models have the correct fold compared to only 21% and 8% correctly folded models when randomly placed restraints or no restraints are used, respectively. Moreover, the improvements in model quality require a limited number of optimized restraints, the number of which is determined by the pairwise connectivities of T4L α-helices. The predicted improvement in Rosetta model quality was verified by experimental determination of distances between spin labels pairs selected by the algorithm. Overall, our results reinforce the rationale for the combined use of sparse EPR distance restraints and de novo folding. By alleviating the experimental bottleneck associated with restraint selection, this algorithm sets the stage for extending computational structure determination to larger, traditionally elusive protein topologies of critical structural and biochemical importance. PMID:21074624

  15. Spin-filter spin valves with nano-oxide layers for high density recording heads

    NASA Astrophysics Data System (ADS)

    Al-Jibouri, Abdul; Hoban, M.; Lu, Z.; Pan, G.

    2002-05-01

    A new spin-filter spin valve with nano-oxide specular layers with structure of Ta/NiFe/IrMn/CoFe/NOL1/CoFe/Cu/CoFetfl/CutCu/NOL2/Ta was deposited using a Nordiko 9606 physical vapor deposition system. The data clearly show that the magnetoresistive (MR) ratio has been significantly improved for spin valves with thinner free layers. The MR ratio remains larger than 12% even when the CoFe free layer is as thin as 1 nm. An optimized MR ratio of ˜15% was obtained when tfl was about 1.2 nm and tCu about 1.5 nm, and was a result of the balance between the increase in the electron mean free path difference and current shunting through the conducting layer. It is also found that the Cu enhancing layer can improve soft magnetic properties of the CoFe free layer due to the low atomic intermixing observed between Co and Cu. The CoFe free layer of 1-4 nm exhibited coercivity of ˜3 Oe after annealing in a static magnetic field. This kind of spin valve with a very thin soft CoFe free layer is particularly attractive for ultra high density read head applications.

  16. Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization

    PubMed Central

    Hoff, Daniel E.M.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Choi, Eric J.; Mardini, Michael; Barnes, Alexander B.

    2015-01-01

    Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198 GHz MAS DNP probe. Our calculations show that a microwave power input of 17 W is required to generate an average EPR nutation frequency of 0.84 MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5 kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions. PMID:26482131

  17. Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization.

    PubMed

    Hoff, Daniel E M; Albert, Brice J; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Mardini, Michael; Barnes, Alexander B

    2015-11-01

    Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198GHz MAS DNP probe. Our calculations show that a microwave power input of 17W is required to generate an average EPR nutation frequency of 0.84MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Causality constraints on corrections to the graviton three-point coupling

    DOE PAGES

    Camanho, Xián O.; Edelstein, José D.; Maldacena, Juan; ...

    2016-02-03

    In this paper, we consider higher derivative corrections to the graviton three-point coupling within a weakly coupled theory of gravity. Lorentz invariance allows further structures beyond the one present in the Einstein theory. We argue that these are constrained by causality. We devise a thought experiment involving a high energy scattering process which leads to causality violation if the graviton three-point vertex contains the additional structures. This violation cannot be fixed by adding conventional particles with spins J ≤ 2. But, it can be fixed by adding an in finite tower of extra massive particles with higher spins, J > 2. In AdS theories this implies a constraint on the conformal anomaly coefficients |more » $$\\frac{a-c}{c}$$|≲ $$\\frac{1}{2}$$ $${^Δ}_{gap}$$ in terms of Δgap, the dimension of the lightest single trace operator with spin J > 2. Lastly, for inflation, or de Sitter-like solutions, it indicates the existence of massive higher spin particles if the gravity wave non-gaussianity deviates significantly from the one computed in the Einstein theory.« less

  19. Theoretical investigation of the magnetoelectric properties of Bi2NiTiO6

    NASA Astrophysics Data System (ADS)

    Patra, Lokanath; Ravindran, P.

    2018-04-01

    We report the first principle investigations on the structural, electronic, magnetic and ferroelectric properties of a Pb free double perovskite multiferroic Bi2NiTiO6 using density functional theory within the general gradient approximation (GGA) and GGA+U method. Our results show that Bi2NiTiO6 will be an insulator with G-type magnetic ordering in its ground state with Ni2+ in a high spin state and a spin moment of 1.741μB. The paraelectric phase stabilizes in nonmagnetic state with Ni2+ in low spin configuration showing that spin state transition plays an important role in strong magnetoelectric coupling in Bi2NiTiO6. The bonding characteristics of the constituents are analyzed with the help of partial density of states and Born effective charges. The presence of Ti ions at Ni sites suppresses the disproportionation observed in case of BiNiO3 and results in a noncentrosymmetric crystal structure. The coexistence of Bi 6s lone pair and Ti4+ d0 ions which brings covalency produces a polarization of 32 µCcm-2.

  20. Continuous Faraday measurement of spin precession without light shifts

    NASA Astrophysics Data System (ADS)

    Jasperse, M.; Kewming, M. Â. J.; Fischer, S. Â. N.; Pakkiam, P.; Anderson, R. Â. P.; Turner, L. Â. D.

    2017-12-01

    We describe a dispersive Faraday optical probe of atomic spin which performs a weak measurement of spin projection of a quantum gas continuously for more than one second. To date, focusing bright far-off-resonance probes onto quantum gases has proved invasive due to strong scalar and vector light shifts exerting dipole and Stern-Gerlach forces. We show that tuning the probe near the magic-zero wavelength at 790 nm between the fine-structure doublet of 87Rb cancels the scalar light shift, and careful control of polarization eliminates the vector light shift. Faraday rotations due to each fine-structure line reinforce at this wavelength, enhancing the signal-to-noise ratio for a fixed rate of probe-induced decoherence. Using this minimally invasive spin probe, we perform microscale atomic magnetometry at high temporal resolution. Spectrogram analysis of the Larmor precession signal of a single spinor Bose-Einstein condensate measures a time-varying magnetic field strength with 1 μ G accuracy every 5 ms; or, equivalently, makes more than 200 successive measurements each at 10 pT /√{Hz } sensitivity.

  1. Ba2F2Fe(1.5)Se3: An Intergrowth Compound Containing Iron Selenide Layers.

    PubMed

    Driss, Dalel; Janod, Etienne; Corraze, Benoit; Guillot-Deudon, Catherine; Cario, Laurent

    2016-03-21

    The iron selenide compound Ba2F2Fe(1.5)Se3 was synthesized by a high-temperature ceramic method. The single-crystal X-ray structure determination revealed a layered-like structure built on [Ba2F2](2+) layers of the fluorite type and iron selenide layers [Fe(1.5)Se3](2-). These [Fe1.5Se3](2-) layers contain iron in two valence states, namely, Fe(II+) and Fe(III+) located in octahedral and tetrahedral sites, respectively. Magnetic measurements are consistent with a high-spin state for Fe(II+) and an intermediate-spin state for Fe(III+). Moreover, susceptibility and resistivity measurements demonstrate that Ba2F2Fe(1.5)Se3 is an antiferromagnetic insulator.

  2. Landau Levels of Majorana Fermions in a Spin Liquid.

    PubMed

    Rachel, Stephan; Fritz, Lars; Vojta, Matthias

    2016-04-22

    Majorana fermions, originally proposed as elementary particles acting as their own antiparticles, can be realized in condensed-matter systems as emergent quasiparticles, a situation often accompanied by topological order. Here we propose a physical system which realizes Landau levels-highly degenerate single-particle states usually resulting from an orbital magnetic field acting on charged particles-for Majorana fermions. This is achieved in a variant of a quantum spin system due to Kitaev which is distorted by triaxial strain. This strained Kitaev model displays a spin-liquid phase with charge-neutral Majorana-fermion excitations whose spectrum corresponds to that of Landau levels, here arising from a tailored pseudomagnetic field. We show that measuring the dynamic spin susceptibility reveals the Landau-level structure by a remarkable mechanism of probe-induced bound-state formation.

  3. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic

    NASA Astrophysics Data System (ADS)

    Lovchinsky, I.; Sushkov, A. O.; Urbach, E.; de Leon, N. P.; Choi, S.; De Greve, K.; Evans, R.; Gertner, R.; Bersin, E.; Müller, C.; McGuinness, L.; Jelezko, F.; Walsworth, R. L.; Park, H.; Lukin, M. D.

    2016-02-01

    Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition.

  4. Enhanced Hydrogen Storage Kinetics of Nanocrystalline and Amorphous Mg₂Ni-type Alloy by Melt Spinning.

    PubMed

    Zhang, Yang-Huan; Li, Bao-Wei; Ren, Hui-Ping; Li, Xia; Qi, Yan; Zhao, Dong-Liang

    2011-01-18

    Mg₂Ni-type Mg₂Ni 1-x Co x (x = 0, 0.1, 0.2, 0.3, 0.4) alloys were fabricated by melt spinning technique. The structures of the as-spun alloys were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The hydrogen absorption and desorption kinetics of the alloys were measured by an automatically controlled Sieverts apparatus. The electrochemical hydrogen storage kinetics of the as-spun alloys was tested by an automatic galvanostatic system. The results show that the as-spun (x = 0.1) alloy exhibits a typical nanocrystalline structure, while the as-spun (x = 0.4) alloy displays a nanocrystalline and amorphous structure, confirming that the substitution of Co for Ni notably intensifies the glass forming ability of the Mg₂Ni-type alloy. The melt spinning treatment notably improves the hydriding and dehydriding kinetics as well as the high rate discharge ability (HRD) of the alloys. With an increase in the spinning rate from 0 (as-cast is defined as spinning rate of 0 m/s) to 30 m/s, the hydrogen absorption saturation ratio () of the (x = 0.4) alloy increases from 77.1 to 93.5%, the hydrogen desorption ratio () from 54.5 to 70.2%, the hydrogen diffusion coefficient (D) from 0.75 × 10 - 11 to 3.88 × 10 - 11 cm²/s and the limiting current density I L from 150.9 to 887.4 mA/g.

  5. Electronic structure and weak itinerant magnetism in metallic Y 2 Ni 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, David J.

    2015-11-03

    We describe a density functional study of the electronic structure and magnetism of Y₂Ni₇. The results show itinerant magnetism very similar to that in the weak itinerant ferromagnet Ni₃Al. The electropositive Y atoms in Y₂Ni₇ donate charge to the Ni host mostly in the form of s electrons. The non-spin-polarized state shows a high density of states at the Fermi level, N (E F), due to flat bands. This leads to a ferromagnetic instability. However, there are also several much more dispersive bands crossing E(F), which should promote the conductivity. Spin fluctuation effects appear to be comparable to or weakermore » than Ni₃Al, based on comparison with experimental data. Y₂Ni₇ provides a uniaxial analog to cubic Ni₃Al, for studying weak itinerant ferromagnetism, suggesting detailed measurements of its low temperature physical properties and spin fluctuations, as well as experiments under pressure.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jae Wook; Artyukhin, Sergei; Mun, Eun Deok

    In this paper, we report the discovery of a metamagnetic phase transition in a polar antiferromagnet Ni 3TeO 6 that occurs at 52 T. The new phase transition accompanies a colossal magnetoelectric effect, with a magnetic-field-induced polarization change of 0.3 μC/cm 2, a value that is 4 times larger than for the spin-flop transition at 9 T in the same material, and also comparable to the largest magnetically induced polarization changes observed to date. Via density-functional calculations we construct a full microscopic model that describes the data. We model the spin structures in all fields and clarify the physics behindmore » the 52 T transition. The high-field transition involves a competition between multiple different exchange interactions which drives the polarization change through the exchange-striction mechanism. Finally, the resultant spin structure is rather counterintuitive and complex, thus providing new insights on design principles for materials with strong magnetoelectric coupling.« less

  7. Parity-Doublet Structure in the $$147\\atop{57}$$La 90 nucleus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wisniewski, J.; Urban, W.; Rzaca-Urban, T.

    Excited states in 147La, populated in spontaneous fission of 252Cf have been reinvestigated by means of γ spectroscopy, using high-fold γ coincidences measured with Gammasphere array of Ge detectors. The 229.5-keV level, which has been assigned spin-parity 9/2 - in a recent evaluation, is shown to have spin-parity 11/2 -. Consequently, the ground state has spin-parity 5/2 +. Excited levels in 147La have been arranged into a parity-doublet structure, showing that at medium excitation energy the 147La nucleus may have octupole deformation. In conclusion, the B( E1) rates in 147La, which are factor four lower than in 145La, suggest thatmore » the electric dipole moment in 147La is depresses by an extra mechanism, probably connected with the population of particular neutron orbitals.« less

  8. Parity-Doublet Structure in the $$147\\atop{57}$$La 90 nucleus

    DOE PAGES

    Wisniewski, J.; Urban, W.; Rzaca-Urban, T.; ...

    2017-12-01

    Excited states in 147La, populated in spontaneous fission of 252Cf have been reinvestigated by means of γ spectroscopy, using high-fold γ coincidences measured with Gammasphere array of Ge detectors. The 229.5-keV level, which has been assigned spin-parity 9/2 - in a recent evaluation, is shown to have spin-parity 11/2 -. Consequently, the ground state has spin-parity 5/2 +. Excited levels in 147La have been arranged into a parity-doublet structure, showing that at medium excitation energy the 147La nucleus may have octupole deformation. In conclusion, the B( E1) rates in 147La, which are factor four lower than in 145La, suggest thatmore » the electric dipole moment in 147La is depresses by an extra mechanism, probably connected with the population of particular neutron orbitals.« less

  9. Trends in (LaMnO3)n/(SrTiO3)m superlattices with varying layer thicknesses

    PubMed Central

    Jilili, J.; Cossu, F.; Schwingenschlögl, U.

    2015-01-01

    We investigate the thickness dependence of the structural, electronic, and magnetic properties of (LaMnO3)n/(SrTiO3)m (n, m = 2, 4, 6, 8) superlattices using density functional theory. The electronic structure turns out to be highly sensitive to the onsite Coulomb interaction. In contrast to bulk SrTiO3, strongly distorted O octahedra are observed in the SrTiO3 layers with a systematic off centering of the Ti atoms. The systems favour ferromagnetic spin ordering rather than the antiferromagnetic spin ordering of bulk LaMnO3 and all show half-metallicity, while a systematic reduction of the minority spin band gaps as a function of the LaMnO3 and SrTiO3 layer thicknesses originates from modifications of the Ti dxy states. PMID:26323361

  10. Determining the spin dependent mean free path in Co90Fe10 using giant magnetoresistance

    NASA Astrophysics Data System (ADS)

    Shakespear, K. F.; Perdue, K. L.; Moyerman, S. M.; Checkelsky, J. G.; Harberger, S. S.; Tamboli, A. C.; Carey, M. J.; Sparks, P. D.; Eckert, J. C.

    2005-05-01

    The spin dependent mean free path in Co90Fe10 is determined as a function of temperature down to 5K using two different spin valve structures. At 5K the spin dependent mean free path for one structure was measured to be 9.4±1.4nm, decreasing by a factor of 3 by 350K. For the other structure, it is 7.5±0.5nm at 5K and decreased by a factor of 1.5 by 350K. In both cases, the spin dependent mean free path approaches the typical thickness of ferromagnetic layers in spin valves at room temperature and, thus, has an impact on the choice of design parameters for the development of new spintronic devices.

  11. A new spin on electron liquids: Phenomena in systems with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Bernevig, B. Andrei

    Conventional microelectronic devices are based on the ability to store and control the flow of electronic charge. Spin-based electronics promises a radical alternative, offering the possibility of logic operations with much lower power consumption than equivalent charge-based logic operations. Our research suggests that spin transport is fundamentally different from the transport of charge. The generalized Ohm's law that governs the flow of spins indicates that the generation of spin current by an electric field can be reversible and non-dissipative. Spin-orbit coupling and spin currents appear in many other seemingly unrelated areas of physics. Spin currents are as fundamental in theoretical physics as charge currents. In strongly correlated systems such as spin-chains, one can write down the Hamiltonian as a spin-current - spin-current interaction. The research presented here shows that the fractionalized excitations of one-dimensional spin chains are gapless and carry spin current. We present the most interesting example of such a chain, the Haldane-Shastry spin chain, which is exactly solvable in terms of real-space wavefunctions. Spin-orbit coupling can be found in high-energy physics, hidden under a different name: non-trivial fibrations. Particles moving in a space which is non-trivially related to an (iso)spin space acquire a gauge connection (the condensed-matter equivalent of a Berry phase) which can be either abelian or non-abelian. In most cases, the consequences of such gauge connection are far-reaching. We present a problem where particles move on an 8-dimensional manifold and posses an isospin space with is a 7-sphere S 7. The non-trivial isospin space gives the Hamiltonian SO (8) landau-level structure, and the system exhibits a higher-dimensional Quantum Hall Effect.

  12. Resonance and Variable Temperature Raman Studies of Chloroperoxidase and Methemoglobin.

    NASA Astrophysics Data System (ADS)

    Remba, Ronald David

    1980-12-01

    Raman spectra of the heme proteins chloroperoxidase and methemoglobin, chemically and temperature modified, are obtained for laser excitation near the Soret absorption band. Numerous biochemical and physical results are obtained. The following observations for chloroperoxidase have been made. The scattered intensity for resonance (406.7 nm) excitation is at least twenty times that for near resonance (457.9 nm) excitation. In resonance only totally symmetric modes are enhanced. The positions of marker band I ((TURN) 1370 cm(' -1)) for both the native and reduced enzymes are lower than expected for high-spin heme proteins indicating a strongly electron donating axial ligand. From shifts in spin-sensitive Raman peaks as the temperature is lowered, a high-spin to low-spin transition of the heme iron is inferred. Raman spectra of chloroperoxidase liganded with small ions indicate that there is a second anion binding site near the heme. Photo-dissociation of CO from reduced chloroperoxidase is observed. The position of marker band I in the CO complex indicates that electron density is transferred from the heme onto the CO. The resonance Raman spectra of chloroperoxidase and cytochrome P-450 are nearly identical and are very different from those of horseradish peroxidase and cytochrome c. These results, particularly for the reduced enzymes, indicate that the heme sites in chloroperoxidase and P -450 are essentially the same. Raman spectra of a number of methemoglobins complexed with various small ions are obtained as a function of temperature in the region of spin-sensitive marker band (II) ((TURN) 1500 cm('-1)) for laser excitation near the Soret absorption band. For certain ligands, H(,2)O, N(,3)('-), OCN('-), OH('-) and SCN('-), the iron spin state changes from high spin to low spin with decreasing temperature. The relative spin concentrations are monitored by measuring the Raman intensity ratio, I(,h)/I(,1), of the high-spin and low -spin versions of marker band (II) as a function of temperature. This is the first study where the marker band technique is used to measure quantitatively spin transitions. For hydroxide and cyanate methemoglobin, log(I(,h)/I(,1)) varies linearly with 1/T, indicating a high-spin/low-spin thermal equilibrium. The data are analyzed to extract enthalpic and entropic changes. (DELTA)H values from Raman and static magnetic susceptibility techniques show good agreement. (DELTA)S values for horse hydroxide methemoglobin also agree. However, for cyanate methemoglobin, Raman and susceptibility (DELTA)S values differ substantially. Other evidence (ESR, optical, etc.) supports the Raman result. The discrepancy is probably due to the effects of freezing on the protein solution. Other methemoglobins show a discontinuity in the Raman intensity ratio at the freezing transition indicating a non-equilibrium situation where the freezing process drives the spin transition. Effects of freezing the protein solution on the spin transition are discussed. Both the high-spin and low-spin Raman frequencies are observed to remain constant (within (+OR-) 2 cm('-1)) when the temperature is varied. This is discussed in terms of core expansion and heme deformation. Experimental (DELTA)S values are much larger than the spin-only value. This is discussed in terms of a linear temperature dependence on the energy gap between the ('2)T(,2) ground state and the ('6)A(,1) first excited state. Variable temperature Raman data for carp azide methemoglobin with and without IHP indicate that the free energy for the spin transition decreases by 0.6 (+OR-) 0.3 kcal/mole when hemoglobin quaternary structure changes from R to T. Lack of any frequency shift in either the high-spin or low-spin Raman band upon addition of IHP is consistent with other evidence indicating no iron movement upon conversion of R to T quaternary forms.

  13. Recent Advances in Heliogyro Solar Sail Structural Dynamics, Stability, and Control Research

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Warren, Jerry E.; Horta, Lucas G.; Lyle, Karen H.; Juang, Jer-Nan; Gibbs, S. Chad; Dowell, Earl H.; Guerrant, Daniel V.; Lawrence, Dale

    2015-01-01

    Results from recent NASA sponsored research on the structural dynamics, stability, and control characteristics of heliogyro solar sails are summarized. Specific areas under investigation include coupled nonlinear finite element analysis of heliogyro membrane blade with solar radiation pressure effects, system identification of spinning membrane structures, and solarelastic stability analysis of heliogyro solar sails, including stability during blade deployment. Recent results from terrestrial 1-g blade dynamics and control experiments on "rope ladder" membrane blade analogs, and small-scale in vacuo system identification experiments with hanging and spinning high-aspect ratio membranes will also be presented. A low-cost, rideshare payload heliogyro technology demonstration mission concept is used as a mission context for these heliogyro structural dynamics and solarelasticity investigations, and is also described. Blade torsional dynamic response and control are also shown to be significantly improved through the use of edge stiffening structural features or inclusion of modest tip masses to increase centrifugal stiffening of the blade structure. An output-only system identification procedure suitable for on-orbit blade dynamics investigations is also developed and validated using ground tests of spinning sub-scale heliogyro blade models. Overall, analytical and experimental investigations to date indicate no intractable stability or control issues for the heliogyro solar sail concept.

  14. Size-induced chemical and magnetic ordering in individual Fe-Au nanoparticles.

    PubMed

    Mukherjee, Pinaki; Manchanda, Priyanka; Kumar, Pankaj; Zhou, Lin; Kramer, Matthew J; Kashyap, Arti; Skomski, Ralph; Sellmyer, David; Shield, Jeffrey E

    2014-08-26

    Formation of chemically ordered compounds of Fe and Au is inhibited in bulk materials due to their limited mutual solubility. However, here we report the formation of chemically ordered L12-type Fe3Au and FeAu3 compounds in Fe-Au sub-10 nm nanoparticles, suggesting that they are equilibrium structures in size-constrained systems. The stability of these L12-ordered Fe3Au and FeAu3 compounds along with a previously discovered L10-ordered FeAu has been explained by a size-dependent equilibrium thermodynamic model. Furthermore, the spin ordering of these three compounds has been computed using ab initio first-principle calculations. All ordered compounds exhibit a substantial magnetization at room temperature. The Fe3Au had a high saturation magnetization of about 143.6 emu/g with a ferromagnetic spin structure. The FeAu3 nanoparticles displayed a low saturation magnetization of about 11 emu/g. This suggests a antiferromagnetic spin structure, with the net magnetization arising from uncompensated surface spins. First-principle calculations using the Vienna ab initio simulation package (VASP) indicate that ferromagnetic ordering is energetically most stable in Fe3Au, while antiferromagnetic order is predicted in FeAu and FeAu3, consistent with the experimental results.

  15. Improved half-metallic gap of zincblende half-metal superlattices with the Tran-Blaha modified Becke-Johnson density functional

    NASA Astrophysics Data System (ADS)

    Guo, San-Dong

    2016-08-01

    Binary transition-metal pnictides and chalcogenides half-metallic ferromagnetic materials with zincblende structure, being compatible with current semiconductor technology, can be used to make high-performance spintronic devices. Here, we investigate electronic structures and magnetic properties of composite structure ((CrX)2 /(YX)2 (X=As, Sb; Se, Te and Y=Ga; Zn) superlattices) of zincblende half-metallic ferromagnetism and semiconductor by using Tran and Blaha's modified Becke and Johnson (mBJ) exchange potential. Calculated results show that they all are half-metallic ferromagnets with both generalized gradient approximation (GGA) and mBJ, and the total magnetic moment per formula unit follows a Slater-Pauling-like "rule of 8". The key half-metallic gaps by using mBJ are enhanced with respect to GGA results, which is because mBJ makes the occupied minority-spin p-bands move toward lower energy, but toward higher energy for empty minority-spin Cr-d bands. When the spin-orbit coupling (SOC) is included, the spin polarization deviates from 100%, and a most reduced polarization of 98.3% for (CrSb)2 /(GaSb)2, which indicates that SOC has small effects, of the order of 1%, in the considered four kinds of superlattice.

  16. The nature of the Fe–graphene interface at the nanometer level

    DOE PAGES

    Cattelan, M.; Peng, G. W.; Cavaliere, E.; ...

    2014-12-22

    The emerging fields of graphene-based magnetic and spintronic devices require a deep understanding of the interface between graphene and ferromagnetic metals. This paper reports a detailed investigation at the nanometer level of the Fe–graphene interface carried out by angle-resolved photoemission, high-resolution photoemission from core levels, near edge X-ray absorption fine structure, scanning tunnelling microscopy and spin polarized density functional theory calculations. Quasi-free-standing graphene was grown on Pt(111), and the iron film was either deposited atop or intercalated beneath graphene. Here, calculations and experimental results show that iron strongly modifies the graphene band structure and lifts its π band spin degeneracy.

  17. Enhancing coherence in molecular spin qubits via atomic clock transitions

    NASA Astrophysics Data System (ADS)

    Shiddiq, Muhandis; Komijani, Dorsa; Duan, Yan; Gaita-Ariño, Alejandro; Coronado, Eugenio; Hill, Stephen

    2016-03-01

    Quantum computing is an emerging area within the information sciences revolving around the concept of quantum bits (qubits). A major obstacle is the extreme fragility of these qubits due to interactions with their environment that destroy their quantumness. This phenomenon, known as decoherence, is of fundamental interest. There are many competing candidates for qubits, including superconducting circuits, quantum optical cavities, ultracold atoms and spin qubits, and each has its strengths and weaknesses. When dealing with spin qubits, the strongest source of decoherence is the magnetic dipolar interaction. To minimize it, spins are typically diluted in a diamagnetic matrix. For example, this dilution can be taken to the extreme of a single phosphorus atom in silicon, whereas in molecular matrices a typical ratio is one magnetic molecule per 10,000 matrix molecules. However, there is a fundamental contradiction between reducing decoherence by dilution and allowing quantum operations via the interaction between spin qubits. To resolve this contradiction, the design and engineering of quantum hardware can benefit from a ‘bottom-up’ approach whereby the electronic structure of magnetic molecules is chemically tailored to give the desired physical behaviour. Here we present a way of enhancing coherence in solid-state molecular spin qubits without resorting to extreme dilution. It is based on the design of molecular structures with crystal field ground states possessing large tunnelling gaps that give rise to optimal operating points, or atomic clock transitions, at which the quantum spin dynamics become protected against dipolar decoherence. This approach is illustrated with a holmium molecular nanomagnet in which long coherence times (up to 8.4 microseconds at 5 kelvin) are obtained at unusually high concentrations. This finding opens new avenues for quantum computing based on molecular spin qubits.

  18. Variable Coupling Scheme for High Frequency Electron Spin Resonance Resonators Using Asymmetric Meshes

    PubMed Central

    Tipikin, D. S.; Earle, K. A.; Freed, J. H.

    2010-01-01

    The sensitivity of a high frequency electron spin resonance (ESR) spectrometer depends strongly on the structure used to couple the incident millimeter wave to the sample that generates the ESR signal. Subsequent coupling of the ESR signal to the detection arm of the spectrometer is also a crucial consideration for achieving high spectrometer sensitivity. In previous work, we found that a means for continuously varying the coupling was necessary for attaining high sensitivity reliably and reproducibly. We report here on a novel asymmetric mesh structure that achieves continuously variable coupling by rotating the mesh in its own plane about the millimeter wave transmission line optical axis. We quantify the performance of this device with nitroxide spin-label spectra in both a lossy aqueous solution and a low loss solid state system. These two systems have very different coupling requirements and are representative of the range of coupling achievable with this technique. Lossy systems in particular are a demanding test of the achievable sensitivity and allow us to assess the suitability of this approach for applying high frequency ESR to the study of biological systems at physiological conditions, for example. The variable coupling technique reported on here allows us to readily achieve a factor of ca. 7 improvement in signal to noise at 170 GHz and a factor of ca. 5 at 95 GHz over what has previously been reported for lossy samples. PMID:20458356

  19. Ba9V3Se15: a novel compound with spin chains

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Liu, Min; Wang, Xiancheng; Zhao, Kan; Duan, Lei; Li, Wenmin; Zhao, Jianfa; Cao, Lipeng; Dai, Guangyang; Deng, Zheng; Feng, Shaomin; Zhang, Sijia; Liu, Qingqing; Yang, Yi-feng; Jin, Changqing

    2018-05-01

    In this work, a novel compound Ba9V3Se15 with one-dimensional (1D) spin chains was synthesized under high-pressure and high-temperature conditions. It was systematically characterized via structural, magnetic, thermodynamic and transport measurements. Ba9V3Se15 crystallizes into a hexagonal structure with a space group of P-6c2 (188) and the lattice constants of a  =  b  =  9.5745(7) Å and c  =  18.7814(4) Å. The crystal structure consists of face-sharing octahedral VSe6 chains along c axis, which are trimeric and arranged in a triangular lattice in ab-plane. Ba9V3Se15 is a semiconductor and undergoes complex magnetic transitions. In the zero-field-cooled (ZFC) process with magnetic field of 10 Oe, Ba9V3Se15 sequentially undergoes ferrimagnetic and spin cluster glass transition at 2.5 K and 3.3 K, respectively. When the magnetic field exceeds 50 Oe, only the ferrimagnetic transition can be observed. Above the transition temperature, the specific heat contains a significant magnetic contribution that is proportional to T 1/2. The calculation suggests that the nearest neighbor (NN) intra-chain antiferromagnetic exchange J 1 is much larger than the next nearest neighbor (NNN) intra-chain ferromagnetic exchange J 2. Therefore, Ba9V3Se15 can be regarded as an effective ferromagnetic chains with effective spin-1/2 by the formation of the V(2)(↓) V(1)(↑) V(2)(↓) cluster.

  20. The effect of pressure on the structural, electronic, magnetic, and thermodynamic properties of the Mn2RuGe inverse Heusler alloy

    NASA Astrophysics Data System (ADS)

    Song, Ting; Sun, Xiao-Wei; Tian, Jun-Hong; Wei, Xiao-Ping; Wan, Gui-Xin; Ma, Qin

    2017-04-01

    In the frame of density functional theory, first-principles calculations based on generalized gradient approximation and quasi-harmonic Debye approximation model in which the phononic effects are taken into account have been carried out to investigate the structural, electronic, magnetic, and thermodynamic properties of full-Heusler alloy Mn2RuGe in CuHg2Ti-type structure in the pressure range of 0-50 GPa. Present calculations predict that Mn2RuGe is a ferrimagnet with an optimized lattice parameter of 5.854 Å. The calculated total magnetic moment of 2.01 μB per formula unit is very close to integer value and agree well with the Slater-Pauling rule, where the partial spin moments of Mn (A) and Mn (B) which mainly contribute to the total magnetic moment are 2.66 μB and -0.90 μB, respectively. In the study of the energy band structures and density of states, Mn2RuGe exhibits half-metallicity with an indirect gap of 0.235 eV in the spin-down channels, and the shifting of bands towards higher energies in spin-down channel under high pressure. Meanwhile, the high-pressure thermodynamic properties of Mn2RuGe, such as the pressure-volume-temperature relationship, bulk modulus, thermal expansivity, heat capacity, Debye temperature, and Grüneisen parameter are evaluated systematically in the temperature range of 0-900 K. This set of data is considered as the useful information to understand the high-pressure and high-temperature properties for the Mn2RuZ-type Heusler alloy family.

  1. High-spin structures in 132Xe and 133Xe and evidence for isomers along the N =79 isotones

    NASA Astrophysics Data System (ADS)

    Vogt, A.; Siciliano, M.; Birkenbach, B.; Reiter, P.; Hadyńska-Klek, K.; Wheldon, C.; Valiente-Dobón, J. J.; Teruya, E.; Yoshinaga, N.; Arnswald, K.; Bazzacco, D.; Blazhev, A.; Bracco, A.; Bruyneel, B.; Chakrawarthy, R. S.; Chapman, R.; Cline, D.; Corradi, L.; Crespi, F. C. L.; Cromaz, M.; de Angelis, G.; Eberth, J.; Fallon, P.; Farnea, E.; Fioretto, E.; Fransen, C.; Freeman, S. J.; Fu, B.; Gadea, A.; Gelletly, W.; Giaz, A.; Görgen, A.; Gottardo, A.; Hayes, A. B.; Hess, H.; Hetzenegger, R.; Hirsch, R.; Hua, H.; John, P. R.; Jolie, J.; Jungclaus, A.; Karayonchev, V.; Kaya, L.; Korten, W.; Lee, I. Y.; Leoni, S.; Liang, X.; Lunardi, S.; Macchiavelli, A. O.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Mijatović, T.; Montagnoli, G.; Montanari, D.; Müller-Gatermann, C.; Napoli, D.; Pearson, C. J.; Podolyák, Zs.; Pollarolo, G.; Pullia, A.; Queiser, M.; Recchia, F.; Regan, P. H.; Régis, J.-M.; Saed-Samii, N.; Şahin, E.; Scarlassara, F.; Seidlitz, M.; Siebeck, B.; Sletten, G.; Smith, J. F.; Söderström, P.-A.; Stefanini, A. M.; Stezowski, O.; Szilner, S.; Szpak, B.; Teng, R.; Ur, C.; Warner, D. D.; Wolf, K.; Wu, C. Y.; Zell, K. O.

    2017-08-01

    The transitional nuclei 132Xe and 133Xe are investigated after multinucleon-transfer (MNT) and fusion-evaporation reactions. Both nuclei are populated (i) in 136Xe+208Pb MNT reactions employing the high-resolution Advanced GAmma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA, (ii) in the 136Xe+198Pt MNT reaction employing the GAMMASPHERE spectrometer in combination with the gas-detector array CHICO, and (iii) as an evaporation residue after a 130Te(α ,x n )134 -x nXe fusion-evaporation reaction employing the HORUS γ -ray array at the University of Cologne. The high-spin level schemes are considerably extended above the Jπ=(7-) and (10+) isomers in 132Xe and above the 11 /2- isomer in 133Xe. The results are compared to the high-spin systematics of the Z =54 as well as the N =78 and N =79 chains. Furthermore, evidence is found for a long-lived (T1 /2≫1 μ s ) isomer in 133Xe which closes a gap along the N =79 isotones. Shell-model calculations employing the SN100PN and PQM130 effective interactions reproduce the experimental findings and provide guidance to the interpretation of the observed high-spin features.

  2. High-spin structures in Xe 132 and Xe 133 and evidence for isomers along the N = 79 isotones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogt, A.; Siciliano, M.; Birkenbach, B.

    In this study, the transitional nuclei 132Xe and 133Xe are investigated after multinucleon-transfer (MNT) and fusion-evaporation reactions. Both nuclei are populated (i) in 136Xe + 208Pb MNT reactions employing the high-resolution Advanced GAmma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA, (ii) in the 136Xe + 198Pt MNT reaction employing the GAMMASPHERE spectrometer in combination with the gas-detector array CHICO, and (iii) as an evaporation residue after a 130Te (α,xn) 134-xnXe fusion-evaporation reaction employing the HORUS γ -ray array at the University of Cologne. The high-spin level schemes are considerably extended above the J π = (7 -) andmore » (10 +) isomers in 132Xe and above the 11/2 - isomer in 133Xe. The results are compared to the high-spin systematics of the Z = 54 as well as the N = 78 and N = 79 chains. Furthermore, evidence is found for a long-lived (T 1/2 » 1 μs) isomer in 133Xe which closes a gap along the N = 79 isotones. Finally, shell-model calculations employing the SN100PN and PQM130 effective interactions reproduce the experimental findings and provide guidance to the interpretation of the observed high-spin features.« less

  3. High-spin structures in Xe 132 and Xe 133 and evidence for isomers along the N = 79 isotones

    DOE PAGES

    Vogt, A.; Siciliano, M.; Birkenbach, B.; ...

    2017-08-24

    In this study, the transitional nuclei 132Xe and 133Xe are investigated after multinucleon-transfer (MNT) and fusion-evaporation reactions. Both nuclei are populated (i) in 136Xe + 208Pb MNT reactions employing the high-resolution Advanced GAmma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA, (ii) in the 136Xe + 198Pt MNT reaction employing the GAMMASPHERE spectrometer in combination with the gas-detector array CHICO, and (iii) as an evaporation residue after a 130Te (α,xn) 134-xnXe fusion-evaporation reaction employing the HORUS γ -ray array at the University of Cologne. The high-spin level schemes are considerably extended above the J π = (7 -) andmore » (10 +) isomers in 132Xe and above the 11/2 - isomer in 133Xe. The results are compared to the high-spin systematics of the Z = 54 as well as the N = 78 and N = 79 chains. Furthermore, evidence is found for a long-lived (T 1/2 » 1 μs) isomer in 133Xe which closes a gap along the N = 79 isotones. Finally, shell-model calculations employing the SN100PN and PQM130 effective interactions reproduce the experimental findings and provide guidance to the interpretation of the observed high-spin features.« less

  4. Magnetism and the spin state in cubic perovskite CaCo O3 synthesized under high pressure

    NASA Astrophysics Data System (ADS)

    Xia, Hailiang; Dai, Jianhong; Xu, Yuanji; Yin, Yunyu; Wang, Xiao; Liu, Zhehong; Liu, Min; McGuire, Michael A.; Li, Xiang; Li, Zongyao; Jin, Changqing; Yang, Yifeng; Zhou, Jianshi; Long, Youwen

    2017-07-01

    Cubic SrCo O3 with an intermediate spin state can only be stabilized by high pressure and high temperature (HPHT) treatment. It is metallic and ferromagnetic with the highest Curie temperature of the transition-metal perovskites. The chemical substitution by Ca on Sr sites would normally lower crystal symmetry from cubic to orthorhombic as seen in the perovskite family of Ca M O3 (M =M4 + of transition metals, G e4 + , S n4 + , and Z r4 + ) at room temperature. This structural change narrows the bandwidth, so as to further enhance the Curie temperature as the crossover to the localized electronic state is approached. We report a successful synthesis of the perovskite CaCo O3 with a HPHT treatment. Surprisingly, CaCo O3 crystallizes in a simple cubic structure that remains stable down to 20 K, the lowest temperature in the structural study. The new perovskite has been thoroughly characterized by a suite of measurements including transport, magnetization, specific heat, thermal conductivity, and thermoelectric power. Metallic CaCo O3 undergoes two successive magnetic transitions at 86 K and 54 K as temperature decreases. The magnetization at 5 K is compatible with the intermediate spin state t4e1 of C o4 + at the octahedral site. The thermal expansion of the Co-O bond length indicates that the population of high spin state t3e2 increases for T >100 K . The shortest Co-O bond length in cubic CaCo O3 is responsible for delocalizing electrons in the π*-band and itinerant-electron ferromagnetism at T <54 K . A comprehensive comparison between SrCo O3 and CaCo O3 and the justification of their physical properties by first-principles calculation have also been made in this report. Partially filled π* and σ* bands would make CaCo O3 suitable to study the Hund's coupling effect in a metal.

  5. High spin-polarization in ultrathin Co2MnSi/CoPd multilayers

    NASA Astrophysics Data System (ADS)

    Galanakis, I.

    2015-03-01

    Half-metallic Co2MnSi finds a broad spectrum of applications in spintronic devices either in the form of thin films or as spacer in multilayers. Using state-of-the-art ab-initio electronic structure calculations we exploit the electronic and magnetic properties of ultrathin Co2MnSi/CoPd multilayers. We show that these heterostructures combine high values of spin-polarization at the Co2MnSi spacer with the perpendicular magnetic anisotropy of binary compounds such as CoPd. Thus they could find application in spintronic/magnetoelectronic devices.

  6. Spin transistor based on pure nonlocal Andreev reflection in EuO-graphene/superconductor/EuO-graphene nanostructure

    NASA Astrophysics Data System (ADS)

    Ang, Yee Sin; Ang, Lay Kee; Zhang, Chao; Ma, Zhongshui

    In graphene-magnetic-insulator hybrid structure such as graphene-Europium-oxide, proximity induced exchange interaction opens up a spin-dependent bandgap and spin splitting in the Dirac band. We show that such band topology allows pure crossed Andreev reflection to be generated exclusively without the parasitic local Andreev reflection and elastic cotunnelling over a wide range of bias and Fermi levels. We model the charge transport in an EuO-graphene/superconductor/EuO-graphene three-terminal device and found that the pure non-local conductance exhibits rapid on/off switching characteristic with a minimal subthreshold swing of ~ 20 mV. Non-local conductance oscillation is observed when the Fermi levels in the superconducting lead is varied. The oscillatory behavior is directly related to the quasiparticle propagation in the superconducting lead and hence can be used as a tool to probe the subgap quasiparticle mode in superconducting graphene. The non-local current is 100% spin-polarized and is highly tunable in our proposed device. This opens up the possibility of highly tunable graphene-based spin transistor that operates purely in the non-local transport regime.

  7. Measurement of untruncated nuclear spin interactions via zero- to ultralow-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Blanchard, J. W.; Sjolander, T. F.; King, J. P.; Ledbetter, M. P.; Levine, E. H.; Bajaj, V. S.; Budker, D.; Pines, A.

    2015-12-01

    Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) provides a new regime for the measurement of nuclear spin-spin interactions free from the effects of large magnetic fields, such as truncation of terms that do not commute with the Zeeman Hamiltonian. One such interaction, the magnetic dipole-dipole coupling, is a valuable source of spatial information in NMR, though many terms are unobservable in high-field NMR, and the coupling averages to zero under isotropic molecular tumbling. Under partial alignment, this information is retained in the form of so-called residual dipolar couplings. We report zero- to ultralow-field NMR measurements of residual dipolar couplings in acetonitrile-2-13C aligned in stretched polyvinyl acetate gels. This permits the investigation of dipolar couplings as a perturbation on the indirect spin-spin J coupling in the absence of an applied magnetic field. As a consequence of working at zero magnetic field, we observe terms of the dipole-dipole coupling Hamiltonian that are invisible in conventional high-field NMR. This technique expands the capabilities of zero- to ultralow-field NMR and has potential applications in precision measurement of subtle physical interactions, chemical analysis, and characterization of local mesoscale structure in materials.

  8. Synthesis and electronic structure determination of N-alkyl-substituted bis(imino)pyridine iron imides exhibiting spin crossover behavior.

    PubMed

    Bowman, Amanda C; Milsmann, Carsten; Bill, Eckhard; Turner, Zoë R; Lobkovsky, Emil; DeBeer, Serena; Wieghardt, Karl; Chirik, Paul J

    2011-11-02

    Three new N-alkyl substituted bis(imino)pyridine iron imide complexes, ((iPr)PDI)FeNR ((iPr)PDI = 2,6-(2,6-(i)Pr(2)-C(6)H(3)-N═CMe)(2)C(5)H(3)N; R = 1-adamantyl ((1)Ad), cyclooctyl ((Cy)Oct), and 2-adamantyl ((2)Ad)) were synthesized by addition of the appropriate alkyl azide to the iron bis(dinitrogen) complex, ((iPr)PDI)Fe(N(2))(2). SQUID magnetic measurements on the isomeric iron imides, ((iPr)PDI)FeN(1)Ad and ((iPr)PDI)FeN(2)Ad, established spin crossover behavior with the latter example having a more complete spin transition in the experimentally accessible temperature range. X-ray diffraction on all three alkyl-substituted bis(imino)pyridine iron imides established essentially planar compounds with relatively short Fe-N(imide) bond lengths and two-electron reduction of the redox-active bis(imino)pyridine chelate. Zero- and applied-field Mössbauer spectroscopic measurements indicate diamagnetic ground states at cryogenic temperatures and established low isomer shifts consistent with highly covalent molecules. For ((iPr)PDI)FeN(2)Ad, Mössbauer spectroscopy also supports spin crossover behavior and allowed extraction of thermodynamic parameters for the S = 0 to S = 1 transition. X-ray absorption spectroscopy and computational studies were also performed to explore the electronic structure of the bis(imino)pyridine alkyl-substituted imides. An electronic structure description with a low spin ferric center (S = 1/2) antiferromagnetically coupled to an imidyl radical (S(imide) = 1/2) and a closed-shell, dianionic bis(imino)pyridine chelate (S(PDI) = 0) is favored for the S = 0 state. An iron-centered spin transition to an intermediate spin ferric ion (S(Fe) = 3/2) accounts for the S = 1 state observed at higher temperatures. Other possibilities based on the computational and experimental data are also evaluated and compared to the electronic structure of the bis(imino)pyridine iron N-aryl imide counterparts.

  9. [Application of electrostatic spinning technology in nano-structured polymer scaffold].

    PubMed

    Chen, Denglong; Li, Min; Fang, Qian

    2007-04-01

    To review the latest development in the research on the application of the electrostatic spinning technology in preparation of the nanometer high polymer scaffold. The related articles published at home and abroad during the recent years were extensively reviewed and comprehensively analyzed. Micro/nano-structure and space topology on the surfaces of the scaffold materials, especially the weaving structure, were considered to have an important effect on the cell adhesion, proliferation, directional growth, and biological activation. The electrospun scaffold was reported to have a resemblance to the structure of the extracellular matrix and could be used as a promising scaffold for the tissue engineering application. The electrospun scaffolds were applied to the cartilage, bone, blood vessel, heart, and nerve tissue engineering fields. The nano-structured polymer scaffold can support the cell adhesion, proliferation, location, and differentiation, and this kind of scaffold has a considerable value in the tissue engineering field.

  10. Electron spin relaxation in two polymorphic structures of GaN

    NASA Astrophysics Data System (ADS)

    Kang, Nam Lyong

    2015-03-01

    The relaxation process of electron spin in systems of electrons interacting with piezoelectric deformation phonons that are mediated through spin-orbit interactions was interpreted from a microscopic point of view using the formula for the electron spin relaxation times derived by a projection-reduction method. The electron spin relaxation times in two polymorphic structures of GaN were calculated. The piezoelectric material constant for the wurtzite structure obtained by a comparison with a previously reported experimental result was {{P}pe}=1.5 × {{10}29} eV {{m}-1}. The temperature and magnetic field dependence of the relaxation times for both wurtzite and zinc-blende structures were similar, but the relaxation times in zinc-blende GaN were smaller and decreased more rapidly with increasing temperature and magnetic field than that in wurtzite GaN. This study also showed that the electron spin relaxation for wurtzite GaN at low density could be explained by the Elliot-Yafet process but not for zinc-blende GaN in the metallic regime.

  11. Spin Qubits in Germanium Structures with Phononic Gap

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, V. N.; Vasko, F. T.; Hafiychuk, V. V.; Dykman, M. I.; Petukhov, A. G.

    2014-01-01

    We propose qubits based on shallow donor electron spins in germanium structures with phononic gap. We consider a phononic crystal formed by periodic holes in Ge plate or a rigid cover / Ge layer / rigid substrate structure with gaps approximately a few GHz. The spin relaxation is suppressed dramatically, if the Zeeman frequency omegaZ is in the phononic gap, but an effective coupling between the spins of remote donors via exchange of virtual phonons remains essential. If omegaZ approaches to a gap edge in these structures, a long-range (limited by detuning of omegaZ) resonant exchange interaction takes place. We estimate that ratio of the exchange integral to the longitudinal relaxation rate exceeds 10(exp 5) and lateral scale of resonant exchange 0.1 mm. The exchange contribution can be verified under microwave pumping through oscillations of spin echo signal or through the differential absorption measurements. Efficient manipulation of spins due to the Rabi oscillations opens a new way for quantum information applications.

  12. Spin current and spin transfer torque in ferromagnet/superconductor spin valves

    NASA Astrophysics Data System (ADS)

    Moen, Evan; Valls, Oriol T.

    2018-05-01

    Using fully self-consistent methods, we study spin transport in fabricable spin valve systems consisting of two magnetic layers, a superconducting layer, and a spacer normal layer between the ferromagnets. Our methods ensure that the proper relations between spin current gradients and spin transfer torques are satisfied. We present results as a function of geometrical parameters, interfacial barrier values, misalignment angle between the ferromagnets, and bias voltage. Our main results are for the spin current and spin accumulation as functions of position within the spin valve structure. We see precession of the spin current about the exchange fields within the ferromagnets, and penetration of the spin current into the superconductor for biases greater than the critical bias, defined in the text. The spin accumulation exhibits oscillating behavior in the normal metal, with a strong dependence on the physical parameters both as to the structure and formation of the peaks. We also study the bias dependence of the spatially averaged spin transfer torque and spin accumulation. We examine the critical-bias effect of these quantities, and their dependence on the physical parameters. Our results are predictive of the outcome of future experiments, as they take into account imperfect interfaces and a realistic geometry.

  13. Magnetic behavior of Si-Ge bond in SixGe4-x nano-clusters

    NASA Astrophysics Data System (ADS)

    Nahali, Masoud; Mehri, Ali

    2018-06-01

    The structure of SixGe4-x nano-clusters were optimized by MPW1B95 level of theory using MG3S and SDB-aug-cc-PVTZ basis set. The agreement of the calculated ionization and dissociation energies with experimental values validates the reported structures of nano-clusters and justifies the use of hybrid meta density functional method. Since the Si-Si bond is stronger than Si-Ge and Ge-Ge bonds, the Si-Si, Si-Ge, and Ge-Ge diagonal bonds determine the precedence of the stability in these nano-clusters. The hybrid meta density functional calculations were carried out to investigate the adsorption of CO on all possible SixGe4-x nano-clusters. It was found that the silicon atom generally makes a stronger bond with CO than germanium and thereby preferentially affects the shape of structures having higher multiplicity. In Si-Ge structures with higher spin more than 95% of spins accumulate on positions with less bonds to other atoms of the cluster. Through CO adsorption on these clusters bridge structures are made that behave as spin bridge which conduct the spin from the nano-cluster surface to the adsorbate atoms. A better understanding of bridged structures was achieved upon introducing the 'spin bridge' concept. Based on exhaustive spin density analysis, it was found that the reason for the extra negative charge on oxygen in the bridged structures is the relocation of spin from the surface through the bridge.

  14. Uranium nitride: a cubic antiferromagnet with anisotropic critical behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buyers, W J.L.; Holden, T M; Svensson, E C

    1977-11-01

    Highly anisotropic critical scattering associated with the transition at T/sub N/ = 49.5 K to the type-I antiferromagnetic structure has been observed in uranium nitride. The transverse susceptibility is found to be unobservably small. The longitudinal susceptibility diverges at T/sub N/ and its anisotropy shows that the spins within the (001) ferromagnetic sheets of the (001) domain are much more highly correlated than they are with the spins lying in adjacent (001) sheets. The correlation range within the sheets is much greater than that expected for a Heisenberg system with the same T/sub N/. The rod-like scattering extended along themore » spin and domain direction is reminiscent of two-dimensional behavior. The results are inconsistent with a simple localized model and may reflect the itinerant nature of the 5f electrons.« less

  15. Transport, Structural and Mechanical Properties of Quaternary FeVTiAl Alloy

    NASA Astrophysics Data System (ADS)

    Bhat, Tahir Mohiuddin; Gupta, Dinesh C.

    2016-11-01

    The electronic, structural, magnetic and transport properties of FeVTiAl quaternary alloy have been investigated within the framework of density functional theory. The material is a completely spin-polarized half-metallic ferromagnet in its ground state with F-43m structure. The structural stability was further confirmed by elastic constants in the cubic phase with high Young's modulus and brittle nature. The present study predicts an energy band gap of 0.72 eV in a localized minority spin channel at equilibrium lattice parameter of 6.00 Å. The transport properties of the material are discussed based on the Seebeck coefficient, and electrical and thermal conductivity coefficients. The alloy presents large values of Seebeck coefficients, ~39 μV K-1 at room temperature (300 K), and has an excellent thermoelectric performance with ZT = ~0.8.

  16. Bipolaronic charge density waves, polaronic spin density waves and high Tc superconductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubry, S.

    1992-01-01

    At large enough electron phonon coupling, the existence of bipolaronic, polaronic and mixed states is rigorously proven for the adiabatic Holstein model at any dimension and any band filling. The ground-state is one of them which then prove the existence of insulating Bipolaronic Charge Density Waves. The role of the quantum lattice fluctuations is analysed and found to be neglegible in that regime but to become essential in case of phonon softening then favoring the occurence of superconductivity. When a strong Hubbard term is also present, the bipolarons break into polorons and the ground state is expected to be amore » polaronic spin density wave. If the repulsive Hubbard term is comparable to the electron-phonon coupling, the energy for breaking a bipoloron into two polarons can become small and we get instead of these two degenerate structures, a pait of polarons bounded by a spin resonance which we call spin resonant bipolaron''. This resonant bipolaron is still strongly bound, but the role of the quantum lattice fluctuations becomes now very important and yields a sharp broadening of the bandwidth of this resonant bipolarona. Thus, the strong quantum character of these resonant bipolarons could prevent their localization into real space structures which could be insulating bipolaronic CDWs or polaronic SDWS, then favoring the formation of a superconducting coherent state with a possible high {Tc}.« less

  17. Bipolaronic charge density waves, polaronic spin density waves and high {Tc} superconductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubry, S.

    1992-09-01

    At large enough electron phonon coupling, the existence of bipolaronic, polaronic and mixed states is rigorously proven for the adiabatic Holstein model at any dimension and any band filling. The ground-state is one of them which then prove the existence of insulating Bipolaronic Charge Density Waves. The role of the quantum lattice fluctuations is analysed and found to be neglegible in that regime but to become essential in case of phonon softening then favoring the occurence of superconductivity. When a strong Hubbard term is also present, the bipolarons break into polorons and the ground state is expected to be amore » polaronic spin density wave. If the repulsive Hubbard term is comparable to the electron-phonon coupling, the energy for breaking a bipoloron into two polarons can become small and we get instead of these two degenerate structures, a pait of polarons bounded by a spin resonance which we call ``spin resonant bipolaron``. This resonant bipolaron is still strongly bound, but the role of the quantum lattice fluctuations becomes now very important and yields a sharp broadening of the bandwidth of this resonant bipolarona. Thus, the strong quantum character of these resonant bipolarons could prevent their localization into real space structures which could be insulating bipolaronic CDWs or polaronic SDWS, then favoring the formation of a superconducting coherent state with a possible high {Tc}.« less

  18. Influence of the domain structure of nano-oxide layers on the transport properties of specular spin valves

    NASA Astrophysics Data System (ADS)

    Ventura, J.; Sousa, J. B.; Veloso, A.; Freitas, P. P.

    2007-05-01

    Specular spin valves show enhanced giant magnetoresistive ratio when compared to other simpler, spin valve structures as a result of specular reflection in nano-oxide layers (NOLs) formed by the partial oxidation of the CoFe pinned and free layers. The oxides forming the NOL were recently shown to order antiferromagnetically below T ˜175K. Here we study the training effect in MnIr /CoFe/NOL/CoFe/Cu/CoFe/NOL specular spin valves at low temperatures (15K). We observed that the training effect is related to the nano-oxide layer antiferromagnet ordering and to the evolution of the corresponding domain structure with the number of cycles performed. This allowed us to study the influence of the NOL domain structure on the magnetotransport of specular spin valves.

  19. Origin of spin gapless semiconductor behavior in CoFeCrGa: Theory and Experiment

    DOE PAGES

    Bainsla, Lakhan; Mallick, A. I.; Raja, M. Manivel; ...

    2015-07-08

    Despite a plethora of materials suggested for spintronic applications, a new class of materials has emerged, namely spin gapless semiconductors (SGS), which offers potentially more advantageous properties than existing ones. These magnetic semiconductors exhibit a finite band gap for one spin channel and a closed gap for the other. Supported by electronic-structure calculations, we report evidence of SGS behavior in equiatomic quaternary CoFeCrGa, having a cubic Heusler (prototype LiMgPdSn) structure but exhibiting chemical disorder (DO 3 structure). CoFeCrGa is found to transform from SGS to half-metallic phase under pressure, which is attributed to unique electronic-structure features. The saturation magnetization (Mmore » S) was obtained at 8K agrees with the Slater-Pauling rule and the Curie temperature (T C) is found to exceed 400K. Carrier concentration (up to 250K) and electrical conductivity are observed to be nearly temperature independent, prerequisites for SGS. The anomalous Hall coefficient is estimated to be 185S/cm at 5K. Considering the SGS properties and high T C, this material appears to be promising for spintronic applications.« less

  20. Quantum spin dynamics at terahertz frequencies in 2D hole gases and improper ferroelectrics

    NASA Astrophysics Data System (ADS)

    Lloyd-Hughes, J.

    2015-08-01

    Terahertz time-domain spectroscopy permits the excitations of novel materials to be examined with exquisite precision. Improper ferroelectric materials such as cupric oxide (CuO) exhibit complex magnetic ground states. CuO is antiferromagnetic below 213K, but has an incommensurate cycloidal magnetic phase between 213K and 230K. Remarkably, the cycloidal magnetic phase drives ferroelectricity, where the material becomes polar. Such improper multiferroics are of great contemporary interest, as a better understanding of the science of magnetoelectric materials may lead to their application in actuators, sensors and solid state memories. Improper multiferroics also have novel quasiparticle excitations: electromagnons form when spin-waves become electric-dipole active. By examining the dynamic response of spins as they interact with THz radiation we gain insights into the underlying physics of multi-ferroics. In contrast to improper ferroelectrics, where magnetism drives structural inversion asymmetry (SIA), two-dimensional electronic systems can exhibit non-degenerate spin states as a consequence of SIA created by strain and/or electric fields. We identify and explore the influence of the Rashba spin-orbit interaction upon cyclotron resonance at terahertz frequencies in high-mobility 2D hole gases in germanium quantum wells. An enhanced Rashba spin-orbit interaction can be linked to the strain of the quantum well, while a time-frequency decomposition method permitted the dynamical formation and decay of spin-split cyclotron resonances to be tracked on picosecond timescales. Long spin-decoherence times concurrent with high hole mobilities highlight the potential of Ge quantum wells in spintronics.

  1. Valley-spin filtering through a nonmagnetic resonant tunneling structure in silicene

    NASA Astrophysics Data System (ADS)

    Wu, Xiuqiang; Meng, Hao; Zhang, Haiyang; Bai, Yujie; Xu, Xing

    2018-07-01

    We theoretically investigate how a silecene-based nonmagnetic resonant-tunneling structure, i.e. a double electrostatic potential structure, can be tailored to generate valley- and spin-polarized filtering by using the scattering matrix method. This method allows us to find simple analytical expressions for the scattering amplitudes. It is found that the transmissions of electrons from opposite spin and valley show exactly opposite behaviors, leading to valley and spin filtering in a wide range of transmission directions. These directional-dependent valley-spin polarization behaviors can be used to select preferential directions along which the valley-spin polarization of an initially unpolarized carrier can be strongly enhanced. We also find that this phenomenon arises from the combinations of the coherent effect, electrostatic potential and external electric field. Especially when the direction of the external electric field is changed, the spin filtering properties are contained, while the valley filtering properties can be switched. In addition, the filtering behaviors can be conveniently controlled by electrical gating. Therefore, the results can offer an all-electric method to construct a valley-spin filter in silicene.

  2. Characteristics of spondylotic myelopathy on 3D driven-equilibrium fast spin echo and 2D fast spin echo magnetic resonance imaging: a retrospective cross-sectional study.

    PubMed

    Abdulhadi, Mike A; Perno, Joseph R; Melhem, Elias R; Nucifora, Paolo G P

    2014-01-01

    In patients with spinal stenosis, magnetic resonance imaging of the cervical spine can be improved by using 3D driven-equilibrium fast spin echo sequences to provide a high-resolution assessment of osseous and ligamentous structures. However, it is not yet clear whether 3D driven-equilibrium fast spin echo sequences adequately evaluate the spinal cord itself. As a result, they are generally supplemented by additional 2D fast spin echo sequences, adding time to the examination and potential discomfort to the patient. Here we investigate the hypothesis that in patients with spinal stenosis and spondylotic myelopathy, 3D driven-equilibrium fast spin echo sequences can characterize cord lesions equally well as 2D fast spin echo sequences. We performed a retrospective analysis of 30 adult patients with spondylotic myelopathy who had been examined with both 3D driven-equilibrium fast spin echo sequences and 2D fast spin echo sequences at the same scanning session. The two sequences were inspected separately for each patient, and visible cord lesions were manually traced. We found no significant differences between 3D driven-equilibrium fast spin echo and 2D fast spin echo sequences in the mean number, mean area, or mean transverse dimensions of spondylotic cord lesions. Nevertheless, the mean contrast-to-noise ratio of cord lesions was decreased on 3D driven-equilibrium fast spin echo sequences compared to 2D fast spin echo sequences. These findings suggest that 3D driven-equilibrium fast spin echo sequences do not need supplemental 2D fast spin echo sequences for the diagnosis of spondylotic myelopathy, but they may be less well suited for quantitative signal measurements in the spinal cord.

  3. Spin Transport in Electric-Barrier-Modulated Ferromagnetic/Normal/Ferromagnetic Monolayer Zigzag MoS2 Nanoribbon Junction

    NASA Astrophysics Data System (ADS)

    Xia, Y.-Y.; Yuan, R.-Y.; Yang, Q.-J.; Sun, Q.; Zheng, J.; Guo, Y.

    In this paper, with the three-band tight-binding model and non-equilibrium Green’s function technique, we investigate spin transport in electric-barrier-modulated Ferromagnetic/Normal/Ferromagnetic (F/N/F) monolayer (ML) zigzag MoS2 nanoribbon junction. The results demonstrate that once the double electric barriers structure emerges, the oscillations of spin conductances become violent, especially for spin-down conductance, the numbers of resonant peaks increase obviously, thus we can obtain 100% spin polarization in the low energy region. It is also found that with the intensity of the exchange field enhancement, the resonant peaks of spin-up and spin-down conductances move in the opposite direction in a certain energy region. As a consequence, the spin-down conductance can be filtered out completely. The findings here indicate that the present structure may be considered as a good candidate for spin filter.

  4. Mapping of spin wave propagation in a one-dimensional magnonic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ordóñez-Romero, César L., E-mail: cloro@fisica.unam.mx; Lazcano-Ortiz, Zorayda; Aguilar-Huerta, Melisa

    2016-07-28

    The formation and evolution of spin wave band gaps in the transmission spectrum of a magnonic crystal have been studied. A time and space resolved magneto inductive probing system has been used to map the spin wave propagation and evolution in a geometrically structured yttrium iron garnet film. Experiments have been carried out using (1) a chemically etched magnonic crystal supporting the propagation of magnetostatic surface spin waves, (2) a short microwave pulsed excitation of the spin waves, and (3) direct spin wave detection using a movable magneto inductive probe connected to a synchronized fast oscilloscope. The results show thatmore » the periodic structure not only modifies the spectra of the transmitted spin waves but also influences the distribution of the spin wave energy inside the magnonic crystal as a function of the position and the transmitted frequency. These results comprise an experimental confirmation of Bloch′s theorem in a spin wave system and demonstrate good agreement with theoretical observations in analogue phononic and photonic systems. Theoretical prediction of the structured transmission spectra is achieved using a simple model based on microwave transmission lines theory. Here, a spin wave system illustrates in detail the evolution of a much more general physical concept: the band gap.« less

  5. In-Beam Studies of High-Spin States in Mercury -183 and MERCURY-181

    NASA Astrophysics Data System (ADS)

    Shi, Detang

    The high-spin states of ^{183 }Hg were studied by using the reaction ^{155}Gd(^{32}S, 4n)^{183}Hg at a beam energy of 160 MeV with the tandem-linac accelerator system and the multi-element gamma-ray detection array at Florida State University. Two new bands, consisting of stretched E2 transitions and connected by M1 inter-band transitions, were identified in ^{183}Hg. Several new levels were added to the previously known bands at higher spin. The spins and parities to the levels in ^{183}Hg were determined from the analysis of their DCO ratios and B(M1)/B(E2) ratios. While the two pairs of previously known bands in ^ {183}Hg were proposed to 7/2^ -[514] and 9/2^+ [624], the two new bands are assigned as the 1/2^-[521] ground state configuration based upon the systematics of Nilsson orbitals in this mass region. The 354-keV transition previously was considered to be an E2 transition and assigned as the only transition from a band which is built on an oblate deformed i_{13/2} isomeric state. However, our DCO ratio analysis indicates that the 354-keV gamma-ray is an M1 transition. This changes the decay pattern of the 9/2^+[624 ] prolate structure in ^ {183}Hg, so it is seen to feed only into the i_{13/2} isomer band head. Our knowledge of the mercury nuclei far from stability was then extended through an in-beam study of the reaction ^{144}Sm(^{40 }Ar, 3n)^{181}Hg by using the Fragment Mass Analyzer (FMA) and the ten-Compton-suppressed -germanium-detector system at Argonne National Laboratory. Band structures to high-spin states are established for the first time in ^{181}Hg in the present experiment. The observed level structure of ^{181}Hg is midway between those in ^{185}Hg and in ^{183}Hg. The experimental results are analyzed in the framework of the cranking shell model (CSM). Alternative theoretical explanations are also presented and discussed. Systematics of neighboring mercury isotopes and N = 103 isotones is analyzed.

  6. Nonlinear thermoelectric effects in high-field superconductor-ferromagnet tunnel junctions

    PubMed Central

    Kolenda, Stefan; Machon, Peter

    2016-01-01

    Background: Thermoelectric effects result from the coupling of charge and heat transport and can be used for thermometry, cooling and harvesting of thermal energy. The microscopic origin of thermoelectric effects is a broken electron–hole symmetry, which is usually quite small in metal structures. In addition, thermoelectric effects decrease towards low temperatures, which usually makes them vanishingly small in metal nanostructures in the sub-Kelvin regime. Results: We report on a combined experimental and theoretical investigation of thermoelectric effects in superconductor/ferromagnet hybrid structures. We investigate the dependence of thermoelectric currents on the thermal excitation, as well as on the presence of a dc bias voltage across the junction. Conclusion: Large thermoelectric effects are observed in superconductor/ferromagnet and superconductor/normal-metal hybrid structures. The spin-independent signals observed under finite voltage bias are shown to be reciprocal to the physics of superconductor/normal-metal microrefrigerators. The spin-dependent thermoelectric signals in the linear regime are due to the coupling of spin and heat transport, and can be used to design more efficient refrigerators. PMID:28144509

  7. Electronic structure and magnetic properties of the strong-rung spin-1 ladder compound Rb3Ni2(NO3)7

    NASA Astrophysics Data System (ADS)

    Pchelkina, Z. V.; Mazurenko, V. V.; Volkova, O. S.; Deeva, E. B.; Morozov, I. V.; Shutov, V. V.; Troyanov, S. I.; Werner, J.; Koo, C.; Klingeler, R.; Vasiliev, A. N.

    2018-04-01

    Rb3Ni2(NO3)7 was obtained by crystallization from anhydrous nitric acid solution of rubidium nitrate and nickel nitrate hexahydrate. The crystal structure determined on single crystals implies isolated spin-1 two-leg ladders of Ni2 + ions connected by (NO3)- groups as basic elements. Magnetic susceptibility, specific heat in magnetic fields up to 9 T, magnetization, and high-frequency electron spin resonance studies performed on powder samples show the absence of long-range magnetic order at T ≥2 K. Electronic structure calculations and the detailed analysis of the experimental data enable quantitative estimates of the relevant parameters of the S =1 ladders in Rb3Ni2(NO3)7 . The rung coupling J1=10.16 K, the leg coupling J2=1.5 K, and the Ising-type anisotropy |A |=8.6 K are obtained. The scenario of a valence-bond solidlike quantum ground state realized in the two-leg Ni2 + ladders is further corroborated by model simulations of the magnetic susceptibility.

  8. Multiple crossovers between positive and negative magnetoresistance versus field due to fragile spin structure in metallic GdPd 3 [Oscillating magnetoresistance due to fragile spin structure in metallic GdPd 3

    DOE PAGES

    Pandey, Abhishek; Mazumdar, Chandan; Ranganathan, R.; ...

    2017-02-17

    Here, studies on the phenomenon of magnetoresistance (MR) have produced intriguing and application-oriented outcomes for decades–colossal MR, giant MR and recently discovered extremely large MR of millions of percents in semimetals can be taken as examples. We report here the discovery of novel multiple sign changes versus applied magnetic field of the MR in the cubic intermetallic compound GdPd 3. Our study shows that a very strong correlation between magnetic, electrical and magnetotransport properties is present in this compound. The magnetic structure in GdPd 3 is highly fragile since applied magnetic fields of moderate strength significantly alter the spin arrangementmore » within the system–a behavior that manifests itself in the oscillating MR. Intriguing magnetotransport characteristics of GdPd 3 are appealing for field-sensitive device applications, especially if the MR oscillation could materialize at higher temperature by manipulating the magnetic interaction through perturbations caused by chemical substitutions.« less

  9. Multiple crossovers between positive and negative magnetoresistance versus field due to fragile spin structure in metallic GdPd 3 [Oscillating magnetoresistance due to fragile spin structure in metallic GdPd 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Abhishek; Mazumdar, Chandan; Ranganathan, R.

    Here, studies on the phenomenon of magnetoresistance (MR) have produced intriguing and application-oriented outcomes for decades–colossal MR, giant MR and recently discovered extremely large MR of millions of percents in semimetals can be taken as examples. We report here the discovery of novel multiple sign changes versus applied magnetic field of the MR in the cubic intermetallic compound GdPd 3. Our study shows that a very strong correlation between magnetic, electrical and magnetotransport properties is present in this compound. The magnetic structure in GdPd 3 is highly fragile since applied magnetic fields of moderate strength significantly alter the spin arrangementmore » within the system–a behavior that manifests itself in the oscillating MR. Intriguing magnetotransport characteristics of GdPd 3 are appealing for field-sensitive device applications, especially if the MR oscillation could materialize at higher temperature by manipulating the magnetic interaction through perturbations caused by chemical substitutions.« less

  10. Resonant optical tunneling-induced enhancement of the photonic spin Hall effect

    NASA Astrophysics Data System (ADS)

    Jiang, Xing; Wang, Qingkai; Guo, Jun; Zhang, Jin; Chen, Shuqing; Dai, Xiaoyu; Xiang, Yuanjiang

    2018-04-01

    Due to the quantum analogy with optics, the resonant optical tunneling effect (ROTE) has been proposed to investigate both the fundamental physics and the practical applications of optical switches and liquid refractive index sensors. In this paper, the ROTE is used to enhance the spin Hall effect (SHE) of transmitted light. It is demonstrated that sandwiching a layer of a high-refractive-index medium (boron nitride crystal) between two low-refractive-index layers (silica) can effectively enhance the photonic SHE due to the increased refractive index gradient and an enhanced evanescent field near the interface between silica and boron nitride. A maximum transverse shift of the horizontal polarization state in the ROTE structure of about 22.25 µm has been obtained, which is at least three orders of magnitude greater than the transverse shift in the frustrated total internal reflection structure. Moreover, the SHE can be manipulated by controlling the component materials and the thickness of the ROTE structure. These findings open the possibility for future applications of photonic SHE in precision metrology and spin-based photonics.

  11. Structural Refinement of Proteins by Restrained Molecular Dynamics Simulations with Non-interacting Molecular Fragments.

    PubMed

    Shen, Rong; Han, Wei; Fiorin, Giacomo; Islam, Shahidul M; Schulten, Klaus; Roux, Benoît

    2015-10-01

    The knowledge of multiple conformational states is a prerequisite to understand the function of membrane transport proteins. Unfortunately, the determination of detailed atomic structures for all these functionally important conformational states with conventional high-resolution approaches is often difficult and unsuccessful. In some cases, biophysical and biochemical approaches can provide important complementary structural information that can be exploited with the help of advanced computational methods to derive structural models of specific conformational states. In particular, functional and spectroscopic measurements in combination with site-directed mutations constitute one important source of information to obtain these mixed-resolution structural models. A very common problem with this strategy, however, is the difficulty to simultaneously integrate all the information from multiple independent experiments involving different mutations or chemical labels to derive a unique structural model consistent with the data. To resolve this issue, a novel restrained molecular dynamics structural refinement method is developed to simultaneously incorporate multiple experimentally determined constraints (e.g., engineered metal bridges or spin-labels), each treated as an individual molecular fragment with all atomic details. The internal structure of each of the molecular fragments is treated realistically, while there is no interaction between different molecular fragments to avoid unphysical steric clashes. The information from all the molecular fragments is exploited simultaneously to constrain the backbone to refine a three-dimensional model of the conformational state of the protein. The method is illustrated by refining the structure of the voltage-sensing domain (VSD) of the Kv1.2 potassium channel in the resting state and by exploring the distance histograms between spin-labels attached to T4 lysozyme. The resulting VSD structures are in good agreement with the consensus model of the resting state VSD and the spin-spin distance histograms from ESR/DEER experiments on T4 lysozyme are accurately reproduced.

  12. Thermal transport in topological-insulator-based superconducting hybrid structures with mixed singlet and triplet pairing states.

    PubMed

    Li, Hai; Zhao, Yuan Yuan

    2017-11-22

    In the framework of the Bogoliubov-de Gennes equation, we investigate the thermal transport properties in topological-insulator-based superconducting hybrid structures with mixed spin-singlet and spin-triplet pairing states, and emphasize the different manifestations of the spin-singlet and spin-triplet pairing states in the thermal transport signatures. It is revealed that the temperature-dependent differential thermal conductance strongly depends on the components of the pairing state, and the negative differential thermal conductance only occurs in the spin-singlet pairing state dominated regime. It is also found that the thermal conductance is profoundly sensitive to the components of the pairing state. In the spin-singlet pairing state controlled regime, the thermal conductance obviously oscillates with the phase difference and junction length. With increasing the proportion of the spin-triplet pairing state, the oscillating characteristic of the thermal conductance fades out distinctly. These results suggest an alternative route for distinguishing the components of pairing states in topological-insulator-based superconducting hybrid structures.

  13. Superaging and Subaging Phenomena in a Nonequilibrium Critical Behavior of the Structurally Disordered Two-Dimensional XY Model

    NASA Astrophysics Data System (ADS)

    Prudnikov, V. V.; Prudnikov, P. V.; Popov, I. S.

    2018-03-01

    A Monte Carlo numerical simulation of the specific features of nonequilibrium critical behavior is carried out for the two-dimensional structurally disordered XY model during its evolution from a low-temperature initial state. On the basis of the analysis of the two-time dependence of autocorrelation functions and dynamic susceptibility for systems with spin concentrations of p = 1.0, 0.9, and 0.6, aging phenomena characterized by a slowing down of the relaxation system with increasing waiting time and the violation of the fluctuation-dissipation theorem (FDT) are revealed. The values of the universal limiting fluctuation-dissipation ratio (FDR) are obtained for the systems considered. As a result of the analysis of the two-time scaling dependence for spin-spin and connected spin autocorrelation functions, it is found that structural defects lead to subaging phenomena in the behavior of the spin-spin autocorrelation function and superaging phenomena in the behavior of the connected spin autocorrelation function.

  14. Probing the Impact of Solvation on Photoexcited Spin Crossover Complexes with High-Precision X-ray Transient Absorption Spectroscopy

    DOE PAGES

    Liu, Cunming; Zhang, Jianxin; Lawson Daku, Latevi M.; ...

    2017-11-10

    Investigating the photoinduced electronic and structural response of bistable molecular building blocks incorporating transition metals in solution phase constitutes a necessary stepping stone for steering their properties towards applications and perfomance optimizations. Here, this paper presents a detailed X-ray transient absorption (XTA) spectroscopy study of a prototypical spin crossover (SCO) complex [Fe II(mbpy) 3] 2+ (where mbpy=4,4’-dimethyl-2,2’-bipyridine) with a [Fe IIN 6] first coordination shell in water (H 2O) and acetonitrile (CH 3CN). The unprecedented data quality of the XTA spectra together with the direct fitting of the difference spectra in k space using a large number of scattering pathsmore » enables resolving the subtle difference in the photoexcited structures of an Fe II complex in two solvents for the first time. Also, compared to the low spin (LS) 1A 1 state, the average Fe-N bond elongations for the photoinduced high spin (HS) 5T 2 state are found to be 0.181 ± 0.003 Å in H 2O and 0.199 ± 0.003 Å in CH 3CN. This difference in structural response is attributed to ligand-solvent interactions that are stronger in H 2O than in CH 3CN for the HS excited state. Our studies demonstrate that, although the metal center of [Fe II(mbpy) 3] 2+ could have been expected to be rather shielded by the three bidentate ligands with quasi-octahedral-coordination, the ligand field strength in the HS excited state is nevertheless indirectly affected by solvation that modifies the charge distribution within the Fe-N covalent bonds. More generally, this work highlights the importance of including solvation effects in order to develop a generalized understanding of the spin-state switching at the atomic level.« less

  15. Spin and charge ordering in organic conductors investigated by electron spin resonance

    NASA Astrophysics Data System (ADS)

    Tokumoto, Takahisa D.

    This dissertation presents systematic studies on ordered states of organic conductors investigated mainly by Electron Spin Resonance (ESR). First, we describe an introduction to organic conductors. Organic conductors are based on conducting layers of highly planar donor molecules, separated by insulating layers of acceptors. The donor arrangements in the conducting layers determine the three simple parameters, transfer integral t between the donor molecules, onsite Coulomb interaction U and next neighboring Coulomb interaction V. Depending on the values of the above three parameters, a variety of ground states is realized and hence the organic conductors has become a main stream of condensed matter physics. Among many ground states, the main focus is on magnetic orders in this dissertation. Therefore we have employed ESR to probe local magnetic structures. And we cover a basic theory of ESR in paramagnetic/antiferromagnetically ordered states and the experimental realizations. Next, after an introduction to a system with an exchange interaction between d magnetic moments embedded at acceptor sites and pi spins at donor molecules is given, we discuss the effectiveness of systematic studies on isostructural magnetic and non-magnetic acceptor based organic conductors. Then, we go over one of the "exchange coupled" materials, beta-(BDA-TTP)2MCl 4 (M=Fe3+,Ga3+). We examine the origins of the Metal-Insulator transition and the long range antiferromangetic order in the magnetic acceptor based material, where we found the critical importance of the quantum fluctuations of pi spins. Finally, we delineate the magnetic order of alternating easy axes of a class of an organic conductor, tau-(P-(S,S)-DMEDT)2(AuBr2) 1+y, at low temperature/field by ESR. We briefly discuss the origin of this unprecedented magnetic structure in terms of the unstoichiometric ratio of donors to acceptors and the tetragonal symmetry of the unit cell. Then, we report the results of the ultra high field ESR to probe the magnetic structure changes around a hysteretic field induced metal insulator transition.

  16. Orbit-induced localized spin angular momentum in strong focusing of optical vectorial vortex beams

    NASA Astrophysics Data System (ADS)

    Li, Manman; Cai, Yanan; Yan, Shaohui; Liang, Yansheng; Zhang, Peng; Yao, Baoli

    2018-05-01

    Light beams may carry optical spin or orbital angular momentum, or both. The spin and orbital parts manifest themselves by the ellipticity of the state of polarization and the vortex structure of phase of light beams, separately. Optical spin and orbit interaction, arising from the interaction between the polarization and the spatial structure of light beams, has attracted enormous interest recently. The optical spin-to-orbital angular momentum conversion under strong focusing is well known, while the converse process, orbital-to-spin conversion, has not been reported so far. In this paper, we predict in theory that the orbital angular momentum can induce a localized spin angular momentum in strong focusing of a spin-free azimuthal polarization vortex beam. This localized longitudinal spin of the focused field can drive the trapped particle to spin around its own axis. This investigation provides a new degree of freedom for spinning particles by using a vortex phase, which may have considerable potentials in optical spin and orbit interaction, light-beam shaping, or optical manipulation.

  17. Enhancing current-induced torques by abutting additional spin polarizer layer to nonmagnetic metal layer

    NASA Astrophysics Data System (ADS)

    Go, Gyungchoon; Lee, Kyung-Jin; Kim, Young Keun

    2017-04-01

    Recently, the switching of a perpendicularly magnetized ferromagnet (FM) by injecting an in-plane current into an attached non-magnet (NM) has become of emerging technological interest. This magnetization switching is attributed to the spin-orbit torque (SOT) originating from the strong spin-orbit coupling of the NM layer. However, the switching efficiency of the NM/FM structure itself may be insufficient for practical use, as for example, in spin transfer torque (STT)-based magnetic random access memory (MRAM) devices. Here we investigate spin torque in an NM/FM structure with an additional spin polarizer (SP) layer abutted to the NM layer. In addition to the SOT contribution, a spin-polarized current from the SP layer creates an extra spin chemical potential difference at the NM/FM interface and gives rise to a STT on the FM layer. We show that, using typical parameters including device width, thickness, spin diffusion length, and the spin Hall angle, the spin torque from the SP layer can be much larger than that from the spin Hall effect (SHE) of the NM.

  18. Strong competition between orbital ordering and itinerancy in a frustrated spinel vanadate

    DOE PAGES

    Ma, Jie; Lee, Jun Hee; Hahn, Steven E.; ...

    2015-01-26

    In this study, the crossover from localized to itinerant electron regimes in the geometrically frustrated spinel system Mn 1-xCo xV 2O 4 is explored by neutron-scattering measurements, first-principles calculations, and spin models. At low Co doping, the orbital ordering (OO) of the localized V 3+ spins suppresses magnetic frustration by triggering a tetragonal distortion. At high Co doping levels, however, electronic itinerancy melts the OO and lessens the structural and magnetic anisotropies, thus increasing the amount of geometric frustration for the V-site pyrochlore lattice. Contrary to the predicted paramagentism induced by chemical pressure, the measured noncollinear spin states in themore » Co-rich region of the phase diagram provide a unique platform where localized spins and electronic itinerancy compete in a geometrically frustrated spinel.« less

  19. Bioactivity of cellulose acetate/hydroxyapatite nanoparticle composite fiber by an electro-spinning process.

    PubMed

    Kwak, Dae Hyun; Lee, Eun Ju; Kim, Deug Joong

    2014-11-01

    Hydroxyapatite/cellulose acetate composite webs were fabricated by an electro-spinning process. This electro-spinning process makes it possible to fabricate complex three-dimensional shapes. Nano fibrous web consisting of cellulose acetate and hydroxyapatite was produced from their mixture solution by using an electro-spinning process under high voltage. The surface of the electro-spun fiber was modified by a plasma and alkaline solution in order to increase its bioactivity. The structure, morphology and properties of the electro-spun fibers were investigated and an in-vitro bioactivity test was evaluated in simulated body fluid (SBF). Bioactivity of the electro-spun web was enhanced with the filler concentration and surface treatment. The surface changes of electro-spun fibers modified by plasma and alkaline solution were investigated by FT-IR (Fourier Transform Infrared Spectroscopy) and XPS (X-ray Photoelectron Spectroscopy).

  20. Persistence of collective behavior at high spin in the N = 88 nucleus Tb 153

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartley, D. J.; Riley, M. A.; Wang, X.

    Excited states in the N = 88 nucleus Tb-153 were observed up to spin similar to 40 in an experiment utilizing the Gammasphere array. The Tb-153 states were populated in a weak alpha 4n evaporation channel of the Cl-37 + Sn-124 reaction. Two previously known sequences were extended to higher spins, and a new decoupled structure was identified. The pi h(11/2) band was observed in the spin region where other N = 88 isotopes exhibit effects of prolate to oblate shape changes leading to band termination along the yrast line, whereas Tb-153 displays a persistent collective behavior. However, minor perturbationsmore » of the very highest state in both signatures of this h(11/2) band are observed, which perhaps signal the start of the transition towards band termination.« less

  1. Disordered Route to the Coulomb Quantum Spin Liquid: Random Transverse Fields on Spin Ice in Pr 2 Zr 2 O 7

    DOE PAGES

    Wen, J. -J.; Koohpayeh, S. M.; Ross, K. A.; ...

    2017-03-08

    Inelastic neutron scattering reveals a broad continuum of excitations in Pr 2 Zr 2 O 7 , the temperature and magnetic field dependence of which indicate a continuous distribution of quenched transverse fields ( Δ ) acting on the non-Kramers Pr 3 + crystal field ground state doublets. Spin-ice correlations are apparent within 0.2 meV of the Zeeman energy. In a random phase approximation an excellent account of the data is provided and contains a transverse field distribution ρ ( Δ ) ∝ ( Δ 2 + Γ 2 ) - 1 , where Γ = 0.27 ( 1 )more » meV . Established during high temperature synthesis due to an underlying structural instability, it appears disorder in Pr 2 Zr 2 O 7 actually induces a quantum spin liquid.« less

  2. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic.

    PubMed

    Lovchinsky, I; Sushkov, A O; Urbach, E; de Leon, N P; Choi, S; De Greve, K; Evans, R; Gertner, R; Bersin, E; Müller, C; McGuinness, L; Jelezko, F; Walsworth, R L; Park, H; Lukin, M D

    2016-02-19

    Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition. Copyright © 2016, American Association for the Advancement of Science.

  3. Tuning the interfacial charge, orbital, and spin polarization properties in La0.67Sr0.33MnO3/La1-xSrxMnO3 bilayers

    NASA Astrophysics Data System (ADS)

    Carreira, Santiago J.; Aguirre, Myriam H.; Briatico, Javier; Weschke, Eugen; Steren, Laura B.

    2018-01-01

    The possibility of controlling the interfacial properties of artificial oxide heterostructures is still attracting researchers in the field of materials engineering. Here, we used surface sensitive techniques and high-resolution transmission electron microscopy to investigate the evolution of the surface spin-polarization and lattice strains across the interfaces between La0.66Sr0.33MnO3 thin films and low-doped manganites as capping layers. We have been able to fine tune the interfacial spin-polarization by changing the capping layer thickness and composition. The spin-polarization was found to be the highest at a critical capping thickness that depends on the Sr doping. We explain the non-trivial magnetic profile by the combined effect of two mechanisms: On the one hand, the extra carriers supplied by the low-doped manganites that tend to compensate the overdoped interface, favouring locally a ferromagnetic double-exchange coupling. On the other hand, the evolution from a tensile-strained structure of the inner layers to a compressed structure at the surface that changes gradually the orbital occupation and hybridization of the 3d-Mn orbitals, being detrimental for the spin polarization. The finding of an intrinsic spin-polarization at the A-site cation observed in x-ray magnetic circular dichroism (XMCD) measurements also reveals the existence of a complex magnetic configuration at the interface, different from the magnetic phases observed at the inner layers.

  4. Correlation Effects and Hidden Spin-Orbit Entangled Electronic Order in Parent and Electron-Doped Iridates Sr2 IrO4

    NASA Astrophysics Data System (ADS)

    Zhou, Sen; Jiang, Kun; Chen, Hua; Wang, Ziqiang

    2017-10-01

    Analogs of the high-Tc cuprates have been long sought after in transition metal oxides. Because of the strong spin-orbit coupling, the 5 d perovskite iridates Sr2 IrO4 exhibit a low-energy electronic structure remarkably similar to the cuprates. Whether a superconducting state exists as in the cuprates requires understanding the correlated spin-orbit entangled electronic states. Recent experiments discovered hidden order in the parent and electron-doped iridates, some with striking analogies to the cuprates, including Fermi surface pockets, Fermi arcs, and pseudogap. Here, we study the correlation and disorder effects in a five-orbital model derived from the band theory. We find that the experimental observations are consistent with a d -wave spin-orbit density wave order that breaks the symmetry of a joint twofold spin-orbital rotation followed by a lattice translation. There is a Berry phase and a plaquette spin flux due to spin procession as electrons hop between Ir atoms, akin to the intersite spin-orbit coupling in quantum spin Hall insulators. The associated staggered circulating Jeff=1 /2 spin current can be probed by advanced techniques of spin-current detection in spintronics. This electronic order can emerge spontaneously from the intersite Coulomb interactions between the spatially extended iridium 5 d orbitals, turning the metallic state into an electron-doped quasi-2D Dirac semimetal with important implications on the possible superconducting state suggested by recent experiments.

  5. Spectroscopic and magnetic properties of Fe2+ (3d6; S = 2) ions in Fe(NH4)2(SO4)2·6H2O - Modeling zero-field splitting and Zeeman electronic parameters by microscopic spin Hamiltonian approach

    NASA Astrophysics Data System (ADS)

    Zając, Magdalena; Rudowicz, Czesław; Ohta, Hitoshi; Sakurai, Takahiro

    2018-03-01

    Utilizing the package MSH/VBA, based on the microscopic spin Hamiltonian (MSH) approach, spectroscopic and magnetic properties of Fe2+ (3d6; S = 2) ions at (nearly) orthorhombic sites in Fe(NH4)2(SO4)2·6H2O (FASH) are modeled. The zero-field splitting (ZFS) parameters and the Zeeman electronic (Ze) factors are predicted for wide ranges of values of the microscopic parameters, i.e. the spin-orbit (λ), spin-spin (ρ) coupling constants, and the crystal-field (ligand-field) energy levels (Δi) within the 5D multiplet. This enables to consider the dependence of the ZFS parameters bkq (in the Stevens notation), or the conventional ones (e.g., D and E), and the Zeeman factors gi on λ, ρ, and Δi. By matching the theoretical SH parameters and the experimental ones measured by electron magnetic resonance (EMR), the values of λ, ρ, and Δi best describing Fe2+ ions in FASH are determined. The novel aspect is prediction of the fourth-rank ZFS parameters and the ρ(spin-spin)-related contributions, not considered in previous studies. The higher-order contributions to the second- and fourth-rank ZFSPs are found significant. The MSH predictions provide guidance for high-magnetic field and high-frequency EMR (HMF-EMR) measurements and enable assessment of suitability of FASH for application as high-pressure probes for HMF-EMR studies. The method employed here and the present results may be also useful for other structurally related Fe2+ (S = 2) systems.

  6. Modification of Magnetic Nanocontact Structure by a Bias-Voltage-Induced Stress and Its Influence on Magnetoresistance Effect in TaOx Nano-Oxide Layer Spin Valve

    NASA Astrophysics Data System (ADS)

    Miyake, Kousaku; Saki, Yosinobu; Suzuki, Ayako; Kawasaki, Shohei; Doi, Masaaki; Sahashi, Masashi

    2012-06-01

    A magnetic nanocontact spin valve (NCSV) was fabricated by inserting a TaOx nano-oxide layer (NOL) as the spacer layer. Current-perpendicular-to-film-plane (CPP) measurements revealed that the SV had a positive magnetoresistance (MR) ratio. When a high bias voltage was applied to the SV, the fine structure of the NOL changed i.e., the resistance and MR ratio of the device changed irreversibly. The change in device characteristics is attributed to a proportional change in the number of nonmagnetoresistive and magnetoresistive conductive channels in the SV upon high bias voltage application. The decrease in MR ratio accompanied the disappearance of the magnetic nanocontact, suggesting that the positive MR effect was partially due to the presence of magnetic nanocontacts.

  7. Fabrication of self-assembled photonic-crystal structures by centrifugation and spin coating

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Schneider, Garrett J.; Wetzel, Eric D.; Prather, Dennis W.

    2003-11-01

    We have developed a simple, low-cost process for the fabrication of high-quality three-dimensional artificial-opal and inverse-opal photonic crystals. The process is based on the self-assembly of a template from a uniform suspension of polystyrene microspheres, which is sintered for added strength and subsequently back-filled with high-index material. The template formation is assisted by a combination of centrifugation and spin-annealing, which requires relatively short process times and inexpensive laboratory equipment. The process has been used to fabricate polycrystalline photonic crystals with photonic stop gaps in the mid-IR portion of the spectrum. Details of the fabrication process and fabricated samples will be presented. In addition, Fourier-transform IR reflection spectroscopy has been used to characterize the samples; the results are shown to be in excellent agreement with band structure diffraction calculations.

  8. Biaxial stress driven tetragonal symmetry breaking and high-temperature ferromagnetic semiconductor from half-metallic CrO2

    NASA Astrophysics Data System (ADS)

    Xiao, Xiang-Bo; Liu, Bang-Gui

    2018-03-01

    It is highly desirable to combine the full spin polarization of carriers with modern semiconductor technology for spintronic applications. For this purpose, one needs good crystalline ferromagnetic (or ferrimagnetic) semiconductors with high Curie temperatures. Rutile CrO2 is a half-metallic spintronic material with Curie temperature 394 K and can have nearly full spin polarization at room temperature. Here, we find through first-principles investigation that when a biaxial compressive stress is applied on rutile CrO2, the density of states at the Fermi level decreases with the in-plane compressive strain, there is a structural phase transition to an orthorhombic phase at the strain of -5.6 % , and then appears an electronic phase transition to a semiconductor phase at -6.1 % . Further analysis shows that this structural transition, accompanying the tetragonal symmetry breaking, is induced by the stress-driven distortion and rotation of the oxygen octahedron of Cr, and the half-metal-semiconductor transition originates from the enhancement of the crystal field splitting due to the structural change. Importantly, our systematic total-energy comparison indicates the ferromagnetic Curie temperature remains almost independent of the strain, near 400 K. This biaxial stress can be realized by applying biaxial pressure or growing the CrO2 epitaxially on appropriate substrates. These results should be useful for realizing full (100%) spin polarization of controllable carriers as one uses in modern semiconductor technology.

  9. The determination of the in situ structure by nuclear spin contrast variation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuhrmann, H.B.; Nierhaus, K.H.

    1994-12-31

    Polarized neutron scattering from polarized nuclear spins in hydrogenous substances opens a new way of contrast variation. The enhanced contrast due to proton spin polarization was used for the in situ structure determination of tRNA of the functional complex of the E.coli ribosome.

  10. MBE growth and FMR, BLS and MOKE studies of exchange coupling in Fe whisker/Cr/Fe(001) and in Fe/Cu/Fe(001) 'loose spin' structures

    NASA Astrophysics Data System (ADS)

    Heinrich, B.; From, M.; Cochran, J. F.; Kowalewski, M.; Atlan, D.; Celinski, Z.; Myrtle, K.

    1995-02-01

    The exchange coupling has been studied in structures which consist of two ferromagnetic layers separated by non-ferromagnetic spacers (trilayers). The exchange coupling was measured using FMR and BLS techniques in the temperature range 77-400 K. Two systems were investigated: (a) Fe whisker/Cr/Fe(001) and (b) Fe/Cr/Fe(001). The oscillatory thickness dependence of the exchange coupling through a spin-density wave Cr spacer will be discussed and compared with recent data obtained by other groups. Cu interlayers were deposited either in a pure form, or a single monolayer of {Cu}/{Fe} alloy ('loose spins') was inserted between two pure bcc Cu(001) layers. Several such 'loose spin' structures were engineered to test the behavior of 'loose spin' structures. It was found that the presence of Fe impurity atoms has a strong tendency to decrease the direct bilinear exchange coupling. The contribution of 'loose spins' to the exchange coupling can be made significant, and even dominant, by a suitable choice of the RKKY coupling energy between the 'loose spins' and the surrounding ferromagnetic layers.

  11. Spin-dependent dwell times of electron tunneling through double- and triple-barrier structures

    NASA Astrophysics Data System (ADS)

    Erić, Marko; Radovanović, Jelena; Milanović, Vitomir; Ikonić, Zoran; Indjin, Dragan

    2008-04-01

    We have analyzed the influence of Dresselhaus and Rashba spin-orbit couplings (caused by the bulk inversion asymmetry and the structural asymmetry, respectively) on electron tunneling through a double- and triple-barrier structures, with and without an externally applied electric field. The results indicate that the degree of structural asymmetry and external electric field can greatly affect the dwell times of electrons with opposite spin orientation. This opens up the possibilities of obtaining efficient spin separation in the time domain. The material system of choice is AlxGa1-xSb, and the presented model takes into account the position dependence of material parameters, as well as the effects of band nonparabolicity.

  12. Roughness-Induced Magnetic Domain in Fe Thin Films on Land-and-Groove Structures Studied by Spin-Polarized Secondary Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Ueda, Shigenori; Iwasaki, Yoh; Ushioda, Sukekatsu

    2003-10-01

    The magnetic domain structures of Fe thin films on two-dimensionally arranged land-and-groove structures have been studied by spin-polarized secondary electron microscopy (SP-SEM) under an applied dc field. The coercive force on the land area was found to be higher than that on the groove area under magnetization reversal. The surface roughness measured by atomic force microscopy (AFM) was greater on the land area than on the groove area. The roughness-induced high-coercivity on the land prevented the reversed magnetic domain on the groove from spreading over the land in the initial magnetization reversal. This result indicates that surface roughness is an important factor in domain size control of thin magnetic films.

  13. Simulating the Effect of Contact Atomic Structure on the Spin-Dependent Transport Properties of Gold Nanowires

    NASA Astrophysics Data System (ADS)

    Ansarino, Masoud; Ravan, Bahram Abedi

    Some experimental research works report on the superb magnetoresistance properties of magnetically contacted gold nanowires. With the intention of trying to understand the spin-dependent transport mechanism of these structures, in this work we have used first-principles density functional theory methods to investigate effects of interface structure on the spintronic characteristics of Au nanowires. Monatomic chains of gold are sandwiched between two ferromagnetic electrodes of Fe and by substituting the interfacial Fe atoms with some other transition metal elements (including Cr, Mn, Co and Ni) the occurrence of possible enhancement in the electronic conductance and magnetoresistance characteristics of the device are investigated. It is observed that replacing the interfacial atoms with Ni raises the junction’s magnetoresistance ratio to as high as 2000%.

  14. Production cross sections for Lee-Wick massive electromagnetic bosons and for spin-zero and spin-one W bosons at high energies.

    NASA Technical Reports Server (NTRS)

    Linsker, R.

    1972-01-01

    Production cross sections for three types of hypothetical particles are calculated in the presented paper. Several (Z, Z') cases were studied corresponding to elastic scattering off protons and neutrons (either free or embedded within a Fermi sea), coherent scattering off a nucleus, and inelastic scattering off a proton (in which case Z' denotes a nucleon resonance or hadronic system in the continuum). Detailed structure-function data are used to improve the accuracy of the inelastic scattering calculation. Results of calculations are given for beam energies between 50 and 10,000 GeV, and masses between 5 and 40 GeV for the massive Lee-Wick spin-1 boson. Cross sections were computed for resonant and semiweak processes. The production cross section of spin-zero weak intermediate bosons was found to be at least one order of magnitude smaller than for spin-1 weak bosons in nearly all regions of interest. The production cross section of spin-zero weak intermediate bosons for inelastic scattering off protons compares with that for elastic scattering in the regions of interest. In the case of massive spin-1 bosons and spin-1 weak intermediates, the main contribution to total production cross section off protons is elastic.

  15. Density and spin modes in imbalanced normal Fermi gases from collisionless to hydrodynamic regime

    NASA Astrophysics Data System (ADS)

    Narushima, Masato; Watabe, Shohei; Nikuni, Tetsuro

    2018-03-01

    We study the mass- and population-imbalance effect on density (in-phase) and spin (out-of-phase) collective modes in a two-component normal Fermi gas. By calculating the eigenmodes of the linearized Boltzmann equation as well as the density/spin dynamic structure factor, we show that mass- and population-imbalance effects offer a variety of collective mode crossover behaviors from collisionless to hydrodynamic regimes. The mass-imbalance effect shifts the crossover regime to the higher-temperature, and a significant peak of the spin dynamic structure factor emerges only in the collisionless regime. This is in contrast to the case of mass- and population-balanced normal Fermi gases, where the spin dynamic response is always absent. Although the population-imbalance effect does not shift the crossover regime, the spin dynamic structure factor survives both in the collisionless and hydrodynamic regimes.

  16. Spintronics Based on Topological Insulators

    NASA Astrophysics Data System (ADS)

    Fan, Yabin; Wang, Kang L.

    2016-10-01

    Spintronics using topological insulators (TIs) as strong spin-orbit coupling (SOC) materials have emerged and shown rapid progress in the past few years. Different from traditional heavy metals, TIs exhibit very strong SOC and nontrivial topological surface states that originate in the bulk band topology order, which can provide very efficient means to manipulate adjacent magnetic materials when passing a charge current through them. In this paper, we review the recent progress in the TI-based magnetic spintronics research field. In particular, we focus on the spin-orbit torque (SOT)-induced magnetization switching in the magnetic TI structures, spin-torque ferromagnetic resonance (ST-FMR) measurements in the TI/ferromagnet structures, spin pumping and spin injection effects in the TI/magnet structures, as well as the electrical detection of the surface spin-polarized current in TIs. Finally, we discuss the challenges and opportunities in the TI-based spintronics field and its potential applications in ultralow power dissipation spintronic memory and logic devices.

  17. Investigation of 124Xe nuclear structure with the 8Pi spectrometer at TRIUMF-ISAC

    NASA Astrophysics Data System (ADS)

    Radich, Allison; Garrett, P.; Jigmeddorj, B.; Michetti-Wilson, J.; Diaz Varela, A.; Hadinia, B.; Bianco, L.; Wong, J.; Chagnon-Lessard, S.; Dunlop, R.; Finlay, P.; Laffoley, A.; Leach, K. G.; Rand, E.; Sumithrarachchi, C.; Svennson, C. E.; Wood, J. L.; Yates, S. W.; Andreoiu, C.; Starosta, K.; Cross, D.; Garnsworthy, A. B.; Hackman, G.; Ball, G.; Triambak, S.

    2013-10-01

    The 124Xe nucleus has been thought to obey O(6) symmetry but a recent Coulomb excitation study has found that while O(5) may be preserved, O(6) appears to be badly broken. To further characterize the structure of this nucleus, a beta-decay experiment was performed at the TRIUMF-ISAC facility. A beam of radioactive 124Cs at a rate of 9.8 × 107 ions/s was implanted at the center of the 8Pi spectrometer where it underwent β + /EC decay into stable 124Xe. High-statistics gamma-gamma coincidence measurements have been analyzed to add to the level scheme of 124Xe, which has been extended considerably. The high statistics data set has revealed a new decay branch from a 124Cs high-spin isomer as well as several very-weak transitions between low-spin states in 124Xe. Branching ratios and B(E2) transition strengths have been calculated for the updated level scheme. The results will be important in determining collective properties and nuclear structure of the 124Xe.

  18. Anomalies of the electronic structure and physical properties of rare-earth cobaltites near spin crossover

    NASA Astrophysics Data System (ADS)

    Dudnikov, V. A.; Orlov, Yu. S.; Kazak, N. V.; Platunov, M. S.; Ovchinnikov, S. G.

    2016-10-01

    The features of the characteristics of LnCoO3 cobaltites, where Ln is a rare-earth element, are discussed. Both experiment and theory demonstrate that their essentials are related to the low-spin ground state of cobalt ions. The thermally induced occupation of the excited high-spin state gives rise to peaks in the magnetic susceptibility, specific heat, and thermal expansion, as well as to a smooth insulator-metal transition. The analysis is based both on the data from the current literature concerning LaCoO3 and in many aspects on our own studies of GdCoO3 and La1- x Gd x CoO3 solid solutions.

  19. Alteration of high and low spin equilibrium by a single mutation of amino acid 209 in mouse cytochromes P450.

    PubMed

    Iwasaki, M; Juvonen, R; Lindberg, R; Negishi, M

    1991-02-25

    The identities of the amino acid at position 209 are most critical in determining specific coumarin 7- and steroid 15 alpha-hydroxylase activity in P450coh and P450(15)alpha, respectively. This system, therefore, provides us with an excellent model to study the structural basis for P450 specificity as a monooxygenase. We expressed in Saccharomyces cerevisiae a series of the mutated P450s in which residue 209 was substituted with the various amino acids and characterized the spectral property and hydroxylase activity of these mutated P450s. The positioning of a hydrophobic residue including Phe, Leu, and Val at position 209 resulted in shifting the P450 to the high-spin state, while a charged amino acid such as Lys or Asp produced the low-spin form. Moreover, a P450 with Asn or Gly in this position exhibited spectra indicating a mixture of the high- and low-spin forms. This spin alteration, depending upon the hydrophobicity and size of residue at position 209, indicates that this position is likely to reside close to the sixth axial ligand on the distal surface of the heme in these P450s. This proximity of residue 209 to the ligand may explain the critical role of this residue in determining the hydroxylase specificity and activity of these P450s.

  20. Controlling the spins angular momentum in ferromagnets with sequences of picosecond acoustic pulses.

    PubMed

    Kim, Ji-Wan; Vomir, Mircea; Bigot, Jean-Yves

    2015-02-17

    Controlling the angular momentum of spins with very short external perturbations is a key issue in modern magnetism. For example it allows manipulating the magnetization for recording purposes or for inducing high frequency spin torque oscillations. Towards that purpose it is essential to modify and control the angular momentum of the magnetization which precesses around the resultant effective magnetic field. That can be achieved with very short external magnetic field pulses or using intrinsically coupled magnetic structures, resulting in a transfer of spin torque. Here we show that using picosecond acoustic pulses is a versatile and efficient way of controlling the spin angular momentum in ferromagnets. Two or three acoustic pulses, generated by femtosecond laser pulses, allow suppressing or enhancing the magnetic precession at any arbitrary time by precisely controlling the delays and amplitudes of the optical pulses. A formal analogy with a two dimensional pendulum allows us explaining the complex trajectory of the magnetic vector perturbed by the acoustic pulses.

  1. ESR modes in a Strong-Leg Ladder in the Tomonaga-Luttinger Liquid Phase

    NASA Astrophysics Data System (ADS)

    Zvyagin, S.; Ozerov, M.; Maksymenko, M.; Wosnitza, J.; Honecker, A.; Landee, C. P.; Turnbull, M.; Furuya, S. C.; Giamarchi, T.

    Magnetic excitations in the strong-leg quantum spin ladder compound (C7H10N)2CuBr4 (known as DIMPY) in the field-induced Tomonaga-Luttinger spin liquid phase are studied by means of high-field electron spin resonance (ESR) spectroscopy. The presence of a gapped ESR mode with unusual non-linear frequency-field dependence is revealed experimentally. Using a combination of analytic and exact diagonalization methods, we compute the dynamical structure factor and identify this mode with longitudinal excitations in the antisymmetric channel. We argue that these excitations constitute a fingerprint of the spin dynamics in a strong-leg spin-1/2 Heisenberg antiferromagnetic ladder and owe its ESR observability to the uniform Dzyaloshinskii-Moriya interaction. This work was partially supported by the DFG and Helmholtz Gemeinschaft (Germany), Swiss SNF under Division II, and ERC synergy UQUAM project. We acknowledge the support of the HLD at HZDR, member of the European Magnetic Field Laboratory (EMFL).

  2. Dependence of spin pumping and spin transfer torque upon Ni81Fe19 thickness in Ta/Ag /Ni 81Fe19/Ag/Co 2MnGe /Ag /Ta spin-valve structures

    NASA Astrophysics Data System (ADS)

    Durrant, C. J.; Shelford, L. R.; Valkass, R. A. J.; Hicken, R. J.; Figueroa, A. I.; Baker, A. A.; van der Laan, G.; Duffy, L. B.; Shafer, P.; Klewe, C.; Arenholz, E.; Cavill, S. A.; Childress, J. R.; Katine, J. A.

    2017-10-01

    Spin pumping has been studied within Ta / Ag / Ni81Fe19 (0-5 nm) / Ag (6 nm) / Co2MnGe (5 nm) / Ag / Ta large-area spin-valve structures, and the transverse spin current absorption of Ni81Fe19 sink layers of different thicknesses has been explored. In some circumstances, the spin current absorption can be inferred from the modification of the Co2MnGe source layer damping in vector network analyzer ferromagnetic resonance (VNA-FMR) experiments. However, the spin current absorption is more accurately determined from element-specific phase-resolved x-ray ferromagnetic resonance (XFMR) measurements that directly probe the spin transfer torque (STT) acting on the sink layer at the source layer resonance. Comparison with a macrospin model allows the real part of the effective spin mixing conductance to be extracted. We find that spin current absorption in the outer Ta layers has a significant impact, while sink layers with thicknesses of less than 0.6 nm are found to be discontinuous and superparamagnetic at room temperature, and lead to a noticeable increase of the source layer damping. For the thickest 5-nm sink layer, increased spin current absorption is found to coincide with a reduction of the zero frequency FMR linewidth that we attribute to improved interface quality. This study shows that the transverse spin current absorption does not follow a universal dependence upon sink layer thickness but instead the structural quality of the sink layer plays a crucial role.

  3. High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier

    DOE PAGES

    Liu, Jin; Lin, Jung -Fu; Prakapenka, Vitali B.

    2015-01-06

    In this study, knowledge of the physical and chemical properties of candidate deep-carbon carriers such as ferromagnesite [(Mg,Fe)CO 3] at high pressure and temperature of the deep mantle is necessary for our understanding of deep-carbon storage as well as the global carbon cycle of the planet. Previous studies have reported very different scenarios for the (Mg,Fe)CO 3 system at deep-mantle conditions including the chemical dissociation to (Mg,Fe)O+CO 2, the occurrence of the tetrahedrally-coordinated carbonates based on CO 4 structural units, and various high-pressure phase transitions. Here we have studied the phase stability and compressional behavior of (Mg,Fe)CO 3 carbonates upmore » to relevant lower-mantle conditions of approximately 120 GPa and 2400 K. Our experimental results show that the rhombohedral siderite (Phase I) transforms to an orthorhombic phase (Phase II with Pmm2 space group) at approximately 50 GPa and 1400 K. The structural transition is likely driven by the spin transition of iron accompanied by a volume collapse in the Fe-rich (Mg,Fe)CO 3 phases; the spin transition stabilizes the high-pressure phase II at much lower pressure conditions than its Mg-rich counterpart. It is conceivable that the low-spin ferromagnesite phase II becomes a major deep-carbon carrier at the deeper parts of the lower mantle below 1900 km in depth.« less

  4. Reduced interface spin polarization by antiferromagnetically coupled Mn segregated to the C o2MnSi /GaAs (001) interface

    NASA Astrophysics Data System (ADS)

    Rath, Ashutosh; Sivakumar, Chockalingam; Sun, C.; Patel, Sahil J.; Jeong, Jong Seok; Feng, J.; Stecklein, G.; Crowell, Paul A.; Palmstrøm, Chris J.; Butler, William H.; Voyles, Paul M.

    2018-01-01

    We have investigated the interfacial structure and its correlation with the calculated spin polarization in C o2MnSi /GaAs(001) lateral spin valves. C o2MnSi (CMS) films were grown on As-terminated c(4 ×4 ) GaAs(100) by molecular beam epitaxy using different first atomic layers: MnSi, Co, and Mn. Atomically resolved Z -contrast scanning transmission electron microscopy (STEM) imaging and electron energy loss spectroscopy (EELS) were used to develop atomic structural models of the CMS/GaAs interfaces that were used as inputs for first-principles calculations to understand the magnetic and electronic properties of the interface. First-principles structures were relaxed and then validated by comparing experimental and simulated high-resolution STEM images. STEM-EELS results show that all three films have similar six atomic layer thick, Mn- and As-rich multilayer interfaces. However, the Co-initiated interface contains a M n2As -like layer, which is antiferromagnetic, and which is not present in the other two interfaces. Density functional theory calculations show a higher degree of interface spin polarization in the Mn- and MnSi-initiated cases, compared to the Co-initiated case, although none of the interfaces are half-metallic. The loss of half-metallicity is attributed, at least in part, to the segregation of Mn at the interface, which leads to the formation of interface states. The implications for the performance of lateral spin valves based on these interfaces are discussed briefly.

  5. Spin-dependent tunneling effects in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Gao, Li

    2009-03-01

    It has long been known that current extracted from magnetic electrodes through ultra thin oxide tunnel barriers is spin polarized. This current gives rise to two important properties: tunneling magnetoresistance (TMR) when the tunnel barrier is sandwiched between two thin magnetic electrodes and, spin momentum transfer, which can be used to manipulate the magnetic state of the magnetic electrodes. In the first part of my talk I show how the structure of thin CoFe layers can be made amorphous by simply sandwiching them between two amorphous layers, one of them the tunnel barrier. No glass forming elements are needed. By slightly changing the thickness of these layers or by heating them above their glass transition temperature they become crystalline. Surprisingly, the TMR of the amorphous structure is significantly higher than of its crystalline counterpart. The tunneling anisotropic magnetoresistance, which has complex voltage dependence, is also discussed. In the second part of my talk I discuss the microwave emission spectrum from magnetic tunnel junctions induced by spin torque from spin polarized dc current passed through the device. We show that the spectrum is very sensitive to small variations in device structures, even in those devices which exhibit similarly high TMR (˜120%) and which have similar resistance-area products (˜4-10 φμm^2). We speculate that these variations are due to non-uniform spatial magnetic excitation arising from inhomogeneous current flow through the tunnel barrier. [In collaboration with Xin Jiang, M. Hayashi, Rai Moriya, Brian Hughes, Teya Topuria, Phil Rice, and Stuart S.P. Parkin

  6. Spin crossover in liquid Fe2SiO4 at high pressures: an ab initio Molecular Dynamics study

    NASA Astrophysics Data System (ADS)

    Munoz Ramo, D.; Stixrude, L. P.

    2010-12-01

    Liquid iron silicate (Fe2SiO4) is an important component of natural silicate liquids appearing in Earth’s interior. The effect of iron in the properties of these melts is a crucial issue, as it displays a high-spin to low-spin transition at high pressures which is accompanied by volume reduction and changes in the optical absorption spectrum. This phenomenon has a major influence on properties like the buoyancy or the thermal conductivity of the melt, and ultimately on the chemical and thermal evolution of our planet. Computer simulations using ab initio methods have proven to be a powerful approach to the study of liquid silicate systems[1,2], although not yet including Fe. In this paper, we report ab initio molecular dynamics studies of liquid iron silicate at high pressure (up to 300 GPa) and high temperatures (from 3000K to 6000K) that allow us to predict different properties of the system. We use mainly the GGA density functional for the calculation of the electronic structure. We also perform simulations with the GGA+U formalism to estimate the impact of strong electron correlation effects in the properties of the system at high pressures. The spin-polarized formalism is also used in order to keep track of the evolution of the iron magnetic moments in the system. By means of these simulations we predict the short and medium-range structure and thermodynamic properties of the liquid. We compute the theoretical Hugoniot for the system and find very good agreement between the GGA results and the equation of state values obtained from shock experiments [3], while the GGA+U results overestimate the Hugoniot curve at high pressures. Density crossover with the solid is obtained at about 110 GPa at 3000 K. Our calculations show that the spin crossover in this system takes place at a wide pressure interval, dependent on temperature. At 3000K, the spin transition starts at around 10 GPa and finishes at pressures around 250 Gpa. Increase of the temperature to 6000K reduces the interval of the transition to 180 GPa. [1] N. P. de Koker, L. Stixrude, B. B. Karki, Geochim Cosmochim Acta 2008, 72, 1427. [2] B. B. Karki, D. Bhattarai, L. Stixrude, Phys. Rev. B 2007, 76, 104205. [3] G. Q. Chen, T. J. Ahrens, E. M. Stolper, Phys. Earth Planet. Inter. 2002, 134, 35.

  7. Structural Investigation of Cesium Lead Halide Perovskites for High-Efficiency Quantum Dot Light-Emitting Diodes.

    PubMed

    Le, Quyet Van; Kim, Jong Beom; Kim, Soo Young; Lee, Byeongdu; Lee, Dong Ryeol

    2017-09-07

    We have investigated the effect of reaction temperature of hot-injection method on the structural properties of CsPbX 3 (X: Br, I, Cl) perovskite nanocrystals (NCs) using small- and wide-angle X-ray scattering. It is confirmed that the size of the NCs decreased as the reaction temperature decreased, resulting in stronger quantum confinement. The cubic-phase perovskite NCs formed despite the fact that the reaction temperatures increased from 140 to 180 °C; however, monodispersive NC cubes that are required for densely packing self-assembly film were formed only at lower temperatures. From the X-ray scattering measurements, the spin-coated film from more monodispersive perovskite nanocubes synthesized at lower temperatures resulted in more preferred orientation. This dense-packing perovskite film with preferred orientation yielded efficient light-emitting diode (LED) performance. Thus the dense-packing structure of NC assemblies formed after spin-coating should be considered for high-efficient LEDs based on perovskite quantum dots in addition to quantum confinement effect of the quantum dots.

  8. Spin labeled amino acid nitrosourea derivatives--synthesis and antitumour activity.

    PubMed

    Zheleva, A; Raikov, Z; Ilarionova, M; Todorov, D

    1995-01-01

    The synthesis of three spin labeled derivatives of N-[N'-(chloroethyl)-N'-nitrosocarbamoyl] amino acids is reported. The new nitrosoureas are obtained by condensation of the corresponding N-[N'-(2-chloroethyl)-N'-nitrosocarbamoyl] amino acid with 2,2,6,6-tetramethyl-1-oxyl-4-aminopiperidine using dicyclohexylcarbodiimide. Their chemical structures are confirmed by elemental analysis, IR, MS, and EPR spectroscopy. All newly synthesized compounds showed high antitumour activity against the lymphoid leukemia L1210 in BDF1 mice.

  9. Magnetic x-ray scattering studies of holmium using synchro- tron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, D.; Moncton, D.E.; D'Amico, K.L.

    1985-07-08

    We present the results of magnetic x-ray scattering experiments on the rare-earth metal holmium using synchrotron radiation. Direct high-resolution measurements of the nominally incommensurate magnetic satellite reflections reveal new lock-in behavior which we explain within a simple spin-discommensuration model. As a result of magnetoelastic coupling, the spin-discommensuration array produces additional x-ray diffraction satellites. Their observation further substantiates the model and demonstrates additional advantages of synchrotron radiation for magnetic-structure studies.

  10. Highly Strong and Elastic Graphene Fibres Prepared from Universal Graphene Oxide Precursors

    PubMed Central

    Huang, Guoji; Hou, Chengyi; Shao, Yuanlong; Wang, Hongzhi; Zhang, Qinghong; Li, Yaogang; Zhu, Meifang

    2014-01-01

    Graphene fibres are continuously prepared from universal graphene oxide precursors by a novel hydrogel-assisted spinning method. With assistance of a rolling process, meters of ribbon-like GFs, or GRs with improved conductivity, tensile strength, and a long-range ordered compact layer structure are successfully obtained. Furthermore, we refined our spinning process to obtained elastic GRs with a mixing microstructure and exceptional elasticity, which may provide a platform for electronic skins and wearable electronics, sensors, and energy devices. PMID:24576869

  11. Gravity dual of spin and charge density waves

    NASA Astrophysics Data System (ADS)

    Jokela, Niko; Järvinen, Matti; Lippert, Matthew

    2014-12-01

    At high enough charge density, the homogeneous state of the D3-D7' model is unstable to fluctuations at nonzero momentum. We investigate the end point of this instability, finding a spatially modulated ground state, which is a charge and spin density wave. We analyze the phase structure of the model as a function of chemical potential and magnetic field and find the phase transition from the homogeneous state to be first order, with a second-order critical point at zero magnetic field.

  12. Quasi-two-dimensional spin correlations in the triangular lattice bilayer spin glass LuCoGaO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritsch, Katharina; Ross, Kathyrn A.; Granroth, Garrett E.

    Here we present a single-crystal time-of-flight neutron scattering study of the static and dynamic spin correlations in LuCoGaO 4, a quasi-two-dimensional dilute triangular lattice antiferromagnetic spin-glass material. This system is based on Co 2+ ions that are randomly distributed on triangular bilayers within the YbFe 2O 4 type, hexagonal crystal structure. Antiferromagnetic short-range two-dimensional correlations at wave vectors Q = (1/3,1/3, L) develop within the bilayers at temperatures as high as |Θ CW| ~100 K and extend over roughly five unit cells at temperatures below T g = 19 K. These two-dimensional static correlations are observed as diffuse rods ofmore » neutron scattering intensity along c * and display a continuous spin freezing process in their energy dependence. Aside from exhibiting these typical spin-glass characteristics, this insulating material reveals a novel gapped magnetic resonant spin excitation at ΔE ~12 meV localized around Q = (1 / 3, 1 / 3,L) . The temperature dependence of the spin gap associated with this two-dimensional excitation correlates with the evolution of the static correlations into the spin-glass state ground state. Lastly, we associate it with the effect of the staggered exchange field acting on the S eff = 1/2 Ising-like doublet of the Co 2+ moments.« less

  13. Quasi-two-dimensional spin correlations in the triangular lattice bilayer spin glass LuCoGaO 4

    DOE PAGES

    Fritsch, Katharina; Ross, Kathyrn A.; Granroth, Garrett E.; ...

    2017-09-13

    Here we present a single-crystal time-of-flight neutron scattering study of the static and dynamic spin correlations in LuCoGaO 4, a quasi-two-dimensional dilute triangular lattice antiferromagnetic spin-glass material. This system is based on Co 2+ ions that are randomly distributed on triangular bilayers within the YbFe 2O 4 type, hexagonal crystal structure. Antiferromagnetic short-range two-dimensional correlations at wave vectors Q = (1/3,1/3, L) develop within the bilayers at temperatures as high as |Θ CW| ~100 K and extend over roughly five unit cells at temperatures below T g = 19 K. These two-dimensional static correlations are observed as diffuse rods ofmore » neutron scattering intensity along c * and display a continuous spin freezing process in their energy dependence. Aside from exhibiting these typical spin-glass characteristics, this insulating material reveals a novel gapped magnetic resonant spin excitation at ΔE ~12 meV localized around Q = (1 / 3, 1 / 3,L) . The temperature dependence of the spin gap associated with this two-dimensional excitation correlates with the evolution of the static correlations into the spin-glass state ground state. Lastly, we associate it with the effect of the staggered exchange field acting on the S eff = 1/2 Ising-like doublet of the Co 2+ moments.« less

  14. Strong Electron Correlation in Photoionization of Spin-Orbit Doublets

    NASA Astrophysics Data System (ADS)

    Amusia, M. Ya.; Chernsheva, L. V.; Mnason, S. T.; Msezane, A. Z.; Radojevic, V.

    2002-05-01

    A new and explicitly many-body aspect of the "leveraging" of the spin-orbit interaction is demonstrated, spin-orbit activated interchannel coupling, which can significantly alter the photoionization cross section of a spin-orbit doublet. As an example, using a modified version of the Spin-Polarized Random-Phase-Approximation with Exchange methodology, a recently observed structure in the photoionization of Xe 3d(A. Kivimaki et al, Phys. Rev. A 63), 012716 (2000) has been explained both qualitatively and quantitatively. The structure is entirely due to this new spin-orbit activated interchannel coupling effect, which should be a general feature of inner-shell photoionization. This work was supported by NSF, NASA, DOE and ISTC.

  15. Pediatric ocular trauma caused by recreational drones: two case reports.

    PubMed

    Spitzer, Nicole; Singh, Jasleen K

    2018-03-14

    Drones are increasingly being used by children and adults recreationally and commercially. The propeller blades when spinning at high speeds may cause serious harm to the eye and orbital structures. We report 2 cases of injuries to the eye and orbital structures caused by drones. Copyright © 2018. Published by Elsevier Inc.

  16. Generator Coordinate Method Analysis of Xe and Ba Isotopes

    NASA Astrophysics Data System (ADS)

    Higashiyama, Koji; Yoshinaga, Naotaka; Teruya, Eri

    Nuclear structure of Xe and Ba isotopes is studied in terms of the quantum-number projected generator coordinate method (GCM). The GCM reproduces well the energy levels of high-spin states as well as low-lying states. The structure of the low-lying states is analyzed through the GCM wave functions.

  17. Colloids with high-definition surface structures

    PubMed Central

    Chen, Hsien-Yeh; Rouillard, Jean-Marie; Gulari, Erdogan; Lahann, Joerg

    2007-01-01

    Compared with the well equipped arsenal of surface modification methods for flat surfaces, techniques that are applicable to curved, colloidal surfaces are still in their infancy. This technological gap exists because spin-coating techniques used in traditional photolithographic processes are not applicable to the curved surfaces of spherical objects. By replacing spin-coated photoresist with a vapor-deposited, photodefinable polymer coating, we have now fabricated microstructured colloids with a wide range of surface patterns, including asymmetric and chiral surface structures, that so far were typically reserved for flat substrates. This high-throughput method can yield surface-structured colloidal particles at a rate of ≈107 to 108 particles per operator per day. Equipped with spatially defined binding pockets, microstructured colloids can engage in programmable interactions, which can lead to directed self-assembly. The ability to create a wide range of colloids with both simple and complex surface patterns may contribute to the genesis of previously unknown colloidal structures and may have important technological implications in a range of different applications, including photonic and phononic materials or chemical sensors. PMID:17592149

  18. Rashba-type spin splitting and the electronic structure of ultrathin Pb/MoTe2 heterostructure

    NASA Astrophysics Data System (ADS)

    Du, X.; Wang, Z. Y.; Huang, G. Q.

    2016-11-01

    The spin-polarized band structures of the Pb(111)/MoTe2 heterostructure are studied by the first-principles calculations. Due to strong spin-orbit coupling and space inversion asymmetry, large Rashba spin splitting of electronic bands appears in this hybrid system. The spin splitting is completely out-of-plane and opposite at \\bar{K} and {\\bar{K}}\\prime points. Rashba spin splitting also appears along the in-plane momentum direction around the \\bar{{{Γ }}} point due to the existence of surface potential gradient induced by charge transfer at interface. Furthermore, our calculations show that the spin-polarized bands closely approach the Fermi level in Pb/MoTe2 heterostructure, showing that this heterostructure may be a good candidate in valleytronics or spintronics.

  19. A Mössbauer spectroscopic study of the six-coordinate high-spin ferrous compound (meso-tetraphenylporphinato) bis(tetrahydrofuran) iron(II)

    NASA Astrophysics Data System (ADS)

    Boso, Brian; Lang, George; Reed, Christopher A.

    1983-03-01

    Mössbauer spectra of a polycrystalline form of the six-coordinate high-spin ferrous compound (meso-tetraphenylporphinato) bis(tetrahydrofuran) iron (II) have been recorded over a range of temperatures (4.2-195 K) and magnetic fields (0-6.0 T). Analysis of the spectra using a phenomenological model of the internal magnetic field and using an S=2 spin Hamiltonian, where applicable, yield the sign of Vzz negative, η=0.4, D=6.0 cm-1, E/D=0.1, and Ã*/g*N βN =(-7.2, -7.2, and -24.3 T). These results suggest that the iron experiences an octahedral crystal field, trigonally distorted in the (1, 1, 1) direction, producing a prolate orbital dz2 as the ground state. Crystal field calculations confirm this interpretation by reproducing the spin Hamiltonian parameters listed above. The calculation predicts an orbital doublet 1667 cm-1 above the ground state. Comparisons with deoxyheme proteins and their synthetic analogs suggest some common gross features of the orbital state and structure-related trends in the character of the ground quintet.

  20. Theoretical research of the spin-Hamiltonian parameters for two rhombic W5+ centers in KTiOPO4 (KTP) crystal through a two-mechanism model

    NASA Astrophysics Data System (ADS)

    Mei, Yang; Chen, Bo-Wei; Wei, Chen-Fu; Zheng, Wen-Chen

    2016-09-01

    The high-order perturbation formulas based on the two-mechanism model are employed to calculate the spin-Hamiltonian parameters (g factors gi and hyperfine structure constants Ai, where i=x, y, z) for two approximately rhombic W5+ centers in KTiOPO4 (KTP) crystal. In the model, both the widely-applied crystal-field (CF) mechanism concerning the interactions of CF excited states with the ground state and the generally-neglected charge-transfer (CT) mechanism concerning the interactions of CT excited states with the ground state are included. The calculated results agree with the experimental values, and the signs of constants Ai are suggested. The calculations indicate that (i) for the high valence state dn ions in crystals, the contributions to spin-Hamiltonian parameters should take into account both the CF and CT mechanisms and (ii) the large g-shifts |Δgi | (=|gi-ge |, where ge≈ 2.0023) for W5+ centers in crystals are due to the large spin-orbit parameter of free W5+ ion.

  1. Influence of nano-oxide layer on the giant magnetoresistance and exchange bias of NiMn/Co/Cu/Co spin valve sensors

    NASA Astrophysics Data System (ADS)

    Gupta, Anoop; Mohanan, Senthilnathan; Kinyanjui, Michael; Chuvilin, Andrey; Kaiser, Ute; Herr, Ulrich

    2010-05-01

    NiMn is an interesting material for achieving a high exchange bias in spin valve systems. We investigated the influence of a nano-oxide layer (NOL) inserted in the pinned Co layer on the magnetotransport properties of NiMn/Co/Cu/Co spin valve sensors. The samples were annealed at 350 °C for 10 min to achieve the antiferromagnetic L10 ordered structure of NiMn. The NOL has been characterized by small angle x-ray reflectivity, transmission electron microscopy (TEM), and energy filtered TEM. The inclusion of the NOL leads to an increase in the giant magnetoresistance (GMR) by 20 % indicating a high degree of specular reflection at the NOL. For NOL positions close to the NiMn/Co interface, a decrease in the exchange bias field (Hex) is observed. The best combination of high GMR value and large Hex was found when the NOL was inserted in the center of the pinned Co layer.

  2. Communication: Nuclear quadrupole moment-induced Cotton-Mouton effect in noble gas atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Li-juan; Vaara, Juha, E-mail: juha.vaara@iki.fi; Rizzo, Antonio

    New, high-sensitivity and high-resolution spectroscopic and imaging methods may be developed by exploiting nuclear magneto-optic effects. A first-principles electronic structure formulation of nuclear electric quadrupole moment-induced Cotton-Mouton effect (NQCME) is presented for closed-shell atoms. In NQCME, aligned quadrupole moments alter the index of refraction of the medium along with and perpendicular to the direction of nuclear alignment. The roles of basis-set convergence, electron correlation, and relativistic effects are investigated for three quadrupolar noble gas isotopes: {sup 21}Ne, {sup 83}Kr, and {sup 131}Xe. The magnitude of the resulting ellipticities is predicted to be 10{sup −4}–10{sup −6} rad/(M cm) for fully spin-polarized nuclei.more » These should be detectable in the Voigt setup. Particularly interesting is the case of {sup 131}Xe, in which a high degree of spin polarization can be achieved via spin-exchange optical hyperpolarization.« less

  3. Structural features of a bituminous coal and their changes during low-temperature oxidation and loss of volatiles investigated by advanced solid-state NMR spectroscopy

    USGS Publications Warehouse

    Mao, J.-D.; Schimmelmann, A.; Mastalerz, Maria; Hatcher, P.G.; Li, Y.

    2010-01-01

    Quantitative and advanced 13C solid-state NMR techniques were employed to investigate (i) the chemical structure of a high volatile bituminous coal, as well as (ii) chemical structural changes of this coal after evacuation of adsorbed gases, (iii) during oxidative air exposure at room temperature, and (iv) after oxidative heating in air at 75 ??C. The solid-state NMR techniques employed in this study included quantitative direct polarization/magic angle spinning (DP/MAS) at a high spinning speed of 14 kHz, cross polarization/total sideband suppression (CP/TOSS), dipolar dephasing, CH, CH2, and CHn selection, 13C chemical shift anisotropy (CSA) filtering, two-dimensional (2D) 1H-13C heteronuclear correlation NMR (HETCOR), and 2D HETCOR with 1H spin diffusion. With spectral editing techniques, we identified methyl CCH 3, rigid and mobile methylene CCH2C, methine CCH, quaternary Cq, aromatic CH, aromatic carbons bonded to alkyls, small-sized condensed aromatic moieties, and aromatic C-O groups. With direct polarization combined with spectral-editing techniques, we quantified 11 different types of functional groups. 1H-13C 2D HETCOR NMR experiments indicated spatial proximity of aromatic and alkyl moieties in cross-linked structures. The proton spin diffusion experiments indicated that the magnetization was not equilibrated at a 1H spin diffusion time of 5 ms. Therefore, the heterogeneity in spatial distribution of different functional groups should be above 2 nm. Recoupled C-H long-range dipolar dephasing showed that the fraction of large charcoal-like clusters of polycondensed aromatic rings was relatively small. The exposure of this coal to atmospheric oxygen at room temperature for 6 months did not result in obvious chemical structural changes of the coal, whereas heating at 75 ??C in air for 10 days led to oxidation of coal and generated some COO groups. Evacuation removed most volatiles and caused a significant reduction in aliphatic signals in its DP/MAS spectrum. DP/MAS, but not CP/MAS, allowed us to detect the changes during low-temperature oxidation and loss of volatiles. These results demonstrate the applicability of advanced solid-state NMR techniques in chemical characterization of coal. ?? 2010 American Chemical Society.

  4. The spin structure of the deuteron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frois, B.

    1994-12-01

    The Spin Muon Collaboration (SMC) has measured for the first time the spin-dependent structure function g{sub 1}{sup d} of the deuteron in the deep inelastic scattering of polarized muons on polarized deuterons in the kinematic range Q{sup 2} > 1 GeV{sup 2}, 0.006 < x < 0.6. The first moment {Gamma}{sub 1}{sup d} = {integral}{sub 0}{sup 1}g{sub 1}{sup d}dx = 0.023 {+-} 0.020(stat.) {+-} 0.015(syst.) is smaller than the prediction of the Ellis-Jaffe sum rules. The author finds that the fraction of the nucleon spin carried by strange quarks {Delta}s is appreciable and negative. Using earlier measurements of g{sub 1}{supmore » p}, the group can infer the first moment of the spin-dependent neutron structure function g{sub 1}{sup n}. The combined analysis of all the available data on the spin-dependent structure functions of the nucleon shows an excellent agreement among the data sets. The author does not find significant deviations from the prediction of the Bjorken sum rule.« less

  5. Spin transport in normal metal/insulator/topological insulator coupled to ferromagnetic insulator structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondo, Kenji, E-mail: kkondo@es.hokudai.ac.jp

    In this study, we investigate the spin transport in normal metal (NM)/insulator (I)/topological insulator (TI) coupled to ferromagnetic insulator (FI) structures. In particular, we focus on the barrier thickness dependence of the spin transport inside the bulk gap of the TI with FI. The TI with FI is described by two-dimensional (2D) Dirac Hamiltonian. The energy profile of the insulator is assumed to be a square with barrier height V and thickness d along the transport-direction. This structure behaves as a tunnel device for 2D Dirac electrons. The calculation is performed for the spin conductance with changing the barrier thicknessmore » and the components of magnetization of FI layer. It is found that the spin conductance decreases with increasing the barrier thickness. Also, the spin conductance is strongly dependent on the polar angle θ, which is defined as the angle between the axis normal to the FI and the magnetization of FI layer. These results indicate that the structures are promising candidates for novel tunneling magnetoresistance devices.« less

  6. Hyperfine rather than spin splittings dominate the fine structure of the B (4)Σ(-)-X (4)Σ(-) bands of AlC.

    PubMed

    Clouthier, Dennis J; Kalume, Aimable

    2016-01-21

    Laser-induced fluorescence and wavelength resolved emission spectra of the B (4)Σ(-)-X (4)Σ(-) band system of the gas phase cold aluminum carbide free radical have been obtained using the pulsed discharge jet technique. The radical was produced by electron bombardment of a precursor mixture of trimethylaluminum in high pressure argon. High resolution spectra show that each rotational line of the 0-0 and 1-1 bands of AlC is split into at least three components, with very similar splittings and intensities in both the P- and R-branches. The observed structure was reproduced by assuming bβS magnetic hyperfine coupling in the excited state, due to a substantial Fermi contact interaction of the unpaired electron in the aluminum 3s orbital. Rotational analysis has yielded ground and excited state equilibrium bond lengths in good agreement with the literature and our own ab initio values. Small discrepancies in the calculated intensities of the hyperfine lines suggest that the upper state spin-spin constant λ' is of the order of ≈ 0.025-0.030 cm(-1).

  7. Teleportation between distant qudits via scattering of mobile qubits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciccarello, Francesco; Zarcone, Michelangelo; Bose, Sougato

    2010-04-15

    We consider a one-dimensional structure where noninteracting spin-s scattering centers, such as quantum impurities or multilevel atoms, are embedded at given positions. We show that the injection into the structure of unpolarized flying qubits, such as electrons or photons, along with path detection suffice to accomplish spin-state teleportation between two centers via a third ancillary one. No action over the internal quantum state of both the spin-s particles and the flying qubits is required. The protocol enables the transfer of quantum information between well-separated static entities in nanostructures by exploiting a very low control mechanism, namely scattering.

  8. The structural, electronic and magnetic properties of CoS2 under pressure

    NASA Astrophysics Data System (ADS)

    Feng, Zhong-Ying; Yang, Yan; Zhang, Jian-Min

    2018-05-01

    The structural, electronic and magnetic properties of CoS2 under pressure have been investigated by the first-principles calculations. The lattice constant and volume decrease with increasing pressure. The CoS2 is stable and behaves a brittle characteristic under the pressures of 0-5 GPa. The CoS2 presents metallic characteristic under the pressures of 1-5 GPa although it is nearly half-metal (HM) under the pressure of 0 GPa. The lowest conduction bands for spin-up and spin-down channels shift towards higher and lower energy region, respectively, with the pressure increasing from 0 to 5 GPa. In spin-up channel the conduction band minimum (CBM) is mainly contributed by Co-3d(eg) orbitals at R point but the valence band maximum (VBM) is contributed by Co-3d(t2g) orbitals near M point. While in spin-down channel the CBM is contributed by S-3p orbitals at Γ point but the VBM is contributed by Co-3d(t2g) orbitals near X point. The CoS2 is still suitable to be used in the supercapacitor under the environmental pressures of 0-5 GPa due to the high conductivity.

  9. Synthesis, characterization, experimental and theoretical structure of novel Dichloro(bis{2-[1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})metal(II) compounds, metal = Mn, Co and Ni

    NASA Astrophysics Data System (ADS)

    Conradie, J.; Conradie, M. M.; Tawfiq, K. M.; Al-Jeboori, M. J.; Coles, S. J.; Wilson, C.; Potgieter, J. H.

    2018-06-01

    The syntheses, characterizations and structures of three novel dichloro(bis{2-[1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})metal(II), [M(L)2Cl2], complexes (metal = Mn, Co and Ni) are presented. In the solid state the molecules are arranged in infinite hydrogen-bonded 3D supramolecular structures, further stabilized by weak intermolecular π…π interactions. The DFT results for all the different spin states and isomers of dichloro(bis{2-[1-phenyl-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})metal(II) complexes, [M(L1)2Cl2], support experimental measurements, namely that (i) d5 [Mn(L1)2Cl2] is high spin with S = 5/2; (ii) d7 [Co(L1)2Cl2] has a spin state of S = 3/2, (iii) d8 [Ni(L1)2Cl2] has a spin state of S = 1; and (iv) for all [M(L1)2Cl2] and [M(L)2Cl2] complexes, with M = Mn, Co and Ni, the cis-cis-trans and the trans-trans-trans isomers, with the pyridyl groups trans to each other, have the lowest energy.

  10. Bonding, moment formation, and magnetic interactions in Ca14MnBi11 and Ba14MnBi11

    NASA Astrophysics Data System (ADS)

    Sánchez-Portal, D.; Martin, Richard M.; Kauzlarich, S. M.; Pickett, W. E.

    2002-04-01

    ``14-1-11'' phase compounds, based on magnetic Mn ions and typified by Ca14MnBi11 and Ba14MnBi11, show an unusual magnetic behavior, but the large number (104) of atoms in the primitive cell has precluded any previous full electronic structure study. Using an efficient, local-orbital-based method within the local-spin-density approximation to study the electronic structure, we find a gap between a bonding valence-band complex and an antibonding conduction-band continuum. The bonding bands lack one electron per formula unit of being filled, making them low carrier density p-type metals. The hole resides in the MnBi4 tetrahedral unit, and partially compensates for the high-spin d5 Mn moment, leaving a net spin near 4μB that is consistent with experiment. These manganites are composed of two disjoint but interpenetrating ``jungle gym'' networks of spin-4/2 MnBi9-4 units with ferromagnetic interactions within the same network, and weaker couplings between the networks whose sign and magnitude is sensitive to materials parameters. Ca14MnBi11 is calculated to be ferromagnetic as observed, while for Ba14MnBi11 (which is antiferromagnetic) the ferromagnetic and antiferromagnetic states are calculated to be essentially degenerate. The band structure of the ferromagnetic states is very close to half metallic.

  11. Investigation of charge injection and transport behavior in multilayer structure consisted of ferromagnetic metal and organic polymer under external fields

    NASA Astrophysics Data System (ADS)

    Zhao, Hua; Meng, Wei-Feng

    2017-10-01

    In this paper a five layer organic electronic device with alternately placed ferromagnetic metals and organic polymers: ferromagnetic metal/organic layer/ferromagnetic metal/organic layer/ferromagnetic metal, which is injected a spin-polarized electron from outsides, is studied theoretically using one-dimensional tight binding model Hamiltonian. We calculated equilibrium state behavior after an electron with spin is injected into the organic layer of this structure, charge density distribution and spin polarization density distribution of this injected spin-polarized electron, and mainly studied possible transport behavior of the injected spin polarized electron in this multilayer structure under different external electric fields. We analyze the physical process of the injected electron in this multilayer system. It is found by our calculation that the injected spin polarized electron exists as an electron-polaron state with spin polarization in the organic layer and it can pass through the middle ferromagnetic layer from the right-hand organic layer to the left-hand organic layer by the action of increasing external electric fields, which indicates that this structure may be used as a possible spin-polarized charge electronic device and also may provide a theoretical base for the organic electronic devices and it is also found that in the boundaries between the ferromagnetic layer and the organic layer there exist induced interface local dipoles due to the external electric fields.

  12. 13C and 1H NMR (Nuclear Magnetic Resonance) studies of solid polyolefines

    NASA Technical Reports Server (NTRS)

    Cudby, M. E. A.; Harris, R. K.; Metcalfe, K.; Packer, K. J.; Smith, P. W. R.

    1983-01-01

    The basis of H-1 and C-13 high-resolution NMR investigations of solid polymers is outlined. The C-13 NMR spectra of solid syndiotactic and isotactic polypropene are discussed and their interpretation in terms of conformation and chain-packing effects are reviewed. The effects of decreasing temperature on the C-13 high-resolution spectrum of an annealed sample of isotactic polypropene is described and interpreted in terms of the crystal structure. The question of the proportion of the sample giving rise to C-13 signals is addressed and some results reported. The main cause for observing only part of the total sample is shown to be the H-1 rotating frame spin-lattice relaxation behavior. The H-1 spin-lattice relaxation and spectral characteristics of a number of polyolefin samples are summarized and the role of spin-diffusion discussed.

  13. Band-pass Fabry-Pèrot magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Sharma, Abhishek; Tulapurkar, Ashwin. A.; Muralidharan, Bhaskaran

    2018-05-01

    We propose a high-performance magnetic tunnel junction by making electronic analogs of optical phenomena such as anti-reflections and Fabry-Pèrot resonances. The devices we propose feature anti-reflection enabled superlattice heterostructures sandwiched between the fixed and the free ferromagnets of the magnetic tunnel junction structure. Our predictions are based on non-equilibrium Green's function spin transport formalism coupled self-consistently with the Landau-Lifshitz-Gilbert-Slonczewski equation. Owing to the physics of bandpass spin filtering in the bandpass Fabry-Pèrot magnetic tunnel junction device, we demonstrate an ultra-high boost in the tunnel magneto-resistance (≈5 × 104%) and nearly 1200% suppression of spin transfer torque switching bias in comparison to a traditional trilayer magnetic tunnel junction device. The proof of concepts presented here can lead to next-generation spintronic device design harvesting the rich physics of superlattice heterostructures and exploiting spintronic analogs of optical phenomena.

  14. Topological Oxide Insulator in Cubic Perovskite Structure

    PubMed Central

    Jin, Hosub; Rhim, Sonny H.; Im, Jino; Freeman, Arthur J.

    2013-01-01

    The emergence of topologically protected conducting states with the chiral spin texture is the most prominent feature at the surface of topological insulators. On the application side, large band gap and high resistivity to distinguish surface from bulk degrees of freedom should be guaranteed for the full usage of the surface states. Here, we suggest that the oxide cubic perovskite YBiO3, more than just an oxide, defines itself as a new three-dimensional topological insulator exhibiting both a large bulk band gap and a high resistivity. Based on first-principles calculations varying the spin-orbit coupling strength, the non-trivial band topology of YBiO3 is investigated, where the spin-orbit coupling of the Bi 6p orbital plays a crucial role. Taking the exquisite synthesis techniques in oxide electronics into account, YBiO3 can also be used to provide various interface configurations hosting exotic topological phenomena combined with other quantum phases. PMID:23575973

  15. Giant Spin Hall Effect and Switching Induced by Spin-Transfer Torque in a W /Co40Fe40B20/MgO Structure with Perpendicular Magnetic Anisotropy

    NASA Astrophysics Data System (ADS)

    Hao, Qiang; Xiao, Gang

    2015-03-01

    We obtain robust perpendicular magnetic anisotropy in a β -W /Co40Fe40B20/MgO structure without the need of any insertion layer between W and Co40Fe40B20 . This is achieved within a broad range of W thicknesses (3.0-9.0 nm), using a simple fabrication technique. We determine the spin Hall angle (0.40) and spin-diffusion length for the bulk β form of tungsten with a large spin-orbit coupling. As a result of the giant spin Hall effect in β -W and careful magnetic annealing, we significantly reduce the critical current density for the spin-transfer-torque-induced magnetic switching in Co40Fe40B20 . The elemental β -W is a superior candidate for magnetic memory and spin-logic applications.

  16. Dynamic generation of spin-wave currents in hybrid structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyapilin, I. I.; Okorokov, M. S., E-mail: Okorokovmike@gmail.com

    2016-11-15

    Spin transport through the interface in a semiconductor/ferromagnetic insulator hybrid structure is studied by the nonequilibrium statistical operator method under conditions of the spin Seebeck effect. The effective parameter approach in which each examined subsystem (conduction electrons, magnons, phonons) is characterized by its specific effective temperature is considered. The effect of the resonant (electric dipole) excitation of the spin electronic subsystem of conduction electrons on spin-wave current excitation in a ferromagnetic insulator is considered. The macroscopic equations describing the spin-wave current caused by both resonant excitation of the spin system of conduction electrons and the presence of a nonuniform temperaturemore » field in the ferromagnetic insulator are derived taking into account both the resonance-diffusion propagation of magnons and their relaxation processes. It is shown that spin-wave current excitation is also of resonant nature under the given conditions.« less

  17. Growth and spin-wave properties of thin Y{sub 3}Fe{sub 5}O{sub 12} films on Si substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stognij, A. I.; Novitskii, N. N.; Lutsev, L. V., E-mail: l-lutsev@mail.ru

    2015-07-14

    We describe synthesis of submicron Y{sub 3}Fe{sub 5}O{sub 12} (YIG) films sputtered on Si substrates and present results of the investigation of ferromagnetic resonance (FMR) and spin waves in YIG/SiO{sub 2}/Si structures. It is found that decrease of the annealing time leads to essential reduction of the FMR linewidth ΔH and, consequently, to reduction of relaxation losses of spin waves. Spin-wave propagation in in-plane magnetized YIG/SiO{sub 2}/Si structures is studied. We observe the asymmetry of amplitude-frequency characteristics of the Damon-Eshbach spin waves caused by different localizations of spin waves at the free YIG surface and at the YIG/SiO{sub 2} interface.more » Growth of the generating microwave power leads to spin-wave instability and changes amplitude-frequency characteristics of spin waves.« less

  18. Characterization of KCNE1 inside Lipodisq Nanoparticles for EPR Spectroscopic Studies of Membrane Proteins.

    PubMed

    Sahu, Indra D; Zhang, Rongfu; Dunagan, Megan M; Craig, Andrew F; Lorigan, Gary A

    2017-06-01

    EPR spectroscopic studies of membrane proteins in a physiologically relevant native membrane-bound state are extremely challenging due to the complexity observed in inhomogeneity sample preparation and dynamic motion of the spin-label. Traditionally, detergent micelles are the most widely used membrane mimetics for membrane proteins due to their smaller size and homogeneity, providing high-resolution structure analysis by solution NMR spectroscopy. However, it is often difficult to examine whether the protein structure in a micelle environment is the same as that of the respective membrane-bound state. Recently, lipodisq nanoparticles have been introduced as a potentially good membrane mimetic system for structural studies of membrane proteins. However, a detailed characterization of a spin-labeled membrane protein incorporated into lipodisq nanoparticles is still lacking. In this work, lipodisq nanoparticles were used as a membrane mimic system for probing the structural and dynamic properties of the integral membrane protein KCNE1 using site-directed spin labeling EPR spectroscopy. The characterization of spin-labeled KCNE1 incorporated into lipodisq nanoparticles was carried out using CW-EPR titration experiments for the EPR spectral line shape analysis and pulsed EPR titration experiment for the phase memory time (T m ) measurements. The CW-EPR titration experiment indicated an increase in spectral line broadening with the addition of the SMA polymer which approaches close to the rigid limit at a lipid to polymer weight ratio of 1:1, providing a clear solubilization of the protein-lipid complex. Similarly, the T m titration experiment indicated an increase in T m values with the addition of SMA polymer and approaches ∼2 μs at a lipid to polymer weight ratio of 1:2. Additionally, CW-EPR spectral line shape analysis was performed on six inside and six outside the membrane spin-label probes of KCNE1 in lipodisq nanoparticles. The results indicated significant differences in EPR spectral line broadening and a corresponding inverse central line width between spin-labeled KCNE1 residues located inside and outside of the membrane for lipodisq nanoparticle samples when compared to lipid vesicle samples. These results are consistent with the solution NMR structure of KCNE1. This study will be beneficial for researchers working on studying the structural and dynamic properties of membrane proteins.

  19. One-step patterning of double tone high contrast and high refractive index inorganic spin-on resist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanchetta, E.; Della Giustina, G.; Brusatin, G.

    2014-09-14

    A direct one-step and low temperature micro-fabrication process, enabling to realize large area totally inorganic TiO₂ micro-patterns from a spin-on resist, is presented. High refractive index structures (up to 2 at 632 nm) without the need for transfer processes have been obtained by mask assisted UV lithography, exploiting photocatalytic titania properties. A distinctive feature not shared by any of the known available resists and boosting the material versatility, is that the system behaves either as a positive or as negative tone resist, depending on the process parameters and on the development chemistry. In order to explain the resist double tonemore » behavior, deep comprehension of the lithographic process parameters optimization and of the resist chemistry and structure evolution during the lithographic process, generally uncommon in literature, is reported. Another striking property of the presented resist is that the negative tone shows a high contrast up to 19, allowing to obtain structures resolution down to 2 μm wide. The presented process and material permit to directly fabricate different titania geometries of great importance for solar cells, photo-catalysis, and photonic crystals applications.« less

  20. Structural Effects on the Spin Dynamics of Potential Molecular Qubits.

    PubMed

    Atzori, Matteo; Benci, Stefano; Morra, Elena; Tesi, Lorenzo; Chiesa, Mario; Torre, Renato; Sorace, Lorenzo; Sessoli, Roberta

    2018-01-16

    Control of spin-lattice magnetic relaxation is crucial to observe long quantum coherence in spin systems at reasonable temperatures. Such a control is most often extremely difficult to achieve, because of the coexistence of several relaxation mechanisms, that is direct, Raman, and Orbach. These are not always easy to relate to the energy states of the investigated system, because of the contribution to the relaxation of additional spin-phonon coupling phenomena mediated by intramolecular vibrations. In this work, we have investigated the effect of slight changes on the molecular structure of four vanadium(IV)-based potential spin qubits on their spin dynamics, studied by alternate current (AC) susceptometry. The analysis of the magnetic field dependence of the relaxation time correlates well with the low-energy vibrational modes experimentally detected by time-domain THz spectroscopy. This confirms and extends our preliminary observations on the role played by spin-vibration coupling in determining the fine structure of the spin-lattice relaxation time as a function of the magnetic field, for S = 1 / 2 potential spin qubits. This study represents a step forward in the use of low-energy vibrational spectroscopy as a prediction tool for the design of molecular spin qubits with long-lived quantum coherence. Indeed, quantum coherence times of ca. 4.0-6.0 μs in the 4-100 K range are observed for the best performing vanadyl derivatives identified through this multitechnique approach.

Top