Sample records for high strength load

  1. High-Tensile Strength Tape Versus High-Tensile Strength Suture: A Biomechanical Study.

    PubMed

    Gnandt, Ryan J; Smith, Jennifer L; Nguyen-Ta, Kim; McDonald, Lucas; LeClere, Lance E

    2016-02-01

    To determine which suture design, high-tensile strength tape or high-tensile strength suture, performed better at securing human tissue across 4 selected suture techniques commonly used in tendinous repair, by comparing the total load at failure measured during a fixed-rate longitudinal single load to failure using a biomechanical testing machine. Matched sets of tendon specimens with bony attachments were dissected from 15 human cadaveric lower extremities in a manner allowing for direct comparison testing. With the use of selected techniques (simple Mason-Allen in the patellar tendon specimens, whip stitch in the quadriceps tendon specimens, and Krackow stitch in the Achilles tendon specimens), 1 sample of each set was sutured with a 2-mm braided, nonabsorbable, high-tensile strength tape and the other with a No. 2 braided, nonabsorbable, high-tensile strength suture. A total of 120 specimens were tested. Each model was loaded to failure at a fixed longitudinal traction rate of 100 mm/min. The maximum load and failure method were recorded. In the whip stitch and the Krackow-stitch models, the high-tensile strength tape had a significantly greater mean load at failure with a difference of 181 N (P = .001) and 94 N (P = .015) respectively. No significant difference was found in the Mason-Allen and simple stitch models. Pull-through remained the most common method of failure at an overall rate of 56.7% (suture = 55%; tape = 58.3%). In biomechanical testing during a single load to failure, high-tensile strength tape performs more favorably than high-tensile strength suture, with a greater mean load to failure, in both the whip- and Krackow-stitch models. Although suture pull-through remains the most common method of failure, high-tensile strength tape requires a significantly greater load to pull-through in a whip-stitch and Krakow-stitch model. The biomechanical data obtained in the current study indicates that high-tensile strength tape may provide better repair strength compared with high-tensile strength suture at time-zero simulated testing. Published by Elsevier Inc.

  2. Strength and Hypertrophy Adaptations Between Low- vs. High-Load Resistance Training: A Systematic Review and Meta-analysis.

    PubMed

    Schoenfeld, Brad J; Grgic, Jozo; Ogborn, Dan; Krieger, James W

    2017-12-01

    Schoenfeld, BJ, Grgic, J, Ogborn, D, and Krieger, JW. Strength and hypertrophy adaptations between low- vs. high-load resistance training: a systematic review and meta-analysis. J Strength Cond Res 31(12): 3508-3523, 2017-The purpose of this article was to conduct a systematic review of the current body of literature and a meta-analysis to compare changes in strength and hypertrophy between low- vs. high-load resistance training protocols. Searches of PubMed/MEDLINE, Cochrane Library, and Scopus were conducted for studies that met the following criteria: (a) an experimental trial involving both low-load training [≤60% 1 repetition maximum (1RM)] and high-load training (>60% 1RM); (b) with all sets in the training protocols being performed to momentary muscular failure; (c) at least one method of estimating changes in muscle mass or dynamic, isometric, or isokinetic strength was used; (d) the training protocol lasted for a minimum of 6 weeks; (e) the study involved participants with no known medical conditions or injuries impairing training capacity. A total of 21 studies were ultimately included for analysis. Gains in 1RM strength were significantly greater in favor of high- vs. low-load training, whereas no significant differences were found for isometric strength between conditions. Changes in measures of muscle hypertrophy were similar between conditions. The findings indicate that maximal strength benefits are obtained from the use of heavy loads while muscle hypertrophy can be equally achieved across a spectrum of loading ranges.

  3. Prediction of shear critical behavior of high-strength reinforced concrete columns using finite element methods

    NASA Astrophysics Data System (ADS)

    Alrasyid, Harun; Safi, Fahrudin; Iranata, Data; Chen-Ou, Yu

    2017-11-01

    This research shows the prediction of shear behavior of High-Strength Reinforced Concrete Columns using Finite-Element Method. The experimental data of nine half scale high-strength reinforced concrete were selected. These columns using specified concrete compressive strength of 70 MPa, specified yield strength of longitudinal and transverse reinforcement of 685 and 785 MPa, respectively. The VecTor2 finite element software was used to simulate the shear critical behavior of these columns. The combination axial compression load and monotonic loading were applied at this prediction. It is demonstrated that VecTor2 finite element software provides accurate prediction of load-deflection up to peak at applied load, but provide similar behavior at post peak load. The shear strength prediction provide by VecTor 2 are slightly conservative compare to test result.

  4. High-load strength training improves outcome in patients with plantar fasciitis: A randomized controlled trial with 12-month follow-up.

    PubMed

    Rathleff, M S; Mølgaard, C M; Fredberg, U; Kaalund, S; Andersen, K B; Jensen, T T; Aaskov, S; Olesen, J L

    2015-06-01

    The aim of this study was to investigate the effectiveness of shoe inserts and plantar fascia-specific stretching vs shoe inserts and high-load strength training in patients with plantar fasciitis. Forty-eight patients with ultrasonography-verified plantar fasciitis were randomized to shoe inserts and daily plantar-specific stretching (the stretch group) or shoe inserts and high-load progressive strength training (the strength group) performed every second day. High-load strength training consisted of unilateral heel raises with a towel inserted under the toes. Primary outcome was the foot function index (FFI) at 3 months. Additional follow-ups were performed at 1, 6, and 12 months. At the primary endpoint, at 3 months, the strength group had a FFI that was 29 points lower [95% confidence interval (CI): 6-52, P = 0.016] compared with the stretch group. At 1, 6, and 12 months, there were no differences between groups (P > 0.34). At 12 months, the FFI was 22 points (95% CI: 9-36) in the strength group and 16 points (95% CI: 0-32) in the stretch group. There were no differences in any of the secondary outcomes. A simple progressive exercise protocol, performed every second day, resulted in superior self-reported outcome after 3 months compared with plantar-specific stretching. High-load strength training may aid in a quicker reduction in pain and improvements in function. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Structural optimization of 3D-printed synthetic spider webs for high strength

    NASA Astrophysics Data System (ADS)

    Qin, Zhao; Compton, Brett G.; Lewis, Jennifer A.; Buehler, Markus J.

    2015-05-01

    Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological design and material distribution, here we create spider-web mimics composed of elastomeric filaments. Specifically, computational modelling and microscale 3D printing are combined to investigate the mechanical response of elastomeric webs under multiple loading conditions. We find the existence of an asymptotic prey size that leads to a saturated web strength. We identify pathways to design elastomeric material structures with maximum strength, low density and adaptability. We show that the loading type dictates the optimal material distribution, that is, a homogeneous distribution is better for localized loading, while stronger radial threads with weaker spiral threads is better for distributed loading. Our observations reveal that the material distribution within spider webs is dictated by the loading condition, shedding light on their observed architectural variations.

  6. Structural optimization of 3D-printed synthetic spider webs for high strength.

    PubMed

    Qin, Zhao; Compton, Brett G; Lewis, Jennifer A; Buehler, Markus J

    2015-05-15

    Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological design and material distribution, here we create spider-web mimics composed of elastomeric filaments. Specifically, computational modelling and microscale 3D printing are combined to investigate the mechanical response of elastomeric webs under multiple loading conditions. We find the existence of an asymptotic prey size that leads to a saturated web strength. We identify pathways to design elastomeric material structures with maximum strength, low density and adaptability. We show that the loading type dictates the optimal material distribution, that is, a homogeneous distribution is better for localized loading, while stronger radial threads with weaker spiral threads is better for distributed loading. Our observations reveal that the material distribution within spider webs is dictated by the loading condition, shedding light on their observed architectural variations.

  7. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures.

    PubMed

    Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo

    2017-07-11

    Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W-B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W-B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33f cu . It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.

  8. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures

    PubMed Central

    Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo

    2017-01-01

    Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W–B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W–B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33fcu. It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load. PMID:28773144

  9. Transformation-Induced Diffraction Peak Broadening During Bainitic and Martensitic Transformations Under Small External Loads in a Quenched and Tempered High Strength Steel

    NASA Astrophysics Data System (ADS)

    Dutta, R. K.; Huizenga, R. M.; Amirthalingam, M.; Hermans, M. J. M.; King, A.; Richardson, I. M.

    2013-09-01

    In situ phase transformation behavior of a high strength S690QL1 steel during continuous cooling under different mechanical loading conditions has been used to investigate the effect of small external loads on the transformation-induced plasticity during bainitic and martensitic transformations. The results show that during phase transformations, the untransformed austenite undergoes plastic deformation, thereby retarding further transformation to bainite/martensite. This occurs independent of external load.

  10. The role of strength and power during performance of high intensity military tasks under heavy load carriage.

    PubMed

    Mala, Jesse; Szivak, Tunde K; Flanagan, Shawn D; Comstock, Brett A; Laferrier, Justin Z; Maresh, Carl M; Kraemer, William J

    2015-01-01

    Previous research has investigated the physiological determinants of heavy load carriage while performing medium to long distance road marching, yet research examining the physiological underpinnings of high-intensity battlefield tasks is limited. This study sought to examine the role of strength and power during high-intensity combat tasks under heavy load carriage. Eighteen recreationally trained men (mean±SD: age, 21±2 years; height, 172±6 cm; weight, 80±13 kg) participated in this study and performed an anaerobic combat course under 2 randomized experimental conditions; unloaded and loaded. Subjects performed 3 trials under each condition on separate days, with a 5-minute rest between each trial. In the unloaded trial, subjects wore a uniform with boots weighing approximately 3.2 kg. During the loaded trial, in addition to the uniform and boots, subjects wore Interceptor body armor (6.94 kg-9.10 kg) and a MOLLE rucksack weighing 30 kg. The course consisted of 3 consecutive tasks, which began from the prone position, led into a 30 m sprint, followed by a 27 m zigzag run, and ended with a 10 m casualty drag weighing approximately 79.4 kg. Pearson correlations showed significant (P≤.05) strong correlations between lower body strength (r=-0.63, -0.62), lower body power (r=-0.67, -0.67) and upper body strength (r=-0.60, -0.62) and overall performance times in the unloaded and loaded condition, respectively. Strength and power are strongly related to high-intensity military tasks with and without heavy load carriage.

  11. A Study of the Efficiency of High-strength, Steel, Cellular-core Sandwich Plates in Compression

    NASA Technical Reports Server (NTRS)

    Johnson, Aldie E , Jr; Semonian, Joseph W

    1956-01-01

    Structural efficiency curves are presented for high-strength, stainless-steel, cellular-core sandwich plates of various proportions subjected to compressive end loads for temperatures of 80 F and 600 F. Optimum proportions of sandwich plates for any value of the compressive loading intensity can be determined from the curves. The efficiency of steel sandwich plates of optimum proportions is compared with the efficiency of solid plates of high-strength steel and aluminum and titanium alloys at the two temperatures.

  12. Investigation of instability, dynamic forces, and effect of dynamic loading on strength of cages for the bearings in the high pressure oxygen turbopumps for the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Dufrane, K. F.; Kannel, J. W.; Merriman, T. L.; Rosenfield, A. R.

    1985-01-01

    Experiments were performed to determine the effect of cyclic loading on bearing cage strength. A long term working tensile load of approximately 1300 N (300 lbs) was found to be the likely maximum. Higher loads caused a decrease in cage tensile strength after the 125,000 cycle testing period. Poisson's ratio in compression was found to be highly dependent upon the direction of the fiberglass plies. At room temperature the value was 0.15 with the plies and 0.68 across the plies. At -196 C (-321 F), the value with the plies was 0.20. The results of the analyses conducted have again demonstrated the critical need for improved lubrication in the high pressure oxygen turbopump bearings. Lubricant films with low shear strength and low friction coefficients promote cage stability and decrease ball/cage forces during marginal operating conditions. The analysis of the effect of combined bearing loads on ball/cage loads has identified a radial load of 3600 N (800 lbs) as the maximum for the current clearance of the balls and cage pockets. Liquid oxygen impinging on the cage in the direction of rotation was found to enhance cage stability.

  13. Structural optimization of 3D-printed synthetic spider webs for high strength

    PubMed Central

    Qin, Zhao; Compton, Brett G.; Lewis, Jennifer A.; Buehler, Markus J.

    2015-01-01

    Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological design and material distribution, here we create spider-web mimics composed of elastomeric filaments. Specifically, computational modelling and microscale 3D printing are combined to investigate the mechanical response of elastomeric webs under multiple loading conditions. We find the existence of an asymptotic prey size that leads to a saturated web strength. We identify pathways to design elastomeric material structures with maximum strength, low density and adaptability. We show that the loading type dictates the optimal material distribution, that is, a homogeneous distribution is better for localized loading, while stronger radial threads with weaker spiral threads is better for distributed loading. Our observations reveal that the material distribution within spider webs is dictated by the loading condition, shedding light on their observed architectural variations. PMID:25975372

  14. Associations of physical activity duration, frequency, and load with volumetric BMD, geometry, and bone strength in young girls

    PubMed Central

    Farr, Joshua N.; Blew, Robert M.; Lee, Vinson R.; Lohman, Timothy G.; Going, Scott B.

    2011-01-01

    Purpose This study evaluated the associations of physical activity (PA) duration, frequency, load, and their interaction (total PA score = duration × frequency × load) with volumetric bone mineral density, geometry, and indices of bone strength in young girls. Methods 465 girls (aged 8–13 years) completed a past year physical activity questionnaire (PYPAQ) which inquires about the frequency (days/week) and duration (average minutes/session) of leisure-time PA and sports. Load (peak strain score) values were assigned to each activity based on ground reaction forces. Peripheral quantitative computed tomography was used to assess bone parameters at metaphyseal and diaphyseal sites of the femur and tibia of the non-dominant leg. Results Correlations across all skeletal sites between PA duration, frequency, load and periosteal circumference (PC), bone strength index (BSI), and strength-strain index (SSI) were significant (p ≤ 0.05), although low (0.10–0.17). A 2.7–3.7% greater PC across all skeletal sites was associated with a high compared to a low PYPAQ score. Also, a high PYPAQ score was associated with greater BSI (6.5–8.7%) at metaphyseal sites and SSI (7.5–8.1%) at diaphyseal sites of the femur and tibia. The effect of a low PYPAQ score on bone geometric parameters and strength was greater than a high PYPAQ score. Conclusions PA duration, frequency, and load were all associated with bone geometry and strength, although their independent influences were modest and site specific. Low levels of PA may compromise bone development whereas high levels have only a small benefit over more average levels. PMID:20694457

  15. Muscular adaptations in low- versus high-load resistance training: A meta-analysis.

    PubMed

    Schoenfeld, Brad J; Wilson, Jacob M; Lowery, Ryan P; Krieger, James W

    2016-01-01

    There has been much debate as to optimal loading strategies for maximising the adaptive response to resistance exercise. The purpose of this paper therefore was to conduct a meta-analysis of randomised controlled trials to compare the effects of low-load (≤60% 1 repetition maximum [RM]) versus high-load (≥65% 1 RM) training in enhancing post-exercise muscular adaptations. The strength analysis comprised 251 subjects and 32 effect sizes (ESs), nested within 20 treatment groups and 9 studies. The hypertrophy analysis comprised 191 subjects and 34 ESs, nested with 17 treatment groups and 8 studies. There was a trend for strength outcomes to be greater with high loads compared to low loads (difference = 1.07 ± 0.60; CI: -0.18, 2.32; p = 0.09). The mean ES for low loads was 1.23 ± 0.43 (CI: 0.32, 2.13). The mean ES for high loads was 2.30 ± 0.43 (CI: 1.41, 3.19). There was a trend for hypertrophy outcomes to be greater with high loads compared to low loads (difference = 0.43 ± 0.24; CI: -0.05, 0.92; p = 0.076). The mean ES for low loads was 0.39 ± 0.17 (CI: 0.05, 0.73). The mean ES for high loads was 0.82 ± 0.17 (CI: 0.49, 1.16). In conclusion, training with loads ≤50% 1 RM was found to promote substantial increases in muscle strength and hypertrophy in untrained individuals, but a trend was noted for superiority of heavy loading with respect to these outcome measures with null findings likely attributed to a relatively small number of studies on the topic.

  16. Behaviour of square FRP-Confined High-Strength Concrete Columns under Eccentric Compression

    NASA Astrophysics Data System (ADS)

    Fallah Pour, Ali; Gholampour, Aliakbar; Zheng, Junai; Ozbakkaloglu, Togay

    2018-01-01

    This paper presents the results of an experimental study on the effect of load eccentricity on the axial compressive behaviour of carbon fibre-reinforced polymer (CFRP)- confined high-strength concrete (HSC) columns with a square cross-section. The axial loading was applied to the specimens at six different load eccentricities ranging from zero to 50 mm. The results show that the load eccentricity significantly influences the axial load-displacement and axial stress-strain behaviour of FRP-confined HSC. Increasing the load eccentricity leads to an increase in the ultimate axial strain but a decrease in the ultimate axial stress and second branch slope of the axial stress-strain curve.

  17. High-early-strength high-performance concrete for rapid pavement repair.

    DOT National Transportation Integrated Search

    2016-01-01

    In the construction industry, High Early-Age Strength (HES) concrete was : traditionally regarded as a concrete that achieves a loading strength in matter of days : rather than weeks. However, in the last 10-15 years, this time has been reduced down ...

  18. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects

    PubMed Central

    Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala

    2016-01-01

    A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100–150 MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110 MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1–10 MPa compressive cyclic load), failure reliability and flexural strength (30 MPa) compared with those for conventional architecture. The obtained strength is 150 times greater than values reported for polymeric and composite scaffolds and 5 times greater than reported values for ceramic and glass scaffolds at similar porosity. These scaffolds open avenues for treatment of load bearing bone defects in orthopaedic, dental and maxillofacial applications. PMID:26782020

  19. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects

    NASA Astrophysics Data System (ADS)

    Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala

    2016-01-01

    A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100-150 MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110 MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1-10 MPa compressive cyclic load), failure reliability and flexural strength (30 MPa) compared with those for conventional architecture. The obtained strength is 150 times greater than values reported for polymeric and composite scaffolds and 5 times greater than reported values for ceramic and glass scaffolds at similar porosity. These scaffolds open avenues for treatment of load bearing bone defects in orthopaedic, dental and maxillofacial applications.

  20. Procedure for chromatography involving sample solvent with higher elution strength than the mobile phase.

    PubMed

    Patil, Nitin S; Mendhe, Rakesh B; Sankar, Ajeet A; Iyer, Harish

    2008-01-11

    In preparative chromatography, often the solubility of the sample in the mobile phase is limited, making the mobile phase unsuitable as a solvent for preparation of load. Generally, solvents that have high solubility for the sample also have higher elution strengths than the mobile phase. Additionally, at high loading volumes, these strong sample solvents are known to adversely affect the band profiles leading to poor chromatographic performance. Here, we show that controlling the mobile phase strength during loading and post-load elution resulted in improved band profiles when the sample solvent was stronger than the mobile phase. Such an approach improves performance in preparative chromatography by allowing either higher sample loading or higher organic content in mobile phase (without loss of yield). Alternately, the approach can be used for improvement in performance by increase in yield or product purity.

  1. Improving UV Resistance of High Performance Fibers

    NASA Astrophysics Data System (ADS)

    Hassanin, Ahmed

    High performance fibers are characterized by their superior properties compared to the traditional textile fibers. High strength fibers have high modules, high strength to weight ratio, high chemical resistance, and usually high temperature resistance. It is used in application where superior properties are needed such as bulletproof vests, ropes and cables, cut resistant products, load tendons for giant scientific balloons, fishing rods, tennis racket strings, parachute cords, adhesives and sealants, protective apparel and tire cords. Unfortunately, Ultraviolet (UV) radiation causes serious degradation to the most of high performance fibers. UV lights, either natural or artificial, cause organic compounds to decompose and degrade, because the energy of the photons of UV light is high enough to break chemical bonds causing chain scission. This work is aiming at achieving maximum protection of high performance fibers using sheathing approaches. The sheaths proposed are of lightweight to maintain the advantage of the high performance fiber that is the high strength to weight ratio. This study involves developing three different types of sheathing. The product of interest that need be protected from UV is braid from PBO. First approach is extruding a sheath from Low Density Polyethylene (LDPE) loaded with different rutile TiO2 % nanoparticles around the braid from the PBO. The results of this approach showed that LDPE sheath loaded with 10% TiO2 by weight achieved the highest protection compare to 0% and 5% TiO2. The protection here is judged by strength loss of PBO. This trend noticed in different weathering environments, where the sheathed samples were exposed to UV-VIS radiations in different weatheromter equipments as well as exposure to high altitude environment using NASA BRDL balloon. The second approach is focusing in developing a protective porous membrane from polyurethane loaded with rutile TiO2 nanoparticles. Membrane from polyurethane loaded with 4% rutile TiO2 nanoparticles showed excellent protection of braid from PBO. Only 7.5% strength loss was observed. To optimize the degree of protection of the sheath loaded with UV blocker particles, computational models were developed to optimize the protective layer thickness/weight and the amount of UV particles that provide the maximum protection with lightest weight of the protective layer and minimum amount of UV particles. The simulated results were found to be higher that the experimental results due to the tendency of nanoparticles to be agglomerated in real experiments. The third approach to achieve a maximum protection with the minimum weight added is constructing a sleeve from SpectraRTM (Ultra High Molecular Weight Polyethylene (UHMWPE) high performance fiber), which is known to resist UV, woven fabric. Covering the braid from PBO fiber with Spectra RTM woven fabric provide hybrid structure with two compatible components that can share the load and thus maintain the high strength to weight ratio. Although the SpectraRTM fabric had maximum cover factor, 20 % of visible light and about 15 % of UV were able to penetrate the fabric. This transmittance of UV-VIS light negatively affected the protection performance of the SpectraRTM woven fabric layer. It is thought that SpectraRTM fabric be coated with a thin layer (mentioned earlier) containing UV blocker for additional protection while maintain strength contribution to the hybrid structure. To maximize the strength to weight ratio of the hybrid structure (with core from PBO braid and sheath from SpectraRTM woven fabric) an established finite element model was utilized. The theoretical results using the finite element theory indicated that by controlling the bending rigidity of the filling yarn of the SpectraRTM fabric, the extension at peak load of woven fabric in warp direction (loading direction) could be controlled to match the braid extension at peak load. The match in the extension at peak load of the two components of the hybrid structure allowed the maximum strength to weight ratio. Thus, the SpectraRTM woven layer could achieve both the protection from UV and the load share in the hybrid structure.

  2. Effects of High Velocity Elastic Band versus Heavy Resistance Training on Hamstring Strength, Activation, and Sprint Running Performance

    PubMed Central

    Janusevicius, Donatas; Snieckus, Audrius; Skurvydas, Albertas; Silinskas, Viktoras; Trinkunas, Eugenijus; Cadefau, Joan Aureli; Kamandulis, Sigitas

    2017-01-01

    Hamstring muscle injuries occur during high-speed activities, which suggests that muscular strength at high velocities may be more important than maximal strength. This study examined hamstring adaptations to training for maximal strength and for strength at high velocities. Physically active men (n = 25; age, 23.0 ± 3.2 years) were randomly divided into: (1) a resistance training (RT, n = 8) group, which performed high-load, low-velocity concentric–eccentric hamstring contractions; (2) a resistance training concentric (RTC; n = 9) group, which performed high-load, low-velocity concentric-only hamstring contractions; and (3) a high-velocity elastic band training (HVT, n = 8) group, which performed low-load, high-velocity concentric–eccentric hamstring contractions. Pre- and posttraining tests included hamstring strength on a hamstring-curl apparatus, concentric knee extension–flexion at 60°/s, 240°/s, and 450°/s, eccentric knee flexion at 60°/s and 240°/s, hamstring and quadriceps coactivation, knee flexion and extension frequency in the prone position, and 30-m sprint running speed from a stationary start and with a running start. Knee flexor torque increased significantly by 21.1% ± 8.1% in the RTC group and 16.2% ± 4.2% in the RT group (p < 0.05 for both groups). Hamstring coactivation decreased significantly in both groups. In the HVT group, knee flexion and extension frequency increased by 17.8% ± 8.2%, concentric peak torque of the knee flexors at 450°/s increased by 31.0% ± 12.0%, hamstring coactivation decreased, and running performance over 30 m improved (p < 0.05 for all parameters). These findings suggest that resistance training at high velocities is superior to traditional heavy resistance training for increasing knee flexor strength at high velocities, movement frequency, and sprint running performance. These findings also indicate that traditional training approaches are effective for increasing knee flexor strength and reducing knee extensor coactivation, but this outcome is limited to low and moderate speeds. Key points Resistance training performed at high load and low velocities increases knee flexor strength and decreases hamstring coactivation, whereas does not change strength at high velocity. Elastic band training at high velocities increases strength and decreases hamstring coactivation, particularly at high muscle velocities. Elastic band hamstring training at high velocities has positive effects on both knee flexors and knee extensors, and these benefits transfer positively to sprint performance. PMID:28630577

  3. Room Temperature and Elevated Temperature Composite Sandwich Joint Testing

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.

    1998-01-01

    Testing of composite sandwich joint elements has been completed to verify the strength capacity of joints designed to carry specified running loads representative of a high speed civil transport wing. Static tension testing at both room and an elevated temperature of 350 F and fatigue testing at room temperature were conducted to determine strength capacity, fatigue life, and failure modes. Static tension test results yielded failure loads above the design loads for the room temperature tests, confirming the ability of the joint concepts tested to carry their design loads. However, strength reductions as large as 30% were observed at the elevated test temperature, where all failure loads were below the room temperature design loads for the specific joint designs tested. Fatigue testing resulted in lower than predicted fatigue lives.

  4. Effect of Loading Rate and Surface Conditions on Flexural Strength of Borosilicate Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, X; Chen, Wayne; Wereszczak, Andrew A

    2009-01-01

    This study evaluates the loading rate and surface condition dependence of the flexural strength of a borosilicate glass. The glass specimens are subjected to three different surface treatments before four-point bending tests to study the effect of surface flaws. Quasistatic (Material Test System 810) and dynamic (Kolsky bar) experiments are performed at loading rates ranging from 0.7 to 4 x 10{sup 6} MPa/s. The results show that the flexural strength of the borosilicate glass has a strong dependence on the loading rate. A chemically etched surface produces an enhanced flexural strength by about an order of magnitude. Scanning electron microscopymore » images on fracture surfaces indicate that the failure is governed by different types of flaws under different surface treatment conditions. Edge failure is also identified for samples possessing high flexural strength.« less

  5. Application of Strength Diagnosis.

    ERIC Educational Resources Information Center

    Newton, Robert U.; Dugan, Eric

    2002-01-01

    Discusses the various strength qualities (maximum strength, high- and low-load speed strength, reactive strength, rate of force development, and skill performance), noting why a training program design based on strength diagnosis can lead to greater efficacy and better performance gains for the athlete. Examples of tests used to assess strength…

  6. Long-term strength and damage accumulation in laminates

    NASA Astrophysics Data System (ADS)

    Dzenis, Yuris A.; Joshi, Shiv P.

    1993-04-01

    A modified version of the probabilistic model developed by authors for damage evolution analysis of laminates subjected to random loading is utilized to predict long-term strength of laminates. The model assumes that each ply in a laminate consists of a large number of mesovolumes. Probabilistic variation functions for mesovolumes stiffnesses as well as strengths are used in the analysis. Stochastic strains are calculated using the lamination theory and random function theory. Deterioration of ply stiffnesses is calculated on the basis of the probabilities of mesovolumes failures using the theory of excursions of random process beyond the limits. Long-term strength and damage accumulation in a Kevlar/epoxy laminate under tension and complex in-plane loading are investigated. Effects of the mean level and stochastic deviation of loading on damage evolution and time-to-failure of laminate are discussed. Long-term cumulative damage at the time of the final failure at low loading levels is more than at high loading levels. The effect of the deviation in loading is more pronounced at lower mean loading levels.

  7. Aerospace Threaded Fastener Strength in Combined Shear and Tension Loading

    NASA Technical Reports Server (NTRS)

    Steeve, B. E.; Wingate, R. J.

    2012-01-01

    A test program was initiated by Marshall Space Flight Center and sponsored by the NASA Engineering and Safety Center to characterize the failure behavior of a typical high-strength aerospace threaded fastener under a range of shear to tension loading ratios for both a nut and an insert configuration where the shear plane passes through the body and threads, respectively. The testing was performed with a customized test fixture designed to test a bolt with a single shear plane at a discrete range of loading angles. The results provide data to compare against existing combined loading failure criteria and to quantify the bolt strength when the shear plane passes through the threads.

  8. Loading capacity of zirconia implant supported hybrid ceramic crowns.

    PubMed

    Rohr, Nadja; Coldea, Andrea; Zitzmann, Nicola U; Fischer, Jens

    2015-12-01

    Recently a polymer infiltrated hybrid ceramic was developed, which is characterized by a low elastic modulus and therefore may be considered as potential material for implant supported single crowns. The purpose of the study was to evaluate the loading capacity of hybrid ceramic single crowns on one-piece zirconia implants with respect to the cement type. Fracture load tests were performed on standardized molar crowns milled from hybrid ceramic or feldspar ceramic, cemented to zirconia implants with either machined or etched intaglio surface using four different resin composite cements. Flexure strength, elastic modulus, indirect tensile strength and compressive strength of the cements were measured. Statistical analysis was performed using two-way ANOVA (p=0.05). The hybrid ceramic exhibited statistically significant higher fracture load values than the feldspar ceramic. Fracture load values and compressive strength values of the respective cements were correlated. Highest fracture load values were achieved with an adhesive cement (1253±148N). Etching of the intaglio surface did not improve the fracture load. Loading capacity of hybrid ceramic single crowns on one-piece zirconia implants is superior to that of feldspar ceramic. To achieve maximal loading capacity for permanent cementation of full-ceramic restorations on zirconia implants, self-adhesive or adhesive cements with a high compressive strength should be used. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Rate dependent strengths of some solder joints

    NASA Astrophysics Data System (ADS)

    Williamson, D. M.; Field, J. E.; Palmer, S. J. P.; Siviour, C. R.

    2007-08-01

    The shear strengths of three lead-free solder joints have been measured over the range of loading rates 10-3 to ~105 mm min-1. Binary (SnAg), ternary (SnAgCu) and quaternary (Castin: SnAgCuSb) alloys have been compared to a conventional binary SnPb solder alloy. Results show that at loading rates from 10-3 to 102 mm min-1, all four materials exhibit a linear relationship between the shear strength and the loading rate when the data are plotted on a log-log plot. At the highest loading rate of 105 mm min-1, the strengths of the binary alloys were in agreement with extrapolations made from the lower loading rate data. In contrast, the strengths of the higher order alloys were found to be significantly lower than those predicted by extrapolation. This is explained by a change in failure mechanism on the part of the higher order alloys. Similar behaviour was found in measurements of the tensile strengths of solder joints using a novel high-rate loading tensile test. Optical and electron microscopy were used to examine the microstructures of interest in conjunction with energy dispersive x-ray analysis for elemental identification. The effect of artificial aging and reflow of the solder joints is also reported.

  10. High-strength mineralized collagen artificial bone

    NASA Astrophysics Data System (ADS)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  11. Super-strengthening and stabilizing with carbon nanotube harnessed high density nanotwins in metals by shock loading

    PubMed Central

    Lin, Dong; Saei, Mojib; Suslov, Sergey; Jin, Shengyu; Cheng, Gary J.

    2015-01-01

    CNTs reinforced metal composites has great potential due to their superior properties, such as light weight, high strength, low thermal expansion and high thermal conductivity. The current strengthening mechanisms of CNT/metal composite mainly rely on CNTs’ interaction with dislocations and CNT’s intrinsic high strength. Here we demonstrated that laser shock loading the CNT/metal composite results in high density nanotwins, stacking fault, dislocation around the CNT/metal interface. The composites exhibit enhanced strength with excellent stability. The results are interpreted by both molecular dynamics simulation and experiments. It is found the shock wave interaction with CNTs induces a stress field, much higher than the applied shock pressure, surrounding the CNT/metal interface. As a result, nanotwins were nucleated under a shock pressure much lower than the critical values to generate twins in metals. This hybrid unique nanostructure not only enhances the strength, but also stabilize the strength, as the nanotwin boundaries around the CNTs help pin the dislocation movement. PMID:26493533

  12. Long Term Displacement Data of Woven Fabric Webbings Under Constant Load for Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Kenner, Winfred S.; Jones, Thomas C.; Doggett, William R.; Lucy, Melvin H.; Grondin, Trevor A.; Whitley, Karen S.; Duncan, Quinton; Plant, James V.

    2014-01-01

    Inflatable modules for space applications offer weight and launch volume savings relative to current metallic modules. Limited data exist on the creep behavior of the restraint layer of inflatable modules. Long-term displacement and strain data of two high strength woven fabric webbings, Kevlar and Vectran, under constant load is presented. The creep behavior of webbings is required by designers to help determine service life parameters of inflatable modules. Four groups of different webbings with different loads were defined for this study. Group 1 consisted of 4K Kevlar webbings loaded to 33% ultimate tensile strength and 6K Vectran webbings loaded to 27% ultimate tensile strength, group 2 consisted of 6K Kevlar webbings loaded to 40% and 43% ultimate tensile strength, and 6K Vectran webbings loaded to 50% ultimate tensile strength, group 3 consisted of 6K Kevlar webbings loaded to 52% ultimate tensile strength and 6K Vectran webbings loaded to 60% ultimate tensile strength, and group 4 consisted of 12.5K Kevlar webbings loaded to 22% ultimate tensile strength, and 12.5K Vectran webbings loaded to 22% ultimate tensile strength. The uniquely designed test facility, hardware, displacement measuring devices, and test data are presented. Test data indicate that immediately after loading all webbings stretch an inch or more, however as time increases displacement values significantly decrease to fall within a range of several hundredth of an inch over the remainder of test period. Webbings in group 1 exhibit near constant displacements and strains over a 17-month period. Data acquisition was suspended after the 17th month, however webbings continue to sustain load without any local webbing damage as of the 21st month of testing. Webbings in group 2 exhibit a combination of initial constant displacement and subsequent increases in displacement rates over a 16-month period. Webbings in group 3 exhibit steady increases in displacement rates leading to webbing failure over a 3-month period. Five of six webbings experienced local damage and subsequent failure in group 3. Data from group 4 indicates increasing webbing displacements over a 7-month period. All webbings in groups 1, 2, and 4 remain suspended without any local damage as of the writing of this paper. Variations in facility temperatures over test period seem to have had limited effect on long-term webbing displacement data.

  13. Ductile Crack Initiation Criterion with Mismatched Weld Joints Under Dynamic Loading Conditions.

    PubMed

    An, Gyubaek; Jeong, Se-Min; Park, Jeongung

    2018-03-01

    Brittle failure of high toughness steel structures tends to occur after ductile crack initiation/propagation. Damages to steel structures were reported in the Hanshin Great Earthquake. Several brittle failures were observed in beam-to-column connection zones with geometrical discontinuity. It is widely known that triaxial stresses accelerate the ductile fracture of steels. The study examined the effects of geometrical heterogeneity and strength mismatches (both of which elevate plastic constraints due to heterogeneous plastic straining) and loading rate on critical conditions initiating ductile fracture. This involved applying the two-parameter criterion (involving equivalent plastic strain and stress triaxiality) to estimate ductile cracking for strength mismatched specimens under static and dynamic tensile loading conditions. Ductile crack initiation testing was conducted under static and dynamic loading conditions using circumferentially notched specimens (Charpy type) with/without strength mismatches. The results indicated that the condition for ductile crack initiation using the two parameter criterion was a transferable criterion to evaluate ductile crack initiation independent of the existence of strength mismatches and loading rates.

  14. Fatigue testing of weldable high strength steels under simulated service conditions

    NASA Astrophysics Data System (ADS)

    Tantbirojn, Natee

    There have been concerns over the effect of Cathodic Protection (CP) on weldable high strength steels employed in Jack-up production platform. The guidance provided by the Department of Energy HSE on higher strength steels, based on previous work, was to avoid overprotection as this could cause hydrogen embrittlement. However, the tests conducted so far at UCL for the SE702 type high strength steels (yields strength around 690 MPa) have shown that the effect of over protection on high strength steels may not be as severe as previously thought. For this thesis, SE702 high strength steels have been investigated in more detail. Thick (85mm) parent and ground welded plates were tested under constant amplitude in air and seawater with CP. Tests were also conducted on Thick (40mm) T-butt welded plates under variable amplitude loading in air and seawater with two CP levels (-800mV and -1050mV). Different backing materials (ceramic and metallic) for the welding process of the T-butt plates were also investigated. The variable amplitude sequences employed were generated using the Jack-up Offshore Standard load History (JOSH). The fatigue results are presented as crack growth and S/N curves. They were compared to the conventional offshore steel (BS 4360 50D). The results suggested that the fatigue life of the high strength steels was comparable to the BS 4360 50D steels. The effect of increasing the CP was found to be detrimental to the fatigue life but the effect was not large. The effect of CP was less noticeable in T-butt welded plates. However, in general, the effect of overprotection is not as detrimental to the Jack-up steels as previously thought. The load histories generated by JOSH were found to have some unfavourable characteristics. The framework is based on Markov Chain method and pseudo-random number generator for selecting sea-states. A study was carried out on the sequence generated by JOSH. The generated sequences were analysed for their validity for fatigue testing. This has resulted in recommendations on the methods for generating standard load histories.

  15. Investigation into the Cyclic Strength of the Bodies of Steam Shutoff Valves from 10Kh9MFB-Sh Steel

    NASA Astrophysics Data System (ADS)

    Skorobogatykh, V. N.; Kunavin, S. A.; Prudnikov, D. A.; Shchenkova, I. A.; Bazhenov, A. M.; Zadoinyi, V. A.; Starkovskii, G. L.

    2018-02-01

    Steam shutoff valves are operated under complex loading conditions at thermal and nuclear power stations. In addition to exposure to high temperature and stresses resulting in fatigue, these valves are subjected to cyclic loads in heating-up-cooling down, opening-closing, etc. cycles. The number of these cycles to be specified in designing the valves should not exceed the maximum allowable value. Hence, the problem of cyclic failure rate of steam shutoff valve bodies is critical. This paper continues the previous publications about properties of the construction material for steam shutoff valve bodies (grade 10Kh9MFB-Sh steel) produced by electroslag melting and gives the results of investigation into the cyclic strength of this material. Fatigue curves for the steal used for manufacturing steam shutoff valve bodies are presented. The experimental data are compared with the calculated fatigue curves plotted using the procedures outlined in PNAE G-002-986 and RD 10-249-98. It is confirmed that these procedures may be used in designing valve bodies from 10Kh9MFB-Sh steel. The effect of the cyclic damage after preliminary cyclic loading of the specimens according to the prescribed load conditions on the high-temperature strength of the steel is examined. The influence of cyclic failure rate on the long-term strength was investigated using cylindrical specimens with a smooth working section in the as-made conditions and after two regimes of preliminary cyclic loading (training) at a working temperature of 570°C and the number of load cycles exceeding the design value, which was 2 × 103 cycles. The experiments corroborated that the material (10Kh9MFB-Sh steel) of the body manufactured by the method of electroslag melting had high resistance to cyclic failure rate. No effect of cyclic damages in the metal of the investigated specimens on the high-temperature strength has been found.

  16. High-Pressure Quasi-Isentropic Loading and Unloading of Interferometer Windows on the Veloce Pulsed Power Generator

    NASA Astrophysics Data System (ADS)

    Ao, Tommy; Asay, James; Knudson, Marcus; Davis, Jean-Paul

    2007-06-01

    The Isentropic Compression Experiment technique has proven to be a valuable complement to the well-established method of shock compression of condensed matter. However, whereas the high-pressure compression response of window materials has been studied extensively under shock loading, similar knowledge of these materials under ICE loading is limited. We present recent experimental results on the isentropic compression of the high-pressure windows sapphire and LiF. It has previously been observed that c-cut sapphire yields under shock loading at the HEL of ˜15-18GPa, and subsequently loses transparency at higher stresses. However, it will be shown that under isentropic ramp wave loading sapphire appears to remain elastic and transparent at stresses well above 20GPa [D.B. Hayes et al, JAP 94, 2331 (2003)]. LiF is another frequently used window material in isentropic loading and unloading experiments, yet the unloading response of LiF is usually neglected. Research is in progress to measure strength properties of LiF for ramp loading and unloading. It will be shown how the strength of LiF may influence wave profile analysis and thus inferred material strength. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Company, for the US DOE's NNSA under Contract No.DE-AC04-94AL85000.

  17. Critical factors in displacement ductility assessment of high-strength concrete columns

    NASA Astrophysics Data System (ADS)

    Taheri, Ali; Moghadam, Abdolreza S.; Tasnimi, Abass Ali

    2017-12-01

    Ductility of high-strength concrete (HSC) columns with rectangular sections was assessed in this study by reviewing experimental data from the available literature. Up to 112 normal weights concrete columns with strength in the range of 50-130 MPa were considered and presented as a database. The data included the results of column testes under axial and reversed lateral loading. Displacement ductility of HSC columns was evaluated in terms of their concrete and reinforcement strengths, bar arrangement, volumetric ratio of transverse reinforcement, and axial loading. The results indicated that the confinement requirements and displacement ductility in HSC columns are more sensitive than those in normal strength concrete columns. Moreover, ductility is descended by increasing concrete strength. However, it was possible to obtain ductile behavior in HSC columns through proper confinement. Furthermore, this study casts doubt about capability of P/ A g f c' ratio that being inversely proportional to displacement ductility of HSC columns.

  18. Modeling the impact behavior of high strength ceramics. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajendran, A.M.

    1993-12-01

    An advanced constitutive model is used to describe the shock and high strain rate behaviors of silicon carbide (SC), boron carbide B4C, and titanium diboride (TiB2) under impact loading conditions. The model's governing equations utilize a set of microphysically-based constitutive relationships to model the deformation and damage processes in a ceramic. The total strain is decomposed into elastic, plastic, and microcracking components. The plastic strain component was calculated using conventional viscoplastic equations. The strain components due to microcracking utilized relationships derived for a penny-shaped crack containing elastic solids. The main features of the model include degradation of strength and stiffnessmore » under both compressive and tensile loading conditions. When loaded above the Hugoniot elastic limit (HEL), the strength is limited by the strain rate dependent strength equation. However, below the HEL, the strength variation with respect to strain rate and pressure is modeled through microcracking relationships assuming no plastic flow. The ceramic model parameters were determined using a set of VISAR data from the plate impact experiments.« less

  19. Modeling of high-strength concrete-filled FRP tube columns under cyclic load

    NASA Astrophysics Data System (ADS)

    Ong, Kee-Yen; Ma, Chau-Khun; Apandi, Nazirah Mohd; Awang, Abdullah Zawawi; Omar, Wahid

    2018-05-01

    The behavior of high-strength concrete (HSC) - filled fiber-reinforced-polymer (FRP) tubes (HSCFFTs) column subjected to cyclic lateral loading is presented in this paper. As the experimental study is costly and time consuming, a finite element analysis (FEA) is chosen for the study. Most of the previous studies have focused on examining the axial load behavior of HSCFFT column instead of seismic behavior. The seismic behavior of HSCFFT columns has been the main interest in the industry. The key objective of this research is to develop a reliable numerical non-linear FEA model to represent the seismic behavior of such column. A FEA model was developed using the Concrete Damaged Plasticity Model (CDPM) available in the finite element software package (ABAQUS). Comparisons between experimental results from previous research and the predicted results were made based on load versus displacement relationships and ultimate strength of the column. The results showed that the column increased in ductility and able to deform to a greater extent with the increase of the FRP confinement ratio. With the increase of confinement ratio, HSCFFT column achieved a higher moment resistance, thus indicated a higher failure strength in the column under cyclic lateral load. It was found that the proposed FEA model can regenerate the experimental results with adequate accuracy.

  20. Physical-chemical processes of diamond grinding

    NASA Astrophysics Data System (ADS)

    Lobanov, D. V.; Arhipov, P. V.; Yanyushkin, A. S.; Skeeba, V. Yu

    2017-10-01

    The article focuses on the relevance of the research into the problem of diamond abrasive metal-bonded tool performance loss with a view to enhancing the effectiveness of high-strength materials finishing processing. The article presents the results of theoretical and empirical studies of loading layer formation on the surface of diamond wheels during processing high-strength materials. The theoretical part deals with the physical and chemical processes at the contact area of the diamond wheel and work surface with the viewpoint of the electrochemical potentials equilibrium state. We defined dependencies for calculating the loading layer dimensions. The practical part of work centers on various electron-microscopic, spectral and X-ray diffraction studies of the metal-bonded wheel samples during diamond grinding. The analysis of the research results revealed the composition and structure of the loading layer. The validity of the theoretical data is confirmed by sufficient convergence of the calculated values with the results of empirical research. In order to reduce the intensity of loading and improve the cutting properties of metal-bonded diamond abrasive tools, it is recommended to use combined methods for more efficient processing of high-strength materials.

  1. Low load, high repetition resistance training program increases bone mineral density in untrained adults.

    PubMed

    Petersen, Bailey A; Hastings, Bryce; Gottschall, Jinger S

    2017-01-01

    High load, low repetition resistance training increases BMD in untrained adults; however, many older and untrained adults cannot maintain this type of strenuous program. Our goal was to evaluate whether a low load, high repetition resistance training program would increase BMD in untrained adults. Twenty sedentary, but otherwise healthy, adults (6 men and 14 women, age 28-63 yrs) completed a 27-week group exercise program. The participants were randomly assigned to one of two strength groups: one group completed full body, low load, high repetition weight training classes (S-WEIGHT), while the other group completed core focused fusion classes (S-CORE). Both groups also completed indoor cycling classes for cardiovascular conditioning. After a 3-week familiarization period, all participants completed a 12-week block of 5 fitness classes per week (3 cycling + 2 strength) and concluded with another 12-week block of 6 classes per week (3 cycling + 3 strength). We completed iDXA scans at baseline (week 3) and final (week 28). Compared to baseline, BMD significantly increased for S-WEIGHT in the arms (+4%, P<0.001), legs (+8%, P<0.01), pelvis (+6%, P<0.01) and lumbar spine (+4%, P<0.05), whereas BMD did not significantly change for S-CORE at any site. These results suggest that a low load, high repetition resistance training program may be an effective method to improve bone mass in adults.

  2. Evaluation of a highway bridge constructed using high strength lightweight concrete bridge girders.

    DOT National Transportation Integrated Search

    2011-04-01

    The use of high performance concretes to provide longer bridge spans has been limited due to the capacity of existing infrastructure to handle the load of the girders during transportation. The use of High Strength Lightweight Concrete (HSLW) can pro...

  3. Low-load resistance training with low relative pressure produces muscular changes similar to high-load resistance training.

    PubMed

    Kim, Daeyeol; Loenneke, Jeremy P; Ye, Xin; Bemben, Debra A; Beck, Travis W; Larson, Rebecca D; Bemben, Michael G

    2017-12-01

    This study compares the acute and chronic response of high-load resistance training (HL) to low-load resistance training with low blood flow restriction (LL-BFR) pressure. Participants completed elbow flexion with either HL or LL-BFR or nonexercise. In the chronic study, participants in the HL and LL-BFR groups were trained for 8 weeks to determine differences in muscle size and strength. The acute study examined the changes in pretesting/posttesting (Pre/Post) torque, muscle swelling, and blood lactate. In the chronic study, similar changes in muscle size and strength were observed for both HL and LL-BFR. In the acute study, Pre/Post changes in the torque, muscle swelling, and blood lactate were similar between HL and LL-BFR. Our findings indicate that pressure as low as 50% arterial occlusion can produce similar changes in muscle mass and strength compared with traditional HL. Muscle Nerve 56: E126-E133, 2017. © 2017 Wiley Periodicals, Inc.

  4. Joint Strength Control at the Fiber/Matrix Interface during the Production of Polymer Composite Materials Reinforced with High Performance Fibers

    NASA Astrophysics Data System (ADS)

    Kudinov, Vladimir V.; Korneeva, Natalia V.

    2010-06-01

    The paper presents the results obtained in the study of the joint strength between polymer matrix and high performance polyethylene fiber. The fiber/matrix joints simulate the unit cell of the fiber-reinforced composite materials. Effect of heat treatment on the composite properties at the interface was estimated by a multifilament wet-pull-out method. It was found that the joint strength may be increased with the help of extra heart treatment. Both the energy to peak load and the energy to failure for CM joints at various stages of loading were determined.

  5. Cyclic fatigue of a high-strength corrosion-resistant sheet TRIP steel

    NASA Astrophysics Data System (ADS)

    Terent'ev, V. F.; Alekseeva, L. E.; Korableva, S. A.; Prosvirnin, D. V.; Pankova, M. N.; Filippov, G. A.

    2014-04-01

    The mechanical properties of 0.3- and 0.8-mm-thick high-strength corrosion-resistant TRIP steel having various levels of strength properties are studied during static and cyclic loading in the high-cycle fatigue range. The fatigue fracture surface is analyzed by fractography, and the obtained results demonstrate ductile and quasi-brittle fracture mechanisms of this steel depending on the strength properties of the steel and the content of deformation martensite in it.

  6. The dynamic properties behavior of high strength concrete under different strain rate

    NASA Astrophysics Data System (ADS)

    Abdullah, Hasballah; Husin, Saiful; Umar, Hamdani; Rizal, Samsul

    2005-04-01

    This paper present a number experimental data and numerical technique used in the dynamic behavior of high strength concrete. A testing device is presented for the experimental study of dynamic behavior material under high strain rates. The specimen is loaded by means of a high carbon steel Hopkinson pressure bar (40 mm diameter, 3000 mm long input bar and 1500 mm long out put bar) allowing for the testing of specimen diameter is large enough in relation to the size of aggregates. The other method also proposed for measuring tensile strength, the measurement method based on the superposition and concentration of tensile stress wave reflected both from the free-free ends of striking bar and the specimen bar. The compression Hopkinson bar test, the impact tensile test of high strength concrete bars are performed, together with compression static strength test. In addition, the relation between break position under finite element simulation and impact tensile strength are examined. The three-dimensional simulation of the specimen under transient loading are presented and comparisons between the experimental and numerical simulation on strain rate effects of constitutive law use in experimental are study.

  7. Modern high-strength steels for heavily loaded gearing (a review of engineering patents)

    NASA Astrophysics Data System (ADS)

    Voronenko, B. I.

    1996-08-01

    In order to increase the service life of machines the life of their parts should be increased. For example, in machine tool and lifting-and-transport manufacture the maintenance cost of the equipment over the duration of its operation often exceeds the cost of the new equipment by a factor of 10-20. This imposes strict requirements on structural materials for heavily loaded gearings, including the development of high-strength, wear-resistant, manufacture-adaptable, and economically alloyed steels.

  8. Evaluation of a Highway Bridge Constructed Using High Strength Lightweight Concrete Bridge Girders : final report.

    DOT National Transportation Integrated Search

    2011-04-01

    The use of high performance concretes to provide longer bridge spans has been limited due to the capacity of existing infrastructure to handle the load of the girders during transportation. The use of High Strength Lightweight Concrete (HSLW) can pro...

  9. Enhanced tendon-to-bone repair through adhesive films.

    PubMed

    Linderman, Stephen W; Golman, Mikhail; Gardner, Thomas R; Birman, Victor; Levine, William N; Genin, Guy M; Thomopoulos, Stavros

    2018-04-01

    Tendon-to-bone surgical repairs have unacceptably high failure rates, possibly due to their inability to recreate the load transfer mechanisms of the native enthesis. Instead of distributing load across a wide attachment footprint area, surgical repairs concentrate shear stress on a small number of suture anchor points. This motivates development of technologies that distribute shear stresses away from suture anchors and across the enthesis footprint. Here, we present predictions and proof-of-concept experiments showing that mechanically-optimized adhesive films can mimic the natural load transfer mechanisms of the healthy attachment and increase the load tolerance of a repair. Mechanical optimization, based upon a shear lag model corroborated by a finite element analysis, revealed that adhesives with relatively high strength and low stiffness can, theoretically, strengthen tendon-to-bone repairs by over 10-fold. Lap shear testing using tendon and bone planks validated the mechanical models for a range of adhesive stiffnesses and strengths. Ex vivo human supraspinatus repairs of cadaveric tissues using multipartite adhesives showed substantial increase in strength. Results suggest that adhesive-enhanced repair can improve repair strength, and motivate a search for optimal adhesives. Current surgical techniques for tendon-to-bone repair have unacceptably high failure rates, indicating that the initial repair strength is insufficient to prevent gapping or rupture. In the rotator cuff, repair techniques apply compression over the repair interface to achieve contact healing between tendon and bone, but transfer almost all force in shear across only a few points where sutures puncture the tendon. Therefore, we evaluated the ability of an adhesive film, implanted between tendon and bone, to enhance repair strength and minimize the likelihood of rupture. Mechanical models demonstrated that optimally designed adhesives would improve repair strength by over 10-fold. Experiments using idealized and clinically-relevant repairs validated these models. This work demonstrates an opportunity to dramatically improve tendon-to-bone repair strength using adhesive films with appropriate material properties. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Experimental and Theoretical Investigations on Bond Strength of GFRP Rebars in Normal and High Strength Concrete

    NASA Astrophysics Data System (ADS)

    Eswanth, P.; Dhinakaran, G.

    2017-07-01

    Bond behavior between GFRP bars and concrete is the most important parameter for constructing corrosion free structures by implementing the material. Serviceability of reinforced concrete structures are controlled by bond behavior. GFRP materials behave differently from reinforcing steel in terms of bond. They are of non-homogeneous and anisotropic. Due to this outstanding behavior, there is a difference in transfer of loads between GFRP bars and concrete which made it as an idealized choice of a material. In the present work, the bond strength of GFRP bars in normal and high strength concrete was studied. In total, 12 specimens containing 12 mm, 16 mm diameter rebars which were embedded in 150 mm x 150 mm x 150 mm cubes were investigated. The specimens were subjected to direct tension pull out test in accordance with IS 2770 part 1. The comparison of bond properties of GFRP rebar in normal and high strength concrete showed that pull out load of non-metallic rebar fell well within the range.

  11. Environmental Effects on Long Term Displacement Data of Woven Fabric Webbings Under Constant Load for Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Kenner, WInfred S.; Jones, Thomas C.; Doggett, William R.; Duncan, Quinton; Plant, James

    2015-01-01

    An experimental study of the effects of environmental temperature and humidity conditions on long-term creep displacement data of high strength Kevlar and VectranTM woven fabric webbings under constant load for inflatable structures is presented. The restraint layer of an inflatable structure for long-duration space exploration missions is designed to bear load and consists of an assembly of high strength webbings. Long-term creep displacement data of webbings can be utilized by designers to validate service life parameters of restraint layers of inflatable structures. Five groups of high-strength webbings were researched over a two year period. Each group had a unique webbing length, load rating, applied load, and test period. The five groups consisted of 1.) 6K Vectran webbings loaded to 49% ultimate tensile strength (UTS), 2.) 6K Vectran webbings loaded to 55% UTS, 3.) 12.5K Vectran webbings loaded to 22% UTS, 4.) 6K Kevlar webbings loaded to 40% and 43% UTS, and 5.) 6K Kevlar webbings loaded to 48% UTS. Results show that all webbing groups exhibit the initial two stages of three of a typical creep curve of an elastic material. Results also show that webbings exhibit unique local wave patterns over the duration of the test period. Data indicate that the local pattern is primarily generated by daily variations in relative humidity values within the test facility. Data indicate that after a three to six month period, where webbings reach a steady-state creep condition, an annual sinusoidal displacement pattern is exhibited, primarily due to variations in annual mean temperature values. Data indicates that variations in daily temperature values and annual mean humidity values have limited secondary effects on creep displacement behavior. Results show that webbings in groups 2 and 5 do not exhibit well defined annual displacement patterns because the magnitude of the applied loads cause large deformations, and data indicate that material yielding within a webbing tends to neutralize the annual sinusoidal displacement pattern. Study indicates that applied load, environmental effects, mechanical strength, coefficient of thermal expansion, and hygroscopic properties of webbings are fundamental requirements for quantifying accurate creep displacements and behaviors over multiple year time periods. Results from a study of the environmental effects on long-term creep displacement data of Kevlar and Vectran woven webbings are presented to increase the knowledge base of webbing materials and to enhance designs of inflatable space structures for long-duration space missions.

  12. Requirements of Inconel 718 alloy for aeronautical applications

    NASA Astrophysics Data System (ADS)

    Ghiban, Brandusa; Elefterie, Cornelia Florina; Guragata, Constantin; Bran, Dragos

    2018-02-01

    The main requirements imposed by aviation components made from super alloys based on Nickel are presented in present paper. A significant portion of fasteners, locking lugs, blade retainers and inserts are manufactured from Inconel 718 alloy. The thesis describes environmental factors (corrosion), conditions of external aggression (salt air, intense heat, heavy industrial pollution, high condensation, high pressure), mechanical characteristics (tensile strength, creep, density, yield strength, fracture toughness, fatigue resistance) and loadings (tensions, compression loads) that must be satisfied simultaneously by Ni-based super alloy, compared to other classes of aviation alloys (as egg. Titanium alloys, Aluminum alloys). For this alloy the requirements are strength, durability, damage tolerance, fail safety and so on. The corrosion can be an issue, but the fatigue under high-magnitude cyclic tensile loading it what limits the lifetime of the airframe. The excellent malleability and weldability characteristics of the 718 system make the material physical properties tolerant of manufacturing processes. These characteristics additionally continue to provide new opportunities for advanced manufacturing methods.

  13. Aeronautical requirements for Inconel 718 alloy

    NASA Astrophysics Data System (ADS)

    Elefterie, C. F.; Guragata, C.; Bran, D.; Ghiban, B.

    2017-06-01

    The project goal is to present the requirements imposed by aviation components made from super alloys based on Nickel. A significant portion of fasteners, locking lugs, blade retainers and inserts are manufactured from Alloy 718. The thesis describes environmental factors (corrosion), conditions of external aggression (salt air, intense heat, heavy industrial pollution, high condensation, high pressure), mechanical characteristics (tensile strength, yield strength and fatigue resistance) and loadings (tensions, compression loads) that must be satisfied simultaneously by Ni-based super alloy, compared to other classes of aviation alloys (as egg. Titanium alloys, Aluminum alloys). For this alloy the requirements are strength durability, damage tolerance, fail safety and so on. The corrosion can be an issue, but the fatigue under high-magnitude cyclic tensile loading it’s what limits the lifetime of the airframe. Also, the excellent malleability and weldability characteristics of the 718 system make the material physical properties tolerant of manufacturing processes. These characteristics additionally continue to provide new opportunities for advanced manufacturing methods.

  14. A study on the strength of an armour-grade aluminum under high strain-rate loading

    NASA Astrophysics Data System (ADS)

    Appleby-Thomas, G. J.; Hazell, P. J.

    2010-06-01

    The aluminum alloy 5083 in tempers such as H32 and H131 is an established light-weight armour material. While its dynamic response under high strain-rates has been investigated elsewhere, little account of the effect of material orientation has been made. In addition, little information on its strength under such loadings is available in the literature. Here, both the longitudinal and lateral components of stress have been measured using embedded manganin stress gauges during plate-impact experiments on samples with the rolling direction aligned both orthogonal and parallel to the impact axis. The Hugoniot elastic limit, spall, and shear strengths were investigated for incident pressures in the range 1-8 GPa, providing an insight into the response of this alloy under shock loading. Further, the time dependence of lateral stress behind the shock front was investigated to give an indication of material response.

  15. Fitness Level Modulates Intraocular Pressure Responses to Strength Exercises.

    PubMed

    Vera, Jesús; Jiménez, Raimundo; Redondo, Beatríz; Cárdenas, David; García-Ramos, Amador

    2018-06-01

    Purpose/Aim: The execution of strength exercises has demonstrated to increase the intraocular pressure (IOP) levels, and it may have a negative impact on the ocular health. We aimed to explore the influence of fitness level on the acute IOP response to strength exercises performed under different loading conditions, as well as to test whether the IOP responses differ between the bench press and jump squat when performed against the same relative loads. Forty military personnel males were divided in two subgroups (20 high-fit and 20 low-fit) based on their relative to body mass one-repetition maximum (1-RM). Participants performed an incremental loading test in the bench press and jump squat exercises, and IOP was assessed before and after each repetition by rebound tonometry. IOP increased immediately after executing both exercises (p < 0.01 in both cases), being the magnitude of the IOP increment positively and linearly associated with the increment of the load in both groups (i.e., high-fit and low-fit) and in both exercises (R 2 range: 0.81-1.00). Higher fitness level attenuated the IOP rise produced by both exercises (p < 0.01 in both cases). The bench press induced higher IOP increments than the jump squat for both groups at relative loads of ~50%1-RM and ~60%1-RM (p < 0.01 in all cases). These data indicate that IOP increases as a consequence of performing strength exercises, being the increment accentuated with the increase of the load and in the bench press compared to the jump squat exercise. Of special importance would be that the IOP responses were significantly reduced in high-fit individuals. These findings should be addressed in glaucoma patients.

  16. Study of the strength of molybdenum under high pressure using electromagnetically applied compression-shear ramp loading

    NASA Astrophysics Data System (ADS)

    Ding, Jow; Alexander, C. Scott; Asay, James

    2015-06-01

    MAPS (Magnetically Applied Pressure Shear) is a new technique that has the potential to study material strength under mega-bar pressures. By applying a mixed-mode pressure-shear loading and measuring the resultant material responses, the technique provides explicit and direct information on material strength under high pressure. In order to apply sufficient shear traction to the test sample, the driver must have substantial strength. Molybdenum was selected for this reason along with its good electrical conductivity. In this work, the mechanical behavior of molybdenum under MAPS loading was studied. To understand the experimental data, a viscoplasticity model with tension-compression asymmetry was also developed. Through a combination of experimental characterization, model development, and numerical simulation, many unique insights were gained on the inelastic behavior of molybdenum such as the effects of strength on the interplay between longitudinal and shear stresses, potential interaction between the magnetic field and molybdenum strength, and the possible tension-compression asymmetry of the inelastic material response. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  17. Experimental Studies on Strength Behaviour of Notched Glass/Epoxy Laminated Composites under Uni-axial and Bi-axial Loading

    NASA Astrophysics Data System (ADS)

    Guptha, V. L. Jagannatha; Sharma, Ramesh S.

    2017-11-01

    The use of FRP composite materials in aerospace, aviation, marine, automotive and civil engineering industry has increased rapidly in recent years due to their high specific strength and stiffness properties. The structural members contrived from such composite materials are generally subjected to complex loading conditions and leads to multi-axial stress conditions at critical surface localities. Presence of notches, much required for joining process of composites, makes it further significant. The current practice of using uni-axial test data alone to validate proposed material models is inadequate leading to evaluation and consideration of bi-axial test data. In order to correlate the bi-axial strengths with the uni-axial strengths of GFRP composite laminates in the presence of a circular notch, bi-axial tests using four servo-hydraulic actuators with four load cells were carried out. To determine the in-plane strength parameters, bi-axial cruciform test specimen model was considered. Three different fibre orientations, namely, 0°, 45°, and 90° are considered with a central circular notch of 10 mm diameter in the present investigation. From the results obtained, it is observed that there is a reduction in strength of 5.36, 2.41 and 13.92% in 0°, 45°, and 90° fibre orientation, respectively, under bi-axial loading condition as compared to that of uni-axial loading in laminated composite.

  18. An interlaminar tension strength specimen

    NASA Technical Reports Server (NTRS)

    Jackson, Wade C.; Martin, Roderick H.

    1992-01-01

    This paper describes a technique to determine interlaminar tension strength, sigma(sub 3c) of a fiber reinforced composite material using a curved beam. The specimen was a unidirectional curved beam, bent 90 degrees, with straight arms. Attached to each arm was a hinged loading mechanism which was held by the grips of a tensile testing machine. Geometry effects of the specimen, including the effects of loading arm length, inner radius, thickness, and width, were studied. The data sets fell into two categories: low strength corresponding to a macroscopic flaw related failure and high strength corresponding to a microscopic flaw related failure. From the data available, the loading arm length had no effect on sigma(sub 3c). The inner radius was not expected to have a significant effect on sigma(sub 3c), but this conclusion could not be confirmed because of differences in laminate quality for each curve geometry. The thicker specimens had the lowest value of sigma(sub 3c) because of poor laminate quality. Width was found to affect the value of sigma(sub 3c) only slightly. The wider specimens generally had a slightly lower strength since more material was under high stress, and hence, had a larger probability of containing a significant flaw.

  19. Results of duct area ratio changes in the NASA Lewis H2-O2 combustion MHD experiment

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1979-01-01

    MHD power generation experiments utilizing a cesium-seeded H2-O2 working fluid were carried out using a diverging area Hall duct having an entrance Mach number of 2. The experiments were conducted in a high field strength cryomagnet facility at field strengths up to 5 tesla. The effects of power takeoff location, generator loading B field strength, and electrode breakdown voltage were investigated. The effect of area ratio, multiple loading of the duct, and duct location within the magnetic field are considered.

  20. Analytical and Experimental Assessment of Seismic Vulnerability of Beam-Column Joints without Transverse Reinforcement in Concrete Buildings

    NASA Astrophysics Data System (ADS)

    Hassan, Wael Mohammed

    Beam-column joints in concrete buildings are key components to ensure structural integrity of building performance under seismic loading. Earthquake reconnaissance has reported the substantial damage that can result from inadequate beam-column joints. In some cases, failure of older-type corner joints appears to have led to building collapse. Since the 1960s, many advances have been made to improve seismic performance of building components, including beam-column joints. New design and detailing approaches are expected to produce new construction that will perform satisfactorily during strong earthquake shaking. Much less attention has been focused on beam-column joints of older construction that may be seismically vulnerable. Concrete buildings constructed prior to developing details for ductility in the 1970s normally lack joint transverse reinforcement. The available literature concerning the performance of such joints is relatively limited, but concerns about performance exist. The current study aimed to improve understanding and assessment of seismic performance of unconfined exterior and corner beam-column joints in existing buildings. An extensive literature survey was performed, leading to development of a database of about a hundred tests. Study of the data enabled identification of the most important parameters and the effect of each parameter on the seismic performance. The available analytical models and guidelines for strength and deformability assessment of unconfined joints were surveyed and evaluated. In particular, The ASCE 41 existing building document proved to be substantially conservative in joint shear strength estimation. Upon identifying deficiencies in these models, two new joint shear strength models, a bond capacity model, and two axial capacity models designed and tailored specifically for unconfined beam-column joints were developed. The proposed models strongly correlated with previous test results. In the laboratory testing phase of the current study, four full-scale corner beam-column joint subassemblies, with slab included, were designed, built, instrumented, tested, and analyzed. The specimens were tested under unidirectional and bidirectional displacement-controlled quasi-static loading that incorporated varying axial loads that simulated overturning seismic moment effects. The axial loads varied between tension and high compression loads reaching about 50% of the column axial capacity. The test parameters were axial load level, loading history, joint aspect ratio, and beam reinforcement ratio. The test results proved that high axial load increases joint shear strength and decreases the deformability of joints failing in pure shear failure mode without beam yielding. On the contrary, high axial load did not affect the strength of joints failing in shear after significant beam yielding; however, it substantially increased their displacement ductility. Joint aspect ratio proved to be instrumental in deciding joint shear strength; that is the deeper the joint the lower the shear strength. Bidirectional loading reduced the apparent strength of the joint in the uniaxial principal axes. However, circular shear strength interaction is an appropriate approximation to predict the biaxial strength. The developed shear strength models predicted successfully the strength of test specimens. Based on the literature database investigation, the shear and axial capacity models developed and the test results of the current study, an analytical finite element component model based on a proposed joint shear stress-rotation backbone constitutive curve was developed to represent the behavior of unconfined beam-column joints in computer numerical simulations of concrete frame buildings. The proposed finite element model included the effect of axial load, mode of joint failure, joint aspect ratio and axial capacity of joint. The proposed backbone curve along with the developed joint element exhibited high accuracy in simulating the test response of the current test specimens as well as previous test joints. Finally, a parametric study was conducted to assess the axial failure vulnerability of unconfined beam-column joints based on the developed shear and axial capacity models. This parametric study compared the axial failure potential of unconfined beam-column joint with that of shear critical columns to provide a preliminary insight into the axial collapse vulnerability of older-type buildings during intense ground shaking.

  1. New high-strength steels

    NASA Astrophysics Data System (ADS)

    Belyakov, L. N.; Petrakov, A. F.; Pokrovskaya, N. G.; Shal'kevich, A. B.

    1998-08-01

    Steels have found wide application in modern aircraft and are the profile materials in some structures. They are used when a high specific strength, rigidity, fatigue limit, and high-temperature strength are required, for example, in the production of wing bars, longerons, ribs, landing gear parts, and gear transmission mechanisms. Steels used in the aircraft industry should possess high parameters of fracture toughness, crack resistance under static and cyclic loads, and corrosion resistance (for the all-climatic variant) with preservation of a high adaptability to manufacturing (weldability, forgeability, processability).

  2. High Load Ratio Fatigue Strength and Mean Stress Evolution of Quenched and Tempered 42CrMo4 Steel

    NASA Astrophysics Data System (ADS)

    Bertini, Leonardo; Le Bone, Luca; Santus, Ciro; Chiesi, Francesco; Tognarelli, Leonardo

    2017-08-01

    The fatigue strength at a high number of cycles with initial elastic-plastic behavior was experimentally investigated on quenched and tempered 42CrMo4 steel. Fatigue tests on unnotched specimens were performed both under load and strain controls, by imposing various levels of amplitude and with several high load ratios. Different ratcheting and relaxation trends, with significant effects on fatigue, are observed and discussed, and then reported in the Haigh diagram, highlighting a clear correlation with the Smith-Watson-Topper model. High load ratio tests were also conducted on notched specimens with C (blunt) and V (sharp) geometries. A Chaboche model with three parameter couples was proposed by fitting plain specimen cyclic and relaxation tests, and then finite element analyses were performed to simulate the notched specimen test results. A significant stress relaxation at the notch root became clearly evident by reporting the numerical results in the Haigh diagram, thus explaining the low mean stress sensitivity of the notched specimens.

  3. Time- and temperature-dependent failures of a bonded joint

    NASA Astrophysics Data System (ADS)

    Sihn, Sangwook

    This dissertation summarizes my study of time- and temperature-dependent behavior of a tubular lap bonded joint to provide a design methodology for windmill blade structures. The bonded joint is between a cast-iron rod and a GFRP composite pipe. The adhesive material is an epoxy containing chopped glass fibers. We proposed a new fabrication method to make concentric and void-less specimens of the tubular joint with a thick adhesive bondline to stimulate the root bond of a blade. The thick bondline facilitates the joint assembly of actual blades. For a better understanding of the behavior of the bonded joint, we studied viscoelastic behavior of the adhesive materials by measuring creep compliance at several temperatures during loading period. We observed that the creep compliance depends highly on the period of loading and the temperature. We applied time-temperature equivalence to the creep compliance of the adhesive material to obtain time-temperature shift factors. We also performed constant-rate of monotonically increased uniaxial tensile tests to measure static strength of the tubular lap joint at several temperatures and different strain-rates. We observed two failure modes from load-deflection curves and failed specimens. One is the brittle mode, which was caused by weakness of the interfacial strength occurring at low temperature and short period of loading. The other is the ductile mode, which was caused by weakness of the adhesive material at high temperature and long period of loading. Transition from the brittle to the ductile mode appeared as the temperature or the loading period increased. We also performed tests under uniaxial tensile-tensile cyclic loadings to measure fatigue strength of the bonded joint at several temperatures, frequencies and stress ratios. The fatigue data are analyzed statistically by applying the residual strength degradation model to calculate statistical distribution of the fatigue life. Combining the time-temperature equivalence and the residual strength degradation model enables us to estimate the fatigue life of the bonded joint at different load levels, frequencies and temperatures with a certain probability. A numerical example shows how to apply the life estimation method to a structure subjected to a random load history by rainflow cycle counting.

  4. Effects of strength training on body composition, physical functioning, and quality of life in prostate cancer patients during androgen deprivation therapy.

    PubMed

    Nilsen, Tormod S; Raastad, Truls; Skovlund, Eva; Courneya, Kerry S; Langberg, Carl W; Lilleby, Wolfgang; Fosså, Sophie D; Thorsen, Lene

    2015-11-01

    Androgen deprivation therapy (ADT) increases survival rates in prostate cancer (PCa) patients with locally advanced disease, but is associated with side effects that may impair daily function. Strength training may counteract several side effects of ADT, such as changes in body composition and physical functioning, which in turn may affect health-related quality of life (HRQOL). However, additional randomised controlled trials are needed to expand this knowledge. Fifty-eight PCa patients on ADT were randomised to either 16 weeks of high-load strength training (n = 28) or usual care (n = 30). The primary outcome was change in total lean body mass (LBM) assessed by dual x-ray absorptiometry (DXA). Secondary outcomes were changes in regional LBM, fat mass, and areal bone mineral density (aBMD) measured by DXA; physical functioning assessed by 1-repetition maximum (1RM) tests, sit-to-stand test, stair climbing test and Shuttle walk test; and HRQOL as measured by the European Organization for the Research and Treatment of Cancer Quality of Life Questionnaire Core 30. No statistically significant effect of high-load strength training was demonstrated on total LBM (p = 0.16), but significant effects were found on LBM in the lower and upper extremities (0.49 kg, p < 0.01 and 0.15 kg, p < 0.05, respectively). Compared to usual care, high-load strength training showed no effect on fat mass, aBMD or HRQOL, but beneficial effects were observed in all 1RM tests, sit-to-stand test and stair climbing tests. Adherence to the training program was 88% for lower body exercises and 84% for upper body exercises. In summary, high-load strength training improved LBM in extremities and physical functioning, but had no effect on fat mass, aBMD, or HRQOL in PCa patients on ADT.

  5. The significance of relative density for particle damage in loaded and sheared gravels

    NASA Astrophysics Data System (ADS)

    Fityus, Stephen; Imre, Emőke

    2017-06-01

    For granular assemblages of strong particles, an increase in the relative density usually leads to a significant increase in shear strength, which is evident as a peak strength, accompanied by significant dilation as the peak strength is attained. This paper describes an experimental study of shearing in assemblages of weak particles, where particle breakage offsets dilation for all but the lowest of confining stresses. In such materials, prone to particle breakage, the shear strengths of loose and dense assemblages rapidly converge to similar values as confining stress increases, and any benefit of greater relative density is lost. This is attributed to the densification effect associated with the loading under a high stress prior to shearing, which is characterised by widespread particle breakage and the formation of smaller particles to occupy space between coarser ones. Interestingly, under both low and high stresses, there was a tendency for greater particle breakage in the loose samples, as a result of both shearing and compression. This result suggests that, despite the denser assemblage having its particles more rigidly constrained and less able to rearrange to avoid direct loading, the influence of greater load-spreading capacity afforded by an increased number of particle contacts in a denser sample, is more dominant in controlling breakage.

  6. Mechanical torque measurement predicts load to implant cut-out: a biomechanical study investigating DHS anchorage in femoral heads.

    PubMed

    Suhm, Norbert; Hengg, Clemens; Schwyn, Ronald; Windolf, Markus; Quarz, Volker; Hänni, Markus

    2007-08-01

    Bone strength plays an important role in implant anchorage. Bone mineral density (BMD) is used as surrogate parameter to quantify bone strength and to predict implant anchorage. BMD can be measured by means of quantitative computer tomography (QCT) or dual energy X-ray absorptiometry (DXA). These noninvasive methods for BMD measurement are not available pre- or intra-operatively. Instead, the surgeon could determine bone strength by direct mechanical measurement. We have evaluated mechanical torque measurement for (A) its capability to quantify local bone strength and (B) its predictive value towards load at implant cut-out. Our experimental study was performed using sixteen paired human cadaver proximal femurs. BMD was determined for all specimens by QCT. The torque to breakaway of the cancellous bone structure (peak torque) was measured by means of a mechanical probe at the exact position of subsequent DHS placement. The fixation strength of the DHS achieved was assessed by cyclic loading in a stepwise protocol beginning with 1,500 N increasing 500 N every 5,000 cycles until 4,000 N. A highly significant correlation of peak torque with BMD (QCT) was found (r = 0.902, r (2) = 0.814, P < 0.001). Peak torque correlated highly significant with the load at implant cut-out (r = 0.795, P < 0.001). All specimens with a measured peak torque below 6.79 Nm failed at the first load level of 1,500 N. The specimens with a peak torque above 8.63 Nm survived until the last load level of 4,000 N. Mechanical peak torque measurement is able to quantify bone strength. In an experimental setup, peak torque identifies those specimens that are likely to fail at low load. In clinical routine, implant migration and cut-out depend on several parameters, which are difficult to control, such as fracture type, fracture reduction achieved, and implant position. The predictive value of peak torque towards cut-out in a clinical set-up therefore has to be carefully validated.

  7. The effect of carbon black loading and structure on tensile property of natural rubber composite

    NASA Astrophysics Data System (ADS)

    Savetlana, S.; Zulhendri; Sukmana, I.; Saputra, F. A.

    2017-07-01

    Natural rubber composite has been continuously developed due to its advantages such as a good combination of strength and damping property. Most of carbon black (CB)/Natural Rubber (NR) composite were used as material in tyre industry. The addition of CB in natural rubber is very important to enhance the strength of natural rubber. The particle loading and different structure of CB can affect the composite strength. The effects of CB particle loading of 20, 25 and 30 wt% and the effects of CB structures of N220, N330, N550 and N660 series on tensile property of composite were investigated. The result shows that the tensile strength and elastic modulus of natural rubber/CB composite was higher than pure natural rubber. From SEM observation the agglomeration of CB aggregate increases with particle loading. It leads to decrease of tensile strength of composite as more particle was added. High structure of CB particle i.e. N220 resulted in highest tensile stress. In fact, composite reinforced by N660 CB particle shown a comparable tensile strength and elastic modulus with N220 CB particle. SEM observation shows that agglomeration of CB aggregates of N330 and N550 results in lower stress of associate NR/CB composite.

  8. An applied investigation of kenaf-based fiber/polymer composites as potential lightweight materials for automotive components

    NASA Astrophysics Data System (ADS)

    Du, Yicheng

    Natural fibers have the potential to replace glass fibers in fiber-reinforced composite applications. However, the natural fibers' intrinsic properties cause these issues: (1) the mechanical property variation; (2) moisture uptake by natural fibers and their composites; (3) lack of sound, cost-effective, environment-friendly fiber-matrix compounding processes; (4) incompatibility between natural fibers and polymer matrices; and (5) low heat-resistance of natural fibers and their composites. This dissertation systematically studied the use of kenaf bast fiber bundles, obtained via a mechanical retting method, as a light-weight reinforcement material for fiber-reinforced thermoset polymer composites for automotive applications. Kenaf bast fiber bundle tensile properties were tested, and the effects of locations in the kenaf plant, loading rates, retting methods, and high temperature treatments and their durations on kenaf bast fiber bundle tensile properties were evaluated. A process has been developed for fabricating high fiber loading kenaf bast fiber bundle-reinforced unsaturated polyester composites. The generated composites possessed high elastic moduli and their tensile strengths were close to specification requirements for glass fiber-reinforced sheet molding compounds. Effects of fiber loadings and lengths on resultant composite's tensile properties were evaluated. Fiber loadings were very important for composite tensile modulus. Both fiber loadings and fiber lengths were important for composite tensile strengths. The distributions of composite tensile, flexural and impact strengths were analyzed. The 2-parameter Weibull model was found to be the most appropriate for describing the composite strength distributions and provided the most conservative design values. Kenaf-reinforced unsaturated polyester composites were also proved to be more cost-effective than glass fiber-reinforced SMCs at high fiber loadings. Kenaf bast fiber bundle-reinforced composite's water absorption properties were tested. Surface-coating and edge-sealing significantly reduced composite water resistance properties. Encapsulation was a practical method to improve composite water resistance properties. The molding pressure and styrene concentrations on composite and matrix properties were evaluated. Laser and plasma treatment improved fiber-to-matrix adhesion.

  9. Time-Dependent Behavior of High-Strength Kevlar and Vectran Webbing

    NASA Technical Reports Server (NTRS)

    Jones, Thomas C.; Doggett, William R.

    2014-01-01

    High-strength Kevlar and Vectran webbings are currently being used by both NASA and industry as the primary load-bearing structure in inflatable space habitation modules. The time-dependent behavior of high-strength webbing architectures is a vital area of research that is providing critical material data to guide a more robust design process for this class of structures. This paper details the results of a series of time-dependent tests on 1-inch wide webbing including an initial set of comparative tests between specimens that underwent realtime and accelerated creep at 65 and 70% of their ultimate tensile strength. Variability in the ultimate tensile strength of the webbings is investigated and compared with variability in the creep life response. Additional testing studied the effects of load and displacement rate, specimen length and the time-dependent effects of preconditioning the webbings. The creep test facilities, instrumentation and test procedures are also detailed. The accelerated creep tests display consistently longer times to failure than their real-time counterparts; however, several factors were identified that may contribute to the observed disparity. Test setup and instrumentation, grip type, loading scheme, thermal environment and accelerated test postprocessing along with material variability are among these factors. Their effects are discussed and future work is detailed for the exploration and elimination of some of these factors in order to achieve a higher fidelity comparison.

  10. Improved Tensile Adhesion Specimens for High Strength Epoxy Systems in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Haddock, M. Reed; McLennan, Michael L.

    2000-01-01

    An improved tensile adhesion button has been designed and tested that results in higher measured tensile adhesion strength while providing increased capability for testing high strength epoxy adhesive systems. The best attributes of two well-established tensile button designs were combined and refined into an optimized tensile button. The most significant design change to the tensile button was to improve alignment of the bonded tensile button specimens during tensile testing by changing the interface between the tensile button and the tensile test machine. The established or old button design uses a test fixture that pulls from a grooved annulus or anvil head while the new button design pulls from a threaded hole in the centerline of the button. Finite element (FE) analysis showed that asymmetric loading of the established anvil head tensile button significantly increases the stress concentration in the adhesive, causing failure at lower tensile test loads. The new tensile button was designed to eliminate asymmetric loading and eliminate misalignment sensitivity. Enhanced alignment resulted in improved tensile adhesion strength measurement up to 13.8 MPa (2000psi) over the established button design. Another design change increased the capability of the button by increasing the threaded hole diameter allowing it to test high strength epoxy systems up to 85 MPa(less than 12,000 psi). The improved tensile button can be used in button- to-button or button-to-panel configurations.

  11. A study of environmental characterization of conventional and advanced aluminum alloys for selection and design. Phase 2: The breaking load test method

    NASA Technical Reports Server (NTRS)

    Sprowls, D. O.; Bucci, R. J.; Ponchel, B. M.; Brazill, R. L.; Bretz, P. E.

    1984-01-01

    A technique is demonstrated for accelerated stress corrosion testing of high strength aluminum alloys. The method offers better precision and shorter exposure times than traditional pass fail procedures. The approach uses data from tension tests performed on replicate groups of smooth specimens after various lengths of exposure to static stress. The breaking strength measures degradation in the test specimen load carrying ability due to the environmental attack. Analysis of breaking load data by extreme value statistics enables the calculation of survival probabilities and a statistically defined threshold stress applicable to the specific test conditions. A fracture mechanics model is given which quantifies depth of attack in the stress corroded specimen by an effective flaw size calculated from the breaking stress and the material strength and fracture toughness properties. Comparisons are made with experimental results from three tempers of 7075 alloy plate tested by the breaking load method and by traditional tests of statistically loaded smooth tension bars and conventional precracked specimens.

  12. Exercises with partial vascular occlusion in patients with knee osteoarthritis: a randomized clinical trial.

    PubMed

    Bryk, Flavio Fernandes; Dos Reis, Amir Curcio; Fingerhut, Deborah; Araujo, Thomas; Schutzer, Marcela; Cury, Ricardo de Paula Leite; Duarte, Aires; Fukuda, Thiago Yukio

    2016-05-01

    The objective of this study was to evaluate whether women with knee osteoarthritis performing a rehabilitation programme consisting of low-load exercises combined with PVO exhibited the same results in changes in quadriceps strength, pain relief, and functional improvement when compared to women receiving a programme consisting of high-load exercises without PVO. Thirty-four women (mean age, 61 years) with a diagnosis of knee osteoarthritis were randomly assigned to a conventional or occlusion group. The women in the conventional group (n = 17) performed a 6-week quadriceps strengthening and stretching programme using a load around 70 % of the 1-repetition maximum (RM). The women in the occlusion group (n = 17) performed the same programme, however, only using a load around 30 % of the 1-RM, while PVO was induced. The PVO was achieved using a pressure cuff applied to the upper third of the thigh and inflated to 200 mmHg during the quadriceps exercise. An 11-point Numerical Pain Rating Scale (NPRS), the Lequesne questionnaire, the Timed-Up and Go (TUG) test, and muscle strength measurement using a hand-held dynamometer were used as outcome measures at baseline (pretreatment) and at the end of the 6-week of treatment. Pain, using the NPRS, was also assessed when performing the quadriceps exercises during the exercise sessions. At baseline, demographic, strength, pain, and functional assessment data were similar between groups. Patients from both the conventional and occlusion groups had a higher level of function (Lequesne and TUG test), less pain (NPRS), and higher quadriceps strength at the 6-week evaluation when compared to baseline (all P < 0.05). However, the between-group analysis showed no differences for all outcomes variables at posttreatment (n.s.). Patients in the occlusion group experienced less anterior knee discomfort during the treatment sessions than those in the high-load exercise group (P < 0.05). A rehabilitation programme that combined PVO to low-load exercise resulted in similar benefits in pain, function, and quadriceps strength than a programme using high-load conventional exercise in patients with knee osteoarthritis. However, the use of PVO combined with low-load exercise resulted in less anterior knee pain during the training sessions. I.

  13. The ultimate state of polymeric materials and laminated and fibrous composites under asymmetric high-cycle loading

    NASA Astrophysics Data System (ADS)

    Golub, V. P.; Pogrebniak, A. D.; Kochetkova, E. S.

    2008-01-01

    The prediction of the high-cycle fatigue strength of polymeric and composite materials in asymmetric loading is considered. The problem is solved on the basis of a nonlinear model of ultimate state allowing us to describe all typical forms of the diagrams of ultimate stresses. The material constants of the model are determined from the results of fatigue tests in symmetric reversed cycling, in a single fatigue test with the minimum stress equal to zero, and in a short-term strength test. The fatigue strength characteristics of some polymers, glass-fiber laminates, glass-fiber-reinforced plastics, organic-fiber-reinforced plastics, and wood laminates in asymmetric tension-compression, bending, and torsion have been calculated and approved experimentally.

  14. Determination of Strength Exercise Intensities Based on the Load-Power-Velocity Relationship

    PubMed Central

    Jandačka, Daniel; Beremlijski, Petr

    2011-01-01

    The velocity of movement and applied load affect the production of mechanical power output and subsequently the extent of the adaptation stimulus in strength exercises. We do not know of any known function describing the relationship of power and velocity and load in the bench press exercise. The objective of the study is to find a function modeling of the relationship of relative velocity, relative load and mechanical power output for the bench press exercise and to determine the intensity zones of the exercise for specifically focused strength training of soccer players. Fifteen highly trained soccer players at the start of a competition period were studied. The subjects of study performed bench presses with the load of 0, 10, 30, 50, 70 and 90% of the predetermined one repetition maximum with maximum possible speed of movement. The mean measured power and velocity for each load (kg) were used to develop a multiple linear regression function which describes the quadratic relationship between the ratio of power (W) to maximum power (W) and the ratios of the load (kg) to one repetition maximum (kg) and the velocity (m•s−1) to maximal velocity (m•s−1). The quadratic function of two variables that modeled the searched relationship explained 74% of measured values in the acceleration phase and 75% of measured values from the entire extent of the positive power movement in the lift. The optimal load for reaching maximum power output suitable for the dynamics effort strength training was 40% of one repetition maximum, while the optimal mean velocity would be 75% of maximal velocity. Moreover, four zones: maximum power, maximum velocity, velocity-power and strength-power were determined on the basis of the regression function. PMID:23486484

  15. Determination of strength exercise intensities based on the load-power-velocity relationship.

    PubMed

    Jandačka, Daniel; Beremlijski, Petr

    2011-06-01

    The velocity of movement and applied load affect the production of mechanical power output and subsequently the extent of the adaptation stimulus in strength exercises. We do not know of any known function describing the relationship of power and velocity and load in the bench press exercise. The objective of the study is to find a function modeling of the relationship of relative velocity, relative load and mechanical power output for the bench press exercise and to determine the intensity zones of the exercise for specifically focused strength training of soccer players. Fifteen highly trained soccer players at the start of a competition period were studied. The subjects of study performed bench presses with the load of 0, 10, 30, 50, 70 and 90% of the predetermined one repetition maximum with maximum possible speed of movement. The mean measured power and velocity for each load (kg) were used to develop a multiple linear regression function which describes the quadratic relationship between the ratio of power (W) to maximum power (W) and the ratios of the load (kg) to one repetition maximum (kg) and the velocity (m•s(-1)) to maximal velocity (m•s(-1)). The quadratic function of two variables that modeled the searched relationship explained 74% of measured values in the acceleration phase and 75% of measured values from the entire extent of the positive power movement in the lift. The optimal load for reaching maximum power output suitable for the dynamics effort strength training was 40% of one repetition maximum, while the optimal mean velocity would be 75% of maximal velocity. Moreover, four zones: maximum power, maximum velocity, velocity-power and strength-power were determined on the basis of the regression function.

  16. Kaatsu training to enhance physical function of older adults with knee osteoarthritis: Design of a randomized controlled trial.

    PubMed

    Buford, Thomas W; Fillingim, Roger B; Manini, Todd M; Sibille, Kimberly T; Vincent, Kevin R; Wu, Samuel S

    2015-07-01

    As the U.S. population ages, efficacious interventions are needed to manage pain and maintain physical function among older adults with osteoarthritis (OA). Skeletal muscle weakness is a primary contributory factor to pain and functional decline among persons with OA, thus interventions are needed that improve muscle strength. High-load resistance exercise is the best-known method of improving muscle strength; however high-compressive loads commonly induce significant joint pain among persons with OA. Thus interventions with low-compressive loads are needed which improve muscle strength while limiting joint stress. This study is investigating the potential of an innovative training paradigm, known as Kaatsu, for this purpose. Kaatsu involves performing low-load exercise while externally-applied compression partially restricts blood flow to the active skeletal muscle. The objective of this randomized, single-masked pilot trial is to evaluate the efficacy and feasibility of chronic Kaatsu training for improving skeletal muscle strength and physical function among older adults. Participants aged ≥ 60 years with physical limitations and symptomatic knee OA will be randomly assigned to engage in a 3-month intervention of either (1) center-based, moderate-load resistance training, or (2) Kaatsu training matched for overall workload. Study dependent outcomes include the change in 1) knee extensor strength, 2) objective measures of physical function, and 3) subjective measures of physical function and pain. This study will provide novel information regarding the therapeutic potential of Kaatsu training while also informing about the long-term clinical viability of the paradigm by evaluating participant safety, discomfort, and willingness to continually engage in the intervention. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The Role of Natural Hydrate on the Strength of Sands: Load-bearing or Cementing?

    NASA Astrophysics Data System (ADS)

    Priest, J. A.; Hayley, J. L.

    2017-12-01

    The strength of hydrate bearing sands is a key parameter for simulating the long-term performance of hydrate reservoirs during gas production and assessing reservoir and wellbore stability. Historically this parameter has been determined from testing synthesized hydrate sand samples, which has led to significant differences in measured strength that appears to reflect different formation methods adopted. At present, formation methods can be grouped into either those that form hydrate at grain contacts leading to a high strength `cemented' sand, or those where the hydrate forms a `load-bearing' structure in which the hydrate grains reside in the pore space resulting in more subtle changes in strength. Recovered natural hydrate-bearing cores typically exhibit this `load-bearing' behavior, although these cores have generally undergone significant changes in temperature and pressure during recovery, which may have altered the structure of the hydrate and sediment. Recent drilling expeditions using pressure coring, such as NGHP2 offshore India, have enabled intact hydrate bearing sediments to be recovered that have maintained hydrostatic stresses minimizing any changes in the hydrate structure within the core. Triaxial testing on these samples highlight enhanced strength even at zero effective stresses. This suggests that the hydrate forms a connected framework within the pore space apparently `cementing' the sand grains in place: we differentiate here between true cementation where hydrate is sintered onto the sand grains and typical observed behavior for cemented sands (cohesion, peak strength, post-peak strain softening). This inter-connected hydrate, and its ability to increase strength of the sands, appears to occur even at hydrate saturations as low as 30%, where typical `load-bearing' hydrates just start to increase strength. The results from pressure cores suggest that hydrate formation techniques that lead to `load-bearing' behavior may not capture the true interaction between the hydrate and sand and thus further research is needed to form synthesized hydrate bearing samples that more realistically mimic the observed strength behavior of natural hydrate bearing cores.

  18. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces.

    PubMed

    Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin

    2017-05-30

    For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ∼26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad.

  19. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces

    NASA Astrophysics Data System (ADS)

    Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin

    2017-05-01

    For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ˜26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad.

  20. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces

    PubMed Central

    Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin

    2017-01-01

    For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ∼26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad. PMID:28507143

  1. Coseismic Damage Generation in Fault Zones by Successive High Strain Rate Loading Experiments

    NASA Astrophysics Data System (ADS)

    Aben, F. M.; Doan, M. L.; Renard, F.; Toussaint, R.; Reuschlé, T.; Gratier, J. P.

    2014-12-01

    Damage zones of active faults control both resistance to rupture and transport properties of the fault. Hence, knowing the rock damage's origin is important to constrain its properties. Here we study experimentally the damage generated by a succession of dynamic loadings, a process mimicking the stress history of a rock sample located next to an active fault. A propagating rupture generates high frequency stress perturbations next to its tip. This dynamic loading creates pervasive damage (pulverization), as multiple fractures initiate and grow simultaneously. Previous single loading experiments have shown a strain rate threshold for pulverization. Here, we focus on conditions below this threshold and the dynamic peak stress to constrain: 1) if there is dynamic fracturing at these conditions and 2) if successive loadings (cumulative seismic events) result in pervasive fracturing, effectively reducing the pulverization threshold to milder conditions. Monzonite samples were dynamically loaded (strain rate > 50 s-1) several times below the dynamic peak strength, using a Split Hopkinson Pressure Bar apparatus. Several quasi-static experiments were conducted as well (strain rate < 10-5-s). Samples loaded up to stresses above the quasi-static uniaxial compressive strength (qsUCS) systematically fragmented or pulverized after four successive loadings. We measured several damage proxies (P-wave velocity, porosity), that show a systematic increase in damage with each load. In addition, micro-computed tomography acquisition on several damage samples revealed the growth of a pervasive fracture network between ensuing loadings. Samples loaded dynamically below the qsUCS failed along one fracture after a variable amount of loadings and damage proxies do not show any a systematic trend. Our conclusions is that milder dynamic loading conditions, below the dynamic peak strength, result in pervasive dynamic fracturing. Also, successive loadings effectively lower the pulverization threshold of the rock. However, the peak loading stress must exceed the qsUCS of the rock, otherwise quasi-static fracturing occurs. Pulverized rocks found in the field are therefore witnesses of previous large earthquakes.

  2. The Influence of High Drug Loading in Xanthan Tablets and Media with Different Physiological pH and Ionic Strength on Swelling and Release.

    PubMed

    Mikac, Urša; Sepe, Ana; Baumgartner, Saša; Kristl, Julijana

    2016-03-07

    The formation of a gel coat around xanthan (Xan) tablets, empty or loaded with pentoxifylline (PF), and its release in media differing in pH and ionic strength by NMR, MR imaging, and two release methods were studied. The T1 and T2 NMR relaxation times in gels depend predominantly on Xan concentration; the presence of PF has negligible influence on them. It is interesting that the matrix swelling is primarily regulated by Xan despite high drug loading (25%, 50%). The gastric pH and high ionic strength of the media do not influence the position of the penetration and swelling fronts but do affect the erosion front and gel thickness. The different release profiles obtained in mixing and nonmixing in vitro methods are the consequence of matrix hydration level and erosion at the surface. In water and in diluted acid medium with low ionic strength, the main release mechanism is erosion, whereas in other media (pH 1.2, μ ≥ 0.20 M), anomalous transport dominates as was found out by fitting of measured data with theoretical model. Besides the in vitro investigation that mimics gastric conditions, mathematical modeling makes the product development more successful.

  3. Empirical Approach for Determining Axial Strength of Circular Concrete Filled Steel Tubular Columns

    NASA Astrophysics Data System (ADS)

    Jayalekshmi, S.; Jegadesh, J. S. Sankar; Goel, Abhishek

    2018-06-01

    The concrete filled steel tubular (CFST) columns are highly regarded in recent years as an interesting option in the construction field by designers and structural engineers, due to their exquisite structural performance, with enhanced load bearing capacity and energy absorption capacity. This study presents a new approach to simulate the capacity of circular CFST columns under axial loading condition, using a large database of experimental results by applying artificial neural network (ANN). A well trained network is established and is used to simulate the axial capacity of CFST columns. The validation and testing of the ANN is carried out. The current study is focused on proposing a simplified equation that can predict the ultimate strength of the axially loaded columns with high level of accuracy. The predicted results are compared with five existing analytical models which estimate the strength of the CFST column. The ANN-based equation has good prediction with experimental data, when compared with the analytical models.

  4. Effect of structural factors on mechanical properties of the magnesium alloy Ma2-1 under quasi-static and high strain rate deformation conditions

    NASA Astrophysics Data System (ADS)

    Garkushin, G. V.; Razorenov, S. V.; Krasnoveikin, V. A.; Kozulin, A. A.; Skripnyak, V. A.

    2015-02-01

    The elastic limit and tensile strength of deformed magnesium alloys Ma2-1 with different structures and textures were measured with the aim of finding a correlation between the spectrum of defects in the material and the resistance to deformation and fracture under quasi-static and dynamic loading conditions. The studies were performed using specimens in the as-received state after high-temperature annealing and specimens subjected to equal-channel angular pressing at a temperature of 250°C. The anisotropy of strength characteristics of the material after shock compression with respect to the direction of rolling of the original alloy was investigated. It was shown that, in contrast to the quasi-static loading conditions, under the shock wave loading conditions, the elastic limit and tensile strength of the magnesium alloy Ma2-1 after equal-channel angular pressing decrease as compared to the specimens in the as-received state.

  5. Empirical Approach for Determining Axial Strength of Circular Concrete Filled Steel Tubular Columns

    NASA Astrophysics Data System (ADS)

    Jayalekshmi, S.; Jegadesh, J. S. Sankar; Goel, Abhishek

    2018-03-01

    The concrete filled steel tubular (CFST) columns are highly regarded in recent years as an interesting option in the construction field by designers and structural engineers, due to their exquisite structural performance, with enhanced load bearing capacity and energy absorption capacity. This study presents a new approach to simulate the capacity of circular CFST columns under axial loading condition, using a large database of experimental results by applying artificial neural network (ANN). A well trained network is established and is used to simulate the axial capacity of CFST columns. The validation and testing of the ANN is carried out. The current study is focused on proposing a simplified equation that can predict the ultimate strength of the axially loaded columns with high level of accuracy. The predicted results are compared with five existing analytical models which estimate the strength of the CFST column. The ANN-based equation has good prediction with experimental data, when compared with the analytical models.

  6. Wear Behavior of an Ultra-High-Strength Eutectoid Steel

    NASA Astrophysics Data System (ADS)

    Mishra, Alok; Maity, Joydeep

    2018-02-01

    Wear behavior of an ultra-high-strength AISI 1080 steel developed through incomplete austenitization-based combined cyclic heat treatment is investigated in comparison with annealed and conventional hardened and tempered conditions against an alumina disk (sliding speed = 1 m s-1) using a pin-on-disk tribometer at a load range of 7.35-14.7 N. On a gross scale, the mechanism of surface damage involves adhesive wear coupled with abrasive wear (microcutting effects in particular) at lower loads. At higher loads, mainly the abrasive wear (both microcutting and microploughing mechanisms) and evolution of adherent oxide are observed. Besides, microhardness of matrix increases with load indicating substantial strain hardening during wear test. The rate of overall wear is found to increase with load. As-received annealed steel with the lowest initial hardness suffers from severe abrasive wear, thereby exhibiting the highest wear loss. Such a severe wear loss is not observed in conventional hardened and tempered and combined cyclic heat treatment conditions. Combined cyclic heat-treated steel exhibits the greatest wear resistance (lowest wear loss) due to its initial high hardness and evolution of hard abrasion-resistant tribolayer during wear test at higher load.

  7. Interpretation of dynamic tensile behavior by austenite stability in ferrite-austenite duplex lightweight steels.

    PubMed

    Park, Jaeyeong; Jo, Min Cheol; Jeong, Hyeok Jae; Sohn, Seok Su; Kwak, Jai-Hyun; Kim, Hyoung Seop; Lee, Sunghak

    2017-11-16

    Phenomena occurring in duplex lightweight steels under dynamic loading are hardly investigated, although its understanding is essentially needed in applications of automotive steels. In this study, quasi-static and dynamic tensile properties of duplex lightweight steels were investigated by focusing on how TRIP and TWIP mechanisms were varied under the quasi-static and dynamic loading conditions. As the annealing temperature increased, the grain size and volume fraction of austenite increased, thereby gradually decreasing austenite stability. The strain-hardening rate curves displayed a multiple-stage strain-hardening behavior, which was closely related with deformation mechanisms. Under the dynamic loading, the temperature rise due to adiabatic heating raised the austenite stability, which resulted in the reduction in the TRIP amount. Though the 950 °C-annealed specimen having the lowest austenite stability showed the very low ductility and strength under the quasi-static loading, it exhibited the tensile elongation up to 54% as well as high strain-hardening rate and tensile strength (1038 MPa) due to appropriate austenite stability under dynamic loading. Since dynamic properties of the present duplex lightweight steels show the excellent strength-ductility combination as well as continuously high strain hardening, they can be sufficiently applied to automotive steel sheets demanded for stronger vehicle bodies and safety enhancement.

  8. Wearable woven supercapacitor fabrics with high energy density and load-bearing capability.

    PubMed

    Shen, Caiwei; Xie, Yingxi; Zhu, Bingquan; Sanghadasa, Mohan; Tang, Yong; Lin, Liwei

    2017-10-30

    Flexible power sources with load bearing capability are attractive for modern wearable electronics. Here, free-standing supercapacitor fabrics that can store high electrical energy and sustain large mechanical loads are directly woven to be compatible with flexible systems. The prototype with reduced package weight/volume provides an impressive energy density of 2.58 mWh g -1 or 3.6 mWh cm -3 , high tensile strength of over 1000 MPa, and bearable pressure of over 100 MPa. The nanoporous thread electrodes are prepared by the activation of commercial carbon fibers to have three-orders of magnitude increase in the specific surface area and 86% retention of the original strength. The novel device configuration woven by solid electrolyte-coated threads shows excellent flexibility and stability during repeated mechanical bending tests. A supercapacitor watchstrap is used to power a liquid crystal display as an example of load-bearing power sources with various form-factor designs for wearable electronics.

  9. Successful NEES Grand Challenge Tests on Non-Ductile Beam-Column Joints

    Science.gov Websites

    potential of existing gravity load designed RC buildings is a great concern during intense seismic events evaluate unreinforced corner joints shear strength and axial residual capacity under high axial load axial load is 0.20f ’c Ag , while the overturning axial loads vary with displacement reversals to range

  10. Response Surface Methodology for the Optimization of Preparation of Biocomposites Based on Poly(lactic acid) and Durian Peel Cellulose

    PubMed Central

    Penjumras, Patpen; Abdul Rahman, Russly; Talib, Rosnita A.; Abdan, Khalina

    2015-01-01

    Response surface methodology was used to optimize preparation of biocomposites based on poly(lactic acid) and durian peel cellulose. The effects of cellulose loading, mixing temperature, and mixing time on tensile strength and impact strength were investigated. A central composite design was employed to determine the optimum preparation condition of the biocomposites to obtain the highest tensile strength and impact strength. A second-order polynomial model was developed for predicting the tensile strength and impact strength based on the composite design. It was found that composites were best fit by a quadratic regression model with high coefficient of determination (R 2) value. The selected optimum condition was 35 wt.% cellulose loading at 165°C and 15 min of mixing, leading to a desirability of 94.6%. Under the optimum condition, the tensile strength and impact strength of the biocomposites were 46.207 MPa and 2.931 kJ/m2, respectively. PMID:26167523

  11. Mechanical properties of chemically modified Sansevieria trifasciata/natural rubber/high density polyethylene (STF/NR/HDPE) composites: Effect of silane coupling agent

    NASA Astrophysics Data System (ADS)

    Zakaria, Nurzam Ezdiani; Baharum, Azizah; Ahmad, Ishak

    2018-04-01

    The main objective of this research is to study the effects of chemical modification on the mechanical properties of treated Sansevieria trifasciata fiber/natural rubber/high density polyethylene (TSTF/NR/HDPE) composites. Processing of STF/NR/HDPE composites was done by using an internal mixer. The processing parameters used were 135°C for temperature and a mixing rotor speed of 55 rpm for 15 minutes. Filler loading was varied from 10% to 40% of STF and the fiber size used was 125 µm. The composite blends obtained then were pressed with a hot press machine to get test samples of 1 mm and 3 mm of thickness. Samples were evaluated via tensile tests, Izod impact test and scanning electron microscopy (SEM). Results showed that tensile strength and strain value decreased while tensile modulus increased when filler loading increased. Impact strength increased when filler loading increased and began to decrease after 10% of filler amount for treated composites. For untreated composites, impact strength began to decrease after 20% of filler loading. Chemical modification by using silane coupling agent has improved certain mechanical properties of the composites such as tensile strength, strain value and tensile modulus. Adding more amount of filler will also increase the viscosity and the stiffness of the materials.

  12. A torque, tension and stress corrosion evaluation of high strength A286 bolts

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1986-01-01

    The problems associated with overtorque applied to the Booster Separation Motor (BSM) Igniter Adapter high strength 200 KSI (1379 Mpa) A286 CRES bolts and the threaded holes of the 7075-T73 aluminum alloy BSM cases are addressed. The evaluation included torque, tensile, and stress corrosion tests incorporating the A286 CRES bolts and the 7075-T73 aluminum alloy BSM cases. The tensile test data includes ultimate tensile load (UTL), Johnson's 2/3 yield load (J2/3YL), proportional limit load (PLL), and total bolt stretch. Torque tension data includes torque, torque induced load, and positive and negative break-away torque. Stress corrosion test data reflect the overtorque and the resulting torque induced loads sustained by the A286 CRES bolts torqued into a 7075-T73 aluminum alloy forged dome with threaded holes. After 60 days of salt fog exposure, the positive and the negative break-away torques, the subsequent mechanical property tensile test results, and the BSM dome threaded hole axial tensile pullout loads are reported.

  13. Compression and flexural strength of bone cement mixed with blood.

    PubMed

    Tan, J H; Koh, B Th; Ramruttun, A K; Wang, W

    2016-08-01

    To assess the compression and flexural strength of bone cement mixed with 0 ml, 1 ml, or 2 ml of blood. High viscosity polymethyl methacrylate (PMMA) loaded with or without gentamicin was used. Blood was collected from total knee arthroplasty patients. In the same operating room, one pack of cement each was mixed with 0 ml (control), 1 ml, or 2 ml of blood for 1 minute during the dough phase. The dough was extruded into cylindrical and rectangular moulds for 20 minutes of setting, and then cured in phosphate buffered saline at 37±1ºC for 7 days. The samples were visually inspected for fractures and areas of weakness, and then scanned using microcomputed tomography. 48 gentamicin-loaded and 59 non-gentamicin-loaded samples mixed with 0 ml (control), 1 ml, or 2 ml of blood were randomised for flexural and compression strength testing; each group had at least 6 samples. In samples loaded with or without gentamicin, the flexural and compressive strength was highest in controls, followed by samples mixed with 1 ml or 2 ml of blood. In samples mixed with 2 ml of blood, the flexural strength fell below the standard of 50 MPa. In samples mixed with 2 ml of blood and all gentamicin-loaded samples, the compressive strength fell below the standard of 70 MPa. Microcomputed tomography revealed areas of voids and pores indicating the presence of laminations and partitions within. The biomechanical strength of PMMA contaminated with blood may decrease. Precautions such as saline lavage, pack drying the bone, change of gloves, and prompt insertion of the implant should be taken to prevent blood from contaminating bone cement.

  14. The effect of yield strength and ductility to fatigue damage

    NASA Technical Reports Server (NTRS)

    Yeh, H. Y.

    1973-01-01

    The cumulative damage of aluminium alloys with different yield strength and various ductility due to seismic loads was studied. The responses of an idealized beam with a centered mass at one end and fixed at the other end to El Centro's and Taft's earthquakes are computed by assuming that the alloys are perfectly elastoplastic materials and by using numerical technique. Consequently, the corresponding residual plastic strain can be obtained from the stress-strain relationship. The revised Palmgren-Miner cumulative damage theorem is utilized to calculate the fatigue damage. The numerical results show that in certain cases, the high ductility materials are more resistant to seismic loads than the high yield strength materials. The results also show that if a structure collapse during the earthquake, the collapse always occurs in the very early stage.

  15. A brief review of strength and ballistic assessment methodologies in sport.

    PubMed

    McMaster, Daniel Travis; Gill, Nicholas; Cronin, John; McGuigan, Michael

    2014-05-01

    An athletic profile should encompass the physiological, biomechanical, anthropometric and performance measures pertinent to the athlete's sport and discipline. The measurement systems and procedures used to create these profiles are constantly evolving and becoming more precise and practical. This is a review of strength and ballistic assessment methodologies used in sport, a critique of current maximum strength [one-repetition maximum (1RM) and isometric strength] and ballistic performance (bench throw and jump capabilities) assessments for the purpose of informing practitioners and evolving current assessment methodologies. The reliability of the various maximum strength and ballistic assessment methodologies were reported in the form of intra-class correlation coefficients (ICC) and coefficient of variation (%CV). Mean percent differences (Mdiff = [/Xmethod1 - Xmethod2/ / (Xmethod1 + Xmethod2)] x 100) and effect size (ES = [Xmethod2 - Xmethod1] ÷ SDmethod1) calculations were used to assess the magnitude and spread of methodological differences for a given performance measure of the included studies. Studies were grouped and compared according to their respective performance measure and movement pattern. The various measurement systems (e.g., force plates, position transducers, accelerometers, jump mats, optical motion sensors and jump-and-reach apparatuses) and assessment procedures (i.e., warm-up strategies, loading schemes and rest periods) currently used to assess maximum isometric squat and mid-thigh pull strength (ICC > 0.95; CV < 2.0%), 1RM bench press, back squat and clean strength (ICC > 0.91; CV < 4.3%), and ballistic (vertical jump and bench throw) capabilities (ICC > 0.82; CV < 6.5%) were deemed highly reliable. The measurement systems and assessment procedures employed to assess maximum isometric strength [M(Diff) = 2-71%; effect size (ES) = 0.13-4.37], 1RM strength (M(Diff) = 1-58%; ES = 0.01-5.43), vertical jump capabilities (M(Diff) = 2-57%; ES = 0.02-4.67) and bench throw capabilities (M(Diff) = 7-27%; ES = 0.49-2.77) varied greatly, producing trivial to very large effects on these respective measures. Recreational to highly trained athletes produced maximum isometric squat and mid-thigh pull forces of 1,000-4,000 N; and 1RM bench press, back squat and power clean values of 80-180 kg, 100-260 kg and 70-140 kg, respectively. Mean and peak power production across the various loads (body mass to 60% 1RM) were between 300 and 1,500 W during the bench throw and between 1,500 and 9,000 W during the vertical jump. The large variations in maximum strength and power can be attributed to the wide range in physical characteristics between different sports and athletic disciplines, training and chronological age as well as the different measurement systems of the included studies. The reliability and validity outcomes suggest that a number of measurement systems and testing procedures can be implemented to accurately assess maximum strength and ballistic performance in recreational and elite athletes, alike. However, the reader needs to be cognisant of the inherent differences between measurement systems, as selection will inevitably affect the outcome measure. The strength and conditioning practitioner should also carefully consider the benefits and limitations of the different measurement systems, testing apparatuses, attachment sites, movement patterns (e.g., direction of movement, contraction type, depth), loading parameters (e.g., no load, single load, absolute load, relative load, incremental loading), warm-up strategies, inter-trial rest periods, dependent variables of interest (i.e., mean, peak and rate dependent variables) and data collection and processing techniques (i.e., sampling frequency, filtering and smoothing options).

  16. Towards evidence based strength training: a comparison of muscle forces during deadlifts, goodmornings and split squats.

    PubMed

    Schellenberg, Florian; Taylor, William R; Lorenzetti, Silvio

    2017-01-01

    To ensure an efficient and targeted adaptation with low injury risk during strength exercises, knowledge of the participant specific internal loading conditions is essential. The goal of this study was to calculate the lower limb muscles forces during the strength exercises deadlifts, goodmornings and splits squats by means of musculoskeletal simulation. 11 participants were assessed performing 10 different variations of split squats by varying the step length as well as the maximal frontal tibia angle, and 13 participants were measured performing deadlift and goodmorning exercises. Using individualised musculoskeletal models, forces of the Quadriceps ( four parts), Hamstrings (four parts) and m. gluteus maximus (three parts) were computed. Deadlifts resulted highest loading for the Quadriceps, especially for the vasti (18-34 N/kg), but not for the rectus femoris (8-10 N/kg), which exhibited its greatest loading during split squats (13-27 N/kg) in the rear limb. Hamstrings were loaded isometrically during goodmornings but dynamically during deadlifts. For the m. gluteus maximus , the highest loading was observed during split squats in the front limb (up to 25 N/kg), while deadlifts produced increasingly, large loading over large ranges of motion in hip and knee. Acting muscle forces vary between exercises, execution form and joint angle. For all examined muscles, deadlifts produced considerable loading over large ranges of motion, while split squats seem to be highly dependent upon exercise variation. This study provides key information to design strength-training programs with respect to loading conditions and ranges of motion of lower extremity muscles.

  17. Asymmetric Spatial Processing Under Cognitive Load.

    PubMed

    Naert, Lien; Bonato, Mario; Fias, Wim

    2018-01-01

    Spatial attention allows us to selectively process information within a certain location in space. Despite the vast literature on spatial attention, the effect of cognitive load on spatial processing is still not fully understood. In this study we added cognitive load to a spatial processing task, so as to see whether it would differentially impact upon the processing of visual information in the left versus the right hemispace. The main paradigm consisted of a detection task that was performed during the maintenance interval of a verbal working memory task. We found that increasing cognitive working memory load had a more negative impact on detecting targets presented on the left side compared to those on the right side. The strength of the load effect correlated with the strength of the interaction on an individual level. The implications of an asymmetric attentional bias with a relative disadvantage for the left (vs the right) hemispace under high verbal working memory (WM) load are discussed.

  18. An Interlaminar Tensile Strength Specimen

    NASA Technical Reports Server (NTRS)

    Martin, Roderick H.; Jackson, Wade C.

    1993-01-01

    This paper describes a technique to determine interlaminar tensile strength, sigma(sub 3c), of a fiber reinforced composite material using a curved beam. The specimen was a unidirectional curved beam, bent 90 deg, with straight arms. Attached to each arm was a hinged loading mechanism that was held by the grips of a tension testing machine. Geometry effects of the specimen, including the effects of loading arm length, inner radius, thickness, and width, were studied. The data sets fell into two categories: low strength corresponding to a macroscopic flaw related failure and high strength corresponding to a microscopic flaw related failure. From the data available, the specimen width and loading arm length had little effect on sigma(sub 3c). The inner radius was not expected to have a significant effect on sigma(sub 3c), but this conclusion could not be confirmed because of differences in laminate quality for each curve geometry. The thicker specimens had the lowest value of sigma(sub 3c) because of poor laminate quality.

  19. Shear joint capability versus bolt clearance

    NASA Technical Reports Server (NTRS)

    Lee, H. M.

    1992-01-01

    The results of a conservative analysis approach into the determination of shear joint strength capability for typical space-flight hardware as a function of the bolt-hole clearance specified in the design are presented. These joints are comprised of high-strength steel fasteners and abutments constructed of aluminum alloys familiar to the aerospace industry. A general analytical expression was first arrived at which relates bolt-hole clearance to the bolt shear load required to place all joint fasteners into a shear transferring position. Extension of this work allowed the analytical development of joint load capability as a function of the number of fasteners, shear strength of the bolt, bolt-hole clearance, and the desired factor of safety. Analysis results clearly indicate that a typical space-flight hardware joint can withstand significant loading when less than ideal bolt hole clearances are used in the design.

  20. Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration.

    PubMed

    Fu, Qiang; Saiz, Eduardo; Tomsia, Antoni P

    2011-10-01

    The quest for synthetic materials to repair load-bearing bone lost because of trauma, cancer, or congenital bone defects requires the development of porous, high-performance scaffolds with exceptional mechanical strength. However, the low mechanical strength of porous bioactive ceramic and glass scaffolds, compared with that of human cortical bone, has limited their use for these applications. In the present work bioactive 6P53B glass scaffolds with superior mechanical strength were fabricated using a direct ink writing technique. The rheological properties of Pluronic® F-127 (referred to hereafter simply as F-127) hydrogel-based inks were optimized for the printing of features as fine as 30 μm and of three-dimensional scaffolds. The mechanical strength and in vitro degradation of the scaffolds were assessed in a simulated body fluid (SBF). The sintered glass scaffolds showed a compressive strength (136 ± 22 MPa) comparable with that of human cortical bone (100-150 MPa), while the porosity (60%) was in the range of that of trabecular bone (50-90%). The strength is ~100-times that of polymer scaffolds and 4-5-times that of ceramic and glass scaffolds with comparable porosities. Despite the strength decrease resulting from weight loss during immersion in SBF, the value (77 MPa) is still far above that of trabecular bone after 3 weeks. The ability to create both porous and strong structures opens a new avenue for fabricating scaffolds for load-bearing bone defect repair and regeneration. Published by Elsevier Ltd.

  1. Direct Ink Writing of Highly Porous and Strong Glass Scaffolds for Load-bearing Bone Defects Repair and Regeneration

    PubMed Central

    Fu, Qiang; Saiz, Eduardo; Tomsia, Antoni P.

    2011-01-01

    The quest for synthetic materials to repair load-bearing bone lost because of trauma, cancer, or congenital bone defects requires development of porous and high-performance scaffolds with exceptional mechanical strength. However, the low mechanical strength of porous bioactive ceramic and glass scaffolds, compared with that of human cortical bone, has limited their use for these applications. In the present work, bioactive 6P53B glass scaffolds with superior mechanical strength were fabricated using a direct ink writing technique. The rheological properties of Pluronic® F-127 (referred to hereafter simply as F-127) hydrogel-based inkswere optimized for the printing of features as fine as 30 μm and of the three-dimensional scaffolds. The mechanical strength and in vitro degradation of the scaffolds were assessed in a simulated body fluid (SBF). The sintered glass scaffolds show a compressive strength (136 ± 22 MPa) comparable to that of human cortical bone (100-150 MPa), while the porosity (60%) is in the range of that of trabecular bone (50-90%).The strength is ~100 times that of polymer scaffolds and 4–5 times that of ceramic and glass scaffolds with comparable porosities. Despite the strength decrease resulting from weight loss during immersion in an SBF, the value (77 MPa) is still far above that of trabecular bone after three weeks. The ability to create both porous and strong structures opens a new avenue for fabricating scaffolds for load-bearing bone defect repair and regeneration. PMID:21745606

  2. Response of Buried Vertically Oriented Cylinders to Dynamic Loading,

    DTIC Science & Technology

    1980-06-01

    BALSARA • , . / ,, _,-, -. 1i S ,LESPONSE OF BURIED VERTICALLY 9RIENTED CYLINDERS 𔃺 .-TO DINAMIC LOADING_ 9AYLE E. LRTOrwW&-N JIIMY P./BALSARA Nk...1.7, 2,8, and 4.0 inches). The end caps for the cylinders consisted of a steel shell filled with high- strength concrete; however, the end caps were...not designed to be test articles. The average concrete compressive strength of the cylinders on test day was 44.0 MPa (6,380 psi). The three DEOT

  3. Construction strength analysis of landing craft tank conversion to passenger ship using finite element method

    NASA Astrophysics Data System (ADS)

    Nurul Misbah, Mohammad; Setyawan, Dony; Murti Dananjaya, Wisnu

    2018-03-01

    This research aims to determine the longitudinal strength of passenger ship which was converted from Landing Craft Tank with 54 m of length as stated by BKI (Biro Klasifikasi Indonesia / Indonesian Classification Bureau). Verification of strength value is done to 4 (four) loading conditions which are (1) empty load condition during sagging wave, (2) empty load condition during hogging wave, (3) full load condition during sagging wave and (4) full load condition during hogging wave. Analysis is done using Finite Element Analysis (FEA) software by modeling the entire part of passenger ship and its loading condition. The back and upfront part of ship centerline were used as the boundary condition. From that analysis it can be concluded that the maximum stress for load condition (1) is 72,393 MPa, 74,792 MPa for load condition (2), 129,92 MPa for load condition (3), and 132,4 MPa for load condition (4). Longitudinal strength of passenger ship fulfilled the criteria of empty load condition having smaller stress value than allowable stress which is 90 MPa, and during full load condition with smaller stress value than allowable stress which is 150 MPa. Analysis on longitudinal strength comparison with entire ship plate thickness variation of ± 2 mm from initial plate was also done during this research. From this research it can be concluded that plate thickness reduction causes the value of longitudinal strength to decrease, while plate thickness addition causes the value of longitudinal strength to increase.

  4. Progressive high-load strength training compared with general low-load exercises in patients with rotator cuff tendinopathy: study protocol for a randomised controlled trial.

    PubMed

    Ingwersen, Kim G; Christensen, Robin; Sørensen, Lilli; Jørgensen, Hans Ri; Jensen, Steen Lund; Rasmussen, Sten; Søgaard, Karen; Juul-Kristensen, Birgit

    2015-01-27

    Shoulder pain is the third most common musculoskeletal disorder, often affecting people's daily living and work capacity. The most common shoulder disorder is the subacromial impingement syndrome (SIS) which, among other pathophysiological changes, is often characterised by rotator cuff tendinopathy. Exercise is often considered the primary treatment option for rotator cuff tendinopathy, but there is no consensus on which exercise strategy is the most effective. As eccentric and high-load strength training have been shown to have a positive effect on patella and Achilles tendinopathy, the aim of this trial is to compare the efficacy of progressive high-load exercises with traditional low-load exercises in patients with rotator cuff tendinopathy. The current study is a randomised, participant- and assessor-blinded, controlled multicentre trial. A total of 260 patients with rotator cuff tendinopathy will be recruited from three outpatient shoulder departments in Denmark, and randomised to either 12 weeks of progressive high-load strength training or to general low-load exercises. Patients will receive six individually guided exercise sessions with a physiotherapist and perform home-based exercises three times a week. The primary outcome measure will be change from baseline to 12 weeks in the patient-reported outcome Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire. Previous studies of exercise treatment for SIS have not differentiated between subgroups of SIS and have often had methodological flaws, making it difficult to specifically design target treatment for patients diagnosed with SIS. Therefore, it was considered important to focus on a subgroup such as tendinopathy, with a specific tailored intervention strategy based on evidence from other regions of the body, and to clearly describe the intervention in a methodologically strong study. The trial was registered with Clinicaltrials.gov ( NCT01984203 ) on 31 October 2013.

  5. Fracture morphologies of carbon-black-loaded SBR (styrene-butadiene rubber) subjected to low-cycle, high-stress fatigue. [Styrene-butadiene rubber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, A.; Lesuer, D.R.; Patt, J.

    Experimental results, together with an analytical model, related to the loss in tensile strength of styrene-butadiene rubber (SBR) loaded with carbon black (CB) that had been subjected to low-cycle, high-stress fatigue tests were presented in a prior paper. The drop in tensile strength relative to that of a virgin sample was considered to be a measure of damage induced during the fatigue test. The present paper is a continuation of this study dealing with the morphological interpretations of the fractured surfaces, whereby the cyclic-tearing behavior, resulting in the damage, is related to the test and material parameters. It was foundmore » that failure is almost always initiated in the bulk of a sample at a material flaw. The size and definition of a flaw increase with an increase in carbon-black loading. Initiation flaw sites are enveloped by fan-shaped or penny-shaped regions which develop during cycling. The size and morphology of a fatigue-tear region appears to be independent of the fatigue load or the extent of the damage (strength loss). By contrast, either an increase in cycling load or an increase in damage at constant load increases the definition of the fatigue-region morphology for all formulations of carbon-black. On the finest scale, the morphology can be described in terms of tearing of individual groups of rubber strands, collapsing to form a cell-like structure. 18 refs., 13 figs.« less

  6. Residual strength of GFR/POM as a function of damage

    NASA Astrophysics Data System (ADS)

    Zachariev, G.; Rudolph, H.-V.; Ivers, H.

    2010-07-01

    A relation between the residual strength and the dispersed damage accumulated in a short fiber reinforced polyoximethylene (GFR/POM) samples under tension is found. For that purpose dependencies of damage and residual strength on loading percentage are used. Damage as a function of loading percentage is known for the material under study. To find the dependency of residual strength on loading percentage a subsidiary function is introduced and a method is proposed for determination of the parameters in the dependency on the basis of the experimental data. Both damage and residual strength are measured after unloading samples that have been loaded applying different loading percentages. Damage is the accumulation of new internal surfaces that arise under mechanical loading in the whole volume of the material. They are registered by a new original method of X-ray refraction. The analytical relation between the residual strength and damage accumulated is compared to the experimental results found for the residual strength under different damage degrees.

  7. Advances in the study of mechanical properties and constitutive law in the field of wood research

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Zhao, J. X.; Han, G. Z.

    2016-07-01

    This paper presents an overview of mechanical properties and constitutive law for wood. Current research on the mechanical properties of wood have mostly focused on density, grain, moisture, and other natural factors. It has been established that high density, dense grain, and high moisture lead to higher strength. In most literature, wood has been regarded as an anisotropic material because of its fiber. A microscopic view is used in research of wood today, in this way, which has allowed for clear observation of anisotropy. In general, wood has higher strength under a dynamic load, and no densification. The constitutive model is the basis of numerical analysis. An anisotropic model of porous and composite materials has been used for wood, but results were poor, and new constitutions have been introduced. According to the literature, there is no single theory that is widely accepted for the dynamic load. Research has shown that grain and moisture are key factors in wood strength, but there has not been enough study on dynamic loads so far. Hill law has been the most common method of simulation. Models that consider high strain rate are attracting more and more attention.

  8. Ultra-porous titanium oxide scaffold with high compressive strength

    PubMed Central

    Tiainen, Hanna; Lyngstadaas, S. Petter; Ellingsen, Jan Eirik

    2010-01-01

    Highly porous and well interconnected titanium dioxide (TiO2) scaffolds with compressive strength above 2.5 MPa were fabricated without compromising the desired pore architectural characteristics, such as high porosity, appropriate pore size, surface-to-volume ratio, and interconnectivity. Processing parameters and pore architectural characteristics were investigated in order to identify the key processing steps and morphological properties that contributed to the enhanced strength of the scaffolds. Cleaning of the TiO2 raw powder removed phosphates but introduced sodium into the powder, which was suggested to decrease the slurry stability. Strong correlation was found between compressive strength and both replication times and solid content in the ceramic slurry. Increase in the solid content resulted in more favourable sponge loading, which was achieved due to the more suitable rheological properties of the ceramic slurry. Repeated replication process induced only negligible changes in the pore architectural parameters indicating a reduced flaw size in the scaffold struts. The fabricated TiO2 scaffolds show great promise as load-bearing bone scaffolds for applications where moderate mechanical support is required. PMID:20711636

  9. Design and analysis of composite structures with stress concentrations

    NASA Technical Reports Server (NTRS)

    Garbo, S. P.

    1983-01-01

    An overview of an analytic procedure which can be used to provide comprehensive stress and strength analysis of composite structures with stress concentrations is given. The methodology provides designer/analysts with a user-oriented procedure which, within acceptable engineering accuracy, accounts for the effects of a wide range of application design variables. The procedure permits the strength of arbitrary laminate constructions under general bearing/bypass load conditions to be predicted with only unnotched unidirectional strength and stiffness input data required. Included is a brief discussion of the relevancy of this analysis to the design of primary aircraft structure; an overview of the analytic procedure with theory/test correlations; and an example of the use and interaction of this strength analysis relative to the design of high-load transfer bolted composite joints.

  10. The usage of carbon fiber reinforcement polymer and glass fiber reinforcement polymer for retrofit technology building

    NASA Astrophysics Data System (ADS)

    Tarigan, Johannes; Meka, Randi; Nursyamsi

    2018-03-01

    Fiber Reinforcement Polymer has been used as a material technology since the 1970s in Europe. Fiber Reinforcement Polymer can reinforce the structure externally, and used in many types of buildings like beams, columns, and slabs. It has high tensile strength. Fiber Reinforcement Polymer also has high rigidity and strength. The profile of Fiber Reinforcement Polymer is thin and light, installation is simple to conduct. One of Fiber Reinforcement Polymer material is Carbon Fiber Reinforcement Polymer and Glass Fiber Reinforcement Polymer. These materials is tested when it is installed on concrete cylinders, to obtain the comparison of compressive strength CFRP and GFRP. The dimension of concrete is diameter of 15 cm and height of 30 cm. It is amounted to 15 and divided into three groups. The test is performed until it collapsed to obtain maximum load. The results of research using CFRP and GFRP have shown the significant enhancement in compressive strength. CFRP can increase the compressive strength of 26.89%, and GFRP of 14.89%. For the comparison of two materials, CFRP is more strengthening than GFRP regarding increasing compressive strength. The usage of CFRP and GFRP can increase the loading capacity.

  11. The effects of low-repetition and light-load power training on bone mineral density in postmenopausal women with sarcopenia: a pilot study.

    PubMed

    Hamaguchi, Kanako; Kurihara, Toshiyuki; Fujimoto, Masahiro; Iemitsu, Motoyuki; Sato, Koji; Hamaoka, Takafumi; Sanada, Kiyoshi

    2017-05-02

    Age-related reduction in bone mineral density (BMD) is generally accelerated in women after menopause, and could be even more pronounced in individuals with sarcopenia. Light-load power training with a low number of repetitions would increase BMD, significantly reducing bone loss in individuals at risk of osteoporosis. This study investigated the effects of low-repetition, light-load power training on BMD in Japanese postmenopausal women with sarcopenia. The training group (n = 7) followed a progressive power training protocol that increased the load with a weighted vest, for two sessions per week, over the course of 6 weeks. The training exercise comprised five kinds of exercises (squats, front lunges, side lunges, calf raises, and toe raises), and each exercise contained eight sets of three repetitions with a 15-s rest between each set. The control group (n = 8) did not undergo any training intervention. We measured BMD, muscle strength, and anthropometric data. Within-group changes in pelvis BMD and knee extensor strength were significantly greater in the training group than the control group (p = 0.029 and 0.030 for pelvis BMD and knee extensor strength, respectively). After low-repetition, light-load power training, we noted improvements in pelvis BMD (1.6%) and knee extensor strength (15.5%). No significant within- or between-group differences were observed for anthropometric data or forearm BMD. Six weeks of low-repetition, light-load power training improved pelvis BMD and knee extensor strength in postmenopausal women with sarcopenia. Since this training program does not require high-load exercise and is therefore easily implementable as daily exercise, it could be an effective form of exercise for sedentary adults at risk for osteoporosis who are fearful of heavy loads and/or training that could cause fatigue. This trial was registered with the University Hospital Medical Information Network on 31 October 2016 ( UMIN000024651 ).

  12. In situ observation of fracture processes in high-strength concretes and limestone using high-speed X-ray phase-contrast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew

    The mechanical properties and fracture mechanisms of geomaterials and construction materials such as concrete are reported to be dependent on the loading rates. However, the in situ cracking inside such specimens cannot be visualized using traditional optical imaging methods since the materials are opaque. In this study, the in situ sub-surface failure/damage mechanisms in Cor-Tuf (a reactive powder concrete), a high-strength concrete (HSC) and Indiana limestone under dynamic loading were investigated using high-speed synchrotron X-ray phase-contrast imaging. Dynamic compressive loading was applied using a modified Kolsky bar and fracture images were recorded using a synchronized high-speed synchrotron X-ray imaging set-up.more » Three-dimensional synchrotron X-ray tomography was also performed to record the microstructure of the specimens before dynamic loading. In the Cor-Tuf and HSC specimens, two different modes of cracking were observed: straight cracking or angular cracking with respect to the direction of loading. In limestone, cracks followed the grain boundaries and voids, ultimately fracturing the specimen. Cracks in HSC were more tortuous than the cracks in Cor-Tuf specimens. The effects of the microstructure on the observed cracking behaviour are discussed. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’.« less

  13. Characterization of the behavior under impact loading of a maraging steel strengthened by nano-precipitates

    NASA Astrophysics Data System (ADS)

    Lach, E.; Redjaïmia, A.; Leitner, H.; Clemens, H.

    2006-08-01

    Nanometer-sized precipitates are responsible for the high strength of steel alloys well known as maraging steels. The term maraging relates to aging reactions in very low-carbon martensitic steels. Due to precipitation hardening 0.2% yield stress values of up to 2.4 GPa can be achieved. The class of stainless maraging steels exhibits an excellent combination of very high strength and hardness, ductility and toughness, combined with good corrosion resistance. In many applications like crash worthiness or ballistic protection the materials are loaded at high strain-rates. The most important characteristic of material behavior under dynamic load is the dynamic yield stress. In this work compression tests had been conducted at strain-rates in the order of 5 x 10 - 3 s - 1 up to 3 x 103 s - 1 to study the materials behaviour. Additionally high dynamic compression tests had been performed in the temperature range from -40circC up to 300circC.

  14. Effects of moisture, elevated temperature, and fatigue loading on the behavior of graphite/epoxy buffer strip panels with center cracks

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1988-01-01

    The effects of fatigue loading combined with moisture and heat on the behavior of graphite epoxy panels with either Kevlar-49 or S-glass buffer strips were studied. Buffer strip panels, that had a slit in the center to represent damage, were moisture conditioned or heated, fatigue loaded, and then tested in tension to measure their residual strength. The buffer strips were parallel to the loading direction and were made by replacing narrow strips of the 0 deg graphite plies with Kevlar-49 epoxy or S-glass epoxy on a 1-for-1 basis. The panels were subjected to a fatigue loading spectrum. One group of panels was preconditioned by soaking in 60 C water to produce a 1 percent weight gain then tested at room temperature. One group was heated to 82 C during the fatigue loading. Another group was moisture conditioned and then tested at 82 C. The residual strengths of the buffer panels were not highly affected by the fatigue loading, the number of repetitions of the loading spectrum, or the maximum strain level. The moisture conditioning reduced the residual strengths of the S-glass buffer strip panel by 10 to 15 percent below the ambient results. The moisture conditioning did not have a large effect on the Kevlar-49 panels.

  15. Multi-range force sensors utilizing shape memory alloys

    DOEpatents

    Varma, Venugopal K.

    2003-04-15

    The present invention provides a multi-range force sensor comprising a load cell made of a shape memory alloy, a strain sensing system, a temperature modulating system, and a temperature monitoring system. The ability of the force sensor to measure contact forces in multiple ranges is effected by the change in temperature of the shape memory alloy. The heating and cooling system functions to place the shape memory alloy of the load cell in either a low temperature, low strength phase for measuring small contact forces, or a high temperature, high strength phase for measuring large contact forces. Once the load cell is in the desired phase, the strain sensing system is utilized to obtain the applied contact force. The temperature monitoring system is utilized to ensure that the shape memory alloy is in one phase or the other.

  16. Significantly improved dielectric performances of nanocomposites via loading two-dimensional core-shell structure Bi2Te3@SiO2 nanosheets

    NASA Astrophysics Data System (ADS)

    Chen, Jianwen; Wang, Xiucai; Yu, Xinmei; Fan, Yun; Duan, Zhikui; Jiang, Yewen; Yang, Faquan; Zhou, Yuexia

    2018-07-01

    Polymer/semiconductor-insulator nanocomposites can display high dielectric constants with a relatively low dissipation factor under low electric fields, and thus seem to promising for high energy density capacitors. Here, a novel nanocomposite films is developed by loading two-dimensional (2D) core-shell structure Bi2Te3@SiO2 nanosheets in the poly (vinylidene fluoride-hexafluoro propylene) (P(VDF-HFP)) polymer matrix. The 2D Bi2Te3 nanosheets were prepared through simple microwave-assisted method. The experimental results suggesting that the SiO2 shell layer between the fillers and polymer matrix could effectively improve the dielectric constant, dielectric loss, AC conductivity, and breakdown strength of composites films. The composite films load with 10 vol.% 2D Bi2Te3@SiO2 nanosheets exhibits a high dielectric constant of 70.3 at 1 kHz and relatively low dielectric loss of 0.058 at 1 kHz. The finite element simulation of electric field and electric current density distribution revealed that the SiO2 shell layer between the fillers and polymer matrix could effectively improve the energy loss, local electric field strength, and breakdown strength of composite films. Therefore, this work will provide a promising route to achieve high-performance capacitors.

  17. Influence of triallyl cyanurate as co-agent on gamma irradiation cured high density polyethylene/reclaimed tire rubber blend

    NASA Astrophysics Data System (ADS)

    Mali, Manoj N.; Arakh, Amar A.; Dubey, K. A.; Mhaske, S. T.

    2017-02-01

    Utilization of waste from tire industry as reclaimed tire rubber (RTR) by formation of blends with high density polyethylene (HDPE) is great area to be focused. Enhancement of properties by the addition of triallyl cyanurate (TAC) as a co-agent with 1%, 3% and 5% to blend of HDPE 50 wt% and RTR 50 wt% in presence of gamma irradiation curing were investigated. Specifically, mechanical and thermal properties were studied as a function of amount of TAC and gamma irradiation dose in range of 50-200 kGy. The resultant blends were evaluated for the values of impact strength, gel content, thermal stability, tensile properties, rheological properties and morphological properties with increasing irradiation dosage and TAC loading. The mechanical properties tensile strength, hardness, impact strength of blend containing 3% of TAC were substantially increased with increasing irradiation dosage up to 150 KGy. Rheological analysis has shown increase in viscosity with increase in TAC loading up to 3% and 150 KGy irradiation dosages. 3% loading of TAC lead to better set of properties with150 KGy gamma irradiation dosage.

  18. Numerical Analysis on the High-Strength Concrete Beams Ultimate Behaviour

    NASA Astrophysics Data System (ADS)

    Smarzewski, Piotr; Stolarski, Adam

    2017-10-01

    Development of technologies of high-strength concrete (HSC) beams production, with the aim of creating a secure and durable material, is closely linked with the numerical models of real objects. The three-dimensional nonlinear finite element models of reinforced high-strength concrete beams with a complex geometry has been investigated in this study. The numerical analysis is performed using the ANSYS finite element package. The arc-length (A-L) parameters and the adaptive descent (AD) parameters are used with Newton-Raphson method to trace the complete load-deflection curves. Experimental and finite element modelling results are compared graphically and numerically. Comparison of these results indicates the correctness of failure criteria assumed for the high-strength concrete and the steel reinforcement. The results of numerical simulation are sensitive to the modulus of elasticity and the shear transfer coefficient for an open crack assigned to high-strength concrete. The full nonlinear load-deflection curves at mid-span of the beams, the development of strain in compressive concrete and the development of strain in tensile bar are in good agreement with the experimental results. Numerical results for smeared crack patterns are qualitatively agreeable as to the location, direction, and distribution with the test data. The model was capable of predicting the introduction and propagation of flexural and diagonal cracks. It was concluded that the finite element model captured successfully the inelastic flexural behaviour of the beams to failure.

  19. Stress Corrosion Cracking of Basalt/Epoxy Composites under Bending Loading

    NASA Astrophysics Data System (ADS)

    Shokrieh, Mahmood M.; Memar, Mahdi

    2010-04-01

    The purpose of this research is to study the stress corrosion behavior of basalt/epoxy composites under bending loading and submerged in 5% sulfuric acid corrosive medium. There are limited numbers of research in durability of fiber reinforced polymer composites. Moreover, studies on basalt fibers and its composites are very limited. In this research, mechanical property degradation of basalt/epoxy composites under bending loading and submerged in acidic corrosive medium is investigated. Three states of stress, equal to 30%, 50% and 70% of the ultimate strength of composites, are applied on samples. High stress states are applied to the samples to accelerate the testing procedure. Mechanical properties degradation consists of bending strength, bending modulus of elasticity and fracture energy of samples are examined. Also, a normalized strength degradation model for stress corrosion condition is presented. Finally, microscopic images of broken cross sections of samples are examined.

  20. A comparison of hand grasp breakaway strengths and bare-handed grip strengths of the astronauts, SML 3 test subjects, and the subjects from the general population

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar L.; Klute, Glenn K.

    1993-01-01

    Astronauts have the task of retrieving and deploying satellites and handling massive objects in a around the payload bay. Concerns were raised that manual handling of such massive objects might induce loads to the shuttle suits exceeding the design-certified loads. The Crew and Thermal Division of NASA JSC simulated the satellite handling tasks (Satellite Manload Tests 1 and 3) and determined the maximum possible load that a suited member could impart onto the suit. In addition, the tests revealed that the load to the suit by an astronaut could be calculated from the astronaut's maximum hand grasp breakaway strength. Thus, this study was conducted to document that hand grasp breakaway strengths of the astronauts who were scheduled to perform EVA during the upcoming missions. In addition, this study verified whether the SML 3 test results were sufficient for documenting the maximum possible load. An attempt was made to predict grasp strength from grip strength and hand anthropometry. Based on the results from this study, the SML 3 test results were deemed sufficient to document the maximum possible load on the suit. Finally, prediction of grasp strength from grip strength was not as accurate as expected. Hence, it was recommended that grasp strength be collected from the astronauts in order to obtain accurate load estimation.

  1. Survivability characteristics of composite compression structure

    NASA Technical Reports Server (NTRS)

    Avery, John G.; Allen, M. R.; Sawdy, D.; Avery, S.

    1990-01-01

    Test and evaluation was performed to determine the compression residual capability of graphite reinforced composite panels following perforation by high-velocity fragments representative of combat threats. Assessments were made of the size of the ballistic damage, the effect of applied compression load at impact, damage growth during cyclic loading and residual static strength. Several fiber/matrix systems were investigated including high-strain fibers, tough epoxies, and APC-2 thermoplastic. Additionally, several laminate configurations were evaluated including hard and soft laminates and the incorporation of buffer strips and stitching for improved damage resistance of tolerance. Both panels (12 x 20-inches) and full scale box-beam components were tested to assure scalability of results. The evaluation generally showed small differences in the responses of the material systems tested. The soft laminate configurations with concentrated reinforcement exhibited the highest residual strength. Ballistic damage did not grow or increase in severity as a result of cyclic loading, and the effects of applied load at impact were not significant under the conditions tested.

  2. Neuromuscular Adaptations to Reduced Use

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, Lori

    2009-01-01

    This viewgraph presentation reviews the studies done to reduce neuromuscular strength loss during unilateral lower limb suspension (ULLS). Since there are animals that undergo fairly long periods of muscular disuse without any or minimal muscular atrophy, there is an answer to that might be applicable to human in situations that require no muscular use to diminish the effects of muscular atrophy. Three sets of ULLS studies were reviewed indicated that muscle strength decreased more than the muscle mass. The study reviewed exercise countermeasures to combat the atrophy, including: ischemia maintained during Compound muscle action potential (CMAP), ischemia and low load exercise, Japanese kaatsu, and the potential for rehabilitation or situations where heavy loading is undesirable. Two forms of countermeasures to unloading have been successful, (1) high-load resistance training has maintained muscle mass and strength, and low load resistance training with blood flow restriction (LL(sub BFR)). The LL(sub BFR) has been shown to increase muscle mass and strength. There has been significant interest in Tourniquet training. An increase in Growth Hormone(GH) has been noted for LL(sub BFR) exercise. An experimental study with 16 subjects 8 of whom performed ULLS, and 8 of whom performed ULLS and LL(sub BFR) exercise three times per week during the ULLS. Charts show the results of the two groups, showing that performing LL(sub BFR) exercise during 30 days of ULLS can maintain muscle size and strength and even improve muscular endurance.

  3. Damage accumulation in titanium matrix composites under generic hypersonic vehicle flight simulation and sustained loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, W.S.; Mirdamadi, M.; Bakuckas, J.G. Jr.

    1996-12-31

    Titanium matrix composites (TMC), such as Ti-15V-3Cr-3Al-3Sn (Ti-15-3) reinforced with continuous silicon-carbide fibers (SCS-6), are being evaluated for use in hypersonic vehicles and advanced gas turbine engines where high strength-to-weight and high stiffness-to-weight ratios at elevated temperatures are critical. Such applications expose the composite to mechanical fatigue loading as well as thermally induced cycles. The damage accumulation behavior of a [0/90]2s laminate made of Ti-15V-3Cr-3Al-3Sn (Ti-15-3) reinforced with continuous silicon-carbide fibers (SCS-6) subjected to a simulated generic hypersonic flight profile, portions of the flight profile, and sustained loads was evaluated experimentally. Portions of the flight profile were used separately tomore » isolate combinations of load and time at temperature that influenced the fatigue behavior of the composite. Sustained load tests were also conducted and the results were compared with the fatigue results under the flight profile and its portions. The test results indicated that the fatigue strength of this materials system is considerably reduced by a combination of load and time at temperature.« less

  4. Optimization of BI test parameters to investigate mechanical properties of Grade 92 steel

    NASA Astrophysics Data System (ADS)

    Barbadikar, Dipika R.; Vincent, S.; Ballal, Atul R.; Peshwe, Dilip R.; Mathew, M. D.

    2018-04-01

    The ball indentation (BI) testing is used to evaluate the tensile properties of materials namely yield strength, strength coefficient, ultimate tensile strength, and strain hardening exponent. The properties evaluated depend on a number of BI test parameters. These parameters include the material constants like yield slope (YS), constraint factor (CF), yield offset parameter (YOP). Number of loading/unloading cycles, preload, indenter size and depth of penetration of indenter also affects the properties. In present investigation the effect of these parameters on the stress-strain curve of normalized and tempered Grade 92 steel is evaluated. Grade 92 is a candidate material for power plant application over austenitic stainless steel and derives its strength from M23C6, MX precipitates and high dislocation density. CF, YS and YOP changed the strength properties considerably. Indenter size effect resulted in higher strength for smaller indenter. It is suggested to use larger indenter diameter and higher number of loading cycles for GRADE 92 steel to get best results using BI technique.

  5. 49 CFR 393.108 - How is the working load limit of a tiedown, or the load restraining value of a friction mat...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... that for polypropylene fiber rope. (d) Welded steel chain which is not marked or labeled to enable... load limit shall be considered to have a working load limit equal to one-fourth of the nominal strength... Grade 43 high test Grade 70 transport Grade 80 alloy Grade 100 alloy 1. 7 (1/4) 580 (1,300) 1,180 (2,600...

  6. 49 CFR 393.108 - How is the working load limit of a tiedown, or the load restraining value of a friction mat...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... that for polypropylene fiber rope. (d) Welded steel chain which is not marked or labeled to enable... load limit shall be considered to have a working load limit equal to one-fourth of the nominal strength... Grade 43 high test Grade 70 transport Grade 80 alloy Grade 100 alloy 1. 7 (1/4) 580 (1,300) 1,180 (2,600...

  7. 49 CFR 393.108 - How is the working load limit of a tiedown, or the load restraining value of a friction mat...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... that for polypropylene fiber rope. (d) Welded steel chain which is not marked or labeled to enable... load limit shall be considered to have a working load limit equal to one-fourth of the nominal strength... Grade 43 high test Grade 70 transport Grade 80 alloy Grade 100 alloy 1. 7 (1/4) 580 (1,300) 1,180 (2,600...

  8. Effects of Low- vs. High-Load Resistance Training on Muscle Strength and Hypertrophy in Well-Trained Men.

    PubMed

    Schoenfeld, Brad J; Peterson, Mark D; Ogborn, Dan; Contreras, Bret; Sonmez, Gul T

    2015-10-01

    The purpose of this study was to compare the effect of low- versus high-load resistance training (RT) on muscular adaptations in well-trained subjects. Eighteen young men experienced in RT were matched according to baseline strength and then randomly assigned to 1 of 2 experimental groups: a low-load RT routine (LL) where 25-35 repetitions were performed per set per exercise (n = 9) or a high-load RT routine (HL) where 8-12 repetitions were performed per set per exercise (n = 9). During each session, subjects in both groups performed 3 sets of 7 different exercises representing all major muscles. Training was performed 3 times per week on nonconsecutive days, for a total of 8 weeks. Both HL and LL conditions produced significant increases in thickness of the elbow flexors (5.3 vs. 8.6%, respectively), elbow extensors (6.0 vs. 5.2%, respectively), and quadriceps femoris (9.3 vs. 9.5%, respectively), with no significant differences noted between groups. Improvements in back squat strength were significantly greater for HL compared with LL (19.6 vs. 8.8%, respectively), and there was a trend for greater increases in 1 repetition maximum (1RM) bench press (6.5 vs. 2.0%, respectively). Upper body muscle endurance (assessed by the bench press at 50% 1RM to failure) improved to a greater extent in LL compared with HL (16.6 vs. -1.2%, respectively). These findings indicate that both HL and LL training to failure can elicit significant increases in muscle hypertrophy among well-trained young men; however, HL training is superior for maximizing strength adaptations.

  9. Glass breaking strength: The role of surface flaws and treatments

    NASA Technical Reports Server (NTRS)

    Moore, D.

    1985-01-01

    Although the intrinsic strength of silicon dioxide glass is of the order of 10 to the 6th power lb/sq in, the practical strength is roughly two orders of magnitude below this theoretical limit, and depends almost entirely on the surface condition of the glass, that is, the number and size of flaws and the residual surface compression (temper) in the glass. Glass parts always fail in tension when these flaws grow under sustained loading to some critical size. Research associated with glass encapsulated crystalline-Si photovoltaic (PV) modules has greatly expanded our knowledge of glass breaking strength and developed sizeable data base for commercially available glass types. A detailed design algorithm is developed for thickness sizing of rectangular glass plates subject to pressure loads. Additional studies examine the strength of glass under impact loading conditions such as that caused by hail. Although the fundamentals of glass breakage are directly applicable to thin film modules, the fracture strength of typical numerical glass must be replaced with data that reflect the high temperature tin oxide processing, laser scribing, and edge processing peculiar to thin film modules. The fundamentals of glass breakage applicable to thin film modules and preliminary fracture strength data for a variety of 1 ft square glass specimens representing preprocessed and post processed sheets from current amorphous-Si module manufacturers are presented.

  10. Variation in work tasks in relation to pinch grip strength among middle-aged female dentists.

    PubMed

    Ding, Hebo; Leino-Arjas, Päivi; Murtomaa, Heikki; Takala, Esa-Pekka; Solovieva, Svetlana

    2013-11-01

    We aimed to investigate the relationship of task variation during dental work history with pinch grip strength among dentists. We measured pinch grip strength among 295 female Finnish dentists aged 45-63 years. Variation in dental work tasks during work history was empirically defined by cluster analysis. Three clusters of task variation emerged: low (most work time in restoration treatment/endodontics), moderate (about 50% in the former and 50% in prosthodontics/periodontics/surgery), and high (variable tasks including administrative duties). Hand radiographs were examined for the presence of OA in the wrist and each joint of the 1-3rd fingers. Information on hand-loading leisure-time activities, and joint pain was obtained by questionnaire. Glove size was used as a proxy for hand size. BMI (kg/m2) was based on measured weight and self-reported height. Dentists with low variation of work task history had an increased risk of low pinch grip strength in the right hand (OR 2.3, 95% CI 1.2-4.3), but not in the left (1.13, 0.62-2.08), compared to dentists with high task variation, independent of age, hand size, hand-loading leisure-time activities, BMI and symptomatic hand OA. The dentists with the most hand-loading tasks were at an increased risk of low pinch grip strength, independent of e.g. symptomatic hand OA. It is advisable among dentists to perform as diverse work tasks as possible to reduce the risk of decreased pinch grip strength. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  11. Quasi-isentropic compression of materials using the magnetic loading technique

    NASA Astrophysics Data System (ADS)

    Ao, Tommy

    2009-06-01

    The Isentropic Compression Experiment (ICE) technique has proven to be a valuable complement to the well-established method of shock compression of condensed matter. The magnetic loading technique using pulsed power generators was first developed about a decade ago on the Z Accelerator, and has matured significantly. The recent development of small pulsed power generators have enabled several key issues in ICE, such as panel & sample preparation, uniformity of loading, and edge effects to be studied. Veloce is a medium-voltage, high-current, compact pulsed power generator developed for cost effective isentropic experiments. The machine delivers up to 3 MA of current rapidly (˜ 440-530 ns) into an inductive load where significant magnetic pressures are produced. Examples of recent material strength measurements from quasi-isentropic loading and unloading of materials will be presented. In particular, the influence that the strength of interferometer windows has on wave profile analyses and thus the inferred strength of materials is examined. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  12. A novel anchoring system for use in a nonfusion scoliosis correction device.

    PubMed

    Wessels, Martijn; Homminga, Jasper J; Hekman, Edsko E G; Verkerke, Gijsbertus J

    2014-11-01

    Insertion of a pedicle screw in the mid- and high thoracic regions has a serious risk of facet joint damage. Because flexible implant systems require intact facet joints, we developed an enhanced fixation that is less destructive to spinal structures. The XSFIX is a posterior fixation system that uses cables that are attached to the transverse processes of a vertebra. To determine whether a fixation to the transverse process using the XSFIX is strong enough to withstand the loads applied by the XSLATOR (a novel, highly flexible nonfusion implant system) and thus, whether it is a suitable alternative for pedicle screw fixation. The strength of a novel fixation system using transverse process cables was determined and compared with the strength of a similar fixation using polyaxial pedicle screws on different vertebral levels. Each of the 58 vertebrae, isolated from four adult human cadavers, was instrumented with either a pedicle screw anchor (PSA) system or a prototype of the XSFIX. The PSA consisted of two polyaxial pedicle screws and a 5 mm diameter rod. The XSFIX prototype consisted of two bodies that were fixed to the transverse processes, interconnected with a similar rod. Each fixation system was subjected to a lateral or an axial torque. The PSA demonstrated fixation strength in lateral loading and torsion higher than required for use in the XSLATOR. The XSFIX demonstrated high enough fixation strength (in both lateral loading and torsion), only in the high and midthoracic regions (T10-T12). This experiment showed that the fixation strength of XSFIX is sufficient for use with the XSLATOR only in mid- and high thoracic regions. For the low thoracic and lumbar region, the PSA is a more rigid fixation. Because the performance of the new fixation system appears to be favorable in the high and midthoracic regions, a clinical study is the next challenge. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Anaerobic treatment of landfill leachate by sulfate reduction.

    PubMed

    Henry, J G; Prasad, D

    2000-01-01

    The present study was conducted to investigate the effectiveness of the sulphate-reduction pathway in the anaerobic treatment of landfill leachate. The effects of several COD/SO4 ratios (keeping COD constant) and loadings on anaerobic filter performance were studied and compared with the results from anaerobic filters which followed the methanogenic pathway. Results indicated that the treatability of leachate by sulphate reducing bacteria (SRB) was dependent upon the leachate strength. With high strength leachate (COD = 15,000 mg/L) from the Keele Valley Landfill, it was found that at lower COD/SO4 ratios (< or = 1.6) toxic conditions developed in the system that were more inhibitory to the SRB than to the methane producing bacteria (MPB). As the COD/SO4 ratio increased, methanogenesis predominated. No predominance of SRB occurred at any COD/SO4 ratio with high strength leachate. The highest COD removal achieved was about 70% of which 20% was accomplished by the SRB at a COD/SO4 ratio of 1.6 and an organic loading rate (OLR) of 4 kg COD/m3.d. With low strength leachate (COD = 1500-3300 mg/L) from the Brock West Landfill, and a COD/SO4 ratio < or = 1, SRB became predominant. In these anaerobic filters in which SRB were predominant, the SRB reduced the COD as well as the MPB could. Sulphide inhibition did not take place at any loading in units treating low strength leachate. Consequently, both SRB and MPB should function at COD/SO4 ratios between 1 and 3. About 60% COD removal was achieved at a loading of 2.8 kg COD/m3.d and a COD/SO4 ratio of 1.0. However at a loading of 6 kg COD/m3.d only 27% COD removal was achieved, all of it through the sulphate-reduction pathway. These OLR values are comparable to those applied in systems where methanogenesis was dominant. It was also observed that once the methanogens were established in the units, it was not possible to displace them completely. However, where methanogenesis had not been previously established, it was found that sulphate-reduction could be the sole pathway for COD removal. From this study, it can be concluded that there is no advantage to the sulphate-reduction pathway in the anaerobic treatment of landfill leachate. The other options for increasing the loadings, i.e. the use of high surface/volume filter media (to achieve higher biomass concentrations) or high rate systems are likely to be more successful.

  14. Asymmetric Spatial Processing Under Cognitive Load

    PubMed Central

    Naert, Lien; Bonato, Mario; Fias, Wim

    2018-01-01

    Spatial attention allows us to selectively process information within a certain location in space. Despite the vast literature on spatial attention, the effect of cognitive load on spatial processing is still not fully understood. In this study we added cognitive load to a spatial processing task, so as to see whether it would differentially impact upon the processing of visual information in the left versus the right hemispace. The main paradigm consisted of a detection task that was performed during the maintenance interval of a verbal working memory task. We found that increasing cognitive working memory load had a more negative impact on detecting targets presented on the left side compared to those on the right side. The strength of the load effect correlated with the strength of the interaction on an individual level. The implications of an asymmetric attentional bias with a relative disadvantage for the left (vs the right) hemispace under high verbal working memory (WM) load are discussed. PMID:29740371

  15. Aeroelastic loads prediction for an arrow wing. Task 1: Evaluation of R. P. White's method

    NASA Technical Reports Server (NTRS)

    Borland, C. J.; Manro, M. E.

    1983-01-01

    The separated flow method is evaluated. This method was developed for moderately swept wings with multiple, constant strength vortex systems. The flow on the highly swept wing used in this evaluation is characterized by a single vortex system of continuously varying strength.

  16. Construction Productivity Advancement Research (CPAR) Program. Investigation of Modified Sulfur Concrete as a Structural Material

    DTIC Science & Technology

    1993-07-01

    Industrial applications of modified sulfur concrete (MSC) have been extremely successful in areas of high corrosive activity such as load-bearing...The ductility of MSC in the postyield regime, however, has not been determined in these tests. Bond strength, Modified sulfur concrete, Strength

  17. Transverse Isotropy of Phyllite Under Brazilian Tests: Laboratory Testing and Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Xu, Guowen; He, Chuan; Chen, Ziquan; Su, Ang

    2018-04-01

    Phyllite is a low-grade, metamorphic rock with well-developed foliation. We characterized the fracture pattern and failure strength of phyllite specimens under Brazilian tests. The specimens were obtained from the Zhegu mountain tunnel in China and had different foliation-loading angles, namely 0°, 15°, 30°, 45°, 60°, 75° and 90°. The processes for the initiation and propagation of macro-cracks were recorded using high-speed photography. The evolution of micro-cracks was analyzed based on the results of acoustic emission (AE) tests. The failure process of the specimens during the Brazilian tests was simulated with a new numerical approach based on the particle discrete element method. The influence of foliation strength and the microstructure of the rock matrix were also studied numerically. The experimental results showed that the failure strength of the specimens was related to their fracture patterns and the areas of their fracture surfaces. The initial cracking point of the specimens appeared at the upper or lower loading position, and the cracks propagated to the boundaries of the specimens along or across foliation. The temporal distributions of the AE counts and AE energy of the specimens were affected predominantly by the fracture pattern, and we divided these distributions into two modes: the peak mode and the uniformly distributed mode. The numerical results indicated that the fracture surface was roughly parallel to the loading direction and that the surface was located in the central part of the disk specimens for rocks with loose structure (low coordination number or large crack density) or with strong foliation, i.e., foliation with high shear strength. The failure pattern and trends of variation in failure strength as a function of foliation-loading angles varied with the ratio of cohesion to the tensile strength of foliation, the crack density, and the coordination number.

  18. Effect of insertion torque on bone screw pullout strength.

    PubMed

    Lawson, K J; Brems, J

    2001-05-01

    The effect of insertion torque on the holding strength of 4.5-mm ASIF/AO cortical bone screws was studied in vitro. Screw holding strength was determined using an Instron materials testing machine (Bristol, United Kingdom) on 55 lamb femora and 30 human tibiocortical bone sections. Holding strength was defined as tensile stress at pullout with rapid loading to construct failure. Different insertion torques were tested, normalizing to the thickness of cortical bone specimen engaged. These represented low, intermediate, high, and thread-damaging insertion torque. All screws inserted with thread-damaging torque and single cortex engaging screws inserted to high torque tightening moments showed diminished holding strength. This loss of strength amounted to 40%-50% less than screws inserted with less torque.

  19. Experimental characterization and constitutive modeling of the mechanical behavior of molybdenum under electromagnetically applied compression-shear ramp loading

    DOE PAGES

    Alexander, C. Scott; Ding, Jow -Lian; Asay, James Russell

    2016-03-09

    Magnetically applied pressure-shear (MAPS) is a new experimental technique that provides a platform for direct measurement of material strength at extreme pressures. The technique employs an imposed quasi-static magnetic field and a pulsed power generator that produces an intense current on a planar driver panel, which in turn generates high amplitude magnetically induced longitudinal compression and transverse shear waves into a planar sample mounted on the drive panel. In order to apply sufficiently high shear traction to the test sample, a high strength material must be used for the drive panel. Molybdenum is a potential driver material for the MAPSmore » experiment because of its high yield strength and sufficient electrical conductivity. To properly interpret the results and gain useful information from the experiments, it is critical to have a good understanding and a predictive capability of the mechanical response of the driver. In this work, the inelastic behavior of molybdenum under uniaxial compression and biaxial compression-shear ramp loading conditions is experimentally characterized. It is observed that an imposed uniaxial magnetic field ramped to approximately 10 T through a period of approximately 2500 μs and held near the peak for about 250 μs before being tested appears to anneal the molybdenum panel. In order to provide a physical basis for model development, a general theoretical framework that incorporates electromagnetic loading and the coupling between the imposed field and the inelasticity of molybdenum was developed. Based on this framework, a multi-axial continuum model for molybdenum under electromagnetic loading is presented. The model reasonably captures all of the material characteristics displayed by the experimental data obtained from various experimental configurations. Additionally, data generated from shear loading provide invaluable information not only for validating but also for guiding the development of the material model for multiaxial loadings.« less

  20. Strength and failure analysis of composite-to-composite adhesive bonds with different surface treatments

    NASA Astrophysics Data System (ADS)

    Paranjpe, Nikhil; Alamir, Mohammed; Alonayni, Abdullah; Asmatulu, Eylem; Rahman, Muhammad M.; Asmatulu, Ramazan

    2018-03-01

    Adhesives are widely utilized materials in aviation, automotive, energy, defense, and marine industries. Adhesive joints are gradually supplanting mechanical fasteners because they are lightweight structures, thus making the assembly lighter and easier. They also act as a sealant to prevent a structural joint from galvanic corrosion and leakages. Adhesive bonds provide high joint strength because of the fact that the load is distributed uniformly on the joint surface, while in mechanical joints, the load is concentrated at one point, thus leading to stress at that point and in turn causing joint failures. This research concentrated on the analysis of bond strength and failure loads in adhesive joint of composite-to-composite surfaces. Different durations of plasma along with the detergent cleaning were conducted on the composite surfaces prior to the adhesive applications and curing processes. The joint strength of the composites increased about 34% when the surface was plasma treated for 12 minutes. It is concluded that the combination of different surface preparations, rather than only one type of surface treatment, provides an ideal joint quality for the composites.

  1. Effects of organic loading rates on reactor performance and microbial community changes during thermophilic aerobic digestion process of high-strength food wastewater.

    PubMed

    Jang, Hyun Min; Lee, Jae Won; Ha, Jeong Hyub; Park, Jong Moon

    2013-11-01

    To evaluate the applicability of single-stage thermophilic aerobic digestion (TAD) process treating high-strength food wastewater (FWW), TAD process was operated at four organic loading rates (OLRs) from 9.2 to 37.2 kg COD/m(3)d. The effects of OLRs on microbial community changes were also examined. The highest volumetric removal rate (13.3 kg COD/m(3)d) and the highest thermo-stable protease activity (0.95 unit/mL) were detected at OLR=18.6 kg COD/m(3)d. Denaturing gradient gel electrophoresis (DGGE) profiles and quantitative PCR (qPCR) results showed significant microbial community shifts in response to changes in OLR. In particular, DGGE and phylogenetic analysis demonstrate that the presence of Bacillus sp. (phylum of Firmicutes) was strongly correlated with efficient removal of organic particulates from high-strength food wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Wind turbine with automatic pitch and yaw control

    DOEpatents

    Cheney, Jr., Marvin Chapin; Spierings, Petrus A. M.

    1978-01-01

    A wind turbine having a flexible central beam member supporting aerodynamic blades at opposite ends thereof and fabricated of uni-directional high tensile strength material bonded together into beam form so that the beam is lightweight, and has high tensile strength to carry the blade centrifugal loads, low shear modulus to permit torsional twisting thereof for turbine speed control purposes, and adequate bending stiffness to permit out-of-plane deflection thereof for turbine yard control purposes. A selectively off-set weighted pendulum member is pivotally connected to the turbine and connected to the beam or blade so as to cause torsional twisting thereof in response to centrifugal loading of the pendulum member for turbine speed control purposes.

  3. Effect of load eccentricity and substructure deformation on ultimate strength of shuttle orbiter thermal protection system

    NASA Technical Reports Server (NTRS)

    Sawyer, J. W.

    1981-01-01

    The effect of load eccentricity and substructure deformation on the ultimate strength and stress displacement properties of the shuttle orbiter thermal protection system (TPS) was determined. The LI-900 Reusable Surface Insulation (RSI) tiles mounted on the .41 cm thick Strain Isolator Pad (SIP) were investigated. Substructure deformations reduce the ultimate strength of the SIP/tile TPS and increase the scatter in the ultimate strength data. Substructure deformations that occur unsymmetric to the tile can cause the tile to rotate when subjected to a uniform applied load. Load eccentricity reduces SIP/tile TPS ultimate strength and causes tile rotation.

  4. Study on the strength characteristics of High strength concrete with Micro steel fibers

    NASA Astrophysics Data System (ADS)

    Gowdham, K.; Sumathi, A.; Saravana Raja Mohan, K.

    2017-07-01

    The study of High Strength Concrete (HSC) has become interesting as concrete structures grow taller and larger. The usage of HSC in structures has been increased worldwide and has begun to make an impact in India. Ordinary cementitious materials are weak under tensile loads and fiber reinforced cementitious composites (FRCCs) have been developed to improve this weak point. High Strength concrete containing Alccofine as mineral admixture and reinforced with micro steel fibers were cast and tested to study the mechanical properties. The concrete were designed to have compressive strength of 60 MPa. Mixtures containing 0% and 10% replacement of cement by Alccofine and with 1%, 2% and 3% of micro steel fibers by weight of concrete were prepared. Mixtures incorporating Alccofine with fibers developed marginal increase in strength properties at all curing days when compared to control concrete.

  5. Navy High-Strength Steel Corrosion-Fatigue Modeling Program

    DTIC Science & Technology

    2006-10-01

    interest. In the global analysis, the axial loading and residual stress (via the temperature profile discussed in the previous section) were applied to...developed based on observa- tions from analyses of axial load components with sinusoidally varying surface geometries. These observations indicated that...profile parameters (height and wavelength in each surface direction) and the applied axial loading . Stress Varies Sinusoidally 180° Out of Phase

  6. Thoughts on Designing Things To NOT Break.

    ERIC Educational Resources Information Center

    Klajnscek, Rich

    1998-01-01

    Explains aspects of the design and loading of high-ropes courses and other challenge-course equipment. Discusses the engineer's factor of safety, determined by industry standards or the level of risk considered acceptable; definitions of terms for material strength; and the forces involved in loads sustained by belay ropes and cables. (SV)

  7. The Effect of Weaving on the Strength of Kevlar KM2 Single Fibers at Different Loading Rates

    DTIC Science & Technology

    2012-12-01

    The Effect of Weaving on the Strength of Kevlar KM2 Single Fibers at Different Loading Rates by Brett Sanborn, Nicole Racine, and Tusit...Ground, MD 21005-5069 ARL-TR-6280 December 2012 The Effect of Weaving on the Strength of Kevlar KM2 Single Fibers at Different Loading Rates...Effect of Weaving on the Strength of Kevlar KM2 Single Fibers at Different Loading Rates 5a. CONTRACT NUMBER 1120-1120-99 5b. GRANT NUMBER 5c

  8. Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men.

    PubMed

    Morton, Robert W; Oikawa, Sara Y; Wavell, Christopher G; Mazara, Nicole; McGlory, Chris; Quadrilatero, Joe; Baechler, Brittany L; Baker, Steven K; Phillips, Stuart M

    2016-07-01

    We reported, using a unilateral resistance training (RT) model, that training with high or low loads (mass per repetition) resulted in similar muscle hypertrophy and strength improvements in RT-naïve subjects. Here we aimed to determine whether the same was true in men with previous RT experience using a whole-body RT program and whether postexercise systemic hormone concentrations were related to changes in hypertrophy and strength. Forty-nine resistance-trained men (23 ± 1 yr, mean ± SE) performed 12 wk of whole-body RT. Subjects were randomly allocated into a higher-repetition (HR) group who lifted loads of ∼30-50% of their maximal strength (1RM) for 20-25 repetitions/set (n = 24) or a lower-repetition (LR) group (∼75-90% 1RM, 8-12 repetitions/set, n = 25), with all sets being performed to volitional failure. Skeletal muscle biopsies, strength testing, dual-energy X-ray absorptiometry scans, and acute changes in systemic hormone concentrations were examined pretraining and posttraining. In response to RT, 1RM strength increased for all exercises in both groups (P < 0.01), with only the change in bench press being significantly different between groups (HR, 9 ± 1, vs. LR, 14 ± 1 kg, P = 0.012). Fat- and bone-free (lean) body mass and type I and type II muscle fiber cross-sectional area increased following training (P < 0.01) with no significant differences between groups. No significant correlations between the acute postexercise rise in any purported anabolic hormone and the change in strength or hypertrophy were found. In congruence with our previous work, acute postexercise systemic hormonal rises are not related to or in any way indicative of RT-mediated gains in muscle mass or strength. Our data show that in resistance-trained individuals, load, when exercises are performed to volitional failure, does not dictate hypertrophy or, for the most part, strength gains. Copyright © 2016 the American Physiological Society.

  9. Grain size dependence of dynamic mechanical behavior of AZ31B magnesium alloy sheet under compressive shock loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asgari, H., E-mail: hamed.asgari@usask.ca; Odeshi, A.G.; Szpunar, J.A.

    2015-08-15

    The effects of grain size on the dynamic deformation behavior of rolled AZ31B alloy at high strain rates were investigated. Rolled AZ31B alloy samples with grain sizes of 6, 18 and 37 μm, were subjected to shock loading tests using Split Hopkinson Pressure Bar at room temperature and at a strain rate of 1100 s{sup −} {sup 1}. It was found that a double-peak basal texture formed in the shock loaded samples. The strength and ductility of the alloy under the high strain-rate compressive loading increased with decreasing grain size. However, twinning fraction and strain hardening rate were found tomore » decrease with decreasing grain size. In addition, orientation imaging microscopy showed a higher contribution of double and contraction twins in the deformation process of the coarse-grained samples. Using transmission electron microscopy, pyramidal dislocations were detected in the shock loaded sample, proving the activation of pyramidal slip system under dynamic impact loading. - Highlights: • A double-peak basal texture developed in all shock loaded samples. • Both strength and ductility increased with decreasing grain size. • Twinning fraction and strain hardening rate decreased with decreasing grain size. • ‘g.b’ analysis confirmed the presence of dislocations in shock loaded alloy.« less

  10. Mechanical and Thermal Properties of Epoxy Composites Containing Zirconia-Impregnated Halloysite Nanotubes with Different Loadings.

    PubMed

    Kim, Suhyun; Kim, Moon Il; Shon, Minyoung; Seo, Bongkuk; Lim, Choongsun

    2018-09-01

    Epoxy resins are widely used in various industrial fields due to their low cost, good workability, heat resistance, and good mechanical strength. However, they suffer from brittleness, an issue that must be addressed for further applications. To solve this problem, additional fillers are needed to improve the mechanical and thermal properties of the resins; zirconia is one such filler. However, it has been reported that aggregation may occur in the epoxy composites as the amount of zirconia increases, preventing enhancement of the mechanical strength of the epoxy composites. Herein, to reduce the aggregation, zirconia was well dispersed on halloysite nanotubes (HNTs), which have high thermal and mechanical strength, by a conventional wet impregnation method. The HNTs were impregnated with zirconia at different loadings using zirconyl chloride octahydrate as a precursor. The mechanical and thermal strengths of the epoxy composites with these fillers were investigated. The zirconia-impregnated HNTs (Zr/HNT) were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and tunneling electron microscopy (TEM). The hardening conditions of the epoxy composites were analyzed by differential scanning calorimetry (DSC). The thermal strength of the epoxy composites was studied by thermomechanical analysis (TMA) and micro-calorimetry and the mechanical strength of the epoxy composites (flexural strength and tensile strength) was studied by using a universal testing machine (UTM). The mechanical and thermal strengths of the epoxy composites with Zr/HNT were improved compared to those of the epoxy composite with HNT, and also increased as the zirconia loading on HNT increased.

  11. Experimental Investigations on Axially and Eccentrically Loaded Masonry Walls

    NASA Astrophysics Data System (ADS)

    Keshava, Mangala; Raghunath, Seshagiri Rao

    2017-12-01

    In India, un-reinforced masonry walls are often used as main structural components in load bearing structures. Indian code on masonry accounts the reduction in strength of walls by using stress reduction factors in its design philosophy. This code was introduced in 1987 and reaffirmed in 1995. The present study investigates the use of these factors for south Indian masonry. Also, with the gaining popularity in block work construction, the aim of this study was to find out the suitability of these factors given in the Indian code to block work masonry. Normally, the load carrying capacity of masonry walls can be assessed in three ways, namely, (1) tests on masonry constituents, (2) tests on masonry prisms and (3) tests on full-scale wall specimens. Tests on bricks/blocks, cement-sand mortar, brick/block masonry prisms and 14 full-scale brick/block masonry walls formed the experimental investigation. The behavior of the walls was investigated under varying slenderness and eccentricity ratios. Hollow concrete blocks normally used as in-fill masonry can be considered as load bearing elements as its load carrying capacity was found to be high when compared to conventional brick masonry. Higher slenderness and eccentricity ratios drastically reduced the strength capacity of south Indian brick masonry walls. The reduction in strength due to slenderness and eccentricity is presented in the form of stress reduction factors in the Indian code. These factors obtained through experiments on eccentrically loaded brick masonry walls was lower while that of brick/block masonry under axial loads was higher than the values indicated in the Indian code. Also the reduction in strength is different for brick and block work masonry thus indicating the need for separate stress reduction factors for these two masonry materials.

  12. Greater Neural Adaptations following High- vs. Low-Load Resistance Training

    PubMed Central

    Jenkins, Nathaniel D. M.; Miramonti, Amelia A.; Hill, Ethan C.; Smith, Cory M.; Cochrane-Snyman, Kristen C.; Housh, Terry J.; Cramer, Joel T.

    2017-01-01

    We examined the neuromuscular adaptations following 3 and 6 weeks of 80 vs. 30% one repetition maximum (1RM) resistance training to failure in the leg extensors. Twenty-six men (age = 23.1 ± 4.7 years) were randomly assigned to a high- (80% 1RM; n = 13) or low-load (30% 1RM; n = 13) resistance training group and completed leg extension resistance training to failure 3 times per week for 6 weeks. Testing was completed at baseline, 3, and 6 weeks of training. During each testing session, ultrasound muscle thickness and echo intensity, 1RM strength, maximal voluntary isometric contraction (MVIC) strength, and contractile properties of the quadriceps femoris were measured. Percent voluntary activation (VA) and electromyographic (EMG) amplitude were measured during MVIC, and during randomly ordered isometric step muscle actions at 10–100% of baseline MVIC. There were similar increases in muscle thickness from Baseline to Week 3 and 6 in the 80 and 30% 1RM groups. However, both 1RM and MVIC strength increased from Baseline to Week 3 and 6 to a greater degree in the 80% than 30% 1RM group. VA during MVIC was also greater in the 80 vs. 30% 1RM group at Week 6, and only training at 80% 1RM elicited a significant increase in EMG amplitude during MVIC. The peak twitch torque to MVIC ratio was also significantly reduced in the 80%, but not 30% 1RM group, at Week 3 and 6. Finally, VA and EMG amplitude were reduced during submaximal torque production as a result of training at 80% 1RM, but not 30% 1RM. Despite eliciting similar hypertrophy, 80% 1RM improved muscle strength more than 30% 1RM, and was accompanied by increases in VA and EMG amplitude during maximal force production. Furthermore, training at 80% 1RM resulted in a decreased neural cost to produce the same relative submaximal torques after training, whereas training at 30% 1RM did not. Therefore, our data suggest that high-load training results in greater neural adaptations that may explain the disparate increases in muscle strength despite similar hypertrophy following high- and low-load training programs. PMID:28611677

  13. Improvement of mechanical strength of sintered Mo alloyed steel by optimization of sintering and cold-forging processes with densification

    NASA Astrophysics Data System (ADS)

    Kamakoshi, Y.; Shohji, I.; Inoue, Y.; Fukuda, S.

    2017-10-01

    Powder metallurgy (P/M) materials have been expected to be spread in automotive industry. Generally, since sintered materials using P/M ones contain many pores and voids, mechanical properties of them are inferior to those of conventional wrought materials. To improve mechanical properties of the sintered materials, densification is effective. The aim of this study is to improve mechanical strength of sintered Mo-alloyed steel by optimizing conditions in sintering and cold-forging processes. Mo-alloyed steel powder was compacted. Then, pre-sintering (PS) using a vacuum sintering furnace was conducted. Subsequently, coldforging (CF) by a backward extrusion method was conducted to the pre-sintered specimen. Moreover, the cold-forged specimen was heat treated by carburizing, tempering and quenching (CQT). Afterwards, mechanical properties were investigated. As a result, it was found that the density of the PS specimen is required to be more than 7.4 Mg/m3 to strengthen the specimen by heat treatment after CF. Furthermore, density and the microstructure of the PS specimen are most important factors to make the high density and strength material by CF. At the CF load of 1200 kN, the maximum density ratio reached approximately 99% by the use of the PS specimen with proper density and microstructure. At the CF load of 900 kN, although density ratio was high like more than 97.8%, transverse rupture strength decreased sharply. Since densification caused high shear stress and stress concentration in the surface layer, microcracks occurred by the damages of inter-particle sintered connection of the surface layer. On the contrary, in case of the CF load of 1200 kN, ultra-densification of the surface layer occurred by a sufficient plastic flow. Such sufficient compressed specimens regenerated the sintered connections by high temperature heat treatment and thus the high strength densified material was obtained. These processes can be applicable to near net shape manufacturing without surface machining.

  14. Performance evaluation of high-strength steel pipelines for high-pressure gaseous hydrogen transportation.

    DOT National Transportation Integrated Search

    2009-01-01

    Pipeline steels suffer significant degradation of their mechanical properties in high-pressure : gaseous hydrogen, including their fatigue cracking resistances to cyclic loading. The current : project work was conducted to produce fatigue crack growt...

  15. High-Cycle Fatigue of High-Strength Low Alloy Steel Q345 Subjected to Immersion Corrosion for Mining Wheel Applications

    NASA Astrophysics Data System (ADS)

    Dicecco, Sante; Altenhof, William; Hu, Henry; Banting, Richard

    2017-04-01

    In an effort to better understand the impact of material degradation on the fatigue life of mining wheels made of a high-strength low alloy carbon steel (Q345), this study seeks to evaluate the effect of surface corrosion on the high-cycle fatigue behavior of the Q345 alloy. The fatigue behavior of the polished and corroded alloy was investigated. Following exposure to a 3.5 wt.% NaCl saltwater solution, polished and corroded fatigue specimens were tested using an R.R. Moore rotating-bending fatigue apparatus. Microstructural analyses via both optical microscopy and scanning electron microscopy (SEM) revealed that one major phase, α-iron phase, ferrite, and one minor phase, colony pearlite, existed in the extracted Q345 alloy. The results of the fatigue testing showed that the polished and corroded specimens had an endurance strength of approximately 295 and 222 MPa, respectively, at 5,000,000 cycles. The corroded surface condition resulted in a decrease in the fatigue strength of the Q345 alloy by 24.6%. Scanning electron microscope fractography indicated that failure modes for polished and corroded fatigue specimens were consistent in the high-cycle low loading fatigue regime. Conversely, SEM fractography of low-cycle high-loading fatigue specimens found considerable differences in fracture surfaces between the corroded and polished fatigue specimens.

  16. Zinc alloy enhances strength and creep resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machler, M.

    1996-10-01

    A family of high-performance ternary zinc-copper-aluminum alloys has been developed that provides higher strength, hardness, and creep resistance than the traditional zinc-aluminum alloys Zamak 3, Zamak 5, and ZA-8. Designated ACuZinc, mechanical properties comparable to those of more expensive materials make it suitable for high-load applications and those at elevated temperatures. This article describes the alloy`s composition, properties, and historical development.

  17. Molecular Dynamics Simulations for Loading-Dependent Diffusion of CO2, SO2, CH4, and Their Binary Mixtures in ZIF-10: The Role of Hydrogen Bond.

    PubMed

    Li, Li; Yang, Deshuai; Fisher, Trevor R; Qiao, Qi; Yang, Zhen; Hu, Na; Chen, Xiangshu; Huang, Liangliang

    2017-10-24

    The loading-dependent diffusion behavior of CH 4 , CO 2 , SO 2 , and their binary mixtures in ZIF-10 has been investigated in detail by using classical molecular dynamics simulations. Our simulation results demonstrate that the self-diffusion coefficient D i of CH 4 molecules decreases sharply and monotonically with the loading while those of both CO 2 and SO 2 molecules initially display a slight increase at low uptakes and follow a slow decrease at high uptakes. Accordingly, the interaction energies between CH 4 molecules and ZIF-10 remain nearly constant regardless of the loading due to the absence of hydrogen bonds (HBs), while the interaction energies between CO 2 (or SO 2 ) and ZIF-10 decease rapidly with the loading, especially at small amounts of gas molecules. Such different loading-dependent diffusion and interaction mechanisms can be attributed to the relevant HB behavior between gas molecules and ZIF-10. At low loadings, both the number and strength of HBs between CO 2 (or SO 2 ) molecules and ZIF-10 decrease obviously as the loading increases, which is responsible for the slight increase of their diffusion coefficients. However, at high loadings, their HB strength increases with the loading. Similar loading-dependent phenomena of diffusion, interaction, and HB behavior can be observed for CH 4, CO 2 , and SO 2 binary mixtures in ZIF-10, only associated with some HB competition between CO 2 and SO 2 molecules in the case of the CO 2 /SO 2 mixture.

  18. Determining the strengths of HCP slip systems using harmonic analyses of lattice strain distributions

    DOE PAGES

    Dawson, Paul R.; Boyce, Donald E.; Park, Jun-Sang; ...

    2017-10-15

    A robust methodology is presented to extract slip system strengths from lattice strain distributions for polycrystalline samples obtained from high-energy x-ray diffraction (HEXD) experiments with in situ loading. The methodology consists of matching the evolution of coefficients of a harmonic expansion of the distributions from simulation to the coefficients derived from measurements. Simulation results are generated via finite element simulations of virtual polycrystals that are subjected to the loading history applied in the HEXD experiments. Advantages of the methodology include: (1) its ability to utilize extensive data sets generated by HEXD experiments; (2) its ability to capture trends in distributionsmore » that may be noisy (both measured and simulated); and (3) its sensitivity to the ratios of the family strengths. The approach is used to evaluate the slip system strengths of Ti-6Al-4V using samples having relatively equiaxed grains. These strength estimates are compared to values in the literature.« less

  19. Age-related changes in bone strength from HR-pQCT derived microarchitectural parameters with an emphasis on the role of cortical porosity.

    PubMed

    Vilayphiou, Nicolas; Boutroy, Stephanie; Sornay-Rendu, Elisabeth; Van Rietbergen, Bert; Chapurlat, Roland

    2016-02-01

    The high resolution peripheral computed tomography (HR-pQCT) technique has seen recent developments with regard to the assessment of cortical porosity. In this study, we investigated the role of cortical porosity on bone strength in a large cohort of women. The distal radius and distal tibia were scanned by HR-pQCT. We assessed bone strength by estimating the failure load by microfinite element analysis (μFEA), with isotropic and homogeneous material properties. We built a multivariate model to predict it, using a few microarchitecture variables including cortical porosity. Among 857 Caucasian women analyzed with μFEA, we found that cortical and trabecular properties, along with the failure load, impaired slightly with advancing age in premenopausal women, the correlations with age being modest, with |rage| ranging from 0.14 to 0.38. After the onset of the menopause, those relationships with age were stronger for most parameters at both sites, with |rage| ranging from 0.10 to 0.64, notably for cortical porosity and failure load, which were markedly deteriorated with increasing age. Our multivariate model using microarchitecture parameters revealed that cortical porosity played a significant role in bone strength prediction, with semipartial r(2)=0.22 only at the tibia in postmenopausal women. In conclusion, in our large cohort of women, we observed a small decline of bone strength at the tibia before the onset of menopause. We also found an age-related increase of cortical porosity at both scanned sites in premenopausal women. In postmenopausal women, the relatively high increase of cortical porosity accounted for the decline in bone strength only at the tibia. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Constant load and constant volume response of municipal solid waste in simple shear.

    PubMed

    Zekkos, Dimitrios; Fei, Xunchang

    2017-05-01

    Constant load and constant volume simple shear testing was conducted on relatively fresh municipal solid waste (MSW) from two landfills in the United States, one in Michigan and a second in Texas, at respective natural moisture content below field capacity. The results were assessed in terms of two failure strain criteria, at 10% and 30% shear strain, and two interpretations of effective friction angle. Overall, friction angle obtained assuming that the failure plane is horizontal and at 10% shear strain resulted in a conservative estimation of shear strength of MSW. Comparisons between constant volume and constant load simple shear testing results indicated significant differences in the shear response of MSW with the shear resistance in constant volume being lower than the shear resistance in constant load. The majority of specimens were nearly uncompacted during specimen preparation to reproduce the state of MSW in bioreactor landfills or in uncontrolled waste dumps. The specimens had identical percentage of <20mm material but the type of <20mm material was different. The <20mm fraction from Texas was finer and of high plasticity. MSW from Texas was overall weaker in both constant load and constant volume conditions compared to Michigan waste. The results of these tests suggest the possibility of significantly lower shear strength of MSW in bioreactor landfills where waste is placed with low compaction effort and constant volume, i.e., "undrained", conditions may occur. Compacted MSW specimens resulted in shear strength parameters that are higher than uncompacted specimens and closer to values reported in the literature. However, the normalized undrained shear strength in simple shear for uncompacted and compacted MSW was still higher than the normalized undrained shear strength reported in the literature for clayey and silty soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, Paul R.; Boyce, Donald E.; Park, Jun-Sang

    A robust methodology is presented to extract slip system strengths from lattice strain distributions for polycrystalline samples obtained from high-energy x-ray diffraction (HEXD) experiments with in situ loading. The methodology consists of matching the evolution of coefficients of a harmonic expansion of the distributions from simulation to the coefficients derived from measurements. Simulation results are generated via finite element simulations of virtual polycrystals that are subjected to the loading history applied in the HEXD experiments. Advantages of the methodology include: (1) its ability to utilize extensive data sets generated by HEXD experiments; (2) its ability to capture trends in distributionsmore » that may be noisy (both measured and simulated); and (3) its sensitivity to the ratios of the family strengths. The approach is used to evaluate the slip system strengths of Ti-6Al-4V using samples having relatively equiaxed grains. These strength estimates are compared to values in the literature.« less

  2. Peg supported thermal insulation panel

    DOEpatents

    Nowobilski, Jeffert J.; Owens, William J.

    1985-01-01

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

  3. High temperature ceramic interface study

    NASA Technical Reports Server (NTRS)

    Lindberg, L. J.

    1984-01-01

    Monolithic SiC and Si3N4 are susceptible to contact stress damage at static and sliding interfaces. Transformation-toughened zirconia (TTZ) was evaluated under sliding contact conditions to determine if the higher material fracture toughness would reduce the susceptibility to contact stress damage. Contact stress tests were conducted on four commercially available TTZ materials at normal loads ranging from 0.455 to 22.7 kg (1 to 50 pounds) at temperatures ranging from room temperature to 1204C (2200 F). Static and dynamic friction were measured as a function of temperature. Flexural strength measurements after these tests determined that the contact stress exposure did not reduce the strength of TTZ at contact loads of 0.455, 4.55, and 11.3 kg (1, 10, and 25 pounds). Prior testing with the lower toughness SiC and Si3N4 materials resulted in a substantial strength reduction at loads of only 4.55 and 11.3 kg (10 and 25 pounds). An increase in material toughness appears to improve ceramic material resistance to contact stress damage. Baseline material flexure strength was established and the stress rupture capability of TTZ was evaluated. Stress rupture tests determined that TTZ materials are susceptible to deformation due to creep and that aging of TTZ materials at elevated temperatures results in a reduction of material strength.

  4. Dynamic plasticity and failure of high-purity alumina under shock loading.

    PubMed

    Chen, M W; McCauley, J W; Dandekar, D P; Bourne, N K

    2006-08-01

    Most high-performance ceramics subjected to shock loading can withstand high failure strength and exhibit significant inelastic strain that cannot be achieved under conventional loading conditions. The transition point from elastic to inelastic response prior to failure during shock loading, known as the Hugoniot elastic limit (HEL), has been widely used as an important parameter in the characterization of the dynamic mechanical properties of ceramics. Nevertheless, the underlying micromechanisms that control HEL have been debated for many years. Here we show high-resolution electron microscopy of high-purity alumina, soft-recovered from shock-loading experiments. The change of deformation behaviour from dislocation activity in the vicinity of grain boundaries to deformation twinning has been observed as the impact pressures increase from below, to above HEL. The evolution of deformation modes leads to the conversion of material failure from an intergranular mode to transgranular cleavage, in which twinning interfaces serve as the preferred cleavage planes.

  5. Evaluation of Thin Kevlar-Epoxy Fabric Panels Subjected to Shear Loading

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.

    1996-01-01

    The results of an analytical and experimental investigation of 4-ply Kevlar-49-epoxy panels loaded by in-plane shear are presented. Approximately one-half of the panels are thin-core sandwich panels and the other panels are solid-laminate panels. Selected panels were impacted with an aluminum sphere at a velocity of either 150 or 220 ft/sec. The strength of panels impacted at 150 ft/sec was not reduced when compared to the strength of the undamaged panels, but the strength of panels impacted at 220 ft/sec was reduced by 27 to 40 percent. Results are presented for panels that were cyclically loaded from a load less than the buckling load to a load in the postbuckling load range. The thin-core sandwich panels had a lower fatigue life than the solid panels. The residual strength of the solid and sandwich panels cycled more than one million cycles exceeded the baseline undamaged panel strengths. The effect of hysteresis in the response of the sandwich panels is not significant. Results of a nonlinear finite element analysis conducted for each panel design are presented.

  6. Unusual plasticity and strength of metals at ultra-short load durations

    NASA Astrophysics Data System (ADS)

    Kanel, G. I.; Zaretsky, E. B.; Razorenov, S. V.; Ashitkov, S. I.; Fortov, V. E.

    2017-08-01

    This paper briefly reviews recent experimental results on the temperature-rate dependences of flow and fracture stresses in metals under high strain rate conditions for pulsed shock-wave loads with durations from tens of picoseconds up to microseconds. In the experiments, ultimate (‘ideal’) values of the shear and tensile strengths have been approached and anomalous growth of the yield stress with temperature at high strain rates has been confirmed for some metals. New evidence is obtained for the intense dislocation multiplication immediately originating in the elastic precursor of a compression shock wave. It is found that under these conditions inclusions and other strengthening factors may have a softening effect. Novel and unexpected features are observed in the evolution of elastoplastic compression shock waves.

  7. Effects of mechanical and thermal cycling on composite and hybrid laminates with residual stresses

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Liber, T.

    1977-01-01

    The effects of tensile load cycling and thermal cycling on residual stiffness and strength properties of the following composite and hybrid angle-ply laminates were studied: boron/epoxy, boron/polyimide, graphite/low-modulus epoxy, graphite/high-modulus epoxy, graphite/polyimide, S-glass/epoxy, graphite/Kevlar 49/epoxy, and graphite/S-glass/epoxy. Specimens of the first six types were mechanically cycled up to 90% of static strength. Those that survived 10 million cycles were tested statically to failure, and no significant changes in residual strength and modulus were noted. Specimens of all types were subjected to thermal cycling between room temperature and 411 K for the epoxy-matrix composites and 533 K for the polyimide-matrix composites. The residual strength and stiffness remained largely unchanged, except for the graphite/low-modulus epoxy, which showed reductions in both of approximately 35%. When low-temperature thermal cycling under tensile load was applied, there was a noticeable reduction in modulus and strength in the graphite/low-modulus epoxy and some strength reduction in the S-glass/epoxy.

  8. Development of implants composed of bioactive materials for bone repair

    NASA Astrophysics Data System (ADS)

    Xiao, Wei

    The purpose of this Ph.D. research was to address the clinical need for synthetic bioactive materials to heal defects in non-loaded and loaded bone. Hollow hydroxyapatite (HA) microspheres created in a previous study were evaluated as a carrier for controlled release of bone morphogenetic protein-2 (BMP2) in bone regeneration. New bone formation in rat calvarial defects implanted with BMP2-loaded microspheres (43%) was significantly higher than microspheres without BMP2 (17%) at 6 weeks postimplantation. Then hollow HA microspheres with a carbonate-substituted composition were prepared to improve their resorption rate. Hollow HA microspheres with 12 wt. % of carbonate showed significantly higher new bone formation (73 +/- 8%) and lower residual HA (7 +/- 2%) than stoichiometric HA microspheres (59 +/- 2% new bone formation; 21 +/- 3% residual HA). The combination of carbonate-substituted hollow HA microspheres and clinically-safe doses of BMP2 could provide promising implants for healing non-loaded bone defects. Strong porous scaffolds of bioactive silicate (13-93) glass were designed with the aid of finite-element modeling, created by robocasting and evaluated for loaded bone repair. Scaffolds with a porosity gradient to mimic human cortical bone showed a compressive strength of 88 +/- 20 MPa, a flexural strength of 34 +/- 5 MPa and the ability to support bone infiltration in vivo. The addition of a biodegradable polylactic acid (PLA) layer to the external surface of these scaffolds increased their load-bearing capacity in four-point bending by 50% and dramatically enhanced their work of fracture, resulting in a "ductile" mechanical response. These bioactive glass-PLA composites, combining bioactivity, high strength, high work of fracture and an internal architecture conducive to bone infiltration, could provide optimal implants for structural bone repair.

  9. Effects of proof loads and combined mode loadings on fracture and flaw growth characteristics of aerospace alloys

    NASA Technical Reports Server (NTRS)

    Shah, R. C.

    1974-01-01

    This experimental program was undertaken to determine the effects of (1) combined tensile and bending loadings, (2) combined tensile and shear loadings, and (3) proof overloads on fracture and flaw growth characteristics of aerospace alloys. Tests were performed on four alloys: 2219-T87 aluminum, 5Al-2.5Sn (ELl) titanium, 6Al-4V beta STA titanium and high strength 4340 steel. Tests were conducted in room air, gaseous nitrogen at -200F (144K), liquid nitrogen and liquid hydrogen. Flat center cracked and surface flawed specimens, cracked tube specimens, circumferentially notched round bar and surface flawed cylindrical specimens were tested. The three-dimensional photoelastic technique of stress freezing and slicing was used to determine stress intensity factors for surface flawed cylindrical specimens subjected to tension or torsion. Results showed that proof load/temperature histories used in the tests have a small beneficial effect or no effect on subsequent fracture strength and flaw growth rates.

  10. Hydrodynamic Characteristics and Strength Analysis of a Novel Dot-matrix Oscillating Wave Energy Converter

    NASA Astrophysics Data System (ADS)

    Shao, Meng; Xiao, Chengsi; Sun, Jinwei; Shao, Zhuxiao; Zheng, Qiuhong

    2017-12-01

    The paper analyzes hydrodynamic characteristics and the strength of a novel dot-matrix oscillating wave energy converter, which is in accordance with nowadays’ research tendency: high power, high efficiency, high reliability and low cost. Based on three-dimensional potential flow theory, the paper establishes motion control equations of the wave energy converter unit and calculates wave loads and motions. On this basis, a three-dimensional finite element model of the device is built to check its strength. Through the analysis, it can be confirmed that the WEC is feasible and the research results could be a reference for wave energy’s exploration and utilization.

  11. Investigation of the deformation mechanisms of core-shell rubber-modified epoxy at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Brown, Hayley Rebecca

    The industrial demand for high strength-to-weight ratio materials is increasing due to the need for high performance components. Epoxy polymers, although often used in fiber-reinforced polymeric composites, have an inherent low toughness that further decreases with decreasing temperatures. Second-phase additives have been effective in increasing the toughness of epoxies at room temperature; however, the mechanisms at low temperatures are still not understood. In this study, the deformation mechanisms of a DGEBA epoxy modified with MX960 core-shell rubber (CSR) particles were investigated under quasi-static tensile and impact loads at room temperature (RT) and liquid nitrogen (LN 2) temperature. Overall, the CSR had little effect on the tensile properties at RT and LN2 temperature. The impact strength decreased from neat to 3 wt% but increased from neat to 5 wt% at RT and LN2 temperature, with a higher impact strength at RT at all CSR loadings. The CSR particles debonded in front of the crack tip, inducing voids into the matrix. It was found that an increase in shear deformation and void growth likely accounted for the higher impact strength at 5 wt% CSR loading at RT while the thermal stress fields due to the coefficient of thermal expansion mismatch between rubber and epoxy and an increase in secondary cracking is likely responsible for the higher impact strength at 5 wt% tested at LN2 temperature. While a large toughening effect was not seen in this study, the mechanisms analyzed herein will likely be of use for further material investigations at cryogenic temperatures.

  12. Influence of Abutment Design on Stiffness, Strength, and Failure of Implant-Supported Monolithic Resin Nano Ceramic (RNC) Crowns.

    PubMed

    Joda, Tim; Huber, Samuel; Bürki, Alexander; Zysset, Philippe; Brägger, Urs

    2015-12-01

    Recent technical development allows the digital manufacturing of monolithic reconstructions with high-performance materials. For implant-supported crowns, the fixation requires an abutment design onto which the reconstruction can be bonded. The aim of this laboratory investigation was to analyze stiffness, strength, and failure modes of implant-supported, computer-assisted design and computer-aided manufacturing (CAD/CAM)-generated resin nano ceramic (RNC) crowns bonded to three different titanium abutments. Eighteen monolithic RNC crowns were produced and loaded in a universal testing machine under quasi-static condition according to DIN ISO 14801. With regard to the type of titanium abutment, three groups were defined: (1) prefabricated cementable standard; (2) CAD/CAM-constructed individualized; and (3) novel prefabricated bonding base. Stiffness and strength were measured and analyzed statistically with Wilcoxon rank sum test. Sections of the specimens were examined microscopically. Stiffness demonstrated high stability for all specimens loaded in the physiological loading range with means and standard deviations of 1,579 ± 120 N/mm (group A), 1,733 ± 89 N/mm (group B), and 1,704 ± 162 N/mm (group C). Mean strength of the novel prefabricated bonding base (group C) was 17% lower than of the two other groups. Plastic deformations were detectable for all implant-abutment crown connections. Monolithic implant crowns made of RNC seem to represent a feasible and stable prosthetic construction under laboratory testing conditions with strength higher than the average occlusal force, independent of the different abutment designs used in this investigation. © 2014 Wiley Periodicals, Inc.

  13. The development of test methodology for testing glassy materials

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.

    1987-01-01

    The inherent brittleness of glass invariably leads to a large variability in strength data and a time dependence in strength (i.e., static fatigue). Loading rate plays a large role in strength values. Glass is found to be weaker when supporting loads over long periods as compared to glass which undergoes rapid loading. In this instance the purpose of rapid loading is to fail the glass before any significant crack growth occurs. However, a decrease in strength occurs with a decrease in loading rate, pursuant to substantial crack extension. These properties complicate the structural design allowable for the utilization of glass components in applications such as mirrors for the Space Telescope and AXAF for Spacelab and the space station.

  14. Changes in the Strength of the Polymer Concrete Used in the Electroplating Vats Under Operational Load

    NASA Astrophysics Data System (ADS)

    Radna, Lidia; Sakharov, Volodymyr

    2017-12-01

    Due to the strong and aggressive electrolyte media and thermal load, design of the electroplating vats in the copper industry often relies on the resin concrete. The article presents the results of the strength tests of the polymer concrete based on the "Derakane" resin, used in the construction of electroplating vats. Samples were taken from the real vats - both new and 17-year old. Strength tests included compression and bending tensile strength test. To assess the effect of operational conditions the tests were performed on the same-age vats, some of which were never used while others were subjected to the operational load. During the operation, the vats sustained load of the anode and cathode weights, cyclic electrolyte loading with a temperatures up to 60°C. As a result, it was noted that the operational conditions led to the increased strength of the polymer concrete material.

  15. A study of stiffness, residual strength and fatigue life relationships for composite laminates

    NASA Technical Reports Server (NTRS)

    Ryder, J. T.; Crossman, F. W.

    1983-01-01

    Qualitative and quantitative exploration of the relationship between stiffness, strength, fatigue life, residual strength, and damage of unnotched, graphite/epoxy laminates subjected to tension loading. Clarification of the mechanics of the tension loading is intended to explain previous contradictory observations and hypotheses; to develop a simple procedure to anticipate strength, fatigue life, and stiffness changes; and to provide reasons for the study of more complex cases of compression, notches, and spectrum fatigue loading. Mathematical models are developed based upon analysis of the damage states. Mathematical models were based on laminate analysis, free body type modeling or a strain energy release rate. Enough understanding of the tension loaded case is developed to allow development of a proposed, simple procedure for calculating strain to failure, stiffness, strength, data scatter, and shape of the stress-life curve for unnotched laminates subjected to tension load.

  16. Peg supported thermal insulation panel

    DOEpatents

    Nowobilski, J.J.; Owens, W.J.

    1985-04-30

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

  17. Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapata-Solvas, E.; Jayaseelan, D.; Lin, Hua-Tay

    2013-01-01

    Flexural strengths at room temperature, at 1400 C in air and at room temperature after 1 h oxidation at 1400 C were determined for ZrB2- and HfB2-based ultra-high temperature ceramics (UHTCs). Defects caused by electrical discharge machining (EDM) lowered measured strengths significantly and were used to calculate fracture toughness via a fracture mechanics approach. ZrB2 with 20 vol.% SiC had room temperature strength of 700 90 MPa, fracture toughness of 6.4 0.6 MPa, Vickers hardness at 9.8 N load of 21.1 0.6 GPa, 1400 C strength of 400 30 MPa and room temperature strength after 1 h oxidation at 1400more » C of 678 15 MPa with an oxide layer thickness of 45 5 m. HfB2 with 20 vol.% SiC showed room temperature strength of 620 50 MPa, fracture toughness of 5.0 0.4 MPa, Vickers hardness at 9.8 N load of 27.0 0.6 GPa, 1400 C strength of 590 150 MPa and room temperature strength after 1 h oxidation at 1400 C of 660 25 MPa with an oxide layer thickness of 12 1 m. 2 wt.% La2O3 addition to UHTCs slightly reduced mechanical performance while increasing tolerance to property degradation after oxidation and effectively aided internal stress relaxation during spark plasma sintering (SPS) cooling, as quantified by X-ray diffraction (XRD). Slow crack growth was suggested as the failure mechanism at high temperatures as a consequence of sharp cracks formation during oxidation.« less

  18. The Effects of Low-Dose Creatine Supplementation Versus Creatine Loading in Collegiate Football Players

    PubMed Central

    Deivert, Richard G.; Hagerman, Frederick; Gilders, Roger

    2001-01-01

    Objective: To compare the effects of low doses of creatine and creatine loading on strength, urinary creatinine concentration, and percentage of body fat. Design and Setting: Division IA collegiate football players took creatine monohydrate for 10 weeks during a sport-specific, periodized, off-season strength and conditioning program. One-repetition maximum (1-RM) squat, urinary creatinine concentrations, and percentage of body fat were analyzed. Subjects: Twenty-five highly trained, Division IA collegiate football players with at least 1 year of college playing experience. Measurements: We tested strength with a 1-RM squat exercise before, during, and after creatine supplementation. Percentage of body fat was measured by hydrostatic weighing before and after supplementation. Urinary creatinine concentration was measured via light spectrophotometer at 0, 1, 3, 7, 14, 21, 28, 35, 42, 48, 56, and 63 days. An analysis of variance with repeated measures was computed to compare means for all variables. Results: Creatine supplementation had no significant group, time, or interaction effects on strength, urinary creatinine concentration, or percentage of body fat. However, significant time effects were found for 1-RM squat and fat-free mass in all groups. Conclusions: Our data suggest that creatine monohydrate in any amount does not have any beneficial ergogenic effects in highly trained collegiate football players. However, a proper resistance training stimulus for 10 weeks can increase strength and fat-free mass in highly trained athletes. PMID:12937451

  19. The stress relaxation of cement clinkers under high temperature

    NASA Astrophysics Data System (ADS)

    Wang, Xiufang; Bao, Yiwang; Liu, Xiaogen; Qiu, Yan

    2015-12-01

    The energy consumption of crushing is directly affected by the mechanical properties of cement materials. This research provides a theoretical proof for the mechanism of the stress relaxation of cement clinkers under high temperature. Compression stress relaxation under various high temperatures is discussed using a specially developed load cell, which can measure stress and displacement under high temperatures inside an autoclave. The cell shows that stress relaxation dramatically increases and that the remaining stress rapidly decreases with an increase in temperature. Mechanical experiments are conducted under various temperatures during the cooling process to study the changes in the grinding resistance of the cement clinker with temperature. The effects of high temperature on the load-displacement curve, compressive strength, and elastic modulus of cement clinkers are systematically studied. Results show that the hardening phenomenon of the clinker becomes apparent with a decrease in temperature and that post-peak behaviors manifest characteristics of the transformation from plasticity to brittleness. The elastic modulus and compressive strength of cement clinkers increase with a decrease in temperature. The elastic modulus increases greatly when the temperature is lower than 1000 °C. The compressive strength of clinkers increases by 73.4% when the temperature drops from 1100 to 800 °C.

  20. Cryogenic properties of dispersion strengthened copper for high magnetic fields

    NASA Astrophysics Data System (ADS)

    Toplosky, V. J.; Han, K.; Walsh, R. P.; Swenson, C. A.

    2014-01-01

    Cold deformed copper matrix composite conductors, developed for use in the 100 tesla multi-shot pulsed magnet at the National High Magnetic Field Laboratory (NHMFL), have been characterized. The conductors are alumina strengthened copper which is fabricated by cold drawing that introduces high dislocation densities and high internal stresses. Both alumina particles and high density of dislocations provide us with high tensile strength and fatigue endurance. The conductors also have high electrical conductivities because alumina has limited solubility in Cu and dislocations have little scattering effect on conduction electrons. Such a combination of high strength and high conductivity makes it an excellent candidate over other resistive magnet materials. Thus, characterization is carried out by tensile testing and fully reversible fatigue testing. In tensile tests, the material exceeds the design criteria parameters. In the fatigue tests, both the load and displacement were measured and used to control the amplitude of the tests to simulate the various loading conditions in the pulsed magnet which is operated at 77 K in a non-destructive mode. In order to properly simulate the pulsed magnet operation, strain-controlled tests were more suitable than load controlled tests. For the dispersion strengthened coppers, the strengthening mechanism of the aluminum oxide provided better tensile and fatigue properties over convention copper.

  1. Simultaneous structural and environmental loading of an ultra-high performance concrete component

    DOT National Transportation Integrated Search

    2010-07-01

    Ultra-high performance concrete (UHPC) is an advanced cementitious composite material which tends to exhibit superior properties such as increased durability, strength, and long-term stability. This experimental investigation focused on the flexural ...

  2. The Effect of Different Resistance Training Load Schemes on Strength and Body Composition in Trained Men

    PubMed Central

    Lopes, Charles Ricardo; Aoki, Marcelo Saldanha; Crisp, Alex Harley; de Mattos, Renê Scarpari; Lins, Miguel Alves; da Mota, Gustavo Ribeiro; Schoenfeld, Brad Jon; Marchetti, Paulo Henrique

    2017-01-01

    Abstract The purpose of this study was to evaluate the impact of moderate-load (10 RM) and low-load (20 RM) resistance training schemes on maximal strength and body composition. Sixteen resistance-trained men were randomly assigned to 1 of 2 groups: a moderate-load group (n = 8) or a low-load group (n = 8). The resistance training schemes consisted of 8 exercises performed 4 times per week for 6 weeks. In order to equate the number of repetitions performed by each group, the moderate load group performed 6 sets of 10 RM, while the low load group performed 3 sets of 20 RM. Between-group differences were evaluated using a 2-way ANOVA and independent t-tests. There was no difference in the weekly total load lifted (sets × reps × kg) between the 2 groups. Both groups equally improved maximal strength and measures of body composition after 6 weeks of resistance training, with no significant between-group differences detected. In conclusion, both moderate-load and low-load resistance training schemes, similar for the total load lifted, induced a similar improvement in maximal strength and body composition in resistance-trained men. PMID:28828088

  3. Sensorimotor Exercises and Enhanced Trunk Function: A Randomized Controlled Trial.

    PubMed

    Mueller, Steffen; Engel, Tilman; Mueller, Juliane; Stoll, Josefine; Baur, Heiner; Mayer, Frank

    2018-05-18

    The aim of this study was to investigate the effect of a 6-week sensorimotor or resistance training on maximum trunk strength and response to sudden, high-intensity loading in athletes.Forty-three healthy, well-trained participants were randomized into sensorimotor (SMT; n=11), resistance training (RT; n=16) and control groups (CG; n=16). Treatment groups received either sensorimotor training (SMT) or resistance training (RT) for 6 weeks, 3 times a week. At baseline and after 6 weeks of intervention, participants' maximum isokinetic strength in trunk rotation and extension was tested (concentric/eccentric 30°/s). In addition, sudden, high-intensity trunk loading was assessed for eccentric extension and rotation, with additional perturbation. Peak torque [Nm] was calculated as the outcome.Interventions showed no significant difference for maximum strength in concentric and eccentric testing (p>0.05). For perturbation compensation, higher peak torque response following SMT (Extension: +24 Nm 95%CI±19 Nm; Rotation: +19 Nm 95%CI±13 Nm) and RT (Extension: +35 Nm 95%CI±16 Nm; Rotation: +5 Nm 95%CI±4 Nm) compared to CG (Extension: -4 Nm 95%CI±16 Nm; Rotation: -2 Nm 95%CI±4 Nm) was present (p<0.05).This study showed that isokinetic strength gains were small, but that significant improvements in high-intensity trunk loading response could be shown for both interventions. Therefore, depending on the individual's preference, therapists have two treatment options to enhance trunk function for back pain prevention. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Characterization and Performance Optimization of a Cementitious Composite for Quasi-Static and Dynamic Loads

    DTIC Science & Technology

    2011-01-01

    blast and weapon fragmentation. A particular cementitious composite of interest is an inorganic polymer cement or “ geopolymer ” cement. The term...www.sciencedirect.com ICM11 Characterization and performance optimization of a cementitious composite for quasi-static and dynamic loads W.F. Hearda,b, P.K. Basub...rapid-set, high-strength geopolymer cement under quasi-static and dynamic loads. Four unique tensile experiments were conducted to characterize and

  5. High performance light-colored nitrile-butadiene rubber nanocomposites.

    PubMed

    Lei, Yanda; Guo, Baochun; Chen, Feng; Zhu, Lixin; Zhou, Wenyou; Jia, Demin

    2011-12-01

    High mechanical performance nitrile-butadiene rubber (NBR) with light color was fabricated by the method of in situ formation of zinc disorbate (ZDS) or magnesium disorbate (MDS). The in situ formed ZDS and its polymerization via internal mixing was confirmed by X-ray diffaraction. The mechanical properties, ageing resistance, morphology and the dynamic mechanical analysis were fully studied. It was found that with increasing loading of metallic disorbate both the curing rate and the ionic crosslink density was largely increased. The modulus, tensile strength and tear strength were largely increased. With a comparison between internal mixing and opening mixing, the mechanical performance for the former one was obviously better than the latter one. The high performance was ascribed to the finely dispersion nano domains with irregular shape and obscure interfacial structures. Except for the NBR vulcanizate with a high loading of MDS, the others' ageing resistance with incorporation of these two metallic disorbate was found to be good. Dynamic mechanical analysis (DMA) showed that, with increasing loading of metallic disorbate, the highly increased storage modulus above -20 degrees C, the up-shifted glass transition temperature (Tg) and the reduced mechanical loss were ascribed to strengthened interfacial interactions.

  6. Experimental Tests on the Composite Foam Sandwich Pipes Subjected to Axial Load

    NASA Astrophysics Data System (ADS)

    Li, Feng; Zhao, QiLin; Xu, Kang; Zhang, DongDong

    2015-12-01

    Compared to the composite thin-walled tube, the composite foam sandwich pipe has better local flexural rigidity, which can take full advantage of the high strength of composite materials. In this paper, a series of composite foam sandwich pipes with different parameters were designed and manufactured using the prefabricated polyurethane foam core-skin co-curing molding technique with E-glass fabric prepreg. The corresponding axial-load compressive tests were conducted to investigate the influence factors that experimentally determine the axial compressive performances of the tubes. In the tests, the detailed failure process and the corresponding load-displacement characteristics were obtained; the influence rules of the foam core density, surface layer thickness, fiber ply combination and end restraint on the failure modes and ultimate bearing capacity were studied. Results indicated that: (1) the fiber ply combination, surface layer thickness and end restraint have a great influence on the ultimate load bearing capacity; (2) a reasonable fiber ply combination and reliable interfacial adhesion not only optimize the strength but also transform the failure mode from brittle failure to ductile failure, which is vital to the fully utilization of the composite strength of these composite foam sandwich pipes.

  7. Drug loaded biodegradable load-bearing nanocomposites for damaged bone repair

    NASA Astrophysics Data System (ADS)

    Gutmanas, E. Y.; Gotman, I.; Sharipova, A.; Psakhie, S. G.; Swain, S. K.; Unger, R.

    2017-09-01

    In this paper we present a short review-scientific report on processing and properties, including in vitro degradation, of load bearing biodegradable nanocomposites as well as of macroporous 3D scaffolds for bone ingrowth. Biodegradable implantable devices should slowly degrade over time and disappear with ingrown of natural bone replacing the synthetic graft. Compared to low strength biodegradable polymers, and brittle CaP ceramics, biodegradable CaP-polymer and CaP-metal nanocomposites, mimicking structure of natural bone, as well as strong and ductile metal nanocomposites can provide to implantable devices both strengths and toughness. Nanostructuring of biodegradable β-TCP (tricalcium phosphate)-polymer (PCL and PLA), β-TCP-metal (FeMg and FeAg) and of Fe-Ag composites was achieved employing high energy attrition milling of powder blends. Nanocomposite powders were consolidated to densities close to theoretical by high pressure consolidation at ambient temperature—cold sintering, with retention of nanoscale structure. The strength of developed nanocomposites was significantly higher as compared with microscale composites of the same or similar composition. Heat treatment at moderate temperatures in hydrogen flow resulted in retention of nanoscale structure and higher ductility. Degradation of developed biodegradable β-TCP-polymer, β-TCP-metal and of Fe-Ag nanocomposites was studied in physiological solutions. Immersion tests in Ringer's and saline solution for 4 weeks resulted in 4 to 10% weight loss and less than 50% decrease in compression or bending strength, the remaining strength being significantly higher than the values reported for other biodegradable materials. Nanostructuring of Fe-Ag based materials resulted also in an increase of degradation rate because of creation on galvanic Fe-Ag nanocouples. In cell culture experiments, the developed nanocomposites supported the attachment the human osteoblast cells and exhibited no signs of cytotoxicity. Interconnected system of nanopores formed during processing of nanocomposites was used for incorporation of drugs, including antibiotics and anticancer drugs, and can be used for loading of bioactive molecules enhancing bone ingrowth.

  8. Optimum structural design based on reliability and proof-load testing

    NASA Technical Reports Server (NTRS)

    Shinozuka, M.; Yang, J. N.

    1969-01-01

    Proof-load test eliminates structures with strength less than the proof load and improves the reliability value in analysis. It truncates the distribution function of strength at the proof load, thereby alleviating verification of a fitted distribution function at the lower tail portion where data are usually nonexistent.

  9. Bioinspired, Graphene/Al2O3 Doubly Reinforced Aluminum Composites with High Strength and Toughness.

    PubMed

    Zhang, Yunya; Li, Xiaodong

    2017-11-08

    Nacre, commonly referred to as nature's armor, has served as a blueprint for engineering stronger and tougher bioinspired materials. Nature organizes a brick-and-mortar-like architecture in nacre, with hard bricks of aragonite sandwiched with soft biopolymer layers. However, cloning nacre's entire reinforcing mechanisms in engineered materials remains a challenge. In this study, we employed hybrid graphene/Al 2 O 3 platelets with surface nanointerlocks as hard bricks for primary load bearer and mechanical interlocking, along with aluminum laminates as soft mortar for load distribution and energy dissipation, to replicate nacre's architecture and reinforcing effects in aluminum composites. Compared with aluminum, the bioinspired, graphene/Al 2 O 3 doubly reinforced aluminum composite demonstrated an exceptional, joint improvement in hardness (210%), strength (223%), stiffness (78%), and toughness (30%), which are even superior over nacre. This design strategy and model material system should guide the synthesis of bioinspired materials to achieve exceptionally high strength and toughness.

  10. Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique.

    PubMed

    Yang, Tae Young; Lee, Jung Min; Yoon, Seog Young; Park, Hong Chae

    2010-05-01

    A novel freeze-gel casting/polymer sponge technique has been introduced to fabricate porous hydroxyapatite scaffolds with controlled "designer" pore structures and improved compressive strength for bone tissue engineering applications. Tertiary-butyl alcohol (TBA) was used as a solvent in this work. The merits of each production process, freeze casting, gel casting, and polymer sponge route were characterized by the sintered microstructure and mechanical strength. A reticulated structure with large pore size of 180-360 microm, which formed on burn-out of polyurethane foam, consisted of the strut with highly interconnected, unidirectional, long pore channels (approximately 4.5 microm in dia.) by evaporation of frozen TBA produced in freeze casting together with the dense inner walls with a few, isolated fine pores (<2 microm) by gel casting. The sintered porosity and pore size generally behaved in an opposite manner to the solid loading, i.e., a high solid loading gave low porosity and small pore size, and a thickening of the strut cross section, thus leading to higher compressive strengths.

  11. Relationship between quadriceps strength and rate of loading during gait in women.

    PubMed

    Mikesky, A E; Meyer, A; Thompson, K L

    2000-03-01

    One function of skeletal muscle is to serve as the body's shock absorbers and thus dampen rates of loading during activity. The aim of this cross-sectional study was to determine the significance of muscle strength on rates of loading during gait. Thirty-seven women (mean age: 34.5 +/- 8.2 years) were solicited by advertisement and placed into one of two groups-strength-trained or sedentary-on the basis of training history. They walked (10 trials) over a 10-m walkway at a controlled speed of 1.22-1.35 m/s while the rate of loading was sampled with a 1,000-Hz force platform. Quadriceps and hamstring strength was measured at 90 degrees/s with an isokinetic dynamometer. Statistical analyses (p < 0.05) included descriptive statistics and unpaired t tests for comparison between groups. The women in the sedentary group weighed more and had significantly less concentric and eccentric strength of the quadriceps and hamstrings relative to body weight than did those in the strength-trained group. In addition, they demonstrated significantly higher rates of loading (2.21 +/- 0.15 compared with 1.75 +/- 0.08%wt/ms) than those in the strength-trained group.

  12. 46 CFR 45.107 - Strength of hull.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Strength of hull. 45.107 Section 45.107 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Conditions of Assignment § 45.107 Strength of hull. The general structural strength of the hull must be sufficient for the...

  13. Anomolous Fatigue Crack Growth Phenomena in High-Strength Steel

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; James, Mark A.; Johnston, William M., Jr.; Newman, James C., Jr.

    2004-01-01

    The growth of a fatigue crack through a material is the result of a complex interaction between the applied loading, component geometry, three-dimensional constraint, load history, environment, material microstructure and several other factors. Previous studies have developed experimental and computational methods to relate the fatigue crack growth rate to many of the above conditions, with the intent of discovering some fundamental material response, i.e. crack growth rate as a function of something. Currently, the technical community uses the stress intensity factor solution as a simplistic means to relate fatigue crack growth rate to loading, geometry and all other variables. The stress intensity factor solution is a very simple linear-elastic representation of the continuum mechanics portion of crack growth. In this paper, the authors present fatigue crack growth rate data for two different high strength steel alloys generated using standard methods. The steels exhibit behaviour that appears unexplainable, compared to an aluminium alloy presented as a baseline for comparison, using the stress intensity factor solution.

  14. Softened Mechanical Properties of Graphene Induced by Electric Field.

    PubMed

    Huang, Peng; Guo, Dan; Xie, Guoxin; Li, Jian

    2017-10-11

    The understanding on the mechanical properties of graphene under the applications of physical fields is highly relevant to the reliability and lifetime of graphene-based nanodevices. In this work, we demonstrate that the application of electric field could soften the mechanical properties of graphene dramatically on the basis of the conductive AFM nanoindentation method. It has been found that the Young's modulus and fracture strength of graphene nanosheets suspended on the holes almost stay the same initially and then exhibit a sharp drop when the normalized electric field strength increases to be 0.18 ± 0.03 V/nm. The threshold voltage of graphene nanosheets before the onset of fracture under the fixed applied load increases with the thickness. Supported graphene nanosheets can sustain larger electric field under the same applied load than the suspended ones. The excessively regional Joule heating caused by the high electric current under the applied load is responsible for the electromechanical failure of graphene. These findings can provide a beneficial guideline for the electromechanical applications of graphene-based nanodevices.

  15. Computational modeling of unsteady loads in tidal boundary layers

    NASA Astrophysics Data System (ADS)

    Alexander, Spencer R.

    As ocean current turbines move from the design stage into production and installation, a better understanding of oceanic turbulent flows and localized loading is required to more accurately predict turbine performance and durability. In the present study, large eddy simulations (LES) are used to measure the unsteady loads and bending moments that would be experienced by an ocean current turbine placed in a tidal channel. The LES model captures currents due to winds, waves, thermal convection, and tides, thereby providing a high degree of physical realism. Probability density functions, means, and variances of unsteady loads are calculated, and further statistical measures of the turbulent environment are also examined, including vertical profiles of Reynolds stresses, two-point correlations, and velocity structure functions. The simulations show that waves and tidal velocity had the largest impact on the strength of off-axis turbine loads. By contrast, boundary layer stability and wind speeds were shown to have minimal impact on the strength of off- axis turbine loads. It is shown both analytically and using simulation results that either transverse velocity structure functions or two-point transverse velocity spatial correlations are good predictors of unsteady loading in tidal channels.

  16. Rub tolerance evaluation of two sintered NiCrAl gas path seal materials. [wear tests of gas turbine engine seals

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1978-01-01

    Two strength level variations of sintered NiCrAl (about 40 percent dense), candidate high pressure turbine seal materials, were subject to rub tolerance testing against AM 355 steel blade tips. The high strength material (17 N/sq mm tensile strength) showed frictional and radial loads that were 20 to 50 percent higher than those measured for the low strength material (15.5 N/ sq mm tensile strength). Measured wear to the AM 355 blade tips was not significantly different for the two sintered NiCrAl seal materials. Wear of the sintered NiCrAl was characterized by material removal to a depth greater than the depth to which blade tips were driven into the seal, indicating self-erosion effects.

  17. On the extraordinary strength of Prince Rupert's drops

    NASA Astrophysics Data System (ADS)

    Aben, H.; Anton, J.; Öis, M.; Viswanathan, K.; Chandrasekar, S.; Chaudhri, M. M.

    2016-12-01

    Prince Rupert's drops (PRDs), also known as Batavian tears, have been in existence since the early 17th century. They are made of a silicate glass of a high thermal expansion coefficient and have the shape of a tadpole. Typically, the diameter of the head of a PRD is in the range of 5-15 mm and that of the tail is 0.5 to 3.0 mm. PRDs have exceptional strength properties: the head of a PRD can withstand impact with a small hammer, or compression between tungsten carbide platens to high loads of ˜15 000 N, but the tail can be broken with just finger pressure leading to catastrophic disintegration of the PRD. We show here that the high strength of a PRD comes from large surface compressive stresses in the range of 400-700 MPa, determined using techniques of integrated photoelasticity. The surface compressive stresses can suppress Hertzian cone cracking during impact with a small hammer or compression between platens. Finally, it is argued that when the compressive force on a PRD is very high, plasticity in the PRD occurs, which leads to its eventual destruction with increasing load.

  18. The effect of different posts on fracture strength of roots with vertical fracture and re-attached fragments.

    PubMed

    Ozcopur, B; Akman, S; Eskitascioglu, G; Belli, S

    2010-08-01

    The aim of this in vitro study was to test the effect of different post systems on fracture strength of roots with re-attached fragments. Root canals of eighty extracted single-rooted human teeth were instrumented (ProFile) and randomly divided into two groups. The roots in the first group were vertically cracked, and the fragments were re-attached using Super Bond C&B (Sun Medical, Tokya, Japan). The roots in the second group were kept sound. Obturation of the roots was performed with MetaSEAL (Sun Medical) and gutta-percha. Post spaces were prepared, and the roots were restored with one of the followings: UniCore (Ultradent), Everstick (Stick Tech), Ribbond (Ribbond), ParaPost (Coltene/Whaledent) (n = 10). Four mm high build-ups were created (Clearfil DC Bond Core; Kuraray, Tokyo, Japan). Compressive loading of the samples was performed after 24 h (1 mm min(-1)). Mean load necessary to fracture each sample was recorded (Newton) and statistically analysed (One-way anova, t-tests). ParaPost showed the highest fracture strength among the roots with re-attached fragments (P < 0.05). UniCore and ParaPost systems showed similar fracture strength in the sound roots (P > 0.05). Re-attached fragments significantly reduced the fracture strength of roots in UniCore group (P = 0.000). Ribbond post showed mostly repairable fractures. Metal post (ParaPost) showed the highest fracture strength in the roots with re-attached fragments; however, fracture pattern was 41% non-repairable. Re-attached fragments significantly reduced the fracture strength of the roots in UniCore group. Prefabricated posts showed similar fracture strength in the sound roots. Customized post systems EverStick and Ribbond showed mostly repairable failure after loading in sound roots or roots with re-attached fragments.

  19. Laboratory observations of fault strength in response to changes in normal stress

    USGS Publications Warehouse

    Kilgore, Brian D.; Lozos, Julian; Beeler, Nicholas M.; Oglesby, David

    2012-01-01

    Changes in fault normal stress can either inhibit or promote rupture propagation, depending on the fault geometry and on how fault shear strength varies in response to the normal stress change. A better understanding of this dependence will lead to improved earthquake simulation techniques, and ultimately, improved earthquake hazard mitigation efforts. We present the results of new laboratory experiments investigating the effects of step changes in fault normal stress on the fault shear strength during sliding, using bare Westerly granite samples, with roughened sliding surfaces, in a double direct shear apparatus. Previous experimental studies examining the shear strength following a step change in the normal stress produce contradictory results: a set of double direct shear experiments indicates that the shear strength of a fault responds immediately, and then is followed by a prolonged slip-dependent response, while a set of shock loading experiments indicates that there is no immediate component, and the response is purely gradual and slip-dependent. In our new, high-resolution experiments, we observe that the acoustic transmissivity and dilatancy of simulated faults in our tests respond immediately to changes in the normal stress, consistent with the interpretations of previous investigations, and verify an immediate increase in the area of contact between the roughened sliding surfaces as normal stress increases. However, the shear strength of the fault does not immediately increase, indicating that the new area of contact between the rough fault surfaces does not appear preloaded with any shear resistance or strength. Additional slip is required for the fault to achieve a new shear strength appropriate for its new loading conditions, consistent with previous observations made during shock loading.

  20. Reliability analysis of structures under periodic proof tests in service

    NASA Technical Reports Server (NTRS)

    Yang, J.-N.

    1976-01-01

    A reliability analysis of structures subjected to random service loads and periodic proof tests treats gust loads and maneuver loads as random processes. Crack initiation, crack propagation, and strength degradation are treated as the fatigue process. The time to fatigue crack initiation and ultimate strength are random variables. Residual strength decreases during crack propagation, so that failure rate increases with time. When a structure fails under periodic proof testing, a new structure is built and proof-tested. The probability of structural failure in service is derived from treatment of all the random variables, strength degradations, service loads, proof tests, and the renewal of failed structures. Some numerical examples are worked out.

  1. The Creep of Laminated Synthetic Resin Plastics

    NASA Technical Reports Server (NTRS)

    Perkuhn, H

    1941-01-01

    The long-time loading strength of a number of laminated synthetic resin plastics was ascertained and the effect of molding pressure and resin content determined. The best value was observed with a 30 to 40 percent resin content. The long-time loading strength also increases with increasing molding pressure up to 250 kg/cm(exp 2); a further rise in pressure affords no further substantial improvement. The creep strength is defined as the load which in the hundredth hour of loading produces a rate of elongation of 5 X 10(exp -4) percent per hour. The creep strength values of different materials were determined and tabulated. The effect of humidity during long-term tests is pointed out.

  2. Mechanical competence of ovariectomy-induced compromised bone after single or combined treatment with high-frequency loading and bisphosphonates

    PubMed Central

    Camargos G. V.; Bhattacharya P.; van Lenthe G. H.; Del Bel Cury A. A.; Naert I.; Duyck J.; Vandamme K.

    2015-01-01

    Osteoporosis leads to increased bone fragility, thus effective approaches enhancing bone strength are needed. Hence, this study investigated the effect of single or combined application of high-frequency (HF) loading through whole body vibration (WBV) and alendronate (ALN) on the mechanical competence of ovariectomy-induced osteoporotic bone. Thirty-four female Wistar rats were ovariectomized (OVX) or sham-operated (shOVX) and divided into five groups: shOVX, OVX-shWBV, OVX-WBV, ALN-shWBV and ALN-WBV. (Sham)WBV loading was applied for 10 min/day (130 to 150 Hz at 0.3g) for 14 days and ALN at 2 mg/kg/dose was administered 3x/week. Finite element analysis based on micro-CT was employed to assess bone biomechanical properties, relative to bone micro-structural parameters. HF loading application to OVX resulted in an enlarged cortex, but it was not able to improve the biomechanical properties. ALN prevented trabecular bone deterioration and increased bone stiffness and bone strength of OVX bone. Finally, the combination of ALN with HF resulted in an increased cortical thickness in OVX rats when compared to single treatments. Compared to HF loading, ALN treatment is preferred for improving the compromised mechanical competence of OVX bone. In addition, the association of ALN with HF loading results in an additive effect on the cortical thickness. PMID:26027958

  3. Effect of Cyclic Thermo-Mechanical Loads on Fatigue Reliability in Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Murthy, P. L. N.; Chamis, C. C.

    1996-01-01

    A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multi-factor interaction relationship developed at NASA Lewis Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability- based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)(sub s) graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  4. Fracture modes in off-axis fiber composites

    NASA Technical Reports Server (NTRS)

    Sinclair, J. H.; Chamis, C. C.

    1978-01-01

    Criteria were developed for identifying, characterizing, and quantifying fracture modes in high-modulus graphite-fiber/resin unidirectional composites subjected to off-axis tensile loading. Procedures are described which use sensitivity analyses and off-axis data to determine the uniaxial strength of fiber composites. It was found that off-axis composites fail by three fracture modes which produce unique fracture surface characteristics. The stress that dominates each fracture mode and the load angle range of its dominance can be identified. Linear composite mechanics is adequate to describe quantitatively the mechanical behavior of off-axis composites. The uniaxial strengths predicted from off-axis data are comparable to these measured in uniaxial tests.

  5. Tensile and shear loading of four fcc high-entropy alloys: A first-principles study

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqing; Schönecker, Stephan; Li, Wei; Varga, Lajos K.; Irving, Douglas L.; Vitos, Levente

    2018-03-01

    Ab initio density-functional calculations are used to investigate the response of four face-centered-cubic (fcc) high-entropy alloys (HEAs) to tensile and shear loading. The ideal tensile and shear strengths (ITS and ISS) of the HEAs are studied by employing first-principles alloy theory formulated within the exact muffin-tin orbital method in combination with the coherent-potential approximation. We benchmark the computational accuracy against literature data by studying the ITS under uniaxial [110] tensile loading and the ISS for the [11 2 ¯] (111 ) shear deformation of pure fcc Ni and Al. For the HEAs, we uncover the alloying effect on the ITS and ISS. Under shear loading, relaxation reduces the ISS by ˜50 % for all considered HEAs. We demonstrate that the dimensionless tensile and shear strengths are significantly overestimated by adopting two widely used empirical models in comparison with our ab initio calculations. In addition, our predicted relationship between the dimensionless shear strength and shear instability are in line with the modified Frenkel model. Using the computed ISS, we derive the half-width of the dislocation core for the present HEAs. Employing the ratio of ITS to ISS, we discuss the intrinsic ductility of HEAs and compare it with a common empirical criterion. We observe a strong linear correlation between the shear instability and the ratio of ITS to ISS, whereas a weak positive correlation is found in the case of the empirical criterion.

  6. Zinc isotope fractionation during adsorption onto Mn oxyhydroxide at low and high ionic strength

    NASA Astrophysics Data System (ADS)

    Bryan, Allison L.; Dong, Shuofei; Wilkes, Elise B.; Wasylenki, Laura E.

    2015-05-01

    Marine ferromanganese sediments represent one of the largest sinks from global seawater for Zn, a critical trace metal nutrient. These sediments are variably enriched in heavier isotopes of Zn relative to deep seawater, and some are among the heaviest natural samples analyzed to date. New experimental results demonstrate that adsorption of Zn to poorly crystalline Mn oxyhydroxide results in preferential association of heavier isotopes with the sorbent phase. At low ionic strength our experimental system displayed a short-lived kinetic isotope effect, with light isotopes adsorbed to birnessite (Δ66/64Znadsorbed-dissolved ∼ -0.2‰). After 100 h the sense of fractionation was opposite, such that heavier isotopes were preferentially adsorbed at steady state, but the magnitude of Δ66/64Znadsorbed-dissolved was indistinguishable from zero (+0.05 ± 0.08‰). At high ionic strength, we observed preferential sorption of heavy isotopes, with a strong negative correlation between Δ66/64Znadsorbed-dissolved and the percentage of Zn on the birnessite. Values of Δ66/64Znadsorbed-dissolved ranged from nearly +3‰ at low surface loading to +0.16‰ at high surface loading. Based on previous EXAFS work we infer that Zn adsorbs first as tetrahedral, inner-sphere complexes at low surface loading, with preferential incorporation of heavier isotopes relative to the octahedral Zn species predominating in solution. As surface loading increases, so does the proportion of Zn adsorbing as octahedral complexes, thus diminishing the magnitude of fractionation between the dissolved and adsorbed pools of Zn. The magnitude of fractionation at high ionic strength is also governed by aqueous speciation of Zn in synthetic seawater; a substantial fraction of Zn ions reside in chloro complexes, which preferentially incorporate light Zn isotopes, and this drives the adsorbed pool to be heavier relative to the bulk solution than it was at low ionic strength. Our results explain the observation that ferromanganese sediments are enriched in heavier isotopes of Zn relative to deep seawater. This represents a step towards building a robust mass balance model for Zn isotopes in the oceans and potentially using Zn isotopes to trace biogeochemical cycling of this important element in the modern and ancient oceans.

  7. Method and apparatus for imparting strength to a material using sliding loads

    DOEpatents

    Hughes, Darcy Anne; Dawson, Daniel B.; Korellis, John S.

    1999-01-01

    A method of enhancing the strength of metals by affecting subsurface zones developed during the application of large sliding loads. Stresses which develop locally within the near surface zone can be many times larger than those predicted from the applied load and the friction coefficient. These stress concentrations arise from two sources: 1) asperity interactions and 2) local and momentary bonding between the two surfaces. By controlling these parameters more desirable strength characteristics can be developed in weaker metals to provide much greater strength to rival that of steel, for example.

  8. Method And Apparatus For Imparting Strength To Materials Using Sliding Loads

    DOEpatents

    Hughes, Darcy Anne; Dawson, Daniel B.; Korellis, John S.

    1999-03-16

    A method of enhancing the strength of metals by affecting subsurface zones developed during the application of large sliding loads. Stresses which develop locally within the near surface zone can be many times larger than those predicted from the applied load and the friction coefficient. These stress concentrations arise from two sources: 1) asperity interactions and 2) local and momentary bonding between the two surfaces. By controlling these parameters more desirable strength characteristics can be developed in weaker metals to provide much greater strength to rival that of steel, for example.

  9. Purifying synthetic high-strength wastewater by microalgae chlorella vulgaris under various light emitting diode wavelengths and intensities

    PubMed Central

    2013-01-01

    The high-strength wastewater is now well known as a threat to the natural water since it is highly possible to arouse water eutrophication or algal blooms. The effects of various light emitting diode wavelengths and intensities on the microalgae biological wastewater treatment system was studied in this research. The various nutrient removals and economic efficiencies represented similar variation trends, and these variations under both high C and N loading treatments were similar too. The order for microalgae C. vulgaris reproduction in terms of dry weight and nutrient removal efficiency both were red > white > yellow > blue, under high carbon and nitrogen loading treatments, indicating that the red light was the optimum light wavelength. Furthermore, considering the optimal light intensity in terms of nutrient removal efficiency was 2500 and 2000 μmol/m2•s, while in terms of economic efficiency was 1000, 1500 and 2000 μmol/m2•s. Therefore, the optimum light intensity was found to be 2000 μmol/m2•s. In addition, the optimal experimental illumination time was determined as 120 h. The Chlorella vulgaris microalgae biological wastewater treatment system utilized in this research was able to purify the high-strength carbon and nitrogen wastewater effectively under optimum light wavelength and intensity. PMID:24499586

  10. Adhesive strength of total knee endoprostheses to bone cement - analysis of metallic and ceramic femoral components under worst-case conditions.

    PubMed

    Bergschmidt, Philipp; Dammer, Rebecca; Zietz, Carmen; Finze, Susanne; Mittelmeier, Wolfram; Bader, Rainer

    2016-06-01

    Evaluation of the adhesive strength of femoral components to the bone cement is a relevant parameter for predicting implant safety. In the present experimental study, three types of cemented femoral components (metallic, ceramic and silica/silane-layered ceramic) of the bicondylar Multigen Plus knee system, implanted on composite femora were analysed. A pull-off test with the femoral components was performed after different load and several cementing conditions (four groups and n=3 components of each metallic, ceramic and silica/silane-layered ceramic in each group). Pull-off forces were comparable for the metallic and the silica/silane-layered ceramic femoral components (mean 4769 N and 4298 N) under standard test condition, whereas uncoated ceramic femoral components showed reduced pull-off forces (mean 2322 N). Loading under worst-case conditions led to decreased adhesive strength by loosening of the interface implant and bone cement using uncoated metallic and ceramic femoral components, respectively. Silica/silane-coated ceramic components were stably fixed even under worst-case conditions. Loading under high flexion angles can induce interfacial tensile stress, which could promote early implant loosening. In conclusion, a silica/silane-coating layer on the femoral component increased their adhesive strength to bone cement. Thicker cement mantles (>2 mm) reduce adhesive strength of the femoral component and can increase the risk of cement break-off.

  11. Shock Response of Lightweight Adobe Masonry

    NASA Astrophysics Data System (ADS)

    Sauer, C.; Bagusat, F.; Heine, A.; Riedel, W.

    2018-06-01

    The behavior of a low density and low-strength building material under shock loading is investigated. The considered material is lightweight adobe masonry characterized by a density of 1.2 g/cm3 and a quasi-static uniaxial compressive strength of 2.8 MPa. Planar-plate-impact (PPI) tests with velocities in between 295 and 950 m/s are performed in order to obtain Hugoniot data and to derive parameters for an equation of state (EOS) that captures the occurring phenomenology of porous compaction and subsequent unloading. The resulting EOS description is validated by comparing the experimental free surface velocity time curves with those obtained by numerical simulations of the performed PPI tests. The non-linear compression behavior, including the pore compaction mechanism, constitutes a main ingredient for modelling the response of adobe to blast and high-velocity impact loading. We hence present a modeling approach for lightweight adobe which can be applied to such high rate loading scenarios in future studies. In general, this work shows that PPI tests on lightweight and low-strength geological materials can be used to extract Hugoniot data despite significant material inhomogeneity. Furthermore, we demonstrate that a homogenous material model is able to numerically describe such a material under shock compression and release with a reasonable accuracy.

  12. Shock Response of Lightweight Adobe Masonry

    NASA Astrophysics Data System (ADS)

    Sauer, C.; Bagusat, F.; Heine, A.; Riedel, W.

    2018-04-01

    The behavior of a low density and low-strength building material under shock loading is investigated. The considered material is lightweight adobe masonry characterized by a density of 1.2 g/cm3 and a quasi-static uniaxial compressive strength of 2.8 MPa. Planar-plate-impact (PPI) tests with velocities in between 295 and 950 m/s are performed in order to obtain Hugoniot data and to derive parameters for an equation of state (EOS) that captures the occurring phenomenology of porous compaction and subsequent unloading. The resulting EOS description is validated by comparing the experimental free surface velocity time curves with those obtained by numerical simulations of the performed PPI tests. The non-linear compression behavior, including the pore compaction mechanism, constitutes a main ingredient for modelling the response of adobe to blast and high-velocity impact loading. We hence present a modeling approach for lightweight adobe which can be applied to such high rate loading scenarios in future studies. In general, this work shows that PPI tests on lightweight and low-strength geological materials can be used to extract Hugoniot data despite significant material inhomogeneity. Furthermore, we demonstrate that a homogenous material model is able to numerically describe such a material under shock compression and release with a reasonable accuracy.

  13. Stress analysis of bolted joints under centrifugal force

    NASA Astrophysics Data System (ADS)

    Imura, Makoto; Iizuka, Motonobu; Nakae, Shigeki; Mori, Takeshi; Koyama, Takayuki

    2014-06-01

    Our objective is to develop a long-life rotary machine for synchronous generators and motors. To do this, it is necessary to design a high-strength bolted joint, which is responsible for fixing a salient pole on a rotor shaft. While the rotary machine is in operation, not only centrifugal force but also moment are loaded on a bolted joint, because a point of load is eccentric to a centre of a bolt. We tried to apply the theory proposed in VDI2230-Blatt1 to evaluate the bolted joint under eccentric force, estimate limited centrifugal force, which is the cause of partial separation between the pole and the rotor shaft, and then evaluate additional tension of a bolt after the partial separation has occurred. We analyzed the bolted joint by FEM, and defined load introduction factor in that case. Additionally, we investigated the effect of the variation of bolt preload on the partial separation. We did a full scale experiment with a prototype rotor to reveal the variation of bolt preload against tightening torque. After that, we verified limited centrifugal force and the strength of the bolted joint by the VDI2230-Blatt1 theory and FEM considering the variation of bolt preload. Finally, we could design a high-strength bolted joint verified by the theoretical study and FEM analysis.

  14. High biocompatibility and improved osteogenic potential of novel Ca-P/titania composite scaffolds designed for regeneration of load-bearing segmental bone defects.

    PubMed

    Cunha, Carla; Sprio, Simone; Panseri, Silvia; Dapporto, Massimiliano; Marcacci, Maurilio; Tampieri, Anna

    2013-06-01

    Regeneration of load-bearing bone segments is still an open challenge due to the lack of biomaterials mimicking natural bone with a suitable chemicophysical and mechanical performance. This study proposes ceramic bone scaffolds made of β-tricalcium phosphate (β-TCP) and titania (TiO2 ), developed from hydroxyapatite (HA) and TiO2 starting nanopowders, which exhibit high and interconnected macroporosity (>70 vol %). The scaffold composition was designed to achieve a synergistic effect of bioactivity/resorbability and mechanical properties suitable for load-bearing regenerative applications. The analysis of the morphology, structure, and mechanical strength of the scaffolds resulted in compression strength nearly twice that of commercially available HA bone grafts with similar structure (Engipore(®)). Biological characterization was carried out for human MG-63 osteoblast-like cells proliferation, activity, attachment, and viability. β-TCP/TiO2 scaffolds show high proliferation rate, high viability, and high colonization rates. Moreover, an increased activity of the osteogenic marker alkaline phosphatase (ALP) was found. These results demonstrate that β-TCP/TiO2 scaffolds have good potential as osteogenically active load-bearing scaffolds; moreover, given the high and interconnected macroporosity as well as the resorbability properties of β-TCP, these scaffolds may enhance in vivo osteointegration and promote the formation of new organized bone, thus resulting in very promising biomimetic scaffolds for long bone regeneration. Copyright © 2012 Wiley Periodicals, Inc.

  15. Biomechanical characteristics of the horizontal mattress stitch: implication for double-row and suture-bridge rotator cuff repair.

    PubMed

    Tamboli, Mallika; Mihata, Teruhisa; Hwang, James; McGarry, Michelle H; Kang, Yangmi; Lee, Thay Q

    2014-03-01

    We investigated the effects of bite-size horizontal mattress stitch (distance between the limbs passed through the tendon) on the biomechanical properties of the repaired tendon. We anchored 20 bovine Achilles tendons to bone using no. 2 high-strength suture and 5-mm titanium suture anchors in a mattress-suture technique. Tendons were allocated randomly into two groups of ten each to receive stitches with a 4- or 10-mm bite. Specimens underwent cyclic loading from 5 to 30 N at 1 mm/s for 30 cycles, followed by tensile testing to failure. Gap formation, tendon strain, hysteresis, stiffness, yield load, ultimate load, energy to yield load, and energy to ultimate load were compared between groups using unpaired t tests. The 4-mm group had less (p < 0.05) gap formation and less (p < 0.05) longitudinal strain than did the 10-mm group. Ultimate load (293.6 vs. 148.9 N) and energy to ultimate load (2,563 vs. 1,472 N-mm) were greater (p < 0.001) for the 10-mm group than the 4-mm group. All tendons repaired with 4-mm suturing failed at the suture-tendon interface, with sutures pulling through the tendon, whereas the suture itself failed before the tendon did in seven of the ten specimens in the 10-mm group. Whereas a 4-mm bite fixed the tendon more tightly but at the cost of decreased ultimate strength, a 10-mm bite conveyed greater ultimate strength but with increased gap and strain. These results suggest that for the conventional double-row repair, small mattress stitches provide a tighter repair, whereas large stitches are beneficial to prevent sutures from pulling through the tendon after surgery. For suture-bridge rotator cuff repair, large stitches are beneficial because the repaired tendon has a higher strength, and the slightly mobile medial knot can be tightened by lateral fixation.

  16. Strain rate effect on fault slip and rupture evolution: Insight from meter-scale rock friction experiments

    NASA Astrophysics Data System (ADS)

    Xu, Shiqing; Fukuyama, Eiichi; Yamashita, Futoshi; Mizoguchi, Kazuo; Takizawa, Shigeru; Kawakata, Hironori

    2018-05-01

    We conduct meter-scale rock friction experiments to study strain rate effect on fault slip and rupture evolution. Two rock samples made of Indian metagabbro, with a nominal contact dimension of 1.5 m long and 0.1 m wide, are juxtaposed and loaded in a direct shear configuration to simulate the fault motion. A series of experimental tests, under constant loading rates ranging from 0.01 mm/s to 1 mm/s and under a fixed normal stress of 6.7 MPa, are performed to simulate conditions with changing strain rates. Load cells and displacement transducers are utilized to examine the macroscopic fault behavior, while high-density arrays of strain gauges close to the fault are used to investigate the local fault behavior. The observations show that the macroscopic peak strength, strength drop, and the rate of strength drop can increase with increasing loading rate. At the local scale, the observations reveal that slow loading rates favor generation of characteristic ruptures that always nucleate in the form of slow slip at about the same location. In contrast, fast loading rates can promote very abrupt rupture nucleation and along-strike scatter of hypocenter locations. At a given propagation distance, rupture speed tends to increase with increasing loading rate. We propose that a strain-rate-dependent fault fragmentation process can enhance the efficiency of fault healing during the stick period, which together with healing time controls the recovery of fault strength. In addition, a strain-rate-dependent weakening mechanism can be activated during the slip period, which together with strain energy selects the modes of fault slip and rupture propagation. The results help to understand the spectrum of fault slip and rock deformation modes in nature, and emphasize the role of heterogeneity in tuning fault behavior under different strain rates.

  17. Bone Strength Estimated by Micro-Finite Element Analysis (µFEA) Is Heritable and Shares Genetic Predisposition With Areal BMD: The Framingham Study.

    PubMed

    Karasik, David; Demissie, Serkalem; Lu, Darlene; Broe, Kerry E; Boyd, Steven K; Liu, Ching-Ti; Hsu, Yi-Hsiang; Bouxsein, Mary L; Kiel, Douglas P

    2017-11-01

    Genetic factors contribute to the risk of bone fractures, partly because of effects on bone strength. High-resolution peripheral quantitative computed tomography (HR-pQCT) estimates bone strength using micro-finite element analysis (µFEA). The goal of this study was to investigate if the bone failure load estimated by HR-pQCT-based µFEA is heritable and to what extent it shares genetic regulation with areal bone mineral density (aBMD). Bone microarchitecture was measured by HR-pQCT at the ultradistal tibia and ultradistal radius in adults from the Framingham Heart Study (n = 1087, mean age 72 years; 57% women). Radial and tibial failure load in compression were estimated by µFEA. Femoral neck (FN) and ultradistal forearm (UD) aBMD were measured by dual-energy X-ray absorptiometry (DXA). Heritability (h 2 ) of failure load and aBMD and genetic correlations between them was estimated adjusting for covariates (age and sex). Failure load values at the non-weight-bearing ultradistal radius and at the weight-bearing ultradistal tibia were highly correlated (r = 0.906; p < 0.001). Estimates of h 2 adjusted for covariates were 0.522 for the radius and 0.497 for the tibia. Additional adjustment for height did not impact on the h 2 results, but adjustment for aBMD at the UD and FN somewhat decreased h 2 point estimates: 0.222 and 0.380 for radius and tibia, respectively. In bivariate analysis, there was a high phenotypic and genetic correlation between covariate-adjusted failure load at the radius and UD aBMD (ρ P  = 0.826, ρ G  = 0.954, respectively), whereas environmental correlations were lower (ρ E  = 0.696), all highly significant (p < 0.001). Similar correlations were observed between tibial failure load and femoral neck aBMD (ρ P  = 0.577, ρ G  = 0.703, both p < 0.001; ρ E  = 0.432, p < 0.05). These data from adult members of families from a population-based cohort suggest that bone strength of distal extremities estimated by micro-finite element analysis is heritable and shares some genetic composition with areal BMD, regardless of the skeletal site. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  18. Computational micromechanics of dynamic compressive loading of a brittle polycrystalline material using a distribution of grain boundary properties

    NASA Astrophysics Data System (ADS)

    Kraft, R. H.; Molinari, J. F.; Ramesh, K. T.; Warner, D. H.

    A two-dimensional finite element model is used to investigate compressive loading of a brittle ceramic. Intergranular cracking in the microstructure is captured explicitly by using a distribution of cohesive interfaces. The addition of confining stress increases the maximum strength and if high enough, can allow the effective material response to reach large strains before failure. Increasing the friction at the grain boundaries also increases the maximum strength until saturation of the strength is approached. Above a transitional strain rate, increasing the rate-of-deformation also increases the strength and as the strain rate increases, fragment sizes of the damaged specimen decrease. The effects of flaws within the specimen were investigated using a random distribution at various initial flaw densities. The model is able to capture an effective modulus change and degradation of strength as the initial flaw density increases. Effects of confinement, friction, and spatial distribution of flaws seem to depend on the crack coalescence and dilatation of the specimen, while strain-rate effects are result of inertial resistance to motion.

  19. Optimization of high filler loading on tensile properties of recycled HDPE/PET blends filled with rice husk

    NASA Astrophysics Data System (ADS)

    Chen, Ruey Shan; Ahmad, Sahrim; Ghani, Mohd Hafizuddin Ab; Salleh, Mohd Nazry

    2014-09-01

    Biocomposites of recycled high density polyethylene / recycled polyethylene terephthalate (rHDPE/rPET) blend incorporated with rice husk flour (RHF) were prepared using a corotating twin screw extruder. Maleic anhydride polyethylene (MAPE) was added as a coupling agent to improve the fibre-matrix interface adhesion. The effect of high filler loadings (50-90 wt%) on morphology and tensile properties of compatibilized rHDPE/rPET blend was investigated. The results of our study shown that composite with 70 wt% exhibited the highest tensile strength and Young's modulus, which are 22 MPa and 1752 MPa, respectively. The elongation at break decreased with increasing percentage of RHF. SEM micrograph confirmed fillers dispersion, morphological interaction and enhanced interfacial bonding between recycled polymer blends and rice husk. It can be concluded that the optimum RHF content is 70 wt% with maximum tensile strength.

  20. The use of nanomodified concrete in construction of high-rise buildings

    NASA Astrophysics Data System (ADS)

    Prokhorov, Sergei

    2018-03-01

    Construction is one of the leading economy sectors. Currently, concrete is the basis of most of the structural elements, without which it is impossible to imagine the construction of a single building or facility. Their strength, reinforcement and the period of concrete lifetime are determined at the design stage, taking into account long-term operation. However, in real life, the number of impacts that affects the structural strength is pretty high. In some cases, they are random and do not have standardized values. This is especially true in the construction and exploitation of high-rise buildings and structures. Unlike the multi-storey buildings, they experience significant loads already at the stage of erection, as they support load-lifting mechanisms, formwork systems, workers, etc. The purpose of the presented article is to develop a methodology for estimating the internal fatigue of concrete structures based on changes in their electrical conductivity.

  1. Preparation and evaluation of a novel glass-ionomer cement with antibacterial functions.

    PubMed

    Xie, Dong; Weng, Yiming; Guo, Xia; Zhao, Jun; Gregory, Richard L; Zheng, Cunge

    2011-05-01

    The objective of this study was to use the newly synthesized poly(quaternary ammonium salt) (PQAS)-containing polyacid to formulate the light-curable glass-ionomer cements and study the effect of the PQAS on the compressive strength and antibacterial activity of the formed cements. The functional QAS and their constructed PQAS were synthesized, characterized and formulated into the experimental high-strength cements. Compressive strength (CS) and Streptococcus mutans viability were used to evaluate the mechanical strength and antibacterial activity of the cements. Fuji II LC cement was used as control. The specimens were conditioned in distilled water at 37°C for 24 h prior to testing. The effects of the substitute chain length, loading as well as grafting ratio of the QAS and aging on CS and S. mutans viability were investigated. All the PQAS-containing cements showed a significant antibacterial activity, accompanying with an initial CS reduction. The effects of the chain length, loading and grafting ratio of the QAS were significant. Increasing chain length, loading, grafting ratio significantly enhanced antibacterial activity but reduced the initial CS. Under the same substitute chain length, the cements containing QAS bromide were found to be more antibacterial than those containing QAS chloride although the CS values of the cements were not statistically different from each other, suggesting that we can use QAS bromide directly without converting bromide to chloride. The experimental cement showed less CS reduction and higher antibacterial activity than Fuji II LC. The long-term aging study suggests that the cements may have a long-lasting antibacterial function. This study developed a novel antibacterial glass-ionomer cement. Within the limitations of this study, it appears that the experimental cement is a clinically attractive dental restorative due to its high mechanical strength and antibacterial function. Published by Elsevier Ltd.

  2. Processing and characterization of unidirectional thermoplastic nanocomposites

    NASA Astrophysics Data System (ADS)

    Narasimhan, Kameshwaran

    The manufacture of continuous fibre-reinforced thermoplastic nanocomposites is discussed for the case of E-Glass reinforced polypropylene (PP) matrix and for E-Glass reinforced Polyamide-6 (Nylon-6), with and without dispersed nanoclay (montmorillonite) platelets. The E-Glass/PP nanocomposite was manufactured using pultrusion, whereas the E-Glass/Nylon-6 nanocomposite was manufactured using compression molding. Mechanical characterization of nanocomposites were performed and compared with traditional microcomposites. Compressive as well as shear strength of nanocomposites was improved by improving the yield strength of the surrounding matrix through the dispersion of nanoclay. Significant improvements were achieved in compressive strength and shear strength with relatively low nanoclay loadings. Initially, polypropylene with and without nanoclay were melt intercalated using a single-screw extruder and the pultruded nanocomposite was fabricated using extruded pre-impregnated (pre-preg) tapes. Compression tests were performed as mandated by ASTM guidelines. SEM and TEM characterization revealed presence of nanoclay in an intercalated and partially exfoliated morphology. Mechanical tests confirmed significant improvements in compressive strength (˜122% at 10% nanoclay loading) and shear strength (˜60% at 3% nanoclay loading) in modified pultruded E-Glass/PP nanocomposites in comparison with baseline properties. Uniaxial tensile tests showed a small increase in tensile strength (˜3.4%) with 3% nanoclay loading. Subsequently, E-Glass/Nylon-6 nanocomposite panels were manufactured by compression molding. Compression tests were performed according to IITRI guidelines, whereas short beam shear and uni-axial tensile tests were performed according to ASTM standards. Mechanical tests confirmed strength enhancement with nanoclay addition, with a significant improvement in compressive strength (50% at 4% nanoclay loading) and shear strength (˜36% at 4% nanoclay loading) when compared with the baseline E-Glass/Nylon-6. Uni-axial tensile tests resulted in a small increase in tensile strength (˜3.2%) with 4% nanoclay loading. Also, hygrothermal aging (50°C and 100% RH) of baseline and nanoclay modified (4%) E-Glass/Nylon-6 was studied. It was observed that the moisture diffusion process followed Fickian diffusion. E-Glass/Nylon-6 modified with 4% nanoclay loading showed improved barrier performance with a significant reduction (˜30%) in moisture uptake compared to baseline E-Glass/Nylon-6 composites. Significant improvement in mechanical properties was also observed in hygrothermally aged nanocomposite specimens when compared with the aged baseline composite.

  3. 14 CFR 31.21 - Loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Loads. 31.21 Section 31.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Strength Requirements § 31.21 Loads. Strength requirements are specified in terms of...

  4. 14 CFR 31.21 - Loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Loads. 31.21 Section 31.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Strength Requirements § 31.21 Loads. Strength requirements are specified in terms of...

  5. Study of fatigue behavior of longitudinal welded pipes

    NASA Astrophysics Data System (ADS)

    Simion, P.; Dia, V.; Istrate, B.; Hrituleac, G.; Hrituleac, I.; Munteanu, C.

    2016-08-01

    During transport and storage of the various fluids, welded pipes are subjected to cyclic loading due to pressure fluctuations that often exceed the prescribed values for normal operation. These cyclic loading can significantly reduce the life of the pipes; as a result the design should be based on the fatigue strength not only on static resistance. In general the fatigue strength of pipes is dependent by strength, pipe geometry and surface quality. In case of the electric longitudinal welded pipes, the fatigue strength is significantly limited by concentration of residual stress and the size of existing defects in the weld seam. This paper presents the fatigue behaviour of the electric welded pipes by high frequency, under conditions that simulate real operating conditions pipes. Fatigue testing was performed on welded pipes made of micro alloyed carbon steels. Some of these pipes were previously subjected to a heat treatment of normalization, in order to also determine the influence of heat treatment on the fatigue strength of welded pipes. To determine and correlate the different factors affecting the fatigue strength, welded pipes were also subjected to various tests: tensile tests, impact tests, measurement of micro hardness, microstructural analysis by optical microscopy and scanning electron microscopy.

  6. Control of Hydrogen Environment Embrittlement of Ultra-High Strength Steel for Naval Application

    DTIC Science & Technology

    2005-07-01

    load cracking behavior of maraging steels in hydrogen. Corrosion , 29, 1973, 299-304. D.A. Jones, A.F. Jankowski and G.A. Davidson, "Diffusion of...short crack case. This behavior is relevant to small surface cracks in coated UHSS components such as a landing gear. IV.B. Effect of Steel Composition ...PRESSURE (k N /m 2) Figure 26. The effect of H2 pressure on the HEAC growth rate for a ultra-high strength 18Ni Maraging steel stressed in a highly

  7. Proof Test Diagrams for a Lithia-Alumina-Silica Glass-Ceramic

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.

    2003-01-01

    The glass-ceramic (Zerodur, Schott Glaswerke, Mainz, Germany) contains 70% to 78% by weight crystalline phase of high-quartz structure with a mean crystal size of 50-55 nm. The vitreous phase has a positive thermal expansion coefficient which is practically balanced by the negative coefficient of the crystalline phase. This results in a material which can maintain longitudinal stability during thermal cycling. This was one of the reasons for its choice as the material for the grazing incidence mirrors for the Chandra X-Ray Facility. Brittle materials such as glass and glass-ceramics which exhibit slow crack growth and subsequent fast fracture to failure exhibit a time dependence in strength. The decrease in strength for a constant applied load is known as static fatigue. In many cases, environment plays a major role in the material lifetime. It has been shown for silicate glasses that crack velocity will increase as the amount of water vapor in the environment surface finish and rate of loading. A rough surface finish leads to a lower tensile strength than for an optically polished surface. The strength of glass is observed in general to increase with increasing load rate. This phenomena is known as dynamic fatigue. This was observed for Zerodur by Tucker and Gent and Tucker in previous dynamic fatigue studies, in which lifetimes were obtained. All of the above named factors need to be considered when glass is to be used in load bearing applications.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiaoming; Ke, Changhong, E-mail: xqwang@uga.edu, E-mail: cke@binghamton.edu; Zhang, Liuyang

    We investigate the mechanical strength of boron nitride nanotube (BNNT) polymer interfaces by using in situ electron microscopy nanomechanical single-tube pull-out techniques. The nanomechanical measurements show that the shear strengths of BNNT-epoxy and BNNT-poly(methyl methacrylate) interfaces reach 323 and 219 MPa, respectively. Molecular dynamics simulations reveal that the superior load transfer capacity of BNNT-polymer interfaces is ascribed to both the strong van der Waals interactions and Coulomb interactions on BNNT-polymer interfaces. The findings of the extraordinary mechanical strength of BNNT-polymer interfaces suggest that BNNTs are excellent reinforcing nanofiller materials for light-weight and high-strength polymer nanocomposites.

  9. Spall damage of a Ta particle-reinforced metallic glass matrix composite under high strain rate loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, X. C.; Jian, W. R.; Huang, J. Y.

    We investigate deformation and damage of a Zr-based bulk metallic glass (BMG) and its Ta particle-reinforced composite (MGMC) under impact loading, as well as quasi-static tension for comparison. Yield strength, spall strength, and damage accumulation rate are obtained from free-surface velocity histories, and MGMC appears to be more damage-resistant. Scanning electron microscopy, electron back scattering diffraction and x-ray computed tomography, are utilized for characterizing microstructures, which show features consistent with macroscopic measurements. Different damage and fracture modes are observed for BMG and MGMC. Multiple well-defined spall planes are observed in BMG, while isolated and scattered cracking around reinforced particles dominatesmore » fracture of MGMC. Particle–matrix interface serves as the source and barrier to crack nucleation and propagation under both quasi-static and impact loading. Finally, deformation twinning and grain refinement play a key role in plastic deformation during shock loading but not in quasi-static loading. In addition, 3D cup-cone structures are resolved in BMG, but not in MGMC due to its heterogeneous stress field.« less

  10. Spall damage of a Ta particle-reinforced metallic glass matrix composite under high strain rate loading

    DOE PAGES

    Tang, X. C.; Jian, W. R.; Huang, J. Y.; ...

    2017-11-11

    We investigate deformation and damage of a Zr-based bulk metallic glass (BMG) and its Ta particle-reinforced composite (MGMC) under impact loading, as well as quasi-static tension for comparison. Yield strength, spall strength, and damage accumulation rate are obtained from free-surface velocity histories, and MGMC appears to be more damage-resistant. Scanning electron microscopy, electron back scattering diffraction and x-ray computed tomography, are utilized for characterizing microstructures, which show features consistent with macroscopic measurements. Different damage and fracture modes are observed for BMG and MGMC. Multiple well-defined spall planes are observed in BMG, while isolated and scattered cracking around reinforced particles dominatesmore » fracture of MGMC. Particle–matrix interface serves as the source and barrier to crack nucleation and propagation under both quasi-static and impact loading. Finally, deformation twinning and grain refinement play a key role in plastic deformation during shock loading but not in quasi-static loading. In addition, 3D cup-cone structures are resolved in BMG, but not in MGMC due to its heterogeneous stress field.« less

  11. Effect of aeration rate and waste load on evolution of volatile fatty acids and waste stabilization during thermophilic aerobic digestion of a model high strength agricultural waste.

    PubMed

    Ugwuanyi, J Obeta; Harvey, L M; McNeil, B

    2005-04-01

    Thermophilic aerobic digestion (TAD) is a relatively new, dynamic and versatile low technology for the economic processing of high strength waste slurries. Waste so treated may be safely disposed of or reused. In this work a model high strength agricultural waste, potato peel, was subjected to TAD to study the effects of oxygen supply at 0.1, 0.25, 0.5 and 1.0 vvm (volume air per volume slurry per minute) under batch conditions at 55 degrees C for 156 h on the process. Process pH was controlled at 7.0 or left unregulated. Effects of waste load, as soluble chemical oxygen demand (COD), on TAD were studied at 4.0, 8.0, 12.0 and 16.0 gl(-1) (soluble COD) at pH 7.0, 0.5 vvm and 55 degrees C. Efficiency of treatment, as degradation of total solids, total suspended solids and soluble solid, as well as soluble COD significantly increased with aeration rate, while acetate production increased as the aeration rate decreased or waste load increased, signifying deterioration in treatment. Negligible acetate, and no other acids were produced at 1.0 vvm. Production of propionate and other acids increased after acetate concentration had started to decrease and, during unregulated reactions coincided with the drop in the pH of the slurry. Acetate production was more closely associated with periods of oxygen limitation than were other acids. Reduction in oxygen availability led to deterioration in treatment efficiency as did increase in waste load. These variables may be manipulated to control treated waste quality.

  12. Postexercise blood flow restriction does not enhance muscle hypertrophy induced by multiple-set high-load resistance exercise.

    PubMed

    Madarame, Haruhiko; Nakada, Satoshi; Ohta, Takahisa; Ishii, Naokata

    2018-05-01

    To test the applicability of postexercise blood flow restriction (PEBFR) in practical training programmes, we investigated whether PEBFR enhances muscle hypertrophy induced by multiple-set high-load resistance exercise (RE). Seven men completed an eight-week RE programme for knee extensor muscles. Employing a within-subject design, one leg was subjected to RE + PEBFR, whereas contralateral leg to RE only. On each exercise session, participants performed three sets of unilateral knee extension exercise at approximately 70% of their one-repetition maximum for RE leg first, and then performed three sets for RE + PEBFR leg. Immediately after completion of the third set, the proximal portion of the RE + PEBFR leg was compressed with an air-pressure cuff for 5 min at a pressure ranging from 100 to 150 mmHg. If participants could perform 10 repetitions for three sets in two consecutive exercise sessions, the work load was increased by 5% at the next exercise session. Muscle thickness and strength of knee extensor muscles were measured before and after the eight-week training period and after the subsequent eight-week detraining period. There was a main effect of time but no condition × time interaction or main effect of condition for muscle thickness and strength. Both muscle thickness and strength increased after the training period independent of the condition. This result suggests that PEBFR would not be an effective training method at least in an early phase of adaptation to high-load resistance exercise. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  13. Effect of loading orientations on the microstructure and property of Al−Cu single crystal during stress aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jiqiang; Chen, Zhiguo, E-mail: zgchen@mail.csu.edu.cn; Hunan University of Humanities, Science and Technology, Loudi 417000

    The precipitation behavior and property of Al−Cu alloy during stress aging under various loading orientations were investigated using single crystals. The resulting microstructures and the strength property were examined by transmission electron microscope (TEM) and compression test, respectively, and the effect of the distribution of θ′-plates on strength property were discussed. The results show that the precipitation distribution of θ′ was significantly affected by the loading orientation during stress aging of Al−Cu single crystals. Loading along close to 〈011〉{sub Al} directions provided more uniform precipitation distribution of θ′ as compared to loading along close to 〈001〉{sub Al} directions, and thereforemore » provided higher strengthening stress of the θ′-plates for the stress aging sample. The results suggested that regulating the distribution of θ′ and therefore improving strength property are possible via controlling the loading orientation during stress aging. - Highlights: • We studied the effect of loading directions on stress aging of Al−Cu single crystal. • Precipitation distribution of θ′ was noticeably affected by the loading direction. • Loading along close to 〈011〉{sub Al} directions reduced the stress-orienting effect. • The strength property is closely related to the precipitation distribution of θ′. • It is possible to regulate the distribution of θ′ and improve strength property.« less

  14. Strength degradation and lifetime prediction of dental zirconia ceramics under cyclic normal loading.

    PubMed

    Li, Wanzhong; Xu, Yingqiang; He, Huiming; Zhao, Haidan; Sun, Jian; Hou, Yue

    2015-01-01

    Clinical cases show that zirconia restoration could happen fracture by accident under overloading after using a period of time. The purpose of this study is to research mechanical behavior and predict lifetime of dental zirconia ceramics under cyclic normal contact loading with experiments. Cyclic normal contact loading test and three point bending test are carried on specimens made of two brands of dental zirconia ceramic to obtain flexure strength and damage degree after different number of loading cycles. By means of damage mechanics model, damage degree under different number of contact loading cycles are calculated according to flexure strength, and verified by SEM photographs of cross section morphology of zirconia ceramics specimen phenomenologically. Relation curve of damage degree and number of cycles is fitted by polynomial fitting, then the number of loading cycles can be concluded when the specimen is complete damage. Strength degradation of two brands dental zirconia ceramics are researched in vitro, and prediction method of contact fatigue lifetime is established.

  15. Studying the compactibility of the VT22 high-strength alloy powder obtained by the PREP method

    NASA Astrophysics Data System (ADS)

    Kryuchkov, D. I.; Berezin, I. M.; Nesterenko, A. V.; Zalazinsky, A. G.; Vichuzhanin, D. I.

    2017-12-01

    Compression curves are plotted for VT22 high-strength alloy powder under conditions of uniaxial compression at room temperature. The density of the compacted briquette at the loading and unloading stages is determined. It is demonstrated that strong interparticle bonds are formed in the area of the action of shear deformation. The results are supposed to be used to identify the flow model of the material studied and to perform the subsequent numerical modeling of the compaction process.

  16. Small-Bolt Torque-Tension Tester

    NASA Technical Reports Server (NTRS)

    Posey, Alan J.

    2009-01-01

    The device described here measures the torque-tension relationship for fasteners as small as #0. The small-bolt tester consists of a plate of high-strength steel into which three miniature load cells are recessed. The depth of the recess is sized so that the three load cells can be shimmed, the optimum height depending upon the test hardware. The three miniature load cells are arranged in an equilateral triangular configuration with the test bolt aligned with the centroid of the three. This is a kinematic arrangement.

  17. Lamination residual stresses in fiber composites

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Liber, T.

    1975-01-01

    An experimental investigation was conducted to determine the magnitude of lamination residual stresses in angle-ply composites and to evaluate their effects on composite structural integrity. The materials investigated were boron/epoxy, boron/polyimide, graphite/low modulus epoxy, graphite/high modulus epoxy, graphite/polyimide and s-glass/epoxy. These materials were fully characterized. Static properties of laminates were also determined. Experimental techniques using embedded strain gages were developed and used to measure residual strains during curing. The extent of relaxation of lamination residual stresses was investigated. It was concluded that the degree of such relaxation is low. The behavior of angle-ply laminates subjected to thermal cycling, tensile load cycling, and combined thermal cycling with tensile load was investigated. In most cases these cycling programs did not have any measurable influence on residual strength and stiffness of the laminates. In the tensile load cycling tests, the graphite/polyimide shows the highest endurance with 10 million cycle runouts at loads up to 90 percent of the static strength.

  18. Could Nano-Structured Materials Enable the Improved Pressure Vessels for Deep Atmospheric Probes?

    NASA Technical Reports Server (NTRS)

    Srivastava, D.; Fuentes, A.; Bienstock, B.; Arnold, J. O.

    2005-01-01

    A viewgraph presentation on the use of Nano-Structured Materials to enable pressure vessel structures for deep atmospheric probes is shown. The topics include: 1) High Temperature/Pressure in Key X-Environments; 2) The Case for Use of Nano-Structured Materials Pressure Vessel Design; 3) Carbon based Nanomaterials; 4) Nanotube production & purification; 5) Nanomechanics of Carbon Nanotubes; 6) CNT-composites: Example (Polymer); 7) Effect of Loading sequence on Composite with 8% by volume; 8) Models for Particulate Reinforced Composites; 9) Fullerene/Ti Composite for High Strength-Insulating Layer; 10) Fullerene/Epoxy Composite for High Strength-Insulating Layer; 11) Models for Continuous Fiber Reinforced Composites; 12) Tensile Strength for Discontinuous Fiber Composite; 13) Ti + SWNT Composites: Thermal/Mechanical; 14) Ti + SWNT Composites: Tensile Strength; and 15) Nano-structured Shell for Pressure Vessels.

  19. Fracture behaviors of ceramic tissue scaffolds for load bearing applications

    NASA Astrophysics Data System (ADS)

    Entezari, Ali; Roohani-Esfahani, Seyed-Iman; Zhang, Zhongpu; Zreiqat, Hala; Dunstan, Colin R.; Li, Qing

    2016-07-01

    Healing large bone defects, especially in weight-bearing locations, remains a challenge using available synthetic ceramic scaffolds. Manufactured as a scaffold using 3D printing technology, Sr-HT-Gahnite at high porosity (66%) had demonstrated significantly improved compressive strength (53 ± 9 MPa) and toughness. Nevertheless, the main concern of ceramic scaffolds in general remains to be their inherent brittleness and low fracture strength in load bearing applications. Therefore, it is crucial to establish a robust numerical framework for predicting fracture strengths of such scaffolds. Since crack initiation and propagation plays a critical role on the fracture strength of ceramic structures, we employed extended finite element method (XFEM) to predict fracture behaviors of Sr-HT-Gahnite scaffolds. The correlation between experimental and numerical results proved the superiority of XFEM for quantifying fracture strength of scaffolds over conventional FEM. In addition to computer aided design (CAD) based modeling analyses, XFEM was conducted on micro-computed tomography (μCT) based models for fabricated scaffolds, which took into account the geometric variations induced by the fabrication process. Fracture strengths and crack paths predicted by the μCT-based XFEM analyses correlated well with relevant experimental results. The study provided an effective means for the prediction of fracture strength of porous ceramic structures, thereby facilitating design optimization of scaffolds.

  20. The effect of CFRP on retrofitting of damaged HSRC beams using AE technique

    NASA Astrophysics Data System (ADS)

    Soffian Noor, M. S.; Noorsuhada, M. N.

    2017-12-01

    This paper presents the effect of carbon fibre reinforced polymer (CFRP) on retrofitted high strength reinforced concrete (HSRC) beams using acoustic emission (AE) technique. Two RC beam parameters were prepared. The first was the control beam which was undamaged HSRC beam. The second was the damaged HSRC beam retrofitted with CFRP on the soffit. The main objective of this study is to assess the crack modes of HSRC beams using AE signal strength. The relationship between signal strength, load and time were analysed and discussed. The crack pattern observed from the visual observation was also investigated. HSRC beam retrofitted with CFRP produced high signal strength compared to control beam. It demonstrates the effect of the AE signal strength for interpretation and prediction of failure modes that might occur in the beam specimens.

  1. Study on the Strength of GFRP/Stainless Steel Adhesive Joints Reinforced with Glass Mat

    NASA Astrophysics Data System (ADS)

    Iwasa, Masaaki

    The adhesive strengths of glass fiber reinforced plastics/metal adhesive joints reinforced with glass mat under tensile shear loads and tensile loads were investigated analytically and experimentally. First, the stress singularity parameters of the bonding edges were analyzed by FEM for various types of adhesive joints reinforced with glass mat. The shear stress and normal stress distributions near the bonding edge can be expressed by two stress singularity parameters. Second, tensile shear tests were performed on taper lap joint and taper lap joint reinforced with glass mat and tensile tests were performed on T-type adhesive joint and T-type adhesive joint reinforced with glass mat. The relationships between the loads and the crosshead displacements were measured. We concluded that reinforcing adhesive joints has a greater effect on strength under tensile load than under tensile shear load. The adhesive joints strength reinforced with glass mat can be evaluated by using stress singularity parameters.

  2. Bioresorbable β-TCP-FeAg nanocomposites for load bearing bone implants: High pressure processing, properties and cell compatibility.

    PubMed

    Swain, S K; Gotman, I; Unger, R; Gutmanas, E Y

    2017-09-01

    In this paper, the processing and properties of iron-toughened bioresorbable β-tricalcium phosphate (β-TCP) nanocomposites are reported. β-TCP is chemically similar to bone mineral and thus a good candidate material for bioresorbable bone healing devices; however intrinsic brittleness and low bending strength make it unsuitable for use in load-bearing sites. Near fully dense β-TCP-matrix nanocomposites containing 30vol% Fe, with and without addition of silver, were produced employing high energy attrition milling of powders followed by high pressure consolidation/cold sintering at 2.5GPa. In order to increase pure iron's corrosion rate, 10 to 30vol% silver were added to the metal phase. The degradation behavior of the developed composite materials was studied by immersion in Ringer's and saline solutions for up to 1month. The mechanical properties, before and after immersion, were tested in compression and bending. All the compositions exhibited high mechanical strength, the strength in bending being several fold higher than that of polymer toughened β-TCP-30PLA nanocomposites prepared by the similar procedure of attrition milling and cold sintering, and of pure high-temperature sintered β-TCP. Partial substitution of iron with silver led to an increase in both strength and ductility. Furthermore, the galvanic action of silver particles dispersed in the iron phase significantly accelerated in vitro degradation of β-TCP-30(Fe-Ag) nanocomposites. After 1month immersion, the composites retained about 50% of their initial bending strength. In cell culture experiments, β-TCP-27Fe3Ag nanocomposites exhibited no signs of cytotoxicity towards human osteoblasts suggesting that they can be used as an implant material. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Method and apparatus for imparting strength to a material using sliding loads

    DOEpatents

    Hughes, D.A.; Dawson, D.B.; Korellis, J.S.

    1999-03-16

    A method of enhancing the strength of metals by affecting subsurface zones developed during the application of large sliding loads is disclosed. Stresses which develop locally within the near surface zone can be many times larger than those predicted from the applied load and the friction coefficient. These stress concentrations arise from two sources: (1) asperity interactions and (2) local and momentary bonding between the two surfaces. By controlling these parameters more desirable strength characteristics can be developed in weaker metals to provide much greater strength to rival that of steel, for example. 11 figs.

  4. Simple model of cable-stayed bridge deck subjected to static wind loading

    NASA Astrophysics Data System (ADS)

    Kang, Yi-Lung; Wang, Yang Cheng

    1997-05-01

    Cable-stayed bridges have been known since 18th century with aesthetics design. The structural system and the structural behavior are significantly different from those of continuous bridges. Compared to continuous bridge, cable- stayed bridges have more flexure bridge deck than those of continuous bridges.On the other hand, cable-stayed bridges have less stiffness to resist wind loading especially for lateral loads. The first considering of bridge engineering is safety. In 1940's, Tacoma Narrows Suspension Bridge destroyed by wind loading is a good example even though it is not a cable-stayed bridge. After the bridge was destroyed, a lot of research articles have been published regarding cable supported bridge subjected to wind loading. In recent days, high strength materials have been served. The bridge engineers use the advantages to expand the span length of cable-stayed bridges. Due to the span length increased and the use of high strength materials, cable- stayed bridges have more significant nonlinear behavior subjected to wind loading. In this paper, a slice bridge deck of cable-stayed bridge connected to internal support cables is considered. The deck has been considered to be subjected to lateral static wind loading. Since cables can not take compressive force, the deck has strongly nonlinear behavior even though the materials are linear elastic. Several primary load combinations have ben considered in this paper such as the bridge deck supposed to be moved horizontally without rotation or the bridge deck supposed to be moved horizontally with rotational deformation. The mathematical formulas and the numerical solutions are found and represented in graphical forms. The results can be provided to bridge designers and researchers for further study of this type of structure subjected to wind loading.

  5. Effects of mechanical loading on the degradability and mechanical properties of the nanocalcium-deficient hydroxyapatite–multi(amino acid) copolymer composite membrane tube for guided bone regeneration

    PubMed Central

    Duan, Hong; Yang, Hongsheng; Xiong, Yan; Zhang, Bin; Ren, Cheng; Min, Li; Zhang, Wenli; Yan, Yonggang; Li, Hong; Pei, Fuxing; Tu, Chongqi

    2013-01-01

    Background and methods Guided bone regeneration (GBR) is a new treatment for bone defects, and the property of membrane is critical to the success of GBR. This study focuses on a novel membrane tube for GBR, which was prepared by a nanocalcium-deficient hydroxyapatite–multi(amino acid) copolymer (n-CDHA-MAC) composite. The biomechanical strength and degradability of this membrane tube under mechanical loading after immersion in phosphate-buffered solution were investigated to evaluate the effects of mechanical loading on the membrane tube. The membrane-tube group with no mechanical loading and femora bone were used as controls. Results The compressive strength and bending strength of n-CDHA-MAC membrane tubes were 66.4 ± 10.2 MPa and 840.7 ± 12.1 MPa, which were lower than those of the goats’ femoral bones (69.0 ± 5.5 MPa and 900.2 ± 17.3 MPa), but there were no significant (P > 0.05) differences. In the in vitro degradability experiment, all membrane tubes were degradable and showed a surface-erosion degradation model. The PH of solution fluctuated from 7.2 to 7.5. The weight and mechanical strength of loaded tubes decreased more quickly than nonloaded ones, with significant differences (P < 0.05). However, the strength of the loaded group after degradation achieved 20.4 ± 1.2 MPa, which was greater than the maximum mechanical strength of 4.338 MPa based on goat femoral middle stationary state by three-dimensional finite-element analysis. Conclusions n-CDHA-MAC membrane tubes have good biomechanical strength during degradation under mechanical loading. Therefore, this membrane tube is an ideal GBR membrane for critical size defects of long bones in goats for animal experiments. PMID:23946651

  6. Effect of Off-Axis Screw Insertion, Insertion Torque, and Plate Contouring on Locked Screw Strength

    PubMed Central

    Gallagher, Bethany; Silva, Matthew J.; Ricci, William M.

    2015-01-01

    Objectives This study quantifies the effects of insertion torque, off-axis screw angulation, and plate contouring on the strength of locking plate constructs. Methods Groups of locking screws (n = 6–11 screws) were inserted at 50%, 100%, 150%, and 200% of the manufacturer-recommended torque (3.2 Nm) into locking compression plates at various angles: orthogonal (control), 5-degree angle off-axis, and 10-degree angle off-axis. Screws were loaded to failure by a transverse force (parallel to the plate) either in the same (“+”) or opposite direction (“−”) of the initial screw angulation. Separately, locking plates were bent to 5 and 10-degree angles, with the bend apex at a screw hole. Locking screws inserted orthogonally into the apex hole at 100% torque were loaded to failure. Results Orthogonal insertion resulted in the highest average load to failure, 2577 ± 141 N (range, 2413–2778 N), whereas any off-axis insertion significantly weakened constructs (165–1285 N, at 100% torque) (P < 0.05). For “+” loading, torque beyond 100% did not increase strength, but 50% torque reduced screw strength (P < 0.05). Loading in the “−” direction consistently resulted in higher strengths than “+” loading (P < 0.05). Plate contouring of 5-degree angle did not significantly change screw strength compared with straight plates but contouring of 10-degree angle significantly reduced load to failure (P < 0.05). Conclusions To maximize the screw plate interface strength, locking screws should be inserted without cross-threading. The mechanical stability of locked screws is significantly compromised by loose insertion, off-axis insertion, or severe distortion of the locking mechanism. PMID:24343255

  7. Mechanical properties of composite materials

    NASA Technical Reports Server (NTRS)

    Thornton, H. Richard; Cornwell, L. R.

    1993-01-01

    A composite material incorporates high strength, high modulus fibers in a matrix (polymer, metal, or ceramic). The fibers may be oriented in a manner to give varying in-plane properties (longitudinal, transverse-stress, strain, and modulus of elasticity). The lay-up of the composite laminates is such that a center line of symmetry and no bending moment exist through the thickness. The laminates are tabbed, with either aluminum or fiberglass, and are ready for tensile testing. The determination of the tensile properties of resin matrix composites, reinforced by continuous fibers, is outlined in ASTM standard D 3039, Tensile Properties of Oriented Fiber Composites. The tabbed flat tensile coupons are placed into the grips of a tensile machine and load-deformation curves plotted. The load-deformation data are translated into stress-strain curves for determination of mechanical properties (ultimate tensile strength and modulus of elasticity).

  8. Impact resistance of fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1982-01-01

    Stress-strain curves are obtained for a variety of glass fiber and carbon fiber reinforced plastics in dynamic tension, over the stress-strain range of 0.00087-2070/sec. The test method is of the one-bar block-to-bar type, using a rotating disk or a pendulum as the loading apparatus and yielding accurate stress-strain curves up to the breaking strain. In the case of glass fiber reinforced plastic, the tensile strength, strain to peak impact stress, total strain and total absorbed energy all increase significantly as the strain rate increases. By contrast, carbon fiber reinforced plastics show lower rates of increase with strain rate. It is recommended that hybrid composites incorporating the high strength and rigidity of carbon fiber reinforced plastic with the high impact absorption of glass fiber reinforced plastics be developed for use in structures subjected to impact loading.

  9. Silk as a biocohesive sacrificial binder in the fabrication of hydroxyapatite load bearing scaffolds.

    PubMed

    McNamara, Stephanie L; Rnjak-Kovacina, Jelena; Schmidt, Daniel F; Lo, Tim J; Kaplan, David L

    2014-08-01

    Limitations of current clinical methods for bone repair continue to fuel the demand for a high strength, bioactive bone replacement material. Recent attempts to produce porous scaffolds for bone regeneration have been limited by the intrinsic weakness associated with high porosity materials. In this study, ceramic scaffold fabrication techniques for potential use in load-bearing bone repairs have been developed using naturally derived silk from Bombyx mori. Silk was first employed for ceramic grain consolidation during green body formation, and later as a sacrificial polymer to impart porosity during sintering. These techniques allowed preparation of hydroxyapatite (HA) scaffolds that exhibited a wide range of mechanical and porosity profiles, with some displaying unusually high compressive strength up to 152.4 ± 9.1 MPa. Results showed that the scaffolds exhibited a wide range of compressive strengths and moduli (8.7 ± 2.7 MPa to 152.4 ± 9.1 MPa and 0.3 ± 0.1 GPa to 8.6 ± 0.3 GPa) with total porosities of up to 62.9 ± 2.7% depending on the parameters used for fabrication. Moreover, HA-silk scaffolds could be molded into large, complex shapes, and further machined post-sinter to generate specific three-dimensional geometries. Scaffolds supported bone marrow-derived mesenchymal stem cell attachment and proliferation, with no signs of cytotoxicity. Therefore, silk-fabricated HA scaffolds show promise for load bearing bone repair and regeneration needs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Silk as a biocohesive sacrificial binder in the fabrication of hydroxyapatite load bearing scaffolds

    PubMed Central

    McNamara, Stephanie L.; Rnjak-Kovacina, Jelena; Schmidt, Daniel; Lo, Tim J.; Kaplan, David L.

    2014-01-01

    Limitations of current clinical methods for bone repair continue to fuel the demand for a high strength, bioactive bone replacement material. Recent attempts to produce porous scaffolds for bone regeneration have been limited by the intrinsic weakness associated with high porosity materials. In this study, ceramic scaffold fabrication techniques for potential use in load-bearing bone repairs have been developed using naturally derived silk from Bombyx mori. Silk was first employed for ceramic grain consolidation during green body formation, and later as a sacrificial polymer to impart porosity during sintering. These techniques allowed preparation of hydroxyapatite (HA) scaffolds that exhibited a wide range of mechanical and porosity profiles, with some displaying unusually high compressive strength up to 152.4 ± 9.1 MPa. Results showed that the scaffolds exhibited a wide range of compressive strengths and moduli (8.7 ± 2.7 MPa to 152.4 ± 9.1 MPa and 0.3 ± 0.1 GPa to 8.6 ± 0.3 GPa) with total porosities of up to 62.9 ± 2.7% depending on the parameters used for fabrication. Moreover, HA-silk scaffolds could be molded into large, complex shapes, and further machined post-sinter to generate specific three-dimensional geometries. Scaffolds supported bone marrow-derived mesenchymal stem cell attachment and proliferation, with no signs of cytotoxicity. Therefore, silk-fabricated HA scaffolds show promise for load bearing bone repair and regeneration needs. PMID:24881027

  11. Back muscle strength, lifting, and stooped working postures.

    PubMed

    Poulsen, E; Jørgensen, K

    1971-09-01

    When lifting loads and working in a forward stooped position, the muscles of the back rather than the ligaments and bony structures of the spine should overcome the gravitational forces. Formulae, based on measurements of back muscle strength, for prediction of maximal loads to be lifted, and for the ability to sustain work in a stooped position, have been worked out and tested in practical situations. From tests with 50 male and female subjects the simplest prediction formulae for maximum loads were: max. load = 1.10 x isometric back muscle strength for men; and max. load = 0.95 x isometric back muscle strength - 8 kg for women. Some standard values for maximum lifts and permissible single and repeated lifts have been calculated for men and women separately and are given in Table 1. From tests with 65 rehabilitees it was found that the maximum isometric strength of the back muscles measured at shoulder height should exceed 2/3 of the body weight, if fatigue and/or pain in the back muscles is to be avoided during work in a standing stooped position.

  12. High strength fused silica flexures manufactured by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Bellouard, Yves; Said, Ali A.; Dugan, Mark; Bado, Philippe

    2009-02-01

    Flexures are mechanical elements used in micro- and precision-engineering to precisely guide the motion of micro-parts. They consist of slender bodies that deform elastically upon the application of a force. Although counter-intuitive at first, fused silica is an attractive material for flexure. Pending that the machining process does not introduce surface flaws that would lead to catastrophic failure, the material has a theoretically high ultimate tensile strength of several GPa. We report on high-aspect ratio fused silica flexures manufactured by femtosecond laser combined with chemical etching. Notch-hinges with thickness as small as twenty microns and aspect ratios comparable to aspect ratios obtained by Deep- Reactive-Ion-Etching (DRIE) were fabricated and tested under different loading conditions. Multiple fracture tests were performed for various loading conditions and the cracks morphologies were analyzed using Scanning Electron Microscopy. The manufactured elements show outstanding mechanical properties with flexural strengths largely exceeding those obtained with other technologies and materials. Fused silica flexures offer a mean to combine integrated optics with micro-mechanics in a single monolithic substrate. Waveguides and mechanical elements can be combined in a monolithic devices opening new opportunities for integrated opto-mechatronics devices.

  13. Double fillet lap of laser welding of thin sheet AZ31B Mg alloy

    NASA Astrophysics Data System (ADS)

    Ishak, Mahadzir; Salleh, M. N. M.

    2018-05-01

    In this paper, we describe the experimental laser welding of thin sheet AZ31B using double fillet lap joint method. Laser welding is capable of producing high quality weld seams especially for small weld bead on thin sheet product. In this experiment, both edges for upper and lower sheets were subjected to the laser beam from the pulse wave (PW) mode of fiber laser. Welded sample were tested their joint strength by tensile-shear strength method and the fracture loads were studied. Strength for all welded samples were investigated and the effect of laser parameters on the joint strength and appearances were studied. Pulsed energy (EP) from laser process give higher effect on joint strength compared to the welding speed (WS) and angle of irradiation (AOI). Highest joint strength was possessed by sample with high EP with the same value of WS and AOI. The strength was low due to the crack defect at the centre of weld region.

  14. Low-Load Resistance Training with Blood Flow Occlusion as a Countermeasure to Disuse Atrophy

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, L. L.; Cook, S. B.

    2009-01-01

    Decreases in strength and neuromuscular function are observed following prolonged disuse. Exercise countermeasures to prevent muscle dysfunction during disuse typically involve high intensity resistance training. The purpose of the study is to evaluate the effectiveness of low-load resistance training with a blood flow occlusion to mitigate muscle loss and dysfunction during 30 days of unilateral lower limb suspension (ULLS).

  15. The importance of fracture toughness in ultrafine and nanocrystalline bulk materials

    PubMed Central

    Pippan, R.; Hohenwarter, A.

    2016-01-01

    ABSTRACT The suitability of high-strength ultrafine and nanocrystalline materials processed by severe plastic deformation methods and aimed to be used for structural applications will strongly depend on their resistance against crack growth. In this contribution some general available findings on the damage tolerance of this material class will be summarized. Particularly, the occurrence of a pronounced fracture anisotropy will be in the center of discussion. In addition, the great potential of this generated anisotropy to obtain high-strength materials with exceptionally high fracture toughness in specific loading and crack growth directions will be enlightened. IMPACT STATEMENT Severely plastically deformed materials are reviewed in light of their damage tolerance. The frequently observed toughness anisotropy allows unprecedented fracture toughness – strength combinations. PMID:27570712

  16. Influence of sweeping detonation-wave loading on damage evolution during spallation loading of tantalum in both a planar and curved geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, George Thompson III; Hull, Lawrence Mark; Livescu, Veronica

    Widespread research over the past five decades has provided a wealth of experimental data and insight concerning the shock hardening, damage evolution, and the spallation response of materials subjected to square-topped shock-wave loading profiles. However, fewer quantitative studies have been conducted on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (unsupported shocks) loading on the shock hardening, damage evolution, or spallation response of materials. Systematic studies quantifying the effect of sweeping-detonation wave loading are yet sparser. In this study, the damage evolution and spallation response of Ta is shown to be critically dependent on the peak shock stress,more » the geometry of the sample (flat or curved plate geometry), and the shock obliquity during sweeping-detonation-wave shock loading. Sweepingwave loading in the flat-plate geometry is observed to: a) yield a lower spall strength than previously documented for 1-D supported-shock-wave loading, b) exhibit increased shock hardening as a function of increasing obliquity, and c) lead to an increased incidence of deformation twin formation with increasing shock obliquity. Sweeping-wave loading of a 10 cm radius curved Ta plate is observed to: a) lead to an increase in the shear stress as a function of increasing obliquity, b) display a more developed level of damage evolution, extensive voids and coalescence, and lower spall strength with obliquity in the curved plate than seen in the flat-plate sweeping-detonation wave loading for an equivalent HE loading, and c) no increased propensity for deformation twin formation with increasing obliquity as seen in the flat-plate geometry. The overall observations comparing and contrasting the flat versus curved sweeping-wave spall experiments with 1D loaded spallation behavior suggests a coupled influence of obliquity and geometry on dynamic shock-induced damage evolution and spall strength. Coupled experimental and modeling research to quantify the combined effects of sweeping-wave loading with increasingly complex sample geometries on the shockwave response of materials is clearly crucial to providing the basis for developing and thereafter validation of predictive modeling capability.« less

  17. Dynamic tensile fracture of mortar at ultra-high strain-rates

    NASA Astrophysics Data System (ADS)

    Erzar, B.; Buzaud, E.; Chanal, P.-Y.

    2013-12-01

    During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 104 to 4 × 104 s-1. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of this cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.

  18. Compressive Failure of Fiber Composites under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Basu, Shiladitya; Waas, Anthony M.; Ambur, Damodar R.

    2006-01-01

    This paper examines the compressive strength of a fiber reinforced lamina under multi-axial stress states. An equilibrium analysis is carried out in which a kinked band of rotated fibers, described by two angles, is sandwiched between two regions in which the fibers are nominally straight. Proportional multi-axial stress states are examined. The analysis includes the possibility of bifurcation from the current equilibrium state. The compressive strength of the lamina is contingent upon either attaining a load maximum in the equilibrium response or satisfaction of a bifurcation condition, whichever occurs first. The results show that for uniaxial loading a non-zero kink band angle beta produces the minimum limit load. For multi-axial loading, different proportional loading paths show regimes of bifurcation dominated and limit load dominated behavior. The present results are able to capture the beneficial effect of transverse compression in raising the composite compressive strength as observed in experiments.

  19. Effect of chlorhexidine and ethanol on push-out bond strength of fiber posts under cyclic loading.

    PubMed

    Cecchin, Doglas; Giacomin, Mateus; Farina, Ana Paula; Bhering, Cláudia Lopes; Mesquita, Marcelo Ferraz; Ferraz, Caio Cezar

    2014-02-01

    To investigate the effects of pretreatment with 2% chlorhexidine in a gel base (CHX) and 100% ethanol (EtOH) on the bond strength between fiber posts relined with resin composite and root dentin under cyclic loading. Forty bovine incisor roots were divided into four groups after phosphoric acid etching: group 1 (control), irrigation with physiological saline solution; group 2, 5 min pretreatment with CHX; group 3, 1 min pretreatment with EtOH; group 4, 5 min pretreatment with CHX followed by 1 min with EtOH. Fiber posts relined with resin composite were cemented with RelyX ARC and the etch-and-rinse adhesive system Scotchbond Multi-Purpose. Each group was randomly divided into two subgroups: 24 h of storage (immediate groups) and cyclic loading (loading groups) with 250,000 cycles in a controlled chewing simulator. All roots were sectioned transversely and push-out tests were performed. Failure modes were observed and the bond strength means were analyzed using ANOVA and Tukey's test (a = 0.05). The mean values for the bond strength test (MPa) in immediate groups were: group 1, 5.44 ± 1.48; group 2, 5.57 ± 1.41; group 3, 5.49 ± 1.48; group 4, 5.57 ± 1.42. Immediate groups showed similar bond strength values (p > 0.05). In the cyclic loading groups, the bond strength values were: group 1, 2.80 ± 0.79; group 2, 4.02 (1.30); group 3, 4.50 ± 1.67; group 4, 4.97 ± 2.00. After cyclic loading, a significant decrease in the control group was observed (p < 0.05), while CHX pretreatment resulted in intermediate values (p < 0.05) and EtOH alone or associated with CHX preserved the bond strength values (p > 0.05). Chlorhexidine and/or ethanol pretreatment preserved the bond strength of the fiber post after cyclic loading.

  20. Sex difference in the heat shock response to high external load resistance training in older humans.

    PubMed

    Njemini, Rose; Forti, Louis Nuvagah; Mets, Tony; Van Roie, Evelien; Coudyzer, Walter; Beyer, Ingo; Delecluse, Christophe; Bautmans, Ivan

    2017-07-01

    Literature reports on the effects of resistance training on heat shock protein70 (Hsp70) adaptation in older subjects are scarce. Moreover, the optimum training load required to obtain a beneficial adaptation profile is lacking. Therefore, the aim of this study was to determine the effects of resistance training at various external loads on extracellular Hsp70 (eHsp70) resting levels in older humans. Fifty-six community-dwelling older (68±5years) volunteers were randomized to 12weeks of resistance training (3×/week) at either high-resistance (HIGH, 8 males, 10 females, 2×10-15 repetitions at 80% 1RM), low resistance (LOW, 9 Males, 10 Females, 1×80-100 repetitions at 20% 1RM), or mixed low resistance (LOW+, 9 Males, 10 Females, 1×60 repetitions at 20% 1RM followed by 1×10-20 repetitions at 40% 1RM). Serum was available from 48 out of the 56 participants at baseline and after 12weeks for determination of eHsp70. Mid-thigh muscle volume (computed tomography), muscle strength (1RM & Biodex dynamometer) and physical functioning (including 6min walk distance [6MWD]) were assessed. There was a sex-related dichotomy in the heat shock response to high external load training. We observed a significant decrease in eHsp70 concentration in the HIGH group for female, but not male, subjects. At baseline, men had a larger muscle volume, leg press and leg extension 1RM compared to women (all p<0.001). Also, the 6MWD was significantly higher in men compared to women at baseline. However, this difference disappeared when correcting for height. Moreover, the overall functional performance and physical activity scores were similar in men and women. None of the participants' characteristics nor any of the outcome variables differed between groups at baseline. There was a significant increase in the strength and physical performance parameters in both men and women post-exercise (all p<0.05). Females in the HIGH group clearly demonstrated a larger gain in leg press 1RM and the isometric knee extensor strength compared to females in the LOW group (p=0.036 and p=0.044, respectively). More so, we found an inverse association between the change in eHsp70 levels and improvement in isometric knee extensor strength and 6MWD (r=-0.443, p=0.002 and r=-0.428, p=0.002; respectively) post exercise. Our results show that resistance training at high external load decreases the resting levels of eHsp70 in older females. Whether this reflects a better health status requires further investigation. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Resin-dentin bonds to EDTA-treated vs. acid-etched dentin using ethanol wet-bonding. Part II: Effects of mechanical cycling load on microtensile bond strengths.

    PubMed

    Sauro, Salvatore; Toledano, Manuel; Aguilera, Fatima Sánchez; Mannocci, Francesco; Pashley, David H; Tay, Franklin R; Watson, Timothy F; Osorio, Raquel

    2011-06-01

    To compare microtensile bond strengths (MTBS) subsequent to load cycling of resin bonded acid-etched or EDTA-treated dentin using a modified ethanol wet-bonding technique. Flat dentin surfaces were obtained from extracted human molars and conditioned using 37% H(3)PO(4) (PA) (15s) or 0.1M EDTA (60s). Five experimental adhesives and one commercial bonding agent were applied to the dentin and light-cured. Solvated experimental resins (50% ethanol/50% comonomers) were used as primers and their respective neat resins were used as the adhesives. The resin-bonded teeth were stored in distilled water (24h) or submitted to 5000 loading cycles of 90N. The bonded teeth were then sectioned in beams for MTBS. Modes of failure were examined by scanning electron microscopy. The most hydrophobic resin 1 gave the lowest bond strength values to both acid and EDTA-treated dentin. The hydrophobic resin 2 applied to EDTA-treated dentin showed lower bond strengths after cycling load but this did not occur when it was bonded to PA-etched dentin. Resins 3 and 4, which contained hydrophilic monomers, gave higher bond strengths to both EDTA-treated or acid-etched dentin and showed no significant difference after load cycling. The most hydrophilic resin 5 showed no significant difference in bond strengths after cycling loading when bonded to EDTA or phosphoric acid treated dentin but exhibited low bond strengths. The presence of different functional monomers influences the MTBS of the adhesive systems when submitted to cyclic loads. Adhesives containing hydrophilic comonomers are not affected by cycling load challenge especially when applied on EDTA-treated dentin followed by ethanol wet bonding. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Nanoindentation cannot accurately predict the tensile strength of graphene or other 2D materials

    NASA Astrophysics Data System (ADS)

    Han, Jihoon; Pugno, Nicola M.; Ryu, Seunghwa

    2015-09-01

    Due to the difficulty of performing uniaxial tensile testing, the strengths of graphene and its grain boundaries have been measured in experiments by nanoindentation testing. From a series of molecular dynamics simulations, we find that the strength measured in uniaxial simulation and the strength estimated from the nanoindentation fracture force can differ significantly. Fracture in tensile loading occurs simultaneously with the onset of crack nucleation near 5-7 defects, while the graphene sheets often sustain the indentation loads after the crack initiation because the sharply concentrated stress near the tip does not give rise to enough driving force for further crack propagation. Due to the concentrated stress, strength estimation is sensitive to the indenter tip position along the grain boundaries. Also, it approaches the strength of pristine graphene if the tip is located slightly away from the grain boundary line. Our findings reveal the limitations of nanoindentation testing in quantifying the strength of graphene, and show that the loading-mode-specific failure mechanism must be taken into account in designing reliable devices from graphene and other technologically important 2D materials.Due to the difficulty of performing uniaxial tensile testing, the strengths of graphene and its grain boundaries have been measured in experiments by nanoindentation testing. From a series of molecular dynamics simulations, we find that the strength measured in uniaxial simulation and the strength estimated from the nanoindentation fracture force can differ significantly. Fracture in tensile loading occurs simultaneously with the onset of crack nucleation near 5-7 defects, while the graphene sheets often sustain the indentation loads after the crack initiation because the sharply concentrated stress near the tip does not give rise to enough driving force for further crack propagation. Due to the concentrated stress, strength estimation is sensitive to the indenter tip position along the grain boundaries. Also, it approaches the strength of pristine graphene if the tip is located slightly away from the grain boundary line. Our findings reveal the limitations of nanoindentation testing in quantifying the strength of graphene, and show that the loading-mode-specific failure mechanism must be taken into account in designing reliable devices from graphene and other technologically important 2D materials. Electronic ESI (ESI) available: Modelling of polycrystalline graphene, verification of loading speed, biaxial tensile simulations, comparison of stress distribution, size effects of indenter radius, force-deflection curves, and stability analysis of crack propagation. See DOI: 10.1039/c5nr04134a

  3. Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2011-01-01

    A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  4. Probabilistic Simulation for Combined Cycle Fatigue in Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2010-01-01

    A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multifactor interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  5. Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2010-01-01

    A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  6. Performance of a stratified sand filter in removal of chemical oxygen demand, total suspended solids and ammonia nitrogen from high-strength wastewaters.

    PubMed

    Healy, M G; Rodgers, M; Mulqueen, J

    2007-06-01

    A stratified sand filter column, operated in recirculation mode and treating synthetic effluent resembling high-strength dairy wastewaters was studied over a 342-d duration. The aim of this paper was to examine the organic, total suspended solids (TSS) and nutrient removal rates of the sand filter, operated in recirculation mode, under incrementally increasing hydraulic and organic loading rates and to propose a field filter-sizing criterion. Best performance was obtained at a system hydraulic loading rate of 10 L m(-2) d(-1); a higher system hydraulic loading rate (of 13.4 L m(-2) d(-1)) caused surface ponding. The system hydraulic loading rate of 10 L m(-2) d(-1) gave a filter chemical oxygen demand (COD), TSS, and total kjeldahl nitrogen (TKN) loading rate of 14, 3.7, and 2.1 g m(-2) d(-1), respectively, and produced consistent COD and TSS removals of greater than 99%, and an effluent NO(3)-N concentration of 42 mg L(-1) (accounting for an 86% reduction in total nitrogen (Tot-N)). As the proportional surface area requirement for the sand filter described in this study is less than the recommended surface area requirement of a free-water surface (FWS) wetland treating an effluent of similar quality, it could provide an economic and sustainable alternative to conventional wetland treatment.

  7. Kenaf/PP and EFB/PP: Effect of fibre loading on the mechanical properties of polypropylene composites

    NASA Astrophysics Data System (ADS)

    Anuar, N. I. S.; Zakaria, S.; Harun, J.; Wang, C.

    2017-07-01

    Kenaf and empty fruit bunch (EFB) fibre which are the important natural fibres in Malaysia were studied as nonwoven polymer composites. The effect of fibre loading on kenaf polypropylene and EFB polypropylene nonwoven composite was studied at different mixture ratio. Kenaf polypropylene nonwoven composite (KPNC) and EFB polypropylene nonwoven composite (EPNC) were prepared by carding and needle-punching techniques, followed by a compression moulding at 6 mm thickness. This study was conducted to identify the optimum fibre loading of nonwoven polypropylene composite and their effect on the mechanical strength. The study was designed at 40%, 50%, 60% and 70% of fibre content in nonwoven mat and composite. The tensile strength, flexural strength and compression strength were tested to evaluate the composite mechanical properties. It was found that the mechanical properties for both kenaf and EFB nonwoven composites were influenced by the fibre content. KPNC showed higher mechanical strength than EPNC. The highest flexural strength was obtained at 60% KPNC and the lowest value was showed by 40% EPNC. The tensile and flexural strength for both KPNC and EPNC decreased after the fibre loading of 60%.

  8. Peak bone strength is influenced by calcium intake in growing rats.

    PubMed

    Viguet-Carrin, S; Hoppler, M; Membrez Scalfo, F; Vuichoud, J; Vigo, M; Offord, E A; Ammann, P

    2014-11-01

    In this study we investigated the effect of supplementing the diet of the growing male rat with different levels of calcium (from low to higher than recommended intakes at constant Ca/P ratio), on multiple factors (bone mass, strength, size, geometry, material properties, turnover) influencing bone strength during the bone accrual period. Rats, age 28days were supplemented for 4weeks with high Ca (1.2%), adequate Ca (0.5%) or low Ca level (0.2%). Bone metabolism and structural parameters were measured. No changes in body weight or food intake were observed among the groups. As anticipated, compared to the adequate Ca intake, low-Ca intake had a detrimental impact on bone growth (33.63 vs. 33.68mm), bone strength (-19.7% for failure load), bone architecture (-58% for BV/TV) and peak bone mass accrual (-29% for BMD) due to the hormonal disruption implied in Ca metabolism. In contrast, novel, surprising results were observed in that higher than adequate Ca intake resulted in improved peak bone strength (106 vs. 184N/mm for the stiffness and 61 vs. 89N for the failure load) and bone material properties (467 vs. 514mPa for tissue hardness) but these effects were not accompanied by changes in bone mass, size, microarchitecture or bone turnover. Hormonal factors, IGF-I and bone modeling were also evaluated. Compared to the adequate level of Ca, IGF-I level was significantly lower in the low-Ca intake group and significantly higher in the high-Ca intake group. No detrimental effects of high Ca were observed on bone modeling (assessed by histomorphometry and bone markers), at least in this short-term intervention. In conclusion, the decrease in failure load in the low calcium group can be explained by the change in bone geometry and bone mass parameters. Thus, improvements in mechanical properties can be explained by the improved quality of intrinsic bone tissue as shown by nanoindentation. These results suggest that supplemental Ca may be beneficial for the attainment of peak bone strength and that multiple factors linked to bone mass and strength should be taken into account when setting dietary levels of adequate mineral intake to support optimal peak bone mass acquisition. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Modeling of orthotropic plate fracture under impact load using various strength criteria

    NASA Astrophysics Data System (ADS)

    Radchenko, Andrey; Krivosheina, Marina; Kobenko, Sergei; Radchenko, Pavel; Grebenyuk, Grigory

    2017-01-01

    The paper presents the comparative analysis of various tensor multinomial criteria of strength for modeling of orthotropic organic plastic plate fracture under impact load. Ashkenazi, Hoffman and Wu strength criteria were used. They allowed fracture modeling of orthotropic materials with various compressive and tensile strength properties. The modeling of organic plastic fracture was performed numerically within the impact velocity range of 700-1500 m/s.

  10. Gaseous hydrogen embrittlement of high strength steels

    NASA Technical Reports Server (NTRS)

    Gangloff, R. P.; Wei, R. P.

    1977-01-01

    The effects of temperature, hydrogen pressure, stress intensity, and yield strength on the kinetics of gaseous hydrogen assisted crack propagation in 18Ni maraging steels were investigated experimentally. It was found that crack growth rate as a function of stress intensity was characterized by an apparent threshold for crack growth, a stage where the growth rate increased sharply, and a stage where the growth rate was unchanged over a significant range of stress intensity. Cracking proceeded on load application with little or no detectable incubation period. Gaseous hydrogen embrittlement susceptibility increased with increasing yield strength.

  11. Woven Hybrid Composites - Tensile and Flexural Properties of Jute Mat Fibres with Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Gopal, P.; Bupesh Raja, V. K.; Chandrasekaran, M.; Dhanasekaran, C.

    2017-03-01

    The jute mat fibers are fabricated with several layers of fiber with opposite orientation in addition with coconut shell powder and resins. In current trends, metallic components are replaced by natural fibers because of the inherent properties such as light in weight, easy to fabricate, less cost and easy availability. This material has high strength and withstands the load. In this investigation the plates are made without stitching the fiber. The result of tensile strength and flexural strength are compared with nano material (coconut shell powder).

  12. A high-strength silicide phase in a stainless steel alloy designed for wear-resistant applications.

    PubMed

    Bowden, D; Krysiak, Y; Palatinus, L; Tsivoulas, D; Plana-Ruiz, S; Sarakinou, E; Kolb, U; Stewart, D; Preuss, M

    2018-04-10

    Hardfacing alloys provide strong, wear-resistant and corrosion-resistant coatings for extreme environments such as those within nuclear reactors. Here, we report an ultra-high-strength Fe-Cr-Ni silicide phase, named π-ferrosilicide, within a hardfacing Fe-based alloy. Electron diffraction tomography has allowed the determination of the atomic structure of this phase. Nanohardness testing indicates that the π-ferrosilicide phase is up to 2.5 times harder than the surrounding austenite and ferrite phases. The compressive strength of the π-ferrosilicide phase is exceptionally high and does not yield despite loading in excess of 1.6 GPa. Such a high-strength silicide phase could not only provide a new type of strong, wear-resistant and corrosion-resistant Fe-based coating, replacing more costly and hazardous Co-based alloys for nuclear applications, but also lead to the development of a new class of high-performance silicide-strengthened stainless steels, no longer reliant on carbon for strengthening.

  13. Simplified formulations with high drug loads for continuous twin-screw granulation.

    PubMed

    Meier, R; Thommes, M; Rasenack, N; Krumme, M; Moll, K-P; Kleinebudde, P

    2015-12-30

    As different batches of the same excipients will be intermixed during continuous processes, the traceability of batches is complicated. Simplified formulations may help to reduce problems related to batch intermixing and traceability. Twin-screw granulation with subsequent tableting was used to produce granules and tablets, containing drug, disintegrant and binder (binary and ternary mixtures), only. Drug loads up to 90% were achieved and five different disintegrants were screened for keeping their disintegration suitability after wetting. Granule size distributions were consistently mono-modal and narrow. Granule strength reached higher values, using ternary mixtures. Tablets containing croscarmellose-Na as disintegrant displayed tensile strengths up to 3.1MPa and disintegration times from 400 to 466s, resulting in the most robust disintegrant. Dissolution was overall complete and above 96% within 30 min. Na-starch glycolate offers tensile strengths up to 2.8MPa at disintegration times from 25s to 1031s, providing the broadest application window, as it corresponds in some parts to different definitions of orodispersible tablets. Tablets containing micronized crospovidone are not suitable for immediate release, but showed possibilities to produce highly drug loaded, prolonged release tablets. Tablets and granules from simplified formulations offer great opportunities to improve continuous processes, present performances comparable to more complicated formulations and are able to correspond to requirements of the authorities. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Moving Aerospace Structural Design Practice to a Load and Resistance Factor Approach

    NASA Technical Reports Server (NTRS)

    Larsen, Curtis E.; Raju, Ivatury S.

    2016-01-01

    Aerospace structures are traditionally designed using the factor of safety (FOS) approach. The limit load on the structure is determined and the structure is then designed for FOS times the limit load - the ultimate load. Probabilistic approaches utilize distributions for loads and strengths. Failures are predicted to occur in the region of intersection of the two distributions. The load and resistance factor design (LRFD) approach judiciously combines these two approaches by intensive calibration studies on loads and strength to result in structures that are efficient and reliable. This paper discusses these three approaches.

  15. Greater Strength Gains after Training with Accentuated Eccentric than Traditional Isoinertial Loads in Already Strength-Trained Men

    PubMed Central

    Walker, Simon; Blazevich, Anthony J.; Haff, G. Gregory; Tufano, James J.; Newton, Robert U.; Häkkinen, Keijo

    2016-01-01

    As training experience increases it becomes more challenging to induce further neuromuscular adaptation. Consequently, strength trainers seek alternative training methods in order to further increase strength and muscle mass. One method is to utilize accentuated eccentric loading, which applies a greater external load during the eccentric phase of the lift as compared to the concentric phase. Based upon this practice, the purpose of this study was to determine the effects of 10 weeks of accentuated eccentric loading vs. traditional isoinertial resistance training in strength-trained men. Young (22 ± 3 years, 177 ± 6 cm, 76 ± 10 kg, n = 28) strength-trained men (2.6 ± 2.2 years experience) were allocated to concentric-eccentric resistance training in the form of accentuated eccentric load (eccentric load = concentric load + 40%) or traditional resistance training, while the control group continued their normal unsupervised training program. Both intervention groups performed three sets of 6-RM (session 1) and three sets of 10-RM (session 2) bilateral leg press and unilateral knee extension exercises per week. Maximum force production was measured by unilateral isometric (110° knee angle) and isokinetic (concentric and eccentric 30°.s−1) knee extension tests, and work capacity was measured by a knee extension repetition-to-failure test. Muscle mass was assessed using panoramic ultrasonography and dual-energy x-ray absorptiometry. Surface electromyogram amplitude normalized to maximum M-wave and the twitch interpolation technique were used to examine maximal muscle activation. After training, maximum isometric torque increased significantly more in the accentuated eccentric load group than control (18 ± 10 vs. 1 ± 5%, p < 0.01), which was accompanied by an increase in voluntary activation (3.5 ± 5%, p < 0.05). Isokinetic eccentric torque increased significantly after accentuated eccentric load training only (10 ± 9%, p < 0.05), whereas concentric torque increased equally in both the accentuated eccentric load (10 ± 9%, p < 0.01) and traditional (9 ± 6%, p < 0.01) resistance training groups; however, the increase in the accentuated eccentric load group was significantly greater (p < 0.05) than control (1 ± 7%). Knee extension repetition-to-failure improved in the accentuated eccentric load group only (28%, p < 0.05). Similar increases in muscle mass occurred in both intervention groups. In summary, accentuated eccentric load training led to greater increases in maximum force production, work capacity and muscle activation, but not muscle hypertrophy, in strength-trained individuals. PMID:27199764

  16. Differential Effects of Heavy Versus Moderate Loads on Measures of Strength and Hypertrophy in Resistance-Trained Men.

    PubMed

    Schoenfeld, Brad J; Contreras, Bret; Vigotsky, Andrew D; Peterson, Mark

    2016-12-01

    The purpose of the present study was to evaluate muscular adaptations between heavy- and moderate-load resistance training (RT) with all other variables controlled between conditions. Nineteen resistance-trained men were randomly assigned to either a strength-type RT routine (HEAVY) that trained in a loading range of 2-4 repetitions per set (n = 10) or a hypertrophy-type RT routine (MODERATE) that trained in a loading range of 8-12 repetitions per set (n = 9). Training was carried out 3 days a week for 8 weeks. Both groups performed 3 sets of 7 exercises for the major muscle groups of the upper and lower body. Subjects were tested pre- and post-study for: 1 repetition maximum (RM) strength in the bench press and squat, upper body muscle endurance, and muscle thickness of the elbow flexors, elbow extensors, and lateral thigh. Results showed statistically greater increases in 1RM squat strength favoring HEAVY compared to MODERATE. Alternatively, statistically greater increases in lateral thigh muscle thickness were noted for MODERATE versus HEAVY. These findings indicate that heavy load training is superior for maximal strength goals while moderate load training is more suited to hypertrophy-related goals when an equal number of sets are performed between conditions.

  17. Effect of water temperature on cyclic fatigue properties of glass-fiber-reinforced hybrid composite resin and its fracture pattern after flexural testing.

    PubMed

    Kuroda, Soichi; Shinya, Akikazu; Vallittu, Pekka K; Nakasone, Yuji; Shinya, Akiyoshi

    2013-02-01

    To evaluate in vitro the influence of dynamic loading applied to a glass-fiber-reinforced hybrid composite resin on its flexural strength in a moist, simulated oral environment. Three-point flexural strength specimens were subjected to cyclic loading in water at 37°C and 55°C to investigate the influence of immersion temperature on impact fatigue properties. Specimens were subjected to cyclic impact loading at 1 Hz for up to 5 × 105 cycles to obtain the number of cycles to failure, the number of unbroken specimens after 5 × 105 cycles, and the residual flexural strength of unbroken specimens. Maximum loads of 100, 200, and 300 N were chosen for both the non-reinforced and the glass-fiber reinforced hybrid composite resins. The mean residual flexural strength for 100 N impact loading at temperatures of 37°C and 55°C was 634 and 636 MPa, respectively. All specimens fractured at fewer than 5 × 105 cycles for loads of 200 and 300 N. Reduced numbers of cycles to fracture and lower fatigue values were observed as both the maximum load and immersion temperature increased.

  18. Fatigue response of notched laminates subjected to tension-compression cyclic loads

    NASA Technical Reports Server (NTRS)

    Bakis, C. E.; Stinchcomb, W. W.

    1986-01-01

    The fatigue response of a ((0/45/90/-45)(sub s))(sub 4) T300-5208 graphite-epoxy laminate with a drilled center-hole subjected to various components of tensile and compressive cyclic loads was investigated. Damage evaluation techniques such as stiffness monitoring, penetrant-enhanced X-ray radiography, C-scan, laminate deply and residual strength measurement were used to establish the mechanisms of damage development as well as the effect of such damage on the laminate strength, stiffness and life. Damage modes consisted of transverse matrix cracks, initiating at the hole, in all plies, followed by delamination between plies of different orientation. A characteristic stiffness repsonse during cyclic loading at two load levels was identified and utilized a more reliable indicator of material and residual properties than accumulated cycles. For the load ratios of tension-compression loading, residual tensile strength increased significantly above the virgin strength early in the fatigue life and remained approximately constant to near the end of life. A technique developed for predicting delamination initiation sites along the hole boundary correlated well with experimental evidence.

  19. An Investigation of High-Cycle Fatigue Models for Metallic Structures Exhibiting Snap-Through Response

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.; Sweitzer, Karl A.

    2007-01-01

    A study is undertaken to develop a methodology for determining the suitability of various high-cycle fatigue models for metallic structures subjected to combined thermal-acoustic loadings. Two features of this problem differentiate it from the fatigue of structures subject to acoustic loading alone. Potentially large mean stresses associated with the thermally pre- and post-buckled states require models capable of handling those conditions. Snap-through motion between multiple post-buckled equilibrium positions introduces very high alternating stress. The thermal-acoustic time history response of a clamped aluminum beam structure with geometric and material nonlinearities is determined via numerical simulation. A cumulative damage model is employed using a rainflow cycle counting scheme and fatigue estimates are made for 2024-T3 aluminum using various non-zero mean fatigue models, including Walker, Morrow, Morrow with true fracture strength, and MMPDS. A baseline zero-mean model is additionally considered. It is shown that for this material, the Walker model produces the most conservative fatigue estimates when the stress response has a tensile mean introduced by geometric nonlinearity, but remains in the linear elastic range. However, when the loading level is sufficiently high to produce plasticity, the response becomes more fully reversed and the baseline, Morrow, and Morrow with true fracture strength models produce the most conservative fatigue estimates.

  20. Shock wave treatment shows dose-dependent enhancement of bone mass and bone strength after fracture of the femur.

    PubMed

    Wang, Ching-Jen; Yang, Kuender D; Wang, Feng-Sheng; Hsu, Chia-Chen; Chen, Hsiang-Ho

    2004-01-01

    Shock wave treatment is believed to improve bone healing after fracture. The purpose of this study was to evaluate the effect of shock wave treatment on bone mass and bone strength after fracture of the femur in a rabbit model. A standardized closed fracture of the right femur was created with a three-point bending method in 24 New Zealand white rabbits. Animals were randomly divided into three groups: (1) control (no shock wave treatment), (2) low-energy (shock wave treatment at 0.18 mJ/mm2 energy flux density with 2000 impulses), and (3) high-energy (shock wave treatment at 0.47 mJ/mm2 energy flux density with 4000 impulses). Bone mass (bone mineral density (BMD), callus formation, ash and calcium contents) and bone strength (peak load, peak stress and modulus of elasticity) were assessed at 12 and 24 weeks after shock wave treatment. While the BMD values of the high-energy group were significantly higher than the control group (P = 0.021), the BMD values between the low-energy and control groups were not statistically significant (P = 0.358). The high-energy group showed significantly more callus formation (P < 0.001), higher ash content (P < 0.001) and calcium content (P = 0.003) than the control and low-energy groups. With regard to bone strength, the high-energy group showed significantly higher peak load (P = 0.012), peak stress (P = 0.015) and modulus of elasticity (P = 0.011) than the low-energy and control groups. Overall, the effect of shock wave treatment on bone mass and bone strength appears to be dose dependent in acute fracture healing in rabbits.

  1. A feasibility study of high-strength Bi-2223 conductor for high-field solenoids

    NASA Astrophysics Data System (ADS)

    Godeke, A.; Abraimov, D. V.; Arroyo, E.; Barret, N.; Bird, M. D.; Francis, A.; Jaroszynski, J.; Kurteva, D. V.; Markiewicz, W. D.; Marks, E. L.; Marshall, W. S.; McRae, D. M.; Noyes, P. D.; Pereira, R. C. P.; Viouchkov, Y. L.; Walsh, R. P.; White, J. M.

    2017-03-01

    We performed a feasibility study on a high-strength Bi{}2-xPb x Sr2Ca2Cu3O{}10-x(Bi-2223) tape conductor for high-field solenoid applications. The investigated conductor, DI-BSCCO Type HT-XX, is a pre-production version of Type HT-NX, which has recently become available from Sumitomo Electric Industries. It is based on their DI-BSCCO Type H tape, but laminated with a high-strength Ni-alloy. We used stress-strain characterizations, single- and double-bend tests, easy- and hard-way bent coil-turns at various radii, straight and helical samples in up to 31.2 T background field, and small 20-turn coils in up to 17 T background field to systematically determine the electro-mechanical limits in magnet-relevant conditions. In longitudinal tensile tests at 77 K, we found critical stress- and strain-levels of 516 MPa and 0.57%, respectively. In three decidedly different experiments we detected an amplification of the allowable strain with a combination of pure bending and Lorentz loading to ≥slant 0.92 % (calculated elastically at the outer tape edge). This significant strain level, and the fact that it is multi-filamentary conductor and available in the reacted and insulated state, makes DI-BSCCO HT-NX highly suitable for very high-field solenoids, for which high current densities and therefore high loads are required to retain manageable magnet dimensions.

  2. A Feasibility Study of High-Strength Bi-2223 Conductor for High-Field Solenoids

    PubMed Central

    Godeke, A; Abraimov, D V; Arroyo, E; Barret, N; Bird, M D; Francis, A; Jaroszynski, J; Kurteva, D V; Markiewicz, W D; Marks, E L; Marshall, W S; McRae, D M; Noyes, P D; Pereira, R C P; Viouchkov, Y L; Walsh, R P; White, J M

    2017-01-01

    We performed a feasibility study on a high-strength Bi2−xPbxSr2Ca2Cu3O10−x (Bi-2223) tape conductor for high-field solenoid applications. The investigated conductor, DI-BSCCO Type HT-XX, is a pre-production version of Type HT-NX, which has recently become available from Sumitomo Electric Industries (SEI). It is based on their DI-BSCCO Type H tape, but laminated with a high-strength Ni-alloy. We used stress-strain characterizations, single- and double-bend tests, easy- and hard-way bent coil-turns at various radii, straight and helical samples in up to 31.2 T background field, and small 20-turn coils in up to 17 T background field to systematically determine the electro-mechanical limits in magnet-relevant conditions. In longitudinal tensile tests at 77 K, we found critical stress- and strain-levels of 516 MPa and 0.57%, respectively. In three decidedly different experiments we detected an amplification of the allowable strain with a combination of pure bending and Lorentz loading to ≥ 0.92% (calculated elastically at the outer tape edge). This significant strain level, and the fact that it is multi-filamentary conductor and available in the reacted and insulated state, makes DI-BSCCO HT-NX highly suitable for very high-field solenoids, for which high current densities and therefore high loads are required to retain manageable magnet dimensions. PMID:28360455

  3. Strength properties of interlocking compressed earth brick units

    NASA Astrophysics Data System (ADS)

    Saari, S.; Bakar, B. H. Abu; Surip, N. A.

    2017-10-01

    This study presents a laboratory investigation on the properties of interlocking compressed earth brick (ICEB) units. Compressive strength, which is one of the most important properties in masonry structures, is used to determine masonry performance. The compressive strength of the ICEB units was determined by applying a compressive strength test for 340 units from four types of ICEB. To analyze the strength of the ICEB units, each unit was capped by a steel plate at the top and bottom to create a flat surface, and then ICEB was loaded until failure. The average compressive strength of the corresponding ICEB units are as follows: wall brick, 19.15 N/mm2; beam brick, 16.99 N/mm2; column brick, 13.18 N/mm2; and half brick, 11.79 N/mm2. All the ICEB units had compressive strength of over 5 N/mm2, which is the minimum strength for a load-bearing brick. This study proves that ICEB units may be used as load-bearing bricks. The strength of ICEBs is equal to that of other common bricks and blocks that are currently available in the market.

  4. Flow Strength of Shocked Aluminum in the Solid-Liquid Mixed Phase Region

    NASA Astrophysics Data System (ADS)

    Reinhart, William

    2011-06-01

    Shock waves have been used to determine material properties under high shock stresses and very-high loading rates. The determination of mechanical properties such as compressive strength under shock compression has proven to be difficult and estimates of strength have been limited to approximately 100 GPa or less in aluminum. The term ``strength'' has been used in different ways. For a Von-Mises solid, the yield strength is equal to twice the shear strength of the material and represents the maximum shear stress that can be supported before yield. Many of these concepts have been applied to materials that undergo high strain-rate dynamic deformation, as in uni-axial strain shock experiments. In shock experiments, it has been observed that the shear stress in the shocked state is not equal to the shear strength, as evidenced by elastic recompressions in reshock experiments. This has led to an assumption that there is a yield surface with maximum (loading)and minimum (unloading), shear strength yet the actual shear stress lies somewhere between these values. This work provides the first simultaneous measurements of unloading velocity and flow strength for transition of solid aluminum to the liquid phase. The investigation describes the flow strength observed in 1100 (pure), 6061-T6, and 2024 aluminum in the solid-liquid mixed phase region. Reloading and unloading techniques were utilized to provide independent data on the two unknowns (τc and τo) , so that the actual critical shear strength and the shear stress at the shock state could be estimated. Three different observations indicate a change in material response for stresses of 100 to 160 GPa; 1) release wave speed (reloading where applicable) measurements, 2) yield strength measurements, and 3) estimates of Poisson's ratio, all of which provide information on the melt process including internal consistency and/or non-equilibrium and rate-dependent melt behavior. The study investigates the strength properties in the solid region and as the material transverses the solid-mixed-liquid regime. Differences observed appear to be the product of alloying and/or microstructural composition of the aluminum. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  5. Skeletal assessment with finite element analysis: relevance, pitfalls and interpretation.

    PubMed

    Campbell, Graeme Michael; Glüer, Claus-C

    2017-07-01

    Finite element models simulate the mechanical response of bone under load, enabling noninvasive assessment of strength. Models generated from quantitative computed tomography (QCT) incorporate the geometry and spatial distribution of bone mineral density (BMD) to simulate physiological and traumatic loads as well as orthopaedic implant behaviour. The present review discusses the current strengths and weakness of finite element models for application to skeletal biomechanics. In cadaver studies, finite element models provide better estimations of strength compared to BMD. Data from clinical studies are encouraging; however, the superiority of finite element models over BMD measures for fracture prediction has not been shown conclusively, and may be sex and site dependent. Therapeutic effects on bone strength are larger than for BMD; however, model validation has only been performed on untreated bone. High-resolution modalities and novel image processing methods may enhance the structural representation and predictive ability. Despite extensive use of finite element models to study orthopaedic implant stability, accurate simulation of the bone-implant interface and fracture progression remains a significant challenge. Skeletal finite element models provide noninvasive assessments of strength and implant stability. Improved structural representation and implant surface interaction may enable more accurate models of fragility in the future.

  6. Experimetal study on the FRP-concrete bond behavior under repeated loadings

    NASA Astrophysics Data System (ADS)

    Lee, J.-Y.; Yi, C.-K.; Cheong, Y.-G.

    2009-11-01

    In this study, the effects of repeated loads on the FRP-concrete bond strength were investigated experimentally by direct pull out tests according to CSA S806-02. A conventional reinforcing steel bar and two types of glass-fiber-reinforced plastic (GFRP) bars were embedded in concrete and tested under four different loading patterns. The bond strength-slip curves of the bars were obtained and analyzed. The results showed that the maximum bond strengths under the repeated loads differed from those obtained under monotonic ones. In addition, noticeable differences in degradation of the bond strength with respect to the magnitude of slip were observed between the different bar types tested. On the basis of an image analysis of failure surfaces, they were attributed to the different bond failure mechanisms associated with the steel and GFRP bars.

  7. Effect of finite element model loading condition on fracture risk assessment in men and women: the AGES-Reykjavik study.

    PubMed

    Keyak, J H; Sigurdsson, S; Karlsdottir, G S; Oskarsdottir, D; Sigmarsdottir, A; Kornak, J; Harris, T B; Sigurdsson, G; Jonsson, B Y; Siggeirsdottir, K; Eiriksdottir, G; Gudnason, V; Lang, T F

    2013-11-01

    Proximal femoral (hip) strength computed by subject-specific CT scan-based finite element (FE) models has been explored as an improved measure for identifying subjects at risk of hip fracture. However, to our knowledge, no published study has reported the effect of loading condition on the association between incident hip fracture and hip strength. In the present study, we performed a nested age- and sex-matched case-control study in the Age Gene/Environment Susceptibility (AGES) Reykjavik cohort. Baseline (pre-fracture) quantitative CT (QCT) scans of 5500 older male and female subjects were obtained. During 4-7years follow-up, 51 men and 77 women sustained hip fractures. Ninety-seven men and 152 women were randomly selected as controls from a pool of age- and sex-matched subjects. From the QCT data, FE models employing nonlinear material properties computed FE-strength of the left hip of each subject in loading from a fall onto the posterolateral (FPL), posterior (FP) and lateral (FL) aspects of the greater trochanter (patent pending). For comparison, FE strength in stance loading (FStance) and total femur areal bone mineral density (aBMD) were also computed. For all loading conditions, the reductions in strength associated with fracture in men were more than twice those in women (p≤0.01). For fall loading specifically, posterolateral loading in men and posterior loading in women were most strongly associated with incident hip fracture. After adjusting for aBMD, the association between FP and fracture in women fell short of statistical significance (p=0.08), indicating that FE strength provides little advantage over aBMD for identifying female hip fracture subjects. However, in men, after controlling for aBMD, FPL was 424N (11%) less in subjects with fractures than in controls (p=0.003). Thus, in men, FE models of posterolateral loading include information about incident hip fracture beyond that in aBMD. © 2013.

  8. Caffeine Ingestion Reverses the Circadian Rhythm Effects on Neuromuscular Performance in Highly Resistance-Trained Men

    PubMed Central

    Mora-Rodríguez, Ricardo; Pallarés, Jesús García; López-Samanes, Álvaro; Ortega, Juan Fernando; Fernández-Elías, Valentín E.

    2012-01-01

    Purpose To investigate whether caffeine ingestion counteracts the morning reduction in neuromuscular performance associated with the circadian rhythm pattern. Methods Twelve highly resistance-trained men underwent a battery of neuromuscular tests under three different conditions; i) morning (10:00 a.m.) with caffeine ingestion (i.e., 3 mg kg−1; AMCAFF trial); ii) morning (10:00 a.m.) with placebo ingestion (AMPLAC trial); and iii) afternoon (18:00 p.m.) with placebo ingestion (PMPLAC trial). A randomized, double-blind, crossover, placebo controlled experimental design was used, with all subjects serving as their own controls. The neuromuscular test battery consisted in the measurement of bar displacement velocity during free-weight full-squat (SQ) and bench press (BP) exercises against loads that elicit maximum strength (75% 1RM load) and muscle power adaptations (1 m s−1 load). Isometric maximum voluntary contraction (MVCLEG) and isometric electrically evoked strength of the right knee (EVOKLEG) were measured to identify caffeine's action mechanisms. Steroid hormone levels (serum testosterone, cortisol and growth hormone) were evaluated at the beginning of each trial (PRE). In addition, plasma norepinephrine (NE) and epinephrine were measured PRE and at the end of each trial following a standardized intense (85% 1RM) 6 repetitions bout of SQ (POST). Results In the PMPLAC trial, dynamic muscle strength and power output were significantly enhanced compared with AMPLAC treatment (3.0%–7.5%; p≤0.05). During AMCAFF trial, muscle strength and power output increased above AMPLAC levels (4.6%–5.7%; p≤0.05) except for BP velocity with 1 m s−1 load (p = 0.06). During AMCAFF, EVOKLEG and NE (a surrogate of maximal muscle sympathetic nerve activation) were increased above AMPLAC trial (14.6% and 96.8% respectively; p≤0.05). Conclusions These results indicate that caffeine ingestion reverses the morning neuromuscular declines in highly resistance-trained men, raising performance to the levels of the afternoon trial. Our electrical stimulation data, along with the NE values, suggest that caffeine increases neuromuscular performance having a direct effect in the muscle. PMID:22496767

  9. Study protocol for a randomized controlled trial: tongue strengthening exercises in head and neck cancer patients, does exercise load matter?

    PubMed

    Van Nuffelen, Gwen; Van den Steen, Leen; Vanderveken, Olivier; Specenier, Pol; Van Laer, Carl; Van Rompaey, Diane; Guns, Cindy; Mariën, Steven; Peeters, Marc; Van de Heyning, Paul; Vanderwegen, Jan; De Bodt, Marc

    2015-09-04

    Reduced tongue strength is an important factor contributing to early and late dysphagia in head and neck cancer patients previously treated with chemoradiotherapy. The evidence is growing that tongue strengthening exercises can improve tongue strength and swallowing function in both healthy and dysphagic subjects. However, little is known about the impact of specific features of an exercise protocol for tongue strength on the actual outcome (strength or swallowing function). Previous research originating in the fields of sports medicine and physical rehabilitation shows that the degree of exercise load is an influential factor for increasing muscle strength in the limb skeletal muscles. Since the tongue is considered a muscular hydrostat, it remains to be proven whether the same concepts will apply. This ongoing randomized controlled trial in chemoradiotherapy-treated patients with head and neck cancer investigates the effect of three tongue strengthening exercise protocols, with different degrees of exercise load, on tongue strength and swallowing. At enrollment, 51 patients whose dysphagia is primarily related to reduced tongue strength are randomly assigned to a training schedule of 60, 80, or 100% of their maximal tongue strength. Patients are treated three times a week for 8 weeks, executing 120 repetitions of the assigned exercise once per training day. Exercise load is progressively adjusted every 2 weeks. Patients are evaluated before, during and after treatment by means of tongue strength measurements, fiber-optic endoscopic evaluation of swallowing and quality-of-life questionnaires. This randomized controlled trial is the first to systematically investigate the effect of different exercise loads in tongue strengthening exercise protocols. The results will allow the development of more efficacious protocols. Current Controlled Trials ISRCTN14447678.

  10. High performance aluminum–cerium alloys for high-temperature applications

    DOE PAGES

    Sims, Zachary C.; Rios, Orlando R.; Weiss, David; ...

    2017-08-01

    Light-weight high-temperature alloys are important to the transportation industry where weight, cost, and operating temperature are major factors in the design of energy efficient vehicles. Aluminum alloys fill this gap economically but lack high-temperature mechanical performance. Alloying aluminum with cerium creates a highly castable alloy, compatible with traditional aluminum alloy additions, that exhibits dramatically improved high-temperature performance. These compositions display a room temperature ultimate tensile strength of 400 MPa and yield strength of 320 MPa, with 80% mechanical property retention at 240 °C. A mechanism is identified that addresses the mechanical property stability of the Al-alloys to at least 300more » °C and their microstructural stability to above 500 °C which may enable applications without the need for heat treatment. Lastly, neutron diffraction under load provides insight into the unusual mechanisms driving the mechanical strength.« less

  11. The strength of polyaxial locking interfaces of distal radius plates.

    PubMed

    Hoffmeier, Konrad L; Hofmann, Gunther O; Mückley, Thomas

    2009-10-01

    Currently available polyaxial locking plates represent the consequent enhancement of fixed-angle, first-generation locking plates. In contrast to fixed-angle locking plates which are sufficiently investigated, the strength of the new polyaxial locking options has not yet been evaluated biomechanically. This study investigates the mechanical strength of single polyaxial interfaces of different volar radius plates. Single screw-plate interfaces of the implants Palmar 2.7 (Königsee Implantate und Instrumente zur Osteosynthese GmbH, Allendorf, Germany), VariAx (Stryker Leibinger GmbH & Co. KG, Freiburg, Germany) und Viper (Integra LifeSciences Corporation, Plainsboro, NJ, USA) were tested by cantilever bending. The strength of 0 degrees, 10 degrees and 20 degrees screw locking angle was obtained during static and dynamic loading. The Palmar 2.7 interfaces showed greater ultimate strength and fatigue strength than the interfaces of the other implants. The strength of the VariAx interfaces was about 60% of Palmar 2.7 in both, static and dynamic loading. No dynamic testing was applied to the Viper plate because of its low ultimate strength. By static loading, an increase in screw locking angle caused a reduction of strength for the Palmar 2.7 and Viper locking interfaces. No influence was observed for the VariAx locking interfaces. During dynamic loading; angulation had no influence on the locking strength of Palmar 2.7. However, reduction of locking strength with increasing screw angulation was observed for VariAx. The strength of the polyaxial locking interfaces differs remarkably between the examined implants. Depending on the implant an increase of the screw locking angle causes a reduction of ultimate or fatigue strength, but not in all cases a significant impact was observed.

  12. Effects of fatigue and environment on residual strengths of center-cracked graphite/epoxy buffer strip panels

    NASA Technical Reports Server (NTRS)

    Bigelow, Catherine A.

    1989-01-01

    The effects of fatigue, moisture conditioning, and heating on the residual tension strengths of center-cracked graphite/epoxy buffer strip panels were evaluated using specimens made with T300/5208 graphite epoxy in a 16-ply quasi-isotropic layup, with two different buffer strip materials, Kevlar-49 or S-glass. It was found that, for panels subjected to fatigue loading, the residual strengths were not significantly affected by the fatigue loading, the number of repetitions of the loading spectrum, or the maximum strain level. The moisture conditioning reduced the residual strengths of the S-glass buffer strip panels by 10 to 15 percent below the ambient results, but increased the residual strengths of the Kevlar-49 buffer strip panels slightly. For both buffer strip materials, the heat increased the residual strengths of the buffer strip panels slightly over the ambient results.

  13. In- Situ Synchrotron Diffraction Studies on Transformation Strain Development in a High-Strength Quenched and Tempered Structural Steel—Part II. Martensitic Transformation

    NASA Astrophysics Data System (ADS)

    Dutta, R. K.; Huizenga, R. M.; Petrov, R. H.; Amirthalingam, M.; King, A.; Gao, H.; Hermans, M. J. M.; Richardson, I. M.

    2014-01-01

    In-situ synchrotron diffraction studies on the kinetics of phase transformation and transformation strain development during bainitic transformation were presented in part I of the current article. In the current article, in-situ phase transformation behavior of a high-strength (830 MPa yield stress) quenched and tempered S690QL1 [Fe-0.16C-0.2Si-0.87Mn-0.33Cr-0.21Mo (wt. pct)] structural steel, during continuous cooling and under different mechanical loading conditions to promote martensitic transformation, has been studied. Time-temperature-load resolved 2D synchrotron diffraction patterns were recorded and used to calculate the phase fractions and lattice parameters of the phases during heating and cooling cycles under different loading conditions. In addition to the thermal expansion behavior, the effects of the applied stress on the elastic strains during the martensitic transformation were calculated. The results show that small tensile stresses applied at the transformation temperature do not change the kinetics of the phase transformation. The start temperature for the martensitic transformation increases with the increasing applied tensile stress. The elastic strains are not affected significantly with the increasing tensile stress. The variant selection during martensitic transformation under small applied loads (in the elastic region) is weak.

  14. Economic efficiency of application of innovative materials and structures in high-rise construction

    NASA Astrophysics Data System (ADS)

    Golov, Roman; Dikareva, Varvara; Gorshkov, Roman; Agarkov, Anatoly

    2018-03-01

    The article is devoted to the analysis of technical and economic efficiency of application of tube confined concrete structures in high-rise construction. The study of comparative costs of materials with the use of different supporting columns was carried out. The main design, operational, technological and economic advantages of the tube confined concrete technology were evaluated, conclusions were drawn about the high strength and deformation properties of axial compression of steel tubes filled with high-strength concrete. The efficiency of the tube confined concrete use is substantiated, which depends mainly on the scale factor and percentage of reinforcement affecting its load-bearing capacity.

  15. Effect of Temperature and Dynamic Loading on the Mechanical Properties of Copper-Alloyed High-Strength Interstitial-Free Steel

    NASA Astrophysics Data System (ADS)

    Rana, R.; Singh, S. B.; Bleck, W.; Mohanty, O. N.

    2009-04-01

    Crash resistance and formability relevant mechanical properties of a copper-alloyed interstitial-free (IF) steel processed under various conditions of batch annealing (BA), continuous annealing (CA), and postcontinuous annealing aging have been studied in a wide range of strain rate (3.33 × 10-4 to 200 s-1) and temperature (-100 °C to +20 °C). These properties have been compared with similarly processed traditional mild and high-strength IF steels. Assessment of various parameters such as strength, elongation, strain rate sensitivity of stress, strain-hardening capacity, temperature sensitivity of stress, activation volume, and specific energy absorption of all these steels implies that copper-alloyed IF steel is soft and formable in CA condition. It can be made stronger and more crash resistant than the conventional mild- or high-strength IF steels when aged to peak strength after CA. Room-temperature strain rate sensitivity of stress of the investigated steels exhibits a two-stage behavior. Copper in solution in ferrite causes solid solution softening at low temperatures (≤20 °C) and at high strain rates (200 s-1).

  16. High-speed imaging on static tensile test for unidirectional CFRP

    NASA Astrophysics Data System (ADS)

    Kusano, Hideaki; Aoki, Yuichiro; Hirano, Yoshiyasu; Kondo, Yasushi; Nagao, Yosuke

    2008-11-01

    The objective of this study is to clarify the fracture mechanism of unidirectional CFRP (Carbon Fiber Reinforced Plastics) under static tensile loading. The advantages of CFRP are higher specific stiffness and strength than the metal material. The use of CFRP is increasing in not only the aerospace and rapid transit railway industries but also the sports, leisure and automotive industries. The tensile fracture mechanism of unidirectional CFRP has not been experimentally made clear because the fracture speed of unidirectional CFRP is quite high. We selected the intermediate modulus and high strength unidirectional CFRP laminate which is a typical material used in the aerospace field. The fracture process under static tensile loading was captured by a conventional high-speed camera and a new type High-Speed Video Camera HPV-1. It was found that the duration of fracture is 200 microseconds or less, then images taken by a conventional camera doesn't have enough temporal-resolution. On the other hand, results obtained by HPV-1 have higher quality where the fracture process can be clearly observed.

  17. Simplified Design Method for Tension Fasteners

    NASA Astrophysics Data System (ADS)

    Olmstead, Jim; Barker, Paul; Vandersluis, Jonathan

    2012-07-01

    Tension fastened joints design has traditionally been an iterative tradeoff between separation and strength requirements. This paper presents equations for the maximum external load that a fastened joint can support and the optimal preload to achieve this load. The equations, based on linear joint theory, account for separation and strength safety factors and variations in joint geometry, materials, preload, load-plane factor and thermal loading. The strength-normalized versions of the equations are applicable to any fastener and can be plotted to create a "Fastener Design Space", FDS. Any combination of preload and tension that falls within the FDS represents a safe joint design. The equation for the FDS apex represents the optimal preload and load capacity of a set of joints. The method can be used for preliminary design or to evaluate multiple pre-existing joints.

  18. Determinants of the mechanical properties of bones

    NASA Technical Reports Server (NTRS)

    Martin, R. B.

    1991-01-01

    The mechanical properties of bones are governed by the same principles as those of man-made load-bearing structures, but the organism is able to adapt its bone structure to changes in skeletal loading. In this overview of the determinants of the strength and stiffness of bone, a continuum approach has been taken, in which the behavior of a macroscopic structure depends on its shape and size, and on the mechanical properties of the material within. The latter are assumed to depend on the composition (porosity and mineralization) and organization (trabecular or cortical bone architecture, collagen fiber orientation, fatigue damage) of the bone. The effects of each of these factors are reviewed. Also, the possible means of non-invasively estimating the strength or other mechanical properties of a bone are reviewed, including quantitative computed tomography, photon absorptiometry, and ultrasonic measurements. The best estimates of strength have been obtained with photon absorptiometry and computed tomography, which at best are capable of accounting for 90% of the strength variability in a simple in vitro test, but results from different laboratories have been highly variable.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plucknett, K.P.; Becher, P.F.; Waters, S.B.

    TiC/Ni{sub 3}Al composites were prepared using a simple melt-infiltration process, performed at either 1300 or 1400 C, with the Ni{sub 3}Al content varied over the range of 8--25 vol%. Densities >96% of theoretical were obtained for all composites. Four-point flexure strengths at 22 C increased as the Ni{sub 3}Al content increased (i.e., {approximately}1,100 MPa at 20 vol% Ni{sub 3}Al), with the highest strengths being observed for composites processed at 1300 C, because of reduced TiC grain size. Strengths at elevated temperatures increased with test temperature, up to {approximately}1,000 C. As with the yielding behavior of the Ni{sub 3}Al alloy used,more » a maximum in composite strength ({approximately}1,350 MPa) versus temperature was observed; this occurred at 950 C, which is {approximately}300 C above the yield maximum for the alloy. Extensive plastic strain was achieved in the composites even at high loading rates at 1,135 C, and the yield stress was dependent on the applied loading rate.« less

  20. Modeling Strength Degradation of Fiber-Reinforced Ceramic-Matrix Composites Subjected to Cyclic Loading at Elevated Temperatures in Oxidative Environments

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2018-02-01

    In this paper, the strength degradation of non-oxide and oxide/oxide fiber-reinforced ceramic-matrix composites (CMCs) subjected to cyclic loading at elevated temperatures in oxidative environments has been investigated. Considering damage mechanisms of matrix cracking, interface debonding, interface wear, interface oxidation and fibers fracture, the composite residual strength model has been established by combining the micro stress field of the damaged composites, the damage models, and the fracture criterion. The relationships between the composite residual strength, fatigue peak stress, interface debonding, fibers failure and cycle number have been established. The effects of peak stress level, initial and steady-state interface shear stress, fiber Weibull modulus and fiber strength, and testing temperature on the degradation of composite strength and fibers failure have been investigated. The evolution of residual strength versus cycle number curves of non-oxide and oxide/oxide CMCs under cyclic loading at elevated temperatures in oxidative environments have been predicted.

  1. Strength and deformability of concrete beams reinforced by non-metallic fiber and composite rebar

    NASA Astrophysics Data System (ADS)

    Kudyakov, K. L.; Plevkov, V. S.; Nevskii, A. V.

    2015-01-01

    Production of durable and high-strength concrete structures with unique properties has always been crucial. Therefore special attention has been paid to non-metallic composite and fiber reinforcement. This article describes the experimental research of strength and deformability of concrete beams with dispersed and core fiber-based reinforcement. As composite reinforcement fiberglass reinforced plastic rods with diameters 6 mm and 10 mm are used. Carbon and basalt fibers are used as dispersed reinforcement. The developed experimental program includes designing and production of flexural structures with different parameters of dispersed fiber and composite rebar reinforcement. The preliminary testing of mechanical properties of these materials has shown their effectiveness. Structures underwent bending testing on a special bench by applying flexural static load up to complete destruction. During the tests vertical displacements were recorded, as well as value of actual load, slippage of rebars in concrete, crack formation. As a result of research were obtained structural failure and crack formation graphs, value of fracture load and maximum displacements of the beams at midspan. Analysis of experimental data showed the effectiveness of using dispersed reinforcement of concrete and the need for prestressing of fiberglass composite rebar.

  2. Shock Loading of Granular Ni/Al Composites. Part 1. Mechanics of Loading

    DOE PAGES

    Cherukara, Mathew J.; Germann, Timothy C.; Kober, Edward M.; ...

    2014-10-16

    We present molecular dynamics simulations of the thermomechanical response under shock loading of a granular material consisting of laminated Ni/Al grains. We observe two regimes: At low piston velocities (up ≲ 1km/s), the shock wave is diffuse, and the width of the shock front decreases with increasing piston velocity. Beyond a critical shock strength, however, the width remains relatively constant at approximately the mean grain radius. This change in behavior follows from an evolution of the mechanism of compaction with increasing insult strength. Furthermore, the mechanism evolves from plastic deformation-mediated pore collapse for relatively weak shocks, to solid extrusion andmore » fluid ejecta filling pores ahead of the shock front at intermediate strengths, and finally to atomic jetting into the pore for very strong shocks (up ≳ 2 km/s). High-energy fluid ejecta into pores leads to the formation of flow vorticity and can result in a large fraction of the input energy localizing into translational kinetic energy components including the formation of hot spots. This has implications for the mechanical mixing of Ni and Al in these reactive composites.« less

  3. Mechanical properties of ANTRIX balloon film and fabrication of single cap large volume balloons

    NASA Astrophysics Data System (ADS)

    Suneel Kumar, B.; Sreenivasan, S.; Subba Rao, J. V.; Manchanda, R. K.

    2008-11-01

    The zero pressure plastic balloons used for high altitude studies are generally made from polyethylene material. Tensile properties of the thin film polymer are the key parameters for material selection due to extremely low temperature of -90 °C encountered by the balloons in the tropopause region during the ascent at equatorial latitudes. The physical and structural properties of the material determine the uniformity of the stress distribution over the entire shell. Load stresses from the suspended load propagate via load tapes heat sealed along with the gore seals as per the balloon design. A balance between this heat seal strength and the film strength is a desirable property of the basic resin in terms of the bubble strength, gauge uniformity, and long-term storage properties. In addition, the design of the top shell of the balloon and its stress distribution play an important role since only a fraction of the balloon is deployed during the filling operation and the ascent. In this paper we describe the mechanical properties of the 'ANTRIX' film developed by us and the optimized design of single cap balloons, which have been successfully used in our experiments over the past 5 years.

  4. Strength Design of Reinforced Concrete Hydraulic Structures; Report 3, T-Wall Design.

    DTIC Science & Technology

    1982-01-01

    A8 Flexure and Axial Load ..... ................ A10 Shear Strength Requirement ..... ............. A21 TABLE Al APPENDIX B: EFFECT OF...load, earthquake load, and other structural effects of differ- ential settlement, creep, shrinkage, and temperature change. Dead load (D) 10. The...considered to be equal to the depth of the plane below the ground sur- face multiplied by the average unit weight of the soil. Because of the buoyant effect

  5. Effects of High and Low Temperature on the Tensile Strength of Glass Fiber Reinforced Polymer Composites

    NASA Astrophysics Data System (ADS)

    Kumarasamy, S.; Shukur Zainol Abidin, M.; Abu Bakar, M. N.; Nazida, M. S.; Mustafa, Z.; Anjang, A.

    2018-05-01

    In this paper, the tensile performance of glass fiber reinforced polymer (GFRP) composites at high and low temperature was experimentally evaluated. GFRP laminates were manufactured using the wet hand lay-up assisted by vacuum bag, which has resulted in average fibre volume fraction of 0.45. Using simultaneous heating/cooling and loading, glass fiber epoxy and polyester laminates were evaluated for their mechanical performance in static tensile loading. In the elevated temperature environment test, the tension mechanical properties; stress and modulus were reduced with increasing temperature from 25°C to 80°C. Results of low temperature environment from room temperature to a minimum temperature of -20°C, indicated that there is no considerable effect on the tensile strength, however a slight decrease of tensile modulus were observed on the GFRP laminates. The results obtained from the research highlight the structural survivability on tensile properties at low and high temperature of the GFRP laminates.

  6. Effects of partial interlaminar bonding on impact resistance and loaded-hole behavior of graphite/epoxy quasi-isotropic laminates

    NASA Technical Reports Server (NTRS)

    Illg, W.

    1986-01-01

    A partial-bonding interlaminar toughening concept was evaluated for resistance to impact and for behavior of a loaded hole. Perforated Mylar sheets were interleaved between all 24 plies of a graphite/epoxy quasi-isotropic lay-up. Specimens were impacted by aluminum spheres while under tensile or compressive loads. Impact-failure thresholds and residual strengths were obtained. Loaded-hole specimens were tested in three configurations that were critical in bearing, shear, or tension. Partial bonding reduced the tensile and compressive strengths of undamaged specimens by about one-third. For impact, partial bonding did not change the threshold for impact failure under tensile preload. However, under compressive preload, partial bonding caused serious degradation of impact resistance. Partial bonding reduced the maximum load-carrying capacity of all three types of loaded-hole specimens. Overall, partial bonding degraded both impact resistance and bearing strength of holes.

  7. Dynamic tensile fracture of mortar at ultra-high strain-rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erzar, B., E-mail: benjamin.erzar@cea.fr; Buzaud, E.; Chanal, P.-Y.

    2013-12-28

    During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 10{sup 4} to 4 × 10{sup 4} s{sup −1}. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of thismore » cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.« less

  8. Coal/rock interface detection by sensitized pick, part A

    NASA Technical Reports Server (NTRS)

    Wu, P. T. K.; Erkes, J. W.

    1981-01-01

    In order to increase the operating margins of the detector for safe, reliable operation under difficult in-mine conditions the transmitted signal strength was increased to provide additional signal margin for in-mine conditions and the transmitter section was redesigned to reduce frequency pulling of the transmitter frequency with variations in antenna load. The linearity of the pick load SCO signal with true pick load was increased, and hysteresis effects were minimized. The sensitized pick hardware was ruggedized for rough inmine use. The sensitized pick and telemetry system provided excellent, high quality signals proportional to cutting load under all conditions experienced during testing.

  9. Nanostructured thermoplastic polyimide films

    DOEpatents

    Aglan, Heshmat

    2015-05-19

    Structured films containing multi-walled carbon nanotubes ("MWCNTs") have enhanced mechanical performance in terms of strength, fracture resistance, and creep recovery of polyimide ("PI") films. Preferably, the loadings of MWCNTs can be in the range of 0.1 wt % to 0.5 wt %. The strength of the new PI films dried at 60.degree. C. increased by 55% and 72% for 0.1 wt % MWCNT and 0.5 wt % MWCNT loadings, respectively, while the fracture resistance increased by 23% for the 0.1 wt % MWCNTs and then decreases at a loading of 0.5 wt % MWCNTs. The films can be advantageously be created by managing a corresponding shift in the annealing temperature at which the maximum strength occurs as the MWCNT loadings increase.

  10. Material Properties Analysis of Structural Members in Pumpkin Balloons

    NASA Technical Reports Server (NTRS)

    Sterling, W. J.

    2003-01-01

    The efficient design, service-life qualification, and reliability predictions for lightweight aerospace structures require careful mechanical properties analysis of candidate structural materials. The demand for high-quality laboratory data is particularly acute when the candidate material or the structural design has little history. The pumpkin-shaped super-pressure balloon presents both challenges. Its design utilizes load members (tendons) extending from apex to base around the gas envelope to achieve a lightweight structure. The candidate tendon material is highly weight-efficient braided HM cord. Previous mechanical properties studies of Zylon have focused on fiber and yarn, and industrial use of the material in tensile applications is limited. For high-performance polymers, a carefully plamed and executed properties analysis scheme is required to ensure the data are relevant to the desired application. Because no directly-applicable testing standard was available, a protocol was developed based on guidelines fiom professional and industry organizations. Due to the liquid-crystalline nature of the polymer, the cord is very stiff, creeps very little, and does not yield. Therefore, the key material property for this application is the breaking strength. The pretension load and gauge length were found to have negligible effect on the measured breaking strength over the ranges investigated. Strain rate was found to have no effect on breaking strength, within the range of rates suggested by the standards organizations. However, at the lower rate more similar to ULDB operations, the strength was reduced. The breaking strength increased when the experiment temperature was decreased from ambient to 183K which is the lowest temperature ULDB is expected to experience. The measured strength under all test conditions was well below that resulting from direct scale-up of fiber strength based on the manufacturers data. This expected result is due to the effects of the braiding process and material ageing.

  11. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2.

    PubMed

    Yoshida, T; Miyaji, H; Otani, K; Inoue, K; Nakane, K; Nishimura, H; Ibara, A; Shimada, A; Ogawa, K; Nishida, E; Sugaya, T; Sun, L; Fugetsu, B; Kawanami, M

    2015-04-01

    Beta-tricalcium phosphate (β-TCP), a bio-absorbable ceramic, facilitates bone conductivity. We constructed a highly porous three-dimensional scaffold, using β-TCP, for bone tissue engineering and coated it with co-poly lactic acid/glycolic acid (PLGA) to improve the mechanical strength and biological performance. The aim of this study was to examine the effect of implantation of the PLGA/β-TCP scaffold loaded with fibroblast growth factor-2 (FGF-2) on bone augmentation. The β-TCP scaffold was fabricated by the replica method using polyurethane foam, then coated with PLGA. The PLGA/β-TCP scaffold was characterized by scanning electron miscroscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction, compressive testing, cell culture and a subcutaneous implant test. Subsequently, a bone-forming test was performed using 52 rats. The β-TCP scaffold, PLGA-coated scaffold, and β-TCP and PLGA-coated scaffolds loaded with FGF-2, were implanted into rat cranial bone. Histological observations were made at 10 and 35 d postsurgery. SEM and TEM observations showed a thin PLGA layer on the β-TCP particles after coating. High porosity (> 90%) of the scaffold was exhibited after PLGA coating, and the compressive strength of the PLGA/β-TCP scaffold was six-fold greater than that of the noncoated scaffold. Good biocompatibility of the PLGA/β-TCP scaffold was found in the culture and implant tests. Histological samples obtained following implantation of PLGA/β-TCP scaffold loaded with FGF-2 showed significant bone augmentation. The PLGA coating improved the mechanical strength of β-TCP scaffolds while maintaining high porosity and tissue compatibility. PLGA/β-TCP scaffolds, in combination with FGF-2, are bioeffective for bone augmentation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Effect of carbon black composition with sludge palm oil on the curing characteristic and mechanical properties of natural rubber/styrene butadiene rubber compound

    NASA Astrophysics Data System (ADS)

    Mohamed, R.; Nurazzi, N. Mohd; Huzaifah, M.

    2017-07-01

    This study was conducted to investigate the possibility of utilizing sludge palm oil (SPO) as processing oil, with various amount of carbon black as its reinforcing filler, and its effects on the curing characteristics and mechanical properties of natural rubber/styrene butadiene rubber (NR/SBR) compound. Rubber compound with fixed 15 pphr of SPO loading, and different carbon black loading from 20 to 50 pphr, was prepared using two roll mills. The cure characteristics and mechanical tests that have been conducted are the scorch and cure time analysis, tensile strength and tear strength. Scorch time (ts5) and cure time (t90) of the compound increases with the increasing carbon black loading. The mechanical properties of NR/SBR compound viz. the tensile strength, modulus at 300% strain and tear strength were also improved by the increasing carbon black loading.

  13. Strength Investigations in Aircraft Construction Under Repeated Application of the Load

    NASA Technical Reports Server (NTRS)

    Gassner, E.

    1946-01-01

    In the calculation of the dimensions of modern machines and building constructions, account is taken of the frequency of the occurrence of the anticipated loads. It is generally assumed that these loads will be repeated an infinite number, or at any rate some millions, of times during the total working life of the construction, When calculating the dimensions of the structural parts of aircraft, on the contrary, a consideration only of those frequencies in the appearance of the loads which actually come into play in the various states of stress is allowable. This is because in aircraft construction it is absolutely essential not only to ensure adequate structural strength but also to keep down the structural weight to the lowest possible limit, Strength tests in which this requirement is directly taken into account have recently been carried out by the DVL Material Strength Department.

  14. Durable nonslip stainless-steel drivebelts

    NASA Technical Reports Server (NTRS)

    Bahiman, H.

    1979-01-01

    Two toothed stainless-steel drive belt retains its strength and flexibility in extreme heat or cold, intense radiation, or under high loading. Belt does not stretch or slip and is particularly suited to machinery for which replacement is difficult or impossible.

  15. Live Load Response of Short Span Bridges with Parallam(R) Decks

    DOT National Transportation Integrated Search

    2007-01-01

    Structural Composite Lumber (SCL) is reconstituted with high grade presorted veneers to enhance properties including higher and more uniform strength and stiffness than conventional lumber. Parallel Strand Lumber (PSL) is mainly constituted of wood s...

  16. Outstanding compressive creep strength in Cr/Ir-codoped (Mo0.85Nb0.15)Si2 crystals with the unique cross-lamellar microstructure.

    PubMed

    Hagihara, Koji; Ikenishi, Takaaki; Araki, Haruka; Nakano, Takayoshi

    2017-06-21

    A (Mo 0.85 Nb 0.15 )Si 2 crystal with an oriented, lamellar, C40/C11 b two-phase microstructure is a promising ultrahigh-temperature (UHT) structural material, but its low room-temperature fracture toughness and low high-temperature strength prevent its practical application. As a possibility to overcome these problems, we first found a development of unique "cross-lamellar microstructure", by the cooping of Cr and Ir. The cross-lamellar microstructure consists of a rod-like C11 b -phase grains that extend along a direction perpendicular to the lamellar interface in addition to the C40/C11 b fine lamellae. In this study, the effectiveness of the cross-lamellar microstructure for improving the high-temperature creep deformation property, being the most essential for UHT materials, was examined by using the oriented crystals. The creep rate significantly reduced along a loading orientation parallel to the lamellar interface. Furthermore, the degradation in creep strength for other loading orientation that is not parallel to the lamellar interface, which has been a serious problem up to now, was also suppressed. The results demonstrated that the simultaneous improvement of high-temperature creep strength and room temperature fracture toughness can be first accomplished by the development of unique cross-lamellar microstructure, which opens a potential avenue for the development of novel UHT materials as alternatives to existing Ni-based superalloys.

  17. The Effects of a Maximal Power Training Cycle on the Strength, Maximum Power, Vertical Jump Height and Acceleration of High-Level 400-Meter Hurdlers

    PubMed Central

    Balsalobre-Fernández, Carlos; Tejero-González, Carlos Mª; del Campo-Vecino, Juan; Alonso-Curiel, Dionisio

    2013-01-01

    The aim of this study was to determine the effects of a power training cycle on maximum strength, maximum power, vertical jump height and acceleration in seven high-level 400-meter hurdlers subjected to a specific training program twice a week for 10 weeks. Each training session consisted of five sets of eight jump-squats with the load at which each athlete produced his maximum power. The repetition maximum in the half squat position (RM), maximum power in the jump-squat (W), a squat jump (SJ), countermovement jump (CSJ), and a 30-meter sprint from a standing position were measured before and after the training program using an accelerometer, an infra-red platform and photo-cells. The results indicated the following statistically significant improvements: a 7.9% increase in RM (Z=−2.03, p=0.021, δc=0.39), a 2.3% improvement in SJ (Z=−1.69, p=0.045, δc=0.29), a 1.43% decrease in the 30-meter sprint (Z=−1.70, p=0.044, δc=0.12), and, where maximum power was produced, a change in the RM percentage from 56 to 62% (Z=−1.75, p=0.039, δc=0.54). As such, it can be concluded that strength training with a maximum power load is an effective means of increasing strength and acceleration in high-level hurdlers. PMID:23717361

  18. The effects of a maximal power training cycle on the strength, maximum power, vertical jump height and acceleration of high-level 400-meter hurdlers.

    PubMed

    Balsalobre-Fernández, Carlos; Tejero-González, Carlos M; Del Campo-Vecino, Juan; Alonso-Curiel, Dionisio

    2013-03-01

    The aim of this study was to determine the effects of a power training cycle on maximum strength, maximum power, vertical jump height and acceleration in seven high-level 400-meter hurdlers subjected to a specific training program twice a week for 10 weeks. Each training session consisted of five sets of eight jump-squats with the load at which each athlete produced his maximum power. The repetition maximum in the half squat position (RM), maximum power in the jump-squat (W), a squat jump (SJ), countermovement jump (CSJ), and a 30-meter sprint from a standing position were measured before and after the training program using an accelerometer, an infra-red platform and photo-cells. The results indicated the following statistically significant improvements: a 7.9% increase in RM (Z=-2.03, p=0.021, δc=0.39), a 2.3% improvement in SJ (Z=-1.69, p=0.045, δc=0.29), a 1.43% decrease in the 30-meter sprint (Z=-1.70, p=0.044, δc=0.12), and, where maximum power was produced, a change in the RM percentage from 56 to 62% (Z=-1.75, p=0.039, δc=0.54). As such, it can be concluded that strength training with a maximum power load is an effective means of increasing strength and acceleration in high-level hurdlers.

  19. University Engineering Design Challenge

    DTIC Science & Technology

    2015-01-02

    strength its members provide. Trusses are common load - bearing structures, and are found in many modern-day applications due to their simple, strong, and...we ran simulations on was one of the member arms. We applied a bearing load on the surfaces of the holes on one side and tested it for static stress...73.24 ksi yield strength as shown figures 17 below. Figure 17: von Mises stress under static bearing load of 8750 lb. Under the static bearing load

  20. Filling material for a buried cavity in a collapse area using light-weighted foam and active feldspar

    NASA Astrophysics Data System (ADS)

    Cho, Jin Woo; Lee, Ju-hyoung; Kim, Sung-Wook; Choi, Eun-Kyeong

    2017-04-01

    Concrete which is generally used as filling material for a buried cavity has very high strength but significantly high self-load is considered its disadvantage. If it is used as filling material, the second collapse due to additional load, causing irreversible damage. If light-weighted foam and active feldspar are used to solve this problem, the second collapse can be prevented by reducing of self-load of filling material. In this study, the specimen was produced by mixing light-weighted foam, active feldspar and cement, and changes in the density, unconfined compressive strength and hydraulic conductivity were analyzed. Using the light-weighted foam could enable the adjustment of density of specimen between 0.5 g/cm3 and 1.7 g/cm3, and if the mixing ratio of the light-weighted foam increases, the specimen has more pores and smaller range of cross-sectional area. It is confirmed that it has direct correlation with the density, and if the specimen has more pores, the density of the specimen is lowered. The density of the specimen influences the unconfined compressive strength and the hydraulic conductivity, and it was also confirmed that the unconfined compressive strength could be adjusted between 0.6 MPa and 8 MPa and the hydraulic conductivity could be adjusted between 10-9cm/sec and 10-3cm/sec. These results indicated that we can adjust unconfined compressive strength and hydraulic conductivity of filling materials by changing the mixing amount of lightweight-weighted foam according to the requirements of the field condition. Keywords: filling material, buried cavity, light-weighted foam, feldspar Acknowledgement This research was supported by a Grant from a Strategic Research Project (Horizontal Drilling and Stabilization Technologies for Urban Search and Rescue (US&R) Operation) funded by the Korea Institute of Civil Engineering and Building Technology.

  1. Differences and similarities in fatigue behaviour and its influences on critical current and residual strength between Ti-Nb and Nb3Al superconducting composite wires

    NASA Astrophysics Data System (ADS)

    Ochiai, Shojiro; Oki, Yuichiro; Sekino, Fumiaki; Ohno, Hiroaki; Hojo, Masaki; Moriai, Hidezumi; Sakai, Shuji; Koganeya, Masanobu; Hayashi, Kazuhiko; Yamada, Yuichi; Ayai, Naoki; Watanabe, Kazuo

    2000-04-01

    The influences of fatigue damage introduced at room temperature on critical current at 4.2 K and residual strength at room temperature of Ti-Nb superconducting composite wire with a low copper ratio (1.04) were studied. The experimental results were compared with those of Nb3 Al composite. The following differences between the composites were found: the fracture surface of the Ti-Nb filaments in the composite varies from a ductile pattern under static loading to a brittle one under cyclic loading, while the Nb3 Al compound always shows a brittle pattern under both loadings; the fracture strength of the Ti-Nb composite is given by the net stress criterion but that of Nb3 Al by the stress intensity factor criterion; in the Ti-Nb composite the critical current Ic decreases with increasing number of stress cycles simultaneously with the residual strength icons/Journals/Common/sigma" ALT="sigma" ALIGN="TOP"/> c ,r , while in the Nb3 Al composite Ic decreases later than icons/Journals/Common/sigma" ALT="sigma" ALIGN="TOP"/> c ,r . On the other hand, both composites have the following similarities: the filaments are fractured due to the propagation of the fatigue crack nucleated in the copper; with increasing number of stress cycles, the damage progresses in the order of stage I (formation of cracks in the clad copper), stage II (stable propagation of the fatigue crack into the inner core) and stage III (overall fracture), among which stage II occurs in the late stage beyond 85 to 90% of the fatigue life; at intermediate maximum stress, many large cracks grow into the core portion at different cross sections but not at high and low maximum stresses; accordingly, the critical current and residual strength of the portion apart from the main crack are low for the intermediate maximum stress but not for low and high maximum stresses.

  2. History-independent cyclic response of nanotwinned metals

    NASA Astrophysics Data System (ADS)

    Pan, Qingsong; Zhou, Haofei; Lu, Qiuhong; Gao, Huajian; Lu, Lei

    2017-11-01

    Nearly 90 per cent of service failures of metallic components and structures are caused by fatigue at cyclic stress amplitudes much lower than the tensile strength of the materials involved. Metals typically suffer from large amounts of cumulative, irreversible damage to microstructure during cyclic deformation, leading to cyclic responses that are unstable (hardening or softening) and history-dependent. Existing rules for fatigue life prediction, such as the linear cumulative damage rule, cannot account for the effect of loading history, and engineering components are often loaded by complex cyclic stresses with variable amplitudes, mean values and frequencies, such as aircraft wings in turbulent air. It is therefore usually extremely challenging to predict cyclic behaviour and fatigue life under a realistic load spectrum. Here, through both atomistic simulations and variable-strain-amplitude cyclic loading experiments at stress amplitudes lower than the tensile strength of the metal, we report a history-independent and stable cyclic response in bulk copper samples that contain highly oriented nanoscale twins. We demonstrate that this unusual cyclic behaviour is governed by a type of correlated ‘necklace’ dislocation consisting of multiple short component dislocations in adjacent twins, connected like the links of a necklace. Such dislocations are formed in the highly oriented nanotwinned structure under cyclic loading and help to maintain the stability of twin boundaries and the reversible damage, provided that the nanotwins are tilted within about 15 degrees of the loading axis. This cyclic deformation mechanism is distinct from the conventional strain localizing mechanisms associated with irreversible microstructural damage in single-crystal, coarse-grained, ultrafine-grained and nanograined metals.

  3. Operational Physical Performance and Fitness in Military Women: Physiological, Musculoskeletal Injury, and Optimized Physical Training Considerations for Successfully Integrating Women Into Combat-Centric Military Occupations.

    PubMed

    Nindl, Bradley C; Jones, Bruce H; Van Arsdale, Stephanie J; Kelly, Karen; Kraemer, William J

    2016-01-01

    This article summarizes presentations from a 2014 United States Department of Defense (DoD) Health Affairs Women in Combat symposium addressing physiological, musculoskeletal injury, and optimized physical training considerations from the operational physical performance section. The symposium was held to provide a state-of-the-science meeting on the U.S. DoD's rescinding of the ground combat exclusion policy opening up combat-centric occupations to women. Physiological, metabolic, body composition, bone density, cardiorespiratory fitness, and thermoregulation differences between men and women were briefly reviewed. Injury epidemiological data are presented within military training and operational environments demonstrating women to be at a higher risk for musculoskeletal injuries than men. Physical training considerations for improved muscle strength and power, occupational task performance, load carriage were also reviewed. Particular focus of this article was given to translating physiological and epidemiological findings from the literature on these topics toward actionable guidance and policy recommendations for military leaders responsible for military physical training doctrine: (1) inclusion of resistance training with special emphasis on strength and power development (i.e., activation of high-threshold motor units and recruitment of type II high-force muscle fibers), upper-body strength development, and heavy load carriage, (2) moving away from "field expediency" as the major criteria for determining military physical training policy and training implementation, (3) improvement of load carriage ability with emphasis placed on specific load carriage task performance, combined with both resistance and endurance training, and (4) providing greater equipment resources, coaching assets, and increased training time dedicated to physical readiness training. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  4. Bond Capability of Universal Adhesive Systems to Dentin in Self-etch Mode after Short-term Storage and Cyclic Loading

    PubMed Central

    Costa, Daniele Morosini; Somacal, Deise Caren; Borges, Gilberto Antonio; Spohr, Ana Maria

    2017-01-01

    Objective: The aim was to evaluate, in vitro, the tensile bond strength to dentin of Scotchbond Universal (SU), All-Bond Universal (AU) and One Coat 7 Universal (OC7) adhesives applied in self-etch mode, after 24 h of storage and after 500,000 loading cycles, using Clearfil SE Bond (SE) as a control. Materials and Methods: The adhesives were applied on the dentin of bovine teeth, followed by the application of a composite resin. Thirty specimens were obtained for each adhesive. Half of the specimens were submitted to cyclic loading for 500,000 cycles. All specimens were submitted to a tensile bond strength test in a universal testing machine at a crosshead speed of 0.5 mm/minute. Results: According to two-way ANOVA and Tukey’s test (α=5%), the interaction between the adhesive and cyclic loading factors was significant (p=0.001). The means followed by the same letter represent no significant difference in the bond strength (MPa) after 24 h: OC7=7.86A (±2.90), SU=6.78AB (±2.03), AU=5.61BC (±2.32), and SE=3.53C (±1.89). After cyclic loading, SE, SU and AU maintained bond strength comparable to 24 h period. There was a significant decrease only for OC7. Conclusion: SU, AU and OC7 had bond strength to dentin comparable to that of SE. Only OC7 had decreased bond strength to dentin after cyclic loading. PMID:28839476

  5. The geomechanical strength of carbonate rock in Kinta valley, Ipoh, Perak Malaysia

    NASA Astrophysics Data System (ADS)

    Mazlan, Nur Amanina; Lai, Goh Thian; Razib, Ainul Mardhiyah Mohd; Rafek, Abdul Ghani; Serasa, Ailie Sofyiana; Simon, Norbert; Surip, Noraini; Ern, Lee Khai; Mohamed, Tuan Rusli

    2018-04-01

    The stability of both cut rocks and underground openings were influenced by the geomechanical strength of rock materials, while the strength characteristics are influenced by both material characteristics and the condition of weathering. This paper present a systematic approach to quantify the rock material strength characteristics for material failure and material & discontinuities failure by using uniaxial compressive strength, point load strength index and Brazilian tensile strength for carbonate rocks. Statistical analysis of the results at 95 percent confidence level showed that the mean value of compressive strength, point load strength index and Brazilian tensile strength for with material failure and material & discontinuities failure were 76.8 ± 4.5 and 41.2 ± 4.1 MPa with standard deviation of 15.2 and 6.5 MPa, respectively. The point load strength index for material failure and material & discontinuities failure were 3.1 ± 0.2 MPa and 1.8 ± 0.3 MPa with standard deviation of 0.9 and 0.6 MPa, respectively. The Brazilian tensile strength with material failure and material & discontinuities failure were 7.1 ± 0.3 MPa and 4.1 ± 0.3 MPa with standard deviation of 1.4 and 0.6 MPa, respectively. The results of this research revealed that the geomechanical strengths of rock material of carbonate rocks for material & discontinuities failure deteriorates approximately ½ from material failure.

  6. Mechanical Properties of Ceramics for High Temperature Applications

    DTIC Science & Technology

    1976-12-01

    difficult so far. Also torsion creep tests have been performed /2 /, not considered in this figure. The data show a relatively consistent picture...mittent creep test. Corrosion effects are claimed to be operative during fatigue : The lifetime of a fa- tigue specimen, being controlled by the slow...of plot at extremely low rates of loading. The static fatigue limit on this type of plot is the strength below which there is no effect of loading

  7. The Effects of Triggering Mechanisms on the Energy Absorption Capability of Circular Jute/Epoxy Composite Tubes under Quasi-Static Axial Loading

    NASA Astrophysics Data System (ADS)

    Sivagurunathan, Rubentheran; Lau Tze Way, Saijod; Sivagurunathan, Linkesvaran; Yaakob, Mohd. Yuhazri

    2018-01-01

    The usage of composite materials have been improving over the years due to its superior mechanical properties such as high tensile strength, high energy absorption capability, and corrosion resistance. In this present study, the energy absorption capability of circular jute/epoxy composite tubes were tested and evaluated. To induce the progressive crushing of the composite tubes, four different types of triggering mechanisms were used which were the non-trigger, single chamfered trigger, double chamfered trigger and tulip trigger. Quasi-static axial loading test was carried out to understand the deformation patterns and the load-displacement characteristics for each composite tube. Besides that, the influence of energy absorption, crush force efficiency, peak load, mean load and load-displacement history were examined and discussed. The primary results displayed a significant influence on the energy absorption capability provided that stable progressive crushing occurred mostly in the triggered tubes compared to the non-triggered tubes. Overall, the tulip trigger configuration attributed the highest energy absorption.

  8. Semi-analytical and Numerical Studies on the Flattened Brazilian Splitting Test Used for Measuring the Indirect Tensile Strength of Rocks

    NASA Astrophysics Data System (ADS)

    Huang, Y. G.; Wang, L. G.; Lu, Y. L.; Chen, J. R.; Zhang, J. H.

    2015-09-01

    Based on the two-dimensional elasticity theory, this study established a mechanical model under chordally opposing distributed compressive loads, in order to perfect the theoretical foundation of the flattened Brazilian splitting test used for measuring the indirect tensile strength of rocks. The stress superposition method was used to obtain the approximate analytic solutions of stress components inside the flattened Brazilian disk. These analytic solutions were then verified through a comparison with the numerical results of the finite element method (FEM). Based on the theoretical derivation, this research carried out a contrastive study on the effect of the flattened loading angles on the stress value and stress concentration degree inside the disk. The results showed that the stress concentration degree near the loading point and the ratio of compressive/tensile stress inside the disk dramatically decreased as the flattened loading angle increased, avoiding the crushing failure near-loading point of Brazilian disk specimens. However, only the tensile stress value and the tensile region were slightly reduced with the increase of the flattened loading angle. Furthermore, this study found that the optimal flattened loading angle was 20°-30°; flattened load angles that were too large or too small made it difficult to guarantee the central tensile splitting failure principle of the Brazilian splitting test. According to the Griffith strength failure criterion, the calculative formula of the indirect tensile strength of rocks was derived theoretically. This study obtained a theoretical indirect tensile strength that closely coincided with existing and experimental results. Finally, this paper simulated the fracture evolution process of rocks under different loading angles through the use of the finite element numerical software ANSYS. The modeling results showed that the Flattened Brazilian Splitting Test using the optimal loading angle could guarantee the tensile splitting failure initiated by a central crack.

  9. Appendicular and whole body lean mass outcomes are associated with finite element analysis-derived bone strength at the distal radius and tibia in adults aged 40years and older.

    PubMed

    Gibbs, Jenna C; Giangregorio, Lora M; Wong, Andy K O; Josse, Robert G; Cheung, Angela M

    2017-10-01

    The purpose of this cross-sectional study was to determine how appendicular lean mass index (ALMI), and whole body lean (LMI) and fat mass indices (FMI) associate with estimated bone strength outcomes at the distal radius and tibia in adults aged 40 years and older. Dual energy X-ray absorptiometry (DXA) scans were performed to determine body composition, including whole body lean and fat mass, and appendicular lean mass. ALMI (appendicular lean mass/height 2 ), LMI (lean tissue mass/height 2 ) and FMI (fat mass/height 2 ) were calculated. High-resolution peripheral quantitative computed tomography (HRpQCT) scans were performed to assess bone structural properties at the distal radius and tibia. Using finite element analysis, failure load (N), stiffness (N/mm), ultimate stress (MPa), and cortical-to-trabecular load ratio were estimated from HRpQCT scans. The associations between body composition (ALMI, LMI, FMI) and estimated bone strength were examined using bivariate and multivariable linear regression analyses adjusting for age, sex, and other confounding variables. In 197 participants (127 women; mean±SD, age: 69.5±10.3y, body mass index: 27.95±4.95kg/m 2 , ALMI: 7.31±1.31kg/m 2 ), ALMI and LMI were significantly associated with failure load at the distal radius and tibia (explained 39%-48% of the variance) and remained significant after adjusting for confounding variables and multiple testing (R 2 =0.586-0.645, p<0.001). ALMI, LMI, and FMI did not have significant associations with ultimate stress in our multivariable models. FMI was significantly associated with cortical-to-trabecular load ratio at the distal radius and tibia (explained 6%-12% of the variance) and remained significant after adjusting for confounders and multiple testing (R 2 =0.208-0.243, p<0.001). FMI was no longer significantly associated with failure load after adjusting for confounders. These findings suggest that ALMI and LMI are important determinants of estimated bone strength, particularly failure load, at the distal radius and tibia, and may contribute to preservation of bone strength in middle-to-late adulthood. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Multiple Interfacial Fe3O4@BaTiO3/P(VDF-HFP) Core-Shell-Matrix Films with Internal Barrier Layer Capacitor (IBLC) Effects and High Energy Storage Density.

    PubMed

    Zhou, Ling; Fu, Qiuyun; Xue, Fei; Tang, Xiahui; Zhou, Dongxiang; Tian, Yahui; Wang, Geng; Wang, Chaohong; Gou, Haibo; Xu, Lei

    2017-11-22

    Flexible nanocomposites composed of high dielectric constant fillers and polymer matrix have shown great potential for electrostatic capacitors and energy storage applications. To obtain the composited material with high dielectric constant and high breakdown strength, multi-interfacial composited particles, which composed of conductive cores and insulating shells and possessed the internal barrier layer capacitor (IBLC) effect, were adopted as fillers. Thus, Fe 3 O 4 @BaTiO 3 core-shell particles were prepared and loaded into the poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) polymer matrix. As the mass fraction of core-shell fillers increased from 2.5 wt % to 30 wt %, the dielectric constant of the films increased, while the loss tangent remained at a low level (<0.05 at 1 kHz). Both high electric displacement and high electric breakdown strength were achieved in the films with 10 wt % core-shell fillers loaded. The maximum energy storage density of 7.018 J/cm 3 was measured at 2350 kV/cm, which shows significant enhancement than those of the pure P(VDF-HFP) films and analogous composited films with converse insulating-conductive core-shell fillers. A Maxwell-Wagner capacitor model was also adopted to interpret the efficiency of IBLC effects on the suppressed loss tangent and the superior breakdown strength. This work explored an effective approach to prepare dielectric nanocomposites for energy storage applications experimentally and theoretically.

  11. High strain rate behavior of saturated and non-saturated sandstone: implications for earthquake mechanisms.

    NASA Astrophysics Data System (ADS)

    Aben, F. M.; Doan, M. L.; Gratier, J. P.; Renard, F.

    2015-12-01

    Damage zones of active faults control their resistance to rupture and transport properties. Hence, knowing the damage's origin is crucial to shed light on the (paleo)seismic behavior of the fault. Coseismic damage in the damage zone occurs by stress-wave loading of a passing earthquake rupture tip, resulting in dynamic (high strain rate) loading and subsequent dynamic fracturing or pulverization. Recently, interest in this type of damage has increased and several experimental studies were performed on dry rock specimens to search for pulverization-controlling parameters. However, the influence of fluids in during dynamic loading needs to be constrained. Hence, we have performed compressional dynamic loading experiments on water saturated and oven dried Vosges sandstone samples using a Split Hopkinson Pressure Bar apparatus. Due to the high porosity in these rocks, close to 20%, the effect of fluids should be clear. Afterwards, microstructural analyses have been applied on thin sections. Water saturated samples reveal dynamic mechanical behavior that follows linear poro-elasticity for undrained conditions: the peak strength of the sample decreases by 30-50% and the accumulated strain increases relative to the dry samples that were tested under similar conditions. The mechanical behavior of partially saturated samples falls in between. Microstructural studies on thin section show that fractures are restricted to some quartz grains while other quartz grains remain intact, similar to co-seismically damaged sandstones observed in the field. Most deformation is accommodated by inter-granular processes, thereby appointing an important role to the cement matrix in between grains. Intra-granular fracture damage is highest for the saturated samples. The presence of pore fluids in the rocks lower the dynamic peak strength, especially since fast dynamic loading does not allow for time-dependent fluid dissipation. Thus, fluid-saturated rocks would show undrained mechanical behavior, creating local overpressure in the pore that breaks the inter-granular cement. This strength-decreasing effect provides an explanation for the presence of pulverized and coseismically damaged rocks at depth and extends the range of dynamic stress where dynamic damage can occur in fault zones.

  12. Residual shear strength variability as a primary control on movement of landslides reactivated by earthquake-induced ground motion: Implications for coastal Oregon, U.S.

    USGS Publications Warehouse

    Schulz, William H.; Wang, Gonghui

    2014-01-01

    Most large seismogenic landslides are reactivations of preexisting landslides with basal shear zones in the residual strength condition. Residual shear strength often varies during rapid displacement, but the response of residual shear zones to seismic loading is largely unknown. We used a ring shear apparatus to perform simulated seismic loading tests, constant displacement rate tests, and tests during which shear stress was gradually varied on specimens from two landslides to improve understanding of coseismic landslide reactivation and to identify shear strength models valid for slow gravitational failure through rapid coseismic failure. The landslides we studied represent many along the Oregon, U.S., coast. Seismic loading tests resulted in (1) catastrophic failure involving unbounded displacement when stresses represented those for the existing landslides and (2) limited to unbounded displacement when stresses represented those for hypothetical dormant landslides, suggesting that coseismic landslide reactivation may be significant during future great earthquakes occurring near the Oregon Coast. Constant displacement rate tests indicated that shear strength decreased exponentially during the first few decimeters of displacement but increased logarithmically with increasing displacement rate when sheared at 0.001 cm s−1 or greater. Dynamic shear resistance estimated from shear strength models correlated well with stresses observed during seismic loading tests, indicating that displacement rate and amount primarily controlled failure characteristics. We developed a stress-based approach to estimate coseismic landslide displacement that utilizes the variable shear strength model. The approach produced results that compared favorably to observations made during seismic loading tests, indicating its utility for application to landslides.

  13. Accelerated loading evaluation of stabilized BCS layers in pavement performance : tech summary.

    DOT National Transportation Integrated Search

    2012-03-01

    The Louisiana Department of Transportation and Development (LADOTD) began to use blended calcium sulfate (BCS) as : an alternative base material in the 1990s. Raw BCS base without further chemical stabilization can achieve relatively high : strength ...

  14. Mechanical behaviour of TWIP steel under shear loading

    NASA Astrophysics Data System (ADS)

    Vincze, G.; Butuc, M. C.; Barlat, F.

    2016-08-01

    Twinning induced plasticity steels (TWIP) are very good candidate for automotive industry applications because they potentially offer large energy absorption before failure due to their exceptional strain hardening capability and high strength. However, their behaviour is drastically influenced by the loading conditions. In this work, the mechanical behaviour of a TWIP steel sheet sample was investigated at room temperature under monotonic and reverse simple shear loading. It was shown that all the expected features of load reversal such as Bauschinger effect, transient strain hardening with high rate and permanent softening, depend on the prestrain level. This is in agreement with the fact that these effects, which occur during reloading, are related to the rearrangement of the dislocation structure induced during the predeformation. The homogeneous anisotropic hardening (HAH) approach proposed by Barlat et al. (2011) [1] was successfully employed to predict the experimental results.

  15. Composite Behavior of a Novel Insulated Concrete Sandwich Wall Panel Reinforced with GFRP Shear Grids: Effects of Insulation Types.

    PubMed

    Kim, JunHee; You, Young-Chan

    2015-03-03

    A full-scale experimental program was used in this study to investigate the structural behavior of novel insulated concrete sandwich wall panels (SWPs) reinforced with grid-type glass-fiber-reinforced polymer (GFRP) shear connectors. Two kinds of insulation-expanded polystyrene (EPS) and extruded polystyrene (XPS) with 100 mm thickness were incased between the two concrete wythes to meet the increasing demand for the insulation performance of building envelope. One to four GFRP shear grids were used to examine the degree of composite action of the two concrete wythes. Ten specimens of SWPs were tested under displacement control subjected to four-point concentrated loads. The test results showed that the SWPs reinforced with GFRP grids as shear connectors developed a high degree of composite action resulting in high flexural strength. The specimens with EPS foam exhibited an enhanced load-displacement behavior compared with the specimens with XPS because of the relatively stronger bond between insulation and concrete. In addition, the ultimate strength of the test results was compared to the analytical prediction with the mechanical properties of only GRFP grids. The specimens with EPS insulation presented higher strength-based composite action than the ones with XPS insulation.

  16. Effect of a submaximal half-squats warm-up program on vertical jumping ability.

    PubMed

    Gourgoulis, Vassilios; Aggeloussis, Nickos; Kasimatis, Panagiotis; Mavromatis, Giorgos; Garas, Athanasios

    2003-05-01

    The purpose of the current research was to study the effect of a warm-up program including submaximal half-squats on vertical jumping ability. Twenty physically active men participated in the study. Each subject performed 5 sets of half-squats with 2 repetitions at each of the following intensities: 20, 40, 60, 80, and 90% of the 1 repetition maximum (1RM) load. Prior to the first set and immediately after the end of the last set, the subjects performed 2 countermovement jumps on a Kistler force platform; the primary goal was to jump as high as possible. The results showed that mean vertical jumping ability improved by 2.39% after the warm-up period. Subjects were then divided into 2 groups according to their 1RM values for the half-squat. Subjects with greater maximal strength ability improved their vertical jumping ability (4.01%) more than did subjects with lower maximal strength (0.42%). A warm-up protocol including half-squats with submaximal loads and explosive execution can be used for short-term improvements of vertical jumping performance, and this effect is greater in athletes with a relatively high strength ability.

  17. Vibration therapy: clinical applications in bone

    PubMed Central

    Thompson, William R.; Yen, Sherwin S.; Rubin, Janet

    2015-01-01

    Purpose of review The musculoskeletal system is largely regulated through dynamic physical activity and is compromised by cessation of physical loading. There is a need to recreate the anabolic effects of loading on the musculoskeletal system, especially in frail individuals who cannot exercise. Vibration therapy is designed to be a nonpharmacological analogue of physical activity, with an intention to promote bone and muscle strength. Recent findings Animal and human studies suggest that high-frequency, low-magnitude vibration therapy improves bone strength by increasing bone formation and decreasing bone resorption. There is also evidence that vibration therapy is useful in treating sarcopenia, which confounds skeletal fragility and fall risk in aging. Enhancement of skeletal and muscle strength involves regulating the differentiation of mesenchymal stem cells to build these tissues; mesenchymal stem cell lineage allocation is positively promoted by vibration signals. Summary Vibration therapy may be useful as a primary treatment as well as an adjunct to both physical and pharmacological treatments, but future studies must pay close attention to compliance and dosing patterns, and importantly, the vibration signal, be it low-intensity vibration (<1g) appropriate for treatment of frail individuals or high-intensity vibration (>1g) marketed as a training exercise. PMID:25354044

  18. A study of tensile residual strength of composite laminates under different patch-repaired series

    NASA Astrophysics Data System (ADS)

    Ding, M. H.; zhan, S.; Tang, Y. H.; Wang, L.; Ma, D. Q.; Wang, R. G.

    2017-09-01

    The tensile behavior of composite laminate structures repaired by bonding external patches was studied in the paper. Two different types of patches including wedge patches and inverted wedge patches were used and failure mechanisms, failure load and strength predictions were studied. A convenient and fast method of building 2-D finite element modeling (FEM) of laminate structure repaired was proposed and the strength of repaired laminate structures was calculated by FEM. The results showed that more than 80% tensile strength of the undamaged laminate could be recovered by bonding patch repairs. Moreover, the results indicated that the strength of inverted wedge patches repair were higher than that of wedge patches repair. FEM simulation results indicated that high stress concentration was found along the edges of invert patches and the most weakness part located in the adhesive bondline. FEM analysis results showed that the strength predicted matched well with the test strength.

  19. Influence of Welding Strength Matching Coefficient and Cold Stretching on Welding Residual Stress in Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Lu, Yaqing; Hui, Hu; Gong, Jianguo

    2018-05-01

    Austenitic stainless steel is widely used in pressure vessels for the storage and transportation of liquid gases such as liquid nitrogen, liquid oxygen, and liquid hydrogen. Cryogenic pressure vessel manufacturing uses cold stretching technology, which relies heavily on welding joint performance, to construct lightweight and thin-walled vessels. Residual stress from welding is a primary factor in cases of austenitic stainless steel pressure vessel failure. In this paper, on the basis of Visual Environment 10.0 finite element simulation technology, the residual stress resulting from different welding strength matching coefficients (0.8, 1, 1.2, 1.4) for two S30408 plates welded with three-pass butt welds is calculated according to thermal elastoplastic theory. In addition, the stress field was calculated under a loading as high as 410 MPa and after the load was released. Path 1 was set to analyze stress along the welding line, and path 2 was set to analyze stress normal to the welding line. The welding strength matching coefficient strongly affected both the longitudinal residual stress (center of path 1) and the transverse residual stress (both ends of path 1) after the welding was completed. However, the coefficient had little effect on the longitudinal and transverse residual stress of path 2. Under the loading of 410 MPa, the longitudinal and transverse stress decreased and the stress distribution, with different welding strength matching coefficients, was less diverse. After the load was released, longitudinal and transverse stress distribution for both path 1 and path 2 decreased to a low level. Cold stretching could reduce the effect of residual stress to various degrees. Transverse strain along the stretching direction was also taken into consideration. The experimental results validated the reliability of the partial simulation.

  20. Rapid acceleration leads to rapid weakening in earthquake-like laboratory experiments

    NASA Astrophysics Data System (ADS)

    Chang, J. C.; Lockner, D. A.; Reches, Z.

    2012-12-01

    We simulated the slip of a fault-patch during a large earthquake by rapidly loading an experimental, ring-shaped fault with energy stored in a spinning flywheel. The flywheel abruptly delivers a finite amount of energy by spinning the fault-patch that spontaneously dissipates the energy without operator intervention. We conducted 42 experiments on Sierra White granite (SWG) samples, and 24 experiments on Kasota dolomite (KD) samples. Each experiment starts by spinning a 225 kg disk-shaped flywheel to a prescribed angular velocity. We refer to this experiment as an "earthquake-like slip-event" (ELSE). The strength-evolution in ELSE experiments is similar to the strength-evolution proposed for earthquake models and observed in stick-slip experiments. Further, we found that ELSE experiments are similar to earthquakes in at least three ways: (1) slip driven by the release of a finite amount of stored energy; (2) pattern of fault strength evolution; and (3) seismically observed values, such as average slip, peak-velocity and rise-time. By assuming that the measured slip, D, in ELSE experiments is equivalent to the average slip during an earthquake, we found that ELSE experiments (D = 0.003-4.6 m) correspond to earthquakes in moment-magnitude range of Mw = 4-8. In ELSE experiments, the critical-slip-distance, dc, has mean values of 2.7 cm and 1.2 cm for SWG and KD, that are much shorter than the 1-10 m in steady-state classical experiments in rotary shear systems. We attribute these dc values, to ELSE loading in which the fault-patch is abruptly loaded by impact with a spinning flywheel. Under this loading, the friction-velocity relations are strikingly different from those under steady-state loading on the same rock samples with the same shear system (Reches and Lockner, Nature, 2010). We further note that the slip acceleration in ELSE evolves systematically with fault strength and wear-rate, and that the dynamic weakening is restricted to the period of intense acceleration (up to 25 m/s2 during ~0.1 s). Thus, the weakening distance, dc, is reached within the initial acceleration spike. These observations are not unique, and similar weakening-acceleration associations were reported in stick-slip, rotary shear, and impact shear experiments. These studies greatly differ from each other in slip distance, normal stress, acceleration, and slip-velocities with the outstanding commonality of abrupt loading and intense acceleration. We propose that impact loading induces extremely high strain-rates that significantly increase rock brittleness, fracture tendency, and fragmentation. We envision that these processes intensify fault wear as manifested in ELSE experiments by extremely high initial wear-rates. This intense, early wear generates a layer of fine-grain gouge that reduces the fault strength by powder-lubrication. Our analysis indicates that rapid acceleration associated with earthquake rupture accelerates fault weakening and shortens the weakening-distance.

  1. 14 CFR 25.305 - Strength and deformation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...

  2. 14 CFR 25.305 - Strength and deformation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...

  3. 14 CFR 25.305 - Strength and deformation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...

  4. 14 CFR 25.305 - Strength and deformation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...

  5. 14 CFR 25.305 - Strength and deformation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...

  6. Strength of shock-loaded single-crystal tantalum [100] determined using in situ broadband x-ray Laue diffraction.

    PubMed

    Comley, A J; Maddox, B R; Rudd, R E; Prisbrey, S T; Hawreliak, J A; Orlikowski, D A; Peterson, S C; Satcher, J H; Elsholz, A J; Park, H-S; Remington, B A; Bazin, N; Foster, J M; Graham, P; Park, N; Rosen, P A; Rothman, S R; Higginbotham, A; Suggit, M; Wark, J S

    2013-03-15

    The strength of shock-loaded single crystal tantalum [100] has been experimentally determined using in situ broadband x-ray Laue diffraction to measure the strain state of the compressed crystal, and elastic constants calculated from first principles. The inferred strength reaches 35 GPa at a shock pressure of 181 GPa and is in excellent agreement with a multiscale strength model [N. R. Barton et al., J. Appl. Phys. 109, 073501 (2011)], which employs a hierarchy of simulation methods over a range of length scales to calculate strength from first principles.

  7. Novel percolation phenomena and mechanism of strengthening elastomers by nanofillers.

    PubMed

    Wang, Zhenhua; Liu, Jun; Wu, Sizhu; Wang, Wenchuan; Zhang, Liqun

    2010-03-28

    Nano-strengthening by employing nanoparticles is necessary for high-efficiency strengthening of elastomers, which has already been validated by numerous researches and industrial applications, but the underlying mechanism is still an open challenge. In this work, we mainly focus our attention on studying the variation of the tensile strength of nanofilled elastomers by gradually increasing the filler content, within a low loading range. Interestingly, the percolation phenomenon is observed in the relationship between the tensile strength and the filler loading, which shares some similarities with the percolation phenomenon occurring in rubber toughened plastics. That is, as the loading of nanofillers (carbon black, zinc oxide) increases, the tensile strength of rubber nanocomposites (SBR, EPDM) increases slowly at first, then increases abruptly and finally levels off. Meanwhile, the bigger the particle size, the higher the filler content at the percolation point, and the lower the corresponding tensile strength of rubber nanocomposites. The concept of a critical particle-particle distance (CPD) is proposed to explain the observed percolation phenomenon. It is suggested that rubber strengthening through nanoparticles is attributed to the formation of stretched straight polymer chains between neighbor particles, induced by the slippage of adsorbed polymer chains on the filler surface during tension. Meanwhile, the factors to govern this CPD and the critical minimum particle size (CMPS) figured out in this work are both discussed and analyzed in detail. Within the framework of this percolation phenomenon, this paper also clearly answers two important and intriguing issues: (1) why is it necessary and essential to strengthen elastomers through nanofillers; (2) why does it need enough loading of nanofillers to effectively strengthen elastomers. Moreover, on the basis of the percolation phenomenon, we give out some guidance for reinforcement design of rubbery materials: the interfacial interactions between rubber and fillers cannot be complete chemical bonding, and partial physical absorption of macromolecular chains on the filler surface is necessary, otherwise the formation of stretched straight chains would be seriously hindered. There should exist such an optimum crosslinking density for a certain filler reinforced rubber system, and as well an optimum filler loading for rubber strengthening. Additionally, the different percolation behaviors of Young's modulus, the tensile strength and the electrical conductivity are compared and analyzed in our work. Lastly, molecular simulation indicates that it is not possible to strengthen glassy or hard polymer matrices by incorporating spherical nanoparticles. In general, by providing substantial experimental data and detailed analyses, this work is believed to promote the fundamental understanding of rubber reinforcement, as well provide better guidance for the design of high-performance and multi-functional rubber nanocomposites.

  8. The Effect of Low Extremity Plyometric Training on Back Muscle Power of High School Throwing Event Athletes

    PubMed Central

    Park, Gi Duck; Lee, Joong Chul; Lee, Juri

    2014-01-01

    [Purpose] The physical strength elements required for athletic throwing events include muscle strength, swiftness, agility, speed, flexibility, and physical balance. Although plyometric training and weight training are implemented as representative training methods for improving swiftness and agility, most studies of it have been conducted with players of other sports. [Subjects] The study subjects were 10 throwing event athletes attending K physical education high school. The subjects were randomly assigned to a control group of five subjects and an experimental group of five subjects. To analyze the body composition, an Inbody 3.0 instrument (Biospace, Korea) was used as experimental equipment to measure heights, weight, body fat percentages, and muscle masses and a Biodex system 4.0 (BIODEX, USA) was used to measure isokinetic muscle-joint and lumbar muscle strengths. The plyometric training consisted of 15 techniques out of the training methods introduced in the ‘Power up plyometric training’. The plyometric program was implemented without any training load three times per week during daybreak exercises for the experimental group. The number of times and the number of sets were changed over time as follows: three sets of 10 times in the 1st −4th weeks, three sets of 15 times in the 5th–8th weeks, and five sets of 15 times in the 9th−12th weeks. [Results] According to the ANCOVA results of lumbar extensor muscle strength at 60°/sec, the overall reliability of the model was significant. According to the ANCOVA results of lumbar flexor muscle strength at 60°/sec, the overall reliability of the model was significant. [Conclusion] Plyometric training positively affected high school throwing event athletes. To summarize the study findings, the application of plyometric training with high intensity and loads improved the results of athletes who perform highly intensive exercises at normal times. PMID:24567698

  9. The effect of low extremity plyometric training on back muscle power of high school throwing event athletes.

    PubMed

    Park, Gi Duck; Lee, Joong Chul; Lee, Juri

    2014-01-01

    [Purpose] The physical strength elements required for athletic throwing events include muscle strength, swiftness, agility, speed, flexibility, and physical balance. Although plyometric training and weight training are implemented as representative training methods for improving swiftness and agility, most studies of it have been conducted with players of other sports. [Subjects] The study subjects were 10 throwing event athletes attending K physical education high school. The subjects were randomly assigned to a control group of five subjects and an experimental group of five subjects. To analyze the body composition, an Inbody 3.0 instrument (Biospace, Korea) was used as experimental equipment to measure heights, weight, body fat percentages, and muscle masses and a Biodex system 4.0 (BIODEX, USA) was used to measure isokinetic muscle-joint and lumbar muscle strengths. The plyometric training consisted of 15 techniques out of the training methods introduced in the 'Power up plyometric training'. The plyometric program was implemented without any training load three times per week during daybreak exercises for the experimental group. The number of times and the number of sets were changed over time as follows: three sets of 10 times in the 1st -4th weeks, three sets of 15 times in the 5th-8th weeks, and five sets of 15 times in the 9th-12th weeks. [Results] According to the ANCOVA results of lumbar extensor muscle strength at 60°/sec, the overall reliability of the model was significant. According to the ANCOVA results of lumbar flexor muscle strength at 60°/sec, the overall reliability of the model was significant. [Conclusion] Plyometric training positively affected high school throwing event athletes. To summarize the study findings, the application of plyometric training with high intensity and loads improved the results of athletes who perform highly intensive exercises at normal times.

  10. Constant-load delayed fracture test of atmospherically corroded high strength steels

    NASA Astrophysics Data System (ADS)

    Akiyama, Eiji; Matsukado, Katsuhiro; Li, Songjie; Tsuzaki, Kaneaki

    2011-07-01

    Constant load tests of circumferentially notched round bar specimens of high strength steels after cyclic corrosion test and outdoor exposure have been performed to demonstrate that delayed fracture occurs when the hydrogen content from the environment, H E, exceeds the critical hydrogen content for delayed fracture, H C. During the constant load tests the humidity around the specimen was increased in stepwise manner to increase hydrogen entry. After fracture the specimen was kept at the humidity long enough to homogenize hydrogen in the specimen and to obtain more quantitative hydrogen content by thermal desorption analysis. H E of the fractured specimens was higher than H C, and H E of the specimens not fractured was lower than H C. This result confirms that the balance between H C and H E determines the occurrence of delayed fracture and that hydrogen-content-based evaluation of susceptibility to delayed fracture is reasonable. To certify the increase of H E with increase in humidity, electrochemical hydrogen permeation test was carried out. The hydrogen permeation current density was increased especially at 98%RH. Enhancement of hydrogen entry with increase in CCT number was also shown by the test.

  11. The resistance to embrittlement by a hydrogen environment of selected high strength iron-manganese base alloys

    NASA Technical Reports Server (NTRS)

    Benson, R. B., Jr.; Kim, D. K.; Atteridge, D.; Gerberich, W. W.

    1974-01-01

    Fe-16Mn and Fe-25Mn base alloys, which had been cold worked to yield strength levels of 201 and 178 KSI, were resistant to degradation of mechanical properties in a one atmosphere hydrogen environment at ambient temperature under the loading conditions employed in this investigation. Transmission electron microscopy established that bands of epsilon phase martensite and fcc mechanical twins were formed throughout the fcc matrix when these alloys were cold worked. In the cold worked alloys a high density of crystal defects were observed associated with both types of strain induced structures, which should contribute significantly to the strengthening of these alloys. High strength iron base alloys can be produced which appear to have some resistance to degradation of mechanical properties in a hydrogen environment under certain conditions.

  12. Investigation of smooth specimen scc test procedures; variations in environment, specimen size, stressing frame, and stress state. [for high strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Lifka, B. W.; Sprowls, D. O.; Kelsey, R. A.

    1975-01-01

    The variables studied in the stress-corrosion cracking performance of high strength aluminum alloys were: (1) corrosiveness of the environment, (2) specimen size and stiffness of the stressing system, (3) interpretation of transgranular cracking, and (4) interaction of the state of stress and specimen orientation in a product with an anisotropic grain structure. It was shown that the probability of failure and time to fracture for a specimen loaded in direct tension are influenced by corrosion pattern, the stressing assembly stiffness, and the notch tensile strength of the alloy. Results demonstrate that the combination of a normal tension stress and a shear stress acting on the plane of maximum susceptibility in a product with a highly directional grain cause the greatest tendency for stress-corrosion cracking.

  13. Friction Stir Welding of Al-Cu Bilayer Sheet by Tapered Threaded Pin: Microstructure, Material Flow, and Fracture Behavior

    NASA Astrophysics Data System (ADS)

    Beygi, R.; Kazeminezhad, M.; Kokabi, A. H.; Loureiro, A.

    2015-06-01

    The fracture behavior and intermetallic formation are investigated after friction stir welding of Al-Cu bilayer sheets performed by tapered threaded pin. To do so, temperature, axial load, and torque measurements during welding, and also SEM and XRD analyses and tensile tests on the welds are carried out. These observations show that during welding from Cu side, higher axial load and temperature lead to formation of different kinds of Al-Cu intermetallics such as Al2Cu, AlCu, and Al4Cu9. Also, existence of Al(Cu)-Al2Cu eutectic structures, demonstrates liquation during welding. The presence of these intermetallics leads to highly brittle fracture and low strength of the joints. In samples welded from Al side, lower axial load and temperature are developed during welding and no intermetallic compound is observed which results in higher strength and ductility of the joints in comparison with those welded from Cu side.

  14. Mechanical and thermal buckling analysis of sandwich panels under different edge conditions

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1993-01-01

    By using the Rayleigh-Ritz method of minimizing the total potential energy of a structural system, combined load (mechanical or thermal load) buckling equations are established for orthotropic rectangular sandwich panels supported under four different edge conditions. Two-dimensional buckling interaction curves and three dimensional buckling interaction surfaces are constructed for high-temperature honeycomb-core sandwich panels supported under four different edge conditions. The interaction surfaces provide easy comparison of the panel buckling strengths and the domains of symmetrical and antisymmetrical buckling associated with the different edge conditions. Thermal buckling curves of the sandwich panels also are presented. The thermal buckling conditions for the cases with and without thermal moments were found to be identical for the small deformation theory. In sandwich panels, the effect of transverse shear is quite large, and by neglecting the transverse shear effect, the buckling loads could be overpredicted considerably. Clamping of the edges could greatly increase buckling strength more in compression than in shear.

  15. Light-Sensitive Ruthenium Complex-Loaded Cross-linked Polymeric Nanoassemblies for the Treatment of Cancer

    PubMed Central

    Dickerson, M; Howerton, B.; Bae, Y.; Glazer, E.

    2016-01-01

    This work focuses on improving the efficacy of photoactivatable Ru complexes for photodynamic therapy by employing cross-linked nanoassemblies (CNAs) as a delivery approach. The effects of complex photoactivation, hydrophobicity, and solution ionic strength and pH on complex loading and release from CNAs were analyzed. The cell cytotoxicity of CNA formulations was similar to free Ru complexes despite reduced or eliminated DNA interactions. The release rate and the amount of each Ru complex released (%) varied inversely with complex hydrophobicity, while the effect of solution ionic strength was dependent on complex hydrophobicity. Premature release of two photoactivatable prodrugs prior to irradiation was believed to account for higher activity in cells studies compared to DNA interaction studies; however, for photostable 1O2 generator-loaded CNAs this cannot explain the high cytotoxicity and lack of DNA interactions because release was incomplete after 48 hrs. The cause remains unclear, but among other possibilities, accelerated release in a cell culture environment may be responsible. PMID:26855780

  16. Improving the fracture toughness and the strength of epoxy using nanomaterials--a review of the current status.

    PubMed

    Domun, N; Hadavinia, H; Zhang, T; Sainsbury, T; Liaghat, G H; Vahid, S

    2015-06-21

    The incorporation of nanomaterials in the polymer matrix is considered to be a highly effective technique to improve the mechanical properties of resins. In this paper the effects of the addition of different nanoparticles such as single-walled CNT (SWCNT), double-walled CNT (DWCNT), multi-walled CNT (MWCNT), graphene, nanoclay and nanosilica on fracture toughness, strength and stiffness of the epoxy matrix have been reviewed. The Young's modulus (E), ultimate tensile strength (UTS), mode I (GIC) and mode II (GIIC) fracture toughness of the various nanocomposites at different nanoparticle loadings are compared. The review shows that, depending on the type of nanoparticles, the integration of the nanoparticles has a substantial effect on mode I and mode II fracture toughness, strength and stiffness. The critical factors such as maintaining a homogeneous dispersion and good adhesion between the matrix and the nanoparticles are highlighted. The effect of surface functionalization, its relevancy and toughening mechanism are also scrutinized and discussed. A large variety of data comprised of the mechanical properties of nanomaterial toughened composites reported to date has thus been compiled to facilitate the evolution of this emerging field, and the results are presented in maps showing the effect of nanoparticle loading on mode I fracture toughness, stiffness and strength.

  17. Fastening of a High-Strength Composite rod with a Splitted and Wedged end in a Potted Anchor 1. Experimental Investigation

    NASA Astrophysics Data System (ADS)

    Arnautov, A. K.; Terrasi, G. P.; Kulakov, V. L.; Portnov, G. G.

    2014-01-01

    The effectiveness of fastening of high-strength unidirectional CFRP/epoxy rods in potted anchors was investigated experimentally. The rods had splitted ends, in which duralumin wedges were glued. The experiments, performed for three types of contact between the composite rods and the potted material, showed that the most effective were full adhesion and adhesion-friction contacts, when the maximum load-carrying capacity of CFRP rods under tension could be reached. The full friction contact was ineffective because of the shear failure of CFRP rods inside the anchorage zone.

  18. Effect of low-velocity or ballistic impact damage on the strength of thin composite and aluminum shear panels

    NASA Technical Reports Server (NTRS)

    Farley, G. L.

    1985-01-01

    Impact tests were conducted on shear panels fabricated from 6061-T6 aluminum and from woven fabric prepreg of Du Pont Kevlara fiber/epoxy resin and graphite fiber/epoxy resin. The shear panels consisted of three different composite laminates and one aluminum material configuration. Three panel aspect ratios were evaluated for each material configuration. Composite panels were impacted with a 1.27-cm (0.05-in) diameter aluminum sphere at low velocities of 46 m/sec (150 ft/sec) and 67 m/sec (220 ft/sec). Ballistic impact conditions consisted of a tumbled 0.50-caliber projectile impacting loaded composite and aluminum shear panels. The results of these tests indicate that ballistic threshold load (the lowest load which will result in immediate failure upon penetration by the projectile) varied between 0.44 and 0.61 of the average failure load of undamaged panels. The residual strengths of the panels after ballistic impact varied between 0.55 and 0.75 of the average failure strength of the undamaged panels. The low velocity impacts at 67 m/sec (220 ft/sec) caused a 15 to 20 percent reduction in strength, whereas the impacts at 46 m/sec (150 ft/sec) resulted in negligible strength loss. Good agreement was obtained between the experimental failure strengths and the predicted strength with the point stress failure criterion.

  19. Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature

    PubMed Central

    Xie, Z. M.; Liu, R.; Miao, S.; Yang, X. D.; Zhang, T.; Wang, X. P.; Fang, Q. F.; Liu, C. S.; Luo, G. N.; Lian, Y. Y.; Liu, X.

    2015-01-01

    The refractory tungsten alloys with high ductility/strength/plasticity are highly desirable for a wide range of critical applications. Here we report an interface design strategy that achieves 8.5 mm thick W-0.5 wt. %ZrC alloy plates with a flexural strength of 2.5 GPa and a strain of 3% at room temperature (RT) and ductile-to-brittle transition temperature of about 100 °C. The tensile strength is about 991 MPa at RT and 582 MPa at 500 °C, as well as total elongation is about 1.1% at RT and as large as 41% at 500 °C, respectively. In addition, the W-ZrC alloy plate can sustain 3.3 MJ/m2 thermal load without any cracks. This processing route offers the special coherent interfaces of grain/phase boundaries (GB/PBs) and the diminishing O impurity at GBs, which significantly strengthens GB/PBs and thereby enhances the ductility/strength/plasticity of W alloy. The design thought can be used in the future to prepare new alloys with higher ductility/strength. PMID:26531172

  20. Acoustic bed velocity and bed load dynamics in a large sand bed river

    USGS Publications Warehouse

    Gaeuman, D.; Jacobson, R.B.

    2006-01-01

    Development of a practical technology for rapid quantification of bed load transport in large rivers would represent a revolutionary advance for sediment monitoring and the investigation of fluvial dynamics. Measurement of bed load motion with acoustic Doppler current profiles (ADCPs) has emerged as a promising approach for evaluating bed load transport. However, a better understanding of how ADCP data relate to conditions near the stream bed is necessary to make the method practical for quantitative applications. In this paper, we discuss the response of ADCP bed velocity measurements, defined as the near-bed sediment velocity detected by the instrument's bottom-tracking feature, to changing sediment-transporting conditions in the lower Missouri River. Bed velocity represents a weighted average of backscatter from moving bed load particles and spectral reflections from the immobile bed. The ratio of bed velocity to mean bed load particle velocity depends on the concentration of the particles moving in the bed load layer, the bed load layer thickness, and the backscatter strength from a unit area of moving particles relative to the echo strength from a unit area of unobstructed bed. A model based on existing bed load transport theory predicted measured bed velocities from hydraulic and grain size measurements with reasonable success. Bed velocities become more variable and increase more rapidly with shear stress when the transport stage, defined as the ratio of skin friction to the critical shear stress for particle entrainment, exceeds a threshold of about 17. This transition in bed velocity response appears to be associated with the appearance of longer, flatter bed forms at high transport stages.

  1. Laboratory constraints on models of earthquake recurrence

    NASA Astrophysics Data System (ADS)

    Beeler, N. M.; Tullis, Terry; Junger, Jenni; Kilgore, Brian; Goldsby, David

    2014-12-01

    In this study, rock friction "stick-slip" experiments are used to develop constraints on models of earthquake recurrence. Constant rate loading of bare rock surfaces in high-quality experiments produces stick-slip recurrence that is periodic at least to second order. When the loading rate is varied, recurrence is approximately inversely proportional to loading rate. These laboratory events initiate due to a slip-rate-dependent process that also determines the size of the stress drop and, as a consequence, stress drop varies weakly but systematically with loading rate. This is especially evident in experiments where the loading rate is changed by orders of magnitude, as is thought to be the loading condition of naturally occurring, small repeating earthquakes driven by afterslip, or low-frequency earthquakes loaded by episodic slip. The experimentally observed stress drops are well described by a logarithmic dependence on recurrence interval that can be cast as a nonlinear slip predictable model. The fault's rate dependence of strength is the key physical parameter. Additionally, even at constant loading rate the most reproducible laboratory recurrence is not exactly periodic, unlike existing friction recurrence models. We present example laboratory catalogs that document the variance and show that in large catalogs, even at constant loading rate, stress drop and recurrence covary systematically. The origin of this covariance is largely consistent with variability of the dependence of fault strength on slip rate. Laboratory catalogs show aspects of both slip and time predictability, and successive stress drops are strongly correlated indicating a "memory" of prior slip history that extends over at least one recurrence cycle.

  2. Buckling of circular cylindrical shells under dynamically applied axial loads

    NASA Technical Reports Server (NTRS)

    Tulk, J. D.

    1972-01-01

    A theoretical and experimental study was made of the buckling characteristics of perfect and imperfect circular cylindrical shells subjected to dynamic axial loading. Experimental data included dynamic buckling loads (124 data points), high speed photographs of buckling mode shapes and observations of the dynamic stability of shells subjected to rapidly applied sub-critical loads. A mathematical model was developed to describe the dynamic behavior of perfect and imperfect shells. This model was based on the Donnell-Von Karman compatibility and equilibrium equations and had a wall deflection function incorporating five separate modes of deflection. Close agreement between theory and experiment was found for both dynamic buckling strength and buckling mode shapes.

  3. Biaxial tests of flat graphite/epoxy laminates

    NASA Technical Reports Server (NTRS)

    Liebowitz, H.; Jones, D. L.

    1981-01-01

    The influence of biaxially applied loads on the strength of composite materials containing holes was analyzed. The analysis was performed through the development of a three dimensional, finite element computer program that is capable of evaluating fiber breakage, delamination, and matrix failure. Realistic failure criteria were established for each of the failure modes, and the influence of biaxial loading on damage accumulation under monotonically increasing loading was examined in detail. Both static and fatigue testing of specially designed biaxial specimens containing central holes were performed. Static tests were performed to obtain an understanding of the influence of biaxial loads on the fracture strength of composite materials and to provide correlation with the analytical predictions. The predicted distributions and types of damage are in reasonable agreement with the experimental results. A number of fatigue tests were performed to determine the influence of cyclic biaxial loads on the fatigue life and residual strength of several composite laminates.

  4. High-Strength Composite Fabric Tested at Structural Benchmark Test Facility

    NASA Technical Reports Server (NTRS)

    Krause, David L.

    2002-01-01

    Large sheets of ultrahigh strength fabric were put to the test at NASA Glenn Research Center's Structural Benchmark Test Facility. The material was stretched like a snare drum head until the last ounce of strength was reached, when it burst with a cacophonous release of tension. Along the way, the 3-ft square samples were also pulled, warped, tweaked, pinched, and yanked to predict the material's physical reactions to the many loads that it will experience during its proposed use. The material tested was a unique multi-ply composite fabric, reinforced with fibers that had a tensile strength eight times that of common carbon steel. The fiber plies were oriented at 0 and 90 to provide great membrane stiffness, as well as oriented at 45 to provide an unusually high resistance to shear distortion. The fabric's heritage is in astronaut space suits and other NASA programs.

  5. Composite Stress Rupture: A New Reliability Model Based on Strength Decay

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2012-01-01

    A model is proposed to estimate reliability for stress rupture of composite overwrap pressure vessels (COPVs) and similar composite structures. This new reliability model is generated by assuming a strength degradation (or decay) over time. The model suggests that most of the strength decay occurs late in life. The strength decay model will be shown to predict a response similar to that predicted by a traditional reliability model for stress rupture based on tests at a single stress level. In addition, the model predicts that even though there is strength decay due to proof loading, a significant overall increase in reliability is gained by eliminating any weak vessels, which would fail early. The model predicts that there should be significant periods of safe life following proof loading, because time is required for the strength to decay from the proof stress level to the subsequent loading level. Suggestions for testing the strength decay reliability model have been made. If the strength decay reliability model predictions are shown through testing to be accurate, COPVs may be designed to carry a higher level of stress than is currently allowed, which will enable the production of lighter structures

  6. Loading Intensity Prediction by Velocity and the OMNI-RES 0-10 Scale in Bench Press.

    PubMed

    Naclerio, Fernando; Larumbe-Zabala, Eneko

    2017-02-01

    Naclerio, F and Larumbe-Zabala, E. Loading intensity prediction by velocity and the OMNI-RES 0-10 scale in bench press. J Strength Cond Res 32(1): 323-329, 2017-This study examined the possibility of using movement velocity and the perceived exertion as indicators of relative load in the bench press (BP) exercise. A total of 308 young, healthy, resistance trained athletes (242 men and 66 women) performed a progressive strength test up to the one repetition maximum for the individual determination of the full load-velocity and load-exertion relationships. Longitudinal regression models were used to predict the relative load from the average velocity (AV) and the OMNI-Resistance Exercise Scales (OMNI-RES 0-10 scale), considering sets as the time-related variable. Load associated with the AV and the OMNI-RES 0-10 scale value expressed after performing a set of 1-3 repetitions were used to construct 2 adjusted predictive equations: Relative load = 107.75 - 62.97 × average velocity; and Relative load = 29.03 + 7.26 × OMNI-RES 0-10 scale value. The 2 models were capable of estimating the relative load with an accuracy of 84 and 93%, respectively. These findings confirm the ability of the 2 calculated regression models, using load-velocity and load-exertion from the OMNI-RES 0-10 scale, to accurately predict strength performance in BP.

  7. Reliability, Durability and Packaging of Fibre Bragg Gratings for Large-Scale Structural Health Monitoring of Defence Platforms

    DTIC Science & Technology

    2013-08-01

    thermoset system designed to achieve good wetting , high-strength and low-creep adhesion. Many commercially-available adhesives were sourced and...Bragg grating: 1. Removal of the fibre coating. 2. Photosensitization of the fibre. 3. Exposure of the grating to UV laser light. 4. Annealing and...molecular hydrogen loading (H2 loading) in a heated pressure vessel . Photosensitisation results in a stronger refractive index contrast for a given

  8. Integrity of Ceramic Parts Predicted When Loads and Temperatures Fluctuate Over Time

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    2004-01-01

    Brittle materials are being used, and being considered for use, for a wide variety of high performance applications that operate in harsh environments, including static and rotating turbine parts for unmanned aerial vehicles, auxiliary power units, and distributed power generation. Other applications include thermal protection systems, dental prosthetics, fuel cells, oxygen transport membranes, radomes, and microelectromechanical systems (MEMS). In order for these high-technology ceramics to be used successfully for structural applications that push the envelope of materials capabilities, design engineers must consider that brittle materials are designed and analyzed differently than metallic materials. Unlike ductile metals, brittle materials display a stochastic strength response because of the combination of low fracture toughness and the random nature of the size, orientation, and distribution of inherent microscopic flaws. This plus the fact that the strength of a component under load may degrade over time because of slow crack growth means that a probabilistic-based life-prediction methodology must be used when the tradeoffs of failure probability, performance, and useful life are being optimized. The CARES/Life code (which was developed at the NASA Glenn Research Center) predicts the probability of ceramic components failing from spontaneous catastrophic rupture when these components are subjected to multiaxial loading and slow crack growth conditions. Enhancements to CARES/Life now allow for the component survival probability to be calculated when loading and temperature vary over time.

  9. Graphene oxide versus graphene for optimisation of PMMA bone cement for orthopaedic applications.

    PubMed

    Paz, E; Forriol, F; Del Real, J C; Dunne, N

    2017-08-01

    Graphene (G) and graphene oxide (GO) nano-sized powders with loadings ranging from 0.1 to 1.0wt% were investigated as reinforced agents for polymethyl methacrylate (PMMA) bone cements. The mechanical properties (i.e. bend strength, bend modulus, compression strength, fracture toughness and fatigue performance) and the thermal properties (i.e. maximum temperature, setting time, curing heat and residual monomer) of the resultant nanocomposites were characterised. The mechanical performance of G-PMMA and GO-PMMA bone cements has been improved at low loadings (≤0.25wt%), especially the fracture toughness and fatigue performance. These improvements were attributed to the fact that the G and GO induced deviations in the crack fronts and hampered crack propagation. The high functionalisation of GO compared with G resulted in greater enhancements because it facilitated the creation of a stronger interfacial adhesion between the GO and PMMA. The use of loadings ≥0.25wt% showed a detriment in the mechanical performance as consequence of the formation of agglomerates as well as to an increase in the porosity. The increase in the residual monomer and the decrease in the curing heat, observed with the increase in the level of G and GO added, suggests that such materials retard and inhibit the curing reaction at high levels of loading by interfering in the radical reaction. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments

    NASA Astrophysics Data System (ADS)

    Xu, Yuan; Dai, Feng

    2018-03-01

    A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.

  11. Characterization, Modeling, and Failure Analysis of Composite Structure Materials under Static and Dynamic Loading

    NASA Astrophysics Data System (ADS)

    Werner, Brian Thomas

    Composite structures have long been used in many industries where it is advantageous to reduce weight while maintaining high stiffness and strength. Composites can now be found in an ever broadening range of applications: sporting equipment, automobiles, marine and aerospace structures, and energy production. These structures are typically sandwich panels composed of fiber reinforced polymer composite (FRPC) facesheets which provide the stiffness and the strength and a low density polymeric foam core that adds bending rigidity with little additional weight. The expanding use of composite structures exposes them to high energy, high velocity dynamic loadings which produce multi-axial dynamic states of stress. This circumstance can present quite a challenge to designers, as composite structures are highly anisotropic and display properties that are sensitive to loading rates. Computer codes are continually in development to assist designers in the creation of safe, efficient structures. While the design of an optimal composite structure is more complex, engineers can take advantage of the effect of enhanced energy dissipation displayed by a composite when loaded at high strain rates. In order to build and verify effective computer codes, the underlying assumptions must be verified by laboratory experiments. Many of these codes look to use a micromechanical approach to determine the response of the structure. For this, the material properties of the constituent materials must be verified, three-dimensional constitutive laws must be developed, and failure of these materials must be investigated under static and dynamic loading conditions. In this study, simple models are sought not only to ease their implementation into such codes, but to allow for efficient characterization of new materials that may be developed. Characterization of composite materials and sandwich structures is a costly, time intensive process. A constituent based design approach evaluates potential combinations of materials in a much faster and more efficient manner.

  12. High strength, surface porous polyether-ether-ketone for load-bearing orthopaedic implants

    PubMed Central

    Evans, Nathan T.; Torstrick, F. Brennan; Lee, Christopher S.D.; Dupont, Kenneth M.; Safranski, David L.; Chang, W. Allen; Macedo, Annie E.; Lin, Angela; Boothby, Jennifer M.; Whittingslow, Daniel C.; Carson, Robert A.; Guldberg, Robert E.; Gall, Ken

    2015-01-01

    Despite its widespread clinical use in load-bearing orthopaedic implants, polyether-ether-ketone (PEEK) is often associated with poor osseointegration. In this study, a surface porous PEEK material (PEEK-SP) was created using a melt extrusion technique. The porous layer thickness was 399.6±63.3 µm and possessed a mean pore size of 279.9±31.6 µm, strut spacing of 186.8±55.5 µm, porosity of 67.3±3.1%, and interconnectivity of 99.9±0.1%. Monotonic tensile tests showed that PEEK-SP preserved 73.9% of the strength (71.06±2.17 MPa) and 73.4% of the elastic modulus (2.45±0.31 GPa) of as-received, injection molded PEEK. PEEK-SP further demonstrated a fatigue strength of 60.0 MPa at one million cycles, preserving 73.4% of the fatigue resistance of injection molded PEEK. Interfacial shear testing showed the pore layer shear strength to be 23.96±2.26 MPa. An osseointegration model in the rat revealed substantial bone formation within the pore layer at 6 and 12 weeks via µCT and histological evaluation. Ingrown bone was more closely apposed to the pore wall and fibrous tissue growth was reduced in PEEK-SP when compared to non-porous PEEK controls. These results indicate that PEEK-SP could provide improved osseointegration while maintaining the structural integrity necessary for load-bearing orthopaedic applications. PMID:25463499

  13. Characterization of carbon fiber polymer matrix composites subjected to simultaneous application of electric current pulse and low velocity impact

    NASA Astrophysics Data System (ADS)

    Hart, Robert James

    2011-12-01

    The use of composite materials in aerospace, electronics, and wind industries has become increasingly common, and these composite components are required to carry mechanical, electrical, and thermal loads simultaneously. A unique property of carbon fiber composites is that when an electric current is applied to the specimen, the mechanical strength of the specimen increases. Previous studies have shown that the higher the electric current, the greater the increase in impact strength. However, as current passes through the composite, heat is generated through Joule heating. This Joule heating can cause degradation of the composite and thus a loss in strength. In order to minimize the negative effects of heating, it is desired to apply a very high current for a very short duration of time. This thesis investigated the material responses of carbon fiber composite plates subjected to electrical current pulse loads of up to 1700 Amps. For 32 ply unidirectional IM7/977-3 specimens, the peak impact load and absorbed energy increased slightly with the addition of a current pulse at the time of an impact event. In 16 ply cross-ply IM7/977-2 specimens, the addition of the current pulse caused detrimental effects due to electrical arcing at the interface between the composite and electrodes. Further refinement of the experimental setup should minimize the risk of electrical arcing and should better elucidate the effects of a current pulse on the impact strength of the specimens.

  14. Musculoskeletal phenotype through the life course: the role of nutrition.

    PubMed

    Ward, Kate

    2012-02-01

    This review considers the definition of a healthy bone phenotype through the life course and the modulating effects of muscle function and nutrition. In particular, it will emphasise that optimal bone strength (and how that is regulated) is more important than simple measures of bone mass. The forces imposed on bone by muscle loading are the primary determinants of musculoskeletal health. Any factor that changes muscle loading on the bone, or the response of bone to loading results in alterations of bone strength. Advances in technology have enhanced the understanding of a healthy bone phenotype in different skeletal compartments. Multiple components of muscle strength can also be quantified. The critical evaluation of emerging technologies for assessment of bone and muscle phenotype is vital. Populations with low and moderate/high daily Ca intakes and/or different vitamin D status illustrate the importance of nutrition in determining musculoskeletal phenotype. Changes in mass and architecture maintain strength despite low Ca intake or vitamin D status. There is a complex interaction between body fat and bone which, in addition to protein intake, is emerging as a key area of research. Muscle and bone should be considered as an integrative unit; the role of body fat requires definition. There remains a lack of longitudinal evidence to understand how nutrition and lifestyle define musculoskeletal health. In conclusion, a life-course approach is required to understand the definition of healthy skeletal phenotype in different populations and at different stages of life.

  15. Scale effects in the response and failure of fiber reinforced composite laminates loaded in tension and in flexure

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Kellas, Sotiris; Morton, John

    1992-01-01

    The feasibility of using scale model testing for predicting the full-scale behavior of flat composite coupons loaded in tension and beam-columns loaded in flexure is examined. Classical laws of similitude are applied to fabricate and test replica model specimens to identify scaling effects in the load response, strength, and mode of failure. Experiments were performed on graphite-epoxy composite specimens having different laminate stacking sequences and a range of scaled sizes. From the experiments it was deduced that the elastic response of scaled composite specimens was independent of size. However, a significant scale effect in strength was observed. In addition, a transition in failure mode was observed among scaled specimens of certain laminate stacking sequences. A Weibull statistical model and a fracture mechanics based model were applied to predict the strength scale effect since standard failure criteria cannot account for the influence of absolute specimen size on strength.

  16. Peridynamics for failure and residual strength prediction of fiber-reinforced composites

    NASA Astrophysics Data System (ADS)

    Colavito, Kyle

    Peridynamics is a reformulation of classical continuum mechanics that utilizes integral equations in place of partial differential equations to remove the difficulty in handling discontinuities, such as cracks or interfaces, within a body. Damage is included within the constitutive model; initiation and propagation can occur without resorting to special crack growth criteria necessary in other commonly utilized approaches. Predicting damage and residual strengths of composite materials involves capturing complex, distinct and progressive failure modes. The peridynamic laminate theory correctly predicts the load redistribution in general laminate layups in the presence of complex failure modes through the use of multiple interaction types. This study presents two approaches to obtain the critical peridynamic failure parameters necessary to capture the residual strength of a composite structure. The validity of both approaches is first demonstrated by considering the residual strength of isotropic materials. The peridynamic theory is used to predict the crack growth and final failure load in both a diagonally loaded square plate with a center crack, as well as a four-point shear specimen subjected to asymmetric loading. This study also establishes the validity of each approach by considering composite laminate specimens in which each failure mode is isolated. Finally, the failure loads and final failure modes are predicted in a laminate with various hole diameters subjected to tensile and compressive loads.

  17. Reproducibility of structural strength and stiffness for graphite-epoxy aircraft spoilers

    NASA Technical Reports Server (NTRS)

    Howell, W. E.; Reese, C. D.

    1978-01-01

    Structural strength reproducibility of graphite epoxy composite spoilers for the Boeing 737 aircraft was evaluated by statically loading fifteen spoilers to failure at conditions simulating aerodynamic loads. Spoiler strength and stiffness data were statistically modeled using a two parameter Weibull distribution function. Shape parameter values calculated for the composite spoiler strength and stiffness were within the range of corresponding shape parameter values calculated for material property data of composite laminates. This agreement showed that reproducibility of full scale component structural properties was within the reproducibility range of data from material property tests.

  18. Application of self-balanced loading test to socketed pile in weak rock

    NASA Astrophysics Data System (ADS)

    Cheng, Ye; Gong, Weiming; Dai, Guoliang; Wu, JingKun

    2008-11-01

    Method of self-balanced loading test differs from the traditional methods of pile test. The key equipment of the test is a cell. The cell specially designed is used to exert load which is placed in pile body. During the test, displacement values of the top plate and the bottom plate of the cell are recorded according to every level of load. So Q-S curves can be obtained. In terms of test results, the bearing capacity of pile can be judged. Equipments of the test are simply and cost of it is low. Under some special conditions, the method will take a great advantage. In Guangxi Province, tertiary mudstone distributes widely which is typical weak rock. It is usually chosen as the bearing stratum of pile foundation. In order to make full use of its high bearing capacity, pile is generally designed as belled pile. Foundations of two high-rise buildings which are close to each other are made up of belled socketed piles in weak rock. To obtain the bearing capacity of the belled socketed pile in weak rock, loading test in situ should be taken since it is not reasonable that experimental compression strength of the mudstone is used for design. The self-balanced loading test was applied to eight piles of two buildings. To get the best test effect, the assembly of cell should be taken different modes in terms of the depth that pile socketed in rock and the dimension of the enlarged toe. The assembly of cells had been taken three modes, and tests were carried on successfully. By the self-balanced loading test, the large bearing capacities of belled socketed piles were obtained. Several key parameters required in design were achieved from the tests. For the data of tests had been analyzed, the bearing performance of pile tip, pile side and whole pile was revealed. It is further realized that the bearing capacity of belled socketed pile in the mudstone will decrease after the mudstone it socketed in has been immerged. Among kinds of mineral ingredient in the mudstone, montmorillonite is much. And in the size composition, content of cosmid is high. For specific surface area of cosmid is large and water intake capacity of it is strong, water content has great effect on strength of the mudstone. Along with water content increasing, strength of the mudstone declines nonlinear apparently. Since effective measures had been taken, the mudstone was prohibited from being immerged during construction. And valuable experience has been accumulated for similar projects construction henceforth.

  19. Static and fatigue tensile properties of cross-ply laminates containing vascules for self-healing applications

    NASA Astrophysics Data System (ADS)

    Luterbacher, R.; Trask, R. S.; Bond, I. P.

    2016-01-01

    The effect of including hollow channels (vascules) within cross-ply laminates on static tensile properties and fatigue performance is investigated. No change in mechanical properties or damage formation is observed when a single vascule is included in the 0/90 interface, representing 0.5% of the cross sectional area within the specimen. During tensile loading, matrix cracks develop in the 90° layers leading to a reduction of stiffness and strength (defined as the loss of linearity) and a healing agent is injected through the vascules in order to heal them and mitigate the caused degradation. Two different healing agents, a commercial low viscosity epoxy resin (RT151, Resintech) and a toughened epoxy blend (bespoke, in-house formulation) have been used to successfully recover stiffness under static loading conditions. The RT151 system recovered 75% of the initial failure strength, whereas the toughened epoxy blend achieved a recovery of 67%. Under fatigue conditions, post healing, a rapid decay of stiffness was observed as the healed damage re-opened within the first 2500 cycles. This was caused by the high fatigue loading intensity, which was near the static failure strength of the healing resin. However, the potential for ameliorating (via self-healing or autonomous repair) more diffuse transverse matrix damage via a vascular network has been shown.

  20. In-Plane Anisotropy in Mechanical Behavior and Microstructural Evolution of Commercially Pure Titanium in Tensile and Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Sinha, Subhasis; Gurao, N. P.

    2017-12-01

    Tensile and cyclic deformation behavior of three samples oriented at 0, 45, and 90 deg to the rolling direction in the rolling direction-transverse direction (RD-TD) plane of cold-rolled and annealed plate of commercially pure titanium is studied in the present investigation. The sample along the RD (R0) shows the highest strength but lowest ductility in monotonic tension. Although ultimate tensile strength (UTS) and elongation of samples along 45 and 90 deg to the RD (R45 and R90, respectively) are similar, the former has significantly higher yield strength than the latter, indicating different strain-hardening behavior. It is found that the R90 sample exhibits the highest monotonic ductility as well as fatigue life. This is attributed to a higher propensity for twinning in this sample with the presence of multiple variants and twin intersections. Cyclic life is also influenced by the high tendency for detwinning of contraction twins in this orientation. Elastoplastic self-consistent (EPSC) simulations of one-cycle tension-compression load reversal indicate that the activity of pyramidal 〈 c + a〉 slip and extension twinning oscillates during cyclic loading that builds up damage in a cumulative manner, leading to failure in fatigue.

  1. Pulsed electric discharge laser technology. Electron beam window foil material

    NASA Astrophysics Data System (ADS)

    McGeoch, M. W.; Defuria, A. J.; Pike, C. T.

    1984-01-01

    An experimental and theoretical study of titanium alloy foil windows is described. The alloys considered are Ti 15-3-3-3, Ti 3-2.5, and CP Ti(4). The foil thickness ranges from 0.5 mil to 1.0 mil. Tensile strength data is presented for 75 F and 600 F. High-cycle (10 to the 7th power) fatigue data is presented to Ti 15-3-3-3 and Ti 3-2.5 at 75 F and 600 F. Crystal structures are shown for all the alloys. Measurements of the biaxial, or membrane, strength of the alloys is presented. A simulation of laser pulsed overpressure conditions is described, and the foil fatigue under these conditions is documented. The stresses in pressure loaded foil windows were calculated by the finite element method, both for static and dynamic loading. The shape of the foil support rib was optimized to minimize the foil stresses. A correlation was performed between the computed stress cycling under pulsed loading and the measured fatigue strength in uniaxial tension. As a check on the pulse simulation, the actual movement of an electron-beam foil window was measured by interferometry. A speckle interferometer which allows measurement of the movement of unpolished foil surfaces is described.

  2. Fatigue of graphite/epoxy /0/90/45/-45/s laminates under dual stress levels

    NASA Technical Reports Server (NTRS)

    Yang, J. N.; Jones, D. L.

    1982-01-01

    A model for the prediction of loading sequence effects on the statistical distribution of fatigue life and residual strength in composite materials is generalized and applied to (0/90/45/-45)s graphite/epoxy laminates. Load sequence effects are found to be caused by both the difference in residual strength when failure occurs (boundary effect) and the effect of previously applied loads (memory effect). The model allows the isolation of these two effects, and the estimation of memory effect magnitudes under dual fatigue loading levels. It is shown that the material memory effect is insignificant, and that correlations between predictions of the number of early failures agree with the verification tests, as do predictions of fatigue life and residual strength degradation under dual stress levels.

  3. Short-Term Effects of Different Loading Schemes in Fitness-Related Resistance Training.

    PubMed

    Eifler, Christoph

    2016-07-01

    Eifler, C. Short-term effects of different loading schemes in fitness-related resistance training. J Strength Cond Res 30(7): 1880-1889, 2016-The purpose of this investigation was to analyze the short-term effects of different loading schemes in fitness-related resistance training and to identify the most effective loading method for advanced recreational athletes. The investigation was designed as a longitudinal field-test study. Two hundred healthy mature subjects with at least 12 months' experience in resistance training were randomized in 4 samples of 50 subjects each. Gender distribution was homogenous in all samples. Training effects were quantified by 10 repetition maximum (10RM) and 1 repetition maximum (1RM) testing (pre-post-test design). Over a period of 6 weeks, a standardized resistance training protocol with 3 training sessions per week was realized. Testing and training included 8 resistance training exercises in a standardized order. The following loading schemes were randomly matched to each sample: constant load (CL) with constant volume of repetitions, increasing load (IL) with decreasing volume of repetitions, decreasing load (DL) with increasing volume of repetitions, daily changing load (DCL), and volume of repetitions. For all loading schemes, significant strength gains (p < 0.001) could be noted for all resistance training exercises and both dependent variables (10RM, 1RM). In all cases, DCL obtained significantly higher strength gains (p < 0.001) than CL, IL, and DL. There were no significant differences in strength gains between CL, IL, and DL. The present data indicate that resistance training following DCL is more effective for advanced recreational athletes than CL, IL, or DL. Considering that DCL is widely unknown in fitness-related resistance training, the present data indicate, there is potential for improving resistance training in commercial fitness clubs.

  4. Determinant Factors of Physical Performance and Specific Throwing in Handball Players of Different Ages.

    PubMed

    Ortega-Becerra, Manuel; Pareja-Blanco, Fernando; Jiménez-Reyes, Pedro; Cuadrado-Peñafiel, Víctor; González-Badillo, Juan J

    2018-06-01

    Ortega-Becerra, M, Pareja-Blanco, F, Jiménez-Reyes, P, Cuadrado-Peñafiel, V, and González-Badillo, JJ. Determinant factors of physical performance and specific throwing in handball players of different ages. J Strength Cond Res 32(6): 1778-1786, 2018-This study aimed to analyze various fitness qualities in handball players of different ages and to determine the relationships between these parameters and throwing velocity. A total of 44 handball players participated, pooled by age groups: professional (ELITE, n = 13); under-18 (U18, n = 16); under-16 (U16, n = 15). The following tests were completed: 20-m running sprints; countermovement jumps (CMJs); jump squat to determine the load that elicited ∼20 cm jump height (JSLOAD-20 cm); a progressive loading test in full squat and bench press to determine the load that elicited ∼1 m·s (SQ-V1-LOAD and BP-V1-LOAD); and handball throwing (jump throw and 3-step throw). ELITE showed greater performance in almost all sprint distances, CMJ, JSLOAD-20 cm, and bench press strength than U18 and U16. The differences between U18 and U16 were unclear for these variables. ELITE also showed greater (p < 0.001) performance for squat strength and throwing than U18 and U16, and U18 attained greater performance (p ≤ 0.05) for these variables than U16. Throwing performance correlated (p ≤ 0.05) with sprint times (r = -0.31; -0.51) and jump ability (CMJ: r = 0.39; 0.56 and JSLOAD-20 cm: r = 0.57; 0.60). Muscle strength was also associated (p < 0.001) with both types of throw (SQ-V1-LOAD: r = 0.66; 0.76; and BP-V1-LOAD: r = 0.33; 0.70). These results indicate that handball throwing velocity is strongly associated with lower-limb strength, although upper-limb strength, jumping and sprint capacities also play a relevant role in throwing performance, suggesting the need for coaches to include proper strength programs to improve handball players' throwing velocity.

  5. High organic loading influences the physical characteristics of aerobic sludge granules.

    PubMed

    Moy, B Y-P; Tay, J-H; Toh, S-K; Liu, Y; Tay, S T-L

    2002-01-01

    The effect of high organic loading rate (OLR) on the physical characteristics of aerobic granules was studied. Two column-type sequential aerobic sludge blanket reactors were fed with either glucose or acetate as the main carbon source, and the OLR was gradually raised from 6 to 9, 12 and 15 kg chemical oxygen demand (COD) m(-3) d(-1). Glucose-fed granules could sustain the maximum OLR tested. At a low OLR, these granules exhibited a loose fluffy morphology dominated by filamentous bacteria. At higher OLRs, these granules became irregularly shaped, with folds, crevices and depressions. In contrast, acetate-fed granules had a compact spherical morphology at OLRs of 6 and 9 kg COD m(-3) d(-1), with better settling and strength characteristics than glucose-fed granules at similar OLRs. However, acetate-fed granules could not sustain high OLRs and disintegrated when the OLR reached 9 kg COD m(-3) d(-1). The compact regular microstructure of the acetate-fed granules appeared to limit mass transfer of nutrients at an OLR of 9 kg COD m(-3) d(-1). The looser filamentous microstructure of the glucose-fed granules and the subsequent irregular morphology delayed the onset of diffusion limitation and allowed significantly higher OLRs to be attained. SIGNIFICNACE AND IMPACT OF THE STUDY: High organic loading rates are possible with aerobic granules. This research would be helpful in the development of aerobic granule-based systems for high-strength wastewaters.

  6. A comparison of biomechanical stability and pullout strength of two C1-C2 fixation constructs.

    PubMed

    Savage, Jason W; Limthongkul, Worawat; Park, Hyung-Soon; Zhang, Li-Qun; Karaikovic, Eldin E

    2011-07-01

    Several fusion techniques are used to treat atlantoaxial instability. Recent literature suggests that intralaminar screw (LS) fixation and pedicle screw (PS) fixation offer similar stability and comparable pullout strength. No studies have compared these characteristics after cyclic loading. To compare the stability and pullout strength of intra-LSs and PSs in a C1-C2 instability model after 1,000 cycles of axial loading. In vitro biomechanical study. Stability in axial rotation and screw pullout strength after cyclic loading. Six fresh-frozen human cadaveric cervical spines (C1-C2) were used in this study. C1-C2 instability was mimicked via odontoidotomy at its base and posterior soft-tissue release, including the supraspinous ligaments and facet joint capsules. Specimens were tested to 1,000 cycles after stabilization with two fixation constructs: C1 lateral mass (LM) screws and C2 intra-LSs (C1LM-C2LS) and C1 LM screws and C2 PSs (C1LM-C2PS). Angular motion was recorded for right and left axial rotation using an Optotrak 3020 system (Northern Digital, Waterloo, Ontario, Canada). Tensile loading to failure was then performed collinear to the longitudinal axis of the screw, and the data were recorded as peak pullout strength in newtons. There was no statistically significant difference in stability (measured in degrees of rotation) between the intra-LS and PS constructs at 250, 500, 750, and 1,000 cycles of axial rotation. Furthermore, there was no significant difference in stability at 250 cycles versus 1,000 cycles for the LS (1.30 vs. 1.49, p = .80) or PS (0.84 vs. 0.85, p = .96). Pedicle screws had higher pullout strength when compared with the intra-LSs (757.5 ± 239 vs. 583.4 ± 472 N); however, high standard deviation precluded statistical significance (p = .44). Our data suggest that a C1LM and C2LS construct has similar biomechanical stability when compared with a C1LM and C2PS construct after 1,000 cycles of axial rotation. Furthermore, PSs had higher pullout strength when compared with LSs; however, this result was not statistically significant. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Effect of High-Speed Strength Training on Physical Performance in Young Soccer Players of Different Ages.

    PubMed

    Rodríguez-Rosell, David; Franco-Márquez, Felipe; Mora-Custodio, Ricardo; González-Badillo, Juan José

    2017-09-01

    Rodríguez-Rosell, D, Franco-Márquez, F, Mora-Custodio, R, and González-Badillo, JJ. Effect of high-speed strength training on physical performance in young soccer players of different ages. J Strength Cond Res 31(9): 2498-2508, 2017-The aim of the present study was to compare the effectiveness of low-load, low-volume weight training combined with plyometrics on strength, sprint, and jump performance in soccer players of different ages. Eighty-six soccer players from the same academy were categorized into 3 groups by age (under 13 years, U13, n = 30; under 15, U15, n = 28; and under 17, U17, n = 28) and then randomly assigned into 2 subgroups: a strength training group (STG) and a control group (CG). The strength training program was performed twice a week for 6 weeks and consisted of full squats (load: 45-60% 1 repetition maximum; volume: 3 set of 8-4 repetitions), jumps, and straight line sprint exercises. After training intervention, the STGs showed significant improvements in maximal strength (7.5-54.5%; p < 0.001), jump height (5.7-12.5%; p <0.01-0.001), and sprint time (-3.7 to -1.2%; p ≤0.05-0.001), whereas no significant gains were found for any variable in the CGs. Comparison between experimental groups resulted in a greater magnitude of change for U13 compared with U15 (effect sizes [ES]: 0.10-0.53) and U17 (ES: 0.14-1.41) soccer players in most variables, whereas U15 showed higher improvements in jump and strength parameters than U17 (ES: 0.25-0.90) soccer players. Thus, although our results indicates that a combined weight training and plyometrics program may be effective in eliciting gains in strength, jump, and sprint in soccer players of different ages, the training program used appears to be generally less effective as the age of the soccer players increased. Therefore, it appears that training characteristics (mainly volume, intensity, and type of exercise) should be modified in relation to maturity status and initial strength level.

  8. Updated Review of the Applied Physiology of American College Football: Physical Demands, Strength and Conditioning, Nutrition, and Injury Characteristics of America's Favorite Game.

    PubMed

    Fullagar, Hugh H K; McCunn, Robert; Murray, Andrew

    2017-11-01

    While there are various avenues for performance improvement in college American football (AF), there is no comprehensive evaluation of the collective array of resources around performance, physical conditioning, and injury and training/game characteristics to guide future research and inform practitioners. Accordingly, the aim of the present review was to provide a current examination of these areas in college AF. Recent studies show that there is a wide range of body compositions and strength characteristics between players, which appear to be influenced by playing position, level of play, training history/programming, and time of season. Collectively, game demands may require a combination of upper- and lower-body strength and power production, rapid acceleration (positive and negative), change of direction, high running speed, high-intensity and repetitive collisions, and muscle-strength endurance. These may be affected by the timing of and between-plays and/or coaching style. AF players appear to possess limited nutrition and hydration practices, which may be disadvantageous to performance. AF injuries appear due to a multitude of factors-strength, movement quality, and previous injury-while there is also potential for extrinsic factors such as playing surface type, travel, time of season, playing position, and training load. Future proof-of-concept studies are required to determine the quantification of game demands with regard to game style, type of opposition, and key performance indicators. Moreover, more research is required to understand the efficacy of recovery and nutrition interventions. Finally, the assessment of the relationship between external/internal-load constructs and injury risk is warranted.

  9. Trunk Muscle Function Deficit in Youth Baseball Pitchers With Excessive Contralateral Trunk Tilt During Pitching.

    PubMed

    Oyama, Sakiko; Waldhelm, Andrew G; Sosa, Araceli R; Patel, Ravina R; Kalinowski, Derick L

    2017-09-01

    Pitching technique is one of many factors that affect injury risk. Exhibiting excessive contralateral trunk tilt (CLT) during pitching has been linked to higher ball speed but also to increased joint loading. Deficit in trunk muscle strength has been suggested as an underlying cause of this movement pattern. The purpose of the study was to compare trunk muscle strength between youth baseball pitchers with varying degree of CLT during pitching. Cross-sectional study. Baseball practice fields. Twenty-eight youth baseball pitchers. Pitching technique was captured using a video camera. Based on the 2-dimensional trunk contralateral flexion angle, pitchers were categorized into low (<15 degrees), moderate (15-30 degrees), or high (>30 degrees) CLT groups. Maximum isometric strength tests for trunk flexion, extension, and bilateral rotation, measured using a dynamometer. The pitchers with high CLT (n = 10) had longer pitching experience (P = 0.014), produced higher ball speed (P = 0.003) compared with the pitchers with moderate (n = 10) and low (n = 8) CLT, but demonstrated greater asymmetry in trunk rotation strength (relative weakness in rotation strength toward dominant side) compared with the pitchers with low CLT (P = 0.015). Excessive CLT may be a strategy that young pitchers learn to achieve higher ball velocity but also may be associated with imbalance between the oblique muscles on dominant and nondominant side, which may be acquired from repetitive pitching. Strengthening and emphasizing the use of dominant side oblique muscles may keep pitchers from leaning excessively during pitching and thus decrease joint loading.

  10. Influence of Grid Reinforcement Placed In Masonry Bed Joints on Its Flexural Strength

    NASA Astrophysics Data System (ADS)

    Piekarczyk, Adam

    2017-10-01

    The paper presents the test results of the flexural strength of masonry when plane of failure is perpendicular to the bed joints. Comparison tests of unreinforced specimens and specimens reinforced with steel wire, glass and basalt fibre grids applied in masonry bed joints showed the higher flexural strength and crack resistance of masonry reinforced in this manner and so loaded. Reinforced masonry exposed plastic character after cracking allow for large horizontal displacements and transfer the considerable loads perpendicular to their surface. The strengthening of masonry was observed in most tests of reinforced specimens leading to occurrence of the maximum load in after cracking phase.

  11. Nanocomposites of nitrile (NBR) rubber with multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Warasitthinon, Nuthathai

    Nanotechnology offers the promise of creating new materials with enhanced performance. There are different kinds of fillers used in rubber nanocomposites, such as carbon black, silica, carbon fibers, and organoclays. Carbon nanotube reinforced elastomers have potential for improved rubber properties in aggressive environments. The first chapter is an introduction to the literature. The second chapter investigated the incorporation of multi-walled carbon nanotubes (MWCNTs) into rubber matrix for potential use in high temperature applications. The vulcanization kinetics of acrylonitrile butadiene rubber (NBR) reinforced with multi-walled carbon nanotubes was investigated. The vulcanized NBR rubber with different loading percentages of MWCNTs was also compared to NBR reinforced with carbon black N330. The optimum curing time at 170°C (T90) was found to decrease with increasing content of MWCNTs. Increased filler loading of both carbon black and MWCNTs gave higher modulus and strength. The MWCNTs filled materials gave better retention of modulus and tensile strength at high temperatures, but lower strength as compared to the carbon black filled samples. In the third chapter, carbon black (CB, 50phr) content in nitrile rubber (NBR) nanocomposites was partially replaced by multi-walled carbon nanotubes (MWCNTs). NBR/CB/CNTs nanocomposites with varying ratio of CB/CNTs (50/0 phr to 40/10 phr) were formulated via the melt-mixing method using an internal mixer. The reinforcing effect of single filler (CB) and mixture of fillers (CB and CNTs) on the properties of NBR nanocomposites was investigated. The cure kinetics and bound rubber content were analyzed using rheometry and solvent swelling method. In addition, mechanical behavior at both room temperature and high temperature (350°F/ 121°C) were examined. The scorch time and curing time values showed that there was no significant effect on the curing behavior of NBR nanocomposites after the partial replacement of CB with CNTs. It was observed that bound rubber content decreased with increase in CNT content for NBR/CB/CNTs nanocomposites above a loading of 1 phr CNT. In the fourth chapter, the effect of another carbon filler, fullerene, on the properties of HNBR was studied. Fullerenes are conductive and thermally stable due to their three dimensional aromaticity and high reactivity. In this work, the effect of fullerenes (C60) on the properties of HNBR rubber for potential use in aggressive environments was investigated. The vulcanized HNBR rubber with different filler loadings of fullerenes was compared with carbon black (N330). The static mechanical, dynamic mechanical and rheological behavior of the compounds was investigated, along with the vulcanization kinetics study. Increased filler loading of both carbon black and fullerene gave higher modulus and strength. The fullerene filled materials showed improved failure properties.

  12. Fixation strength of a polyetheretherketone femoral component in total knee arthroplasty.

    PubMed

    de Ruiter, Lennert; Janssen, Dennis; Briscoe, Adam; Verdonschot, Nico

    2017-11-01

    Introducing polyetheretherketone (PEEK) polymer as a material for femoral components in total knee arthroplasty (TKA) could potentially lead to a reduction of the cemented fixation strength. A PEEK implant is more likely to deform under high loads, rendering geometrical locking features less effective. Fixation strength may be enhanced by adding more undercuts or specific surface treatments. The aim of this study is to measure the initial fixation strength and investigate the associated failure patterns of three different iterations of PEEK-OPTIMA ® implants compared with a Cobalt-Chromium (CoCr) component. Femoral components were cemented onto trabecular bone analogue foam blocks and preconditioned with 86,400 cycles of compressive loading (2600 N-260 N at 1 Hz). They were then extracted while the force was measured and the initial failure mechanism was recorded. Four groups were compared: CoCr, regular PEEK, PEEK with an enhanced cement-bonding surface and the latter with additional surface primer. The mean pull-off forces for the four groups were 3814 N, 688 N, 2525 N and 2552 N, respectively. The initial failure patterns for groups 1, 3 and 4 were the same; posterior condylar foam fracture and cement-bone debonding. Implants from group 2 failed at the cement-implant interface. This study has shown that a PEEK-OPTIMA ® femoral TKA component with enhanced macro- and microtexture is able to replicate the main failure mechanism of a conventional CoCr femoral implant. The fixation strength is lower than for a CoCr implant, but substantially higher than loads occurring under in-vivo conditions. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. Nonlinear modeling, strength-based design, and testing of flexible piezoelectric energy harvesters under large dynamic loads for rotorcraft applications

    NASA Astrophysics Data System (ADS)

    Leadenham, Stephen; Erturk, Alper

    2014-04-01

    There has been growing interest in enabling wireless health and usage monitoring for rotorcraft applications, such as helicopter rotor systems. Large dynamic loads and acceleration fluctuations available in these environments make the implementation of vibration-based piezoelectric energy harvesters a very promising choice. However, such extreme loads transmitted to the harvester can also be detrimental to piezoelectric laminates and overall system reliability. Particularly flexible resonant cantilever configurations tuned to match the dominant excitation frequency can be subject to very large deformations and failure of brittle piezoelectric laminates due to excessive bending stresses at the root of the harvester. Design of resonant piezoelectric energy harvesters for use in these environments require nonlinear electroelastic dynamic modeling and strength-based analysis to maximize the power output while ensuring that the harvester is still functional. This paper presents a mathematical framework to design and analyze the dynamics of nonlinear flexible piezoelectric energy harvesters under large base acceleration levels. A strength-based limit is imposed to design the piezoelectric energy harvester with a proof mass while accounting for material, geometric, and dissipative nonlinearities, with a focus on two demonstrative case studies having the same linear fundamental resonance frequency but different overhang length and proof mass values. Experiments are conducted at different excitation levels for validation of the nonlinear design approach proposed in this work. The case studies in this work reveal that harvesters exhibiting similar behavior and power generation performance at low excitation levels (e.g. less than 0.1g) can have totally different strength-imposed performance limitations under high excitations (e.g. above 1g). Nonlinear modeling and strength-based design is necessary for such excitation levels especially when using resonant cantilevers with no geometric constraint.

  14. Compressive strength after blast of sandwich composite materials

    PubMed Central

    Arora, H.; Kelly, M.; Worley, A.; Del Linz, P.; Fergusson, A.; Hooper, P. A.; Dear, J. P.

    2014-01-01

    Composite sandwich materials have yet to be widely adopted in the construction of naval vessels despite their excellent strength-to-weight ratio and low radar return. One barrier to their wider use is our limited understanding of their performance when subjected to air blast. This paper focuses on this problem and specifically the strength remaining after damage caused during an explosion. Carbon-fibre-reinforced polymer (CFRP) composite skins on a styrene–acrylonitrile (SAN) polymer closed-cell foam core are the primary composite system evaluated. Glass-fibre-reinforced polymer (GFRP) composite skins were also included for comparison in a comparable sandwich configuration. Full-scale blast experiments were conducted, where 1.6×1.3 m sized panels were subjected to blast of a Hopkinson–Cranz scaled distance of 3.02 m kg−1/3, 100 kg TNT equivalent at a stand-off distance of 14 m. This explosive blast represents a surface blast threat, where the shockwave propagates in air towards the naval vessel. Hopkinson was the first to investigate the characteristics of this explosive air-blast pulse (Hopkinson 1948 Proc. R. Soc. Lond. A 89, 411–413 (doi:10.1098/rspa.1914.0008)). Further analysis is provided on the performance of the CFRP sandwich panel relative to the GFRP sandwich panel when subjected to blast loading through use of high-speed speckle strain mapping. After the blast events, the residual compressive load-bearing capacity is investigated experimentally, using appropriate loading conditions that an in-service vessel may have to sustain. Residual strength testing is well established for post-impact ballistic assessment, but there has been less research performed on the residual strength of sandwich composites after blast. PMID:24711494

  15. Load response and gap formation in a single-row cruciate suture rotator cuff repair.

    PubMed

    Huntington, Lachlan; Richardson, Martin; Sobol, Tony; Caldow, Jonathon; Ackland, David C

    2017-06-01

    Double-row rotator cuff tendon repair techniques may provide superior contact area and strength compared with single-row repairs, but are associated with higher material expenses and prolonged operating time. The purpose of this study was to evaluate gap formation, ultimate tensile strength and stiffness of a single-row cruciate suture rotator cuff repair construct, and to compare these results with those of the Mason-Allen and SutureBridge repair constructs. Infraspinatus tendons from 24 spring lamb shoulders were harvested and allocated to cruciate suture, Mason-Allen and SutureBridge repair groups. Specimens were loaded cyclically between 10 and 62 N for 200 cycles, and gap formation simultaneously measured using a high-speed digital camera. Specimens were then loaded in uniaxial tension to failure, and construct stiffness and repair strength were evaluated. Gap formation in the cruciate suture repair was significantly lower than that of the Mason-Allen repair (mean difference = 0.6 mm, P = 0.009) and no different from that of the SutureBridge repair (P > 0.05). Both the cruciate suture repair (mean difference = 15.7 N/mm, P = 0.002) and SutureBridge repair (mean difference = 15.8 N/mm, P = 0.034) were significantly stiffer than that of the Mason-Allen repair; however, no significant differences in ultimate tensile strength between repair groups were discerned (P > 0.05). The cruciate suture repair construct, which may represent a simple and cost-effective alternative to double-row and double-row equivalent rotator cuff repairs, has comparable biomechanical strength and integrity with that of the SutureBridge repair, and may result in improved construct longevity and tendon healing compared with the Mason-Allen repair. © 2017 Royal Australasian College of Surgeons.

  16. Less-invasive stabilization of rib fractures by intramedullary fixation: a biomechanical evaluation.

    PubMed

    Bottlang, Michael; Helzel, Inga; Long, William; Fitzpatrick, Daniel; Madey, Steven

    2010-05-01

    This study evaluated intramedullary fixation of rib fractures with Kirschner wires and novel ribs splints. We hypothesized that rib splints can provide equivalent fixation strength while avoiding complications associated with Kirschner wires, namely wire migration and cutout. The durability, strength, and failure modes of rib fracture fixation with Kirschner wires and rib splints were evaluated in 22 paired human ribs. First, intact ribs were loaded to failure to determine their strength. After fracture fixation with Kirschner wires and rib splints, fixation constructs were dynamically loaded to 360,000 cycles at five times the respiratory load to determine their durability. Finally, constructs were loaded to failure to determine residual strength and failure modes. All constructs sustained dynamic loading without failure. Dynamic loading caused three times more subsidence in Kirschner wire constructs (1.2 mm +/- 1.4 mm) than in rib splint constructs (0.4 mm +/- 0.2 mm, p = 0.09). After dynamic loading, rib splint constructs remained 48% stronger than Kirschner wire constructs (p = 0.001). Five of 11 Kirschner wire constructs failed catastrophically by cutting through the medial cortex, leading to complete loss of stability and wire migration through the lateral cortex. The remaining six constructs failed by wire bending. Rib splint constructs failed by development of fracture lines along the superior and interior cortices. No splint construct failed catastrophically, and all splint constructs retained functional reduction and fixation. Because of their superior strength and absence of catastrophic failure mode, rib splints can serve as an attractive alternative to Kirschner wires for intramedullary stabilization of rib fractures, especially in the case of posterior rib fractures where access for plating is limited.

  17. Compressive and swelling behavior of cuttlebone derived hydroxyapatite loaded PVA hydrogel implants for articular cartilage

    NASA Astrophysics Data System (ADS)

    Kumar, B. Y. Santosh; Kumar, G. C. Mohan; Isloor, Arun M.

    2018-04-01

    Developing a novel antibacterial, nontoxic and biocompatible hydrogel with superior physio mechanical properties is still becoming a challenge. Herein, we synthesize hydroxyapatite (HA) powder from cuttlefish bone and prepare a series of stiff, tough, high strength, biocompatible hydrogel reinforced with HA by integrating glutaraldehyde into PVA/HA. Powder was characterized by SEM and XRD. Compressive strength and swelling properties are studied and compare the results with the properties of healthy natural articular cartilage.

  18. Material selection indices for design of surgical instruments with long tubular shafts.

    PubMed

    Nelson, Carl A

    2013-02-01

    In any medical device design process, material selection plays an important role. For devices which sustain mechanical loading, strength and stiffness requirements can be significant drivers of the design. This paper examines the specific case of minimally invasive surgical instruments, including robotic instruments, having long, tubular shafts. Material properties-based selection indices are derived for achieving high performance of these devices in terms of strength and stiffness, and the use of these indices for informing the medical device design problem is illustrated.

  19. Heavily loaded joints for assembling aerobrake support trusses

    NASA Technical Reports Server (NTRS)

    Bandel, Hannskarl; Olsson, Nils; Levintov, Boris

    1990-01-01

    The major emphasis was to develop erectable joints for large aerobrake support trusses. The truss joints must be able to withstand the large forces experienced by the truss during the aero-pass, as well as be easily assembled and disassembled on orbit by astronauts or robots. Other important design considerations include; strength, stiffness, and allowable error in strut length. Six mechanical joint designs, as well as a seventh joint design, where a high strength epoxy is injected to make the connection rigid, are presented.

  20. Proceedings of the Annual Mechanics of Composites Review (8th) Held at Wright-Patterson AFB, Ohio on 5-7 October 1982.

    DTIC Science & Technology

    1983-04-01

    Spectrum Fatigue Behavior of Postbuckled Shear Panels; PO01 246 Development of Analysis for Predicting Compression Fatigt Life and Residual Strength in...Lazyup and Frequency Effects on Fatigue Life of Composites, POOl 256 Effect of Stress Ratio on Fatigue Life of Composites,’ POOl 257 High-Load Transfer...L. Agerwall, Northrop Corporation 0950-1020 BREAK 1020-1100 DEVELOPMENT OF ANALYSIS FOR PREDICTING COMPRESSION 34 FATIGUE LIFE AND RESIDUAL STRENGTH

  1. 14 CFR 23.305 - Strength and deformation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Strength and deformation. 23.305 Section 23.305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT..., permanent deformation. At any load up to limit loads, the deformation may not interfere with safe operation...

  2. 14 CFR 23.305 - Strength and deformation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Strength and deformation. 23.305 Section 23.305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT..., permanent deformation. At any load up to limit loads, the deformation may not interfere with safe operation...

  3. 14 CFR 27.305 - Strength and deformation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Strength and deformation. 27.305 Section 27.305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... deformation. At any load up to limit loads, the deformation may not interfere with safe operation. (b) The...

  4. 14 CFR 27.305 - Strength and deformation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Strength and deformation. 27.305 Section 27.305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... deformation. At any load up to limit loads, the deformation may not interfere with safe operation. (b) The...

  5. Reliability and validity of a low load endurance strength test for upper and lower extremities in patients with fibromyalgia.

    PubMed

    Munguía-Izquierdo, Diego; Legaz-Arrese, Alejandro

    2012-11-01

    To evaluate the reliability, standard error of the mean (SEM), clinical significant change, and known group validity of 2 assessments of endurance strength to low loads in patients with fibromyalgia syndrome (FS). Cross-sectional reliability and comparative study. University Pablo de Olavide, Seville, Spain. Middle-aged women with FS (n=95) and healthy women (n=64) matched for age, weight, and body mass index (BMI) were recruited for the study. Not applicable. The endurance strength to low loads tests of the upper and lower extremities and anthropometric measures (BMI) were used for the evaluations. The differences between the readings (tests 1 and 2) and the SDs of the differences, intraclass correlation coefficient (ICC) model (2,1), 95% confidence interval for the ICC, coefficient of repeatability, intrapatient SD, SEM, Wilcoxon signed-rank test, and Bland-Altman plots were used to examine reliability. A Mann-Whitney U test was used to analyze the differences in test values between the patient group and the control group. We hypothesized that patients with FS would have an endurance strength to low loads performance in lower and upper extremities at least twice as low as that of the healthy controls. Satisfactory test-retest reliability and SEMs were found for the lower extremity, dominant arm, and nondominant arm tests (ICC=.973-.979; P<.001; SEMs=1.44-1.66 repetitions). The differences in the mean between the test and retest were lower than the SEM for all performed tests, varying from -.10 to .29 repetitions. No significant differences were found between the test and retest (P>.05 for all). The Bland-Altman plots showed 95% limits of agreement for the lower extremity (4.7 to -4.5), dominant arm (3.8 to -4.4), and nondominant arm (3.9 to -4.1) tests. The endurance strength to low loads test scores for the patients with FS were 4-fold lower than for the controls in all performed tests (P<.001 for all). The endurance strength to low loads tests showed good reliability and known group validity and can be recommended for evaluating endurance strength to low loads in patients with FS. For individual evaluation, however, an improved score of at least 4 and 5 repetitions for the upper and lower extremities, respectively, was required for the differences to be considered as substantial clinical change. Patients with FS showed impaired endurance strength to low loads performance when compared with the general population. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  6. Insights into the effects of tensile and compressive loadings on human femur bone.

    PubMed

    Havaldar, Raviraj; Pilli, S C; Putti, B B

    2014-01-01

    Fragile fractures are most likely manifestations of fatigue damage that develop under repetitive loading conditions. Numerous microcracks disperse throughout the bone with the tensile and compressive loads. In this study, tensile and compressive load tests are performed on specimens of both the genders within 19 to 83 years of age and the failure strength is estimated. Fifty five human femur cortical samples are tested. They are divided into various age groups ranging from 19-83 years. Mechanical tests are performed on an Instron 3366 universal testing machine, according to American Society for Testing and Materials International (ASTM) standards. The results show that stress induced in the bone tissue depends on age and gender. It is observed that both tensile and compression strengths reduces as age advances. Compressive strength is more than tensile strength in both the genders. The compression and tensile strength of human femur cortical bone is estimated for both male and female subjecting in the age group of 19-83 years. The fracture toughness increases till 35 years in male and 30 years in female and reduces there after. Mechanical properties of bone are age and gender dependent.

  7. Effect of Wheel/Rail Loads on Concrete Tie Stresses and Rail Rollover.

    DOT National Transportation Integrated Search

    2011-09-21

    As a result of vertical and lateral wheel/rail forces, high contact stresses can develop at the interface between the rail base and tie. Under certain conditions, these stresses can exceed the strength of the concrete tie and result in deterioration ...

  8. Orthorhombic Titanium Matrix Composite Subjected to Simulated Engine Mission Cycles

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.

    1997-01-01

    Titanium matrix composites (TMC's) are commonly made up of a titanium alloy matrix reinforced by silicon carbide fibers that are oriented parallel to the loading axis. These composites can provide high strength at lower densities than monolithic titanium alloys and superalloys in selected gas turbine engine applications. The use of TMC rings with unidirectional SiC fibers as reinforcing rings within compressor rotors could significantly reduce the weight of these components. In service, these TMC reinforcing rings would be subjected to complex service mission loading cycles, including fatigue and dwell excursions. Orthorhombic titanium aluminide alloys are of particular interest for such TMC applications because their tensile and creep strengths are high in comparison to those of other titanium alloys. The objective of this investigation was to assess, in simulated mission tests at the NASA Lewis Research Center, the durability of a SiC (SCS-6)/Ti-22Al-23Nb (at.%) TMC for compressor ring applications, in cooperation with the Allison Engine Company.

  9. The Brittleness and Chemical Stability of Optimized Geopolymer Composites

    PubMed Central

    Steinerova, Michaela; Matulova, Lenka; Vermach, Pavel; Kotas, Jindrich

    2017-01-01

    Geopolymers are known as high strength and durable construction materials but have a brittle fracture. In practice, this results in a sudden collapse at ultimate load, without any chance of preventing the breakdown of parts or of withstanding the stress for some time. Glass fiber usage as a total anisotropic shape acting as a compact structure component should hinder the fracture mechanism. The optimized compositions in this study led to a significant reinforcement, especially in the case of flexural strength, but also in terms of the compressive strength and notch toughness. The positive and negative influence of the fibers on the complex composite properties provided chemical stability. PMID:28772756

  10. The Brittleness and Chemical Stability of Optimized Geopolymer Composites.

    PubMed

    Steinerova, Michaela; Matulova, Lenka; Vermach, Pavel; Kotas, Jindrich

    2017-04-09

    Geopolymers are known as high strength and durable construction materials but have a brittle fracture. In practice, this results in a sudden collapse at ultimate load, without any chance of preventing the breakdown of parts or of withstanding the stress for some time. Glass fiber usage as a total anisotropic shape acting as a compact structure component should hinder the fracture mechanism. The optimized compositions in this study led to a significant reinforcement, especially in the case of flexural strength, but also in terms of the compressive strength and notch toughness. The positive and negative influence of the fibers on the complex composite properties provided chemical stability.

  11. Control Design Strategies to Enhance Long-Term Aircraft Structural Integrity

    NASA Technical Reports Server (NTRS)

    Newman, Brett A.

    1999-01-01

    Over the operational lifetime of both military and civil aircraft, structural components are exposed to hundreds of thousands of low-stress repetitive load cycles and less frequent but higher-stress transient loads originating from maneuvering flight and atmospheric gusts. Micro-material imperfections in the structure, such as cracks and debonded laminates, expand and grow in this environment, reducing the structural integrity and shortening the life of the airframe. Extreme costs associated with refurbishment of critical load-bearing structural components in a large fleet, or altogether reinventoring the fleet with newer models, indicate alternative solutions for life extension of the airframe structure are highly desirable. Increased levels of operational safety and reliability are also important factors influencing the desirability of such solutions. One area having significant potential for impacting crack growth/fatigue damage reduction and structural life extension is flight control. To modify the airframe response dynamics arising from command inputs and gust disturbances, feedback loops are routinely applied to vehicles. A dexterous flight control system architecture senses key vehicle motions and generates critical forces/moments at multiple points distributed throughout the airframe to elicit the desired motion characteristics. In principle, these same control loops can be utilized to influence the level of exposure to harmful loads during flight on structural components. Project objectives are to investigate and/or assess the leverage control has on reducing fatigue damage and enhancing long-term structural integrity, without degrading attitude control and trajectory guidance performance levels. In particular, efforts have focused on the effects inner loop control parameters and architectures have on fatigue damage rate. To complete this research, an actively controlled flexible aircraft model and a new state space modeling procedure for crack growth have been utilized. Analysis of the analytical state space model for crack growth revealed the critical mathematical factors, and hence the physical mechanism they represent, that influenced high rates of airframe crack growth. The crack model was then exercised with simple load inputs to uncover and expose key crack growth behavior. To characterize crack growth behavior, both "short-term" laboratory specimen test type inputs and "long-term" operational flight type inputs were considered. Harmonic loading with a single overload revealed typical exponential crack growth behavior until the overload application, after which time the crack growth was retarded for a period of time depending on the overload strength. An optimum overload strength was identified which leads to maximum retardation of crack growth. Harmonic loading with a repeated overload of varying strength and frequency again revealed an optimum overload trait for maximizing growth retardation. The optimum overload strength ratio lies near the range of 2 to 3 with dependency on frequency. Experimental data was found to correlate well with the analytical predictions.

  12. Biomechanical behavior of bone scaffolds made of additive manufactured tricalciumphosphate and titanium alloy under different loading conditions.

    PubMed

    Wieding, Jan; Fritsche, Andreas; Heinl, Peter; Körner, Carolin; Cornelsen, Matthias; Seitz, Hermann; Mittelmeier, Wolfram; Bader, Rainer

    2013-12-16

    The repair of large segmental bone defects caused by fracture, tumor or infection remains challenging in orthopedic surgery. The capability of two different bone scaffold materials, sintered tricalciumphosphate and a titanium alloy (Ti6Al4V), were determined by mechanical and biomechanical testing. All scaffolds were fabricated by means of additive manufacturing techniques with identical design and controlled pore geometry. Small-sized sintered TCP scaffolds (10 mm diameter, 21 mm length) were fabricated as dense and open-porous samples and tested in an axial loading procedure. Material properties for titanium alloy were determined by using both tensile (dense) and compressive test samples (open-porous). Furthermore, large-sized open-porous TCP and titanium alloy scaffolds (30 mm in height and diameter, 700 µm pore size) were tested in a biomechanical setup simulating a large segmental bone defect using a composite femur stabilized with an osteosynthesis plate. Static physiologic loads (1.9 kN) were applied within these tests. Ultimate compressive strength of the TCP samples was 11.2 ± 0.7 MPa and 2.2 ± 0.3 MPa, respectively, for the dense and the open-porous samples. Tensile strength and ultimate compressive strength was 909.8 ± 4.9 MPa and 183.3 ± 3.7 MPa, respectively, for the dense and the open-porous titanium alloy samples. Furthermore, the biomechanical results showed good mechanical stability for the titanium alloy scaffolds. TCP scaffolds failed at 30% of the maximum load. Based on recent data, the 3D printed TCP scaffolds tested cannot currently be recommended for high load-bearing situations. Scaffolds made of titanium could be optimized by adapting the biomechanical requirements.

  13. Failure Resistance of Fiber-Reinforced Ultra-High Performance Concrete (FRUHPC) Subjected to Blast Loading

    NASA Astrophysics Data System (ADS)

    Ellis, Brett; Zhou, Min; McDowell, David

    2011-06-01

    As part of a hierarchy-based computational materials design program, a fully dynamic 3D mesoscale model is developed to quantify the effects of energy storage and dissipation mechanisms in Fiber-Reinforced Ultra-High Performance Concretes (FRUHPCs) subjected to blast loading. This model accounts for three constituent components: reinforcement fibers, cementitious matrix, and fiber-matrix interfaces. Microstructure instantiations encompass a range of fiber volume fraction (0-2%), fiber length (10-15 mm), and interfacial bonding strength (1-100 MPa). Blast loading with scaled distances between 5 and 10 m/kg1/3 are considered. Calculations have allowed the delineation and characterization of the evolutions of kinetic energy, strain energy, work expended on interfacial damage and failure, frictional dissipation along interfaces, and bulk dissipation through granular flow as functions of microstructure, loading and constituent attributes. The relations obtained point out avenues for designing FRUHPCs with properties tailored for specific load environments and reveal trade-offs between various design scenarios.

  14. Neural Network Prediction of Aluminum-Lithium Weld Strengths from Acoustic Emission Amplitude Data

    NASA Technical Reports Server (NTRS)

    Hill, Eric v. K.; Israel, Peggy L.; Knotts, Gregory L.

    1993-01-01

    Acoustic Emission (AE) flaw growth activity was monitored in aluminum-lithium weld specimens from the onset tensile loading to failure. Data on actual ultimate strengths together with AE data from the beginning of loading up to 25 percent of the expected ultimate strength were used to train a backpropagation neural network to predict ultimate strengths. Architecturally, the fully interconnected network consisted of an input layer for the AE amplitude data, a hidden layer to accommodate failure mechanism mapping, and an output layer for ultimate strength prediction. The trained network was the applied to the prediction of ultimate strengths in the remaining six specimens. The worst case prediction error was found to be +2.6 percent.

  15. Structuring of composite hydrogel bioadhesives and its effect on properties and bonding mechanism.

    PubMed

    Pinkas, Oded; Goder, Daniella; Noyvirt, Roni; Peleg, Sivan; Kahlon, Maayan; Zilberman, Meital

    2017-03-15

    Bioadhesives are polymeric hydrogels that can adhere to a tissue after crosslinking and are an essential element in nearly all surgeries worldwide. Several bioadhesives are commercially available. However, none of them are ideal. The main limitation of current tissue adhesives is the tradeoff between biocompatibility and mechanical strength, especially in wet hemorrhagic environments. Our novel bioadhesives are based on the natural polymers gelatin (coldwater fish) and alginate, crosslinked by carbodiimide (EDC). Two types of hemostatic agents with a layered silicate structure, montmorillonite (MMT) and kaolin, were loaded in order to improve the sealing ability in a hemorrhagic environment. The effect of the adhesive's components on its mechanical strength was studied by three different methods - burst strength, lap shear and compression. The viscosity, gelation time and structural features of the adhesive were also studied. A qualitative model that describes the effect of the bioadhesive's parameters on the cohesive and adhesive strength was developed. A formulation based on 400mg/mL gelatin, 10mg/mL alginate and 20mg/mL EDC was found as optimal, enabling a burst strength of 387mmHg. Incorporation of kaolin increased the burst strength by 25% due to microcomposite structuring, whereas MMT increased the burst strength by 50% although loaded in a smaller concentration, due to nano-structuring effects. This research clearly shows that the incorporation of kaolin and MMT in gelatin-alginate surgical sealants is a very promising novel approach for improving the bonding strength and physical properties of surgical sealants for use in hemorrhagic environments. The current manuscript focuses on novel bioadhesives, based on natural polymers and loaded with hemostatic agents with a layered silicate structure, in order to improve the sealing ability in hemorrhagic environment. Such composite bioadhesives have not been developed and studied before. The effect of the adhesive's components on its mechanical strength was studied by three different methods, as well as the physical properties and structural features. Thorough understanding of these unique biomaterials resulted in a qualitative model which describes the effect of the bioadhesive's parameters on the cohesive and adhesive strength. Thus, structure-property-function relationships are presented. Structuring of the composite bioadhesives and its effect of the properties and bonding mechanism, are expected to be of high interest to Acta readership. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Flexural strength of proof-tested and neutron-irradiated silicon carbide

    NASA Astrophysics Data System (ADS)

    Price, R. J.; Hopkins, G. R.

    1982-08-01

    Proof testing before service is a valuable method for ensuring the reliability of ceramic structures. Silicon carbide has been proposed as a very low activation first-wall and blanket structural material for fusion devices, where it would experience a high flux of fast neutrons. Strips of three types of silicon carbide were loaded in four-point bending to a stress sufficient to break about a third of the specimens. Groups of 16 survivors were irradiated to 2 × 10 26n/ m2 ( E>0.05 MeV) at 740°C and bend tested to failure. The strength distribution of chemically vapor-deposited silicon carbide (Texas Instruments) was virtually unchanged by irradiation. The mean strength of sintered silicon carbide (Carborundum Alpha) was reduced 34% by irradiation, while the Weibull modulus and the truncated strength distribution characteristic of proof-tested material were retained. Irradiation reduced the mean strength of reaction-bonded silicon carbide (Norton NC-430) by 58%, and the spread in strength values was increased. We conclude that for the chemically vapor-deposited and the sintered silicon carbide the benefits of proof testing to eliminate low strength material are retained after high neutron exposures.

  17. Investigation on Failures of Composite Beam and Substrate Concrete due to Drying Shrinkage Property of Repair Materials

    NASA Astrophysics Data System (ADS)

    Pattnaik, Rashmi Ranjan

    2017-06-01

    A Finite Element Analysis (FEA) and an experimental study was conducted on composite beam of repair material and substrate concrete to investigate the failures of the composite beam due to drying shrinkage property of the repair materials. In FEA, the stress distribution in the composite beam due to two concentrate load and shrinkage of repair materials were investigated in addition to the deflected shape of the composite beam. The stress distributions and load deflection shapes of the finite element model were investigated to aid in analysis of the experimental findings. In the experimental findings, the mechanical properties such as compressive strength, split tensile strength, flexural strength, and load-deflection curves were studied in addition to slant shear bond strength, drying shrinkage and failure patterns of the composite beam specimens. Flexure test was conducted to simulate tensile stress at the interface between the repair material and substrate concrete. The results of FEA were used to analyze the experimental results. It was observed that the repair materials with low drying shrinkage are showing compatible failure in the flexure test of the composite beam and deform adequately in the load deflection curves. Also, the flexural strength of the composite beam with low drying shrinkage repair materials showed higher flexural strength as compared to the composite beams with higher drying shrinkage value of the repair materials even though the strength of those materials were more.

  18. Strength Analysis of Glass-Fiber-Reinforced Plastic during Buckling,

    DTIC Science & Technology

    An algorithm is developed for calculating and analyzing the stress tensor by the experimental function of deflections during the buckling of glass ... fiber -reinforced plastic shells loaded with a hydrostatic load. Malmeyster’s theory of strength is used to qualitatively establish the possible points of shell failure. (Author-PL)

  19. Deformation behavior of FRP-metal composites locally reinforced with carbon fibers

    NASA Astrophysics Data System (ADS)

    Scholze, M.; Kolonko, A.; Lindner, T.; Lampke, T.; Helbig, F.

    2016-03-01

    This study investigates variations of hybrid laminates, consisting of one aluminum sheet and a unidirectional glass fiber (GF) reinforced polyamide 6 (PA6) basic structure with partial carbon fiber (CF) reinforcement. To create these heterogeneous FRP laminates, it is necessary to design and produce semi-finished textile-based products. Moreover, a warp knitting machine in conjunction with a warp thread offset unit was used to generate bionic inspired compounds. By the variation of stacking prior to the consolidation process of the hybrid laminate, an oriented CF reinforcement at the top and middle layer of the FRP is realized. In both cases the GFRP layer prevents contact between the aluminum and carbon fibers. In so doing, the high strength of carbon fibers can be transferred to the hybrid laminate in load directions with an active prevention of contact corrosion. The interface strength between thermoplastic and metal component was improved by a thermal spray coating on the aluminum sheet. Because of the high surface roughness and porosity, mechanical interlock was used to provide high interface strength without bonding agents between both components. The resulting mechanical properties of the hybrid laminates are evaluated by three point bending tests in different load directions. The effect of local fiber orientation and layer positioning on failure and deformation mechanism is additionally investigated by digital image correlation (DIC).

  20. ZERODUR - bending strength: review of achievements

    NASA Astrophysics Data System (ADS)

    Hartmann, Peter

    2017-08-01

    Increased demand for using the glass ceramic ZERODUR® with high mechanical loads called for strength data based on larger statistical samples. Design calculations for failure probability target value below 1: 100 000 cannot be made reliable with parameters derived from 20 specimen samples. The data now available for a variety of surface conditions, ground with different grain sizes and acid etched for full micro crack removal, allow stresses by factors four to ten times higher than before. The large sample revealed that breakage stresses of ground surfaces follow the three parameter Weibull distribution instead of the two parameter version. This is more reasonable considering that the micro cracks of such surfaces have a maximum depth which is reflected in the existence of a threshold breakage stress below which breakage probability is zero. This minimum strength allows calculating minimum lifetimes. Fatigue under load can be taken into account by using the stress corrosion coefficient for the actual environmental humidity. For fully etched surfaces Weibull statistics fails. The precondition of the Weibull distribution, the existence of one unique failure mechanism, is not given anymore. ZERODUR® with fully etched surfaces free from damages introduced after etching endures easily 100 MPa tensile stress. The possibility to use ZERODUR® for combined high precision and high stress application was confirmed by the successful launch and continuing operation of LISA Pathfinder the precursor experiment for the gravitational wave antenna satellite array eLISA.

  1. EFFECT OF RADIUS OF LOADING NOSE AND SUPPORTS IN SHORT BEAM TEST FIXTURE ON FRACTURE MODE AND INTERLAMINAR SHEAR STRENGTH OF GFRP AT 77 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, A.

    2008-03-03

    A short beam test is useful to evaluate interlaminar shear strength of glass fiber reinforced plastics, especially for material selection. However, effect of test fixture configuration on interlaminar shear strength has not been clarified. This paper describes dependence of fracture mode and interlaminar shear strength on the fixture radius using the same materials and procedure. In addition, global understanding of the role of the fixture is discussed. When small loading nose and supports are used for the tests, bending fracture or translaminar fracture happens and the interlaminar shear strength would become smaller. By adopting the large radius loading nose andmore » supports (6 mm radius is recommended), it is newly recognized that some stress concentration is able to be reduced, and the interlaminar fracture tends to occur and the other fracture modes will be suppressed. The interlaminar shear strength of 2.5 mm thick GFRP plate of G-10CR is evaluated as 130-150 MPa at 77 K.« less

  2. Carbon Nanotube Sheet Scrolled Fiber Composite for Enhanced Interfacial Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Kokkada Ravindranath, Pruthul

    The high tensile strength of Polymer Matrix Composites (PMC) is derived from the high tensile strength of the embedded carbon fibers. However, their compressive strength is significantly lower than their tensile strength, as they tend to fail through micro-buckling, under compressive loading. Fiber misalignment and the presence of voids created during the manufacturing processes, add to the further reduction in the compressive strength of the composites. Hence, there is more scope for improvement. Since, the matrix is primarily responsible for the shear load transfer and dictating the critical buckling load of the fibers by constraining the fibers from buckling, to improve the interfacial mechanical properties of the composite, it is important to modify the polymer matrix, fibers and/or the interface. In this dissertation, a novel approach to enhance the polymer matrix-fiber interface region has been discussed. This approach involves spiral wrapping carbon nanotube (CNT) sheet around individual carbon fiber or fiber tow, at room temperature at a prescribed wrapping angle (bias angle), and then embed the scrolled fiber in a resin matrix. The polymer infiltrates into the nanopores of the multilayer CNT sheet to form CNT/polymer nanocomposite surrounding fiber, and due to the mechanical interlocking, provides reinforcement to the interface region between fiber and polymer matrix. This method of nano-fabrication has the potential to improve the mechanical properties of the fiber-matrix interphase, without degrading the fiber properties. The effect of introducing Multi-Walled Carbon Nanotubes (MWNT) in the polymer matrix was studied by analyzing the atomistic model of the epoxy (EPON-862) and the embedded MWNTs. A multi-scale method was utilized by using molecular dynamics (MD) simulations on the nanoscale model of the epoxy with and without the MWNTs to calculate compressive strength of the composite and predict the enhancement in the composite material. The influence of the bias/over wrapping angle of the MWNT sheets on the carbon fiber was also studied. The predicted compressive strength from the MD results and the multiscale approach for baseline Epoxy case was shown to be in good relation with the experimental results for Epon-862. On adding MWNTs to the epoxy system, a significant improvement in the compressive strength of the PMC was observed. Further, the effect of bias angle of MWNT wrapped over carbon fiber was compared for 0°, 45° and 90°. This is further verified by making use of the Halpin-Tsai.

  3. Effect of framework design on crown failure.

    PubMed

    Bonfante, Estevam A; da Silva, Nelson R F A; Coelho, Paulo G; Bayardo-González, Daniel E; Thompson, Van P; Bonfante, Gerson

    2009-04-01

    This study evaluated the effect of core-design modification on the characteristic strength and failure modes of glass-infiltrated alumina (In-Ceram) (ICA) compared with porcelain fused to metal (PFM). Premolar crowns of a standard design (PFMs and ICAs) or with a modified framework design (PFMm and ICAm) were fabricated, cemented on dies, and loaded until failure. The crowns were loaded at 0.5 mm min(-1) using a 6.25 mm tungsten-carbide ball at the central fossa. Fracture load values were recorded and fracture analysis of representative samples were evaluated using scanning electron microscopy. Probability Weibull curves with two-sided 90% confidence limits were calculated for each group and a contour plot of the characteristic strength was obtained. Design modification showed an increase in the characteristic strength of the PFMm and ICAm groups, with PFM groups showing higher characteristic strength than ICA groups. The PFMm group showed the highest characteristic strength among all groups. Fracture modes of PFMs and of PFMm frequently reached the core interface at the lingual cusp, whereas ICA exhibited bulk fracture through the alumina core. Core-design modification significantly improved the characteristic strength for PFM and for ICA. The PFM groups demonstrated higher characteristic strength than both ICA groups combined.

  4. Temperature and Material Flow Prediction in Friction-Stir Spot Welding of Advanced High-Strength Steel

    NASA Astrophysics Data System (ADS)

    Miles, M.; Karki, U.; Hovanski, Y.

    2014-10-01

    Friction-stir spot welding (FSSW) has been shown to be capable of joining advanced high-strength steel, with its flexibility in controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding if tool life is sufficiently high, and if machine spindle loads are sufficiently low that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8 kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11-14 kN. Therefore, in the current work, tool speeds of 5000 rpm were employed to generate heat more quickly and to reduce welding loads to acceptable levels. Si3N4 tools were used for the welding experiments on 1.2-mm DP 980 steel. The FSSW process was modeled with a finite element approach using the Forge® software. An updated Lagrangian scheme with explicit time integration was employed to predict the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate. Material flow was calculated from a velocity field that is two-dimensional, but heat generated by friction was computed by a novel approach, where the rotational velocity component imparted to the sheet by the tool surface was included in the thermal boundary conditions. An isotropic, viscoplastic Norton-Hoff law was used to compute the material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures to within 4%, and the position of the joint interface to within 10%, of the experimental results.

  5. Temperature and Material Flow Prediction in Friction-Stir Spot Welding of Advanced High-Strength Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, Michael; Karki, U.; Hovanski, Yuri

    Friction-stir spot welding (FSSW) has been shown to be capable of joining advanced high-strength steel, with its flexibility in controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding if tool life is sufficiently high, and if machine spindle loads are sufficiently low that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8 kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11–14 kN.more » Therefore, in the current work, tool speeds of 5000 rpm were employed to generate heat more quickly and to reduce welding loads to acceptable levels. Si3N4 tools were used for the welding experiments on 1.2-mm DP 980 steel. The FSSW process was modeled with a finite element approach using the Forge* software. An updated Lagrangian scheme with explicit time integration was employed to predict the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate. Material flow was calculated from a velocity field that is two-dimensional, but heat generated by friction was computed by a novel approach, where the rotational velocity component imparted to the sheet by the tool surface was included in the thermal boundary conditions. An isotropic, viscoplastic Norton-Hoff law was used to compute the material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures to within percent, and the position of the joint interface to within 10 percent, of the experimental results.« less

  6. Effect of a novel load-bearing trabecular Nitinol scaffold on rabbit radius bone regeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gotman, Irena, E-mail: gotman@technion.ac.il; Gutmanas, Elazar Y., E-mail: gutmanas@technion.ac.il; National Research Tomsk Polytechnic University, Tomsk, 634050

    The research aim was to evaluate the bone regeneration capability of novel load-bearing NiTi alloy (Nitinol) scaffolds in a critical-size defect (CSD) model. High strength “trabecular Nitinol” scaffolds were prepared by PIRAC (Powder Immersion Reaction Assisted Coating) annealing of the highly porous Ni foam in Ti powder at 900°C. This was followed by PIRAC nitriding to mitigate the release of potentially toxic Ni ions. Scaffolds phase composition and microstructure were characterized by X-ray diffraction and scanning electron microscopy (SEM/EDS), and their mechanical properties were tested in compression. New Zealand white rabbits received bone defect in right radius and were dividedmore » in four groups randomly. In the control group, nothing was placed in the defect. In other groups, NiTi scaffolds were implanted in the defect: (i) as produced, (ii) loaded with bone marrow aspirate (BMA), and (iii) biomimetically CaP-coated. The animals were sacrificed after 12 weeks. The forelimbs with scaffolds were resected, fixed, sectioned and examined in SEM. New bone formation inside the scaffold was studied by EDS analysis and by the processing of backscattered electron images. Bone ingrowth into the scaffold was observed in all implant groups, mostly next to the ulna. New bone formation was strongly enhanced by BMA loading and biomimeatic CaP coating, the bone penetrating as much as 1–1.5 mm into the scaffold. The results of this preliminary study demonstrate that the newly developed high strength trabecular Nitinol scaffolds can be successfully used for bone regeneration in critical size defects.« less

  7. Heavy section fracture toughness screening specimen

    NASA Technical Reports Server (NTRS)

    Shannon, J. L., Jr.; Donald, J. K.; Brown, W. F., Jr.

    1976-01-01

    Size requirements for a pin loaded double edge notch + crack tension specimen proposed for fracture toughness screening heavy section alloys were studied. Ranking of eight selected alloys based on the specimen's net strength was compared with that based on the valid plane strain fracture toughness separately determined. Performance of the specimen was judged on the basis of that comparison. The specimen's net strength was influenced by three critical specimen dimensions: distance between the crack plane and the loading hole, specimen width, and specimen thickness. Interaction between the stress fields of the crack and the loading holes reduced the net strength, but this effect disappeared as the separation reached a dimension equal to the specimen width. The effects of specimen width and thickness are interrelated and affect the net strength through their influence on the development of the crack tip plastic zone.

  8. Damage Progression in Buckle-Resistant Notched Composite Plates Loaded in Uniaxial Compression

    NASA Technical Reports Server (NTRS)

    McGowan, David M.; Davila, Carlos G.; Ambur, Damodar R.

    2001-01-01

    Results of an experimental and analytical evaluation of damage progression in three stitched composite plates containing an angled central notch and subjected to compression loading are presented. Parametric studies were conducted systematically to identify the relative effects of the material strength parameters on damage initiation and growth. Comparisons with experiments were conducted to determine the appropriate in situ values of strengths for progressive failure analysis. These parametric studies indicated that the in situ value of the fiber buckling strength is the most important parameter in the prediction of damage initiation and growth in these notched composite plates. Analyses of the damage progression in the notched, compression-loaded plates were conducted using in situ material strengths. Comparisons of results obtained from these analyses with experimental results for displacements and axial strains show good agreement.

  9. Limits on rock strength under high confinement

    NASA Astrophysics Data System (ADS)

    Renshaw, Carl E.; Schulson, Erland M.

    2007-06-01

    Understanding of deep earthquake source mechanisms requires knowledge of failure processes active under high confinement. Under low confinement the compressive strength of rock is well known to be limited by frictional sliding along stress-concentrating flaws. Under higher confinement strength is usually assumed limited by power-law creep associated with the movement of dislocations. In a review of existing experimental data, we find that when the confinement is high enough to suppress frictional sliding, rock strength increases as a power-law function only up to a critical normalized strain rate. Within the regime where frictional sliding is suppressed and the normalized strain rate is below the critical rate, both globally distributed ductile flow and localized brittle-like failure are observed. When frictional sliding is suppressed and the normalized strain rate is above the critical rate, failure is always localized in a brittle-like manner at a stress that is independent of the degree of confinement. Within the high-confinement, high-strain rate regime, the similarity in normalized failure strengths across a variety of rock types and minerals precludes both transformational faulting and dehydration embrittlement as strength-limiting mechanisms. The magnitude of the normalized failure strength corresponding to the transition to the high-confinement, high-strain rate regime and the observed weak dependence of failure strength on strain rate within this regime are consistent with a localized Peierls-type strength-limiting mechanism. At the highest strain rates the normalized strengths approach the theoretical limit for crystalline materials. Near-theoretical strengths have previously been observed only in nano- and micro-scale regions of materials that are effectively defect-free. Results are summarized in a new deformation mechanism map revealing that when confinement and strain rate are sufficient, strengths approaching the theoretical limit can be achieved in cm-scale sized samples of rocks rich in defects. Thus, non-frictional failure processes must be considered when interpreting rock deformation data collected under high confinement and low temperature. Further, even at higher temperatures the load-bearing ability of crustal rocks under high confinement may not be limited by a frictional process under typical geologic strain rates.

  10. The contribution of volume, technique, and load to single-repetition and total-repetition kinematics and kinetics in response to three loading schemes.

    PubMed

    Crewther, Blair T; Cronin, John; Keogh, Justin W L

    2008-11-01

    This study examined the effect of volume, technique, and load upon single-repetition and total-repetition kinematics and kinetics during three loading schemes. Eleven recreationally trained males each performed a power (8 sets of 6 repetitions at 45% of one-repetition maximum [1RM], 3-minute rest periods, explosive and ballistic movements), hypertrophy (10 sets of 10 repetitions at 75% 1RM, 2-minute rest periods, controlled movements), and maximal strength (6 sets of 4 repetitions at 88% 1RM, 4-minute rest periods, explosive intent) scheme involving squats. Examination of repetition data showed that load intensity (% 1RM) generally had a direct effect on forces, contraction times, impulses, and work (i.e., increasing with load), whereas power varied across loads (p < 0.001). However, total-repetition forces, contraction times, impulses, work, and power were all greater in the hypertrophy scheme (p < 0.001), because of the greater number of repetitions performed (volume) as well as lifting technique. No differences in total forces were found between the equal-volume power and maximal strength schemes, but the former did produce greater total contraction times, work, and power (p < 0.001), which may also be attributed to repetition and technique differences. Total impulses were the only variable greater in the maximal strength scheme (p < 0.001). Thus, the interaction of load, volume, and technique plays an important role in determining the mechanical responses (stimuli) afforded by these workouts. These findings may explain disparities cited within research, regarding the effectiveness of different loading strategies for hypertrophy, maximal strength, and power adaptation.

  11. The Importance of Muscular Strength: Training Considerations.

    PubMed

    Suchomel, Timothy J; Nimphius, Sophia; Bellon, Christopher R; Stone, Michael H

    2018-04-01

    This review covers underlying physiological characteristics and training considerations that may affect muscular strength including improving maximal force expression and time-limited force expression. Strength is underpinned by a combination of morphological and neural factors including muscle cross-sectional area and architecture, musculotendinous stiffness, motor unit recruitment, rate coding, motor unit synchronization, and neuromuscular inhibition. Although single- and multi-targeted block periodization models may produce the greatest strength-power benefits, concepts within each model must be considered within the limitations of the sport, athletes, and schedules. Bilateral training, eccentric training and accentuated eccentric loading, and variable resistance training may produce the greatest comprehensive strength adaptations. Bodyweight exercise, isolation exercises, plyometric exercise, unilateral exercise, and kettlebell training may be limited in their potential to improve maximal strength but are still relevant to strength development by challenging time-limited force expression and differentially challenging motor demands. Training to failure may not be necessary to improve maximum muscular strength and is likely not necessary for maximum gains in strength. Indeed, programming that combines heavy and light loads may improve strength and underpin other strength-power characteristics. Multiple sets appear to produce superior training benefits compared to single sets; however, an athlete's training status and the dose-response relationship must be considered. While 2- to 5-min interset rest intervals may produce the greatest strength-power benefits, rest interval length may vary based an athlete's training age, fiber type, and genetics. Weaker athletes should focus on developing strength before emphasizing power-type training. Stronger athletes may begin to emphasize power-type training while maintaining/improving their strength. Future research should investigate how best to implement accentuated eccentric loading and variable resistance training and examine how initial strength affects an athlete's ability to improve their performance following various training methods.

  12. Multi-Scale Effects in the Strength of Ceramics

    PubMed Central

    Cook, Robert F.

    2016-01-01

    Multiple length-scale effects are demonstrated in indentation-strength measurements of a range of ceramic materials under inert and reactive conditions. Meso-scale effects associated with flaw disruption by lateral cracking at large indentation loads are shown to increase strengths above the ideal indentation response. Micro-scale effects associated with toughening by microstructural restraints at small indentation loads are shown to decrease strengths below the ideal response. A combined meso-micro-scale analysis is developed that describes ceramic inert strength behaviors over the complete indentation flaw size range. Nano-scale effects associated with chemical equilibria and crack velocity thresholds are shown to lead to invariant minimum strengths at slow applied stressing rates under reactive conditions. A combined meso-micro-nano-scale analysis is developed that describes the full range of reactive and inert strength behaviors as a function of indentation load and applied stressing rate. Applications of the multi-scale analysis are demonstrated for materials design, materials selection, toughness determination, crack velocity determination, bond-rupture parameter determination, and prediction of reactive strengths. The measurements and analysis provide strong support for the existence of sharp crack tips in ceramics such that the nano-scale mechanisms of discrete bond rupture are separate from the larger scale crack driving force mechanics characterized by continuum-based stress-intensity factors. PMID:27563150

  13. Handball load and shoulder injury rate: a 31-week cohort study of 679 elite youth handball players.

    PubMed

    Møller, M; Nielsen, R O; Attermann, J; Wedderkopp, N; Lind, M; Sørensen, H; Myklebust, G

    2017-02-01

    Knowledge of injury patterns, an essential step towards injury prevention, is lacking in youth handball. To investigate if an increase in handball load is associated with increased shoulder injury rates compared with a minor increase or decrease, and if an association is influenced by scapular control, isometric shoulder strength or glenohumeral range of motion (ROM). 679 players (14-18 years) provided weekly reports on shoulder injury and handball load (training and competition hours) over 31 weeks using the SMS, phone and medical examination system. Handball load in a given week was categorised into (1) <20% increase or decrease (reference), (2) increase between 20% and 60% and (3) increase >60% relative to the weekly average amount of handball load the preceding 4 weeks. Assessment of shoulder isometric rotational and abduction strength, ROM and scapular control was performed at baseline and midseason. An increase in handball load by >60% was associated with greater shoulder injury rate (HR 1.91; 95% CI 1.00 to 3.70, p=0.05) compared with the reference group. The effect of an increase in handball load between 20% and 60% was exacerbated among players with reduced external rotational strength (HR 4.0; 95% CI 1.1 to 15.2, p=0.04) or scapular dyskinesis (HR 4.8; 95% CI 1.3 to 18.3, p=0.02). Reduced external rotational strength exacerbated the effect of an increase above 60% (HR 4.2; 95% CI 1.4 to 12.8, p=0.01). A large increase in weekly handball load increases the shoulder injury rate in elite youth handball players; particularly, in the presence of reduced external rotational strength or scapular dyskinesis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Cascading failures with local load redistribution in interdependent Watts-Strogatz networks

    NASA Astrophysics Data System (ADS)

    Hong, Chen; Zhang, Jun; Du, Wen-Bo; Sallan, Jose Maria; Lordan, Oriol

    2016-05-01

    Cascading failures of loads in isolated networks have been studied extensively over the last decade. Since 2010, such research has extended to interdependent networks. In this paper, we study cascading failures with local load redistribution in interdependent Watts-Strogatz (WS) networks. The effects of rewiring probability and coupling strength on the resilience of interdependent WS networks have been extensively investigated. It has been found that, for small values of the tolerance parameter, interdependent networks are more vulnerable as rewiring probability increases. For larger values of the tolerance parameter, the robustness of interdependent networks firstly decreases and then increases as rewiring probability increases. Coupling strength has a different impact on robustness. For low values of coupling strength, the resilience of interdependent networks decreases with the increment of the coupling strength until it reaches a certain threshold value. For values of coupling strength above this threshold, the opposite effect is observed. Our results are helpful to understand and design resilient interdependent networks.

  15. An experimental study of the mechanism of failure of rocks under borehole jack loading

    NASA Technical Reports Server (NTRS)

    Van, T. K.; Goodman, R. E.

    1971-01-01

    Laboratory and field tests with an experimental jack and an NX-borehole jack are reported. The following conclusions were made: Under borehole jack loading, a circular opening in a brittle solid fails by tensile fracturing when the bearing plate width is not too small. Two proposed contact stress distributions can explain the mechanism of tensile fracturing. The contact stress distribution factor is a material property which can be determined experimentally. The borehole tensile strength is larger than the rupture flexural strength. Knowing the magnitude and orientation of the in situ stress field, borehole jack test results can be used to determine the borehole tensile strength. Knowing the orientation of the in situ stress field and the flexural strength of the rock substance, the magnitude of the in situ stress components can be calculated. The detection of very small cracks is essential for the accurate determination of the failure loads which are used in the calculation of strengths and stress components.

  16. Simulating tokamak PFC performance using simultaneous dual beam particle loading with pulsed heat loading

    NASA Astrophysics Data System (ADS)

    Sinclair, Gregory; Gonderman, Sean; Tripathi, Jitendra; Ray, Tyler; Hassanein, Ahmed

    2017-10-01

    The performance of plasma facing components (PFCs) in a fusion device are expected to change due to high flux particle loading during operation. Tungsten (W) is a promising PFC candidate material, due to its high melting point, high thermal conductivity, and low tritium retention. However, ion irradiation of D and He have each shown to diminish the thermal strength of W. This work investigates the synergistic effect between ion species, using dual beam irradiation, on the thermal response of W during ELM-like pulsed heat loading. Experiments studied three different loading conditions: laser, laser + He+, and laser + He+ + D+. 100 eV He+ and D+ exposures used a flux of 3.0-3.5 x 1020 m-2 s-1. ELM-like loading was applied using a pulsed Nd:YAG laser at an energy density of 0.38-1.51 MJ m-2 (3600 1 ms pulses at 1 Hz). SEM imaging revealed that laser + He+ loading at 0.76 MJ m-2 caused surface melting, inhibiting fuzz formation. Increasing the laser fluence decreased grain size and increased surface pore density. Thermally-enhanced migration of trapped gases appear to reflect resultant molten morphology. This work was supported by the National Science Foundation PIRE project.

  17. In-Plane Cracking Behavior and Ultimate Strength for 2D Woven and Braided Melt-Infiltrated SiC/SiC Composites Tensile Loaded in Off-Axis Fiber Directions

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Yun, Hee Mann; DiCarlo, James A.

    2007-01-01

    The tensile mechanical properties of ceramic matrix composites (CMC) in directions off the primary axes of the reinforcing fibers are important for architectural design of CMC components that are subjected to multi-axial stress states. In this study, 2D-woven melt-infiltrated (MI) SiC/SiC composite panels with balanced fiber content in the 0 degree and 90 degree directions were tensile loaded in-plane in the 0 degree direction and at 45 degree to this direction. In addition, a 2D triaxially-braided MI composite panel with balanced fiber content in the plus or minus 67 degree bias directions and reduced fiber content in the axial direction was tensile loaded perpendicular to the axial direction tows (i.e., 23 degrees from the bias fibers). Stress-strain behavior, acoustic emission, and optical microscopy were used to quantify stress-dependent matrix cracking and ultimate strength in the panels. It was observed that both off-axis loaded panels displayed higher composite onset stresses for through-thickness matrix cracking than the 2D-woven 0/90 panels loaded in the primary 0 degree direction. These improvements for off-axis cracking strength can in part be attributed to higher effective fiber fractions in the loading direction, which in turn reduces internal stresses on critical matrix flaws for a given composite stress. Also for the 0/90 panel loaded in the 45 degree direction, an improved distribution of matrix flaws existed due to the absence of fiber tows perpendicular to the loading direction. In addition, for the +67/0/-67 braided panel, the axial tows perpendicular to the loading direction were not only low in volume fraction, but were also were well separated from one another. Both off-axis oriented panels also showed relatively good ultimate tensile strength when compared to other off-axis oriented composites in the literature, both on an absolute strength basis as well as when normalized by the average fiber strength within the composites. Initial implications are discussed for constituent and architecture design to improve the directional cracking of SiC/SiC CMC components with MI matrices.

  18. Elastic Bands as a Component of Periodized Resistance Training.

    PubMed

    Joy, Jordan M; Lowery, Ryan P; Oliveira de Souza, Eduardo; Wilson, Jacob M

    2016-08-01

    Joy, JM, Lowery, RP, Oliveira de Souza, E, and Wilson, JM. Elastic bands as a component of periodized resistance training. J Strength Cond Res 30(8): 2100-2106, 2016-Variable resistance training (VRT) has recently become a component of strength and conditioning programs. Prior research has demonstrated increases in power and/or strength using low loads of variable resistance. However, no study has examined using high loads of variable resistance as a part of a periodized training protocol to examine VRT within the context of a periodized training program and to examine a greater load of variable resistance than has been examined in prior research. Fourteen National Collegiate Athletic Association division II male basketball players were recruited for this study. Athletes were divided equally into either a variable resistance or control group. The variable resistance group added 30% of their 1 repetition maximum (1RM) as band tension to their prescribed weight 1 session per week. Rate of power development (RPD), peak power, strength, body composition, and vertical jump height were measured pretreatment and posttreatment. No baseline differences were observed between groups for any measurement of strength, power, or body composition. A significant group by time interaction was observed for RPD, in which RPD was greater in VRT posttraining than in the control group. Significant time effects were observed for all other variables including squat 1RM, bench press 1RM, deadlift 1RM, clean 3RM, vertical jump, and lean mass. Although there were no significant group ×-time interactions, the VRT group's percent changes and effect sizes indicate a larger treatment effect in the squat and bench press 1RM values and the vertical jump performed on the force plate and vertec. These results suggest that when using variable resistance as a component of a periodized training program, power and strength can be enhanced. Therefore, athletes who add variable resistance to 1 training session per week may enhance their athletic performance.

  19. Evaluation of non-SBS modified binders using the multiple stress creep recovery test : [research project capsule].

    DOT National Transportation Integrated Search

    2015-12-01

    Higher tra c coupled with heavier loads led the asphalt industry to introduce polymer-modi ed : binders to enhance the durability and strength of HMA pavements. Numerous research projects : showed that G*/Sin, the high temperature speci ca...

  20. Strengthening of bridge columns subjected to an impact lateral load caused by vehicle collision : phase I final report.

    DOT National Transportation Integrated Search

    2011-08-01

    "Fiber reinforced polymer (FRP) materials have gained wide acceptance for repair and retrofit of existing infrastructures or to design new infrastructures due to their desirable properties (high strength to weight ratio, light weight and consequent e...

  1. Accelerated testing of composites

    NASA Technical Reports Server (NTRS)

    Papazian, H. A.

    1983-01-01

    It is shown that the Zhurkov method for testing the strength of solids can be applied to dynamic tension and to cyclic loading and provides a viable approach to accelerated testing of composites. Data from the literature are used to demonstrate a straightforward application of the method to dynamic tension of glass fiber and cyclic loading for glass/polymer, metal matrix, and graphite/epoxy composites. Zhurkov's equation can be used at relatively high loads to obtain failure times at any temperature of interest. By taking a few data points at one or two other temperatures the spectrum of failure times can be expanded to temperatures not easily accessible.

  2. On the Possibility of using Alluminium-Magnesium Alloys with Improved Mechanical Characteristics for Body Elements of Zenit-2S Launch Vehicle Propellant Tanks

    NASA Astrophysics Data System (ADS)

    Sitalo, V.; Lytvyshko, T.

    2002-01-01

    Yuzhnoye SDO developed several generations of launch vehicles and spacecraft that are characterized by weight perfection, optimal cost, accuracy of output geometrical characteristics, stable strength characteristics, high tightness. The main structural material of launch vehicles are thermally welded non-strengthened aluminium- magnesium alloys. The aluminium-magnesium alloys in the annealed state have insufficiently high strength characteristics. Considerable increase of yield strength of sheets and plates can be reached by cold working but in this case, plasticity reduces. An effective way to improve strength of aluminium-magnesium alloys is their alloying with scandium. The alloying with scandium leads to modification of the structure of ingots (size reduction of cast grain) and formation of supersaturated solid solutions of scandium and aluminium during crystallization. During subsequent heatings (annealing of the ingots, heating for deformation) the solid solution disintegrates with the formation of disperse particles of Al3Sc type, that cause great strengthening of the alloy. High degree of dispersion and density of distribution in the matrix of secondary Al3Sc particles contribute to the considerable increase of the temperature of recrystallization of deformed intermediate products and to the formation of stable non-recrystallized structure. The alloying of alluminium-magnesium alloys with scandium increases their strength and operational characteristics, preserves their technological and corrosion properties, improves weldability. The alloys can be used within the temperature limits ­196-/+150 0C. The experimental structures of propellant tanks made of alluminium-magnesium alloys with scandium have been manufactured and tested. It was ascertained that the propellant tanks have higher margin of safety during loading with internal pressure and higher stability factor of the shrouds during loading with axial compression force which is caused by higher value of yield strength. The analysis of the performed work showed good prospects of using the alluminium-magnesium alloys with increased mechanical characteristics for making body elements of propellant tanks of the Zenit -2S launch vehicles. The use of these alloys can give the increase of structural strength by 20-30% and considerable increase of payload weight.

  3. Study on Design of High Efficiency and Light Weight Composite Propeller Blade for a Regional Turboprop Aircraft

    NASA Astrophysics Data System (ADS)

    Kong, Changduk; Lee, Kyungsun

    2013-03-01

    In this study, aerodynamic and structural design of the composite propeller blade for a regional turboprop aircraft is performed. The thin and wide chord propeller blade of high speed turboprop aircraft should have proper strength and stiffness to carry various kinds of loads such as high aerodynamic bending and twisting moments and centrifugal forces. Therefore the skin-spar-foam sandwich structure using high strength and stiffness carbon/epoxy composite materials is used to improve the lightness. A specific design procedure is proposed in this work as follows; firstly the aerodynamic configuration design, which is acceptable for the design requirements, is carried out using the in-house code developed by authors, secondly the structure design loads are determined through the aerodynamic load case analysis, thirdly the spar flange and the skin are preliminarily sized by consideration of major bending moments and shear forces using both the netting rule and the rule of mixture, and finally, the stress analysis is performed to confirm the structural safety and stability using finite element analysis commercial code, MSC. NASTRAN/PATRAN. Furthermore the additional analysis is performed to confirm the structural safety due to bird strike impact on the blade during flight operation using a commercial code, ANSYS. To realize the proposed propeller design, the prototype blades are manufactured by the following procedure; the carbon/epoxy composite fabric prepregs are laid up for skin and spar on a mold using the hand lay-up method and consolidated with a proper temperature and vacuum in the oven. To finalize the structural design, the full-scale static structural test is performed under the simulated aerodynamic loads using 3 point loading method. From the experimental results, it is found that the designed blade has a good structural integrity, and the measured results agree well with the analytical results as well.

  4. Analysis of acoustic emission cumulative signal strength of steel fibre reinforced concrete (SFRC) beams strengthened with carbon fibre reinforced polymer (CFRP)

    NASA Astrophysics Data System (ADS)

    Abdul Hakeem, Z.; Noorsuhada, M. N.; Azmi, I.; Noor Syafeekha, M. S.; Soffian Noor, M. S.

    2017-12-01

    In this study, steel fibre reinforced concrete (SFRC) beams strengthened with carbon fibre reinforced polymer (CFRP) were investigated using acoustic emission (AE) technique. Three beams with dimension of 150 mm width, 200 mm depth and 1500 mm length were fabricated. The results generated from AE parameters were analysed as well as signal strength and cumulative signal strength. Three relationships were produced namely load versus deflection, signal strength versus time and cumulative signal strength with respect to time. Each relationship indicates significant physical behaviour as the crack propagated in the beams. It is found that an addition of steel fibre in the concrete mix and strengthening of CFRP increase the ultimate load of the beam and the activity of signal strength. Moreover, the highest signal strength generated can be identified. From the study, the occurrence of crack in the beam can be predicted using AE signal strength.

  5. Laboratory constraints on models of earthquake recurrence

    USGS Publications Warehouse

    Beeler, Nicholas M.; Tullis, Terry; Junger, Jenni; Kilgore, Brian D.; Goldsby, David L.

    2014-01-01

    In this study, rock friction ‘stick-slip’ experiments are used to develop constraints on models of earthquake recurrence. Constant-rate loading of bare rock surfaces in high quality experiments produces stick-slip recurrence that is periodic at least to second order. When the loading rate is varied, recurrence is approximately inversely proportional to loading rate. These laboratory events initiate due to a slip rate-dependent process that also determines the size of the stress drop [Dieterich, 1979; Ruina, 1983] and as a consequence, stress drop varies weakly but systematically with loading rate [e.g., Gu and Wong, 1991; Karner and Marone, 2000; McLaskey et al., 2012]. This is especially evident in experiments where the loading rate is changed by orders of magnitude, as is thought to be the loading condition of naturally occurring, small repeating earthquakes driven by afterslip, or low-frequency earthquakes loaded by episodic slip. As follows from the previous studies referred to above, experimentally observed stress drops are well described by a logarithmic dependence on recurrence interval that can be cast as a non-linear slip-predictable model. The fault’s rate dependence of strength is the key physical parameter. Additionally, even at constant loading rate the most reproducible laboratory recurrence is not exactly periodic, unlike existing friction recurrence models. We present example laboratory catalogs that document the variance and show that in large catalogs, even at constant loading rate, stress drop and recurrence co-vary systematically. The origin of this covariance is largely consistent with variability of the dependence of fault strength on slip rate. Laboratory catalogs show aspects of both slip and time predictability and successive stress drops are strongly correlated indicating a ‘memory’ of prior slip history that extends over at least one recurrence cycle.

  6. Bed load transport over a broad range of timescales: Determination of three regimes of fluctuations

    NASA Astrophysics Data System (ADS)

    Ma, Hongbo; Heyman, Joris; Fu, Xudong; Mettra, Francois; Ancey, Christophe; Parker, Gary

    2014-12-01

    This paper describes the relationship between the statistics of bed load transport flux and the timescale over which it is sampled. A stochastic formulation is developed for the probability distribution function of bed load transport flux, based on the Ancey et al. (2008) theory. An analytical solution for the variance of bed load transport flux over differing sampling timescales is presented. The solution demonstrates that the timescale dependence of the variance of bed load transport flux reduces to a three-regime relation demarcated by an intermittency timescale (tI) and a memory timescale (tc). As the sampling timescale increases, this variance passes through an intermittent stage (≪tI), an invariant stage (tI < t < tc), and a memoryless stage (≫ tc). We propose a dimensionless number (Ra) to represent the relative strength of fluctuation, which provides a common ground for comparison of fluctuation strength among different experiments, as well as different sampling timescales for each experiment. Our analysis indicates that correlated motion and the discrete nature of bed load particles are responsible for this three-regime behavior. We use the data from three experiments with high temporal resolution of bed load transport flux to validate the proposed three-regime behavior. The theoretical solution for the variance agrees well with all three sets of experimental data. Our findings contribute to the understanding of the observed fluctuations of bed load transport flux over monosize/multiple-size grain beds, to the characterization of an inherent connection between short-term measurements and long-term statistics, and to the design of appropriate sampling strategies for bed load transport flux.

  7. Enhanced microwave shielding and mechanical properties of high loading MWCNT-epoxy composites

    NASA Astrophysics Data System (ADS)

    Singh, B. P.; Prasanta; Choudhary, Veena; Saini, Parveen; Pande, Shailaja; Singh, V. N.; Mathur, R. B.

    2013-04-01

    Dispersion of high loading of carbon nanotubes (CNTs) in epoxy resin is a challenging task for the development of efficient and thin electromagnetic interference (EMI) shielding materials. Up to 20 wt% of multiwalled carbon nanotubes (MWCNTs) loading in the composite was achieved by forming CNT prepreg in the epoxy resin as a first step. These prepreg laminates were then compression molded to form composites which resulted in EMI shielding effectiveness of -19 dB for 0.35 mm thick film and -60 dB at for 1.75 mm thick composites in the X-band (8.2-12.4 GHz). One of the reasons for such high shielding is attributed to the high electrical conductivity of the order of 9 S cm-1 achieved in these composites which is at least an order of magnitude higher than previously reported results at this loading. In addition, an improvement of 40 % in the tensile strength over the neat resin value is observed. Thermal conductivity of the MWCNTs-epoxy composite reached 2.18 W/mK as compared to only 0.14 W/mK for cured epoxy.

  8. Specific Features of the Response of Cerium to Pulsed Actions

    NASA Astrophysics Data System (ADS)

    Atroshenko, S. A.; Zubareva, A. N.; Morozov, V. A.; Savenkov, G. G.; Utkin, A. V.

    2018-02-01

    Experimental studies of cerium at high rates and nanosecond durations of action have been performed. The isomorphic phase transition was studied upon shock compression. The spall strength of cerium has been determined. Cerium demonstrates anomalous compressibility upon dynamic loading. Stress waves dampen under action of a high-current electron beam due to the energy dissipation during fragmentation and twinning.

  9. Melt compounding with graphene to develop functional, high-performance elastomers

    NASA Astrophysics Data System (ADS)

    Araby, Sherif; Zaman, Izzuddin; Meng, Qingshi; Kawashima, Nobuyuki; Michelmore, Andrew; Kuan, Hsu-Chiang; Majewski, Peter; Ma, Jun; Zhang, Liqun

    2013-04-01

    Rather than using graphene oxide, which is limited by a high defect concentration and cost due to oxidation and reduction, we adopted cost-effective, 3.56 nm thick graphene platelets (GnPs) of high structural integrity to melt compound with an elastomer—ethylene-propylene-diene monomer rubber (EPDM)—using an industrial facility. An elastomer is an amorphous, chemically crosslinked polymer generally having rather low modulus and fracture strength but high fracture strain in comparison with other materials; and upon removal of loading, it is able to return to its original geometry, immediately and completely. It was found that most GnPs dispersed uniformly in the elastomer matrix, although some did form clusters. A percolation threshold of electrical conductivity at 18 vol% GnPs was observed and the elastomer thermal conductivity increased by 417% at 45 vol% GnPs. The modulus and tensile strength increased by 710% and 404% at 26.7 vol% GnPs, respectively. The modulus improvement agrees well with the Guth and Halpin-Tsai models. The reinforcing effect of GnPs was compared with silicate layers and carbon nanotube. Our simple fabrication would prolong the service life of elastomeric products used in dynamic loading, thus reducing thermosetting waste in the environment.

  10. Performance of the Boeing LRV wheels in a lunar soil simulant. Report 2: Effects of speed, Wheel load, and soil

    NASA Technical Reports Server (NTRS)

    Melzer, K.

    1971-01-01

    Two nearly identical Boeing-GM wire-mesh Lunar Roving Vehicle (LRV) wheels were laboratory tested in a lunar soil simulant to determine the influence of wheel speed and acceleration, wheel load, presence of a fender, travel direction, and soil strength on the wheel performance. Constant-slip and three types of programmed-slip tests were conducted with a single-wheel dynamometer system. Test results indicated that performance of single LRV wheels in terms of pull coefficient, power number, and efficiency were not influenced by wheel speed and acceleration, travel direction, the presence of a fender, or wheel load. Of these variables, only load influenced sinkage, which increased with increasing load. For a given slip, the pull coefficient and power number increased with increasing soil strength. However, for a given pull coefficient or slope, slip was less in firmer soil; thus, the power number decreased and efficiency increased with increasing soil strength.

  11. Trampoline exercise vs. strength training to reduce neck strain in fighter pilots.

    PubMed

    Sovelius, Roope; Oksa, Juha; Rintala, Harri; Huhtala, Heini; Ylinen, Jari; Siitonen, Simo

    2006-01-01

    Fighter pilots' muscular strength and endurance are subjected to very high demands. Pilots' fatigued muscles are at higher risk for injuries. The purpose of this study was to compare the effects of two different training methods in reducing muscular loading during in-flight and cervical loading testing (CLT). There were 16 volunteer Finnish Air Force cadets who were divided into 2 groups: a strength training group (STG) and a trampoline training group (TTG). During the 6-wk training period, the STG performed dynamic flexion and extension and isometric rotation exercises, and the TTG performed trampoline bouncing exercises. During in-flight and CLT, muscle strain from the sternocleidomastoid, cervical erector spinae, trapezius, and thoracic erector spinae muscles was recorded with EMG. In-flight muscle strain in the STG after the training period decreased in the sternocleidomastoid 50%, cervical erector spinae 3%, trapezius 4%, and thoracic erector spinae 8%. In the TTG, the decrease was 41%, 30%, 20%, and 6%, respectively. In CLT, the results were similar. After a 3-mo follow-up period with intensive high +Gz flying, EMG during CLT was still lower than in baseline measurements. Both training methods were found to be effective in reducing muscle strain during in-flight and CLT, especially in the cervical muscles. There was no statistically significant difference between the training groups. Introduced exercises expand muscles' capacities in different ways and the authors recommend both strength and trampoline training programs to be included in fighter pilots' physical education programs.

  12. Experimental investigation of CNT effect on curved beam strength and interlaminar fracture toughness of CFRP laminates

    NASA Astrophysics Data System (ADS)

    Arca, M. A.; Coker, D.

    2014-06-01

    High mechanical properties and light weight structures of composite materials and advances in manufacturing processes have increased the use of composite materials in the aerospace and wind energy industries as a primary load carrying structures in complex shapes. However, use of composite materials in complex geometries such as L-shaped laminates creates weakness at the radius which causes delamination. Carbon nanotubes (CNTs) is preferred as a toughening materials in composite matrices due to their high mechanical properties and aspect ratios. However, effect of CNTs on curved beam strength (CBS) is not investigated in literature comprehensively. The objective of this study is to investigate the effect of CNT on Mode I and Mode II fracture toughness and CBS. L-shaped beams are fabric carbon/epoxy composite laminates manufactured by hand layup technique. Curved beam composite laminates were subjected to four point bending loading according to ASTM D6415/D6415M-06a. Double cantilever beam (DCB) tests and end notch flexure (ENF) tests were conducted to determine mode-I and mode-II fracture toughness, respectively. Preliminary results show that 3% CNT addition to the resin increased the mode-I fracture toughness by %25 and mode-II fracture toughness by %10 compared to base laminates. In contrast, no effect on curved beam strength was found.

  13. Composite Behavior of a Novel Insulated Concrete Sandwich Wall Panel Reinforced with GFRP Shear Grids: Effects of Insulation Types

    PubMed Central

    Kim, JunHee; You, Young-Chan

    2015-01-01

    A full-scale experimental program was used in this study to investigate the structural behavior of novel insulated concrete sandwich wall panels (SWPs) reinforced with grid-type glass-fiber-reinforced polymer (GFRP) shear connectors. Two kinds of insulation-expanded polystyrene (EPS) and extruded polystyrene (XPS) with 100 mm thickness were incased between the two concrete wythes to meet the increasing demand for the insulation performance of building envelope. One to four GFRP shear grids were used to examine the degree of composite action of the two concrete wythes. Ten specimens of SWPs were tested under displacement control subjected to four-point concentrated loads. The test results showed that the SWPs reinforced with GFRP grids as shear connectors developed a high degree of composite action resulting in high flexural strength. The specimens with EPS foam exhibited an enhanced load-displacement behavior compared with the specimens with XPS because of the relatively stronger bond between insulation and concrete. In addition, the ultimate strength of the test results was compared to the analytical prediction with the mechanical properties of only GRFP grids. The specimens with EPS insulation presented higher strength-based composite action than the ones with XPS insulation. PMID:28787978

  14. Failure of a laminated composite under tension-compression fatigue loading

    NASA Technical Reports Server (NTRS)

    Rotem, A.; Nelson, H. G.

    1989-01-01

    The fatigue behavior of composite laminates under tension-compression loading is analyzed and compared with behavior under tension-tension and compression-compression loading. It is shown that for meaningful fatigue conditions, the tension-compression case is the dominant one. Both tension and compression failure modes can occur under the reversed loading, and failure is dependent on the specific lay-up of the laminate and the difference between the tensile static strength and the absolute value of the compressive static strength. The use of a fatigue failure envelope for determining the fatigue life and mode of failure is proposed and demonstrated.

  15. Origin of tensile strength of a woven sample cut in bias directions

    PubMed Central

    Pan, Ning; Kovar, Radko; Dolatabadi, Mehdi Kamali; Wang, Ping; Zhang, Diantang; Sun, Ying; Chen, Li

    2015-01-01

    Textile fabrics are highly anisotropic, so that their mechanical properties including strengths are a function of direction. An extreme case is when a woven fabric sample is cut in such a way where the bias angle and hence the tension loading direction is around 45° relative to the principal directions. Then, once loaded, no yarn in the sample is held at both ends, so the yarns have to build up their internal tension entirely via yarn–yarn friction at the interlacing points. The overall fabric strength in such a sample is a result of contributions from the yarns being pulled out and those broken during the process, and thus becomes a function of the bias direction angle θ, sample width W and length L, along with other factors known to affect fabric strength tested in principal directions. Furthermore, in such a bias sample when the major parameters, e.g. the sample width W, change, not only the resultant strengths differ, but also the strength generating mechanisms (or failure types) vary. This is an interesting problem and is analysed in this study. More specifically, the issues examined in this paper include the exact mechanisms and details of how each interlacing point imparts the frictional constraint for a yarn to acquire tension to the level of its strength when both yarn ends were not actively held by the testing grips; the theoretical expression of the critical yarn length for a yarn to be able to break rather than be pulled out, as a function of the related factors; and the general relations between the tensile strength of such a bias sample and its structural properties. At the end, theoretical predictions are compared with our experimental data. PMID:26064655

  16. High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants.

    PubMed

    Evans, Nathan T; Torstrick, F Brennan; Lee, Christopher S D; Dupont, Kenneth M; Safranski, David L; Chang, W Allen; Macedo, Annie E; Lin, Angela S P; Boothby, Jennifer M; Whittingslow, Daniel C; Carson, Robert A; Guldberg, Robert E; Gall, Ken

    2015-02-01

    Despite its widespread clinical use in load-bearing orthopedic implants, polyether-ether-ketone (PEEK) is often associated with poor osseointegration. In this study, a surface-porous PEEK material (PEEK-SP) was created using a melt extrusion technique. The porous layer was 399.6±63.3 μm thick and possessed a mean pore size of 279.9±31.6 μm, strut spacing of 186.8±55.5 μm, porosity of 67.3±3.1% and interconnectivity of 99.9±0.1%. Monotonic tensile tests showed that PEEK-SP preserved 73.9% of the strength (71.06±2.17 MPa) and 73.4% of the elastic modulus (2.45±0.31 GPa) of as-received, injection-molded PEEK. PEEK-SP further demonstrated a fatigue strength of 60.0 MPa at one million cycles, preserving 73.4% of the fatigue resistance of injection-molded PEEK. Interfacial shear testing showed the pore layer shear strength to be 23.96±2.26 MPa. An osseointegration model in the rat revealed substantial bone formation within the pore layer at 6 and 12 weeks via microcomputed tomography and histological evaluation. Ingrown bone was more closely apposed to the pore wall and fibrous tissue growth was reduced in PEEK-SP when compared to non-porous PEEK controls. These results indicate that PEEK-SP could provide improved osseointegration while maintaining the structural integrity necessary for load-bearing orthopedic applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Damage-Tolerance Characteristics of Composite Fuselage Sandwich Structures with Thick Facesheets

    NASA Technical Reports Server (NTRS)

    McGowan, David M.; Ambur, Damodar R.

    1997-01-01

    Damage tolerance characteristics and results from experimental and analytical studies of a composite fuselage keel sandwich structure subjected to low-speed impact damage and discrete-source damage are presented. The test specimens are constructed from graphite-epoxy skins borided to a honeycomb core, and they are representative of a highly loaded fuselage keel structure. Results of compression-after-impact (CAI) and notch-length sensitivity studies of 5-in.-wide by 10-in.long specimens are presented. A correlation between low-speed-impact dent depth, the associated damage area, and residual strength for different impact-energy levels is described; and a comparison of the strength for undamaged and damaged specimens with different notch-length-to-specimen-width ratios is presented. Surface strains in the facesheets of the undamaged specimens as well as surface strains that illustrate the load redistribution around the notch sites in the notched specimens are presented and compared with results from finite element analyses. Reductions in strength of as much as 53.1 percent for the impacted specimens and 64.7 percent for the notched specimens are observed.

  18. Pulsed power accelerator for material physics experiments

    DOE PAGES

    Reisman, D.  B.; Stoltzfus, B.  S.; Stygar, W.  A.; ...

    2015-09-01

    We have developed the design of Thor: a pulsed power accelerator that delivers a precisely shaped current pulse with a peak value as high as 7 MA to a strip-line load. The peak magnetic pressure achieved within a 1-cm-wide load is as high as 100 GPa. Thor is powered by as many as 288 decoupled and transit-time isolated bricks. Each brick consists of a single switch and two capacitors connected electrically in series. The bricks can be individually triggered to achieve a high degree of current pulse tailoring. Because the accelerator is impedance matched throughout, capacitor energy is delivered tomore » the strip-line load with an efficiency as high as 50%. We used an iterative finite element method (FEM), circuit, and magnetohydrodynamic simulations to develop an optimized accelerator design. When powered by 96 bricks, Thor delivers as much as 4.1 MA to a load, and achieves peak magnetic pressures as high as 65 GPa. When powered by 288 bricks, Thor delivers as much as 6.9 MA to a load, and achieves magnetic pressures as high as 170 GPa. We have developed an algebraic calculational procedure that uses the single brick basis function to determine the brick-triggering sequence necessary to generate a highly tailored current pulse time history for shockless loading of samples. Thor will drive a wide variety of magnetically driven shockless ramp compression, shockless flyer plate, shock-ramp, equation of state, material strength, phase transition, and other advanced material physics experiments.« less

  19. Microstructure and yield strength effects on hydrogen and tritium induced cracking in HERF (high-energy-rate-forged) stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, M J; Tosten, M H

    1989-01-01

    Rising-load J-integral measurements and falling-load threshold stress intensity measurements were used to characterize hydrogen and tritium induced cracking in high-energy-rate-forged (HERF) 21-6-9 stainless steel. Samples having yield strengths in the range 517--930 MPa were thermally charged with either hydrogen or tritium and tested at room temperature in either air or high-pressure hydrogen gas. In general, the hydrogen isotopes reduced the fracture toughness by affecting the fracture process. Static recrystallization in the HERF microstructures affected the material's fracture toughness and its relative susceptibility to hydrogen and tritium induced fracture. In hydrogen-exposed samples, the reduction in fracture toughness was primarily dependent onmore » the susceptibility of the microstructure to intergranular fracture and only secondarily affected by strength in the range of 660 to 930 MPa. Transmission-electron microscopy observations revealed that the microstructures least susceptible to hydrogen-induced intergranular cracking contained patches of fully recrystallized grains. These grains are surrounded by highly deformed regions containing a high number density of dislocations. The microstructure can best be characterized as duplex'', with soft recrystallized grains embedded in a hard, deformed matrix. The microstructures most susceptible to hydrogen-induced intergranular fracture showed no well-developed recrystallized grains. The patches of recrystallized grains seemed to act as crack barriers to hydrogen-induced intergranular fracture. In tritium-exposed-and-aged samples, the amount of static recrystallization also affected the fracture toughness properties but to a lesser degree. 7 refs., 25 figs.« less

  20. Fracture Strength of Three-Unit Implant Supported Fixed Partial Dentures with Excessive Crown Height Fabricated from Different Materials.

    PubMed

    Nazari, Vahideh; Ghodsi, Safoura; Alikhasi, Marzieh; Sahebi, Majid; Shamshiri, Ahmad Reza

    2016-11-01

    Fracture strength is an important factor influencing the clinical long-term success of implant-supported prostheses especially in high stress situations like excessive crown height space (CHS). The purpose of this study was to compare the fracture strength of implant-supported fixed partial dentures (FPDs) with excessive crown height, fabricated from three different materials. Two implants with corresponding abutments were mounted in a metal model that simulated mandibular second premolar and second molar. Thirty 3-unit frameworks with supportive anatomical design were fabricated using zirconia, nickel-chromium alloy (Ni-Cr), and polyetheretherketone (PEEK) (n=10). After veneering, the CHS was equal to 15mm. Then; samples were axially loaded on the center of pontics until fracture in a universal testing machine at a crosshead speed of 0.5 mm/minute. The failure load data were analyzed by one-way ANOVA and Games-Howell tests at significance level of 0.05. The mean failure loads for zirconia, Ni-Cr and PEEK restorations were 2086±362N, 5591±1200N and 1430±262N, respectively. There were significant differences in the mean failure loads of the three groups (P<0.001). The fracture modes in zirconia, metal ceramic and PEEK restorations were cohesive, mixed and adhesive type, respectively. According to the findings of this study, all implant supported three-unit FPDs fabricated of zirconia, metal ceramic and PEEK materials are capable to withstand bite force (even para-functions) in the molar region with excessive CHS.

  1. Initial Mechanical Testing of Superalloy Lattice Block Structures Conducted

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Whittenberger, J. Daniel

    2002-01-01

    The first mechanical tests of superalloy lattice block structures produced promising results for this exciting new lightweight material system. The testing was performed in-house at NASA Glenn Research Center's Structural Benchmark Test Facility, where small subelement-sized compression and beam specimens were loaded to observe elastic and plastic behavior, component strength levels, and fatigue resistance for hundreds of thousands of load cycles. Current lattice block construction produces a flat panel composed of thin ligaments arranged in a three-dimensional triangulated trusslike structure. Investment casting of lattice block panels has been developed and greatly expands opportunities for using this unique architecture in today's high-performance structures. In addition, advances made in NASA's Ultra-Efficient Engine Technology Program have extended the lattice block concept to superalloy materials. After a series of casting iterations, the nickel-based superalloy Inconel 718 (IN 718, Inco Alloys International, Inc., Huntington, WV) was successfully cast into lattice block panels; this combination offers light weight combined with high strength, high stiffness, and elevated-temperature durability. For tests to evaluate casting quality and configuration merit, small structural compression and bend test specimens were machined from the 5- by 12- by 0.5-in. panels. Linear elastic finite element analyses were completed for several specimen layouts to predict material stresses and deflections under proposed test conditions. The structural specimens were then subjected to room-temperature static and cyclic loads in Glenn's Life Prediction Branch's material test machine. Surprisingly, the test results exceeded analytical predictions: plastic strains greater than 5 percent were obtained, and fatigue lives did not depreciate relative to the base material. These assets were due to the formation of plastic hinges and the redundancies inherent in lattice block construction, which were not considered in the simplified computer models. The fatigue testing proved the value of redundancies since specimen strength was maintained even after the fracture of one or two ligaments. This ongoing test program is planned to continue through high-temperature testing. Also scheduled for testing are IN 718 lattice block panels with integral face sheets, as well as specimens cast from a higher temperature alloy. The initial testing suggests the value of this technology for large panels under low and moderate pressure loadings and for high-risk, damage-tolerant structures. Potential aeropropulsion uses for lattice blocks include turbine-engine actuated panels, exhaust nozzle flaps, and side panel structures.

  2. Fibre-Reinforced Adhesive for Structure Anchoring

    NASA Astrophysics Data System (ADS)

    Barnat, J.; Bajer, M.

    2015-11-01

    The topic of this paper is the glue-concrete interface of bonded anchors loaded by tension force. The paper is closely focused on bond strength experiments using high strength concrete up to class C50/60 or higher together with pure epoxy resin and fibre-reinforced resin. The goal of this research is to find the limits of the effective use of such glue types in high performance concrete, and also to verify the most commonly used design methods for bonded anchors. The presented research includes experimental analysis of the glue-concrete interface and the influence of its parameters on anchor behaviour. The presented analysis shows some problems of the 'separated failure modes' approach and also presents experimentally verified bond strength values obtained for the currently most widespread glue types. Results of fibre reinforced epoxy resin are also presented in this paper.

  3. Strength, Fatigue, and Fracture Toughness of Ti-6Al-4V Liner from a Composite Over-Wrapped Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Lerch, Brad; Thesken, John C.; Sutter, Jim; Russell, Richard

    2008-01-01

    It was demonstrated by way of experiment that Composite Over-wrapped Pressure Vessel (COPV) Ti-6Al-4V liner material can sustain the expected service loads and cycles. The experiments were performed as part of investigations on the residual life of COPV tanks being used in Space Shuttle Orbiters. Measured properties included tensile strength, compressive strength, reversed loading cycles to simulate liner proof strains, and cyclic fatigue loading to demonstrate the ability to sustain 1000 cycles after liner buckling. The liner material came from a salvaged 40 in. Columbia (orbiter 102) tank (SN029), and tensile strength measurements were made on both boss-transition (thick) and membrane regions (thin). The average measured yield strength was 131 ksi in the boss-transition and membrane regions, in good agreement with measurements made on 1970 s vintage forged plate stock. However, Young s modulus was 17.4+/-0.3 Msi, somewhat higher than typical handbook values (approx.16 Msi). The fracture toughness, as estimated from a failed fatigue specimen, was 74 ksi/sq in, in reasonable agreement with standardized measurements made on 1970 s vintage forged plate stock. Low cycle fatigue of a buckled test specimen implied that as-imprinted liners can sustain over 4000 load cycles.

  4. Inferring Strength of Tantalum from Hydrodynamic Instability Recovery Experiments

    NASA Astrophysics Data System (ADS)

    Sternberger, Z.; Maddox, B.; Opachich, Y.; Wehrenberg, C.; Kraus, R.; Remington, B.; Randall, G.; Farrell, M.; Ravichandran, G.

    2018-05-01

    Hydrodynamic instability experiments allow access to material properties at extreme conditions, where strain rates exceed 105 s-1 and pressures reach 100 GPa. Current hydrodynamic instability experimental methods require in-flight radiography to image the instability growth at high pressure and high strain rate, limiting the facilities where these experiments can be performed. An alternate approach, recovering the sample after loading, allows measurement of the instability growth with profilometry. Tantalum samples were manufactured with different 2D and 3D initial perturbation patterns and dynamically compressed by a blast wave generated by laser ablation. The samples were recovered from peak pressures between 30 and 120 GPa and strain rates on the order of 107 s-1, providing a record of the growth of the perturbations due to hydrodynamic instability. These records are useful validation points for hydrocode simulations using models of material strength at high strain rate. Recovered tantalum samples were analyzed, providing an estimate of the strength of the material at high pressure and strain rate.

  5. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.

    PubMed

    Bagheri, Zahra S; El Sawi, Ihab; Bougherara, Habiba; Zdero, Radovan

    2014-07-01

    The current study is part of an ongoing research program to develop an advanced new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite with a “sandwich structure” as a substitute for metallic materials for orthopedic long bone fracture plate applications. The purpose of this study was to assess the fatigue properties of this composite, since cyclic loading is one of the main types of loads carried by a femur fracture plate during normal daily activities. Conventional fatigue testing, thermographic analysis, and scanning electron microscopy (SEM) were used to analyze the damage progress that occurred during fatigue loading. Fatigue strength obtained using thermography analysis (51% of ultimate tensile strength) was confirmed using the conventional fatigue test (50–55% of ultimate tensile strength). The dynamic modulus (E⁎) was found to stay almost constant at 47 GPa versus the number of cycles, which can be related to the contribution of both flax/epoxy and CF/epoxy laminae to the stiffness of the composite. SEM images showed solid bonding at the CF/epoxy and flax/epoxy laminae, with a crack density of only 0.48% for the plate loaded for 2 million cycles. The current composite plate showed much higher fatigue strength than the main loads experienced by a typical patient during cyclic activities; thus, it may be a potential candidate for bone fracture plate applications. Moreover, the fatigue strength from thermographic analysis was the same as that obtained by the conventional fatigue tests, thus demonstrating its potential use as an alternate tool to rapidly evaluate fatigue strength of composite biomaterials.

  6. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.

    PubMed

    Bagheri, Zahra S; El Sawi, Ihab; Bougherara, Habiba; Zdero, Radovan

    2014-07-01

    The current study is part of an ongoing research program to develop an advanced new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite with a "sandwich structure" as a substitute for metallic materials for orthopedic long bone fracture plate applications. The purpose of this study was to assess the fatigue properties of this composite, since cyclic loading is one of the main types of loads carried by a femur fracture plate during normal daily activities. Conventional fatigue testing, thermographic analysis, and scanning electron microscopy (SEM) were used to analyze the damage progress that occurred during fatigue loading. Fatigue strength obtained using thermography analysis (51% of ultimate tensile strength) was confirmed using the conventional fatigue test (50-55% of ultimate tensile strength). The dynamic modulus (E(⁎)) was found to stay almost constant at 47GPa versus the number of cycles, which can be related to the contribution of both flax/epoxy and CF/epoxy laminae to the stiffness of the composite. SEM images showed solid bonding at the CF/epoxy and flax/epoxy laminae, with a crack density of only 0.48% for the plate loaded for 2 million cycles. The current composite plate showed much higher fatigue strength than the main loads experienced by a typical patient during cyclic activities; thus, it may be a potential candidate for bone fracture plate applications. Moreover, the fatigue strength from thermographic analysis was the same as that obtained by the conventional fatigue tests, thus demonstrating its potential use as an alternate tool to rapidly evaluate fatigue strength of composite biomaterials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Muscle volume, strength, endurance, and exercise loads during 6-month missions in space.

    PubMed

    Gopalakrishnan, Raghavan; Genc, Kerim O; Rice, Andrea J; Lee, Stuart M C; Evans, Harlan J; Maender, Christian C; Ilaslan, Hakan; Cavanagh, Peter R

    2010-02-01

    Decrements in muscular strength during long-duration missions in space could be mission-critical during construction and exploration activities. The purpose of this study was to quantify changes in muscle volume, strength, and endurance of crewmembers on the International Space Station (ISS) in the context of new measurements of loading during exercise countermeasures. Strength and muscle volumes were measured from four male ISS crewmembers (49.5 +/- 4.7 yr, 179.3 +/- 7.1 cm, 85.2 +/- 10.4 kg) before and after long-duration spaceflight (181 +/- 15 d). Preflight and in-flight measurements of forces between foot and shoe allowed comparisons of loading from 1-g exercise and exercise countermeasures on ISS. Muscle volume change was greater in the calf (-10 to 16%) than the thigh (-4% to -7%), but there was no change in the upper arm (+0.4 to -0.8%). Isometric and isokinetic strength changes at the knee (range -10.4 to -24.1%), ankle (range -4 to -22.3%), and elbow (range -7.5 to -16.7%) were observed. Although there was an overall postflight decline in total work (-14%) during the endurance test, an increase in postflight resistance to fatigue was observed. The peak in-shoe forces during running and cycling on ISS were approximately 46% and 50% lower compared to 1-g values. Muscle volume and strength were decreased in the lower extremities of crewmembers during long-duration spaceflight on ISS despite the use of exercise countermeasures. in-flight countermeasures were insufficient to replicate the daily mechanical loading experienced by the crewmembers before flight. Future exercise protocols need careful assessment both in terms of intensity and duration to maximize the "dose" of exercise and to increase loads compared to the measured levels.

  8. An investigation of preload relaxation behaviour of three zinc- aluminum alloys

    NASA Astrophysics Data System (ADS)

    Mir, A. A.

    2016-08-01

    Zinc alloy castings are usually assembled together or mounted by screwed steel fasteners, and are tightened to a predetermined torque to develop the required tensile preload in the fastener. Due to relaxation processes in the castings, creep may cause a partial preload loss at an elevated temperature. The equipment used for load relaxation tests consists of a loadmonitoring device, an oil bath, and a data-acquisition system. A load cell monitoring device is used to monitor the load loss in an ISO-metric M6*1 steel screw set into sand castings made from alloys No. 3, No. 5 and No. 2 and tightened to produce an initial preload of 6 kN. The castings were held at constant temperature in the range 80 - 120°C in an oil bath. The oil bath maintains the desired test temperature throughout the experiment. All tests were conducted for periods of up to 160 h. For all alloys, the initial load loss was high, decreasing gradually with time, but not ceasing. The load loss increased rapidly with test temperature, and almost all of the relaxation curves approximated to a logarithmic decay of load with time. Alloy No. 2 had the best resistance to load loss, with No. 5 next and No. 3 worst at all temperatures. The lower resistance to relaxation of alloy No. 3 was mainly due to the lower relaxation strength of copper-free primary dendrites, whereas in alloys No. 5 and No. 2, the higher copper contents contribute greatly to their relaxation strength in the form of second-phase particles.

  9. Static and cyclic loading of fiber-reinforced dental resin.

    PubMed

    Drummond, James L; Bapna, Mahendra S

    2003-05-01

    The aim of this study was to evaluate the flexure strength of unidirectional fiber-reinforced resins under static and cyclic loading with and without thermal cycling. The fiber-reinforced resin materials chosen for this project were commercially available endodontic posts and commercially procured bar samples. For all materials, controls for flexure strength were tested in air and in water using three-point loading. Specimens were thermal cycled between 7 and 63 degrees C for 6000 cycles. A staircase approach was used to determine the flexure fatigue limit and scanning microscopy was used to examine the microstructure. The carbon/graphite fiber-reinforced resin posts and the glass FiberKor posts were significantly stronger than the ceramic (zirconia) and the other glass-reinforced resin materials. Thermal cycling caused a significant lowering (11-24%) of the flexure strength for each resin based post system. The ceramic post system decreased only by 2%. Further, for standard size glass fiber-reinforced resin bars, no significant differences between testing in air and water was observed, but a significant difference between static and cyclic loading was noted. The decreases in the strength property due to thermal cycling and the cyclic loading of these materials indicates that their utilization in the oral environment enhances their degradation, and potentially shortens their clinical life.

  10. Eight Weeks of Strength and Power Training Improves Club Head Speed in Collegiate Golfers.

    PubMed

    Oranchuk, Dustin J; Mannerberg, Jason M; Robinson, Tracey L; Nelson, Megan C

    2018-02-14

    Club head speed (CHS) is a major determinant of drive distance, a key component of golf performance. The purpose of this study was to determine the indirect effects of an eight-week strength and power program on CHS. Twelve (6 male, 6 female) NCAA Division II golfers (20.3±1.5 years) randomly assigned to an intervention or control group, underwent either a periodized strength and power program consisting of high-load barbell movements or a bodyweight and rotational movement focused resistance training program. Outcomes were CHS, countermovement jump (CMJ) height, and 1RM back squat (BS), power clean (PC), and deadlift (DL). Dependent t-tests were utilized to assess differences in outcome variables pre-to-post for each group, independent t-tests were utilized to assess differences between groups, and Pearson correlations were utilized to assess associations between CHS and outcome variables. On average, the intervention group experienced improvements in all outcome variables except peak CHS (p=0.60); the control group displayed no changes in any outcome variable except a decrease in average CHS (p=0.028). Compared to the control group, the intervention group experienced greater improvements in average CHS, BS, PC, and average and peak CMJ height (p<0.05). Additionally, CHS had large associations with PC (r=0.70, p=0.012), BS (r=0.64, p=0.025), DL (r=0.54, p=0.068) and CMJ (r=0.73, p=0.007). These results suggest improving muscular strength and power by increasing PC, BS, and CMJ is associated with increased CHS in collegiate golfers. Integrating a high-load, barbell-focused strength and power program may be beneficial for improving CHS and indirectly, golf performance.

  11. Plastic damage induced fracture behaviors of dental ceramic layer structures subjected to monotonic load.

    PubMed

    Wang, Raorao; Lu, Chenglin; Arola, Dwayne; Zhang, Dongsheng

    2013-08-01

    The aim of this study was to compare failure modes and fracture strength of ceramic structures using a combination of experimental and numerical methods. Twelve specimens with flat layer structures were fabricated from two types of ceramic systems (IPS e.max ceram/e.max press-CP and Vita VM9/Lava zirconia-VZ) and subjected to monotonic load to fracture with a tungsten carbide sphere. Digital image correlation (DIC) and fractography technology were used to analyze fracture behaviors of specimens. Numerical simulation was also applied to analyze the stress distribution in these two types of dental ceramics. Quasi-plastic damage occurred beneath the indenter in porcelain in all cases. In general, the fracture strength of VZ specimens was greater than that of CP specimens. The crack initiation loads of VZ and CP were determined as 958 ± 50 N and 724 ± 36 N, respectively. Cracks were induced by plastic damage and were subsequently driven by tensile stress at the elastic/plastic boundary and extended downward toward to the veneer/core interface from the observation of DIC at the specimen surface. Cracks penetrated into e.max press core, which led to a serious bulk fracture in CP crowns, while in VZ specimens, cracks were deflected and extended along the porcelain/zirconia core interface without penetration into the zirconia core. The rupture loads for VZ and CP ceramics were determined as 1150 ± 170 N and 857 ± 66 N, respectively. Quasi-plastic deformation (damage) is responsible for crack initiation within porcelain in both types of crowns. Due to the intrinsic mechanical properties, the fracture behaviors of these two types of ceramics are different. The zirconia core with high strength and high elastic modulus has better resistance to fracture than the e.max core. © 2013 by the American College of Prosthodontists.

  12. Effects of copper-plasma deposition on weathering properties of wood surfaces

    NASA Astrophysics Data System (ADS)

    Gascón-Garrido, P.; Mainusch, N.; Militz, H.; Viöl, W.; Mai, C.

    2016-03-01

    Thin layers of copper micro-particles were deposited on the surfaces of Scots pine (Pinus sylvestris L.) micro-veneers using atmospheric pressure plasma to improve the resistance of the surfaces to weathering. Three different loadings of copper were established. Micro-veneers were exposed to artificial weathering in a QUV weathering tester for 0, 24, 48, 96 and 144 h following the standard EN 927-6 [1]. Mass losses after each exposure showed significant differences between copper coated and untreated micro-veneers. Tensile strength was assessed at zero span (z-strength) and finite span (f-strength) under dry conditions (20 °C, 65% RH). During 48 h, micro-veneers lost their z-strength progressively. In contrast, copper coating at highest loading imparts a photo-protective effect to wood micro-veneers during 144 h exhibiting z-strength retention of 95%. F-strength losses were similar in all copper treated and untreated micro-veneers up to 96 h. However, after 144 h, copper coated micro-veneers at highest loading showed significantly greater strength retention of 56%, while untreated micro-veneers exhibited only 38%. Infrared spectroscopy suggested that copper coating does not stabilize lignin. Inductively Coupled Plasma revealed that micro-veneers coated with the highest loading exhibited the lowest percentage of copper loss. Blue stain resistance of copper coated Scots pine following the guidelines of EN 152 [2] was performed. Additional test with different position of the coated surface was also assessed. Copper coating reduced fungal growth when coated surface is exposed in contact with vermiculite. Spores of Aureobasidium pullulans were not able to germinate on the copper coated surface positioned uppermost.

  13. On synchronization in power-grids modelled as networks of second-order Kuramoto oscillators

    NASA Astrophysics Data System (ADS)

    Grzybowski, J. M. V.; Macau, E. E. N.; Yoneyama, T.

    2016-11-01

    This work concerns analytical results on the role of coupling strength in the phenomenon of onset of complete frequency locking in power-grids modelled as a network of second-order Kuramoto oscillators. Those results allow estimation of the coupling strength for the onset of complete frequency locking and to assess the features of network and oscillators that favor synchronization. The analytical results are evaluated using an order parameter defined as the normalized sum of absolute values of phase deviations of the oscillators over time. The investigation of the frequency synchronization within the subsets of the parameter space involved in the synchronization problem is also carried out. It is shown that the analytical results are in good agreement with those observed in the numerical simulations. In order to illustrate the methodology, a case study is presented, involving the Brazilian high-voltage transmission system under a load peak condition to study the effect of load on the syncronizability of the grid. The results show that both the load and the centralized generation might have concurred to the 2014 blackout.

  14. Analysis of concrete targets with different kinds of reinforcements subjected to blast loading

    NASA Astrophysics Data System (ADS)

    Oña, M.; Morales-Alonso, G.; Gálvez, F.; Sánchez-Gálvez, V.; Cendón, D.

    2016-05-01

    In this paper we describe an experimental campaign carried out to study and analyse the behaviour of concrete slabs when subjected to blast loading. Four different types of concrete have been tested: normal strength concrete with steel rebar, normal strength concrete with steel rebar retrofitted with Kevlar coating, steel fibre reinforced concrete (SFRC) and polypropylene fibre reinforced concrete (PFRC). The major asset of the experimental setup used is that it allows to subject up to four specimens to the same blast load what, besides being cost effective, makes possible to have a measure of the experimental scatter. The results of SFRC and PFRC concretes have been analysed by using a previously developed material model for the numerical simulation of concrete elements subjected to blast. The experimental campaign and preliminary results of this numerical analysis show how the high strain rates, in spite of improving the mechanical properties of these kinds of fibre reinforced concretes, lead to an embrittlement of the material, which may be dangerous from the point of view of the structural behaviour.

  15. High strength copper nickel -- Optimization of mechanical strength and marine corrosion resistance for use in naval architecture and offshore oil and gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuck, C.D.S.; Bendall, K.C.; Radford, G.W.J.

    1996-08-01

    Copper nickel alloys which are able to harden by precipitation reactions involving aluminum are described. The main precipitation species is Ni{sub 3}Al present as 10 mn--15 nm size particles, and strengths above 750 N/mm{sup 2} proof stress have been achieved. Two such alloys have been commercialized and they demonstrate higher corrosion resistance to marine environments than standard cupronickels, most probably due to the passivating influence of aluminum. The reaction of one of these alloys with sodium chloride both with and without the presence of sulfides has been studied, using weight loss, Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM)more » and these techniques indicate a greater degree of passivity for this alloy than for copper or standard cupronickels in sulfide environments. The age-hardenable cupronickels also display complete freedom from hydrogen embrittlement and resistance to biofouling. Service experience with these high strength copper-nickel alloys for highly loaded critical components in naval shipbuilding and offshore oil and gas application is discussed.« less

  16. Effect of mission cycling on the fatigue performance of SiC-coated carbon-carbon composites

    NASA Technical Reports Server (NTRS)

    Mahfuz, H.; Das, P. S.; Jeelani, S.; Baker, D. M.; Johnson, S. A.

    1993-01-01

    The effects of thermal and pressure cycling on the fatigue performance of carbon-carbon composites, and the influence of mission cycling on these effects, were investigated by subjecting both virgin and mission-cycled two-dimensional specimens of SiC-coated carbon-carbon composites to fatigue tests, conducted at room temperature in three-point bending, with a stress ratio of 0.2 and a frequency of 1 Hz. It was found that the fatigue strength of C-C composites is high (about 90 percent of the ultimate flexural strength), but decreased with the mission cycling. The lowering of the fatigue strength with mission cycling is attributed to the increase in interfacial bond strength due to thermal and pressure cycling of the material. The already high sensitivity of C-C composites to stress during cyclic loading increases further with the amount of mission cycling. Results of NDE suggest that the damage growth in virgin C-C, in the high-cycle range, is slow at the initial stage of the cyclic life, but propagates rapidly after certain threshold cycles of the fatigue life.

  17. Knee Pain during Strength Training Shortly following Fast-Track Total Knee Arthroplasty: A Cross-Sectional Study

    PubMed Central

    Bandholm, Thomas; Thorborg, Kristian; Lunn, Troels Haxholdt; Kehlet, Henrik; Jakobsen, Thomas Linding

    2014-01-01

    Background Loading and contraction failure (muscular exhaustion) are strength training variables known to influence neural activation of the exercising muscle in healthy subjects, which may help reduce neural inhibition of the quadriceps muscle following total knee arthroplasty (TKA). It is unknown how these exercise variables influence knee pain after TKA. Objective To investigate the effect of loading and contraction failure on knee pain during strength training, shortly following TKA. Design Cross-sectional study. Setting Consecutive sample of patients from the Copenhagen area, Denmark, receiving a TKA, between November 2012 and April 2013. Participants Seventeen patients, no more than 3 weeks after their TKA. Main outcome measures: In a randomized order, the patients performed 1 set of 4 standardized knee extensions, using relative loads of 8, 14, and 20 repetition maximum (RM), and ended with 1 single set to contraction failure (14 RM load). The individual loadings (kilograms) were determined during a familiarization session >72 hours prior. The patients rated their knee pain during each repetition, using a numerical rating scale (0–10). Results Two patients were lost to follow up. Knee pain increased with increasing load (20 RM: 3.1±2.0 points, 14 RM: 3.5±1.8 points, 8 RM: 4.3±2.5 points, P = 0.006), and repetitions to contraction failure (10% failure: 3.2±1.9 points, 100% failure: 5.4±1.6 points, P<0.001). Resting knee pain 60 seconds after the final repetition (2.7±2.4 points) was not different from that recorded before strength training (2.7±1.8 points, P = 0.88). Conclusion Both loading and repetitions performed to contraction failure during knee- extension strength-training, increased post-operative knee pain during strength training implemented shortly following TKA. However, only the increase in pain during repetitions to contraction failure exceeded that defined as clinically relevant, and was very short-lived. Trial Registration ClinicalTrials.gov NCT01729520 PMID:24614574

  18. Investigation of the fiber/matrix interphase under high loading rates

    NASA Astrophysics Data System (ADS)

    Tanoglu, Metin

    2000-10-01

    This research focuses on characterization of the interphases of various sized E-glass-fiber/epoxy-amine systems under high loading rates. The systems include unsized, epoxy-amine compatible, and epoxy-amine incompatible glass fibers. A new experimental technique (dynamic micro-debonding technique) was developed to directly characterize the fiber/matrix interphase properties under various loading rates. Displacement rates of up to 3000 mum/sec that induce high-strain-rate interphase loading were obtained using the rapid expansion capability of the piezoelectric actuators (PZT). A straightforward data reduction scheme, which does not require complex numerical solutions, was also developed by employing thin specimens. This method enables quantification of the strength and specific absorbed energies due to debonding and frictional sliding. Moreover, the technique offers the potential to obtain the shear stress/strain response of the interphases at various rates. A new methodology was also developed to independently investigate the properties of the fiber/matrix interphase. This methodology is based on the assumption that the portion of sizing bound to the glass fiber strongly affects the interphase formation. Conventional burnout and acetone extraction experiments in conjunction with nuclear magnetic spectroscopy were used to determine the composition of the bound sizing. Using the determined composition, model interphase compounds were made to replicate the actual interphase and tested utilizing dynamic mechanical analyzer (DMA) and differential scanning calorimeter (DSC) techniques. The rate-dependent behavior of the model interphase materials and the bulk epoxy matrix were characterized by constructing storage modulus master curves as a function of strain rate using the time-temperature superposition principle. The results of dynamic micro-debonding experiments showed that the values of interphase strength and specific absorbed energies vary dependent on the sizing and exhibited significant sensitivity to loading rates. The unsized fibers exhibit greater energy-absorbing capability that could provide better ballistic resistance while the compatible sized fibers show higher strength values that improve the structural integrity of the polymeric composites. The calculated interphase shear modulus values from micro-debonding experiments increase with the loading rate consistent with DMA results. In addition, significantly higher amounts of energy are absorbed within the frictional sliding regime compared to debonding. Characterization of model interphase compounds revealed that the interphase formed due to the presence of bound sizing has a Tg below room temperature, a modulus more compliant than that of the bulk matrix, and a thickness of about 10 nm. The results showed that the properties of the interphases are significantly affected by the interphase network structure.

  19. On ripple-load, stress-corrosion, and sustained-load cracking behavior in a high strength beta titanium alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pao, P.S.; Meyn, D.A.; Bayles, R.A.

    1997-06-01

    Both overaged and peakaged TIMETAL 21S beta titanium alloys exhibit significant ripple-load cracking susceptibility in salt water and in ambient air environments. At R = 0.90, the ripple-load cracking thresholds of the overaged alloy are 67% and 72% lower than the stress-corrosion cracking and sustained-load cracking thresholds. For the peakaged alloy, the reductions are 55% and 61%. The stress-corrosion cracking threshold in salt water and the sustained-load cracking threshold in air of peakaged TIMETAL 21S are significantly lower while the ripple-load cracking threshold is slightly lower than those of the overaged alloy. The stress-corrosion cracking, sustained-load cracking, and ripple-load crackingmore » resistance of peakaged TIMETAL 21S are significantly inferior to those of both beta-annealed Ti-6Al-4V and Ti-15V-3Cr-3Al-3Sn. The ripple-load cracking resistance of overaged TIMETAL 21S, though better than Ti-15V-3Cr-3Al-3Sn, is still inferior than that of beta-annealed Ti-6Al-4V.« less

  20. Influence of Powder Morphology and Microstructure on the Cold Spray and Mechanical Properties of Ti6Al4V Coatings

    NASA Astrophysics Data System (ADS)

    Munagala, Venkata Naga Vamsi; Akinyi, Valary; Vo, Phuong; Chromik, Richard R.

    2018-06-01

    The powder microstructure and morphology has significant influence on the cold sprayability of Ti6Al4V coatings. Here, we compare the cold sprayability and properties of coatings obtained from Ti6Al4V powders of spherical morphology (SM) manufactured using plasma gas atomization and irregular morphology (IM) manufactured using the Armstrong process. Coatings deposited using IM powders had negligible porosity and better properties compared to coatings deposited using SM powders due to higher particle impact velocities, porous surface morphology and more deformable microstructure. To evaluate the cohesive strength, multi-scale indentation was performed and hardness loss parameter was calculated. Coatings deposited using SM powders exhibited poor cohesive strength compared to coatings deposited using IM powders. Images of the residual indents showed de-bonding and sliding of adjacent splats in the coatings deposited using SM powders irrespective of the load. Coatings deposited using IM powders showed no evidence of de-bonding at low loads. At high loads, splat de-bonding was observed resulting in hardness loss despite negligible porosity. Thus, while the powders from Armstrong process lead to a significant improvement in sprayability and coating properties, further optimization of powder and cold spray process will be required as well as consideration of post-annealing treatments to obtain acceptable cohesive strength.

  1. Evaluation of Bending Strength of Carburized Gears Based on Inferential Identification of Principal Surface Layer Defects

    NASA Astrophysics Data System (ADS)

    Masuyama, Tomoya; Inoue, Katsumi; Yamanaka, Masashi; Kitamura, Kenichi; Saito, Tomoyuki

    High load capacity of carburized gears originates mainly from the hardened layer and induced residual stress. On the other hand, surface decarburization, which causes a nonmartensitic layer, and inclusions such as oxides and segregation act as latent defects which considerably reduce fatigue strength. In this connection, the authors have proposed a formula of strength evaluation by separately quantifying defect influence. However, the principal defect which limits strength of gears with several different defects remains unclarified. This study presents a method of inferential identification of principal defects based on test results of carburized gears made of SCM420 clean steel, gears with both an artificial notch and nonmartensitic layer at the tooth fillet, and so forth. It clarifies practical uses of presented methods, and strength of carburized gears can be evaluated by focusing on principal defect size.

  2. Comparison of physical and mechanical properties of river sand concrete with quarry dust concrete

    NASA Astrophysics Data System (ADS)

    Opara, Hyginus E.; Eziefula, Uchechi G.; Eziefula, Bennett I.

    2018-03-01

    This study compared the physical and mechanical properties of river sand concrete with quarry dust concrete. The constituent materials were batched by weight. The water-cement ratio and mix ratio selected for the experimental investigation were 0.55 and 1:2:4, respectively. The specimens were cured for 7, 14, 21 and 28 days. Slump, density and compressive strength tests were carried out. The results showed that river sand concrete had greater density and compressive strength than quarry dust concrete for all curing ages. At 28 days of curing, river sand concrete exceeded the target compressive strength by 36%, whereas quarry dust concrete was less than the target compressive strength by 12%. Both river sand concrete and quarry dust concrete for the selected water/cement ratio and mix ratio are suitable for non-structural applications and lightly-loaded members where high strength is not a prerequisite.

  3. The Inclusion of Arbitrary Load Histories in the Strength Decay Model for Stress Rupture

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2014-01-01

    Stress rupture is a failure mechanism where failures can occur after a period of time, even though the material has seen no increase in load. Carbon/epoxy composite materials have demonstrated the stress rupture failure mechanism. In a previous work, a model was proposed for stress rupture of composite overwrap pressure vessels (COPVs) and similar composite structures based on strength degradation. However, the original model was limited to constant load periods (holds) at constant load. The model was expanded in this paper to address arbitrary loading histories and specifically the inclusions of ramp loadings up to holds and back down. The broadening of the model allows for failures on loading to be treated as any other failure that may occur during testing instead of having to be treated as a special case. The inclusion of ramps can also influence the length of the "safe period" following proof loading that was previously predicted by the model. No stress rupture failures are predicted in a safe period because time is required for strength to decay from above the proof level to the lower level of loading. Although the model can predict failures during the ramp periods, no closed-form solution for the failure times could be derived. Therefore, two suggested solution techniques were proposed. Finally, the model was used to design an experiment that could detect the difference between the strength decay model and a commonly used model for stress rupture. Although these types of models are necessary to help guide experiments for stress rupture, only experimental evidence will determine how well the model may predict actual material response. If the model can be shown to be accurate, current proof loading requirements may result in predicted safe periods as long as 10(13) years. COPVs design requirements for stress rupture may then be relaxed, allowing more efficient designs, while still maintaining an acceptable level of safety.

  4. Behaviour of concrete beams reinforced withFRP prestressed concrete prisms

    NASA Astrophysics Data System (ADS)

    Svecova, Dagmar

    The use of fibre reinforced plastics (FRP) to reinforce concrete is gaining acceptance. However, due to the relatively low modulus of FRP, in comparison to steel, such structures may, if sufficient amount of reinforcement is not used, suffer from large deformations and wide cracks. FRP is generally more suited for prestressing. Since it is not feasible to prestress all concrete structures to eliminate the large deflections of FRP reinforced concrete flexural members, researchers are focusing on other strategies. A simple method for avoiding excessive deflections is to provide sufficiently high amount of FRP reinforcement to limit its stress (strain) to acceptable levels under service loads. This approach will not be able to take advantage of the high strength of FRP and will be generally uneconomical. The current investigation focuses on the feasibility of an alternative strategy. This thesis deals with the flexural and shear behaviour of concrete beams reinforced with FRP prestressed concrete prisms. FRP prestressed concrete prisms (PCP) are new reinforcing bars, made by pretensioning FRP and embedding it in high strength grout/concrete. The purpose of the research is to investigate the feasibility of using such pretensioned rebars, and their effect on the flexural and shear behaviour of reinforced concrete beams over the entire loading range. Due to the prestress in the prisms, deflection of concrete beams reinforced with this product is substantially reduced, and is comparable to similarly steel reinforced beams. The thesis comprises both theoretical and experimental investigations. In the experimental part, nine beams reinforced with FRP prestressed concrete prisms, and two companion beams, one steel and one FRP reinforced were tested. All the beams were designed to carry the same ultimate moment. Excellent flexural and shear behaviour of beams reinforced with higher prestressed prisms is reported. When comparing deflections of three beams designed to have the same ultimate capacity, but reinforced with either steel, PCP or FRP rebars, the service load deflections of beams reinforced with PCP are comparable to that of a steel reinforced concrete beam, and are four times smaller than the deflection of the companion FRP reinforced beam. Similarly, the crack width of the PCP reinforced beams under service loads is comparable to that of the steel reinforced beam while the FRP reinforced beam developed unacceptably wide cracks. In the analytical part comprehensive analysis of the experimental data in both flexure and shear is performed. It is determined that the existing design expressions for ultimate flexural strength and service load deflection calculation cannot accurately predict the response of PCP reinforced beams. Accordingly, new expressions for calculation of deflection, crack width, tension stiffening, and ultimate capacity of the PCP reinforced beams are proposed. The predictions of the proposed methods of analysis agree very well with the corresponding experimental data. Based on the results of the current study, it is concluded that high strength concrete prisms prestressed with carbon fibre reinforced plastic bars can be used as reinforcement in concrete structures to avoid the problems of large deflections and wide cracks under service loads.

  5. Life estimation and analysis of dielectric strength, hydrocarbon backbone and oxidation of high voltage multi stressed EPDM composites

    NASA Astrophysics Data System (ADS)

    Khattak, Abraiz; Amin, Muhammad; Iqbal, Muhammad; Abbas, Naveed

    2018-02-01

    Micro and nanocomposites of ethylene propylene diene monomer (EPDM) are recently studied for different characteristics. Study on life estimation and effects of multiple stresses on its dielectric strength and backbone scission and oxidation is also vital for endorsement of these composites for high voltage insulation and other outdoor applications. In order to achieve these goals, unfilled EPDM and its micro and nanocomposites are prepared at 23 phr micro silica and 6 phr nanosilica loadings respectively. Prepared samples are energized at 2.5 kV AC voltage and subjected for a long time to heat, ultraviolet radiation, acid rain, humidity and salt fog in accelerated manner in laboratory. Dielectric strength, leakage current and intensity of saturated backbone and carbonyl group are periodically measured. Loss in dielectric strength, increase in leakage current and backbone degradation and oxidation were observed in all samples. These effects were least in the case of EPDM nanocomposite. The nanocomposite sample also demonstrated longest shelf life.

  6. Stem breakage of salt marsh vegetation under wave forcing: A field and model study

    NASA Astrophysics Data System (ADS)

    Vuik, Vincent; Suh Heo, Hannah Y.; Zhu, Zhenchang; Borsje, Bas W.; Jonkman, Sebastiaan N.

    2018-01-01

    One of the services provided by coastal ecosystems is wave attenuation by vegetation, and subsequent reduction of wave loads on flood defense structures. Therefore, stability of vegetation under wave forcing is an important factor to consider. This paper presents a model which determines the wave load that plant stems can withstand before they break or fold. This occurs when wave-induced bending stresses exceed the flexural strength of stems. Flexural strength was determined by means of three-point-bending tests, which were carried out for two common salt marsh species: Spartina anglica (common cord-grass) and Scirpus maritimus (sea club-rush), at different stages in the seasonal cycle. Plant stability is expressed in terms of a critical orbital velocity, which combines factors that contribute to stability: high flexural strength, large stem diameter, low vegetation height, high flexibility and a low drag coefficient. In order to include stem breakage in the computation of wave attenuation by vegetation, the stem breakage model was implemented in a wave energy balance. A model parameter was calibrated so that the predicted stem breakage corresponded with the wave-induced loss of biomass that occurred in the field. The stability of Spartina is significantly higher than that of Scirpus, because of its higher strength, shorter stems, and greater flexibility. The model is validated by applying wave flume tests of Elymus athericus (sea couch), which produced reasonable results with regards to the threshold of folding and overall stem breakage percentage, despite the high flexibility of this species. Application of the stem breakage model will lead to a more realistic assessment of the role of vegetation for coastal protection.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skochko, G.W.; Herrmann, T.P.

    Axial load cycling fatigue tests of threaded fasteners are useful in determining fastener fatigue failure or design properties. By using appropriate design factors between the failure and design fatigue strengths, such tests are used to establish fatigue failure and design parameters of fasteners for axial and bending cyclic load conditions. This paper reviews the factors which influence the fatigue strength of low Alloy steel threaded fasteners, identifies those most significant to fatigue strength, and provides design guidelines based on the direct evaluation of fatigue tests of threaded fasteners. Influences on fatigue strength of thread manufacturing process (machining and rolling ofmore » threads), effect of fastener membrane and bending stresses, thread root radii, fastener sizes, fastener tensile strength, stress relaxation, mean stress, and test temperature are discussed.« less

  8. Elite Junior Australian Football Players Experience Significantly Different Loads Across Levels of Competition and Training Modes.

    PubMed

    Lathlean, Timothy J H; Gastin, Paul B; Newstead, Stuart; Finch, Caroline F

    2018-07-01

    Lathlean, TJH, Gastin, PB, Newstead, S, and Finch, CF. Elite junior Australian football players experience significantly different loads across levels of competition and training modes. J Strength Cond Res 32(7): 2031-2038, 2018-Well-developed physical qualities such as high jumping ability, running endurance, acceleration, and speed can help aspiring junior elite Australian football (AF) players transition to the Australian Football League competition. To do so, players need to experience sufficient load to enhance their physical resilience without increasing their risk of negative outcomes in terms of impaired wellness or injury. The aim of this study was to investigate the differences in load for different levels of competition and training modes across one competitive season. Elite junior AF players (n = 562, aged 17.7 ± 0.3, range: 16-18 years) were recruited from 9 teams across the under-18 state league competition in Victoria. All players recorded their training and match intensities according to the session rating of perceived exertion method. Training sessions were categorized according to skills, strength, conditioning, and other activities, whereas matches were identified according to level of competition. The loads in U18 state league matches (656.7 ± 210.9 au) were significantly higher (p = 0.027) than those in school matches (643.3 ± 260.9 au) and those in U18 representative matches (617.2 ± 175.4). Players, who undertook more than one match per week, experienced significantly less load in subsequent matches (p < 0.001). Furthermore, U18 state league training sessions carried the most load when compared with other training modes. This article highlights that different combinations of training and match involvement affect overall player load, which may predispose players to negative outcomes such as impaired wellness or increased injury risk.

  9. Effects of environmental variables on the crack initiation stages of corrosion fatigue of high strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Poteat, L. E.

    1981-01-01

    Fatigue initiation in six aluminum alloys used in the aircraft industry was investigated. Cyclic loading superimposed on a constant stress was alternated with atmospheric corrosion. Tests made at different stress levels revealed that a residual stress as low as 39% of the yield strength caused stress corrosion cracking in some of the alloys. An atmospheric corrosion rate meter developed to measure the corrosivity of the atmosphere is described. An easily duplicated hole in the square test specimen with a self-induced residual stress was developed.

  10. Biaxial Testing of High-Strength Fabric Improves Design of Inflatable Radar Domes

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Bartolotta, Paul A.

    2001-01-01

    Large radar installations around the globe continuously watch the skies, unobtrusively providing security to the United States; these systems have been in active use for the past 50 years. Often situated in extreme environments, the radar dishes require shielding from the harsh elements. Air-inflated domes (over 100 ft in diameter) are one structure of choice for providing this essential protection. The radomes are constructed from highstrength fabric that is strong enough to withstand the inflation pressure, high winds, and other environmental loads, yet transparent to the microwave signal to allow precise radar mapping. This fabric is woven from glass fibers for high strength and embedded in a polytetrafluoroethylene resin matrix, akin to the nonstick coatings used on cookware.

  11. Design of Reforma 509 with High Strength Steel

    NASA Astrophysics Data System (ADS)

    Smith, Stuart; Whitby, William; Easton, Marc

    Reforma 509 is a high-rise building located in the heart of the Central Business District of Mexico City. The building is comprised of office, hotel, residential and parking and forms part of a cluster of tall buildings in the area. If completed today, Reforma 509 would be the tallest building in Mexico, at 238m. All of the building's gravity and lateral (wind and seismic) loads are carried by an architecturally expressed perimeter frame that is formed from highly efficient Steel Reinforced Concrete (SRC) columns coupled together by steel tube perimeter bracing. This paper investigates the implications of substituting a grade 50 (fy=345 MPa) carbon steel with a higher strength micro-alloyed grade 70 (fy=480 MPa) steel in the design of Reforma 509.

  12. 14 CFR 31.23 - Flight load factor.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight load factor. 31.23 Section 31.23... STANDARDS: MANNED FREE BALLOONS Strength Requirements § 31.23 Flight load factor. In determining limit load, the limit flight load factor must be at least 1.4. ...

  13. 14 CFR 31.23 - Flight load factor.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight load factor. 31.23 Section 31.23... STANDARDS: MANNED FREE BALLOONS Strength Requirements § 31.23 Flight load factor. In determining limit load, the limit flight load factor must be at least 1.4. ...

  14. 14 CFR 31.23 - Flight load factor.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight load factor. 31.23 Section 31.23... STANDARDS: MANNED FREE BALLOONS Strength Requirements § 31.23 Flight load factor. In determining limit load, the limit flight load factor must be at least 1.4. ...

  15. Modeling failure in brittle porous ceramics

    NASA Astrophysics Data System (ADS)

    Keles, Ozgur

    Brittle porous materials (BPMs) are used for battery, fuel cell, catalyst, membrane, filter, bone graft, and pharmacy applications due to the multi-functionality of their underlying porosity. However, in spite of its technological benefits the effects of porosity on BPM fracture strength and Weibull statistics are not fully understood--limiting a wider use. In this context, classical fracture mechanics was combined with two-dimensional finite element simulations not only to account for pore-pore stress interactions, but also to numerically quantify the relationship between the local pore volume fraction and fracture statistics. Simulations show that even the microstructures with the same porosity level and size of pores differ substantially in fracture strength. The maximum reliability of BPMs was shown to be limited by the underlying pore--pore interactions. Fracture strength of BMPs decreases at a faster rate under biaxial loading than under uniaxial loading. Three different types of deviation from classic Weibull behavior are identified: P-type corresponding to a positive lower tail deviation, N-type corresponding to a negative lower tail deviation, and S-type corresponding to both positive upper and lower tail deviations. Pore-pore interactions result in either P-type or N-type deviation in the limit of low porosity, whereas S-type behavior occurs when clusters of low and high fracture strengths coexist in a fracture data.

  16. Effects of 18-week in-season heavy-resistance and power training on throwing velocity, strength, jumping, and maximal sprint swim performance of elite male water polo players.

    PubMed

    Ramos Veliz, Rafael; Requena, Bernardo; Suarez-Arrones, Luis; Newton, Robert U; Sáez de Villarreal, Eduardo

    2014-04-01

    We examined the effects of 18 weeks of strength and high-intensity training on key sport performance measures of elite male water polo (WP) players. Twenty-seven players were randomly assigned to 2 groups, control (in-water training only) and strength group, (strength training sessions [twice per week] + in-water training). In-water training was conducted 5 d·wk. Twenty-meter maximal sprint swim, maximal dynamic strength 1-repetition maximum (1RM) for upper bench press (BP) and lower full squat (FS) body, countermovement jump (CMJ), and throwing velocity were measured before and after the training. The training program included upper and lower body strength and high-intensity exercises (BP, FS, military press, pull-ups, CMJ loaded, and abs). Baseline-training results showed no significant differences between the groups in any of the variables tested. No improvement was found in the control group; however, meaningful improvement was found in all variables in the experimental group: CMJ (2.38 cm, 6.9%, effect size [ES] = 0.48), BP (9.06 kg, 10.53%, ES = 0.66), FS (11.06 kg, 14.21%, ES = 0.67), throwing velocity (1.76 km·h(-1), 2.76%, ES = 0.25), and 20-m maximal sprint swim (-0.26 seconds, 2.25%, ES = 0.29). Specific strength and high-intensity training in male WP players for 18 weeks produced a positive effect on performance qualities highly specific to WP. Therefore, we propose modifications to the current training methodology for WP players to include strength and high-intensity training for athlete preparation in this sport.

  17. Effects of wet mat curing time and earlier loading on long-term durability of bridge decks : compressive strength, maturity and strength durability index (SDI).

    DOT National Transportation Integrated Search

    2009-01-01

    There is increasing pressure from owners, contractors, and the public to open bridge decks sooner to full : traffic loads. As a result, a set of criteria or guidelines is needed to determine when concrete bridge decks can : safely be opened. Today, c...

  18. Root-sum-square structural strength verification approach

    NASA Technical Reports Server (NTRS)

    Lee, Henry M.

    1994-01-01

    Utilizing a proposed fixture design or some variation thereof, this report presents a verification approach to strength test space flight payload components, electronics boxes, mechanisms, lines, fittings, etc., which traditionally do not lend themselves to classical static loading. The fixture, through use of ordered Euler rotation angles derived herein, can be mounted on existing vibration shakers and can provide an innovative method of applying single axis flight load vectors. The versatile fixture effectively loads protoflight or prototype components in all three axes simultaneously by use of a sinusoidal burst of desired magnitude at less than one-third the first resonant frequency. Cost savings along with improved hardware confidence are shown. The end product is an efficient way to verify experiment hardware for both random vibration and strength.

  19. Dynamic Breaking Tests of Airplane Parts

    NASA Technical Reports Server (NTRS)

    Hertel, Heinrich

    1933-01-01

    The static stresses of airplane parts, the magnitude of which can be determined with the aid of static load assumptions, are mostly superposed by dynamic stresses, the magnitude of which has been but little explored. The object of the present investigation is to show how the strength of airplane parts can best be tested with respect to dynamic stresses with and without superposed static loading, and to what extent the dynamic strength of the parts depends on their structural design. Experimental apparatus and evaluation methods were developed and tried for the execution of vibration-strength tests with entire structural parts both with and without superposed static loading. Altogether ten metal spars and spar pieces and two wooden spars were subjected to vibration breaking tests.

  20. The Strength of Transosseous Medial Meniscal Root Repair Using a Simple Suture Technique Is Dependent on Suture Material and Position.

    PubMed

    Robinson, James R; Frank, Evelyn G; Hunter, Alan J; Jermin, Paul J; Gill, Harinderjit S

    2018-03-01

    A simple suture technique in transosseous meniscal root repair can provide equivalent resistance to cyclic load and is less technically demanding to perform compared with more complex suture configurations, yet maximum yield loads are lower. Various suture materials have been investigated for repair, but it is currently not clear which material is optimal in terms of repair strength. Meniscal root anatomy is also complex; consisting of the ligamentous mid-substance (root ligament), the transition zone between the meniscal body and root ligament; the relationship between suture location and maximum failure load has not been investigated in a simulated surgical repair. (A) Using a knottable, 2-mm-wide, ultra-high-molecular-weight polyethylene (UHMWPE) braided tape for transosseous meniscal root repair with a simple suture technique will give rise to a higher maximum failure load than a repair made using No. 2 UHMWPE standard suture material for simple suture repair. (B) Suture position is an important factor in determining the maximum failure load. Controlled laboratory study. In part A, the posterior root attachment of the medial meniscus was divided in 19 porcine knees. The tibias were potted, and repair of the medial meniscus posterior root was performed. A suture-passing device was used to place 2 simple sutures into the posterior root of the medial meniscus during a repair procedure that closely replicated single-tunnel, transosseous surgical repair commonly used in clinical practice. Ten tibias were randomized to repair with No. 2 suture (Suture group) and 9 tibias to repair with 2-mm-wide knottable braided tape (Tape group). The repair strength was assessed by maximum failure load measured by use of a materials testing machine. Micro-computed tomography (CT) scans were obtained to assess suture positions within the meniscus. The wide range of maximum failure load appeared related to suture position. In part B, 10 additional porcine knees were prepared. Five knees were randomized to the Suture group and 5 to the Tape group. All repairs were standardized for location, and the repair was placed in the body of the meniscus. A custom image registration routine was created to coregister all 29 menisci, which allowed the distribution of maximum failure load versus repair location to be visualized with a heat map. In part A, higher maximum failure load was found for the Tape group (mean, 86.7 N; 95% CI, 63.9-109.6 N) compared with the Suture group (mean, 57.2 N; 95% CI, 30.5-83.9 N). The 3D micro-CT analysis of suture position showed that the mean maximum failure load for repairs placed in the meniscus body (mean, 104 N; 95% CI, 81.2-128.0 N) was higher than for those placed in the root ligament (mean, 35.1 N; 95% CI, 15.7-54.5 N). In part B, the mean maximum failure load was significantly greater for the Tape group, 298.5 N ( P = .016, Mann-Whitney U; 95% CI, 183.9-413.1 N), compared with that for the Suture group, 146.8 N (95% CI, 82.4-211.6 N). Visualization with the heat map revealed that small variations in repair location on the meniscus were associated with large differences in maximum failure load; moving the repair entry point by 3 mm could reduce the failure load by 50%. The use of 2-mm braided tape provided higher maximum failure load than the use of a No. 2 suture. The position of the repair in the meniscus was also a highly significant factor in the properties of the constructs. The results provide insight into material and location for optimal repair strength.

Top