Stimulus-level interference disrupts repetition benefit during task switching in middle childhood
Karayanidis, Frini; Jamadar, Sharna; Sanday, Dearne
2013-01-01
The task-switching paradigm provides a powerful tool to measure the development of core cognitive control processes. In this study, we use the alternating runs task-switching paradigm to assess preparatory control processes involved in flexibly preparing for a predictable change in task and stimulus-driven control processes involved in controlling stimulus-level interference. We present three experiments that examine behavioral and event-related potential (ERP) measures of task-switching performance in middle childhood and young adulthood under low and high stimulus interference conditions. Experiment 1 confirms that our new child-friendly tasks produce similar behavioral and electrophysiological findings in young adults as those previously reported. Experiment 2 examines task switching with univalent stimuli across a range of preparation intervals in middle childhood. Experiment 3 compares task switching with bivalent stimuli across the same preparation intervals in children and young adults. Children produced a larger RT switch cost than adults with univalent stimuli and a short preparation interval. Both children and adults showed significant reduction in switch cost with increasing preparation interval, but in children this was caused by greater increase in RT for repeat than switch trials. Response-locked ERPs showed intact preparation for univalent, but less efficient preparation for bivalent stimulus conditions. Stimulus-locked ERPs confirmed that children showed greater stimulus-level interference for repeat trials, especially with bivalent stimuli. We conclude that children show greater stimulus-level interference especially for repeat trials under high interference conditions, suggesting weaker mental representation of the current task set. PMID:24367317
Tsatsishvili, Valeri; Burunat, Iballa; Cong, Fengyu; Toiviainen, Petri; Alluri, Vinoo; Ristaniemi, Tapani
2018-06-01
There has been growing interest towards naturalistic neuroimaging experiments, which deepen our understanding of how human brain processes and integrates incoming streams of multifaceted sensory information, as commonly occurs in real world. Music is a good example of such complex continuous phenomenon. In a few recent fMRI studies examining neural correlates of music in continuous listening settings, multiple perceptual attributes of music stimulus were represented by a set of high-level features, produced as the linear combination of the acoustic descriptors computationally extracted from the stimulus audio. NEW METHOD: fMRI data from naturalistic music listening experiment were employed here. Kernel principal component analysis (KPCA) was applied to acoustic descriptors extracted from the stimulus audio to generate a set of nonlinear stimulus features. Subsequently, perceptual and neural correlates of the generated high-level features were examined. The generated features captured musical percepts that were hidden from the linear PCA features, namely Rhythmic Complexity and Event Synchronicity. Neural correlates of the new features revealed activations associated to processing of complex rhythms, including auditory, motor, and frontal areas. Results were compared with the findings in the previously published study, which analyzed the same fMRI data but applied linear PCA for generating stimulus features. To enable comparison of the results, methodology for finding stimulus-driven functional maps was adopted from the previous study. Exploiting nonlinear relationships among acoustic descriptors can lead to the novel high-level stimulus features, which can in turn reveal new brain structures involved in music processing. Copyright © 2018 Elsevier B.V. All rights reserved.
Gehring, Katrin B.; Heufelder, Karin; Feige, Janina; Bauer, Paul; Dyck, Yan; Ehrhardt, Lea; Kühnemund, Johannes; Bergmann, Anja; Göbel, Josefine; Isecke, Marlene
2016-01-01
The transcription factor cAMP-response element-binding protein (CREB) is involved in neuronal plasticity. Phosphorylation activates CREB and an increased level of phosphorylated CREB is regarded as an indicator of CREB-dependent transcriptional activation. In honeybees (Apis mellifera) we recently demonstrated a particular high abundance of the phosphorylated honeybee CREB homolog (pAmCREB) in the central brain and in a subpopulation of mushroom body neurons. We hypothesize that these high pAmCREB levels are related to learning and memory formation. Here, we tested this hypothesis by analyzing brain pAmCREB levels in classically conditioned bees and bees experiencing unpaired presentations of conditioned stimulus (CS) and unconditioned stimulus (US). We demonstrate that both behavioral protocols display differences in memory formation but do not alter the level of pAmCREB in bee brains directly after training. Nevertheless, we report that bees responding to the CS during unpaired stimulus presentations exhibit higher levels of pAmCREB than nonresponding bees. In addition, Trichostatin A, a histone deacetylase inhibitor that is thought to enhance histone acetylation by CREB-binding protein, increases the bees’ CS responsiveness. We conclude that pAmCREB is involved in gating a bee's behavioral response driven by an external stimulus. PMID:27084927
Topographical variations in behavior during autoshaping, automaintenance, and omission training
Eldridge, Gloria D.; Pear, Joseph J.
1987-01-01
Three pigeons were exposed to an autoshaping and automaintenance procedure while a computer-controlled tracking system continuously recorded the position of the bird's head as it moved freely in the experimental chamber. Although only 2 birds pecked the key during the conditional stimulus (red keylight), all 3 birds exhibited stable patterns of approaching the conditional stimulus and withdrawing from the intertrial stimulus (white keylight). Subsequent exposure to an omission procedure, in which pecks on the red key cancelled the presentation of food upon the termination of the red keylight, greatly reduced key pecking, but approaching and pecking in the vicinity of the conditional stimulus were maintained at high levels. When the omission contingency was removed key pecking increased. During all phases the birds withdrew from the area of the white key and engaged in repetitive back-and-forth or circuiting movements during this intertrial stimulus. The data document (a) the strong control the conditional stimulus in autoshaping and automaintenance exerts over approach to the key and pecking motions whether or not the conditional stimulus elicits key pecking at a high level; and (b) withdrawal from the vicinity of the key and the occurrence of stereotypic behavior during the intertrial interval. PMID:16812484
Topographical variations in behavior during autoshaping, automaintenance, and omission training.
Eldridge, G D; Pear, J J
1987-05-01
Three pigeons were exposed to an autoshaping and automaintenance procedure while a computer-controlled tracking system continuously recorded the position of the bird's head as it moved freely in the experimental chamber. Although only 2 birds pecked the key during the conditional stimulus (red keylight), all 3 birds exhibited stable patterns of approaching the conditional stimulus and withdrawing from the intertrial stimulus (white keylight). Subsequent exposure to an omission procedure, in which pecks on the red key cancelled the presentation of food upon the termination of the red keylight, greatly reduced key pecking, but approaching and pecking in the vicinity of the conditional stimulus were maintained at high levels. When the omission contingency was removed key pecking increased. During all phases the birds withdrew from the area of the white key and engaged in repetitive back-and-forth or circuiting movements during this intertrial stimulus. The data document (a) the strong control the conditional stimulus in autoshaping and automaintenance exerts over approach to the key and pecking motions whether or not the conditional stimulus elicits key pecking at a high level; and (b) withdrawal from the vicinity of the key and the occurrence of stereotypic behavior during the intertrial interval.
Effects of Crowding and Attention on High-Levels of Motion Processing and Motion Adaptation
Pavan, Andrea; Greenlee, Mark W.
2015-01-01
The motion after-effect (MAE) persists in crowding conditions, i.e., when the adaptation direction cannot be reliably perceived. The MAE originating from complex moving patterns spreads into non-adapted sectors of a multi-sector adapting display (i.e., phantom MAE). In the present study we used global rotating patterns to measure the strength of the conventional and phantom MAEs in crowded and non-crowded conditions, and when attention was directed to the adapting stimulus and when it was diverted away from the adapting stimulus. The results show that: (i) the phantom MAE is weaker than the conventional MAE, for both non-crowded and crowded conditions, and when attention was focused on the adapting stimulus and when it was diverted from it, (ii) conventional and phantom MAEs in the crowded condition are weaker than in the non-crowded condition. Analysis conducted to assess the effect of crowding on high-level of motion adaptation suggests that crowding is likely to affect the awareness of the adapting stimulus rather than degrading its sensory representation, (iii) for high-level of motion processing the attentional manipulation does not affect the strength of either conventional or phantom MAEs, neither in the non-crowded nor in the crowded conditions. These results suggest that high-level MAEs do not depend on attention and that at high-level of motion adaptation the effects of crowding are not modulated by attention. PMID:25615577
Presentation-order effects for aesthetic stimulus preference.
Englund, Mats P; Hellström, Åke
2012-10-01
For preference comparisons of paired successive musical excerpts, Koh (American Journal of Psychology, 80, 171-185, 1967) found time-order effects (TOEs) that correlated negatively with stimulus valence-the first (vs. the second) of two unpleasant (vs. two pleasant) excerpts tended to be preferred. We present three experiments designed to investigate whether valence-level-dependent order effects for aesthetic preference (a) can be accounted for using Hellström's (e.g., Journal of Experimental Psychology: Human Perception and Performance, 5, 460-477, 1979) sensation-weighting (SW) model, (b) can be generalized to successive and to simultaneous visual stimuli, and (c) vary, in accordance with the stimulus weighting, with interstimulus interval (ISI; for successive stimuli) or stimulus duration (for simultaneous stimuli). Participants compared paired successive jingles (Exp. 1), successive color patterns (Exp. 2), and simultaneous color patterns (Exp. 3), selecting the preferred stimulus. The results were well described by the SW model, which provided a better fit than did two extended versions of the Bradley-Terry-Luce model. Experiments 1 and 2 revealed higher weights for the second stimulus than for the first, and negatively valence-level-dependent TOEs. In Experiment 3, there was no laterality effect on the stimulus weighting and no valence-level-dependent space-order effects (SOEs). In terms of the SW model, the valence-level-dependent TOEs can be explained as a consequence of differential stimulus weighting in combination with stimulus valence varying from low to high, and the absence of valence-level-dependent SOEs as a consequence of the absence of differential weighting. For successive stimuli, there were no important effects of ISI on weightings and TOEs, and, for simultaneous stimuli, duration had only a small effect on the weighting.
Bernstein, Lynne E.; Lu, Zhong-Lin; Jiang, Jintao
2008-01-01
A fundamental question about human perception is how the speech perceiving brain combines auditory and visual phonetic stimulus information. We assumed that perceivers learn the normal relationship between acoustic and optical signals. We hypothesized that when the normal relationship is perturbed by mismatching the acoustic and optical signals, cortical areas responsible for audiovisual stimulus integration respond as a function of the magnitude of the mismatch. To test this hypothesis, in a previous study, we developed quantitative measures of acoustic-optical speech stimulus incongruity that correlate with perceptual measures. In the current study, we presented low incongruity (LI, matched), medium incongruity (MI, moderately mismatched), and high incongruity (HI, highly mismatched) audiovisual nonsense syllable stimuli during fMRI scanning. Perceptual responses differed as a function of the incongruity level, and BOLD measures were found to vary regionally and quantitatively with perceptual and quantitative incongruity levels. Each increase in level of incongruity resulted in an increase in overall levels of cortical activity and in additional activations. However, the only cortical region that demonstrated differential sensitivity to the three stimulus incongruity levels (HI > MI > LI) was a subarea of the left supramarginal gyrus (SMG). The left SMG might support a fine-grained analysis of the relationship between audiovisual phonetic input in comparison with stored knowledge, as hypothesized here. The methods here show that quantitative manipulation of stimulus incongruity is a new and powerful tool for disclosing the system that processes audiovisual speech stimuli. PMID:18495091
Reduced Perceptual Exclusivity during Object and Grating Rivalry in Autism
Freyberg, J.; Robertson, C.E.; Baron-Cohen, S.
2015-01-01
Background The dynamics of binocular rivalry may be a behavioural footprint of excitatory and inhibitory neural transmission in visual cortex. Given the presence of atypical visual features in Autism Spectrum Conditions (ASC), and evidence in support of the idea of an imbalance in excitatory/inhibitory neural transmission in ASC, we hypothesized that binocular rivalry might prove a simple behavioural marker of such a transmission imbalance in the autistic brain. In support of this hypothesis, we previously reported a slower rate of rivalry in ASC, driven by reduced perceptual exclusivity. Methods We tested whether atypical dynamics of binocular rivalry in ASC are specific to certain stimulus features. 53 participants (26 with ASC, matched for age, sex and IQ) participated in binocular rivalry experiments in which the dynamics of rivalry were measured at two levels of stimulus complexity, low (grayscale gratings) and high (coloured objects). Results Individuals with ASC experienced a slower rate of rivalry, driven by longer transitional states between dominant percepts. These exaggerated transitional states were present at both low and high levels of stimulus complexity, suggesting that atypical rivalry dynamics in autism are robust with respect to stimulus choice. Interactions between stimulus properties and rivalry dynamics in autism indicate that achromatic grating stimuli produce stronger group differences. Conclusion These results confirm the finding of atypical dynamics of binocular rivalry in ASC. These dynamics were present for stimuli of both low and high levels of visual complexity, suggesting an imbalance in competitive interactions throughout the visual system of individuals with ASC. PMID:26382002
Akin, Faith Wurm; Murnane, Owen D; Proffitt, Tina M
2003-11-01
Vestibular evoked myogenic potentials (VEMP) are short latency electromyograms (EMG) evoked by high-level acoustic stimuli and recorded from surface electrodes over the tonically contracted sternocleidomastoid (SCM) muscle and are presumed to originate in the saccule. The present experiments examined the effects of click and tone-burst level and stimulus frequency on the latency, amplitude, and threshold of the VEMP in subjects with normal hearing sensitivity and no history of vestibular disease. VEMPs were recorded in all subjects using 100 dB nHL click stimuli. Most subjects had VEMPs present at 500, 750, and 1000 Hz, and few subjects had VEMPs present at 2000 Hz. The response amplitude of the VEMP increased with click and tone-burst level, whereas VEMP latency was not influenced by the stimulus level. The largest tone-burst-evoked VEMPs and lowest thresholds were obtained at 500 and 750 Hz. VEMP latency was independent of stimulus frequency when tone-burst duration was held constant.
A stimulus-control account of regulated drug intake in rats.
Panlilio, Leigh V; Thorndike, Eric B; Schindler, Charles W
2008-02-01
Patterns of drug self-administration are often highly regular, with a consistent pause after each self-injection. This pausing might occur because the animal has learned that additional injections are not reinforcing once the drug effect has reached a certain level, possibly due to the reinforcement system reaching full capacity. Thus, interoceptive effects of the drug might function as a discriminative stimulus, signaling when additional drug will be reinforcing and when it will not. This hypothetical stimulus control aspect of drug self-administration was emulated using a schedule of food reinforcement. Rats' nose-poke responses produced food only when a cue light was present. No drug was administered at any time. However, the state of the light stimulus was determined by calculating what the whole-body drug level would have been if each response in the session had produced a drug injection. The light was only presented while this virtual drug level was below a specific threshold. A range of doses of cocaine and remifentanil were emulated using parameters based on previous self-administration experiments. Response patterns were highly regular, dose-dependent, and remarkably similar to actual drug self-administration. This similarity suggests that the emulation schedule may provide a reasonable model of the contingencies inherent in drug reinforcement. Thus, these results support a stimulus control account of regulated drug intake in which rats learn to discriminate when the level of drug effect has fallen to a point where another self-injection will be reinforcing.
The influence of spontaneous activity on stimulus processing in primary visual cortex.
Schölvinck, M L; Friston, K J; Rees, G
2012-02-01
Spontaneous activity in the resting human brain has been studied extensively; however, how such activity affects the local processing of a sensory stimulus is relatively unknown. Here, we examined the impact of spontaneous activity in primary visual cortex on neuronal and behavioural responses to a simple visual stimulus, using functional MRI. Stimulus-evoked responses remained essentially unchanged by spontaneous fluctuations, combining with them in a largely linear fashion (i.e., with little evidence for an interaction). However, interactions between spontaneous fluctuations and stimulus-evoked responses were evident behaviourally; high levels of spontaneous activity tended to be associated with increased stimulus detection at perceptual threshold. Our results extend those found in studies of spontaneous fluctuations in motor cortex and higher order visual areas, and suggest a fundamental role for spontaneous activity in stimulus processing. Copyright © 2011. Published by Elsevier Inc.
Stimulus recognition occurs under high perceptual load: Evidence from correlated flankers.
Cosman, Joshua D; Mordkoff, J Toby; Vecera, Shaun P
2016-12-01
A dominant account of selective attention, perceptual load theory, proposes that when attentional resources are exhausted, task-irrelevant information receives little attention and goes unrecognized. However, the flanker effect-typically used to assay stimulus identification-requires an arbitrary mapping between a stimulus and a response. We looked for failures of flanker identification by using a more-sensitive measure that does not require arbitrary stimulus-response mappings: the correlated flankers effect. We found that flanking items that were task-irrelevant but that correlated with target identity produced a correlated flanker effect. Participants were faster on trials in which the irrelevant flanker had previously correlated with the target than when it did not. Of importance, this correlated flanker effect appeared regardless of perceptual load, occurring even in high-load displays that should have abolished flanker identification. Findings from a standard flanker task replicated the basic perceptual load effect, with flankers not affecting response times under high perceptual load. Our results indicate that task-irrelevant information can be processed to a high level (identification), even under high perceptual load. This challenges a strong account of high perceptual load effects that hypothesizes complete failures of stimulus identification under high perceptual load. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Using Single-trial EEG to Predict and Analyze Subsequent Memory
Noh, Eunho; Herzmann, Grit; Curran, Tim; de Sa, Virginia R.
2013-01-01
We show that it is possible to successfully predict subsequent memory performance based on single-trial EEG activity before and during item presentation in the study phase. Two-class classification was conducted to predict subsequently remembered vs. forgotten trials based on subjects’ responses in the recognition phase. The overall accuracy across 18 subjects was 59.6 % by combining pre- and during-stimulus information. The single-trial classification analysis provides a dimensionality reduction method to project the high-dimensional EEG data onto a discriminative space. These projections revealed novel findings in the pre- and during-stimulus period related to levels of encoding. It was observed that the pre-stimulus information (specifically oscillatory activity between 25–35Hz) −300 to 0 ms before stimulus presentation and during-stimulus alpha (7–12 Hz) information between 1000–1400 ms after stimulus onset distinguished between recollection and familiarity while the during-stimulus alpha information and temporal information between 400–800 ms after stimulus onset mapped these two states to similar values. PMID:24064073
Deconstructing continuous flash suppression
Yang, Eunice; Blake, Randolph
2012-01-01
In this paper, we asked to what extent the depth of interocular suppression engendered by continuous flash suppression (CFS) varies depending on spatiotemporal properties of the suppressed stimulus and CFS suppressor. An answer to this question could have implications for interpreting the results in which CFS influences the processing of different categories of stimuli to different extents. In a series of experiments, we measured the selectivity and depth of suppression (i.e., elevation in contrast detection thresholds) as a function of the visual features of the stimulus being suppressed and the stimulus evoking suppression, namely, the popular “Mondrian” CFS stimulus (N. Tsuchiya & C. Koch, 2005). First, we found that CFS differentially suppresses the spatial components of the suppressed stimulus: Observers' sensitivity for stimuli of relatively low spatial frequency or cardinally oriented features was more strongly impaired in comparison to high spatial frequency or obliquely oriented stimuli. Second, we discovered that this feature-selective bias primarily arises from the spatiotemporal structure of the CFS stimulus, particularly within information residing in the low spatial frequency range and within the smooth rather than abrupt luminance changes over time. These results imply that this CFS stimulus operates by selectively attenuating certain classes of low-level signals while leaving others to be potentially encoded during suppression. These findings underscore the importance of considering the contribution of low-level features in stimulus-driven effects that are reported under CFS. PMID:22408039
Deconstructing continuous flash suppression.
Yang, Eunice; Blake, Randolph
2012-03-08
In this paper, we asked to what extent the depth of interocular suppression engendered by continuous flash suppression (CFS) varies depending on spatiotemporal properties of the suppressed stimulus and CFS suppressor. An answer to this question could have implications for interpreting the results in which CFS influences the processing of different categories of stimuli to different extents. In a series of experiments, we measured the selectivity and depth of suppression (i.e., elevation in contrast detection thresholds) as a function of the visual features of the stimulus being suppressed and the stimulus evoking suppression, namely, the popular "Mondrian" CFS stimulus (N. Tsuchiya & C. Koch, 2005). First, we found that CFS differentially suppresses the spatial components of the suppressed stimulus: Observers' sensitivity for stimuli of relatively low spatial frequency or cardinally oriented features was more strongly impaired in comparison to high spatial frequency or obliquely oriented stimuli. Second, we discovered that this feature-selective bias primarily arises from the spatiotemporal structure of the CFS stimulus, particularly within information residing in the low spatial frequency range and within the smooth rather than abrupt luminance changes over time. These results imply that this CFS stimulus operates by selectively attenuating certain classes of low-level signals while leaving others to be potentially encoded during suppression. These findings underscore the importance of considering the contribution of low-level features in stimulus-driven effects that are reported under CFS.
Trial-by-trial adjustments in control triggered by incidentally encoded semantic cues.
Blais, Chris; Harris, Michael B; Sinanian, Michael H; Bunge, Silvia A
2015-01-01
Cognitive control mechanisms provide the flexibility to rapidly adapt to contextual demands. These contexts can be defined by top-down goals-but also by bottom-up perceptual factors, such as the location at which a visual stimulus appears. There are now several experiments reporting contextual control effects. Such experiments establish that contexts defined by low-level perceptual cues such as the location of a visual stimulus can lead to context-specific control, suggesting a relatively early focus for cognitive control. The current set of experiments involved a word-word interference task designed to assess whether a high-level cue, the semantic category to which a word belongs, can also facilitate contextual control. Indeed, participants exhibit a larger Flanker effect to items pertaining to a semantic category in which 75% of stimuli are incongruent than in response to items pertaining to a category in which 25% of stimuli are incongruent. Thus, both low-level and high-level stimulus features can affect the bottom-up engagement of cognitive control. The implications for current models of cognitive control are discussed.
Glaser, Tina; Kuchenbrandt, Dieta
2017-01-01
The present research investigated whether evaluatively conditioned attitudes toward members of a social category (CSs) generalize to other stimuli belonging to the same category as the CSs (generalization at the stimulus level) and to the category itself (generalization at the category level). In four experiments, USs were paired with schematic or naturalistic CSs belonging to certain fictitious groups. Afterward, attitudes toward the CSs, toward non-presented exemplars of the CS category, and toward the CS category were assessed. Results revealed evidence for generalization effects in EC on both the stimulus and the category level. Transfer effects were greater when participants' awareness of the CS-US contingency (CA) was high. Moreover, we found differences in generalization between the stimulus and category level, indicating that different processes might contribute to the effects. Theoretical and practical implications such as using EC as a tool for changing attitudes toward social groups will be discussed.
The effect of changes in stimulus level on electrically evoked cortical auditory potentials.
Kim, Jae-Ryong; Brown, Carolyn J; Abbas, Paul J; Etler, Christine P; O'Brien, Sara
2009-06-01
The purpose of this study was to determine whether the electrically evoked acoustic change complex (EACC) could be used to assess sensitivity to changes in stimulus level in cochlear implant (CI) recipients and to investigate the relationship between EACC amplitude and rate of growth of the N1-P2 onset response with increases in stimulus level. Twelve postlingually deafened adults using Nucleus CI24 CIs participated in this study. Nucleus Implant Communicator (NIC) routines were used to bypass the speech processor and to control the stimulation of the implant directly. The stimulus consisted of an 800 msec burst of a 1000 pps biphasic pulse train. A change in the stimulus level was introduced 400 msec after stimulus onset. Band-pass filtering (1 to 100 Hz) was used to minimize stimulus artifact. Four to six recordings of 50 sweeps were obtained for each condition, and averaged responses were analyzed in the time domain using standard peak picking procedures. Cortical auditory change potentials were recorded from CI users in response to both increases and decreases in stimulation level. The amplitude of the EACC was found to be dependent on the magnitude of the stimulus change. Increases in stimulus level elicited more robust EACC responses than decreases in stimulus level. Also, EACC amplitudes were significantly correlated with the slope of the growth of the onset response. This work describes the effect of change in stimulus level on electrically evoked auditory change potentials in CI users. The amplitude of the EACC was found to be related both to the magnitude of the stimulus change introduced and to the rate of growth of the N1-P2 onset response. To the extent that the EACC reflects processing of stimulus change, it could potentially be a valuable tool for assessing neural processing of the kinds of stimulation patterns produced by a CI. Further studies are needed, however, to determine the relationships between the EACC and psychophysical measures of intensity discrimination in CI recipients.
Visual and proprioceptive interaction in patients with bilateral vestibular loss☆
Cutfield, Nicholas J.; Scott, Gregory; Waldman, Adam D.; Sharp, David J.; Bronstein, Adolfo M.
2014-01-01
Following bilateral vestibular loss (BVL) patients gradually adapt to the loss of vestibular input and rely more on other sensory inputs. Here we examine changes in the way proprioceptive and visual inputs interact. We used functional magnetic resonance imaging (fMRI) to investigate visual responses in the context of varying levels of proprioceptive input in 12 BVL subjects and 15 normal controls. A novel metal-free vibrator was developed to allow vibrotactile neck proprioceptive input to be delivered in the MRI system. A high level (100 Hz) and low level (30 Hz) control stimulus was applied over the left splenius capitis; only the high frequency stimulus generates a significant proprioceptive stimulus. The neck stimulus was applied in combination with static and moving (optokinetic) visual stimuli, in a factorial fMRI experimental design. We found that high level neck proprioceptive input had more cortical effect on brain activity in the BVL patients. This included a reduction in visual motion responses during high levels of proprioceptive input and differential activation in the midline cerebellum. In early visual cortical areas, the effect of high proprioceptive input was present for both visual conditions but in lateral visual areas, including V5/MT, the effect was only seen in the context of visual motion stimulation. The finding of a cortical visuo-proprioceptive interaction in BVL patients is consistent with behavioural data indicating that, in BVL patients, neck afferents partly replace vestibular input during the CNS-mediated compensatory process. An fMRI cervico-visual interaction may thus substitute the known visuo-vestibular interaction reported in normal subject fMRI studies. The results provide evidence for a cortical mechanism of adaptation to vestibular failure, in the form of an enhanced proprioceptive influence on visual processing. The results may provide the basis for a cortical mechanism involved in proprioceptive substitution of vestibular function in BVL patients. PMID:25061564
Visual and proprioceptive interaction in patients with bilateral vestibular loss.
Cutfield, Nicholas J; Scott, Gregory; Waldman, Adam D; Sharp, David J; Bronstein, Adolfo M
2014-01-01
Following bilateral vestibular loss (BVL) patients gradually adapt to the loss of vestibular input and rely more on other sensory inputs. Here we examine changes in the way proprioceptive and visual inputs interact. We used functional magnetic resonance imaging (fMRI) to investigate visual responses in the context of varying levels of proprioceptive input in 12 BVL subjects and 15 normal controls. A novel metal-free vibrator was developed to allow vibrotactile neck proprioceptive input to be delivered in the MRI system. A high level (100 Hz) and low level (30 Hz) control stimulus was applied over the left splenius capitis; only the high frequency stimulus generates a significant proprioceptive stimulus. The neck stimulus was applied in combination with static and moving (optokinetic) visual stimuli, in a factorial fMRI experimental design. We found that high level neck proprioceptive input had more cortical effect on brain activity in the BVL patients. This included a reduction in visual motion responses during high levels of proprioceptive input and differential activation in the midline cerebellum. In early visual cortical areas, the effect of high proprioceptive input was present for both visual conditions but in lateral visual areas, including V5/MT, the effect was only seen in the context of visual motion stimulation. The finding of a cortical visuo-proprioceptive interaction in BVL patients is consistent with behavioural data indicating that, in BVL patients, neck afferents partly replace vestibular input during the CNS-mediated compensatory process. An fMRI cervico-visual interaction may thus substitute the known visuo-vestibular interaction reported in normal subject fMRI studies. The results provide evidence for a cortical mechanism of adaptation to vestibular failure, in the form of an enhanced proprioceptive influence on visual processing. The results may provide the basis for a cortical mechanism involved in proprioceptive substitution of vestibular function in BVL patients.
Rocha, Filipa; Dias, Jorge; Engrola, Sofia; Gavaia, Paulo; Geurden, Inge; Dinis, Maria Teresa; Panserat, Stephane
2015-02-14
Knowledge on the role of early nutritional stimuli as triggers of metabolic pathways in fish is extremely scarce. The objective of the present study was to assess the long-term effects of glucose injection in the yolk (early stimulus) on carbohydrate metabolism and gene regulation in zebrafish juveniles challenged with a high-carbohydrate low-protein (HC) diet. Eggs were microinjected at 1 d post-fertilisation (dpf) with either glucose (2 M) or saline solutions. Up to 25 dpf, fish were fed a low-carbohydrate high-protein (LC) control diet, which was followed by a challenge with the HC diet. Survival and growth of 35 dpf juveniles were not affected by injection or the HC diet. Glucose stimulus induced some long-term metabolic changes in the juveniles, as shown by the altered expression of genes involved in glucose metabolism. On glycolysis, the expression levels of hexokinase 1 (HK1) and phosphofructokinase-6 (6PFK) were up-regulated in the visceral and muscle tissues, respectively, of juveniles exposed to the glucose stimulus, indicating a possible improvement in glucose oxidation. On gluconeogenesis, the inhibition of the expression levels of PEPCK in fish injected with glucose suggested lower production of hepatic glucose. Unexpectedly, fructose-1,6-bisphosphatase (FBP) expression was induced and 6PFK expression reduced by glucose stimulus, leaving the possibility of a specific regulation of the FBP-6PFK metabolic cycle. Glucose metabolism in juveniles was estimated using a [¹⁴C]glucose tracer; fish previously exposed to the stimulus showed lower retention of [¹⁴C]glucose in visceral tissue (but not in muscle tissue) and, accordingly, higher glucose catabolism, in comparison with the saline group. Globally, our data suggest that glucose stimulus at embryo stage has the potential to alter particular steps of glucose metabolism in zebrafish juveniles.
Stekelenburg, Jeroen J; Keetels, Mirjam
2016-05-01
The Colavita effect refers to the phenomenon that when confronted with an audiovisual stimulus, observers report more often to have perceived the visual than the auditory component. The Colavita effect depends on low-level stimulus factors such as spatial and temporal proximity between the unimodal signals. Here, we examined whether the Colavita effect is modulated by synesthetic congruency between visual size and auditory pitch. If the Colavita effect depends on synesthetic congruency, we expect a larger Colavita effect for synesthetically congruent size/pitch (large visual stimulus/low-pitched tone; small visual stimulus/high-pitched tone) than synesthetically incongruent (large visual stimulus/high-pitched tone; small visual stimulus/low-pitched tone) combinations. Participants had to identify stimulus type (visual, auditory or audiovisual). The study replicated the Colavita effect because participants reported more often the visual than auditory component of the audiovisual stimuli. Synesthetic congruency had, however, no effect on the magnitude of the Colavita effect. EEG recordings to congruent and incongruent audiovisual pairings showed a late frontal congruency effect at 400-550 ms and an occipitoparietal effect at 690-800 ms with neural sources in the anterior cingulate and premotor cortex for the 400- to 550-ms window and premotor cortex, inferior parietal lobule and the posterior middle temporal gyrus for the 690- to 800-ms window. The electrophysiological data show that synesthetic congruency was probably detected in a processing stage subsequent to the Colavita effect. We conclude that-in a modality detection task-the Colavita effect can be modulated by low-level structural factors but not by higher-order associations between auditory and visual inputs.
The levels of perceptual processing and the neural correlates of increasing subjective visibility.
Binder, Marek; Gociewicz, Krzysztof; Windey, Bert; Koculak, Marcin; Finc, Karolina; Nikadon, Jan; Derda, Monika; Cleeremans, Axel
2017-10-01
According to the levels-of-processing hypothesis, transitions from unconscious to conscious perception may depend on stimulus processing level, with more gradual changes for low-level stimuli and more dichotomous changes for high-level stimuli. In an event-related fMRI study we explored this hypothesis using a visual backward masking procedure. Task requirements manipulated level of processing. Participants reported the magnitude of the target digit in the high-level task, its color in the low-level task, and rated subjective visibility of stimuli using the Perceptual Awareness Scale. Intermediate stimulus visibility was reported more frequently in the low-level task, confirming prior behavioral results. Visible targets recruited insulo-fronto-parietal regions in both tasks. Task effects were observed in visual areas, with higher activity in the low-level task across all visibility levels. Thus, the influence of level of processing on conscious perception may be mediated by attentional modulation of activity in regions representing features of consciously experienced stimuli. Copyright © 2017 Elsevier Inc. All rights reserved.
Thomas, Megan L.A.; Fitzpatrick, Denis; McCreery, Ryan; Janky, Kristen L.
2017-01-01
Background Cervical and ocular Vestibular Evoked Myogenic Potentials (VEMPs) have become common clinical vestibular assessments. However, VEMP testing requires high intensity stimuli, raising concerns regarding safety with children, where sound pressure levels may be higher due to their smaller ear canal volumes. Purpose The purpose of this study was to estimate the range of peak-to-peak equivalent sound pressure levels (peSPLs) in child and adult ears in response to high intensity stimuli (i.e., 100 dB normal hearing level (nHL)) commonly used for VEMP testing and make a determination of whether acoustic stimuli levels with VEMP testing are safe for use in children. Research Design Prospective Experimental. Study Sample Ten children (4–6 years) and ten young adults (24 – 35 years) with normal hearing sensitivity and middle ear function participated in the study. Data Collection and Analysis Probe microphone peSPL measurements of clicks and 500 Hz tonebursts (TBs) were recorded in tubes of small, medium, and large diameter, and in a Brüel & Kjær Ear Simulator Type 4157 to assess for linearity of the stimulus at high levels. The different diameter tubes were used to approximate the range of cross-sectional areas in infant, child, and adult ears, respectively. Equivalent ear canal volume and peSPL measurements were then recorded in child and adult ears. Lower intensity levels were used in the participant’s ears to limit exposure to high intensity sound. The peSPL measurements in participant ears were extrapolated using predictions from linear mixed models to determine if equivalent ear canal volume significantly contributed to overall peSPL and to estimate the mean and 95% confidence intervals of peSPLs in child and adult ears when high intensity stimulus levels (100 dB nHL) are used for VEMP testing without exposing subjects to high-intensity stimuli. Results Measurements from the coupler and tubes suggested: 1) each stimuli was linear, 2) there were no distortions or non-linearities at high levels, and 3) peSPL increased with decreased tube diameter. Measurements in participant ears suggested: 1) peSPL was approximately 3 dB larger in child compared to adult ears, and 2) peSPL was larger in response to clicks compared to 500 Hz TBs. The model predicted the following 95% confidence interval for a 100 dB nHL click: 127–136.5 dB peSPL in adult ears and 128.7–138.2 dB peSPL in child ears. The model predicted the following 95% confidence interval for a 100 dB nHL 500 Hz TB stimulus: 122.2 – 128.2 dB peSPL in adult ears and 124.8–130.8 dB peSPL in child ears. Conclusions Our findings suggest that 1) when completing VEMP testing, the stimulus is approximately 3 dB higher in a child’s ear, 2) a 500 Hz TB is recommended over a click as it has lower peSPL compared to the click, and 3) both duration and intensity should be considered when choosing VEMP stimuli. Calculating the total sound energy exposure for your chosen stimuli is recommended as it accounts for both duration and intensity. When using this calculation for children, consider adding 3 dB to the stimulus level. PMID:28534730
Thomas, Megan L A; Fitzpatrick, Denis; McCreery, Ryan; Janky, Kristen L
2017-05-01
Cervical and ocular vestibular-evoked myogenic potentials (VEMPs) have become common clinical vestibular assessments. However, VEMP testing requires high intensity stimuli, raising concerns regarding safety with children, where sound pressure levels may be higher due to their smaller ear canal volumes. The purpose of this study was to estimate the range of peak-to-peak equivalent sound pressure levels (peSPLs) in child and adult ears in response to high intensity stimuli (i.e., 100 dB normal hearing level [nHL]) commonly used for VEMP testing and make a determination of whether acoustic stimuli levels with VEMP testing are safe for use in children. Prospective experimental. Ten children (4-6 years) and ten young adults (24-35 years) with normal hearing sensitivity and middle ear function participated in the study. Probe microphone peSPL measurements of clicks and 500 Hz tonebursts (TBs) were recorded in tubes of small, medium, and large diameter, and in a Brüel & Kjær Ear Simulator Type 4157 to assess for linearity of the stimulus at high levels. The different diameter tubes were used to approximate the range of cross-sectional areas in infant, child, and adult ears, respectively. Equivalent ear canal volume and peSPL measurements were then recorded in child and adult ears. Lower intensity levels were used in the participant's ears to limit exposure to high intensity sound. The peSPL measurements in participant ears were extrapolated using predictions from linear mixed models to determine if equivalent ear canal volume significantly contributed to overall peSPL and to estimate the mean and 95% confidence intervals of peSPLs in child and adult ears when high intensity stimulus levels (100 dB nHL) are used for VEMP testing without exposing subjects to high-intensity stimuli. Measurements from the coupler and tubes suggested: 1) each stimuli was linear, 2) there were no distortions or nonlinearities at high levels, and 3) peSPL increased with decreased tube diameter. Measurements in participant ears suggested: 1) peSPL was approximately 3 dB larger in child compared to adult ears, and 2) peSPL was larger in response to clicks compared to 500 Hz TBs. The model predicted the following 95% confidence interval for a 100 dB nHL click: 127-136.5 dB peSPL in adult ears and 128.7-138.2 dB peSPL in child ears. The model predicted the following 95% confidence interval for a 100 dB nHL 500 Hz TB stimulus: 122.2-128.2 dB peSPL in adult ears and 124.8-130.8 dB peSPL in child ears. Our findings suggest that 1) when completing VEMP testing, the stimulus is approximately 3 dB higher in a child's ear, 2) a 500 Hz TB is recommended over a click as it has lower peSPL compared to the click, and 3) both duration and intensity should be considered when choosing VEMP stimuli. Calculating the total sound energy exposure for your chosen stimuli is recommended as it accounts for both duration and intensity. When using this calculation for children, consider adding 3 dB to the stimulus level. American Academy of Audiology
Grol, Maud; De Raedt, Rudi
2015-01-01
The broaden-and-build theory relates positive emotions to resilience and cognitive broadening. The theory proposes that the broadening effects underly the relation between positive emotions and resilience, suggesting that resilient people can benefit more from positive emotions at the level of cognitive functioning. Research has investigated the influence of positive emotions on attentional broadening, but the stimulus in the target of attention may also influence attentional breadth, depending on affective stimulus evaluation. Surprised faces are particularly interesting as they are valence ambiguous, therefore, we investigated the relation between affective evaluation--using an affective priming task--and attentional breadth for surprised faces, and how this relation is influenced by resilience. Results show that more positive evaluations are related to more attentional broadening at high levels of resilience, while this relation is reversed at low levels. This indicates that resilient individuals can benefit more from attending to positively evaluated stimuli at the level of attentional broadening.
Glaser, Tina; Kuchenbrandt, Dieta
2017-01-01
The present research investigated whether evaluatively conditioned attitudes toward members of a social category (CSs) generalize to other stimuli belonging to the same category as the CSs (generalization at the stimulus level) and to the category itself (generalization at the category level). In four experiments, USs were paired with schematic or naturalistic CSs belonging to certain fictitious groups. Afterward, attitudes toward the CSs, toward non-presented exemplars of the CS category, and toward the CS category were assessed. Results revealed evidence for generalization effects in EC on both the stimulus and the category level. Transfer effects were greater when participants’ awareness of the CS–US contingency (CA) was high. Moreover, we found differences in generalization between the stimulus and category level, indicating that different processes might contribute to the effects. Theoretical and practical implications such as using EC as a tool for changing attitudes toward social groups will be discussed. PMID:28197118
Adaptation in the auditory midbrain of the barn owl (Tyto alba) induced by tonal double stimulation.
Singheiser, Martin; Ferger, Roland; von Campenhausen, Mark; Wagner, Hermann
2012-02-01
During hunting, the barn owl typically listens to several successive sounds as generated, for example, by rustling mice. As auditory cells exhibit adaptive coding, the earlier stimuli may influence the detection of the later stimuli. This situation was mimicked with two double-stimulus paradigms, and adaptation was investigated in neurons of the barn owl's central nucleus of the inferior colliculus. Each double-stimulus paradigm consisted of a first or reference stimulus and a second stimulus (probe). In one paradigm (second level tuning), the probe level was varied, whereas in the other paradigm (inter-stimulus interval tuning), the stimulus interval between the first and second stimulus was changed systematically. Neurons were stimulated with monaural pure tones at the best frequency, while the response was recorded extracellularly. The responses to the probe were significantly reduced when the reference stimulus and probe had the same level and the inter-stimulus interval was short. This indicated response adaptation, which could be compensated for by an increase of the probe level of 5-7 dB over the reference level, if the latter was in the lower half of the dynamic range of a neuron's rate-level function. Recovery from adaptation could be best fitted with a double exponential showing a fast (1.25 ms) and a slow (800 ms) component. These results suggest that neurons in the auditory system show dynamic coding properties to tonal double stimulation that might be relevant for faithful upstream signal propagation. Furthermore, the overall stimulus level of the masker also seems to affect the recovery capabilities of auditory neurons. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
The orientating reflex: the "targeting reaction" and "searchlight of attention".
Sokolov, E N; Nezlina, N I; Polyanskii, V B; Evtikhin, D V
2002-01-01
A concept of the orientating reflex is presented, based on the principle of vector coding of cognitive and executive processes. The orientating reflex is a complex of orientating reactions of motor, autonomic, and subjective types, accentuating new and significant stimuli. Two main systems form the orientating reflex: the "targeting reaction" and the "searchlight of attention:" In the visual system, the targeting reaction ensures that the image of the object falls onto the fovea; this is mediated by involvement of premotor neurons which are excited by saccade command neurons in the superior colliculi. The "searchlight of attention" is activated as a result of resonance within the gamma frequency range, selectively enhancing cortical detectors and involving the reticular nucleus of the thalamus. Novelty signals arise in novelty neurons of the hippocampus. The synaptic weightings of neocortical detectors for hippocampal novelty neurons is initially characterized by high efficiency, which assigns a significant level of excitation of these neurons to the new stimulus. During repeated stimulation, the synaptic weightings of all the detectors representing a given stimulus decrease, with the result that the novelty signal becomes weaker. When the stimulus changes, it acts on other detectors, whose weightings for novelty neurons remain high, which strengthens the novelty signal. Decreases in the synaptic weightings on repetition of a standard stimulus form a trace of this stimulus in the novelty neurons - this is the "neural model of the stimulus." The novelty signal is determined by the non-concordance of the new stimulus with this "neural model," which is formed under the influence of the standard stimulus. The greater the difference between the new stimulus and the previously formed neural model, the stronger the novelty signal.
Wideband profiles of stimulus-frequency otoacoustic emissions in humans
NASA Astrophysics Data System (ADS)
Dewey, James B.; Dhar, Sumitrajit
2015-12-01
Behavioral pure-tone hearing thresholds and stimulus-frequency otoacoustic emissions (SFOAEs) were measured with a high frequency resolution from 0.5-20 kHz in 15 female participants. Stimuli were calibrated in terms of forward pressure level (FPL). SFOAE responses to 36 dB FPL probes were largest near 1 kHz and declined above 8-10 kHz, though were still measurable at frequencies approaching 16 kHz in some ears. SFOAEs typically dropped in amplitude at a frequency that was roughly one octave below the "corner" frequency of the audiogram, and one-third to one-half of an octave below the frequency where thresholds departed from highly sensitive hearing. High-frequency SFOAE responses are likely limited by a reduction in the efficiency of the underlying generation mechanism and/or a diminished region of generation as the stimulus-driven excitation approaches the basal-most portion of the cochlea.
Nourski, Kirill V; Abbas, Paul J; Miller, Charles A; Robinson, Barbara K; Jeng, Fuh-Cherng
2005-04-01
This study investigated the effects of acoustic noise on the auditory nerve compound action potentials in response to electric pulse trains. Subjects were adult guinea pigs, implanted with a minimally invasive electrode to preserve acoustic sensitivity. Electrically evoked compound action potentials (ECAP) were recorded from the auditory nerve trunk in response to electric pulse trains both during and after the presentation of acoustic white noise. Simultaneously presented acoustic noise produced a decrease in ECAP amplitude. The effect of the acoustic masker on the electric probe was greatest at the onset of the acoustic stimulus and it was followed by a partial recovery of the ECAP amplitude. Following cessation of the acoustic noise, ECAP amplitude recovered over a period of approximately 100-200 ms. The effects of the acoustic noise were more prominent at lower electric pulse rates (interpulse intervals of 3 ms and higher). At higher pulse rates, the ECAP adaptation to the electric pulse train alone was larger and the acoustic noise, when presented, produced little additional effect. The observed effects of noise on ECAP were the greatest at high electric stimulus levels and, for a particular electric stimulus level, at high acoustic noise levels.
Stimulus and response conflict processing during perceptual decision making.
Wendelken, Carter; Ditterich, Jochen; Bunge, Silvia A; Carter, Cameron S
2009-12-01
Encoding and dealing with conflicting information is essential for successful decision making in a complex environment. In the present fMRI study, stimulus conflict and response conflict are contrasted in the context of a perceptual decision-making dot-motion discrimination task. Stimulus conflict was manipulated by varying dot-motion coherence along task-relevant and task-irrelevant dimensions. Response conflict was manipulated by varying whether or not competing stimulus dimensions provided evidence for the same or different responses. The right inferior frontal gyrus was involved specifically in the resolution of stimulus conflict, whereas the dorsal anterior cingulate cortex was shown to be sensitive to response conflict. Additionally, two regions that have been linked to perceptual decision making with dot-motion stimuli in monkey physiology studies were differentially engaged by stimulus conflict and response conflict. The middle temporal area, previously linked to processing of motion, was strongly affected by the presence of stimulus conflict. On the other hand, the superior parietal lobe, previously associated with accumulation of evidence for a response, was affected by the presence of response conflict. These results shed light on the neural mechanisms that support decision making in the presence of conflict, a cognitive operation fundamental to both basic survival and high-level cognition.
Intranasal Localizability of Odorants: Influence of Stimulus Volume
Frasnelli, J.; Berg, J.; Huang, G.; Doty, R.L.
2011-01-01
When an odorant is presented to one side of the nose and air to the other, the ability to localize which side received the odorant depends upon trigeminal nerve stimulation. It has been shown that performance on this lateralization task increases as stimulus concentration increases. In this study, we determined the influences of stimulus volume and sex on the ability to localize each of 8 odorants presented at neat concentrations: anethole, geraniol, limonene, linalool, menthol, methyl salicyclate, phenyl ethanol, and vanillin. At a low stimulus volume (11 mL), only menthol was localized at an above-chance level. At a high stimulus volume (21 mL), above-chance localization occurred for all odorants except vanillin. Women were significantly better than men in localizing menthol. Stimuli rated as most intense were those that were most readily localized. The detection performance measures, as well as rated intensity values, significantly correlated with earlier findings of the trigeminal detectability of odorants presented to anosmic and normosmic subjects. This study suggests that differences in stimulus volume may explain some discrepant findings within the trigeminal chemosensory literature and supports the concept that vanillin may be a “relatively pure” olfactory stimulus. PMID:21310764
Intranasal localizability of odorants: influence of stimulus volume.
Frasnelli, J; Hummel, T; Berg, J; Huang, G; Doty, R L
2011-05-01
When an odorant is presented to one side of the nose and air to the other, the ability to localize which side received the odorant depends upon trigeminal nerve stimulation. It has been shown that performance on this lateralization task increases as stimulus concentration increases. In this study, we determined the influences of stimulus volume and sex on the ability to localize each of 8 odorants presented at neat concentrations: anethole, geraniol, limonene, linalool, menthol, methyl salicylate, phenyl ethanol, and vanillin. At a low stimulus volume (11 mL), only menthol was localized at an above-chance level. At a high stimulus volume (21 mL), above-chance localization occurred for all odorants except vanillin. Women were significantly better than men in localizing menthol. Stimuli rated as most intense were those that were most readily localized. The detection performance measures, as well as rated intensity values, significantly correlated with earlier findings of the trigeminal detectability of odorants presented to anosmic and normosmic subjects. This study suggests that differences in stimulus volume may explain some discrepant findings within the trigeminal chemosensory literature and supports the concept that vanillin may be a "relatively pure" olfactory stimulus.
Lu, Kun-Han; Hung, Shao-Chin; Wen, Haiguang; Marussich, Lauren; Liu, Zhongming
2016-01-01
Complex, sustained, dynamic, and naturalistic visual stimulation can evoke distributed brain activities that are highly reproducible within and across individuals. However, the precise origins of such reproducible responses remain incompletely understood. Here, we employed concurrent functional magnetic resonance imaging (fMRI) and eye tracking to investigate the experimental and behavioral factors that influence fMRI activity and its intra- and inter-subject reproducibility during repeated movie stimuli. We found that widely distributed and highly reproducible fMRI responses were attributed primarily to the high-level natural content in the movie. In the absence of such natural content, low-level visual features alone in a spatiotemporally scrambled control stimulus evoked significantly reduced degree and extent of reproducible responses, which were mostly confined to the primary visual cortex (V1). We also found that the varying gaze behavior affected the cortical response at the peripheral part of V1 and in the oculomotor network, with minor effects on the response reproducibility over the extrastriate visual areas. Lastly, scene transitions in the movie stimulus due to film editing partly caused the reproducible fMRI responses at widespread cortical areas, especially along the ventral visual pathway. Therefore, the naturalistic nature of a movie stimulus is necessary for driving highly reliable visual activations. In a movie-stimulation paradigm, scene transitions and individuals’ gaze behavior should be taken as potential confounding factors in order to properly interpret cortical activity that supports natural vision. PMID:27564573
Vossen, Catherine J.; Vossen, Helen G. M.; Marcus, Marco A. E.; van Os, Jim; Lousberg, Richel
2013-01-01
In analyzing time-locked event-related potentials (ERPs), many studies have focused on specific peaks and their differences between experimental conditions. In theory, each latency point after a stimulus contains potentially meaningful information, regardless of whether it is peak-related. Based on this assumption, we introduce a new concept which allows for flexible investigation of the whole epoch and does not primarily focus on peaks and their corresponding latencies. For each trial, the entire epoch is partitioned into event-related fixed-interval areas under the curve (ERFIAs). These ERFIAs, obtained at single trial level, act as dependent variables in a multilevel random regression analysis. The ERFIA multilevel method was tested in an existing ERP dataset of 85 healthy subjects, who underwent a rating paradigm of 150 painful and non-painful somatosensory electrical stimuli. We modeled the variability of each consecutive ERFIA with a set of predictor variables among which were stimulus intensity and stimulus number. Furthermore, we corrected for latency variations of the P2 (260 ms). With respect to known relationships between stimulus intensity, habituation, and pain-related somatosensory ERP, the ERFIA method generated highly comparable results to those of commonly used methods. Notably, effects on stimulus intensity and habituation were also observed in non-peak-related latency ranges. Further, cortical processing of actual stimulus intensity depended on the intensity of the previous stimulus, which may reflect pain-memory processing. In conclusion, the ERFIA multilevel method is a promising tool that can be used to study event-related cortical processing. PMID:24224018
Physiological responses to rational-emotive self-verbalizations.
Master, S; Gershman, L
1983-12-01
This study tested Albert Ellis' Rational Emotive Therapy (RET) theory which predicts that cognitive beliefs, not the stimulus situation, generate human emotions. According to RET, emotions created by rational beliefs are adaptive, while irrational beliefs result in an unadaptive anxiety level. Results demonstrated that at high levels of problem relevance there was (1) a significantly greater GSR in direct response to the stimulus situation, and also to irrational statements, than to rational and control statements, and (2) no significant difference between rational and neutral control statements. The authors argue that these results are more parsimoniously explained by conditioning theory than by RET theory.
Spontaneous activity in default-mode network predicts ascription of self-relatedness to stimuli.
Qin, Pengmin; Grimm, Simone; Duncan, Niall W; Fan, Yan; Huang, Zirui; Lane, Timothy; Weng, Xuchu; Bajbouj, Malek; Northoff, Georg
2016-04-01
Spontaneous activity levels prior to stimulus presentation can determine how that stimulus will be perceived. It has also been proposed that such spontaneous activity, particularly in the default-mode network (DMN), is involved in self-related processing. We therefore hypothesised that pre-stimulus activity levels in the DMN predict whether a stimulus is judged as self-related or not. Participants were presented in the MRI scanner with a white noise stimulus that they were instructed contained their name or another. They then had to respond with which name they thought they heard. Regions where there was an activity level difference between self and other response trials 2 s prior to the stimulus being presented were identified. Pre-stimulus activity levels were higher in the right temporoparietal junction, the right temporal pole and the left superior temporal gyrus in trials where the participant responded that they heard their own name than trials where they responded that they heard another. Pre-stimulus spontaneous activity levels in particular brain regions, largely overlapping with the DMN, predict the subsequent judgement of stimuli as self-related. This extends our current knowledge of self-related processing and its apparent relationship with intrinsic brain activity in what can be termed a rest-self overlap. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Expectation and Surprise Determine Neural Population Responses in the Ventral Visual Stream
Egner, Tobias; Monti, Jim M.; Summerfield, Christopher
2014-01-01
Visual cortex is traditionally viewed as a hierarchy of neural feature detectors, with neural population responses being driven by bottom-up stimulus features. Conversely, “predictive coding” models propose that each stage of the visual hierarchy harbors two computationally distinct classes of processing unit: representational units that encode the conditional probability of a stimulus and provide predictions to the next lower level; and error units that encode the mismatch between predictions and bottom-up evidence, and forward prediction error to the next higher level. Predictive coding therefore suggests that neural population responses in category-selective visual regions, like the fusiform face area (FFA), reflect a summation of activity related to prediction (“face expectation”) and prediction error (“face surprise”), rather than a homogenous feature detection response. We tested the rival hypotheses of the feature detection and predictive coding models by collecting functional magnetic resonance imaging data from the FFA while independently varying both stimulus features (faces vs houses) and subjects’ perceptual expectations regarding those features (low vs medium vs high face expectation). The effects of stimulus and expectation factors interacted, whereby FFA activity elicited by face and house stimuli was indistinguishable under high face expectation and maximally differentiated under low face expectation. Using computational modeling, we show that these data can be explained by predictive coding but not by feature detection models, even when the latter are augmented with attentional mechanisms. Thus, population responses in the ventral visual stream appear to be determined by feature expectation and surprise rather than by stimulus features per se. PMID:21147999
Tracking the Sensory Environment: An ERP Study of Probability and Context Updating in ASD
Westerfield, Marissa A.; Zinni, Marla; Vo, Khang; Townsend, Jeanne
2014-01-01
We recorded visual event-related brain potentials (ERPs) from 32 adult male participants (16 high-functioning participants diagnosed with Autism Spectrum Disorder (ASD) and 16 control participants, ranging in age from 18–53 yrs) during a three-stimulus oddball paradigm. Target and non-target stimulus probability was varied across three probability conditions, whereas the probability of a third non-target stimulus was held constant in all conditions. P3 amplitude to target stimuli was more sensitive to probability in ASD than in TD participants, whereas P3 amplitude to non-target stimuli was less responsive to probability in ASD participants. This suggests that neural responses to changes in event probability are attention-dependant in high-functioning ASD. The implications of these findings for higher-level behaviors such as prediction and planning are discussed. PMID:24488156
A method to establish stimulus control and compliance with instructions.
Borgen, John G; Charles Mace, F; Cavanaugh, Brenna M; Shamlian, Kenneth; Lit, Keith R; Wilson, Jillian B; Trauschke, Stephanie L
2017-10-01
We evaluated a unique procedure to establish compliance with instructions in four young children diagnosed with autism spectrum disorder (ASD) who had low levels of compliance. Our procedure included methods to establish a novel therapist as a source of positive reinforcement, reliably evoke orienting responses to the therapist, increase the number of exposures to instruction-compliance-reinforcer contingencies, and minimize the number of exposures to instruction-noncompliance-no reinforcer contingencies. We further alternated between instructions with a high probability of compliance (high-p instructions) with instructions that had a prior low probability of compliance (low-p instructions) as soon as low-p instructions lost stimulus control. The intervention is discussed in relation to the conditions necessary for the development of stimulus control and as an example of a variation of translational research. © 2017 Society for the Experimental Analysis of Behavior.
Horizontal tuning for faces originates in high-level Fusiform Face Area.
Goffaux, Valerie; Duecker, Felix; Hausfeld, Lars; Schiltz, Christine; Goebel, Rainer
2016-01-29
Recent work indicates that the specialization of face visual perception relies on the privileged processing of horizontal angles of facial information. This suggests that stimulus properties assumed to be fully resolved in primary visual cortex (V1; e.g., orientation) in fact determine human vision until high-level stages of processing. To address this hypothesis, the present fMRI study explored the orientation sensitivity of V1 and high-level face-specialized ventral regions such as the Occipital Face Area (OFA) and Fusiform Face Area (FFA) to different angles of face information. Participants viewed face images filtered to retain information at horizontal, vertical or oblique angles. Filtered images were viewed upright, inverted and (phase-)scrambled. FFA responded most strongly to the horizontal range of upright face information; its activation pattern reliably separated horizontal from oblique ranges, but only when faces were upright. Moreover, activation patterns induced in the right FFA and the OFA by upright and inverted faces could only be separated based on horizontal information. This indicates that the specialized processing of upright face information in the OFA and FFA essentially relies on the encoding of horizontal facial cues. This pattern was not passively inherited from V1, which was found to respond less strongly to horizontal than other orientations likely due to adaptive whitening. Moreover, we found that orientation decoding accuracy in V1 was impaired for stimuli containing no meaningful shape. By showing that primary coding in V1 is influenced by high-order stimulus structure and that high-level processing is tuned to selective ranges of primary information, the present work suggests that primary and high-level levels of the visual system interact in order to modulate the processing of certain ranges of primary information depending on their relevance with respect to the stimulus and task at hand. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dynamic Integration of Reward and Stimulus Information in Perceptual Decision-Making
Gao, Juan; Tortell, Rebecca; McClelland, James L.
2011-01-01
In perceptual decision-making, ideal decision-makers should bias their choices toward alternatives associated with larger rewards, and the extent of the bias should decrease as stimulus sensitivity increases. When responses must be made at different times after stimulus onset, stimulus sensitivity grows with time from zero to a final asymptotic level. Are decision makers able to produce responses that are more biased if they are made soon after stimulus onset, but less biased if they are made after more evidence has been accumulated? If so, how close to optimal can they come in doing this, and how might their performance be achieved mechanistically? We report an experiment in which the payoff for each alternative is indicated before stimulus onset. Processing time is controlled by a “go” cue occurring at different times post stimulus onset, requiring a response within msec. Reward bias does start high when processing time is short and decreases as sensitivity increases, leveling off at a non-zero value. However, the degree of bias is sub-optimal for shorter processing times. We present a mechanistic account of participants' performance within the framework of the leaky competing accumulator model [1], in which accumulators for each alternative accumulate noisy information subject to leakage and mutual inhibition. The leveling off of accuracy is attributed to mutual inhibition between the accumulators, allowing the accumulator that gathers the most evidence early in a trial to suppress the alternative. Three ways reward might affect decision making in this framework are considered. One of the three, in which reward affects the starting point of the evidence accumulation process, is consistent with the qualitative pattern of the observed reward bias effect, while the other two are not. Incorporating this assumption into the leaky competing accumulator model, we are able to provide close quantitative fits to individual participant data. PMID:21390225
Dynamic integration of reward and stimulus information in perceptual decision-making.
Gao, Juan; Tortell, Rebecca; McClelland, James L
2011-03-03
In perceptual decision-making, ideal decision-makers should bias their choices toward alternatives associated with larger rewards, and the extent of the bias should decrease as stimulus sensitivity increases. When responses must be made at different times after stimulus onset, stimulus sensitivity grows with time from zero to a final asymptotic level. Are decision makers able to produce responses that are more biased if they are made soon after stimulus onset, but less biased if they are made after more evidence has been accumulated? If so, how close to optimal can they come in doing this, and how might their performance be achieved mechanistically? We report an experiment in which the payoff for each alternative is indicated before stimulus onset. Processing time is controlled by a "go" cue occurring at different times post stimulus onset, requiring a response within msec. Reward bias does start high when processing time is short and decreases as sensitivity increases, leveling off at a non-zero value. However, the degree of bias is sub-optimal for shorter processing times. We present a mechanistic account of participants' performance within the framework of the leaky competing accumulator model [1], in which accumulators for each alternative accumulate noisy information subject to leakage and mutual inhibition. The leveling off of accuracy is attributed to mutual inhibition between the accumulators, allowing the accumulator that gathers the most evidence early in a trial to suppress the alternative. Three ways reward might affect decision making in this framework are considered. One of the three, in which reward affects the starting point of the evidence accumulation process, is consistent with the qualitative pattern of the observed reward bias effect, while the other two are not. Incorporating this assumption into the leaky competing accumulator model, we are able to provide close quantitative fits to individual participant data.
Mirroring and beyond: coupled dynamics as a generalized framework for modelling social interactions
Hasson, Uri; Frith, Chris D.
2016-01-01
When people observe one another, behavioural alignment can be detected at many levels, from the physical to the mental. Likewise, when people process the same highly complex stimulus sequences, such as films and stories, alignment is detected in the elicited brain activity. In early sensory areas, shared neural patterns are coupled to the low-level properties of the stimulus (shape, motion, volume, etc.), while in high-order brain areas, shared neural patterns are coupled to high-levels aspects of the stimulus, such as meaning. Successful social interactions require such alignments (both behavioural and neural), as communication cannot occur without shared understanding. However, we need to go beyond simple, symmetric (mirror) alignment once we start interacting. Interactions are dynamic processes, which involve continuous mutual adaptation, development of complementary behaviour and division of labour such as leader–follower roles. Here, we argue that interacting individuals are dynamically coupled rather than simply aligned. This broader framework for understanding interactions can encompass both processes by which behaviour and brain activity mirror each other (neural alignment), and situations in which behaviour and brain activity in one participant are coupled (but not mirrored) to the dynamics in the other participant. To apply these more sophisticated accounts of social interactions to the study of the underlying neural processes we need to develop new experimental paradigms and novel methods of data analysis PMID:27069044
McNeilly, Alison D; Gallagher, Jennifer R; Huang, Jeffrey T-J; Ashford, Michael L J; McCrimmon, Rory J
2017-06-01
Hypoglycemia is a major adverse effect of insulin therapy for people with type 1 diabetes (T1D). Profound defects in the normal counterregulatory response to hypoglycemia explain the frequency of hypoglycemia occurrence in T1D. Defective counterregulation results to a large extent from prior exposure to hypoglycemia per se, leading to a condition called impaired awareness of hypoglycemia (IAH), the cause of which is unknown. In the current study, we investigate the hypothesis that IAH develops through a special type of adaptive memory referred to as habituation. To test this hypothesis, we used a novel intense stimulus (high-intensity exercise) to demonstrate two classic features of a habituated response, namely dishabituation and response recovery. We demonstrate that after recurrent hypoglycemia the introduction of a novel dishabituating stimulus (a single burst of high-intensity exercise) in male Sprague-Dawley rats restores the defective hypoglycemia counterregulatory response. In addition, the rats showed an enhanced response to the novel stimulus (response recovery). We make the further observation using proteomic analysis of hypothalamic extracts that high-intensity exercise in recurrently hypoglycemic rats increases levels of a number of proteins linked with brain-derived neurotrophic factor signaling. These findings may lead to novel therapeutic approaches for individuals with T1D and IAH. © 2017 by the American Diabetes Association.
Sex hormones affect language lateralisation but not cognitive control in normally cycling women.
Hodgetts, Sophie; Weis, Susanne; Hausmann, Markus
2015-08-01
This article is part of a Special Issue "Estradiol and Cognition". Natural fluctuations of sex hormones during the menstrual cycle have been shown to modulate language lateralisation. Using the dichotic listening (DL) paradigm, a well-established measurement of language lateralisation, several studies revealed that the left hemispheric language dominance was stronger when levels of estradiol were high. A recent study (Hjelmervik et al., 2012) showed, however, that high levels of follicular estradiol increased lateralisation only in a condition that required participants to cognitively control (top-down) the stimulus-driven (bottom-up) response. This finding suggested that sex hormones modulate lateralisation only if cognitive control demands are high. The present study investigated language lateralisation in 73 normally cycling women under three attention conditions that differed in cognitive control demands. Saliva estradiol and progesterone levels were determined by luminescence immunoassays. Women were allocated to a high or low estradiol group. The results showed a reduced language lateralisation when estradiol and progesterone levels were high. The effect was independent of the attention condition indicating that estradiol marginally affected cognitive control. The findings might suggest that high levels of estradiol especially reduce the stimulus-driven (bottom-up) aspect of lateralisation rather than top-down cognitive control. Copyright © 2015 Elsevier Inc. All rights reserved.
Negative words enhance recognition in nonclinical high dissociators: An fMRI study.
de Ruiter, Michiel B; Veltman, Dick J; Phaf, R Hans; van Dyck, Richard
2007-08-01
Memory encoding and retrieval were studied in a nonclinical sample of participants that differed in the amount of reported dissociative experiences (trait dissociation). Behavioral as well as functional imaging (fMRI) indices were used as convergent measures of memory functioning. In a deep vs. shallow encoding paradigm, the influence of dissociative style on elaborative and avoidant encoding was studied, respectively. Furthermore, affectively neutral and negative words were presented, to test whether the effects of dissociative tendencies on memory functioning depended on the affective valence of the stimulus material. Results showed that (a) deep encoding of negative vs. neutral stimuli was associated with higher levels of semantic elaboration in high than in low dissociators, as indicated by increased levels of activity in hippocampus and prefrontal cortex during encoding and higher memory performance during recognition, (b) high dissociators were generally characterized by higher levels of conscious recollection as indicated by increased activity of the hippocampus and posterior parietal areas during recognition, (c) nonclinical high dissociators were not characterized by an avoidant encoding style. These results support the notion that trait dissociation in healthy individuals is associated with high levels of elaborative encoding, resulting in high levels of conscious recollection. These abilities, in addition, seem to depend on the salience of the presented stimulus material.
Banks, Matthew L; Smith, Douglas A; Kisor, David F; Poklis, Justin L
2016-02-01
Methamphetamine is a globally abused drug that is metabolized to amphetamine, which also produces abuse-related behavioral effects. However, the contributing role of methamphetamine metabolism to amphetamine in methamphetamine's abuse-related subjective effects is unknown. This preclinical study was designed to determine 1) the relationship between plasma methamphetamine levels and methamphetamine discriminative stimulus effects and 2) the contribution of the methamphetamine metabolite amphetamine in the discriminative stimulus effects of methamphetamine in rhesus monkeys. Adult male rhesus monkeys (n=3) were trained to discriminate 0.18mg/kg intramuscular (+)-methamphetamine from saline in a two-key food-reinforced discrimination procedure. Time course of saline, (+)-methamphetamine (0.032-0.32mg/kg), and (+)-amphetamine (0.032-0.32mg/kg) discriminative stimulus effects were determined. Parallel pharmacokinetic studies were conducted in the same monkeys to determine plasma methamphetamine and amphetamine levels after methamphetamine administration and amphetamine levels after amphetamine administration for correlation with behavior in the discrimination procedure. Both methamphetamine and amphetamine produced full, ≥90%, methamphetamine-like discriminative stimulus effects. Amphetamine displayed a slightly, but significantly, longer duration of action than methamphetamine in the discrimination procedure. Both methamphetamine and amphetamine behavioral effects were related to methamphetamine and amphetamine plasma levels by a clockwise hysteresis loop indicating acute tolerance had developed to the discriminative stimulus effects. Furthermore, amphetamine levels after methamphetamine administration were absent when methamphetamine stimulus effects were greatest and peaked when methamphetamine discriminative stimulus effects returned to saline-like levels. Overall, these results demonstrate the methamphetamine metabolite amphetamine does not contribute to methamphetamine's abuse-related subjective effects. Copyright © 2015 Elsevier Inc. All rights reserved.
Bode, Stefan; Bennett, Daniel; Sewell, David K; Paton, Bryan; Egan, Gary F; Smith, Philip L; Murawski, Carsten
2018-03-01
According to sequential sampling models, perceptual decision-making is based on accumulation of noisy evidence towards a decision threshold. The speed with which a decision is reached is determined by both the quality of incoming sensory information and random trial-by-trial variability in the encoded stimulus representations. To investigate those decision dynamics at the neural level, participants made perceptual decisions while functional magnetic resonance imaging (fMRI) was conducted. On each trial, participants judged whether an image presented under conditions of high, medium, or low visual noise showed a piano or a chair. Higher stimulus quality (lower visual noise) was associated with increased activation in bilateral medial occipito-temporal cortex and ventral striatum. Lower stimulus quality was related to stronger activation in posterior parietal cortex (PPC) and dorsolateral prefrontal cortex (DLPFC). When stimulus quality was fixed, faster response times were associated with a positive parametric modulation of activation in medial prefrontal and orbitofrontal cortex, while slower response times were again related to more activation in PPC, DLPFC and insula. Our results suggest that distinct neural networks were sensitive to the quality of stimulus information, and to trial-to-trial variability in the encoded stimulus representations, but that reaching a decision was a consequence of their joint activity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chen, Xiong; Wang, Xiaoyu; Yang, Dong; Chen, Youguo
2014-01-01
To explore the enhancing effect of alcohol consumption on attractiveness ratings, in that few studies on the Beer Goggles effect control the stimuli attractiveness level and researchers have seldom considered extending the effect to stimuli other than faces. Male and female participants (n = 103) were randomly assigned to alcohol consumption or placebo groups. Both groups were asked to assess the attractiveness of two types of pictures (faces and landscapes) with three levels of attractiveness for each stimulus category (high, moderate and low). We found significant interactions between beverage type and attractiveness level. Attractiveness ratings for moderate- and low-attractiveness faces were significantly higher in the alcohol compared with placebo condition, while there was no significant difference for high-attractiveness stimuli between these two conditions. As for landscapes, only low-attractiveness stimuli were rated significantly higher in the alcohol condition. Whether or not alcohol consumption leads to an increase in attractiveness ratings depends on the initial attractiveness of the stimulus materials. Alcohol consumption tends to affect ratings for stimuli with relatively low attractiveness. Furthermore, this effect is not limited to faces; it extends to other types of stimuli like landscapes. © The Author 2014. Medical Council on Alcohol and Oxford University Press. All rights reserved.
Macdonald, James S P; Lavie, Nilli
2008-10-01
Although the perceptual load theory of attention has stimulated a great deal of research, evidence for the role of perceptual load in determining perception has typically relied on indirect measures that infer perception from distractor effects on reaction times or neural activity (see N. Lavie, 2005, for a review). Here we varied the level of perceptual load in a letter-search task and assessed its effect on the conscious perception of a search-irrelevant shape stimulus appearing in the periphery, using a direct measure of awareness (present/absent reports). Detection sensitivity (d') was consistently reduced with high, compared to low, perceptual load but was unaffected by the level of working memory load. Because alternative accounts in terms of expectation, memory, response bias, and goal-neglect due to the more strenuous high load task were ruled out, these experiments clearly demonstrate that high perceptual load determines conscious perception, impairing the ability to merely detect the presence of a stimulus--a phenomenon of load induced blindness.
Evaluation of an organic light-emitting diode display for precise visual stimulation.
Ito, Hiroyuki; Ogawa, Masaki; Sunaga, Shoji
2013-06-11
A new type of visual display for presentation of a visual stimulus with high quality was assessed. The characteristics of an organic light-emitting diode (OLED) display (Sony PVM-2541, 24.5 in.; Sony Corporation, Tokyo, Japan) were measured in detail from the viewpoint of its applicability to visual psychophysics. We found the new display to be superior to other display types in terms of spatial uniformity, color gamut, and contrast ratio. Changes in the intensity of luminance were sharper on the OLED display than those on a liquid crystal display. Therefore, such OLED displays could replace conventional cathode ray tube displays in vision research for high quality stimulus presentation. Benefits of using OLED displays in vision research were especially apparent in the fields of low-level vision, where precise control and description of the stimulus are needed, e.g., in mesopic or scotopic vision, color vision, and motion perception.
ERIC Educational Resources Information Center
Loughlin, Catherine E.; Ivener, Bonnie L.
A study of patterns of literacy behaviors in high level literacy environments with varying levels of access to the environment began with a study of the instruments involved. Goals were to: (1) examine the reliability of the Survey of Displayed Literacy Stimuli; (2) study the correlation between scores from the Survey of Displayed Literacy Stimuli…
Portnuff, Cory D F; Kleindienst, Samantha; Bogle, Jamie M
2017-09-01
Vestibular-evoked myogenic potentials (VEMPs) are commonly used clinical assessments for patients with complaints of dizziness. However, relatively high air-conducted stimuli are required to elicit the VEMP, and ultimately may compromise safe noise exposure limits. Recently, research has reported the potential for noise-induced hearing loss (NIHL) from VEMP stimulus exposure through studies of reduced otoacoustic emission levels after VEMP testing, as well as a recent case study showing permanent sensorineural hearing loss associated with VEMP exposure. The purpose of this report is to review the potential for hazardous noise exposure from VEMP stimuli and to suggest clinical parameters for safe VEMP testing. Literature review with presentation of clinical guidelines and a clinical tool for estimating noise exposure. The literature surrounding VEMP stimulus-induced hearing loss is reviewed, including several cases of overexposure. The article then presents a clinical calculation tool for the estimation of a patient's safe noise exposure from VEMP stimuli, considering stimulus parameters, and includes a discussion of how varying stimulus parameters affect a patient's noise exposure. Finally, recommendations are provided for recognizing and managing specific patient populations who may be at higher risk for NIHL from VEMP stimulus exposure. A sample protocol is provided that allows for safe noise exposure. VEMP stimuli have the potential to cause NIHL due to high sound exposure levels. However, with proper safety protocols in place, clinicians may reduce or eliminate this risk to their patients. Use of the tools provided, including the noise exposure calculation tool and sample protocols, may help clinicians to understand and ensure safe use of VEMP stimuli. American Academy of Audiology
Han, Biao; VanRullen, Rufin
2017-01-01
Predictive coding is an influential model emphasizing interactions between feedforward and feedback signals. Here, we investigated the temporal dynamics of these interactions. Two gray disks with different versions of the same stimulus, one enabling predictive feedback (a 3D-shape) and one impeding it (random-lines), were simultaneously presented on the left and right of fixation. Human subjects judged the luminance of the two disks while EEG was recorded. The choice of 3D-shape or random-lines as the brighter disk was used to assess the influence of feedback signals on sensory processing in each trial (i.e., as a measure of post-stimulus predictive coding efficiency). Independently of the spatial response (left/right), we found that this choice fluctuated along with the pre-stimulus phase of two spontaneous oscillations: a ~5 Hz oscillation in contralateral frontal electrodes and a ~16 Hz oscillation in contralateral occipital electrodes. This pattern of results demonstrates that predictive coding is a rhythmic process, and suggests that it could take advantage of faster oscillations in low-level areas and slower oscillations in high-level areas. PMID:28262824
Treviño, Mario
2014-01-01
Animal choices depend on direct sensory information, but also on the dynamic changes in the magnitude of reward. In visual discrimination tasks, the emergence of lateral biases in the choice record from animals is often described as a behavioral artifact, because these are highly correlated with error rates affecting psychophysical measurements. Here, we hypothesized that biased choices could constitute a robust behavioral strategy to solve discrimination tasks of graded difficulty. We trained mice to swim in a two-alterative visual discrimination task with escape from water as the reward. Their prevalence of making lateral choices increased with stimulus similarity and was present in conditions of high discriminability. While lateralization occurred at the individual level, it was absent, on average, at the population level. Biased choice sequences obeyed the generalized matching law and increased task efficiency when stimulus similarity was high. A mathematical analysis revealed that strongly-biased mice used information from past rewards but not past choices to make their current choices. We also found that the amount of lateralized choices made during the first day of training predicted individual differences in the average learning behavior. This framework provides useful analysis tools to study individualized visual-learning trajectories in mice. PMID:25524257
Shi, Zhaoyue; Wu, Ruiqi; Yang, Pai-Feng; Wang, Feng; Wu, Tung-Lin; Mishra, Arabinda; Chen, Li Min; Gore, John C
2017-05-16
Although blood oxygenation level-dependent (BOLD) fMRI has been widely used to map brain responses to external stimuli and to delineate functional circuits at rest, the extent to which BOLD signals correlate spatially with underlying neuronal activity, the spatial relationships between stimulus-evoked BOLD activations and local correlations of BOLD signals in a resting state, and whether these spatial relationships vary across functionally distinct cortical areas are not known. To address these critical questions, we directly compared the spatial extents of stimulated activations and the local profiles of intervoxel resting state correlations for both high-resolution BOLD at 9.4 T and local field potentials (LFPs), using 98-channel microelectrode arrays, in functionally distinct primary somatosensory areas 3b and 1 in nonhuman primates. Anatomic images of LFP and BOLD were coregistered within 0.10 mm accuracy. We found that the point spread functions (PSFs) of BOLD and LFP responses were comparable in the stimulus condition, and both estimates of activations were slightly more spatially constrained than local correlations at rest. The magnitudes of stimulus responses in area 3b were stronger than those in area 1 and extended in a medial to lateral direction. In addition, the reproducibility and stability of stimulus-evoked activation locations within and across both modalities were robust. Our work suggests that the intrinsic resolution of BOLD is not a limiting feature in practice and approaches the intrinsic precision achievable by multielectrode electrophysiology.
Shi, Zhaoyue; Wu, Ruiqi; Yang, Pai-Feng; Wang, Feng; Wu, Tung-Lin; Mishra, Arabinda; Chen, Li Min; Gore, John C.
2017-01-01
Although blood oxygenation level-dependent (BOLD) fMRI has been widely used to map brain responses to external stimuli and to delineate functional circuits at rest, the extent to which BOLD signals correlate spatially with underlying neuronal activity, the spatial relationships between stimulus-evoked BOLD activations and local correlations of BOLD signals in a resting state, and whether these spatial relationships vary across functionally distinct cortical areas are not known. To address these critical questions, we directly compared the spatial extents of stimulated activations and the local profiles of intervoxel resting state correlations for both high-resolution BOLD at 9.4 T and local field potentials (LFPs), using 98-channel microelectrode arrays, in functionally distinct primary somatosensory areas 3b and 1 in nonhuman primates. Anatomic images of LFP and BOLD were coregistered within 0.10 mm accuracy. We found that the point spread functions (PSFs) of BOLD and LFP responses were comparable in the stimulus condition, and both estimates of activations were slightly more spatially constrained than local correlations at rest. The magnitudes of stimulus responses in area 3b were stronger than those in area 1 and extended in a medial to lateral direction. In addition, the reproducibility and stability of stimulus-evoked activation locations within and across both modalities were robust. Our work suggests that the intrinsic resolution of BOLD is not a limiting feature in practice and approaches the intrinsic precision achievable by multielectrode electrophysiology. PMID:28461461
Sensorimotor synchronization: neurophysiological markers of the asynchrony in a finger-tapping task.
Bavassi, Luz; Kamienkowski, Juan E; Sigman, Mariano; Laje, Rodrigo
2017-01-01
Sensorimotor synchronization (SMS) is a form of referential behavior in which an action is coordinated with a predictable external stimulus. The neural bases of the synchronization ability remain unknown, even in the simpler, paradigmatic task of finger tapping to a metronome. In this task the subject is instructed to tap in synchrony with a periodic sequence of brief tones, and the time difference between each response and the corresponding stimulus tone (asynchrony) is recorded. We make a step towards the identification of the neurophysiological markers of SMS by recording high-density EEG event-related potentials and the concurrent behavioral response-stimulus asynchronies during an isochronous paced finger-tapping task. Using principal component analysis, we found an asymmetry between the traces for advanced and delayed responses to the stimulus, in accordance with previous behavioral observations from perturbation studies. We also found that the amplitude of the second component encodes the higher-level percept of asynchrony 100 ms after the current stimulus. Furthermore, its amplitude predicts the asynchrony of the next step, past 300 ms from the previous stimulus, independently of the period length. Moreover, the neurophysiological processing of synchronization errors is performed within a fixed-duration interval after the stimulus. Our results suggest that the correction of a large asynchrony in a periodic task and the recovery of synchrony after a perturbation could be driven by similar neural processes.
Overgaard, Morten; Lindeløv, Jonas; Svejstrup, Stinna; Døssing, Marianne; Hvid, Tanja; Kauffmann, Oliver; Mouridsen, Kim
2013-01-01
This paper reports an experiment intended to test a particular hypothesis derived from blindsight research, which we name the “source misidentification hypothesis.” According to this hypothesis, a subject may be correct about a stimulus without being correct about how she had access to this knowledge (whether the stimulus was visual, auditory, or something else). We test this hypothesis in healthy subjects, asking them to report whether a masked stimulus was presented auditorily or visually, what the stimulus was, and how clearly they experienced the stimulus using the Perceptual Awareness Scale (PAS). We suggest that knowledge about perceptual modality may be a necessary precondition in order to issue correct reports of which stimulus was presented. Furthermore, we find that PAS ratings correlate with correctness, and that subjects are at chance level when reporting no conscious experience of the stimulus. To demonstrate that particular levels of reporting accuracy are obtained, we employ a statistical strategy, which operationally tests the hypothesis of non-equality, such that the usual rejection of the null-hypothesis admits the conclusion of equivalence. PMID:23508677
Brain stem auditory-evoked response of the nonanesthetized dog.
Marshall, A E
1985-04-01
The brain stem auditory evoked-response was measured from a group of 24 healthy dogs under conditions suitable for clinical diagnostic use. The waveforms were identified, and analysis of amplitude ratios, latencies, and interpeak latencies were done. The group was subdivided into subgroups based on tranquilization, nontranquilization, sex, and weight. Differences were not observed among any of these subgroups. All dogs responded to the click stimulus from 30 dB to 90 dB, but only 62.5% of the dogs responded at 5 dB. The total number of peaks averaged 1.6 at 5 dB, increased linearly to 6.5 at 50 dB, and remained at 6.5 to 90 dB. Frequency of recognizability of each wave was tabulated for each stimulus intensity tested; recognizability increased with increased stimulus intensity. Amplitudes of waves increased with increasing stimulus intensity, but were highly variable. The 4th wave had the greatest amplitude at the lower stimulus intensities, and the 1st wave had the greatest amplitude at the higher stimulus intensities. Amplitude ratio of the 1st to 5th wave was greater than 1 at less than or equal to 50 dB stimulus intensity, and was 1 for stimulus intensities greater than 50 dB. Interpeak latencies did not change relative to stimulus intensities. Peak latencies of each wave averaged at 5-dB hearing level for the 1st to 6th waves were 2.03, 2.72, 3.23, 4.14, 4.41, and 6.05 ms, respectively; latencies of these 6 waves at 90 dB were 0.92, 1.79, 2.46, 3.03, 3.47, and 4.86 ms, respectively. Latency decreased between 0.009 to 0.014 ms/dB for the waves.
The adequate stimulus for avian short latency vestibular responses to linear translation
NASA Technical Reports Server (NTRS)
Jones, T. A.; Jones, S. M.; Colbert, S.
1998-01-01
Transient linear acceleration stimuli have been shown to elicit eighth nerve vestibular compound action potentials in birds and mammals. The present study was undertaken to better define the nature of the adequate stimulus for neurons generating the response in the chicken (Gallus domesticus). In particular, the study evaluated the question of whether the neurons studied are most sensitive to the maximum level of linear acceleration achieved or to the rate of change in acceleration (da/dt, or jerk). To do this, vestibular response thresholds were measured as a function of stimulus onset slope. Traditional computer signal averaging was used to record responses to pulsed linear acceleration stimuli. Stimulus onset slope was systematically varied. Acceleration thresholds decreased with increasing stimulus onset slope (decreasing stimulus rise time). When stimuli were expressed in units of jerk (g/ms), thresholds were virtually constant for all stimulus rise times. Moreover, stimuli having identical jerk magnitudes but widely varying peak acceleration levels produced virtually identical responses. Vestibular response thresholds, latencies and amplitudes appear to be determined strictly by stimulus jerk magnitudes. Stimulus attributes such as peak acceleration or rise time alone do not provide sufficient information to predict response parameter quantities. Indeed, the major response parameters were shown to be virtually independent of peak acceleration levels or rise time when these stimulus features were isolated and considered separately. It is concluded that the neurons generating short latency vestibular evoked potentials do so as "jerk encoders" in the chicken. Primary afferents classified as "irregular", and which traditionally fall into the broad category of "dynamic" or "phasic" neurons, would seem to be the most likely candidates for the neural generators of short latency vestibular compound action potentials.
NASA Astrophysics Data System (ADS)
Mills, David M.
2003-02-01
Characteristics of distortion product otoacoustic emissions (DPOAEs) and auditory brainstem responses (ABRs) were measured in Mongolian gerbil before and after the introduction of two different auditory dysfunctions: (1) acoustic damage with a high-intensity tone, or (2) furosemide intoxication. The goal was to find emission parameters and measures that best differentiated between the two dysfunctions, e.g., at a given ABR threshold elevation. Emission input-output or ``growth'' functions were used (frequencies f1 and f2, f2/f1=1.21) with equal levels, L1=L2, and unequal levels, with L1=L2+20 dB. The best parametric choice was found to be unequal stimulus levels, and the best measure was found to be the change in the emission threshold level, Δx. The emission threshold was defined as the stimulus level required to reach a criterion emission amplitude, in this case -10 dB SPL. (The next best measure was the change in emission amplitude at high stimulus levels, specifically that measured at L1×L2=90×70 dB SPL.) For an ABR threshold shift of 20 dB or more, there was essentially no overlap in the emission threshold measures for the two conditions, sound damage or furosemide. The dividing line between the two distributions increased slowly with the change in ABR threshold, ΔABR, and was given by Δxt=0.6 ΔABR+8 dB. For a given ΔABR, if the shift in emission threshold was more than the calculated dividing line value, Δxt, the auditory dysfunction was due to acoustic damage, if less, it was due to furosemide.
Individual Alpha Peak Frequency Predicts 10 Hz Flicker Effects on Selective Attention.
Gulbinaite, Rasa; van Viegen, Tara; Wieling, Martijn; Cohen, Michael X; VanRullen, Rufin
2017-10-18
Rhythmic visual stimulation ("flicker") is primarily used to "tag" processing of low-level visual and high-level cognitive phenomena. However, preliminary evidence suggests that flicker may also entrain endogenous brain oscillations, thereby modulating cognitive processes supported by those brain rhythms. Here we tested the interaction between 10 Hz flicker and endogenous alpha-band (∼10 Hz) oscillations during a selective visuospatial attention task. We recorded EEG from human participants (both genders) while they performed a modified Eriksen flanker task in which distractors and targets flickered within (10 Hz) or outside (7.5 or 15 Hz) the alpha band. By using a combination of EEG source separation, time-frequency, and single-trial linear mixed-effects modeling, we demonstrate that 10 Hz flicker interfered with stimulus processing more on incongruent than congruent trials (high vs low selective attention demands). Crucially, the effect of 10 Hz flicker on task performance was predicted by the distance between 10 Hz and individual alpha peak frequency (estimated during the task). Finally, the flicker effect on task performance was more strongly predicted by EEG flicker responses during stimulus processing than during preparation for the upcoming stimulus, suggesting that 10 Hz flicker interfered more with reactive than proactive selective attention. These findings are consistent with our hypothesis that visual flicker entrained endogenous alpha-band networks, which in turn impaired task performance. Our findings also provide novel evidence for frequency-dependent exogenous modulation of cognition that is determined by the correspondence between the exogenous flicker frequency and the endogenous brain rhythms. SIGNIFICANCE STATEMENT Here we provide novel evidence that the interaction between exogenous rhythmic visual stimulation and endogenous brain rhythms can have frequency-specific behavioral effects. We show that alpha-band (10 Hz) flicker impairs stimulus processing in a selective attention task when the stimulus flicker rate matches individual alpha peak frequency. The effect of sensory flicker on task performance was stronger when selective attention demands were high, and was stronger during stimulus processing and response selection compared with the prestimulus anticipatory period. These findings provide novel evidence that frequency-specific sensory flicker affects online attentional processing, and also demonstrate that the correspondence between exogenous and endogenous rhythms is an overlooked prerequisite when testing for frequency-specific cognitive effects of flicker. Copyright © 2017 the authors 0270-6474/17/3710173-12$15.00/0.
The contribution of stimulus frequency and recency to set-size effects.
van 't Wout, Félice
2018-06-01
Hick's law describes the increase in choice reaction time (RT) with the number of stimulus-response (S-R) mappings. However, in choice RT experiments, set-size is typically confounded with stimulus recency and frequency: With a smaller set-size, each stimulus occurs on average more frequently and more recently than with a larger set-size. To determine to what extent stimulus recency and frequency contribute to the set-size effect, stimulus set-size was manipulated independently of stimulus recency and frequency, by keeping recency and frequency constant for a subset of the stimuli. Although this substantially reduced the set-size effect (by approximately two-thirds for these stimuli), it did not eliminate it. Thus, the time required to retrieve an S-R mapping from memory is (at least in part) determined by the number of alternatives. In contrast, a recent task switching study (Van 't Wout et al. in Journal of Experimental Psychology: Learning, Memory & Cognition., 41, 363-376, 2015) using the same manipulation found that the time required to retrieve a task-set from memory is not influenced by the number of alternatives per se. Hence, this experiment further supports a distinction between two levels of representation in task-set control: The level of task-sets, and the level of S-R mappings.
Subliminal number priming within and across the visual and auditory modalities.
Kouider, Sid; Dehaene, Stanislas
2009-01-01
Whether masked number priming involves a low-level sensorimotor route or an amodal semantic level of processing remains highly debated. Several alternative interpretations have been put forward, proposing either that masked number priming is solely a byproduct of practice with numbers, or that stimulus awareness was underestimated. In a series of four experiments, we studied whether repetition and congruity priming for numbers reliably extend to novel (i.e., unpracticed) stimuli and whether priming transfers from a visual prime to an auditory target, even when carefully controlling for stimulus awareness. While we consistently observed cross-modal priming, the generalization to novel stimuli was weaker and reached significance only when considering the whole set of experiments. We conclude that number priming does involve an amodal, semantic level of processing, but is also modulated by task settings.
Using stimulus shaping and fading to establish stimulus control in normal and retarded children.
Smeets, P M; Lancioni, G E; Hoogeveen, F R
1984-09-01
The present study was an effort to investigate whether, in addition to his IQ level, the child's ability to identify all relevant stimulus components would affect the frequency of overselective responding. Children of different IQ levels (i.e. normal, educably retarded, and trainable retarded children) participated. Subjects were trained to learn the meanings of four sets of fictitious words, i.e. two sets containing words printed in Roman letters (Roman words), and two sets containing words printed in Hebrew letters (Hebrew words). All subjects could identify the words of each set. The normal and educably retarded subjects could read aloud the Roman words, whereas the trainable retarded subjects could not. None of the subjects could read the Hebrew words. Two training procedures were used, one requiring transfer of stimulus control (fading), and one which did not (stimulus shaping). The results indicated that, firstly, the discrimination learning of the normal and educably retarded subjects covaried with the IQ level and their ability to read the words. The learning rate was not affected by the training procedures. Secondly, the trainable retarded subjects learned much better through stimulus shaping than through fading. Their acquisition rates were slow and not affected by the types of letters. Thirdly, the training procedures had no effect on the breadth of stimulus control. Instead, it covaried as a function of the IQ level (all groups) and of the child's ability to read the words (normal and educably retarded subjects). Fourthly, the training procedures had, however, considerable effect on which letters controlled the discriminations. When overselective selective responding was evident, the letters that had been associated with the prompts were more often functional than the other letters, but only for the words trained through stimulus shaping.
Working memory contents revive the neglected, but suppress the inhibited.
Han, Suk Won
2015-12-01
It is well known that attention is biased toward a stimulus matching working memory contents. However, it remains unknown whether the maintenance of information in working memory by itself is sufficient to create memory-driven attentional capture. Notably, in many previous studies showing the memory-driven attentional capture, the task settings might have explicitly or implicitly incentivized participants to strategically attend to a memory-matching stimulus. By innovating an experimental paradigm, the present study overcame this challenge and directly tested whether working memory contents capture attention in the absence of task-level attentional bias toward a memory-matching stimulus. I found that a stimulus that is usually outside the focus of attention, powerfully captured attention when it matched working memory contents, whereas a match between working memory and an inhibited stimulus suppressed attentional allocation toward the memory-matching stimulus. These findings suggest that in the absence of any task-level attentional bias toward memory-matching stimuli, attention is biased toward a memory-matching stimulus, but this memory-driven attentional capture is diminished when top-down inhibition is imposed on the stimulus. Copyright © 2015 Elsevier B.V. All rights reserved.
Natural concepts in a juvenile gorilla (gorilla gorilla gorilla) at three levels of abstraction.
Vonk, Jennifer; MacDonald, Suzanne E
2002-01-01
The extent to which nonhumans are able to form conceptual versus perceptual discriminations remains a matter of debate. Among the great apes, only chimpanzees have been tested for conceptual understanding, defined as the ability to form discriminations not based solely on simple perceptual features of stimuli, and to transfer this learning to novel stimuli. In the present investigation, a young captive female gorilla was trained at three levels of abstraction (concrete, intermediate, and abstract) involving sets of photographs representing natural categories (e.g., orangutans vs. humans, primates vs. nonprimate animals, animals vs. foods). Within each level of abstraction, when the gorilla had learned to discriminate positive from negative exemplars in one set of photographs, a novel set was introduced. Transfer was defined in terms of high accuracy during the first two sessions with the new stimuli. The gorilla acquired discriminations at all three levels of abstraction but showed unambiguous transfer only with the concrete and abstract stimulus sets. Detailed analyses of response patterns revealed little evidence of control by simple stimulus features. Acquisition and transfer involving abstract stimulus sets suggest a conceptual basis for gorilla categorization. The gorilla's relatively poor performance with intermediate-level discriminations parallels findings with pigeons, and suggests a need to reconsider the role of perceptual information in discriminations thought to indicate conceptual behavior in nonhumans. PMID:12507006
Glucocorticoids mediate stress-induced impairment of retrieval of stimulus-response memory.
Atsak, Piray; Guenzel, Friederike M; Kantar-Gok, Deniz; Zalachoras, Ioannis; Yargicoglu, Piraye; Meijer, Onno C; Quirarte, Gina L; Wolf, Oliver T; Schwabe, Lars; Roozendaal, Benno
2016-05-01
Acute stress and elevated glucocorticoid hormone levels are well known to impair the retrieval of hippocampus-dependent 'declarative' memory. Recent findings suggest that stress might also impair the retrieval of non-hippocampal memories. In particular, stress shortly before retention testing was shown to impair the retrieval of striatal stimulus-response associations in humans. However, the mechanism underlying this stress-induced retrieval impairment of non-hippocampal stimulus-response memory remains elusive. In the present study, we investigated whether an acute elevation in glucocorticoid levels mediates the impairing effects of stress on retrieval of stimulus-response memory. Male Sprague-Dawley rats were trained on a stimulus-response task in an eight-arm radial maze until they learned to associate a stimulus, i.e., cue, with a food reward in one of the arms. Twenty-four hours after successful acquisition, they received a systemic injection of vehicle, corticosterone (1mg/kg), the corticosterone-synthesis inhibitor metyrapone (35mg/kg) or were left untreated 1h before retention testing. We found that the corticosterone injection impaired the retrieval of stimulus-response memory. We further found that the systemic injection procedure per se was stressful as the vehicle administration also increased plasma corticosterone levels and impaired the retrieval of stimulus-response memory. However, memory retrieval was not impaired when rats were tested 2min after the systemic vehicle injection, before any stress-induced elevation in corticosterone levels had occurred. Moreover, metyrapone treatment blocked the effect of injection stress on both plasma corticosterone levels and memory retrieval impairment, indicating that the endogenous corticosterone response mediates the stress-induced memory retrieval impairment. None of the treatments affected rats' locomotor activity or motivation to search for the food reward within the maze. These findings show that stress may affect memory processes beyond the hippocampus and that these stress effects are due to the action of glucocorticoids. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bult, Johannes H F; van Putten, Bram; Schifferstein, Hendrik N J; Roozen, Jacques P; Voragen, Alphons G J; Kroeze, Jan H A
2004-10-01
In continuous vigilance tasks, the number of coincident panel responses to stimuli provides an index of stimulus detectability. To determine whether this number is due to chance, panel noise levels have been approximated by the maximum coincidence level obtained in stimulus-free conditions. This study proposes an alternative method by which to assess noise levels, derived from queuing system theory (QST). Instead of critical coincidence levels, QST modeling estimates the duration of coinciding responses in the absence of stimuli. The proposed method has the advantage over previous approaches that it yields more reliable noise estimates and allows for statistical testing. The method was applied in an olfactory detection experiment using 16 panelists in stimulus-present and stimulus-free conditions. We propose that QST may be used as an alternative to signal detection theory for analyzing data from continuous vigilance tasks.
Holcomb, H H; Ritzl, E K; Medoff, D R; Nevitt, J; Gordon, B; Tamminga, C A
1995-06-29
Psychophysical and cognitive studies carried out in schizophrenic patients show high within-group performance variance and sizable differences between patients and normal volunteers. Experimental manipulation of a target's signal-to-noise characteristics can, however, make a given task more or less difficult for a given subject. Such signal-to-noise manipulations can substantially reduce performance differences between individuals. Frequency and presentation level (volume) changes of an auditory tone can make a sound more or less difficult to recognize. This study determined how the discrimination accuracy of medicated schizophrenic patients and normal volunteers changed when the frequency difference between two tones (high frequency vs. low frequency) and the presentation levels of tones were systematically degraded. The investigators hypothesized that each group would become impaired in its discrimination accuracy when tone signals were degraded by making the frequencies more similar and the presentation levels lower. Schizophrenic patients were slower and less accurate than normal volunteers on tests using four tone levels and two frequency differences; the schizophrenic patient group showed a significant decrement in accuracy when the signal-to-noise characteristics of the target tones were degraded. The benefits of controlling stimulus discrimination difficulty in functional imaging paradigms are discussed.
Recognition Alters the Spatial Pattern of fMRI Activation in Early Retinotopic Cortex
Vul, E.; Kanwisher, N.
2010-01-01
Early retinotopic cortex has traditionally been viewed as containing a veridical representation of the low-level properties of the image, not imbued by high-level interpretation and meaning. Yet several recent results indicate that neural representations in early retinotopic cortex reflect not just the sensory properties of the image, but also the perceived size and brightness of image regions. Here we used functional magnetic resonance imaging pattern analyses to ask whether the representation of an object in early retinotopic cortex changes when the object is recognized compared with when the same stimulus is presented but not recognized. Our data confirmed this hypothesis: the pattern of response in early retinotopic visual cortex to a two-tone “Mooney” image of an object was more similar to the response to the full grayscale photo version of the same image when observers knew what the two-tone image represented than when they did not. Further, in a second experiment, high-level interpretations actually overrode bottom-up stimulus information, such that the pattern of response in early retinotopic cortex to an identified two-tone image was more similar to the response to the photographic version of that stimulus than it was to the response to the identical two-tone image when it was not identified. Our findings are consistent with prior results indicating that perceived size and brightness affect representations in early retinotopic visual cortex and, further, show that even higher-level information—knowledge of object identity—also affects the representation of an object in early retinotopic cortex. PMID:20071627
Development of neural responsivity to vocal sounds in higher level auditory cortex of songbirds
Miller-Sims, Vanessa C.
2014-01-01
Like humans, songbirds learn vocal sounds from “tutors” during a sensitive period of development. Vocal learning in songbirds therefore provides a powerful model system for investigating neural mechanisms by which memories of learned vocal sounds are stored. This study examined whether NCM (caudo-medial nidopallium), a region of higher level auditory cortex in songbirds, serves as a locus where a neural memory of tutor sounds is acquired during early stages of vocal learning. NCM neurons respond well to complex auditory stimuli, and evoked activity in many NCM neurons habituates such that the response to a stimulus that is heard repeatedly decreases to approximately one-half its original level (stimulus-specific adaptation). The rate of neural habituation serves as an index of familiarity, being low for familiar sounds, but high for novel sounds. We found that response strength across different song stimuli was higher in NCM neurons of adult zebra finches than in juveniles, and that only adult NCM responded selectively to tutor song. The rate of habituation across both tutor song and novel conspecific songs was lower in adult than in juvenile NCM, indicating higher familiarity and a more persistent response to song stimuli in adults. In juvenile birds that have memorized tutor vocal sounds, neural habituation was higher for tutor song than for a familiar conspecific song. This unexpected result suggests that the response to tutor song in NCM at this age may be subject to top-down influences that maintain the tutor song as a salient stimulus, despite its high level of familiarity. PMID:24694936
Rauch, Shannon M; Strobel, Cara; Bella, Megan; Odachowski, Zachary; Bloom, Christopher
2014-03-01
The present study tested two competing hypotheses about the effect of Facebook exposure on the physiological arousal level of participants who then encountered the stimulus person in a face-to-face situation. Facebook exposure may attenuate later arousal by providing increased comfort and confidence, but it is also possible that Facebook exposure will augment arousal, particularly among the socially anxious. Participants completed a measure of social anxiety and were exposed to a stimulus person via Facebook, face to face, or both. Galvanic skin response was recorded during the exposures to the stimulus person. Results were consistent with the augmentation hypothesis: a prior exposure on Facebook will lead to increased arousal during a face-to-face encounter, particularly for those high in social anxiety.
Psychophysical and perceptual performance in a simulated-scotoma model of human eye injury
NASA Astrophysics Data System (ADS)
Brandeis, R.; Egoz, I.; Peri, D.; Sapiens, N.; Turetz, J.
2008-02-01
Macular scotomas, affecting visual functioning, characterize many eye and neurological diseases like AMD, diabetes mellitus, multiple sclerosis, and macular hole. In this work, foveal visual field defects were modeled, and their effects were evaluated on spatial contrast sensitivity and a task of stimulus detection and aiming. The modeled occluding scotomas, of different size, were superimposed on the stimuli presented on the computer display, and were stabilized on the retina using a mono Purkinje Eye-Tracker. Spatial contrast sensitivity was evaluated using square-wave grating stimuli, whose contrast thresholds were measured using the method of constant stimuli with "catch trials". The detection task consisted of a triple conjunctive visual search display of: size (in visual angle), contrast and background (simple, low-level features vs. complex, high-level features). Search/aiming accuracy as well as R.T. measures used for performance evaluation. Artificially generated scotomas suppressed spatial contrast sensitivity in a size dependent manner, similar to previous studies. Deprivation effect was dependent on spatial frequency, consistent with retinal inhomogeneity models. Stimulus detection time was slowed in complex background search situation more than in simple background. Detection speed was dependent on scotoma size and size of stimulus. In contrast, visually guided aiming was more sensitive to scotoma effect in simple background search situation than in complex background. Both stimulus aiming R.T. and accuracy (precision targeting) were impaired, as a function of scotoma size and size of stimulus. The data can be explained by models distinguishing between saliency-based, parallel and serial search processes, guiding visual attention, which are supported by underlying retinal as well as neural mechanisms.
Andrade, Chittaranjan; Srinivasamurthy, Gurunath M; Vishwasenani, A; Prakash, G Sai; Srihari, B S; Chandra, J Suresh
2002-06-01
Clinical research shows that the antidepressant and cognitive adverse effects of electroconvulsive therapy are both dependent on the administered electrical stimulus intensity (dose); however, dose-dependent neurotransmitter system changes in the brain, which might underlie the therapeutic or adverse effects, remain to be demonstrated. We used a behavioral model to examine dose-related effects of electroconvulsive shock (ECS) on dopamine postsynaptic receptor functioning in the rat brain. In a factorially designed study, rats (n = 100) were treated with five once-daily ECSs at three levels (sham ECS, 30 mC ECS, and 120 mC ECS), and with drug at two levels (saline, and 1 mg/kg s.c. apomorphine). Motility was assessed in the small open field. Apomorphine-elicited, dopamine postsynaptic receptor-mediated hypermotility was significantly increased by 120 mC ECS but not by 30 mC ECS. An additional but unrelated finding was that, while the ECS seizure duration expectedly decreased across time, no dose-dependent effects were observed. ECS-induced dopamine postsynaptic receptor up-regulation may depend on the intensity of the administered electrical stimulus.
Evoking prescribed spike times in stochastic neurons
NASA Astrophysics Data System (ADS)
Doose, Jens; Lindner, Benjamin
2017-09-01
Single cell stimulation in vivo is a powerful tool to investigate the properties of single neurons and their functionality in neural networks. We present a method to determine a cell-specific stimulus that reliably evokes a prescribed spike train with high temporal precision of action potentials. We test the performance of this stimulus in simulations for two different stochastic neuron models. For a broad range of parameters and a neuron firing with intermediate firing rates (20-40 Hz) the reliability in evoking the prescribed spike train is close to its theoretical maximum that is mainly determined by the level of intrinsic noise.
Justinova, Zuzana; Ferre, Sergi; Segal, Pavan N; Antoniou, Katerina; Solinas, Marcello; Pappas, Lara A; Highkin, Jena L; Hockemeyer, Jorg; Munzar, Patrik; Goldberg, Steven R
2003-12-01
Adenosine, by acting on adenosine A1 and A2A receptors, is known to antagonistically modulate dopaminergic neurotransmission. We have recently reported that nonselective adenosine receptor antagonists (caffeine and 3,7-dimethyl-1-propargylxanthine) can partially substitute for the discriminative-stimulus effects of methamphetamine. In the present study, by using more selective compounds, we investigated the involvement of A1 and A2A receptors in the adenosinergic modulation of the discriminative-stimulus effects of both cocaine and methamphetamine. The effects of the A1 receptor agonist N6-cyclopentyladenosine (CPA; 0.01-0.1 mg/kg) and antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT; 1.3-23.7 mg/kg) and the A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS 21680; 0.03-0.18 mg/kg) and antagonist 3-(3-hydroxypropyl)-8-(3-methoxystyryl)-7-methyl-1-propargylxanthin phosphate disodium salt (MSX-3; 1-56 mg/kg) were evaluated in rats trained to discriminate either 1 mg/kg methamphetamine or 10 mg/kg cocaine from saline under a fixed-ratio 10 schedule of food presentation. The A1 and A2A receptor antagonists (CPT and MSX-3) both produced high levels of drug-lever selection when substituted for either methamphetamine or cocaine and significantly shifted dose-response curves of both psychostimulants to the left. Unexpectedly, the A2A receptor agonist CGS 21680 also produced drug-appropriate responding (although at lower levels) when substituted for the cocaine-training stimulus, and both CGS 21680 and the A1 receptor agonist CPA significantly shifted the cocaine dose-response curve to the left. In contrast, both agonists did not produce significant levels of drug-lever selection when substituted for the methamphetamine-training stimulus and failed to shift the methamphetamine dose-response curve. Therefore, adenosine A1 and A2A receptors appear to play important but differential roles in the modulation of the discriminative-stimulus effects of methamphetamine and cocaine.
S100B protein in benzodiazepine overdose.
Ambrozic, J; Bunc, M; Osredkar, J; Brvar, M
2008-02-01
Severe benzodiazepine overdose can result in coma and respiratory depression that might cause brain hypoxia, necrosis and delayed post-anoxic leucoencephalopathy with permanent neurological sequelae. The aim of this study was to assess the possible role of S100B, a structural protein of astroglial cells, as a biochemical marker of brain injury in acute benzodiazepine overdose. Serum S100B determination was performed in 38 consecutive patients admitted to the emergency department (ED) in Ljubljana with benzodiazepine overdose. The level of consciousness and respiratory insufficiency on the scene were assessed by responsiveness to a verbal stimulus and pulse oximetry. Blood samples were taken immediately after arrival at the ED and S100B concentrations were measured with a commercial immunoluminometric assay. 20 healthy sex- and age-matched volunteers formed a control group. There were significant differences in S100B levels between the control group and the patients with benzodiazepine overdose according to their responsiveness to a verbal stimulus. Post hoc test results showed that S100B levels in patients with benzodiazepine overdose who were unresponsive to a verbal stimulus were significantly higher than those in patients responsive to a verbal stimulus (median 0.31 vs 0.11 microg/l; p = 0.001). Both groups of patients with benzodiazepine overdose had significantly higher S100B levels than the control group (median 0.07 microg/; both p = 0.001). Arterial oxygen saturation of patients with benzodiazepine overdose unresponsive to a verbal stimulus was significantly lower than in patients responsive to a verbal stimulus (median 83% vs 94%; p = 0.001). There was no significant difference in the systolic blood pressure of patients with benzodiazepine overdose responsive or unresponsive to a verbal stimulus. Raised levels of S100B protein are associated with depressed levels of consciousness and respiratory insufficiency in patients with benzodiazepine overdose.
Tang, Dandan; Hu, Li; Lei, Yi; Li, Hong; Chen, Antao
2015-01-01
Conflicts between target and distraction can occur at the level of both stimulus and response processing. However, the neural oscillations underlying occurrence of the interference in different levels have not been understood well. Here, we reveal such a neural oscillation modulation by combining a 4:2 mapping design (two targets are mapped into one response key) with a practice paradigm (pretest, practice, and posttest) when healthy human participants were performing a novel color-word flanker task. Response time (RT) results revealed constant stimulus conflict (SC, stimulus incongruent minus congruent, SI-CO) but increased response conflict (RC, response incongruent minus stimulus incongruent, RI-SI) with practice. Event-related potential (ERP) results demonstrated stable P3 amplitude differences for the SI-CO in the centro-parietal region across practice, which may reflect maintenance of the stimulus processing; and significantly larger P3 amplitudes in the same region for the RI relative to SI trial type in posttest, which may reflect inhibition of the distraction response. Further, neural oscillatory results showed that with practice, the lower alpha band in the frontal region and the upper alpha band in the occipital-parietal region distinguished between stimulus- and response-conflicts, respectively, suggesting that practice reduces the alertness (sensitiveness) of the brain to conflict occurrence, and enhances stimulus-response associations. PMID:26300758
Competing stimuli in the treatment of multiply controlled problem behavior during hygiene routines.
Long, Ethan S; Hagopian, Louis P; Deleon, Iser G; Marhefka, Jean Marie; Resau, Dawn
2005-01-01
The current study describes the use of noncontingent competing stimuli in the treatment of problem behavior exhibited by three individuals during staff-assisted hygiene routines. Functional analyses revealed that particular topographies of problem behaviors appeared to be maintained by their own sensory consequences, whereas other topographies appeared to be maintained by escape from demands. Competing stimulus assessments were then conducted to identify items associated with low levels of automatically-maintained problem behavior and high levels of stimulus engagement. Stimuli associated with low levels of automatically-maintained problem behavior (competing stimuli) were then delivered noncontingently during staff-assisted hygiene routines that were problematic for each participant. In all three cases, substantial reductions in all problem behaviors were observed. These results are discussed in terms of the relative ease of this intervention and possible mechanisms underlying the effects of competing stimuli on behaviors maintained by different types of reinforcement.
Matsuoka, A J; Abbas, P J; Rubinstein, J T; Miller, C A
2000-11-01
Experimental results from humans and animals show that electrically evoked compound action potential (EAP) responses to constant-amplitude pulse train stimulation can demonstrate an alternating pattern, due to the combined effects of highly synchronized responses to electrical stimulation and refractory effects (Wilson et al., 1994). One way to improve signal representation is to reduce the level of across-fiber synchrony and hence, the level of the amplitude alternation. To accomplish this goal, we have examined EAP responses in the presence of Gaussian noise added to the pulse train stimulus. Addition of Gaussian noise at a level approximately -30 dB relative to EAP threshold to the pulse trains decreased the amount of alternation, indicating that stochastic resonance may be induced in the auditory nerve. The use of some type of conditioning stimulus such as Gaussian noise may provide a more 'normal' neural response pattern.
THE POSITIVITY OFFSET THEORY OF ANHEDONIA IN SCHIZOPHRENIA.
Strauss, Gregory P; Frost, Katherine H; Lee, Bern G; Gold, James M
2017-03-01
Prior studies have concluded that schizophrenia patients are not anhedonic because they do not report reduced experience of positive emotion to pleasant stimuli. The current study challenged this view by applying quantitative methods validated in the Evaluative Space Model of emotional experience to test the hypothesis that schizophrenia patients evidence a reduction in the normative "positivity offset" (i.e., the tendency to experience higher levels of positive than negative emotional output when stimulus input is absent or weak). Participants included 76 schizophrenia patients and 60 healthy controls who completed an emotional experience task that required reporting the level of positive emotion, negative emotion, and arousal to photographs. Results indicated that although schizophrenia patients evidenced intact capacity to experience positive emotion at high levels of stimulus input, they displayed a diminished positivity offset. Reductions in the positivity offset may underlie volitional disturbance, limiting approach behaviors toward novel stimuli in neutral environments.
THE POSITIVITY OFFSET THEORY OF ANHEDONIA IN SCHIZOPHRENIA
Strauss, Gregory P.; Frost, Katherine H.; Lee, Bern G.; Gold, James M.
2016-01-01
Prior studies have concluded that schizophrenia patients are not anhedonic because they do not report reduced experience of positive emotion to pleasant stimuli. The current study challenged this view by applying quantitative methods validated in the Evaluative Space Model of emotional experience to test the hypothesis that schizophrenia patients evidence a reduction in the normative “positivity offset” (i.e., the tendency to experience higher levels of positive than negative emotional output when stimulus input is absent or weak). Participants included 76 schizophrenia patients and 60 healthy controls who completed an emotional experience task that required reporting the level of positive emotion, negative emotion, and arousal to photographs. Results indicated that although schizophrenia patients evidenced intact capacity to experience positive emotion at high levels of stimulus input, they displayed a diminished positivity offset. Reductions in the positivity offset may underlie volitional disturbance, limiting approach behaviors toward novel stimuli in neutral environments. PMID:28497008
NASA Astrophysics Data System (ADS)
Leung, Kawai; Mohammadi, Aylia; Ryu, William; Nemenman, Ilya
In animals, we must infer the pain level from experimental characterization of behavior. This is not trivial since behaviors are very complex and multidimensional. To establish C.elegans as a model for pain research, we propose for the first time a quantitative model that allows inference of a thermal nociceptive stimulus level from the behavior of an individual worm. We apply controlled levels of pain by locally heating worms with an infrared laser and capturing the subsequent behavior. We discover that the behavioral response is a product of stereotypical behavior and a nonlinear function of the strength of stimulus. The same stereotypical behavior is observed in normal, anesthetized and mutated worms. From this result we build a Bayesian model to infer the strength of laser stimulus from the behavior. This model allows us to measure the efficacy of anaesthetization and mutation by comparing the inferred strength of stimulus. Based on the measured nociceptive escape of over 200 worms, our model is able to significantly differentiate normal, anaesthetized and mutated worms with 40 worm samples. This work was partially supported by NSF Grant No. IOS/1208126 and HFSP Grant No. RGY0084/.
Sethna, Gulnar Dara; Prabhuji, M L V; Karthikeyan, B V
2011-01-01
Dentine hypersensitivity is one of the most frequently recorded complaints of dental discomfort. Current evidence implicates patent dentinal tubules in hypersensitive dentine, and it follows that one effective way to reduce dentine sensitivity is to occlude the dentinal tubules. The purpose of this study was to compare the efficacy of two different desensitising agents, Cervitec varnish and Gluma varnish. Two hundred fifty patients self-reporting dentine hypersensitivity completed the paired split mouth randomised, subject-blind study. Each participant had a minimum of two sensitive teeth in at least two different quadrants and displaying a response of ≥3 cm to an evaporative stimulus. The hypersensitivity levels were measured with a tactile stimulus (scratchometer), thermal stimulus (cold water test), and an evaporative stimulus (air blast test) using a visual analogue scale. The teeth were evaluated immediately after treatment, and at 4 and 12 weeks after application of the chlorhexidine-containing varnish Cervitec and the glutaraldehyde-containing varnish, Gluma Desensitizer. Statistical analysis indicated that both the desensitising varnishes were effective in alleviating dentine hypersensitivity at all time intervals compared to baseline. There was a highly statistically significantly greater reduction in dentine hypersensitivity to evaporative stimulus, cold stimulus, and tactile stimulus after application of Cervitec than after Gluma Desensitizer (P < 0.001). Both the varnishes have a therapeutic potential to alleviate dentine hypersensitivity at all time intervals compared to baseline. However, Cervitec varnish is more efficacious in reducing dentine hypersensitivity than Gluma varnish at both 4 weeks and 12 weeks post-treatment.
Monkeys and humans take local uncertainty into account when localizing a change.
Devkar, Deepna; Wright, Anthony A; Ma, Wei Ji
2017-09-01
Since sensory measurements are noisy, an observer is rarely certain about the identity of a stimulus. In visual perception tasks, observers generally take their uncertainty about a stimulus into account when doing so helps task performance. Whether the same holds in visual working memory tasks is largely unknown. Ten human and two monkey subjects localized a single change in orientation between a sample display containing three ellipses and a test display containing two ellipses. To manipulate uncertainty, we varied the reliability of orientation information by making each ellipse more or less elongated (two levels); reliability was independent across the stimuli. In both species, a variable-precision encoding model equipped with an "uncertainty-indifferent" decision rule, which uses only the noisy memories, fitted the data poorly. In both species, a much better fit was provided by a model in which the observer also takes the levels of reliability-driven uncertainty associated with the memories into account. In particular, a measured change in a low-reliability stimulus was given lower weight than the same change in a high-reliability stimulus. We did not find strong evidence that observers took reliability-independent variations in uncertainty into account. Our results illustrate the importance of studying the decision stage in comparison tasks and provide further evidence for evolutionary continuity of working memory systems between monkeys and humans.
Monkeys and humans take local uncertainty into account when localizing a change
Devkar, Deepna; Wright, Anthony A.; Ma, Wei Ji
2017-01-01
Since sensory measurements are noisy, an observer is rarely certain about the identity of a stimulus. In visual perception tasks, observers generally take their uncertainty about a stimulus into account when doing so helps task performance. Whether the same holds in visual working memory tasks is largely unknown. Ten human and two monkey subjects localized a single change in orientation between a sample display containing three ellipses and a test display containing two ellipses. To manipulate uncertainty, we varied the reliability of orientation information by making each ellipse more or less elongated (two levels); reliability was independent across the stimuli. In both species, a variable-precision encoding model equipped with an “uncertainty–indifferent” decision rule, which uses only the noisy memories, fitted the data poorly. In both species, a much better fit was provided by a model in which the observer also takes the levels of reliability-driven uncertainty associated with the memories into account. In particular, a measured change in a low-reliability stimulus was given lower weight than the same change in a high-reliability stimulus. We did not find strong evidence that observers took reliability-independent variations in uncertainty into account. Our results illustrate the importance of studying the decision stage in comparison tasks and provide further evidence for evolutionary continuity of working memory systems between monkeys and humans. PMID:28877535
Horn, Gabriel; Nicol, Alister U.; Brown, Malcolm W.
2001-01-01
There is strong converging evidence that the intermediate and medial part of the hyperstriatum ventrale of the chick brain is a memory store for information acquired through the learning process of imprinting. Neurons in this memory system come, through imprinting, to respond selectively to the imprinting stimulus (IS) neurons and so possess the properties of a memory trace. Therefore, the responses of the intermediate and medial part of the hyperstriatum ventrale neurons to a visual imprinting stimulus were determined before, during, and after training. Of the total recorded population, the proportions of IS neurons shortly after each of two 1-h training sessions were significantly higher (approximately 2 times) than the pretraining proportion. However, ≈4.5 h later this proportion had fallen significantly and did not differ significantly from the pretraining proportion. Nevertheless, ≈21.5 h after the end of training, the proportion of IS neurons was at its highest (approximately 3 times the pretraining level). No significant fluctuations occurred in the proportions of neurons responding to the alternative stimulus. In addition, nonmonotonic changes were found commonly in the activity of 230 of the neurons tracked individually from before training to shortly after the end of training. Thus the pattern of change in responsiveness both at the population level and at the level of individual neurons was highly nonmonotonic. Such a pattern of change is not consistent with simple models of memory based on synaptic strengthening to asymptote. A model is proposed that accounts for the changes in the population responses to the imprinting stimulus in terms of changes in the responses of individual neurons. PMID:11296266
Pilly, Praveen K.; Grossberg, Stephen; Seitz, Aaron R.
2009-01-01
Studies of perceptual learning have focused on aspects of learning that are related to early stages of sensory processing. However, conclusions that perceptual learning results in low-level sensory plasticity are controversial, since such learning may also be attributed to plasticity in later stages of sensory processing or in readout from sensory to decision stages, or to changes in high-level central processing. To address this controversy, we developed a novel random dot motion (RDM) stimulus to target motion cells selective to contrast polarity by ensuring the motion direction information arises only from signal dot onsets and not their offsets, and used these stimuli in the paradigm of task-irrelevant perceptual learning (TIPL). In TIPL, learning is achieved in response to a stimulus by subliminally pairing that stimulus with the targets of an unrelated training task. In this manner, we are able to probe learning for an aspect of motion processing thought to be a function of directional V1 simple cells with a learning procedure that dissociates the learned stimulus from the decision processes relevant to the training task. Our results show direction-selective learning for the designated contrast polarity that does not transfer to the opposite contrast polarity. This polarity specificity was replicated in a double training procedure in which subjects were additionally exposed to the opposite polarity. Taken together, these results suggest that TIPL for motion stimuli may occur at the stage of directional V1 simple cells. Finally, a theoretical explanation is provided to understand the data. PMID:19800358
Rodriguez, Amanda I; Thomas, Megan L A; Fitzpatrick, Denis; Janky, Kristen L
Vestibular evoked myogenic potential (VEMP) testing is increasingly utilized in pediatric vestibular evaluations due to its diagnostic capability to identify otolith dysfunction and feasibility of testing. However, there is evidence demonstrating that the high-intensity stimulation level required to elicit a reliable VEMP response causes acoustic trauma in adults. Despite utility of VEMP testing in children, similar findings are unknown. It is hypothesized that increased sound exposure may exist in children because differences in ear-canal volume (ECV) compared with adults, and the effect of stimulus parameters (e.g., signal duration and intensity) will alter exposure levels delivered to a child's ear. The objectives of this study are to (1) measure peak to peak equivalent sound pressure levels (peSPL) in children with normal hearing (CNH) and young adults with normal hearing (ANH) using high-intensity VEMP stimuli, (2) determine the effect of ECV on peSPL and calculate a safe exposure level for VEMP, and (3) assess whether cochlear changes exist after VEMP exposure. This was a 2-phase approach. Fifteen CNH and 12 ANH participated in phase I. Equivalent ECV was measured. In 1 ear, peSPL was recorded for 5 seconds at 105 to 125 dB SPL, in 5-dB increments for 500- and 750-Hz tone bursts. Recorded peSPL values (accounting for stimulus duration) were then used to calculate safe sound energy exposure values for VEMP testing using the 132-dB recommended energy allowance from the 2003 European Union Guidelines. Fifteen CNH and 10 ANH received cervical and ocular VEMP testing in 1 ear in phase II. Subjects completed tympanometry, pre- and postaudiometric threshold testing, distortion product otoacoustic emissions, and questionnaire addressing subjective otologic symptoms to study the effect of VEMP exposure on cochlear function. (1) In response to high-intensity stimulation levels (e.g., 125 dB SPL), CNH had significantly higher peSPL measurements and smaller ECVs compared with ANH. (2) A significant linear relationship between equivalent ECV (as measured by diagnostic tympanometry) and peSPL exists and has an effect on total sound energy exposure level; based on data from phase I, 120 dB SPL was determined to be an acoustically safe stimulation level for testing in children. (3) Using calculated safe stimulation level for VEMP testing, there were no significant effect of VEMP exposure on cochlear function (as measured by audiometric thresholds, distortion product otoacoustic emission amplitude levels, or subjective symptoms) in CNH and ANH. peSPL sound recordings in children's ears are significantly higher (~3 dB) than that in adults in response to high-intensity VEMP stimuli that are commonly practiced. Equivalent ECV contributes to peSPL delivered to the ear during VEMP testing and should be considered to determine safe acoustic VEMP stimulus parameters; children with smaller ECVs are at risk for unsafe sound exposure during routine VEMP testing, and stimuli should not exceed 120 dB SPL. Using 120 dB SPL stimulus level for children during VEMP testing yields no change to cochlear function and reliable VEMP responses.
Bai, Yu; Nakao, Takashi; Xu, Jiameng; Qin, Pengmin; Chaves, Pedro; Heinzel, Alexander; Duncan, Niall; Lane, Timothy; Yen, Nai-Shing; Tsai, Shang-Yueh; Northoff, Georg
2016-01-01
Recent studies have demonstrated neural overlap between resting state activity and self-referential processing. This "rest-self" overlap occurs especially in anterior cortical midline structures like the perigenual anterior cingulate cortex (PACC). However, the exact neurotemporal and biochemical mechanisms remain to be identified. Therefore, we conducted a combined electroencephalography (EEG)-magnetic resonance spectroscopy (MRS) study. EEG focused on pre-stimulus (e.g., prior to stimulus presentation or perception) power changes to assess the degree to which those changes can predict subjects' perception (and judgment) of subsequent stimuli as high or low self-related. MRS measured resting state concentration of glutamate, focusing on PACC. High pre-stimulus (e.g., prior to stimulus presentation or perception) alpha power significantly correlated with both perception of stimuli judged to be highly self-related and with resting state glutamate concentrations in the PACC. In sum, our results show (i) pre-stimulus (e.g., prior to stimulus presentation or perception) alpha power and resting state glutamate concentration to mediate rest-self overlap that (ii) dispose or incline subjects to assign high degrees of self-relatedness to perceptual stimuli.
Kosilo, Maciej; Wuerger, Sophie M.; Craddock, Matt; Jennings, Ben J.; Hunt, Amelia R.; Martinovic, Jasna
2013-01-01
Until recently induced gamma-band activity (GBA) was considered a neural marker of cortical object representation. However, induced GBA in the electroencephalogram (EEG) is susceptible to artifacts caused by miniature fixational saccades. Recent studies have demonstrated that fixational saccades also reflect high-level representational processes. Do high-level as opposed to low-level factors influence fixational saccades? What is the effect of these factors on artifact-free GBA? To investigate this, we conducted separate eye tracking and EEG experiments using identical designs. Participants classified line drawings as objects or non-objects. To introduce low-level differences, contours were defined along different directions in cardinal color space: S-cone-isolating, intermediate isoluminant, or a full-color stimulus, the latter containing an additional achromatic component. Prior to the classification task, object discrimination thresholds were measured and stimuli were scaled to matching suprathreshold levels for each participant. In both experiments, behavioral performance was best for full-color stimuli and worst for S-cone isolating stimuli. Saccade rates 200–700 ms after stimulus onset were modulated independently by low and high-level factors, being higher for full-color stimuli than for S-cone isolating stimuli and higher for objects. Low-amplitude evoked GBA and total GBA were observed in very few conditions, showing that paradigms with isoluminant stimuli may not be ideal for eliciting such responses. We conclude that cortical loops involved in the processing of objects are preferentially excited by stimuli that contain achromatic information. Their activation can lead to relatively early exploratory eye movements even for foveally-presented stimuli. PMID:24391611
The Influence of State Anxiety on Fear Discrimination and Extinction in Females
Dibbets, Pauline; Evers, Elisabeth A. T.
2017-01-01
Formal theories have linked pathological anxiety to a failure in fear response inhibition. Previously, we showed that aberrant response inhibition is not restricted to anxiety patients, but can also be observed in anxiety-prone adults. However, less is known about the influence of currently experienced levels of anxiety on inhibitory learning. The topic is highly important as state anxiety has a debilitating effect on cognition, emotion, and physiology and is linked to several anxiety disorders. In the present study, healthy female volunteers performed a fear conditioning task, after being informed that they will have to perform the Trier Social Stress Test task (n = 25; experimental group) or a control task (n = 25; control group) upon completion of the conditioning task. The results showed that higher levels of state anxiety corresponded with a reduced discrimination between a stimulus (CS+) typically followed by an aversive event and a stimulus (CS-) that is never followed by an aversive event both during the acquisition and the extinction phase. No effect of state anxiety on the skin conductance response associated with CS+ and CS- was found. Additionally, higher levels of state anxiety coincided with more negative valence ratings of the CSs. The results suggest that increased stress-induced state anxiety might lead to stimulus generalization during fear acquisition, thereby impairing associative learning. PMID:28360869
Integration of auditory and vibrotactile stimuli: Effects of frequency
Wilson, E. Courtenay; Reed, Charlotte M.; Braida, Louis D.
2010-01-01
Perceptual integration of vibrotactile and auditory sinusoidal tone pulses was studied in detection experiments as a function of stimulation frequency. Vibrotactile stimuli were delivered through a single channel vibrator to the left middle fingertip. Auditory stimuli were presented diotically through headphones in a background of 50 dB sound pressure level broadband noise. Detection performance for combined auditory-tactile presentations was measured using stimulus levels that yielded 63% to 77% correct unimodal performance. In Experiment 1, the vibrotactile stimulus was 250 Hz and the auditory stimulus varied between 125 and 2000 Hz. In Experiment 2, the auditory stimulus was 250 Hz and the tactile stimulus varied between 50 and 400 Hz. In Experiment 3, the auditory and tactile stimuli were always equal in frequency and ranged from 50 to 400 Hz. The highest rates of detection for the combined-modality stimulus were obtained when stimulating frequencies in the two modalities were equal or closely spaced (and within the Pacinian range). Combined-modality detection for closely spaced frequencies was generally consistent with an algebraic sum model of perceptual integration; wider-frequency spacings were generally better fit by a Pythagorean sum model. Thus, perceptual integration of auditory and tactile stimuli at near-threshold levels appears to depend both on absolute frequency and relative frequency of stimulation within each modality. PMID:21117754
Influence of cochlear traveling wave and neural adaptation on auditory brainstem responses.
Junius, Dirk; Dau, Torsten
2005-07-01
The present study investigates the relationship between evoked responses to transient broadband chirps and responses to the same chirps when embedded in longer-duration stimuli. It examines to what extent the responses to the composite stimuli can be explained by a linear superposition of the responses to the single components, as a function of stimulus level. In the first experiment, a single rising chirp was temporally and spectrally embedded in two steady-state tones. In the second experiment, the stimulus consisted of a continuous alternating train of chirps: each rising chirp was followed by the temporally reversed (falling) chirp. In both experiments, the transitions between stimulus components were continuous. For stimulation levels up to approximately 70 dB SPL, the responses to the embedded chirp corresponded to the responses to the single chirp. At high stimulus levels (80-100 dB SPL), disparities occurred between the responses, reflecting a nonlinearity in the processing when neural activity is integrated across frequency. In the third experiment, the effect of within-train rate on wave-V response was investigated. The response to the chirp presented at a within-train rate of 95 Hz exhibited the same amplitude as that to the chirp presented in the traditional single-stimulus paradigm at a rate of 13 Hz. For a corresponding experiment with bandlimited chirps of 4 ms duration, where the within-train rate was 250 Hz, a clear reduction of the response amplitude was observed. This nonlinearity in terms of temporal processing most likely reflects effects of short-term adaptation. Overall, the results of the present study further demonstrate the importance of cochlear processing for the formation of brainstem potentials. The data may provide constraints on future models of peripheral processing in the human auditory system. The findings might also be useful for the development of effective stimulation paradigms in clinical applications.
The effect of a redundant color code on an overlearned identification task
NASA Technical Reports Server (NTRS)
Obrien, Kevin
1992-01-01
The possibility of finding redundancy gains with overlearned tasks was examined using a paradigm varying familiarity with the stimulus set. Redundant coding in a multidimensional stimulus was demonstrated to result in increased identification accuracy and decreased latency of identification when compared to stimuli varying on only one dimension. The advantages attributable to redundant coding are referred to as redundancy gain and were found for a variety of stimulus dimension combinations, including the use of hue or color as one of the dimensions. Factors that have affected redundancy gain include the discriminability of the levels of one stimulus dimension and the level of stimulus-to-response association. The results demonstrated that response time is in part a function of familiarity, but no effect of redundant color coding was demonstrated. Implications of research on coding in identification tasks for display design are discussed.
Pittig, Andre; Hengen, Kristina; Bublatzky, Florian; Alpers, Georg W
2018-04-22
The reduction of avoidance behavior is a central target in the treatment of anxiety disorders, but it has rarely been studied how approach of fear-relevant stimuli may be initiated. In two studies, the impact of hypothetical monetary and symbolic social incentives on approach-avoidance behavior was examined. In Study 1, individuals high or low on fear of spiders (N = 84) could choose to approach a fear-relevant versus a neutral stimulus, which were equally rewarded. In a subsequent micro-intervention, approaching the fear-relevant stimulus was differentially rewarded either by monetary or social incentives. In Study 2 (N = 76), initial incentives for approach were discontinued to investigate the stability of approach. Hypothetical monetary and symbolic social incentives reduced or eliminated initial avoidance, even in highly fearful individuals. Approach resulted in a decrease of self-reported aversiveness towards the fear-relevant stimulus. However, even after successful approach, fearful individuals showed significant avoidance behavior when incentives for approach were discontinued. Future research should investigate the long-term effects of prolonged approach incentives on multiple levels of fear (e.g., self-report, behavioral, physiological). It should also be tested if such an intervention actually improves compliance with exposure based interventions. The present findings highlight that incentives are useful to initiate initial approach towards a feared stimulus. Although incentive-based approach may neither fully eliminate avoidance nor negative feelings towards the feared stimulus, such operant interventions may set the stage for more extensive extinction training. Copyright © 2018 Elsevier Ltd. All rights reserved.
Learning Effects in the Block Design Task: A Stimulus Parameter-Based Approach
ERIC Educational Resources Information Center
Miller, Joseph C.; Ruthig, Joelle C.; Bradley, April R.; Wise, Richard A.; Pedersen, Heather A.; Ellison, Jo M.
2009-01-01
Learning effects were assessed for the block design (BD) task, on the basis of variation in 2 stimulus parameters: perceptual cohesiveness (PC) and set size uncertainty (U). Thirty-one nonclinical undergraduate students (19 female) each completed 3 designs for each of 4 varied sets of the stimulus parameters (high-PC/high-U, high-PC/low-U,…
ERIC Educational Resources Information Center
Miliotis, Adriane; Sidener, Tina M.; Reeve, Kenneth F.; Carbone, Vincent; Sidener, David W.; Rader, Lisa; Delmolino, Lara
2012-01-01
Stimulus-stimulus pairing (SSP) of vocalizations pairs the speech of others with the delivery of highly preferred items. The goal of this procedure is to produce a temporary increase in vocalizations, thus creating a larger variety of sounds that can subsequently be brought under appropriate stimulus control (Esch, Carr, & Grow, 2009). In this…
Region based Brain Computer Interface for a home control application.
Akman Aydin, Eda; Bay, Omer Faruk; Guler, Inan
2015-08-01
Environment control is one of the important challenges for disabled people who suffer from neuromuscular diseases. Brain Computer Interface (BCI) provides a communication channel between the human brain and the environment without requiring any muscular activation. The most important expectation for a home control application is high accuracy and reliable control. Region-based paradigm is a stimulus paradigm based on oddball principle and requires selection of a target at two levels. This paper presents an application of region based paradigm for a smart home control application for people with neuromuscular diseases. In this study, a region based stimulus interface containing 49 commands was designed. Five non-disabled subjects were attended to the experiments. Offline analysis results of the experiments yielded 95% accuracy for five flashes. This result showed that region based paradigm can be used to select commands of a smart home control application with high accuracy in the low number of repetitions successfully. Furthermore, a statistically significant difference was not observed between the level accuracies.
Herrmann, C S; Mecklinger, A
2000-12-01
We examined evoked and induced responses in event-related fields and gamma activity in the magnetoencephalogram (MEG) during a visual classification task. The objective was to investigate the effects of target classification and the different levels of discrimination between certain stimulus features. We performed two experiments, which differed only in the subjects' task while the stimuli were identical. In Experiment 1, subjects responded by a button-press to rare Kanizsa squares (targets) among Kanizsa triangles and non-Kanizsa figures (standards). This task requires the processing of both stimulus features (colinearity and number of inducer disks). In Experiment 2, the four stimuli of Experiment 1 were used as standards and the occurrence of an additional stimulus without any feature overlap with the Kanizsa stimuli (a rare and highly salient red fixation cross) had to be detected. Discrimination of colinearity and number of inducer disks was not necessarily required for task performance. We applied a wavelet-based time-frequency analysis to the data and calculated topographical maps of the 40 Hz activity. The early evoked gamma activity (100-200 ms) in Experiment 1 was higher for targets as compared to standards. In Experiment 2, no significant differences were found in the gamma responses to the Kanizsa figures and non-Kanizsa figures. This pattern of results suggests that early evoked gamma activity in response to visual stimuli is affected by the targetness of a stimulus and the need to discriminate between the features of a stimulus.
Population dynamics in vasopressin cells.
Leng, Gareth; Brown, Colin; Sabatier, Nancy; Scott, Victoria
2008-01-01
Most neurons sense and code change, and when presented with a constant stimulus they adapt, so as to be able to detect a fresh change. However, for some things it is important to know their absolute level; to encode such information, neurons must sustain their response to an unchanging stimulus while remaining able to respond to a change in that stimulus. One system that encodes the absolute level of a stimulus is the vasopressin system, which generates a hormonal signal that is proportional to plasma osmolality. Vasopressin cells sense plasma osmolality and secrete appropriate levels of vasopressin from the neurohypophysis as needed to control water excretion; this requires sustained secretion under basal conditions and the ability to increase (or decrease) secretion should plasma osmolality change. Here we explore the mechanisms that enable vasopressin cells to fulfill this function, and consider how coordination between the cells might distribute the secretory load across the population of vasopressin cells. 2008 S. Karger AG, Basel.
Highly Reconfigurable Beamformer Stimulus Generator
NASA Astrophysics Data System (ADS)
Vaviļina, E.; Gaigals, G.
2018-02-01
The present paper proposes a highly reconfigurable beamformer stimulus generator of radar antenna array, which includes three main blocks: settings of antenna array, settings of objects (signal sources) and a beamforming simulator. Following from the configuration of antenna array and object settings, different stimulus can be generated as the input signal for a beamformer. This stimulus generator is developed under a greater concept with two utterly independent paths where one is the stimulus generator and the other is the hardware beamformer. Both paths can be complemented in final and in intermediate steps as well to check and improve system performance. This way the technology development process is promoted by making each of the future hardware steps more substantive. Stimulus generator configuration capabilities and test results are presented proving the application of the stimulus generator for FPGA based beamforming unit development and tuning as an alternative to an actual antenna system.
Internal state of monkey primary visual cortex (V1) predicts figure-ground perception.
Supèr, Hans; van der Togt, Chris; Spekreijse, Henk; Lamme, Victor A F
2003-04-15
When stimulus information enters the visual cortex, it is rapidly processed for identification. However, sometimes the processing of the stimulus is inadequate and the subject fails to notice the stimulus. Human psychophysical studies show that this occurs during states of inattention or absent-mindedness. At a neurophysiological level, it remains unclear what these states are. To study the role of cortical state in perception, we analyzed neural activity in the monkey primary visual cortex before the appearance of a stimulus. We show that, before the appearance of a reported stimulus, neural activity was stronger and more correlated than for a not-reported stimulus. This indicates that the strength of neural activity and the functional connectivity between neurons in the primary visual cortex participate in the perceptual processing of stimulus information. Thus, to detect a stimulus, the visual cortex needs to be in an appropriate state.
Masking of sounds by a background noise--cochlear mechanical correlates.
Recio-Spinoso, Alberto; Cooper, Nigel P
2013-05-15
In the search for cochlear correlates of auditory masking by noise stimuli, we recorded basilar membrane (BM) vibrations evoked by either tone or click signals in the presence of varying levels of background noise. The BM vibrations were recorded from basal regions in healthy cochleae of anaesthetized chinchilla and gerbil. Non-linear interactions that could underpin various aspects of psychophysical masking data, including both compression and suppression at the BM level, were observed. The suppression effects, whereby the amplitude of the responses to each stimulus component could be reduced, depended on the relative intensities of the noise and the tones or clicks. Only stimulus components whose frequencies fell inside the non-linear region of the recording site, i.e. around its characteristic frequency (CF), were affected by presentation of the 'suppressing' stimulus (which could be either the tone or the noise). Mutual suppression, the simultaneous reduction of the responses to both tones and noise components, was observed under some conditions, but overall reductions of BM vibration were rarely observed. Moderate- to high-intensity tones suppressed BM responses to low-intensity Gaussian stimuli, including both broadband and narrowband noise. Suppression effects were larger for spectral components of the noise response that were closer to the CF. In this regime, the tone and noise stimuli became the suppressor and probe signals, respectively. This study provides the first detailed observations of cochlear mechanical correlates of the masking effects of noise. Mechanical detection thresholds for tone signals, which were arbitrarily defined using three criteria, are shown to increase in almost direct proportion to the noise level for low and moderately high noise levels, in a manner that resembles the findings of numerous psychophysical observations.
Masking of sounds by a background noise – cochlear mechanical correlates
Recio-Spinoso, Alberto; Cooper, Nigel P
2013-01-01
In the search for cochlear correlates of auditory masking by noise stimuli, we recorded basilar membrane (BM) vibrations evoked by either tone or click signals in the presence of varying levels of background noise. The BM vibrations were recorded from basal regions in healthy cochleae of anaesthetized chinchilla and gerbil. Non-linear interactions that could underpin various aspects of psychophysical masking data, including both compression and suppression at the BM level, were observed. The suppression effects, whereby the amplitude of the responses to each stimulus component could be reduced, depended on the relative intensities of the noise and the tones or clicks. Only stimulus components whose frequencies fell inside the non-linear region of the recording site, i.e. around its characteristic frequency (CF), were affected by presentation of the ‘suppressing’ stimulus (which could be either the tone or the noise). Mutual suppression, the simultaneous reduction of the responses to both tones and noise components, was observed under some conditions, but overall reductions of BM vibration were rarely observed. Moderate- to high-intensity tones suppressed BM responses to low-intensity Gaussian stimuli, including both broadband and narrowband noise. Suppression effects were larger for spectral components of the noise response that were closer to the CF. In this regime, the tone and noise stimuli became the suppressor and probe signals, respectively. This study provides the first detailed observations of cochlear mechanical correlates of the masking effects of noise. Mechanical detection thresholds for tone signals, which were arbitrarily defined using three criteria, are shown to increase in almost direct proportion to the noise level for low and moderately high noise levels, in a manner that resembles the findings of numerous psychophysical observations. PMID:23478137
Kaneoke, Y; Urakawa, T; Kakigi, R
2009-05-19
We investigated whether direction information is represented in the population-level neural response evoked by the visual motion stimulus, as measured by magnetoencephalography. Coherent motions with varied speed, varied direction, and different coherence level were presented using random dot kinematography. Peak latency of responses to motion onset was inversely related to speed in all directions, as previously reported, but no significant effect of direction on latency changes was identified. Mutual information entropy (IE) calculated using four-direction response data increased significantly (>2.14) after motion onset in 41.3% of response data and maximum IE was distributed at approximately 20 ms after peak response latency. When response waveforms showing significant differences (by multivariate discriminant analysis) in distribution of the three waveform parameters (peak amplitude, peak latency, and 75% waveform width) with stimulus directions were analyzed, 87 waveform stimulus directions (80.6%) were correctly estimated using these parameters. Correct estimation rate was unaffected by stimulus speed, but was affected by coherence level, even though both speed and coherence affected response amplitude similarly. Our results indicate that speed and direction of stimulus motion are represented in the distinct properties of a response waveform, suggesting that the human brain processes speed and direction separately, at least in part.
Heath, Matthew; Gillen, Caitlin; Samani, Ashna
2016-03-01
Antisaccades are a nonstandard task requiring a response mirror-symmetrical to the location of a target. The completion of an antisaccade has been shown to delay the reaction time (RT) of a subsequent prosaccade, whereas the converse switch elicits a null RT cost (i.e., the unidirectional prosaccade switch-cost). The present study sought to determine whether the prosaccade switch-cost arises from low-level interference specific to the sensory features of a target (i.e., modality-dependent) or manifests via the high-level demands of dissociating the spatial relations between stimulus and response (i.e., modality-independent). Participants alternated between pro- and antisaccades wherein the target associated with the response alternated between visual and auditory modalities. Thus, the present design involved task-switch (i.e., switching from a pro- to antisaccade and vice versa) and modality-switch (i.e., switching from a visual to auditory target and vice versa) trials as well as their task- and modality-repetition counterparts. RTs were longer for modality-switch than modality-repetition trials. Notably, however, modality-switch trials did not nullify or lessen the unidirectional prosaccade switch-cost; that is, the magnitude of the RT cost for task-switch prosaccades was equivalent across modality-switch and modality-repetition trials. Thus, competitive interference within a sensory modality does not contribute to the unidirectional prosaccade switch-cost. Instead, the modality-independent findings evince that dissociating the spatial relations between stimulus and response instantiates a high-level and inertially persistent nonstandard task-set that impedes the planning of a subsequent prosaccade.
Stimulus-Dependent Dopamine Release in Attention-Deficit/Hyperactivity Disorder
ERIC Educational Resources Information Center
Sikstrom, Sverker; Soderlund, Goran
2007-01-01
Attention-deficit/hyperactivity disorder (ADHD) is related to an attenuated and dysfunctional dopamine system. Normally, a high extracellular dopamine level yields a tonic dopaminergic input that down-regulates stimuli-evoked phasic dopamine responses through autoreceptors. Abnormally low tonic extracellular dopamine in ADHD up-regulates the…
Meijer, Guido T; Montijn, Jorrit S; Pennartz, Cyriel M A; Lansink, Carien S
2017-09-06
The sensory neocortex is a highly connected associative network that integrates information from multiple senses, even at the level of the primary sensory areas. Although a growing body of empirical evidence supports this view, the neural mechanisms of cross-modal integration in primary sensory areas, such as the primary visual cortex (V1), are still largely unknown. Using two-photon calcium imaging in awake mice, we show that the encoding of audiovisual stimuli in V1 neuronal populations is highly dependent on the features of the stimulus constituents. When the visual and auditory stimulus features were modulated at the same rate (i.e., temporally congruent), neurons responded with either an enhancement or suppression compared with unisensory visual stimuli, and their prevalence was balanced. Temporally incongruent tones or white-noise bursts included in audiovisual stimulus pairs resulted in predominant response suppression across the neuronal population. Visual contrast did not influence multisensory processing when the audiovisual stimulus pairs were congruent; however, when white-noise bursts were used, neurons generally showed response suppression when the visual stimulus contrast was high whereas this effect was absent when the visual contrast was low. Furthermore, a small fraction of V1 neurons, predominantly those located near the lateral border of V1, responded to sound alone. These results show that V1 is involved in the encoding of cross-modal interactions in a more versatile way than previously thought. SIGNIFICANCE STATEMENT The neural substrate of cross-modal integration is not limited to specialized cortical association areas but extends to primary sensory areas. Using two-photon imaging of large groups of neurons, we show that multisensory modulation of V1 populations is strongly determined by the individual and shared features of cross-modal stimulus constituents, such as contrast, frequency, congruency, and temporal structure. Congruent audiovisual stimulation resulted in a balanced pattern of response enhancement and suppression compared with unisensory visual stimuli, whereas incongruent or dissimilar stimuli at full contrast gave rise to a population dominated by response-suppressing neurons. Our results indicate that V1 dynamically integrates nonvisual sources of information while still attributing most of its resources to coding visual information. Copyright © 2017 the authors 0270-6474/17/378783-14$15.00/0.
Wang, Tao; Huang, Jiang-hua; Lin, Lin; Zhan, Chang'an A
2013-01-01
To obtain reliable transient auditory evoked potentials (AEPs) from EEGs recorded using high stimulus rate (HSR) paradigm, it is critical to design the stimulus sequences of appropriate frequency properties. Traditionally, the individual stimulus events in a stimulus sequence occur only at discrete time points dependent on the sampling frequency of the recording system and the duration of stimulus sequence. This dependency likely causes the implementation of suboptimal stimulus sequences, sacrificing the reliability of resulting AEPs. In this paper, we explicate the use of continuous-time stimulus sequence for HSR paradigm, which is independent of the discrete electroencephalogram (EEG) recording system. We employ simulation studies to examine the applicability of the continuous-time stimulus sequences and the impacts of sampling frequency on AEPs in traditional studies using discrete-time design. Results from these studies show that the continuous-time sequences can offer better frequency properties and improve the reliability of recovered AEPs. Furthermore, we find that the errors in the recovered AEPs depend critically on the sampling frequencies of experimental systems, and their relationship can be fitted using a reciprocal function. As such, our study contributes to the literature by demonstrating the applicability and advantages of continuous-time stimulus sequences for HSR paradigm and by revealing the relationship between the reliability of AEPs and sampling frequencies of the experimental systems when discrete-time stimulus sequences are used in traditional manner for the HSR paradigm.
Wilbiks, Jonathan M P; Dyson, Benjamin J
2016-01-01
Over 5 experiments, we challenge the idea that the capacity of audio-visual integration need be fixed at 1 item. We observe that the conditions under which audio-visual integration is most likely to exceed 1 occur when stimulus change operates at a slow rather than fast rate of presentation and when the task is of intermediate difficulty such as when low levels of proactive interference (3 rather than 8 interfering visual presentations) are combined with the temporal unpredictability of the critical frame (Experiment 2), or, high levels of proactive interference are combined with the temporal predictability of the critical frame (Experiment 4). Neural data suggest that capacity might also be determined by the quality of perceptual information entering working memory. Experiment 5 supported the proposition that audio-visual integration was at play during the previous experiments. The data are consistent with the dynamic nature usually associated with cross-modal binding, and while audio-visual integration capacity likely cannot exceed uni-modal capacity estimates, performance may be better than being able to associate only one visual stimulus with one auditory stimulus.
Wilbiks, Jonathan M. P.; Dyson, Benjamin J.
2016-01-01
Over 5 experiments, we challenge the idea that the capacity of audio-visual integration need be fixed at 1 item. We observe that the conditions under which audio-visual integration is most likely to exceed 1 occur when stimulus change operates at a slow rather than fast rate of presentation and when the task is of intermediate difficulty such as when low levels of proactive interference (3 rather than 8 interfering visual presentations) are combined with the temporal unpredictability of the critical frame (Experiment 2), or, high levels of proactive interference are combined with the temporal predictability of the critical frame (Experiment 4). Neural data suggest that capacity might also be determined by the quality of perceptual information entering working memory. Experiment 5 supported the proposition that audio-visual integration was at play during the previous experiments. The data are consistent with the dynamic nature usually associated with cross-modal binding, and while audio-visual integration capacity likely cannot exceed uni-modal capacity estimates, performance may be better than being able to associate only one visual stimulus with one auditory stimulus. PMID:27977790
Stimulus-specific adaptation and deviance detection in the inferior colliculus
Ayala, Yaneri A.; Malmierca, Manuel S.
2013-01-01
Deviancy detection in the continuous flow of sensory information into the central nervous system is of vital importance for animals. The task requires neuronal mechanisms that allow for an efficient representation of the environment by removing statistically redundant signals. Recently, the neuronal principles of auditory deviance detection have been approached by studying the phenomenon of stimulus-specific adaptation (SSA). SSA is a reduction in the responsiveness of a neuron to a common or repetitive sound while the neuron remains highly sensitive to rare sounds (Ulanovsky et al., 2003). This phenomenon could enhance the saliency of unexpected, deviant stimuli against a background of repetitive signals. SSA shares many similarities with the evoked potential known as the “mismatch negativity,” (MMN) and it has been linked to cognitive process such as auditory memory and scene analysis (Winkler et al., 2009) as well as to behavioral habituation (Netser et al., 2011). Neurons exhibiting SSA can be found at several levels of the auditory pathway, from the inferior colliculus (IC) up to the auditory cortex (AC). In this review, we offer an account of the state-of-the art of SSA studies in the IC with the aim of contributing to the growing interest in the single-neuron electrophysiology of auditory deviance detection. The dependence of neuronal SSA on various stimulus features, e.g., probability of the deviant stimulus and repetition rate, and the roles of the AC and inhibition in shaping SSA at the level of the IC are addressed. PMID:23335883
Aesthetic Pleasure versus Aesthetic Interest: The Two Routes to Aesthetic Liking
Graf, Laura K. M.; Landwehr, Jan R.
2017-01-01
Although existing research has established that aesthetic pleasure and aesthetic interest are two distinct positive aesthetic responses, empirical research on aesthetic preferences usually considers only aesthetic liking to capture participants’ aesthetic response. This causes some fundamental contradictions in the literature; some studies find a positive relationship between easy-to-process stimulus characteristics and aesthetic liking, while others suggest a negative relationship. The present research addresses these empirical contradictions by investigating the dual character of aesthetic liking as manifested in both the pleasure and interest components. Based on the Pleasure-Interest Model of Aesthetic Liking (PIA Model; Graf and Landwehr, 2015), two studies investigated the formation of pleasure and interest and their relationship with aesthetic liking responses. Using abstract art as the stimuli, Study 1 employed a 3 (stimulus fluency: low, medium, high) × 2 (processing style: automatic, controlled) × 2 (aesthetic response: pleasure, interest) experimental design to examine the processing dynamics responsible for experiencing aesthetic pleasure versus aesthetic interest. We find that the effect of stimulus fluency on pleasure is mediated by a gut-level fluency experience. Stimulus fluency and interest, by contrast, are related through a process of disfluency reduction, such that disfluent stimuli that grow more fluent due to processing efforts become interesting. The second study employed product designs (bikes, chairs, and lamps) as stimuli and a 2 (fluency: low, high) × 2 (processing style: automatic, controlled) × 3 (product type: bike, chair, lamp) experimental design to examine pleasure and interest as mediators of the relationship between stimulus fluency and design attractiveness. With respect to lamps and chairs, the results suggest that the effect of stimulus fluency on attractiveness is fully mediated by aesthetic pleasure, especially in the automatic processing style. Conversely, disfluent product designs can enhance design attractiveness judgments due to interest when a controlled processing style is adopted. PMID:28194119
Witchel, Harry J.; Santos, Carlos P.; Ackah, James K.; Westling, Carina E. I.; Chockalingam, Nachiappan
2016-01-01
Background: Estimating engagement levels from postural micromovements has been summarized by some researchers as: increased proximity to the screen is a marker for engagement, while increased postural movement is a signal for disengagement or negative affect. However, these findings are inconclusive: the movement hypothesis challenges other findings of dyadic interaction in humans, and experiments on the positional hypothesis diverge from it. Hypotheses: (1) Under controlled conditions, adding a relevant visual stimulus to an auditory stimulus will preferentially result in Non-Instrumental Movement Inhibition (NIMI) of the head. (2) When instrumental movements are eliminated and computer-interaction rate is held constant, for two identically-structured stimuli, cognitive engagement (i.e., interest) will result in measurable NIMI of the body generally. Methods: Twenty-seven healthy participants were seated in front of a computer monitor and speakers. Discrete 3-min stimuli were presented with interactions mediated via a handheld trackball without any keyboard, to minimize instrumental movements of the participant's body. Music videos and audio-only music were used to test hypothesis (1). Time-sensitive, highly interactive stimuli were used to test hypothesis (2). Subjective responses were assessed via visual analog scales. The computer users' movements were quantified using video motion tracking from the lateral aspect. Repeated measures ANOVAs with Tukey post hoc comparisons were performed. Results: For two equivalently-engaging music videos, eliminating the visual content elicited significantly increased non-instrumental movements of the head (while also decreasing subjective engagement); a highly engaging user-selected piece of favorite music led to further increased non-instrumental movement. For two comparable reading tasks, the more engaging reading significantly inhibited (42%) movement of the head and thigh; however, when a highly engaging video game was compared to the boring reading, even though the reading task and the game had similar levels of interaction (trackball clicks), only thigh movement was significantly inhibited, not head movement. Conclusions: NIMI can be elicited by adding a relevant visual accompaniment to an audio-only stimulus or by making a stimulus cognitively engaging. However, these results presume that all other factors are held constant, because total movement rates can be affected by cognitive engagement, instrumental movements, visual requirements, and the time-sensitivity of the stimulus. PMID:26941666
Witchel, Harry J; Santos, Carlos P; Ackah, James K; Westling, Carina E I; Chockalingam, Nachiappan
2016-01-01
Estimating engagement levels from postural micromovements has been summarized by some researchers as: increased proximity to the screen is a marker for engagement, while increased postural movement is a signal for disengagement or negative affect. However, these findings are inconclusive: the movement hypothesis challenges other findings of dyadic interaction in humans, and experiments on the positional hypothesis diverge from it. (1) Under controlled conditions, adding a relevant visual stimulus to an auditory stimulus will preferentially result in Non-Instrumental Movement Inhibition (NIMI) of the head. (2) When instrumental movements are eliminated and computer-interaction rate is held constant, for two identically-structured stimuli, cognitive engagement (i.e., interest) will result in measurable NIMI of the body generally. Twenty-seven healthy participants were seated in front of a computer monitor and speakers. Discrete 3-min stimuli were presented with interactions mediated via a handheld trackball without any keyboard, to minimize instrumental movements of the participant's body. Music videos and audio-only music were used to test hypothesis (1). Time-sensitive, highly interactive stimuli were used to test hypothesis (2). Subjective responses were assessed via visual analog scales. The computer users' movements were quantified using video motion tracking from the lateral aspect. Repeated measures ANOVAs with Tukey post hoc comparisons were performed. For two equivalently-engaging music videos, eliminating the visual content elicited significantly increased non-instrumental movements of the head (while also decreasing subjective engagement); a highly engaging user-selected piece of favorite music led to further increased non-instrumental movement. For two comparable reading tasks, the more engaging reading significantly inhibited (42%) movement of the head and thigh; however, when a highly engaging video game was compared to the boring reading, even though the reading task and the game had similar levels of interaction (trackball clicks), only thigh movement was significantly inhibited, not head movement. NIMI can be elicited by adding a relevant visual accompaniment to an audio-only stimulus or by making a stimulus cognitively engaging. However, these results presume that all other factors are held constant, because total movement rates can be affected by cognitive engagement, instrumental movements, visual requirements, and the time-sensitivity of the stimulus.
Randall, Kayla R; Lambert, Joseph M; Matthews, Mary P; Houchins-Juarez, Nealetta J
2018-05-01
Research has shown that physical aggression is common in individuals with autism spectrum disorder (ASD). Interventions for multiply controlled aggression may be complex and difficult to implement with fidelity. As a result, the probability of treatment efficacy for this class of behavior may suffer. We designed an individualized levels system to reduce the physical aggression of an 11-year-old female with ASD. We then employed a systematic stimulus pairing procedure to facilitate generalization. Results suggest individualized levels systems can suppress multiply controlled aggression and that systematic stimulus pairing is an effective way to transfer treatment effects from trained therapists to caregivers.
Ma, Wei Ji; Zhou, Xiang; Ross, Lars A; Foxe, John J; Parra, Lucas C
2009-01-01
Watching a speaker's facial movements can dramatically enhance our ability to comprehend words, especially in noisy environments. From a general doctrine of combining information from different sensory modalities (the principle of inverse effectiveness), one would expect that the visual signals would be most effective at the highest levels of auditory noise. In contrast, we find, in accord with a recent paper, that visual information improves performance more at intermediate levels of auditory noise than at the highest levels, and we show that a novel visual stimulus containing only temporal information does the same. We present a Bayesian model of optimal cue integration that can explain these conflicts. In this model, words are regarded as points in a multidimensional space and word recognition is a probabilistic inference process. When the dimensionality of the feature space is low, the Bayesian model predicts inverse effectiveness; when the dimensionality is high, the enhancement is maximal at intermediate auditory noise levels. When the auditory and visual stimuli differ slightly in high noise, the model makes a counterintuitive prediction: as sound quality increases, the proportion of reported words corresponding to the visual stimulus should first increase and then decrease. We confirm this prediction in a behavioral experiment. We conclude that auditory-visual speech perception obeys the same notion of optimality previously observed only for simple multisensory stimuli.
A Novel Stimulus Artifact Removal Technique for High-Rate Electrical Stimulation
Heffer, Leon F; Fallon, James B
2008-01-01
Electrical stimulus artifact corrupting electrophysiological recordings often make the subsequent analysis of the underlying neural response difficult. This is particularly evident when investigating short-latency neural activity in response to high-rate electrical stimulation. We developed and evaluated an off-line technique for the removal of stimulus artifact from electrophysiological recordings. Pulsatile electrical stimulation was presented at rates of up to 5000 pulses/s during extracellular recordings of guinea pig auditory nerve fibers. Stimulus artifact was removed by replacing the sample points at each stimulus artifact event with values interpolated along a straight line, computed from neighbouring sample points. This technique required only that artifact events be identifiable and that the artifact duration remained less than both the inter-stimulus interval and the time course of the action potential. We have demonstrated that this computationally efficient sample-and-interpolate technique removes the stimulus artifact with minimal distortion of the action potential waveform. We suggest that this technique may have potential applications in a range of electrophysiological recording systems. PMID:18339428
Flicker Adaptation of Low-Level Cortical Visual Neurons Contributes to Temporal Dilation
ERIC Educational Resources Information Center
Ortega, Laura; Guzman-Martinez, Emmanuel; Grabowecky, Marcia; Suzuki, Satoru
2012-01-01
Several seconds of adaptation to a flickered stimulus causes a subsequent brief static stimulus to appear longer in duration. Nonsensory factors, such as increased arousal and attention, have been thought to mediate this flicker-based temporal-dilation aftereffect. In this study, we provide evidence that adaptation of low-level cortical visual…
Duncum, A J F; Atkins, K J; Beilharz, F L; Mundy, M E
2016-01-01
Individuals with body dysmorphic disorder (BDD) and clinically concerning body-image concern (BIC) appear to possess abnormalities in the way they perceive visual information in the form of a bias towards local visual processing. As inversion interrupts normal global processing, forcing individuals to process locally, an upright-inverted stimulus discrimination task was used to investigate this phenomenon. We examined whether individuals with nonclinical, yet high levels of BIC would show signs of this bias, in the form of reduced inversion effects (i.e., increased local processing). Furthermore, we assessed whether this bias appeared for general visual stimuli or specifically for appearance-related stimuli, such as faces and bodies. Participants with high-BIC (n = 25) and low-BIC (n = 30) performed a stimulus discrimination task with upright and inverted faces, scenes, objects, and bodies. Unexpectedly, the high-BIC group showed an increased inversion effect compared to the low-BIC group, indicating perceptual abnormalities may not be present as local processing biases, as originally thought. There was no significant difference in performance across stimulus types, signifying that any visual processing abnormalities may be general rather than appearance-based. This has important implications for whether visual processing abnormalities are predisposing factors for BDD or develop throughout the disorder.
The Effects of Test Trial and Processing Level on Immediate and Delayed Retention.
Chang, Sau Hou
2017-03-01
The purpose of the present study was to investigate the effects of test trial and processing level on immediate and delayed retention. A 2 × 2 × 2 mixed ANOVAs was used with two between-subject factors of test trial (single test, repeated test) and processing level (shallow, deep), and one within-subject factor of final recall (immediate, delayed). Seventy-six college students were randomly assigned first to the single test (studied the stimulus words three times and took one free-recall test) and the repeated test trials (studied the stimulus words once and took three consecutive free-recall tests), and then to the shallow processing level (asked whether each stimulus word was presented in capital letter or in small letter) and the deep processing level (whether each stimulus word belonged to a particular category) to study forty stimulus words. The immediate test was administered five minutes after the trials, whereas the delayed test was administered one week later. Results showed that single test trial recalled more words than repeated test trial in immediate final free-recall test, participants in deep processing performed better than those in shallow processing in both immediate and delayed retention. However, the dominance of single test trial and deep processing did not happen in delayed retention. Additional study trials did not further enhance the delayed retention of words encoded in deep processing, but did enhance the delayed retention of words encoded in shallow processing.
The Effects of Test Trial and Processing Level on Immediate and Delayed Retention
Chang, Sau Hou
2017-01-01
The purpose of the present study was to investigate the effects of test trial and processing level on immediate and delayed retention. A 2 × 2 × 2 mixed ANOVAs was used with two between-subject factors of test trial (single test, repeated test) and processing level (shallow, deep), and one within-subject factor of final recall (immediate, delayed). Seventy-six college students were randomly assigned first to the single test (studied the stimulus words three times and took one free-recall test) and the repeated test trials (studied the stimulus words once and took three consecutive free-recall tests), and then to the shallow processing level (asked whether each stimulus word was presented in capital letter or in small letter) and the deep processing level (whether each stimulus word belonged to a particular category) to study forty stimulus words. The immediate test was administered five minutes after the trials, whereas the delayed test was administered one week later. Results showed that single test trial recalled more words than repeated test trial in immediate final free-recall test, participants in deep processing performed better than those in shallow processing in both immediate and delayed retention. However, the dominance of single test trial and deep processing did not happen in delayed retention. Additional study trials did not further enhance the delayed retention of words encoded in deep processing, but did enhance the delayed retention of words encoded in shallow processing. PMID:28344679
Short-Term Attentional Perseveration Associated with Real-Life Creative Achievement
Zabelina, Darya L.; Beeman, Mark
2013-01-01
There are at least two competing hypotheses of how attention interacts with creative cognition, although they are not mutually exclusive. The first hypothesis is that highly creative people are particularly flexible at switching their attention – that is, they adaptively shift focus among different attentional levels using cognitive control. The second, less common, view is that creative people exhibit attentional persistence, or an ability for sustained attention. We suggest these two views need not be competing, as they may both operate, but on different time scales or on different components of creativity. In the present study we examined the role of attention in real-world creative achievement and in divergent thinking. In Experiment 1 participants with high and low real-world creative achievements identified whether the stimulus contained letters S or H within hierarchically constructed letters (e.g., large S made of small Es – global level; large E made up of small Ss – local level), which were presented in blocks of eight trials per level. In Experiment 2 participants with high, medium, and low creative achievements identified the same stimulus letters, but in blocks of five, seven, and nine trials per level. Results from both experiments indicated that people with high creative achievements made significantly more errors on trials in which they had to switch the level of attention, even after controlling for general intelligence. In Experiment 2, divergent thinking was also assessed, but it was not related to switching cost. Results from both experiments demonstrate that real-world creative acts relate to increased levels of attentional persistence, even if it comes with the cost of perseveration in certain circumstances. PMID:23630508
Additive Effects of Stimulus Quality and Word Frequency on Eye Movements during Chinese Reading
ERIC Educational Resources Information Center
Liu, Pingping; Li, Xingshan; Han, Buxin
2015-01-01
Eye movements of Chinese readers were recorded for sentences in which high- and low-frequency target words were presented normally or with reduced stimulus quality in two experiments. We found stimulus quality and word frequency produced strong additive effects on fixation durations for target words. The results demonstrate that stimulus quality…
Some considerations of two alleged kinds of selective attention.
Keren, G
1976-12-01
The present article deals with selective attention phenomena and elaborates on a stimulus material classification, "stimulus set" versus "response set," proposed by Broadbent (1970, 1971)9 Stimulus set is defined by some distinct and conspicuous physical properties that are inherent in the stimulus. Response set is characterized by the meaning it conveys, and thus its properties are determined by cognitive processing on the part of the organism. Broadbent's framework is related to Neisser's (1967) distinction between two perceptual-cognitive processes, namely, preattentive control and focal attention. Three experiments are reported. A before-after paradigm was employed in Experiment 1, together with a sptial arrangement manipulation of relevant versus irrelevant stimuli (being grouped or mixed). The results indicated that before-after instruction had a stronger effect under stimulus set than under response set conditions. Spatial arrangement, on the other hand, affected performances under response set but not under stimulus set conditions. These results were interpreted as supporting the idea that stimulus set material, which is handled by preattentive mechanisms, may be processed in parallel, while response set material requires focal attention that is probably serial in nature. Experiment 2 used a search task with different levels of noise elements. Although subjects were not able to avoid completely the processing of noise elements, they had much more control under stimulus set than under response set conditions. Experiment 3 dealt with memory functions and suggests differential levels of perceptual processing depending on the nature of the stimulus material. This extends the memory framework suggested by Craik and Lockhart (1972). The results of these experiments, together with evidence from other behavioral and physiological studies, lend strong support to the proposed theory. At the theoretical level, it is suggested that the distinction between stimulus and response set, and the corresponding one between preattentive mechanisms and focal attention, are on a continuum rather than being an all-or-none classification. Thus, it permits greater congnitive flexibility on the part of the organism, which is reflected through the assumption that both preattentive mechanisms and focal attention may operate simultaneously and differ only in the salience of their functioning. From a methodological point of view, the distinction between stimulus material and organismic processes is emphasized. It is argued that researchers have not given sufficient attention to the properties of the stimulus materials that they have used, and as a consequence have reached unwarranted conclusions, as exemplified by a few studies that are briefly discussed.
Theoretical approaches to lightness and perception.
Gilchrist, Alan
2015-01-01
Theories of lightness, like theories of perception in general, can be categorized as high-level, low-level, and mid-level. However, I will argue that in practice there are only two categories: one-stage mid-level theories, and two-stage low-high theories. Low-level theories usually include a high-level component and high-level theories include a low-level component, the distinction being mainly one of emphasis. Two-stage theories are the modern incarnation of the persistent sensation/perception dichotomy according to which an early experience of raw sensations, faithful to the proximal stimulus, is followed by a process of cognitive interpretation, typically based on past experience. Like phlogiston or the ether, raw sensations seem like they must exist, but there is no clear evidence for them. Proximal stimulus matches are postperceptual, not read off an early sensory stage. Visual angle matches are achieved by a cognitive process of flattening the visual world. Likewise, brightness (luminance) matches depend on a cognitive process of flattening the illumination. Brightness is not the input to lightness; brightness is slower than lightness. Evidence for an early (< 200 ms) mosaic stage is shaky. As for cognitive influences on perception, the many claims tend to fall apart upon close inspection of the evidence. Much of the evidence for the current revival of the 'new look' is probably better explained by (1) a natural desire of (some) subjects to please the experimenter, and (2) the ease of intuiting an experimental hypothesis. High-level theories of lightness are overkill. The visual system does not need to know the amount of illumination, merely which surfaces share the same illumination. This leaves mid-level theories derived from the gestalt school. Here the debate seems to revolve around layer models and framework models. Layer models fit our visual experience of a pattern of illumination projected onto a pattern of reflectance, while framework models provide a better account of illusions and failures of constancy. Evidence for and against these approaches is reviewed.
Yamaguchi, Motonori; Chen, Jing; Proctor, Robert W
2015-08-01
The Simon effect refers to the advantage of responding to spatially compatible stimuli. This effect can be eliminated or even reversed to favor spatially incompatible stimuli after participants practice a choice-reaction task with spatially incompatible mappings (e.g., pressing left and right keys to stimuli on the right and left, respectively). This transfer of incompatible spatial associations has been observed under conditions in which responses were made manually (e.g., keypresses, moving a joystick). The present study used vocal responses to reveal the primary determinants of the transfer effect, dissociating the influences of stimulus type, response mode, and their interaction (set-level compatibility). The results suggest that contextual match between the practice and transfer tasks with respect to stimulus type and response mode determined transfer of incompatible associations to the Simon task, and stimulus type determined the efficiency of acquiring new associations. However, there was little evidence that set-level compatibility plays any major role in either acquisition or transfer of spatial associations.
Zabelina, Darya; Saporta, Arielle; Beeman, Mark
2016-04-01
Creativity has been putatively linked to distinct forms of attention, but which aspects of creativity and which components of attention remains unclear. Two experiments examined how divergent thinking and creative achievement relate to visual attention. In both experiments, participants identified target letters (S or H) within hierarchical stimuli (global letters made of local letters), after being cued to either the local or global level. In Experiment 1, participants identified the targets more quickly following valid cues (80% of trials) than following invalid cues. However, this smaller validity effect was associated with higher divergent thinking, suggesting that divergent thinking was related to quicker overcoming of invalid cues, and thus to flexible attention. Creative achievement was unrelated to the validity effect. Experiment 2 examined whether divergent thinking (or creative achievement) is related to "leaky attention," so that when cued to one level of a stimulus, some information is still processed, or leaks in, from the non-cued level. In this case, the cued stimulus level always contained a target, and the non-cued level was congruent, neutral, or incongruent with the target. Divergent thinking did not relate to stimulus congruency. In contrast, high creative achievement was related to quicker responses to the congruent than to the incongruent stimuli, suggesting that real-world creative achievement is indeed associated with leaky attention, whereas standard laboratory tests of divergent thinking are not. Together, these results elucidate distinct patterns of attention for different measures of creativity. Specifically, creative achievers may have leaky attention, as suggested by previous literature, whereas divergent thinkers have selective yet flexible attention.
Yang, Eun-Jin; Wilczynski, Walter
2002-09-01
We investigated the relationship between aggressive behavior and circulating androgens in the context of agonistic social interaction and examined the effect of this interaction on the androgen-aggression relationship in response to a subsequent social challenge in male Anolis carolinensis lizards. Individuals comprising an aggressive encounter group were exposed to an aggressive conspecific male for 10 min per day during a 5-day encounter period, while controls were exposed to a neutral stimulus for the same period. On the sixth day, their responses to an intruder test were observed. At intervals, individuals were sacrificed to monitor plasma androgen levels. Structural equation modeling (SEM) was used to test three a priori interaction models of the relationship between social stimulus, aggressive behavior, and androgen. Model 1 posits that exposure to a social stimulus influences androgen and aggressive behavior independently. In Model 2, a social stimulus triggers aggressive behavior, which in turn increases circulating levels of androgen. In Model 3, exposure to a social stimulus influences circulating androgen levels, which in turn triggers aggressive behavior. During the 5 days of the encounter period, circulating testosterone (T) levels of the aggressive encounter group followed the same pattern as their aggressive behavioral responses, while the control group did not show significant changes in their aggressive behavior or T level. Our SEM results supported Model 2. A means analysis showed that during the intruder test, animals with 5 days of aggressive encounters showed more aggressive responses than did control animals, while their circulating androgen levels did not differ. This further supports Model 2, suggesting that an animal's own aggressive behavior may trigger increases in levels of plasma androgen. Copyright 2002 Elsevier Science (USA)
Xu, Yifang; Collins, Leslie M
2005-06-01
This work investigates dynamic range and intensity discrimination for electrical pulse-train stimuli that are modulated by noise using a stochastic auditory nerve model. Based on a hypothesized monotonic relationship between loudness and the number of spikes elicited by a stimulus, theoretical prediction of the uncomfortable level has previously been determined by comparing spike counts to a fixed threshold, Nucl. However, no specific rule for determining Nucl has been suggested. Our work determines the uncomfortable level based on the excitation pattern of the neural response in a normal ear. The number of fibers corresponding to the portion of the basilar membrane driven by a stimulus at an uncomfortable level in a normal ear is related to Nucl at an uncomfortable level of the electrical stimulus. Intensity discrimination limens are predicted using signal detection theory via the probability mass function of the neural response and via experimental simulations. The results show that the uncomfortable level for pulse-train stimuli increases slightly as noise level increases. Combining this with our previous threshold predictions, we hypothesize that the dynamic range for noise-modulated pulse-train stimuli should increase with additive noise. However, since our predictions indicate that intensity discrimination under noise degrades, overall intensity coding performance may not improve significantly.
Eliciting naturalistic cortical responses with a sensory prosthesis via optimized microstimulation
NASA Astrophysics Data System (ADS)
Choi, John S.; Brockmeier, Austin J.; McNiel, David B.; von Kraus, Lee M.; Príncipe, José C.; Francis, Joseph T.
2016-10-01
Objective. Lost sensations, such as touch, could one day be restored by electrical stimulation along the sensory neural pathways. Such stimulation, when informed by electronic sensors, could provide naturalistic cutaneous and proprioceptive feedback to the user. Perceptually, microstimulation of somatosensory brain regions produces localized, modality-specific sensations, and several spatiotemporal parameters have been studied for their discernibility. However, systematic methods for encoding a wide array of naturally occurring stimuli into biomimetic percepts via multi-channel microstimulation are lacking. More specifically, generating spatiotemporal patterns for explicitly evoking naturalistic neural activation has not yet been explored. Approach. We address this problem by first modeling the dynamical input-output relationship between multichannel microstimulation and downstream neural responses, and then optimizing the input pattern to reproduce naturally occurring touch responses as closely as possible. Main results. Here we show that such optimization produces responses in the S1 cortex of the anesthetized rat that are highly similar to natural, tactile-stimulus-evoked counterparts. Furthermore, information on both pressure and location of the touch stimulus was found to be highly preserved. Significance. Our results suggest that the currently presented stimulus optimization approach holds great promise for restoring naturalistic levels of sensation.
Stimulus homogeneity enhances implicit learning: evidence from contextual cueing.
Feldmann-Wüstefeld, Tobias; Schubö, Anna
2014-04-01
Visual search for a target object is faster if the target is embedded in a repeatedly presented invariant configuration of distractors ('contextual cueing'). It has also been shown that the homogeneity of a context affects the efficiency of visual search: targets receive prioritized processing when presented in a homogeneous context compared to a heterogeneous context, presumably due to grouping processes at early stages of visual processing. The present study investigated in three Experiments whether context homogeneity also affects contextual cueing. In Experiment 1, context homogeneity varied on three levels of the task-relevant dimension (orientation) and contextual cueing was most pronounced for context configurations with high orientation homogeneity. When context homogeneity varied on three levels of the task-irrelevant dimension (color) and orientation homogeneity was fixed, no modulation of contextual cueing was observed: high orientation homogeneity led to large contextual cueing effects (Experiment 2) and low orientation homogeneity led to low contextual cueing effects (Experiment 3), irrespective of color homogeneity. Enhanced contextual cueing for homogeneous context configurations suggest that grouping processes do not only affect visual search but also implicit learning. We conclude that memory representation of context configurations are more easily acquired when context configurations can be processed as larger, grouped perceptual units. However, this form of implicit perceptual learning is only improved by stimulus homogeneity when stimulus homogeneity facilitates grouping processes on a dimension that is currently relevant in the task. Copyright © 2014 Elsevier B.V. All rights reserved.
The presynaptic ribbon maintains vesicle populations at the hair cell afferent fiber synapse
Becker, Lars; Schnee, Michael E; Niwa, Mamiko; Sun, Willy; Maxeiner, Stephan; Talaei, Sara; Kachar, Bechara; Rutherford, Mark A
2018-01-01
The ribbon is the structural hallmark of cochlear inner hair cell (IHC) afferent synapses, yet its role in information transfer to spiral ganglion neurons (SGNs) remains unclear. We investigated the ribbon’s contribution to IHC synapse formation and function using KO mice lacking RIBEYE. Despite loss of the entire ribbon structure, synapses retained their spatiotemporal development and KO mice had a mild hearing deficit. IHCs of KO had fewer synaptic vesicles and reduced exocytosis in response to brief depolarization; a high stimulus level rescued exocytosis in KO. SGNs exhibited a lack of sustained excitatory postsynaptic currents (EPSCs). We observed larger postsynaptic glutamate receptor plaques, potentially compensating for the reduced EPSC rate in KO. Surprisingly, large-amplitude EPSCs were maintained in KO, while a small population of low-amplitude slower EPSCs was increased in number. The ribbon facilitates signal transduction at physiological stimulus levels by retaining a larger residency pool of synaptic vesicles. PMID:29328021
Stimulus change as a factor in response maintenance with free food available.
Osborne, S R; Shelby, M
1975-01-01
Rats bar pressed for food on a reinforcement schedule in which every response was reinforced, even though a dish of pellets was present. Initially, auditory and visual stimuli accompanied response-produced food presentation. With stimulus feedback as an added consequence of bar pressing, responding was maintained in the presence of free food; without stimulus feedback, responding decreased to a low level. Auditory feedback maintained slightly more responding than did visual feedback, and both together maintained more responding than did either separately. Almost no responding occurred when the only consequence of bar pressing was stimulus feedback. The data indicated conditioned and sensory reinforcement effects of response-produced stimulus feedback. PMID:1202121
Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging.
Blamire, A M; Ogawa, S; Ugurbil, K; Rothman, D; McCarthy, G; Ellermann, J M; Hyder, F; Rattner, Z; Shulman, R G
1992-01-01
We report the use of high-speed magnetic resonance imaging to follow the changes in image intensity in the human visual cortex during stimulation by a flashing checkerboard stimulus. Measurements were made in a 2.1-T, 1-m-diameter magnet, part of a Bruker Biospec spectrometer that we had programmed to do echo-planar imaging. A 15-cm-diameter surface coil was used to transmit and receive signals. Images were acquired during periods of stimulation from 2 s to 180 s. Images were acquired in 65.5 ms in a 10-mm slice with in-plane voxel size of 6 x 3 mm. Repetition time (TR) was generally 2 s, although for the long flashing periods, TR = 8 s was used. Voxels were located onto an inversion recovery image taken with 2 x 2 mm in-plane resolution. Image intensity increased after onset of the stimulus. The mean change in signal relative to the prestimulation level (delta S/S) was 9.7% (SD = 2.8%, n = 20) with an echo time of 70 ms. Irrespective of the period of stimulation, the increase in magnetic resonance signal intensity was delayed relative to the stimulus. The mean delay measured from the start of stimulation for each protocol was as follows: 2-s stimulation, delay = 3.5 s (SD = 0.5 s, n = 10) (the delay exceeds stimulus duration); 20- to 24-s stimulation, delay = 5 s (SD = 2 s, n = 20). PMID:1438317
The Effects of Stimulus Presentation Rate on the Short-Term Memory of Learning Disabled Children.
ERIC Educational Resources Information Center
Tarver, Sara G.; Ellsworth, Patricia S.
To test the hypothesis that the developmental lag in verbal rehearsal which has been documented for the learning disabled is due to a naming speed deficit (i.e., slow retrieval of stimulus names), the serial recall performance of 64 learning disabled children at four grade levels (1, 3, 5, and 7) was compared under three stimulus presentation…
The local enhancement conundrum: in search of the adaptive value of a social learning mechanism.
Arbilly, Michal; Laland, Kevin N
2014-02-01
Social learning mechanisms are widely thought to vary in their degree of complexity as well as in their prevalence in the natural world. While learning the properties of a stimulus that generalize to similar stimuli at other locations (stimulus enhancement) prima facie appears more useful to an animal than learning about a specific stimulus at a specific location (local enhancement), empirical evidence suggests that the latter is much more widespread in nature. Simulating populations engaged in a producer-scrounger game, we sought to deploy mathematical models to identify the adaptive benefits of reliance on local enhancement and/or stimulus enhancement, and the alternative conditions favoring their evolution. Surprisingly, we found that while stimulus enhancement readily evolves, local enhancement is advantageous only under highly restricted conditions: when generalization of information was made unreliable or when error in social learning was high. Our results generate a conundrum over how seemingly conflicting empirical and theoretical findings can be reconciled. Perhaps the prevalence of local enhancement in nature is due to stimulus enhancement costs independent of the learning task itself (e.g. predation risk), perhaps natural habitats are often characterized by unreliable yet highly rewarding payoffs, or perhaps local enhancement occurs less frequently, and stimulus enhancement more frequently, than widely believed. Copyright © 2013 Elsevier Inc. All rights reserved.
Ruhland, Janet L.; Yin, Tom C. T.; Tollin, Daniel J.
2013-01-01
Sound localization accuracy in elevation can be affected by sound spectrum alteration. Correspondingly, any stimulus manipulation that causes a change in the peripheral representation of the spectrum may degrade localization ability in elevation. The present study examined the influence of sound duration and level on localization performance in cats with the head unrestrained. Two cats were trained using operant conditioning to indicate the apparent location of a sound via gaze shift, which was measured with a search-coil technique. Overall, neither sound level nor duration had a notable effect on localization accuracy in azimuth, except at near-threshold levels. In contrast, localization accuracy in elevation improved as sound duration increased, and sound level also had a large effect on localization in elevation. For short-duration noise, the performance peaked at intermediate levels and deteriorated at low and high levels; for long-duration noise, this “negative level effect” at high levels was not observed. Simulations based on an auditory nerve model were used to explain the above observations and to test several hypotheses. Our results indicated that neither the flatness of sound spectrum (before the sound reaches the inner ear) nor the peripheral adaptation influences spectral coding at the periphery for localization in elevation, whereas neural computation that relies on “multiple looks” of the spectral analysis is critical in explaining the effect of sound duration, but not level. The release of negative level effect observed for long-duration sound could not be explained at the periphery and, therefore, is likely a result of processing at higher centers. PMID:23657278
Subject Differences in Breadth of Encoding in Memory.
ERIC Educational Resources Information Center
Mueller, John H.
It has been shown that incidental stimulus attributes are not utilized as much under conditions of high anxiety. It was hypothesized that the nature of this restricted encoding may be interpreted within a levels-of-processing framework. The physical attributes of verbal items (e.g., orthography, sound) may be thought of as shallow features,…
The impact of subliminal effect images in voluntary vs. stimulus-driven actions.
Le Bars, Solène; Hsu, Yi-Fang; Waszak, Florian
2016-11-01
According to the ideomotor theory, actions are represented in terms of their sensory effects. In the current study we tested whether subliminal effect images influence action control (1) at early and/or late preparatory stages of (2) voluntary actions or stimulus-driven actions (3) with or without Stimulus-Response (S-R) compatibility. In Experiment 1, participants were presented at random with 50% of S-R compatible stimulus-driven action trials and 50% of voluntary action trials. The actions' effects (i.e. up- or down-pointing arrows) were presented subliminally before each action (i.e. a keypress). In voluntary actions, participants selected more often the action congruent with the prime when it was presented at long intervals before the action. Moreover they responded faster in prime-congruent than in prime-incongruent trials when primes were presented at short intervals before the action. In Experiment 2, participants were only presented with stimulus-driven action trials, with or without S-R compatibility. In stimulus-driven action trials with S-R compatibility (e.g., left-pointing arrow signaling a left keypress), subliminal action-effects did not generate any significant effect on RTs or error rates. On the other hand, in stimulus-driven action trials without S-R compatibility (e.g., letter "H" signaling a left keypress), participants were significantly faster in prime-congruent trials when primes were presented at the shortest time interval before the action. These results suggest that subliminal effect images facilitate voluntary action preparation on an early and a late level. Stimulus-driven action preparation is influenced on a late level only, and only if there is no compatibility between the stimulus and the motor response, that is when the response is not automatically triggered by the common properties existing between the stimulus and the required action. Copyright © 2016 Elsevier B.V. All rights reserved.
Artifactual responses when recording auditory steady-state responses.
Small, Susan A; Stapells, David R
2004-12-01
The goal of this study was to investigate, in hearing-impaired participants who could not hear the stimuli, the possibility of artifactual auditory steady-state responses (ASSRs) when stimuli are presented at high intensities. ASSRs to single (60 dB HL) and multiple (20 to 50 dB HL; 500 to 4000 Hz) bone-conduction stimuli as well as single 114 to 120 dB HL air-conduction stimuli, were obtained using the Rotman MASTER system, using analog-to-digital (A/D) conversion rates of 500, 1000, and 1250 Hz. Responses (p < 0.05) were considered artifactual when their numbers exceeded that expected by chance. In some conditions, we also obtained ASSRs to "alternated" stimuli (stimuli inverted and ASSRs to the two polarities averaged). A total of 17 subjects were tested. Bone conduction results: 500 Hz A/D rate: Large-amplitude (43 to 1558 nV) artifactual ASSRs were seen at 40 and 50 dB HL for the 500 Hz carrier frequency. Smaller responses (28 to 53 nV) were also recorded at 20 dB HL for the 500 Hz carrier frequency. Artifactual ASSRs (17 to 62 nV) were seen at 40 dB HL and above for the 1000 Hz carrier frequency and at 50 dB HL for the 2000 Hz carrier frequency. Alternating the stimulus polarity decreased the amplitude and occurrence of these artifactual responses but did not eliminate responses for the 500 Hz carrier frequency at 40 dB HL and above. No artifactual responses were recorded for 4000 Hz stimuli for any condition. 1000 Hz A/D rate: Artifactual ASSRs (15 to 523 nV) were seen at 50 dB HL and above for the 500 Hz carrier frequency and 40 dB HL and above for the 1000 Hz carrier frequency. Artifactual responses were also obtained at 50 dB HL for a 2000 Hz carrier frequency but not at lower levels. Artifactual responses were not seen for the 4000 Hz carrier frequency. Alternating the stimulus polarity removed the responses for the 1000 and 2000 Hz carrier frequencies but did not change the results for the 500 Hz carrier frequency. 1250 Hz A/D rate: Artifactual ASSRs (16 to 220 nV) were seen at 50 dB HL and above for the 500 Hz carrier frequency and 60 dB HL and above for the 1000 Hz carrier frequency. Alternating the stimulus polarity removed the responses for the 1000 Hz carrier frequency but did not change the results for the 500 Hz carrier frequency. There were no artifactual responses at 2000 and 4000 Hz. Air conduction results: 500 Hz A/D rate: Artifactual ASSRs (49 to 153 nV) were seen for 114 to 120 dB HL stimuli for 500 and 1000 Hz carrier frequencies. Alternating the stimulus polarity removed these responses. There were no artifactual responses at 2000 and 4000 Hz. 1000 and 1250 Hz A/D rates: Artifactual ASSRs (19 to 55 nV) were seen for a 120 dB HL stimulus for a 1000 Hz carrier. Alternating the stimulus polarity removed these responses. High-intensity air- or bone-conduction stimuli can produce spurious ASSRs, especially for 500 and 1000 Hz carrier frequencies. High-amplitude stimulus artifact can result in energy that is aliased to exactly the modulation frequency. Choice of signal conditioning (electroencephalogram filter slope and low-pass cutoff) and processing (A/D rate) can avoid spurious responses due to aliasing. However, artifactual responses due to other causes may still occur for bone-conduction stimuli 50 dB HL and higher (and possibly for high-level air conduction). Because the phases of these spurious responses do not invert with inversion of stimulus, the possibility of nonauditory physiologic responses cannot be ruled out. The clinical implications of these results are that artifactual responses may occur for any patient for bone-conduction stimuli at levels greater than 40 dB HL and for high-intensity air-conduction stimuli used to assess patients with profound hearing loss.
de Graaf, Tom A; Cornelsen, Sonja; Jacobs, Christianne; Sack, Alexander T
2011-12-01
Transcranial magnetic stimulation (TMS) can be used to mask visual stimuli, disrupting visual task performance or preventing visual awareness. While TMS masking studies generally fix stimulation intensity, we hypothesized that varying the intensity of TMS pulses in a masking paradigm might inform several ongoing debates concerning TMS disruption of vision as measured subjectively versus objectively, and pre-stimulus (forward) versus post-stimulus (backward) TMS masking. We here show that both pre-stimulus TMS pulses and post-stimulus TMS pulses could strongly mask visual stimuli. We found no dissociations between TMS effects on the subjective and objective measures of vision for any masking window or intensity, ruling out the option that TMS intensity levels determine whether dissociations between subjective and objective vision are obtained. For the post-stimulus time window particularly, we suggest that these data provide new constraints for (e.g. recurrent) models of vision and visual awareness. Finally, our data are in line with the idea that pre-stimulus masking operates differently from conventional post-stimulus masking. Copyright © 2011 Elsevier Inc. All rights reserved.
Pooresmaeili, Arezoo; Arrighi, Roberto; Biagi, Laura; Morrone, Maria Concetta
2016-01-01
In natural scenes, objects rarely occur in isolation but appear within a spatiotemporal context. Here, we show that the perceived size of a stimulus is significantly affected by the context of the scene: brief previous presentation of larger or smaller adapting stimuli at the same region of space changes the perceived size of a test stimulus, with larger adapting stimuli causing the test to appear smaller than veridical and vice versa. In a human fMRI study, we measured the blood oxygen level-dependent activation (BOLD) responses of the primary visual cortex (V1) to the contours of large-diameter stimuli and found that activation closely matched the perceptual rather than the retinal stimulus size: the activated area of V1 increased or decreased, depending on the size of the preceding stimulus. A model based on local inhibitory V1 mechanisms simulated the inward or outward shifts of the stimulus contours and hence the perceptual effects. Our findings suggest that area V1 is actively involved in reshaping our perception to match the short-term statistics of the visual scene. PMID:24089504
Quentin, Romain; Elkin Frankston, Seth; Vernet, Marine; Toba, Monica N.; Bartolomeo, Paolo; Chanes, Lorena; Valero-Cabré, Antoni
2016-01-01
Behavioral and electrophysiological studies in humans and non-human primates have correlated frontal high-beta activity with the orienting of endogenous attention and shown the ability of the latter function to modulate visual performance. We here combined rhythmic transcranial magnetic stimulation (TMS) and diffusion imaging to study the relation between frontal oscillatory activity and visual performance, and we associated these phenomena to a specific set of white matter pathways that in humans subtend attentional processes. High-beta rhythmic activity on the right frontal eye field (FEF) was induced with TMS and its causal effects on a contrast sensitivity function were recorded to explore its ability to improve visual detection performance across different stimulus contrast levels. Our results show that frequency-specific activity patterns engaged in the right FEF have the ability to induce a leftward shift of the psychometric function. This increase in visual performance across different levels of stimulus contrast is likely mediated by a contrast gain mechanism. Interestingly, microstructural measures of white matter connectivity suggest a strong implication of right fronto-parietal connectivity linking the FEF and the intraparietal sulcus in propagating high-beta rhythmic signals across brain networks and subtending top-down frontal influences on visual performance. PMID:25899709
ERIC Educational Resources Information Center
Vause, Tricia; Martin, Garry L.; Yu, C.T.; Marion, Carole; Sakko, Gina
2005-01-01
The relationship between language, performance on the Assessment of Basic Learning Abilities (ABLA) test, and stimulus equivalence was examined. Five participants with minimal verbal repertoires were studied; 3 who passed up to ABLA Level 4, a visual quasi-identity discrimination and 2 who passed ABLA Level 6, an auditory-visual nonidentity…
Measurement of hearing aid internal noise1
Lewis, James D.; Goodman, Shawn S.; Bentler, Ruth A.
2010-01-01
Hearing aid equivalent input noise (EIN) measures assume the primary source of internal noise to be located prior to amplification and to be constant regardless of input level. EIN will underestimate internal noise in the case that noise is generated following amplification. The present study investigated the internal noise levels of six hearing aids (HAs). Concurrent with HA processing of a speech-like stimulus with both adaptive features (acoustic feedback cancellation, digital noise reduction, microphone directionality) enabled and disabled, internal noise was quantified for various stimulus levels as the variance across repeated trials. Changes in noise level as a function of stimulus level demonstrated that (1) generation of internal noise is not isolated to the microphone, (2) noise may be dependent on input level, and (3) certain adaptive features may contribute to internal noise. Quantifying internal noise as the variance of the output measures allows for noise to be measured under real-world processing conditions, accounts for all sources of noise, and is predictive of internal noise audibility. PMID:20370034
Measuring spatial and temporal Ca2+ signals in Arabidopsis plants.
Zhu, Xiaohong; Taylor, Aaron; Zhang, Shenyu; Zhang, Dayong; Feng, Ying; Liang, Gaimei; Zhu, Jian-Kang
2014-09-02
Developmental and environmental cues induce Ca(2+) fluctuations in plant cells. Stimulus-specific spatial-temporal Ca(2+) patterns are sensed by cellular Ca(2+) binding proteins that initiate Ca(2+) signaling cascades. However, we still know little about how stimulus specific Ca(2+) signals are generated. The specificity of a Ca(2+) signal may be attributed to the sophisticated regulation of the activities of Ca(2+) channels and/or transporters in response to a given stimulus. To identify these cellular components and understand their functions, it is crucial to use systems that allow a sensitive and robust recording of Ca(2+) signals at both the tissue and cellular levels. Genetically encoded Ca(2+) indicators that are targeted to different cellular compartments have provided a platform for live cell confocal imaging of cellular Ca(2+) signals. Here we describe instructions for the use of two Ca(2+) detection systems: aequorin based FAS (film adhesive seedlings) luminescence Ca(2+) imaging and case12 based live cell confocal fluorescence Ca(2+) imaging. Luminescence imaging using the FAS system provides a simple, robust and sensitive detection of spatial and temporal Ca(2+) signals at the tissue level, while live cell confocal imaging using Case12 provides simultaneous detection of cytosolic and nuclear Ca(2+) signals at a high resolution.
Does bimodal stimulus presentation increase ERP components usable in BCIs?
NASA Astrophysics Data System (ADS)
Thurlings, Marieke E.; Brouwer, Anne-Marie; Van Erp, Jan B. F.; Blankertz, Benjamin; Werkhoven, Peter J.
2012-08-01
Event-related potential (ERP)-based brain-computer interfaces (BCIs) employ differences in brain responses to attended and ignored stimuli. Typically, visual stimuli are used. Tactile stimuli have recently been suggested as a gaze-independent alternative. Bimodal stimuli could evoke additional brain activity due to multisensory integration which may be of use in BCIs. We investigated the effect of visual-tactile stimulus presentation on the chain of ERP components, BCI performance (classification accuracies and bitrates) and participants’ task performance (counting of targets). Ten participants were instructed to navigate a visual display by attending (spatially) to targets in sequences of either visual, tactile or visual-tactile stimuli. We observe that attending to visual-tactile (compared to either visual or tactile) stimuli results in an enhanced early ERP component (N1). This bimodal N1 may enhance BCI performance, as suggested by a nonsignificant positive trend in offline classification accuracies. A late ERP component (P300) is reduced when attending to visual-tactile compared to visual stimuli, which is consistent with the nonsignificant negative trend of participants’ task performance. We discuss these findings in the light of affected spatial attention at high-level compared to low-level stimulus processing. Furthermore, we evaluate bimodal BCIs from a practical perspective and for future applications.
Role of a texture gradient in the perception of relative size.
Tozawa, Junko
2010-01-01
Two theories regarding the role of a texture gradient in the perception of the relative size of objects are compared. Relational theory states that relative size is directly specified by the projective ratio of the numbers of texture elements spanned by objects. Distance calibration theory assumes that relative size is a product of visual angle and distance, once the distance is specified by the texture. Experiment 1 involved three variables: background (no texture, texture gradient patterns), the ratio of heights of the comparison stimulus to a standard (three levels), and angular vertical separation of the standard stimulus below the horizon (two levels). The effect of the retinal length of the comparison stimulus was examined in experiment 2. In both experiments, participants judged both the apparent size and distance of a comparison stimulus relative to a standard stimulus. Results suggest that the cues selected by observers to judge relative size were to some degree different from those used to judge relative distance. Relative size was strongly affected by a texture gradient and the retinal length of a comparison stimulus whereas relative distance perception was affected by relative height. When dominant cues that specify size are different from those which specify distance, relational theory might provide a better account of relative size perception than distance calibration theory.
Near-field visual acuity of pigeons: effects of head location and stimulus luminance.
Hodos, W; Leibowitz, R W; Bonbright, J C
1976-03-01
Two pigeons were trained to discriminate a grating stimulus from a blank stimulus of equivalent luminance in a three-key chamber. The stimuli and blanks were presented behind a transparent center key. The procedure was a conditional discrimination in which pecks on the left key were reinforced if the blank had been present behind the center key and pecks on the right key were reinforced if the grating had been present behind the center key. The spatial frequency of the stimuli was varied in each session from four to 29.5 lines per millimeter in accordance with a variation of the method of constant stimuli. The number of lines per millimeter that the subjects could discriminate at threshold was determined from psychometric functions. Data were collected at five values of stimulus luminance ranging from--0.07 to 3.29 log cd/m2. The distance from the stimulus to the anterior nodal point of the eye, which was determined from measurements taken from high-speed motion-picture photographs of three additional pigeons and published intraocular measurements, was 62.0 mm. This distance and the grating detection thresholds were used to calculate the visual acuity of the birds at each level of luminance. Acuity improved with increasing luminance to a peak value of 0.52, which corresponds to a visual angle of 1.92 min, at a luminance of 2.33 log cd/m2. Further increase in luminance produced a small decline in acuity.
Aguggia, M
2003-05-01
The transmission of pain-related information from the periphery to the cortex depends on signal integration at three levels of the nervous system: the spinal medulla, brainstem and telencephalon. In fulfilling its task of safeguarding human health, pain may develop as a result of damaged or altered primary afferent neurons (stimulus-dependent) or arise spontaneously without any apparent causal stimulus (stimulus-independent). Hyperalgesia (i.e. an exaggerated perception of pain after a painful stimulus) is due to an anomaly in the processing of nociceptive inputs in the central and peripheral nervous systems leading to the activation of the primary afferents by stimuli other than the usual stimuli.
Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict.
van den Berg, Berry; Krebs, Ruth M; Lorist, Monicque M; Woldorff, Marty G
2014-06-01
The prospect of gaining money is an incentive widely at play in the real world. Such monetary motivation might have particularly strong influence when the cognitive system is challenged, such as when needing to process conflicting stimulus inputs. Here, we employed manipulations of reward-prospect and attentional-preparation levels in a cued-Stroop stimulus conflict task, along with the high temporal resolution of electrical brain recordings, to provide insight into the mechanisms by which reward-prospect and attention interact and modulate cognitive task performance. In this task, the cue indicated whether or not the participant needed to prepare for an upcoming Stroop stimulus and, if so, whether there was the potential for monetary reward (dependent on performance on that trial). Both cued attention and cued reward-prospect enhanced preparatory neural activity, as reflected by increases in the hallmark attention-related negative-polarity ERP slow wave (contingent negative variation [CNV]) and reductions in oscillatory Alpha activity, which was followed by enhanced processing of the subsequent Stroop stimulus. In addition, similar modulations of preparatory neural activity (larger CNVs and reduced Alpha) predicted shorter versus longer response times (RTs) to the subsequent target stimulus, consistent with such modulations reflecting trial-to-trial variations in attention. Particularly striking were the individual differences in the utilization of reward-prospect information. In particular, the size of the reward effects on the preparatory neural activity correlated across participants with the degree to which reward-prospect both facilitated overall task performance (shorter RTs) and reduced conflict-related behavioral interference. Thus, the prospect of reward appears to recruit attentional preparation circuits to enhance processing of task-relevant target information.
Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict
van den Berg, Berry; Krebs, Ruth M.; Lorist, Monicque M.; Woldorff, Marty G.
2015-01-01
The prospect of gaining money is an incentive widely at play in the real world. Such monetary motivation might have particularly strong influence when the cognitive system is challenged, such as when needing to process conflicting stimulus inputs. Here, we employed manipulations of reward-prospect and attentional-preparation levels in a cued-Stroop stimulus-conflict task, along with the high temporal resolution of electrical brain recordings, to provide insight into the mechanisms by which reward-prospect and attention interact and modulate cognitive-task performance. In this task the cue indicated whether or not the subject needed to prepare for an upcoming Stroop stimulus, and if so, whether there was the potential for monetary reward (dependent on performance on that trial). Both cued-attention and cued-reward-prospect enhanced preparatory neural activity, as reflected by increases in the hallmark attention-related negative-polarity ERP slow wave (CNV) and reductions in oscillatory Alpha activity, which was followed by enhanced processing of the subsequent Stroop stimulus. In addition, similar modulations of preparatory neural activity (larger CNVs and reduced Alpha) predicted faster versus slower response times (RTs) to the subsequent target stimulus, consistent with such modulations reflecting trial-to-trial variations in attention. Particularly striking were the individual differences in the utilization of reward-prospect information. In particular, the size of the reward effects on the preparatory neural activity correlated across-subjects with the degree to which reward-prospect both facilitated overall task performance (faster RTs) and reduced conflict-related behavioral interference. Thus, the prospect of reward appears to recruit attentional preparation circuits to enhance processing of task-relevant target information. PMID:24820263
Neural processing of visual information under interocular suppression: a critical review
Sterzer, Philipp; Stein, Timo; Ludwig, Karin; Rothkirch, Marcus; Hesselmann, Guido
2014-01-01
When dissimilar stimuli are presented to the two eyes, only one stimulus dominates at a time while the other stimulus is invisible due to interocular suppression. When both stimuli are equally potent in competing for awareness, perception alternates spontaneously between the two stimuli, a phenomenon called binocular rivalry. However, when one stimulus is much stronger, e.g., due to higher contrast, the weaker stimulus can be suppressed for prolonged periods of time. A technique that has recently become very popular for the investigation of unconscious visual processing is continuous flash suppression (CFS): High-contrast dynamic patterns shown to one eye can render a low-contrast stimulus shown to the other eye invisible for up to minutes. Studies using CFS have produced new insights but also controversies regarding the types of visual information that can be processed unconsciously as well as the neural sites and the relevance of such unconscious processing. Here, we review the current state of knowledge in regard to neural processing of interocularly suppressed information. Focusing on recent neuroimaging findings, we discuss whether and to what degree such suppressed visual information is processed at early and more advanced levels of the visual processing hierarchy. We review controversial findings related to the influence of attention on early visual processing under interocular suppression, the putative differential roles of dorsal and ventral areas in unconscious object processing, and evidence suggesting privileged unconscious processing of emotional and other socially relevant information. On a more general note, we discuss methodological and conceptual issues, from practical issues of how unawareness of a stimulus is assessed to the overarching question of what constitutes an adequate operational definition of unawareness. Finally, we propose approaches for future research to resolve current controversies in this exciting research area. PMID:24904469
Herbert, Wendy J; Davidson, Adam G; Buford, John A
2010-06-01
The pontomedullary reticular formation (PMRF) of the monkey produces motor outputs to both upper limbs. EMG effects evoked from stimulus-triggered averaging (StimulusTA) were compared with effects from stimulus trains to determine whether both stimulation methods produced comparable results. Flexor and extensor muscles of scapulothoracic, shoulder, elbow, and wrist joints were studied bilaterally in two male M. fascicularis monkeys trained to perform a bilateral reaching task. The frequency of facilitation versus suppression responses evoked in the muscles was compared between methods. Stimulus trains were more efficient (94% of PMRF sites) in producing responses than StimulusTA (55%), and stimulus trains evoked responses from more muscles per site than from StimulusTA. Facilitation (72%) was more common from stimulus trains than StimulusTA (39%). In the overall results, a bilateral reciprocal activation pattern of ipsilateral flexor and contralateral extensor facilitation was evident for StimulusTA and stimulus trains. When the comparison was restricted to cases where both methods produced a response in a given muscle from the same site, agreement was very high, at 80%. For the remaining 20%, discrepancies were accounted for mainly by facilitation from stimulus trains when StimulusTA produced suppression, which was in agreement with the under-representation of suppression in the stimulus train data as a whole. To the extent that the stimulus train method may favor transmission through polysynaptic pathways, these results suggest that polysynaptic pathways from the PMRF more often produce facilitation in muscles that would typically demonstrate suppression with StimulusTA.
Satou, Tsukasa; Ito, Misae; Shinomiya, Yuma; Takahashi, Yoshiaki; Hara, Naoto; Niida, Takahiro
2018-04-04
To investigate differences in the stimulus accommodative convergence/accommodation (AC/A) ratio using various techniques and accommodative stimuli, and to describe a method for determining the stimulus AC/A ratio. A total of 81 subjects with a mean age of 21 years (range, 20-23 years) were enrolled. The relationship between ocular deviation and accommodation was assessed using two methods. Ocular deviation was measured by varying the accommodative requirement using spherical plus/minus lenses to create an accommodative stimulus of 10.00 diopters (D) (in 1.00 D steps). Ocular deviation was assessed using the alternate prism cover test in method 1 at distance (5 m) and near (1/3 m), and the major amblyoscope in method 2. The stimulus AC/A ratios obtained using methods 1 and 2 were calculated and defined as the stimulus AC/A ratios with low and high accommodation, respectively, using the following analysis method. The former was calculated as the difference between the convergence response to an accommodative stimulus of 3 D and 0 D, divided by 3. The latter was calculated as the difference between the convergence response to a maximum (max) accommodative stimulus with distinct vision of the subject and an accommodative stimulus of max minus 3.00 D, divided by 3. The median stimulus AC/A ratio with low accommodation (1.0 Δ/D for method 1 at distance, 2.0 Δ/D for method 1 at near, and 2.7 Δ/D for method 2) differed significantly among the measurement methods (P < 0.01). Differences in the median stimulus AC/A ratio with high accommodation (4.0 Δ/D for method 1 at distance, 3.7 Δ/D for method 1 at near, and 4.7 Δ/D for method 2) between method 1 at distance and method 2 were statistically significant (P < 0.05), while method 1 at near was not significantly different compared with other methods. Differences in the stimulus AC/A ratio value were significant according to measurement technique and accommodative stimuli. However, differences caused by measurement technique may be reduced by using a high accommodative stimulus during measurements.
Yang, Qiang; Arathorn, David W.; Tiruveedhula, Pavan; Vogel, Curtis R.; Roorda, Austin
2010-01-01
We demonstrate an integrated FPGA solution to project highly stabilized, aberration-corrected stimuli directly onto the retina by means of real-time retinal image motion signals in combination with high speed modulation of a scanning laser. By reducing the latency between target location prediction and stimulus delivery, the stimulus location accuracy, in a subject with good fixation, is improved to 0.15 arcminutes from 0.26 arcminutes in our earlier solution. We also demonstrate the new FPGA solution is capable of delivering stabilized large stimulus pattern (up to 256x256 pixels) to the retina. PMID:20721171
NASA Astrophysics Data System (ADS)
Kilian, Gladiné; Pieter, Muyshondt; Joris, Dirckx
2016-06-01
Laser Doppler Vibrometry is an intrinsic highly linear measurement technique which makes it a great tool to measure extremely small nonlinearities in the vibration response of a system. Although the measurement technique is highly linear, other components in the experimental setup may introduce nonlinearities. An important source of artificially introduced nonlinearities is the speaker, which generates the stimulus. In this work, two correction methods to remove the effects of stimulus nonlinearity are investigated. Both correction methods were found to give similar results but have different pros and cons. The aim of this work is to investigate the importance of the conical shape of the eardrum as a source of nonlinearity in hearing. We present measurements on flat and indented membranes. The data shows that the curved membrane exhibit slightly higher levels of nonlinearity compared to the flat membrane.
Race, Elizabeth A; Shanker, Shanti; Wagner, Anthony D
2009-09-01
Past experience is hypothesized to reduce computational demands in PFC by providing bottom-up predictive information that informs subsequent stimulus-action mapping. The present fMRI study measured cortical activity reductions ("neural priming"/"repetition suppression") during repeated stimulus classification to investigate the mechanisms through which learning from the past decreases demands on the prefrontal executive system. Manipulation of learning at three levels of representation-stimulus, decision, and response-revealed dissociable neural priming effects in distinct frontotemporal regions, supporting a multiprocess model of neural priming. Critically, three distinct patterns of neural priming were identified in lateral frontal cortex, indicating that frontal computational demands are reduced by three forms of learning: (a) cortical tuning of stimulus-specific representations, (b) retrieval of learned stimulus-decision mappings, and (c) retrieval of learned stimulus-response mappings. The topographic distribution of these neural priming effects suggests a rostrocaudal organization of executive function in lateral frontal cortex.
Spatiotemporal dynamics of similarity-based neural representations of facial identity.
Vida, Mark D; Nestor, Adrian; Plaut, David C; Behrmann, Marlene
2017-01-10
Humans' remarkable ability to quickly and accurately discriminate among thousands of highly similar complex objects demands rapid and precise neural computations. To elucidate the process by which this is achieved, we used magnetoencephalography to measure spatiotemporal patterns of neural activity with high temporal resolution during visual discrimination among a large and carefully controlled set of faces. We also compared these neural data to lower level "image-based" and higher level "identity-based" model-based representations of our stimuli and to behavioral similarity judgments of our stimuli. Between ∼50 and 400 ms after stimulus onset, face-selective sources in right lateral occipital cortex and right fusiform gyrus and sources in a control region (left V1) yielded successful classification of facial identity. In all regions, early responses were more similar to the image-based representation than to the identity-based representation. In the face-selective regions only, responses were more similar to the identity-based representation at several time points after 200 ms. Behavioral responses were more similar to the identity-based representation than to the image-based representation, and their structure was predicted by responses in the face-selective regions. These results provide a temporally precise description of the transformation from low- to high-level representations of facial identity in human face-selective cortex and demonstrate that face-selective cortical regions represent multiple distinct types of information about face identity at different times over the first 500 ms after stimulus onset. These results have important implications for understanding the rapid emergence of fine-grained, high-level representations of object identity, a computation essential to human visual expertise.
Reconstruction of neuronal input through modeling single-neuron dynamics and computations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Qing; Wang, Jiang; Yu, Haitao
Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-spacemore » method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.« less
Direct Recordings of Pitch Responses from Human Auditory Cortex
Griffiths, Timothy D.; Kumar, Sukhbinder; Sedley, William; Nourski, Kirill V.; Kawasaki, Hiroto; Oya, Hiroyuki; Patterson, Roy D.; Brugge, John F.; Howard, Matthew A.
2010-01-01
Summary Pitch is a fundamental percept with a complex relationship to the associated sound structure [1]. Pitch perception requires brain representation of both the structure of the stimulus and the pitch that is perceived. We describe direct recordings of local field potentials from human auditory cortex made while subjects perceived the transition between noise and a noise with a regular repetitive structure in the time domain at the millisecond level called regular-interval noise (RIN) [2]. RIN is perceived to have a pitch when the rate is above the lower limit of pitch [3], at approximately 30 Hz. Sustained time-locked responses are observed to be related to the temporal regularity of the stimulus, commonly emphasized as a relevant stimulus feature in models of pitch perception (e.g., [1]). Sustained oscillatory responses are also demonstrated in the high gamma range (80–120 Hz). The regularity responses occur irrespective of whether the response is associated with pitch perception. In contrast, the oscillatory responses only occur for pitch. Both responses occur in primary auditory cortex and adjacent nonprimary areas. The research suggests that two types of pitch-related activity occur in humans in early auditory cortex: time-locked neural correlates of stimulus regularity and an oscillatory response related to the pitch percept. PMID:20605456
Reconstruction of neuronal input through modeling single-neuron dynamics and computations
NASA Astrophysics Data System (ADS)
Qin, Qing; Wang, Jiang; Yu, Haitao; Deng, Bin; Chan, Wai-lok
2016-06-01
Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-space method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.
On the nature of directed behavior to drug-associated light cues in rhesus monkeys (Macaca mulatta).
Reilly, Mark P; Berndt, Sonja I; Woods, James H
2016-11-01
The present study investigated the role of drug-paired stimuli in controlling the behavior of rhesus monkeys. Systematic observations were made with nine monkeys who had a history of drug self-administration; they had been lever pressing to produce intravenous infusions of various drugs. These observations revealed that the stimulus light co-occurring with drug infusion produced robust and cue-directed behavior such as orienting, touching and biting. Experiment 1 showed that this light-directed behavior would occur in naïve monkeys exposed to a Pavlovian pairing procedure. Four monkeys were given response-independent injections of cocaine. In two monkeys, a red light preceded cocaine injections by 5 s, and a green light co-occurred with the 5-s cocaine injections. In the other two monkeys, the light presentations and cocaine injections occurred independently. Light-directed behavior occurred in all four monkeys within the first couple of trials and at high levels but decreased across sessions. The cocaine-paired stimulus maintained behavior longer and at higher levels than the uncorrelated stimuli. Furthermore, light-directed behavior was not maintained when cocaine was replaced with saline. Light-directed behavior did not occur in the absence of the lights. When these monkeys were subsequently trained to lever press for cocaine, light-directed behavior increased to levels higher than previously observed. Behavior directed towards drug-paired stimuli is robust, reliable and multiply determined; the mechanisms underlying this activity likely include Pavlovian conditioning, stimulus novelty, habituation and operant conditioning.
Hawley, Wayne R; Witty, Christine F; Daniel, Jill M; Dohanich, Gary P
2015-08-01
One principle of the multiple memory systems hypothesis posits that the hippocampus-based and striatum-based memory systems compete for control over learning. Consistent with this notion, previous research indicates that the cholinergic system of the hippocampus plays a role in modulating the preference for a hippocampus-based place learning strategy over a striatum-based stimulus--response learning strategy. Interestingly, in the hippocampus, greater activity and higher protein levels of choline acetyltransferase (ChAT), the enzyme that synthesizes acetylcholine, are associated with better performance on hippocampus-based learning and memory tasks. With this in mind, the primary aim of the current study was to determine if higher levels of ChAT and the high-affinity choline uptake transporter (CHT) in the hippocampus were associated with a preference for a hippocampus-based place learning strategy on a task that also could be solved by relying on a striatum-based stimulus--response learning strategy. Results confirmed that levels of ChAT in the dorsal region of the hippocampus were associated with a preference for a place learning strategy on a water maze task that could also be solved by adopting a stimulus-response learning strategy. Consistent with previous studies, the current results support the hypothesis that the cholinergic system of the hippocampus plays a role in balancing competition between memory systems that modulate learning strategy preference. Copyright © 2015 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
DeLeon, Iser G.; Frank, Michelle A.; Gregory, Meagan K.; Allman, Melissa J.
2009-01-01
The current study examined whether stimuli of different preference levels would be associated with different amounts of work maintained by the stimuli, as determined through progressive-ratio schedule break points. Using a paired-choice preference assessment, stimuli were classified as high, moderate, or low preference for 4 individuals with…
Sustained Attention in Mild Alzheimer’s Disease
Berardi, Anna Maria; Parasuraman, Raja; Haxby, James V.
2008-01-01
The vigilance decrement in perceptual sensitivity was examined in 10 patients with mild Alzheimer’s disease (AD) and 20 age-matched controls. A visual high-event rate digit-discrimination task lasting 7.2 min. (six 1.2 min blocks) was presented at different levels of stimulus degradation. Previous studies have shown that sensitivity decrements (d′) over time at high-stimulus degradation result from demands on effortful processing. For all degradation levels, the overall level of vigilance (d′) was lower in AD patients than in controls. All participants showed sensitivity decrement over blocks, with greater decrement at higher degradation levels. AD patients exhibited greater sensitivity decrement over time at the highest degradation level they all could perform relative to control participants. There were no concomitant changes in either response bias (C) or response times. The results indicate that mild AD patients have overall lower levels of vigilance under conditions that require both automatic and effortful processing. Mild AD patients also exhibit a deficit in the maintenance of vigilance over time under effortful processing conditions. Although the sample of AD patients was small, results further suggest that both possible and probable AD patients had greater sensitivity decrement over time at the highest degradation level than did control participants, but only probable AD patients had lower overall levels of vigilance. In the possible AD patients as a group, the decrement in vigilance occurred in the absence of concurrent deficits on standard attentional tasks, such as the Stroop and Trail Making tests, suggesting that deficits in vigilance over time may appear earlier than deficits in selective attention. PMID:15992254
Cortical evoked responses associated with arousal from sleep.
Phillips, Derrick J; Schei, Jennifer L; Meighan, Peter C; Rector, David M
2011-01-01
To determine if low-level intermittent auditory stimuli have the potential to disrupt sleep during 24-h recordings, we assessed arousal occurrence to varying stimulus intensities. Additionally, if stimulus-generated evoked response potential (ERP) components provide a metric of underlying cortical state, then a particular ERP structure may precede an arousal. Physiological electrodes measuring EEG, EKG, and EMG were implanted into 5 adult female Sprague-Dawley rats. We delivered auditory stimuli of varying intensities (50-75 dBa sound pressure level SPL) at random intervals of 6-12 s over a 24-hour period. Recordings were divided into 2-s epochs and scored for sleep/wake state. Following each stimulus, we identified whether the animal stayed asleep or woke. We then sorted the stimuli depending on prior and post-stimulus state, and measured ERP components. Auditory stimuli did not produce a significant increase in the number of arousals compared to silent control periods. Overall, arousal from REM sleep occurred more often compared to quiet sleep. ERPs preceding an arousal had decreased mean area and shorter N1 latency. Low level auditory stimuli did not fragment animal sleep since we observed no significant change in arousal occurrence. Arousals that occurred within 4 s of a stimulus exhibited an ERP mean area and latency had features similar to ERPs generated during wake, indicating that the underlying cortical tissue state may contribute to physiological conditions required for arousal.
Finger, Elizabeth C; Marsh, Abigail A; Blair, Karina S; Reid, Marguerite E; Sims, Courtney; Ng, Pamela; Pine, Daniel S; Blair, R James R
2011-02-01
Dysfunction in the amygdala and orbitofrontal cortex has been reported in youths and adults with psychopathic traits. The specific nature of the functional irregularities within these structures remains poorly understood. The authors used a passive avoidance task to examine the responsiveness of these systems to early stimulus-reinforcement exposure, when prediction errors are greatest and learning maximized, and to reward in youths with psychopathic traits and comparison youths. While performing the passive avoidance learning task, 15 youths with conduct disorder or oppositional defiant disorder plus a high level of psychopathic traits and 15 healthy subjects completed a 3.0-T fMRI scan. Relative to the comparison youths, the youths with a disruptive behavior disorder plus psychopathic traits showed less orbitofrontal responsiveness both to early stimulus-reinforcement exposure and to rewards, as well as less caudate response to early stimulus-reinforcement exposure. There were no group differences in amygdala responsiveness to these two task measures, but amygdala responsiveness throughout the task was lower in the youths with psychopathic traits. Compromised sensitivity to early reinforcement information in the orbitofrontal cortex and caudate and to reward outcome information in the orbitofrontal cortex of youths with conduct disorder or oppositional defiant disorder plus psychopathic traits suggests that the integrated functioning of the amygdala, caudate, and orbitofrontal cortex may be disrupted. This provides a functional neural basis for why such youths are more likely to repeat disadvantageous decisions. New treatment possibilities are raised, as pharmacologic modulations of serotonin and dopamine can affect this form of learning.
Gottschalk, Caroline; Fischer, Rico
2017-03-01
Different contexts with high versus low conflict frequencies require a specific attentional control involvement, i.e., strong attentional control for high conflict contexts and less attentional control for low conflict contexts. While it is assumed that the corresponding control set can be activated upon stimulus presentation at the respective context (e.g., upper versus lower location), the actual features that trigger control set activation are to date not described. Here, we ask whether the perceptual priming of the location context by an abrupt onset of irrelevant stimuli is sufficient in activating the context-specific attentional control set. For example, the mere onset of a stimulus might disambiguate the relevant location context and thus, serve as a low-level perceptual trigger mechanism that activates the context-specific attentional control set. In Experiment 1 and 2, the onsets of task-relevant and task-irrelevant (distracter) stimuli were manipulated at each context location to compete for triggering the activation of the appropriate control set. In Experiment 3, a prior training session enabled distracter stimuli to establish contextual control associations of their own before entering the test session. Results consistently showed that the mere onset of a task-irrelevant stimulus (with or without a context-control association) is not sufficient to activate the context-associated attentional control set by disambiguating the relevant context location. Instead, we argue that the identification of the relevant stimulus at the respective context is a precondition to trigger the activation of the context-associated attentional control set.
United States Air Force High School Apprenticeship Program: 1989 Program Management Report. Volume 3
1988-12-01
orrtent of visual or auditory stimulus exposed to the eyes o- oays -t a level below normal threshold, it is possible to perceive the subliminal stimuli...usually to small or vague to be consciously recognized, but they are declared to influence the 87-6 viewer’s subconsc’ious sex drive. Stimulation below...programs the mechanisms to stimulate career interests in science and technology in high school students showing promise in these areas. The Air Force High
High-frequency tone-pip-evoked otoacoustic emissions in chinchillas
NASA Astrophysics Data System (ADS)
Siegel, Jonathan H.; Charaziak, Karolina K.
2015-12-01
We measured otoacoustic emissions in anesthetized chinchillas evoked by short (1 ms) high-frequency (4 kHz) tone-pips (TEOAE) using either a compression or suppression method to separate the stimulus from the emission. Both methods revealed consistent features of the TEOAEs. The main spectral band of the emission generally corresponded to the spectrum of the stimulus, exhibiting a group delay similar to that of SFOAEs [9]. However, a second spectral band below 1.5 kHz, clearly separated from the low-frequency cut-off frequency of the stimulus spectrum, corresponded to an amplitude modulation of the waveform of the TEOAE. The group delay of this low-frequency band was similar to that of the main band near the probe frequency. The average level and group delay of the main band declined monotonically when revealed as the suppressor frequency was raised above the probe. The low-frequency band was more sensitive than the main band to shifts in compound action potential thresholds near the probe frequency induced by acute exposure to intense tones. Taken together, the experiments indicate that both the main and low-frequency bands of the TEOAE are generated primarily near the cochlear region maximally stimulated by the probe, but that significant contributions arise over a large region even more basal.
Expectations about person identity modulate the face-sensitive N170.
Johnston, Patrick; Overell, Anne; Kaufman, Jordy; Robinson, Jonathan; Young, Andrew W
2016-12-01
Identifying familiar faces is a fundamentally important aspect of social perception that requires the ability to assign very different (ambient) images of a face to a common identity. The current consensus is that the brain processes face identity at approximately 250-300 msec following stimulus onset, as indexed by the N250 event related potential. However, using two experiments we show compelling evidence that where experimental paradigms induce expectations about person identity, changes in famous face identity are in fact detected at an earlier latency corresponding to the face-sensitive N170. In Experiment 1, using a rapid periodic stimulation paradigm presenting highly variable ambient images, we demonstrate robust effects of low frequency, periodic face-identity changes in N170 amplitude. In Experiment 2, we added infrequent aperiodic identity changes to show that the N170 was larger to both infrequent periodic and infrequent aperiodic identity changes than to high frequency identities. Our use of ambient stimulus images makes it unlikely that these effects are due to adaptation of low-level stimulus features. In line with current ideas about predictive coding, we therefore suggest that when expectations about the identity of a face exist, the visual system is capable of detecting identity mismatches at a latency consistent with the N170. Copyright © 2016 Elsevier Ltd. All rights reserved.
Paolini, A G; Clark, G M
1999-05-01
Intracellular responses of onset chopper neurons in the ventral cochlear nucleus to tones: evidence for dual-component processing. The ventral cochlear nucleus (VCN) contains a heterogeneous collection of cell types reflecting the multiple processing tasks undertaken by this nucleus. This in vivo study in the rat used intracellular recordings and dye filling to examine membrane potential changes and firing characteristics of onset chopper (OC) neurons to acoustic stimulation (50 ms pure tones, 5 ms r/f time). Stable impalements were made from 15 OC neurons, 7 identified as multipolar cells. Neurons responded to characteristic frequency (CF) tones with sustained depolarization below spike threshold. With increasing stimulus intensity, the depolarization during the initial 10 ms of the response became peaked, and with further increases in intensity the peak became narrower. Onset spikes were generated during this initial depolarization. Tones presented below CF resulted in a broadening of this initial depolarizing component with high stimulus intensities required to initiate onset spikes. This initial component was followed by a sustained depolarizing component lasting until stimulus cessation. The amplitude of the sustained depolarizing component was greatest when frequencies were presented at high intensities below CF resulting in increased action potential firing during this period when compared with comparable high intensities at CF. During the presentation of tones at or above the high-frequency edge of a cell's response area, hyperpolarization was evident during the sustained component. The presence of hyperpolarization and the differences seen in the level of sustained depolarization during CF and off CF tones suggests that changes in membrane responsiveness between the initial and sustained components may be attributed to polysynaptic inhibitory mechanisms. The dual-component processing resulting from convergent auditory nerve excitation and polysynaptic inhibition enables OC neurons to respond in a unique fashion to intensity and frequency features contained within an acoustic stimulus.
Couperus, J W
2010-11-26
This study explored effects of perceptual load on stimulus processing in the presence and absence of an attended stimulus. Participants were presented with a bilateral or unilateral display and asked to perform a discrimination task at either low or high perceptual load. Electrophysiological responses to stimuli were then compared at the P100 and N100. As in previous studies, perceptual load modified processing of attended and unattended stimuli seen at occipital scalp sites. Moreover, perceptual load modulated attention effects when the attended stimulus was presented at high perceptual load for unilateral displays. However, this was not true when the attended and unattended stimulus appeared simultaneously in bilateral displays. Instead, only a main effect of perceptual load was found. Reductions in processing contralateral to the unattended stimulus at the N100 provide support for Lavie's (1995) theory of selective attention. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Coggan, David D; Baker, Daniel H; Andrews, Timothy J
2016-01-01
Brain-imaging studies have found distinct spatial and temporal patterns of response to different object categories across the brain. However, the extent to which these categorical patterns of response reflect higher-level semantic or lower-level visual properties of the stimulus remains unclear. To address this question, we measured patterns of EEG response to intact and scrambled images in the human brain. Our rationale for using scrambled images is that they have many of the visual properties found in intact images, but do not convey any semantic information. Images from different object categories (bottle, face, house) were briefly presented (400 ms) in an event-related design. A multivariate pattern analysis revealed categorical patterns of response to intact images emerged ∼80-100 ms after stimulus onset and were still evident when the stimulus was no longer present (∼800 ms). Next, we measured the patterns of response to scrambled images. Categorical patterns of response to scrambled images also emerged ∼80-100 ms after stimulus onset. However, in contrast to the intact images, distinct patterns of response to scrambled images were mostly evident while the stimulus was present (∼400 ms). Moreover, scrambled images were able to account only for all the variance in the intact images at early stages of processing. This direct manipulation of visual and semantic content provides new insights into the temporal dynamics of object perception and the extent to which different stages of processing are dependent on lower-level or higher-level properties of the image.
ERIC Educational Resources Information Center
Davey, Bryan; Alexander, Melina; Edmonson, Claudia; Stenhoff, Donald; West, Richard P.
A study examined the effects of using a musical clocklight as discriminative stimulus, paired with individual and group contingency rewards, on the decibel level in an elementary school lunchroom. Subjects were 256 students aged 5-12, who ate lunch in two sessions for younger and older students. The musical clocklight (MCL) apparatus consisted of…
European starlings unriddle the ambiguous-cue problem
Vasconcelos, Marco; Monteiro, Tiago
2014-01-01
The ambiguous-cue problem is deceptively simple. It involves two concurrently trained simultaneous discriminations (known as PA and NA trials), but only three stimuli. Stimulus A is common to both discriminations, but serves as non-reinforced stimulus (S-) on PA trials and as reinforced stimulus (S+) on NA trials. Typically, animals’ accuracy is lower on PA trials—the ambiguous-cue effect. We conducted two experiments with European starlings (Sturnus vulgaris) using Urcuioli and Michalek’s (2007, Psychon B Rev 14, 658–662) experimental manipulations as a springboard to test the predictions of two of the most important theoretical accounts of the effect: the interfering cue hypothesis and value transfer theory. Both experiments included two groups of birds, one trained with a regular ambiguous-cue problem (Group Continuous) and another trained with partial reinforcement on PA trials (Group PA-Partial). The experiments differed only in the number of sessions (18 vs. 36) and daily trials (360 vs. 60). As previously observed, we found faster acquisition on NA trials than on PA trials in both experiments, but by the end of training PA performance was surprisingly high, such that no ambiguous-cue effect was present in Group Continuous of either experiment. The effect was still present in both PA-Partial groups, but to a smaller degree than expected. These findings are inconsistent with the literature, in particular with the results of Urcuioli and Michalek (2007) with pigeons, and question the aforementioned theoretical accounts as complete explanations of the ambiguous-cue effect. In our view, to achieve such high levels of accuracy on PA trials, starlings must have attended to configural (i.e., contextual) cues, thus differentiating stimulus A when presented on PA trials from stimulus A when presented on NA trials. A post hoc simulation of a reinforcement-based configural model supported our assertion. PMID:25206346
Population Response Profiles in Early Visual Cortex Are Biased in Favor of More Valuable Stimuli
Saproo, Sameer
2010-01-01
Voluntary and stimulus-driven shifts of attention can modulate the representation of behaviorally relevant stimuli in early areas of visual cortex. In turn, attended items are processed faster and more accurately, facilitating the selection of appropriate behavioral responses. Information processing is also strongly influenced by past experience and recent studies indicate that the learned value of a stimulus can influence relatively late stages of decision making such as the process of selecting a motor response. However, the learned value of a stimulus can also influence the magnitude of cortical responses in early sensory areas such as V1 and S1. These early effects of stimulus value are presumed to improve the quality of sensory representations; however, the nature of these modulations is not clear. They could reflect nonspecific changes in response amplitude associated with changes in general arousal or they could reflect a bias in population responses so that high-value features are represented more robustly. To examine this issue, subjects performed a two-alternative forced choice paradigm with a variable-interval payoff schedule to dynamically manipulate the relative value of two stimuli defined by their orientation (one was rotated clockwise from vertical, the other counterclockwise). Activation levels in visual cortex were monitored using functional MRI and feature-selective voxel tuning functions while subjects performed the behavioral task. The results suggest that value not only modulates the relative amplitude of responses in early areas of human visual cortex, but also sharpens the response profile across the populations of feature-selective neurons that encode the critical stimulus feature (orientation). Moreover, changes in space- or feature-based attention cannot easily explain the results because representations of both the selected and the unselected stimuli underwent a similar feature-selective modulation. This sharpening in the population response profile could theoretically improve the probability of correctly discriminating high-value stimuli from low-value alternatives. PMID:20410360
A New Approach to Model Pitch Perception Using Sparse Coding
Furst, Miriam; Barak, Omri
2017-01-01
Our acoustical environment abounds with repetitive sounds, some of which are related to pitch perception. It is still unknown how the auditory system, in processing these sounds, relates a physical stimulus and its percept. Since, in mammals, all auditory stimuli are conveyed into the nervous system through the auditory nerve (AN) fibers, a model should explain the perception of pitch as a function of this particular input. However, pitch perception is invariant to certain features of the physical stimulus. For example, a missing fundamental stimulus with resolved or unresolved harmonics, or a low and high-level amplitude stimulus with the same spectral content–these all give rise to the same percept of pitch. In contrast, the AN representations for these different stimuli are not invariant to these effects. In fact, due to saturation and non-linearity of both cochlear and inner hair cells responses, these differences are enhanced by the AN fibers. Thus there is a difficulty in explaining how pitch percept arises from the activity of the AN fibers. We introduce a novel approach for extracting pitch cues from the AN population activity for a given arbitrary stimulus. The method is based on a technique known as sparse coding (SC). It is the representation of pitch cues by a few spatiotemporal atoms (templates) from among a large set of possible ones (a dictionary). The amount of activity of each atom is represented by a non-zero coefficient, analogous to an active neuron. Such a technique has been successfully applied to other modalities, particularly vision. The model is composed of a cochlear model, an SC processing unit, and a harmonic sieve. We show that the model copes with different pitch phenomena: extracting resolved and non-resolved harmonics, missing fundamental pitches, stimuli with both high and low amplitudes, iterated rippled noises, and recorded musical instruments. PMID:28099436
A New Approach to Model Pitch Perception Using Sparse Coding.
Barzelay, Oded; Furst, Miriam; Barak, Omri
2017-01-01
Our acoustical environment abounds with repetitive sounds, some of which are related to pitch perception. It is still unknown how the auditory system, in processing these sounds, relates a physical stimulus and its percept. Since, in mammals, all auditory stimuli are conveyed into the nervous system through the auditory nerve (AN) fibers, a model should explain the perception of pitch as a function of this particular input. However, pitch perception is invariant to certain features of the physical stimulus. For example, a missing fundamental stimulus with resolved or unresolved harmonics, or a low and high-level amplitude stimulus with the same spectral content-these all give rise to the same percept of pitch. In contrast, the AN representations for these different stimuli are not invariant to these effects. In fact, due to saturation and non-linearity of both cochlear and inner hair cells responses, these differences are enhanced by the AN fibers. Thus there is a difficulty in explaining how pitch percept arises from the activity of the AN fibers. We introduce a novel approach for extracting pitch cues from the AN population activity for a given arbitrary stimulus. The method is based on a technique known as sparse coding (SC). It is the representation of pitch cues by a few spatiotemporal atoms (templates) from among a large set of possible ones (a dictionary). The amount of activity of each atom is represented by a non-zero coefficient, analogous to an active neuron. Such a technique has been successfully applied to other modalities, particularly vision. The model is composed of a cochlear model, an SC processing unit, and a harmonic sieve. We show that the model copes with different pitch phenomena: extracting resolved and non-resolved harmonics, missing fundamental pitches, stimuli with both high and low amplitudes, iterated rippled noises, and recorded musical instruments.
Macías, Silvio; Hernández-Abad, Annette; Hechavarría, Julio C; Kössl, Manfred; Mora, Emanuel C
2015-05-01
It has been reported previously that in the inferior colliculus of the bat Molossus molossus, neuronal duration tuning is ambiguous because the tuning type of the neurons dramatically changes with the sound level. In the present study, duration tuning was examined in the auditory cortex of M. molossus to describe if it is as ambiguous as the collicular tuning. From a population of 174 cortical 104 (60 %) neurons did not show duration selectivity (all-pass). Around 5 % (9 units) responded preferentially to stimuli having longer durations showing long-pass duration response functions, 35 (20 %) responded to a narrow range of stimulus durations showing band-pass duration response functions, 24 (14 %) responded most strongly to short stimulus durations showing short-pass duration response functions and two neurons (1 %) responded best to two different stimulus durations showing a two-peaked duration-response function. The majority of neurons showing short- (16 out of 24) and band-pass (24 out 35) selectivity displayed "O-shaped" duration response areas. In contrast to the inferior colliculus, duration tuning in the auditory cortex of M. molossus appears level tolerant. That is, the type of duration selectivity and the stimulus duration eliciting the maximum response were unaffected by changing sound level.
Clara, Elena; Tommasi, Luca; Rogers, Lesley J
2008-04-01
We compared the mobbing response to model snakes of two groups of captive-born common marmosets (Callithrix jacchus) differing in genetic relatedness, age and past experience. Mobbing vocalisations (tsik calls), other mobbing behaviour and attention to the stimulus were recorded for 2 min. intervals pre-exposure, during exposure to various stimuli and post-exposure. Marmosets in one group were vocally reactive to all stimuli, although more so to one particular stimulus resembling rearing snakes and modified images of it, whereas the marmosets in a younger and genetically unrelated group attended to the stimuli but made very few mobbing calls. The parent stock of the first group had suffered stress in early life and had developed a phobic response to a specific stimulus, which they had transmitted to their offspring. A third group, matching the older group in age range but genetically unrelated, was also found to be unresponsive to the stimulus that elicited the strongest response in the first group. Cortisol levels in samples of hair were assayed and a significant negative correlation was found between the number of tsik calls made during presentation of the stimuli and the cortisol level, showing that mobbing behaviour/behavioural reactivity is associated with low levels of physiological stress.
van Lankveld, Jacques; Bergh, Simone
2008-04-01
In this study we investigated the effects of state and trait aspects of self-focused attention on genital and subjective sexual arousal of sexually functional, healthy women during presentation of audiovisual erotic stimuli. Psychophysiological sexual response was measured as vaginal pulse amplitude using a vaginal photoplethysmograph. Experiential aspects of sexual arousal were measured both during stimulus presentation and retrospectively after stimulus offset. Trait level of sexual self-focus was measured with the Sexual Self-Consciousness Scale. State self-focus was induced by switching on a TV camera that pointed at the participant's face and upper torso. A manipulation check revealed that both groups experienced equally elevated levels of self-focused attention of their physical appearance. Induction of state self-focus per se did not affect genital responses, but an interaction effect of self-focus and participants' level of trait sexual self-focus was revealed. Compared with women with low scores on this trait, women with high scores exhibited smaller genital responses when state self-focus was induced. Both groups did not differ when no self-focus was induced. Increase of state self-focus did not affect subjective sexual arousal, but participants with a high level of trait sexual self-focus reported stronger subjective arousal, compared with those with low trait level. The results were discussed with reference to previous work in this field. Some implications for treatment of sexual arousal disorder were discussed.
Fox, Olivia M.; Harel, Assaf; Bennett, Kevin B.
2017-01-01
The perception of a visual stimulus is dependent not only upon local features, but also on the arrangement of those features. When stimulus features are perceptually well organized (e.g., symmetric or parallel), a global configuration with a high degree of salience emerges from the interactions between these features, often referred to as emergent features. Emergent features can be demonstrated in the Configural Superiority Effect (CSE): presenting a stimulus within an organized context relative to its presentation in a disarranged one results in better performance. Prior neuroimaging work on the perception of emergent features regards the CSE as an “all or none” phenomenon, focusing on the contrast between configural and non-configural stimuli. However, it is still not clear how emergent features are processed between these two endpoints. The current study examined the extent to which behavioral and neuroimaging markers of emergent features are responsive to the degree of configurality in visual displays. Subjects were tasked with reporting the anomalous quadrant in a visual search task while being scanned. Degree of configurality was manipulated by incrementally varying the rotational angle of low-level features within the stimulus arrays. Behaviorally, we observed faster response times with increasing levels of configurality. These behavioral changes were accompanied by increases in response magnitude across multiple visual areas in occipito-temporal cortex, primarily early visual cortex and object-selective cortex. Our findings suggest that the neural correlates of emergent features can be observed even in response to stimuli that are not fully configural, and demonstrate that configural information is already present at early stages of the visual hierarchy. PMID:28167924
Bustamante, D; Paeile, C; Willer, J C; Le Bars, D
1996-03-01
A C-fiber reflex elicited by electrical stimulation within the territory of the sural nerve, was recorded from the ipsilateral biceps femoris muscle in anesthetized rats. The temporal evolution of the response was studied using a constant stimulus intensity (3 x threshold) and recruitment curves were built by varying stimulus intensity from 0 to 7 x threshold. The i.v. administration of aspirin, indomethacin, ketoprofen, paracetamol (= acetaminophen) and lysine clonixinate resulted in dose-dependent depressions of the C-fiber reflex by up to 30 to 40%. By contrast, saline was ineffective. High doses of the effective drugs that produced large disturbances in heart rate and/or acid-base equilibrium were not considered in the pharmacological analysis. When a constant level of stimulation was used, different dose-dependent profiles of drug action were observed. Aspirin induced a slow and gradual depression, although indomethacin, ketoprofen and paracetamol produced a peak effect within the first 10-min period and then reached a steady state phase for up to 30 min. The depressive effects of lysine clonixinate appeared more stable. When recruitment curves were built with a range of nociceptive stimulus intensities, all the drugs produced a dose-dependent decrease in the slopes and the areas under the recruitment curves without any major modification in the thresholds. The order of potency was the same for both stimulation paradigms, e.g., aspirin < paracetamol < lysine clonixinate = ketoprofen < indomethacin. It is concluded that NSAID elicit significant antinociceptive effects at a central level, which do not depend on the existence of a hyperalgesic or inflammatory state.
Contralateral Inhibition of Click- and Chirp-Evoked Human Compound Action Potentials
Smith, Spencer B.; Lichtenhan, Jeffery T.; Cone, Barbara K.
2017-01-01
Cochlear outer hair cells (OHC) receive direct efferent feedback from the caudal auditory brainstem via the medial olivocochlear (MOC) bundle. This circuit provides the neural substrate for the MOC reflex, which inhibits cochlear amplifier gain and is believed to play a role in listening in noise and protection from acoustic overexposure. The human MOC reflex has been studied extensively using otoacoustic emissions (OAE) paradigms; however, these measurements are insensitive to subsequent “downstream” efferent effects on the neural ensembles that mediate hearing. In this experiment, click- and chirp-evoked auditory nerve compound action potential (CAP) amplitudes were measured electrocochleographically from the human eardrum without and with MOC reflex activation elicited by contralateral broadband noise. We hypothesized that the chirp would be a more optimal stimulus for measuring neural MOC effects because it synchronizes excitation along the entire length of the basilar membrane and thus evokes a more robust CAP than a click at low to moderate stimulus levels. Chirps produced larger CAPs than clicks at all stimulus intensities (50–80 dB ppeSPL). MOC reflex inhibition of CAPs was larger for chirps than clicks at low stimulus levels when quantified both in terms of amplitude reduction and effective attenuation. Effective attenuation was larger for chirp- and click-evoked CAPs than for click-evoked OAEs measured from the same subjects. Our results suggest that the chirp is an optimal stimulus for evoking CAPs at low stimulus intensities and for assessing MOC reflex effects on the auditory nerve. Further, our work supports previous findings that MOC reflex effects at the level of the auditory nerve are underestimated by measures of OAE inhibition. PMID:28420960
The responses of autistic children to the distress of others.
Bacon, A L; Fein, D; Morris, R; Waterhouse, L; Allen, D
1998-04-01
The behavior of preschool children from five groups (developmental language disordered, high-functioning autistic, low-functioning autistic, mentally retarded, and normally developing) were coded in three situations: presentation of a nonsocial orienting stimulus (an unfamiliar noise) and two social situations involving simulated distress on the part of an adult with whom they were playing. Cognitive level was correlated with level of responsiveness to stimuli only for the two retarded groups (mentally retarded and low-functioning autistic). Girls showed more prosocial behavior than boys in both social situations, independent of diagnosis. The language-disordered children showed only mild and subtle social deficits. The low-functioning autistic children showed pronounced deficits in responding in all situations. The mentally retarded and high-functioning autistic children showed good awareness of all situations, but were moderately impaired in their ability to respond prosocially; they rarely initiated prosocial behavior, but did respond to specific prompts. The behavioral feature that marked both autistic groups, in contrast to all other groups, was a lack of social referencing; they did not tend to look toward an adult in the presence of an ambiguous and unfamiliar stimulus. Results are discussed in terms of variability between and among high- and low-functioning autistic children, and implications for the core deficits in autism.
Stimulus Intensity and the Perception of Duration
ERIC Educational Resources Information Center
Matthews, William J.; Stewart, Neil; Wearden, John H.
2011-01-01
This article explores the widely reported finding that the subjective duration of a stimulus is positively related to its magnitude. In Experiments 1 and 2 we show that, for both auditory and visual stimuli, the effect of stimulus magnitude on the perception of duration depends upon the background: Against a high intensity background, weak stimuli…
Kent, A R; Grill, W M
2012-01-01
Deep brain stimulation (DBS) is an effective treatment for movement disorders, but the selection of stimulus parameters is a clinical burden and often yields sub-optimal outcomes for patients. Measurement of electrically evoked compound action potentials (ECAPs) during DBS could offer insight into the type and spatial extent of neural element activation and provide a potential feedback signal for the rational selection of stimulus parameters and closed-loop DBS. However, recording ECAPs presents a significant technical challenge due to the large stimulus artefact, which can saturate recording amplifiers and distort short latency ECAP signals. We developed DBS-ECAP recording instrumentation combining commercial amplifiers and circuit elements in a serial configuration to reduce the stimulus artefact and enable high fidelity recording. We used an electrical circuit equivalent model of the instrumentation to understand better the sources of the stimulus artefact and the mechanisms of artefact reduction by the circuit elements. In vitro testing validated the capability of the instrumentation to suppress the stimulus artefact and increase gain by a factor of 1,000 to 5,000 compared to a conventional biopotential amplifier. The distortion of mock ECAP (mECAP) signals was measured across stimulation parameters, and the instrumentation enabled high fidelity recording of mECAPs with latencies of only 0.5 ms for DBS pulse widths of 50 to 100 μs/phase. Subsequently, the instrumentation was used to record in vivo ECAPs, without contamination by the stimulus artefact, during thalamic DBS in an anesthetized cat. The characteristics of the physiological ECAP were dependent on stimulation parameters. The novel instrumentation enables high fidelity ECAP recording and advances the potential use of the ECAP as a feedback signal for the tuning of DBS parameters. PMID:22510375
Baroreflex Responses to Acute Changes in Blood Volume in Humans
NASA Technical Reports Server (NTRS)
Thompson, Cynthia A.; Tatro, Dana L.; Ludwig, David A.; Convertino, Victor A.
1990-01-01
To test the hypothesis that acute changes in plasma volume affect the stimulus-response relations of high- and low- pressure baroreflexes, eight men (27-44 yr old) underwent measurements for carotid-cardiac and cardiopulmonary baro-reflex responses under the following three volemic conditions: hypovolemic, normovolemic, and hypervolemic. The stimulus- response relation of the carotid-cardiac response curve was generated using a neck cuff device, which delivered pressure changes between +40 and -65 mmHg in continuous steps of 15 mmHg. The stimulus-response relationship, of the cardio-pulmonary baroreflex were studied by measurements of Forearm Vascular Resistance (FVR) and Peripheral Venous Pressure (PVP) during low levels of lower body negative pressure (O to -20 mmHg). The results indicate greater demand for vasoconstriction for equal reductions in venous pressure during progressive hypovolemia; this condition may compromise the capacity to provide adequate peripheral resistance during severe orthostatic stress. Fluid loading before reentry after spaceflight may act to restore vasoconstrictive capacity of the cardiopulmonary baroreflex but may not be an effective countermeasure against potential post- flight impairment of the carotid-cardiac baroreflex.
Response properties of ON-OFF retinal ganglion cells to high-order stimulus statistics.
Xiao, Lei; Gong, Han-Yan; Gong, Hai-Qing; Liang, Pei-Ji; Zhang, Pu-Ming
2014-10-17
The visual stimulus statistics are the fundamental parameters to provide the reference for studying visual coding rules. In this study, the multi-electrode extracellular recording experiments were designed and implemented on bullfrog retinal ganglion cells to explore the neural response properties to the changes in stimulus statistics. The changes in low-order stimulus statistics, such as intensity and contrast, were clearly reflected in the neuronal firing rate. However, it was difficult to distinguish the changes in high-order statistics, such as skewness and kurtosis, only based on the neuronal firing rate. The neuronal temporal filtering and sensitivity characteristics were further analyzed. We observed that the peak-to-peak amplitude of the temporal filter and the neuronal sensitivity, which were obtained from either neuronal ON spikes or OFF spikes, could exhibit significant changes when the high-order stimulus statistics were changed. These results indicate that in the retina, the neuronal response properties may be reliable and powerful in carrying some complex and subtle visual information. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Sjöstrand, F S
2002-01-01
Each rod is connected to one depolarizing and one hyperpolarizing bipolar cell. The synaptic connections of cone processes to each bipolar cell and presynaptically to the two rod-bipolar cell synapses establishes conditions for lateral interaction at this level. Thus, the cones raise the threshold for bipolar cell depolarization which is the basis for spatial brightness contrast enhancement and consequently for high visual acuity (Sjöstrand, 2001a). The cones facilitate ganglion cell depolarization by the bipolar cells and cone input prevents horizontal cell blocking of depolarization of the depolarizing bipolar cell, extending rod vision to low illumination. The combination of reduced cone input and transient hyperpolarization of the hyperpolarizing bipolar cell at onset of a light stimulus facilitates ganglion cell depolarization extensively at onset of the stimulus while no corresponding enhancement applies to the ganglion cell response at cessation of the stimulus, possibly establishing conditions for discrimination between on- vs. off-signals in the visual centre. Reduced cone input and hyperpolarization of the hyperpolarizing bipolar cell at onset of a light stimulus accounts for Granit's (1941) 'preexcitatory inhibition'. Presynaptic inhibition maintains transmitter concentration low in the synaptic gap at rod-bipolar cell and bipolar cell-ganglion cell synapses, securing proportional and amplified postsynaptic responses at these synapses. Perfect timing of variations in facilitatory and inhibitory input to the ganglion cell confines the duration of ganglion cell depolarization at onset and at cessation of a light stimulus to that of a single synaptic transmission.
Discriminative stimulus effects of alpidem, a new imidazopyridine anxiolytic.
Sanger, D J; Zivkovic, B
1994-01-01
Alpidem in an imidazopyridine derivative which binds selectively to the omega 1 (BZ1) receptor subtype. It is active in some, but not all, behavioural tests sensitive to benzodiazepine anxiolytics and has clinical anti-anxiety effects. However, in a previous study, it was shown that alpidem did not substitute for chlordiazepoxide in rats trained to discriminate this benzodiazepine. The present experiments were carried out to investigate the discriminative stimulus properties of alpidem in greater detail. In the first experiment rats learned to discriminate a dose of 10 mg/kg alpidem from saline. Acquisition of the discrimination was long and performance unstable. Chlordiazepoxide, clorazepate and zolpidem substituted only partially for alpidem but the effects of the training dose of alpidem were blocked by 10 mg/kg flumazenil. The second experiment established stimulus control more rapidly to a dose of 30 mg/kg alpidem. Alpidem induced dose-related stimulus control, and dose-related and complete substitution for alpidem was produced by zolpidem, abecarnil, CL 218,872, triazolam and suriclone. Partial substitution occurred with chlordiazepoxide, clorazepate and pentobarbital. In most cases, high levels of substitution were produced only by doses which greatly reduced response rates even though the training dose of alpidem produced only modest decreases in rates. Ethanol, buspirone and bretazenil produced very little substitution for alpidem and both flumazenil and bretazenil antagonised the effects of alpidem. In two further experiments alpidem was found to substitute for the stimulus produced by zolpidem (2 mg/kg) but not for that produced by ethanol (1.5 g/kg).(ABSTRACT TRUNCATED AT 250 WORDS)
The Middle Ear Muscle Reflex in Rat: Developing a Biomarker of Auditory Nerve Degeneration.
Chertoff, Mark E; Martz, Ashley; Sakumura, Joey T; Kamerer, Aryn M; Diaz, Francisco
The long-term goal of this research is to determine whether the middle ear muscle reflex can be used to predict the number of healthy auditory nerve fibers in hearing-impaired ears. In this study, we develop a high-impedance source and an animal model of the middle ear muscle reflex and explore the influence of signal frequency and level on parameters of the reflex to determine an optimal signal to examine auditory nerve fiber survival. A high-impedance source was developed using a hearing aid receiver attached to a 0.06 diameter 10.5-cm length tube. The impedance probe consisted of a microphone probe placed near the tip of a tube coupled to a sound source. The probe was calibrated by inserting it into a syringe of known volumes and impedances. The reflex in the anesthetized rat was measured with elicitor stimuli ranging from 3 to 16 kHz presented at levels ranging from 35 to 100 dB SPL to one ear while the reflex was measured in the opposite ear containing the probe and probe stimulus. The amplitude of the reflex increased with elicitor level and was largest at 3 kHz. The lowest threshold was approximately 54 dB SPL for the 3-kHz stimulus. The rate of decay of the reflex was greatest at 16 kHz followed by 10 and 3 kHz. The rate of decay did not change significantly with elicitor signal level for 3 and 16 kHz, but decreased as the level of the 10-kHz elicitor increased. A negative feedback model accounts for the reflex decay by having the strength of feedback dependent on auditory nerve input. The rise time of the reflex varied with frequency and changed with level for the 10- and 16-kHz signals but not significantly for the 3-kHz signal. The latency of the reflex increased with a decrease in elicitor level, and the change in latency with level was largest for the 10-kHz stimulus. Because the amplitude of the reflex in rat was largest with an elicitor signal at 3 kHz, had the lowest threshold, and yielded the least amount of decay, this may be the ideal frequency to estimate auditory nerve survival in hearing-impaired ears.
Kiani, Roozbeh; Hanks, Timothy D; Shadlen, Michael N
2008-03-19
Decisions about sensory stimuli are often based on an accumulation of evidence in time. When subjects control stimulus duration, the decision terminates when the accumulated evidence reaches a criterion level. Under many natural circumstances and in many laboratory settings, the environment, rather than the subject, controls the stimulus duration. In these settings, it is generally assumed that subjects commit to a choice at the end of the stimulus stream. Indeed, failure to benefit from the full stream of information is interpreted as a sign of imperfect accumulation or memory leak. Contrary to these assumptions, we show that monkeys performing a direction discrimination task commit to a choice when the accumulated evidence reaches a threshold level (or bound), sometimes long before the end of stimulus. This bounded accumulation of evidence is reflected in the activity of neurons in the lateral intraparietal cortex. Thus, the readout of visual cortex embraces a termination rule to limit processing even when potentially useful information is available.
Stimulus-responsive hydrogels: Theory, modern advances, and applications
Koetting, Michael C.; Peters, Jonathan T.; Steichen, Stephanie D.; Peppas, Nicholas A.
2016-01-01
Over the past century, hydrogels have emerged as effective materials for an immense variety of applications. The unique network structure of hydrogels enables very high levels of hydrophilicity and biocompatibility, while at the same time exhibiting the soft physical properties associated with living tissue, making them ideal biomaterials. Stimulus-responsive hydrogels have been especially impactful, allowing for unprecedented levels of control over material properties in response to external cues. This enhanced control has enabled groundbreaking advances in healthcare, allowing for more effective treatment of a vast array of diseases and improved approaches for tissue engineering and wound healing. In this extensive review, we identify and discuss the multitude of response modalities that have been developed, including temperature, pH, chemical, light, electro, and shear-sensitive hydrogels. We discuss the theoretical analysis of hydrogel properties and the mechanisms used to create these responses, highlighting both the pioneering and most recent work in all of these fields. Finally, we review the many current and proposed applications of these hydrogels in medicine and industry. PMID:27134415
Glucose Oscillations Can Activate an Endogenous Oscillator in Pancreatic Islets
Mukhitov, Nikita; Roper, Michael G.; Bertram, Richard
2016-01-01
Pancreatic islets manage elevations in blood glucose level by secreting insulin into the bloodstream in a pulsatile manner. Pulsatile insulin secretion is governed by islet oscillations such as bursting electrical activity and periodic Ca2+ entry in β-cells. In this report, we demonstrate that although islet oscillations are lost by fixing a glucose stimulus at a high concentration, they may be recovered by subsequently converting the glucose stimulus to a sinusoidal wave. We predict with mathematical modeling that the sinusoidal glucose signal’s ability to recover islet oscillations depends on its amplitude and period, and we confirm our predictions by conducting experiments with islets using a microfluidics platform. Our results suggest a mechanism whereby oscillatory blood glucose levels recruit non-oscillating islets to enhance pulsatile insulin output from the pancreas. Our results also provide support for the main hypothesis of the Dual Oscillator Model, that a glycolytic oscillator endogenous to islet β-cells drives pulsatile insulin secretion. PMID:27788129
Fischmeister, Florian Ph.S.; Leodolter, Ulrich; Windischberger, Christian; Kasess, Christian H.; Schöpf, Veronika; Moser, Ewald; Bauer, Herbert
2010-01-01
Throughout recent years there has been an increasing interest in studying unconscious visual processes. Such conditions of unawareness are typically achieved by either a sufficient reduction of the stimulus presentation time or visual masking. However, there are growing concerns about the reliability of the presentation devices used. As all these devices show great variability in presentation parameters, the processing of visual stimuli becomes dependent on the display-device, e.g. minimal changes in the physical stimulus properties may have an enormous impact on stimulus processing by the sensory system and on the actual experience of the stimulus. Here we present a custom-built three-way LC-shutter-tachistoscope which allows experimental setups with both, precise and reliable stimulus delivery, and millisecond resolution. This tachistoscope consists of three LCD-projectors equipped with zoom lenses to enable stimulus presentation via a built-in mirror-system onto a back projection screen from an adjacent room. Two high-speed liquid crystal shutters are mounted serially in front of each projector to control the stimulus duration. To verify the intended properties empirically, different sequences of presentation times were performed while changes in optical power were measured using a photoreceiver. The obtained results demonstrate that interfering variabilities in stimulus parameters and stimulus rendering are markedly reduced. Together with the possibility to collect external signals and to send trigger-signals to other devices, this tachistoscope represents a highly flexible and easy to set up research tool not only for the study of unconscious processing in the brain but for vision research in general. PMID:20122963
Partial Support of MAST Academy Outreach Program
1993-05-25
of studies and level of expertise required for a career in marine science . Lastly, by providing this educational stimulus to students from ethnic...Marine and Atmospheric Science (RSMAS) and from staff scientists at the Atlantic Oceanographic and Meteorological Laboratories of the National...enabled high school students the opportunity to work in a marine science research environment and to more accurately appraise career opportunities in
Revisit the faster-is-slower effect for an exit at a corner
NASA Astrophysics Data System (ADS)
Chen, Jun Min; Lin, Peng; Wu, Fan Yu; Li Gao, Dong; Wang, Guo Yuan
2018-02-01
The faster-is-slower effect (FIS), which means that crowd at a high enough velocity could significantly increase the evacuation time to escape through an exit, is an interesting phenomenon in pedestrian dynamics. Such phenomenon had been studied widely and has been experimentally verified in different systems of discrete particles flowing through a centre exit. To experimentally validate this phenomenon by using people under high pressure is difficult due to ethical issues. A mouse, similar to a human, is a kind of self-driven and soft body creature with competitive behaviour under stressed conditions. Therefore, mice are used to escape through an exit at a corner. A number of repeated tests are conducted and the average escape time per mouse at different levels of stimulus are analysed. The escape times do not increase obviously with the level of stimulus for the corner exit, which is contrary to the experiment with the center exit. The experimental results show that the FIS effect is not necessary a universal law for any discrete system. The observation could help the design of buildings by relocating their exits to the corner in rooms to avoid the formation of FIS effect.
Predicting episodic memory formation for movie events
Tang, Hanlin; Singer, Jed; Ison, Matias J.; Pivazyan, Gnel; Romaine, Melissa; Frias, Rosa; Meller, Elizabeth; Boulin, Adrianna; Carroll, James; Perron, Victoria; Dowcett, Sarah; Arellano, Marlise; Kreiman, Gabriel
2016-01-01
Episodic memories are long lasting and full of detail, yet imperfect and malleable. We quantitatively evaluated recollection of short audiovisual segments from movies as a proxy to real-life memory formation in 161 subjects at 15 minutes up to a year after encoding. Memories were reproducible within and across individuals, showed the typical decay with time elapsed between encoding and testing, were fallible yet accurate, and were insensitive to low-level stimulus manipulations but sensitive to high-level stimulus properties. Remarkably, memorability was also high for single movie frames, even one year post-encoding. To evaluate what determines the efficacy of long-term memory formation, we developed an extensive set of content annotations that included actions, emotional valence, visual cues and auditory cues. These annotations enabled us to document the content properties that showed a stronger correlation with recognition memory and to build a machine-learning computational model that accounted for episodic memory formation in single events for group averages and individual subjects with an accuracy of up to 80%. These results provide initial steps towards the development of a quantitative computational theory capable of explaining the subjective filtering steps that lead to how humans learn and consolidate memories. PMID:27686330
Predicting episodic memory formation for movie events.
Tang, Hanlin; Singer, Jed; Ison, Matias J; Pivazyan, Gnel; Romaine, Melissa; Frias, Rosa; Meller, Elizabeth; Boulin, Adrianna; Carroll, James; Perron, Victoria; Dowcett, Sarah; Arellano, Marlise; Kreiman, Gabriel
2016-09-30
Episodic memories are long lasting and full of detail, yet imperfect and malleable. We quantitatively evaluated recollection of short audiovisual segments from movies as a proxy to real-life memory formation in 161 subjects at 15 minutes up to a year after encoding. Memories were reproducible within and across individuals, showed the typical decay with time elapsed between encoding and testing, were fallible yet accurate, and were insensitive to low-level stimulus manipulations but sensitive to high-level stimulus properties. Remarkably, memorability was also high for single movie frames, even one year post-encoding. To evaluate what determines the efficacy of long-term memory formation, we developed an extensive set of content annotations that included actions, emotional valence, visual cues and auditory cues. These annotations enabled us to document the content properties that showed a stronger correlation with recognition memory and to build a machine-learning computational model that accounted for episodic memory formation in single events for group averages and individual subjects with an accuracy of up to 80%. These results provide initial steps towards the development of a quantitative computational theory capable of explaining the subjective filtering steps that lead to how humans learn and consolidate memories.
The precedence effect for lateralization at low sensation levels.
Goverts, S T; Houtgast, T; van Beek, H H
2000-10-01
Using dichotic signals presented by headphone, stimulus onset dominance (the precedence effect) for lateralization at low sensation levels was investigated for five normal hearing subjects. Stimuli were based on 2400-Hz low pass filtered 5-ms noise bursts. We used the paradigm, as described by Aoki and Houtgast (Hear. Res., 59 (1992) 25-30) and Houtgast and Aoki (Hear. Res., 72 (1994) 29-36), in which the stimulus is divided into a leading and a lagging part with opposite lateralization cues (i.e. an interaural time delay of 0.2 ms). The occurrence of onset dominance was investigated by measuring lateral perception of the stimulus, with fixed equal duration of leading and lagging part, while decreasing absolute signal level or adding a filtered white noise with the signal level set at 65 dBA. The dominance of the leading part was quantified by measuring the perceived lateral position of the stimulus as a function of the relative duration of the leading (and thus the lagging) part. This was done at about 45 dB SL without masking noise and also at a signal-to-noise ratio resulting in a sensation level of 10 dB. The occurrence and strength of the precedence effect was found to depend on sensation level, which was decreased either by lowering the signal level or by adding noise. With the present paradigm, besides a decreased lateralization accuracy, a decrease in the precedence effect was found for sensation levels below about 30-40 dB. In daily-life conditions, with a sensation level in noise of typically 10 dB, the onset dominance was still manifest, albeit degraded to some extent.
Zhang, Daogong; Fan, Zhaomin; Han, Yuechen; Wang, Mingming; Xu, Lei; Luo, Jianfen; Ai, Yu; Wang, Haibo
2012-01-01
To investigate the diagnostic value of vestibular test and high stimulus rate auditory brainstem response (ABR) test and the possible mechanism responsible for benign paroxysmal vertigo of childhood (BPVC). Data of 56 patients with BPVC in vertigo clinic of our hospital from May 2007 to September 2008 were retrospectively analyzed in this study. Patients with BPVC were tested with pure tone audiometry, high stimulus rate auditory brainstem response test (ABR), transcranial Doppler sonography (TCD), bithermal caloric test, and VEMP. The results of the hearing and vestibular function test were compared and analyzed. There were 56 patients with BPVC, including 32 men, 24 women, aged 3-12 years old, with an average of 6.5 years. Among 56 cases of BPVC patients, the results of pure tone audiometry were all normal. High stimulus rate ABR was abnormal in 66.1% (37/56) of cases. TCD showed 57.1% abnormality in 56 cases, including faster flow rate in 28 cases and slower flow rate in 4 cases. High stimulus rate ABR and TCD were both abnormal in 48.2% (27/56) of cases. Bithermal caloric test was abnormal in 14.3% (8/56) of cases. VEMP showed 32.1% abnormality, including amplitude abnormality in 16 cases and latency abnormality in 2 cases. The abnormal rate of VEMP was much higher than that of caloric test. Vascular mechanisms might be involved in the pathogenesis of BPVC and there is strong evidence for close relationship between BPVC and migraine. High stimulus rate ABR is helpful in the diagnosis of BPVC. The inferior vestibular pathway is much more impaired than the superior vestibular pathway in BPVC. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Attention in dichoptic and binocular vision
NASA Technical Reports Server (NTRS)
Kimchi, Ruth; Rubin, Yifat; Gopher, Daniel; Raij, David
1989-01-01
The ability of human subjected to mobilize attention and cope with task requirements under dichoptic and binocular viewing was investigated in an experiment employing a target search task. Subjects were required to search for a target at either the global level, the local level, or at both levels of a compound stimulus. The tasks were performed in a focused attention condition in which subjects had to attend to the stimulus presented to one eye/field (under dichoptic and binocular viewings, respectively) and to ignore the stimulus presented to the irrelevant eye/field, and in a divided attention condition in which subjects had to attend to the stimuli presented to both eyes/fields. Subjects' performance was affected mainly by attention conditions which interacted with task requirements, rather than by viewing situation. An interesting effect of viewing was found for the local-directed search task in which the cost of dividing attention was higher under binocular than under dichoptic viewing.
The emotional body and time perception.
Droit-Volet, Sylvie; Gil, Sandrine
2016-01-01
We examined the effects of emotional bodily expressions on the perception of time. Participants were shown bodily expressions of fear, happiness and sadness in a temporal bisection task featuring different stimulus duration ranges. Stimulus durations were judged to be longer for bodily expressions of fear than for those of sadness, whereas no significant difference was observed between sad and happy postures. In addition, the magnitude of the lengthening effect of fearful versus sad postures increased with duration range. These results suggest that the perception of fearful bodily expressions increases the level of arousal which, in turn, speeds up the internal clock system underlying the representation of time. The effect of bodily expressions on time perception is thus consistent with findings for other highly arousing emotional stimuli, such as emotional facial expressions.
Theory of Mind: A Neural Prediction Problem
Koster-Hale, Jorie; Saxe, Rebecca
2014-01-01
Predictive coding posits that neural systems make forward-looking predictions about incoming information. Neural signals contain information not about the currently perceived stimulus, but about the difference between the observed and the predicted stimulus. We propose to extend the predictive coding framework from high-level sensory processing to the more abstract domain of theory of mind; that is, to inferences about others’ goals, thoughts, and personalities. We review evidence that, across brain regions, neural responses to depictions of human behavior, from biological motion to trait descriptions, exhibit a key signature of predictive coding: reduced activity to predictable stimuli. We discuss how future experiments could distinguish predictive coding from alternative explanations of this response profile. This framework may provide an important new window on the neural computations underlying theory of mind. PMID:24012000
Spatiotemporal dynamics of similarity-based neural representations of facial identity
Vida, Mark D.; Nestor, Adrian; Plaut, David C.; Behrmann, Marlene
2017-01-01
Humans’ remarkable ability to quickly and accurately discriminate among thousands of highly similar complex objects demands rapid and precise neural computations. To elucidate the process by which this is achieved, we used magnetoencephalography to measure spatiotemporal patterns of neural activity with high temporal resolution during visual discrimination among a large and carefully controlled set of faces. We also compared these neural data to lower level “image-based” and higher level “identity-based” model-based representations of our stimuli and to behavioral similarity judgments of our stimuli. Between ∼50 and 400 ms after stimulus onset, face-selective sources in right lateral occipital cortex and right fusiform gyrus and sources in a control region (left V1) yielded successful classification of facial identity. In all regions, early responses were more similar to the image-based representation than to the identity-based representation. In the face-selective regions only, responses were more similar to the identity-based representation at several time points after 200 ms. Behavioral responses were more similar to the identity-based representation than to the image-based representation, and their structure was predicted by responses in the face-selective regions. These results provide a temporally precise description of the transformation from low- to high-level representations of facial identity in human face-selective cortex and demonstrate that face-selective cortical regions represent multiple distinct types of information about face identity at different times over the first 500 ms after stimulus onset. These results have important implications for understanding the rapid emergence of fine-grained, high-level representations of object identity, a computation essential to human visual expertise. PMID:28028220
Response of anterior parietal cortex to cutaneous flutter versus vibration.
Tommerdahl, M; Delemos, K A; Whitsel, B L; Favorov, O V; Metz, C B
1999-07-01
The response of anesthetized squirrel monkey anterior parietal (SI) cortex to 25 or 200 Hz sinusoidal vertical skin displacement stimulation was studied using the method of optical intrinsic signal (OIS) imaging. Twenty-five-Hertz ("flutter") stimulation of a discrete skin site on either the hindlimb or forelimb for 3-30 s evoked a prominent increase in absorbance within cytoarchitectonic areas 3b and 1 in the contralateral hemisphere. This response was confined to those area 3b/1 regions occupied by neurons with a receptive field (RF) that includes the stimulated skin site. In contrast, same-site 200-Hz stimulation ("vibration") for 3-30 s evoked a decrease in absorbance in a much larger territory (most frequently involving areas 3b, 1, and area 3a, but in some subjects area 2 as well) than the region that undergoes an increase in absorbance during 25-Hz flutter stimulation. The increase in absorbance evoked by 25-Hz flutter developed quickly and remained relatively constant for as long as stimulation continued (stimulus duration never exceeded 30 s). At 1-3 s after stimulus onset, the response to 200-Hz stimulation, like the response to 25-Hz flutter, consisted of a localized increase in absorbance limited to the topographically appropriate region of area 3b and/or area 1. With continuing 200-Hz stimulation, however, the early response declined, and by 4-6 s after stimulus onset, it was replaced by a prominent and spatially extensive decrease in absorbance. The spike train responses of single quickly adapting (QA) neurons were recorded extracellularly during microelectrode penetrations that traverse the optically responding regions of areas 3b and 1. Onset of either 25- or 200-Hz stimulation at a site within the cutaneous RF of a QA neuron was accompanied by a substantial increase in mean spike firing rate. With continued 200-Hz stimulation, however, QA neuron mean firing rate declined rapidly (typically within 0.5-1.0 s) to a level below that recorded at the same time after onset of same-site 25-Hz stimulation. For some neurons, the mean firing rate after the initial 0.5-1 s of an exposure to 200-Hz stimulation of the RF decreased to a level below the level of background ("spontaneous") activity. The decline in both the stimulus-evoked increases in absorbance in areas 3b/1 and spike discharge activity of area 3b/1 neurons within only a few seconds of the onset of 200-Hz skin stimulation raised the possibility that the predominant effect of continuous 200-Hz stimulation for >3 s is inhibition of area 3b/1 QA neurons. This possibility was evaluated at the neuronal population level by comparing the intrinsic signal evoked in areas 3b/1 by 25-Hz skin stimulation to the intrinsic signal evoked by a same-site skin stimulus containing both 25- and 200-Hz sinusoidal components (a "complex waveform stimulus"). Such experiments revealed that the increase in absorbance evoked in areas 3b/1 by a stimulus having both 25- and 200-Hz components was substantially smaller (especially at times >3 s after stimulus onset) than the increase in absorbance evoked by "pure" 25-Hz stimulation of the same skin site. It is concluded that within a brief time (within 1-3 s) after stimulus onset, 200-Hz skin stimulation elicits a powerful inhibitory action on area 3b/1 QA neurons. The findings appear generally consistent with the suggestion that the activity of neurons in cortical regions other than areas 3b and 1 play the leading role in the processing of high-frequency (>/=200 Hz) vibrotactile stimuli.
Whitson, Lisa R; Karayanidis, Frini; Fulham, Ross; Provost, Alexander; Michie, Patricia T; Heathcote, Andrew; Hsieh, Shulan
2014-01-01
In task-switching paradigms, performance is better when repeating the same task than when alternating between tasks (switch cost) and when repeating a task alone rather than intermixed with another task (mixing cost). These costs remain even after extensive practice and when task cues enable advanced preparation (residual costs). Moreover, residual reaction time mixing cost has been consistently shown to increase with age. Residual switch and mixing costs modulate the amplitude of the stimulus-locked P3b. This mixing effect is disproportionately larger in older adults who also prepare more for and respond more cautiously on these "mixed" repeat trials (Karayanidis et al., 2011). In this paper, we analyze stimulus-locked and response-locked P3 and lateralized readiness potentials to identify whether residual switch and mixing cost arise from the need to control interference at the level of stimulus processing or response processing. Residual mixing cost was associated with control of stimulus-level interference, whereas residual switch cost was also associated with a delay in response selection. In older adults, the disproportionate increase in mixing cost was associated with greater interference at the level of decision-response mapping and response programming for repeat trials in mixed-task blocks. These findings suggest that older adults strategically recruit greater proactive and reactive control to overcome increased susceptibility to post-stimulus interference. This interpretation is consistent with recruitment of compensatory strategies to compensate for reduced repetition benefit rather than an overall decline on cognitive flexibility.
Whitson, Lisa R.; Karayanidis, Frini; Fulham, Ross; Provost, Alexander; Michie, Patricia T.; Heathcote, Andrew; Hsieh, Shulan
2014-01-01
In task-switching paradigms, performance is better when repeating the same task than when alternating between tasks (switch cost) and when repeating a task alone rather than intermixed with another task (mixing cost). These costs remain even after extensive practice and when task cues enable advanced preparation (residual costs). Moreover, residual reaction time mixing cost has been consistently shown to increase with age. Residual switch and mixing costs modulate the amplitude of the stimulus-locked P3b. This mixing effect is disproportionately larger in older adults who also prepare more for and respond more cautiously on these “mixed” repeat trials (Karayanidis et al., 2011). In this paper, we analyze stimulus-locked and response-locked P3 and lateralized readiness potentials to identify whether residual switch and mixing cost arise from the need to control interference at the level of stimulus processing or response processing. Residual mixing cost was associated with control of stimulus-level interference, whereas residual switch cost was also associated with a delay in response selection. In older adults, the disproportionate increase in mixing cost was associated with greater interference at the level of decision-response mapping and response programming for repeat trials in mixed-task blocks. These findings suggest that older adults strategically recruit greater proactive and reactive control to overcome increased susceptibility to post-stimulus interference. This interpretation is consistent with recruitment of compensatory strategies to compensate for reduced repetition benefit rather than an overall decline on cognitive flexibility. PMID:24817859
An Examination of Stimulus Control in Fluency-Based Strategies: SAFMEDS and Generalization
ERIC Educational Resources Information Center
Meindl, James N.; Ivy, Jonathan W.; Miller, Neal; Neef, Nancy A.; Williamson, Robert L.
2013-01-01
Fluency-based strategies such as Say All Fast a Minute Each Day Shuffled (SAFMEDS) effectively promote fluent responding (i.e., high rate and accuracy). It is possible, however, that the stimulus control developed through these activities inhibits stimulus generalization. We investigated this concern in a two-part study with college students.…
An investigation of the spatial selectivity of the duration after-effect.
Maarseveen, Jim; Hogendoorn, Hinze; Verstraten, Frans A J; Paffen, Chris L E
2017-01-01
Adaptation to the duration of a visual stimulus causes the perceived duration of a subsequently presented stimulus with a slightly different duration to be skewed away from the adapted duration. This pattern of repulsion following adaptation is similar to that observed for other visual properties, such as orientation, and is considered evidence for the involvement of duration-selective mechanisms in duration encoding. Here, we investigated whether the encoding of duration - by duration-selective mechanisms - occurs early on in the visual processing hierarchy. To this end, we investigated the spatial specificity of the duration after-effect in two experiments. We measured the duration after-effect at adapter-test distances ranging between 0 and 15° of visual angle and for within- and between-hemifield presentations. We replicated the duration after-effect: the test stimulus was perceived to have a longer duration following adaptation to a shorter duration, and a shorter duration following adaptation to a longer duration. Importantly, this duration after-effect occurred at all measured distances, with no evidence for a decrease in the magnitude of the after-effect at larger distances or across hemifields. This shows that adaptation to duration does not result from adaptation occurring early on in the visual processing hierarchy. Instead, it seems likely that duration information is a high-level stimulus property that is encoded later on in the visual processing hierarchy. Copyright © 2016 Elsevier Ltd. All rights reserved.
COMMUNICATION: Electrophysiological response dynamics during focal cortical infarction
NASA Astrophysics Data System (ADS)
Chiganos, Terry C., Jr.; Jensen, Winnie; Rousche, Patrick J.
2006-12-01
While the intracellular processes of hypoxia-induced necrosis and the intercellular mechanisms of post-ischemic neurotoxicity associated with stroke are well documented, the dynamic electrophysiological (EP) response of neurons within the core or periinfarct zone remains unclear. The present study validates a method for continuous measurement of the local EP responses during focal cortical infarction induced via photothrombosis. Single microwire electrodes were acutely implanted into the primary auditory cortex of eight rats. Multi-unit neural activity, evoked via a continuous 2 Hz click stimulus, was recorded before, during and after infarction to assess neuronal function in response to local, permanent ischemia. During sham infarction, the average stimulus-evoked peak firing rate over 20 min remained stable at 495.5 ± 14.5 spikes s-1, indicating temporal stability of neural function under normal conditions. Stimulus-evoked peak firing was reliably reduced to background levels (firing frequency in the absence of stimulus) following initiation of photothrombosis over a period of 439 ± 92 s. The post-infarction firing patterns exhibited unique temporal degradation of the peak firing rate, suggesting a variable response to ischemic challenge. Despite the inherent complexity of cerebral ischemia secondary to microvascular occlusion, complete loss of EP function consistently occurred 300-600 s after photothrombosis. The results suggest that microwire recording during photothrombosis provides a simple and highly efficacious strategy for assessing the electrophysiological dynamics of cortical infarction.
Thresholding of auditory cortical representation by background noise
Liang, Feixue; Bai, Lin; Tao, Huizhong W.; Zhang, Li I.; Xiao, Zhongju
2014-01-01
It is generally thought that background noise can mask auditory information. However, how the noise specifically transforms neuronal auditory processing in a level-dependent manner remains to be carefully determined. Here, with in vivo loose-patch cell-attached recordings in layer 4 of the rat primary auditory cortex (A1), we systematically examined how continuous wideband noise of different levels affected receptive field properties of individual neurons. We found that the background noise, when above a certain critical/effective level, resulted in an elevation of intensity threshold for tone-evoked responses. This increase of threshold was linearly dependent on the noise intensity above the critical level. As such, the tonal receptive field (TRF) of individual neurons was translated upward as an entirety toward high intensities along the intensity domain. This resulted in preserved preferred characteristic frequency (CF) and the overall shape of TRF, but reduced frequency responding range and an enhanced frequency selectivity for the same stimulus intensity. Such translational effects on intensity threshold were observed in both excitatory and fast-spiking inhibitory neurons, as well as in both monotonic and nonmonotonic (intensity-tuned) A1 neurons. Our results suggest that in a noise background, fundamental auditory representations are modulated through a background level-dependent linear shifting along intensity domain, which is equivalent to reducing stimulus intensity. PMID:25426029
Reavis, Eric A; Frank, Sebastian M; Tse, Peter U
2018-04-12
Visual search is often slow and difficult for complex stimuli such as feature conjunctions. Search efficiency, however, can improve with training. Search for stimuli that can be identified by the spatial configuration of two elements (e.g., the relative position of two colored shapes) improves dramatically within a few hundred trials of practice. Several recent imaging studies have identified neural correlates of this learning, but it remains unclear what stimulus properties participants learn to use to search efficiently. Influential models, such as reverse hierarchy theory, propose two major possibilities: learning to use information contained in low-level image statistics (e.g., single features at particular retinotopic locations) or in high-level characteristics (e.g., feature conjunctions) of the task-relevant stimuli. In a series of experiments, we tested these two hypotheses, which make different predictions about the effect of various stimulus manipulations after training. We find relatively small effects of manipulating low-level properties of the stimuli (e.g., changing their retinotopic location) and some conjunctive properties (e.g., color-position), whereas the effects of manipulating other conjunctive properties (e.g., color-shape) are larger. Overall, the findings suggest conjunction learning involving such stimuli might be an emergent phenomenon that reflects multiple different learning processes, each of which capitalizes on different types of information contained in the stimuli. We also show that both targets and distractors are learned, and that reversing learned target and distractor identities impairs performance. This suggests that participants do not merely learn to discriminate target and distractor stimuli, they also learn stimulus identity mappings that contribute to performance improvements.
StimDuino: an Arduino-based electrophysiological stimulus isolator.
Sheinin, Anton; Lavi, Ayal; Michaelevski, Izhak
2015-03-30
Electrical stimulus isolator is a widely used device in electrophysiology. The timing of the stimulus application is usually automated and controlled by the external device or acquisition software; however, the intensity of the stimulus is adjusted manually. Inaccuracy, lack of reproducibility and no automation of the experimental protocol are disadvantages of the manual adjustment. To overcome these shortcomings, we developed StimDuino, an inexpensive Arduino-controlled stimulus isolator allowing highly accurate, reproducible automated setting of the stimulation current. The intensity of the stimulation current delivered by StimDuino is controlled by Arduino, an open-source microcontroller development platform. The automatic stimulation patterns are software-controlled and the parameters are set from Matlab-coded simple, intuitive and user-friendly graphical user interface. The software also allows remote control of the device over the network. Electrical current measurements showed that StimDuino produces the requested current output with high accuracy. In both hippocampal slice and in vivo recordings, the fEPSP measurements obtained with StimDuino and the commercial stimulus isolators showed high correlation. Commercial stimulus isolators are manually managed, while StimDuino generates automatic stimulation patterns with increasing current intensity. The pattern is utilized for the input-output relationship analysis, necessary for assessment of excitability. In contrast to StimuDuino, not all commercial devices are capable for remote control of the parameters and stimulation process. StimDuino-generated automation of the input-output relationship assessment eliminates need for the current intensity manually adjusting, improves stimulation reproducibility, accuracy and allows on-site and remote control of the stimulation parameters. Copyright © 2015 Elsevier B.V. All rights reserved.
The acute effect of a plyometric stimulus on jump performance in professional rugby players.
Tobin, Daniel P; Delahunt, Eamonn
2014-02-01
Post-activation potentiation (PAP) is the elevation of motor performance to a higher level in response to a conditioning stimulus. Extensive research exists examining the PAP effect after a heavy resistance exercise. However, there is limited research examining the PAP effect after a plyometric stimulus. This study was designed to examine whether a plyometric stimulus could produce a PAP effect comparable to that typically reported with a heavy resistance protocol. Importantly, it was hypothesized that the PAP effect would exist without the same levels of acute fatigue resulting from a heavy stimulus, thus allowing improvement in performance within a short rest interval range. Twenty professional rugby players were recruited for the study. Subjects performed 2 countermovement jumps (CMJs) at baseline and at 1, 3, and 5 minutes after a plyometric stimulus consisting of 40 jumps. Two separate 1-way repeated-measures analyses of variance were conducted to compare the dependent variables CMJ height and peak force at the 4 time points. Results of the Bonferroni adjusted pairwise comparisons indicated that jump height and peak force before plyometric exercises were significantly lower than all other time points (p < 0.01). The main finding of this study indicates that a series of plyometric exercises causes a significant acute enhancement in CMJ height (p < 0.01) and peak force (p < 0.01) throughout the rest interval range of 1-5 minutes. The plyometric series induced an improvement in CMJ height comparable to that reported elsewhere after a heavy lifting stimulus but without the need for a prolonged rest interval. Performing repeated series of plyometric jumps appears to be an efficient method of taking advantage of the PAP phenomenon, thus possibly eliminating the need for a complex training protocol.
Comparison on driving fatigue related hemodynamics activated by auditory and visual stimulus
NASA Astrophysics Data System (ADS)
Deng, Zishan; Gao, Yuan; Li, Ting
2018-02-01
As one of the main causes of traffic accidents, driving fatigue deserves researchers' attention and its detection and monitoring during long-term driving require a new technique to realize. Since functional near-infrared spectroscopy (fNIRS) can be applied to detect cerebral hemodynamic responses, we can promisingly expect its application in fatigue level detection. Here, we performed three different kinds of experiments on a driver and recorded his cerebral hemodynamic responses when driving for long hours utilizing our device based on fNIRS. Each experiment lasted for 7 hours and one of the three specific experimental tests, detecting the driver's response to sounds, traffic lights and direction signs respectively, was done every hour. The results showed that visual stimulus was easier to cause fatigue compared with auditory stimulus and visual stimulus induced by traffic lights scenes was easier to cause fatigue compared with visual stimulus induced by direction signs in the first few hours. We also found that fatigue related hemodynamics caused by auditory stimulus increased fastest, then traffic lights scenes, and direction signs scenes slowest. Our study successfully compared audio, visual color, and visual character stimulus in sensitivity to cause driving fatigue, which is meaningful for driving safety management.
The Development of Stimulus and Response Interference Control in Midchildhood
ERIC Educational Resources Information Center
Cragg, Lucy
2016-01-01
Interference control, the ability to overcome distraction from irrelevant information, undergoes considerable improvement during childhood, yet the mechanisms driving these changes remain unclear. The present study investigated the relative influence of interference at the level of the stimulus or the response. Seven-, 10-, and 20-year-olds…
Phase Locking of Multiple Single Neurons to the Local Field Potential in Cat V1.
Martin, Kevan A C; Schröder, Sylvia
2016-02-24
The local field potential (LFP) is thought to reflect a temporal reference for neuronal spiking, which may facilitate information coding and orchestrate the communication between neural populations. To explore this proposed role, we recorded the LFP and simultaneously the spike activity of one to three nearby neurons in V1 of anesthetized cats during the presentation of drifting sinusoidal gratings, binary dense noise stimuli, and natural movies. In all stimulus conditions and during spontaneous activity, the average LFP power at frequencies >20 Hz was higher when neurons were spiking versus not spiking. The spikes were weakly but significantly phase locked to all frequencies of the LFP. The average spike phase of the LFP was stable across high and low levels of LFP power, but the strength of phase locking at low frequencies (≤10 Hz) increased with increasing LFP power. In a next step, we studied how strong stimulus responses of single neurons are reflected in the LFP and the LFP-spike relationship. We found that LFP power was slightly increased and phase locking was slightly stronger during strong compared with weak stimulus-locked responses. In summary, the coupling strength between high frequencies of the LFP and spikes was not strongly modulated by LFP power, which is thought to reflect spiking synchrony, nor was it strongly influenced by how strongly the neuron was driven by the stimulus. Furthermore, a comparison between neighboring neurons showed no clustering of preferred LFP phase. We argue that hypotheses on the relevance of phase locking in their current form are inconsistent with our findings. Copyright © 2016 the authors 0270-6474/16/362494-09$15.00/0.
Predicting Spike Occurrence and Neuronal Responsiveness from LFPs in Primary Somatosensory Cortex
Storchi, Riccardo; Zippo, Antonio G.; Caramenti, Gian Carlo; Valente, Maurizio; Biella, Gabriele E. M.
2012-01-01
Local Field Potentials (LFPs) integrate multiple neuronal events like synaptic inputs and intracellular potentials. LFP spatiotemporal features are particularly relevant in view of their applications both in research (e.g. for understanding brain rhythms, inter-areal neural communication and neronal coding) and in the clinics (e.g. for improving invasive Brain-Machine Interface devices). However the relation between LFPs and spikes is complex and not fully understood. As spikes represent the fundamental currency of neuronal communication this gap in knowledge strongly limits our comprehension of neuronal phenomena underlying LFPs. We investigated the LFP-spike relation during tactile stimulation in primary somatosensory (S-I) cortex in the rat. First we quantified how reliably LFPs and spikes code for a stimulus occurrence. Then we used the information obtained from our analyses to design a predictive model for spike occurrence based on LFP inputs. The model was endowed with a flexible meta-structure whose exact form, both in parameters and structure, was estimated by using a multi-objective optimization strategy. Our method provided a set of nonlinear simple equations that maximized the match between models and true neurons in terms of spike timings and Peri Stimulus Time Histograms. We found that both LFPs and spikes can code for stimulus occurrence with millisecond precision, showing, however, high variability. Spike patterns were predicted significantly above chance for 75% of the neurons analysed. Crucially, the level of prediction accuracy depended on the reliability in coding for the stimulus occurrence. The best predictions were obtained when both spikes and LFPs were highly responsive to the stimuli. Spike reliability is known to depend on neuron intrinsic properties (i.e. on channel noise) and on spontaneous local network fluctuations. Our results suggest that the latter, measured through the LFP response variability, play a dominant role. PMID:22586452
Predicting spike occurrence and neuronal responsiveness from LFPs in primary somatosensory cortex.
Storchi, Riccardo; Zippo, Antonio G; Caramenti, Gian Carlo; Valente, Maurizio; Biella, Gabriele E M
2012-01-01
Local Field Potentials (LFPs) integrate multiple neuronal events like synaptic inputs and intracellular potentials. LFP spatiotemporal features are particularly relevant in view of their applications both in research (e.g. for understanding brain rhythms, inter-areal neural communication and neuronal coding) and in the clinics (e.g. for improving invasive Brain-Machine Interface devices). However the relation between LFPs and spikes is complex and not fully understood. As spikes represent the fundamental currency of neuronal communication this gap in knowledge strongly limits our comprehension of neuronal phenomena underlying LFPs. We investigated the LFP-spike relation during tactile stimulation in primary somatosensory (S-I) cortex in the rat. First we quantified how reliably LFPs and spikes code for a stimulus occurrence. Then we used the information obtained from our analyses to design a predictive model for spike occurrence based on LFP inputs. The model was endowed with a flexible meta-structure whose exact form, both in parameters and structure, was estimated by using a multi-objective optimization strategy. Our method provided a set of nonlinear simple equations that maximized the match between models and true neurons in terms of spike timings and Peri Stimulus Time Histograms. We found that both LFPs and spikes can code for stimulus occurrence with millisecond precision, showing, however, high variability. Spike patterns were predicted significantly above chance for 75% of the neurons analysed. Crucially, the level of prediction accuracy depended on the reliability in coding for the stimulus occurrence. The best predictions were obtained when both spikes and LFPs were highly responsive to the stimuli. Spike reliability is known to depend on neuron intrinsic properties (i.e. on channel noise) and on spontaneous local network fluctuations. Our results suggest that the latter, measured through the LFP response variability, play a dominant role.
Adaptation to stimulus statistics in the perception and neural representation of auditory space.
Dahmen, Johannes C; Keating, Peter; Nodal, Fernando R; Schulz, Andreas L; King, Andrew J
2010-06-24
Sensory systems are known to adapt their coding strategies to the statistics of their environment, but little is still known about the perceptual implications of such adjustments. We investigated how auditory spatial processing adapts to stimulus statistics by presenting human listeners and anesthetized ferrets with noise sequences in which interaural level differences (ILD) rapidly fluctuated according to a Gaussian distribution. The mean of the distribution biased the perceived laterality of a subsequent stimulus, whereas the distribution's variance changed the listeners' spatial sensitivity. The responses of neurons in the inferior colliculus changed in line with these perceptual phenomena. Their ILD preference adjusted to match the stimulus distribution mean, resulting in large shifts in rate-ILD functions, while their gain adapted to the stimulus variance, producing pronounced changes in neural sensitivity. Our findings suggest that processing of auditory space is geared toward emphasizing relative spatial differences rather than the accurate representation of absolute position.
Coincidence-anticipation timing requirements are different in racket sports.
Akpinar, Selçuk; Devrilmez, Erhan; Kirazci, Sadettin
2012-10-01
The aim of this study was to compare the coincidence-anticipation timing accuracy of athletes of different racket sports with various stimulus velocity requirements. Ninety players (15 girls, 15 boys for each sport) from tennis (M age = 12.4 yr., SD = 1.4), badminton (M age = 12.5 yr., SD = 1.4), and table tennis (M age = 12.4 yr., SD = 1.2) participated in this study. Three different stimulus velocities, low, moderate, and high, were used to simulate the velocity requirements of these racket sports. Tennis players had higher accuracy when they performed under the low stimulus velocity compared to badminton and table tennis players. Badminton players performed better under the moderate speed comparing to tennis and table tennis players. Table tennis players had better performance than tennis and badminton players under the high stimulus velocity. Therefore, visual and motor systems of players from different racket sports may adapt to a stimulus velocity in coincidence-anticipation timing, which is specific to each type of racket sports.
Factors Influencing Hemispheric Specialization.
1982-05-01
eyposuro -’va’ irsufficient to allow enoug7h depth of 2ros-in- t o occur ( Craik ^ Lockhart , 1972). The pres-nt *xrirrent .%Il to . the Fardyck et al... levels of processing theory offer another way of explaining these results. 14hen the stimulus is unfamiliar, contains no meanin7ful material, and is...et al. (1978) nor the levels of processing theory (1,"oscovitch et al., 1976) can explain the results obtained for the familiar type of stimulus
Cortical Auditory Evoked Potentials in (Un)aided Normal-Hearing and Hearing-Impaired Adults
Van Dun, Bram; Kania, Anna; Dillon, Harvey
2016-01-01
Cortical auditory evoked potentials (CAEPs) are influenced by the characteristics of the stimulus, including level and hearing aid gain. Previous studies have measured CAEPs aided and unaided in individuals with normal hearing. There is a significant difference between providing amplification to a person with normal hearing and a person with hearing loss. This study investigated this difference and the effects of stimulus signal-to-noise ratio (SNR) and audibility on the CAEP amplitude in a population with hearing loss. Twelve normal-hearing participants and 12 participants with a hearing loss participated in this study. Three speech sounds—/m/, /g/, and /t/—were presented in the free field. Unaided stimuli were presented at 55, 65, and 75 dB sound pressure level (SPL) and aided stimuli at 55 dB SPL with three different gains in steps of 10 dB. CAEPs were recorded and their amplitudes analyzed. Stimulus SNRs and audibility were determined. No significant effect of stimulus level or hearing aid gain was found in normal hearers. Conversely, a significant effect was found in hearing-impaired individuals. Audibility of the signal, which in some cases is determined by the signal level relative to threshold and in other cases by the SNR, is the dominant factor explaining changes in CAEP amplitude. CAEPs can potentially be used to assess the effects of hearing aid gain in hearing-impaired users. PMID:27587919
Ponnath, Abhilash; Hoke, Kim L; Farris, Hamilton E
2013-04-01
Neural adaptation, a reduction in the response to a maintained stimulus, is an important mechanism for detecting stimulus change. Contributing to change detection is the fact that adaptation is often stimulus specific: adaptation to a particular stimulus reduces excitability to a specific subset of stimuli, while the ability to respond to other stimuli is unaffected. Phasic cells (e.g., cells responding to stimulus onset) are good candidates for detecting the most rapid changes in natural auditory scenes, as they exhibit fast and complete adaptation to an initial stimulus presentation. We made recordings of single phasic auditory units in the frog midbrain to determine if adaptation was specific to stimulus frequency and ear of input. In response to an instantaneous frequency step in a tone, 28% of phasic cells exhibited frequency specific adaptation based on a relative frequency change (delta-f=±16%). Frequency specific adaptation was not limited to frequency steps, however, as adaptation was also overcome during continuous frequency modulated stimuli and in response to spectral transients interrupting tones. The results suggest that adaptation is separated for peripheral (e.g., frequency) channels. This was tested directly using dichotic stimuli. In 45% of binaural phasic units, adaptation was ear specific: adaptation to stimulation of one ear did not affect responses to stimulation of the other ear. Thus, adaptation exhibited specificity for stimulus frequency and lateralization at the level of the midbrain. This mechanism could be employed to detect rapid stimulus change within and between sound sources in complex acoustic environments.
Ponnath, Abhilash; Hoke, Kim L.
2013-01-01
Neural adaptation, a reduction in the response to a maintained stimulus, is an important mechanism for detecting stimulus change. Contributing to change detection is the fact that adaptation is often stimulus specific: adaptation to a particular stimulus reduces excitability to a specific subset of stimuli, while the ability to respond to other stimuli is unaffected. Phasic cells (e.g., cells responding to stimulus onset) are good candidates for detecting the most rapid changes in natural auditory scenes, as they exhibit fast and complete adaptation to an initial stimulus presentation. We made recordings of single phasic auditory units in the frog midbrain to determine if adaptation was specific to stimulus frequency and ear of input. In response to an instantaneous frequency step in a tone, 28 % of phasic cells exhibited frequency specific adaptation based on a relative frequency change (delta-f = ±16 %). Frequency specific adaptation was not limited to frequency steps, however, as adaptation was also overcome during continuous frequency modulated stimuli and in response to spectral transients interrupting tones. The results suggest that adaptation is separated for peripheral (e.g., frequency) channels. This was tested directly using dichotic stimuli. In 45 % of binaural phasic units, adaptation was ear specific: adaptation to stimulation of one ear did not affect responses to stimulation of the other ear. Thus, adaptation exhibited specificity for stimulus frequency and lateralization at the level of the midbrain. This mechanism could be employed to detect rapid stimulus change within and between sound sources in complex acoustic environments. PMID:23344947
Smith, A; Pedler, A
2018-01-01
Various conditioned pain modulation (CPM) methodologies have been used to investigate diffuse noxious inhibitory control pain mechanisms in healthy and clinical populations. Occlusion cuff parameters have been poorly studied. We aimed to investigate whether occlusion cuff intensity and/or duration influenced CPM magnitudes. We also investigated the role of physical activity levels on CPM magnitude. Two studies were performed to investigate the role of intensity and duration of occlusion cuff conditioning stimulus on test stimulus (tibialis anterior pressure pain thresholds). In Study 1, conditioning stimulus intensity of 2/10 or 5/10 (duration <20 s) was evaluated using a paired-samples t-test. In Study 2, duration of 2/10 conditioning stimulus was 3 min. One-way repeated-measures ANOVA was used to investigate the effect of time (0, 1, 2 and 3 min) on CPM magnitude. In Study 1, 27 healthy volunteers (mean ± SD: 24.9 years (±4.5); eight female) demonstrated that an occlusion cuff applied to the upper arm eliciting 5/10 local pain resulted in a significant (mean ± SD: 17% ± 46%) increase in CPM magnitude, when compared to 2/10 intensity (-3% ± 38%, p = 0.026), whereas in Study 2, 25 healthy volunteers (22.5 years (±2.7); 13 female) demonstrated that 3 min of 2/10 CS intensity did not result in a significant change in CPM (p = 0.21). There was no significant relationship between physical activity levels and CPM in either study (p > 0.22). This study demonstrated that an occlusion cuff of 5/10 conditioning stimulus intensity, when compared to 2/10, significantly increased CPM magnitude. Maintaining 2/10 conditioning stimulus for 3 min did not increase CPM magnitude. Dysfunctional conditioned pain modulation (CPM) has been associated with poor health outcomes. Various factors can influence CPM outcomes. The role of occlusion cuff conditioning stimulus intensity and duration has not been previously investigated. Intensity (5/10), but not duration of lower intensity (2/10) conditioning stimulus, affects CPM magnitude. © 2017 European Pain Federation - EFIC®.
The influence of dimensional overlap on location-related priming in the Simon task.
Lehle, Carola; Stürmer, Birgit; Sommer, Werner
2013-01-01
Choice reaction times are shorter when stimulus and response locations are compatible than when they are incompatible as in the Simon effect. Recent studies revealed that Simon effects are strongly attenuated when there is temporal overlap with a different high-priority task, accompanied by a decrease of early location-related response priming as reflected in the lateralized readiness potential (LRP). The latter result was obtained in a study excluding overlap of stimulus location with any other dimension in the tasks. Independent evidence suggests that location-related priming might be present in conditions with dimensional overlap. Here we tested this prediction in a dual-task experiment supplemented with recording LRPs. The secondary task was either a standard Simon task where irrelevant stimulus location overlapped with dimensions of the primary task or a Stroop-like Simon task including additional overlap of irrelevant and relevant stimulus attributes. At high temporal overlap, there was no Simon effect nor was there stimulus-related response priming in either condition. Therefore stimulus-triggered response priming seems to be abolished in conditions of limited capacity even if the likelihood of an S-R compatibility effect is maximized.
Spatial Correlations in Natural Scenes Modulate Response Reliability in Mouse Visual Cortex
Rikhye, Rajeev V.
2015-01-01
Intrinsic neuronal variability significantly limits information encoding in the primary visual cortex (V1). Certain stimuli can suppress this intertrial variability to increase the reliability of neuronal responses. In particular, responses to natural scenes, which have broadband spatiotemporal statistics, are more reliable than responses to stimuli such as gratings. However, very little is known about which stimulus statistics modulate reliable coding and how this occurs at the neural ensemble level. Here, we sought to elucidate the role that spatial correlations in natural scenes play in reliable coding. We developed a novel noise-masking method to systematically alter spatial correlations in natural movies, without altering their edge structure. Using high-speed two-photon calcium imaging in vivo, we found that responses in mouse V1 were much less reliable at both the single neuron and population level when spatial correlations were removed from the image. This change in reliability was due to a reorganization of between-neuron correlations. Strongly correlated neurons formed ensembles that reliably and accurately encoded visual stimuli, whereas reducing spatial correlations reduced the activation of these ensembles, leading to an unreliable code. Together with an ensemble-specific normalization model, these results suggest that the coordinated activation of specific subsets of neurons underlies the reliable coding of natural scenes. SIGNIFICANCE STATEMENT The natural environment is rich with information. To process this information with high fidelity, V1 neurons have to be robust to noise and, consequentially, must generate responses that are reliable from trial to trial. While several studies have hinted that both stimulus attributes and population coding may reduce noise, the details remain unclear. Specifically, what features of natural scenes are important and how do they modulate reliability? This study is the first to investigate the role of spatial correlations, which are a fundamental attribute of natural scenes, in shaping stimulus coding by V1 neurons. Our results provide new insights into how stimulus spatial correlations reorganize the correlated activation of specific ensembles of neurons to ensure accurate information processing in V1. PMID:26511254
de Fockert, Jan W; Bremner, Andrew J
2011-12-01
An unexpected stimulus often remains unnoticed if attention is focused elsewhere. This inattentional blindness has been shown to be increased under conditions of high memory load. Here we show that increasing working memory load can also have the opposite effect of reducing inattentional blindness (i.e., improving stimulus detection) if stimulus detection is competing for attention with a concurrent visual task. Participants were required to judge which of two lines was the longer while holding in working memory either one digit (low load) or six digits (high load). An unexpected visual stimulus was presented once alongside the line judgment task. Detection of the unexpected stimulus was significantly improved under conditions of higher working memory load. This improvement in performance prompts the striking conclusion that an effect of cognitive load is to increase attentional spread, thereby enhancing our ability to detect perceptual stimuli to which we would normally be inattentionally blind under less taxing cognitive conditions. We discuss the implications of these findings for our understanding of the relationship between working memory and selective attention. Copyright © 2011 Elsevier B.V. All rights reserved.
The effect of stimulus strength on the speed and accuracy of a perceptual decision.
Palmer, John; Huk, Alexander C; Shadlen, Michael N
2005-05-02
Both the speed and the accuracy of a perceptual judgment depend on the strength of the sensory stimulation. When stimulus strength is high, accuracy is high and response time is fast; when stimulus strength is low, accuracy is low and response time is slow. Although the psychometric function is well established as a tool for analyzing the relationship between accuracy and stimulus strength, the corresponding chronometric function for the relationship between response time and stimulus strength has not received as much consideration. In this article, we describe a theory of perceptual decision making based on a diffusion model. In it, a decision is based on the additive accumulation of sensory evidence over time to a bound. Combined with simple scaling assumptions, the proportional-rate and power-rate diffusion models predict simple analytic expressions for both the chronometric and psychometric functions. In a series of psychophysical experiments, we show that this theory accounts for response time and accuracy as a function of both stimulus strength and speed-accuracy instructions. In particular, the results demonstrate a close coupling between response time and accuracy. The theory is also shown to subsume the predictions of Piéron's Law, a power function dependence of response time on stimulus strength. The theory's analytic chronometric function allows one to extend theories of accuracy to response time.
Ward, B Douglas; Mazaheri, Yousef
2006-12-15
The blood oxygenation level-dependent (BOLD) signal measured in functional magnetic resonance imaging (fMRI) experiments in response to input stimuli is temporally delayed and distorted due to the blurring effect of the voxel hemodynamic impulse response function (IRF). Knowledge of the IRF, obtained during the same experiment, or as the result of a separate experiment, can be used to dynamically obtain an estimate of the input stimulus function. Reconstruction of the input stimulus function allows the fMRI experiment to be evaluated as a communication system. The input stimulus function may be considered as a "message" which is being transmitted over a noisy "channel", where the "channel" is characterized by the voxel IRF. Following reconstruction of the input stimulus function, the received message is compared with the transmitted message on a voxel-by-voxel basis to determine the transmission error rate. Reconstruction of the input stimulus function provides insight into actual brain activity during task activation with less temporal blurring, and may be considered as a first step toward estimation of the true neuronal input function.
Emotion and attention: event-related brain potential studies.
Schupp, Harald T; Flaisch, Tobias; Stockburger, Jessica; Junghöfer, Markus
2006-01-01
Emotional pictures guide selective visual attention. A series of event-related brain potential (ERP) studies is reviewed demonstrating the consistent and robust modulation of specific ERP components by emotional images. Specifically, pictures depicting natural pleasant and unpleasant scenes are associated with an increased early posterior negativity, late positive potential, and sustained positive slow wave compared with neutral contents. These modulations are considered to index different stages of stimulus processing including perceptual encoding, stimulus representation in working memory, and elaborate stimulus evaluation. Furthermore, the review includes a discussion of studies exploring the interaction of motivated attention with passive and active forms of attentional control. Recent research is reviewed exploring the selective processing of emotional cues as a function of stimulus novelty, emotional prime pictures, learned stimulus significance, and in the context of explicit attention tasks. It is concluded that ERP measures are useful to assess the emotion-attention interface at the level of distinct processing stages. Results are discussed within the context of two-stage models of stimulus perception brought out by studies of attention, orienting, and learning.
Birdno, Merrill J.; Kuncel, Alexis M.; Dorval, Alan D.; Turner, Dennis A.; Gross, Robert E.
2012-01-01
Deep brain stimulation (DBS) provides dramatic tremor relief when delivered at high-stimulation frequencies (more than ∼100 Hz), but its mechanisms of action are not well-understood. Previous studies indicate that high-frequency stimulation is less effective when the stimulation train is temporally irregular. The purpose of this study was to determine the specific characteristics of temporally irregular stimulus trains that reduce their effectiveness: long pauses, bursts, or irregularity per se. We isolated these characteristics in stimulus trains and conducted intraoperative measurements of postural tremor in eight volunteers. Tremor varied significantly across stimulus conditions (P < 0.015), and stimulus trains with pauses were significantly less effective than stimulus trains without (P < 0.002). There were no significant differences in tremor between trains with or without bursts or between trains that were irregular or periodic. Thus the decreased effectiveness of temporally irregular DBS trains is due to long pauses in the stimulus trains, not the degree of temporal irregularity alone. We also conducted computer simulations of neuronal responses to the experimental stimulus trains using a biophysical model of the thalamic network. Trains that suppressed tremor in volunteers also suppressed fluctuations in thalamic transmembrane potential at the frequency associated with cerebellar burst-driver inputs. Clinical and computational findings indicate that DBS suppresses tremor by masking burst-driver inputs to the thalamus and that pauses in stimulation prevent such masking. Although stimulation of other anatomic targets may provide tremor suppression, we propose that the most relevant neuronal targets for effective tremor suppression are the afferent cerebellar fibers that terminate in the thalamus. PMID:21994263
Lie, Marie Udnesseter; Matre, Dagfinn; Hansson, Per; Stubhaug, Audun; Zwart, John-Anker; Nilsen, Kristian Bernhard
2017-01-01
Abstract Introduction: The interest in conditioned pain modulation (CPM) as a clinical tool for measuring endogenously induced analgesia is increasing. There is, however, large variation in the CPM methodology, hindering comparison of results across studies. Research comparing different CPM protocols is needed in order to obtain a standardized test paradigm. Objectives: The aim of the study was to assess whether a protocol with phasic heat stimuli as test-stimulus is preferable to a protocol with tonic heat stimulus as test-stimulus. Methods: In this experimental crossover study, we compared 2 CPM protocols with different test-stimulus; one with tonic test-stimulus (constant heat stimulus of 120-second duration) and one with phasic test-stimuli (3 heat stimulations of 5 seconds duration separated by 10 seconds). Conditioning stimulus was a 7°C water bath in parallel with the test-stimulus. Twenty-four healthy volunteers were assessed on 2 occasions with minimum 1 week apart. Differences in the magnitude and test–retest reliability of the CPM effect in the 2 protocols were investigated with repeated-measures analysis of variance and by relative and absolute reliability indices. Results: The protocol with tonic test-stimulus induced a significantly larger CPM effect compared to the protocol with phasic test-stimuli (P < 0.001). Fair and good relative reliability was found with the phasic and tonic test-stimuli, respectively. Absolute reliability indices showed large intraindividual variability from session to session in both protocols. Conclusion: The present study shows that a CPM protocol with a tonic test-stimulus is preferable to a protocol with phasic test-stimuli. However, we emphasize that one should be cautious to use the CPM effect as biomarker or in clinical decision making on an individual level due to large intraindividual variability. PMID:29392240
Stimulus control by 5methoxy-N,N-dimethyltryptamine in wild-type and CYP2D6-humanized mice
Winter, J. C.; Amorosi, D. J.; Rice, Kenner C.; Cheng, Kejun; Yu, Ai-Ming
2011-01-01
In previous studies we have observed that, in comparison with wild type mice, Tg-CYP2D6 mice have increased serum levels of bufotenine [5-hydroxy-N,N-dimethyltryptamine] following the administration of 5-MeO-DMT. Furthermore, following the injection of 5-MeO-DMT, harmaline was observed to increase serum levels of bufotenine and 5-MeO-DMT in both wild-type and Tg-CYP2D6 mice. In the present investigation, 5-MeO-DMT-induced stimulus control was established in wild-type and Tg-CYP2D6 mice. The two groups did not differ in their rate of acquisition of stimulus control. When tested with bufotenine, no 5-MeO-DMT-appropriate responding was observed. In contrast, the more lipid soluble analog of bufotenine, acetylbufotenine, was followed by an intermediate level of responding. The combination of harmaline with 5-MeO-DMT yielded a statistically significant increase in 5-MeO-DMT-appropriate responding in Tg-CYP2D6 mice; a comparable increase occurred in wild-type mice. In addition, it was noted that harmaline alone was followed by a significant degree of 5-MeO-DMT-appropriate responding in Tg-CYP2D6 mice. It is concluded that wild-type and Tg-CYPD2D6 mice do not differ in terms of acquisition of stimulus control by 5-MeO-DMT or in their response to bufotenine and acetylbufotenine. In both groups of mice, harmaline was found to enhance the stimulus effects of 5-MeO-DMT. PMID:21624387
Hampson, Karen M.; Chin, Sem Sem; Mallen, Edward A. H.
2010-01-01
Dynamic correction of monochromatic aberrations of the eye is known to affect the accommodation response to a step change in stimulus vergence. We used an adaptive optics system to determine how the temporal location of the correction affects the response. The system consists of a Shack-Hartmann sensor sampling at 20 Hz and a 37-actuator piezoelectric deformable mirror. An extra sensing channel allows for an independent measure of the accommodation level of the eye. The accommodation response of four subjects was measured during a +/− 0.5 D step change in stimulus vergence whilst aberrations were corrected at various time locations. We found that continued correction of aberrations after the step change decreased the gain for disaccommodation, but increased the gain for accommodation. These results could be explained based on the initial lag of accommodation to the stimulus and changes in the level of aberrations before and after the stimulus step change. Future considerations for investigations of the effect of monochromatic aberrations on the dynamic accommodation response are discussed. PMID:21258515
Effects of background stimulation upon eye-movement information.
Nakamura, S
1996-04-01
To investigate the effects of background stimulation upon eye-movement information (EMI), the perceived deceleration of the target motion during pursuit eye movement (Aubert-Fleishl paradox) was analyzed. In the experiment, a striped pattern was used as a background stimulus with various brightness contrasts and spatial frequencies for serially manipulating the attributions of the background stimulus. Analysis showed that the retinal-image motion of the background stimulus (optic flow) affected eye-movement information and that the effects of optic flow became stronger when high contrast and low spatial frequency stripes were presented as the background stimulus. In conclusion, optic flow is one source of eye-movement information in determining real object motion, and the effectiveness of optic flow depends on the attributes of the background stimulus.
Learning Biology through Research Papers: A Stimulus for Question-Asking by High-School Students
Brill, Gilat; Yarden, Anat
2003-01-01
Question-asking is a basic skill, required for the development of scientific thinking. However, the way in which science lessons are conducted does not usually stimulate question-asking by students. To make students more familiar with the scientific inquiry process, we developed a curriculum in developmental biology based on research papers suitable for high-school students. Since a scientific paper poses a research question, demonstrates the events that led to the answer, and poses new questions, we attempted to examine the effect of studying through research papers on students' ability to pose questions. Students were asked before, during, and after instruction what they found interesting to know about embryonic development. In addition, we monitored students' questions, which were asked orally during the lessons. Questions were scored according to three categories: properties, comparisons, and causal relationships. We found that before learning through research papers, students tend to ask only questions of the properties category. In contrast, students tend to pose questions that reveal a higher level of thinking and uniqueness during or following instruction with research papers. This change was not observed during or following instruction with a textbook. We suggest that learning through research papers may be one way to provide a stimulus for question-asking by high-school students and results in higher thinking levels and uniqueness. PMID:14673492
Square or sine: finding a waveform with high success rate of eliciting SSVEP.
Teng, Fei; Chen, Yixin; Choong, Aik Min; Gustafson, Scott; Reichley, Christopher; Lawhead, Pamela; Waddell, Dwight
2011-01-01
Steady state visual evoked potential (SSVEP) is the brain's natural electrical potential response for visual stimuli at specific frequencies. Using a visual stimulus flashing at some given frequency will entrain the SSVEP at the same frequency, thereby allowing determination of the subject's visual focus. The faster an SSVEP is identified, the higher information transmission rate the system achieves. Thus, an effective stimulus, defined as one with high success rate of eliciting SSVEP and high signal-noise ratio, is desired. Also, researchers observed that harmonic frequencies often appear in the SSVEP at a reduced magnitude. Are the harmonics in the SSVEP elicited by the fundamental stimulating frequency or by the artifacts of the stimuli? In this paper, we compare the SSVEP responses of three periodic stimuli: square wave (with different duty cycles), triangle wave, and sine wave to find an effective stimulus. We also demonstrate the connection between the strength of the harmonics in SSVEP and the type of stimulus.
Positive and negative affect produce opposing task-irrelevant stimulus preexposure effects.
Lazar, Josef; Kaplan, Oren; Sternberg, Terri; Lubow, R E
2012-06-01
In three experiments, groups were exposed to either positive or negative affect video clips, after which they were presented with a series of task-irrelevant stimuli. In the subsequent test task, subjects were required to learn an association between the previously irrelevant stimulus and a consequence, and between a new stimulus and a consequence. Induced positive affect produced a latent inhibition effect (poorer evidence of learning with the previously irrelevant stimulus than with the novel stimulus). In opposition to this, induced negative affect resulted in better evidence of learning with a previously irrelevant stimulus than with a novel stimulus. In general, the opposing effects also were present in participants scoring high on self-report questionnaires of depression (Experiments 2 and 3). These unique findings were predicted and accounted for on the basis of two principles: (a) positive affect broadens the attentional field and negative affect contracts it; and (b) task-irrelevant stimuli are processed in two successive stages, the first encodes stimulus properties, and the second encodes stimulus relationships. The opposing influences of negative and positive mood on the processing of irrelevant stimuli have implications for the role of emotion in general theories of cognition, and possibly for resolving some of the inconsistent findings in research with schizophrenia patients.
The Impact of Attention on Judgments of Frequency and Duration
Winkler, Isabell; Glauer, Madlen; Betsch, Tilmann; Sedlmeier, Peter
2015-01-01
Previous studies that examined human judgments of frequency and duration found an asymmetrical relationship: While frequency judgments were quite accurate and independent of stimulus duration, duration judgments were highly dependent upon stimulus frequency. A potential explanation for these findings is that the asymmetry is moderated by the amount of attention directed to the stimuli. In the current experiment, participants' attention was manipulated in two ways: (a) intrinsically, by varying the type and arousal potential of the stimuli (names, low-arousal and high-arousal pictures), and (b) extrinsically, by varying the physical effort participants expended during the stimulus presentation (by lifting a dumbbell vs. relaxing the arm). Participants processed stimuli with varying presentation frequencies and durations and were subsequently asked to estimate the frequency and duration of each stimulus. Sensitivity to duration increased for pictures in general, especially when processed under physical effort. A large effect of stimulus frequency on duration judgments was obtained for all experimental conditions, but a similar large effect of presentation duration on frequency judgments emerged only in the conditions that could be expected to draw high amounts of attention to the stimuli: when pictures were judged under high physical effort. Almost no difference in the mutual impact of frequency and duration was obtained for low-arousal or high-arousal pictures. The mechanisms underlying the simultaneous processing of frequency and duration are discussed with respect to existing models derived from animal research. Options for the extension of such models to human processing of frequency and duration are suggested. PMID:26000712
The impact of attention on judgments of frequency and duration.
Winkler, Isabell; Glauer, Madlen; Betsch, Tilmann; Sedlmeier, Peter
2015-01-01
Previous studies that examined human judgments of frequency and duration found an asymmetrical relationship: While frequency judgments were quite accurate and independent of stimulus duration, duration judgments were highly dependent upon stimulus frequency. A potential explanation for these findings is that the asymmetry is moderated by the amount of attention directed to the stimuli. In the current experiment, participants' attention was manipulated in two ways: (a) intrinsically, by varying the type and arousal potential of the stimuli (names, low-arousal and high-arousal pictures), and (b) extrinsically, by varying the physical effort participants expended during the stimulus presentation (by lifting a dumbbell vs. relaxing the arm). Participants processed stimuli with varying presentation frequencies and durations and were subsequently asked to estimate the frequency and duration of each stimulus. Sensitivity to duration increased for pictures in general, especially when processed under physical effort. A large effect of stimulus frequency on duration judgments was obtained for all experimental conditions, but a similar large effect of presentation duration on frequency judgments emerged only in the conditions that could be expected to draw high amounts of attention to the stimuli: when pictures were judged under high physical effort. Almost no difference in the mutual impact of frequency and duration was obtained for low-arousal or high-arousal pictures. The mechanisms underlying the simultaneous processing of frequency and duration are discussed with respect to existing models derived from animal research. Options for the extension of such models to human processing of frequency and duration are suggested.
Miskovic, Vladimir; Martinovic, Jasna; Wieser, Matthias M.; Petro, Nathan M.; Bradley, Margaret M.; Keil, Andreas
2015-01-01
Emotionally arousing scenes readily capture visual attention, prompting amplified neural activity in sensory regions of the brain. The physical stimulus features and related information channels in the human visual system that contribute to this modulation, however, are not known. Here, we manipulated low-level physical parameters of complex scenes varying in hedonic valence and emotional arousal in order to target the relative contributions of luminance based versus chromatic visual channels to emotional perception. Stimulus-evoked brain electrical activity was measured during picture viewing and used to quantify neural responses sensitive to lower-tier visual cortical involvement (steady-state visual evoked potentials) as well as the late positive potential, reflecting a more distributed cortical event. Results showed that the enhancement for emotional content was stimulus-selective when examining the steady-state segments of the evoked visual potentials. Response amplification was present only for low spatial frequency, grayscale stimuli, and not for high spatial frequency, red/green stimuli. In contrast, the late positive potential was modulated by emotion regardless of the scene’s physical properties. Our findings are discussed in relation to neurophysiologically plausible constraints operating at distinct stages of the cortical processing stream. PMID:25640949
Miskovic, Vladimir; Martinovic, Jasna; Wieser, Matthias J; Petro, Nathan M; Bradley, Margaret M; Keil, Andreas
2015-03-01
Emotionally arousing scenes readily capture visual attention, prompting amplified neural activity in sensory regions of the brain. The physical stimulus features and related information channels in the human visual system that contribute to this modulation, however, are not known. Here, we manipulated low-level physical parameters of complex scenes varying in hedonic valence and emotional arousal in order to target the relative contributions of luminance based versus chromatic visual channels to emotional perception. Stimulus-evoked brain electrical activity was measured during picture viewing and used to quantify neural responses sensitive to lower-tier visual cortical involvement (steady-state visual evoked potentials) as well as the late positive potential, reflecting a more distributed cortical event. Results showed that the enhancement for emotional content was stimulus-selective when examining the steady-state segments of the evoked visual potentials. Response amplification was present only for low spatial frequency, grayscale stimuli, and not for high spatial frequency, red/green stimuli. In contrast, the late positive potential was modulated by emotion regardless of the scene's physical properties. Our findings are discussed in relation to neurophysiologically plausible constraints operating at distinct stages of the cortical processing stream. Copyright © 2015 Elsevier B.V. All rights reserved.
Tarantino, V; Stura, M; Raspino, M; Conrad, E; Porcu, A
1989-01-01
In order to study the changes which occur in phase of the click stimulus and its relation to the stimulus repetition rate on the auditory brainstem response (ABR) as a function of age, the Authors recorded the ABR from the scalp's surface of 10 newborns and 40 infants, 3 months, 6 months, 1 year and 3 years old as well as from 10 normal adults. The stimulus was a square wave of 0.1 msec duration and 90 dBHL level. The stimulus equipment was calibrated twice under visual inspection to ensure that the C and R clicks resulted in an initial membrane deflection toward and from the ear drum respectively. No significant differences could be found for the latencies and amplitude in the C-R comparison. However, the mean values of the complete group of test subjects showed most intraindividual stability for the conventional click stimulation. The latency of the ABR with excitation of the cochlea seemed to be mainly determined by the internal oscillation sequence in the cochlea and not by the stimulus polarity. The amplitudes and latencies of the ABR components tend to decrease when the stimulus rate increases and the age decreases. The importance of the stimulus characteristics is discussed and some suggestions for clinical use of ABR are made.
May maternal lifestyle have an impact on neonatal glucose levels?
Hoirisch-Clapauch, Silvia; Porto, Maria Amelia S; Nardi, Antonio E
2016-02-01
Neonatal glucose levels correlate negatively with umbilical cord levels of C-peptide, a polypeptide secreted with insulin. In other words, neonatal hypoglycemia results from excessive insulin secretion from fetal/neonatal beta cells. Given that insulin causes fat to be stored rather than to be used for energy, one would expect that chronic hyperinsulinemia would result in large-for-gestational-age neonates. The finding that many small-for-gestational-age neonates have hypoglycemia suggests that the stimulus for insulin production occurs close to delivery. We postulated that a potent stimulation of maternal insulin production close to delivery would also provide a potent stimulus for fetal and neonatal insulin production, causing neonatal hypoglycemia. This study has evaluated 155 mothers with markers of excessive insulin production (such as acanthosis or grade III obesity), or with situations characterized by increased insulin requirements (such as an invasive bacterial infection or use of systemic corticosteroid within a week before delivery; or sedentariness or high-carbohydrate intake within 24h before delivery) and their 158 neonates who were screened for glycemic levels at 1, 2 and 4h after birth. The minimum glucose level was correlated to the maternal parameters, and to classical predictors of neonatal hypoglycemia, such as low-birth weight and preterm delivery. The only independent predictors were sedentariness and high-carbohydrate intake within 24h before delivery. The risk of neonatal hypoglycemia increased five-fold with sedentariness, 11-fold with high-carbohydrate intake, and 329-fold with both risk factors. The risk of neonatal hypoglycemia seems to be highly influenced by maternal lifestyle within 24h before delivery. Controlled randomized trials may help determine whether a controlled carbohydrate diet combined with regular physical activity close to delivery can prevent neonatal hypoglycemia and all its severe complications to the newborn. Copyright © 2015 Elsevier Ltd. All rights reserved.
On the independence of visual awareness and metacognition: a signal detection theoretic analysis.
Jachs, Barbara; Blanco, Manuel J; Grantham-Hill, Sarah; Soto, David
2015-04-01
Classically, visual awareness and metacognition are thought to be intimately linked, with our knowledge of the correctness of perceptual choices (henceforth metacognition) being dependent on the level of stimulus awareness. Here we used a signal detection theoretic approach involving a Gabor orientation discrimination task in conjunction with trial-by-trial ratings of perceptual awareness and response confidence in order to gauge estimates of type-1 (perceptual) orientation sensitivity and type-2 (metacognitive) sensitivity at different levels of stimulus awareness. Data from three experiments indicate that while the level of stimulus awareness had a profound impact on type-1 perceptual sensitivity, the awareness effect on type-2 metacognitive sensitivity was far lower by comparison. The present data pose a challenge for signal detection theoretic models in which both type-1 (perceptual) and type-2 (metacognitive) processes are assumed to operate on the same input. More broadly, the findings challenge the commonly held view that metacognition is tightly coupled to conscious states. (c) 2015 APA, all rights reserved.
Iriki, Atsushi; Isoda, Masaki
2015-01-01
Abnormalities in cortico-basal ganglia (CBG) networks can cause a variety of movement disorders ranging from hypokinetic disorders, such as Parkinson's disease (PD), to hyperkinetic conditions, such as Tourette syndrome (TS). Each condition is characterized by distinct patterns of abnormal neural discharge (dysrhythmia) at both the local single-neuron level and the global network level. Despite divergent etiologies, behavioral phenotypes, and neurophysiological profiles, high-frequency deep brain stimulation (HF-DBS) in the basal ganglia has been shown to be effective for both hypo- and hyperkinetic disorders. The aim of this review is to compare and contrast the electrophysiological hallmarks of PD and TS phenotypes in nonhuman primates and discuss why the same treatment (HF-DBS targeted to the globus pallidus internus, GPi-DBS) is capable of ameliorating both symptom profiles. Recent studies have shown that therapeutic GPi-DBS entrains the spiking of neurons located in the vicinity of the stimulating electrode, resulting in strong stimulus-locked modulations in firing probability with minimal changes in the population-scale firing rate. This stimulus effect normalizes/suppresses the pathological firing patterns and dysrhythmia that underlie specific phenotypes in both the PD and TS models. We propose that the elimination of pathological states via stimulus-driven entrainment and suppression, while maintaining thalamocortical network excitability within a normal physiological range, provides a common therapeutic mechanism through which HF-DBS permits information transfer for purposive motor behavior through the CBG while ameliorating conditions with widely different symptom profiles. PMID:26180116
Horikawa, Tomoyasu; Kamitani, Yukiyasu
2017-01-01
Dreaming is generally thought to be generated by spontaneous brain activity during sleep with patterns common to waking experience. This view is supported by a recent study demonstrating that dreamed objects can be predicted from brain activity during sleep using statistical decoders trained with stimulus-induced brain activity. However, it remains unclear whether and how visual image features associated with dreamed objects are represented in the brain. In this study, we used a deep neural network (DNN) model for object recognition as a proxy for hierarchical visual feature representation, and DNN features for dreamed objects were analyzed with brain decoding of fMRI data collected during dreaming. The decoders were first trained with stimulus-induced brain activity labeled with the feature values of the stimulus image from multiple DNN layers. The decoders were then used to decode DNN features from the dream fMRI data, and the decoded features were compared with the averaged features of each object category calculated from a large-scale image database. We found that the feature values decoded from the dream fMRI data positively correlated with those associated with dreamed object categories at mid- to high-level DNN layers. Using the decoded features, the dreamed object category could be identified at above-chance levels by matching them to the averaged features for candidate categories. The results suggest that dreaming recruits hierarchical visual feature representations associated with objects, which may support phenomenal aspects of dream experience.
Extinction of the soleus H reflex induced by conditioning stimulus given after test stimulus.
Hiraoka, Koichi
2002-02-01
To quantify the extinction of the soleus H reflex induced by a conditioning stimulus above the motor threshold to the post-tibial nerve applied 10-12 ms after a test stimulus (S2 method). Ten healthy subjects participated. The sizes of extinction induced by a test stimulus above the motor threshold (conventional method) and by the S2 method were measured. The size of the conditioned H reflex decreased as the intensity of the S2 conditioning stimulus increased. The decrease was less than that induced by the conventional method. The difference between the two methods correlated highly with the amount of orthodromically activated recurrent inhibition. When the S2 conditioning stimulus evoked an M wave that was roughly half of the maximum M wave, the decrease in the size of the conditioned H reflex depended on the size of the unconditioned H reflex. The S2 method allows us to observe extinction without changing the intensity of the test stimulus. The amount of the extinction depends partially on the size of the unconditioned H reflex. The difference in the sizes of extinction between the S2 and conventional methods should relate to recurrent inhibition.
Baladi, Michelle G; France, Charles P
2010-01-01
Discriminative stimulus effects of directly-acting dopamine receptor agonists (e.g. quinpirole) appear to be mediated by D3 receptors in free-feeding rats. Free access to high fat chow increases sensitivity to quinpirole-induced yawning and the current study examined whether eating high fat chow increases sensitivity to the discriminative stimulus effects of quinpirole. Five rats discriminated between 0.032 mg/kg quinpirole and vehicle while responding under a continuous reinforcement schedule of stimulus shock termination. When rats had free access to high fat chow (discrimination training was suspended), the quinpirole discrimination dose-response curve shifted leftward, possibly indicating enhanced sensitivity at D3 receptors. In the same rats, both the ascending (mediated by D3 receptors) and descending (mediated by D2 receptors) limbs of the dose- response curve for quinpirole-induced yawning shifted leftward. When rats had free access to a standard chow (discrimination training was suspended), the quinpirole discrimination and yawning dose-response curves did not change. Together with published data showing that the discriminative stimulus effects of quinpirole in free- feeding rats are mediated by D3 receptors and the insensitivity of this effect of quinpirole to food restriction (shown to increase sensitivity to D2 but not D3-mediated effects), these results suggest that the leftward shift of the discrimination dose-response curve when rats eat high fat chow is likely due to enhanced sensitivity at D3 receptors. Thus, eating high fat food enhances drug effects in a manner that might impact clinical effects of drugs or vulnerability to drug abuse. PMID:20729718
Baladi, Michelle G; France, Charles P
2010-10-01
Discriminative stimulus effects of direct acting dopamine receptor agonists (e.g. quinpirole) appear to be mediated by D3 receptors in free-feeding rats. Free access to high-fat chow increases sensitivity to quinpirole-induced yawning, and this study examined whether eating high-fat chow increases sensitivity to the discriminative stimulus effects of quinpirole. Five rats discriminated between 0.032 mg/kg quinpirole and vehicle while responding under a continuous reinforcement schedule of stimulus shock termination. When rats had free access to high-fat chow (discrimination training was suspended), the quinpirole discrimination dose-response curve shifted leftward, possibly indicating enhanced sensitivity at D3 receptors. In the same rats, both the ascending (mediated by D3 receptors) and descending (mediated by D2 receptors) limbs of the dose-response curve for quinpirole-induced yawning shifted leftward. When rats had free access to a standard chow (discrimination training was suspended), the quinpirole discrimination and yawning dose-response curves did not change. Together with published data showing that the discriminative stimulus effects of quinpirole in free-feeding rats are mediated by D3 receptors and the insensitivity of this effect of quinpirole to food restriction (shown to increase sensitivity to D2 but not D3-mediated effects), these results suggest that the leftward shift of the discrimination dose-response curve when rats eat high-fat chow is likely because of enhanced sensitivity at D3 receptors. Thus, eating high-fat food enhances drug effects in a manner that might impact clinical effects of drugs or vulnerability to drug abuse.
Kim, Young Kwan; Kameo, Yoshitaka; Tanaka, Sakae; Adachi, Taiji
2017-10-01
To understand Wolff's law, bone adaptation by remodeling at the cellular and tissue levels has been discussed extensively through experimental and simulation studies. For the clinical application of a bone remodeling simulation, it is significant to establish a macroscopic model that incorporates clarified microscopic mechanisms. In this study, we proposed novel macroscopic models based on the microscopic mechanism of osteocytic mechanosensing, in which the flow of fluid in the lacuno-canalicular porosity generated by fluid pressure gradients plays an important role, and theoretically evaluated the proposed models, taking biological rationales of bone adaptation into account. The proposed models were categorized into two groups according to whether the remodeling equilibrium state was defined globally or locally, i.e., the global or local uniformity models. Each remodeling stimulus in the proposed models was quantitatively evaluated through image-based finite element analyses of a swine cancellous bone, according to two introduced criteria associated with the trabecular volume and orientation at remodeling equilibrium based on biological rationales. The evaluation suggested that nonuniformity of the mean stress gradient in the local uniformity model, one of the proposed stimuli, has high validity. Furthermore, the adaptive potential of each stimulus was discussed based on spatial distribution of a remodeling stimulus on the trabecular surface. The theoretical consideration of a remodeling stimulus based on biological rationales of bone adaptation would contribute to the establishment of a clinically applicable and reliable simulation model of bone remodeling.
Genomic architecture of biomass heterosis in Arabidopsis.
Yang, Mei; Wang, Xuncheng; Ren, Diqiu; Huang, Hao; Xu, Miqi; He, Guangming; Deng, Xing Wang
2017-07-25
Heterosis is most frequently manifested by the substantially increased vigorous growth of hybrids compared with their parents. Investigating genomic variations in natural populations is essential to understand the initial molecular mechanisms underlying heterosis in plants. Here, we characterized the genomic architecture associated with biomass heterosis in 200 Arabidopsis hybrids. The genome-wide heterozygosity of hybrids makes a limited contribution to biomass heterosis, and no locus shows an obvious overdominance effect in hybrids. However, the accumulation of significant genetic loci identified in genome-wide association studies (GWAS) in hybrids strongly correlates with better-parent heterosis (BPH). Candidate genes for biomass BPH fall into diverse biological functions, including cellular, metabolic, and developmental processes and stimulus-responsive pathways. Important heterosis candidates include WUSCHEL , ARGOS , and some genes that encode key factors involved in cell cycle regulation. Interestingly, transcriptomic analyses in representative Arabidopsis hybrid combinations reveal that heterosis candidate genes are functionally enriched in stimulus-responsive pathways, including responses to biotic and abiotic stimuli and immune responses. In addition, stimulus-responsive genes are repressed to low-parent levels in hybrids with high BPH, whereas middle-parent expression patterns are exhibited in hybrids with no BPH. Our study reveals a genomic architecture for understanding the molecular mechanisms of biomass heterosis in Arabidopsis , in which the accumulation of the superior alleles of genes involved in metabolic and cellular processes improve the development and growth of hybrids, whereas the overall repressed expression of stimulus-responsive genes prioritizes growth over responding to environmental stimuli in hybrids under normal conditions.
Monoaminergic Psychomotor Stimulants: Discriminative Stimulus Effects and Dopamine Efflux
Desai, Rajeev I.; Paronis, Carol A.; Martin, Jared; Desai, Ramya
2010-01-01
The present studies were conducted to investigate the relationship between discriminative stimulus effects of indirectly acting monoaminergic psychostimulants and their ability to increase extracellular levels of dopamine (DA) in the nucleus accumbens (NAcb) shell. First, the behavioral effects of methamphetamine (MA), cocaine (COC), 1-[2-[bis(4-fluorophenyl-)methoxy]ethyl]-4-(3-phenylpropyl)piperazine (GBR 12909), d-amphetamine, and methylphenidate were established in rats trained to discriminate intraperitoneal injections of 0.3 mg/kg MA from saline. In other studies, in vivo microdialysis was used to determine the effects of MA, COC, and GBR 12909 on extracellular DA levels in the NAcb shell. Results show that all drugs produced dose-related and full substitution for the discriminative stimulus effects of 0.3 mg/kg MA. In microdialysis studies, cumulatively administered MA (0.3–3 mg/kg), COC (3–56 mg/kg), and GBR 12909 (3–30 mg/kg) produced dose-dependent increases in DA efflux in the NAcb shell to maxima of approximately 1200 to 1300% of control values. The increase in DA levels produced by MA and COC was rapid and short-lived, whereas the effect of GBR 12909 was slower and longer lasting. Dose-related increases in MA lever selection produced by MA, COC, and GBR 12909 corresponded with graded increases in DA levels in the NAcb shell. Doses of MA, COC, and GBR 12909 that produced full substitution increased DA levels to approximately 200 to 400% of control values. Finally, cumulatively administered MA produced comparable changes in DA levels in both naive and 0.3 mg/kg MA-trained rats. These latter results suggest that sensitization of DA release does not play a prominent role in the discriminative stimulus effects of psychomotor stimulants. PMID:20190012
An integrated reweighting theory of perceptual learning
Dosher, Barbara Anne; Jeter, Pamela; Liu, Jiajuan; Lu, Zhong-Lin
2013-01-01
Improvements in performance on visual tasks due to practice are often specific to a retinal position or stimulus feature. Many researchers suggest that specific perceptual learning alters selective retinotopic representations in early visual analysis. However, transfer is almost always practically advantageous, and it does occur. If perceptual learning alters location-specific representations, how does it transfer to new locations? An integrated reweighting theory explains transfer over retinal locations by incorporating higher level location-independent representations into a multilevel learning system. Location transfer is mediated through location-independent representations, whereas stimulus feature transfer is determined by stimulus similarity at both location-specific and location-independent levels. Transfer to new locations/positions differs fundamentally from transfer to new stimuli. After substantial initial training on an orientation discrimination task, switches to a new location or position are compared with switches to new orientations in the same position, or switches of both. Position switches led to the highest degree of transfer, whereas orientation switches led to the highest levels of specificity. A computational model of integrated reweighting is developed and tested that incorporates the details of the stimuli and the experiment. Transfer to an identical orientation task in a new position is mediated via more broadly tuned location-invariant representations, whereas changing orientation in the same position invokes interference or independent learning of the new orientations at both levels, reflecting stimulus dissimilarity. Consistent with single-cell recording studies, perceptual learning alters the weighting of both early and midlevel representations of the visual system. PMID:23898204
Ahmed, Lubna; de Fockert, Jan W
2012-10-01
Selective attention to relevant targets has been shown to depend on the availability of working memory (WM). Under conditions of high WM load, processing of irrelevant distractors is enhanced. Here we showed that this detrimental effect of WM load on selective attention efficiency is reversed when the task requires global- rather than local-level processing. Participants were asked to attend to either the local or the global level of a hierarchical Navon stimulus while keeping either a low or a high load in WM. In line with previous findings, during attention to the local level, distractors at the global level produced more interference under high than under low WM load. By contrast, loading WM had the opposite effect of improving selective attention during attention to the global level. The findings demonstrate that the impact of WM load on selective attention is not invariant, but rather is dependent on the level of the to-be-attended information.
Goodhew, Stephanie C; Greenwood, John A; Edwards, Mark
2016-05-01
The visual system is constantly bombarded with dynamic input. In this context, the creation of enduring object representations presents a particular challenge. We used object-substitution masking (OSM) as a tool to probe these processes. In particular, we examined the effect of target-like stimulus repetitions on OSM. In visual crowding, the presentation of a physically identical stimulus to the target reduces crowding and improves target perception, whereas in spatial repetition blindness, the presentation of a stimulus that belongs to the same category (type) as the target impairs perception. Across two experiments, we found an interaction between spatial repetition blindness and OSM, such that repeating a same-type stimulus as the target increased masking magnitude relative to presentation of a different-type stimulus. These results are discussed in the context of the formation of object files. Moreover, the fact that the inducer only had to belong to the same "type" as the target in order to exacerbate masking, without necessarily being physically identical to the target, has important implications for our understanding of OSM per se. That is, our results show the target is processed to a categorical level in OSM despite effective masking and, strikingly, demonstrate that this category-level content directly influences whether or not the target is perceived, not just performance on another task (as in priming).
Plainis, S; Plevridi, E; Pallikaris, I G
2009-05-01
To compare the ocular wavefront aberration between pharmacologically- and stimulus-driven accommodation in phakic eyes of young subjects. The aberration structure of the tested eye when accommodating was measured using the Complete Ophthalmic Analysis System (COAS; AMO WaveFront Sciences, Albuquerque, NM, USA). It was used in conjunction with a purposely-modified Badal optometer to allow blur-driven accommodation to be stimulated by a high contrast letter E with a vergence range between +0.84 D and -8.00 D. Pharmacological accommodation was induced with one drop of pilocarpine 4%. Data from six subjects (age range: 23-36 years) with dark irides were collected. No correlation was found between the maximal levels of accommodative response achieved with an 8 D blur-driven stimulus and pharmacological stimulation. Pharmacological accommodation varied considerably among subjects: maximum accommodation, achieved within 38-85 min following application of pilocarpine, ranged from 2.7 D to 10.0 D. Furthermore, although the changes of spherical aberration and coma as a function of accommodation were indistinguishable between the two methods for low levels of response, a characteristic break in the pattern of aberration occurred at higher levels of pilocarpine-induced accommodation. This probably resulted from differences in the time course of biometric changes occurring with the two methods. Measuring the pilocarpine-induced accommodative response at only one time point after its application may lead to misleading results. The considerable inter-individual differences in the time course of drug-induced accommodative response and its magnitude may lead to overestimation or underestimation of the corresponding amplitude of normal, blur-driven accommodation. Stimulating accommodation by topical application of pilocarpine is inappropriate for evaluating the efficacy of 'accommodating' IOLs.
Grissom, Elin M; Hawley, Wayne R; Bromley-Dulfano, Sarah S; Marino, Sarah E; Stathopoulos, Nicholas G; Dohanich, Gary P
2012-09-01
Rodents solve dual-solution tasks that require navigation to a goal by adopting either a hippocampus-dependent place strategy or a striatum-dependent stimulus-response strategy. A variety of factors, including biological sex and emotional status, influence the choice of learning strategy. In these experiments, we investigated the relationship between learning strategy and anxiety level in male and female rats prior to the onset of puberty, before the activational effects of gonadal hormones influence these processes. In the first experiment, prepubertal male rats categorized as high in trait anxiety at 26days of age exhibited a bias toward stimulus-response strategy at 28days of age, whereas age-matched females exhibited no preference in strategy regardless of anxiety level. In the second experiment, male and female rats were separated from their dams for either 15 or 180min per day during the first 2weeks of life and tested on a battery of anxiety and cognitive tasks between 25 and 29days of age. Prolonged maternal separations for 180min were associated with impaired spatial memory on a Y-maze task in both prepubertal males and females. Furthermore, prolonged maternal separations were linked to elevated anxiety and a bias for stimulus-response strategy in prepubertal males but not females. Alternatively, brief separations from dams for 15min were associated with intact spatial memory, lower levels of anxiety, and no preference for either learning strategy in both sexes. These results provide evidence of sex-specific effects of trait anxiety and early maternal separation on the choice of learning strategy used by prepubertal rodents. Copyright © 2012 Elsevier Inc. All rights reserved.
Simulation of peri-implant bone healing due to immediate loading in dental implant treatments.
Chou, Hsuan-Yu; Müftü, Sinan
2013-03-15
The goal of this work was to investigate the role of immediate loading on the peri-implant bone healing in dental implant treatments. A mechano-regulatory tissue differentiation model that takes into account the stimuli through the solid and the fluid components of the healing tissue, and the diffusion of pluripotent stem cells into the healing callus was used. A two-dimensional axisymmetric model consisting of a dental implant, the healing callus tissue and the host bone tissue was constructed for the finite element analysis. Poroelastic material properties were assigned to the healing callus and the bone tissue. The effects of micro-motion, healing callus size, and implant thread design on the length of the bone-to-implant contact (BIC) and the bone volume (BV) formed in the healing callus were investigated. In general, the analysis predicted formation of a continuous layer of soft tissue along the faces of the implant which are parallel to the loading direction. This was predicted to be correlated with the high levels of distortional strain transferred through the solid component of the stimulus. It was also predicted that the external threads on the implant, redistribute the interfacial load, thus help reduce the high distortional stimulus and also help the cells to differentiate to bone tissue. In addition, the region underneath the implant apex was predicted to experience high fluid stimulus that results in the development of soft tissue. The relationship between the variables considered in this study and the outcome measures, BV and BIC, was found to be highly nonlinear. A three-way analysis of variance (ANOVA) of the results was conducted and it showed that micro-motion presents the largest hindrance to bone formation during healing. Copyright © 2013 Elsevier Ltd. All rights reserved.
Replicating studies in which samples of participants respond to samples of stimuli.
Westfall, Jacob; Judd, Charles M; Kenny, David A
2015-05-01
In a direct replication, the typical goal is to reproduce a prior experimental result with a new but comparable sample of participants in a high-powered replication study. Often in psychology, the research to be replicated involves a sample of participants responding to a sample of stimuli. In replicating such studies, we argue that the same criteria should be used in sampling stimuli as are used in sampling participants. Namely, a new but comparable sample of stimuli should be used to ensure that the original results are not due to idiosyncrasies of the original stimulus sample, and the stimulus sample must often be enlarged to ensure high statistical power. In support of the latter point, we discuss the fact that in experiments involving samples of stimuli, statistical power typically does not approach 1 as the number of participants goes to infinity. As an example of the importance of sampling new stimuli, we discuss the bygone literature on the risky shift phenomenon, which was almost entirely based on a single stimulus sample that was later discovered to be highly unrepresentative. We discuss the use of both resampled and expanded stimulus sets, that is, stimulus samples that include the original stimuli plus new stimuli. © The Author(s) 2015.
The effects of stimulus competition and voluntary attention on colour-graphemic synaesthesia.
Rich, Anina N; Mattingley, Jason B
2003-10-06
Colour-graphemic synaesthetes experience vivid colours when reading letters, digits and words. We examined the effect of stimulus competition and attention on these unusual colour experiences in 14 synaesthetes and 14 non-synaesthetic controls. Participants named the colour of hierarchical local-global stimuli in which letters at each level elicited synaesthetic colours that were congruent or incongruent with the display colour. Synaesthetes were significantly slower to name display colours when either level was incongruent than when both levels were congruent. This effect was significantly reduced when synaesthetes focused attention on one level while the congruency of letters at the ignored level was varied. These findings suggest that competition between multiple inducers and mechanisms of voluntary attention influence colour-graphemic synaesthesia.
ERIC Educational Resources Information Center
Mathewson, Kyle E.; Fabiani, Monica; Gratton, Gabriele; Beck, Diane M.; Lleras, Alejandro
2010-01-01
At near-threshold levels of stimulation, identical stimulus parameters can result in very different phenomenal experiences. Can we manipulate which stimuli reach consciousness? Here we show that consciousness of otherwise masked stimuli can be experimentally induced by sensory entrainment. We preceded a backward-masked stimulus with a series of…
Left neglect dyslexia and the effect of stimulus duration.
Arduino, Lisa S; Vallar, Giuseppe; Burani, Cristina
2006-01-01
The present study investigated the effects of the duration of the stimulus on the reading performance of right-brain-damaged patients with left neglect dyslexia. Three Italian patients read aloud words and nonwords, under conditions of unlimited time of stimulus exposure and of timed presentation. In the untimed condition, the majority of the patients' errors involved the left side of the letter string (i.e., neglect dyslexia errors). Conversely, in the timed condition, although the overall level of performance decreased, errors were more evenly distributed across the whole letter string (i.e., visual - nonlateralized - errors). This reduction of neglect errors with a reduced time of presentation of the stimulus may reflect the read out of elements of the letter string from a preserved visual storage component, such as iconic memory. Conversely, a time-unlimited presentation of the stimulus may bring about the rightward bias that characterizes the performance of neglect patients, possibly by a capture of the patients' attention by the final (rightward) letters of the string.
Does sensitivity in binary choice tasks depend on response modality?
Szumska, Izabela; van der Lubbe, Rob H J; Grzeczkowski, Lukasz; Herzog, Michael H
2016-07-01
In most models of vision, a stimulus is processed in a series of dedicated visual areas, leading to categorization of this stimulus, and possible decision, which subsequently may be mapped onto a motor-response. In these models, stimulus processing is thought to be independent of the response modality. However, in theories of event coding, common coding, and sensorimotor contingency, stimuli may be very specifically mapped onto certain motor-responses. Here, we compared performance in a shape localization task and used three different response modalities: manual, saccadic, and verbal. Meta-contrast masking was employed at various inter-stimulus intervals (ISI) to manipulate target visibility. Although we found major differences in reaction times for the three response modalities, accuracy remained at the same level for each response modality (and all ISIs). Our results support the view that stimulus-response (S-R) associations exist only for specific instances, such as reflexes or skills, but not for arbitrary S-R pairings. Copyright © 2016 Elsevier Inc. All rights reserved.
Banerjee, Snigdha; Frey, Hans-Peter; Molholm, Sophie; Foxe, John J
2015-03-01
The voluntary allocation of attention to environmental inputs is a crucial mechanism of healthy cognitive functioning, and is probably influenced by an observer's level of interest in a stimulus. For example, an individual who is passionate about soccer but bored by botany will obviously be more attentive at a soccer match than an orchid show. The influence of monetary rewards on attention has been examined, but the impact of more common motivating factors (i.e. the level of interest in the materials under observation) remains unclear, especially during development. Here, stimulus sets were designed based on survey measures of the level of interest of adolescent participants in several item classes. High-density electroencephalography was recorded during a cued spatial attention task in which stimuli of high or low interest were presented in separate blocks. The motivational impact on performance of a spatial attention task was assessed, along with event-related potential measures of anticipatory top-down attention. As predicted, performance was improved for the spatial target detection of high interest items. Further, the impact of motivation was observed in parieto-occipital processes associated with anticipatory top-down spatial attention. The anticipatory activity over these regions was also increased for high vs. low interest stimuli, irrespective of the direction of spatial attention. The results also showed stronger anticipatory attentional and motivational modulations over the right vs. left parieto-occipital cortex. These data suggest that motivation enhances top-down attentional processes, and can independently shape activations in sensory regions in anticipation of events. They also suggest that attentional functions across hemispheres may not fully mature until late adolescence. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
A Biophysical Neural Model To Describe Spatial Visual Attention
NASA Astrophysics Data System (ADS)
Hugues, Etienne; José, Jorge V.
2008-02-01
Visual scenes have enormous spatial and temporal information that are transduced into neural spike trains. Psychophysical experiments indicate that only a small portion of a spatial image is consciously accessible. Electrophysiological experiments in behaving monkeys have revealed a number of modulations of the neural activity in special visual area known as V4, when the animal is paying attention directly towards a particular stimulus location. The nature of the attentional input to V4, however, remains unknown as well as to the mechanisms responsible for these modulations. We use a biophysical neural network model of V4 to address these issues. We first constrain our model to reproduce the experimental results obtained for different external stimulus configurations and without paying attention. To reproduce the known neuronal response variability, we found that the neurons should receive about equal, or balanced, levels of excitatory and inhibitory inputs and whose levels are high as they are in in vivo conditions. Next we consider attentional inputs that can induce and reproduce the observed spiking modulations. We also elucidate the role played by the neural network to generate these modulations.
A Biophysical Neural Model To Describe Spatial Visual Attention
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hugues, Etienne; Jose, Jorge V.
2008-02-14
Visual scenes have enormous spatial and temporal information that are transduced into neural spike trains. Psychophysical experiments indicate that only a small portion of a spatial image is consciously accessible. Electrophysiological experiments in behaving monkeys have revealed a number of modulations of the neural activity in special visual area known as V4, when the animal is paying attention directly towards a particular stimulus location. The nature of the attentional input to V4, however, remains unknown as well as to the mechanisms responsible for these modulations. We use a biophysical neural network model of V4 to address these issues. We firstmore » constrain our model to reproduce the experimental results obtained for different external stimulus configurations and without paying attention. To reproduce the known neuronal response variability, we found that the neurons should receive about equal, or balanced, levels of excitatory and inhibitory inputs and whose levels are high as they are in in vivo conditions. Next we consider attentional inputs that can induce and reproduce the observed spiking modulations. We also elucidate the role played by the neural network to generate these modulations.« less
Asarnow, R F; Cromwell, R L; Rennick, P M
1978-10-01
Twenty-four male schizophrenics, 12 (SFH) with schizophrenia in the immediate family and 12 (SNFH) with no evidence of schizophrenia in the family background, and 24 male control subjects, 12 highly educated (HEC), and 12 minimally educated (MEC), were assessed for premorbid social adjustment and were administered the Digit Symbol Substitution Test, a size estimation task, and the EEG average evoked response (AER) at different levels of stimulus intensity. As predicted from the stimulus redundancy formulation, the SFH patients were poorer in premorbid adjustment, were less often paranoid, functioned at a lower level of cognitive efficiency (poor digit symbol and greater absolute error on size estimation), were more chronic, and, in some respects, had size estimation indices of minimal scanning. Contrary to prediction, the SFH group had the strongest and most sustained augmenting response on AER, while the SNFH group shifted from an augmenting to a reducing pattern of response. The relationship between an absence of AER reducing and the presence of cognitive impairment in the SFH group was a major focus of discussion.
Low Lifetime Stress Exposure Is Associated with Reduced Stimulus-Response Memory
ERIC Educational Resources Information Center
Goldfarb, Elizabeth V.; Shields, Grant S.; Daw, Nathaniel D.; Slavich, George M.; Phelps, Elizabeth A.
2017-01-01
Exposure to stress throughout life can cumulatively influence later health, even among young adults. The negative effects of high cumulative stress exposure are well-known, and a shift from episodic to stimulus-response memory has been proposed to underlie forms of psychopathology that are related to high lifetime stress. At the other extreme,…
ERIC Educational Resources Information Center
Koolen, Sophieke; Vissers, Constance Th. W. M.; Egger, Jos I. M.; Verhoeven, Ludo
2014-01-01
The present study examined whether individuals with autism spectrum disorder (ASD) are able to update and monitor working memory representations of visual input, and whether performance is influenced by stimulus and task complexity. 15 high-functioning adults with ASD and 15 controls were asked to allocate either elements of abstract figures or…
Stimulus encoding and feature extraction by multiple sensory neurons.
Krahe, Rüdiger; Kreiman, Gabriel; Gabbiani, Fabrizio; Koch, Christof; Metzner, Walter
2002-03-15
Neighboring cells in topographical sensory maps may transmit similar information to the next higher level of processing. How information transmission by groups of nearby neurons compares with the performance of single cells is a very important question for understanding the functioning of the nervous system. To tackle this problem, we quantified stimulus-encoding and feature extraction performance by pairs of simultaneously recorded electrosensory pyramidal cells in the hindbrain of weakly electric fish. These cells constitute the output neurons of the first central nervous stage of electrosensory processing. Using random amplitude modulations (RAMs) of a mimic of the fish's own electric field within behaviorally relevant frequency bands, we found that pyramidal cells with overlapping receptive fields exhibit strong stimulus-induced correlations. To quantify the encoding of the RAM time course, we estimated the stimuli from simultaneously recorded spike trains and found significant improvements over single spike trains. The quality of stimulus reconstruction, however, was still inferior to the one measured for single primary sensory afferents. In an analysis of feature extraction, we found that spikes of pyramidal cell pairs coinciding within a time window of a few milliseconds performed significantly better at detecting upstrokes and downstrokes of the stimulus compared with isolated spikes and even spike bursts of single cells. Coincident spikes can thus be considered "distributed bursts." Our results suggest that stimulus encoding by primary sensory afferents is transformed into feature extraction at the next processing stage. There, stimulus-induced coincident activity can improve the extraction of behaviorally relevant features from the stimulus.
Drizinsky, Jessica; Zülch, Joachim; Gibbons, Henning; Stahl, Jutta
2016-10-01
Error detection is required in order to correct or avoid imperfect behavior. Although error detection is beneficial for some people, for others it might be disturbing. We investigated Gaudreau and Thompson's (Personality and Individual Differences, 48, 532-537, 2010) model, which combines personal standards perfectionism (PSP) and evaluative concerns perfectionism (ECP). In our electrophysiological study, 43 participants performed a combination of a modified Simon task, an error awareness paradigm, and a masking task with a variation of stimulus onset asynchrony (SOA; 33, 67, and 100 ms). Interestingly, relative to low-ECP participants, high-ECP participants showed a better post-error accuracy (despite a worse classification accuracy) in the high-visibility SOA 100 condition than in the two low-visibility conditions (SOA 33 and SOA 67). Regarding the electrophysiological results, first, we found a positive correlation between ECP and the amplitude of the error positivity (Pe) under conditions of low stimulus visibility. Second, under the condition of high stimulus visibility, we observed a higher Pe amplitude for high-ECP-low-PSP participants than for high-ECP-high-PSP participants. These findings are discussed within the framework of the error-processing avoidance hypothesis of perfectionism (Stahl, Acharki, Kresimon, Völler, & Gibbons, International Journal of Psychophysiology, 97, 153-162, 2015).
Readily releasable pool of synaptic vesicles measured at single synaptic contacts.
Trigo, Federico F; Sakaba, Takeshi; Ogden, David; Marty, Alain
2012-10-30
To distinguish between different models of vesicular release in brain synapses, it is necessary to know the number of vesicles of transmitter that can be released immediately at individual synapses by a high-calcium stimulus, the readily releasable pool (RRP). We used direct stimulation by calcium uncaging at identified, single-site inhibitory synapses to investigate the statistics of vesicular release and the size of the RRP. Vesicular release, detected as quantal responses in the postsynaptic neuron, showed an unexpected stochastic variation in the number of quanta from stimulus to stimulus at high intracellular calcium, with a mean of 1.9 per stimulus and a maximum of three or four. The results provide direct measurement of the RRP at single synaptic sites. They are consistent with models in which release proceeds from a small number of vesicle docking sites with an average occupancy around 0.7.
Color Discrimination Is Affected by Modulation of Luminance Noise in Pseudoisochromatic Stimuli
Cormenzana Méndez, Iñaki; Martín, Andrés; Charmichael, Teaire L.; Jacob, Mellina M.; Lacerda, Eliza M. C. B.; Gomes, Bruno D.; Fitzgerald, Malinda E. C.; Ventura, Dora F.; Silveira, Luiz C. L.; O'Donell, Beatriz M.; Souza, Givago S.
2016-01-01
Pseudoisochromatic stimuli have been widely used to evaluate color discrimination and to identify color vision deficits. Luminance noise is one of the stimulus parameters used to ensure that subject's response is due to their ability to discriminate target stimulus from the background based solely on the hue between the colors that compose such stimuli. We studied the influence of contrast modulation of the stimulus luminance noise on threshold and reaction time color discrimination. We evaluated color discrimination thresholds using the Cambridge Color Test (CCT) at six different stimulus mean luminances. Each mean luminance condition was tested using two protocols: constant absolute difference between maximum and minimum luminance of the luminance noise (constant delta protocol, CDP), and constant contrast modulation of the luminance noise (constant contrast protocol, CCP). MacAdam ellipses were fitted to the color discrimination thresholds in the CIE 1976 color space to quantify the color discrimination ellipses at threshold level. The same CDP and CCP protocols were applied in the experiment measuring RTs at three levels of stimulus mean luminance. The color threshold measurements show that for the CDP, ellipse areas decreased as a function of the mean luminance and they were significantly larger at the two lowest mean luminances, 10 cd/m2 and 13 cd/m2, compared to the highest one, 25 cd/m2. For the CCP, the ellipses areas also decreased as a function of the mean luminance, but there was no significant difference between ellipses areas estimated at six stimulus mean luminances. The exponent of the decrease of ellipse areas as a function of stimulus mean luminance was steeper in the CDP than CCP. Further, reaction time increased linearly with the reciprocal of the length of the chromatic vectors varying along the four chromatic half-axes. It decreased as a function of stimulus mean luminance in the CDP but not in the CCP. The findings indicated that visual performance using pseudoisochromatic stimuli was dependent on the Weber's contrast of the luminance noise. Low Weber's contrast in the luminance noise is suggested to have a reduced effect on chromatic information and, hence, facilitate desegregation of the hue-defined target from the background. PMID:27458404
Dynamic scanpaths: eye movement analysis methods
NASA Astrophysics Data System (ADS)
Blackmon, Theodore T.; Ho, Yeuk F.; Chernyak, Dimitri A.; Azzariti, Michela; Stark, Lawrence W.
1999-05-01
An eye movements sequence, or scanpath, during viewing of a stationary stimulus has been described as a set of fixations onto regions-of-interest, ROIs, and the saccades or transitions between them. Such scanpaths have high similarity for the same subject and stimulus both in the spatial loci of the ROIs and their sequence; scanpaths also take place during recollection of a previously viewed stimulus, suggesting that they play a similar role in visual memory and recall.
Bugg, Julie M; Crump, Matthew J C
2012-01-01
Cognitive control is by now a large umbrella term referring collectively to multiple processes that plan and coordinate actions to meet task goals. A common feature of paradigms that engage cognitive control is the task requirement to select relevant information despite a habitual tendency (or bias) to select goal-irrelevant information. At least since the 1970s, researchers have employed proportion congruent (PC) manipulations to experimentally establish selection biases and evaluate the mechanisms used to control attention. PC manipulations vary the frequency with which irrelevant information conflicts (i.e., is incongruent) with relevant information. The purpose of this review is to summarize the growing body of literature on PC effects across selective attention paradigms, beginning first with Stroop, and then describing parallel effects in flanker and task-switching paradigms. The review chronologically tracks the expansion of the PC manipulation from its initial implementation at the list-wide level, to more recent implementations at the item-specific and context-specific levels. An important theoretical aim is demonstrating that PC effects at different levels (e.g., list-wide vs. item or context-specific) support a distinction between voluntary forms of cognitive control, which operate based on anticipatory information, and relatively automatic or reflexive forms of cognitive control, which are rapidly triggered by the processing of particular stimuli or stimulus features. A further aim is to highlight those PC manipulations that allow researchers to dissociate stimulus-driven control from other stimulus-driven processes (e.g., S-R responding; episodic retrieval). We conclude by discussing the utility of PC manipulations for exploring the distinction between voluntary control and stimulus-driven control in other relevant paradigms.
Bugg, Julie M.; Crump, Matthew J. C.
2012-01-01
Cognitive control is by now a large umbrella term referring collectively to multiple processes that plan and coordinate actions to meet task goals. A common feature of paradigms that engage cognitive control is the task requirement to select relevant information despite a habitual tendency (or bias) to select goal-irrelevant information. At least since the 1970s, researchers have employed proportion congruent (PC) manipulations to experimentally establish selection biases and evaluate the mechanisms used to control attention. PC manipulations vary the frequency with which irrelevant information conflicts (i.e., is incongruent) with relevant information. The purpose of this review is to summarize the growing body of literature on PC effects across selective attention paradigms, beginning first with Stroop, and then describing parallel effects in flanker and task-switching paradigms. The review chronologically tracks the expansion of the PC manipulation from its initial implementation at the list-wide level, to more recent implementations at the item-specific and context-specific levels. An important theoretical aim is demonstrating that PC effects at different levels (e.g., list-wide vs. item or context-specific) support a distinction between voluntary forms of cognitive control, which operate based on anticipatory information, and relatively automatic or reflexive forms of cognitive control, which are rapidly triggered by the processing of particular stimuli or stimulus features. A further aim is to highlight those PC manipulations that allow researchers to dissociate stimulus-driven control from other stimulus-driven processes (e.g., S-R responding; episodic retrieval). We conclude by discussing the utility of PC manipulations for exploring the distinction between voluntary control and stimulus-driven control in other relevant paradigms. PMID:23060836
Cobb, Kensi M; Stuart, Andrew
The purpose of the study was to examine the differences in auditory brainstem response (ABR) latency and amplitude indices to the CE-Chirp stimuli in neonates versus young adults as a function of stimulus level, rate, polarity, frequency and gender. Participants were 168 healthy neonates and 20 normal-hearing young adults. ABRs were obtained to air- and bone-conducted CE-Chirps and air-conducted CE-Chirp octave band stimuli. The effects of stimulus level, rate, and polarity were examined with air-conducted CE-Chirps. The effect of stimulus level was also examined with bone-conducted CE-Chirps and CE-Chirp octave band stimuli. The effect of gender was examined across all stimulus manipulations. In general, ABR wave V amplitudes were significantly larger (p < 0.0001) and latencies were significantly shorter (p < 0.0001) for adults versus neonates for all air-conducted CE-Chirp stimuli with all stimulus manipulations. For bone-conducted CE-Chirps, infants had significantly shorter wave V latencies than adults at 15 dB nHL and 45 dB nHL (p = 0.02). Adult wave V amplitude was significantly larger for bone-conducted CE-Chirps only at 30 dB nHL (p = 0.02). The effect of gender was not statistically significant across all measures (p > 0.05). Significant differences in ABR latencies and amplitudes exist between newborns and young adults using CE-Chirp stimuli. These differences are consistent with differences to traditional click and tone burst stimuli and reflect maturational differences as a function of age. These findings continue to emphasize the importance of interpreting ABR results using age-based normative data.
Stimulus control by 5-methoxy-N,N-dimethyltryptamine in wild-type and CYP2D6-humanized mice.
Winter, J C; Amorosi, D J; Rice, Kenner C; Cheng, Kejun; Yu, Ai-Ming
2011-09-01
In previous studies we have observed that, in comparison with wild type mice, Tg-CYP2D6 mice have increased serum levels of bufotenine [5-hydroxy-N,N-dimethyltryptamine] following the administration of 5-MeO-DMT. Furthermore, following the injection of 5-MeO-DMT, harmaline was observed to increase serum levels of bufotenine and 5-MeO-DMT in both wild-type and Tg-CYP2D6 mice. In the present investigation, 5-MeO-DMT-induced stimulus control was established in wild-type and Tg-CYP2D6 mice. The two groups did not differ in their rate of acquisition of stimulus control. When tested with bufotenine, no 5-MeO-DMT-appropriate responding was observed. In contrast, the more lipid soluble analog of bufotenine, acetylbufotenine, was followed by an intermediate level of responding. The combination of harmaline with 5-MeO-DMT yielded a statistically significant increase in 5-MeO-DMT-appropriate responding in Tg-CYP2D6 mice; a comparable increase occurred in wild-type mice. In addition, it was noted that harmaline alone was followed by a significant degree of 5-MeO-DMT-appropriate responding in Tg-CYP2D6 mice. It is concluded that wild-type and Tg-CYPD2D6 mice do not differ in terms of acquisition of stimulus control by 5-MeO-DMT or in their response to bufotenine and acetylbufotenine. In both groups of mice, harmaline was found to enhance the stimulus effects of 5-MeO-DMT. Copyright © 2011 Elsevier Inc. All rights reserved.
Deficient GABAergic gliotransmission may cause broader sensory tuning in schizophrenia.
Hoshino, Osamu
2013-12-01
We examined how the depression of intracortical inhibition due to a reduction in ambient GABA concentration impairs perceptual information processing in schizophrenia. A neural network model with a gliotransmission-mediated ambient GABA regulatory mechanism was simulated. In the network, interneuron-to-glial-cell and principal-cell-to-glial-cell synaptic contacts were made. The former hyperpolarized glial cells and let their transporters import (remove) GABA from the extracellular space, thereby lowering ambient GABA concentration, reducing extrasynaptic GABAa receptor-mediated tonic inhibitory current, and thus exciting principal cells. In contrast, the latter depolarized the glial cells and let the transporters export GABA into the extracellular space, thereby elevating the ambient GABA concentration and thus inhibiting the principal cells. A reduction in ambient GABA concentration was assumed for a schizophrenia network. Multiple dynamic cell assemblies were organized as sensory feature columns. Each cell assembly responded to one specific feature stimulus. The tuning performance of the network to an applied feature stimulus was evaluated in relation to the level of ambient GABA. Transporter-deficient glial cells caused a deficit in GABAergic gliotransmission and reduced ambient GABA concentration, which markedly deteriorated the tuning performance of the network, broadening the sensory tuning. Interestingly, the GABAergic gliotransmission mechanism could regulate local ambient GABA levels: it augmented ambient GABA around stimulus-irrelevant principal cells, while reducing ambient GABA around stimulus-relevant principal cells, thereby ensuring their selective responsiveness to the applied stimulus. We suggest that a deficit in GABAergic gliotransmission may cause a reduction in ambient GABA concentration, leading to a broadening of sensory tuning in schizophrenia. The GABAergic gliotransmission mechanism proposed here may have an important role in the regulation of local ambient GABA levels, thereby improving the sensory tuning performance of the cortex.
Batman, Angela M.; Dutta, Aloke K.; Reith, Maarten E. A.; Beardsley, Patrick M.
2010-01-01
A successful replacement pharmacotherapy for treating cocaine dependency would likely reduce cocaine's abuse, support a low abuse liability, overlap cocaine's subjective effects, and have a long duration of action. Inhibitors with varying selectivity at the dopamine transporter (DAT) have approximated these properties. The objective of the present study was to characterize the behavioural effects of an extremely selective DAT inhibitor, (+) trans-4-(2-Benzhydryloxyethyl)-1-(4-fluorobenzyl) piperadin-3-ol (D-84), a 3-hydroxy substituted piperidine derivative of GBR-12935, for its cocaine-like discriminative stimulus effects, its effects on cocaine self-administration, and for its own self-administration. During cocaine discrimination tests, cocaine occasioned the 10 mg/kg cocaine training stimulus with an ED50 value of 3.13 (1.54-6.34) mg/kg, and reduced response rates with an ED50 value of 20.39 (7.24-57.44) mg/kg. D-84 incompletely generalized to the cocaine stimulus occasioning a maximal 76% cocaine lever responding, while reducing response rates with lower potency than cocaine (ED50=30.94 (12.34-77.60) mg/kg). Pretreatment with D-84 (9.6-30.4 mg/kg) significantly (P<0.05) reduced cocaine intake at 17.1 mg/kg D-84 when cocaine was self-administered at 0.5 mg/kg/infusion, and at 30.4 mg/kg D-84 when cocaine was self-administered at 0.1, 0.5 .and 1.0 mg/kg/infusion. During self-administration tests with D-84 (0.1-1 mg/kg/infusion), numbers of infusions significantly exceeded vehicle levels at 0.3 mg/kg/infusion. These results show that D-84 pre-treatment can decrease cocaine intake especially when high doses of cocaine are being self-administered. This observation, combined with its incomplete generalization to the cocaine discriminative stimulus and its reported long duration of action, provides a profile consistent with a potential replacement therapy for treating cocaine abusing patients. PMID:20840845
Theodorou, Anastasios A; Paschalis, Vassilis; Kyparos, Antonios; Panayiotou, George; Nikolaidis, Michalis G
2014-11-07
The current interpretative framework states that, for a certain experimental treatment (usually a chemical substance) to be classified as "anti-oxidant", it must possess the property of reducing (or even nullifying) exercise-induced oxidative stress. The aim of the study was to compare side by side, in the same experimental setup, redox biomarkers responses to an identical acute eccentric exercise session, before and after chronic passive smoking (considered a pro-oxidant stimulus) or vitamin C supplementation (considered an anti-oxidant stimulus). Twenty men were randomly assigned into either passive smoking or vitamin C group. All participants performed two acute eccentric exercise sessions, one before and one after either exposure to passive smoking or vitamin C supplementation for 12 days. Vitamin C, oxidant biomarkers (F2-isoprostanes and protein carbonyls) and the non-enzymatic antioxidant (glutathione) were measured, before and after passive smoking, vitamin C supplementation or exercise. It was found that chronic exposure to passive smoking increased the level of F2-isoprostanes and decreased the level of glutathione at rest, resulting in minimal increase or absence of oxidative stress after exercise. Conversely, chronic supplementation with vitamin C decreased the level of F2-isoprostanes and increased the level of glutathione at rest, resulting in marked exercise-induced oxidative stress. Contrary to the current scientific consensus, our results show that, when a pro-oxidant stimulus is chronically delivered, it is more likely that oxidative stress induced by subsequent exercise is decreased and not increased. Reversely, it is more likely to find greater exercise-induced oxidative stress after previous exposure to an anti-oxidant stimulus. We believe that the proposed framework will be a useful tool to reach more pragmatic explanations of redox biology phenomena. Copyright © 2014 Elsevier Inc. All rights reserved.
Do we understand high-level vision?
Cox, David Daniel
2014-04-01
'High-level' vision lacks a single, agreed upon definition, but it might usefully be defined as those stages of visual processing that transition from analyzing local image structure to analyzing structure of the external world that produced those images. Much work in the last several decades has focused on object recognition as a framing problem for the study of high-level visual cortex, and much progress has been made in this direction. This approach presumes that the operational goal of the visual system is to read-out the identity of an object (or objects) in a scene, in spite of variation in the position, size, lighting and the presence of other nearby objects. However, while object recognition as a operational framing of high-level is intuitive appealing, it is by no means the only task that visual cortex might do, and the study of object recognition is beset by challenges in building stimulus sets that adequately sample the infinite space of possible stimuli. Here I review the successes and limitations of this work, and ask whether we should reframe our approaches to understanding high-level vision. Copyright © 2014. Published by Elsevier Ltd.
Eisenstein, Edward M.; Eisenstein, Doris L.; Sarma, Jonnalagedda Sarma M.; Knapp, Herschel; Smith, James C.
2012-01-01
This paper explores further the “behavioral homeostasis theory” (BHT) regarding the evolutionary significance for organism survival of the two simple non-associative rapidly learned behaviors of habituation and sensitization. The BHT postulates that the evolutionary function of habituation and sensitization throughout phylogeny is to rapidly maximize an organism’s overall readiness to cope with new stimuli and to minimize unnecessary energy expenditure. These behaviors have survived with remarkable similarity throughout phylogeny from aneural protozoa to humans. The concept of “behavioral homeostasis” emphasizes that the homeostatic process is more than just maintaining internal equilibrium in the face of changing internal and external conditions. It emphasizes the rapid internal and external effector system changes that occur to optimize organism readiness to cope with any new external stimulus situation. Truly life-threatening stimuli elicit instinctive behavior such as fight, flee, or hide. If the stimulus is not life-threatening, the organism rapidly learns to adjust to an appropriate level of overall responsiveness over stimulus repetitions. The rapid asymptotic level approached by those who decrease their overall responsiveness to the second stimulus (habituaters) and those who increase their overall responsiveness to an identical second stimulus (sensitizers) not only optimizes readiness to cope with any new stimulus situation but also reduces unnecessary energy expenditure. This paper is based on a retrospective analysis of data from 4 effector system responses to eight repetitive tone stimuli in adult human males. The effector systems include the galvanic skin response, finger pulse volume, muscle frontalis and heart rate. The new information provides the basis for further exploration of the BHT including new predictions and proposed relatively simple experiments to test them. PMID:22896782
Atkinson, Mike
2014-01-01
This study used electrophysiological measures of pre-stimulus effects that can occur prior to an unknown future event as an indicator of nonlocal intuition. Intuition in this context is considered as a process by which information normally outside the range of conscious awareness is detected at the cellular level by the heart, the brain, and the autonomic nervous system. This study extends the findings of previous experiments demonstrating that aspects of our physiology can respond to an emotionally engaging stimulus before it is actually experienced. The study evaluated a revised version of a roulette protocol, which included two pre-stimulus segments and included an analysis of the individual participant's data over eight separate trials in addition to a group-level analysis. We also assessed the potential effects of the moon phase on the pre-stimulus response outcomes and participant winning and amount won ratios. Data were collected under controlled laboratory conditions from 13 participants in 8 separate sessions using a modified version of a gambling paradigm protocol based on roulette. Half of the experimental sessions were conducted during the full moon phase and half during the new moon phase. Within each trial a total of three segments of physiological data were assessed. There were two separate pre-stimulus periods, pre-bet (4 sec) and postbet (12 sec), and a post-result period (6 sec). Participants were told that they were participating in a gambling experiment and were given an initial starting kitty and told they could keep any winnings over the course of 26 trials for each of the eight sessions. The physiological measures included the electrocardiogram (ECG), from which cardiac inter-beat-intervals (heart rate variability, HRV) were derived, and skin conductance. Before the participants participated in the first session, they completed the Cognitive Styles Index questionnaire, which assesses analytical vs intuitive styles. Overall, the results indicate that the revised protocol provides an effective objective measure for detecting a pre-stimulus response, which reflects a type of nonlocal intuition. We found significant differences between the win and loss responses in the aggregated physiological waveform data during both pre-stimulus segments, which provides important information about nonlocal intuition. On average, we detected a significant pre-stimulus response starting around 18 seconds prior to participants knowing the future outcome. Interestingly, there was not a strong overall relationship between the pre-stimulus responses and the amount of money the participants won or lost. We also found a significant difference in both pre-stimulus periods during the full moon phase but not in the new moon phase. The results suggest that the protocol is a reliable means of prompting physiological detection of pre-stimulus effects and can be used in future studies investigating aspects of nonlocal intuition. The findings also suggest that if participants had been able to become more attuned to their internal physiological responses, they would have performed much better on the betting choices they made. PMID:24808978
Hardman, Kyle; Cowan, Nelson
2014-01-01
Visual working memory stores stimuli from our environment as representations that can be accessed by high-level control processes. This study addresses a longstanding debate in the literature about whether storage limits in visual working memory include a limit to the complexity of discrete items. We examined the issue with a number of change-detection experiments that used complex stimuli which possessed multiple features per stimulus item. We manipulated the number of relevant features of the stimulus objects in order to vary feature load. In all of our experiments, we found that increased feature load led to a reduction in change-detection accuracy. However, we found that feature load alone could not account for the results, but that a consideration of the number of relevant objects was also required. This study supports capacity limits for both feature and object storage in visual working memory. PMID:25089739
Brief Report: The Effect of Delayed Matching to Sample on Stimulus Over-Selectivity
ERIC Educational Resources Information Center
Reed, Phil
2012-01-01
Stimulus over-selectivity occurs when one aspect of the environment controls behavior at the expense of other equally salient aspects. Participants were trained on a match-to-sample (MTS) discrimination task. Levels of over-selectivity in a group of children (4-18 years) with Autism Spectrum Disorders (ASD) were compared with a mental-aged matched…
Active versus passive listening to auditory streaming stimuli: a near-infrared spectroscopy study
NASA Astrophysics Data System (ADS)
Remijn, Gerard B.; Kojima, Haruyuki
2010-05-01
We use near-infrared spectroscopy (NIRS) to assess listeners' cortical responses to a 10-s series of pure tones separated in frequency. Listeners are instructed to either judge the rhythm of these ``streaming'' stimuli (active-response listening) or to listen to the stimuli passively. Experiment 1 shows that active-response listening causes increases in oxygenated hemoglobin (oxy-Hb) in response to all stimuli, generally over the (pre)motor cortices. The oxy-Hb increases are significantly larger over the right hemisphere than over the left for the final 5 s of the stimulus. Hemodynamic levels do not vary with changes in the frequency separation between the tones and corresponding changes in perceived rhythm (``gallop,'' ``streaming,'' or ``ambiguous''). Experiment 2 shows that hemodynamic levels are strongly influenced by listening mode. For the majority of time windows, active-response listening causes significantly larger oxy-Hb increases than passive listening, significantly over the left hemisphere during the stimulus and over both hemispheres after the stimulus. This difference cannot be attributed to physical motor activity and preparation related to button pressing after stimulus end, because this is required in both listening modes.
Active versus passive listening to auditory streaming stimuli: a near-infrared spectroscopy study.
Remijn, Gerard B; Kojima, Haruyuki
2010-01-01
We use near-infrared spectroscopy (NIRS) to assess listeners' cortical responses to a 10-s series of pure tones separated in frequency. Listeners are instructed to either judge the rhythm of these "streaming" stimuli (active-response listening) or to listen to the stimuli passively. Experiment 1 shows that active-response listening causes increases in oxygenated hemoglobin (oxy-Hb) in response to all stimuli, generally over the (pre)motor cortices. The oxy-Hb increases are significantly larger over the right hemisphere than over the left for the final 5 s of the stimulus. Hemodynamic levels do not vary with changes in the frequency separation between the tones and corresponding changes in perceived rhythm ("gallop," "streaming," or "ambiguous"). Experiment 2 shows that hemodynamic levels are strongly influenced by listening mode. For the majority of time windows, active-response listening causes significantly larger oxy-Hb increases than passive listening, significantly over the left hemisphere during the stimulus and over both hemispheres after the stimulus. This difference cannot be attributed to physical motor activity and preparation related to button pressing after stimulus end, because this is required in both listening modes.
ERIC Educational Resources Information Center
de Fockert, Jan W.; Bremner, Andrew J.
2011-01-01
An unexpected stimulus often remains unnoticed if attention is focused elsewhere. This inattentional blindness has been shown to be increased under conditions of high memory load. Here we show that increasing working memory load can also have the opposite effect of reducing inattentional blindness (i.e., improving stimulus detection) if stimulus…
Keane, Margaret M; Martin, Elizabeth; Verfaellie, Mieke
2009-07-01
Accuracy in identifying a perceptually degraded word (e.g., stake) can be either enhanced by recent exposure to the same stimulus or reduced by recent exposure to a similar stimulus (e.g., stare). In the present study, we explored the mechanisms underlying these benefits and costs by examining the performance of amnesic and control groups in a forced choice perceptual identification (FCPI) task in which briefly flashed words (that were identical to studied words, similar to studied words, or new) had to be identified, and two response choices were provided that differed from each other by one letter. Control participants showed a performance benefit and cost in FCPI with both high- and low-frequency words. Amnesic participants showed a benefit (but no cost) with high-frequency words and a benefit and a cost with low-frequency words. The benefit/cost pattern with low-frequency words in amnesia was obtained even when the to-be-identified stimulus in the FCPI task was eliminated (Experiment 2), suggesting that this effect was driven by processes operating at the level of the response choices. Our findings suggest that implicit memory effects in FCPI reflect the operation of multiple mechanisms, the relative contributions of which may vary with the frequency of the test stimuli. The results also highlight the need for caution in interpreting results from normal participants in the FCPI task, since those findings may reflect a contribution of explicit memory processes.
The Role of Temporal Disparity on Audiovisual Integration in Low-Vision Individuals.
Targher, Stefano; Micciolo, Rocco; Occelli, Valeria; Zampini, Massimiliano
2017-12-01
Recent findings have shown that sounds improve visual detection in low vision individuals when the audiovisual stimuli pairs of stimuli are presented simultaneously and from the same spatial position. The present study purports to investigate the temporal aspects of the audiovisual enhancement effect previously reported. Low vision participants were asked to detect the presence of a visual stimulus (yes/no task) presented either alone or together with an auditory stimulus at different stimulus onset asynchronies (SOAs). In the first experiment, the sound was presented either simultaneously or before the visual stimulus (i.e., SOAs 0, 100, 250, 400 ms). The results show that the presence of a task-irrelevant auditory stimulus produced a significant visual detection enhancement in all the conditions. In the second experiment, the sound was either synchronized with, or randomly preceded/lagged behind the visual stimulus (i.e., SOAs 0, ± 250, ± 400 ms). The visual detection enhancement was reduced in magnitude and limited only to the synchronous condition and to the condition in which the sound stimulus was presented 250 ms before the visual stimulus. Taken together, the evidence of the present study seems to suggest that audiovisual interaction in low vision individuals is highly modulated by top-down mechanisms.
Easwar, Vijayalakshmi; Purcell, David W; Aiken, Steven J; Parsa, Vijay; Scollie, Susan D
2015-01-01
The use of auditory evoked potentials as an objective outcome measure in infants fitted with hearing aids has gained interest in recent years. This article proposes a test paradigm using speech-evoked envelope following responses (EFRs) for use as an objective-aided outcome measure. The method uses a running speech-like, naturally spoken stimulus token /susa∫i/ (fundamental frequency [f0] = 98 Hz; duration 2.05 sec), to elicit EFRs by eight carriers representing low, mid, and high frequencies. Each vowel elicited two EFRs simultaneously, one from the region of formant one (F1) and one from the higher formants region (F2+). The simultaneous recording of two EFRs was enabled by lowering f0 in the region of F1 alone. Fricatives were amplitude modulated to enable recording of EFRs from high-frequency spectral regions. The present study aimed to evaluate the effect of level and bandwidth on speech-evoked EFRs in adults with normal hearing. As well, the study aimed to test convergent validity of the EFR paradigm by comparing it with changes in behavioral tasks due to bandwidth. Single-channel electroencephalogram was recorded from the vertex to the nape of the neck over 300 sweeps in two polarities from 20 young adults with normal hearing. To evaluate the effects of level in experiment I, EFRs were recorded at test levels of 50 and 65 dB SPL. To evaluate the effects of bandwidth in experiment II, EFRs were elicited by /susa∫i/ low-pass filtered at 1, 2, and 4 kHz, presented at 65 dB SPL. The 65 dB SPL condition from experiment I represented the full bandwidth condition. EFRs were averaged across the two polarities and estimated using a Fourier analyzer. An F test was used to determine whether an EFR was detected. Speech discrimination using the University of Western Ontario Distinctive Feature Differences test and sound quality rating using the Multiple Stimulus Hidden Reference and Anchors paradigm were measured in identical bandwidth conditions. In experiment I, the increase in level resulted in a significant increase in response amplitudes for all eight carriers (mean increase of 14 to 50 nV) and the number of detections (mean increase of 1.4 detections). In experiment II, an increase in bandwidth resulted in a significant increase in the number of EFRs detected until the low-pass filtered 4 kHz condition and carrier-specific changes in response amplitude until the full bandwidth condition. Scores in both behavioral tasks increased with bandwidth up to the full bandwidth condition. The number of detections and composite amplitude (sum of all eight EFR amplitudes) significantly correlated with changes in behavioral test scores. Results suggest that the EFR paradigm is sensitive to changes in level and audible bandwidth. This may be a useful tool as an objective-aided outcome measure considering its running speech-like stimulus, representation of spectral regions important for speech understanding, level and bandwidth sensitivity, and clinically feasible test times. This paradigm requires further validation in individuals with hearing loss, with and without hearing aids.
Leslie, Eric; Bhargava, Valmik; Mittal, Ravinder K
2012-03-01
A subthreshold pharyngeal stimulus induces lower esophageal sphincter (LES) relaxation and inhibits progression of ongoing peristaltic contraction in the esophagus. Recent studies show that longitudinal muscle contraction of the esophagus may play a role in LES relaxation. Our goal was to determine whether a subthreshold pharyngeal stimulus induces contraction of the longitudinal muscle of the esophagus and to determine the nature of this contraction. Studies were conducted in 16 healthy subjects. High resolution manometry (HRM) recorded pressures, and high frequency intraluminal ultrasound (HFIUS) images recorded longitudinal muscle contraction at various locations in the esophagus. Subthreshold pharyngeal stimulation was induced by injection of minute amounts of water in the pharynx. A subthreshold pharyngeal stimulus induced strong contraction and caudal descent of the upper esophageal sphincter (UES) along with relaxation of the LES. HFIUS identified longitudinal muscle contraction of the proximal (3-5 cm below the UES) but not the distal esophagus. Pharyngeal stimulus, following a dry swallow, blocked the progression of dry swallow-induced peristalsis; this was also associated with UES contraction and descent along with the contraction of longitudinal muscle of the proximal esophagus. We identify a unique pattern of longitudinal muscle contraction of the proximal esophagus in response to subthreshold pharyngeal stimulus, which we propose may be responsible for relaxation of the distal esophagus and LES through the stretch sensitive activation of myenteric inhibitory motor neurons.
Manipulating presence influences the magnitude of virtual reality analgesia.
Hoffman, Hunter G; Sharar, Sam R; Coda, Barbara; Everett, John J; Ciol, Marcia; Richards, Todd; Patterson, David R
2004-09-01
Excessive pain during medical procedures performed in unanesthetized patients is frequently reported, but can be reduced with virtual reality (VR) distraction. Increasing the person's illusion of going into the virtual world may increase how effectively VR distracts pain. Healthy volunteers aged 18-20 years participated in a double-blind between-groups design. Each subject received a brief baseline thermal pain stimulus, and the same stimulus again minutes later with either a Low Tech or a High Tech VR distraction. Each subject provided subjective 0-10 ratings of cognitive, sensory and affective components of pain, and rated their illusion of going inside the virtual world. Subjects in the High Tech VR group reported a stronger illusion of going into the virtual world (VR presence) than subjects in the Low Tech VR group, (4.2 vs. 2.5, respectively, P = 0.009) and more pain reduction (reduction of worst pain is 3.1 for High Tech VR vs. 0.7 for Low Tech VR, P < 0.001). Across groups, the amount of pain reduction was positively and significantly correlated with VR presence levels reported by subjects ( r = 0.48 for 'worst pain', P < 0.005).
Effect of stimulus intensity on spike-LFP relationship in Secondary Somatosensory cortex
Hsiao, Steven S.; Crone, Nathan E.; Franaszczuk, Piotr J.; Niebur, Ernst
2008-01-01
Neuronal oscillations in the gamma frequency range have been reported in many cortical areas, but the role they play in cortical processing remains unclear. We tested a recently proposed hypothesis that the intensity of sensory input is coded in the timing of action potentials relative to the phase of gamma oscillations, thus converting amplitude information to a temporal code. We recorded spikes and local field potential (LFP) from secondary somatosensory (SII) cortex in awake monkeys while presenting a vibratory stimulus at different amplitudes. We developed a novel technique based on matching pursuit to study the interaction between the highly transient gamma oscillations and spikes with high time-frequency resolution. We found that spikes were weakly coupled to LFP oscillations in the gamma frequency range (40−80 Hz), and strongly coupled to oscillations in higher gamma frequencies. However, the phase relationship of neither low-gamma nor high-gamma oscillations changed with stimulus intensity, even with a ten-fold increase. We conclude that, in SII, gamma oscillations are synchronized with spikes, but their phase does not vary with stimulus intensity. Furthermore, high-gamma oscillations (>60 Hz) appear to be closely linked to the occurrence of action potentials, suggesting that LFP high-gamma power could be a sensitive index of the population firing rate near the microelectrode. PMID:18632937
Comparisons of transient evoked otoacoustic emissions using chirp and click stimuli
Keefe, Douglas H.; Feeney, M. Patrick; Hunter, Lisa L.; Fitzpatrick, Denis F.
2016-01-01
Transient-evoked otoacoustic emission (TEOAE) responses (0.7–8 kHz) were measured in normal-hearing adult ears using click stimuli and chirps whose local frequency increased or decreased linearly with time over the stimulus duration. Chirp stimuli were created by allpass filtering a click with relatively constant incident pressure level over frequency. Chirp TEOAEs were analyzed as a nonlinear residual signal by inverse allpass filtering each chirp response into an equivalent click response. Multi-window spectral and temporal averaging reduced noise levels compared to a single-window average. Mean TEOAE levels using click and chirp stimuli were similar with respect to their standard errors in adult ears. TEOAE group delay, group spread, instantaneous frequency, and instantaneous bandwidth were similar overall for chirp and click conditions, except for small differences showing nonlinear interactions differing across stimulus conditions. These results support the theory of a similar generation mechanism on the basilar membrane for both click and chirp conditions based on coherent reflection within the tonotopic region. TEOAE temporal fine structure was invariant across changes in stimulus level, which is analogous to the intensity invariance of click-evoked basilar-membrane displacement data. PMID:27914441
Effects of complex aural stimuli on mental performance.
Vij, Mohit; Aghazadeh, Fereydoun; Ray, Thomas G; Hatipkarasulu, Selen
2003-06-01
The objective of this study is to investigate the effect of complex aural stimuli on mental performance. A series of experiments were designed to obtain data for two different analyses. The first analysis is a "Stimulus" versus "No-stimulus" comparison for each of the four dependent variables, i.e. quantitative ability, reasoning ability, spatial ability and memory of an individual, by comparing the control treatment with the rest of the treatments. The second set of analysis is a multi-variant analysis of variance for component level main effects and interactions. The two component factors are tempo of the complex aural stimuli and sound volume level, each administered at three discrete levels for all four dependent variables. Ten experiments were conducted on eleven subjects. It was found that complex aural stimuli influence the quantitative and spatial aspect of the mind, while the reasoning ability was unaffected by the stimuli. Although memory showed a trend to be worse with the presence of complex aural stimuli, the effect was statistically insignificant. Variation in tempo and sound volume level of an aural stimulus did not significantly affect the mental performance of an individual. The results of these experiments can be effectively used in designing work environments.
Comparisons of transient evoked otoacoustic emissions using chirp and click stimuli.
Keefe, Douglas H; Feeney, M Patrick; Hunter, Lisa L; Fitzpatrick, Denis F
2016-09-01
Transient-evoked otoacoustic emission (TEOAE) responses (0.7-8 kHz) were measured in normal-hearing adult ears using click stimuli and chirps whose local frequency increased or decreased linearly with time over the stimulus duration. Chirp stimuli were created by allpass filtering a click with relatively constant incident pressure level over frequency. Chirp TEOAEs were analyzed as a nonlinear residual signal by inverse allpass filtering each chirp response into an equivalent click response. Multi-window spectral and temporal averaging reduced noise levels compared to a single-window average. Mean TEOAE levels using click and chirp stimuli were similar with respect to their standard errors in adult ears. TEOAE group delay, group spread, instantaneous frequency, and instantaneous bandwidth were similar overall for chirp and click conditions, except for small differences showing nonlinear interactions differing across stimulus conditions. These results support the theory of a similar generation mechanism on the basilar membrane for both click and chirp conditions based on coherent reflection within the tonotopic region. TEOAE temporal fine structure was invariant across changes in stimulus level, which is analogous to the intensity invariance of click-evoked basilar-membrane displacement data.
Prior probability and feature predictability interactively bias perceptual decisions
Dunovan, Kyle E.; Tremel, Joshua J.; Wheeler, Mark E.
2014-01-01
Anticipating a forthcoming sensory experience facilitates perception for expected stimuli but also hinders perception for less likely alternatives. Recent neuroimaging studies suggest that expectation biases arise from feature-level predictions that enhance early sensory representations and facilitate evidence accumulation for contextually probable stimuli while suppressing alternatives. Reasonably then, the extent to which prior knowledge biases subsequent sensory processing should depend on the precision of expectations at the feature level as well as the degree to which expected features match those of an observed stimulus. In the present study we investigated how these two sources of uncertainty modulated pre- and post-stimulus bias mechanisms in the drift-diffusion model during a probabilistic face/house discrimination task. We tested several plausible models of choice bias, concluding that predictive cues led to a bias in both the starting-point and rate of evidence accumulation favoring the more probable stimulus category. We further tested the hypotheses that prior bias in the starting-point was conditional on the feature-level uncertainty of category expectations and that dynamic bias in the drift-rate was modulated by the match between expected and observed stimulus features. Starting-point estimates suggested that subjects formed a constant prior bias in favor of the face category, which exhibits less feature-level variability, that was strengthened or weakened by trial-wise predictive cues. Furthermore, we found that the gain on face/house evidence was increased for stimuli with less ambiguous features and that this relationship was enhanced by valid category expectations. These findings offer new evidence that bridges psychological models of decision-making with recent predictive coding theories of perception. PMID:24978303
The adequate stimulus for mammalian linear vestibular evoked potentials (VsEPs)
Jones, Timothy A.; Jones, Sherri M.; Vijayakumar, Sarath; Brugeaud, Aurore; Bothwell, Marcella; Chabbert, Christian
2013-01-01
Short latency linear vestibular sensory evoked potentials (VsEPs) provide a means to objectively and directly assess the function of gravity receptors in mammals and birds. The importance of this functional measure is illustrated by its use in studies of the genetic basis of vestibular function and disease. Head motion is the stimulus for the VsEP. In the bird, it has been established that neurons mediating the linear VsEP respond collectively to the rate of change in linear acceleration during head movement (i.e. jerk) rather than peak acceleration. The kinematic element of motion responsible for triggering mammalian VsEPs has not been characterized in detail. Here we tested the hypothesis that jerk is the kinematic component of head motion responsible for VsEP characteristics. VsEP amplitudes and latencies changed systematically when peak acceleration level was held constant and jerk level was varied from ~0.9 to 4.6 g/ms. In contrast, responses remained relatively constant when kinematic jerk was held constant and peak acceleration was varied from ~0.9 to 5.5g in mice and ~0.44 to 2.75g in rats. Thus the mammalian VsEP depends on jerk levels and not peak acceleration. We conclude that kinematic jerk is the adequate stimulus for the mammalian VsEP. This sheds light on the behavior of neurons generating the response. The results also provide the basis for standardizing the reporting of stimulus levels, which is key to ensuring that response characteristics reported in the literature by many laboratories can be effectively compared and interpreted. PMID:21664446
Depression proneness and reactions to a depressive stimulus.
Wernicke, Rachel A; Pearlman, Michelle Y; Thorndike, Frances P; Haaga, David A F
2006-01-01
In the context of a project examining depression vulnerability and cigarette smoking, the authors tested whether depression-vulnerable people differed from less vulnerable people in their reactions to a depressive stimulus. Regular smokers with a history of depression but not currently depressed (n = 63) and never-depressed smokers (n = 64) listened to audiotapes of confederates reading depressive and nondepressive scripts and reported their reactions. Neither a history of depression nor self-reported depression proneness predicted reactions to depression. However, depression proneness was positively correlated with beliefs about depression contagion. Likewise, stronger depression-related contagion beliefs and lower levels of empathic responding predicted behavioral rejection of the depressive stimulus.
Effect of eye position during human visual-vestibular integration of heading perception.
Crane, Benjamin T
2017-09-01
Visual and inertial stimuli provide heading discrimination cues. Integration of these multisensory stimuli has been demonstrated to depend on their relative reliability. However, the reference frame of visual stimuli is eye centered while inertia is head centered, and it remains unclear how these are reconciled with combined stimuli. Seven human subjects completed a heading discrimination task consisting of a 2-s translation with a peak velocity of 16 cm/s. Eye position was varied between 0° and ±25° left/right. Experiments were done with inertial motion, visual motion, or a combined visual-inertial motion. Visual motion coherence varied between 35% and 100%. Subjects reported whether their perceived heading was left or right of the midline in a forced-choice task. With the inertial stimulus the eye position had an effect such that the point of subjective equality (PSE) shifted 4.6 ± 2.4° in the gaze direction. With the visual stimulus the PSE shift was 10.2 ± 2.2° opposite the gaze direction, consistent with retinotopic coordinates. Thus with eccentric eye positions the perceived inertial and visual headings were offset ~15°. During the visual-inertial conditions the PSE varied consistently with the relative reliability of these stimuli such that at low visual coherence the PSE was similar to that of the inertial stimulus and at high coherence it was closer to the visual stimulus. On average, the inertial stimulus was weighted near Bayesian ideal predictions, but there was significant deviation from ideal in individual subjects. These findings support visual and inertial cue integration occurring in independent coordinate systems. NEW & NOTEWORTHY In multiple cortical areas visual heading is represented in retinotopic coordinates while inertial heading is in body coordinates. It remains unclear whether multisensory integration occurs in a common coordinate system. The experiments address this using a multisensory integration task with eccentric gaze positions making the effect of coordinate systems clear. The results indicate that the coordinate systems remain separate to the perceptual level and that during the multisensory task the perception depends on relative stimulus reliability. Copyright © 2017 the American Physiological Society.
Retrospective Attention Interacts with Stimulus Strength to Shape Working Memory Performance.
Wildegger, Theresa; Humphreys, Glyn; Nobre, Anna C
2016-01-01
Orienting attention retrospectively to selective contents in working memory (WM) influences performance. A separate line of research has shown that stimulus strength shapes perceptual representations. There is little research on how stimulus strength during encoding shapes WM performance, and how effects of retrospective orienting might vary with changes in stimulus strength. We explore these questions in three experiments using a continuous-recall WM task. In Experiment 1 we show that benefits of cueing spatial attention retrospectively during WM maintenance (retrocueing) varies according to stimulus contrast during encoding. Retrocueing effects emerge for supraliminal but not sub-threshold stimuli. However, once stimuli are supraliminal, performance is no longer influenced by stimulus contrast. In Experiments 2 and 3 we used a mixture-model approach to examine how different sources of error in WM are affected by contrast and retrocueing. For high-contrast stimuli (Experiment 2), retrocues increased the precision of successfully remembered items. For low-contrast stimuli (Experiment 3), retrocues decreased the probability of mistaking a target with distracters. These results suggest that the processes by which retrospective attentional orienting shape WM performance are dependent on the quality of WM representations, which in turn depends on stimulus strength during encoding.
Yao, Xin-Cheng; Li, Yi-Chao
2013-01-01
Retinal development is a dynamic process both anatomically and functionally. High-resolution imaging and dynamic monitoring of photoreceptors and inner neurons can provide important information regarding the structure and function of the developing retina. In this chapter, we describe intrinsic optical signal (IOS) imaging as a high spatiotemporal resolution method for functional study of living retinal tissues. IOS imaging is based on near infrared (NIR) light detection of stimulus-evoked transient change of inherent optical characteristics of the cells. With no requirement for exogenous biomarkers, IOS imaging is totally noninvasive for functional mapping of stimulus-evoked spatiotemporal dynamics of the photoreceptors and inner retinal neurons. PMID:22688714
Mălina, Ciumaşu-Rimbu
2015-01-01
Today little is known about the connection between chronic stress exposure and hearing loss. These effects cannot be explained by differences in HPA axis response but recent studies saying that chronic stress induced limbic system alterations spread to nonlimbic areas affecting auditory system might be the key. On the other hand we know that subjects exposed to chronic stress may prove hypersensitivity to novel stressors. The aim of this study is to confirm that occupational chronic stress (OCS) exposure determines vulnerability to acoustic trauma and to establish a method to identify individuals at risk prior to their exposure to high intensity acoustic stimulus. 60 military personnel with known acoustic trauma injury evidentiated through audiograms and occupational chronic stress exposure quantified through validated questionnaires were exposed to mild novel stressor: occupational medicine evaluation and clinically assessed for maladaptive cardiovascular response (MCVR). Employees were split in two groups, group 1 (MCVR) and group 2 (non MCVR). We found positive correlation between level of perceived OCS and level of hearing loss on entire group and between groups with values of parameters significantly higher in group 1. Subjects exposed to OCS with hypersensitivity to novel stressor evidentiated through maladaptive cardiovascular stress response may be more vulnerable to high intensity acoustic stimulus and consequently acoustic trauma. Establishing methods and biomarkers that help us indentify individuals at risk of developing acoustic trauma might decrease the high burden of hearing loss.
Fitzpatrick, Skye; Kuo, Janice R
2016-07-30
Basic emotion theory suggests that the effectiveness of different emotion regulation strategies vary with the intensity of the emotionally-salient stimulus. Although findings from studies using healthy samples are concordant with what is proposed by theory, it is unclear whether these relationships hold true among individuals with borderline personality disorder (BPD). Twenty-five individuals with BPD and 30 HCs were exposed to negative images of varying levels of emotional arousal and were instructed to either react as they normally would, distract, or use mindful awareness. Self-reported negativity ratings, heart rate, and skin conductance level (SCL) were monitored throughout. SCL data indicated that increases in image arousal resulted in larger reductions in SCL when distracting but not when implementing mindful awareness. Self-report data suggested that, in HCs, the effectiveness of mindful awareness decreased to a greater extent than distraction when image arousal increased. These findings are consistent with basic emotion research and suggest that some forms of emotion regulation (distraction) are more suited to high emotion arousal contexts than others (mindful awareness) and that, compared with HCs, individuals with BPD may be more resilient to the deteriorating effectiveness of mindful awareness with respect to increasing emotional arousal. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Naud, Richard; Gerstner, Wulfram
2012-01-01
The response of a neuron to a time-dependent stimulus, as measured in a Peri-Stimulus-Time-Histogram (PSTH), exhibits an intricate temporal structure that reflects potential temporal coding principles. Here we analyze the encoding and decoding of PSTHs for spiking neurons with arbitrary refractoriness and adaptation. As a modeling framework, we use the spike response model, also known as the generalized linear neuron model. Because of refractoriness, the effect of the most recent spike on the spiking probability a few milliseconds later is very strong. The influence of the last spike needs therefore to be described with high precision, while the rest of the neuronal spiking history merely introduces an average self-inhibition or adaptation that depends on the expected number of past spikes but not on the exact spike timings. Based on these insights, we derive a 'quasi-renewal equation' which is shown to yield an excellent description of the firing rate of adapting neurons. We explore the domain of validity of the quasi-renewal equation and compare it with other rate equations for populations of spiking neurons. The problem of decoding the stimulus from the population response (or PSTH) is addressed analogously. We find that for small levels of activity and weak adaptation, a simple accumulator of the past activity is sufficient to decode the original input, but when refractory effects become large decoding becomes a non-linear function of the past activity. The results presented here can be applied to the mean-field analysis of coupled neuron networks, but also to arbitrary point processes with negative self-interaction.
Ruff, Kiersten M; Roberts, Stefan; Chilkoti, Ashutosh; Pappu, Rohit V
2018-06-24
Proteins and synthetic polymers can undergo phase transitions in response to changes to intensive solution parameters such as temperature, proton chemical potentials (pH), and hydrostatic pressure. For proteins and protein-based polymers, the information required for stimulus responsive phase transitions is encoded in their amino acid sequence. Here, we review some of the key physical principles that govern the phase transitions of archetypal intrinsically disordered protein polymers (IDPPs). These are disordered proteins with highly repetitive amino acid sequences. Advances in recombinant technologies have enabled the design and synthesis of protein sequences of a variety of sequence complexities and lengths. We summarize insights that have been gleaned from the design and characterization of IDPPs that undergo thermo-responsive phase transitions and build on these insights to present a general framework for IDPPs with pH and pressure responsive phase behavior. In doing so, we connect the stimulus responsive phase behavior of IDPPs with repetitive sequences to the coil-to-globule transitions that these sequences undergo at the single chain level in response to changes in stimuli. The proposed framework and ongoing studies of stimulus responsive phase behavior of designed IDPPs have direct implications in bioengineering, where designing sequences with bespoke material properties broadens the spectrum of applications, and in biology and medicine for understanding the sequence-specific driving forces for the formation of protein-based membraneless organelles as well as biological matrices that act as scaffolds for cells and mediators of cell-to-cell communication. Copyright © 2018. Published by Elsevier Ltd.
Gelbard-Sagiv, Hagar; Faivre, Nathan; Mudrik, Liad; Koch, Christof
2016-01-01
The scope and limits of unconscious processing are a matter of ongoing debate. Lately, continuous flash suppression (CFS), a technique for suppressing visual stimuli, has been widely used to demonstrate surprisingly high-level processing of invisible stimuli. Yet, recent studies showed that CFS might actually allow low-level features of the stimulus to escape suppression and be consciously perceived. The influence of such low-level awareness on high-level processing might easily go unnoticed, as studies usually only probe the visibility of the feature of interest, and not that of lower-level features. For instance, face identity is held to be processed unconsciously since subjects who fail to judge the identity of suppressed faces still show identity priming effects. Here we challenge these results, showing that such high-level priming effects are indeed induced by faces whose identity is invisible, but critically, only when a lower-level feature, such as color or location, is visible. No evidence for identity processing was found when subjects had no conscious access to any feature of the suppressed face. These results suggest that high-level processing of an image might be enabled by-or co-occur with-conscious access to some of its low-level features, even when these features are not relevant to the processed dimension. Accordingly, they call for further investigation of lower-level awareness during CFS, and reevaluation of other unconscious high-level processing findings.
Zhang, Panpan; Zhu, Feng; Wang, Faxing; Wang, Jinhui; Dong, Renhao; Zhuang, Xiaodong; Schmidt, Oliver G; Feng, Xinliang
2017-02-01
Stimulus-responsive micro-supercapacitors (SR-MSCs) with ultrahigh volumetric energy density and reversible electrochromic effect are successfully fabricated by employing a vanadium pentoxide and electrochemical exfoliated graphene-based hybrid nanopaper and viologen as electrode and stimulus-responsive material, respectively. The fabricated high-performance SR-MSCs offer new opportunities for intuitively observing the working state of energy devices without the aid of extra equipment and techniques. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stimulus Sensitivity of a Spiking Neural Network Model
NASA Astrophysics Data System (ADS)
Chevallier, Julien
2018-02-01
Some recent papers relate the criticality of complex systems to their maximal capacity of information processing. In the present paper, we consider high dimensional point processes, known as age-dependent Hawkes processes, which have been used to model spiking neural networks. Using mean-field approximation, the response of the network to a stimulus is computed and we provide a notion of stimulus sensitivity. It appears that the maximal sensitivity is achieved in the sub-critical regime, yet almost critical for a range of biologically relevant parameters.
Stimulus Scale Seen as Issue: K-12 Funding Boost Could Shift Federal-State Balance of Power
ERIC Educational Resources Information Center
Klein, Alyson
2009-01-01
The sheer scale of the new education aid envisioned under the economic-stimulus package now pending in Congress is forcing educators and state officials to consider how they would absorb that funding and how it could transform--or distort--school programs at the local level. Officials from governors' mansions on down are generally pleased at the…
de Bruijn cycles for neural decoding.
Aguirre, Geoffrey Karl; Mattar, Marcelo Gomes; Magis-Weinberg, Lucía
2011-06-01
Stimulus counterbalance is critical for studies of neural habituation, bias, anticipation, and (more generally) the effect of stimulus history and context. We introduce de Bruijn cycles, a class of combinatorial objects, as the ideal source of pseudo-random stimulus sequences with arbitrary levels of counterbalance. Neuro-vascular imaging studies (such as BOLD fMRI) have an additional requirement imposed by the filtering and noise properties of the method: only some temporal frequencies of neural modulation are detectable. Extant methods of generating counterbalanced stimulus sequences yield neural modulations that are weakly (or not at all) detected by BOLD fMRI. We solve this limitation using a novel "path-guided" approach for the generation of de Bruijn cycles. The algorithm encodes a hypothesized neural modulation of specific temporal frequency within the seemingly random order of events. By positioning the modulation between the signal and noise bands of the neuro-vascular imaging method, the resulting sequence markedly improves detection power. These sequences may be used to study stimulus context and history effects in a manner not previously possible. Copyright © 2011 Elsevier Inc. All rights reserved.
Momentary Conscious Pairing Eliminates Unconscious-Stimulus Influences on Task Selection
Zhou, Fanzhi Anita; Davis, Greg
2012-01-01
Task selection, previously thought to operate only under conscious, voluntary control, can be activated by unconsciously-perceived stimuli. In most cases, such activation is observed for unconscious stimuli that closely resemble other conscious, task-relevant stimuli and hence may simply reflect perceptual activation of consciously established stimulus-task associations. However, other studies have reported ‘direct’ unconscious-stimulus influences on task selection in the absence of any conscious, voluntary association between that stimulus and task (e.g., Zhou and Davis, 2012). In new experiments, described here, these latter influences on cued- and free-choice task selection appear robust and long-lived, yet, paradoxically, are suppressed to undetectable levels following momentary conscious prime-task pairing. Assessing, and rejecting, three intuitive explanations for such suppressive effects, we conclude that conscious prime-task pairing minimizes non-strategic influences of unconscious stimuli on task selection, insulating endogenous choice mechanisms from maladaptive external control. PMID:23050012
Moutsopoulou, Karolina; Waszak, Florian
2012-04-01
The differential effects of task and response conflict in priming paradigms where associations are strengthened between a stimulus, a task, and a response have been demonstrated in recent years with neuroimaging methods. However, such effects are not easily disentangled with only measurements of behavior, such as reaction times (RTs). Here, we report the application of ex-Gaussian distribution analysis on task-switching RT data and show that conflict related to stimulus-response associations retrieved after a switch of tasks is reflected in the Gaussian component. By contrast, conflict related to the retrieval of stimulus-task associations is reflected in the exponential component. Our data confirm that the retrieval of stimulus-task and -response associations affects behavior differently. Ex-Gaussian distribution analysis is a useful tool for pulling apart these different levels of associative priming that are not distinguishable in analyses of RT means.
Edges, colour and awareness in blindsight.
Alexander, Iona; Cowey, Alan
2010-06-01
It remains unclear what is being processed in blindsight in response to faces, colours, shapes, and patterns. This was investigated in two hemianopes with chromatic and achromatic stimuli with sharp or shallow luminance or chromatic contrast boundaries or temporal onsets. Performance was excellent only when stimuli had sharp spatial boundaries. When discrimination between isoluminant coloured Gaussians was good it declined to chance levels if stimulus onset was slow. The ability to discriminate between instantaneously presented colours in the hemianopic field depended on their luminance, indicating that wavelength discrimination totally independent of other stimulus qualities is absent. When presented with narrow-band colours the hemianopes detected a stimulus maximally effective for S-cones but invisible to M- and L-cones, indicating that blindsight is mediated not just by the mid-brain, which receives no S-cone input, or that the rods contribute to blindsight. The results show that only simple stimulus features are processed in blindsight. 2010 Elsevier Inc. All rights reserved.
From the big five to the general factor of personality: a dynamic approach.
Micó, Joan C; Amigó, Salvador; Caselles, Antonio
2014-10-28
An integrating and dynamic model of personality that allows predicting the response of the basic factors of personality, such as the Big Five Factors (B5F) or the general factor of personality (GFP) to acute doses of drug is presented in this paper. Personality has a dynamic nature, i.e., as a consequence of a stimulus, the GFP dynamics as well as each one of the B5F of personality dynamics can be explained by the same model (a system of three coupled differential equations). From this invariance hypothesis, a partial differential equation, whose solution relates the GFP with each one of the B5F, is deduced. From this dynamic approach, a co-evolution of the GFP and each one of the B5F occurs, rather than an unconnected evolution, as a consequence of the same stimulus. The hypotheses and deductions are validated through an experimental design centered on the individual, where caffeine is the considered stimulus. Thus, as much from a theoretical point of view as from an applied one, the models here proposed open a new perspective in the understanding and study of personality like a global system that interacts intimately with the environment, being a clear bet for the high level inter-disciplinary research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gavin, J.; Montgomery, J.C.
The principle of stimulus generalization provided the underlying argument for a test of hypotheses regarding the association of community and job satisfactions and a critique of related theory and research. Two-stage least squares (2SLS) analysis made possible the examination of reciprocal causation, a notion inherent in the theoretical argument. Data were obtained from 276 employees of a Western U.S. coal mine as part of a work attitudes survey. The 2SLS analysis indicated a significant impact of community satisfaction on job satisfaction and an effect of borderline significance of job on community satisfaction. Theory-based correlational comparisons were made on groups ofmore » employees residing in four distinct communities, high and low tenure groups, males and females, and different levels in the mine's hierarchy. The pattern of correlations was generally consistent with predictions, but significance tests for differences yielded equivocal support. When considered in the context of previous studies, the data upheld a reciprocal causal model and the explanatory principle of stimulus generalization for understanding the relation of community and job satisfactions. Sample characteristics necessitate cautious interpretation and the model per se might best be viewed as a heuristic framework for more definitive research.« less
Digital Parallel Processor Array for Optimum Path Planning
NASA Technical Reports Server (NTRS)
Kremeny, Sabrina E. (Inventor); Fossum, Eric R. (Inventor); Nixon, Robert H. (Inventor)
1996-01-01
The invention computes the optimum path across a terrain or topology represented by an array of parallel processor cells interconnected between neighboring cells by links extending along different directions to the neighboring cells. Such an array is preferably implemented as a high-speed integrated circuit. The computation of the optimum path is accomplished by, in each cell, receiving stimulus signals from neighboring cells along corresponding directions, determining and storing the identity of a direction along which the first stimulus signal is received, broadcasting a subsequent stimulus signal to the neighboring cells after a predetermined delay time, whereby stimulus signals propagate throughout the array from a starting one of the cells. After propagation of the stimulus signal throughout the array, a master processor traces back from a selected destination cell to the starting cell along an optimum path of the cells in accordance with the identity of the directions stored in each of the cells.
Extinction of likes and dislikes: effects of feature-specific attention allocation.
Vanaelst, Jolien; Spruyt, Adriaan; Everaert, Tom; De Houwer, Jan
2017-12-01
The evaluative conditioning (EC) effect refers to the change in the liking of a neutral stimulus (conditioned stimulus, CS) due to its pairing with another stimulus (unconditioned stimulus, US). We examined whether the extinction rate of the EC effect is moderated by feature-specific attention allocation. In two experiments, CSs were abstract Gabor patches varying along two orthogonal, perceptual dimensions (i.e. spatial frequency and orientation). During the acquisition phase, one of these dimensions was predictive of the valence of the USs. During the extinction phase, CSs were presented alone and participants were asked to categorise the CSs either according to their valence, the perceptual dimension that was task-relevant during the acquisition phase, or a perceptual dimension that was task-irrelevant during the acquisition phase. As predicted, explicit valence measures revealed a linear increase in the extinction rate of the EC effect as participants were encouraged to assign attention to non-evaluative stimulus information during the extinction phase. In Experiment 1, Affect Misattribution Paradigm (AMP) data mimicked this pattern of results, although the effect just missed conventional levels of significance. In Experiment 2, the AMP data revealed an increase of the EC effect if attention was focused on evaluative stimulus information. Potential mechanisms to explain these findings are discussed.
Panagiotidi, Maria; Overton, Paul G; Stafford, Tom
2017-11-01
Abnormalities in multimodal processing have been found in many developmental disorders such as autism and dyslexia. However, surprisingly little empirical work has been conducted to test the integrity of multisensory integration in Attention Deficit Hyperactivity Disorder (ADHD). The main aim of the present study was to examine links between symptoms of ADHD (as measured using a self-report scale in a healthy adult population) and the temporal aspects of multisensory processing. More specifically, a Simultaneity Judgement (SJ) and a Temporal Order Judgement (TOJ) task were used in participants with low and high levels of ADHD-like traits to measure the temporal integration window and Just-Noticeable Difference (JND) (respectively) between the timing of an auditory beep and a visual pattern presented over a broad range of stimulus onset asynchronies. The Point of Subjective Similarity (PSS) was also measured in both cases. In the SJ task, participants with high levels of ADHD-like traits considered significantly fewer stimuli to be simultaneous than participants with high levels of ADHD-like traits, and the former were found to have significantly smaller temporal windows of integration (although no difference was found in the PSS in the SJ or TOJ tasks, or the JND in the latter). This is the first study to identify an abnormal temporal integration window in individuals with ADHD-like traits. Perceived temporal misalignment of two or more modalities can lead to distractibility (e.g., when the stimulus components from different modalities occur separated by too large of a temporal gap). Hence, an abnormality in the perception of simultaneity could lead to the increased distractibility seen in ADHD. Copyright © 2017 Elsevier B.V. All rights reserved.
Coincidence timing of a soccer pass: effects of stimulus velocity and movement distance.
Williams, L R
2000-08-01
The effect of stimulus velocity and movement extent on coincidence timing and spatial accuracy of a soccer pass was investigated. A Bassin anticipation timer provided light stimulus velocities of 1.79 or 2.68 m/sec. (designated as "Low" and "High", respectively), and subjects were required to kick a stationary soccer ball so that it struck a target in coincidence with the arrival of the light stimulus at the end of the runway. Two kick types were used. The "Short" condition began with the subject 70 cm from the ball and required a single forward step with the nonkicking leg before making the kick. The "Long" condition began 140 cm from the ball and required two steps before the kick. Twenty male subjects were given 16 trials under each of the four combinations of stimulus velocity and kick type. The expectation that the faster stimulus velocity would be associated with lower coincidence timing scores for both absolute error (AE) and variable error (VE) and with late responding for constant error (CEO) was upheld with the exception that for the Long Kick-High Velocity condition, AE was highest. The index of preprogramming (IP) was used to test the hypothesis that a two-stage control process would characterise coincidence anticipation performance involving whole-body movements. Results showed that the preparatory phase of responding produced zero-order IPs signifying reliance on feedback control. Also, while the striking phase produced high IP and suggested reliance on preprogrammed control, the possibility that the High Velocity conditions may have limited the responses was recognised. As a consequence, the role of open-loop processes remained equivocal. The findings are, however, in agreement with the view that the sensorimotor and movement-execution phases of responding require a process that is characterised by adaptability to regulatory features of the environment via closed loop mechanisms involving perception-action coupling.
Forschack, Norman; Nierhaus, Till; Müller, Matthias M; Villringer, Arno
2017-07-19
Attention filters and weights sensory information according to behavioral demands. Stimulus-related neural responses are increased for the attended stimulus. Does alpha-band activity mediate this effect and is it restricted to conscious sensory events (suprathreshold), or does it also extend to unconscious stimuli (subthreshold)? To address these questions, we recorded EEG in healthy male and female volunteers undergoing subthreshold and suprathreshold somatosensory electrical stimulation to the left or right index finger. The task was to detect stimulation at the randomly alternated cued index finger. Under attention, amplitudes of somatosensory evoked potentials increased 50-60 ms after stimulation (P1) for both suprathreshold and subthreshold events. Prestimulus amplitude of peri-Rolandic alpha, that is mu, showed an inverse relationship to P1 amplitude during attention compared to when the finger was unattended. Interestingly, intermediate and high amplitudes of mu rhythm were associated with the highest P1 amplitudes during attention and smallest P1 during lack of attention, that is, these levels of alpha rhythm seemed to optimally support the behavioral goal ("detect" stimuli at the cued finger while ignoring the other finger). Our results show that attention enhances neural processing for both suprathreshold and subthreshold stimuli and they highlight a rather complex interaction between attention, Rolandic alpha activity, and their effects on stimulus processing. SIGNIFICANCE STATEMENT Attention is crucial in prioritizing processing of relevant perceptible (suprathreshold) stimuli: it filters and weights sensory input. The present study investigates the controversially discussed question whether this attention effect extends to imperceptible (subthreshold) stimuli as well. We found noninvasive EEG signatures for attentional modulation of neural events following perceptible and imperceptible somatosensory stimulation in human participants. Specifically, stimulus processing for both kinds of stimulation, subthreshold and suprathreshold, is enhanced by attention. Interestingly, Rolandic alpha rhythm strength and its influence on stimulus processing are strikingly altered by attention most likely to optimally achieve the behavioral goal. Copyright © 2017 the authors 0270-6474/17/376983-12$15.00/0.
A method for real-time visual stimulus selection in the study of cortical object perception.
Leeds, Daniel D; Tarr, Michael J
2016-06-01
The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit's image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across pre-determined 1cm(3) rain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds et al., 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) real-time estimation of cortical responses to stimuli is reasonably consistent; 3) search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond. Copyright © 2016 Elsevier Inc. All rights reserved.
A method for real-time visual stimulus selection in the study of cortical object perception
Leeds, Daniel D.; Tarr, Michael J.
2016-01-01
The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit’s image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across predetermined 1 cm3 brain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) Real-time estimation of cortical responses to stimuli are reasonably consistent; 3) Search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond. PMID:26973168
Inhibition, interference, and conflict in task switching.
Costa, Russell E; Friedrich, Frances J
2012-12-01
The role of inhibition in the task-switching process has received increased empirical and theoretical attention in the literature on cognitive control. Many accounts have suggested that inhibition occurs when a conflict must be resolved-for example, when a target stimulus contains features of more than one task. In the two experiments reported here, we used variants of backward inhibition, or N - 2 repetition, designs to examine (1) whether inhibition occurs in the absence of conflict at the stimulus or response level, (2) when in the task-switching process such inhibition may occur, and (3) the potential consequences of inhibition. In Experiment 1, we demonstrate that neither stimulus- nor response-level conflict is necessary for inhibition to occur, while the results of Experiment 2 suggest that inhibition may be associated with a reduction of proactive interference (PI) from a previously performed task. Evidence of inhibition and the reduction of PI both occurred at the task-set level. However, inhibition of specific stimulus values can also occur, but this is clearly separable from task-set inhibition. Both experiments also provided evidence that task-set inhibition can be applied at the time of the new task cue, as opposed to at the onset of the target or at the response stage of the trial. Taken together, the results from these experiments provide insight into when and where in the task-switching process inhibition may occur, as well as into the potential functional benefits that inhibition of task sets may provide.
Emotional Picture and Word Processing: An fMRI Study on Effects of Stimulus Complexity
Schlochtermeier, Lorna H.; Kuchinke, Lars; Pehrs, Corinna; Urton, Karolina; Kappelhoff, Hermann; Jacobs, Arthur M.
2013-01-01
Neuroscientific investigations regarding aspects of emotional experiences usually focus on one stimulus modality (e.g., pictorial or verbal). Similarities and differences in the processing between the different modalities have rarely been studied directly. The comparison of verbal and pictorial emotional stimuli often reveals a processing advantage of emotional pictures in terms of larger or more pronounced emotion effects evoked by pictorial stimuli. In this study, we examined whether this picture advantage refers to general processing differences or whether it might partly be attributed to differences in visual complexity between pictures and words. We first developed a new stimulus database comprising valence and arousal ratings for more than 200 concrete objects representable in different modalities including different levels of complexity: words, phrases, pictograms, and photographs. Using fMRI we then studied the neural correlates of the processing of these emotional stimuli in a valence judgment task, in which the stimulus material was controlled for differences in emotional arousal. No superiority for the pictorial stimuli was found in terms of emotional information processing with differences between modalities being revealed mainly in perceptual processing regions. While visual complexity might partly account for previously found differences in emotional stimulus processing, the main existing processing differences are probably due to enhanced processing in modality specific perceptual regions. We would suggest that both pictures and words elicit emotional responses with no general superiority for either stimulus modality, while emotional responses to pictures are modulated by perceptual stimulus features, such as picture complexity. PMID:23409009
Lavender, Jason M; Wonderlich, Stephen A; Crosby, Ross D; Engel, Scott G; Mitchell, James E; Crow, Scott J; Peterson, Carol B; Le Grange, Daniel
2013-08-01
This study sought to empirically derive and validate clinically relevant personality-based subtypes of anorexia nervosa (AN). Women (N = 116) with full or subthreshold AN completed baseline measures of personality, clinical variables, and eating disorder (ED) symptoms, followed by two weeks of ecological momentary assessment (EMA). A latent profile analysis was conducted to identify personality subtypes, which were compared on baseline clinical variables and EMA variables. The best-fitting model supported three subtypes: underregulated, overregulated, and low psychopathology. The underregulated subtype (characterized by high Stimulus Seeking, Self-Harm, and Oppositionality) displayed greater baseline ED symptoms, as well as lower positive affect and greater negative affect, self-discrepancy, and binge eating in the natural environment. The overregulated subtype (characterized by high Compulsivity and low Stimulus Seeking) was more likely to have a lifetime obsessive-compulsive disorder diagnosis and exhibited greater perfectionism; levels of negative affect, positive affect, and self-discrepancy in this group were intermediate between the other subtypes. The low psychopathology subtype (characterized by normative personality) displayed the lowest levels of baseline ED symptoms, co-occurring disorders, and ED behaviors measured via EMA. Findings support the validity of these personality-based subtypes, suggesting the potential utility of addressing within-diagnosis heterogeneity in the treatment of AN. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sun, Pei; Gardner, Justin L.; Costagli, Mauro; Ueno, Kenichi; Waggoner, R. Allen; Tanaka, Keiji; Cheng, Kang
2013-01-01
Cells in the animal early visual cortex are sensitive to contour orientations and form repeated structures known as orientation columns. At the behavioral level, there exist 2 well-known global biases in orientation perception (oblique effect and radial bias) in both animals and humans. However, their neural bases are still under debate. To unveil how these behavioral biases are achieved in the early visual cortex, we conducted high-resolution functional magnetic resonance imaging experiments with a novel continuous and periodic stimulation paradigm. By inserting resting recovery periods between successive stimulation periods and introducing a pair of orthogonal stimulation conditions that differed by 90° continuously, we focused on analyzing a blood oxygenation level-dependent response modulated by the change in stimulus orientation and reliably extracted orientation preferences of single voxels. We found that there are more voxels preferring horizontal and vertical orientations, a physiological substrate underlying the oblique effect, and that these over-representations of horizontal and vertical orientations are prevalent in the cortical regions near the horizontal- and vertical-meridian representations, a phenomenon related to the radial bias. Behaviorally, we also confirmed that there exists perceptual superiority for horizontal and vertical orientations around horizontal and vertical meridians, respectively. Our results, thus, refined the neural mechanisms of these 2 global biases in orientation perception. PMID:22661413
Daikhin, Luba; Ahissar, Merav
2015-07-01
Introducing simple stimulus regularities facilitates learning of both simple and complex tasks. This facilitation may reflect an implicit change in the strategies used to solve the task when successful predictions regarding incoming stimuli can be formed. We studied the modifications in brain activity associated with fast perceptual learning based on regularity detection. We administered a two-tone frequency discrimination task and measured brain activation (fMRI) under two conditions: with and without a repeated reference tone. Although participants could not explicitly tell the difference between these two conditions, the introduced regularity affected both performance and the pattern of brain activation. The "No-Reference" condition induced a larger activation in frontoparietal areas known to be part of the working memory network. However, only the condition with a reference showed fast learning, which was accompanied by a reduction of activity in two regions: the left intraparietal area, involved in stimulus retention, and the posterior superior-temporal area, involved in representing auditory regularities. We propose that this joint reduction reflects a reduction in the need for online storage of the compared tones. We further suggest that this change reflects an implicit strategic shift "backwards" from reliance mainly on working memory networks in the "No-Reference" condition to increased reliance on detected regularities stored in high-level auditory networks.
Loiselle, Louise H; Dorman, Michael F; Yost, William A; Cook, Sarah J; Gifford, Rene H
2016-08-01
To assess the role of interaural time differences and interaural level differences in (a) sound-source localization, and (b) speech understanding in a cocktail party listening environment for listeners with bilateral cochlear implants (CIs) and for listeners with hearing-preservation CIs. Eleven bilateral listeners with MED-EL (Durham, NC) CIs and 8 listeners with hearing-preservation CIs with symmetrical low frequency, acoustic hearing using the MED-EL or Cochlear device were evaluated using 2 tests designed to task binaural hearing, localization, and a simulated cocktail party. Access to interaural cues for localization was constrained by the use of low-pass, high-pass, and wideband noise stimuli. Sound-source localization accuracy for listeners with bilateral CIs in response to the high-pass noise stimulus and sound-source localization accuracy for the listeners with hearing-preservation CIs in response to the low-pass noise stimulus did not differ significantly. Speech understanding in a cocktail party listening environment improved for all listeners when interaural cues, either interaural time difference or interaural level difference, were available. The findings of the current study indicate that similar degrees of benefit to sound-source localization and speech understanding in complex listening environments are possible with 2 very different rehabilitation strategies: the provision of bilateral CIs and the preservation of hearing.
Aging Affects Adaptation to Sound-Level Statistics in Human Auditory Cortex.
Herrmann, Björn; Maess, Burkhard; Johnsrude, Ingrid S
2018-02-21
Optimal perception requires efficient and adaptive neural processing of sensory input. Neurons in nonhuman mammals adapt to the statistical properties of acoustic feature distributions such that they become sensitive to sounds that are most likely to occur in the environment. However, whether human auditory responses adapt to stimulus statistical distributions and how aging affects adaptation to stimulus statistics is unknown. We used MEG to study how exposure to different distributions of sound levels affects adaptation in auditory cortex of younger (mean: 25 years; n = 19) and older (mean: 64 years; n = 20) adults (male and female). Participants passively listened to two sound-level distributions with different modes (either 15 or 45 dB sensation level). In a control block with long interstimulus intervals, allowing neural populations to recover from adaptation, neural response magnitudes were similar between younger and older adults. Critically, both age groups demonstrated adaptation to sound-level stimulus statistics, but adaptation was altered for older compared with younger people: in the older group, neural responses continued to be sensitive to sound level under conditions in which responses were fully adapted in the younger group. The lack of full adaptation to the statistics of the sensory environment may be a physiological mechanism underlying the known difficulty that older adults have with filtering out irrelevant sensory information. SIGNIFICANCE STATEMENT Behavior requires efficient processing of acoustic stimulation. Animal work suggests that neurons accomplish efficient processing by adjusting their response sensitivity depending on statistical properties of the acoustic environment. Little is known about the extent to which this adaptation to stimulus statistics generalizes to humans, particularly to older humans. We used MEG to investigate how aging influences adaptation to sound-level statistics. Listeners were presented with sounds drawn from sound-level distributions with different modes (15 vs 45 dB). Auditory cortex neurons adapted to sound-level statistics in younger and older adults, but adaptation was incomplete in older people. The data suggest that the aging auditory system does not fully capitalize on the statistics available in sound environments to tune the perceptual system dynamically. Copyright © 2018 the authors 0270-6474/18/381989-11$15.00/0.
Pu, Fang; Ren, Weiyan; Fu, Hongyuan; Zheng, Xuan; Yang, Min; Jan, Yih-Kuen; Fan, Yubo
2018-05-11
The aim of this study was to investigate the plantar blood flow response to the same accumulated pressure stimulus in diabetic patients with different peak plantar pressure (PPP), which is important for assessing the risk of diabetic foot ulcer. Eleven diabetic subjects with high PPP (PPP ≥ 207 kPa) and 8 diabetic subjects with low PPP (PPP < 207 kPa) were asked to walk naturally on a treadmill so as to induce an accumulated stimulus of 73,000 kPa·s on their first metatarsal head, which was monitored with a sensorized insole. Blood perfusion (BP) in the first metatarsal head was measured before and after walking. Results showed that blood flow after applying the same walking stimulus was significantly decreased in comparison to the basal BP before walking in both high PPP and low PPP groups (p < 0.05), but no significant differences were found between the two groups in terms of BP parameters and its percentage change (p > 0.05). Moreover, BP parameters were not significantly correlated to PPP and the pressure-time integral (PTI) of the subjects' gait (p > 0.05). This indicated that, besides PPP and PTI, the accumulated mechanical stimulus should be taken into consideration when assessing the risk of diabetic patients developing foot ulcers. Graphical abstract Plantar blood flow response to a walking stimulus.
Leslie, Eric; Bhargava, Valmik
2012-01-01
A subthreshold pharyngeal stimulus induces lower esophageal sphincter (LES) relaxation and inhibits progression of ongoing peristaltic contraction in the esophagus. Recent studies show that longitudinal muscle contraction of the esophagus may play a role in LES relaxation. Our goal was to determine whether a subthreshold pharyngeal stimulus induces contraction of the longitudinal muscle of the esophagus and to determine the nature of this contraction. Studies were conducted in 16 healthy subjects. High resolution manometry (HRM) recorded pressures, and high frequency intraluminal ultrasound (HFIUS) images recorded longitudinal muscle contraction at various locations in the esophagus. Subthreshold pharyngeal stimulation was induced by injection of minute amounts of water in the pharynx. A subthreshold pharyngeal stimulus induced strong contraction and caudal descent of the upper esophageal sphincter (UES) along with relaxation of the LES. HFIUS identified longitudinal muscle contraction of the proximal (3–5 cm below the UES) but not the distal esophagus. Pharyngeal stimulus, following a dry swallow, blocked the progression of dry swallow-induced peristalsis; this was also associated with UES contraction and descent along with the contraction of longitudinal muscle of the proximal esophagus. We identify a unique pattern of longitudinal muscle contraction of the proximal esophagus in response to subthreshold pharyngeal stimulus, which we propose may be responsible for relaxation of the distal esophagus and LES through the stretch sensitive activation of myenteric inhibitory motor neurons. PMID:22173917
Effects of Middle Ear Pressure on Otoacoustic Emission Measures.
NASA Astrophysics Data System (ADS)
Zhang, Ming
1995-01-01
Otoacoustic emissions (OAEs) are used extensively in hearing evaluations. Changes in middle ear pressure may have an effect on both forward and backward transmission of signals through the middle ear. The effect that such changes have on OAEs may depend on extent of pressure change, stimulus frequency, and stimulus level. This study quantitatively evaluates the effects of these variables on distortion product OAEs (DPOAEs) and cochlear microphonic distortion products (CMDPs) for a wide range of stimuli. Pigmented adult guinea pigs were experimental subjects. An animal surgical model was established to manipulate pressure in the middle ear and CMDP and DPOAE were simultaneously measured. The effects on forward transmission were determined from the CMDP data. It was assumed that the DPOAE measures were affected by changes in both forward and backward transmission. The effects on backward transmission were determined from the DPOAE data after the effect on forward transmission were subtracted out. For all conditions the frequency ratio rm f_2/f_1 was held at 1.2 and the level ratio rm L_1/L_2 was 10 dB. The effects on forward transmission were similar to those for backward transmission in all experimental conditions. Negative pressure had a greater effect than positive pressure. Positive pressures of +10 and +20 cmH_2O affected transmission for low frequency stimuli (f_2 = 1620 and 2680 Hz) but had little effect for high frequency stimuli (f_2 = 6980 and 10250 Hz). Negative pressures of -2.5 to -10 cmH_2O affected transmission across all frequencies tested. The effect at low frequencies is hypothesized to be related to tympanic membrane stiffness. The effect of negative pressure at high frequencies may be related to change in the incudostapedial joint. The slope of growth function decreased with the pressure change for DPOAEs but changed little for CMDPs. The decrease in slope for DPOAEs suggests that the level chosen for analysis can influence the result of the evaluation. In this study, such influence was minimized by averaging over a range of stimulus level. Finally it was noted that pressure could have a greater effect on OAE threshold (affected by both forward and backward transmission) than on behavioral threshold (affected only by forward transmission).
Simultaneous recording of multifocal VEP responses to short-wavelength and achromatic stimuli
Wang, Min; Hood, Donald C.
2010-01-01
A paradigm is introduced that allows for simultaneous recording of the pattern-onset multifocal visual evoked potentials (mfVEP) to both short-wavelength (SW) and achromatic (A) stimuli. There were 5 sets of stimulus conditions, each of which is defined by two semi-concurrently presented stimuli, A64/SW (a 64% contrast achromatic stimulus and a short-wavelength stimulus), A64/A8 (64% achromatic/8% achromatic), A0/A8 (0% (gray) achromatic/8% achromatic), A64/A0 and A0/SW. When paired with A64 as part of A64/SW, the SW stimulus yielded mfVEP responses (SWmfVEP) with diminished amplitude in the fovea, consistent with the known sensitivity of the S-cone system. In addition, when A8, which is approximately equal to the L and M cone contribution of the SW stimulus, was recorded alone, the response to A8 was small, but significantly larger than noise. However, when A8 was paired with A64, the response to A8 was reduced to close to noise level, suggesting that the LM cone contribution of the SWmfVEP can be suppressed by A64. When A64 was recorded alone, the response to A64 was about 32% larger than the mfVEP for A64 when paired with the SW. Likewise, the presence of A64 stimulus also reduces the response of SWmfVEP by 35%. Finally, an intense narrow-band yellow background prolonged the latency of SW response for the A0/SW stimulus but not the latency of SW response for the A64/SW stimulus. These results indicate that it is possible to simultaneously record an SWmfVEP with little LM cone contribution along with an achromatic mfVEP. PMID:20499134
Data management system DIU test system
NASA Technical Reports Server (NTRS)
1976-01-01
An operational and functional description is given of the data management system. Descriptions are included for the test control unit, analog stimulus panel, discrete stimulus panel, and the precision source. The mechanical configuration is defined and illustrated to provide card and component location for modification or repair. The unit level interfaces are mirror images of the DIU interfaces and are described in the Final Technical Report for NASA-MSFC contract NAS8-29155.
Preparatory attention in visual cortex.
Battistoni, Elisa; Stein, Timo; Peelen, Marius V
2017-05-01
Top-down attention is the mechanism that allows us to selectively process goal-relevant aspects of a scene while ignoring irrelevant aspects. A large body of research has characterized the effects of attention on neural activity evoked by a visual stimulus. However, attention also includes a preparatory phase before stimulus onset in which the attended dimension is internally represented. Here, we review neurophysiological, functional magnetic resonance imaging, magnetoencephalography, electroencephalography, and transcranial magnetic stimulation (TMS) studies investigating the neural basis of preparatory attention, both when attention is directed to a location in space and when it is directed to nonspatial stimulus attributes (content-based attention) ranging from low-level features to object categories. Results show that both spatial and content-based attention lead to increased baseline activity in neural populations that selectively code for the attended attribute. TMS studies provide evidence that this preparatory activity is causally related to subsequent attentional selection and behavioral performance. Attention thus acts by preactivating selective neurons in the visual cortex before stimulus onset. This appears to be a general mechanism that can operate on multiple levels of representation. We discuss the functional relevance of this mechanism, its limitations, and its relation to working memory, imagery, and expectation. We conclude by outlining open questions and future directions. © 2017 New York Academy of Sciences.
Stimulus Processing and Associative Learning in Wistar and WKHA Rats
Chess, Amy C.; Keene, Christopher S.; Wyzik, Elizabeth C.; Bucci, David J.
2007-01-01
This study assessed basic learning and attention abilities in WKHA (Wistar-Kyoto Hyperactive) rats using appetitive conditioning preparations. Two measures of conditioned responding to a visual stimulus, orienting behavior (rearing on the hindlegs) and food cup behavior (placing the head inside the recessed food cup) were measured. In Experiment 1, simple conditioning but not extinction was impaired in WKHA rats compared to Wistar rats. In Experiment 2, non-reinforced presentations of the visual cue preceded the conditioning sessions. WKHA rats displayed less orienting behavior than Wistar rats, but comparable levels of food cup behavior. These data suggest that WKHA rats exhibit specific abnormalities in attentional processing as well as learning stimulus-reward relationships. PMID:15998198
Gambling with stimulus payments: feeding gaming machines with federal dollars.
Lye, Jenny; Hirschberg, Joe
2014-09-01
In late 2008 and early 2009 the Australian Federal Government introduced a series of economic stimulus packages designed to maintain consumer spending in the early days of the Great Recession. When these packages were initiated the media suggested that the wide-spread availability of electronic gaming machines (EGMs, e.g. slot machines, poker machines, video lottery terminals) in Australia would result in stimulating the EGMs. Using state level monthly data we estimate that the stimulus packages led to an increase of 26 % in EGM revenues. This also resulted in over $60 million in additional tax revenue for State Governments. We also estimate a short-run aggregate income demand elasticity for EGMs to be approximately 2.
Investigation of the neurological correlates of information reception
NASA Technical Reports Server (NTRS)
1971-01-01
Animals trained to respond to a given pattern of electrical stimuli applied to pathways or centers of the auditory nervous system respond also to certain patterns of acoustic stimuli without additional training. Likewise, only certain electrical stimuli elicit responses after training to a given acoustic signal. In most instances, if a response has been learned to a given electrical stimulus applied to one center of the auditory nervous system, the same stimulus applied to another auditory center at either a higher or lower level will also elicit the response. This kind of transfer of response does not take place when a stimulus is applied through electrodes implanted in neural tissue outside of the auditory system.
Autonomic, endocrine and behavioural responses to thunder in laboratory and companion dogs.
Franzini de Souza, Carla Caroline; Maccariello, Carolina Elisabetta Martins; Dias, Daniel Penteado Martins; Almeida, Norma Aparecida Dos Santos; Medeiros, Magda Alves de
2017-02-01
Dogs are highly sensitive to sound stimuli, especially fireworks, firearms, and thunder, and therefore these sounds are used as models of stress reactivity in dogs. Companion and laboratory dogs may respond differently to stressful stimuli, due to differences in management and their relationship with humans. Therefore, the reactivity of beagle dogs (laboratory) and companion dogs to an acute acoustic stress model was studied by analysing the heart rate variability (HRV; cardiac interval values), serum cortisol levels and various behavioural parameters. Eight beagles and six privately owned dogs with no history of phobia to thunder were used. The sound stimulus consisted of a standardized recording of thunder for 2.5min with a maximum intensity of 103-104dB. To evaluate the HRV, cardiac intervals were recorded using a frequency meter (Polar RS800CX model), and later the data were analysed using CardioSeries 2.4.1 software. In both laboratory and companion dogs, thunder promoted an increase in the power of the LF band of the cardiac interval spectrum, in the LF/HF ratio and in the HR, and a decrease in the power of the HF band of the cardiac interval spectrum. Companion dogs showed higher cortisol levels, than beagles, independently of the time point studied and a significant increase in the cortisol levels 15min after acoustic stress, while beagles did not show any alterations in their cortisol levels in response to the sound. On the other hand, beagles showed higher scores in the trembling, hiding, vigilance, running, salivation, bolting and startle parameters than companion dogs. Our results showed that independently of the sound stimulus, companion dogs had higher cortisol levels than laboratory dogs. Furthermore, the sound stimulus induced a marked autonomic imbalance towards sympathetic predominance in both laboratory and companion dogs. However a significant increase in the cortisol was observed only in companion dogs. On the other hand, in general the behavioural response was more pronounced in laboratory dogs than in companion dogs. Copyright © 2016 Elsevier Inc. All rights reserved.
High speed line-scan confocal imaging of stimulus-evoked intrinsic optical signals in the retina
Li, Yang-Guo; Liu, Lei; Amthor, Franklin; Yao, Xin-Cheng
2010-01-01
A rapid line-scan confocal imager was developed for functional imaging of the retina. In this imager, an acousto-optic deflector (AOD) was employed to produce mechanical vibration- and inertia-free light scanning, and a high-speed (68,000 Hz) linear CCD camera was used to achieve sub-cellular and sub-millisecond spatiotemporal resolution imaging. Two imaging modalities, i.e., frame-by-frame and line-by-line recording, were validated for reflected light detection of intrinsic optical signals (IOSs) in visible light stimulus activated frog retinas. Experimental results indicated that fast IOSs were tightly correlated with retinal stimuli, and could track visible light flicker stimulus frequency up to at least 2 Hz. PMID:20125743
Monkeys have a limited form of short-term memory in audition
Scott, Brian H.; Mishkin, Mortimer; Yin, Pingbo
2012-01-01
A stimulus trace may be temporarily retained either actively [i.e., in working memory (WM)] or by the weaker mnemonic process we will call passive short-term memory, in which a given stimulus trace is highly susceptible to “overwriting” by a subsequent stimulus. It has been suggested that WM is the more robust process because it exploits long-term memory (i.e., a current stimulus activates a stored representation of that stimulus, which can then be actively maintained). Recent studies have suggested that monkeys may be unable to store acoustic signals in long-term memory, raising the possibility that they may therefore also lack auditory WM. To explore this possibility, we tested rhesus monkeys on a serial delayed match-to-sample (DMS) task using a small set of sounds presented with ∼1-s interstimulus delays. Performance was accurate whenever a match or a nonmatch stimulus followed the sample directly, but it fell precipitously if a single nonmatch stimulus intervened between sample and match. The steep drop in accuracy was found to be due not to passive decay of the sample’s trace, but to retroactive interference from the intervening nonmatch stimulus. This “overwriting” effect was far greater than that observed previously in serial DMS with visual stimuli. The results, which accord with the notion that WM relies on long-term memory, indicate that monkeys perform serial DMS in audition remarkably poorly and that whatever success they had on this task depended largely, if not entirely, on the retention of stimulus traces in the passive form of short-term memory. PMID:22778411
Monkeys have a limited form of short-term memory in audition.
Scott, Brian H; Mishkin, Mortimer; Yin, Pingbo
2012-07-24
A stimulus trace may be temporarily retained either actively [i.e., in working memory (WM)] or by the weaker mnemonic process we will call passive short-term memory, in which a given stimulus trace is highly susceptible to "overwriting" by a subsequent stimulus. It has been suggested that WM is the more robust process because it exploits long-term memory (i.e., a current stimulus activates a stored representation of that stimulus, which can then be actively maintained). Recent studies have suggested that monkeys may be unable to store acoustic signals in long-term memory, raising the possibility that they may therefore also lack auditory WM. To explore this possibility, we tested rhesus monkeys on a serial delayed match-to-sample (DMS) task using a small set of sounds presented with ~1-s interstimulus delays. Performance was accurate whenever a match or a nonmatch stimulus followed the sample directly, but it fell precipitously if a single nonmatch stimulus intervened between sample and match. The steep drop in accuracy was found to be due not to passive decay of the sample's trace, but to retroactive interference from the intervening nonmatch stimulus. This "overwriting" effect was far greater than that observed previously in serial DMS with visual stimuli. The results, which accord with the notion that WM relies on long-term memory, indicate that monkeys perform serial DMS in audition remarkably poorly and that whatever success they had on this task depended largely, if not entirely, on the retention of stimulus traces in the passive form of short-term memory.
NASA Astrophysics Data System (ADS)
Charaziak, Karolina K.; Siegel, Jonathan H.
2015-12-01
Otoacoustic emissions evoked with transient sounds (TEOAEs) are believed to originate within the tonotopic region of the stimulus in the cochlea via the same mechanisms as emissions evoked with single tones. However, we found that emissions evoked by low frequency (< 3 kHz) single-tones have an extended region of generation (> 6 mm) in chinchillas (Charaziak and Siegel, 2014, ARO Abst., 119). Here we test whether a broad region of generation for low-frequency stimuli is also a characteristic of TEOAEs evoked with 1-kHz tone pips extracted with compression and suppression methods. The TEOAE could be revealed with moderate level suppressors with frequencies extending beyond the stimulus bandwidth (up to 12.1 kHz), with the largest responses obtained with 3.1 - 4.1 kHz suppressors. There was a consistent decline in group delays of suppressor-revealed TEOAEs with increasing suppressor frequency, as expected if higher-frequency suppressors acted on more basal TEOAE generators. Effects of mid- to high-frequency acoustic trauma on TEOAE levels confirm the notion that the suppressors interact with emission components arising near the tonotopic place of the suppressor.
Effect of current stimulus on in vivo cochlear mechanics
NASA Astrophysics Data System (ADS)
Parthasarathi, Anand A.; Grosh, Karl; Zheng, Jiefu; Nuttall, Alfred L.
2003-01-01
In this paper, the influence of direct current stimulation on the acoustic impulse response of the basilar membrane (BM) is studied. A positive current applied in the scala vestibuli relative to a ground electrode in the scala tympani is found to enhance gain and increase the best frequency at a given location on the BM. An opposite effect is found for a negative current. Also, the amplitude of low-frequency cochlear microphonic at high sound levels is found to change with the concurrent application of direct current stimulus. BM vibrations in response to pure tone acoustic excitation are found to possess harmonics whose levels relative to the fundamental increase with the application of positive current and decrease with the application of negative current. A model for outer hair cell activity that couples changes in length and stiffness to transmembrane potential is used to interpret the results of these experiments and others in the literature. The importance of the in vivo mechanical and electrical loading is emphasized. Simulation results show the somewhat paradoxical finding that for outer hair cells under tension, hyperpolarization causes shortening of the cell length due to the dominance of voltage dependent stiffness changes.
A unified selection signal for attention and reward in primary visual cortex.
Stănişor, Liviu; van der Togt, Chris; Pennartz, Cyriel M A; Roelfsema, Pieter R
2013-05-28
Stimuli associated with high rewards evoke stronger neuronal activity than stimuli associated with lower rewards in many brain regions. It is not well understood how these reward effects influence activity in sensory cortices that represent low-level stimulus features. Here, we investigated the effects of reward information in the primary visual cortex (area V1) of monkeys. We found that the reward value of a stimulus relative to the value of other stimuli is a good predictor of V1 activity. Relative value biases the competition between stimuli, just as has been shown for selective attention. The neuronal latency of this reward value effect in V1 was similar to the latency of attentional influences. Moreover, V1 neurons with a strong value effect also exhibited a strong attention effect, which implies that relative value and top-down attention engage overlapping, if not identical, neuronal selection mechanisms. Our findings demonstrate that the effects of reward value reach down to the earliest sensory processing levels of the cerebral cortex and imply that theories about the effects of reward coding and top-down attention on visual representations should be unified.
Stimulus specificity of a steady-state visual-evoked potential-based brain-computer interface.
Ng, Kian B; Bradley, Andrew P; Cunnington, Ross
2012-06-01
The mechanisms of neural excitation and inhibition when given a visual stimulus are well studied. It has been established that changing stimulus specificity such as luminance contrast or spatial frequency can alter the neuronal activity and thus modulate the visual-evoked response. In this paper, we study the effect that stimulus specificity has on the classification performance of a steady-state visual-evoked potential-based brain-computer interface (SSVEP-BCI). For example, we investigate how closely two visual stimuli can be placed before they compete for neural representation in the cortex and thus influence BCI classification accuracy. We characterize stimulus specificity using the four stimulus parameters commonly encountered in SSVEP-BCI design: temporal frequency, spatial size, number of simultaneously displayed stimuli and their spatial proximity. By varying these quantities and measuring the SSVEP-BCI classification accuracy, we are able to determine the parameters that provide optimal performance. Our results show that superior SSVEP-BCI accuracy is attained when stimuli are placed spatially more than 5° apart, with size that subtends at least 2° of visual angle, when using a tagging frequency of between high alpha and beta band. These findings may assist in deciding the stimulus parameters for optimal SSVEP-BCI design.
Stimulus specificity of a steady-state visual-evoked potential-based brain-computer interface
NASA Astrophysics Data System (ADS)
Ng, Kian B.; Bradley, Andrew P.; Cunnington, Ross
2012-06-01
The mechanisms of neural excitation and inhibition when given a visual stimulus are well studied. It has been established that changing stimulus specificity such as luminance contrast or spatial frequency can alter the neuronal activity and thus modulate the visual-evoked response. In this paper, we study the effect that stimulus specificity has on the classification performance of a steady-state visual-evoked potential-based brain-computer interface (SSVEP-BCI). For example, we investigate how closely two visual stimuli can be placed before they compete for neural representation in the cortex and thus influence BCI classification accuracy. We characterize stimulus specificity using the four stimulus parameters commonly encountered in SSVEP-BCI design: temporal frequency, spatial size, number of simultaneously displayed stimuli and their spatial proximity. By varying these quantities and measuring the SSVEP-BCI classification accuracy, we are able to determine the parameters that provide optimal performance. Our results show that superior SSVEP-BCI accuracy is attained when stimuli are placed spatially more than 5° apart, with size that subtends at least 2° of visual angle, when using a tagging frequency of between high alpha and beta band. These findings may assist in deciding the stimulus parameters for optimal SSVEP-BCI design.
Brain mediators of the effects of noxious heat on pain
Atlas, Lauren Y.; Lindquist, Martin A.; Bolger, Niall; Wager, Tor D.
2014-01-01
Recent human neuroimaging studies have investigated the neural correlates of either noxious stimulus intensity or reported pain. While useful, analyzing brain relationships with stimulus intensity and behavior separately does not address how sensation and pain are linked in the central nervous system. In this paper, we used multi-level mediation analysis to identify brain mediators of pain—regions whose trial-by-trial responses to heat explained variability in the relationship between noxious stimulus intensity (across four levels) and pain. This approach has the potential to identify multiple circuits with complementary roles in pain genesis. Brain mediators of noxious heat effects on pain included targets of ascending nociceptive pathways (anterior cingulate, insula, SII, and medial thalamus) and also prefrontal and subcortical regions not associated with nociceptive pathways per se. Cluster analysis revealed that mediators were grouped into several distinct functional networks, including: a) somatosensory, paralimbic, and striatal-cerebellar networks that increased with stimulus intensity; and b) two networks co-localized with ‘default mode’ regions in which stimulus intensity-related decreases mediated increased pain. We also identified ‘thermosensory’ regions that responded to increasing noxious heat but did not predict pain reports. Finally, several regions did not respond to noxious input, but their activity predicted pain; these included ventromedial prefrontal cortex, dorsolateral prefrontal cortex, cerebellar regions, and supplementary motor cortices. These regions likely underlie both nociceptive and non-nociceptive processes that contribute to pain, such as attention and decision-making processes. Overall, these results elucidate how multiple distinct brain systems jointly contribute to the central generation of pain. PMID:24845572
The Gap-Startle Paradigm for Tinnitus Screening in Animal Models: Limitations and Optimization
Lobarinas, Edward; Hayes, Sarah H.; Allman, Brian L.
2012-01-01
In 2006, Turner and colleagues (Behav Neurosci, 120:188–195) introduced the gap-startle paradigm as a high-throughput method for tinnitus screening in rats. Under this paradigm, gap detection ability was assessed by determining the level of inhibition of the acoustic startle reflex produced by a short silent gap inserted in an otherwise continuous background sound prior to a loud startling stimulus. Animals with tinnitus were expected to show impaired gap detection ability (i.e., lack of inhibition of the acoustic startle reflex) if the background sound containing the gap was qualitatively similar to the tinnitus pitch. Thus, for the gap-startle paradigm to be a valid tool to screen for tinnitus, a robust startle response from which to inhibit must be present. Because recent studies have demonstrated that the acoustic startle reflex could be dramatically reduced following noise exposure, we endeavored to 1) modify the gap-startle paradigm to be more resilient in the presence of hearing loss, and 2) evaluate whether a reduction in startle reactivity could confound the interpretation of gap prepulse inhibition and lead to errors in screening for tinnitus. In the first experiment, the traditional broadband noise (BBN) startle stimulus was replaced by a bandpass noise in which the sound energy was concentrated in the lower frequencies (5–10 kHz) in order to maintain audibility of the startle stimulus after unilateral high frequency noise exposure (16 kHz). However, rats still showed a 57% reduction in startle amplitude to the bandpass noise post-noise exposure. A follow-up experiment on a separate group of rats with transiently-induced conductive hearing loss revealed that startle reactivity was better preserved when the BBN startle stimulus was replaced by a rapid airpuff to the back of the rats neck. Furthermore, it was found that transient unilateral conductive hearing loss, which was not likely to induce tinnitus, caused an impairment in gap prepulse inhibition as assessed with the traditional BBN gap-startle paradigm, resulting in a false-positive screening for tinnitus. Thus, the present study identifies significant caveats of the traditional gap-startle paradigm, and describes experimental parameters using an airpuff startle stimulus which may help to limit the negative consequences of reduced startle reactivity following noise exposure, thereby allowing researchers to better screen for tinnitus in animals with hearing loss. PMID:22728305
Limits on the generalizability of context-driven control.
Hutcheon, Thomas G; Spieler, Daniel H
2017-07-01
Context-driven control refers to the fast and flexible weighting of stimulus dimensions that may be applied at the onset of a stimulus. Evidence for context-driven control comes from interference tasks in which participants encounter a high proportion of incongruent trials at one location and a high proportion of congruent trials at another location. Since the size of the congruency effect varies as a function of location, this suggests that stimulus dimensions are weighted differently based on the context in which they appear. However, manipulations of condition proportion are often confounded by variations in the frequency with which particular stimuli are encountered. To date, there is limited evidence for the context-driven control in the absence of stimulus frequency confounds. In the current paper, we attempt to replicate and extend one such finding [Crump, M. J. C., & Milliken, B. (2009). The flexibility of context-specific control: Evidence for context-driven generalization of item-specific control settings. The Quarterly Journal of Experimental Psychology, 62, 1523-1532]. Across three experiments we fail to find evidence for context-driven control in the absence of stimulus frequency confounds. Based on these results, we argue that consistency in the informativeness of the irrelevant dimension may be required for context-driven control to emerge.
NASA Astrophysics Data System (ADS)
Kaufmann, Tobias; Kübler, Andrea
2014-10-01
Objective. The speed of brain-computer interfaces (BCI), based on event-related potentials (ERP), is inherently limited by the commonly used one-stimulus paradigm. In this paper, we introduce a novel paradigm that can increase the spelling speed by a factor of 2, thereby extending the one-stimulus paradigm to a two-stimulus paradigm. Two different stimuli (a face and a symbol) are presented at the same time, superimposed on different characters and ERPs are classified using a multi-class classifier. Here, we present the proof-of-principle that is achieved with healthy participants. Approach. Eight participants were confronted with the novel two-stimulus paradigm and, for comparison, with two one-stimulus paradigms that used either one of the stimuli. Classification accuracies (percentage of correctly predicted letters) and elicited ERPs from the three paradigms were compared in a comprehensive offline analysis. Main results. The accuracies slightly decreased with the novel system compared to the established one-stimulus face paradigm. However, the use of two stimuli allowed for spelling at twice the maximum speed of the one-stimulus paradigms, and participants still achieved an average accuracy of 81.25%. This study introduced an alternative way of increasing the spelling speed in ERP-BCIs and illustrated that ERP-BCIs may not yet have reached their speed limit. Future research is needed in order to improve the reliability of the novel approach, as some participants displayed reduced accuracies. Furthermore, a comparison to the most recent BCI systems with individually adjusted, rapid stimulus timing is needed to draw conclusions about the practical relevance of the proposed paradigm. Significance. We introduced a novel two-stimulus paradigm that might be of high value for users who have reached the speed limit with the current one-stimulus ERP-BCI systems.
Function Transfer in Human Operant Experiments: The Role of Stimulus Pairings
ERIC Educational Resources Information Center
Tonneau, Francois; Gonzalez, Carmen
2004-01-01
Although function transfer often has been studied in complex operant procedures (such as matching to sample), whether operant reinforcement actually produces function transfer in such settings has not been established. The present experiments, with high school students as subjects, suggest that stimulus pairings can promote function transfer in…
Environmental Inversion Effects in Face Perception
ERIC Educational Resources Information Center
Davidenko, Nicolas; Flusberg, Stephen J.
2012-01-01
Visual processing is highly sensitive to stimulus orientation; for example, face perception is drastically worse when faces are oriented inverted vs. upright. However, stimulus orientation must be established in relation to a particular reference frame, and in most studies, several reference frames are conflated. Which reference frame(s) matter in…
About Turn: How Object Orientation Affects Categorisation and Mental Rotation
ERIC Educational Resources Information Center
Milivojevic, Branka; Hamm, Jeff P.; Corballis, Michael C.
2011-01-01
High-density ERPs evoked by rotated alphanumeric characters were examined to determine how neural processing is affected by stimulus orientation during letter/digit classifications and during mirror/normal discriminations. The former task typically produces response times that are unaffected by stimulus orientation while the latter is thought to…
Role of somatosensory and vestibular cues in attenuating visually induced human postural sway
NASA Technical Reports Server (NTRS)
Peterka, Robert J.; Benolken, Martha S.
1993-01-01
The purpose was to determine the contribution of visual, vestibular, and somatosensory cues to the maintenance of stance in humans. Postural sway was induced by full field, sinusoidal visual surround rotations about an axis at the level of the ankle joints. The influences of vestibular and somatosensory cues were characterized by comparing postural sway in normal and bilateral vestibular absent subjects in conditions that provided either accurate or inaccurate somatosensory orientation information. In normal subjects, the amplitude of visually induced sway reached a saturation level as stimulus amplitude increased. The saturation amplitude decreased with increasing stimulus frequency. No saturation phenomena was observed in subjects with vestibular loss, implying that vestibular cues were responsible for the saturation phenomenon. For visually induced sways below the saturation level, the stimulus-response curves for both normal and vestibular loss subjects were nearly identical implying that (1) normal subjects were not using vestibular information to attenuate their visually induced sway, possibly because sway was below a vestibular-related threshold level, and (2) vestibular loss subjects did not utilize visual cues to a greater extent than normal subjects; that is, a fundamental change in visual system 'gain' was not used to compensate for a vestibular deficit. An unexpected finding was that the amplitude of body sway induced by visual surround motion could be almost three times greater than the amplitude of the visual stimulus in normals and vestibular loss subjects. This occurred in conditions where somatosensory cues were inaccurate and at low stimulus amplitudes. A control system model of visually induced postural sway was developed to explain this finding. For both subject groups, the amplitude of visually induced sway was smaller by a factor of about four in tests where somatosensory cues provided accurate versus inaccurate orientation information. This implied that (1) the vestibular loss subjects did not utilize somatosensory cues to a greater extent than normal subjects; that is, changes in somatosensory system 'gain' were not used to compensate for a vestibular deficit, and (2) the threshold for the use of vestibular cues in normals was apparently lower in test conditions where somatosensory cues were providing accurate orientation information.
Ales, Justin M.; Farzin, Faraz; Rossion, Bruno; Norcia, Anthony M.
2012-01-01
We introduce a sensitive method for measuring face detection thresholds rapidly, objectively, and independently of low-level visual cues. The method is based on the swept parameter steady-state visual evoked potential (ssVEP), in which a stimulus is presented at a specific temporal frequency while parametrically varying (“sweeping”) the detectability of the stimulus. Here, the visibility of a face image was increased by progressive derandomization of the phase spectra of the image in a series of equally spaced steps. Alternations between face and fully randomized images at a constant rate (3/s) elicit a robust first harmonic response at 3 Hz specific to the structure of the face. High-density EEG was recorded from 10 human adult participants, who were asked to respond with a button-press as soon as they detected a face. The majority of participants produced an evoked response at the first harmonic (3 Hz) that emerged abruptly between 30% and 35% phase-coherence of the face, which was most prominent on right occipito-temporal sites. Thresholds for face detection were estimated reliably in single participants from 15 trials, or on each of the 15 individual face trials. The ssVEP-derived thresholds correlated with the concurrently measured perceptual face detection thresholds. This first application of the sweep VEP approach to high-level vision provides a sensitive and objective method that could be used to measure and compare visual perception thresholds for various object shapes and levels of categorization in different human populations, including infants and individuals with developmental delay. PMID:23024355
Violante, Inês R; Ribeiro, Maria J; Cunha, Gil; Bernardino, Inês; Duarte, João V; Ramos, Fabiana; Saraiva, Jorge; Silva, Eduardo; Castelo-Branco, Miguel
2012-01-01
Neurofibromatosis type 1 (NF1) is one of the most common single gene disorders affecting the human nervous system with a high incidence of cognitive deficits, particularly visuospatial. Nevertheless, neurophysiological alterations in low-level visual processing that could be relevant to explain the cognitive phenotype are poorly understood. Here we used functional magnetic resonance imaging (fMRI) to study early cortical visual pathways in children and adults with NF1. We employed two distinct stimulus types differing in contrast and spatial and temporal frequencies to evoke relatively different activation of the magnocellular (M) and parvocellular (P) pathways. Hemodynamic responses were investigated in retinotopically-defined regions V1, V2 and V3 and then over the acquired cortical volume. Relative to matched control subjects, patients with NF1 showed deficient activation of the low-level visual cortex to both stimulus types. Importantly, this finding was observed for children and adults with NF1, indicating that low-level visual processing deficits do not ameliorate with age. Moreover, only during M-biased stimulation patients with NF1 failed to deactivate or even activated anterior and posterior midline regions of the default mode network. The observation that the magnocellular visual pathway is impaired in NF1 in early visual processing and is specifically associated with a deficient deactivation of the default mode network may provide a neural explanation for high-order cognitive deficits present in NF1, particularly visuospatial and attentional. A link between magnocellular and default mode network processing may generalize to neuropsychiatric disorders where such deficits have been separately identified.
Moreira, P S A; Pulman, K G T; Pottinger, T G
2004-11-01
Two lines of rainbow trout (Oncorhynchus mykiss) that exhibit divergent endocrine responsiveness to stressors also display disparate behavioral traits. To investigate whether the high-responding (HR) and low-responding (LR) fish also differ in cognitive function, the rate of extinction of a conditioned response was compared between the two lines. Groups of HR and LR fish were exposed to a paired conditioned stimulus (CS; water off) and unconditioned stimulus (US; confinement stressor). After exposure to 18 CS-US pairings, at least 70% of individuals of both lines acquired a conditioned response (CR) manifested as an elevation of blood cortisol levels on presentation of the CS only. Post-conditioning, the fish were tested by presentation of the CS at weekly intervals, for 4 weeks, with no further reinforcement, and the extinction of the CR in the two lines was compared. The decline in mean plasma cortisol levels after exposure to the CS over successive tests suggested that the CR was retained for a shorter period among the HR (<14 days) than LR fish (<21 days). The frequency of individuals within each line whose plasma cortisol levels indicated a stress response when exposed to the CS was significantly greater among the LR than HR fish at 14 and 21 days with no HR fish falling into this category at 21 days. At 28 days post-conditioning, there were no HR fish and only three LR fish were categorized as "stressed". These results suggest that there are differences in cognitive function between the two lines. Possible mechanisms underlying these differences are discussed.
High-resolution eye tracking using V1 neuron activity
McFarland, James M.; Bondy, Adrian G.; Cumming, Bruce G.; Butts, Daniel A.
2014-01-01
Studies of high-acuity visual cortical processing have been limited by the inability to track eye position with sufficient accuracy to precisely reconstruct the visual stimulus on the retina. As a result, studies on primary visual cortex (V1) have been performed almost entirely on neurons outside the high-resolution central portion of the visual field (the fovea). Here we describe a procedure for inferring eye position using multi-electrode array recordings from V1 coupled with nonlinear stimulus processing models. We show that this method can be used to infer eye position with one arc-minute accuracy – significantly better than conventional techniques. This allows for analysis of foveal stimulus processing, and provides a means to correct for eye-movement induced biases present even outside the fovea. This method could thus reveal critical insights into the role of eye movements in cortical coding, as well as their contribution to measures of cortical variability. PMID:25197783
Short-term memory in zebrafish (Danio rerio).
Jia, Jason; Fernandes, Yohaan; Gerlai, Robert
2014-08-15
Learning and memory represent perhaps the most complex behavioral phenomena. Although their underlying mechanisms have been extensively analyzed, only a fraction of the potential molecular components have been identified. The zebrafish has been proposed as a screening tool with which mechanisms of complex brain functions may be systematically uncovered. However, as a relative newcomer in behavioral neuroscience, the zebrafish has not been well characterized for its cognitive and mnemonic features, thus learning and/or memory screens with adults have not been feasible. Here we study short-term memory of adult zebrafish. We show animated images of conspecifics (the stimulus) to the experimental subject during 1 min intervals on ten occasions separated by different (2, 4, 8 or 16 min long) inter-stimulus intervals (ISI), a between subject experimental design. We quantify the distance of the subject from the image presentation screen during each stimulus presentation interval, during each of the 1-min post-stimulus intervals immediately following the stimulus presentations and during each of the 1-min intervals furthest away from the last stimulus presentation interval and just before the next interval (pre-stimulus interval), respectively. Our results demonstrate significant retention of short-term memory even in the longest ISI group but suggest no acquisition of reference memory. Because in the employed paradigm both stimulus presentation and behavioral response quantification is computer automated, we argue that high-throughput screening for drugs or mutations that alter short-term memory performance of adult zebrafish is now becoming feasible. Copyright © 2014 Elsevier B.V. All rights reserved.
Two-dimensional adaptation in the auditory forebrain
Nagel, Katherine I.; Doupe, Allison J.
2011-01-01
Sensory neurons exhibit two universal properties: sensitivity to multiple stimulus dimensions, and adaptation to stimulus statistics. How adaptation affects encoding along primary dimensions is well characterized for most sensory pathways, but if and how it affects secondary dimensions is less clear. We studied these effects for neurons in the avian equivalent of primary auditory cortex, responding to temporally modulated sounds. We showed that the firing rate of single neurons in field L was affected by at least two components of the time-varying sound log-amplitude. When overall sound amplitude was low, neural responses were based on nonlinear combinations of the mean log-amplitude and its rate of change (first time differential). At high mean sound amplitude, the two relevant stimulus features became the first and second time derivatives of the sound log-amplitude. Thus a strikingly systematic relationship between dimensions was conserved across changes in stimulus intensity, whereby one of the relevant dimensions approximated the time differential of the other dimension. In contrast to stimulus mean, increases in stimulus variance did not change relevant dimensions, but selectively increased the contribution of the second dimension to neural firing, illustrating a new adaptive behavior enabled by multidimensional encoding. Finally, we demonstrated theoretically that inclusion of time differentials as additional stimulus features, as seen so prominently in the single-neuron responses studied here, is a useful strategy for encoding naturalistic stimuli, because it can lower the necessary sampling rate while maintaining the robustness of stimulus reconstruction to correlated noise. PMID:21753019
Differential effects of ongoing EEG beta and theta power on memory formation
Scholz, Sebastian; Schneider, Signe Luisa
2017-01-01
Recently, elevated ongoing pre-stimulus beta power (13–17 Hz) at encoding has been associated with subsequent memory formation for visual stimulus material. It is unclear whether this activity is merely specific to visual processing or whether it reflects a state facilitating general memory formation, independent of stimulus modality. To answer that question, the present study investigated the relationship between neural pre-stimulus oscillations and verbal memory formation in different sensory modalities. For that purpose, a within-subject design was employed to explore differences between successful and failed memory formation in the visual and auditory modality. Furthermore, associative memory was addressed by presenting the stimuli in combination with background images. Results revealed that similar EEG activity in the low beta frequency range (13–17 Hz) is associated with subsequent memory success, independent of stimulus modality. Elevated power prior to stimulus onset differentiated successful from failed memory formation. In contrast, differential effects between modalities were found in the theta band (3–7 Hz), with an increased oscillatory activity before the onset of later remembered visually presented words. In addition, pre-stimulus theta power dissociated between successful and failed encoding of associated context, independent of the stimulus modality of the item itself. We therefore suggest that increased ongoing low beta activity reflects a memory promoting state, which is likely to be moderated by modality-independent attentional or inhibitory processes, whereas high ongoing theta power is suggested as an indicator of the enhanced binding of incoming interlinked information. PMID:28192459
Tomie, Arthur; Di Poce, Jason; Aguado, Allison; Janes, Amy; Benjamin, Daniel; Pohorecky, Larissa
2003-06-13
Effects of experience with Pavlovian autoshaping procedures on lever-press autoshaping conditioned response (CR) performance and 3H-8-OH-DPAT-labeled binding of 5-HT(1a) receptors as well as 125I-LSD-labeled binding of 5-HT(2a) receptors were evaluated in four groups of male Long-Evans hooded rats. Two groups of rats (Group Paired High CR and Group Paired Low CR) received Pavlovian autoshaping procedures wherein the presentation of a lever (conditioned stimulus, CS) was followed by the response-independent presentation of food (unconditioned stimulus, US). Rats in Group Paired High CR (n=12) showed more rapid CR acquisition and higher asymptotic levels of lever-press autoshaping CR performance relative to rats in Group Low CR (n=12). Group Omission (n=9) received autoshaping with an omission contingency, such that performing the lever-press autoshaping CR resulted in the cancellation the food US, while Group Random (n=9) received presentations of lever CS and food US randomly with respect to one another. Though Groups Omission and Random did not differ in lever-press autoshaping CR performance, Group Omission showed significantly lower levels of 3H-8-OH-DPAT-labeled 5-HT(1a) binding in post-synaptic areas (frontal cortex, septum, caudate putamen), as well as significantly higher plasma corticosterone levels than Group Random. In addition, Group Random showed higher levels of 3H-8-OH-DPAT-labeled 5-HT(1a) binding in pre-synaptic somatodendritic autoreceptors on dorsal raphe nucleus relative to each of the other three groups. Autoradiographic analysis of 125I-LSD-labeled 5-HT(2a) receptor binding revealed no significant differences between Groups Paired High CR and Paired Low CR or between Groups Omission and Random in any brain regions.
Development of Neurophysiological Procedures for the Detection of Organic Contaminants in Water.
1978-05-24
Weinstein, Ph . D.r:V Curt Weinstein, M. A. UP~ 1978 ONSTAEEf Supported by far Publi©c re•IO OJ Ce bibu*@ Unlimited U. S. Army Medical Research and...rat’s tongue made contact with the fluid, a circuit was completed - which activated the lever for£EBS (when C waý the stimulus) or activated the...presentation of a loud noxious noise if he pressed incorrectly. All rats were successfully conditioned to Ldetect the contaminant with high levels of
A scale-invariant internal representation of time.
Shankar, Karthik H; Howard, Marc W
2012-01-01
We propose a principled way to construct an internal representation of the temporal stimulus history leading up to the present moment. A set of leaky integrators performs a Laplace transform on the stimulus function, and a linear operator approximates the inversion of the Laplace transform. The result is a representation of stimulus history that retains information about the temporal sequence of stimuli. This procedure naturally represents more recent stimuli more accurately than less recent stimuli; the decrement in accuracy is precisely scale invariant. This procedure also yields time cells that fire at specific latencies following the stimulus with a scale-invariant temporal spread. Combined with a simple associative memory, this representation gives rise to a moment-to-moment prediction that is also scale invariant in time. We propose that this scale-invariant representation of temporal stimulus history could serve as an underlying representation accessible to higher-level behavioral and cognitive mechanisms. In order to illustrate the potential utility of this scale-invariant representation in a variety of fields, we sketch applications using minimal performance functions to problems in classical conditioning, interval timing, scale-invariant learning in autoshaping, and the persistence of the recency effect in episodic memory across timescales.
Seeing Objects as Faces Enhances Object Detection.
Takahashi, Kohske; Watanabe, Katsumi
2015-10-01
The face is a special visual stimulus. Both bottom-up processes for low-level facial features and top-down modulation by face expectations contribute to the advantages of face perception. However, it is hard to dissociate the top-down factors from the bottom-up processes, since facial stimuli mandatorily lead to face awareness. In the present study, using the face pareidolia phenomenon, we demonstrated that face awareness, namely seeing an object as a face, enhances object detection performance. In face pareidolia, some people see a visual stimulus, for example, three dots arranged in V shape, as a face, while others do not. This phenomenon allows us to investigate the effect of face awareness leaving the stimulus per se unchanged. Participants were asked to detect a face target or a triangle target. While target per se was identical between the two tasks, the detection sensitivity was higher when the participants recognized the target as a face. This was the case irrespective of the stimulus eccentricity or the vertical orientation of the stimulus. These results demonstrate that seeing an object as a face facilitates object detection via top-down modulation. The advantages of face perception are, therefore, at least partly, due to face awareness.
Seeing Objects as Faces Enhances Object Detection
Watanabe, Katsumi
2015-01-01
The face is a special visual stimulus. Both bottom-up processes for low-level facial features and top-down modulation by face expectations contribute to the advantages of face perception. However, it is hard to dissociate the top-down factors from the bottom-up processes, since facial stimuli mandatorily lead to face awareness. In the present study, using the face pareidolia phenomenon, we demonstrated that face awareness, namely seeing an object as a face, enhances object detection performance. In face pareidolia, some people see a visual stimulus, for example, three dots arranged in V shape, as a face, while others do not. This phenomenon allows us to investigate the effect of face awareness leaving the stimulus per se unchanged. Participants were asked to detect a face target or a triangle target. While target per se was identical between the two tasks, the detection sensitivity was higher when the participants recognized the target as a face. This was the case irrespective of the stimulus eccentricity or the vertical orientation of the stimulus. These results demonstrate that seeing an object as a face facilitates object detection via top-down modulation. The advantages of face perception are, therefore, at least partly, due to face awareness. PMID:27648219
ERIC Educational Resources Information Center
Chen, Jing; Sheehan, Kathleen M.
2015-01-01
The "TOEFL"® family of assessments includes the "TOEFL"® Primary"™, "TOEFL Junior"®, and "TOEFL iBT"® tests. The linguistic complexity of stimulus passages in the reading sections of the TOEFL family of assessments is expected to differ across the test levels. This study evaluates the linguistic…
Oculomotor Reflexes as a Test of Visual Dysfunctions in Cognitively Impaired Observers
2013-09-01
right. Gaze horizontal position is plotted along the y-axis. The red bar indicates a visual nystagmus event detected by the filter. (d) A mild curse word...experimental conditions were chosen to simulate testing cognitively impaired observers. Reflex Stimulus Functions Visual Nystagmus luminance grating low-level...developed a new stimulus for visual nystagmus to 8 test visual motion processing in the presence of incoherent motion noise. The drifting equiluminant
Burin, Dalila; Pyasik, Maria; Salatino, Adriana; Pia, Lorenzo
2017-09-01
Whether and how body ownership ("this body is mine") contributes to human conscious experience of voluntary action is still unclear. In order to answer this question, here we incorporated two signatures (i.e., an ad hoc questionnaire and the sensory attenuation paradigm) of human's sense of agency ("this action is due to my own will") within a well-known experimental manipulation of body ownership (i.e., the rubber hand illusion paradigm). In two different experiments, we showed that the illusory ownership over a fake hand (induced by the rubber hand illusion) triggered also an illusory agency over its movements at both explicit and implicit level. Specifically, when the fake (embodied) hand pressed a button delivering an electrical stimulus to the participant's body, the movement was misattributed to participant's will (explicit level) and the stimulus intensity was attenuated (implicit level) exactly as it happened when the own hand actually delivered the stimulus. Our findings suggest that body ownership per se entails also motor representations of one's own movements. Whenever required by the context, this information would act upon agency attribution even prospectively (i.e., prior to action execution). Copyright © 2017 Elsevier B.V. All rights reserved.
Human perceptual decision making: disentangling task onset and stimulus onset.
Cardoso-Leite, Pedro; Waszak, Florian; Lepsien, Jöran
2014-07-01
The left dorsolateral prefrontal cortex (ldlPFC) has been highlighted as a key actor in human perceptual decision-making (PDM): It is theorized to support decision-formation independently of stimulus type or motor response. PDM studies however generally confound stimulus onset and task onset: when the to-be-recognized stimulus is presented, subjects know that a stimulus is shown and can set up processing resources-even when they do not know which stimulus is shown. We hypothesized that the ldlPFC might be involved in task preparation rather than decision-formation. To test this, we asked participants to report whether sequences of noisy images contained a face or a house within an experimental design that decorrelates stimulus and task onset. Decision-related processes should yield a sustained response during the task, whereas preparation-related areas should yield transient responses at its beginning. The results show that the brain activation pattern at task onset is strikingly similar to that observed in previous PDM studies. In particular, they contradict the idea that ldlPFC forms an abstract decision and suggest instead that its activation reflects preparation for the upcoming task. We further investigated the role of the fusiform face areas and parahippocampal place areas which are thought to be face and house detectors, respectively, that feed their signals to higher level decision areas. The response patterns within these areas suggest that this interpretation is unlikely and that the decisions about the presence of a face or a house in a noisy image might instead already be computed within these areas without requiring higher-order areas. Copyright © 2013 Wiley Periodicals, Inc.
Griffeth, Valerie E M; Simon, Aaron B; Buxton, Richard B
2015-01-01
Quantitative functional MRI (fMRI) experiments to measure blood flow and oxygen metabolism coupling in the brain typically rely on simple repetitive stimuli. Here we compared such stimuli with a more naturalistic stimulus. Previous work on the primary visual cortex showed that direct attentional modulation evokes a blood flow (CBF) response with a relatively large oxygen metabolism (CMRO2) response in comparison to an unattended stimulus, which evokes a much smaller metabolic response relative to the flow response. We hypothesized that a similar effect would be associated with a more engaging stimulus, and tested this by measuring the primary human visual cortex response to two contrast levels of a radial flickering checkerboard in comparison to the response to free viewing of brief movie clips. We did not find a significant difference in the blood flow-metabolism coupling (n=%ΔCBF/%ΔCMRO2) between the movie stimulus and the flickering checkerboards employing two different analysis methods: a standard analysis using the Davis model and a new analysis using a heuristic model dependent only on measured quantities. This finding suggests that in the primary visual cortex a naturalistic stimulus (in comparison to a simple repetitive stimulus) is either not sufficient to provoke a change in flow-metabolism coupling by attentional modulation as hypothesized, that the experimental design disrupted the cognitive processes underlying the response to a more natural stimulus, or that the technique used is not sensitive enough to detect a small difference. Copyright © 2014 Elsevier Inc. All rights reserved.
Coding and Decoding with Adapting Neurons: A Population Approach to the Peri-Stimulus Time Histogram
Naud, Richard; Gerstner, Wulfram
2012-01-01
The response of a neuron to a time-dependent stimulus, as measured in a Peri-Stimulus-Time-Histogram (PSTH), exhibits an intricate temporal structure that reflects potential temporal coding principles. Here we analyze the encoding and decoding of PSTHs for spiking neurons with arbitrary refractoriness and adaptation. As a modeling framework, we use the spike response model, also known as the generalized linear neuron model. Because of refractoriness, the effect of the most recent spike on the spiking probability a few milliseconds later is very strong. The influence of the last spike needs therefore to be described with high precision, while the rest of the neuronal spiking history merely introduces an average self-inhibition or adaptation that depends on the expected number of past spikes but not on the exact spike timings. Based on these insights, we derive a ‘quasi-renewal equation’ which is shown to yield an excellent description of the firing rate of adapting neurons. We explore the domain of validity of the quasi-renewal equation and compare it with other rate equations for populations of spiking neurons. The problem of decoding the stimulus from the population response (or PSTH) is addressed analogously. We find that for small levels of activity and weak adaptation, a simple accumulator of the past activity is sufficient to decode the original input, but when refractory effects become large decoding becomes a non-linear function of the past activity. The results presented here can be applied to the mean-field analysis of coupled neuron networks, but also to arbitrary point processes with negative self-interaction. PMID:23055914
Bui, Samantha; Oppedal, Frode; Korsøen, Øyvind J.; Sonny, Damien; Dempster, Tim
2013-01-01
Understanding species-specific flight behaviours is essential in developing methods of guiding fish spatially, and requires knowledge on how groups of fish respond to aversive stimuli. By harnessing their natural behaviours, the use of physical manipulation or other potentially harmful procedures can be minimised. We examined the reactions of sea-caged groups of 50 salmon (1331±364 g) to short-term exposure to visual or acoustic stimuli. In light experiments, fish were exposed to one of three intensities of blue LED light (high, medium and low) or no light (control). Sound experiments included exposure to infrasound (12 Hz), a surface disturbance event, the combination of infrasound and surface disturbance, or no stimuli. Groups that experienced light, infrasound, and the combination of infrasound and surface disturbance treatments, elicited a marked change in vertical distribution, where fish dived to the bottom of the sea-cage for the duration of the stimulus. Light treatments, but not sound, also reduced the total echo-signal strength (indicative of swim bladder volume) after exposure to light, compared to pre-stimulus levels. Groups in infrasound and combination treatments showed increased swimming activity during stimulus application, with swimming speeds tripled compared to that of controls. In all light and sound treatments, fish returned to their pre-stimulus swimming depths and speeds once exposure had ceased. This work establishes consistent, short-term avoidance responses to these stimuli, and provides a basis for methods to guide fish for aquaculture applications, or create avoidance barriers for conservation purposes. In doing so, we can achieve the manipulation of group position with minimal welfare impacts, to create more sustainable practices. PMID:23691087
Bui, Samantha; Oppedal, Frode; Korsøen, Øyvind J; Sonny, Damien; Dempster, Tim
2013-01-01
Understanding species-specific flight behaviours is essential in developing methods of guiding fish spatially, and requires knowledge on how groups of fish respond to aversive stimuli. By harnessing their natural behaviours, the use of physical manipulation or other potentially harmful procedures can be minimised. We examined the reactions of sea-caged groups of 50 salmon (1331 ± 364 g) to short-term exposure to visual or acoustic stimuli. In light experiments, fish were exposed to one of three intensities of blue LED light (high, medium and low) or no light (control). Sound experiments included exposure to infrasound (12 Hz), a surface disturbance event, the combination of infrasound and surface disturbance, or no stimuli. Groups that experienced light, infrasound, and the combination of infrasound and surface disturbance treatments, elicited a marked change in vertical distribution, where fish dived to the bottom of the sea-cage for the duration of the stimulus. Light treatments, but not sound, also reduced the total echo-signal strength (indicative of swim bladder volume) after exposure to light, compared to pre-stimulus levels. Groups in infrasound and combination treatments showed increased swimming activity during stimulus application, with swimming speeds tripled compared to that of controls. In all light and sound treatments, fish returned to their pre-stimulus swimming depths and speeds once exposure had ceased. This work establishes consistent, short-term avoidance responses to these stimuli, and provides a basis for methods to guide fish for aquaculture applications, or create avoidance barriers for conservation purposes. In doing so, we can achieve the manipulation of group position with minimal welfare impacts, to create more sustainable practices.
Can responses to basic non-numerical visual features explain neural numerosity responses?
Harvey, Ben M; Dumoulin, Serge O
2017-04-01
Humans and many animals can distinguish between stimuli that differ in numerosity, the number of objects in a set. Human and macaque parietal lobes contain neurons that respond to changes in stimulus numerosity. However, basic non-numerical visual features can affect neural responses to and perception of numerosity, and visual features often co-vary with numerosity. Therefore, it is debated whether numerosity or co-varying low-level visual features underlie neural and behavioral responses to numerosity. To test the hypothesis that non-numerical visual features underlie neural numerosity responses in a human parietal numerosity map, we analyze responses to a group of numerosity stimulus configurations that have the same numerosity progression but vary considerably in their non-numerical visual features. Using ultra-high-field (7T) fMRI, we measure responses to these stimulus configurations in an area of posterior parietal cortex whose responses are believed to reflect numerosity-selective activity. We describe an fMRI analysis method to distinguish between alternative models of neural response functions, following a population receptive field (pRF) modeling approach. For each stimulus configuration, we first quantify the relationships between numerosity and several non-numerical visual features that have been proposed to underlie performance in numerosity discrimination tasks. We then determine how well responses to these non-numerical visual features predict the observed fMRI responses, and compare this to the predictions of responses to numerosity. We demonstrate that a numerosity response model predicts observed responses more accurately than models of responses to simple non-numerical visual features. As such, neural responses in cognitive processing need not reflect simpler properties of early sensory inputs. Copyright © 2017 Elsevier Inc. All rights reserved.
Perceptual grouping across eccentricity.
Tannazzo, Teresa; Kurylo, Daniel D; Bukhari, Farhan
2014-10-01
Across the visual field, progressive differences exist in neural processing as well as perceptual abilities. Expansion of stimulus scale across eccentricity compensates for some basic visual capacities, but not for high-order functions. It was hypothesized that as with many higher-order functions, perceptual grouping ability should decline across eccentricity. To test this prediction, psychophysical measurements of grouping were made across eccentricity. Participants indicated the dominant grouping of dot grids in which grouping was based upon luminance, motion, orientation, or proximity. Across trials, the organization of stimuli was systematically decreased until perceived grouping became ambiguous. For all stimulus features, grouping ability remained relatively stable until 40°, beyond which thresholds significantly elevated. The pattern of change across eccentricity varied across stimulus feature, in which stimulus scale, dot size, or stimulus size interacted with eccentricity effects. These results demonstrate that perceptual grouping of such stimuli is not reliant upon foveal viewing, and suggest that selection of dominant grouping patterns from ambiguous displays operates similarly across much of the visual field. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mechanical Signal Filtering by Viscoelastic Properties of Cuticle in a Wandering Spider
NASA Astrophysics Data System (ADS)
McConney, Michael E.; Schaber, Clemens; Julian, Michael; Humphrey, Joseph A. C.; Barth, Friedrich; Tsukruk, Vladimir V.
2009-03-01
As recently found, in mechano-sensors of wandering spiders (Cupiennius salei) viscoelastic materials are important in signal filtering. We used atomic force microscopy to probe the time dependent mechanical behavior of these materials in live animals. We measured Young's modulus of a rubbery material located between a vibration receptor and the stimulus source. Earlier electrophysiological studies had demonstrated that the strain needed to elicit a sensory response (action potential) increased drastically as stimulus frequencies went below 10 Hz. Our surface force spectroscopy data similarly indicated a significant decrease in stiffness of the cuticular material and therefore less efficient energy transmission due to viscoelastic effects, as the frequency dropped to around 10 Hz. The stimulus transmitting cuticular material is acting as a high-pass filter for the mechanical stimulus on its way to the strain receptors. Again our results indicate that viscoelastic mechanical signal filtering is an important tool for arthropods to specifically respond to biologically relevant stimulus patterns.
Balikou, Panagiota; Gourtzelidis, Pavlos; Mantas, Asimakis; Moutoussis, Konstantinos; Evdokimidis, Ioannis; Smyrnis, Nikolaos
2015-11-01
The representation of visual orientation is more accurate for cardinal orientations compared to oblique, and this anisotropy has been hypothesized to reflect a low-level visual process (visual, "class 1" oblique effect). The reproduction of directional and orientation information also leads to a mean error away from cardinal orientations or directions. This anisotropy has been hypothesized to reflect a high-level cognitive process of space categorization (cognitive, "class 2," oblique effect). This space categorization process would be more prominent when the visual representation of orientation degrades such as in the case of working memory with increasing cognitive load, leading to increasing magnitude of the "class 2" oblique effect, while the "class 1" oblique effect would remain unchanged. Two experiments were performed in which an array of orientation stimuli (1-4 items) was presented and then subjects had to realign a probe stimulus within the previously presented array. In the first experiment, the delay between stimulus presentation and probe varied, while in the second experiment, the stimulus presentation time varied. The variable error was larger for oblique compared to cardinal orientations in both experiments reproducing the visual "class 1" oblique effect. The mean error also reproduced the tendency away from cardinal and toward the oblique orientations in both experiments (cognitive "class 2" oblique effect). The accuracy or the reproduced orientation degraded (increasing variable error) and the cognitive "class 2" oblique effect increased with increasing memory load (number of items) in both experiments and presentation time in the second experiment. In contrast, the visual "class 1" oblique effect was not significantly modulated by any one of these experimental factors. These results confirmed the theoretical predictions for the two anisotropies in visual orientation reproduction and provided support for models proposing the categorization of orientation in visual working memory.
Harvey, Ben M; Dumoulin, Serge O
2016-02-15
Several studies demonstrate that visual stimulus motion affects neural receptive fields and fMRI response amplitudes. Here we unite results of these two approaches and extend them by examining the effects of visual motion on neural position preferences throughout the hierarchy of human visual field maps. We measured population receptive field (pRF) properties using high-field fMRI (7T), characterizing position preferences simultaneously over large regions of the visual cortex. We measured pRFs properties using sine wave gratings in stationary apertures, moving at various speeds in either the direction of pRF measurement or the orthogonal direction. We find direction- and speed-dependent changes in pRF preferred position and size in all visual field maps examined, including V1, V3A, and the MT+ map TO1. These effects on pRF properties increase up the hierarchy of visual field maps. However, both within and between visual field maps the extent of pRF changes was approximately proportional to pRF size. This suggests that visual motion transforms the representation of visual space similarly throughout the visual hierarchy. Visual motion can also produce an illusory displacement of perceived stimulus position. We demonstrate perceptual displacements using the same stimulus configuration. In contrast to effects on pRF properties, perceptual displacements show only weak effects of motion speed, with far larger speed-independent effects. We describe a model where low-level mechanisms could underlie the observed effects on neural position preferences. We conclude that visual motion induces similar transformations of visuo-spatial representations throughout the visual hierarchy, which may arise through low-level mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.
Neural Representations that Support Invariant Object Recognition
Goris, Robbe L. T.; Op de Beeck, Hans P.
2008-01-01
Neural mechanisms underlying invariant behaviour such as object recognition are not well understood. For brain regions critical for object recognition, such as inferior temporal cortex (ITC), there is now ample evidence indicating that single cells code for many stimulus aspects, implying that only a moderate degree of invariance is present. However, recent theoretical and empirical work seems to suggest that integrating responses of multiple non-invariant units may produce invariant representations at population level. We provide an explicit test for the hypothesis that a linear read-out mechanism of a pool of units resembling ITC neurons may achieve invariant performance in an identification task. A linear classifier was trained to decode a particular value in a 2-D stimulus space using as input the response pattern across a population of units. Only one dimension was relevant for the task, and the stimulus location on the irrelevant dimension (ID) was kept constant during training. In a series of identification tests, the stimulus location on the relevant dimension (RD) and ID was manipulated, yielding estimates for both the level of sensitivity and tolerance reached by the network. We studied the effects of several single-cell characteristics as well as population characteristics typically considered in the literature, but found little support for the hypothesis. While the classifier averages out effects of idiosyncratic tuning properties and inter-unit variability, its invariance is very much determined by the (hypothetical) ‘average’ neuron. Consequently, even at population level there exists a fundamental trade-off between selectivity and tolerance, and invariant behaviour does not emerge spontaneously. PMID:19242556
Physiological stimuli evoke two forms of endocytosis in bovine chromaffin cells.
Chan, S A; Smith, C
2001-12-15
1. Exocytosis and endocytosis were measured following single, or trains of, simulated action potentials (sAP) in bovine adrenal chromaffin cells. Catecholamine secretion was measured by oxidative amperometry and cell membrane turnover was measured by voltage clamp cell capacitance measurements. 2. The sAPs evoked inward Na(+) and Ca(2+) currents that were statistically identical to those evoked by native action potential waveforms. On average, a single secretory granule underwent fusion following sAP stimulation. An equivalent amount of membrane was then quickly internalised (tau = 560 ms). 3. Stimulation with sAP trains revealed a biphasic relationship between cell firing rate and endocytic activity. At basal stimulus frequencies (single to 0.5 Hz) cells exhibited a robust membrane internalisation that then diminished as firing increased to intermediate levels (1.9 and 6 Hz). However at the higher stimulation rates (10 and 16 Hz) endocytic activity rebounded and was again able to effectively maintain cell surface near pre-stimulus levels. 4. Treatment with cyclosporin A and FK506, inhibitors of the phosphatase calcineurin, left endocytosis characteristics unaltered at the lower basal stimulus levels, but blocked the resurgence in endocytosis seen in control cells at higher sAP frequencies. 5. Based on these findings we propose that, under physiological electrical stimulation, chromaffin cells internalise membrane via two distinct pathways that are separable. One is prevalent at basal stimulus frequencies, is lessened with increased firing, and is insensitive to cyclosporin A and FK506. A second endocytic form is activated by increased firing frequencies, and is selectively blocked by cyclosporin A and FK506.
Physiological stimuli evoke two forms of endocytosis in bovine chromaffin cells
Chan, Shyue-An; Smith, Corey
2001-01-01
Exocytosis and endocytosis were measured following single, or trains of, simulated action potentials (sAP) in bovine adrenal chromaffin cells. Catecholamine secretion was measured by oxidative amperometry and cell membrane turnover was measured by voltage clamp cell capacitance measurements. The sAPs evoked inward Na+ and Ca2+ currents that were statistically identical to those evoked by native action potential waveforms. On average, a single secretory granule underwent fusion following sAP stimulation. An equivalent amount of membrane was then quickly internalised (τ = 560 ms). Stimulation with sAP trains revealed a biphasic relationship between cell firing rate and endocytic activity. At basal stimulus frequencies (single to 0.5 Hz) cells exhibited a robust membrane internalisation that then diminished as firing increased to intermediate levels (1.9 and 6 Hz). However at the higher stimulation rates (10 and 16 Hz) endocytic activity rebounded and was again able to effectively maintain cell surface near pre-stimulus levels. Treatment with cyclosporin A and FK506, inhibitors of the phosphatase calcineurin, left endocytosis characteristics unaltered at the lower basal stimulus levels, but blocked the resurgence in endocytosis seen in control cells at higher sAP frequencies. Based on these findings we propose that, under physiological electrical stimulation, chromaffin cells internalise membrane via two distinct pathways that are separable. One is prevalent at basal stimulus frequencies, is lessened with increased firing, and is insensitive to cyclosporin A and FK506. A second endocytic form is activated by increased firing frequencies, and is selectively blocked by cyclosporin A and FK506. PMID:11744761
Rubin, Mark
2018-01-01
Terror management theory (TMT) proposes that thoughts of death trigger a concern about self-annihilation that motivates the defense of cultural worldviews. In contrast, uncertainty theorists propose that thoughts of death trigger feelings of uncertainty that motivate worldview defense. University students (N = 414) completed measures of the chronic fear of self-annihilation and existential uncertainty as well as the need for closure. They then evaluated either a meaning threat stimulus or a control stimulus. Consistent with TMT, participants with a high fear of self-annihilation and a high need for closure showed the greatest dislike of the meaning threat stimulus, even after controlling for their existential uncertainty. Contrary to the uncertainty perspective, fear of existential uncertainty showed no significant effects.
Neural Correlates of Visual Aesthetics – Beauty as the Coalescence of Stimulus and Internal State
Jacobs, Richard H. A. H.; Renken, Remco; Cornelissen, Frans W.
2012-01-01
How do external stimuli and our internal state coalesce to create the distinctive aesthetic pleasures that give vibrance to human experience? Neuroaesthetics has so far focused on the neural correlates of observing beautiful stimuli compared to neutral or ugly stimuli, or on neural correlates of judging for beauty as opposed to other judgments. Our group questioned whether this approach is sufficient. In our view, a brain region that assesses beauty should show beauty-level-dependent activation during the beauty judgment task, but not during other, unrelated tasks. We therefore performed an fMRI experiment in which subjects judged visual textures for beauty, naturalness and roughness. Our focus was on finding brain activation related to the rated beauty level of the stimuli, which would take place exclusively during the beauty judgment. An initial whole-brain analysis did not reveal such interactions, yet a number of the regions showing main effects of the judgment task or the beauty level of stimuli were selectively sensitive to beauty level during the beauty task. Of the regions that were more active during beauty judgments than roughness judgments, the frontomedian cortex and the amygdala demonstrated the hypothesized interaction effect, while the posterior cingulate cortex did not. The latter region, which only showed a task effect, may play a supporting role in beauty assessments, such as attending to one's internal state rather than the external world. Most of the regions showing interaction effects of judgment and beauty level correspond to regions that have previously been implicated in aesthetics using different stimulus classes, but based on either task or beauty effects alone. The fact that we have now shown that task-stimulus interactions are also present during the aesthetic judgment of visual textures implies that these areas form a network that is specifically devoted to aesthetic assessment, irrespective of the stimulus type. PMID:22384006
Neural correlates of visual aesthetics--beauty as the coalescence of stimulus and internal state.
Jacobs, Richard H A H; Renken, Remco; Cornelissen, Frans W
2012-01-01
How do external stimuli and our internal state coalesce to create the distinctive aesthetic pleasures that give vibrance to human experience? Neuroaesthetics has so far focused on the neural correlates of observing beautiful stimuli compared to neutral or ugly stimuli, or on neural correlates of judging for beauty as opposed to other judgments. Our group questioned whether this approach is sufficient. In our view, a brain region that assesses beauty should show beauty-level-dependent activation during the beauty judgment task, but not during other, unrelated tasks. We therefore performed an fMRI experiment in which subjects judged visual textures for beauty, naturalness and roughness. Our focus was on finding brain activation related to the rated beauty level of the stimuli, which would take place exclusively during the beauty judgment. An initial whole-brain analysis did not reveal such interactions, yet a number of the regions showing main effects of the judgment task or the beauty level of stimuli were selectively sensitive to beauty level during the beauty task. Of the regions that were more active during beauty judgments than roughness judgments, the frontomedian cortex and the amygdala demonstrated the hypothesized interaction effect, while the posterior cingulate cortex did not. The latter region, which only showed a task effect, may play a supporting role in beauty assessments, such as attending to one's internal state rather than the external world. Most of the regions showing interaction effects of judgment and beauty level correspond to regions that have previously been implicated in aesthetics using different stimulus classes, but based on either task or beauty effects alone. The fact that we have now shown that task-stimulus interactions are also present during the aesthetic judgment of visual textures implies that these areas form a network that is specifically devoted to aesthetic assessment, irrespective of the stimulus type.
Batman, Angela M; Dutta, Aloke K; Reith, Maarten E A; Beardsley, Patrick M
2010-12-01
A successful replacement pharmacotherapy for treating cocaine dependency would likely reduce cocaine's abuse, support a low abuse liability, overlap cocaine's subjective effects, and have a long duration of action. Inhibitors with varying selectivity at the dopamine transporter (DAT) have approximated these properties. The objective of the present study was to characterize the behavioural effects of an extremely selective DAT inhibitor, (+) trans-4-(2-Benzhydryloxyethyl)-1-(4-fluorobenzyl) piperadin-3-ol (D-84), a 3-hydroxy substituted piperidine derivative of GBR-12935, for its cocaine-like discriminative stimulus effects, its effects on cocaine self-administration, and for its own self-administration. During cocaine discrimination tests, cocaine occasioned the 10 mg/kg cocaine training stimulus with an ED(50) value of 3.13 (1.54-6.34) mg/kg, and reduced response rates with an ED(50) value of 20.39 (7.24-57.44) mg/kg. D-84 incompletely generalized to the cocaine stimulus occasioning a maximal 76% cocaine-lever responding, while reducing response rates with lower potency than cocaine (ED(50)=30.94 (12.34-77.60) mg/kg). Pretreatment with D-84 (9.6-30.4 mg/kg) significantly (P<0.05) reduced cocaine intake at 17.1 mg/kg D-84 when cocaine was self-administered at 0.5 mg/kg/infusion, and at 30.4 mg/kg D-84 when cocaine was self-administered at 0.1, 0.5 .and 1.0 mg/kg/infusion. During self-administration tests with D-84 (0.1-1 mg/kg/infusion), numbers of infusions significantly exceeded vehicle levels at 0.3 mg/kg/infusion. These results show that D-84 pretreatment can decrease cocaine intake especially when high doses of cocaine are being self-administered. This observation, combined with its incomplete generalization to the cocaine discriminative stimulus and its reported long duration of action, provides a profile consistent with a potential replacement therapy for treating cocaine-abusing patients. Copyright © 2010 Elsevier B.V. All rights reserved.
Xu, Renfeng; Wang, Huachun; Thibos, Larry N; Bradley, Arthur
2017-04-01
Our purpose is to develop a computational approach that jointly assesses the impact of stimulus luminance and pupil size on visual quality. We compared traditional optical measures of image quality and those that incorporate the impact of retinal illuminance dependent neural contrast sensitivity. Visually weighted image quality was calculated for a presbyopic model eye with representative levels of chromatic and monochromatic aberrations as pupil diameter was varied from 7 to 1 mm, stimulus luminance varied from 2000 to 0.1 cd/m2, and defocus varied from 0 to -2 diopters. The model included the effects of quantal fluctuations on neural contrast sensitivity. We tested the model's predictions for five cycles per degree gratings by measuring contrast sensitivity at 5 cyc/deg. Unlike the traditional Strehl ratio and the visually weighted area under the modulation transfer function, the visual Strehl ratio derived from the optical transfer function was able to capture the combined impact of optics and quantal noise on visual quality. In a well-focused eye, provided retinal illuminance is held constant as pupil size varies, visual image quality scales approximately as the square root of illuminance because of quantum fluctuations, but optimum pupil size is essentially independent of retinal illuminance and quantum fluctuations. Conversely, when stimulus luminance is held constant (and therefore illuminance varies with pupil size), optimum pupil size increases as luminance decreases, thereby compensating partially for increased quantum fluctuations. However, in the presence of -1 and -2 diopters of defocus and at high photopic levels where Weber's law operates, optical aberrations and diffraction dominate image quality and pupil optimization. Similar behavior was observed in human observers viewing sinusoidal gratings. Optimum pupil size increases as stimulus luminance drops for the well-focused eye, and the benefits of small pupils for improving defocused image quality remain throughout the photopic and mesopic ranges. However, restricting pupils to <2 mm will cause significant reductions in the best focus vision at low photopic and mesopic luminances.
Population activity statistics dissect subthreshold and spiking variability in V1.
Bányai, Mihály; Koman, Zsombor; Orbán, Gergő
2017-07-01
Response variability, as measured by fluctuating responses upon repeated performance of trials, is a major component of neural responses, and its characterization is key to interpret high dimensional population recordings. Response variability and covariability display predictable changes upon changes in stimulus and cognitive or behavioral state, providing an opportunity to test the predictive power of models of neural variability. Still, there is little agreement on which model to use as a building block for population-level analyses, and models of variability are often treated as a subject of choice. We investigate two competing models, the doubly stochastic Poisson (DSP) model assuming stochasticity at spike generation, and the rectified Gaussian (RG) model tracing variability back to membrane potential variance, to analyze stimulus-dependent modulation of both single-neuron and pairwise response statistics. Using a pair of model neurons, we demonstrate that the two models predict similar single-cell statistics. However, DSP and RG models have contradicting predictions on the joint statistics of spiking responses. To test the models against data, we build a population model to simulate stimulus change-related modulations in pairwise response statistics. We use single-unit data from the primary visual cortex (V1) of monkeys to show that while model predictions for variance are qualitatively similar to experimental data, only the RG model's predictions are compatible with joint statistics. These results suggest that models using Poisson-like variability might fail to capture important properties of response statistics. We argue that membrane potential-level modeling of stochasticity provides an efficient strategy to model correlations. NEW & NOTEWORTHY Neural variability and covariability are puzzling aspects of cortical computations. For efficient decoding and prediction, models of information encoding in neural populations hinge on an appropriate model of variability. Our work shows that stimulus-dependent changes in pairwise but not in single-cell statistics can differentiate between two widely used models of neuronal variability. Contrasting model predictions with neuronal data provides hints on the noise sources in spiking and provides constraints on statistical models of population activity. Copyright © 2017 the American Physiological Society.
The Power of Instructions: Proactive Configuration of Stimulus-Response Translation
ERIC Educational Resources Information Center
Meiran, Nachshon; Pereg, Maayan; Kessler, Yoav; Cole, Michael W.; Braver, Todd S.
2015-01-01
Humans are characterized by an especially highly developed ability to use instructions to prepare toward upcoming events; yet, it is unclear just how powerful instructions can be. Although prior work provides evidence that instructions can be sufficiently powerful to proactively program working memory to execute stimulus-response (S-R)…
Hierarchical Letters in ASD: High Stimulus Variability under Different Attentional Modes
ERIC Educational Resources Information Center
Van der Hallen, Ruth; Vanmarcke, Steven; Noens, Ilse; Wagemans, Johan
2017-01-01
Studies using hierarchical patterns to test global precedence and local-global interference in individuals with ASD have produced mixed results. The current study focused on stimulus variability and locational uncertainty, while using different attentional modes. Two groups of 44 children with and without ASD completed a divided attention task as…
Dengjel, Jörn; Høyer-Hansen, Maria; Nielsen, Maria O.; Eisenberg, Tobias; Harder, Lea M.; Schandorff, Søren; Farkas, Thomas; Kirkegaard, Thomas; Becker, Andrea C.; Schroeder, Sabrina; Vanselow, Katja; Lundberg, Emma; Nielsen, Mogens M.; Kristensen, Anders R.; Akimov, Vyacheslav; Bunkenborg, Jakob; Madeo, Frank; Jäättelä, Marja; Andersen, Jens S.
2012-01-01
Autophagy is one of the major intracellular catabolic pathways, but little is known about the composition of autophagosomes. To study the associated proteins, we isolated autophagosomes from human breast cancer cells using two different biochemical methods and three stimulus types: amino acid deprivation or rapamycin or concanamycin A treatment. The autophagosome-associated proteins were dependent on stimulus, but a core set of proteins was stimulus-independent. Remarkably, proteasomal proteins were abundant among the stimulus-independent common autophagosome-associated proteins, and the activation of autophagy significantly decreased the cellular proteasome level and activity supporting interplay between the two degradation pathways. A screen of yeast strains defective in the orthologs of the human genes encoding for a common set of autophagosome-associated proteins revealed several regulators of autophagy, including subunits of the retromer complex. The combined spatiotemporal proteomic and genetic data sets presented here provide a basis for further characterization of autophagosome biogenesis and cargo selection. PMID:22311637
Identity matching in a patient with Alzheimer's disease.
Steinunn Steingrimsdottir, Hanna; Arntzen, Erik
2011-05-01
Difficulties with short-term memory are one of the main problems in patients with dementia. Therefore, one purpose of this study was to examine the effects of simultaneous vs delayed presentation of comparison stimuli in a matching-to-sample (MTS) task using computerized training. By using an identity MTS procedure, the participant was trained to select a comparison stimulus identical to a sample stimulus. A 2nd purpose was to study the effect of the number of choices presented, thereby evaluating short-term memory deficits and possible deterioration of deficits over time. In this study, an 80-year-old-male with a Mini-Mental State Examination (MMSE) score of 10 was exposed to 4 experimental conditions. The results showed that using 3 comparison stimuli presented simultaneously with the sample stimulus on the screen resulted in more incorrect responding than when using 2 comparison stimuli. Furthermore, when adding a 0-second delay between the presentation of the sample stimulus and the 2 comparison stimuli, the number of correct responses did not exceed chance level.
Thoma, Patrizia; Soria Bauser, Denise; Suchan, Boris
2013-08-30
This article introduces the freely available Bochum Emotional Stimulus Set (BESST), which contains pictures of bodies and faces depicting either a neutral expression or one of the six basic emotions (happiness, sadness, fear, anger, disgust, and surprise), presented from two different perspectives (0° frontal view vs. camera averted by 45° to the left). The set comprises 565 frontal view and 564 averted view pictures of real-life bodies with masked facial expressions and 560 frontal and 560 averted view faces which were synthetically created using the FaceGen 3.5 Modeller. All stimuli were validated in terms of categorization accuracy and the perceived naturalness of the expression. Additionally, each facial stimulus was morphed into three age versions (20/40/60 years). The results show high recognition of the intended facial expressions, even under speeded forced-choice conditions, as corresponds to common experimental settings. The average naturalness ratings for the stimuli range between medium and high. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Biases in probabilistic category learning in relation to social anxiety
Abraham, Anna; Hermann, Christiane
2015-01-01
Instrumental learning paradigms are rarely employed to investigate the mechanisms underlying acquired fear responses in social anxiety. Here, we adapted a probabilistic category learning paradigm to assess information processing biases as a function of the degree of social anxiety traits in a sample of healthy individuals without a diagnosis of social phobia. Participants were presented with three pairs of neutral faces with differing probabilistic accuracy contingencies (A/B: 80/20, C/D: 70/30, E/F: 60/40). Upon making their choice, negative and positive feedback was conveyed using angry and happy faces, respectively. The highly socially anxious group showed a strong tendency to be more accurate at learning the probability contingency associated with the most ambiguous stimulus pair (E/F: 60/40). Moreover, when pairing the most positively reinforced stimulus or the most negatively reinforced stimulus with all the other stimuli in a test phase, the highly socially anxious group avoided the most negatively reinforced stimulus significantly more than the control group. The results are discussed with reference to avoidance learning and hypersensitivity to negative socially evaluative information associated with social anxiety. PMID:26347685
Williams, Benjamin R; Strauss, Esther H; Hultsch, David F; Hunter, Michael A
2007-07-01
Age-related differences in inconsistency of reaction time (RT) across the life span were examined on a task with differing levels of demand on executive control. A total of 546 participants, aged 5 to 76 years, completed a spatial Stroop task that permitted observations under three conditions (congruent, incongruent, and neutral) according to the correspondence between the required response (based on stimulus direction) and stimulus location. An interference effect was observed across all ages. Analyses of neutral condition data replicated previous research demonstrating RT inconsistency follows a U-shaped developmental curve across the life span. The relationship between age and inconsistency, however, depended on condition: inconsistency in the congruent condition was higher than inconsistency in both the neutral and incongruent conditions across middle-aged groups. Reaction time inconsistency may reflect processing efficiency that is maximal in young adulthood and may also be sensitive to fluctuations in performance that reflect momentarily highly efficient responding.
Hardman, Kyle O; Cowan, Nelson
2015-03-01
Visual working memory stores stimuli from our environment as representations that can be accessed by high-level control processes. This study addresses a longstanding debate in the literature about whether storage limits in visual working memory include a limit to the complexity of discrete items. We examined the issue with a number of change-detection experiments that used complex stimuli that possessed multiple features per stimulus item. We manipulated the number of relevant features of the stimulus objects in order to vary feature load. In all of our experiments, we found that increased feature load led to a reduction in change-detection accuracy. However, we found that feature load alone could not account for the results but that a consideration of the number of relevant objects was also required. This study supports capacity limits for both feature and object storage in visual working memory. PsycINFO Database Record (c) 2015 APA, all rights reserved.
A task-irrelevant stimulus attribute affects perception and short-term memory
Huang, Jie; Kahana, Michael J.; Sekuler, Robert
2010-01-01
Selective attention protects cognition against intrusions of task-irrelevant stimulus attributes. This protective function was tested in coordinated psychophysical and memory experiments. Stimuli were superimposed, horizontally and vertically oriented gratings of varying spatial frequency; only one orientation was task relevant. Experiment 1 demonstrated that a task-irrelevant spatial frequency interfered with visual discrimination of the task-relevant spatial frequency. Experiment 2 adopted a two-item Sternberg task, using stimuli that had been scaled to neutralize interference at the level of vision. Despite being visually neutralized, the task-irrelevant attribute strongly influenced recognition accuracy and associated reaction times (RTs). This effect was sharply tuned, with the task-irrelevant spatial frequency having an impact only when the task-relevant spatial frequencies of the probe and study items were highly similar to one another. Model-based analyses of judgment accuracy and RT distributional properties converged on the point that the irrelevant orientation operates at an early stage in memory processing, not at a later one that supports decision making. PMID:19933454
Faiss, Raphaël; Girard, Olivier; Millet, Grégoire P
2013-12-01
Over the past two decades, intermittent hypoxic training (IHT), that is, a method where athletes live at or near sea level but train under hypoxic conditions, has gained unprecedented popularity. By adding the stress of hypoxia during 'aerobic' or 'anaerobic' interval training, it is believed that IHT would potentiate greater performance improvements compared to similar training at sea level. A thorough analysis of studies including IHT, however, leads to strikingly poor benefits for sea-level performance improvement, compared to the same training method performed in normoxia. Despite the positive molecular adaptations observed after various IHT modalities, the characteristics of optimal training stimulus in hypoxia are still unclear and their functional translation in terms of whole-body performance enhancement is minimal. To overcome some of the inherent limitations of IHT (lower training stimulus due to hypoxia), recent studies have successfully investigated a new training method based on the repetition of short (<30 s) 'all-out' sprints with incomplete recoveries in hypoxia, the so-called repeated sprint training in hypoxia (RSH). The aims of the present review are therefore threefold: first, to summarise the main mechanisms for interval training and repeated sprint training in normoxia. Second, to critically analyse the results of the studies involving high-intensity exercises performed in hypoxia for sea-level performance enhancement by differentiating IHT and RSH. Third, to discuss the potential mechanisms underpinning the effectiveness of those methods, and their inherent limitations, along with the new research avenues surrounding this topic.
COFFMAN, MARIKA C.; TRUBANOVA, ANDREA; RICHEY, J. ANTHONY; WHITE, SUSAN W.; KIM-SPOON, JUNGMEEN; OLLENDICK, THOMAS H.; PINE, DANIEL S.
2016-01-01
Attention to faces is a fundamental psychological process in humans, with atypical attention to faces noted across several clinical disorders. Although many clinical disorders onset in adolescence, there is a lack of well-validated stimulus sets containing adolescent faces available for experimental use. Further, the images comprising most available sets are not controlled for high- and low-level visual properties. Here, we present a cross-site validation of the National Institute of Mental Health Child Emotional Faces Picture Set (NIMH-ChEFS), comprised of 257 photographs of adolescent faces displaying angry, fearful, happy, sad, and neutral expressions. All of the direct facial images from the NIMH-ChEFS set were adjusted in terms of location of facial features and standardized for luminance, size, and smoothness. Although overall agreement between raters in this study and the original development-site raters was high (89.52%), this differed by group such that agreement was lower for adolescents relative to mental health professionals in the current study. These results suggest that future research using this face set or others of adolescent/child faces should base comparisons on similarly-aged validation data. PMID:26359940
Biased Saccadic Responses to Emotional Stimuli in Anxiety: An Antisaccade Study
Chen, Nigel T. M.; Clarke, Patrick J. F.; Watson, Tamara L.; MacLeod, Colin; Guastella, Adam J.
2014-01-01
Research suggests that anxiety is maintained by an attentional bias to threat, and a growing base of evidence suggests that anxiety may additionally be associated with the deficient attentional processing of positive stimuli. The present study sought to examine whether such anxiety-linked attentional biases were associated with either stimulus driven or attentional control mechanisms of attentional selectivity. High and low trait anxious participants completed an emotional variant of an antisaccade task, in which they were required to prosaccade towards, or antisaccade away from a positive, neutral or threat stimulus, while eye movements were recorded. While low anxious participants were found to be slower to saccade in response to positive stimuli, irrespectively of whether a pro- or antisaccade was required, such a bias was absent in high anxious individuals. Analysis of erroneous antisaccades further revealed at trend level, that anxiety was associated with reduced peak velocity in response to threat. The findings suggest that anxiety is associated with the aberrant processing of positive stimuli, and greater compensatory efforts in the inhibition of threat. The findings further highlight the relevance of considering saccade peak velocity in the assessment of anxiety-linked attentional processing. PMID:24523861
Biased saccadic responses to emotional stimuli in anxiety: an antisaccade study.
Chen, Nigel T M; Clarke, Patrick J F; Watson, Tamara L; Macleod, Colin; Guastella, Adam J
2014-01-01
Research suggests that anxiety is maintained by an attentional bias to threat, and a growing base of evidence suggests that anxiety may additionally be associated with the deficient attentional processing of positive stimuli. The present study sought to examine whether such anxiety-linked attentional biases were associated with either stimulus driven or attentional control mechanisms of attentional selectivity. High and low trait anxious participants completed an emotional variant of an antisaccade task, in which they were required to prosaccade towards, or antisaccade away from a positive, neutral or threat stimulus, while eye movements were recorded. While low anxious participants were found to be slower to saccade in response to positive stimuli, irrespectively of whether a pro- or antisaccade was required, such a bias was absent in high anxious individuals. Analysis of erroneous antisaccades further revealed at trend level, that anxiety was associated with reduced peak velocity in response to threat. The findings suggest that anxiety is associated with the aberrant processing of positive stimuli, and greater compensatory efforts in the inhibition of threat. The findings further highlight the relevance of considering saccade peak velocity in the assessment of anxiety-linked attentional processing.
Re-examination of the role of the human acoustic stapedius reflex
NASA Astrophysics Data System (ADS)
Phillips, Dennis P.; Stuart, Andrew; Carpenter, Michael
2002-05-01
The ``rollover'' seen in the word recognition performance scores of patients with Bell's palsy (facial nerve paralysis) has historically been taken as an indicator of the role of the stapedius reflex in the protection from upward spread of masking. Bell's palsy, however, may be a polyneuropathy, so it is not clear that the poor word recognition performance at high levels is necessarily attributable specifically to impaired facial nerve function. The present article reports two new experiments that probe whether an isolated impairment of the stapedius reflex can produce rollover in word recognition performance-intensity functions. In experiment 1, performance-intensity functions for monosyllabic speech materials were obtained from ten normal listeners under two listening conditions: normal and low-frequency augmented to offset the effects of the stapedius reflex on the transmission of low-frequency vibrations to the cochlea. There was no effect of the spectral augmentation on word recognition for stimulus levels up to 107 dB SPL. In experiment 2, six patients who had undergone stapedectomy were tested for rollover using performance-intensity functions. None of the patients showed rollover in their performance-intensity functions, even at stimulus levels in excess of 100 dB HL. These data suggest that if the stapedius reflex has a role in protection from upward spread of masking, then this role is inconsequential for word recognition in quiet.
Reduction of community alcohol problems: computer simulation experiments in three counties.
Holder, H D; Blose, J O
1987-03-01
A series of alcohol abuse prevention strategies was evaluated using computer simulation for three counties in the United States: Wake County, North Carolina, Washington County, Vermont and Alameda County, California. A system dynamics model composed of a network of interacting variables was developed for the pattern of alcoholic beverage consumption in a community. The relationship of community drinking patterns to various stimulus factors was specified in the model based on available empirical research. Stimulus factors included disposable income, alcoholic beverage prices, advertising exposure, minimum drinking age and changes in cultural norms. After a generic model was developed and validated on the national level, a computer-based system dynamics model was developed for each county, and a series of experiments was conducted to project the potential impact of specific prevention strategies. The project concluded that prevention efforts can both lower current levels of alcohol abuse and reduce projected increases in alcohol-related problems. Without such efforts, already high levels of alcohol-related family disruptions in the three counties could be expected to rise an additional 6% and drinking-related work problems 1-5%, over the next 10 years after controlling for population growth. Of the strategies tested, indexing the price of alcoholic beverages to the consumer price index in conjunction with the implementation of a community educational program with well-defined target audiences has the best potential for significant problem reduction in all three counties.
Qian, Ning; Dayan, Peter
2013-01-01
A wealth of studies has found that adapting to second-order visual stimuli has little effect on the perception of first-order stimuli. This is physiologically and psychologically troubling, since many cells show similar tuning to both classes of stimuli, and since adapting to first-order stimuli leads to aftereffects that do generalize to second-order stimuli. Focusing on high-level visual stimuli, we recently proposed the novel explanation that the lack of transfer arises partially from the characteristically different backgrounds of the two stimulus classes. Here, we consider the effect of stimulus backgrounds in the far more prevalent, lower-level, case of the orientation tilt aftereffect. Using a variety of first- and second-order oriented stimuli, we show that we could increase or decrease both within- and cross-class adaptation aftereffects by increasing or decreasing the similarity of the otherwise apparently uninteresting or irrelevant backgrounds of adapting and test patterns. Our results suggest that similarity between background statistics of the adapting and test stimuli contributes to low-level visual adaptation, and that these backgrounds are thus not discarded by visual processing but provide contextual modulation of adaptation. Null cross-adaptation aftereffects must also be interpreted cautiously. These findings reduce the apparent inconsistency between psychophysical and neurophysiological data about first- and second-order stimuli. PMID:23732217
Dickson, Price E.; Corkill, Beau; McKimm, Eric; Miller, Mellessa M.; Calton, Michele A.; Goldowitz, Daniel; Blaha, Charles D.; Mittleman, Guy
2013-01-01
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability in males and the most common genetic cause of autism. Although executive dysfunction is consistently found in humans with FXS, evidence of executive dysfunction in Fmr1 KO mice, a mouse model of FXS, has been inconsistent. One possible explanation for this is that executive dysfunction in Fmr1 KO mice, similar to humans with FXS, is only evident when cognitive demands are high. Using touchscreen operant conditioning chambers, male Fmr1 KO mice and their male wildtype littermates were tested on the acquisition of a pairwise visual discrimination followed by four serial reversals of the response rule. We assessed reversal learning performance under two different conditions. In the first, the correct stimulus was salient and the incorrect stimulus was non-salient. In the second and more challenging condition, the incorrect stimulus was salient and the correct stimulus was non-salient; this increased cognitive load by introducing conflict between sensory-driven (i.e., bottom-up) and task-dependent (i.e., top-down) signals. Fmr1 KOs displayed two distinct impairments relative to wildtype littermates. First, Fmr1 KOs committed significantly more learning-type errors during the second reversal stage, but only under high cognitive load. Second, during the first reversal stage, Fmr1 KOs committed significantly more attempts to collect a reward during the timeout following an incorrect response. These findings indicate that Fmr1 KO mice display executive dysfunction that, in some cases, is only evident under high cognitive load. PMID:23747611
Memory timeline: Brain ERP C250 (not P300) is an early biomarker of short-term storage.
Chapman, Robert M; Gardner, Margaret N; Mapstone, Mark; Dupree, Haley M; Antonsdottir, Inga M
2015-04-16
Brain event-related potentials (ERPs) offer a quantitative link between neurophysiological activity and cognitive performance. ERPs were measured while young adults performed a task that required storing a relevant stimulus in short-term memory. Using principal components analysis, ERP component C250 (maximum at 250 ms post-stimulus) was extracted from a set of ERPs that were separately averaged for various task conditions, including stimulus relevancy and stimulus sequence within a trial. C250 was more positive in response to task-specific stimuli that were successfully stored in short-term memory. This relationship between C250 and short-term memory storage of a stimulus was confirmed by a memory probe recall test where the behavioral recall of a stimulus was highly correlated with its C250 amplitude. ERP component P300 (and its subcomponents of P3a and P3b, which are commonly thought to represent memory operations) did not show a pattern of activation reflective of storing task-relevant stimuli. C250 precedes the P300, indicating that initial short-term memory storage may occur earlier than previously believed. Additionally, because C250 is so strongly predictive of a stimulus being stored in short-term memory, C250 may provide a strong index of early memory operations. Copyright © 2015 Elsevier B.V. All rights reserved.
Barlow, SM; Lee, Jaehoon; Wang, Jingyan; Oder, Austin; Oh, Hyuntaek; Hall, Sue; Knox, Kendi; Weatherstone, Kathleen; Thompson, Diane
2013-01-01
The precocial nature of orofacial sensorimotor control underscores the biological importance of establishing ororythmic activity in human infants. The purpose of this study was to assess the effects of comparable doses of three forms of orosensory experience, including a low-velocity spectrally reduced orocutaneous stimulus (NT1), a high-velocity broad spectrum orocutaneous stimulus (NT2), and a SHAM stimulus consisting of a blind pacifier. Each orosensory experience condition was paired with gavage feedings 3x/day for 10 days in the neonatal intensive care unit (NICU). Four groups of preterm infants (N=214), including those with respiratory distress syndrome (RDS), chronic lung disease (CLD), infants of diabetic mothers (IDM), and healthy controls (HI) were randomized to the type of orosensory condition. Mixed modeling, adjusted for gender, gestational age, postmenstrual age, and birth weight, demonstrated the most significant gains in non-nutritive suck (NNS) development among CLD infants who were treated with the NT2 stimulus, with smaller gains realized among RDS and IDM infants. The broader spectrum of the NT2 stimulus maps closely to known response properties of mechanoreceptors in lip, tongue, and oral mucosa and is more effective in promoting NNS development among preterm infants with impaired oromotor function compared to the low-velocity, spectrally reduced NT1 orosensory stimulus. PMID:25018662
Kent, A R; Grill, W M
2012-06-01
The clinical efficacy of deep brain stimulation (DBS) for the treatment of movement disorders depends on the identification of appropriate stimulation parameters. Since the mechanisms of action of DBS remain unclear, programming sessions can be time consuming, costly and result in sub-optimal outcomes. Measurement of electrically evoked compound action potentials (ECAPs) during DBS, generated by activated neurons in the vicinity of the stimulating electrode, could offer insight into the type and spatial extent of neural element activation and provide a potential feedback signal for the rational selection of stimulation parameters and closed-loop DBS. However, recording ECAPs presents a significant technical challenge due to the large stimulus artefact, which can saturate recording amplifiers and distort short latency ECAP signals. We developed DBS-ECAP recording instrumentation combining commercial amplifiers and circuit elements in a serial configuration to reduce the stimulus artefact and enable high fidelity recording. We used an electrical circuit equivalent model of the instrumentation to understand better the sources of the stimulus artefact and the mechanisms of artefact reduction by the circuit elements. In vitro testing validated the capability of the instrumentation to suppress the stimulus artefact and increase gain by a factor of 1000 to 5000 compared to a conventional biopotential amplifier. The distortion of mock ECAP (mECAP) signals was measured across stimulation parameters, and the instrumentation enabled high fidelity recording of mECAPs with latencies of only 0.5 ms for DBS pulse widths of 50 to 100 µs/phase. Subsequently, the instrumentation was used to record in vivo ECAPs, without contamination by the stimulus artefact, during thalamic DBS in an anesthetized cat. The characteristics of the physiological ECAP were dependent on stimulation parameters. The novel instrumentation enables high fidelity ECAP recording and advances the potential use of the ECAP as a feedback signal for the tuning of DBS parameters.
Voluntary Imitation in Alzheimer’s Disease Patients
Bisio, Ambra; Casteran, Matthieu; Ballay, Yves; Manckoundia, Patrick; Mourey, France; Pozzo, Thierry
2016-01-01
Although Alzheimer’s disease (AD) primarily manifests as cognitive deficits, the implicit sensorimotor processes that underlie social interactions, such as automatic imitation, seem to be preserved in mild and moderate stages of the disease, as is the ability to communicate with other persons. Nevertheless, when AD patients face more challenging tasks, which do not rely on automatic processes but on explicit voluntary mechanisms and require the patient to pay attention to external events, the cognitive deficits resulting from the disease might negatively affect patients’ behavior. The aim of the present study was to investigate whether voluntary motor imitation, i.e., a volitional mechanism that involves observing another person’s action and translating this perception into one’s own action, was affected in patients with AD. Further, we tested whether this ability was modulated by the nature of the observed stimulus by comparing the ability to reproduce the kinematic features of a human demonstrator with that of a computerized-stimulus. AD patients showed an intact ability to reproduce the velocity of the observed movements, particularly when the stimulus was a human agent. This result suggests that high-level cognitive processes involved in voluntary imitation might be preserved in mild and moderate stages of AD and that voluntary imitation abilities might benefit from the implicit interpersonal communication established between the patient and the human demonstrator. PMID:27014056
Waselius, Tomi; Mikkonen, Jarno E.; Wikgren, Jan; Penttonen, Markku
2015-01-01
Hippocampal θ (3–12 Hz) oscillations are implicated in learning and memory, but their functional role remains unclear. We studied the effect of the phase of local θ oscillation on hippocampal responses to a neutral conditioned stimulus (CS) and subsequent learning of classical trace eyeblink conditioning in adult rabbits. High-amplitude, regular hippocampal θ-band responses (that predict good learning) were elicited by the CS when it was timed to commence at the fissure θ trough (Trough group). Regardless, learning in this group was not enhanced compared with a yoked control group, possibly due to a ceiling effect. However, when the CS was consistently presented to the peak of θ (Peak group), hippocampal θ-band responding was less organized and learning was retarded. In well-trained animals, the hippocampal θ phase at CS onset no longer affected performance of the learned response, suggesting a time-limited role for hippocampal processing in learning. To our knowledge, this is the first study to demonstrate that timing a peripheral stimulus to a specific phase of the hippocampal θ cycle produces robust effects on the synchronization of neural responses and affects learning at the behavioral level. Our results support the notion that the phase of spontaneous hippocampal θ oscillation is a means of regulating the processing of information in the brain to a behaviorally relevant degree. PMID:25979993
The Whorfian time warp: Representing duration through the language hourglass.
Bylund, Emanuel; Athanasopoulos, Panos
2017-07-01
How do humans construct their mental representations of the passage of time? The universalist account claims that abstract concepts like time are universal across humans. In contrast, the linguistic relativity hypothesis holds that speakers of different languages represent duration differently. The precise impact of language on duration representation is, however, unknown. Here, we show that language can have a powerful role in transforming humans' psychophysical experience of time. Contrary to the universalist account, we found language-specific interference in a duration reproduction task, where stimulus duration conflicted with its physical growth. When reproducing duration, Swedish speakers were misled by stimulus length, and Spanish speakers were misled by stimulus size/quantity. These patterns conform to preferred expressions of duration magnitude in these languages (Swedish: long/short time; Spanish: much/small time). Critically, Spanish-Swedish bilinguals performing the task in both languages showed different interference depending on language context. Such shifting behavior within the same individual reveals hitherto undocumented levels of flexibility in time representation. Finally, contrary to the linguistic relativity hypothesis, language interference was confined to difficult discriminations (i.e., when stimuli varied only subtly in duration and growth), and was eliminated when linguistic cues were removed from the task. These results reveal the malleable nature of human time representation as part of a highly adaptive information processing system. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Spike-frequency adaptation in the inferior colliculus.
Ingham, Neil J; McAlpine, David
2004-02-01
We investigated spike-frequency adaptation of neurons sensitive to interaural phase disparities (IPDs) in the inferior colliculus (IC) of urethane-anesthetized guinea pigs using a stimulus paradigm designed to exclude the influence of adaptation below the level of binaural integration. The IPD-step stimulus consists of a binaural 3,000-ms tone, in which the first 1,000 ms is held at a neuron's least favorable ("worst") IPD, adapting out monaural components, before being stepped rapidly to a neuron's most favorable ("best") IPD for 300 ms. After some variable interval (1-1,000 ms), IPD is again stepped to the best IPD for 300 ms, before being returned to a neuron's worst IPD for the remainder of the stimulus. Exponential decay functions fitted to the response to best-IPD steps revealed an average adaptation time constant of 52.9 +/- 26.4 ms. Recovery from adaptation to best IPD steps showed an average time constant of 225.5 +/- 210.2 ms. Recovery time constants were not correlated with adaptation time constants. During the recovery period, adaptation to a 2nd best-IPD step followed similar kinetics to adaptation during the 1st best-IPD step. The mean adaptation time constant at stimulus onset (at worst IPD) was 34.8 +/- 19.7 ms, similar to the 38.4 +/- 22.1 ms recorded to contralateral stimulation alone. Individual time constants after stimulus onset were correlated with each other but not with time constants during the best-IPD step. We conclude that such binaurally derived measures of adaptation reflect processes that occur above the level of exclusively monaural pathways, and subsequent to the site of primary binaural interaction.
Brain mediators of the effects of noxious heat on pain.
Atlas, Lauren Y; Lindquist, Martin A; Bolger, Niall; Wager, Tor D
2014-08-01
Recent human neuroimaging studies have investigated the neural correlates of either noxious stimulus intensity or reported pain. Although useful, analyzing brain relationships with stimulus intensity and behavior separately does not address how sensation and pain are linked in the central nervous system. In this study, we used multi-level mediation analysis to identify brain mediators of pain--regions in which trial-by-trial responses to heat explained variability in the relationship between noxious stimulus intensity (across 4 levels) and pain. This approach has the potential to identify multiple circuits with complementary roles in pain genesis. Brain mediators of noxious heat effects on pain included targets of ascending nociceptive pathways (anterior cingulate, insula, SII, and medial thalamus) and also prefrontal and subcortical regions not associated with nociceptive pathways per se. Cluster analysis revealed that mediators were grouped into several distinct functional networks, including the following: somatosensory, paralimbic, and striatal-cerebellar networks that increased with stimulus intensity; and 2 networks co-localized with "default mode" regions in which stimulus intensity-related decreases mediated increased pain. We also identified "thermosensory" regions that responded to increasing noxious heat but did not predict pain reports. Finally, several regions did not respond to noxious input, but their activity predicted pain; these included ventromedial prefrontal cortex, dorsolateral prefrontal cortex, cerebellar regions, and supplementary motor cortices. These regions likely underlie both nociceptive and non-nociceptive processes that contribute to pain, such as attention and decision-making processes. Overall, these results elucidate how multiple distinct brain systems jointly contribute to the central generation of pain. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Aural, visual, and pictorial stimulus formats in false recall.
Beauchamp, Heather M
2002-12-01
The present investigation is an initial simultaneous examination of the influence of three stimulus formats on false memories. Several pilot tests were conducted to develop new category associate stimulus lists. 73 women and 26 men (M age=21.1 yr.) were in one of three conditions: they either heard words, were shown words, or were shown pictures highly related to critical nonpresented items. As expected, recall of critical nonpresented stimuli was significantly greater for aural lists than for visually presented words and pictorial images. These findings demonstrate that the accuracy of memory is influenced by the format of the information encoded.
Ansari, M S; Rangasayee, R; Ansari, M A H
2017-03-01
Poor auditory speech perception in geriatrics is attributable to neural de-synchronisation due to structural and degenerative changes of ageing auditory pathways. The speech-evoked auditory brainstem response may be useful for detecting alterations that cause loss of speech discrimination. Therefore, this study aimed to compare the speech-evoked auditory brainstem response in adult and geriatric populations with normal hearing. The auditory brainstem responses to click sounds and to a 40 ms speech sound (the Hindi phoneme |da|) were compared in 25 young adults and 25 geriatric people with normal hearing. The latencies and amplitudes of transient peaks representing neural responses to the onset, offset and sustained portions of the speech stimulus in quiet and noisy conditions were recorded. The older group had significantly smaller amplitudes and longer latencies for the onset and offset responses to |da| in noisy conditions. Stimulus-to-response times were longer and the spectral amplitude of the sustained portion of the stimulus was reduced. The overall stimulus level caused significant shifts in latency across the entire speech-evoked auditory brainstem response in the older group. The reduction in neural speech processing in older adults suggests diminished subcortical responsiveness to acoustically dynamic spectral cues. However, further investigations are needed to encode temporal cues at the brainstem level and determine their relationship to speech perception for developing a routine tool for clinical decision-making.
NASA Technical Reports Server (NTRS)
Hart, S. G.; Shively, R. J.; Vidulich, M. A.; Miller, R. C.
1986-01-01
The influence of stimulus modality and task difficulty on workload and performance was investigated. The goal was to quantify the cost (in terms of response time and experienced workload) incurred when essentially serial task components shared common elements (e.g., the response to one initiated the other) which could be accomplished in parallel. The experimental tasks were based on the Fittsberg paradigm; the solution to a SternBERG-type memory task determines which of two identical FITTS targets are acquired. Previous research suggested that such functionally integrated dual tasks are performed with substantially less workload and faster response times than would be predicted by suming single-task components when both are presented in the same stimulus modality (visual). The physical integration of task elements was varied (although their functional relationship remained the same) to determine whether dual-task facilitation would persist if task components were presented in different sensory modalities. Again, it was found that the cost of performing the two-stage task was considerably less than the sum of component single-task levels when both were presented visually. Less facilitation was found when task elements were presented in different sensory modalities. These results suggest the importance of distinguishing between concurrent tasks that complete for limited resources from those that beneficially share common resources when selecting the stimulus modalities for information displays.
Hecht, Marcus; Thiemann, Ulf; Freitag, Christine M; Bender, Stephan
2016-01-15
Post-perceptual cues can enhance visual short term memory encoding even after the offset of the visual stimulus. However, both the mechanisms by which the sensory stimulus characteristics are buffered as well as the mechanisms by which post-perceptual selective attention enhances short term memory encoding remain unclear. We analyzed late post-perceptual event-related potentials (ERPs) in visual change detection tasks (100ms stimulus duration) by high-resolution ERP analysis to elucidate these mechanisms. The effects of early and late auditory post-cues (300ms or 850ms after visual stimulus onset) as well as the effects of a visual interference stimulus were examined in 27 healthy right-handed adults. Focusing attention with post-perceptual cues at both latencies significantly improved memory performance, i.e. sensory stimulus characteristics were available for up to 850ms after stimulus presentation. Passive watching of the visual stimuli without auditory cue presentation evoked a slow negative wave (N700) over occipito-temporal visual areas. N700 was strongly reduced by a visual interference stimulus which impeded memory maintenance. In contrast, contralateral delay activity (CDA) still developed in this condition after the application of auditory post-cues and was thereby dissociated from N700. CDA and N700 seem to represent two different processes involved in short term memory encoding. While N700 could reflect visual post processing by automatic attention attraction, CDA may reflect the top-down process of searching selectively for the required information through post-perceptual attention. Copyright © 2015 Elsevier Inc. All rights reserved.
Statistical context shapes stimulus-specific adaptation in human auditory cortex
Henry, Molly J.; Fromboluti, Elisa Kim; McAuley, J. Devin
2015-01-01
Stimulus-specific adaptation is the phenomenon whereby neural response magnitude decreases with repeated stimulation. Inconsistencies between recent nonhuman animal recordings and computational modeling suggest dynamic influences on stimulus-specific adaptation. The present human electroencephalography (EEG) study investigates the potential role of statistical context in dynamically modulating stimulus-specific adaptation by examining the auditory cortex-generated N1 and P2 components. As in previous studies of stimulus-specific adaptation, listeners were presented with oddball sequences in which the presentation of a repeated tone was infrequently interrupted by rare spectral changes taking on three different magnitudes. Critically, the statistical context varied with respect to the probability of small versus large spectral changes within oddball sequences (half of the time a small change was most probable; in the other half a large change was most probable). We observed larger N1 and P2 amplitudes (i.e., release from adaptation) for all spectral changes in the small-change compared with the large-change statistical context. The increase in response magnitude also held for responses to tones presented with high probability, indicating that statistical adaptation can overrule stimulus probability per se in its influence on neural responses. Computational modeling showed that the degree of coadaptation in auditory cortex changed depending on the statistical context, which in turn affected stimulus-specific adaptation. Thus the present data demonstrate that stimulus-specific adaptation in human auditory cortex critically depends on statistical context. Finally, the present results challenge the implicit assumption of stationarity of neural response magnitudes that governs the practice of isolating established deviant-detection responses such as the mismatch negativity. PMID:25652920
Pedersen, Walker S; Muftuler, L Tugan; Larson, Christine L
2017-08-01
The hippocampus and amygdala exhibit sensitivity to stimulus novelty that is reduced in participants with inhibited temperament, which is related to trait anxiety. Although the bed nucleus of the stria terminalis (BNST) is highly connected to the amygdala and is implicated in anxiety, whether the BNST responds to novelty remains unstudied, as well as how trait anxiety may modulate this response. Additionally how novelty, stimulus negativity and trait anxiety interact to affect activity in these areas is also unclear. To address these questions, we presented participants with novel and repeated, fearful and neutral faces, while measuring brain activity via fMRI, and also assessed participants' self-reported trait anxiety. As the small size of the BNST makes assessing its activity at typical fMRI resolution difficult, we employed high resolution 7 Tesla scanning. Our results replicate findings of novelty sensitivity that is independent of valence in the hippocampus. Our results also provide novel evidence for a BNST novelty response toward neutral, but not fearful faces. We also found that the novelty response in the hippocampus and BNST was blunted in participants with high trait anxiety. Additionally, we found left amygdala sensitivity to stimulus negativity that was blunted for high trait anxiety participants. These findings extend past research on the response to novel stimuli in the hippocampus and amygdala at high resolution, and are the first to demonstrate trait anxiety modulated novelty sensitivity in the BNST that is dependent on stimulus valence. Copyright © 2017 Elsevier Inc. All rights reserved.
Maccariello, Carolina Elisabetta Martins; Franzini de Souza, Carla Caroline; Morena, Laura; Dias, Daniel Penteado Martins; Medeiros, Magda Alves de
2018-03-15
Sound stimuli such as fireworks, firearms, and claps of thunder have been used as a stress reactivity model for dogs. Acupuncture has been widely used to treat and prevent physiological and behavioural disorders induced by stress. Our study aims to evaluate the effects of acupuncture on cardiac autonomic modulation (heart rate variability - HRV), behavioural (reactivity) and endocrine (cortisol levels) responses in dogs exposed to sounds of thunder. Twenty-four laboratory beagles (12 males and 12 females, 1-6years old) with no history of phobia to thunder were subjected to a sound stimulus that consisted of a standardized recording of thunder over a 150s period with a maximum intensity of 103-104dB. Before the sound, the dogs underwent a 20-minute session of needle insertion at acupuncture points Yintang, GV20, HT7, PC6 and ST36 (ACUP), in non-points (NP) or left undisturbed (CTL). Cardiac intervals were recorded using a frequency meter (RS 800cx, Polar, Kempele, Finland) to evaluate the HRV, and the data were later analysed using CardioSeries v2.4.1 software. Acupuncture (ACUP) changed the sympathovagal balance with a shift towards parasympathetic modulation, reducing the prompt sound-induced increase in LF/HF (low frequency/high frequency) ratio and in the power of the LF band of the cardiac interval spectrum, and decreased the power of the HF band of the cardiac interval spectrum (p<0.05); however there was no change in the heart rate. Acupuncture reduced the behavioural response induced by sounds of thunder (when all behavioural parameters were considered together) and the behaviours hiding, restlessness, bolting and running around (when the parameters were analysed separately (p<0.05). There were no changes in cortisol levels due to the sound stimulus or acupuncture. Our results demonstrate that a session of acupuncture prior to sound stimulus can reduce cardiac autonomic and behavioural responses, without changing cortisol levels in beagles. Copyright © 2018 Elsevier Inc. All rights reserved.
Blanks, Deidra A.; Buss, Emily; Grose, John H.; Fitzpatrick, Douglas C.; Hall, Joseph W.
2009-01-01
Objectives The present study investigated interaural time discrimination for binaurally mismatched carrier frequencies in listeners with normal hearing. One goal of the investigation was to gain insights into binaural hearing in patients with bilateral cochlear implants, where the coding of interaural time differences may be limited by mismatches in the neural populations receiving stimulation on each side. Design Temporal envelopes were manipulated to present low frequency timing cues to high frequency auditory channels. Carrier frequencies near 4 kHz were amplitude modulated at 128 Hz via multiplication with a half-wave rectified sinusoid, and that modulation was either in-phase across ears or delayed to one ear. Detection thresholds for non-zero interaural time differences were measured for a range of stimulus levels and a range of carrier frequency mismatches. Data were also collected under conditions designed to limit cues based on stimulus spectral spread, including masking and truncation of sidebands associated with modulation. Results Listeners with normal hearing can detect interaural time differences in the face of substantial mismatches in carrier frequency across ears. Conclusions The processing of interaural time differences in listeners with normal hearing is likely based on spread of excitation into binaurally matched auditory channels. Sensitivity to interaural time differences in listeners with cochlear implants may depend upon spread of current that results in the stimulation of neural populations that share common tonotopic space bilaterally. PMID:18596646
What's in a mask? Information masking with forward and backward visual masks.
Davis, Chris; Kim, Jeesun
2011-10-01
Three experiments tested how the physical format and information content of forward and backward masks affected the extent of visual pattern masking. This involved using different types of forward and backward masks with target discrimination measured by percentage correct in the first experiment (with a fixed target duration) and by an adaptive threshold procedure in the last two. The rationale behind the manipulation of the content of the masks stemmed from masking theories emphasizing attentional and/or conceptual factors rather than visual ones. Experiment 1 used word masks and showed that masking was reduced (a masking reduction effect) when the forward and backward masks were the same word (although in different case) compared to when the masks were different words. Experiment 2 tested the extent to which a reduction in masking might occur due to the physical similarity between the forward and backward masks by comparing the effect of the same content of the masks in the same versus different case. The result showed a significant reduction in masking for same content masks but no significant effect of case. The last experiment examined whether the reduction in masking effect would be observed with nonword masks--that is, having no high-level representation. No reduction in masking was found from same compared to different nonword masks (Experiment 3). These results support the view that the conscious perception of a rapidly displayed target stimulus is in part determined by high-level perceptual/cognitive factors concerned with masking stimulus grouping and attention.
Wu, Qiong; Chang, Chi-Fu; Xi, Sisi; Huang, I-Wen; Liu, Zuxiang; Juan, Chi-Hung; Wu, Yanhong; Fan, Jin
2015-01-01
Information processing can be biased toward behaviorally relevant and salient stimuli by top-down (goal-directed) and bottom-up (stimulus-driven) attentional control processes. However, the neural basis underlying the integration of these processes is not well understood. We employed functional magnetic resonance imaging and transcranial direct-current stimulation (tDCS) in humans to examine the brain mechanisms underlying the interaction between these two processes. We manipulated the cognitive load involved in top-down processing and stimulus surprise involved in bottom-up processing in a factorial design by combining a majority function task and an oddball paradigm. We found that high cognitive load and high surprise level were associated with prolonged reaction time compared to low cognitive load and low surprise level, with a synergistic interaction effect which was accompanied by a greater deactivation of bilateral temporoparietal junction (TPJ). In addition, the TPJ displayed negative functional connectivity with right middle occipital gyrus involved in bottom-up processing (modulated by the interaction effect) and the right frontal eye field (FEF) involved in top-down control. The enhanced negative functional connectivity between the TPJ and right FEF was accompanied by a larger behavioral interaction effect across subjects. Application of cathodal tDCS over the right TPJ eliminated the interaction effect. These results suggest that the TPJ plays a critical role in processing bottom-up information for top-down control of attention. PMID:26308973
Stimulus probability effects in absolute identification.
Kent, Christopher; Lamberts, Koen
2016-05-01
This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
ERIC Educational Resources Information Center
Nokia, Miriam S.; Waselius, Tomi; Mikkonen, Jarno E.; Wikgren, Jan; Penttonen, Markku
2015-01-01
Hippocampal ? (3-12 Hz) oscillations are implicated in learning and memory, but their functional role remains unclear. We studied the effect of the phase of local ? oscillation on hippocampal responses to a neutral conditioned stimulus (CS) and subsequent learning of classical trace eyeblink conditioning in adult rabbits. High-amplitude, regular…
ERIC Educational Resources Information Center
Torelli, Jessica N.; Lloyd, Blair P.; Diekman, Claire A.; Wehby, Joseph H.
2017-01-01
In elementary school classrooms, students commonly recruit teacher attention at inappropriately high rates or at inappropriate times. Multiple schedule interventions have been used to teach stimulus control by signaling to students when reinforcement is and is not available contingent on an appropriate response. The purpose of the current study…
Tracking the Sensory Environment: An ERP Study of Probability and Context Updating in ASD
ERIC Educational Resources Information Center
Westerfield, Marissa A.; Zinni, Marla; Vo, Khang; Townsend, Jeanne
2015-01-01
We recorded visual event-related brain potentials from 32 adult male participants (16 high-functioning participants diagnosed with autism spectrum disorder (ASD) and 16 control participants, ranging in age from 18 to 53 years) during a three-stimulus oddball paradigm. Target and non-target stimulus probability was varied across three probability…
ERIC Educational Resources Information Center
Davis, Tonya N.; Hodges, Abby; Weston, Regan; Hogan, Emily; Padilla-Mainor, Kristen
2017-01-01
Preferred forms of social interaction were identified using a paired-stimulus format in which two 3-5 s videos of the experimenter providing the social interaction to the participant were presented. Reinforcer efficacy of the high-, medium-, and low-preferred interactions was evaluated using a progressive-ratio schedule to determine the amount of…
Continuous Flash Suppression: Stimulus Fractionation rather than Integration.
Moors, Pieter; Hesselmann, Guido; Wagemans, Johan; van Ee, Raymond
2017-10-01
Recent studies using continuous flash suppression suggest that invisible stimuli are processed as integrated, semantic entities. We challenge the viability of this account, given recent findings on the neural basis of interocular suppression and replication failures of high-profile CFS studies. We conclude that CFS reveals stimulus fractionation in visual cortex. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Eikeseth, Svein; Smith, Dean P.
2013-01-01
A common characteristic of the language deficits experienced by children with autism (and other developmental disorders) is their failure to acquire a complex intraverbal repertoire. The difficulties with learning intraverbal behaviors may, in part, be related to the fact that the stimulus control for such behaviors usually involves highly complex…
Use of a Differential Observing Response to Expand Restricted Stimulus Control
ERIC Educational Resources Information Center
Walpole, Carrie Wallace; Roscoe, Eileen M.; Dube, William V.
2007-01-01
This study extends previous work on the use of differential observing responses (DOR) to remediate atypically restricted stimulus control. A participant with autism had high matching-to-sample accuracy scores with printed words that had no letters in common (e.g., "cat," "lid," "bug") but poor accuracy with words that had two letters in common…
Mühler, Roland; Rahne, Torsten; Verhey, Jesko L
2013-01-01
Recently an optimized broad-band chirp stimulus has been proposed for the objective estimation of hearing thresholds with auditory brainstem responses (ABRs). Several studies have demonstrated that this stimulus, compensating for the travelling wave delay of the frequency components of a click stimulus at the basilar membrane, evokes larger ABR amplitudes in adults. This study analyses the amplitude of chirp-evoked ABRs recorded in infants below 48 month of age under clinical conditions and compares these results with literature data. Chirp-evoked ABR recordings in 46 infants under chloral hydrate sedation or general anaesthesia were analysed retrospectively. The amplitude of the wave V was measured as a function of the stimulus intensity. To compare ABR amplitudes across infants with different hearing losses, the stimulus intensity was readjusted to the subjects' individual physiological threshold in dB SL (sensation level). Individual wave V amplitudes were plotted against stimulus intensity and individual amplitude growth functions were calculated. To investigate the maturation of chirp-evoked ABR, data from infants below and above 18 months of age were analysed separately. Chirp-evoked ABR amplitudes in both age groups were larger than the click-evoked ABR amplitudes in young infants from the literature. Amplitudes of chirp-evoked ABR in infants above 18 months of age were not substantially smaller than those reported for normal hearing adults. Amplitudes recorded in infants below 18 months were significantly smaller than those in infants above 18 months. A significant difference between chirp-evoked ABR amplitudes recorded in sedation or under general anaesthesia was not found. The higher amplitudes of ABR elicited by a broadband chirp stimulus allow for a reduction of the recording time in young infants. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Auditory cortical neurons are sensitive to static and continuously changing interaural phase cues.
Reale, R A; Brugge, J F
1990-10-01
1. The interaural-phase-difference (IPD) sensitivity of single neurons in the primary auditory (AI) cortex of the anesthetized cat was studied at stimulus frequencies ranging from 120 to 2,500 Hz. Best frequencies of the 43 AI cells sensitive to IPD ranged from 190 to 2,400 Hz. 2. A static IPD was produced when a pair of low-frequency tone bursts, differing from one another only in starting phase, were presented dichotically. The resulting IPD-sensitivity curves, which plot the number of discharges evoked by the binaural signal as a function of IPD, were deeply modulated circular functions. IPD functions were analyzed for their mean vector length (r) and mean interaural phase (phi). Phase sensitivity was relatively independent of best frequency (BF) but highly dependent on stimulus frequency. Regardless of BF or stimulus frequency within the excitatory response area the majority of cells fired maximally when the ipsilateral tone lagged the contralateral signal and fired least when this interaural-phase relationship was reversed. 3. Sensitivity to continuously changing IPD was studied by delivering to the two ears 3-s tones that differed slightly in frequency, resulting in a binaural beat. Approximately 26% of the cells that showed a sensitivity to static changes in IPD also showed a sensitivity to dynamically changing IPD created by this binaural tonal combination. The discharges were highly periodic and tightly synchronized to a particular phase of the binaural beat cycle. High synchrony can be attributed to the fact that cortical neurons typically respond to an excitatory stimulus with but a single spike that is often precisely timed to stimulus onset. A period histogram, binned on the binaural beat frequency (fb), produced an equivalent IPD-sensitivity function for dynamically changing interaural phase. For neurons sensitive to both static and continuously changing interaural phase there was good correspondence between their static (phi s) and dynamic (phi d) mean interaural phases. 4. All cells responding to a dynamically changing stimulus exhibited a linear relationship between mean interaural phase and beat frequency. Most cells responded equally well to binaural beats regardless of the initial direction of phase change. For a fixed duration stimulus, and at relatively low fb, the number of spikes evoked increased with increasing fb, reflecting the increasing number of effective stimulus cycles. At higher fb, AI neurons were unable to follow the rate at which the most effective phase repeated itself during the 3 s of stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)
Polston, J.E.; Rubbinaccio, H.Y.; Morra, J.T.; Sell, E.M.; Glick, S.D.
2011-01-01
Associations between drugs of abuse and cues facilitate the acquisition and maintenance of addictive behaviors. Although significant research has been done to elucidate the role that simple discriminative or discrete conditioned stimuli (e.g., a tone or a light) play in addiction, less is known about complex environmental cues. The purpose of the present study was to examine the role of a musical conditioned stimulus by assessing locomotor activity and in vivo microdialysis. Two groups of rats were given non-contingent injections of methamphetamine (1.0 mg/kg) or vehicle and placed in standard conditioning chambers. During these conditioning sessions both groups were exposed to a continuous conditioned stimulus, in the form of a musical selection (“Four” by Miles Davis) played repeatedly for ninety minutes. After seven consecutive conditioning days subjects were given one day of rest, and subsequently tested for locomotor activity or dopamine release in the absence of drug while the musical conditioned stimulus was continually present. The brain regions examined included the basolateral amygdala, nucleus accumbens, and prefrontal cortex. The results show that music is an effective contextual conditioned stimulus, significantly increasing locomotor activity after repeated association with methamphetamine. Furthermore, this musical conditioned stimulus significantly increased extracellular dopamine levels in the basolateral amygdala and nucleus accumbens. These findings support other evidence showing the importance of these brain regions in conditioned learning paradigms, and demonstrate that music is an effective conditioned stimulus warranting further investigation. PMID:21145911
Interaction of paired cortical and peripheral nerve stimulation on human motor neurons.
Poon, David E; Roy, Francois D; Gorassini, Monica A; Stein, Richard B
2008-06-01
This paper contrasts responses in the soleus muscle of normal human subjects to two major inputs: the tibial nerve (TN) and the corticospinal tract. Paired transcranial magnetic stimulation (TMS) of the motor cortex at intervals of 10-25 ms strongly facilitated the motor evoked potential (MEP) produced by the second stimulus. In contrast, paired TN stimulation produced a depression of the reflex response to the second stimulus. Direct activation of the pyramidal tract did not facilitate a second response, suggesting that the MEP facilitation observed using paired TMS occurred in the cortex. A TN stimulus also depressed a subsequent MEP. Since the TN stimulus depressed both inputs, the mechanism is probably post-synaptic, such as afterhyperpolarization of motor neurons. Presynaptic mechanisms, such as homosynaptic depression, would only affect the pathway used as a conditioning stimulus. When TN and TMS pulses were paired, the largest facilitation occurred when TMS preceded TN by about 5 ms, which is optimal for summation of the two pathways at the level of the spinal motor neurons. A later, smaller facilitation occurred when a single TN stimulus preceded TMS by 50-60 ms, an interval that allows enough time for the sensory afferent input to reach the sensory cortex and be relayed to the motor cortex. Other work indicates that repetitively pairing nerve stimuli and TMS at these intervals, known as paired associative stimulation, produces long-term increases in the MEP and may be useful in strengthening residual pathways after damage to the central nervous system.
Muthukumaraswamy, Suresh D; Myers, Jim F M; Wilson, Sue J; Nutt, David J; Hamandi, Khalid; Lingford-Hughes, Anne; Singh, Krish D
2013-01-01
The electroencephalographic/magnetoencephalographic (EEG/MEG) signal is generated primarily by the summation of the postsynaptic currents of cortical principal cells. At a microcircuit level, these glutamatergic principal cells are reciprocally connected to GABAergic interneurons. Here we investigated the relative sensitivity of visual evoked and induced responses to altered levels of endogenous GABAergic inhibition. To do this, we pharmacologically manipulated the GABA system using tiagabine, which blocks the synaptic GABA transporter 1, and so increases endogenous GABA levels. In a single-blinded and placebo-controlled crossover study of 15 healthy participants, we administered either 15 mg of tiagabine or a placebo. We recorded whole-head MEG, while participants viewed a visual grating stimulus, before, 1, 3 and 5 h post tiagabine ingestion. Using beamformer source localization, we reconstructed responses from early visual cortices. Our results showed no change in either stimulus-induced gamma-band amplitude increases or stimulus-induced alpha amplitude decreases. However, the same data showed a 45% reduction in the evoked response component at ∼80 ms. These data demonstrate that, in early visual cortex the evoked response shows a greater sensitivity compared with induced oscillations to pharmacologically increased endogenous GABA levels. We suggest that previous studies correlating GABA concentrations as measured by magnetic resonance spectroscopy to gamma oscillation frequency may reflect underlying variations such as interneuron/inhibitory synapse density rather than functional synaptic GABA concentrations. PMID:23361120
Effects of aging and text-stimulus quality on the word-frequency effect during Chinese reading.
Wang, Jingxin; Li, Lin; Li, Sha; Xie, Fang; Liversedge, Simon P; Paterson, Kevin B
2018-06-01
Age-related reading difficulty is well established for alphabetic languages. Compared to young adults (18-30 years), older adults (65+ years) read more slowly, make more and longer fixations, make more regressions, and produce larger word-frequency effects. However, whether similar effects are observed for nonalphabetic languages like Chinese remains to be determined. In particular, recent research has suggested Chinese readers experience age-related reading difficulty but do not produce age differences in the word-frequency effect. This might represent an important qualitative difference in aging effects, so we investigated this further by presenting young and older adult Chinese readers with sentences that included high- or low-frequency target words. Additionally, to test theories that suggest reductions in text-stimulus quality differentially affect lexical processing by adult age groups, we presented either the target words (Experiment 1) or all characters in sentences (Experiment 2) normally or with stimulus quality reduced. Analyses based on mean eye-movement parameters and distributional analyses of fixation times for target words showed typical age-related reading difficulty. We also observed age differences in the word-frequency effect, predominantly in the tails of fixation-time distributions, consistent with an aging effect on the processing of high- and low-frequency words. Reducing stimulus quality disrupted eye movements more for the older readers, but the influence of stimulus quality on the word-frequency effect did not differ across age groups. This suggests Chinese older readers' lexical processing is resilient to reductions in stimulus quality, perhaps due to greater experience recognizing words from impoverished visual input. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Feedback-Driven Trial-by-Trial Learning in Autism Spectrum Disorders
Solomon, Marjorie; Frank, Michael J.; Ragland, J. Daniel; Smith, Anne C.; Niendam, Tara A.; Lesh, Tyler A.; Grayson, David S.; Beck, Jonathan S.; Matter, John C.; Carter, Cameron S.
2017-01-01
Objective Impairments in learning are central to autism spectrum disorders. The authors investigated the cognitive and neural basis of these deficits in young adults with autism spectrum disorders using a well-characterized probabilistic reinforcement learning paradigm. Method The probabilistic selection task was implemented among matched participants with autism spectrum disorders (N=22) and with typical development (N=25), aged 18–40 years, using rapid event-related functional MRI. Participants were trained to choose the correct stimulus in high-probability (AB), medium-probability (CD), and low-probability (EF) pairs, presented with valid feedback 80%, 70%, and 60% of the time, respectively. Whole-brain voxel-wise and parametric modulator analyses examined early and late learning during the stimulus and feedback epochs of the task. Results The groups exhibited comparable performance on medium- and low-probability pairs. Typically developing persons showed higher accuracy on the high-probability pair, better win-stay performance (selection of the previously rewarded stimulus on the next trial of that type), and more robust recruitment of the anterior and medial prefrontal cortex during the stimulus epoch, suggesting development of an intact reward-based working memory for recent stimulus values. Throughout the feedback epoch, individuals with autism spectrum disorders exhibited greater recruitment of the anterior cingulate and orbito-frontal cortices compared with individuals with typical development, indicating continuing trial-by-trial activity related to feedback processing. Conclusions Individuals with autism spectrum disorders exhibit learning deficits reflecting impaired ability to develop an effective reward-based working memory to guide stimulus selection. Instead, they continue to rely on trial-by-trial feedback processing to support learning dependent upon engagement of the anterior cingulate and orbito-frontal cortices. PMID:25158242
Li, Yingying; Zheng, Xigeng; Xu, Na; Zhang, Yue; Liu, Zhengkui; Bai, Yunjing
2017-04-01
The negative affective state, e.g., anhedonia, emerges after abstinence from abused drugs may be linked to the motivational processes of drug craving and relapse. Although anhedonia diminishes over time with drug abstinence, it is not yet rather explicit whether anhedonia exists or not following protracted withdrawal. The behavioral responses to natural rewards were examined after 2 to 3 weeks withdrawal from morphine. Male rats were pretreated with either a binge-like morphine paradigm or daily saline injection for 5 days. The consummatory and motivational behaviors for three natural rewards (sucrose solutions 4, 15, and 60%, social stimulus: male rat, and sexual stimulus: estrous female rat) were examined under varied testing conditions. The morphine-withdrawn rats significantly increased their intake of 15% sucrose solution during the 1-h consumption test and their operant responding for 15% sucrose solution under a progressive ratio (PR) schedule of reinforcement. When obtaining a reinforcer was associated with a 0.5 mA foot shock under a PR-punishment schedule, the morphine-withdrawn rats showed a higher performance for 60% sucrose solution. Meanwhile, the morphine-withdrawn rats displayed a higher motivation to sexual stimulus during the free-approach test and more approaching behaviors towards sexual stimulus in a conflict-based approach test (concurrent presence of reward and aversive stimulus). No anhedonia-like behavior but sensitized behaviors for natural rewards were found after long-term morphine withdrawal. Notably, the morphine-withdrawn rats displayed persistent motivated behaviors for high-value rewards (60% sucrose and sexual stimulus) in the conflict tests suggesting impairments in inhibitory control in morphine-treated rats.
High-Field Functional Imaging of Pitch Processing in Auditory Cortex of the Cat
Butler, Blake E.; Hall, Amee J.; Lomber, Stephen G.
2015-01-01
The perception of pitch is a widely studied and hotly debated topic in human hearing. Many of these studies combine functional imaging techniques with stimuli designed to disambiguate the percept of pitch from frequency information present in the stimulus. While useful in identifying potential “pitch centres” in cortex, the existence of truly pitch-responsive neurons requires single neuron-level measures that can only be undertaken in animal models. While a number of animals have been shown to be sensitive to pitch, few studies have addressed the location of cortical generators of pitch percepts in non-human models. The current study uses high-field functional magnetic resonance imaging (fMRI) of the feline brain in an attempt to identify regions of cortex that show increased activity in response to pitch-evoking stimuli. Cats were presented with iterated rippled noise (IRN) stimuli, narrowband noise stimuli with the same spectral profile but no perceivable pitch, and a processed IRN stimulus in which phase components were randomized to preserve slowly changing modulations in the absence of pitch (IRNo). Pitch-related activity was not observed to occur in either primary auditory cortex (A1) or the anterior auditory field (AAF) which comprise the core auditory cortex in cats. Rather, cortical areas surrounding the posterior ectosylvian sulcus responded preferentially to the IRN stimulus when compared to narrowband noise, with group analyses revealing bilateral activity centred in the posterior auditory field (PAF). This study demonstrates that fMRI is useful for identifying pitch-related processing in cat cortex, and identifies cortical areas that warrant further investigation. Moreover, we have taken the first steps in identifying a useful animal model for the study of pitch perception. PMID:26225563
Morey, R A; Dunsmoor, J E; Haswell, C C; Brown, V M; Vora, A; Weiner, J; Stjepanovic, D; Wagner, H R; Brancu, Mira; Marx, Christine E; Naylor, Jennifer C; Van Voorhees, Elizabeth; Taber, Katherine H; Beckham, Jean C; Calhoun, Patrick S; Fairbank, John A; Szabo, Steven T; LaBar, K S
2015-01-01
Fear conditioning is an established model for investigating posttraumatic stress disorder (PTSD). However, symptom triggers may vaguely resemble the initial traumatic event, differing on a variety of sensory and affective dimensions. We extended the fear-conditioning model to assess generalization of conditioned fear on fear processing neurocircuitry in PTSD. Military veterans (n=67) consisting of PTSD (n=32) and trauma-exposed comparison (n=35) groups underwent functional magnetic resonance imaging during fear conditioning to a low fear-expressing face while a neutral face was explicitly unreinforced. Stimuli that varied along a neutral-to-fearful continuum were presented before conditioning to assess baseline responses, and after conditioning to assess experience-dependent changes in neural activity. Compared with trauma-exposed controls, PTSD patients exhibited greater post-study memory distortion of the fear-conditioned stimulus toward the stimulus expressing the highest fear intensity. PTSD patients exhibited biased neural activation toward high-intensity stimuli in fusiform gyrus (P<0.02), insula (P<0.001), primary visual cortex (P<0.05), locus coeruleus (P<0.04), thalamus (P<0.01), and at the trend level in inferior frontal gyrus (P=0.07). All regions except fusiform were moderated by childhood trauma. Amygdala–calcarine (P=0.01) and amygdala–thalamus (P=0.06) functional connectivity selectively increased in PTSD patients for high-intensity stimuli after conditioning. In contrast, amygdala–ventromedial prefrontal cortex (P=0.04) connectivity selectively increased in trauma-exposed controls compared with PTSD patients for low-intensity stimuli after conditioning, representing safety learning. In summary, fear generalization in PTSD is biased toward stimuli with higher emotional intensity than the original conditioned-fear stimulus. Functional brain differences provide a putative neurobiological model for fear generalization whereby PTSD symptoms are triggered by threat cues that merely resemble the index trauma. PMID:26670285
Kimbrough, Jeffery M.; Salinas-Mondragon, Raul; Boss, Wendy F.; Brown, Christopher S.; Sederoff, Heike Winter
2004-01-01
Plant root growth is affected by both gravity and mechanical stimulation (Massa GD, Gilroy S [2003] Plant J 33: 435–445). A coordinated response to both stimuli requires specific and common elements. To delineate the transcriptional response mechanisms, we carried out whole-genome microarray analysis of Arabidopsis root apices after gravity stimulation (reorientation) and mechanical stimulation and monitored transcript levels of 22,744 genes in a time course during the first hour after either stimulus. Rapid, transient changes in the relative abundance of specific transcripts occurred in response to gravity or mechanical stimulation, and these transcript level changes reveal clusters of coordinated events. Transcriptional regulation occurs in the root apices within less than 2 min after either stimulus. We identified genes responding specifically to each stimulus as well as transcripts regulated in both signal transduction pathways. Several unknown genes were specifically induced only during gravitropic stimulation (gravity induced genes). We also analyzed the network of transcriptional regulation during the early stages of gravitropism and mechanical stimulation. PMID:15347791
Dissociating verbal and nonverbal audiovisual object processing.
Hocking, Julia; Price, Cathy J
2009-02-01
This fMRI study investigates how audiovisual integration differs for verbal stimuli that can be matched at a phonological level and nonverbal stimuli that can be matched at a semantic level. Subjects were presented simultaneously with one visual and one auditory stimulus and were instructed to decide whether these stimuli referred to the same object or not. Verbal stimuli were simultaneously presented spoken and written object names, and nonverbal stimuli were photographs of objects simultaneously presented with naturally occurring object sounds. Stimulus differences were controlled by including two further conditions that paired photographs of objects with spoken words and object sounds with written words. Verbal matching, relative to all other conditions, increased activation in a region of the left superior temporal sulcus that has previously been associated with phonological processing. Nonverbal matching, relative to all other conditions, increased activation in a right fusiform region that has previously been associated with structural and conceptual object processing. Thus, we demonstrate how brain activation for audiovisual integration depends on the verbal content of the stimuli, even when stimulus and task processing differences are controlled.
Sztarker, Julieta; Tomsic, Daniel
2008-06-01
When confronted with predators, animals are forced to take crucial decisions such as the timing and manner of escape. In the case of the crab Chasmagnathus, cumulative evidence suggests that the escape response to a visual danger stimulus (VDS) can be accounted for by the response of a group of lobula giant (LG) neurons. To further investigate this hypothesis, we examined the relationship between behavioral and neuronal activities within a variety of experimental conditions that affected the level of escape. The intensity of the escape response to VDS was influenced by seasonal variations, changes in stimulus features, and whether the crab perceived stimuli monocularly or binocularly. These experimental conditions consistently affected the response of LG neurons in a way that closely matched the effects observed at the behavioral level. In other words, the intensity of the stimulus-elicited spike activity of LG neurons faithfully reflected the intensity of the escape response. These results support the idea that the LG neurons from the lobula of crabs are deeply involved in the decision for escaping from VDS.
Kasties, Nils; Starosta, Sarah; Güntürkün, Onur; Stüttgen, Maik C.
2016-01-01
Animals exploit visual information to identify objects, form stimulus-reward associations, and prepare appropriate behavioral responses. The nidopallium caudolaterale (NCL), an associative region of the avian endbrain, contains neurons exhibiting prominent response modulation during presentation of reward-predicting visual stimuli, but it is unclear whether neural activity represents valuation signals, stimulus properties, or sensorimotor contingencies. To test the hypothesis that NCL neurons represent stimulus value, we subjected pigeons to a Pavlovian sign-tracking paradigm in which visual cues predicted rewards differing in magnitude (large vs. small) and delay to presentation (short vs. long). Subjects’ strength of conditioned responding to visual cues reliably differentiated between predicted reward types and thus indexed valuation. The majority of NCL neurons discriminated between visual cues, with discriminability peaking shortly after stimulus onset and being maintained at lower levels throughout the stimulus presentation period. However, while some cells’ firing rates correlated with reward value, such neurons were not more frequent than expected by chance. Instead, neurons formed discernible clusters which differed in their preferred visual cue. We propose that this activity pattern constitutes a prerequisite for using visual information in more complex situations e.g. requiring value-based choices. PMID:27762287
Greenshaw, A J; Turrkish, S; Davis, B A
2002-01-01
The functional aversive stimulus properties of several IP doses of (+/-)-amphetamine (1.25-10 mg.kg-1), 2-phenylethylamine (PEA, 2.5-10 mg.kg-1, following inhibition of monoamine oxidase with pargyline 50 mg.kg-1) and phenylethanolamine (6.25-50 mg.kg-1) were measured with the conditioned taste aversion (CTA) paradigm. A two-bottle choice procedure was used, water vs. 0.1 % saccharin with one conditioning trial and three retention trials. (+/-)-Amphetamine and phenylethanolamine induced a significant conditioned taste aversion but PEA did not. (+/-)-Amphetamine and PEA increased spontaneous locomotor activity but phenylethanolamine had no effects on this measure. Measurement of whole brain levels of these drugs revealed that the peak brain elevation of PEA occurred at approximately 10 min whereas the peak elevations of (+/-)-amphetamine and phenylethanolamine occurred at approximately 20 min. The present failure of PEA to elicit conditioned taste aversion learning is consistent with previous reports for this compound. The differential functional aversive stimulus effects of these three compounds are surprising since they exhibit similar discriminative stimulus properties and both (+/-)-amphetamine and PEA are self-administered by laboratory animals. The present data suggest that time to maximal brain concentrations following peripheral injection may be a determinant of the aversive stimulus properties of PEA derivatives.
Do former preterm infants remember and respond to neonatal intensive care unit noise?
Barreto, Edwin D; Morris, Brenda H; Philbin, M Kathleen; Gray, Lincoln C; Lasky, Robert E
2006-11-01
Previous studies have shown that 4-month-old infants have a decrease in heart rate, a component of the orienting reflex, in response to interesting auditory stimuli and an increase in heart rate to aversive auditory stimuli. To compare the heart rate responses of former preterm and term infants at 4-5 months corrected age to a recording of NICU noises. 13 former preterm infants and 17 full-term infants were presented NICU noise and another noise of similar level and frequency content in random order. Heart rate 10s prior to the stimulus and for 20s during the stimulus was analyzed. Group differences in second by second heart rate changes in response to the two noise stimuli were compared by analysis of covariance. Both the preterm and term newborns responded similarly to the NICU noise and the control noise. The preterm infants did not alter their heart rate in response to either stimulus. In contrast, the term infants displayed an orienting response to the second stimulus presented regardless of whether it was the NICU or control noise. Former preterm infants at 4-5 months corrected age have reduced responsiveness to auditory stimulation in comparison to 4- to 5-month-old term infants. Furthermore, they did not respond to the NICU noise as an aversive stimulus.
Hahn, Britta; Ross, Thomas J; Wolkenberg, Frank A; Shakleya, Diaa M; Huestis, Marilyn A; Stein, Elliot A
2009-09-01
Attention-enhancing effects of nicotine appear to depend on the nature of the attentional function. Underlying neuroanatomical mechanisms, too, may vary depending on the function modulated. This functional magnetic resonance imaging study recorded blood oxygen level-dependent (BOLD) activity in minimally deprived smokers during tasks of simple stimulus detection, selective attention, or divided attention after single-blind application of a transdermal nicotine (21 mg) or placebo patch. Smokers' performance in the placebo condition was unimpaired as compared with matched nonsmokers. Nicotine reduced reaction time (RT) in the stimulus detection and selective attention but not divided attention condition. Across all task conditions, nicotine reduced activation in frontal, temporal, thalamic, and visual regions and enhanced deactivation in so-called "default" regions. Thalamic effects correlated with RT reduction selectively during stimulus detection. An interaction with task condition was observed in middle and superior frontal gyri, where nicotine reduced activation only during stimulus detection. A visuomotor control experiment provided evidence against nonspecific effects of nicotine. In conclusion, although prefrontal activity partly displayed differential modulation by nicotine, most BOLD effects were identical across tasks, despite differential performance effects, suggesting that common neuronal mechanisms can selectively benefit different attentional functions. Overall, the effects of nicotine may be explained by increased functional efficiency and downregulated task-independent "default" functions.
Smollon, William E; Wooten, Billy R; Hammond, Billy R
2015-11-01
Heterochromatic flicker photometry (HFP) is the most common technique of measuring macular pigment optical density (MPOD). Some data strongly suggest that HFP samples MPOD specifically at the edge of center-fixated circular stimuli. Other data have led to the conclusion that HFP samples over the entire area of the stimulus. To resolve this disparity, MPOD was measured using HFP and a series of solid discs of varying radii (0.25 to 2.0 deg) and with thin annuli corresponding to the edge of those discs. MPOD assessed with the two methods yielded excellent correspondence and linearity: Y=0.01+0.98X , r=0.96. A second set of experiments showed that if a disc stimulus is adjusted for no-flicker (the standard procedure) and simply reduced in size, no flicker is observed despite the higher level of MPOD in the smaller area. Taken together, these results confirm that MPOD is determined at the edge of the measuring stimulus when using stimulus sizes in the range that is in dispute (up to a radius of 0.75 deg). The basis for this edge effect can be explained by quantitative differences in the spatial-temporal properties of the visual field as a function of angular distance from the fixation point.
Tracy, Jo Anne; Thompson, Judith K; Krupa, David J; Thompson, Richard F
2013-10-01
Electrical stimulation thresholds required to elicit eyeblinks with either pontine or cerebellar interpositus stimulation were measured before and after classical eyeblink conditioning with paired pontine stimulation (conditioned stimulus, CS) and corneal airpuff (unconditioned stimulus, US). Pontine stimulation thresholds dropped dramatically after training and returned to baseline levels following extinction, whereas interpositus thresholds and input-output functions remained stable across training sessions. Learning rate, magnitude of threshold change, and electrode placements were correlated. Pontine projection patterns to the cerebellum were confirmed with retrograde labeling techniques. These results add to the body of literature suggesting that the pons relays CS information to the cerebellum and provide further evidence of synaptic plasticity in the cerebellar network. 2013 APA, all rights reserved
Learning Strategies in Matching to Sample: If-then and Configural Learning by Pigeons
Katz, Jeffrey S.; Bodily, Kent D.; Wright, Anthony A.
2008-01-01
Pigeons learned a matching-to-sample task with a split training-set design in which half of the stimulus displays were untrained and tested following acquisition. Transfer to the untrained displays along with no novel-stimulus transfer indicated that these pigeons learned the task (partially) via if-then rules. Comparisons to other performance measures indicated that they also partially learned the task via configural learning (learning the gestalt of the whole stimulus display). Differences in the FR-sample requirement (1 vs. 20) had no systematic effect on the type of learning or level of learning obtained. Differences from a previous study (Wright, 1997) are discussed, including the effect of displaying the stimuli vertically (traditional display orientation) or horizontally from the floor. PMID:18079071
Numerical simulation of coherent resonance in a model network of Rulkov neurons
NASA Astrophysics Data System (ADS)
Andreev, Andrey V.; Runnova, Anastasia E.; Pisarchik, Alexander N.
2018-04-01
In this paper we study the spiking behaviour of a neuronal network consisting of Rulkov elements. We find that the regularity of this behaviour maximizes at a certain level of environment noise. This effect referred to as coherence resonance is demonstrated in a random complex network of Rulkov neurons. An external stimulus added to some of neurons excites them, and then activates other neurons in the network. The network coherence is also maximized at the certain stimulus amplitude.
Graham, Bronwyn M; Zagic, Dino; Richardson, Rick
2017-10-15
Hippocampal concentrations of the neurotrophic factor fibroblast growth factor 2 (FGF2) are negatively associated with the expression of fear following conditioning in rats. Heightened conditioned fear expression may be a prospective risk factor for the development of human anxiety and trauma disorders. However, the relationship between conditioned fear expression and FGF2 is yet to be established in humans. Using a cross-species approach, we first investigated the relationship between serum concentrations of FGF2 and individual differences in conditioned fear expression in rats (n = 19). We then subjected 88 human participants, who were recruited from university and community advertisements, to a differential fear conditioning procedure and assessed the relationship between salivary concentrations of FGF2 and fear expression to a conditioned stimulus (CS) (a stimulus paired with a shock) and a CS that was never paired with shock. Rats with low serum levels of FGF2 exhibited significantly more freezing than rats with high serum levels of FGF2. Similarly, relative to those with high salivary FGF2, human participants with low salivary FGF2 exhibited significantly heightened skin conductance responses to the CS without shock during fear conditioning and to both the CS with shock and CS without shock during fear recall. These studies establish that peripheral markers of FGF2 concentrations are negatively associated with fear expression in both rats and humans. To the extent that conditioned fear expression predicts anxiety and trauma disorder vulnerability, FGF2 may be a clinically useful biomarker in the prediction and eventual prevention of these disorders. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
The affect heuristic in occupational safety.
Savadori, Lucia; Caovilla, Jessica; Zaniboni, Sara; Fraccaroli, Franco
2015-07-08
The affect heuristic is a rule of thumb according to which, in the process of making a judgment or decision, people use affect as a cue. If a stimulus elicits positive affect then risks associated to that stimulus are viewed as low and benefits as high; conversely, if the stimulus elicits negative affect, then risks are perceived as high and benefits as low. The basic tenet of this study is that affect heuristic guides worker's judgment and decision making in a risk situation. The more the worker likes her/his organization the less she/he will perceive the risks as high. A sample of 115 employers and 65 employees working in small family agricultural businesses completed a questionnaire measuring perceived safety costs, psychological safety climate, affective commitment and safety compliance. A multi-sample structural analysis supported the thesis that safety compliance can be explained through an affect-based heuristic reasoning, but only for employers. Positive affective commitment towards their family business reduced employers' compliance with safety procedures by increasing the perceived cost of implementing them.
V1 projection zone signals in human macular degeneration depend on task, not stimulus.
Masuda, Yoichiro; Dumoulin, Serge O; Nakadomari, Satoshi; Wandell, Brian A
2008-11-01
We used functional magnetic resonance imaging to assess abnormal cortical signals in humans with juvenile macular degeneration (JMD). These signals have been interpreted as indicating large-scale cortical reorganization. Subjects viewed a stimulus passively or performed a task; the task was either related or unrelated to the stimulus. During passive viewing, or while performing tasks unrelated to the stimulus, there were large unresponsive V1 regions. These regions included the foveal projection zone, and we refer to them as the lesion projection zone (LPZ). In 3 JMD subjects, we observed highly significant responses in the LPZ while they performed stimulus-related judgments. In control subjects, where we presented the stimulus only within the peripheral visual field, there was no V1 response in the foveal projection zone in any condition. The difference between JMD and control responses can be explained by hypotheses that have very different implications for V1 reorganization. In controls retinal afferents carry signals indicating the presence of a uniform (zero-contrast) region of the visual field. Deletion of retinal input may 1) spur the formation of new cortical pathways that carry task-dependent signals (reorganization), or 2) unmask preexisting task-dependent cortical signals that ordinarily are suppressed by the deleted signals (no reorganization).
V1 Projection Zone Signals in Human Macular Degeneration Depend on Task, not Stimulus
Dumoulin, Serge O.; Nakadomari, Satoshi; Wandell, Brian A.
2008-01-01
We used functional magnetic resonance imaging to assess abnormal cortical signals in humans with juvenile macular degeneration (JMD). These signals have been interpreted as indicating large-scale cortical reorganization. Subjects viewed a stimulus passively or performed a task; the task was either related or unrelated to the stimulus. During passive viewing, or while performing tasks unrelated to the stimulus, there were large unresponsive V1 regions. These regions included the foveal projection zone, and we refer to them as the lesion projection zone (LPZ). In 3 JMD subjects, we observed highly significant responses in the LPZ while they performed stimulus-related judgments. In control subjects, where we presented the stimulus only within the peripheral visual field, there was no V1 response in the foveal projection zone in any condition. The difference between JMD and control responses can be explained by hypotheses that have very different implications for V1 reorganization. In controls retinal afferents carry signals indicating the presence of a uniform (zero-contrast) region of the visual field. Deletion of retinal input may 1) spur the formation of new cortical pathways that carry task-dependent signals (reorganization), or 2) unmask preexisting task-dependent cortical signals that ordinarily are suppressed by the deleted signals (no reorganization). PMID:18250083
Stimulus augmenting and field dependence in children of alcoholic fathers.
Hennecke, L
1984-11-01
The relationship between paternal alcoholism and two perceptual characteristics, stimulus augmenting and field dependence, was tested in boys and girls aged 10-12. Thirty children of alcoholic fathers, presumed at high risk for the disease because of its familial-genetic component, were compared with 30 children of nonalcoholic parents. Stimulus augmenting was measured by the Kinesthetic Figural After-Effect (KFA) test and field dependence by the Embedded Figures Test (EFT). It was reasoned that the consistent findings of field dependence in alcoholics could be a manifestation of brain damage and the consequent cognitive deficits often found in alcoholics. Thus it was proposed that field dependence would not differentiate the children of alcoholic fathers from those of nonalcoholics. No difference in field dependence was found between the groups, which supports other evidence that alcoholism can lead to field dependence. Since KFA scores revealed a significantly higher incidence of stimulus augmenters in the children of alcoholic fathers, it is proposed that stimulus augmenting is premorbid to alcoholism. It remains unclear, however, whether this phenomenon is due to an environmental or genetic factor.
Walsh, Kyle P.; Pasanen, Edward G.; McFadden, Dennis
2014-01-01
In this study, a nonlinear version of the stimulus-frequency OAE (SFOAE), called the nSFOAE, was used to measure cochlear responses from human subjects while they simultaneously performed behavioral tasks requiring, or not requiring, selective auditory attention. Appended to each stimulus presentation, and included in the calculation of each nSFOAE response, was a 30-ms silent period that was used to estimate the level of the inherent physiological noise in the ear canals of our subjects during each behavioral condition. Physiological-noise magnitudes were higher (noisier) for all subjects in the inattention task, and lower (quieter) in the selective auditory-attention tasks. These noise measures initially were made at the frequency of our nSFOAE probe tone (4.0 kHz), but the same attention effects also were observed across a wide range of frequencies. We attribute the observed differences in physiological-noise magnitudes between the inattention and attention conditions to different levels of efferent activation associated with the differing attentional demands of the behavioral tasks. One hypothesis is that when the attentional demand is relatively great, efferent activation is relatively high, and a decrease in the gain of the cochlear amplifier leads to lower-amplitude cochlear activity, and thus a smaller measure of noise from the ear. PMID:24732069
DeVido, Jeffrey; Jones, Matthew; Geraci, Marilla; Hollon, Nick; Blair, R. J. R.; Pine, Daniel S.; Blair, Karina
2010-01-01
Background Generalized Social Phobia (GSP) involves the fear/avoidance of social situations while Generalized Anxiety Disorder (GAD) involves an intrusive worry about everyday life circumstances. It remains unclear whether these, highly comorbid, conditions represent distinct disorders or alternative presentations of a single underlying pathology. In this study, we examined stimulus-reinforcement based decision-making in GSP and GAD. Methods Twenty unmedicated patients with GSP, sixteen unmedicated patients with GAD and nineteen age, IQ, and gender matched healthy comparison individuals completed the Differential Reward/ Punishment Learning Task (DRPLT). In this task, the subject chooses between two objects associated with different levels of reward or punishment. Thus, response choice indexes not only reward/ punishment sensitivity but also sensitivity to reward/ punishment level according to between-object reinforcement distance. Results We found that patients with GAD committed a significantly greater number of errors compared to both the patients with GSP and the healthy comparison individuals. In contrast, the patients with GSP and the healthy comparison individuals did not differ in performance on this task. Conclusions These results link GAD with an anomalous non-affective based decision-making. Further, they are indicative that GSP and GAD are associated with distinct pathophysiologies. PMID:19102795
Fairless, Andrew H; Dow, Holly C; Toledo, Monica M; Malkus, Kristen A; Edelmann, Michele; Li, Hongzhe; Talbot, Konrad; Arnold, Steven E; Abel, Ted; Brodkin, Edward S
2008-09-16
The behavioral manifestations of autism, including reduced sociability (reduced tendency to seek social interaction), may be related to underdevelopment of the corpus callosum (CC). The BALB/cJ inbred mouse strain is a useful model system for testing the relationship between reduced sociability and CC underdevelopment. BALB/cJ mice show low levels of sociability, on average, but substantial intrastrain variability in sociability, as well as striking variability in CC development. This study tested the hypothesis that sociability is positively correlated with CC size within the BALB/cJ inbred strain. 30-day-old BALB/cJ and C57BL/6J mice were tested for sociability towards gonadectomized A/J stimulus mice in a social choice task. The size of the corpus callosum was measured histologically at the midsagittal plane. BALB/cJ mice showed a significant positive correlation between the tendency to sniff the stimulus mouse and size of the CC relative to brain weight. C57BL/6J mice showed consistently high levels of sociability and normal corpus callosum development. These results suggest that abnormal white matter structure is associated with deficits in sociability in BALB/cJ mice. Additional studies are warranted to elucidate the relationship between brain connectivity and sociability in this model system.
Hoshino, Osamu
2015-06-01
Perception of supraliminal stimuli might in general be reflected in bursts of action potentials (spikes), and their memory traces could be formed through spike-timing-dependent plasticity (STDP). Memory traces for subliminal stimuli might be formed in a different manner, because subliminal stimulation evokes a fraction (but not a burst) of spikes. Simulations of a cortical neural network model showed that a subliminal stimulus that was too brief (10 msec) to perceive transiently (more than about 500 msec) depolarized stimulus-relevant principal cells and hyperpolarized stimulus-irrelevant principal cells in a subthreshold manner. This led to a small increase or decrease in ongoing-spontaneous spiking activity frequency (less than 1 Hz). Synaptic modification based on STDP during this period effectively enhanced relevant synaptic weights, by which subliminal learning was improved. GABA transporters on GABAergic interneurons modulated local levels of ambient GABA. Ambient GABA molecules acted on extrasynaptic receptors, provided principal cells with tonic inhibitory currents, and contributed to achieving the subthreshold neuronal state. We suggest that ongoing-spontaneous synaptic alteration through STDP following subliminal stimulation may be a possible neuronal mechanism for leaving its memory trace in cortical circuitry. Regulation of local ambient GABA levels by transporter-mediated GABA import and export may be crucial for subliminal learning.
Nozza, R J
1987-06-01
Performance of infants in a speech-sound discrimination task (/ba/ vs /da/) was measured at three stimulus intensity levels (50, 60, and 70 dB SPL) using the operant head-turn procedure. The procedure was modified so that data could be treated as though from a single-interval (yes-no) procedure, as is commonly done, as well as if from a sustained attention (vigilance) task. Discrimination performance changed significantly with increase in intensity, suggesting caution in the interpretation of results from infant discrimination studies in which only single stimulus intensity levels within this range are used. The assumptions made about the underlying methodological model did not change the performance-intensity relationships. However, infants demonstrated response decrement, typical of vigilance tasks, which supports the notion that the head-turn procedure is represented best by the vigilance model. Analysis then was done according to a method designed for tasks with undefined observation intervals [C. S. Watson and T. L. Nichols, J. Acoust. Soc. Am. 59, 655-668 (1976)]. Results reveal that, while group data are reasonably well represented across levels of difficulty by the fixed-interval model, there is a variation in performance as a function of time following trial onset that could lead to underestimation of performance in some cases.
Contralateral Dpoae Suppression in Humans at Very Low Sound Intensities
NASA Astrophysics Data System (ADS)
Janssen, T.; Gehr, D. D.; Kevanishvili, Z.
2003-02-01
Different functions are attributed to the olivo-cochlear bundle system (OCBS) such as protecting the ear from acoustic injury, improving signal detection in noise, and mediating selective attention. OCBS reflex strength can be evaluated, in animals as well as in humans, by measuring the degree of suppression of an ipsilateral DPOAE by a contralateral sound. The purpose of the study was to evaluate OCBS reflex strength depending on ipsilateral stimulus level, especially at threshold, by means of extrapolated DPOAE I/O-functions. Additionally, DPOAE was measured at near-to-threshold contralateral stimulus levels when using low-level ipsilateral stimulation for investigating possible enhancement of outer hair cell motion in the presence of low-level contralateral sound. The recording of the 2f1-f2 DPOAE in the presence or absence of contralateral sound was performed in normally hearing human subjects at f2 = 2 kHz. DPOAE I/O-functions were measured in a primary tone level range from L2 = 20 to L2 = 65 dB SPL (L1 = 0.4L2 + 39, f2/f1=1.2). Broad-band noise (BBN), narrow-band noise from 1720 to 2320 Hz (NBN), and pure tones (PT) at f2, 2f1-f2, geometric mean of f1 and f2, and 0.1oct + f2 were used for contralateral stimulation. The contralateral stimulus level (Ls) was decreased from 70 down to 10 dB SPL in 10 dB steps. DPOAE suppression was highest at the lowest primary tone level and was more pronounced for BBN and NBN than for pure tones, suggesting a more diffuse than a strong tonotopic organisation of the OCBS. The contralateral stimulus level at which significant DPOAE suppression occurred (p < 0.05) was different for the different stimuli being 20, 40, and 70 dB SPL for BBN, NBN, and pure-tone (f2), respectively. Significant DPOAE suppression to BBN and NBN occurred at Ls well below audiological middle-ear reflex threshold. DPOAE time course was different for Ls below and above middle-ear reflex threshold. Thus, middle-ear muscle contraction is suggested not to be involved in DPOAE suppression at low Ls. No enhancement of DPOAE could be found. The findings suggest the OCBS to be functioning in a more protective way than for improving signal detection in noise.
Development of a mouse test for repetitive, restricted behaviors: relevance to autism.
Moy, Sheryl S; Nadler, Jessica J; Poe, Michele D; Nonneman, Randal J; Young, Nancy B; Koller, Beverly H; Crawley, Jacqueline N; Duncan, Gary E; Bodfish, James W
2008-03-17
Repetitive behavior, a core symptom of autism, encompasses stereotyped responses, restricted interests, and resistance to change. These studies investigated whether different components of the repetitive behavior domain could be modeled in the exploratory hole-board task in mice. Four inbred mouse strains, C57BL/6J, BALB/cByJ, BTBR T+tf/J, and FVB/NJ, and mice with reduced expression of Grin1, leading to NMDA receptor hypofunction (NR1neo/neo mice), were tested for exploration and preference for olfactory stimuli in an activity chamber with a 16-hole floor-board. Reduced exploration and high preference for holes located in the corners of the chamber were observed in BALB/cByJ and BTBR T+tf/J mice. All inbred strains had initial high preference for a familiar olfactory stimulus (clean cage bedding). BTBR T+tf/J was the only strain that did not demonstrate a shift in hole preference towards an appetitive olfactory stimulus (cereal or a chocolate chip), following home cage exposure to the food. The NR1neo/neo mice showed lower hole selectivity and aberrant olfactory stimulus preference, in comparison to wildtype controls. The results indicate that NR1neo/neo mice have repetitive nose poke responses that are less modified by environmental contingencies than responses in wildtype mice. 25-30% of NMDA receptor hypomorphic mice also show self-injurious responses. Findings from the olfactory studies suggest that resistance to change and restricted interests might be modeled in mice by a failure to alter patterns of hole preference following familiarization with an appetitive stimulus, and by high preference persistently demonstrated for one particular olfactory stimulus. Further work is required to determine the characteristics of optimal mouse social stimuli in the olfactory hole-board test.
Role of somatosensory and vestibular cues in attenuating visually induced human postural sway
NASA Technical Reports Server (NTRS)
Peterka, R. J.; Benolken, M. S.
1995-01-01
The purpose of this study was to determine the contribution of visual, vestibular, and somatosensory cues to the maintenance of stance in humans. Postural sway was induced by full-field, sinusoidal visual surround rotations about an axis at the level of the ankle joints. The influences of vestibular and somatosensory cues were characterized by comparing postural sway in normal and bilateral vestibular absent subjects in conditions that provided either accurate or inaccurate somatosensory orientation information. In normal subjects, the amplitude of visually induced sway reached a saturation level as stimulus amplitude increased. The saturation amplitude decreased with increasing stimulus frequency. No saturation phenomena were observed in subjects with vestibular loss, implying that vestibular cues were responsible for the saturation phenomenon. For visually induced sways below the saturation level, the stimulus-response curves for both normal subjects and subjects experiencing vestibular loss were nearly identical, implying (1) that normal subjects were not using vestibular information to attenuate their visually induced sway, possibly because sway was below a vestibular-related threshold level, and (2) that subjects with vestibular loss did not utilize visual cues to a greater extent than normal subjects; that is, a fundamental change in visual system "gain" was not used to compensate for a vestibular deficit. An unexpected finding was that the amplitude of body sway induced by visual surround motion could be almost 3 times greater than the amplitude of the visual stimulus in normal subjects and subjects with vestibular loss. This occurred in conditions where somatosensory cues were inaccurate and at low stimulus amplitudes. A control system model of visually induced postural sway was developed to explain this finding. For both subject groups, the amplitude of visually induced sway was smaller by a factor of about 4 in tests where somatosensory cues provided accurate versus inaccurate orientation information. This implied (1) that the subjects experiencing vestibular loss did not utilize somatosensory cues to a greater extent than normal subjects; that is, changes in somatosensory system "gain" were not used to compensate for a vestibular deficit, and (2) that the threshold for the use of vestibular cues in normal subjects was apparently lower in test conditions where somatosensory cues were providing accurate orientation information.
Quantifying interactions between accommodation and vergence in a binocularly normal population.
Sweeney, Laura E; Seidel, Dirk; Day, Mhairi; Gray, Lyle S
2014-12-01
Stimulation of the accommodation system results in a response in the vergence system via accommodative vergence cross-link interactions, and stimulation of the vergence system results in an accommodation response via vergence accommodation cross-link interactions. Cross-link interactions are necessary in order to ensure simultaneous responses in the accommodation and vergence systems. The crosslink interactions are represented most comprehensively by the response AC/A (accommodative vergence) and CA/C (vergence accommodation) ratios, although the stimulus AC/A ratio is measured clinically, and the stimulus CA/C ratio is seldom measured in clinical practice. The present study aims to quantify both stimulus and response AC/A and CA/C ratios in a binocularly normal population, and determine the relationship between them. 25 Subjects (mean ± SD age 21.0 ± 1.9 years) were recruited from the university population. A significant linear relationship was found between the stimulus and response ratios, for both AC/A (r² = 0.96, p < 0.001) and CA/C ratios (r² = 0.40, p < 0.05). Good agreement was found between the stimulus and response AC/A ratios (95% CI -0.06 to 0.24 MA/D). Stimulus and response CA/C ratios are linearly related. Stimulus CA/C ratios were higher than response ratios at low values, and lower than response ratios at high values (95% CI -0.46 to 0.42 D/MA). Agreement between stimulus and response CA/C ratios is poorer than that found for AC/A ratios due to increased variability in vergence responses when viewing the Gaussian blurred target. This study has shown that more work is needed to refine the methodology of CA/C ratio measurement.
Warrington, Kayleigh L; McGowan, Victoria A; Paterson, Kevin B; White, Sarah J
2018-04-19
Reductions in stimulus quality may disrupt the reading performance of older adults more when compared with young adults because of sensory declines that begin early in middle age. However, few studies have investigated adult age differences in the effects of stimulus quality on reading, and none have examined how this affects lexical processing and eye movement control. Accordingly, we report two experiments that examine the effects of reduced stimulus quality on the eye movements of young (18-24 years), middle-aged (41-51 years), and older (65+ years) adult readers. In Experiment 1, participants read sentences that contained a high- or low-frequency critical word and that were presented normally or with contrast reduced so that words appeared faint. Experiment 2 further investigated effects of reduced stimulus quality using a gaze-contingent technique to present upcoming text normally or with contrast reduced. Typical patterns of age-related reading difficulty (e.g., slower reading, more regressions) were observed in both experiments. In addition, eye movements were disrupted more for older than younger adults when all text (Experiment 1) or just upcoming text (Experiment 2) appeared faint. Moreover, there was an interaction between stimulus quality and word frequency (Experiment 1), such that readers fixated faint low-frequency words for disproportionately longer. Crucially, this effect was similar across all age groups. Thus, although older readers suffer more from reduced stimulus quality, this additional difficulty primarily affects their visual processing of text. These findings have important implications for understanding the role of stimulus quality on reading behavior across the lifespan. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
The Affective Dimension of Laboratory Dyspnea
Banzett, Robert B.; Pedersen, Sarah H.; Schwartzstein, Richard M.; Lansing, Robert W.
2008-01-01
Rationale: It is hypothesized that the affective dimension of dyspnea (unpleasantness, emotional response) is not strictly dependent on the intensity of dyspnea. Objectives: We tested the hypothesis that the ratio of immediate unpleasantness (A1) to sensory intensity (SI) varies depending on the type of dyspnea. Methods: Twelve healthy subjects experienced three stimuli: stimulus 1: maximal eucapnic voluntary hyperpnea against inspiratory resistance, requiring 15 times the work of resting breathing; stimulus 2: PetCO2 6.1 mm Hg above resting with ventilation restricted to less than spontaneous breathing; stimulus 3: PetCO2 7.7 mm Hg above resting with ventilation further restricted. After each trial, subjects rated SI, A1, and qualities of dyspnea on the Multidimensional Dyspnea Profile (MDP), a comprehensive instrument tested here for the first time. Measurements and Main Results: Stimulus 1 was always limited by subjects failing to meet a higher ventilation target; none signaled severe discomfort. This evoked work and effort sensations, with relatively low unpleasantness (mean A1/SI = 0.64). Stimulus 2, titrated to produce dyspnea ratings similar to those subjects gave during stimulus 1, evoked air hunger and produced significantly greater unpleasantness (mean A1/SI = 0.95). Stimulus 3, increased until air hunger was intolerable, evoked the highest intensity and unpleasantness ratings and high unpleasantness ratio (mean A1/SI = 1.09). When asked which they would prefer to repeat, all subjects chose stimulus 1. Conclusions: (1) Maximal respiratory work is less unpleasant than moderately intense air hunger in this brief test; (2) unpleasantness of dyspnea can vary independently from perceived intensity, consistent with the prevailing model of pain; (3) separate dimensions of dyspnea can be measured with the MDP. PMID:18369200
Statistical context shapes stimulus-specific adaptation in human auditory cortex.
Herrmann, Björn; Henry, Molly J; Fromboluti, Elisa Kim; McAuley, J Devin; Obleser, Jonas
2015-04-01
Stimulus-specific adaptation is the phenomenon whereby neural response magnitude decreases with repeated stimulation. Inconsistencies between recent nonhuman animal recordings and computational modeling suggest dynamic influences on stimulus-specific adaptation. The present human electroencephalography (EEG) study investigates the potential role of statistical context in dynamically modulating stimulus-specific adaptation by examining the auditory cortex-generated N1 and P2 components. As in previous studies of stimulus-specific adaptation, listeners were presented with oddball sequences in which the presentation of a repeated tone was infrequently interrupted by rare spectral changes taking on three different magnitudes. Critically, the statistical context varied with respect to the probability of small versus large spectral changes within oddball sequences (half of the time a small change was most probable; in the other half a large change was most probable). We observed larger N1 and P2 amplitudes (i.e., release from adaptation) for all spectral changes in the small-change compared with the large-change statistical context. The increase in response magnitude also held for responses to tones presented with high probability, indicating that statistical adaptation can overrule stimulus probability per se in its influence on neural responses. Computational modeling showed that the degree of coadaptation in auditory cortex changed depending on the statistical context, which in turn affected stimulus-specific adaptation. Thus the present data demonstrate that stimulus-specific adaptation in human auditory cortex critically depends on statistical context. Finally, the present results challenge the implicit assumption of stationarity of neural response magnitudes that governs the practice of isolating established deviant-detection responses such as the mismatch negativity. Copyright © 2015 the American Physiological Society.
ERIC Educational Resources Information Center
Brodhead, Matthew T.; Abel, Emily A.; Al-Dubayan, Monerah N.; Brouwers, Lauren; Abston, Gina Warren; Rispoli, Mandy J.
2016-01-01
We compared the results of a brief electronic pictorial multiple-stimulus without replacement (EP-MSWO) preference assessment to a brief tangible MSWO preference assessment in five children with autism. Results of both assessments yielded a match between high preferred (HP) toys for four participants and low preferred toys for three participants.…
ERIC Educational Resources Information Center
Witte, Kenneth L.; Freund, Joel S.
1976-01-01
Investigated the learning of young and old adults as related to two variables, stimulus concreteness (low vs. high) and presentation method (recall vs. multiple choice vs. associate matching). Main findings were: (a) the elderly did not perform as well as young adults, (b) for both groups, performance was better for the pairs with concrete…
ERIC Educational Resources Information Center
Krumpe, Kati P.
2012-01-01
With the emphasis on high standards and fiscal accountability, there is a heightened need to inform the research linking student achievement to the allocation of resources. This mixed methods inquiry sought to study how schools utilized Title 1 and Title 1 stimulus funding from 2009-2011 to determine if correlations existed between areas of…
Moerke, Megan J; Zhu, Andy Z X; Tyndale, Rachel F; Javors, Martin A; McMahon, Lance R
2017-04-01
Quantitative analysis of antagonism is infrequently used to identify nAChRs mediating behavioral effects. Here, nicotine (0.032 mg/kg i.v.) was established as a discriminative stimulus in rhesus monkeys responding under a fixed ratio 5 schedule; pharmacokinetics and underlying nAChR mechanism(s) were examined. When measured up to 4 h in venous blood, the training dose resulted in the following mean pharmacokinetic parameters: nicotine C max = 71.7 ng/ml, t 1/2 = 116 min, and clearance = 6.25 ml/min/kg; cotinine C max = 191 ng/ml; and 3OH-cotinine C max = 63 ng/ml. The ED 50 value of nicotine to produce discriminative stimulus effects was 0.013 mg/kg. Epibatidine and varenicline increased drug-lever responding to 97% and 95%, respectively (ED 50 values = 0.00015 and 0.031 mg/kg, respectively), whereas cocaine, midazolam, and morphine produced no more than 28% drug-appropriate responding. Mecamylamine and dihydro-β-erythroidine (DHβE) dose-dependently attenuated the discriminative stimulus effects of the nicotine training dose, whereas methyllycaconitine (MLA) did not. DHβE (0.1 and 0.32) produced rightward shifts of the nicotine and varenicline dose-response functions; Schild plots fitted through individual data resulted in slopes that were not different from unity; the apparent pA 2 calculated for DHβE did not significantly differ in the presence of nicotine (6.58) or varenicline (6.45). Compared to human cigarette smoking, nicotine blood levels after 0.032 mg/kg nicotine i.v. took a similar time to reach maximal concentration, levels at Cmax were similar to smoking 2-3 cigarettes, while average nicotine levels were comparable to smoking 5-6 cigarettes. Apparent pA 2 analysis with DHβE under these conditions is consistent with nicotine and varenicline acting through the same nAChRs to produce discriminative stimulus effects. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vinje, William E; Gallant, Jack L
2002-04-01
We have investigated how the nonclassical receptive field (nCRF) affects information transmission by V1 neurons during simulated natural vision in awake, behaving macaques. Stimuli were centered over the classical receptive field (CRF) and stimulus size was varied from one to four times the diameter of the CRF. Stimulus movies reproduced the spatial and temporal stimulus dynamics of natural vision while maintaining constant CRF stimulation across all sizes. In individual neurons, stimulation of the nCRF significantly increases the information rate, the information per spike, and the efficiency of information transmission. Furthermore, the population averages of these quantities also increase significantly with nCRF stimulation. These data demonstrate that the nCRF increases the sparseness of the stimulus representation in V1, suggesting that the nCRF tunes V1 neurons to match the highly informative components of the natural world.
Affective picture processing: An integrative review of ERP findings
Olofsson, Jonas K.; Nordin, Steven; Sequeira, Henrique; Polich, John
2008-01-01
The review summarizes and integrates findings from 40 years of event-related potential (ERP) studies using pictures that differ in valence (unpleasant-to-pleasant) and arousal (low-to-high) and that are used to elicit emotional processing. Affective stimulus factors primarily modulate ERP component amplitude, with little change in peak latency observed. Arousal effects are consistently obtained, and generally occur at longer latencies. Valence effects are inconsistently reported at several latency ranges, including very early components. Some affective ERP modulations vary with recording methodology, stimulus factors, as well as task-relevance and emotional state. Affective ERPs have been linked theoretically to attention orientation for unpleasant pictures at earlier components (< 300 ms). Enhanced stimulus processing has been associated with memory encoding for arousing pictures of assumed intrinsic motivational relevance, with task-induced differences contributing to emotional reactivity at later components (> 300 ms). Theoretical issues, stimulus factors, task demands, and individual differences are discussed. PMID:18164800
Vestibulo-ocular and vestibulospinal function before and after cochlear implant surgery
NASA Technical Reports Server (NTRS)
Black, F. O.; Lilly, D. J.; Peterka, R. J.; Fowler, L. P.; Simmons, F. B.
1987-01-01
Vestibular function in cochlear implant candidates varies from normal to total absence of function. In patients with intact vestibular function preoperatively, invasion of the otic capsule places residual vestibular function at risk. Speech-processing strategies that result in large amplitude electrical transients or strategies that employ high amplitude broad frequency carrier signals have the potential for disrupting vestibular function. Five patients were tested with and without electrical stimulation via cochlear electrodes. Two patients experienced subjective vestibular effects that were quickly resolved. No long-term vestibular effects were noted for the two types of second generation cochlear implants evaluated. Histopathological findings from another patient, who had electrically generated vestibular reflex responses to intramodiolar electrodes, indicated that responses elicited were a function of several variables including electrode location, stimulus intensity, stimulus amplitude, and stimulus frequency. Differential auditory, vestibulocolic, and vestibulospinal reflexes were demonstrated from the same electrode as a function of stimulus amplitude, frequency, and duration.
Shekhar, Shashank; Cho, Duckhyung; Cho, Dong-Guk; Yang, Myungjae; Hong, Seunghun
2018-05-18
We develolped a method to directly image the nanoscale effects of localized noise-source activities on photoconducting charge transports in domain structures of phase-separated polymer-blend films of Poly(9,9-di-n-octylfluorenyl-2,7-diyl) and Poly(9,9-di-n-octylfluorene-alt-benzothiadiazole). For the imaging, current and noise maps of the polymer-blend were recorded using a conducting nanoprobe in contact with the surface, enabling the conductivity (σ) and noise-source density (N T ) mappings under an external stimulus. The blend-films exhibited the phase-separation between the constituent polymers at domains level. Within a domain, high σ (low N T ) and low σ (high N T ) regions were observed, which could be associated with the ordered and disordered regions of a domain. In the N T maps, we observed that noise-sources strongly affected the conduction mechanism, resulting in a scaling behavior of σ ∝ [Formula: see text] in both ordered and disordered regions. When a blend film was under an influence of an external stimulus such as a high bias or an illumination, an increase in the σ was observed, but that also resulted in increases in the N T as a trade-off. Interestingly, the Δσ versus ΔN T plot exhibited an unusual scaling behavior of Δσ ∝ [Formula: see text] which is attributed to the de-trapping of carriers from deep traps by the external stimuli. In addition, we found that an external stimulus increased the conductivity at the interfaces without significantly increasing their N T , which can be the origin of the superior performances of polymer-blend based devices. These results provide valuable insight about the effects of noise-sources on nanoscale optoelectronic properties in polymer-blend films, which can be an important guideline for improving devices based on polymer-blend.
NASA Astrophysics Data System (ADS)
Shekhar, Shashank; Cho, Duckhyung; Cho, Dong-Guk; Yang, Myungjae; Hong, Seunghun
2018-05-01
We develolped a method to directly image the nanoscale effects of localized noise-source activities on photoconducting charge transports in domain structures of phase-separated polymer-blend films of Poly(9,9-di-n-octylfluorenyl-2,7-diyl) and Poly(9,9-di-n-octylfluorene-alt-benzothiadiazole). For the imaging, current and noise maps of the polymer-blend were recorded using a conducting nanoprobe in contact with the surface, enabling the conductivity (σ) and noise-source density (N T) mappings under an external stimulus. The blend-films exhibited the phase-separation between the constituent polymers at domains level. Within a domain, high σ (low N T) and low σ (high N T) regions were observed, which could be associated with the ordered and disordered regions of a domain. In the N T maps, we observed that noise-sources strongly affected the conduction mechanism, resulting in a scaling behavior of σ ∝ {{N}{{T}}}-0.5 in both ordered and disordered regions. When a blend film was under an influence of an external stimulus such as a high bias or an illumination, an increase in the σ was observed, but that also resulted in increases in the N T as a trade-off. Interestingly, the Δσ versus ΔN T plot exhibited an unusual scaling behavior of Δσ ∝ {{Δ }}{{N}{{T}}}0.5, which is attributed to the de-trapping of carriers from deep traps by the external stimuli. In addition, we found that an external stimulus increased the conductivity at the interfaces without significantly increasing their N T, which can be the origin of the superior performances of polymer-blend based devices. These results provide valuable insight about the effects of noise-sources on nanoscale optoelectronic properties in polymer-blend films, which can be an important guideline for improving devices based on polymer-blend.
Nelson, Frank E; Hollingworth, Stephen; Rome, Lawrence C; Baylor, Stephen M
2014-05-01
The mating call of the Atlantic toadfish is generated by bursts of high-frequency twitches of the superfast twitch fibers that surround the swimbladder. At 16°C, a calling period can last several hours, with individual 80-100-Hz calls lasting ∼ 500 ms interleaved with silent periods (intercall intervals) lasting ∼ 10 s. To understand the intracellular movements of Ca(2+) during the intercall intervals, superfast fibers were microinjected with fluo-4, a high-affinity fluorescent Ca(2+) indicator, and stimulated by trains of 40 action potentials at 83 Hz, which mimics fiber activity during calling. The fluo-4 fluorescence signal was measured during and after the stimulus trains; the signal was also simulated with a kinetic model of the underlying myoplasmic Ca(2+) movements, including the binding and transport of Ca(2+) by the sarcoplasmic reticulum (SR) Ca(2+) pumps. The estimated total amount of Ca(2+) released from the SR during a first stimulus train is ∼ 6.5 mM (concentration referred to the myoplasmic water volume). At 40 ms after cessation of stimulation, the myoplasmic free Ca(2+) concentration ([Ca(2+)]) is below the threshold for force generation (∼ 3 µM), yet the estimated concentration of released Ca(2+) remaining in the myoplasm (Δ[CaM]) is large, ∼ 5 mM, with ∼ 80% bound to parvalbumin. At 10 s after stimulation, [Ca(2+)] is ∼ 90 nM (three times the assumed resting level) and Δ[CaM] is ∼ 1.3 mM, with 97% bound to parvalbumin. Ca(2+) movements during the intercall interval thus appear to be strongly influenced by (a) the accumulation of Ca(2+) on parvalbumin and (b) the slow rate of Ca(2+) pumping that ensues when parvalbumin lowers [Ca(2+)] near the resting level. With repetitive stimulus trains initiated at 10-s intervals, Ca(2+) release and pumping come quickly into balance as a result of the stability (negative feedback) supplied by the increased rate of Ca(2+) pumping at higher [Ca(2+)].
Anxiety, anticipation and contextual information: A test of attentional control theory.
Cocks, Adam J; Jackson, Robin C; Bishop, Daniel T; Williams, A Mark
2016-09-01
We tested the assumptions of Attentional Control Theory (ACT) by examining the impact of anxiety on anticipation using a dynamic, time-constrained task. Moreover, we examined the involvement of high- and low-level cognitive processes in anticipation and how their importance may interact with anxiety. Skilled and less-skilled tennis players anticipated the shots of opponents under low- and high-anxiety conditions. Participants viewed three types of video stimuli, each depicting different levels of contextual information. Performance effectiveness (response accuracy) and processing efficiency (response accuracy divided by corresponding mental effort) were measured. Skilled players recorded higher levels of response accuracy and processing efficiency compared to less-skilled counterparts. Processing efficiency significantly decreased under high- compared to low-anxiety conditions. No difference in response accuracy was observed. When reviewing directional errors, anxiety was most detrimental to performance in the condition conveying only contextual information, suggesting that anxiety may have a greater impact on high-level (top-down) cognitive processes, potentially due to a shift in attentional control. Our findings provide partial support for ACT; anxiety elicited greater decrements in processing efficiency than performance effectiveness, possibly due to predominance of the stimulus-driven attentional system.
Visual perception as retrospective Bayesian decoding from high- to low-level features
Ding, Stephanie; Cueva, Christopher J.; Tsodyks, Misha; Qian, Ning
2017-01-01
When a stimulus is presented, its encoding is known to progress from low- to high-level features. How these features are decoded to produce perception is less clear, and most models assume that decoding follows the same low- to high-level hierarchy of encoding. There are also theories arguing for global precedence, reversed hierarchy, or bidirectional processing, but they are descriptive without quantitative comparison with human perception. Moreover, observers often inspect different parts of a scene sequentially to form overall perception, suggesting that perceptual decoding requires working memory, yet few models consider how working-memory properties may affect decoding hierarchy. We probed decoding hierarchy by comparing absolute judgments of single orientations and relative/ordinal judgments between two sequentially presented orientations. We found that lower-level, absolute judgments failed to account for higher-level, relative/ordinal judgments. However, when ordinal judgment was used to retrospectively decode memory representations of absolute orientations, striking aspects of absolute judgments, including the correlation and forward/backward aftereffects between two reported orientations in a trial, were explained. We propose that the brain prioritizes decoding of higher-level features because they are more behaviorally relevant, and more invariant and categorical, and thus easier to specify and maintain in noisy working memory, and that more reliable higher-level decoding constrains less reliable lower-level decoding. PMID:29073108
Landerholm, Åsa H; Hansson, Per T
2017-12-29
Background and aim Pain due to a usually non-painful mechanical stimulus, mechanical allodynia, is an oppressive symptom in subgroups of patients with neuropathic pain. Dynamic mechanical allodynia (DMA) is evoked by a normally innocuous light moving mechanical stimulus on the skin and static mechanical allodynia (SMA) by a sustained, normally innocuous pressure against the skin. DMA is claimed to be mediated by myelinated fibres and SMA by C-fibres. Also A-delta fibres have been implicated in the static subtype. A low intensity vertically applied stimulus of 1 second (s) is expected to activate predominantly rapidly adapting A-beta mechanoreceptors thus recruiting the same peripheral substrate as a horizontally moving brush on top of the skin. In patients with SMA we assumed an activation of Cbut also A-delta fibres from a static 10 s von Frey filament stimulus. The aim was to investigate if DMA and SMA could be assessed at perception threshold level using short or longer lasting usually non-painful von Frey filament prodding of the neuropathic skin. Patients and methods Eighteen patients with painful unilateral partial peripheral traumatic nerve injury suffering from SMA (n = 9) and/or DMA (n = 18) in a limb were studied. A compression/ischemia-induced (differential) nerve block in conjunction with repeated quantitative sensory testing of A-delta and C-fibre function using cold and warm stimuli was used to assess which nerve fibre population that contributes to pain at perception threshold level using 1 s (vF1) and 10 s (vF10) von Frey filament stimulation of the skin. Results The main outcome was the finding that elevation of vF1 and vF10 occurred simultaneously and significantly prior to an increase in the perception level to cold or warmth during the continuous nerve block. Single patients demonstrated a slight decrease in cold perception levels at the time of elevation of vF1 or vF10 and a possible contribution to mechanical allodynia from A-delta-fibres can therefore not completely be ruled out although the recorded alterations were minor. None of the patients reported an elevation of the perception level to warmth at the time of elevation of vF1 or vF10 excluding contribution from C-fibres. Further, only patients with clinically established SMA (n = 9) reported continuous pain to a sustained 10 s von Frey filament stimulation (vF10). Patients with only DMA (n = 9) reported pain merely for the initial 1-3 s of the total stimulus duration of 10 s and for a few seconds after the filament was lifted from the skin. Conclusions These findings support the role of A-beta fibres as peripheral mediators of both vF1 and vF10 although different receptor organs may be involved, i.e., rapidly (RA) and slowly (SA-I) adapting mechanoreceptors. Implications Techniques to quantify the different allodynias at perception threshold level deserve further attention as possible adjuncts to suprathreshold stimuli in intervention studies aimed at modifying these stimulus-evoked phenomena.